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Abstract

The contributions of this thesis are discussed in three self-contained chapters.

Chapter 1 We study the bivariate jump process involving the S&P 500 and the Euro Stoxx 50

index with jumps extracted from high frequency data using non-parametric methods. Our analysis,

based on a generalized Hawkes process, reveals the presence of self-excitation in the jump activity

which is responsible for jump clustering but has a very small persistence in time. Concerning

cross-market effects, we find statistically significant co-jumps occurring when both markets are

simultaneously operating but no evidence of contagion in the jump activity, suggesting that the role

of jumps in volatility transmission is negligible. Moreover, we find a negative relationship between

the jump activity and the continuous volatility indicating that jumps are mostly detected during

tranquil market conditions rather than in periods of stress. Importantly, our empirical results are

robust under different jump detection methods.

Chapter 2 We construct a new class of non-parametric robust to jumps estimators for the

realized volatility combining multiple measures applied to high frequency data. Collecting infor-

mation from several estimators, this method provides a higher asymptotic efficiency and allows to

improve finite sample properties. We use such combinations to construct non-parametric tests for

the detection of jumps in asset prices: our Monte Carlo study shows that the new tests can achieve

substantially more power compared to other common methods.

Chapter 3 We introduce a new stochastic process generalizing the Autoregressive Gamma

(ARG) of Gourieroux and Jasiak (2006). This process is based on a new and more flexible speci-

fication of the conditional distribution which extends the non-central gamma preserving the same

analytical tractability. We propose an empirical a application to model the realized volatility mea-

sured from high frequency data. The period of our analysis includes the sub-prime and the Euro

Sovereign crisis. Our results highlight the superior performances of the new process compared the

standard ARG and confirm the need of at least two stochastic factors for a satisfactory description

of the volatility dynamics: one factor is responsible for small volatility fluctuations while the second

factor generates large upward shocks featuring volatility jumps.
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Chapter 1

The Dynamics of Price Jumps in the Stock Market: an

Empirical Study on Europe and U.S.

1.1 Introduction

Prices of traded assets are sometime subject to sudden movements which are hardly described by

a continuous process. Such events are commonly referred as “Jumps” in order to emphasize their

instantaneous impact on the asset prices. Jumps may differ in terms of sign (positive vs. negative),

magnitude (large vs. small) and frequency (recurring vs rare). They are commonly associated

with a sudden flow of new information but there is no general consensus on which kind of market

events can more likely generate discontinuous price reactions. Calcagnile et al. (2015) find that such

discontinuities are only partially related to scheduled news announcements and their occurrence is

largely unpredictable, Bajgrowicz et al. (2016) instead show that common jump detection methods

entail a significant risk of misclassification claiming that jumps are rare and mostly related to news

announcements. Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) (ADL henceforth) suggest that jump

are also a vehicle of contagion across worldwide markets. This happens if asset price jumps spread

from an originating region to a different one.

Nowadays, financial literature considers the presence of jumps as a cardinal component of the asset

price dynamics. Starting from the seminal paper of Merton (1976) who first introduced them in

a diffusion model, a plenty of scholars has extensively contributed to the scientific research in this

field. As highlighted by Ait-Sahalia (2004) the study of jumps is extremely relevant for investors

in terms of asset allocation and portfolio optimization as large price movements may generate

significant losses and encourage the demand for higher risk premia, see Liu et al. (2003), Wright

1



1.1. INTRODUCTION

and Zhou (2009), Bates (2008), Bollerslev and Todorov (2011), Ait-Sahalia and Hurd (2015) among

others. For risk management purposes jumps are important because they can generate fat tails

with a significant impact on the Value at Risk (see for instance Duffie and Pan 1997 and Pan and

Duffie 2001). For asset pricing, jumps are also extremely relevant since they are responsible for

market incompleteness with the implication that the jump risk cannot be perfectly hedged (see

Duffie et al. 2000, Eraker et al. 2003 among many others). The literature on jumps has largely

benefited from the increasing availability of high frequency data which foster a copious scientific

production in the field of jump detection. Some seminal contributions include Barndorff-Nielsen

and Shephard (2004, 2006), Huang and Tauchen (2005), Andersen et al. (2007b) (ABD henceforth),

Andersen et al. (2010a), Bollerslev et al. (2013). In these papers jumps are identified thanks to non-

parametric techniques which rely on the comparison between two realized measures of volatility, one

determined by continuous price changes and another one including also jumps. Several alternative

volatility measures that are also robust to jumps have been proposed, for a more detailed discussion

we refer to Chapter 2.

This chapter partially follows ADL who introduce a reduced-form model for asset returns that is

able to capture the time clustering of jump events within the same market (self-excitation) as well

as the transmission across markets (cross-excitation). These features of jumps are of particular

concern for investors, regulators and policymakers: given that jumps are an important source of

risk, the study of their dynamics at the multivariate level can shed some light on their simultaneous

occurrence (co-jumps) as well as on their possible transmission across different markets. However,

we differ from their contribution and we add to the existing literature in several ways. First of all our

study is based on high frequency data and modern non-parametric jump detection methods, instead

of using daily returns. Moreover, we also investigate jumps using multivariate Hawkes processes

(introduced in Hawkes 1971b and Hawkes 1971a) but we rely on a generalized version of the method

proposed by Bowsher (2007) which allows to introduce some additional explanatory variables. We

are able to estimate the model via maximum likelihood, knowing the exact intraday jump times as

well as their size and we are able to apply the specification tests described in Bowsher (2007) in

addition to the standard ones. Interestingly, our conclusions are substantially different: we find no

cross-excitation while self-excitation are significant but exhibit a very low persistence compared to

2



1.1. INTRODUCTION

ADL. In this regard, our results are also complementary to the novel contribution of Bajgrowicz

et al. (2016) who find no significant jump clustering effect at the daily time scale: according to our

estimates such effects are characterized by a short persistence and can be measured only at short

time scales once that the exact intraday jump times are identified. We stress the importance of

taking into account the continuous volatility that, according to our evidence, exhibits an inverse

relation with the jumps intensity. This indicates that the number of jumps detected during low-

volatility periods is higher than in period of stress. Such a result, can be simply determined by a

reduction of the power of the tests when the volatility is high. The decrease in the jump activity

during those periods can be a mere statistical artifact rather then a true empirical evidence and

we are not allowed to draw robust conclusions in this regard. Nevertheless, we have a clear and

robust evidence on a decreasing relative contribution of jumps to the total price variation during

the sub-prime and the Euro Sovereign crisis. This is in stark contrast with the dynamics assumed

by ADL in their parametric model where price jumps characterize periods of market turmoil. We

find that the continuous intraday volatility for the S&P 500 measured from high frequency data

reached an annualized level above 120% just a few days before the Leheman bankruptcy. A possible

explanation for this discrepancy is that the ADL parametric approach does not take into account

the potential effects generated by fast volatility changes and cross-market volatility spillovers which

may substantially affect their results.

Our findings are also relevant to provide an accurate mathematical description of stock index returns,

which represents a fundamental task in finance. The jump clustering as well as the absence of cross-

excitation effects in the jump activity have serious consequences for portfolio optimization, risk

management and option pricing. For example, if jumps propagate across markets as in the ADL

model, a risk manager has to take into account the transmission mechanism to mitigate the jump risk

and rational investors would require a risk premium to face the risk of contagion. Jump clustering

is also remarkably important since it implies a higher probability to observe multiple jumps within

the same trading day compared to a standard Poisson processes, so affecting the shape of the return

distribution.

The rest of this chapter is organized as follows. Section 1.2 describes the data and Section 1.3

reviews the most common approaches for jump identification and test. Section 1.4 presents the
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multivariate Hawkes framework which is adopted to model the asset price dynamics and examines

the presence of market co-jumps, while Section 1.6 concludes. Technical aspects are relegated to

the Appendix.

1.2 Data description

Our data set comes from Olsendata and contains information on the S&P 500 and the Euro Stoxx

50 indexes in between 2007-09-13 and 2014-04-30; the two indexes are traded at the NYSE and at

the Frankfurt Stock Exchange, respectively. The 7-year period covered by our analysis includes the

sub-prime crisis leading to the bankruptcy of Lehman Brothers on September 15th 2008 and the

subsequent European sovereign crisis in 2011. For both markets, we compute the total return from

prices reported every 5 minutes. This frequency is widely recognized to offer a reasonable balance

between a fine sampling frequency on the one hand and robustness to market microstructure noise

on the other (see for instance Andersen et al., 2010a). The NYSE and the Frankfurt Stock Exchange

normally operate respectively form 9:30 to 16:00 and from 9:00 to 17:30 in local times, with the first

price observed 5 minutes after market opening time. Each ordinary trading day has respectively

77 intraday returns for the S&P 500 and 100 returns for the Euro Stoxx 50. For the Euro Stoxx

50 we decide to ignore the first 10 minutes of activity due to a remarkably higher price variability

compared to the rest of the day. This choice is consistent with most of the empirical literature where

the first observations are usually excluded due to the potentially erratic price behavior produced by

market opening procedures. We also exclude from the data set an extremely small number of days

containing an anomalous number of price observations. At the end of the data cleaning process,

our sample consists of 1674 trading days for the S&P 500 and 1691 for the Euro Stoxx 50. The

cumulated log-return and the intraday annualized volatility measured from high frequency returns

are reported on Table 1.1 where we can observe the highest volatility peaks during the Sub-prime

and the Euro Sovereign crisis
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Figure1.1: The top panel exhibits the time series of cumulated log-returns (including the
overnight). The bottom panel reports the annualized volatility (the square root of the realized
quadratic variation multiplied by 252 which is the number of trading days in a year)

1.3 Jumps Identification

A detailed study of the statistical features of jumps requires the identification of their occurrence in

a framework that is free from any specific parametric assumption on the price evolution. This task is

crucial to our analysis and can be accomplished using non-parametric tests based on high frequency

data. The field of jump testing developed significantly in the last decade, starting from the seminal

work of BNS who developed a non-parametric method which relies on the comparison between two

realized measures of volatility: the bipower variation and the quadratic variation. The former is

driven exclusively by continuous price changes while the latter also includes jumps. Afterwards,

several alternative tests have been proposed. In order to summarize the most relevant contributions,
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we conveniently distinguish two main families. The first one is the BNS family which includes all

the tests that are constructed by using the bipower variation or an alternative measure robust to

jumps volatility. The second important family has been introduced by Lee and Mykland (2008) (LM

henceforth) and is based on the idea that jumps can be identified when a return exceeds a certain

threshold determined adaptively according to the instantaneous volatility. The BNS family of tests

includes the contributions of Corsi, Pirino, and Renò (2010), Andersen, Dobrev, and Schaumburg

(2012) and Podolskij and Ziggel (2010). Conversely, the proposals of Andersen, Bollerslev, and

Diebold (2007b), Bollerslev et al. (2013) and Bormetti et al. (2015) belong to the LM family and

they differentiate on the basis of the methodology employed to determine the volatility and the

threshold level. Beyond these two families, it is worthwhile to mention also the “Swap Variance”

tests of Jiang and Oomen (2008), looking at the difference between relative returns and log-returns,

and the test of Aı̈t-Sahalia and Jacod (2009) which is based on absolute return moments calculated

at different sampling frequencies.

In a recent study, Schwert (2010) empirically shows that the applications of alternative identification

methods can generally lead to substantially different conclusions on the presence of jumps. There-

fore, the choice of a specific identification test may potentially drive our results on the statistical

properties of the detected jumps. Unfortunately, none of the identification methods is generally

preferable to the others, and the recent simulation studies of Dumitru and Urga (2011) and Gilder

et al. (2014) among others show that the performances of the various tests in finite samples are

related to the features of the data generating process as well as to the time frequency of prices

observations. In view of this, we recognize that the choice of the jump identification technique

deserves an accurate discussion and we follow an approach that is common in the literature: we

compare the results obtained under different jump identification method. For brevity, we consider

three alternative sets of jumps obtained by selecting one test from the BNS family and a second

test from LM family; the third test is derived as the intersection of the previous two. According

to Dumitru and Urga (2011), the intersection of two jump tests generally leads to a substantial

reduction of the effective size compared to the nominal one and can be regarded to some extent as

a reduction of the significance level. The technical motivations driving our choices will be largely

discussed in the next subsection.
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1.3.1 Jump Tests

Assume, as usual, that prices follow a continuous-time semi-martingale and let the log-price pt be

described by the stochastic differential equation

pt “
ż t

0

µs ds`
ż t

0

σsdWs `
ż t

0

JsdNs (1.1)

where the drift µt has finite variation, the volatility σt is càdlàg, Wt is a standard Brownian motion,

Nt is a finite activity counting process with possibly stochastic intensity λt and Jt is the random

jump size. The stochastic processes encompassed by equation 1.1 exclude infinite activity jumps.

However, the class of models covered is widely recognized to be flexible enough to capture the main

features of financial time series at high frequency (see for instance Andersen et al. 2007a, Andersen

et al. 2010a).

Assume also that each trading day t has duration 1 and M ` 1 log-prices pt,0, . . . , pt,M`1 are

observed at equally spaced times. The intraday log-returns are indicated as rt,i “ pt,i`1 ´ pt,i for

i “ 1, . . . ,M or alternatively with a single index ri to denote the i-th log-return in the entire time

series: i “ 1, . . . ,M ¨ T where T is the total number of trading days.

The BNS family of tests

While the LM type of tests requires substantial restriction to feature the volatility process, those

belonging to the BNS family are more flexible and remain consistent even in presence of volatility

jumps, although their power and their size in finite samples can be negatively affected by violent

volatility shocks. The following volatility metrics is essential to the computation of the test statistics:

RVt “
M
ÿ

i“1

r2
t,i (1.2)

the realized variance RVt converges in probability to the quadratic variation as M Ñ 8 (Andersen,

Bollerslev, and Diebold, 2010b):

p lim
MÑ8

RVt “ QVt “
ż t

t´1

σ2
sds`

ż t

t´1

Js
2dNs (1.3)
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and in absence of jumps the quadratic variation corresponds to the integrated variance

QVt “ IVt “
ż t

t´1

σ2
sds (1.4)

To separate the contribution to the realized variance due to continuous price variation from the

contribution of jumps, BNS introduce the bipower variation:

BPVt ” µ´2
1

ˆ

M

M ´ 1

˙ M
ÿ

i“2

|rt,i´1| |rt,i| (1.5)

where µγ “ E p|u|γq and u „ N p0, 1q. In the asymptotic limit

p lim
MÑ8

BPVt “
ż t

t´1

σ2
sds

moreover, in absence of jumps, under other regularity conditions, the joint asymptotic distribution

of RVt and IVt is normally distributed as

?
M

ˆ

RVt,M ´ IV

BVt,M ´ IV

˙

DÝÑ N

ˆ

0,

„

2 2
2 2.62



IQt

˙

(1.6)

where IQt “
şt

t´1
σ4

sds is the integrated quarticity. BNS propose some alternative statistics to

compute the test, the most common is based on the relative jump measure:

RJt ” RVt ´ ˆIV t

RVt
(1.7)

where ˆIV t denotes some jump robust measure of the integrated variance. We generally define the

test statistics for BNS family as

Zt ” RJt
c

1
M

´

v ˆIVt
´ vRVt

¯

ˆIQt

ˆIV
2

t

(1.8)

8



1.3. JUMPS IDENTIFICATION

where ˆIQt is a consistent estimate of the integrated quarticity, v ˆIV
and vRV are constant such that

in absence of jumps

V ar
”

ˆIVt

ı

“
v ˆIVt

M
IQt `O

`

M´2
˘

and V ar rRVts “ vRVt

M
IQt

therefore vRV “ 2 while v ˆIV
depends on ˆIV . Zt is a pivotal quantity that converges asymptotically

to a standard normal random variable. A jump is detected with the confidence level 1 ´ α when

Zt ą Φ´1
1´α being Φ´1

1´α the inverse standard normal distribution evaluated at 1 ´ α. In the original

proposal of BNS, ˆIV t coincides with BPVt and

ˆIQt “ max
´

ˆIV
2

t , QPt

¯

being QPt the quad-power quarticity

QPt “ µ´4
1 M

ˆ

M

M ´ 3

˙ M
ÿ

i“4

|rt,i´3| |rt,i´2| |rt,i´1| |rt,i| (1.9)

The large diffusion of this test statistics is due to its suitable finite sample properties highlighted by

Huang and Tauchen (2005). Equations 1.7 and 1.8 define the BNS family of tests throughout this

and the following chapters. An interesting alternative volatility measure is the corrected threshold

bipower variation introduced by Corsi, Pirino, and Renò (2010):

C ´ TBPVt ” µ´2
1

M
ÿ

i“2

Z1

`

rt,i´1, c
2
θv̂t,i´1; cθ

˘

Z1

`

rt,i, c
2
θv̂t,i; cθ

˘

(1.10)

where

Zγ px, y; cθq ”

$

&

%

|x|γ if x2 ď y

1
2Φp´cθq?

π

´

2
c2

θ

y
¯γ{2

Γ

ˆ

γ`1
2
,

c
2

θ

2

˙

if x2 ą y
(1.11)

Φ is the cumulative standard normal distribution and Γ pα, xq is the upper incomplete gamma

function. The C´TBPVt replaces the absolute returns exceeding the threshold by their conditional

expected value under the normality assumption:

E
“

|rt,i|γ | r2
t,i ą c2

θ

‰

“ Zγ

`

rt,i, c
2
θv̂t,i; cθ

˘

9



1.3. JUMPS IDENTIFICATION

The corrected threshold tripower quarticity is analogously defined as:

C ´ TTPVt ” µ´2
1

M
ÿ

i“3

Z4{3

`

rt,i´2, c
2
θv̂t,i´2; cθ

˘

Z4{3

`

rt,i´1, c
2
θv̂t,i´1; cθ

˘

Z4{3

`

rt,i, c
2
θv̂t,i; cθ

˘

(1.12)

Asymptotically, the C ´ TBPVt and the C ´ TTPVt behave analogously to the bipower variation

and the tripower quarticity in absence of jumps. In presence of jumps these measures offer the

advantage of reducing the upward bias which characterizes the multipower variation measures of

Barndorff-Nielsen et al. (2006), with positive effects on the power of the test. The simulation study of

Corsi, Pirino, and Renò (2010) shows that the gain is particularly relevant in presence of consecutive

jumps: in this case the bias affecting the multipower variation can become extremely large with

detrimental effects on jump detection. Anyway, the main disadvantage of the threshold multipower

measures is the necessity to estimate the local volatility and to set a judgmental threshold level.

Andersen et al. (2012) introduce two jump robust volatility measures based on nearest neighbor

truncation that can be regarded as special cases of the quantile-based realized volatility measures

of Christensen et al. (2010). The bias generated in finite samples by the presence of jumps and

stochastic volatility is generally small for these estimators but they have a lower asymptotic efficiency

compared to the bipower and the threshold bipower variation. However, the bias may become very

large in presence of consecutive jumps: this is of particular concern in our study given that our

analysis reveals quite often the presence of consecutive jumps due to jump clustering effects1.

The test proposed by Podolskij and Ziggel (2010) belongs also to the BNS family but it is constructed

on the threshold estimator of Mancini (2009) that removes returns larger then a certain size. It

has the advantage of being efficient efficiency but it is strongly dependent on the threshold level.

Such a dependence implies a serious risk of retaining jumps when the threshold is too high or

removing continuous returns when the threshold is too low. In addition, the test requires an

external perturbation to allow for the development of the required asymptotic theory and the the

form of this perturbation entails additional arbitrarity.

Given the considerations above, the testing methodology of Corsi et al. (2010) appears as the most

appropriate within the BNS family for the purposes of our empirical analysis. As a proxy for the

1 Jump clustering is documented for instance by ADL, Chen and Poon (2013), Bormetti et al. (2015) among others.
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instantaneous volatility we adopt the estimator defined by equation 1.19 in the next paragraph. A

potential problem for this kind of test concerns the presence of stale quotes which may generate

a downward bias in the multipower variation, hence increasing the probability of spurious jumps

detection. To avoid this issue we also remove the stale quotes from our sample before computing

the volatility measures.

Identification of intraday jump times All the tests belonging to the BNS family are designed

to reveal the presence of at least one jump over a certain time period, typically a single trading

day. To analyse the statistical properties of jumps we need to classify each single intraday return

as a jump or alternatively as a continuous price fluctuation. In this chapter we follow the iterative

procedure described in Andersen et al. (2010a) which replicates the BNS test but removes at each

step the contribution of the largest absolute return from realized variance. However, we adopt this

method with some important modifications:

1. The BNS test is replaced by the methodology of Corsi et al. (2010) since it produces a smaller

bias in presence of jumps.

2. The test is calculated after rescaling high frequency returns to remove the intraday periodicity

of volatility as recommended by Rognlie (2010). This procedure reduces the intraday vari-

ability of volatility which induces the downward bias in the bipower variation and increases

the spurious detection rate.

3. To reduce the impact of stale, we remove zero intraday returns from the sample before com-

puting the realized measures. The presence of an isolated null return causes two consecutive

blocks in the bipower to be zero, while the impact is smaller on the realized variance. The

negative bias in the bipower is therefore removed with the preliminary exclusion of stale quotes

from the calculation.

4. Following Gilder et al. (2014) we classify a jump as the largest absolute log return after

adjusting for the intraday volatility pattern.

5. Differently from Andersen et al. (2010a), we recalculate at each step the threshold bipower

variation and the tripower quarticity to guarantee the complete removal of the upward bias

11



1.3. JUMPS IDENTIFICATION

in case of jumps.

6. The iterative procedure is based on multiple hypotheses testing and the size of the test can

be seriously affected. To deal with this issue we apply the conservative Holm-Bonferroni

correction. Note that without such a correction the maximum number of jumps detected on

a single trading day increases remarkably2: for the S&P 500 index it passes from 5 to 8, for

the Euro Stoxx 50 from 7 to 11.

The LM Family of Tests

The LM test is based on a measurement of the instantaneous volatility of the continuous component

in Equation 1.1. Such a measurement is feasible with asymptotically infinite precision only if the

drift µt and the volatility σt changes “slowly” in time (see Lee and Mykland, 2008 for details).

This restriction is the major limitation for these tests since consistency is not guaranteed in the

presence of volatility jumps. Note that the presence of volatility bursts and simultaneous occurrence

of price and volatility jumps are increasingly documented in the literature via parametric and non-

parametric methods. Recent contributions are Todorov and Tauchen (2011), Jacod and Todorov

(2010), Corsi and Renò (2012), Wei (2012), Christensen et al. (2014), Bandi and Renò (2016). The

tests belonging to the LM family are based on the following statistic:

zt,i “ |rt,i|
b

V̂t,i

(1.13)

where V̂t,i is an estimate of the instantaneous volatility and zt,i is the normalized absolute return. As

the sampling frequency increases, V̂t,i converges to the unobserved instantaneous volatility and zt,i

distributes as the absolute value of a standard normal random variable. A jump is detected whenever

zt,i exceeds a predetermined threshold θ. The various LM tests proposed in the literature differ for

the methodology used to determine the threshold level and for the estimation of the instantaneous

volatility. Concerning the threshold, as the test is applied for every intraday return, the issue of

false discovery rate arising in the context of multiple hypotheses testing must be properly taken

2 It is worthwhile to mention that Andersen et al. find just a few occurrences of multiple jumps in a single day with
at most 3 jumps even though they do not apply any correction to the confidence level. According to our evidence,
this is motivated by the fact that they do not recalculate the bipower variation at each step, thus the positive bias
probably “compensates” for the decreasing confidence level.
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into account. The simplest solution (proposed by Andersen et al., 2007b) consists in the application

of the Šidák approach: given a certain daily size α, the corresponding size for each intraday test

is β “ 1 ´ p1 ´ αq1{M and the associated threshold level is θ “ Φ´1
1´β{2

. However, finite sample

volatility is always measured with an error and the Šidák approach often leads to over-rejection of

the null. LM propose to calculate critical values from the limiting distribution of the maximum of

the test statistics: as M Ñ 8 the quantity

ξM “ maxi pzt,iq ´ CM

SM

with CM “ p2 logMq1{2 ´ rlog π ` log plogMqs {2
?

2 logM and SM “ p2 logMq´1{2, distributes

as a Gumbel random variable. This method is more conservative and reduces the probability of

detecting spurious jumps.

With regard to the estimators used for the instantaneous volatility, LM propose the bipower varia-

tion calculated over a time window of size K depending on the sampling frequency (they recommend

K “
?

252M where 252 is the number of trading days in a year)

V̂ LM
i “ 1

µ2
1 pK ´ 2q

i´1
ÿ

j“i´K`1

|rj | |rj´1| (1.14)

Andersen et al. (2007b) measure the local volatility using the bipower variation calculated over the

entire trading day:

V̂ ABD
t,i “ BPVt

M
“ 1

µ2
1 pM ´ 1q

M
ÿ

i“2

|rt,i´1| |rt,i| (1.15)

The estimators 1.14 and 1.15 are very similar, the main difference is that ABD use the returns

belonging to a single trading day while the LM estimator is constructed on past returns collected

from different trading days. It is important to remark that both estimators are upward biased in case

of jumps and may substantially lose accuracy when the instantaneous volatility moves rapidly. Both

issues are extremely relevant for our purposes: the former reduces the detection power of the test,

especially when multiple jumps occur closely in time, and it also influences the clustering pattern;

the latter increases the the error affecting our volatility estimates and therefore the probability of

13



1.3. JUMPS IDENTIFICATION

spurious jump detection.

To remove the bias, Bormetti et al. (2015) construct an estimator similar to LM which is based on

the threshold bipower variation: the past information is weighted through an exponential moving

average. It is well known that volatility is generally higher at the beginning and at the end of the

trading day, following a U-shaped intraday pattern that is largely documented in the literature (see

for instance Bollerslev et al. 2013 and Gilder et al. 2014). This pattern must be taken into account

to improve our volatility estimates. In details, let r̃t,i denote the log-return scaled by a proper factor

to remove the intraday periodicity:

r̃t,i “ ri,t{ζi where ζi “ 1

T

T
ÿ

t“1

|rt,i|
sdt

(1.16)

being sdt the standard deviation of the absolute returns on day t. The estimator is defined by the

following equations

Ṽ BEW
i “ α

µ2
1

ˇ

ˇr̃j1

ˇ

ˇ |r̃j | ` p1 ´ αq Ṽ BEW
i´1 i “ 1, . . . ,M ¨ T (1.17)

V̂ BEW
t,k “ ζk Ṽ

BEW
t,k t “ 1, . . . , T k “ 1, . . . ,M (1.18)

where Ṽ indicates the volatility estimates purified by the intraday pattern that is instead included in

V̂ , j ă j1 ď i´ 1, |r̃j | {
b

V̂ BEW
j ď θ and |r̃l| {

b

V̂ BEW
l ą θ @ j ă l ă j1. This estimator represents

a moving average weighted bipower variation which excludes all the observation exceeding the

threshold θ. However, the inaccuracy in presence of fast volatility changes still remains a critical

issue. We introduce three modifications: i) we correct the intraday volatility patterns following

the method proposed by Boudt et al. (2011) which ensures efficiency and consistency in presence

of jumps (technical details are reported in Appendix A.1); ii) the moving average parameter α is

determined in order to reduce the autocorrelation of the standardized squared returns3 ; iii) to

improve the accuracy in presence of sharp volatility changes, we also consider the estimator V̂ F EW

based on forward information and defined exactly as V̂ BEW but on the time reversed series (i.e.

3 Our estimated optimal half life time is around 150 minutes.
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the series obtained substituting the index i with M ¨ T ´ i` 1). Our new estimator is

V̂ SEW
i “ 1

2

´

V̂ BEW
i ` V̂ F EW

i

¯

(1.19)

which is symmetric in time, i.e. it equally weighs past and future information. An extensive

simulation study that will be presented in Section 2.6 shows that this test has remarkably more

power compared to the original specification proposed by LM because our local volatility estimator

is not only able to reduce the bias due to price jumps but is also more responsive to quick changes

in volatility. In presence of an upward volatility jump, for instance, the backward estimator tends

to underestimate volatility and it is likely to signal spurious price jumps; the same can happen to

the forward estimator in presence of negative volatility jumps. This finds also some confirmation in

our empirical analysis. We apply the test at the 99% confidence level calculated according to the

conservative approach of LM (the threshold level is 4.07 and 4.11 standard deviations for U.S. and

EU respectively). For the S&P 500, the symmetric V̂ SEW estimator reveals 236 days containing

at least one jump and a total number of 315 intraday jumps. Measuring the volatility with the

backward V̂ BEW estimator leads to the detection of 506 jumps while the forward estimator V̂ BEW

recognizes 319 jumps. The results obtained for the Euro Stoxx 50 index are also similar: 631,

957 and 700 jumps are detected under V̂ BEW , V̂ F EW ,V̂ SEW respectively. It is quite evident that

measuring volatility accurately is crucial for a correct identification of identification jumps. This

point has been also recently analyzed by Christensen et al. (2014) and Bajgrowicz et al. (2016) who

find that many price fluctuations classified as jumps at 5 minutes by standard tests are spurious. An

increasing empirical evidence is pointing toward volatility jumps (Todorov and Tauchen 2011, Jacod

and Todorov 2010, Corsi and Renò 2012, Wei 2012, Christensen et al. 2014, Bandi and Renò 2016)

which can jeopardize the outcomes of our jump identification methods. To have some indication

about the possible occurrence of volatility jumps in correspondence of price jumps, we construct

the relative difference between the backward and the forward volatility estimator as follows

δi “ 2
V̂ F EW

i ´ V̂ BEW
i

V̂ F EW
i ` V̂ BEW

i

(1.20)

the mean of δi calculated unconditionally as well as in case of price jumps is reported in Table
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1.1. Results are very similar for both markets: when the price jumps, then the forward-estimated

volatility is substantially larger indicating the presence of a sharp upward volatility movement.

Table 1.1 also shows that the volatility increase is larger when price jumps are negative, however

both jump directions seem to be accompanied by positive volatility shocks. Though this analysis

provides only some indications on the possibility to have jumps in volatility, it can represent a

starting point to design formal tests whose development is left for future research.

S&P 500 ESTX 50

unconditional 1.4% 1.5%
conditional on a jump 24.1% 19.5%
conditional on a negative jump 31.7% 26.4%
conditional on a positive jump 15.1% 11.9%

Table 1.1: Conditional and unconditional mean of δi for S&P 500 and Euro Stoxx 50. (equation
1.20)

1.3.2 Results

Table 1.2 reports the summary statistics for the three alternative sets of jumps: the first set obtained

from our modified version of the LM test (m-LM henceforth), the second set from sequential version

of the CPR test (s-CPR), while the third set comes as the intersection of the previous two. All jumps

are reported on figures 1.2 and 1.3 for the Euro Stoxx and for the S&P respectively. First of all, we

note that there are significant differences between the outcomes of m-LM and the s-CPR methods:

the m-LM test always detects more jumps (almost twice of those detected under the s-CPR test).

Table 1.3 reports result from a simulation study conducted using the same setting proposed in

Chapter 2 where jump clustering effects are introduced through a stochastic jump intensity which

evolves according to a univariate self-exciting Hawkes process (see Section 1.4 for details). We

notice that the LM-type of tests have generally more power than the BNS test confirming the

results of Dumitru and Urga (2011) and Gilder et al. (2014). According to our evidence the m-LM

test proposed in this paper has a remarkably smaller size compared to the standard version of LM.

We observe that all the jump detection methods benefit significantly from the intraday volatility

pattern correction which largely reduces the size in finite samples while the market microstructure

noise has indeed only minor effects at 5 minutes. Importantly the outcomes of the m-LM and the

s-CPR tests are not independent: the size of the intersection is larger than the the product of their
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individual size. The intersection ensures anyway a large decrease of the significance level making

the detection mechanism more severe. Bajgrowicz et al. (2016) claim that the role of jumps in

the literature is probably overstated due to a high rate of spurious detections. To avoid drawing

wrong conclusions about the dynamics of jumps they suggest to control the Family Wise Error Rate

(FWER) or the False Detection Rate (FDR). The first approach aims at controlling the probability

of having one or more type I errors in the whole sample and leads to extremely severe significance

levels which may result in a serious loss of power. The letter instead is designed to control the ratio

between false detection and the total number of detected events and allows to preserve more power.

The expected false discovery rates on Table 1.2 are calculated using to the size estimated on our

numerical simulation.

The relative contribution of jumps to the total price variance is calculated as the average over all

trading days of the ratio between the sum of squared detected jumps and the realized quadratic

variation. Taking the sample mean of RJt ad defined in equation 1.7 with ˆIV t “ BPVt, Huang and

Tauchen (2005) find that about 7.3% of the quadratic variation on the S&P 500 is due to jumps. A

similar calculation performed on our data with ˆIV “ C ´TBPVt gives an average ratio of 8.0% for

the S&P 500 and 9.3% for the Euro Stoxx 50. Note that these estimates differ significantly from the

results of Table 1.2. Interestingly, the mean of RJt on days where no jumps are detected according

to the s-CPR test at the 99% confidence level is respectively 4.5% and 4.6% for the two indexes. This

result can be explained in two different ways that are not mutually exclusive: 1) our choice of the

confidence level is too severe to effectively remove the majority of jumps; 2) even after the corrections

we adopted the threshold bipower variation is still seriously downward biased. Christensen et al.

(2014) find that the contribution of jumps to total price variance extracted from 5 minutes data is

usually overestimated and intraday volatility bursts4 are often misclassified as jumps. Using data

sampled at a higher frequency and applying specific corrections for the microstructure noise, they

find that the contribution of jumps is much smaller (around 1% for the equity market). Such results

are also confirmed by Bajgrowicz et al. (2016). We therefore retain our confidence level at 99% to

avoid an excessive spurious detection rate.

4 The recent paper of Christensen et al. (2016) shows that flash crashes are indeed characterized by drift bursts
with a continuous path. Such events cannot be clearly distinguished from jumps at 5 minutes but require a higher
frequency to be properly investigated.
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1.3. JUMPS IDENTIFICATION

Note that under all identification procedures, the number of jumps as well as their size and their

relative contribution to total price variance are smaller for the U.S. index compared to the Euro

Stoxx 50, which can be plausibly related to the lower diversification of the European index.

Figures 1.5 and 1.4 show the intraday distribution of jump times. Even if we do not dispose of

a detailed data set reporting all the relevant news announcements, the pattern of intraday jumps

clearly suggests that at least a significant part of detected jumps can be related to macroeconomic

releases and other scheduled announcements. For the U.S. market we notice a peak at about 30

minutes after the market opening (less pronounced under the s-CPR method) which corresponds

to the macroeconomic announcements scheduled around 10 o’clock (see Gilder et al. 2014). This

effect is also visible in the intraday volatility pattern and we defer to Appendix A.1 for further

details. A second and more evident peak on the U.S. market is located around 14:00 which is the

time the Federal Fund Target rate is publicly communicated after the FOMC meeting. For the

European market we observe a large number of jumps located within the 5 minute interval starting

at 14:30 in local time corresponding to the start of the pre-negotiation time at the NYSE. A second

and smaller peak is visible 1 hour and a half later, in correspondence of the U.S. macroeconomic

announcements previously mentioned. This evidence suggests some dependence of the jump activity

on the European market from the news concerning the U.S. economy. This type of information may

generate simultaneous reactions in both markets which are usually referred as co-jumps. A detailed

analysis of this topic is deferred to Section 1.4.

Figures 1.6 and 1.7 report the intraday annualized volatility measured by the square root of the

quadratic variation (thus also including also the contribution of jumps). The average number of

jumps and the average contribution of jumps to the quadratic variation are also reported. All figures

show that jumps occur more frequently during low volatility periods. Remarkably, also the relative

contribution of jumps is larger when the volatility is lower, regardless of the identification method.

Note that the inverse relation between the volatility level and the relative contribution of jumps

is even more pronounced when the continuous volatility is measured by the threshold bipower

variation or using the MinRVt and the MedRVt measures proposed by Andersen et al. (2012).

