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Titolo della tesi: Contributions to Bayesian Nonparametric and Objective Bayes Literature

Abstract

The contribution of this dissertation are discussed in three self-contained chapters.

Chapter 1 and Chapter 2 contribute to the literature on Bayesian nonparametrics

by proposing two approaches, the first one to multiple time series and the second one to

conditional copula models.

Chapter 1 sets up a novel Bayesian nonparametric prior for SUR models, which allows

shrinkage of SUR coefficients toward multiple locations and identification of group of coef-

ficients. Our two-stage hierarchical distribution consists in a hierarchical Dirichlet process

on the parameters of a Normal-Gamma. We use this new model for extracting contagion

networks with linkage clustering effects. The proposed method has been applied both to

simulated results and to a macroeconomic dataset.
Chapter 2 analyses a conditional copula model from a Bayesian nonparametric per-

spective. The conditional copula models allow us to model the effect of a covariate driving

the strength of dependence between the main variables. The previous methodology has

been applied to the twins data and socioeconomic variables of the parents.

In Chapter 3, we focus on the Yule–Simon distribution, which has been introduced

for the analysis of frequency of data (stock options frequency, frequency of surnames,

etc). For this distribution, we derive two objective Bayes prior, the Jeffreys and the loss-

based prior, proving some theoretical results. We apply both the priors to simulated

examples of different sample sizes and we study the effectiveness of these priors to real data

examples (e.g. finance, surnames and music hit charts). In the same chapter we propose

a Gibbs sampling algorithm for the analysis of the posterior distribution of a Yule–Simon
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distribution when a Gamma prior is chosen for the shape parameter. The effectiveness

of the data augmented algorithm has been proved through simulated examples, including

count data regression, and an application to text analysis.

Chapter 1 is a joint work with Monica Billio and Roberto Casarin and is currently under

revision for submission. Chapter 2 is a joint work with Luciana Dalla Valle and Fabrizio

Leisen and has received revision from Journal of the Royal Statistical Society (Series C).

Chapter 3 is made by two different papers both joint works with Fabrizio Leisen and

Cristiano Villa. The first paper has been submitted and is under review, while the second

one will appear in the ”Journal of Statistical Computation and Simulation”.

Keywords: Bayesian Nonparametrics, Multivariate Time Series, Sparsity, Shrinkage,

Conditional Copulas, Objective Bayesian, Loss-Based Prior, Jeffreys’ Prior, Data Augmen-
tation.

vi



Contents

Declaration iii

List of Tables x

List of Figures xii

Acknowledgements xviii

1 Bayesian Nonparametric Sparse Seemingly Unrelated Regression Model
(SUR) 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A sparse Bayesian SUR model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 SUR and VAR models . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Prior assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Measuring contagion effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Technical Details of Chapter 1 40
A.1 Gibbs sampling details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.1.1 Update V,U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.2 Update the mixing parameters λ . . . . . . . . . . . . . . . . . . . . 42
A.1.3 Update Θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.1.4 Update β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.1.5 Update Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.1.6 Update Graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.7 Update D and ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.8 Update π “ pπ1, π2q . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.2 Simulated and Real Data Results . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



CONTENTS

2 Bayesian Nonparametric Conditional Copula Estimation of Twin Data 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.1 Copula and Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . 61
2.2.2 The conditional copula . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.3 Bayesian nonparametric copula density estimation . . . . . . . . . . 66

2.3 Conditional copula estimation with Dirichlet process priors . . . . . . . . . 68
2.4 Posterior sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6 Real Data applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B Technical Details of Chapter 2 85
B.1 Gibbs sampling details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1.1 Update of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.1.2 Update of Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
B.1.3 Update of D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
B.1.4 Update of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.2 Graphical part of the simulated examples . . . . . . . . . . . . . . . . . . . 86

C Technical Details of Chapter 1 and of Chapter 2 90
C.1 Slice Sampling Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 The Yule–Simon Distribution: an Objective Bayesian Analysis and a
Posterior Inference 94
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.3 Objective Priors for the Yule-Simon distribution . . . . . . . . . . . . . . . 99

3.3.1 The Jeffreys Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.2 The Loss-based Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 Simulation Study for objective priors . . . . . . . . . . . . . . . . . . . . . . 104
3.5 Real Data Application for objective priors . . . . . . . . . . . . . . . . . . . 111

3.5.1 Social network stock indexes . . . . . . . . . . . . . . . . . . . . . . 111
3.5.2 Census Data - Surname analysis . . . . . . . . . . . . . . . . . . . . 117
3.5.3 ‘Superstardom’ analysis . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.6 Bayesian inference for Data Augmentation problem . . . . . . . . . . . . . . 121
3.6.1 Single i.i.d. sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.6.2 Count data regression . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.7 Applications to text analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

viii



CONTENTS

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D Technical Details of Chapter 3 137
D.1 Proof of Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ix