While the detection of a decreasing number of jumps when volatility rises can be determined by a

deterioration of the power of the tests, the evidence concerning a diminished relative contribution
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1.3. JUMPS IDENTIFICATION

of the jump component to the total price variance calculated on non-parametric measures of the

integrated volatility is much more striking. In presence of a quickly changing volatility for instance,

the bipower variation is downward biased and the relative contribution of jumps is overestimated.

Importantly, we can conclude according to the empirical evidence that both the sub-prime and

the Euro Sovereign crisis have been characterized by a large upward volatility shocks while jumps

played a only minor role.

Empirical Results

S&P 500 ESTX 50

m-LM s-CPR m-LM X s-CPR m-LM s-CPR m-LM X s-CPR

days with jumps 236 167 106 465 286 222

total jumps 315 196 119 637 351 255

max. jumps per day 6 5 3 5 7 3

contrib. price var. 3.7% 2.3% 1.8% 6.5% 4.0% 3.5%

average jump size 0.44% 0.40% 0.48% 5.0% 5.2% 5.9%

max. jump size 3.6% 2.6% 2.6% 3.4% 3.4% 3.4%

min. jump size 0.09% 0.08% 0.1% 0.1% 0.04% 0.1%

FDR 7.6% 14.5% 3.2% 3.9% 9.0% 1.5%

Table 1.2: Summary statistics for jumps detected under different methods. The m-LM and the
s-CPR tests are applied with a nominal confidence level equal to 99%. The contribution of jumps
to the total price variance is calculated here as the sample average of the ratio between the sum of
squared detected jumps and the realized quadratic variation on each trading day(overnight returns
are excluded from the denominator). The FDR is obtained multiplying the size of the test reported
in the first panel of Table 1.3 by the number of trading days and the dividing by the number of
detected jump days.
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Simulation Results

Correction for intraday volatility pattern applied
No microstructure noise Strong microstructure noise

LM m-LM CPR m-LM X CPR LM m-LM CPR m-LM X CPR

Power 71.2% 71.2% 63.1% 62.4% 68.7% 69.3% 60.6% 60.0%

Size 3.91% 1.07% 1.52% 0.20% 3.61% 1.01% 1.50% 0.21%

Correction for intraday volatility pattern not applied
No microstructure noise Strong microstructure noise

LM m-LM CPR m-LM X CPR LM m-LM CPR m-LM X CPR

Power 72.0% 71.7% 63.0% 62.40% 70.0% 70.0% 61.0% 60.0%

Size 8.52% 3.33% 2.48% 0.280% 6.88% 1.01% 2.40% 0.62%

Table 1.3: Simulations results for the different tests (details of the simulation setting are provided
in Section 2.6 of Chapter 2). Each simulated process is sampled every 5 minutes.
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Figure1.2: Jumps in the Euro Stoxx 50 identified under different detection methods
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Figure1.3: Jumps in the S&P 500 identified under different detection methods
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Figure1.4: Distribution of intraday jump times for the Euro Stoxx 50.
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Figure1.6: The top panel reports the average number of jumps, the central and the bottom panels
show the average contribution of jumps to total price variance calculated respectively from detected
jumps and from jump robust realized measures. The dashed line is the intraday realized volatility.
All these quantities are averaged over a rolling window of two months centered on the reference
date.
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Figure1.7: The top panel reports the average number of jumps, the central and the bottom panels
show the average contribution of jumps to total price variance calculated respectively from detected
jumps and from jump robust realized measures. The dashed line is the intraday realized volatility.
All these quantities are averaged over a rolling window of two months centered on the reference
date.
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1.4 Modelling Jumps with Multivariate Hawkes Processes

Hawkes processes belong to the class of multivariate point processes, they have been originally

introduced by Hawkes (1971b) and Hawkes (1971a) and widely employed to model earthquakes.

The use of Hawkes processes in finance has been proposed by Bowsher (2007) to model market

transactions, ADL to model contagion jump cascades involving multiple markets, Bormetti et al.

(2015) to analyze the multivariate jumps dynamics in the Italian stock market and Granelli and

Veraart (2016) to study the variance risk premium on an index whose constituents are subject to

contagion. In this chapter, we use the Hawkes processes to model the jump intensities λl,τ where l

assumes the value 1 for the Euro Stoxx 50 index and 2 for the S&P 500. We will use the notation

τ pt, iq to denote the time corresponding to the ith interval on day t. The standard specification for

the jumps intensities is

λl,τ “ θl `
2
ÿ

l1“1

ż τ

´8
gl,l1 pτ ´ sq dNl1,s l “ 1, 2 (1.21)

where Nl,τ is the counting process for market l and the function gl,l1 , which is usually exponential,

measures the effect that an event on market l1 generates on the intensity of market l. This model

is able to produce jump clustering, because past jumps increase the current intensity whenever

gl,l ą 0, as well as cross-excitation effects from l1 to l when gl,l1 ą 0 for l ‰ l1. ADL use this type

of process to describe jump cascades involving financial markets located in different geographical

regions. Their GMM estimates performed on daily data show statistically significant spillovers in

the jump activity related to the propagation of large shocks during periods of crisis. Our purpose

is to use this simple model and some of its variants to statistically describe the dynamics of jumps

detected from high frequency data. This application requires some modification of the original

model in order to take into account that markets operate simultaneously only for a small portion of

the trading day. Moreover trading days can differ across countries due to specific national holidays.

When a market is closed its jump intensity is obviously zero, nevertheless we want to allow the

information coming from the operating markets to possibly influence the jump intensity on the next

trading day. Equation 1.21 can describe market l during its operating time. When the market l1

is closed, only self-excitation can take place for l since no jumps occur on l1. The missing part of
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the dynamics is the overnight evolution of λl which obviously requires some specific assumptions.

Let ol,t and cl,t denote the opening and closing time of market l measured according to some time

convention (for instance UTC); for non-trading days we simply assume ol,t “ cl,t. We assume the

following recursive evolution to take into account the events occurring in market l1 when market l

is closed :

λl,τ “
#

λl,ol,t
` θl ` ř2

l1“1Kl,l1

şτ

ol,t
e´γl,l1 pτ´sqdNl1,s τ P rol,t, cl,tq

0 τ P rcl,t, ol,t`1q
(1.22)

λl,ot`1
“ λl,cl,t

` θl `
2
ÿ

l1‰1

K̃l,l1

ż t

cl,t

e´γ̃l,l1 pτ´sqdNl1,s (1.23)

Where Kl,l1 , K̃l,l1 generate the self and mutual excitation of a possibly different magnitude in

distinct time periods: Kl,l1 refers to periods of simultaneous market activity while K̃l,l1 refers to

periods when only one market is open. According to Equation 1.23, the overnight evolution of the

jump intensity is similar to the intraday evolution but has a possibly different mean reversion rate

as well as a different impact of past jumps. These features are designed to capture the slowdown

of the information flow which characterizes the overnight period. Table 1.4 reports the maximum

likelihood estimates of our model when single elements of the dynamics are progressively included.

Model 1 is a simple Poisson process with constant intensity obtained imposing Kl,l1 “ K̃l,l1 “ 0,

λl,0 “ θl for l, l1 “ 1, 2. Model 2 is a univariate Hawkes process that allows for self-excitation: the

restrictions are Kl,l1 “ K̃l,l1 “ 0. The likelihood function exhibits a low dependence on γ̃ which

is never found to be statistically significant, thus we estimate the model under two alternative

assumptions: no overnight mean reversion (γ̃ “ 0) and fast overnight mean reversion (γ̃ “ 1).

Under the first assumption, the starting value of the intensity on a trading day equals to the last

value of the previous trading day; conversely, under the second assumption, the starting value

for the jump intensity on each trading day corresponds to the minimum level θ. For brevity, in

Table 1.4 we only report the estimates performed under the fast mean reversion assumption since

they provide the highest likelihood for all identification methods. The effect of jumps on future

intensity exhibits a very small persistence: for the S&P 500 the half-life time ranges from 21 min

to 1 hour, for the ESTX from 21 min to 1 hour and half. For both markets the s-CPR method has
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the highest persistence, the intersection the lowest. When allowing for self-excitation, we obtain

a remarkable increse of the likelihood under all jump identification methods suggesting that it

represents a relevant feature to describe the statistical properties of jumps. When a jump occurs,

its impact on the intensity is remarkably large, generally one order of magnitude larger then the

baseline intensity level θ. These results are very similar to those obtained by Bormetti et al. (2015)

analyzing the Italian stock market.

Model 3 also allows for spillovers in the jump activity (cross-excitation). To limit the number of free

parameters we impose K̃l,l1 “ Kl,l1 and we perform our estimates under the assumption of an equal

mean reversion rate for the overnight and the intraday periods γ̃l,l1 “ γl,l1 (note that leaving more

freedom to the parameters does not lead to significant improvements). From the results reported in

Table 1.4 we do not see any significant cross-excitation effect. However, under the s-CPR method,

the standard tests reject the null Kl,l1 “ 0 at the 5% confidence level for both markets suggesting

the possible presence of some cross market effect. Anyway, a further analysis anyway reveals that

these weak cross dependencies immediately disappear once that the we allow the jump intensity to

depend on the continuous volatility. According to our empirical evidence, jumps detected from high

frequency do not seem to play a relevant role in volatility transmission across markets.

To extend our analysis, we also explore some additional features of the jump process: the dependence

from continuous volatility and the role of the jump size. To this purpose we move from the standard

Hawkes processes to the class of generalized Hawkes processes whose properties are discussed in

details by Bowsher (2007). The generalized model allows the deterministic component θ to be time

dependent and we use a power of normalized jump size as an explanatory in place of the increments

to the counting process Nt. The full model is specified as follows:

λl,τ “

$

&

%

λl,ol,t
` θl,τ ` ř2

l1“1Kl,l1

şτ

ol,t
e´γl,l1 pτ´sq

ˇ

ˇ

ˇ

Jl1,s?
vl1,s

ˇ

ˇ

ˇ

α

dNl1,s τ P rol,t, cl,tq
0 τ P rcl,t, ol,t`1q

(1.24)

λl,ot`1
“ λl,cl,t

` θl,τ `
2
ÿ

l1‰1

K̃l,l1

ż τ

cl,t

e´γ̃l,l1 pτ´sq
ˇ

ˇ

ˇ

ˇ

ˇ

Jl1,s?
vl1,s

ˇ

ˇ

ˇ

ˇ

ˇ

α

dNl1,s (1.25)

where α ě 0. We consider the following parametrization for the deterministic time dependent
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component θl,τ used to accommodate an explicit dependence on the continuous volatility level:

θl,τ “ exp pal ` bl log vl,τ q al, bl P R (1.26)

where our volatility proxy is

vl,τpt,iq “ IVt ζ
2
i {M (1.27)

IVt is the integrated volatility on day t , ζi is the intraday volatility corrector (see Appendix A.1)

and M is the number of intraday returns. Equation 1.27 is a proxy for the instantaneous volatility

on a specific time interval i on day t. The integrated volatility can be measured in different ways,

the simplest and theoretically more efficient being the sum of all the squared returns that are not

identified as jumps. Unfortunately, this choice is subject to an endogeneity bias as the error in its

measurement unavoidably depends on the number of jumps detected and consequently by jump

intensity itself. To circumvent this issue, we use a forecast of the integrated volatility built on the

information available up to day t´1 and based on a bivariate extension of the HAR-type regressions

of Corsi and Renò (2012). The results are discussed in Section 1.5 and show an extremely high in-

sample forecasting power, meaning that the forecast values represent a good proxy for the realized

volatility. At the same time, we observe significant volatility spillovers from U.S. to Europe with a

time lag of one day. Interestingly, in the opposite direction we find significant lagged cross-leverage

effects that are unprecedented in the literature to the best of our knowledge: negative returns in

the Euro Stoxx 50 affect the volatility of the S&P 500 (probably such effects are mostly generated

during the Euro Sovereign crisis).

The dependence on the jump size is introduced in our generalized Hawkes model when α ą 0 and it

is determined by the absolute size of the jump normalized by the instantaneous volatility: the idea

is that the impact of a jump is proportional to its size compared to the typical size of continuous

returns on the same period. The Results for the alternative specifications are reported in Table

1.5 where the distinctive features of the generalized process are gradually introduced. Model 4

extends the univariate Model 2 and also introduces the volatility dependence under the constraints

α “ 0, Kl,l1 , K̃l,l1 “ 0. Importantly, Table 1.5 shows that all estimates confirm a significant inverse

dependence on the volatility level. This result is consistent with the analysis of Wei (2012) who finds

that the volatility is on average lower on trading days with jumps. This result confirms what we
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qualitatively observe in Figures 1.6 and 1.7: jumps at high frequency characterize mostly tranquil

market conditions rather than periods of turmoil. From a statistical perspective, we must take

into account that we are not analyzing the true (unobserved) jump process but the jumps detected

by some non-parametric test. The inverse dependence that we measure could simply reflect the

difficulty of such tests to detect jumps when the volatility is high. This may be the case if jump are

i.i.d.: in presence of high volatility levels, the magnitude of continuous price fluctuations observed

at a fixed sampling frequency may become close to the magnitude of jumps. The detection of

discontinuities would then require a finer time resolution which is usually not achievable in practice

due to the presence of the microstructure noise.

With regard to cross-market effects, according to further analysis not reported here for brevity,

none of the cross-excitation coefficients is statistically significant when taking into account the

continuous volatility and this holds regardless of the method used to detect jumps. Interestingly,

when volatility is omitted, standard tests reject the null Kl,l1 “ 0 in some cases suggesting that

cross-market dependence on the jump activity can be induced by the well documented cross-market

volatility spillovers.

Concerning the role played by the jump size, we see that there is no agreement across the different

detection methods: under the m-LM procedure, large jumps seem to have a larger impact on the

intensity with a convex response (α ą 1); this effect disappears under the s-CPR method and for

the intersection set. A possible motivation for this difference would be the presence of volatility

jumps: contrary to the s-CPR method that is asymptotically robust to these events, the m-LM

method is subject to an increase of the false detection rate. A rapid increase in volatility may be

erroneously identified as a jump under the m-LM method which may lead to the kind of result that

we have observed.
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ESTX S&P 500

m-LM s-CPR Intersection m-LM s-CPR Intersection
m

o
d

el
1 θ 7.44 ¨ 10´4˚˚˚ 4.16 ¨ 10´4˚˚˚ 3.02 ¨ 10´4˚˚˚ 4.90 ¨ 10´4˚˚˚ 3.05 ¨ 10´4˚˚˚ 1.85 ¨ 10´4˚˚˚

`

2.20 ¨ 10´5
˘ `

1.38 ¨ 10´5
˘ `

1.21 ¨ 10´5
˘ `

1.81 ¨ 10´5
˘ `

1.58 ¨ 10´5
˘ `

9.68 ¨ 10´6
˘

log L ´4147.614 ´2518.953 ´1911.414 ´2208.438 ´1467.042 ´950.0483

m
o
d

el
2

θ 6.32 ¨ 10´4˚˚˚ 3.65 ¨ 10´4˚˚˚ 2.81 ¨ 10´4˚˚˚ 3.96 ¨ 10´4˚˚˚ 2.37 ¨ 10´4˚˚˚ 1.69 ¨ 10´4˚˚˚

`

2.86 ¨ 10´5
˘ `

1.63 ¨ 10´5
˘ `

1.86 ¨ 10´5
˘ `

2.41 ¨ 10´5
˘ `

1.85 ¨ 10´5
˘ `

1.07 ¨ 10´5
˘

γ 3.05 ¨ 10´2˚˚˚ 7.47 ¨ 10´3˚˚˚ 3.25 ¨ 10´2˚ 2.90 ¨ 10´2˚˚˚ 1.15 ¨ 10´2˚˚ 3.30 ¨ 10´2˚

`

7.62 ¨ 10´3
˘ `

1.68 ¨ 10´3
˘ `

1.30 ¨ 10´2
˘ `

6.67 ¨ 10´3
˘ `

4.21 ¨ 10´3
˘ `

1.38 ¨ 10´2
˘

Kl,l 4.68 ¨ 10´3˚˚˚ 1.21 ¨ 10´3˚˚˚ 2.27 ¨ 10´3˚ 5.93 ¨ 10´3˚˚˚ 1.57 ¨ 10´3˚˚ 3.06 ¨ 10´3˚

`

1.10 ¨ 10´3
˘ `

2.63 ¨ 10´4
˘ `

9.43 ¨ 10´4
˘ `

1.37 ¨ 10´3
˘ `

5.21 ¨ 10´4
˘ `

1.43 ¨ 10´3
˘

log L ´4062.034 ´2489.863 ´1895.516 ´2122.551 ´1448.232 ´934.451

m
o
d

el
3

θ 5.82 ¨ 10´4˚˚˚ 3.48 ¨ 10´4˚˚˚ 2.69 ¨ 10´4˚˚˚ 3.76 ¨ 10´4˚˚˚ 2.06 ¨ 10´4˚˚˚ 1.64 ¨ 10´4˚˚˚

`

4.27 ¨ 10´5
˘ `

1.90 ¨ 10´5
˘ `

1.96 ¨ 10´5
˘ `

2.91 ¨ 10´5
˘ `

3.87 ¨ 10´5
˘ `

1.55 ¨ 10´5
˘

γl,l 3.06 ¨ 10´2˚˚˚ 7.95 ¨ 10´3˚˚˚ 3.24 ¨ 10´2˚ 2.87 ¨ 10´2˚˚˚ 1.19 ¨ 10´2˚˚ 3.27 ¨ 10´2˚

`

7.70 ¨ 10´3
˘ `

1.80 ¨ 10´3
˘ `

1.33 ¨ 10´2
˘ `

5.57 ¨ 10´3
˘ `

4.34 ¨ 10´3
˘ `

1.36 ¨ 10´2
˘

Kl,l 4.68 ¨ 10´3˚˚˚ 1.24 ¨ 10´3˚˚˚ 2.53 ¨ 10´3˚ 5.87 ¨ 10´3˚˚˚ 1.56 ¨ 10´3˚˚ 3.03 ¨ 10´3˚

`

1.11 ¨ 10´3
˘ `

2.75 ¨ 10´4
˘ `

9.47 ¨ 10´4
˘ `

1.35 ¨ 10´3
˘ `

5.24 ¨ 10´4
˘ `

1.41 ¨ 10´3
˘

γl,l 3.74 ¨ 10´4 3.26 ¨ 10´4 5.62 ¨ 10´4 5.65 ¨ 10´3 1.39 ¨ 10´4 1.27 ¨ 10´3

`

4.57 ¨ 10´4
˘ `

2.65 ¨ 10´4
˘ `

5.45 ¨ 10´4
˘ `

4.47 ¨ 10´3
˘ `

1.50 ¨ 10´3
˘ `

1.31 ¨ 10´2
˘

Kl,l1 2.39 ¨ 10´4 1.16 ¨ 10´4 2.26 ¨ 10´4 1.6 ¨ 10´4 7.70 ¨ 10´5 3.00 ¨ 10´5

`

2.16 ¨ 10´5
˘ `

9.6 ¨ 10´5
˘ `

2.15 ¨ 10´4
˘ `

7.94 ¨ 10´4
˘ `

4.12 ¨ 10´5
˘ `

4.33 ¨ 10´4
˘

log L ´4057.068 ´2488.735 ´1893.671 ´2121.027 ´1444.632 ´934.156
˚˚˚p ă 0.001, ˚˚p ă 0.01, ˚p ă 0.05

Table 1.4: Estimates for the standard Hawkes process: time is measured in minutes and standard
errors are reported in parenthesis.
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ESTX S&P 500

m-LM s-CPR Intersection m-LM s-CPR Intersection
m

o
d

el
4

a ´1.22 ¨ 101˚˚˚ ´1.11 ¨ 101˚˚˚ ´1.20 ¨ 101˚˚˚ ´12.1 ¨ 101˚˚˚ ´1.08 ¨ 101˚˚˚ ´1.30 ¨ 101˚˚˚

`

8.37 ¨ 10´1
˘ `

1.00 ¨ 10´1
˘ `

1.08 ¨ 10´1
˘ `

9.30 ¨ 10´1
˘ `

9.00 ¨ 10´1
˘

p1.12q
b ´3.41 ¨ 10´1˚˚˚ ´2.23 ¨ 10´1˚˚ ´2.71 ¨ 10´1˚˚˚ ´2.94 ¨ 10´1˚˚˚ ´1.77 ¨ 10´1˚˚ ´3.01 ¨ 10´1˚˚

`

5.86 ¨ 10´2
˘ `

7.09 ¨ 10´2
˘ `

7.63 ¨ 10´2
˘ `

6.44 ¨ 10´2
˘ `

6.13 ¨ 10´2
˘ `

7.80 ¨ 10´2
˘

γ 3.18 ¨ 10´2˚˚˚ 5.74 ¨ 10´2˚˚˚ 3.29 ¨ 10´2˚ 3.07 ¨ 10´2˚˚˚ 1.22 ¨ 10´2˚˚ 3.56 ¨ 10´2˚

`

8.47 ¨ 10´3
˘ `

1.70 ¨ 10´3
˘ `

1.70 ¨ 10´2
˘ `

7.78 ¨ 10´3
˘ `

4.32 ¨ 10´3
˘ `

1.62 ¨ 10´2
˘

Kl,l 4.63 ¨ 10´3˚˚˚ 1.05 ¨ 10´3˚˚˚ 2.20 ¨ 10´3˚ 6.07 ¨ 10´3˚˚˚ 1.57 ¨ 10´3˚˚ 3.18 ¨ 10´3˚

`

1.12 ¨ 10´3
˘ `

2.42 ¨ 10´3
˘ `

9.49 ¨ 10´4
˘ `

1.50 ¨ 10´3
˘ `

5.22 ¨ 10´4
˘ `

1.56 ¨ 10´3
˘

log L ´4039.128 ´2483.786 ´1888.9 ´2111.314 ´1445.279 ´929.475

m
o
d

el
5

a ´1.21 ¨ 101˚˚˚ ´1.11 ¨ 101˚˚˚ ´1.19 ¨ 101˚˚˚ ´1.20 ¨ 101˚˚˚ ´1.08 ¨ 101˚˚˚ ´1.31 ¨ 101˚˚˚

`

8.29 ¨ 10´1
˘ `

1.00 ¨ 10´1
˘ `

9.35 ¨ 10´1
˘ `

9.30 ¨ 10´1
˘

p1.09q p1.28q
b ´3.35 ¨ 10´1˚˚˚ ´2.23 ¨ 10´1˚˚ ´2.71 ¨ 10´1˚˚˚ ´2.92 ¨ 10´1˚˚˚ ´1.77 ¨ 10´1˚ ´3.04 ¨ 10´1˚˚˚

`

5.82 ¨ 10´2
˘ `

7.09 ¨ 10´2
˘ `

6.65 ¨ 10´2
˘ `

6.43 ¨ 10´2
˘ `

7.49 ¨ 10´2
˘ `

8.81 ¨ 10´2
˘

γ 3.22 ¨ 10´2˚˚˚ 5.74 ¨ 10´2˚˚˚ 346 ¨ 10´2˚ 3.00 ¨ 10´2˚˚˚ 1.27 ¨ 10´2 4.00 ¨ 10´2˚

`

7.87 ¨ 10´3
˘ `

1.70 ¨ 10´3
˘ `

1.73 ¨ 10´3
˘ `

7.68 ¨ 10´3
˘ `

7.66 ¨ 10´3
˘ `

1.96 ¨ 10´2
˘

Kl,l 1.90 ¨ 10´4 1.05 ¨ 10´3˚˚˚ 6.41 ¨ 10´4˚ 2.91 ¨ 10´4 9.40 ¨ 10´4 5.40 ¨ 10´4

`

1.27 ¨ 10´4
˘ `

2.42 ¨ 10´3
˘ `

8.35 ¨ 10´4
˘ `

2.19 ¨ 10´4
˘ `

9.20 ¨ 10´4
˘ `

8.55 ¨ 10´4
˘

α 1.78˚˚˚ ´ 6.89 ¨ 10´1 1.68˚˚˚ 3.39 ¨ 10´1 1.00
`

3.06 ¨ 10´1
˘

´
`

6.27 ¨ 10´1
˘ `

3.49 ¨ 10´1
˘ `

5.60 ¨ 10´1
˘ `

6.82 ¨ 10´1
˘

log L ´4023.449 ´2483.786 ´1888.446 ´2096.817 ´1445.112 ´928.376
˚˚˚p ă 0.001, ˚˚p ă 0.01, ˚p ă 0.05

Table 1.5: Estimates for the extended univariate Hawkes process: time is measured in minutes and
standard errors are reported in parenthesis. Note that for model 5 for under the s-CPR method the
constraint α ě 0 is binding.

Co-jumps

Hawkes processes are designed to capture jump clustering effects across markets but they fail to

capture the simultaneous occurrence of jump events that are commonly referred to as co-jumps.

The occurrence of co-jumps for stocks traded on the same market has been largely documented

by Gilder et al. (2014), Bormetti et al. (2015), Calcagnile et al. (2015) among others and specific

statistical tests have been recently designed for their detection (see Jacod and Todorov 2010 and

Caporin et al. 2014). To the best of our knowledge, co-jumps involving market indexes located on

different geographical regions have not yet been studied by the literature. One reason is probably

that different markets are often operating asynchronously and the overlap of their activity represents

just a small portion of the trading day. This is exactly our case: the overlap ranges between one
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and three hours (due to differences in the adoption of light saving time) and it normally amounts to

a couple of hours. A systematic study of co-jumps is definitely beyond the purposes of this chapter,

nevertheless the simultaneous occurrence of jumps is sometimes observed in our sample. To keep

our approach simple, we base our investigation on the co-exceedance criterion whereby a co-jump

is detected whenever jumps are detected in the price of both indexes within the same time interval.

According to this rule the number of co-jumps under the m-LM, the s-CPR and their intersection

is respectively equal to 18, 13 and 7. Given the small number of events it is natural to question

whether they can be generated by random statistical fluctuations. In this regard, we first notice that

all the identified co-jumps have the same sign in both markets suggesting that they are effectively

originated by the same type of information. However, to establish their significance from a statistical

perspective we need to perform a formal test. In practice the co-exceedance criterion is applied on a

discrete timeline whose granularity is 5 minutes and the probability to observe jumps falling within

the same time interval is clearly larger than zero even when jumps occur independently conditionally

on the intensities. Assume ∆t is a small positive time interval, under the null hypothesis that the

two processes are independent with intensities λ1,t and λ2,t, the probability of observing a co-

jump in the interval rt, t` ∆ts is approximately 1 ´ exp
`

´λ1,t ¨ λ2,t ¨ ∆t2
˘

. The test statistics is

represented by the total number of co-jumps n that under the null is a Poisson random variable

with mean Λ “ řT
i“1 λ1,i ¨ λ2,i ¨ ∆t2 where we assume λl,t “ 0 when market l is closed. To calculate

the test some reliable estimates of the jump intensity on both markets are needed and, to this

purpose, we use estimates from Model 5 for the m-LM method (since in this case the coefficient α is

significant) and Model 4 in all other cases. To check the reliability of these estimates we first apply

the specification tests proposed by Bowsher (2007)5.

According to our results, the null hypothesis of correct model specification is generally not rejected

at the 5% significance level for all the jump detection methods adopted. Conversely, the hypothesis

that all the co-jumps observed are generated by random statistical fluctuations is always rejected

5 The main idea behind these tests consists in the application of a random time change defined as t̃l ptq “
şt

0
λl,sds. In

the new time coordinates, under the null of a correct model specification, each jump processes behave as a Poisson pro-
cesses with constant unitary intensity. The residuals, defined as el,j “

şτj

τj´1

with τl,0 “ 0 and τl,1 . . . , τl,Nl
representing

the jump times on market l, are i.i.d. exponentially distributed under the null. In practice, independence is verified
applying the Ljung-Box test to residuals and squared residuals up to 15 lags; exponentiality can be checked applying
the Engle and Russel (1998) test for excess dispersion.
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at the 0.1% significance level.

1.5 Forecasting the Integrated Volatility

In this Section we discuss some details on the volatility proxy used in Section 1.4. The objective is

to provide accurate estimates of the integrated volatility on each trading day t using the previously

available information. The aim of this approach is to circumvent some endogeneity issues which

may arise if the integrated volatility is calculated subtracting the contribution of jumps from the

quadratic variation introducing therefore some dependence between the volatility estimates and the

price jumps occurred in the same period.

The dependent variables that we want to model are the integrated volatility of the Euro Stoxx 50

(IVEU,t) and of the S&P 500 (IVEU,t). Let rl,t denote the close to close log-return on day t while Jl,t

is the absolute contribution of jumps to the quadratic variation. More specifically the integrated

volatility is calculated as the average variance of the intraday log-returns that are not identified as

jumps:

IVl,t “ M

M ´ řM
i“1 Jumpt,i

M
ÿ

i“1

r2
t,i p1 ´ Jumpt,iq

where Jumpt,i is the jump indicator taking the value 1 each time that a jump is identified and

zero otherwise. Clearly, this method produces distinct volatility measures for each different jump

identification method. Our approach is based on a bivariate extension of the LHAR-C-CJ regression

of Corsi and Renò (2012), i.e. a parsimonious regression of the HAR type (introduced by Corsi,

2009) which also includes lagged leverage effects and jumps. We propose a straightforward bivariate

extension that is able to capture the cross market effects. As an example, for the Euro Stoxx 50,

the regression reads as follows:
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log IVEU,t`1 “ c` β1 log IVEU,t ` β2 log IV
p5q

EU,t ` β3 log IV
p22q

EU,t ` β4 log p1 ` JEU,tq ` β5 log
´

1 ` J
p5q
EU,t

¯

`β6 log
´

1 ` J
p22q
EU,t

¯

` β7r
´
EU,t ` β8r

p5q´
EU,t ` β9r

p22q´
EU,t ` β10 log IVUS,t

`β11 log IV
p5q

US,t ` β12 log IV
p22q

US,t ` β13 log p1 ` JUS,tq ` β14 log
´

1 ` J
p5q
US,t

¯

`β15 log
´

1 ` J
p22q
US,t

¯

` β16rUS,t ` β17r
p5q´
US,t ` β18r

p22q´
US,t

where for a generic observable X we have:

X´ “ min pX, 0q

X
phq
t “ 1

h

h
ÿ

j“1

Xt´h`1

Xphq´ “ min
´

Xphq, 0
¯

X´phq “ 1

h

h
ÿ

j“1

min pXt´h`1, 0q

with h representing the order of the LHAR-C-CJ component.

The results shown in Table 1.6 are very similar under the alternative jump identification schemes

adopted. For both indexes the strong volatility persistence is confirmed: the coefficients relative

to the daily, weekly and monthly components are positive and significant. The persistence of the

leverage effects is also relevant, especially for the Euro Stoxx 50 index. The main differences with

respect to Corsi and Renò (2012) are found in the impact of jumps on continuous volatility which

is generally insignificant in our regressions. This is probably due to the prevalence of crisis periods

in our sample, when the effect of jumps is overwhelmed by a large continuous volatility component

as already documented in the rest of this chapter. Concerning volatility spillovers, we note a strong

effect from U.S. to Europe with a lag of 1 day while the weekly component has a weak negative effect

and the monthly component is not statistically significant. Importantly we also notice a marked

cross-leverage effect between Europe and U.S. that to the best of our knowledge is unprecedented in

the literature and suggests a possible direction for future research. The interdependence in volatility
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stems also from the cross correlation of the residuals that is over 40% under all jump identification

methods.

ESTX S&P 500

m-LM s-CPR m-LM X s-CPR m-LM s-CPR m-LM X s-CPR

c ´1.33˚˚˚ ´1.44˚˚˚ ´1.48˚˚˚ ´1.53˚˚˚ ´1.72˚˚˚ ´1.73˚˚˚

p0.20q p0.21q p0.20q p0.20q p0.20q p0.20q
IVUS 0.22˚˚˚ 0.24˚˚˚ 0.23˚˚˚ 0.44˚˚˚ 0.39˚˚˚ 0.39˚˚˚

p0.03q p0.03q p0.03q p0.03q p0.03q p0.03q
IV

p5q
US ´0.10 ´0.09 ´0.09 0.24˚˚˚ 0.27˚˚˚ 0.27˚˚˚

p0.05q p0.06q p0.06q p0.05q p0.05q p0.06q
IV

p22q
US ´0.07 ´0.10˚ ´0.10˚ 0.25˚˚˚ 0.27˚˚˚ 0.27˚˚˚

p0.05q p0.05q p0.05q p0.05q p0.05q p0.05q
JUS 11.21 373.41 475.28 32.60 188.37 526.30

p367.65q p355.44q p381.62q p312.84q p606.05q p609.65q
J

p5q
US 374.63 495.97 299.76 186.61 ´28.31 ´505.50

p647.56q p1204.55q p1276.56q p804.68q p1412.76q p1472.98q
J

p22q
US ´1309.15 ´3032.51 ´2223.71 ´1299.17 355.15 1418.30

p1436.40q p2858.22q p2953.36q p1439.30q p2871.98q p2913.64q
r´

US ´1.05 ´0.78 ´0.97 ´6.70˚˚˚ ´7.26˚˚˚ ´7.44˚˚˚

p1.61q p1.76q p1.74q p1.96q p2.07q p2.08q
r

p5q´
US 0.79 ´0.20 0.53 ´12.19 ´12.70 ´12.81

p5.61q p6.06q p6.01q p6.41q p6.72q p6.57q
r

p22q´
US 25.98 26.96 29.41˚ 8.89 19.18 22.56

p15.47q p15.15q p14.82q p17.04q p17.98q p18.09q
JEU ´299.77 ´288.77 ´297.08 ´530.12˚ ´450.34 ´400.91

p264.21q p265.17q p273.65q p259.97q p311.68q p339.78q
J

p5q
EU ´657.64 ´722.77 ´707.31 ´1015.27 ´1334.81 ´1486.38

p727.60q p728.93q p790.90q p849.13q p888.68q p909.46q
J

p22q
EU ´352.97 ´264.96 ´108.15 ´178.40 ´569.12 ´360.00

p1252.21q p1308.38q p1318.49q p1367.05q p1455.09q p1492.77q
IVEU 0.25˚˚˚ 0.19˚˚˚ 0.19˚˚˚ ´0.01 ´0.02 ´0.02

p0.04q p0.04q p0.04q p0.04q p0.04q p0.04q
IV

p5q
EU 0.35˚˚˚ 0.38˚˚˚ 0.38˚˚˚ 0.00 0.02 0.02

p0.05q p0.05q p0.05q p0.05q p0.06q p0.06q
IV

p22q
EU 0.22˚˚˚ 0.24˚˚˚ 0.23˚˚˚ ´0.07 ´0.09 ´0.09

p0.05q p0.05q p0.05q p0.05q p0.06q p0.06q
r´

EU ´12.60˚˚˚ ´13.60˚˚˚ ´13.26˚˚˚ ´10.52˚˚˚ ´10.28˚˚˚ ´10.05˚˚˚

p1.64q p1.73q p1.75q p1.67q p1.76q p1.75q
r

p5q´
EU ´23.10˚˚˚ ´22.90˚˚˚ ´23.44˚˚˚ ´14.58˚ ´16.91˚˚ ´16.72˚˚

p5.01q p5.20q p5.19q p6.18q p6.32q p6.31q
r

p22q´
EU ´34.97˚˚ ´35.51˚˚ ´36.17˚˚ ´31.36˚ ´37.80˚˚ ´37.79˚˚

p12.04q p12.46q p12.43q p13.90q p14.53q p14.38q
R2 0.81 0.79 0.79 0.85 0.84 0.84

obs. 1669 1669 1669 1652 1652 1652
RMSE 0.40 0.43 0.42 0.44 0.46 0.46
˚˚˚p ă 0.001, ˚˚p ă 0.01, ˚p ă 0.05

Table 1.6: Estimates for the bivariate LHAR-C-CJ, robust to heteroskedasticity and autocorrelation.
Standard errors in parentheses.
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1.6 Concluding Remarks

We studied the statistical properties of the bivariate jump process involving two stock markets

represented by the Euro Stoxx 50 and the S&P 500 index. Our analysis reveals important fea-

tures characterizing jump events with potentially relevant implications for asset price modeling,

derivatives pricing, risk management and portfolio optimization. The empirical evidence is not

compatible with a constant intensity Poisson process but reveals significant jump clustering effects

that are captured by the self-exciting Hawkes processes. The time persistence of such self-excitations

is extremely short (less than 1 hour) and therefore unable to produce measurable effects across dif-

ferent trading days, consistently with what observed by Bajgrowicz et al. (2016). Concerning cross

market effect, our estimates exclude the presence of significant spillovers in the jump activity but

at the same time they reveal a strong dependence of Euro Stoxx 50 returns from news related to

the U.S. economy. Such a dependence is reflected in the shape of the intraday volatility pattern

and by the presence of few but statistically significant co-jumps occurring when both markets are

simultaneously operating. Our results are complementary to those of Corradi et al. (2012) who

document significant spillovers across markets affecting the continuous volatility and confirm the

absence of cross-market effects triggered by jumps. Interestingly, our results appear in contrast

with those of ADL obtained from daily data on the MSCI indexes. In our view the discrepancy

is likely determined by the different time scale at which our analyses are performed and by the

specific parametric assumptions of ADL: large daily returns that are captured by price jumps in

their can be generated by large volatility shocks. Indeed, our findings suggest that jumps are more

likely detected when the continuous volatility is low. The inverse dependence between the jump

intensity and the continuous volatility can be related to a mere identification problem: when the

volatility is high, the power of the test is reduced because jumps are more difficult to distinguish

from continuous returns at a given sampling frequency. However, our results seem to exclude the

possibility that jumps played a prominent role during the sub-prime crisis in 2008-2009 and the

Euro Sovereign crisis in 2011-2012. These periods are instead characterized by high volatility peaks

which overwhelm the jump component in terms of relative contribution to the total price variance.

Our analysis provides several directions for future research. Interestingly, our supplementary regres-
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sions used to forecast volatility in Section 1.5 show significant cross-leverage effect between Europe

and U.S. that suggest a volatility transmission mechanism which, to the best of our knowledge, is

still unexplored. Our results point towards a crucial role volatility shocks rather than price jumps

in the period 2007-2014, this is another aspect which in our view deserves further investigations.

39



Appendix A

Technical Details of Chapter 1

A.1 The Intraday Volatility Pattern

It is well established that the stock market volatility tends to be higher at the beginning and at the

end of the trading day (seeHarris 1986, Wood et al. 1985 for seminal contributions). Therefore, it is

essential to take into account the intraday volatility pattern for the purpose of jumps identification

as pointed out by Boudt et al. (2011). Several methods have been proposed in the literature to

estimate the intraday volatility correction factor. As an example, Taylor and Xu (1997) use the

simple estimator ζ̂2
T X,i based on the realized volatility measure:

ζ̂2
T X,i “

M
řT

t“1 r
2
t,i

řT
t“1

řM
i“1 r

2
t,i

(A.1)

Andersen and Bollerslev (1997) propose a more sophisticated technique called flexible Fourier func-

tion (FFF) that is based on the following regression:

log |rt,i| ´ c “ x1
iθ ` εt,i (A.2)

where c corresponds to the mean of the log absolute value of a standard normal random variable

and

x1
iθ “

Q
ÿ

q“0

σ
q
t

«

µ0,q ` µ1,q
i

N1

` µ1,q

ˆ

i

N2

˙2

`
D
ÿ

l“1

λl,q Iti“dlu `
P
ÿ

p“1

ˆ

γp,q cos
p ¨ i ¨ 2π

M
` κp,q sin

p ¨ i ¨ 2π

M

˙

ff

(A.3)
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where θ “ rµ0,q, µ1,q, λl,q, γp,q, κp,qs is a parameter vector, σt is a measure of the daily volatility level,

N1 “ pN ` 1q {2 and N2 “ pN ` 1q pN ` 2q {6. The FFF parametrization is based on quadratic

component and sinusoids, for Q ą 1 it allows to take into account interactions between the daily

volatility level and the intraday periodicity. For D ą 0 this procedure allows to introduce specific

dummies if some intraday intervals do not fit properly within the regular pattern. The regression

is estimated by OLS and the intraday volatility corrector is obtained as

ζ̂2
F F F,i “ M exp p2x1

iθq
řM

i“M exp p2x1
iθq

(A.4)

Importantly, neither the estimators described above nor the method proposed by Bormetti et al.

(2015) and reported in Equation 1.16 are robust to the presence of price jumps. So, if price disconti-

nuities are concentrated in specific periods within the trading day, they may induce some distortions

in the estimate of the intraday volatility corrector and consequently in the instantaneous volatility

measurement. The problem is discussed by Boudt et al. who propose alternative parametric and

non-parametric estimators. Let us first consider the standardized returns defined as follows:

r̄t,i “ rt,i
a

BVt{M

the shortest half scale estimator is defined as

ShortHi “ 0.741 min
 

r̄phq,i ´ r̄p1q,i, . . . , r̄pT q,i ´ r̄pT ´h`1q,i

(

where T is the total number of observations, h “ tT {2u is the floor of T {2 and r̄pjq,i are the order

statistics of r̄j,i. Then the corresponding correction factor is

ζ̂2
ShotH,i “ M ShortH2

i
řM

i“1 ShortH
2
i

A more efficient non-parametric corrector is the weighted standard deviation estimator that assigns

no weight to the largest observations after scaling by ζ̂ShortH,i:

WSD2
i “ 1.081

M
řT

t“1 ωt,i r̄
2
t,i

řM
i“1 ωt,i
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A.1. THE INTRADAY VOLATILITY PATTERN

where ωt,i “ ω
´

r̃t,i{ζ̂ShortH,i

¯

and ω pzq “ 1 if z2 ď 6.635 and 0 otherwise1

ζ̂2
W SD,i “ M ¨WSD2

i
řM

i“1WSD2
i

(A.5)

The parametric method proposed by Boudt et al. represents a modification of the FFF estimator.

To see this, consider the residuals

eW SD
t,i “ log |rt,i| ´ c´ log ζ̂W SD,i

and define the negative likelihood function as

ρML pzq “ ´0.5 log

ˆ

2

π

˙

´ z ´ c` 0.5 exp t2 pz ` cqu

and the weights as

ωt,i “
#

1 if ρML

`

eW SD
t,i

˘

ď 3.36

0 otherwise.

Then the maximum likelihood parameters are estimated as

θML “ min
θ

ř

t,i ωt,iρML pεt,iq
ř

t,i ωt,i

where εt,i is calculated from a regression of the type A.2 and the truncated maximum likelihood

(TML) corrector is given by equation A.4.

1 The threshold for z corresponds to the 99° percentile of a chi squared distribution with one degree of freedom.
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FigureA.1: The blue line labeled as TML is the correction adopted in this chapter and is constructed

using a mixed approach: for the points lying in the neighborhood of discontinuities the TML estimator is

substituted by the WSD. On common days the TML approach for the Euro Stoxx 50 is adopted until 14:25

CET. The first spike at 14:30 is related to the beginning of pre-negotiations in the U.S., then the volatility

decreases until the beginning of electronic trading at 15:30. The highest level is reached at 16:00 (10:00

EST) which is the usual time of news announcements concerning the U.S. economy. The left bottom panel

represents the shape of the volatility correctors for periods when the NYSE opens one hour earlier w.r.t. the

CET due to the different adoption of the daylight saving time in the two regions. This anomaly involves a

small number of trading days (117 out of 1691) and the WSD estimates are extremely noisy, thus we fully rely

on the TML estimates (except for the first 5 minutes interval when volatility is extremely large). When the

U.S. market is closed (only 44 days in the whole sample), the intraday volatility in the Euro Stoxx assumes

an L shape that is almost entirely fitted by the TML method.
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A.1. THE INTRADAY VOLATILITY PATTERN

Figure A.1 shows the WSD and the TML volatility correctors computed on our sample. Generally

speaking, the TML estimator is more efficient and also generates smoother patterns, but it fails to

capture discontinuities. Therefore, we disregard the TML corrector for some specific time intervals

as the one around 10:00 EST where the S&P 500 deviates from a standard U-shaped pattern and

exhibits a spike due to the documented news announcement effect mentioned in Section 1.3.2. The

intraday volatility of the Euro Stoxx 50 exhibits a strong dependence on the market activity in U.S.:

we can identify three different patterns depending on the operating time of the NYSE (see the three

Euro Stoxx 50 subplots in Figure A.1). Normally at the Frankfurt Stock Exchange (FSX) the

electronic trading starts at 9:00 CET and closes at 17:30, the NYSE opens at 15:30 CET and closes

at 22:00 CET (respectively 9:30 and 16:00 EST). The overlapping period between these markets

can fluctuate based on changes resulting from the non-simultaneous adoption of the daylight saving

time which generates short periods characterized by a different volatility pattern (left bottom panel

in Figure A.1). Finally there is a small set of days in which the FSX market is operating normally

but the NYSE remains closed (these days usually include some long weekends and national holidays

in U.S.). The volatility pattern of the Euro Stoxx appears L-shaped during these periods.
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Chapter 2

Non-parametric Jump Testing Based on Optimal

Combinations of Robust Volatility Estimators

2.1 Introduction

The importance of price jumps to provide an accurate description of the evolution of asset prices

has been discussed in Chapter 1 where the main references on this topic have been also provided

(Section 1.1). The ability to disentangle jumps from continuous diffusion is extremely useful for risk

management, portfolio optimization and derivatives pricing. The identification of the size and the

time of the jumps allows to analyze their statistical properties whose knowledge can be extremely

useful not only for investors and risk managers but also for regulators who are primarily interested

in the orderly functioning of financial markets. In the last decade, several non-parametric tests

constructed on high-frequency data have been developed to detect whether, in addition to the

continuous diffusion, asset prices are also affected by jumps. The availability of high frequency data

makes jumps identification an important and active area of research. Importantly, the detection

of jumps can be performed in principle with an extremely high accuracy provided that the return

process can be sampled at a arbitrarily high frequency. Due to the presence of microstructure

imperfections unfortunately the exact identification of discontinuities in asset prices is practically

unfeasible. For this reason, several alternative techniques have been proposed in the literature.

The seminal work in this area is due to Barndorff-Nielsen and Shephard (2004, 2006) (BNS), who

developed a non-parametric technique which relies on the comparison of two realized measures of

volatility, one determined by continuous price changes and another including also jumps. At a

later stage several additional jump robust volatility measures have been designed: Mancini (2009)
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2.1. INTRODUCTION

introduces a threshold based estimator, Corsi, Pirino, and Renò (2010) (CPR henceforth) define

a modified version of the bipower variation of BNS with a reduced finite sample bias, Andersen,

Dobrev, and Schaumburg (2012) (ADS) develop new measures based on nearest neighbor truncation

with suitable finite sample properties. Christensen, Oomen, and Podolskij (2010) generalize the

proposals of ADS introducing quantile based estimators that are also consistent in presence of

market microstructure noise.

Jump testing heavily relies on the ability to measure the continuous return volatility. With reference

to Chapter 1, two main families of tests can be conveniently distinguished. The BNS family is based

on the same idea of BNS but possibly replacing the bipower variation with some alternative robust

to jumps measure of price variability. This category includes the contributions of CPR, ADS and

Podolskij and Ziggel (2010) (PZ henceforth). The second family is introduced by Lee and Mykland

(2008) (LM henceforth) and is referred as the LM family (for more details we refer to Section 1.3).

Outside these two families, it is important to mention also the “Swap Variance” tests of Jiang and

Oomen (2008) (looking at the difference between relative returns and log-returns) and the test of

Aı̈t-Sahalia and Jacod (2009) based on absolute return moments calculated at different sampling

frequencies.

The availability of a variety of tools devoted to the same purpose, poses some practical questions on

their efficiency, their robustness to microstructure effects and on the coherency of their outcomes.

The study of Schwert (2010) for instance highlights a large variability across jumps detected under

alternative methods in real data, raising therefore questions about the kind of jumps that are

possibly identified or, more radically, on the validity of the theoretical assumptions underlying the

construction of the tests1. The Monte Carlo simulations of Huang and Tauchen (2005), Dumitru and

Urga (2011) (DU hereafter) and Gilder et al. (2014) among others, show that the performances of the

various tests are driven by the features of the data generating process and the sampling frequency

of price observations but there is no general recipe to select an appropriate method. The recent

studies of Christensen et al. (2014) and Bajgrowicz et al. (2016) reveal that many jumps detected

at the common sampling frequency of 5 minutes are indeed generated by large price variations

with an underlying continuous path that is discoverable analyzing tick-by-tick data. Christensen

1 Particularly we refer to the assumption of finite jump activity.
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et al. (2016) argue that such extremely rapid price changes are characterized by “drift bursts”

and develop e formal tests for their detection from high frequency data. While the distinction

between true price jumps and different kind of phenomena like drift burst can be extremely useful

to regulators and to high frequency traders who can largely benefit from a deeper understanding

of the market microstructure, for long term investors as well as for risk management and option

pricing purposes such a distinction could be less insightful.

This work contributes to the high frequency econometrics literature adopting a new approach aimed

at collecting information from multiple robust measures of realized volatility to construct new

efficient estimators. The underlying idea is similar to Kolokolov and Renó (2016) (KS henceforth)

who combine multipower variation measures to design efficient quarticity estimators. Anyway our

study differs from KS in several ways: first we construct optimal combinations not only for the

realized quarticity but also and more importantly for the realized volatility. Second we use measures

that involve at most blocks of three consecutive returns as recommended by ADS to reduce the bias

generated by stochastic volatility. Third, whenever we use thresholds to reduce the bias due to

jumps, the measures involved depend weakly on the threshold level whose choice is unavoidably

judgmental.

Although we allow the coefficients of our combinations to take negative values, our newly introduced

estimators remain always positive within our analysis either when applied to simulated or to real

data. Patton and Sheppard (2009) show that a linear combination of realized variance measures

can perform better than each single estimator because it is able to collect more information and

to average across differences generated by finite sample effects or imperfections in the market mi-

crostructure. Differently, this chapter focuses on the maximization of efficiency under robustness to

jumps rather than to microstructure noise. To the best of our knowledge, the only existing measures

that are able to reach a low asymptotic variance and to conjugate robustness to market microstruc-

ture noise with robustness to jumps are the realized volatility estimators (QRV) of Christensen et al.

(2010). ADS show that unfortunately the performances of QRV measures in finite samples can be

largely affected by the presence of a rapidly changing stochastic volatility, because they involve long

blocks of consecutive intraday returns. On the contrary, the combined realized volatility estimators

(CRV) proposed in this chapter, achieve comparable levels of asymptotic efficiency involving at

47



2.1. INTRODUCTION

most three consecutive returns. The “locality” guarantees a high robustness to stochastic volatility

(see Monte Carlo results in ADS) but at the cost of losing asymptotic consistency in presence of

microstructure noise.

The second important contribution of this chapter is the creation a new class of tests belonging

the BNS family and to analyze their performances in finite samples. This new tests can achieve

substantially more power than other tests of the same type, with the possible exception of the PZ test

which exhibits a very high power in numerical simulations (see PZ and DU). The reason is that the

latter is constructed using the threshold estimator of Mancini (2009) which removes returns larger

then a certain threshold. Importantly the variance of this estimator attains the Kramer’s - Rao

lower bound but it is extremely sensitive to the threshold level and entails therefore a serious risk of

retaining jumps when the threshold is too high or to generate a negative bias if the threshold is too

low. Such a risk becomes even more concrete if the accuracy of instantaneous volatility estimates is

jeopardized by volatility jumps. Moreover the PZ test requires an external perturbation to allow the

development of the necessary asymptotic theory, an element that introduces additional arbitrariness

related to the features of this perturbation that must be set a priori. The CRV estimators proposed

in this chapter instead involve the corrected threshold bipower and tripower variation that are

weakly depending on the truncation level (see CPR), as it is desirable in empirical applications.

At the 5 and 10 minutes frequency, the CRV-based tests can achieve the same power of the test

of LM in numerical simulations without requiring the same restrictive assumptions to the volatility

process. This aspect is extremely relevant because the method of LM is not robust to volatility

jumps, whose importance is increasingly documented by the recent literature (see Todorov and

Tauchen 2011, Jacod and Todorov 2010, Corsi and Renò 2012, Wei 2012, Christensen et al. 2014,

Bandi and Renò 2016). Remarkably, our framework allows to establish a trade-off between the

efficiency in jump detection and the robustness to different features of the data generating process

by setting the criteria to drive the selection of the optimal weights.

The third contribution of this work is to the study the finite sample properties of different tests

in a Monte Carlo simulation that starts from the baseline setting of a geometric Brownian motion

and gradually introduces more realistic features like stochastic volatility with a U shaped intraday

pattern, contamination by market microstructure noise and jumps with different characteristics.
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2.2. JUMP ROBUST VOLATILITY MEASURES

Such a simulation exercise is to some extent complementary to the contribution of Dumitru and

Urga (2011) because it takes into account the effects of the intraday periodicity of the diffusive price

volatility and introduces also jump clustering through self-exciting Hawkes processes, coherently

with what is observed in the empirical analysis of Chapter 1. Both aspects are particularly relevant

in empirical applications: the extensive discussion of Rognlie (2010) shows that rapid variations of

the intraday volatility may generate a negative bias in jump robust measures, pushing towards the

spurious detection of jumps. Our Monte Carlo study suggests that removing the periodical intraday

effects can significantly improve the performances of all the tests we analyse2. Concerning jump

clustering we observe that this feature of the data generating process increases the probability to

have multiple jumps occurring within the same block of consecutive returns, compromising therefore

the finite sample properties of our realized measures. We propose a truncation method that allows

to overcome these issue without altering the asymptotic theory.

The chapter proceeds as follows: Section 2.2 introduces the theoretical setting providing the main

definitions and the theoretical results, Section 2.4 discusses some possible criteria to construct

optimal combinations of measures, in Section 2.5 we introduce the class jump tests based on the

CRV measure. Sections 2.6 and 2.7 present respectively our Monte Carlo study and an application

to empirical data. Section 2.8 concludes.

2.2 Jump Robust Volatility Measures

The theoretical setting is the same of Section 1.3.1 based on the usual assumption that prices

follow a continuous-time semi-martingale (which ensures no arbitrage) with finite activity jumps

(equation 1.1). Each trading day t has duration 1 and M `1 log-prices pt,0, . . . , pt,M`1 are observed

at equally spaced times. The intraday log-returns are rt,i “ pti`1
´ pt,i for i “ 1, . . . ,M and the

realized variance on day t is just the sum of intraday squared returns according to equation 1.2. It

is well known that for M Ñ 8 the realized variance RVt converges in probability to the quadratic

variation which in turn equals the integrated variance in absence of jumps. Several jump robust

estimators for the integrated variance have been proposed in the literature: the threshold estimator

of Mancini (2009), the bipower and multipower variation of BNS, the threshold bipower variation of

2 Boudt et al. (2011) provide this kind of evidence for some LM type test but do not study the impact of the intraday
volatility pattern on tests of the BNS type.
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CPR, the minimum realized variance (MinRV) and the median realized variance (MedRV) of ADS,

the quantile realized variance of Christensen et al. (2010). I recall here the main definitions and

properties for the measures that will be used in this chapter. The multipower variation generalizes

expression 1.5:

MPVt pγ1, . . . , γkq “ M pγ1`...`γkq{2

µγ1
. . . µγk

pM ´ k ` 1q
M
ÿ

i“k

k
ź

j“1

|rt,i´j`1|γj (2.1)

where γ1, . . . , γk ą 0, µγ “ E p|u|γq given u „ N p0, 1q. The bipower variation (BPV) and the

tripower variation (TPV) are the two important special cases obtained posing respectively k “ 2,

γ1 “ γ2 “ 1 and k “ 3, γ1 “ γ2 “ γ3 “ 2{3. Another example is the staggered bipower introduced

by Huang and Tauchen (2005) and based on staggered returns to achieve robustness also to market

market microstructure noise:

BPV st “ µ´2
1

M
ÿ

i“3

|rt,i´2| |rt,i| (2.2)

The MinRV and the MedRV are od ADS are instead based on nearest neighbor truncation:

MinRVt “ π

π ´ 2

M

M ´ 1

M
ÿ

i“2

min p|rt,i´1| , |rt,i|q2 (2.3)

MedRVt “ π

6 ´ 4
?

3 ` π

M

M ´ 2

M
ÿ

i“3

med p|rt,i´2| , |rt,i´1| , |rt,i|q2 (2.4)

In presence of jumps with finite activity, all the measures above converge in probability to the

integrated volatility as M Ñ 8. Under some technical conditions on the volatility process σt, ADS

show that the a central limit theorem holds for the BPV , the MinRV , the MedRV and the TPV in

absence of jumps implying that their asymptotic distribution is a multivariate normal conditionally

on the integrated quarticity. Nevertheless, in presence of jumps, the central limit theorem fails to

hold for the bipower variation: the reason is that jumps introduce in this measure a bias of order

M´1{2; for the the MinRV and the MedRV instead the corresponding rate of decay for is M´1 while

for the TPV is M´2{3. The impossibility to develop an asymptotic theory represents a relevant

limitation for the BPV both from the theoretical and the empirical perspective. The threshold
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bipower of CPR is designed to overcame this problem introducing a truncation that reduces the

upward bias in presence of jumps. More generally, the threshold multipower variation is defined as:

TMPVt pγ1, . . . , γkq “ M pγ1`...`γkq{2

µγ1
. . . µγk

pM ´ k ` 1q
M
ÿ

i“k

k
ź

j“1

|rt,i´j`1|γj 1t|rt,i´j`1|2ďθt,i´j`1u (2.5)

where θ must go to zero slower then
a

M´1 logM (i.e. the modulus of continuity of the Brownian

motion). In practice authors recommend an adaptive threshold that depends on the instantaneous

volatility: θt,i “ c2
θ v̂t,i. The TBPV estimator allows the extension of the asymptotic result 2.12 also

in presence of jumps at the cost of requiring the choice of an appropriate threshold level which is

to some extent arbitrary3. In absence of jumps the TMPV is downward biased in finite samples

since absolute returns that are larger then the threshold are systematically removed. This flaw is

eliminated in the corrected version of this estimator:

C ´ TMPVt pγ1, . . . , γkq “ M pγ1`...`γkq{2

µγ1
. . . µγk

pM ´ k ` 1q
M
ÿ

i“k

k
ź

j“1

Zγj
prt,i´j`1, θt,i´j`1q (2.6)

where the function Zγ is defined by expression 1.11. In theC ´ TMPV absolute returns exceeding

the threshold are replaced by their conditional expected value under the normality assumption:

E
“

|rt,i|γ | r2
t,i ą c2

θ

‰

“ Zγ

`

rt,i, c
2
θv̂t,i; cθ

˘

In presence of jumps the threshold multipower variation measures are usually more accurate in

finite samples then the multipower variation of Barndorff-Nielsen, Shephard, and Winkel.

2.2.1 Introducing New Measures

ADS observe that the existing jump robust measures exhibit a strong positive correlation and

conclude that there is a little room for improving the asymptotic efficiency. In this section we enlarge

therefore the set of volatility estimators introducing some new measures. On a stand alone basis, the

estimators we are going to define are less accurate then the existing ones, but they are useful to form

combinations with superior properties. In Section 2.4 we will show that the optimal combinations

3 Anyway CPR show that the multipower variation is much less sensitive to the threshold level compared to the
threshold estimator of Mancini (2009)
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including existing and newly defined measures reach an asymptotic variance that is much closer

to the Cramér–Rao lower bound then the bipower. Importantly, all the estimators we consider in

this section involve blocks of at most three consecutive returns to ensure that locality is preserved.

As pointed out by ADS, this property is extremely important to have a small bias in presence of

stochastic volatility by ensuring that the volatility on average does not change significantly within

the same block. The first two estimators we introduce are respectively the the threshold version of

the staggered bipower variation of Huang and Tauchen (2005) and the staggered counterpart of the

MinRV labeled MinRV s:

TBPV st “ µ´2
1

M

M ´ 2

M
ÿ

i“3

|rt,i´2| |rt,i| 1t|rt,i´2|2ďθt,i´2u1t|rt,i|2ďθt,iu (2.7)

MinRV st “ π

π ´ 2

M

M ´ 2

M
ÿ

i“3

min p|rt,i´2| , |rt,i|q2 (2.8)

Then we consider a natural extension of the MinRV taking the minimum of three consecutive

squared returns. Like the MinRV and the MedRV , also this estimator belongs to the QRV class

of Christensen et al. (2010):

Min3RVt “
„

1 ´ 6

π

ˆ

1 ´ 1?
3

˙´1 M
ÿ

i“3

min p|rt,i´2| , |rt,i´1| , |rt,i|q2 (2.9)

The last measure is built on the product between the minimum and the median of three consecutive

absolute returns:

MinMedRVt “
„

6 ´ 6
?

2 ` 6
?

3

π

´1 M
ÿ

i“3

min p|rt,i´2| , |rt,i´1| , |rt,i|q

med p|rt,i´2| , |rt,i´1| , |rt,i|q (2.10)

The following propositions mirror propositions 1 and 2 of Andersen et al. (2012):

Proposition 1. Let the log-price pt be represented by the jump-diffusion process 1.1 with finite

activity. Assume further that µt is adapted and locally bounded, σt is adapted, càdlàg and larger

than zero a.s. Then as M Ñ 8, TBPV st, MinRV st, Min3RVt and MinMedRVt converge in
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probability to the integrated variance
şt

t´1
σ2

sds

Importantly, it can be easily checked that the bias generated by finite activity jumps decreases at

the rate M´1 for all measures allowing the development of the necessary asymptotic theory.

2.2.2 Asymptotic Theory

The construction of optimal combinations of jump robust measures is based on the asymptotic

properties stated by propositions 2 and 3 which extend the results of ADS

Proposition 2. Under the same assumptions of Proposition 1 except that jumps are ruled out,

plus assumption A1 of Andersen et al. (2012) Appendix A on σt, as M Ñ 8

?
M

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

RVt,M ´ IV

BP Vt,M ´ IV

BP V st,M ´ IV

T P Vt,M ´ IV

MinRVt,M ´ IV

MinRV st,M ´ IV

MedRVt,M ´ IV

Min3RV t,M ´ IV

MinMedRV t,M ´ IV

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

stable DÝÑ MN

ˆ

0,

„

2 2i
1

8

2i8 SIV



IQt

˙

(2.11)

where MN denotes a mixed normal distribution, i.e. a normal distribution conditional on the

realization of the (random) volatility path and IQt “
şt

t´1
σ4

sds is the integrated quarticity, ik is a

k-dimensional vector of ones and

SIV “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

2 2 2 2 2 2 2 2 2
2.609 2.283 2.737 2.976 2.448 2.534 3.287 3.056

2.609 2.575 2.448 2.976 2.420 2.998 2.821
3.061 3.138 2.885 2.609 3.867 3.504

3.810 2.751 3.048 4.204 3.773
3.810 2.795 3.667 3.352

2.959 2.972 2.960
5.950 4.862

4.252

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.12)

As noted by Huang and Tauchen (2005) the covariance matrix 2.12 reflects a situation similar to

the test of Hausman (1978): in absence of jumps, log-returns are asymptotically normal and the RV

is the maximum likelihood estimator with a variance equal to the Cramér-Rao lower bound. The

remaining measures are less efficient but are robust to the presence of jumps. The joint asymptotic

distribution of the eight estimators in 2.12 is known also in presence of jumps provided that we

replace the bipower with the threshold bipower (or equivalently with its corrected version defined
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2.2. JUMP ROBUST VOLATILITY MEASURES

by equation 2.6).

Proposition 3. In presence of finite activity jumps the asymptotic joint distribution of TBPV ,

TBPV s, TTPV , MinRV , MinRV s, MedRV , Min3RV andMinMedRV is the same as in absence

of jumps, i.e. a mixed multivariate normal with the covariance matrix obtained from 2.12.

Proof The proof of propositions 2 and 2.12 parallels the proof of propositions 1,2 and 3 in ADS

and therefore is not reported here in order to save space. The first step is to consider the case with

no jumps. The main idea is to approximate the sequence of standardized high frequency returns

using an alternative sequence with piece-wise constant volatility across one or more consecutive

returns. The proof for the no-jumps case proceeds showing that: i) the measures calculated on

the approximating process converge in probability to those calculated on the exact process at the

rate M´1{2 as the number of intraday observations M goes to infinity4; ii) the corresponding

measures calculated on the approximating process converge in distribution to a mixed multivariate

normal centered on the integrated volatility with variance-covariance matrix given by expression

2.12 The extension to the general case including jumps follows directly from the fact that the bias

they generate decays faster than 1{
?
M . The technical details relative to the computation of the

covariance matrix are deferred to the Appendix B.1.

Note that a similar result can be obtained also for the jump robust quarticity estimators. To this

purpose we consider the following set of measures:

TTPQt “ µ´2
1

M

M ´ 2

M
ÿ

i“3

|rt,i´2rt,i´1rt,i|3{2 1t|rt,i´2|2ďθt,i´2;|rt,i´1|2ďθt,i´1;|rt,i|2ďθt,iu (2.13)

MinRQt ” 3

3π ´ 8

M2

M ´ 1

M
ÿ

i“2

min p|rt,i´1| , |rt,i|q4 (2.14)

MedRQt “ 3π

9π ` 72 ´ 52
?

3

M2

M ´ 2

M
ÿ

i“3

med p|rt,i´2| , |rt,i´2| , |rt,i|q4 (2.15)

4 Our notation slightly differs from ADS to maintain consistency across chapters: here M is the number of intraday
observations that they denote with N , while they use M to denote the number of consecutive returns with constant
volatility in the approximating process.
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2.2. JUMP ROBUST VOLATILITY MEASURES

MinRQst “ 3

3π ´ 8

M2

M ´ 2

M
ÿ

i“3

min p|rt,i´2| , |rt,i|q4 (2.16)

Min3RQt “ π

3π ´ 24 ` 26{
?

3

M2

M ´ 2

M´2
ÿ

i“1

min p|rt,i| , |rt,i`1| , |rt,i`2|q4 (2.17)

MinMedRQt ”
„

1 ´ 4

π
?

3

´1
M2

M ´ 2

M
ÿ

i“3

min p|rt,i´2| , |rt,i´1| , |rt,i|q2

med p|rt,i´2| , |rt,i´1| , |rt,i|q2 (2.18)

The estimators 2.13, 2.14 and 2.15 are respectively the truncated threshold tripower quarticity of

CPR, the minimum and the median realized quarticity of ADS. The others are constructed by

analogy with the integrated volatility measures defined in 2.8, 2.9 and 2.10. The bias in presence of

jumps for all these estimators decays again at the rate M´1, thus their joint asymptotic distribution

in presence of jumps converges to a mixed normal with the same covariance matrix that is obtained

in case of a continuous diffusion with constant volatility:

?
M

¨

˚

˚

˚

˚

˚

˚

˝

TTPQt,M ´ IQ

MinRQt,M ´ IQ

MinRQst,M ´ IQ

MedRQt,M ´ IQ

Min3RQt,M ´ IQ

MinMedRQt,M ´ IQ

˛

‹

‹

‹

‹

‹

‹

‚

stable DÝÑ MN

ˆ

0, SIQ

ż t

t´1

σ8

sds

˙

(2.19)

where

SIQ “

»

—

—

—

—

—

—

–

13.65 13.07 10.67 11.05 17.02 15.65
18.54 8.53 14.80 16.78 15.78

18.54 11.63 12.83 12.25
14.16 12.09 12.55

28.62 22.60
19.72

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.20)

The elements of the covariance matrix 2.20 are calculated following the same method to those of

matrix 2.12 (analytical expressions have been used whenever available while we resorted to numerical

integration in other cases).
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2.3 Combining Multiple Measures

In this section we study the problem of constructing optimal combinations of robust estimators

according to some criteria summarized in a specific loss function. Let w be a vector of weights with

real unbounded components such that
řn

i“1wi “ 1 where n is the number of different measures

involved (in our case n “ 8 for the integrated volatility and n “ 6 for the integrated quarticity).

CRVt pwq “ w1 TBPVt ` w2 TBPV st ` w3 TTPVt ` w4MinRVt `

w5MinRVt ` w6Min3RVt ` w7Min3RV t ` w8MinMedRV t (2.21)

CRQt pwq “ w1 TTPQt ` w2MinRQt ` w3MinRQst `

w4MedRQt ` w5Min3RQt ` w6MinMedRQt (2.22)

Proposition 4. As M Ñ 8, under the same assumptions of Proposition 3 we have:

?
M pCRVM,t ´ IVtq stable DÝÑ MN

`

0,wTSIV w IQt

˘

(2.23)

Proof The results follow directly from Proposition 3.

Analogously it can be proved that

?
M pCRQM,t ´ IQtq stable DÝÑ MN

ˆ

0,wTSIQw

ż t

t´1

σ8
sds

˙

(2.24)

A natural criterion to determine the optimal weights is the minimization of the asymptotic variance

under some linear constraints Aw “ b where A is k ˆ n and b is k ˆ 1. The minimum requirement

is
ř

iwi “ 1 for consistency, but additional constraints can be useful in different circumstances: for

instance one may exclude a subset of measures in order to save computational time or may suppress

a specific finite sample bias estimated from a numerical simulation. The optimal estimator under

the selected criterion is:

w˚ “ S´1AT
`

AS´1AT
˘´1

b (2.25)

To highlight the gain in terms of asymptotic efficiency that comes from combining multiple measure,
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2.3. COMBINING MULTIPLE MEASURES

the optimal weights have been computed for all possible combinations of realized volatility and

realized quarticity estimators that we are considering. The asymptotic variance scaled by M is

plotted in Figure 2.2 while the optimal weights are reported on Tables 2.4 and 2.3. Note that the

best combination of two realized volatility estimators, which involves the threshold bipower and

the MinRV , achieves an asymptotic variance that is remarkably smaller than the bipower alone.

The improvements become less pronounced as the number of estimators involved increases and we

get closer to the maximum likelihood limit. Note that such a limit is attained asymptotically by

the threshold estimator of Mancini (2009) but as already mentioned, in practice this estimator

is extremely sensitive to the threshold level and to the error affecting the estimates of the local

volatility. The CRV instead depends weakly on the threshold through TBPV and the TTPV (see

CPR for further details). For the realized quarticity we also observe significant improvements as

the number of measures increases, although the optimal estimator obtained with 6 measures has

a variance that is still well above the lower bound attained by the efficient multipowers of KR.

The variance of CRQ could be further decreased including estimators that involve four or more

consecutive returns but this would compromise the locality incrementing the bias in presence of

stochastic volatility. Importantly, both the CRV and the CRQ type of estimators can be unbounded

and are allowed to assume also negative values in finite samples. Anyway we will show that this

happens extremely rarely in practice and moreover is not problematic for the construction of efficient

jump tests which is the main focus of this work.

The minimization of the asymptotic variance is just one possible criterion. In empirical applications

it can be also useful to take into account also some finite characteristics. The weights in that

case can depend also on the specific features of the data generating process (the variability of the

instantaneous volatility, the jump intensity and the jump size distribution, the noise to signal ratio)

but the asymptotic consistency of the estimators is always guaranteed. A concrete example will be

provided later.

Threshold adjustment for quantile based estimators

When combining multiple measures with possibly negative coefficients, we face the problem of

obtaining negative estimates for quantities, like the realized volatility, that are non-negative by
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definition. Theoretically, the lower is the variance of our measures, the smaller is the probability

to obtain negative values. In practice we must also consider some possible distortions emerging

in finite samples. A crucial problem is the occurrence of multiple jumps within the same block

of consecutive returns. Such events, referred as “gradual jumps” in the terminology of Barndorff-

Nielsen et al. (2009), are non negligible in real data as pointed out also by CPR. Christensen et al.