List of Tables

1.1 Summary statistics of the number of clusters with different dimensions m. . 19

1.2 Mean absolute deviation statistics for different m. . . . . . . . . . . . . . . 24

1.3 The network statistics for the 4 different lags. The average path length
represents the average graph-distance between all pairs of nodes. Connected
nodes have graph distance 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Summary statistics of the posterior distributions for the parameter α of the
simulated data from a Yule-Simon distribution with α “ 0.40. . . . . . . . . 108

3.2 Summary statistics of the posterior distributions for the parameter α of the
simulated data from a Yule-Simon distribution with α “ 0.68. . . . . . . . . 108

3.3 Summary statistics of the posterior distribution for the parameter α of the
social network stock index data. . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4 Ten most common Surname in United States from the Census 1990 analysis. 116

3.5 Summary statistics of the posterior distributions for the parameter α of the
Census surname analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.6 Number of ‘number one’ hits per artist from 1955 to 2003. . . . . . . . . . . 119

3.7 Summary statistics of the posterior distribution for the parameter α of the
analysis of the music ‘number one’ hits. . . . . . . . . . . . . . . . . . . . . 121

3.8 Summary statistics of the posterior distributions for the parameter ρ of
the simulated data from a Yule-Simon distribution with different values of
ρ “ t0.8, 5u and sample sizes n “ t30, 100, 500u compared with the fixed-
point algorithm of Garcia Garcia (2011). . . . . . . . . . . . . . . . . . . . . 124

x



LIST OF TABLES

3.9 Summary statistics of the posterior distributions for the parameter pβ0, β1q
of the Yule–Simon regression with pβ0, β1q “ tp´0.5, 5.0q; p1.5,´1.0qu and
sample sizes n “ t30, 100, 500u and VGLM estimators. . . . . . . . . . . . . 128

3.10 Summary statistics of the posterior distributions for the parameter ρ for
frequency of words compared with the fixed point algorithm. . . . . . . . . 132

xi



List of Figures

1.1 Probability density function fpγq for sparse (v0 “ 30, s0 “ 1{30, p0 “

0.5, n0 “ 18, dashed line) and nonsparse (v1 “ 3, s1 “ 1{3, p1 “ 0.5, n1 “ 10,
solid line) case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Posterior distribution of the number of clusters for m “ 20 (left) and for
m “ 40 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Hamming distance between B and its posteriors for m “ 20 (left) and for
m “ 40 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Posterior mean of the matrix of δ for m “ 20 (left) and for m “ 40 (right) . 21

1.5 Weighted network for m “ 20 (left) and for m “ 40 (right), where the blue
edges mean negative weights and red ones represent positive weights. . . . . 23

1.6 Posterior distribution of the number of clusters for the macroeconomic ap-
plication (left) and the posterior sample (right) for the probability of being
sparse π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Pairwise posterior probabilities for the clustering (left) and Co-clustering
matrix for the atoms µ (right). . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Weighted Networks of GDP for OECD countries at lag: (a) t´ 1, (b) t´ 2,
(c) t´3, (d) t´4, where blue edges represent negative weights and red ones
positive weights. Nodes’ size is based on the node degree. . . . . . . . . . . 28

A.1 Posterior distribution of the number of clusters for m “ 80, with random
elements in the B matrix (left) and with block matrix (right). . . . . . . . . 49

A.2 Hamming distance between B and its posteriors for m “ 80, with random
elements (left) and with block matrix (right). . . . . . . . . . . . . . . . . . 49

xii



LIST OF FIGURES

A.3 Posterior mean of the matrix of δ for m “ 80 with random element (left)
and with block matrix (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.4 Weighted network for m “ 80 with random elements in the B matrix (left)
and with block matrix (right), where the blue edges mean negative weights
and red ones represent positive weights. . . . . . . . . . . . . . . . . . . . . 50

A.5 GDP growth rates Yit (histogram), predictive distribution (solid line) and best normal
(dashed line) for all the countries of the panel. . . . . . . . . . . . . . . . . . . . . 51

A.6 GDP growth rates Yit (histogram), predictive distribution (solid line) and best normal
(dashed line) for all the countries of the panel. . . . . . . . . . . . . . . . . . . . . 52

A.7 Predictive results for all countries. In each plot: GDP growth rates Yit (black lines);
heatmap (grey areas) of the 95% high probability density region of the predictive density
functions (darker colors represent higher density values) evaluated at each time point, for
t “ 1, . . . , T at the value of the predictors Yit´1, . . . , Yit´p for i “ 1, . . . , 25. . . . . . . . 53

A.8 Predictive results for all countries. In each plot: GDP growth rates Yit (black lines);
heatmap (grey areas) of the 95% high probability density region of the predictive density
functions (darker colors represent higher density values) evaluated at each time point, for
t “ 1, . . . , T at the value of the predictors Yit´1, . . . , Yit´p for i “ 1, . . . , 25. . . . . . . . 54