(2014) and Christensen et al. (2016) find that their are substantially different from jumps because

they are generated by a continuous path dominated by a strong drift component. These events

are usually indistinguishable from price jumps unless we use tick-by-tick data. For the purposes

of our analysis we need to control the large bias generated in case of gradual jumps. While for

the truncated and corrected versions of the multipower variation (equations 2.5 and 2.6) this is

guaranteed by the presence of a threshold, the measures based on nearest neighbor truncation can

be largely affected by the presence of consecutive abnormal returns. To mitigate this problem we

set a correction with no effects on the asymptotic results. Let us generally write our measure as

Fk prq “ pM ´ kq´1
M
ÿ

i“k

Θ p|ri´k,t| , . . . , |ri,t|q

where r “ pr1,t, . . . , rM,tqT . We substitute this expression with

Fk prq “ 1

M ´ k

M
ÿ

i“k

”

Θ p|ri´k,t| , . . . , |ri,t|q 1tΘp|ri´k,t|,...,|ri,t|qďτpΘq maxpvi´k,t,...,vi,tqu`

max pvi´k,t, . . . , vi,tq 1tΘp|ri´k,t|,...,|ri,t|qďτpΘq maxpvi´k,t,...,vi,tqu
ı

(2.26)

where τ pΘq is a threshold that goes to zero slower than the modulus of continuity of the Brownian

motion as M Ñ 8. In practice we set M at the 99.99% of the distribution of Θ p|U1| , . . . , |Uk|q

where U1, . . . , Uk are i.i.d. standard normals and it is determined numerically. As M Ñ 8 the

variance vi,t goes to zero at the rate M´1 which is enough to leave the asymptotic properties of our

estimators unaffected. The correction has a negligible effect in absence of jumps but is extremely

useful in case of jump clustering.
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Figure2.1: Asymptotic variance of the optimal CRV (top panel) and CRQ (bottom panel)
estimators obtained forming all the possible combinations between alternative measures.
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n
T BP V T BP V s T T P V MinRV MinRV s MedRV Min3RV MinMedRV asym.

w1 w2 w3 w4 w5 w6 w7 w8 var.

1 10 - - - - - - - 2.609

2 1.786 - - -0.786 - - - - 2.320

3 1.076 0.593 - - - - - -0.669 2.116

4 2.076 1.077 -1.672 - - -0.481 - - 2.081

5 1.932 10 -1.359 - - -0.466 -0.107 - 2.073

6 2.212 1.295 -2.120 -0.688 -0.442 - - 0.743 2.067

7 2.173 1.274 -2.015 0.193 - -0.820 -0.394 0.591 2.066

8 2.173 1.274 -2.015 1.663 0.735 -2.245 -1.174 0.591 2.066

Table 2.1: Asymptotically efficient combinations of integrated volatility estimators (points con-
nected by the green line in Figure 2.2).

T T P Q MinRQ MinRQs MedRQ Min3RQ MinMedRQ Asym.

n w1 w2 w3 w4 w5 w6 var.

1 10 - - - - - 13.65

2 1.965 - - - - -0.965 11.72

3 1.495 - - 0.378 - -0.874 10.92

4 1.445 0.285 0.276 - - -16 10.65

5 1.578 0.327 0.292 - 0.248 -1.444 10.53

6 1.578 0.216 0.237 0.133 0.282 -1.444 10.53

Table 2.2: Asymptotically efficient combinations of integrated quarticity estimators (points con-
nected by the green line in Figure 2.2).

2.4 Combining Multiple Measures

In this section we study the problem of constructing optimal combinations of robust estimators

according to some criteria summarized in a specific loss function. Let w be a vector of weights with

real unbounded components such that
řn

i“1wi “ 1 where n is the number of different measures

involved (in our case n “ 8 for the integrated volatility and n “ 6 for the integrated quarticity).

CRVt pwq “ w1 TBPVt ` w2 TBPV st ` w3 TTPVt ` w4MinRVt `

w5MinRVt ` w6Min3RVt ` w7Min3RV t ` w8MinMedRV t (2.27)

CRQt pwq “ w1 TTPQt ` w2MinRQt ` w3MinRQst `

w4MedRQt ` w5Min3RQt ` w6MinMedRQt (2.28)
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Proposition 5. As M Ñ 8, under the same assumptions of Proposition 3 we have:

?
M pCRVM,t ´ IVtq stable DÝÑ MN

`

0,wTSIV w IQt

˘

(2.29)

Proof The results follow directly from Proposition 3.

Analogously it can be proved that

?
M pCRQM,t ´ IQtq stable DÝÑ MN

ˆ

0,wTSIQw

ż t

t´1

σ8
sds

˙

(2.30)

A natural criterion to determine the optimal weights is the minimization of the asymptotic variance

under some linear constraints Aw “ b where A is k ˆ n and b is k ˆ 1. The minimum requirement

is
ř

iwi “ 1 for consistency, but additional constraints can be useful in different circumstances: for

instance one may exclude a subset of measures in order to save computational time or may suppress

a specific finite sample bias estimated from a numerical simulation. The optimal estimator under

the selected criterion is:

w˚ “ S´1AT
`

AS´1AT
˘´1

b (2.31)

To highlight the gain in terms of asymptotic efficiency that comes from combining multiple measure,

the optimal weights have been computed for all possible combinations of realized volatility and

realized quarticity estimators that we are considering. The asymptotic variance scaled by M is

plotted in Figure 2.2 while the optimal weights are reported on Tables 2.4 and 2.3. Note that the

best combination of two realized volatility estimators, which involves the threshold bipower and

the MinRV , achieves an asymptotic variance that is remarkably smaller than the bipower alone.

The improvements become less pronounced as the number of estimators involved increases and we

get closer to the maximum likelihood limit. Note that such a limit is attained asymptotically by

the threshold estimator of Mancini (2009) but as already mentioned, in practice this estimator

is extremely sensitive to the threshold level and to the error affecting the estimates of the local

volatility. The CRV instead depends weakly on the threshold through TBPV and the TTPV (see

CPR for further details). For the realized quarticity we also observe significant improvements as

the number of measures increases, although the optimal estimator obtained with 6 measures has

a variance that is still well above the lower bound attained by the efficient multipowers of KR.
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The variance of CRQ could be further decreased including estimators that involve four or more

consecutive returns but this would compromise the locality incrementing the bias in presence of

stochastic volatility. Importantly, both the CRV and the CRQ type of estimators can be unbounded

and are allowed to assume also negative values in finite samples. Anyway we will show that this

happens extremely rarely in practice and moreover is not problematic for the construction of efficient

jump tests which is the main focus of this work.

The minimization of the asymptotic variance is just one possible criterion. In empirical applications

it can be also useful to take into account also some finite characteristics. The weights in that

case can depend also on the specific features of the data generating process (the variability of the

instantaneous volatility, the jump intensity and the jump size distribution, the noise to signal ratio)

but the asymptotic consistency of the estimators is always guaranteed. A concrete example will be

provided later.

Threshold adjustment for quantile based estimators

When combining multiple measures with possibly negative coefficients, we face the problem of

obtaining negative estimates for quantities, like the realized volatility, that are non-negative by

definition. Theoretically, the lower is the variance of our measures, the smaller is the probability

to obtain negative values. In practice we must also consider some possible distortions emerging

in finite samples. A crucial problem is the occurrence of multiple jumps within the same block

of consecutive returns. Such events, referred as “gradual jumps” in the terminology of Barndorff-

Nielsen et al. (2009), are non negligible in real data as pointed out also by CPR. Christensen et al.

(2014) and Christensen et al. (2016) find that their are substantially different from jumps because

they are generated by a continuous path dominated by a strong drift component. These events

are usually indistinguishable from price jumps unless we use tick-by-tick data. For the purposes

of our analysis we need to control the large bias generated in case of gradual jumps. While for

the truncated and corrected versions of the multipower variation (equations 2.5 and 2.6) this is

guaranteed by the presence of a threshold, the measures based on nearest neighbor truncation can

be largely affected by the presence of consecutive abnormal returns. To mitigate this problem we
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set a correction with no effects on the asymptotic results. Let us generally write our measure as

Fk prq “ pM ´ kq´1
M
ÿ

i“k

Θ p|ri´k,t| , . . . , |ri,t|q

where r “ pr1,t, . . . , rM,tqT . We substitute this expression with

Fk prq “ 1

M ´ k

M
ÿ

i“k

”

Θ p|ri´k,t| , . . . , |ri,t|q 1tΘp|ri´k,t|,...,|ri,t|qďτpΘq maxpvi´k,t,...,vi,tqu`

max pvi´k,t, . . . , vi,tq 1tΘp|ri´k,t|,...,|ri,t|qďτpΘq maxpvi´k,t,...,vi,tqu
ı

(2.32)

where τ pΘq is a threshold that goes to zero slower than the modulus of continuity of the Brownian

motion as M Ñ 8. In practice we set M at the 99.99% of the distribution of Θ p|U1| , . . . , |Uk|q

where U1, . . . , Uk are i.i.d. standard normals and it is determined numerically. As M Ñ 8 the

variance vi,t goes to zero at the rate M´1 which is enough to leave the asymptotic properties of our

estimators unaffected. The correction has a negligible effect in absence of jumps but is extremely

useful in case of jump clustering.
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Figure2.2: Asymptotic variance of the optimal CRV (top panel) and CRQ (bottom panel)
estimators obtained forming all the possible combinations between alternative measures.
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n
T BP V T BP V s T T P V MinRV MinRV s MedRV Min3RV MinMedRV asym.

w1 w2 w3 w4 w5 w6 w7 w8 var.

1 10 - - - - - - - 2.609

2 1.786 - - -0.786 - - - - 2.320

3 1.076 0.593 - - - - - -0.669 2.116

4 2.076 1.077 -1.672 - - -0.481 - - 2.081

5 1.932 10 -1.359 - - -0.466 -0.107 - 2.073

6 2.212 1.295 -2.120 -0.688 -0.442 - - 0.743 2.067

7 2.173 1.274 -2.015 0.193 - -0.820 -0.394 0.591 2.066

8 2.173 1.274 -2.015 1.663 0.735 -2.245 -1.174 0.591 2.066

Table 2.3: Asymptotically efficient combinations of integrated volatility estimators (points con-
nected by the green line in Figure 2.2).

T T P Q MinRQ MinRQs MedRQ Min3RQ MinMedRQ Asym.

n w1 w2 w3 w4 w5 w6 var.

1 10 - - - - - 13.65

2 1.965 - - - - -0.965 11.72

3 1.495 - - 0.378 - -0.874 10.92

4 1.445 0.285 0.276 - - -16 10.65

5 1.578 0.327 0.292 - 0.248 -1.444 10.53

6 1.578 0.216 0.237 0.133 0.282 -1.444 10.53

Table 2.4: Asymptotically efficient combinations of integrated quarticity estimators (points con-
nected by the green line in Figure 2.2).

2.5 Testing For Jumps

The tests that we consider in this section are based on the idea of Barndorff-Nielsen and Shephard

(2006): two measures of the integrated variance are compared, one is the realize variance that

includes the contribution of jumps (if present) while the second is robust to jump and isolates the

contribution of the continuous price changes. Among the variety of test statistics proposed by

Barndorff-Nielsen and Shephard (2006), Huang and Tauchen (2005) find that the ratio statistics,

constructed on the relative contribution of jumps to the total intraday price variability R̂J defined

in expression 1.7, is favored in terms of finite sample properties. The main reason for privileging

this statistics is that in absence of jumps and under the assumption of constant volatility, the finite

sample bias is of order M´3{2. Let εRV and ε ˆIV
denote the relative measurement errors in absence
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of jumps and assuming that ˆIV is unbiased:

εRV,t “ RVt

IVt
´ 1 ε ˆIV ,t

“
ˆIV t

IVt
´ 1 (2.33)

we have

E

”

R̂J t

ı

“ E

„

εRV,t ´ ε ˆIV ,t

1 ` εRV,t



“ E

«

´

εRV,t ´ ε ˆIV ,t

¯
8
ÿ

k“0

p´εRV,tqk

ff

(2.34)

note that the first term on the RHS is zero because E
“

ε2RV

‰

“ E

”

εRV ε ˆIV ,t

ı

“ 2
M

IQt

IV 2

t

, the bias is

therefore of order O
`

M´3{2
˘

as it is well known.

To obtain a pivotal quantity Zt under the null hypothesis of pure diffusion, R̂J t is scaled according

to equation 1.8. Under the null of no jumps Zt converges asymptotically to a standard normal

random variable. A jump is detected with the confidence level 1 ´ α when Zt ą Φ´1
1´α being Φ´1

1´α

the inverse standard normal evaluated at 1´α. We recall that the constants v ˆIV
and vRV appearing

in 1.8 are respectively the asymptotic variance of ˆIV and RV multiplied by M , therefore vRV “ 2

and v ˆIV
ą 2. The crucial role played by the asymptotic variance of ˆIV t is emphasized in the

definition of Zt making clear the advantage of using measures with a small value of v ˆIV
. Small

jumps, that generate modest relative differences between RV and IV , can be distinguished from

the noise only if the integrated variance is measured with a high precision. Also the estimates of the

integrated quarticity play a crucial role in determining the size and the power of the test as pointed

out by KR. This motivates a particular interest on the also on the possible advantages coming from

the use of combined quarticity measures. While the gain in efficiency determined by a reduction of

the asymptotic variance of R̂J is quite evident, the role of the quarticity measure is more difficult to

identify and the best of our knowledge not deeply analyzed by the literature. Let us again assume

that there are no jumps and let ε ˆIQ
denote the relative error affecting our quarticity estimates which

are also characterized by a relative bias β ˆIQ

ε ˆIQ
“

ˆIQt

IQt
´ 1 ´ β ˆIQ

(2.35)

The following result holds
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Proposition 6. Assuming no jumps and that ˆIV t is an unbiased and consistent estimator of IVt

while ˆIQt is a possibly biased consistent estimator for IQt. In this case Zt has a bias of order M´1{2

given by

E rZts “ ´IVt

d

M
`

v ˆIV
´ 2

˘

IQt

"

v ˆIV
´ 2

M

IQ

IV 2
` 1

2
E

”´

εRV,t ´ ε ˆIV ,t

¯

ε ˆIQ,t

ı

*

(2.36)

Proof Substituting expressions 2.33 and 2.35 into definition 1.8 we obtain

E rZts “ IVt

d

M
`

v ˆIV
´ 2

˘

IQt

E

»

—

–

´

εRV,t ´ ε ˆIV ,t

¯´

1 ` ε ˆIV ,t

¯

p1 ` εRV,tq
´

1 ` β ˆIQ
` ε ˆIQ,t

¯1{2

fi

ffi

fl

“ IVt

d

M
`

v ˆIV
´ 2

˘

IQt

E

„

´

εRV,t ´ ε ˆIV ,t

¯

ˆ

1 ` ε ˆIV ,t
´ εRV,t ´ 1

2
ε ˆIQ,t

´ 1

2
β ˆIQ

˙

`O
`

M´1
˘

“ ´IVt

d

M
`

v ˆIV
´ 2

˘

IQt

"

v ˆIV
´ 2

M

IQ

IV 2
` 1

2
E

”´

εRV,t ´ ε ˆIV ,t

¯

ε ˆIQ,t

ı

*

`O
`

M´1
˘

Note that the bias on Zt is not only determined by the variance of ˆIV t in excess to the Kramer’s Rao

bound but depends also on the correlation between ε ˆIQ,t
and εRV,t ´ ε ˆIV ,t

. When such a correlation

is negative the it provides a positive contribution to the bias which may eventually increase the

spurious detection rate. For this reason less accurate measures of the integrated quarticity can be

sometime lead to a superior size-adjusted power as we notice in our numerical simulation.

Finite sample correction for the covariance matrix

Note that the covariance matrices 2.12 and 2.20 in finite samples are biesed also in the ideal setting

characterized by constant volatility and i.i.d. normal returns. The bias in this case can be calculated

from expressions B.1, B.2 and B.3:

SM
IV “ SIV ` 1

M
∆SIV `O

`

M´2
˘

(2.37)
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where

∆SIV “

»

—

—

—

—

—

—

—

—

—

—

–

1.47 1.14 1.93 1.75 1.22 1.76 2.38 2.19
2.93 2.74 1.22 3.50 2.53 3.29 3.06

3.63 2.26 3.14 2.98 4.74 4.23
2.43 1.38 2.20 3.16 2.80

4.87 3.05 4.20 3.77
3.60 3.31 3.41

7.83 6.14
5.26

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The corrections is generally negligible for the computation of the common tests statistics: for the

test of BNS for instance it is smaller then 1.5% at ten minutes. As the asymptotic variance of

RJ decreases, the finite sample distortion becomes more relevant in relative terms: for the optimal

combination of all measures reported on Table 2.3 the corrected variance is 2.26 at ten minutes,

implying that the variance of RJ is almost four times larger than its asymptotic limit. Of course

other finite sample effects related to stochastic volatility, like market microstructure noise and jumps

and stale quotes, cannot be calculated in closed form but may also have relevant effects on the test

statistics. Such effects will be studied through an extensive Monte Carlo simulation in the next

section.

2.6 Simulation Study

A Monte Carlo study has been conducted to investigate the performances of the new tests when

realistic features like stochastic volatility and market microstructure noise are introduced in the

the data generating process. These elements can affect the performances of IV estimators in finite

samples and consequently the outcomes of the tests. The following set of models is considered:

Model 1: Driftless Brownian motion (BM). Is the baseline model with i.i.d. Gaussian homoskedas-

tic log-returns that allows to isolate finite sample effects without altering any other feature of the

data generating process with respect to the “ideal” asymptotic setting

Model 2: Stochastic volatility and intraday U-shaped volatility pattern

Model 3: Stochastic volatility, intraday U-shaped volatility pattern and market microstructure

noise

Model 4: Stochastic volatility plus rare big jumps

Model 5: Stochastic volatility plus small self-exciting jumps
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Model 6: Stochastic volatility, microstructure noise and rare big jumps

Model 7: Stochastic volatility , microstructure noise and frequent self-exciting small jumps

2.6.1 Simulation Design

For each model 20.500 trading days have been simulated using the first 500 as a burn-in period.

Each day has a duration of 6 hours and 30 minutes, consistently with usual operating time of the

NYSE. In all models except model 1, stochastic volatility is introduced through the log-volatility

specification which consists in the following dynamics of log-prices:

dY ptq “ µdt` σU ptq
a

v ptq dW1 ptq (2.38)

d log v ptq “ pβ0 ´ β1v ptqq dt` η dW2 ptq (2.39)

where W1 and W2 are correlated Brownian motions with constant correlation ρ to generate the

well known leverage effect. This setting is common to many other simulation experiments including

Huang and Tauchen (2005), CPR, Dumitru and Urga (2011), Gilder et al. (2014) and KS. We set

the parameter ρ “ ´0.61 according to the estimates of Andersen et al. (2002) and µ “ 3%, while for

the evolution of the stochastic volatility we prefer to calibrate the model on our S&P data described

in Section 1.2 that will be used also in the empirical application of Section 2.7. To this purpose we

run the simple OLS regression

log IVt “ β0 ` p1 ´ β1q log IVt´1 ` ηεt

where IV is the continuous realized volatility component that is constructed subtracting jumps

identified using the sequential version of the test proposed by CPR (see Section 1.3 for details) and

we assume εt „ N p0, 1q. From the regression coefficients we find β0 “ ´0.0829, β1 “ 0.128,η “ 0.55,

where time is measured in days and log-returns in percentage. The volatility is unconditionally

distributed as a log-normal with location and scale parameters respectively equal to β0{β1 “ ´0.648

and η2{4β1 “ 0.591, the average daily volatility is exp
`

β0{β1 ` η2{4β1

˘

“ 0.95% corresponding to

an annualized value of 15.52% (assuming 252 trading days per year). Note that the mean reversion

is very strong being characterized by an half-life time of 7.81 trading days. The model is clearly
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unable to capture the long term volatility persistence, probably due to the strong volatility shocks

characterizing the sub-prime crisis. Anyway it captures quite well the the unconditional mean and

variance of the continuous realized volatility, which is probably more relevant for the purposes of

our study.

The intraday pattern is introduced following Andersen et al. (2012) according to the functional form

of Hasbrouck (1999):

σU ptq “ C `Ae´at `B e´bp1´tq t P r0, 1s (2.40)

parameters are A “ 0.75, B “ 0.25, B “ 0.89, a “ 10, b “ 10. The U-shape associated with this

values is very pronounced: the volatility at the opening and at the closing time on each day are

respectively 3 and 1.5 times larger than the mid-day volatility.

In models 4, 5, 6 and 7 the log-price process is augmented with i.i.d. normally distributed jumps

having zero mean and variance σ2
J :

pt “ Yt `
ż t

0

JsdNs

In models 4 and 6 Nt is an independent counting process having constant intensity λ “ 1{8 and

σJ “ 1.5. In models 5 and 7 we introduce jump clustering effects comparable to those documented

in Chapter 1 and featured by a self-exciting Hawkes process:

dλt “ γ pλ0 ´ λtq dt` κdNt

where the parameters values are λ0 “ 0.25, γ “ 8 and κ “ 2.5 while the jump size is characterized

by σJ “ 0.75. The self-excitation effect is very strong, generating an upward shock to the jump

intensity that is ten times larger than its baseline level λ0 whenever a jump occurs. The jump

intensity is quickly reverting to λ0 with an half lifetime of about 55 minutes. This jumps dynamics

is consistent with the empirical findings of the first chapter and can have important effects on

realized volatility measures given that they are constructed assuming that at most a single jump

can occur in a block of consecutive returns sampled at high frequency. Under this specification, the

probability to observe jumps occurring very close in time is much higher compared to a Poisson

process. While the threshold bipower is designed to be robust in presence of consecutive jumps,

the measured based on nearest neighbor truncation can be strongly upward biased. The correction
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introduced in equation 2.32 helps to reduce this bias.

The last ingredient introduced in the simulation is the market microstructure noise, which is present

in models 5 and 7 where we assume that prices are observed with an error:

p̃t “ pt ` εt (2.41)

following Gilder et al. (2014), εt is normal with zero mean and variance equal to 10´3 times the daily

realized variance, to obtain a noise to signal ratio consistent with the empirical findings of Hansen

and Lunde (2006). Equations 2.38 and 2.39 and the jump processes are simulated according to the

Euler scheme with a time increment of one second. The simulated data for all models are then

sampled at coarser frequencies of 1 min, 5 min and 10 min following the recommendation of Huang

and Tauchen (2005). Each trading day contains respectively 390, 78 and 34 intraday log-returns.

Model 1 coincides with the Brownian motion W1 driving the log-price in equation 2.38.

2.6.2 Simulation Results

For each different simulated model we compute all the measures of Section 2.2.1. To form optimal

combinations we must first of all define a criterion that should clearly depend on the purpose for

which the new measures are defined. Though the main objective of this work is the construction

of new non-parametric jump tests, it is also interesting to explore the possible gain of precision

in measuring volatility and quarticity that can be obtained in finite samples combining different

measures. To set a trade-off between asymptotic efficiency and finite sample biases we follow

KR minimizing the relative squared error averaged over all simulated trading days and across the

different simulated scenarios at the reference sampling frequency of 5 minutes5. The results reported

on Tables 2.5 and 2.6 show that the newly defined measures (denoted as CRV ˚ and CRQ˚) have a

finite sample bias comparable to the others but the average relative squared error is clearly smaller.

Note that the weights defining CRV ˚ and CRQ˚ (Table 2.7) differ from the asymptotically optimal

weights (Tables 2.3 and 2.4), confirming that the finite sample effects are non negligible at 5 minutes.

Importantly, though the CRV ˚ and CRQ˚are in principle unbounded, the zero lower bound is never

violated in practice.

5 This sampling frequency is widely considered as a good compromise between the desire to sample data as finely as
possible and the need to avoid an excessive contamination from market microstructure noise.
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The improved accuracy of the combined measures is expected to provide some advantages also for the

construction of a new jump test. Nevertheless the minimizing the variance of the measurement errors

is not necessarily the best choice for the construction of a test statistics with suitable properties.

As already mentioned, there is no generally accepted criterion to compare the performances of

different jump tests. Interestingly, DU build a comparative analysis based on the adjusted power,

i.e. the power of the tests calculated after adjusting the confidence levels to match the nominal

size in absence of jumps. Although such an adjustment guarantees a fair comparison, it is based

exclusively on the assessment of the power neglecting other relevant finite sample characteristics.

An important feature of the ratio statistics of BNS based on the bipower variation is that the

distribution in finite samples is quite close to a normal. Pronounced deviations from the asymptotic

normality indicate important distortions the finite samples. As a consequence, the actual size of the

test may differ significantly from the nominal one and requires some specific adjustments quantified

usually through numerical methods. In empirical applications this aspect is particularly relevant

since the data generating process is unknown. If instead the distribution of the test statistics is

close to the normal in finite samples and under realistic features of the data generating process, it

is much easier to control the occurrence of type 1 errors.

To investigate the advantages of combining multiple measures, we construct a large set of alterna-

tive statistics obtained forming all the asymptotically efficient combinations of the eight available

measures for the stochastic volatility and the six estimators of the realized quarticity. For each of

the 16,065 combinations the weights are determined minimizing the asymptotic covariance matrix.

Again we perform the analysis at the sampling frequency of 5 minutes. For each test we compute

the size adjusted power in the different simulated scenarios as suggested by DU. The adjustment to

the confidence level is designed to match the effective size of the test in a context with no jumps: the

adjustment for models 4 and 5 is therefore calibrated on model 2 while the adjustment for models

6 and 7 is calibrated on model 3. This procedure allows to take into account the different effects

of stochastic volatility, a marked U-shaped intraday volatility pattern and market microstructure

noise on the effective size of the tests. To better control for the role of stochastic volatility, we

consider also the proposal of Rognlie (2010) to scale log-returns by an appropriate factor in order to

eliminate the intraday periodicity of volatility. The correction is based on the Truncated Maximum
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Likelihood estimator of Boudt et al. (2011) described in Appendix A.1. The first panel in Figure

2.3 shows the dependence between the power of the test and the precision of the IV estimator

calculated as the inverse of the asymptotic variance. As expected, the efficiency of the IV measure

is a fundamental driver for the power of the corresponding test. Importantly, the test based on

CRV ˚ and CRQ˚ is not the most powerful in absolute terms.

The second dimension that we explore is the distance from normality measured using the loss

function of the efficient GMM based on the uncentered moments up to the fourth order6. The

second panel of Figure 2.3 reports the location of the different tests along the selected dimensions:

efficiency in jump detection, ranking in terms of average distance from the normal. We note that

tests with more power are also deviating significantly form, suggesting the need to find a balance

between efficiency and robustness in finite samples. Moving from right to left the finite sample

properties improve without affecting the power. The upper bound of the populated region can be

therefore regarded as a sort of “efficient frontier”. Importantly, the red points representing commonly

used statistics based on the ratios of known measures, are located below this frontier. We propose

therefore some alternative combinations which provide significant improvements either in terms of

power or normality or both. Starting from the statistics with the maximum power (green point,

denoted also as MP henceforth), we note that the finite sample properties can be substantially

improved without compromising the power if we move to the blue point labeled as “High Power”

(HP henceforth). The test based on efficient measures (yellow point) can be conveniently replaced

by the magenta point labeled as “Balanced”, which has a slightly lower power in absolute terms

but exhibits a suitable balance between power and normality. The weights defining the new tests

are reported on Table 2.7. Importantly, among the statistics based on a single measure for IV and

IQ, the traditional association between bipower variation and tripower quarticity is not the optimal

choice. The red points represent common tests based on known measures and importantly none of

them lies on the efficient frontier. The best combination based on a single measure for the IV and

a single measure for the IQ is constructed using the corrected threshold bipower and the staggered

minimum realized quarticity (orange point in the figure). This can be understood looking at the

bias that affects the tests statistics (expression 2.36) which depends on the covariance between ˆIQt

6 Note that the distance from the normal is calculated only in absence of jumps.
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and RVt ´ ˆIV t. A large negative covariance between these quantities increases the probability of

type 1 errors and requires more severe adjustments to the confidence level. Therefore it is not

surprising that the tests with the highest power can be constructed also using quarticity estimators

that are not extremely accurate.

Figures 2.4, 2.5 and 2.6 show the quantile-quantile plot for the ratio test statistics based on the

different estimators and under different features of the data generating process. The test based on

the corrected threshold bipower and the staggered minimum realized variance is generally closer to

the normal than the others in almost all simulated scenarios. All tests are strongly affected by the

presence of market microstructure noise at 1 minute with the only exception of the HP test that

exhibits much smaller effects. This suggests the possibility to design appropriate combinations of

measures to improve the robustness to market microstrucure noise at high frequency. The distri-

butional properties of the Balanced statistics in finite samples are comparable to those of the CPR

test while the HP test clearly exhibits fatter tails with respect to the normal, even when the data

generating process is a geometric Brownian motion.

A complete comparative analysis for the different tests is presented on tables 2.8 and 2.9 where

the size adjusted power is reported under each simulated process. Two benchmarks have been

considered: the test of Lee and Mykland (2008) and its modified version presented in Section 1.3.1

(denoted as m-LM henceforth). The latter is based on a different estimator for the local volatility

designed to reduce the bias in presence jumps and to be more responsive in presence of fast volatility

changes. To highlight the role of time-changing volatility, the results are reported with and without

correcting for the intraday periodicity of volatility. In agreement with Rognlie (2010) and Boudt

et al. (2011) our, taking into account the intraday volatility pattern is extremely beneficial to reduce

the spurious detection rates and therefore difference between the actual and the nominal size of the

tests. In the end, this determines a higher level of the size-adjusted power.

Importantly, under all simulated processes, the m-LM test has always the highest power that is

clearly superior also to the standard LM tests. It is anyway important to to remark that the

detection procedure of Lee and Mykland and its variants require severe restrictions to the stochastic

volatility process for consistency which rule out volatility jumps. In light of the growing empirical

evidence in this regard, we believe that this a relevant limitation to the empirical use of these
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detection methods. Remarkably, the HP tests achieves a level of efficiency that is on average higher

then the standard LM test (especially at 5 and 10 minutes) remaining asymptotically consistent also

in presence of a càdlàg volatility dynamics. The high level of power comes at the cost of a pronounced

sensitivity to specific features of the data generating process in finite samples, requiring substantial

corrections to the nominal significance level. The Balanced tests exhibits a jump detection ability

that is comparable to the LM test but at the same time minor corrections to the significance level

are required. Overall it seems to providing a good trade-off between robustness and efficiency.

Interestingly, the modified version of the CPR test based on the MinRQs estimator for the realized

quarticity performs always better than the standard CPR test.

Figures 2.7, 2.8 and 2.9 show the dependence of the size adjusted power on the confidence level at

different sampling frequencies. The m-LM test dominates in all circumstances, while the standard

LM test has more power than the HP test only at the highest sampling frequency of 1 minute.
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Frequency Measure Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 min

C ´ T BP V -0.020 0.791 -0.019 -0.015 0.795 0.801

C ´ T BP V s -0.022 0.745 -0.020 -0.017 0.749 0.755

C ´ T T P V -0.023 0.783 -0.021 -0.018 0.786 0.791

MinRV -0.022 0.820 -0.021 -0.019 0.822 0.825

MinRV s -0.024 0.743 -0.023 -0.021 0.745 0.748

MedRV -0.024 0.787 -0.023 -0.021 0.789 0.792

Min3RV -0.022 0.809 -0.021 -0.020 0.811 0.813

MinMedRV -0.024 0.798 -0.023 -0.022 0.799 0.802

CRV ˚ -0.022 0.758 -0.019 -0.015 0.762 0.769

C ´ T T P Q -0.038 1.997 -0.033 -0.025 2.010 2.035

MinRQ -0.040 2.095 -0.038 -0.033 2.103 2.115

MinRQs -0.049 1.756 -0.047 -0.042 1.763 1.777

MedRQ -0.045 1.970 -0.042 -0.037 1.978 1.992

Min3RQ -0.037 2.080 -0.051 -0.047 2.015 2.026

MinMedRQ -0.048 29 -0.046 -0.042 2.015 2.027

CRQ˚ -0.043 1.919 -0.040 -0.033 1.929 1.948

5 min

C ´ T BP V -0.030 0.126 -0.021 -05 0.136 0.154

C ´ T BP V s -0.041 0.112 -0.032 -0.017 0.122 0.139

C ´ T T P V -0.041 0.114 -0.033 -0.020 0.123 0.138

MinRV -0.032 0.126 -0.027 -0.020 0.131 0.140

MinRV s -0.043 0.109 -0.039 -0.031 0.114 0.122

MedRV -0.042 0.114 -0.037 -0.029 0.120 0.129

Min3RV -0.042 0.115 -0.038 -0.030 0.119 0.128

MinMedRV -0.043 0.114 -0.038 -0.031 0.118 0.127

CRV ˚ -0.037 0.116 -0.027 -09 0.128 0.148

C ´ T T P Q -0.091 0.190 -0.071 -0.031 0.217 0.268

MinRQ -0.072 0.219 -0.059 -0.041 0.234 0.261

MinRQs -0.106 0.165 -0.095 -0.076 0.181 0.204

MedRQ -0.098 0.186 -0.085 -0.063 0.203 0.231

Min3RQ -0.092 0.194 -0.098 -0.083 0.188 0.208

MinMedRQ -0.101 0.183 -0.091 -0.071 0.196 0.221

CRQ˚ -0.101 0.178 -0.085 -0.055 0.200 0.237

10 min

C ´ T BP V -0.039 0.039 -0.022 07 0.057 0.087

C ´ T BP V s -0.057 0.020 -0.040 -0.012 0.039 0.068

C ´ T T P V -0.058 0.020 -0.044 -0.020 0.035 0.060

MinRV -0.041 0.037 -0.032 -0.019 0.047 0.061

MinRV s -0.061 0.015 -0.052 -0.040 0.025 0.038

MedRV -0.059 0.019 -0.049 -0.035 0.030 0.045

Min3RV -0.058 0.019 -0.051 -0.031 0.027 0.047

MinMedRV -0.060 0.018 -0.052 -0.037 0.027 0.042

CRV ˚ -0.052 0.026 -0.032 01 0.047 0.082

C ´ T T P Q -0.136 -04 -0.100 -0.021 0.037 0.126

MinRQ -0.094 0.039 -0.071 -0.034 0.064 0.109

MinRQs -0.156 -0.026 -0.133 -0.105 -01 0.035

MedRQ -0.141 -09 -0.115 -0.077 0.021 0.067

Min3RQ -0.131 00 -0.132 -0.104 03 0.034

MinMedRQ -0.142 -0.010 -0.126 -0.085 0.010 0.054

CRQ˚ -0.149 -0.018 -0.119 -0.065 0.017 0.080

Table 2.5: Relative bias of the different measures under the alternative simulated processes.
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Frequency Measure Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 min

C ´ T BP V 0.007 0.008 0.651 0.008 0.008 0.657 0.667

C ´ T BP V s 0.007 0.008 0.579 0.008 0.008 0.584 0.593

C ´ T T P V 0.008 0.009 0.642 0.009 0.009 0.647 0.655

MinRV 0.010 0.011 0.710 0.011 0.011 0.712 0.717

MinRV s 0.010 0.011 0.585 0.011 0.011 0.588 0.593

MedRV 0.008 0.009 0.647 0.009 0.009 0.650 0.656

Min3RV 0.015 0.018 0.709 0.017 0.017 0.712 0.717

MinMedRV 0.011 0.013 0.676 0.013 0.013 0.678 0.683

CRV ˚
0.006 0.007 0.595 0.007 0.007 0.601 0.613

C ´ T T P Q 0.035 0.067 4.483 0.067 0.069 4.543 4.660

MinRQ 0.047 0.088 5.040 0.088 0.089 5.074 5.136

MinRQs 0.048 0.083 3.576 0.083 0.083 3.603 3.663

MedRQ 0.036 0.065 4.359 0.066 0.067 4.393 4.457

Min3RQ 0.074 0.139 5.346 0.126 0.126 4.945 4.997

MinMedRQ 0.051 0.090 4.676 0.090 0.091 4.704 4.760

CRQ˚
0.031 0.057 4.088 0.057 0.058 4.131 4.216

5 min

C ´ T BP V 0.034 0.037 0.063 0.038 0.042 0.068 0.078

C ´ T BP V s 0.034 0.036 0.058 0.037 0.040 0.062 0.071

C ´ T T P V 0.040 0.042 0.067 0.043 0.045 0.070 0.078

MinRV 0.049 0.053 0.085 0.054 0.055 0.087 0.091

MinRV s 0.050 0.052 0.078 0.053 0.053 0.081 0.084

MedRV 0.038 0.041 0.065 0.041 0.042 0.067 0.071

Min3RV 0.078 0.080 0.119 0.081 0.087 0.121 0.130

MinMedRV 0.055 0.057 0.087 0.058 0.059 0.089 0.093

CRV ˚
0.029 0.031 0.052 0.032 0.037 0.057 0.069

C ´ T T P Q 0.178 0.261 0.415 0.283 0.403 0.463 0.607

MinRQ 0.242 0.376 0.595 0.395 0.418 0.627 0.686

MinRQs 0.249 0.326 0.502 0.341 0.359 0.536 0.571

MedRQ 0.185 0.257 0.413 0.267 0.287 0.440 0.489

Min3RQ 0.382 0.552 0.856 0.512 0.536 0.796 0.841

MinMedRQ 0.260 0.353 0.554 0.363 0.384 0.579 0.621

CRQ˚
0.159 0.222 0.353 0.235 0.273 0.387 0.452

10 min

C ´ T BP V 0.069 0.073 0.084 0.078 0.094 0.092 0.115

C ´ T BP V s 0.070 0.071 0.078 0.074 0.089 0.086 0.108

C ´ T T P V 0.082 0.083 0.093 0.086 0.098 0.098 0.116

MinRV 0.102 0.106 0.122 0.109 0.114 0.126 0.135

MinRV s 0.102 0.101 0.114 0.103 0.106 0.118 0.123

MedRV 0.080 0.080 0.089 0.082 0.085 0.092 0.100

Min3RV 0.160 0.157 0.181 0.159 0.281 0.184 0.309

MinMedRV 0.114 0.113 0.128 0.114 0.120 0.131 0.140

CRV ˚
0.059 0.061 0.067 0.065 0.086 0.076 0.106

C ´ T T P Q 0.372 0.458 0.550 0.527 0.902 0.635 1.106

MinRQ 0.512 0.710 0.838 0.774 0.881 0.915 1.087

MinRQs 0.502 0.533 0.655 0.588 0.620 0.723 0.803

MedRQ 0.387 0.437 0.527 0.487 0.565 0.598 0.760

Min3RQ 0.812 0.984 1.207 0.889 0.991 1.166 1.258

MinMedRQ 0.550 0.638 0.774 0.662 0.798 0.810 0.964

CRQ˚
0.330 0.376 0.454 0.422 0.544 0.520 0.708

Table 2.6: Variance of the relative measurement error under the alternative simulated processes.
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2.6. SIMULATION STUDY
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Figure2.3: In the top panel the size adjusted power of the test is plotted against the precision
of the integrated volatility measure. The bottom panel shows the position of the different test in
terms of power and average distance from the asymptotic normal distribution (measured using the
efficient GMM loss function calculated on the first four uncentered moments).
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Maximum Power High Power CRV ˚

CRQ˚

Balanced C ´ T BP V

MinRQsCombination Combination Combination

C ´ T BP V 2.173 1.830 0.512 1.597 1.000

C ´ T BP V s 1.274 1.224 0.869 0.000 0.000

C ´ T T P V -2.015 -1.503 -0.139 0.000 0.000

MinRV -0.550 0.000 -0.337 0.000 0.000

MinRV s -0.371 -0.169 -0.359 0.000 0.000

MedRV -0.100 -0.383 0.493 0.000 0.000

Min3RV 0.000 0.000 0.055 0.000 0.000

MinMedRV 0.591 0.000 -0.095 -0.597 0.000

Asymptotic Variance 2.066 2.074 2.204 2.342 2.609

C ´ T T P Q 0.000 0.000 0.418 0.000 0.000

MinRQ 0.000 0.000 -0.170 0.000 0.000

MinRQs 0.000 1.000 0.180 1.000 1.000

MedRQ 0.000 0.000 0.635 0.000 0.000

Min3RQ 1.000 0.000 -0.003 0.000 0.000

MinMedRQ 0.000 0.000 -0.060 0.000 0.000

Asymptotic Variance 28.632 18.542 12.099 18.542 18.542

Avarage Power (%) 72.6 72.5 70.5 69.2 68.0

Distance from normal 19805.161 7625.280 1905.870 93.485 41.584

Table 2.7: Weights for the new tests reported on Figure 2.3. The distance from the normal is
calculated using the efficient GMM loss function calculated on the first four uncentered moments.
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Figure2.4: Quantile - quantile plot of the alternative statistics against the normal distribution.
The simulated price process is a standard Brownian motion.
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Figure2.5: Quantile - quantile plot of the alternative statistics against the normal distribution.
The simulated price process is characterized by stochastic volatility and no jumps.
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Figure2.6: Quantile - quantile plot of the alternative statistics against the normal distribution.
The simulated price process is characterized by stochastic volatility, market microstructure noise
and no jumps.
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S
T

U
D

Y
No intraday volatility correction Intraday volatility correction

Model 2 Model 4 Model 5 Model 2 Model 4 Model 5

freq. IV actual adj. adj. spurious adj. spurious actual adj. adj. spurious adj. spurious

(min) measure size s.l. power jumps power jumps size s.l. power jumps power jumps

1

m-LM 5.84 0.086 90.2 1 84.5 1.04 1.08 0.917 91.6 1.03 86.9 1.05

High Power 2.87 0.147 89.2 0.99 83.6 0.98 2.09 0.340 90.0 1 84.1 1.01

LM 17.16 04 87.9 0.96 81.5 0.95 3.58 0.234 90.6 0.99 85.3 0.99

Balanced 1.33 0.687 87.1 1 79.5 1.06 0.97 1.055 88.1 0.99 80.5 0.97

C-TBPV/MinRQs 1.20 0.810 86.2 1.01 77.5 1.02 0.90 1.149 86.9 1 78.7 1.01

CPR 1.80 0.496 85.6 0.98 76.8 0.97 1.31 0.752 86.3 0.99 78.2 0.99

MedRV/MedRQ 1.76 0.525 84.8 1.03 75.5 1.02 1.18 0.785 85.9 1.02 77.0 1.03

C-TTV/C-TTPQ 1.44 0.644 84.0 0.96 74.5 0.96 0.98 1.015 84.7 0.99 76.0 0.94

MinRV/MinRQ 1.30 0.755 82.1 1.02 71.5 1.01 0.92 1.080 83.3 1.03 72.9 1.04

5

m-LM 4.33 0.123 78.3 1.05 66.2 1.05 1.06 0.922 81.8 1 71.0 1.02

High Power 3.91 0.014 78.9 1.02 66.6 1.02 2.30 0.167 79.7 1.04 68.7 1.04

LM 8.52 0.025 75.4 0.89 60.7 0.80 3.91 0.181 78.4 0.95 65.7 0.89

Balanced 1.70 0.386 75.8 1.01 62.6 1.04 0.92 1.129 77.3 1.04 64.9 1.07

C-TBPV/MinRQs 1.26 0.727 75.0 0.99 61.3 1.04 0.66 1.433 76.3 1 63.5 1.04

CPR 2.31 0.279 73.7 1.01 59.2 1.04 1.44 0.645 75.3 1.01 61.4 1.01

MedRV/MedRQ 2.01 0.408 72.3 1 58.0 1.01 1.24 0.781 74.3 0.99 60.1 1.02

C-TTV/C-TTPQ 1.60 0.587 71.5 0.96 56.7 0.98 0.84 1.188 73.1 0.96 59.1 0.95

MinRV/MinRQ 1.12 0.857 68.0 1.01 53.4 1.04 0.81 1.204 70.0 1.01 55.3 1.02

10

m-LM 3.24 0.179 71.3 1.04 55.5 0.97 1.10 0.915 74.9 1 61.3 0.94

High Power 4.59 03 70.0 1 54.7 1 2.35 0.112 72.6 1.03 58.0 1

LM 6.59 0.048 67.3 0.86 48.3 0.76 3.86 0.172 69.9 0.86 53.9 0.69

Balanced 2.06 0.337 67.7 1.03 50.9 1.01 0.94 1.099 69.8 1.05 54.1 1.07

C-TBPV/MinRQs 1.41 0.646 66.3 1.05 49.9 1.08 0.67 1.599 68.9 1.08 53.3 1.10

CPR 2.53 0.234 65.0 1.03 47.1 0.99 1.52 0.555 67.0 1.04 50.2 1.03

MedRV/MedRQ 2.20 0.426 63.8 1.01 46.0 1.05 1.16 0.905 66.1 1.02 49.2 1.06

C-TTV/C-TTPQ 1.62 0.641 62.4 1 43.9 1.02 0.83 1.215 64.5 1.03 46.6 1.08

MinRV/MinRQ 0.86 1.133 59.3 1.02 41.2 1.01 0.57 1.526 61.6 1.02 43.3 1.02

Table 2.8: Actual size, adjusted significance level, size-adjusted power and spurious jump detection rates of the non-parametric tests
in presence of stochastic volatility with an intraday U-shaped pattern. Results are expressed in percentage and are presented with and
without applying the intraday periodicity correction, in presence of large Poisson jumps (model 4) and small Hawkes jumps (model 5).
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No intraday volatility correction Intraday volatility correction

Model 3 Model 6 Model 7 Model 3 Model 6 Model 7

freq. IV actual adj. adj. spurious adj. spurious actual adj. adj. spurious adj. spurious

(min) measure size s.l. power jumps power jumps size s.l. power jumps power jumps

1

m-LM 1.74 0.523 87.8 0.99 80.7 1.03 1.08 0.917 91.6 1.03 86.9 1.05

High Power 1.17 0.755 86.8 1.02 78.4 1.04 2.09 0.340 90.0 1 84.1 1.01

LM 6.04 0.061 85.9 0.91 77.6 0.95 3.58 0.234 90.6 0.99 85.3 0.99

Balanced 0.11 5.433 83.8 1.04 73.6 1.02 0.97 1.055 88.1 0.99 80.5 0.97

C-TBPV/MinRQs 0.11 4.499 82.0 1.01 72.0 0.96 0.90 1.149 86.9 1 78.7 1.01

CPR 0.18 3.870 81.8 1.01 71.4 0.96 1.31 0.752 86.3 0.99 78.2 0.99

MedRV/MedRQ 0.36 2.656 80.3 0.99 69.5 0.99 1.18 0.785 85.9 1.02 77.0 1.03

C-TTV/C-TTPQ 0.29 2.893 79.3 1.02 68.8 0.96 0.98 1.015 84.7 0.99 76.0 0.94

MinRV/MinRQ 0.12 4.148 77.5 0.96 65.0 0.91 0.92 1.080 83.3 1.03 72.9 1.04

5

m-LM 3.28 0.238 77.9 1.02 65.6 1.02 1.06 0.922 81.8 1 71.0 1.02

High Power 3.67 0.016 77.3 1.02 64.0 1.06 2.30 0.167 79.7 1.04 68.7 1.04

LM 6.88 0.043 74.6 0.91 59.4 0.86 3.91 0.181 78.4 0.95 65.7 0.89

Balanced 1.56 0.528 74.7 1.01 60.4 1.04 0.92 1.129 77.3 1.04 64.9 1.07

C-TBPV/MinRQs 1.23 0.776 73.3 1.02 59.0 1.08 0.66 1.433 76.3 1 63.5 1.04

CPR 2.25 0.361 72.2 1.02 57.5 1.06 1.44 0.645 75.3 1.01 61.4 1.01

MedRV/MedRQ 1.88 0.457 70.4 1.01 55.7 1.02 1.24 0.781 74.3 0.99 60.1 1.02

C-TTV/C-TTPQ 1.60 0.643 70.1 1 54.2 1.02 0.84 1.188 73.1 0.96 59.1 0.95

MinRV/MinRQ 1.07 0.928 66.7 0.97 50.7 0.98 0.81 1.204 70.0 1.01 55.3 1.02

10

m-LM 3.01 0.228 70.7 1.02 54.8 1 1.10 0.915 74.9 1 61.3 0.94

High Power 4.30 06 70.1 1.02 53.4 1.02 2.35 0.112 72.6 1.03 58.0 1

LM 6.14 0.055 66.3 0.84 47.5 0.69 3.86 0.172 69.9 0.86 53.9 0.69

Balanced 1.90 0.391 66.5 1.05 49.7 1.04 0.94 1.099 69.8 1.05 54.1 1.07

C-TBPV/MinRQs 1.29 0.721 65.4 1.05 48.9 1.04 0.67 1.599 68.9 1.08 53.3 1.10

CPR 2.38 0.279 64.8 1.02 46.3 1.02 1.52 0.555 67.0 1.04 50.2 1.03

MedRV/MedRQ 1.99 0.464 62.5 1.04 45.1 1.09 1.16 0.905 66.1 1.02 49.2 1.06

C-TTV/C-TTPQ 1.62 0.602 61.2 1.05 42.2 1.04 0.83 1.215 64.5 1.03 46.6 1.08

MinRV/MinRQ 0.87 1.127 58.9 0.99 39.5 1.04 0.57 1.526 61.6 1.02 43.3 1.02

Table 2.9: Actual size, adjusted significance level, size-adjusted power and spurious jump detection rates of the non-parametric tests in
presence of stochastic volatility with an intraday U-shaped pattern and market microstructure noise. Results are expressed in percentage
and are presented with and without applying the intraday periodicity correction, in presence of large Poisson jumps (model 6) and small
Hawkes jumps (model 7).
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2.6. SIMULATION STUDY
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Figure2.7: Size adjusted power of the alternative tests under the different data generating pro-
cesses.
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Figure2.8: Size adjusted power of the alternative tests under the different data generating pro-
cesses.
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Figure2.9: Size adjusted power of the alternative tests under the different data generating pro-
cesses.

2.7 Empirical Analysis

In this section we apply the non-parametric tests previously developed to empirical data. Our

data set is the same described in Chapter 1 which contains intraday market quotes reported every

5 minutes from September 2007 to April 2014 for the S&P 500 and the Euro Stoxx 50. Before

computing all the measures of interest, stale quotes have been removed from the data set. This

87



2.7. EMPIRICAL ANALYSIS

operation leaves the realized quadratic variation unchanged but reduces the impact of zero returns

on the jump robust measures: while an isolated stale quote generates a single null contribution to

the realized quadratic variation, it can indeed cause two or three consecutive blocks to provide a

zero contribution to the corresponding measure, introducing therefore a positive bias on RJ that

can increase the false detection rate. If the intraday stale quotes are removed, their impact on is

on average the same as the impact on the quadratic variation and the downward bias on RJ is is

consequently removed.

A genuine comparison between the performances of the different tests is of course extremely prob-

lematic in an empirical applications since the real data generating process is unknown. In this

section we adopt a different approach whose purpose is to show that the outcomes on real data are

very similar to those obtained from the numerical simulation. We therefore compute the fraction

of trading days containing at least one jump at a given confidence level according to the different

tests. To take into account the significant deviations from normality that some statistics exhibit

in finite samples, we adjust the nominal confidence levels to match the actual size of the test at 5

minutes under model 3 (which incorporates stochastic volatility with a U-shaped intraday pattern

and market microstructure noise). In doing this we must consider that the number of intraday

returns on real data is generally different from the numerical simulation: on standard trading days

we have 77 returns for the S&P 500 and 100 returns for the Euro Stoxx 50 but of course these

numbers can reduce due to the elimination of stale quotes or to the fact that some trading days are

shorter. To properly adjust the significance level we adopt the following formula:

α˚ pMq “ 1 ´ φ
´

Pα
2

´

M´1{2
¯¯

where α is the nominal significance level and Pα
2 is a polynomial of order which interpolates the

quantiles corresponding to the adjusted confidence levels calculated on simulated data for M “
39, 78, 390. Despite the simulated return process is designed to possibly mimic the salient features

observed on real data, we are not guaranteed that the adjustment is well suited for the empirical

application because the actual size of finite sample effects is indeed unknown. This can therefore

potentially affect the outcomes of our analysis. Figure 2.10, reporting the fraction of detected jump

days on real data by each test, is very similar to the power comparison of Figure 2.8. This suggests

that the proposed tests are probably able to detect more jumps also on real data compared to the

CPR test, though our ignorance on the true data generating process and the unavailability of tick-

by-tick data prevents us from drawing sound conclusions in this regard. Importantly the number
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of jumps discovered by the new tests remains larger also when the confidence level is more severe.

Note that the variant of the CPR test constructed with the staggered MinRQ is detecting more

jumps after adjusting the confidence level. At the nominal confidence level of 99% and without

applying any correction, the number of jumps detected by the CPR test is actually larger. This

happens also on simulated data where the additional jumps detected by the CPR test are spurious.

As already mentioned, this depends probably due to different bias generated in the test statistics

by different choices of the quarticity estimator (expression 2.36). Using the staggered MinRQ such

a bias is apparently smaller and the adjustment required to the confidence level to match the actual

size is less severe.

To check the consistency of the outcomes across the different tests, in analogy with Schwert (2010),

we report on Tables 2.10, 2.11 and 2.12 the contingency matrices calculated at the 99% confidence

level (applying the finite sample corrections mentioned above) for the S&P 500, the Euro Stoxx 50

and the simulated data from model 7. The contingency matrices contain on the main diagonal the

fraction of jump days detected by each tests while the off-diagonal elements are the intersections

between sets of jump events detected by different tests. On simulated data a large fraction of jumps

detected by one test is also confirmed by other tests. On real data the outcomes are less consistent

suggesting that the features of the simulated process may differ from those characterizing real data

(e.g. distribution of the jump size, presence of volatility jumps, different noise to signal ratio, etc.).
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Figure2.10: Fraction of trading days when the null hypothesis of continuous price evolution is
rejected.
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MinRV
MinRQ

C´T T V
C´T T P Q

MedRV
MedRQ

CPR C´T BP V
MinRQs

Balanced HP LM m-LM
MinRV
MinRQ

13.5 8.2 9.4 9.9 10.3 9.6 9.4 8.0 10.4
C´T T V

C´T T P Q
11.8 7.9 10.5 10.8 9.2 9.5 7.7 9.6

MedRV
MedRQ

15.8 10.1 11.9 11.2 12.2 9.7 12.8

CPR 14.9 14.2 13.1 12.1 9.8 12.5
C´T BP V
MinRQs

17.7 14.5 14.1 10.9 14.6

Balanced 17.7 14.6 11.8 15.2

HP 23.3 15.3 20.3

LM 20.8 17.9

m-LM 28.3

Table 2.10: Contingency matrix for the different tests applied to the Euro Stoxx 50.

MinRV
MinRQ

C´T T V
C´T T P Q

MedRV
MedRQ

CPR C´T BP V
MinRQs

Balanced HP LM m-LM

MinRV
MinRQ

7.6 4.1 5.3 5.0 5.3 4.8 4.3 2.6 4.3
C´T T V

C´T T P Q
6.0 3.8 5.4 5.3 4.4 4.4 2.5 3.9

MedRV
MedRQ

8.2 4.8 5.6 5.0 4.9 3.0 4.9

CPR 7.6 6.7 6.3 5.6 3.3 5.3
C´T BP V
MinRQs

9.0 7.0 6.8 4.1 6.2

Balanced 8.5 6.7 4.5 6.5

HP 11.3 6.0 8.8

LM 10.2 7.8

m-LM 13.1

Table 2.11: Contingency matrix for the different tests applied to the S&P 500.

MinRV
MinRQ

C´T T V
C´T T P Q

MedRV
MedRQ

CPR C´T BP V
MinRQs

Balanced HP LM m-LM

MinRV
MinRQ

13.1 12.3 12.5 12.6 12.6 12.5 12.3 12.0 12.3
C´T T V

C´T T P Q
13.9 12.8 13.4 13.4 13.1 13.0 12.7 13.1

MedRV
MedRQ

14.3 13.3 13.6 13.4 13.5 13.1 13.4

CPR 14.6 14.3 14.1 13.9 13.3 13.8
C´T BP V
MinRQs

14.9 14.4 14.2 13.6 14.2

Balanced 15.3 14.6 14.0 14.6

HP 16.2 14.6 15.6

LM 15.6 15.0

m-LM 16.9

Table 2.12: Contingency matrix for the different tests applied to simulated data in presence of
stochastic volatility and market microstructure noise (model 7) at the sampling frequency of 5 min.
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2.8 Concluding Remarks

We have introduced a new class of asymptotically consistent estimators for the integrated volatility

and the integrated quarticity, obtained as weighted combinations of multiple measures which are

robust to price jumps. The weights can be determined minimizing the asymptotic variance but

it is also possible control some specific features in finite samples. Remarkably, the maximum

asymptotic efficiency that can be reached combining multiple measures of the integrated volatility

which involve at most three consecutive returns is much closer to the Maximum Likelihood limit

than other estimators proposed in the literature.

We have shown that the gain in asymptotic variance provides substantial advantages for the con-

struction of non-parametric tests devoted to detect the presence of jumps. The new tests proposed

in this chapter achieve, in realistic scenarios, a detection power comparable to the test of Lee and

Mykland (2008) while preserving consistency under more general features of the volatility process,

including also volatility jumps. The recent paper of Bajgrowicz et al. (2016) highlights that most of

the jumps detected by standard non-parametric tests are indeed spurious. The solution they propose

to overcome this issue is to use extremely severe confidence levels poses the problem of drastically

reducing the power of the tests and possibly neglect jumps with a small size. The method presented

in this chapter allows to define new non-parametric detection methods possessing more power than

standard once also when the confidence level is particularly severe. The application to real data

leads to the detection of a larger number of presumed jumps in comparison to the BNS and the

CPR tests, even after correcting for finite sample effects and setting a severe confidence level. Im-

portantly, the large number of degrees of freedom at our disposal when combining multiple volatility

and quarticity measures, allows not only to increment the power of our tests but also to improve

their properties in finite samples and setting a trade off between these features. Surprisingly we

find that the maximizing the accuracy of the integrated quarticity estimates is not necessarily the

optimal choice to increase the power of our tests. In conclusion, the present work suggests that

combining different jump robust measures is a promising technique for the development of new tools

in high frequency financial econometrics.
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Appendix B

Technical Details of Chapter 2

B.1 Covariance Matrix of the Jump Robust Volatility Estimators

The elements of the covariance matrix 2.12 can be calculated for a driftless Brownian motion with

constant volatility and no jumps. Al the finite sample effects due to stochastic volatility and jumps

decay faster than M´1{2 where M is the number of equally spaced intraday quotes. To compute the

variance-covariance matrix, let us consider a sequence of i.i.d. standard normal random variables

Ui with i “ 1, . . . , N . Since our jump-robust measures involve blocks containing at most three

consecutive returns, they are characterized by two possible kinds of functional forms:

F2 pU1, . . . , UM q “ 1

M ´ 1

M
ÿ

i“2

ΘF2
p|Ui´1| , |Ui|q

F3 pU1, . . . , UM q “ 1

M ´ 2

M
ÿ

i“3

ΘF3
p|Ui´1| , |Ui´1| , |Ui|q

The covariance matrix between two generic measures F and G can therefore take three distinct

forms

1. Covariance between 2 estimators based on blocks of 2 returns:

Cov rF2, G2s “ 1

M ´ 1
Cov rΘF2

p|U1| , |U2|q , ΘG2
p|U1| , |U2|qs `

2
M ´ 2

pM ´ 1q2
Cov rΘF2

p|U1| , |U2|q , ΘG2
p|U2| , |U3|qs (B.1)
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2. Covariance between estimators based on blocks of 2 and 3 returns respectively

Cov rF2, G3s “ 2

M ´ 1
Cov rΘF2

p|U1| , |U2|q , ΘG3
p|U1| , |U2| , |U3|qs `

2 pM ´ 3q
pM ´ 1q pM ´ 2qCov rΘF2

p|U1| , |U2|q , ΘG3
p|U2| , |U3| , |U4|qs (B.2)

3. Covariance between estimators based on blocks of 3 returns

Cov rF3, G3s “ 1

M ´ 2
Cov rΘF3

p|U1| , |U2| , |U3|q , ΘG3
p|U1| , |U2| , |U3|qs `

2
M ´ 3

pM ´ 2q2
Cov rΘF3

p|U1| , |U2| , |U3|q , ΘG3
p|U2| , |U3| , |U4|qs `

2
M ´ 4

pM ´ 2q2
Cov rΘF3

p|U1| , |U2| , |U3|q , ΘG3
p|U3| , |U4| , |U5|qs (B.3)

The expected values required to calculate these expressions are reported below. The computations

involve multi-dimensional integrals which in many cases can be solved analytically, in the other cases

we resort to numerical methods. Further details are discussed in the second part of the appendix.

E r|U |γs “ 2γ{2

?
π

Γ

ˆ

γ ` 1

2

˙

(B.4)

E

”

min p|U1| , |U2|q4

ı

“ 3 ´ 8

π
(B.5)

E

”

min p|U1| , |U2|q2
min p|U2| , |U3|q2

ı

“ 5

3
´ 8

π
` 6

π
?

3
(B.6)

E

”

med p|U1| , |U2| , |U3|q2
med p|U1| , |U2| , |U3|q2

ı

“ 9π ` 72 ´ 52
?

3

3π
(B.7)

E

”

med p|U1| , |U2| , |U3|q2
med p|U2| , |U3| , |U4|q2

ı

“ 5

3
` 16

π
´ 28

π
?

3
´ 8

π2
(B.8)

E

”

med p|U1| , |U2| , |U3|q2
med p|U3| , |U4| , |U5|q2

ı

“ 0.6304889 (B.9)

E

”

min p|U1| , |U2| , |U3|q2
min p|U1| , |U2| , |U3|q2

ı

“ 3 ´ 24

π
` 26

π
?

3
(B.10)

E

”

min p|U1| , |U2| , |U3|q2
min p|U2| , |U3| , |U4|q2

ı

“ 0.081154612 (B.11)
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E

”

min p|U1| , |U2| , |U3|q2
min p|U3| , |U4| , |U5|q2

ı

“ 0.052979325 (B.12)

E

”

min p|U1| , |U2| , |U3|q2
med p|U1| , |U2| , |U3|q2

ı

“ 1 ´ 4

π
?

3
(B.13)

E rmin p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q

min p|U2| , |U3| , |U4|q med p|U2| , |U3| , |U4|qs “ 0.18479863 (B.14)

E rmin p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q

min p|U3| , |U4| , |U5|q med p|U3| , |U4| , |U5|qs “ 0.13180674 (B.15)

E

”

min p|U1| , |U2|q2 |U1| |U2|
ı

“ 2

π
(B.16)

E

”

min p|U1| , |U2|q2 |U2|
ı

“ 23{2 ´ 2?
π

(B.17)

E

”

med p|U1| , |U2| , |U3|q2 |U1|
ı

“ 0.77817813 (B.18)

E

”

med p|U1| , |U2| , |U3|q2 |U1| |U2|
ı

“ 4

π

ˆ

1?
3

` 3

2
´

?
2

˙

(B.19)

E

”

min p|U1| , |U2| , |U3|q2 |U1|
ı

“ 0.22326864 (B.20)

E

”

min p|U1| , |U2| , |U3|q2 |U1| |U2|
ı

“ 2

π

ˆ

1 ´ 1?
3

˙

(B.21)

E rmin p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q |U1| |U2|s “ 1

3
´ 2

π
?

3
`

?
2

π
(B.22)

E rmin p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q |U1|s “ 0.35575564 (B.23)

E

”

min p|U1| , |U2|q2
med p|U1| , |U2| , |U3|q2

ı

“ 5

3
´ 20

π
?

3
` 8

π
(B.24)

E

”

min p|U1| , |U2|q2
med p|U2| , |U3| , |U4|q2

ı

“ 0.36453612 (B.25)

E

”

min p|U1| , |U2|q2 |U1|2{3 |U2|2{3

ı

“ 28{3

π

«

5

6
Γ

ˆ

5

6

˙2

´ 1

25{3
Γ

ˆ

5

3

˙

ff

(B.26)

E

”

min p|U1| , |U2|q2 |U2|2{3

ı

“ 0.41952385 (B.27)

94



B.1. COVARIANCE MATRIX OF THE JUMP ROBUST VOLATILITY ESTIMATORS

E

”

min p|U1| , |U2|q2
min p|U1| , |U2| , |U3|q2

ı

“ 0.18079593 (B.28)

E

”

min p|U1| , |U2|q2
min p|U2| , |U3| , |U4|q2

ı

“ 0.1065999 (B.29)

E

”

min p|U1| , |U2|q2
min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q

ı

“ 0.27146358 (B.30)

E

”

min p|U1| , |U2|q2
min p|U2| , |U3| , |U4|q med p|U2| , |U3| , |U4|q

ı

“ 0.16853585 (B.31)

E

”

med p|U1| , |U2| , |U3|q2 |U1U2U3|2{3

ı

“ 0.69275742 (B.32)

E

”

med p|U1| , |U2| , |U3|q2 |U1U2|2{3

ı

“ 0.71862343 (B.33)

E

”

med p|U1| , |U2| , |U3|q2 |U1|2{3

ı

“ 0.71697316 (B.34)

E

”

min p|U1| , |U2| , |U3|q2
med p|U2| , |U3| , |U4|q2

ı

“ 0.23168651 (B.35)

E

”

min p|U1| , |U2| , |U3|q2
med p|U3| , |U4| , |U5|q2

ı

“ 0.17730031 (B.36)

E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q3

ı

“ 4

π

ˆ

9

2
´ 15

2
?

2
` 2?

3

˙

(B.37)

E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q med p|U2| , |U3| , |U4|q2

ı

“ 0.36626489 (B.38)

E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q med p|U3| , |U4| , |U5|q2

ı

“ 0.28365967 (B.39)

E

”

min p|U1| , |U2| , |U3|q2 |U1U2U3|2{3

ı

“ 0.25338328 (B.40)

E

”

min p|U1| , |U2| , |U3|q2 |U1U2|2{3

ı

“ 0.22646547 (B.41)

E

”

min p|U1| , |U2| , |U3|q2 |U1|2{3

ı

“ 0.20682189 (B.42)

E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q |U1U2U3|2{3

ı

“ 0.37964422 (B.43)

E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q |U1U2|2{3

ı

“ 0.35209542 (B.44)

E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q |U1|2{3

ı

“ 0.32932346 (B.45)

E

”

min p|U1| , |U2| , |U3|q3
med p|U1| , |U2| , |U3|q

ı

“ 4

π

ˆ

5?
3

´ 3
?

2 ` 3

2

˙

(B.46)
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E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q min p|U2| , |U3| , |U4|q2

ı

“ 0.1211352 (B.47)

E

”

min p|U1| , |U2| , |U3|q med p|U1| , |U2| , |U3|q min p|U3| , |U4| , |U5|q2

ı

“ 0.083314876 (B.48)

Further details

The following integral is fundamental for the analytical computation of the expressions above:

In pα1, . . . , αn;β1, . . . , βnq “
ż 8

0

dy1 . . . dyn 1tynď...ďy1u exp

˜

´
n
ÿ

j“1

αjyj

¸

n
ź

j“1

y
βj

j (B.49)

where αj ą 0. To guarantee the integrability around the origin the conditions
řn

j“1 βj ` n´ 1 ą 0

and βn ą ´1 are necessary. Note that

E
“

u
γ1

1 . . . uγn
n 1p|u1|ď...ď|un|q

‰

“ 2
řn

i“1
γi{2

πn{2
In

ˆ

1, . . . , 1;
γ1 ´ 1

2
, . . . ,

γn ´ 1

2

˙

(B.50)

Integrating by parts the following property can be easily proved for βi ą ´1, ai ą 0 for i “ 1, . . . , n

and βn ą 01:

In pα1, . . . , αn;β1, . . . , βnq “ βj

αj
In pα1, . . . , αn;β1, . . . , βj ´ 1, . . . , βnq `

δj,1 ´ 1

αj
In´1 pα1, . . . , αj´1 ` αj , αj`1, . . . , αn;

β1, . . . , βj´1 ` βj , βj`1, . . . , βnq `

1 ´ δj,n

αj
In´1 pα1, . . . , αj ` αj`1, αj`2, . . . , αn;

β1, . . . , βj ` βj`1, βj`2, . . . , βnq (B.51)

where δj,1 denotes the Kroneker’s delta. Let σ p1, . . . nq denote the set of all possible permutations

1 In the case βn “ 0 the integral on yn gives p1 ´ eαnyn´1 q{αn.
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of the indexes 1, . . . , n:

ÿ

σ

I1 pασ1
, . . . , ασn ;βσ1

, . . . , βσnq “
ż 8

0

dy1 . . . dyn exp

˜

´
n
ÿ

j“1

αjyj

¸

n
ź

j“1

y
βj

j

ÿ

σ

1pyσ1
ď...ďyσnq

“
n
ź

j“1

ż 8

0

e´αjyyβjdy

“
n
ź

j“1

I1 pαj ;βjq (B.52)

In the special case of equal arguments the function In can be calculated explicitly:

In pα, . . . , α;β, . . . , βq “ 1

n!

„

Γ pβ ` 1q
αβ`1

n

(B.53)

In addition to relation B.51, the following properties are enjoyed by I2:

I2 pα1, α2;β1, β2q “
ż `8

0

dx1 e
´α1x1x

β1

1

ż x1

0

dx2e
´α2x2x

β2

2

“ 1

α
β1`1
1

ż `8

0

dy1 e
´y1y

β1

1

ż y1{α1

0

dx2e
´α2x2x

β2

2

“ 1

α
β1`β2`2
1

ż `8

0

dy1 e
´y1y

β1

1

ż y1

0

dy2e
´y2α2{α1y

β2

2

“ 1

α
β1`β2`2
1

I2

ˆ

1,
α2

α1

;β1, β2

˙

(B.54)

I2 pα1, α2;β1, β2q “ 1

α
β2`1
2

ż `8

0

dx1 e
´α1x1x

β1

1

ż x1α2

0

dy2e
´y2y

β2

2

“ 1

α
β1`β2`2
2

ż `8

0

dy1 e
´y1α1{α2y

β1

1

ż y1

0

dy2e
´y2y

β2

2

“ 1

α
β1`β2`2
2

I2

ˆ

α1

α2

, 1;β1, β2

˙

(B.55)
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these relations allow to reduce the dimensionality of the integral and to apply a series expansion:

I2 pα1, α2;β1, β2q “ 1

α
β1`β2`2
2

ż `8

0

dy1 e
´y1α1{α2yβ1γ pβ2 ` 1, yq

“ 1

α
β1`β2`2
2

Γ pβ2 ` 1q
ż `8

0

dy e´p1`α1{α2q y1yβ1`β2`1
8
ÿ

k“0

yk

Γ pβ2 ` k ` 2q

“ 1

α
β1`β2`2
2

Γ pβ2 ` 1q
8
ÿ

k“0

I1

´

1 ` α1

α2
, β1 ` β2 ` k ` 1

¯

Γ pβ2 ` k ` 2q

“ Γ pβ2 ` 1q
pα1 ` α2qβ1`β2`2

8
ÿ

k“0

Γ pβ1 ` β2 ` k ` 2q

Γ pβ2 ` k ` 2q
´

1 ` α1

α2

¯k
(B.56)

where we used the relation

γ ps, xq “ Γ psq e´x
8
ÿ

k“0

xs`k

Γ pk ` s` 1q

being γ the lower incomplete gamma function: γ ps, xq “
şx

0
dt e´tts´1. This technique can be

extended also to the case n “ 3 obtaining a double series expansion:

I3 pα1, α2, α2;β1, β2, β2q “ 1

2

ż `8

0

dy1e
´α1y1y

β1

1

ˆ
ż y1

0

dy2e
´α2y2y

β2

2

˙2

“ 1

2α
2pβ2`1q
2

ż `8

0

dy1e
´α1y1y

β1

1

˜

ż y1{α2

0

dz2 e
´z2z

β2

2

¸2

“ α
β1´2β2´1
2

2

ż `8

0

dz1e
´pα1α2`2qz1z

β1

1

ˆ
ż z1

0

dz2 e
´z2z

β2

2

˙2

“ α
β1´2β2´1
2

2

8
ÿ

k“0

ck pβ2q
ż `8

0

dz e´α1α2zzβ1`β2`k`1

“ α
β1´2β2´1
2

2 pα1α2 ` 2qβ1`β2`2

8
ÿ

k“0

ck pβ2q
pα1α2 ` 2qk

ż `8

0

dz e´uuβ1`β2`k`1

“ α
β1´2β2´1
2

2 pα1α2 ` 2qβ1`β2`2

8
ÿ

k“0

ck pβ2q
pα1α2 ` 2qk

Γ pβ1 ` β2 ` k ` 2q

98



B.1. COVARIANCE MATRIX OF THE JUMP ROBUST VOLATILITY ESTIMATORS

where

ck pβ2q “
k
ÿ

j“0

Γ pβ2 ` 1q2

Γ pk ´ j ` β2 ` 2q Γ pj ` β2 ` 2q

We provide some concrete examples:

Expression B.5 Let k P Z and k ě 0:

E

”

min p|u1| , |u2|q2k
ı

“ 2E
”

u2k
1 1p|u1|ď|u2|q

ı

“ 2k`1

π
I2

ˆ

1, 1; ´1

2
, k ´ 1

2

˙

where the substitution yi “ u2
i {2 has been applied. Using relation B.51

I2

ˆ

1, 1; ´1

2
,
2k ´ 1

2

˙

“ 2k ´ 1

2
I2

ˆ

1, 1; ´1

2
, pk ´ 1q ´ 1

2

˙

` pk ´ 1q!
2k

thus the following recursive relation is obtained

E

”

min p|u1| , |u2|q2k
ı

“ p2k ´ 1qE
”

min p|u1| , |u2|q2pk´1q
ı

´ 2

π
pk ´ 1q!

E

”

min p|u1| , |u2|q2
ı

“ 1 ´ 2

π

E

”

min p|u1| , |u2|q4
ı

“ 3 ´ 8

π

E

”

min p|u1| , |u2|q6
ı

“ 15 ´ 44

π

E

”

min p|u1| , |u2|q8
ı

“ 105 ´ 320

π

Expression B.6 The expectation can be split as follows:

E

”

min p|u1| , |u2|q2 min p|u2| , |u3|q2
ı

“ 2E
“

u4
21p|u2|ď|u1|ď|u3|q

‰

` 4E
“

u2
1 u

2
21p|u1|ď|u2|ď|u3|q

‰
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each term is given by

E
“

u4
11p|u1|ď|u2|ď|u3|q

‰

“ 4

π3{2
I3

ˆ

1, 1, 1; ´1

2
,´1

2
,
3

2

˙

(B.57)

E
“

u2
1 u

2
21p|u1|ď|u2|ď|u3|q

‰

“ 4

π3{2
I3

ˆ

1, 1, 1; ´1

2
,
1

2
,
1

2

˙

(B.58)

applying relations B.51 and B.53 the RHS of B.57 gives

I3

ˆ

1, 1, 1; ´1

2
,´1

2
,
3

2

˙

“ 3

2
I3

ˆ

1, 1, 1; ´1

2
,´1

2
,
1

2

˙

´ I2

ˆ

1, 2; ´1

2
, 1

˙

“ π1{2

ˆ

8

π
´ 1 ` 13

12
?

3

˙

where we used the relations

I3

ˆ

1, 1, 1; ´1

2
,´1

2
,
1

2

˙

“ 1

2
I3

ˆ

1, 1, 1; ´1

2
,´1

2
,´1

2

˙

´ I2

ˆ

1, 2; ´1

2
, 0

˙

“ π3{2

12
´ π1{2

2

ˆ

1 ´ 1?
3

˙

I2

ˆ

1, 2; ´1

2
, 1

˙

“ 1

2
I2

ˆ

1, 2; ´1

2
, 0

˙

´ 1

2
I1

ˆ

3;
1

2

˙

“
?
π

4

ˆ

1 ´ 4

3
?

3

˙

For B.58 we have

I3

ˆ

1, 1, 1; ´1

2
,
1

2
,
1

2

˙

“ 2 I3

ˆ

1, 1, 1;
1

2
,
1

2
,
1

2

˙

´ 2I2

ˆ

2, 1; 1,
1

2

˙

“ π3{2

24
´ I2

ˆ

2, 1; 0,
1

2

˙

´ I1

ˆ

3,
3

2

˙

“ π3{2

24
´ π1{2

6
?

3

where we used

I2

ˆ

2, 1; 0,
1

2

˙

“ 1

2
I1

ˆ

3,
1

2

˙

“ π1{2

12
?

3
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Finally

E
“

u4
21p|u2|ď|u1|ď|u3|q

‰

“ 1

2
´ 4

π
` 13

π3
?

3

E
“

u2
1 u

2
21p|u1|ď|u2|ď|u3|q

‰

“ 1

6
´ 2

π3
?

3

E

”

min p|u1| , |u2|q2 min p|u2| , |u3|q2
ı

“ 5

3
´ 8

π
` 6

π
?

3
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Chapter 3

Price and Volatility Jumps in High Frequency Affine

Modeling

3.1 Introduction

Affine modeling has a long history in finance, starting from the seminal papers of Vasicek (1977) and

Cox et al. (1985) who first apply the Ornstein–Uhlenbeck and the square root process to interest

rates. These stochastic processes are the fundamental building blocks of continuous time affine

modeling which is an important tool in modern finance. The tractability characterizing this class

of models has been uncovered in a number of relevant contributions including Heston (1993), Duffie

and Kan (1996), Dai and Singleton (2000), Duffie et al. (2000), Duffie et al. (2003) and Filipović

et al. (2013). The range of empirical applications is extremely wide, encompassing interest rates and

credit risk, stock price returns, foreign exchange rates and intra-trade durations with a prominent

role in asset pricing, portfolio optimization and risk management.

While the early studies on affine models have been conducted in continuous time, the recent liter-

ature highlights the superior flexibility achievable in the discrete time framework. Important con-

tribution in this area are provided by Gourieroux and Jasiak (2006) introducing the discrete time

version of the square root process named Autoregressive Gamma (ARG), Darolles et al. (2006)

discussing the general properties of compound autoregressive processes (Car) including stationarity

and ergodicity, Monfort and Pegoraro (2007) incorporating regime switching into a general mul-

tivariate affine framework with empirical applications to the term structure of interest rates and

Monfort et al. (2015) introducing a variant of the ARG process (named ARG0) that is designed to

describe long periods of zero interest rates.
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In this chapter we contribute to the extant literature on affine models defining a new stochastic

process named Autoregressive Generalized Gamma process (ARGG henceforth) that is a general-

ization of the ARG and the ARG0. The single additional parameter introduced in the conditional

distribution allows to improve the control over the dispersion and the tail decay while preserving

the same level of tractability of the ARG. Moreover, the new process can be directly related to an

ARG (or ARG0) where the state variable is affected by an idiosyncratic noise component or it is

observed with an error. In the process allows to design also approximated filtering algorithms.

We propose an empirical application to stochastic volatility contributing to the large body of lit-

erature dedicated to this topic. Particularly our proposed models are designed to exploit the in-

formation available at high frequency. The idea to use the realized volatility within a GARCH

framework to improve volatility forecasts dates to Engle (2002) and has been subsequently imple-

mented by several authors including Shephard and Sheppard (2010), Hansen et al. (2012), Chen

et al. (2011). The use of high frequency data to jointly model volatility and returns for option

pricing purposes is a growing research area initiated by Stentoft (2008) who proposes a specification

where the volatility is conditionally distributed as a normal inverse Gaussian. Importantly, closed

form option pricing formulas are not available for his model, forcing to resort to computationally

demanding Monte Carlo methods. The HARG model of Corsi et al. (2013) belongs instead to the

affine framework but neglects the leverage effect, which is recovered in the HARGL specification

but again at the expenses of the analytical tractability. Christoffersen et al. (2014) first include the

leverage effect in a fully tractable way inspired to the affine GARCH of Heston and Nandi (2000).

Notably, this active research area has largely benefited from the important developments that high

frequency econometrics experienced in the last decade, building on the seminal work of Barndorff-

Nielsen and Shephard (2004) and Barndorff-Nielsen and Shephard (2006) who first introduced a

new econometric tool able to disentangle the continuous and the discontinuous component of asset

price fluctuations. The remarkable advantage of these techniques is to make latent volatility and

jumps directly observable.

The present work is related to the recent paper of Majewski et al. (2015), proposing a general

affine option pricing framework which includes a wide class of discrete time models with multiple

volatility and leverage components while a flexible pricing kernel allows to incorporate risk premia.
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The model introduced by Majewski et al. is an improved version of the HARGL model of Corsi

(2009) where the stochastic volatility follows an ARG process. Alitab et al. (2016) design a more

advanced version (J-LHARG) where the volatility is also positively affected by price jumps. Our

work shows that ARG specification fails to capture the violent volatility shocks observed between

September 2007 and April 2014. We propose two new alternative affine models featuring a more

flexible volatility dynamics. These models accommodate the well known volatility persistence and

lagged as well as contemporaneous leverage effects. At the same time, they are able to account for

additional volatility dispersion thanks to the flexibility of the ARGG process. More precisely, we

extend the LHARG model of Majewski et al. in three distinct ways: i) we move from the ARG to the

ARGG process to describe stochastic volatility, ii) we introduce a second volatility factor featuring

volatility jumps, iii) we introduce a negative skewness at the daily time horizon. Though option

pricing is fully tractable within our framework, the empirical analysis of this chapter is developed

exclusively under the physical measure. Interesting implications to option pricing are left for future

research.

Our results, obtained analyzing 5 minutes returns from the S&P 500 from September 2007 to

April 2014, show a remarkable improvement of the fit moving from the standard ARG process to

its generalized version. Importantly, according to the empirical analysis developed in Chapter 1,

the peaks of realized quadratic variation observed during the sub-prime crisis are not generated

by price jumps. This calls for the inclusion of a second factor able to generate sudden volatility

shocks that will be referred as volatility jumps. The need for multiple volatility factors is widely

recognized in the literature, some examples are Engle and Lee (1999), Bollerslev and Zhou (2002),

Christoffersen et al. (2008), Adrian and Rosenberg (2008), Chernov et al. (2003) among many others.

The occurrence of volatility jumps in the stock market is also largely supported by many empirical

studies such as Duffie et al. (2000), Bates (2000), Pan (2002), Eraker et al. (2003), Eraker (2004),

Bandi and Renò (2016), Corsi and Renò (2012). Non-parametric evidence has been also provided

by Jacod and Todorov (2010), Todorov and Tauchen (2011) reporting the simultaneous occurrence

of price and volatility jumps. It has been pointed out that jumps in returns and jumps in volatility

have a different role in the description of asset returns. Price jumps generate large and rare sudden

movements which would otherwise require an extremely high and unrealistic level of volatility to be
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justified. Volatility jumps generate instead violent changes in the level of volatility with a persist

effect on the size of returns. We find the latter to dominate at the end of 2008 during the period

leading to the Leheman bankruptcy.

The inclusion of the contemporaneous leverage is another important innovation in discrete time

modeling. The relevance of the leverage effect is well known since Black (1976). The studies

of Andersen et al. (2007a) and Andersen et al. (2010a) point out that, even when the realized

volatility is accurately measured from high frequency intraday returns, the standardized log-returns

purified by the effect of price jumps are still deviating from the normal distribution. This is due to

the pronounced asymmetric relationship between return and volatility innovations. We distinguish

between two different types of leverage: the contemporaneous leverage generating distributional

asymmetries at a short time horizons (say a single trading day) and the lagged leverage stemming

from the positive effect of negative returns on future volatility, which reinforce the asymmetries on

longer time horizons. The models proposed by the literature usually fail to capture simultaneously

both of these features, whose relevance is stressed for instance by Bollerslev et al. (2006). Continuous

time models instead are usually designed to feature contemporaneous leverage but often not able

to account for its persistence on long horizons; in discrete time models instead leverage is usually

introduced with a time lag allowing negative returns to positively affect future volatility, this is

the case for example in Heston and Nandi (2000), Christoffersen et al. (2008), Christoffersen et al.

(2012), Christoffersen et al. (2015), Majewski et al. (2015), Alitab et al. (2016) where distributional

asymmetries at the daily time scale can be generated only by price jumps. The new specification

that we propose is able to accommodate both contemporaneous and lagged leverage by introducing

a random drift component which depends linearly on volatility. At the same time the volatility

risk premium is assumed to be proportional to the expected volatility according to the information

available at the end previous trading day. Consistently with Bollerslev et al. (2006), Corsi and

Renò (2012), Majewski et al. (2015) and Alitab et al. (2016), we find that the simultaneous and the

legged leverage are both statistically significant, even after taking into account the effect of price

jumps.

The rest of this chapter is structured as follows: Section 3.2 introduces the generalized non-central

gamma distribution and some of its properties, Section 3.3 is dedicated to the ARGG process, in
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Section 3.4 we develop the empirical application to stochastic volatility and Section 3.5 concludes.

Technical aspects are relegated to the appendices.

3.2 The Generalized Non-Central Gamma Distribution

In this section we introduce a new distribution that generalizes the non-central gamma. The latter

has a prominent role in discrete time affine models, mostly determined by its direct link with the

square root process in continuous time1: the autoregressive gamma process of Gourieroux and Jasiak

(2006) is the discrete time counterpart of the CIR process Cox et al. (1985). This distribution can

be defined as a Poisson mixture of gammas with the same scale and different shape parameters.

Its functional form is fully characterized by three free parameters: the shape, the scale and the

non-centrality. The p.d.f. and the m.g.f. are respectively

γ̄ px; δ, θ, λq “ e´λ
8
ÿ

n“0

λn

n!
γ px; δ ` n, θq (3.1)

ˆ̄γ pz; δ, θ, λq “ p1 ´ θzq´δ exp

ˆ

λ
θz

1 ´ θz

˙

(3.2)

the mean and variance are

E pXq “ θ pδ ` λq (3.3)

V ar pXq “ θ2 pδ ` 2λq (3.4)

In time series modeling δ and θ are usually kept constant while non-centrality is a time-varying

state variable. Importantly, the mean and the variance are linear affine in the non-centrality. To

achieve more flexibility in empirical applications it can be useful to control the four affine coefficients

independently while in equations 3.6 and 7 they are determined by three independent parameters.

There are different ways to introduce additional flexibility: one possibility could be for instance to

assume that δ depends λ through a linear affine relation without substantially changing the features

of the distribution. Here we choose a different approach working directly on the mixing distribution

with the key to have additional control on the tail decay of the density as it will be shown later.

1 It is well known that the conditional distribution of a continuous random variable following a square root process
and observed at any fixed time horizon is a non-central gamma.
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An important characteristic of the Poisson distribution is the equivalence between its mean and its

variance: the impossibility to set the first and the second moment independently is in fact often

regarded as a major limitation of Poisson models in empirical applications. We propose a simple

extension of the non-central gamma density based on the same idea introduced in the contest of

Poisson regression models to account for over-dispersion (see Hilbe 2011), i.e. we consider the a

negative binomial mixing distribution. To define the new density let us consider a negative binomial

random variable Z with shape parameter r ą 0 and probability of success p P r0, 1q and probability

of failure q “ 1´p. In the limit q Ñ 0 and r Ñ 8 with rq constant, the mixing distribution converges

weakly to a Poisson, it is therefore convenient to adopt the parametrization r “ λ p1 ´ qq {q.

Definition 1. Let X be a non negative random variable. X follows a generalized non-central

gamma distribution with non-centrality λ ě 0, over-dispersion q P r0, 1q, shape δ ą 0 and scale

θ ą 0 denoted by ψ px; δ, θ, λ, qq if its distribution conditionally on Z is a gamma with shape

parameter δ ` Z and scale parameter θ

X|Z „ γ pδ ` Z, θq (3.5)

The p.d.f. and the moment generating function, defined for Re pzq ă p1 ´ qq {θ, are respectively

ψ px; δ, θ, λ, qq “

$

’

’

’

&

’

’

’

%

8
ÿ

n“0

nb pn; r pλ, qq , qq γ px; δ ` n, θq if q P p0, 1q

e´λ
8
ÿ

n“0

λn

n!
γ px; δ ` n, θq if q “ 0

(3.6)

where r pλ, qq “ λ p1 ´ qq {q , nb pn; r, qq “ Γ pr ` nq
Γ prqn!

qn p1 ´ qqr and γ px; ν, θq “ e´x{θxν´1

θνΓ pνq

Proposition 7. The moment generating function associated to the generalized non-central gamma

distribution is

ψ̂ pz; δ, θ, λ, qq “

$

’

’

&

’

’

%

p1 ´ θzq´δ

ˆ

1 ´ q

1 ´ q

θz

1 ´ θz

˙´rpλ,qq
if q P p0, 1q

p1 ´ θzq´δ exp

ˆ

λ
θz

1 ´ θz

˙

if q “ 0

(3.7)

defined for Re pzq ă p1 ´ qq {θ
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Proof: For q “ 0 the distribution is a non-central gamma, we focus therefore on the more inter-

esting case q ą 0

E
“

ezX
‰

“
8
ÿ

n“0

nb pn; r pλq , qq p1 ´ θzq´pδ`nq

“ p1 ´ θzq´δ

„

1 ´ q

1 ´ q{ p1 ´ θzq

rpλ,qq

The Generalized Gamma-zero distribution

The gamma-zero distribution introduced by Monfort et al. (2015) is obtained from the non-central

gamma when the shape parameter is zero. Such a distribution has a point mass at zero which

makes its use particularly attractive to model non-negative random variables that can stay a zero

for prolonged periods of time (e.g. interest rates). The generalized gamma-zero distribution can be

analogously obtained from the generalized non-central gamma considering a zero shape parameter

δ.

Definition 2. The non negative random variable X follows a generalized gamma-zero distribution

with parameters λ, q and θ denoted by ψ0 px; θ, λ, qq if its distribution conditionally on Z is a gamma

with shape parameter Z and scale parameter θ

X|Z „ γ pZ, θq (3.8)

The p.d.f. is

ψ0 px; θ, λ, qq “

$

’

’

’

&

’

’

’

%

p1 ´ qqrpλq
1tx“0u `

8
ÿ

n“0

nb pn; r, qq γ px; n, θq if q P p0, 1q

e´λ

«

1tx“0u `
8
ÿ

n“0

λn

n!
γ px; n, θq

ff

if q “ 0

(3.9)

Proposition 8. The moment generating function of the non-central generalized gamma-zero dis-

tribution is
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ψ̂0 pz; θ, λ, qq “

$

’

’

&

’

’

%

ˆ

1 ´ q

1 ´ q

θz

1 ´ θz

˙´rpλ,qq
if q P p0, 1q

exp

ˆ

λ
θz

1 ´ θz

˙

if q “ 0

(3.10)

Proof: Analogous to proposition 3.7 with the only difference that δ “ 0.

Note that this distribution has a point mass located at x “ 0 with an associated probability of

p1 ´ pqrpλ,qq (this it can be immediately checked taking the limit z Ñ 8 in 3.10).

Some basic properties

Alternative representation The negative binomial distribution can be regarded as a Poisson with

random intensity, hence the following proposition provides an alternative definition for the general-

ized non-central gamma

Proposition 9. Consider the non-negative random variable Λ distributed as a gamma with scale

q{ p1 ´ qq and shape r “ λ p1 ´ qq {q with λ ą 0, q P p0, 1q. X follows a generalized non-central

gamma distribution with parameters δ ě 0, λ, q, θ ą 0 when its distribution conditionally on Λ is

a non-central gamma with shape δ, non-centrality Λ and scale θ.

Proof: The equivalence between this definition and definitions 1 and 2 can be immediately verified

just observing that the moment generating function that arises from 9 coincides with expression

3.7. To recover the Poisson distribution we can consider the limit q Ñ 0 such that r pλ, qq Ñ 8

and r pλ, qq q Ñ λ, thus the gamma degenerates to a Dirac delta with the whole probability mass

concentrated at λ.

According to Proposition 9 the generalized non-central gamma admits a simple representation sim-

ilar to the non-central gamma and descending directly from the gamma mixture interpretation.

Such a representation is particularly useful in numerical simulations:

X “ ε`
Z
ÿ

j“1

Wj (3.11)

where ε „ γ pδ, θq, Wj „ γ p1, θq and Z is extracted from a negative binomial distribution with
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parameters r pλ, qq and q or equivalently from a Poisson distribution with random non-centrality

Λ „ γ pr pλ, qq , q{ p1 ´ qqq. The generalized gamma-zero admits the same representation but with

the noise term ε identically null.

Mean and variance The mean and the variance of the generalized non-central gamma distribution

are

E pXq “ θ pδ ` λq (3.12)

V ar pXq “ θ2

ˆ

δ ` λ
2 ´ q

1 ´ q

˙

(3.13)

notably, the parameter q affects only the variance of the distribution generating over-dispersion

with respect to the non-central gamma that is obtained for q “ 0. Now the coefficients defining

the affine dependence of the mean and the variance from the non-centrality λ can be controlled

independently through four distinct parameters.

Tail decay We see from equations 3.7 and 3.10 that the moment generating function has a singu-

larity at z “ p1 ´ qq {θ, suggesting that the tail for x is proportional to e´p1´qq{θ as it is stated by

the following proposition:

Proposition 10. As x Ñ 8, the rate of decay of ψ px; δ, θ, λ, qq is e´xp1´qq{θ px{θqr´1.

Proof: See Appendix C.1.1.

Additional properties of the generalized non-central gamma are discussed in Appendix C.1.

Numerical computation of the density

The generalized non-central gamma density can be computed numerically at least in two distinct

ways: through the explicit summation of the series in expression 3.6 and by Fourier inversion. The

first method is convenient for small values of the argument and requires to control the truncation

error. The second is efficient for medium and large values of the argument but it is computationally

more complex because requires the simultaneous control of three sources of error: the truncation,

the discretization and the round off. Technical details are discussed in Appendix C.3. Figure 3.1
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shows the different shape of the density depending on the choice of the parameter p and highlights

the way it affects the tail decay.
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Figure3.1: Density and log-density of the generalized non-central gamma with parameters δ “ 5,
λ “ 100, θ “ 1

3.3 The Autoregressive Generalized Gamma Process

The Autoregressive Gamma process of Gourieroux and Jasiak (2006) has multiple applications in

financial econometrics like the description of inter-quote durations, interest rate and volatility mod-

eling. The extensive use of this process in various research areas is largely due to its affine properties

which allow to perform asset pricing in a tractable way and to calculate the conditional moment

generating function at each time horizon in a semi-analytical form. Here we introduce a simple

generalization of the ARG processes based on the Generalized Non-Central Gamma distribution

and therefore named ARGG process. Importantly the ARGG belongs to the class of compound

autoregressive processes (Car) whose properties are extensively discussed by Darolles et al. (2006).

Definition 3. The process (Yt) is an autoregressive generalized gamma process of order p (ARGGδ ppq)
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when the conditional distribution of Yt given Yt´1 is ψ
`

δ, θ, d` β1Yt´1, q
˘

, where δ ą 0, q P p0, 1q,

β, d ě 0, θ ą 0 and Yt “ pYt, . . . , Yt´p`1q1.

The definition can be naturally extended to the generalized gamma-zero process if we allow δ to

take the value zero provided d ą 0 to prevent the lower bound from becoming absorbing. Following

the interpretation based on a mixture of gamma distributions, the ARGGδ ppq process can be

represented (and simulated) as follows:

Yt “
Zt
ÿ

j“1

Wj,t ` εt

where ε „ γ pδ, θq, Wj „ γ p1, θq and Zt is extracted from a Poisson distribution with a conditionally

stochastic non-centrality Λt „ γ prt, q{ p1 ´ qqq being rt “
`

d` β1Yt´1

˘

p1 ´ qq {q. The ARGG0 ppq

process is obtained setting εt “ 0, while the ARGδ ppq is characterized by a deterministic non-

centrality Λt “ λt corresponding to the limiting case q Ñ 0. Note that the ARGGδ ppq process is a

Car process of order p because its conditional Laplace transform is an exponential affine function

of the state variables:

E
“

exp pz Ytq|Yt´1

‰

“ exp

#

p
ÿ

i“1

ai pzqYt´i ` b pzq
+

z ă pq ´ 1q {θ

where

ai pzq “ ´βi
1 ´ q

q
log

ˆ

1 ´ q

1 ´ q

θz

1 ´ θz

˙

(3.14)

b pzq “ ´δ log p1 ´ θzq ´ d
1 ´ q

q
log

ˆ

1 ´ q

1 ´ q

θz

1 ´ θz

˙

(3.15)

From Darolles et al. (2006) proposition 2, Yt follows a multivariate vector Car process of order 1

with moment generating function

E
“

exp
`

z1Yt

˘ˇ

ˇYt´1

‰

“ exp
“

A pzq1 Yt´1 `B pzq
‰

where

A pzq “ pa1 pz1q ` z2, . . . , ap´1 pz1q ` zp, ap pz1qq1 B pzq “ b pz1q
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3.3.1 Stationarity and Ergodicity

Following Darolles et al. (2006), the stationarity condition is determined by the multi-dimensional

function A pzq through the condition limhÑ8 A˝h “ 0 for all z P R
p with non-negative components,

where A˝h denotes the function A compounded h times.

Proposition 11. Under the condition θ
q
ÿ

i“1

βi ă 1, the ARGGδ ppq process is stationary and ergodic.

Proof: See Appendix C.2.1

3.3.2 The ARGG p1q process

We focus on the simplest case p “ 1 to highlight the main features of the process. Assume δ, β, θ ą 0,

d ě 0 and

Yt|Yt´1 „ ψ
`

δ, θ, d` βYt´1, q
˘

Conditional mean and variance

A let ρ “ θβ, the conditional mean and variance one time interval ahead are

E pYt|Yt´1q “ θ pδ ` dq ` ρYt´1 (3.16)

V ar pYt|Yt´1q “ θ2

ˆ

δ ` 2 ´ q

1 ´ q
d

˙

` θρ
2 ´ q

1 ´ q
Yt´1 (3.17)

more generally, the following result holds

Proposition 12. The first and the second moment of the ARGG p1q with ρ “ θβ ă 1 and q P

p0, 1qconditionally on lagged values of the state variable Y are given by the following expressions

E pYt|Yt´hq “ θ pδ ` dq 1 ´ ρh

1 ´ ρ
` ρhYt´h (3.18)

V ar pYt|Yt´hq “ θ2

"

δ ` d

1 ´ ρ

2 ´ q

1 ´ q

„

1 ´ ρh

1 ´ ρ
´ 1 ´ ρ2h

1 ´ ρ2



`
ˆ

δ ` 2 ´ q

1 ´ q
d

˙

1 ´ ρ2h

1 ´ ρ2

*

` θ
2 ´ q

1 ´ q
ρh 1 ´ ρh

1 ´ ρ
Yt´h (3.19)
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the unconditional mean and variance are

E pYtq “ θ
δ ` d

1 ´ ρ

V ar pYtq “ θ2

1 ´ ρ2

„

δ ` 2 ´ q

1 ´ q

ˆ

d` ρ
δ ` d

1 ´ ρ

˙

Proof: See AppendixC.2.2.

The weak AR p1q interpretation allows to represent the model in the form

Yt “ θ pδ ` dq ` ρYt´1 ` εt

where εt is a martingale difference. Thus, not surprisingly, the first order autocorrelogram is the

same of the ARG p1q process

Corr pYt, Yt´hq “ ρh

Long memory

Like the ARG p1q model, also the ARGG p1q is able to feature long memory when ρ “ 1. Assume

for simplicity θ “ 1, for z ď 0 we have

0 ď aq pzq “ 1 ´ q

q
log

ˆ

1 ´ q

1 ´ q

z

1 ´ z

˙

ď a0 pzq @z ą q ´ 1

where a0 pzq “ z{ p1 ´ zq corresponding to the ARG p1q process. Thus a˝h
q pzq converges to zero at

least the same rate 1{h of a˝h
0 pzq

0 ď a˝h
q pzq ď a˝h

0 pzq “ z

1 ´ hz
Ñ 0 as h Ñ 8

that implies weak ergodicity according to Darolles et al. (2006). Moreover

aq pzq “ ´z
1 ´ z

´ 1

2

q

1 ´ q

ˆ

z

1 ´ z

˙2

`O
`

z3
˘

“ ´z{
„

1 ´ z

ˆ

1 ` 1

2

q

1 ´ q

˙

`O
`

z3
˘

thus the rate of convergence is exactly 1{h.
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Approximated filtering

It ha been pointed out that the ARGG process can be regarded as an ARG process with a stochastic

non-centrality that is conditionally distributed as a gamma. In practice this situation can materialize

when the state variable is not directly observed. In this case the approximated filtering algorithm

proposed by Bates (2006) for latent affine processes can be applied. This technique generalizes

the Kalman Filter using at each step an approximating conditional distribution that is possibly

different from the Gaussian. Such a procedure is well suited for uni-dimensional filtering problems.

To provide a concrete example we describe the algorithm applied to the famous Heston model

where the unobserved volatility follows a square root process. We show that in this case the filtered

process for latent volatility is analogous ARGG p1q with the only different that the overdispersion

parameter is time varying. The Heston model is defined trough the following equations:

dyt “ µ0 `
ˆ

µ1 ´ 1

2

˙

Vt `
a

Vt

´

ρdW1,t `
a

1 ´ ρ2dW2,t

¯

dVt “ α ´ βVt ` σ
a

VtdW2,t

where yt is the log-price, Vt is the instantaneous volatility and W1,t, W2,t are independent Wiener

processes. The joint conditional density of y and V has an exponential affine characteristic function

f̂ pıu, ızq “ E rexp pıyt`hu` ıVt`hzq| yt, Vts “ exp rıytu`A pu, z;hq ` VtBV pu, z;hqs

the functions A and BV can be calculated in closed form (see Heston 1993 for details). Given that Vt

follows a CIR process, the marginal distribution of Vt`h conditional on Vt in this model is a non cen-

tral gamma with shape 2α{σ2, non centrality Vt ¨ 2βe´βh{σ2
`

1 ´ e´βh
˘

and scale
`

1 ´ e´βh
˘

σ2{2β

(see Alfonsi 2010).

Assume that the price is observed at t “ 1, 2, . . . T , therefore h “ 1. To describe the recursive

algorithm we detail a single step starting from time t´ 1 where the density gt´1 of the unobserved

state variable Vt´1 conditional on the information available at time t´1 is assumed to be known. Let

φt|t´1 be the joint density of yt and Vt conditional on the information at t´ 1 whose characteristic
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function is

φt|t´1 pıu, ızq “ E rexp pıytu` ıVtzq| Fts

“ E rexp rA pu, zq ` VtBV pu, zqs| Fts

“ exp rıytu`A pu, zqs ĝt´1 pBV pu, zqq

From proposition 1 in Bates (2006) the Bayesian updating gives

ĝt pz; ytq “
ş`8

´8 φt|t´1 pıu, ızq e´ıuytdu
ş`8

´8 φt|t´1 pıu, 0q e´ıuytdu

the idea it to approximate this conditional density to circumvent the complications related to the

computation of the exact filtered density. The approximating distribution proposed by Bates for

non negative latent variables is a gamma matching the conditional mean and variance

mt pyt`1q “ Bĝt

Bz

ˇ

ˇ

ˇ

ˇ

z“0

vt pytq “ B2ĝt

Bz2

ˇ

ˇ

ˇ

ˇ

z“0

´mt pytq2

ĝt pz; ytq » p1 ´ ϑtzq´δt

where ϑt “ vt pytq {mt pytq and δt “ mt pytq2 {vt pytq. Bates demonstrates that the errors af-

fecting the conditional moments due to this approximation die out geometrically. Under this

method, the marginal distribution of V conditional on the information available at the previ-

ous time is a generalized non central gamma with shape 2α{σ2, and over-dispersion parameter

qt “ Θt{ pΘt ` 1q where Θt “ 2ϑtβe
´βh{σ2

`

1 ´ e´βh
˘

and non-centrality λt “ δt{Θt. Note that qt

and λt are time dependent non-linear functions of the observed returns capturing respectively the

uncertainty and the expected level of the unobserved state variable.

3.4 Modeling S&P 500 Returns and Volatility

In this section we discuss an empirical application of the ARGG process to to stochastic volatility.

The increasing availability of high frequency data and the advances in high frequency econometrics,

stimulated in the last years the development of a new class of stochastic volatility models able

to exploit the large amount of intraday information to improve the accuracy of volatility forecasts
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(Andersen et al. 2007b, Corsi et al. 2010, Corsi and Renò 2012 among others) and the option pricing

performances (Stentoft 2008,Corsi et al. 2013, Alitab et al. 2016, Bormetti et al. 2016). Following

the idea of Andersen et al. (2011) among others, we distinguish three components of close-to-close

returns and variance: an intraday continuous component, a price jump component and an overnight

component. Paralleling many other contributions in this area of research, we assume that the

integrated volatility is observed without error and jumps are exactly identified. These simplifying

assumptions offer the considerable advantage of making the latent volatility directly observable and

lead to a substantial simplification of the statistical inference. Some studies deviating from this

assumptions are anyway available in the literature: Christoffersen et al. (2015) consider a specific

form of the measurement error leading to a straightforward filtering while Bormetti et al. (2016)

rely on Markov Chain Monte Carlo methods for the statistical inference.

This section is structured as follows: in Subsection 3.4.1 we describe our data set discussing the

salient stylized facts observed on the three return and volatility components, in Subsection 3.4.2 we

propose a model for close-to-close returns obtained as the sum of continuous and discontinuous price

changes, in Subsection 3.4.3 we complete the model defining three alternative dynamic specifications

for stochastic volatility with increasing complexity: the first specification is the LHARG model of

Majewski et al. (2015) representing as a benchmark, the second is a simple generalization where

the standard ARG process is replaced by the ARGG while in the third model we include also an

additional volatility factor to feature volatility jumps. In Subsection 3.4.4 we discuss our empirical

results. Importantly, though our modeling framework is fully affine and allows the development of

tractable option pricing formulas, the present analysis is developed exclusively under the physical

measure. Option pricing application are left for future research.

3.4.1 Data and Stylized Facts

The data set used in this section is a part of the data set described in Section 1.2 of Chapter 1. It

contains intraday quotes from the S&P 500 reported every 5 minutes from 2007-9-14 to 2014-04-30,

for a total number of 1674 trading days. This sample includes multiple high volatility periods like

the sub-prime crisis leading to the bankruptcy of Leheman Brothers on September 15th 2008 and the

European Sovereign crisis of 2011. For each trading day, the first quote is reported 5 minutes after
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the market opening time, thus the first intraday return is incorporated in the overnight return2.

Let St denote the closing price of the index, then yt “ log pSt{St´1q is the close-to-close log-return

on day t. Intraday log-returns are indicated as ri,t “ log pSi,t{Si´1,tq with i “ 1, . . . ,M (in our case

M “ 77). Open to close log-returns are obtained as the sum of intraday returns: yid
t “ řM

i“1 ri,t.

The closing price reported at the end of each trading day, usually differs from the opening price

of the following trading day due to the information accumulated overnight. The overnight return

between t and t ` 1 is computed over the last reported quote on day t and the first of the day

after. The cumulated close-to-close log-return and the intraday realized quadratic variation are

plotted in Figure 3.2 while Table 3.1 reports some summary statistics. We observe that the realized

variation is subject to extreme shocks during the sub-prime crisis. The highest level of intraday

price variability is measured on 10th of October 2008, few days before the Leheman bankruptcy,

where the quadratic variation is 47 times larger than its sample mean and roughly 3.5 times larger

that the other peaks observed in correspondence of the flash crash on 2010-5-6 and during the Euro

sovereign crisis. The quadratic variation measured on 2008-10-8, 2010-5-6 and 2011-8-9 correspond

to an annualized volatility of 122%, 64.2% and 63.1% respectively. The largest close-to-close market

decline of ´11.2% is observed on 8th of August 2011 during the Euro Sovereign crisis.

We decompose the total close to close variation into three distinct components: the intraday con-

tinuous price variation IVt also referred as integrated volatility, a jump component RV J
t and the

overnight variation ONt equal to the squared overnight return. The total intraday variation RVt

is the sum of IVt and RV J
t which can be disentangled using high the frequency methods largely

discussed in Chapters 1 and 2. Particularly we apply the sequential version of the test proposed

by Corsi, Pirino, and Renò (2010) that is detailed in Section 1.3. This method allows not only

to detect days with at least one jump but also to identify its exact intraday time and its size3.

We can therefore decompose the close to close return as yt “ yc
t ` Jt where the overnight return

is assumed for convenience to be included in the continuous component. Possible measures of the

2 This practice is very common in high frequency literature: the first 5-10 minutes of trading are often excluded due
to the erratic price behavior of prices related to the opening procedures.

3 Note that the test of Lee and Mykland (2008) and its variants are designed exactly to this purpose but they require
a smooth evolution of volatility to be consistently applied, thus they are not well suited in presence of volatility jumps.
This is why we prefer to use the sequential CPR method.
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relative contribution of the three components are the following:

ř

t IVt
ř

tRVt `ONt
“ 63.8%

ř

tONt
ř

tRVt `ONt
“ 34.4%

ř

tRV
J

t
ř

tRVt `ONt
“ 1.8%

Figure 3.3 shows the evolution of the overnight and the jump contribution across time, computing

the ratios above on a two months rolling window. The relative weight of the overnight returns seems

non constant in time and ranges from 20% to almost 70%. Interestingly, the overnight contribution

starts to increase at the beginning of the Euro sovereign crisis in late 2009, suggesting that the rise

is possibly induced by volatility spillovers from the European markets which start operating before

the NYSE opening time.

The role of price jumps

The overall contribution of jumps is very small compared to the remaining components. Never-

theless, in the rare cases when jumps occur (approximately once every 8 days) their contribution

to the intraday realized quadratic variation ranges between 6.3% and 90.5% with an average value

of 23.5%. In Chapter 1 we stressed that the role of jumps appears less relevant during periods of

market turmoil when the continuous return variability seems to dominate. In principle one can

argue that the decreasing relative contribution of price jumps is determined by a decline of the

power of the test due to the high level of volatility and to its extreme variability in time. To provide

a more robust evidence, Figure 1.7 reported in Chapter 1 shows the trend of alternative measures

for the relative jump contribution in line with Huang and Tauchen (2005):

RJt “ RVt ´ ˆIVt

RVt
(3.20)

where ˆIVt is a jump robust realized volatility estimator (results are reported for the corrected

threshold bipower, the MinRV and the MedRV ). It is known that the finite sample bias generated

by a rapidly changing volatility leads to underestimate IVt and therefore to overestimate RJt. In

spite of this, the bottom panel in Figure 1.7 shows a clear decreasing value of RJt during the sub-

prime crisis. Concerning instead the inverse dependence between the volatility level and the jump

activity that has been observed and largely discussed in Chapter 1, it is more difficult to draw
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sound conclusions. As a simple example, consider the case of i.i.d. jumps: the power of the tests

is naturally diminishing when the volatility is higher, because disentangling jumps from continuous

diffusion becomes more difficult since the size of a jump becomes on average closer to the size of a

5 minutes continuous return. In this simple example we may observe a pattern of RJt compatible

or at least qualitatively similar to the empirical one.

Andersen et al. (2007a) and Andersen et al. (2010a) point out that daily returns properly standard-

ized by the realized volatility measured at high frequency, may still significantly deviate from nor-

mality. Two main determinants of such deviations are identified: the presence of price jumps and the

contemporaneous leverage effect. From Table 3.1 we see that the skewness of close-to-close returns

reduces marginally when jumps are removed. Analogously, the simultaneous correlation coefficients

between close-to-close returns yt and the change in the total realized variation RVt ´RVt´1 moves

from ´16% to ´15% removing jumps. This suggests that the contemporaneous negative dependence

between price and volatility is the major determinant of distributional asymmetries characterizing

daily returns. Importantly this result is confirmed also under different jump identification methods.

Summary Statistics

mean standard deviation max min skewness kurtosis

RVt 1.23 ¨ 10´4 2.95 ¨ 10´4 5.78 ¨ 10´3 1.25 ¨ 10´5 8.56 111.0

IVt 1.20 ¨ 10´4 2.89 ¨ 10´4 5.78 ¨ 10´3 1.25 ¨ 10´5 8.85 118.7

RJt 2.3% 8.5% 90.5% 0.0% 4.63 25.8

yt 0.022% 1.49% 10.7% ´11.7% ´0.44 9.7

yc
t 0.027% 1.46% 10.7% ´11.7% ´0.38 10.2

Jt ´0.04% 0.6% 1.6% ´2.6% ´1.25 4.08

Nt 0.12 0.39 5 0 4.35 27.4

Table 3.1: Summary statistics of log returns and realized variance. Nt is the number of jumps per
day.
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Figure3.3: In the top panel the relative contribution of overnight returns calculated as the simple
moving average of overnight returns over a two-months rolling window centered on the reference
date, divided by the moving average of the close to close realized variance. The contribution of
jumps in the bottom panel is computed analogously.

3.4.2 Modeling the Return Dynamics

Our objective is to introduce an affine model for close-to-close returns that is able to account for

the stylized facts presented in the previous section. Paralleling many other contributions in the

literature, we assume the independence between the continuous and the discontinuous price fluctu-

ations. This simplifying assumption neglects the dependence of the jump size from the volatility

level found for instance by Andersen et al. (2011) as well as the dependence between volatility

shocks and price jump. Particularly two distinct effects have been documented: the effect of price

jumps on future volatility (see Corsi et al. 2010 and Corsi and Renò 2012) and the simultaneous

occurrence of price and volatility jumps (Duffie et al. 2000, Todorov and Tauchen 2011, Jacod and

Todorov 2010, Corsi and Renò 2012, Bandi and Renò 2016). Concerning the first we have no clear

evidence from our data, as already observed in the supplementary analysis presented in Appendix

1.5. For the second, we experimented some alternative specifications where jumps in the price affect
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the intensity of volatility jump but according to our analysis (not reported here) such effects are

statistically insignificant. This is probably related to the fact that significant volatility shocks occur

during the crisis where we find a small number of price jumps.

A model for price jump

The summary statistics in Table 3.1 is not compatible with a constant intensity Poisson jump

process: in this case the probability to observe 5 or more jumps in a single trading day is of order

10´7. The empirical analysis of Chapter 1 provides evidence that the jump intensity is not constant

in time and is positively affected by the occurrence of jumps (self-excitation). Anyway this effect

has a very short persistence, with an half-life time typically shorter than one hour. At the daily time

scale, the probability to detect multiple jumps is higher then in a Poisson process with constant

intensity. We therefore propose the following specification:

Jt “
Nt
ÿ

i“1

Ki

where Ki is the random jump size and Nt is the random number of jumps occurring on day t. If

jumps are i.i.d., the affine nature of the model is preserved when Nt is a negative binomial random

variable:

Nt „
#

nb pr pλJ q , qJ q if qJ ą 0

P pλJ q if qJ “ 0
(3.21)

where λJ is assumed constant. The negative binomial distribution allows to capture the over-

dispersion that is potentially generated by the rapidly decaying self-excitation observed in Chapter

1. Note that, even if λJ is constant, the jump process can be interpreted as a compound Poisson

with a random intensity. In the literature, evidence in favor of time varying intensity is provided

by Chan and Maheu (2002), Maheu and McCurdy (2004), Christoffersen et al. (2012), Chen and

Poon (2013) and Aı̈t-Sahalia et al. (2015) among others. Importantly, most of this evidence comes

from parametric models estimated on daily data. At that time scale, price jumps are hardly dis-

tinguishable from sudden volatility rises4, thus it is not surprising that the empirical features of

4 According to Christensen et al. (2014) and Bajgrowicz et al. (2016) even at 5 minutes volatility bursts are often
miscalssified as jumps.
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the jump process discovered by this literature are different from our results. Christoffersen et al.

(2015) instead extract jumps from high frequency observations using a method that substantially

differs from our approach measuring the realized jump variation as: RV J
t “ max pRVt ´BPVt, 0q

where BPV is the bipower variation. Unfortunately, in finite samples this quantity can be very

often larger than zero due to the statistical error affecting the realized measures. Since the size of

this error depends on the realized quarticity, it is not surprising that they find a strong evidence

of persistence which is instead not confirmed by our empirical results of Chapter 1. Our model-

ing choice looks a reasonable and parsimonious description of the jump dynamics according to our

empirical findings.

Intraday continuous returns, overnight returns and leverage

To model the continuous return component we are facing two problems: i) estimating the overnight

realized variance which is not directly observable, ii) taking into account the deviation from nor-

mality which still arises after standardizing log-returns due to the presence of the contemporaneous

leverage effects.

Let us start addressing the first problem: a simple and very common approach to take into account

the overnight volatility consists in the application of a scaling factor c ą 1 to the intraday realized

volatility:

Vt “ IVt `ONt “ c IVt

two estimators for c are often considered:

ĉ “
ř

t IVt `ONt
ř

t IVt

and

ĉ “
ř

t pyc
t ´ ȳc

t q2

ř

t IVt

where ȳc “ 1
T

řT
t“1 y

c
t . For an exhaustive review of this topic see for instance Ahoniemi and

Lanne (2013). We propose a slightly more sophisticated approach based on the assumption that the

overnight realized variance is a linear combination of the intraday volatility realized on the previous

124



3.4. MODELING S&P 500 RETURNS AND VOLATILITY

and the next trading day:

Vt “ a pIVt ` b IVt´1q (3.22)

Empirical evidence suggests that this method improves substantially the accuracy over a simple

scaling. Anyway we must recognize that equation 3.22 implies a relative contribution of overnight

returns that is constant in time, in contrast with Figure 3.3. The proposed model leaves therefore

room for further improvements based on a more accurate dynamic specification for overnight returns

that is left for future developments. Good examples in this direction are Tsiakas (2008), proposing

a stochastic volatility model that takes specifically into account overnight returns distinguishing

between different non-trading periods (weeknights, weekends, holidays and long weekends) and

Andersen et al. (2011) using a GARCH model.

Concerning the second point, we observe that discrete time models are generally able to capture the

lagged leverage effect, i.e. the increase in volatility generated at t`h by a negative return occurred

at t. The contemporaneous leverage is instead easily featured in continuous time models when price

and volatility innovations are assumed to be negatively correlated. To feature this important effect

in discrete time, we propose the following specification for the continuous component of close-to-close

returns:

yc
t “ µt ´ Vt

2
` l pE rVt| Ft´1s ´ Vtq `

a

Vtεt (3.23)

where Ft is the information set at the market closing time on day t, µt is the deterministic drift

that will be specified below, ´Vt{2 is the standard convexity adjustment and the parameter l (if

positive) generates the intraday leverage effect by introducing a negative drift whenever the realized

variance on day t is higher than its expected value according to the information available at t ´ 1.

This simple specification produces a negative skewness in the conditional return distribution at the

daily time scale even in absence of price jumps, consistently with the stylized facts presented in

125



3.4. MODELING S&P 500 RETURNS AND VOLATILITY

Section 3.4.1:

E

”

pyc
t ´ E pyc

t qq3
ˇ

ˇ

ˇ
Ft´1

ı

“ E

#

„ˆ

l ` 1

2

˙

pE rVt| Ft´1s ´ Vtq `
a

Vtεt

3
ˇ

ˇ

ˇ

ˇ

ˇ

Ft´1

+

“ ´
ˆ

l ` 1

2

˙3

pVt ´ E rVt| Ft´1sq3 (3.24)

The asymmetry of log-returns at the daily time scale in this model is closely related to the asym-

metry of the volatility distribution. A stochastic volatility model that allows the occurrence of

large volatility shocks, generates also strong asymmetries in the conditional distribution of daily

log-returns. The cost of including the contemporaneous leverage is to introduce an explicit depen-

dence between the return and the volatility dynamics (still unspecified at this stage) through the

conditional expectation E rVt| Ft´1s whose functional form depends on the volatility model. This

cost is mostly paid in computational terms because the parameters of 3.23 can no longer be esti-

mated separately from other volatility parameters like in Majewski et al. (2015) and Alitab et al.

(2016). Notably, if the dynamics of IVt is affine, then also Vt follows an affine process which in turn

implies that E rVt| Ft´1s depends linearly on lags of IVt, guarantying that the full model is the end

affine.

The drift is specified as follows:

µt “ Rt ` ζJλJ ` ζV E rVt| Ft´1s (3.25)

where Rt is the risk free rate5, ζJ is the jump risk premium and ζV is the volatility risk premium.

Differently from Corsi et al. (2013), Majewski et al. (2015) and Alitab et al. (2016), we assume that

the variance risk premium depends only on the information available at the end of the previous

trading day. This modeling choice is consistent with the economic theory because the risk premium

required by investors depends on their expectations that are incorporated in the closing price.

3.4.3 Stochastic Volatility

To complete the model we need to establish a dynamics for the open-to-close realized volatility

IVt. We consider two novel specifications based on the ARGG process introduced in this chapter.

5 As a proxy we consider the Federal Funds Rate publicly available on the FED web site.

126



3.4. MODELING S&P 500 RETURNS AND VOLATILITY

Both of them belong to the class of multivariate Car processes and encompass the LHARG model of

Majewski et al. (2015). Importantly, the affine nature of these models guarantees the full tractability

of option pricing formulas within the general framework of Majewski et al. where risk neutralization

is obtained specifying a stochastic discount from the exponential affine family. In this case, the

moment generating function under the risk neutral measure can be derived in semi-closed form

according to Gourieroux and Monfort (2007). As a benchmark we consider the LHARG model of

Majewski et al. assuming that the conditional distribution of the realized variance is a non-central

gamma:

IVt`1| Ft „ γ̄ pδ, λt`1, θq (3.26)

where

λt`1 “
´

d` βdIVt ` βwIV
pwq

t ` βmIV
pmq

t ` αd`t ` αw`
pwq
t ` αm`

pmq
t

¯

{θ (3.27)

being IV
pwq

t and IV
pmq

t respectively the weekly and the monthly volatility components that charac-

terize the class of Heterogeneous Autoregressive models introduced by Corsi (2009) to mimic long

memory effects:

IV
pmq

t “ 1

4

5
ÿ

i“2

IVt´i IV
pwq

t “ 1

17

22
ÿ

i“6

IVt´i

the term `t “
`

εt ´ γd

?
Vt

˘2
produces the lagged leverage effect in conjunction with `

pwq
t and `pmq

representing respectively the weekly and monthly components:

`
pwq
t “ 1

4

5
ÿ

i“2

´

εt ´ γw

a

Vt

¯2

`
pmq
t “ 1

17

22
ÿ

i“6

´

εt ´ γm

a

Vt

¯2

The Heterogeneous Autoregressive Generalized Gamma Model with Leverage (LHARGG)

We simply extend of the LHARG model using the generalized non-central gamma as a conditional

distribution. The model specification differs from the LHARG only for the choice of the conditional

density

IVt`1| Ft „ ψ pδ, θ, λt`1, qq (3.28)

Importantly in the limit p Ñ 0, this process converges weakly to the LHARG. Interestingly, the gen-

eralized model can be interpreted as an LHARG model with additional idiosyncratic heteroskedastic
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noise affecting the non-centrality parameter

IVt`1| Ft „ γ̄ pδ, λt`1 ` ηt`1, θq

where ηt is distributed as a translated gamma with density

f pη |λq “ γ

ˆ

η ` λ
1 ´ q

q
; λ

1 ´ q

q
,

q

1 ´ q

˙

Including volatility jumps

The empirical results that will be presented in the next section show that the LHARGG, despite its

superior flexibility with respect to the LHARG model, is still unable to feature the observed volatility

dynamics. As already mentioned, a large body of literature suggests that multiple factors are needed

to provide a realistic description of volatility. We therefore consider a model designed to capture

two distinct scales of volatility innovations that characterize different time periods. At each time

the conditional volatility is determined by the contribution of of two components: IVt “ v1,t ` v2,t

where v1,t accounts for volatility fluctuations under tranquil market conditions, while v2,t produces

large volatility shocks characterizing periods of market turmoil. We assume that these components

are conditionally independent and distributed as a generalized non-central gamma and gamma-zero

respectively:

v1,t „ ψ pδ, θ1, λ1,t, q1q (3.29)

v2,t „ ψ p0, θ2, λ2,t, q2q (3.30)

Note that the latter distribution is simply a compound negative binomial with a finite probability

mass at zero. The component v2,t is therefore well designed to feature volatility jumps. The

conditional density of IV is

IVt`1| Ft „ ψ2 p δ, θ1, λ1,t`1, q1, θ2, λ2,t`1, q2q (3.31)
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where ψ2 is the convolution of the two densities

ψ2 px; δ, θ1, λ1, q1, θ2, λ2, q2q “
8
ÿ

n,m“0

nb pn; r1, q1q nb pm; r2, q2q

ż x

0

γ pu; δ ` n, θ1q γ px´ u; m, θ2q du (3.32)

and r1 “ 1 ´ q1

q1

λ1, r2 “ 1 ´ q2

q2

λ2. The heterogeneous autoregressive generalized gamma model

with leverage and volatility jumps (LHARGG-VJ) is specified as:

λ1,t`1 “ 1

θ1

´

d1 ` β1,dIVt ` β1,wIV
pwq

t `

β1,mIV
pmq

t ` α1,d`
pdq
1,t ` α1,w`

pwq
1,t ` α1,m`

pmq
1,t

¯

(3.33)

λ2,t`1 “ d2 ` β2,dIVt ` α2,d`2,t

θ2

(3.34)

where `i,t “
`

εt ´ γi,d

?
Vt

˘2
for i “ 1, 2. Even if the conditional density 3.32 is rather complicated,

the corresponding moment generating function has a simple closed form expression:

ψ̂2 pz; δ, θ1, λ1, q1, θ2, λ2, q2q “ p1 ´ θ1zq´δ

„

1 ´ q1

1 ´ q1{ p1 ´ θ1zq

r1

„

1 ´ q2

1 ´ q2{ p1 ´ θ2zq

r2

z P C (3.35)

the conditional mean and variance of this distribution are:

E pxq “ θ1 pδ ` λ1q ` θ2λ2

V ar pxq “ θ2
1

ˆ

δ ` λ1
2 ´ q1

1 ´ q1

˙

` θ2
2

ˆ

λ2
2 ´ q2

1 ´ q2

˙

The numerical computation of the conditional density is discussed in Appendix C.3.2. The inter-

pretation of expression 3.31 is relatively simple: when m “ 0 the distribution of v2,t degenerates
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into a Dirac delta with the whole probability mass concentrated at zero. This scenario corresponds

to the absence of volatility jumps and occurs with probability p1 ´ q2qr2,t . Volatility jumps are i.i.d.

and non-negative, following a gamma distribution with shape parameter equal to 1 and scale θ2.

The non-centrality parameter λ2 can be interpreted as the average conditional jump intensity. The

effective jump intensity is distributed as a gamma with shape parameter r2,t and scale parameter

q2{ p1 ´ q2q. The probability of having n volatility jumps at time t is a negative binomial with pa-

rameters q2 and r2,t. The persistence of the jump intensity is determined by the HAR structure of

equation 3.33 controlling the component v1. For this reason it is unnecessary to introduce additional

lags into equation 3.34.

3.4.4 Estimation Strategy and Results

Price jump component Under the simplifying assumption that the jump component is indepen-

dent from the rest of the process and that jumps are exactly observed, the corresponding parameters

can be estimates separately. Results on Table 3.2 show that qJ is significantly larger than zero,

rejecting the hypothesis of a Poisson process with constant jump intensity. Some experiments have

been also conducted using alternative dynamic specifications to include an autoregressive compo-

nent in the jump activity but it does not produce statistically significant effects according to our

results (not reported here).

Continuous return component In analogy with Corsi et al. (2013), Majewski et al. (2015) and

Alitab et al. (2016) we assume that the realized volatility IVt and therefore the close-to-close volatil-

ity Vt are observed without error. This assumption remarkably simplifies the statistical inference

due to the absence of latent variables. We must anyway recognize that, even if the close to close

volatility is exactly determined by equation 3.22, the intaday realized volatility is always measured

with an error. To quantify its size note that it has a variance equal to 2 IQt{ pM ´Ntq, where

Nt is number of intervals containing jumps on day t and IQt is the intraday realized quarticity.

From empirical data we find that the standard deviation of the relative error on ˆIV t ranges from

16% to 57% with an average value of 19%. Bormetti et al. (2016) study the LHARG model under

the realistic assumption that the realized volatility is observed with an error and rely on MCMC

techniques to perform the statistical inference, finding an improvement of the pricing performances.
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Remarkably, our LHARGG can be regarded as an LHARG model with noisy non-centrality. This

allows to design approximated filtering algorithms of the kind proposed in Section 3.3.2 which are

applicable in case of not perfectly observed state variables. This development is left for future

research.

Under full information, in the specific case l “ 0 (no contemporaneous leverage), the parameters

of the stochastic volatility process can be in principle estimated separately from the parameters

of equations 3.23 and 3.25 based on two-stage maximum likelihood. In the general framework

instead, the whole bivariate time series of volatility and returns must be jointly considered. The

introduction of the simultaneous leverage effect increases the computational burden related to the

numerical optimization of the likelihood function. It is worthwhile to mention that two parameters

out of five introduced in equations 3.22 and 3.23 can be determined in closed form by solving

explicitly the first order conditions after applying appropriate transformations.

Our estimates for the different model specifications are reported on Table 3.2. To reduce the number

of free parameters, some constraints have been imposed after some experimentation. Namely, since

the parameters d1 and d2 are zero at the optimum we assume d1 “ d2 “ 0; the parameters γ1,d, γ1,w,

γ1,m and γ1,d are constrained to take the same value γ because heterogeneous leverage provides poor

improvements to the likelihood. The overdispersion parameters q1 and q2 of the LHARGG-VJ model

take very similar values at the optimum and their difference is statistically insignificant, thus we

impose q1 “ q2 “ q. β1,d, β1,w, β1,m and β2,d are very close to the zero lower bound at the maximum

and are found to be statistically insignificant. This is not surprising for at least a couple of reasons.

First each leverage terms `t contain a volatility component equal to γ2Vt “ γ2 paRVt ` a bRVt´1q

and the constraints imposed to prevent the non-centrality parameter from going negative imply that

a higher leverage leads also to more volatility persistence6. Second, when the volatility is high, the

autoregressive term dominates: `t » γ2Vt. The importance of leverage to describe our data is easily

arguable looking at Figure 3.2 where the volatility rise in 2008 is accompanied by a large decline

of the index. Thus it is not surprising that the size of γ necessary to capture the leverage effect is

also sufficiently large to account for the volatility persistence. In order to facilitate the likelihood

6 Majewski et al. (2015) propose a specification of the LHARG named ZM-LHARG where the non-negativity con-
straint can be violated.
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optimization and its numerical differentiation, we impose the constraints β1,d “ β1,w “ β1,m “ 0.

Our estimates show a high volatility and leverage persistence reflected by the significance of the

monthly coefficient αm across all model specifications. Concerning the return dynamics, we note

that the simultaneous leverage is extremely relevant: the parameter l is always positive, consistently

with the negative skewness observed on daily returns (see Table 3.1). The estimates of the market

price of variance risk suggest that the positive relation between lagged volatility and the future

returns is not very strong in our period of analysis.

The coefficients a and b of equation 3.22 are both positive and significant, estimates are very similar

under the different volatility specifications and imply a contribution of around 38% of the overnight

to the total realized variation, very close to the non-parametric estimates reported in Section 3.4.1.

The overnight volatility is approximated by a combination of the intraday volatility realized on

the previous and on the following trading day with weights around 60% and 40% respectively.

Anyway we recognize that our description of overnight volatility can be probably improved taking

into account a time varying relative contribution to the total realized variance that could be for

instance obtained with a supplementary GARCH model.

Moving from the LHARG to the LHARGG, the log-likelihood increases remarkably thanks to the

inclusion of a single additional parameter p controlling the over-dispersion of the conditional volatil-

ity distribution. This feature seems extremely relevant to describe the volatility dynamics. The

crucial role of volatility jumps is primarily reflected by the high significance level of the parameter

α2,d for the LHARGG-VJ model. Note that the effect of volatility jump is highly persistent due to

HAR structure of the component v1. Any attempt to introduce additional autoregressive terms in

v2 does not produce relevant improvements of the fit. The over-dispersion parameter p remains sig-

nificantly positive, causing a strong rejection of the non-central gamma as conditional distribution

of the two volatility components.

Figures 3.4 and 3.5 compare the expected and the realized volatility for each model specification. Re-

markably the realized volatility falls very often outside the 99.9% confidence bands for the LHARG

and the LHARGG which are unable to capture the volatility peaks observed during the sub-prime

crisis. The LHARGG-VJ model instead admits large volatility shocks generated by volatility jumps,

whose estimated size is about 35 times larger than the scale of ordinary volatility fluctuations. All
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the models fail to capture the sudden volatility drops observed within the same period. This prob-

lem is probably due to the long persistence generated by the HAR structure7 Figure 3.6 shows the

average contribution of the two volatility components: as expected the role of volatility jumps is

particularly relevant during the sub-prime crisis.

To check our assumptions on the dynamic specification of returns, the distribution of residuals is

compared on Figure 3.8 with a standard normal. The deviations from normality are not very strong,

as confirmed also by the outcomes of the normality tests reported on Table 3.3. Importantly, the

normality of residuals is not rejected at the 1% confidence level.

To test the alternative dynamic specifications for stochastic volatility, we construct the series Ut “

F pIVt| Ftq where F pIVt| Ftq is the conditional cdf of the continuous intraday volatility. Under the

assumption that the conditional density is correctly specified, the transformed values are uniformly

distributed. This property can be used to develop a formal specification test, for example using the

Kolmogorv-Smirnov statistics. The empirical distributions of Ut under the alternative specifications

are shown on Figure 3.7, where the deviation from the uniform is quite clear for the LHARG model

and confirmed also by a p-value of the test which is very close to zero. The LHARGG model seems

to produce a better fit but still not compatible with the empirical data according to our test which

rejects the null at the 0.1% confidence level. In the LHARGG-VJ model the inclusion of volatility

jumps component together with the over-dispersion associated to the generalized non-central gamma

distribution, seem crucial to capture the empirical features of the realized volatility: our test returns

a p-value of 5%. Figure 3.9 compares a Monte Carlo simulation of three volatility processes with the

empirical data. The LHARGG-VJ specification produces a pattern that appears much more similar

to the observed dynamics. This results confirm the necessity to include at least two stochastic

factors for an acceptable description of the volatility evolution. Nevertheless, we note that volatility

jumps seem to occur more often in the simulated process then in reality and at the same time the

peaks in volatility are smaller compared to the levels reached in 2008. From Figure 3.10, where

the simulated unconditional density of continuous realized volatility and close to close continuous

returns are compared with the empirical counterparts, we observe remarkable improvements of the

7 Perhaps it could be overcome assuming the full independence between the two components. In this case anyway
the inference becomes more complicated due to the presence of latent state variables.
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fit moving from the LHARG to the LHARGG an then to the LHARGG-VJ specification. The

gain is particularly relevant in the tails of the distributions. In this regard, the transition from the

ARG process to its generalized version clearly plays a crucial role. Nevertheless, non of the models

analyzed in this chapter is able to fully capture the empirical features of volatility during the period

covered by our analysis. Providing an accurate statistical description of the huge volatility shocks

observed during the sub-prime crisis through an affine model remains a challenging problem. While

the main limitation of the LHARG and the LHARGG is the impossibility to account for sudden

volatility shocks, the LHARGG-VJ model is unable to capture the small values of realized volatility

observed during the sub-prime crisis very close in time to high volatility peaks. The problem is that

in this model jumps in volatility affect also the ordinary component v1 which takes a long time to

revert to low levels, due to the persistence generated by the HAR structure. A possible solutions to

this is to abandon the assumption of full information and to introduce some latent state variables,

either assuming the full independence between the two volatility components or taking into account

the measurement that affects the realized volatility.
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Price jumps
parameter estimate

λJ 1.17 ¨ 10´1˚˚˚

p9.23 ¨ 10´3q
qJ 1.97 ¨ 10´1˚˚˚

p4.17 ¨ 10´2q
logL ´625.1

˚˚˚p ă 0.001˚˚p ă 0.01˚p ă 0.05

Stochastic volatility

parameter LHARG LHARGG LHARGG-VJ

θ1 2.15 ¨ 10´5˚˚˚ 3.23 ¨ 10´6˚˚˚ 2.22 ¨ 10´6˚˚˚

p3.93 ¨ 10´7q p2.61 ¨ 10´7q p2.27 ¨ 10´7q
δ 1.03˚˚˚ 5.61˚˚˚ 5.82˚˚˚

p8.70 ¨ 10´2q p3.65 ¨ 10´1q p4.64 ¨ 10´1q
α1,d 1.07 ¨ 10´6˚˚˚ 9.75 ¨ 10´7˚˚˚ 6.55 ¨ 10´7˚˚˚

p2.02 ¨ 10´7q p2.34 ¨ 10´7q p1.43 ¨ 10´7q
α1,w 2.24 ¨ 10´7˚˚˚ 2.37 ¨ 10´7˚˚˚ 2.06 ¨ 10´7˚˚˚

p5.02 ¨ 10´8q p6.97 ¨ 10´8q p5.41 ¨ 10´8q
α1,m 9.31 ¨ 10´8˚˚˚ 1.32 ¨ 10´7˚˚˚ 2.24 ¨ 10´7˚˚˚

p2.29 ¨ 10´8q p3.55 ¨ 10´8q p4.51 ¨ 10´8q
γ ´5.83 ¨ 102˚˚˚ ´6.10 ¨ 102˚˚˚ ´6.02 ¨ 102˚˚˚

`

5.58 ¨ 101
˘ `

7.63 ¨ 101
˘ `

6.67 ¨ 101
˘

a 1.35˚˚˚ 1.37˚˚˚ 1.39˚˚˚

p5.75 ¨ 10´2q p6.62 ¨ 10´2q p6.81 ¨ 10´2q
b 2.59 ¨ 10´1˚˚˚ 2.45 ¨ 10´1˚˚˚ 2.24 ¨ 10´1˚˚˚

`

3.21 ¨ 10´2
˘ `

4.20 ¨ 10´2
˘ `

4.19 ¨ 10´2
˘

ζJ ´4.52 ¨ 10´2 6.55 ¨ 10´4 4.45 ¨ 10´3˚
`

2.74 ¨ 10´3
˘ `

2.27 ¨ 10´3
˘ `

1.93 ¨ 10´3
˘

ζV 4.25 1.31 ´0.97 ¨ 10´1

p2.45q p2.45q p3.43q
l 5.01 ¨ 101˚˚˚ 4.98 ¨ 101˚˚˚ 4.87 ¨ 101˚˚˚

p4.69q p4.79q p4.80q
q ´ 9.52 ¨ 10´1˚˚˚ 8.94 ¨ 10´1˚˚˚

´
`

4.30 ¨ 10´3
˘ `

1.36 ¨ 10´3
˘

θ2{θ1 ´ ´ 3.48 ¨ 101˚˚˚

´ ´ p7.76q
α2,d ´ ´ 9.88 ¨ 10´8˚˚˚

´ ´ p1.36 ¨ 10´8q
logL 19, 643.23 19, 979.67 20, 180.19

Table 3.2: Estimated parameters for the different model specifications.

Normality test on εt LHARG LHARGG LHARGVJ

Shapiro-Wilk 0.03 0.03 0.03

Kolmogorov-Smirnov 0.13 0.16 0.08

Ljung-Box test εt Ljung-Box test ε2t
lags LHARG LHARGG LHARGG-VJ LHARG LHARGG LHARGG-VJ

5 0.201 0.112 0.224 0.097 0.100 0.088

10 0.449 0.311 0.130 0.366 0.350 0.304

15 0.264 0.182 0.152 0.071 0.060 0.049

20 0.420 0.324 0.155 0.051 0.044 0.038

Table 3.3: Tests on standardized close-to-close returns.

135



3.4. MODELING S&P 500 RETURNS AND VOLATILITY

llllllllllllllllllllllllllllll
lllll
ll
lll
ll
ll
l
l

l
l
l
ll
lll

l
l

l
l
l

llllllllll
lllllllllllll

ll
ll
ll
l

l
ll

ll
l

ll

l
ll
ll

l

l
l
ll

l
l
llllllllllllll

llll
l
lll

l

l

l
lll
lllllllllllllllllllllll

llll
l
lllllllllllllllllllllll

ll
lllllllllllllll

ll
l
ll
lll
l
l

l
l
ll
lll
lllllllllllllllllllllllllllll

lll
l
ll
l
l

l

l

l

l

l

l

l
lll

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l
l

l

ll

l
l

l

l

l

l
ll

l

l
l
l
l

l

l
lll
lll

ll
lllll
l
l
lll

ll

l

l

l

l

ll

l
l
ll
l
lll
l
ll
ll

l
l

ll
l

l
ll

l

l
l

l

l

l

l

l

l
ll
l
l
ll

l

l
lll

l
l

lll
l
llllllllllll

l
llllll
l
lll
lll
ll
lll
l
llll
lll
lllll
l
lllllll
l
ll
lllllllllll

l
llllllllll

llllllllllllllllllllllllllll
lllllllllllllll

llllllllllllllllllll
llll
ll
l

ll
llllllllllllllllllllll

l
llllllllllllllllllllllllllllll

llllll
l
lll
l

l

l
l
lllllllllllllllllllllllllllllllllllllllllllll

l
llllll
lllll
ll

l
l

l
lll
lll
l
ll

l

l
l
ll
l
ll
ll
l
lllllllll

l
llll
l
l

l
ll
llllll
lllllllllll

l
lllllllllllll

l
lllll
l
l
l
llllllllllllllllllll

lllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllll
lll
llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllll
lllllllll

l
lllllllllllll

lllllllllll
lll
l

l

l

l

l

l

l
l
l

l
l

lll
ll

l

ll
l
lll
ll
l
ll
llll
l

l
ll
ll
ll

l

l

l
ll
lll
lll
l
llll
lllll

l
lllll
ll
lll
l
l
lllllllllllll

l
ll
ll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

l
lllllllllllll

lllllllllllllllllllllllll
l
llllllllllllllllllllllllll

llllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllll

lllllll
l
llllllllllllllllllllllllllll

l
llllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllll
l
llllllllllllllllllllllllll

lllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllll

l
llllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllll

lllll
llllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllll

2008 2009 2010 2011 2012 2013 2014

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

LHARG

l observed IV
predicted IV

99.9% confidence band

llllllllllllllllllllllllllllll
lllll
ll
lll
ll
ll
l
l

l
l
l
ll
lll

l
l

l
l
l

llllllllll
lllllllllllll

ll
ll
ll
l

l
ll

ll
l

ll

l
ll
ll

l

l
l
ll

l
l
llllllllllllll

llll
l
lll

l

l

l
lll
lllllllllllllllllllllll

llll
l
lllllllllllllllllllllll

ll
lllllllllllllll

ll
l
ll
lll
l
l

l
l
ll
lll
lllllllllllllllllllllllllllll

lll
l
ll
l
l

l

l

l

l

l

l

l
lll

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l
l

l

ll

l
l

l

l

l

l
ll

l

l
l
l
l

l

l
lll
lll

ll
lllll
l
l
lll

ll

l

l

l

l

ll

l
l
ll
l
lll
l
ll
ll

l
l

ll
l

l
ll

l

l
l

l

l

l

l

l

l
ll
l
l
ll

l

l
lll

l
l

lll
l
llllllllllll

l
llllll
l
lll
lll
ll
lll
l
llll
lll
lllll
l
lllllll
l
ll
lllllllllll

l
llllllllll

llllllllllllllllllllllllllll
lllllllllllllll

llllllllllllllllllll
llll
ll
l

ll
llllllllllllllllllllll

l
llllllllllllllllllllllllllllll

llllll
l
lll
l

l

l
l
lllllllllllllllllllllllllllllllllllllllllllll

l
llllll
lllll
ll

l
l

l
lll
lll
l
ll

l

l
l
ll
l
ll
ll
l
lllllllll

l
llll
l
l

l
ll
llllll
lllllllllll

l
lllllllllllll

l
lllll
l
l
l
llllllllllllllllllll

lllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllll
lll
llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllll
lllllllll

l
lllllllllllll

lllllllllll
lll
l

l

l

l

l

l

l
l
l

l
l

lll
ll

l

ll
l
lll
ll
l
ll
llll
l

l
ll
ll
ll

l

l

l
ll
lll
lll
l
llll
lllll

l
lllll
ll
lll
l
l
lllllllllllll

l
ll
ll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

l
lllllllllllll

lllllllllllllllllllllllll
l
llllllllllllllllllllllllll

llllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllll

lllllll
l
llllllllllllllllllllllllllll

l
llllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllll
l
llllllllllllllllllllllllll

lllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllll

l
llllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllll

lllll
llllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllll

2008 2009 2010 2011 2012 2013 2014

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

LHARGG

l observed IV
predicted IV

99.9% confidence band

llllllllllllllllllllllllllllllll
lll
ll
llll
lllll
l
lllllll
l
l
l
l
l
llllllllll

lllllllllllll
lll
lll
l
l
ll
ll
l

ll

lll
ll

l

llll
l
llllllllllllllll

lll
l
lll
l

l

l
llllllllllllllllllllllllllllll

llllllllllllllllllllllllll
lllllllllllllllll

llllll
l
l

l
l
llllllllllllllllllllllllllllllllllll

l
l
ll
l
l

l

l
l

l

l

l

l
lll

l

lll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

ll

l
l
ll
l

l

l

l

ll

l

ll

l
l

l

l

l

l
ll

l

l
l
l
l

l

l
lll
lll

ll
lllll
lll
l
l
ll

l
l

l
l

ll

l
l
ll
llll
l
ll
ll
l
l
ll
l
l
ll
l
l
l
l
l

l
l

l

l
ll
llll

l

l
lll

ll
lll
l
lllllllllllll

lllllllllll
lllllllll

lllll
l
lllll
llllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllll
llllllllllllllll

llllllllllllllllllllll
llll
ll
llllllllllllllllllllll

lllllllllllllllllllllllllllllll
lllllllllll

l
l
llllllllllllllllllllllllllllllllllllllllllllll

l
llllll
llllll
l

ll

l
lll
lll
l
ll

l
l
l
lllllll

l
llllllllll

llll
l
l
l
lllllllllllllllllllllllllllllllll

llllllll
l
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllll
lll
l

l

l

l

l

l
l
l
l

ll
lll
ll

l
ll
l
lll
lllllllll

l
l
llll
ll
l
l

l
ll
llllll
l
lllll
llll
l
lllllllllll

l
lllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllll

lllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

2008 2009 2010 2011 2012 2013 2014

0
.0

0
0

0
.0

0
4

0
.0

0
8

LHARGG−VJ

l observed IV
predicted IV

99.9% confidence band

Figure3.4: The figures compare the variance predicted by the each model with the realized
quadratic variation. The 99.9% confidence bands at each time t are calculated based to the condi-
tional distribution of RVt with respect to the information set at t´ 1.
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Figure3.5: Variance predicted by each model compared with the realized quadratic variation
during the sub-prime crisis. The 99.9% confidence bands at each time t are calculated based on the
conditional distribution of RVt w.r.t. the information set at t´ 1.
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Figure3.6: Contribution from the different volatility components.
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Figure3.7: The figure shows the empirical distribution of Ut for the alternative specifications.

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

LHARG

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

LHARGG

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

LHARGG−VJ

Distribution of standardized returns

Figure3.8: Distribution of residuals εt computed from standardized close-to-close log returns. The
difference between alternative specifications is due only to the conditional expectation E rVt| Ft´1s
which determines the drift of daily log returns in equation 3.23.
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Figure3.10: Unconditional distribution of the continuous intraday realized volatility (left) and of
close-to-close log returns (right).

3.5 Concluding Remarks

We introduced a new stochastic process generalizing the autoregressive gamma model of Gourieroux

and Jasiak (2006) and preserving the same affine properties. The empirical application to stochastic

volatility provides clear evidence on its superior flexibility that allows to better fit the dispersion

of the data. Consistently with many previous studies, we find confirmation on the need of multiple

volatility factors to provide an acceptable description of the empirical data. According to our model
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specification, one component produces ordinary volatility fluctuations characterizing tranquil mar-

ket conditions while the second component is responsible for large volatility shocks with a persistent

effect characterizing periods of market turmoil. At the same time we find that price jumps provide

on average a small contribution to the total price variation becoming more relevant during periods

of low volatility. Moreover, empirical evidence suggests that price jumps are unable to explain the

distributional asymmetry of returns observed at the daily time scale, which is instead adequately

captured by a contemporaneous leverage effect that we introduce in our affine specifications through

a stochastic drift component.

The results of this chapter suggest several directions for future research. Applications of the ARGG

to option pricing are surely of primary interest: the over-dispersion introduced in conditional volatil-

ity and the contemporaneous leverage have important consequences on the tail decay and on the

asymmetry of the return distribution. The implications can be extremely relevant for short term

option prices that are highly sensitive to short-scale distributional asymmetries, sudden volatility

shocks and price jumps. In this regard we remark that our empirical findings induce to reconsider

the role of price jumps as a determinant of price variability while a prominent role during periods of

stress seems to be played jumps in volatility, consistently also with the empirical evidence reported

in Chapter 1.

Finally, in this chapter we have mentioned several enhancements to the proposed models to further

improve the fit under the physical measure. The main limitation to the LHARGG-VJ specification

is probably related to the requirement of using only fully observed state variables. This imposes

severe restrictions to the architecture of the model, probably compromising the flexibility of the

autocorrelation structure of the two volatility components. Considering the possibility that some

state variables are not observed may allows to improve significantly the performances of this. A

second aspect that it is worthwhile to mention is the importance of overnight returns which provide

a relevant contribution to the total price variation that is apparently non constant in time. This

calls for a more sophisticated description, based for instance on GARCH models like in Andersen

et al. (2011), or on stochastic volatility models like in Tsiakas (2008).
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Appendix C

Technical Details of Chapter 3

C.1 Properties of the Generalized Non-Central Gamma Distribution

C.1.1 Proof of Proposition 10

Consider the Fourier inversion integral:

ψ pxq “ 1

2πı

ż z0`ı8

z0´ı8
ψ̂ pzq e´zxdz (C.1)

where Re pz0q ă p1 ´ qq {θ. For simplicity we assume θ “ 1 from now on. For x large the integral

can be approximated using the saddle point method. Let

g pzq “ log ψ̂ pzq “ pr ´ δq log p1 ´ zq ´ r log p1 ´ q ´ zq ` r log p1 ´ qq

the saddle point z˚ is the solution of the first order condition g1 pz˚q “ x with g2 pz˚q ą 0. We have

g1 pzq “ 1

1 ´ z

„

δ ` λ
1 ´ q

1 ´ z ´ q



g2 pzq “ 1

p1 ´ zq2

„

δ ` λ p1 ´ qq 2 p1 ´ qq ´ q

p1 ´ z ´ qq2



note that the second order derivative of g is always positive for z ă 1 ´ q, thus

z˚ pxq “ 1 ´ 1

2

»

–q ` δ

x
`

d

ˆ

q ´ δ

x

˙2

` 4λ
1 ´ q

x

fi

fl ă 1 ´ q @x ą 0
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choosing z0 “ z˚ in C.1 we obtain

ψ pxq “ egpz˚q´z˚x

2π

ż 8

´8
e´g2pz˚qs2{2 ` h px, sq ds

“ egpz˚q´z˚x

a

2πg2 pz˚q

"

1 `
ż 8

´8
h
´

x, u
a

2{g2 pz˚q
¯

du

*

(C.2)

where h ps, xq “ exp rg pz˚ ` ısq ´ g pz˚q ´ ısxs ´ exp
“

´g2 pz˚q s2{2
‰

. The first term is the saddle

point approximation, now we prove that for large values of x, the integral in C.2 converges to a

constant. Consider q ą 0, for x large we have

z˚ » 1 ´ q ´ r{x

g pz˚q » r log x

g2 pz˚q » x2{r

where r “ λ p1 ´ qq {q

h
´

x, u
a

2{g2 pz˚q
¯

“
´

1 ´ ıu
a

2{r
¯´r

e´ıu
?

2r ´ e´u2 `O
`

x´1
˘

as x Ñ 8, all the dependence on x is contained in the in the pre-factor of C.2 thus we conclude

ψ pxq 9xr´1e´xp1´qq. In the general case θ ‰ 1, ψ pxq 9 px{θqr´1 e´xp1´qq{θ which proves the result.

Sum of generalized non-central gamma random variables It is well known that the sum of two

negative binomial random variables with intensities r1 and r2 and the same probability of success

p is again a negative binomial with shape r1 ` r2. This property is naturally inherited also by the

generalized non-central gamma.

Proposition 13. The sum of the the random variables X1 „ ψ pδ1, θ, λ1, qq and X2 „ ψ pδ2, θ, λ2, qq

with θ ą 0 and λ1, λ2, q, δ1, δ2 ě 0 is distributed as a generalized non-central gamma with parameters

δ “ δ1 ` δ2, θ, λ “ λ1 ` λ2, q.
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Proof: The m.g.f. of Y “ X1 `X2 is

E

”

ezpX1`X2q
ı

“ p1 ´ θzq´pδ1`δ2q
ˆ

1 ´ q

1 ´ q

θz

1 ´ θz

˙´rpλ1`λ2,qq

Proposition 14. The generalized non-central gamma distribution is infinitely divisible.

Proof: For any n P N such that n ą 0, a generalized non-central gamma random variable Y

with parameters δ, θ, λ, q can be obtained as the sum of n i.i.d. random variables extracted from a

distribution of the same type with parameters δ, θ, λ{n, q.

Changing the scale of a gamma random variable The following corollary states that the sum of

a gamma random variable and a generalized non-central gamma with appropriate parameters is dis-

tributed as a gamma with a larger scale. Since when δ “ r pλ, qq the generalized non-central gamma

reduces to the gamma distribution with shape parameter r pλ, qq and scale parameter θ{ p1 ´ qq,

this result can be regarded as a corollary of Proposition 13.

Corollary 15. The variable Y “ X1 ` X2 such that X1 „ γ pδ1, θ1q and X2 „ ψ pδ2, θ1, λ, qq with

λ “ q

1 ´ q
pδ1 ` δ2q, is distributed as gamma with parameters δ “ δ1 ` δ2 and θ “ θ1

1 ´ q
.

Proof: The moment generating function of Y is:

E
“

ezY
‰

“ p1 ´ θ1zq´pδ1`δ2q
„

1 ´ q

1 ´ q{ p1 ´ θ1zq

δ1`δ2

“
ˆ

1 ´ θ1

1 ´ q
z

˙´pδ1`δ2q

Mixing generalized non-central gamma random variables The next property states that taking

an appropriate negative binomial mix of generalized non-central gamma distributions, all charac-

terized by a certain overdispersion parameter q P p0, 1q, it is possible to obtain another distribution

of the same family with an associate parameter q1 such that 0 ă q ď q1 ă 1.

Proposition 16. Consider the negative binomial random variable N with parameters r, qmix

and a non negative random variable X such that its distribution conditionally on N is a gener-
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alized non-central gamma with parameters δ, λN “ pr `Nq q{ p1 ´ qq, q, θ. Then the uncondi-

tional distribution of X is still a generalized non-central gamma with parameters δ, λ, q1, θ where

q1 “ q

p` p1 ´ qq p1 ´ qmixq

Proof: Assume θ “ 1 without loss of generality. The unconditional moment generating function

of X is

E
“

E
“

ez X
ˇ

ˇN
‰‰

“ E

«

p1 ´ zq´δ

ˆ

1 ´ q

1 ´ q

z

1 ´ z

˙´r´N
ff

“ p1 ´ zq´δ

ˆ

1 ´ q

1 ´ q

z

1 ´ z

˙´r

»

—

–

1 ´ qmix

1 ´ qmix

´

1 ´ q
1´q

z
1´z

¯´1

fi

ffi

fl

r

“ p1 ´ zq´δ

„

1 ´ q

p1 ´ qq p1 ´ qmixq
z

1 ´ z

´r

“ p1 ´ zq´δ

ˆ

1 ´ q1

1 ´ q1
z

1 ´ z

˙´r

which coincides with the moment generating function of a generalized non-central gamma with

over-dispersion parameter q1 “ q

q ` p1 ´ qq p1 ´ qmixq .

C.2 Properties of the Autoregressive Generalized Gamma Process

C.2.1 Proof of Proposition 11

Consider q P p0, 1q and z ď 0, note that

a1
i pziq “ θβi

1 ´ q

q

ˆ

1

1 ´ q ´ θzi
´ 1

1 ´ θzi

˙

ď 0

a2
i pziq “ θβi

1 ´ q

q

”

p1 ´ q ´ θziq´2 ´ p1 ´ θziq´2
ı

ě 0

For zi ď 0 we have ai p0q zi ` zi ă Ai pzq ď 0 for i “ 1, . . . , q ´ 1 and Ap pzq ď ´a1
p p0q zp where
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a1
i p0q “ θβi. Now it is sufficient to prove that lim

nÑ8 Φn “ 0 where

Φ “

¨

˚

˚

˚

˚

˚

˝

θβ1 θβ2 . . . θβp´1 θβp

1 0 . . . 0 0
0 1 0 0 0
...

...
. . .

...
...

0 0 . . . 1 0

˛

‹

‹

‹

‹

‹

‚

1

the condition is satisfied iff |Φ| ă 1 which in turn requires the polynomial 1 ´ θβ1x´ . . .´ θβpx
p to

have all the roots located within the unit circle. This is guaranteed when the condition θ
q
ÿ

i“1

βi ă 1

holds. Note that Φ “ BA

Bz
1

ˇ

ˇ

ˇ

z“0

, while ai and b (equations 3.14, 3.15) satisfy conditions A.1 and A.2

in Darolles et al. (2006), thus under the same condition the process is also geometrically ergodic.

C.2.2 Proof of Proposition 12

Given that the ARGG process belongs to the Car class, the mean and the variance conditionally

on any lagged realization of Y are linear functions of the state variable

E pYt|Yt´hq “ µ0
h ` µ1

hYt´h (C.3)

V ar pYt|Yt´hq “ υ0
h ` υ1

h Yt´h (C.4)

where

µ0
1 “ θ pδ ` dq

µ1
1 “ ρ

υ0
1 “ θ2

ˆ

δ ` 2 ´ q

1 ´ q
d

˙

υ1
1 “ θρ

2 ´ q

1 ´ q

the relations:

E pYt|Yt´hq “ E rE pYt|Yt´h`1q|Yt´hs

V ar pYt|Yt´hq “ E rV ar pYt|Yt´h`1q|Yt´hs ` V ar rE pYt|Yt´h`1q|Yt´hs
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FUNCTION

lead to the following recursive formulas

µ0
h “ µ0

h´1 ` µ1
h´1µ

0
1

µ1
h “ µ1

h´1µ
1
1

υ0
h “ υ0

h´1 ` µ0
1υ

1
h´1 `

`

µ1
h´1

˘2
υ0

1

υ1
h “ υ1

h´1µ
1
1 `

`

µ1
h´1

˘2
υ1

1

The solutions are

µ0
h “ µ0

1

1 ´
`

µ1
1

˘h

1 ´ µ1
1

µ1
h “

`

µ1
1

˘h

υ0
h “ µ1

0υ
1
1

µ1
1

`

1 ´ µ1
1

˘

«

1 ´
`

µ1
1

˘h

1 ´ µ1
1

´ 1 ´
`

µ1
1

˘2h

1 ´
`

µ1
1

˘2

ff

` υ0
1

1 ´
`

µ1
1

˘2h

1 ´
`

µ1
1

˘2

υ1
h “ υ1

1

`

µ1
1

˘h´1 1 ´
`

µ1
1

˘h

1 ´ µ1
1

substituting we find expressions 3.18 and 3.19. The unconditional mean and variance are obtained

taking the limit h Ñ 8.

C.3 Computation of the Generalized Non-central Gamma Density Function

In this appendix we describe different computational methods for the calculation of the non-central

generalized gamma density with an adequate level of accuracy. We start with the simplest case of

a single component, then we move to the more general problem of two independent components

according to definitions 3.32 and 3.35.

C.3.1 Mixture of Gamma Distribution

A simple numerical approach to compute the generalized non-central chi squared density consists

in the explicit summation of the series 3.6. Two problems must be addressed: i) determining the

appropriate truncation to achieve the desired level of accuracy, ii) managing the case p Ñ 0 when

the negative binomial converges to the Poisson distribution. The following proposition allows to
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FUNCTION

address the first problem:

Proposition 17. Let tAnun such that An P R, An ą 0 @n P N and for n ą N , An`1{An ď C{n .

Then

8
ÿ

n“N`1

An ď ANe
CC

N ` 1

Proof From the assumptions, the following inequality holds:

8
ÿ

n“N`1

An ď ANN !C´N
8
ÿ

n“N`1

Cn

n!

the series on the RHS is the reminder of the Taylor series expansion for the function eC around the

origin truncated at the N -th term. Thus from the Lagrange’s reminder formula, for some x P r0, Cs

we have

8
ÿ

n“N`1

Cn

n!
“ ex xN`1

pN ` 1q! ď eC CN`1

pN ` 1q!

which leads to the result.

Now assume for simplicity θ “ 1. For k ě 0 we have

nb pk ` 1; r, qq
nb pk; r, pq “ q

k ` r pλ, qq
k ` 1

“ q
k

k ` 1
` λ p1 ´ qq

k ` 1
(C.5)

where we used the relation r pλq “ λ p1 ´ qq {q. Note that expression C.5 is well behaved for small

values of q. The first term in the summation, for small values of q, can be approximated as follows:

nb pk “ 0; r, qq “ p1 ´ qqλp1´qq{q

“ exp

"

λ
1 ´ q

q
log p1 ´ qq

*

“ exp

"

´λ p1 ´ qq
ˆ

1 ´ q

2
` q2

3

˙

`O
`

q4
˘

*
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To determine the appropriate truncation of the sum, let Ak denote the k-th term in the summation:

Ak “ nb pk; r, qq e
´xxδ`k´1

Γ pδ ` kq

“ p1 ´ qqr

Γ pδq e´xxδ´1 pxqqk

k!

r pr ` 1q . . . pr ` k ´ 1q
δ pδ ` 1q . . . pδ ` k ´ 1q (C.6)

we have

Ak`1

Ak

“
„

q
k

k ` 1
` λ p1 ´ qq

2 pk ` 1q



x

δ ` k
ď cN x

rδs ` k
(C.7)

where tδu is the integer part of δ and

cN “
„

q ` λ p1 ´ qq
N ` 1



Then 17 applies and we have

8
ÿ

k“N`1

Ak ď AN ex cNx cN

tδu `N ` 1

note that for N Ñ 8, cN Ñ q, thus the convergence is much faster for the non-central gamma

characterized by q “ 0. This explicit summation is efficient only for small values of x. In other

cases the Fourier inversion can be more efficient (see Appendix C.3.2).

C.3.2 Computation of the Generalized Non-central Gamma Density with Two Com-
ponents

Here we address the general problem of finding fast and accurate computational methods to calculate

the non-central generalized gamma density in the mots difficult case when the distribution includes

two independent components with a different scale. We consider three alternative methods: in

Appendix C.3.2 we derive a gamma mixture representation that allows an expansion similar to

Appendix C.3.1, in Appendix C.3.2 we elaborate a different expansion starting from equation 3.32

and in Appendix C.3.2 we propose an algorithm for Fourier inversion.
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Mixture of gamma distributions

Let r “ λ p1 ´ qq {q and u “ p1 ´ zq´1, we have

„

1 ´ q

1 ´ q{ p1 ´ θzq

r

“ p1 ´ qqr

„

1 ` u p1 ´ θq {θ
1 ` u p1 ´ q ´ θq {θ

r

From 3.35, assuming for simplicity θ1 “ 1, the moment generating function of the generalized

non-central gamma with two components can be written as:

ψ̂2 pz; δ, θ1, λ1, q1, θ2, λ2, q2q “ p1 ´ zq´δ p1 ´ q1qr1 p1 ´ q1qr1

ˆ

1 ´ q1

1 ´ z

˙´r1

„

1 ´ θ2 ´ 1

θ2 p1 ´ zq

r2
„

1 ´ θ2 ´ 1 ` q2

θ2 p1 ´ zq

´r2

z P C (C.8)

For 1 ´ z ą max tq1, pθ2 ´ 1 ` p2q {θ2u this expression can be expanded as

ψ̂2 pz; δ, θ1, λ1, q1, θ2, λ2, q2q “
8
ÿ

k“0

ak p1 ´ zq´δ´k

thus the resulting density can be expanded as mixture of gamma distributions with unitary scale

ψ2 px; δ, θ1, λ1, q1, θ2, λ2, q2q “
8
ÿ

k“0

akγ px; δ ` k, 1q (C.9)

the coefficients can be computed numerically by inversion of the power transform

Q puq “ p1 ´ q1qr1 p1 ´ q2qr2 p1 ´ q1uq´r1

ˆ

1 ´ θ2 ´ 1

θ2

u

˙r2
ˆ

1 ´ θ2 ´ 1 ` q2

θ2

u

˙´r2
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the first three terms of the expansion are

a0 “ p1 ´ q1qr1 p1 ´ q2qr2

a1 “ a0

„

λ1 p1 ´ q1q ` λ2
1 ´ q2

θ2



a2 “ a0

2

"

λ1 p1 ´ q1q rλ1 p1 ´ q1q ` q1s `

2λ2
1 ´ q2

θ2

rλ1 p1 ´ q1q ` 1s ` λ2 p1 ´ q2q λ2 p1 ´ q2q ` q2 ´ 2

θ2
2

*

Alternative Expansion

For simplicity we consider θ1 “ 1. We start from the representation 3.32:

ψ2 px; δ, θ1, λ1, q1, θ2, λ2, q2q “ p1 ´ q2qr2 ψ px; δ, θ1, λ1, q1q `
8
ÿ

n“0

8
ÿ

m“1

nb pn; r1, q1q nb pm; r2, q2q

ż x

0

γ pu; δ ` n, θ1q γ px´ u; m, θ1q (C.10)

The integral inside the summation for m ą 0 is:

ż x

0

γ pu; δ ` n, θ1q γ px´ u; m, θ2q “ e´x{θJ

Γ pδ ` nq Γ pmq θm
2

ż x

0

eup1{θ2´1quδ`n´1 px´ uqm´1 du

“ e´x{θ2xδ`n`m´1

Γ pδ ` nq Γ pmq!θm
2

ż 1

0

eηxttδ`n´1 p1 ´ tqm´1 dt

“ e´x{θ2xδ`n`m´1

θm
2 Γ pδ ` n`mq β̂ pηx; δ ` n,mq

where η “ 1{θ2 ´1, B px, yq “ Γ pxq Γ pyq {Γ px` yq and β̂ pu; a, bq is the moment generating function

of the beta distribution with parameters a, b:

β̂ pu; a, bq “
ş1

0
eutta´1 p1 ´ tqb´1 dt

B pa, bq “ 1 `
8
ÿ

k“1

uk

k!

k´1
ź

l“0

a` l

a` b` l
(C.11)

152



C.3. COMPUTATION OF THE GENERALIZED NON-CENTRAL GAMMA DENSITY

FUNCTION

Thus

ψ2 px; δ, θ1, λ1, q1, θ2, λ2, q2q “ p1 ´ q2qr2 ψ px; δ, θ1, λ1, q1q `
8
ÿ

n“0

8
ÿ

m“1

nb pn; r1, q1q nb pm; r2, q2q ¨

θn
2 γ px; δ ` n`m, θJ q β̃ pηx; δ ` n,mq (C.12)

Note that for a, b ą 0 and u ě 0 the following inequalities hold:

1 ď β̃ pu; a, bq ď eu for u ě 0 e´u ď β̃ pu; a, bq ď 1 for u ă 0 (C.13)

moreover it can be easily shown that β̃ enjoys the following properties

β̃ pu; a, bq “ euβ̃ p´u; b, aq (C.14)

β̃ pu; a “ 0, bq “ 1 and β̃ pu; a, b “ 1q “ eu (C.15)

β̃ pu; a` 1, b` 1q “ a` b` 1

u

“

β̃ pu; a` 1, bq ´ β̃ pu; a, b` 1q
‰

(C.16)

β̃ can be computed numerically. To truncate the summation properly note that for u ě 0 we have:

8
ÿ

k“n`1

uk

k!

k´1
ź

l“0

a` l

a` b` l
ď

8
ÿ

k“n`1

uk

k!
ď euun`1

pn` 1q!

for u ă 0 the we can use relation C.14. From the representation C.11 we see that for u ą 0,

β̃ pu; a, bq is strictly decreasing in b. Using property C.14 we conclude that for u ă 0, β̃ pu; a, bq is

strictly decreasing in a.

Adopting the definition C.11 and thanks to properties C.15 the density can be represented in the

compact form:

ψ2 px; δ, θ1, λ1, q1, θ2, λ2, q2q “ e´x{θ2xδ´1
8
ÿ

m“0

nb pm; r2, q2q
ˆ

x

θ2

˙m 8
ÿ

n“0

nb pn; r1, q1q
Γ pδ ` n`mq x

nβ̃ pxη; δ ` n,mq

(C.17)

The summation has the form
ř8

m“0Bm

ř8
n“0Am,n. Under the assumption θ2 ě 1 (i.e. η ă 0) we
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have:

Am,n`1

Am,n
“
„

q1
n

n` 1
` λ1 p1 ´ q1q

n` 1



xβ̃ pxη; δ ` n` 1,mq
pδ ` n`mq β̃ pxη; δ ` n,mq

ď cν
Nx

tδu `m` n

where

c1
N “ q1 ` λ1 p1 ´ q1q

n` 1

therefore proposition 17 of Appendix C.3.1 applies:

8
ÿ

k“N`1

Am,k ď Am,N exx

tδu `m`N ` 1
for N ě max pλ1, xq

Let us now concentrate on the summation over m. Let u ą 0, the following relations hold:

β̃ p´u; a, bq ´ β̃ p´u; a, b` 1q
a` b

“ e´u

„

β̃ pu; b, aq ´ β̃ pu; b` 1, aq
a` b



“ e´u

«

1 ´ 1

a` b
`

8
ÿ

k“1

uk

k!

ˆ

b

a` b
´ 1

a` b

b` k

a` b` k

˙ k´1
ź

l“1

b` l

a` b` l

ff

ě e´u

«

1 ´ 1

a` b
`

8
ÿ

k“1

uk

k!

ˆ

b´ 1

a` b

˙ k´1
ź

l“1

b` l

a` b` l

ff

“ e´u

«

1 ´ 1

a` b
` b´ 1

b

8
ÿ

k“1

uk

k!

k´1
ź

l“0

b` l

a` b` l

ff

“ e´u

"

1 ´ 1

a` b
`
ˆ

1 ´ 1

b

˙

“

β̃ pu; b, aq ´ 1
‰

*

“ e´ua

b pa` bq `
ˆ

1 ´ 1

b

˙

β̃ p´u; a, bq

thus

β̃ p´u; a, b` 1q
a` b

ď 1

b

„

β̃ p´u; a, bq ´ e´ua

a` b



now consider a “ δ ` n, b “ m and u “ ´ηx we have:

8
ÿ

n“0

An,m`1 ď 1

m

8
ÿ

n“0

An,m
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follows that in the series C.17 the ratio between two consecutive terms w.r.t. the index m ą 0 is

bounded as follows:

0 ă Bm`1

ř8
n“0An,m`1

Bm

ř8
n“0An,m

ď
„

q2
m

m` 1
` λ2 p1 ´ q2q

m` 1

ˆ

x

mθJ

˙

@x ą 0

Again proposition 17 applies:

8
ÿ

m“M`1

Bm

8
ÿ

n“0

An,m ď eCM x{θ2CMx{θ2

M ` 1
BM

8
ÿ

n“0

An,M for M ą 0

where CM “
„

q2 ` λJ p1 ´ q2q
M ` 1



Fourier inversion

The task consists in the numerical evaluation of the contour integral

ψ2 pxq “ 1

2πı

ż z0`ı8

z0´ı8
ψ̂2 pzq dz

where ϕ̂ is defined in 3.35. For simplicity we assume θ1 “ 1. We consider the equivalent problem

of evaluating the Bromwich integral:

ψ2 pxq “ 2e´z0

π

ż `8

0

Re
!

ψ̂2 pz0 ` ıtq
)

cos ptxq dt (C.18)

the integration can be performed using the trapezoidal rule with an incremental step h ą 0

ψ2 pxq » ψ̂2,h pxq ” h
e´z0x

π
Re

!

ψ̂2 pz0q
)

` h
e´z0x

π

8
ÿ

k“1

Re
!

ψ̂2 pz0 ` ıtq
)

cos pkhxq (C.19)

We need to control three types of error: the discretization (or aliasing) error, the truncation error

and the round off error. Concerning the truncation error we use the Euler summation method to

accelerate the convergence as suggested by Abate et al. (2000), the main reference for this technical

appendix. In the reminder of this appendix will focus on the control of the aliasing and the round

off errors. Importantly, the trapezoidal rule reveals particularly efficient when applied to Fourier

inversion problems since the aliasing error, usually of order O
`

h2
˘

, decreases at much higher rate
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in this case. More precisely, it can be proved that the aliasing error is given by

εh pxq “
8
ÿ

k“1

ψ2

ˆ

x` 2πk

h

˙

ez02πk{h for h ă 2π{x (C.20)

Following Abate et al., we conveniently consider h “ π{xL with L positive integer. If an upper

bound CL pxq can be found such that φ px1q ď CL pxq for x1 ě x p1 ` 2Lq, then for any z0 ă 0 we

have

εh pxq ď CL pxq
8
ÿ

k“1

ek¨2z0Lx “ CL pxq e2z0Lx

1 ´ e2z0Lx
(C.21)

It is relatively easy to find an upper bound CL pxq for a given x ą 0 and to make the aliasing

error arbitrarily small by choosing a negative an sufficiently large value of z0. Unfortunately, round

off errors can explode due to the pre-factor e´z0x in C.19, especially when x is in the tail of the

distribution. Abate et al. suggest how to optimally set z0 in order to minimize both type of errors but

their approach allows to reach a level of accuracy that is of the same order of the machine precision.

Our purpose is to compute the density accurately also in the tail, thus we want to control the relative

rather then absolute errors. Note that for x Ñ 8, ψ2 pxq 9e´ξx where ξ “ min t1 ´ q1, p1 ´ q2q {θ2u

as we can see from the singularities of the moment generating function. Thus considering a constant

upper bound for ϕ is too conservative, especially for x large. The idea is to fully exploit equation

C.20 taking into account also the tail decay of the density. In this case z0 can be allowed to take

also positive values permitting to reduce round off errors. More precisely, we have

εh pxq “
8
ÿ

k“1

ψ2 px` 2kLxq e2z0kLx

assuming that Lx is sufficiently large and z0 ă ξ, this expression is approximated by

εh pxq » ψ2 px` 2Lxq e2z0Lx
8
ÿ

k“0

e2pz0´ξqkLx

“ ψ2 px` 2Lxq e2z0Lx

1 ´ e2pz0´ξqkLx
(C.22)

Concerning the round off error, assume that the machine precision is 10´q where q “ 16 if we work
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with double precision. To estimate the order of magnitude for this error, consider the sum in C.19:

the first term is ψ̂2 pz0q computed with a relative error of order 10´q. The round off error is therefore

of order

εR pxq » ψ̂2 pz0q
Lx

e´z0x´q log 10 (C.23)

Note that the summation involves terms with alternating sign and the relative round off error can

underestimated by expression C.23 when the rate of decay of those terms is very slow (which can

happen for large negative value of z0), but the exponential factor remains the main driver. The

round off errors are minimized at the saddle point z˚ solving the equation g1 pz˚q ´ x “ 0 with

g pzq “ log ψ̂2 pzq and g2 pz˚q ě 0, z P R. Our purpose is to minimize the sum of the two errors.

For z ă z˚the round off error is decreasing in z while the aliasing error increases, their sum is

approximately minimized when they are of the same order: εR pxq » εh pxq which leads to the

equation

z0 “ g pz0q ´ log pLxq ´ q log 10 ´ log
“

1 ´ e2pz0´ξqkLx
‰

´ logψ2 px` 2Lxq
p2L` 1qx (C.24)

let us first consider this equation in the limit x Ñ 8, logψ2 px` 2Lxq » A ´ ξx p1 ` 2Lq `

pr˚ ´ 1q log x where

for 1 ´ q1 ă p1 ´ q2q {θ2 r˚ “ r pλ1q ξ “ 1 ´ q1

for 1 ´ q1 ą p1 ´ q2q {θ2 r˚ “ r pλ2q ξ “ p1 ´ q2q {θ2

for 1 ´ q1 “ p1 ´ q2q {θ2 r˚ “ r pλ1q ` r pλ2q ξ “ 1 ´ q1

an approximated solution to C.24 for x large is

z0 pxq » ξ ´ log pLxq
p2L` 1qx (C.25)

this can be checked by direct substitution taking into account that as z Ñ ξ, g pzq » ´r˚ log pξ ´ zq

and dropping all terms going to zero faster than log x{x. Substituting C.25 into C.23 we find

εh pxq » εR pxq 9xr˚´ 2L
2L`1 e´ξx´q log 10
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Note also that the saddle point for x Ñ 8 is approximately z˚ pxq “ ξ´ r˚{x, thus for x sufficiently

large z˚ ă z0 and we conclude that choosing z0 as a solution of equation C.24 is suboptimal in this

case because both errors can be reduced by decreasing z0. The best choice in this case is z0 “ z˚and

we have

εh pxq ă εR pxq 9 1

L

´ e

r˚

¯r˚

xr˚´1e´ξx´q log 10

The round off error dominates for x large while the relative error is constant an proportional to the

machine precision. Choosing a large value of L has a marginal impact on the error for x large, thus

it can be convenient to set L “ 1 to save computational time. Note that equation C.24 contains

the distribution ψ2 that we want to evaluate, hence we need to approximate the density in order to

use this equation in practice. To this purpose we use the saddle point approximation which works

well for values of x that are not too small (see Section C.1.1 for further details). In practice we rely

on this proxy for x p1 ` Lq larger than the mean which implies L ą pE rxs {x´ 1q {2.

Equation C.24 can be solved numerically, for example by iteration. Anyway solutions are not

guaranteed to exist in general: it is in fact possible that the round off error dominates for all

admissible values of z0, the optimal choice in this case is z0 “ z˚.
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