2.1 Scatterplots of the twins overall scores with respect to the mother’s (panel (a)) and
father’s level of education (panel (b)) and family income (panel (c)). . . . . . . . 58

2.2 Scatterplots of the twins overall scores with respect to the mother’s (top panel)
and father’s level of education (middle panel) and family income (bottom panel).
Each panel shows on the left (right) the points corresponding to the minimum
(maximum) value of the covariate. The black line corresponds to the 45 degrees
diagonal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Gaussian copula with sample size n “ 500. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and
predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4 Frank copula with sample size n “ 500. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and
predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiii



LIST OF FIGURES

2.5 Double Clayton copula with sample size n “ 500. Panels (a), (b), (c) and (d) depict the
scatter plots and histograms, obtained with the first calibration function, of the simulated
and predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.6 Panels (a) and (b): scatterplots of the twins’ overall scores for the real and pseudo-
observations with respect to the mother’s level of education; panels (c) and (d): scatter-
plots of the predictive and transformed predictive sample; panels (e) and (f): histograms
of the real data and the predictive sample. . . . . . . . . . . . . . . . . . . . . . . 74

2.7 Panels (a) and (b): scatterplots of the twins’ overall scores for the real and pseudo-
observations with respect to the father’s level of education; panels (c) and (d): scatterplots
of the predictive and transformed predictive sample; panels (e) and (f): histograms of the
real data and the predictive sample. . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.8 Panels (a) and (b): scatterplots of the twins’ overall scores for the real and pseudo-
observations with respect to the family income; panels (c) and (d): scatterplots of the
predictive and transformed predictive sample; panels (e) and (f): histograms of the real
data and the predictive sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.9 Estimated Kendall’s tau against the mother’s (top panel) and father’s level of education
(middle panel) and the family income (bottom panel) and an approximate 95% confidence
interval (dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.1 Gaussian copula with sample size n “ 250. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and
predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.2 Gaussian copula with sample size n “ 1000. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and
predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.3 Frank copula with sample size n “ 250. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and
predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



LIST OF FIGURES

B.4 Frank copula with sample size n “ 1000. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and
predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.5 Double Clayton copula with sample size n “ 250. Panels (a), (b), (c) and (d) depict the
scatter plots and histograms, obtained with the first calibration function, of the simulated
and predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.6 Double Clayton copula with sample size n “ 1000. Panels (a), (b), (c) and (d) depict the
scatter plots and histograms, obtained with the first calibration function, of the simulated
and predictive samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and
histograms, obtained with the second calibration function, of the simulated and predictive
sample, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1 Plot of the generalised hypergeometric function 3F2

´

1, 1
1´α ` 1, 1; 1

1´α ` 2, 1
1´α ` 2; 1

¯

,
where α takes values in p0, 1q. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2 Prior distribution for α in panel obtained by applying, in panel (a), Jeffreys
rule, while, in panel (b), the loss-based method with M “ 10 (blue dots),
with M “ 20 (black dots) and with M “ 100 (red dots). . . . . . . . . . . . 104

3.3 Frequentist properties of the Jeffreys prior (dashed line) and the loss-based
prior (continuous line) for n “ 100. The loss-prior is considered on the dis-
cretized parameter space with M “ 10. The left plot shows the posterior
frequentist coverage of the 95% credible interval, and the right plot repre-
sents the square root of the MSE from the mean of the posterior, relative to
α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4 Frequentist properties of the Jeffreys prior (dashed line) and the loss-based
prior (continuous line) for n “ 100. The loss-prior is considered on the dis-
cretized parameter space with M “ 20. The left plot shows the posterior
frequentist coverage of the 95% credible interval, and the right plot repre-
sents the square root of the MSE from the mean of the posterior, relative to
α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xv



LIST OF FIGURES

3.5 Posterior samples (left) and histograms (right) of the analysis of an i.i.d.
sample of size n “ 100 from a Yule–Simon distribution with α “ 0.40. From
top to bottom, we have Jeffreys prior, loss-based prior with M “ 10 and
loss-based prior with M “ 20. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.6 Posterior samples (left) and histograms (right) of the analysis of an i.i.d.
sample of size n “ 100 from a Yule–Simon distribution with α “ 0.68. From
top to bottom, we have Jeffreys prior, loss-based prior with M “ 10 and
loss-based prior with M “ 20. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.7 Daily increments for Facebook, Google, Linkedin and Twitter from the 1st
of October 2014 to the 11th of March 2016. . . . . . . . . . . . . . . . . . . 112

3.8 Histograms of the discretized daily returns for Facebook, Google, Linkedin
and Twitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.9 Posterior samples (left) and posterior histograms (right) for the Facebook
daily returns obtained by applying the Jeffreys prior (top), the loss-based
prior with M “ 10 (middle) and the loss-based prior with M “ 20 (bottom). 114

3.10 Posterior samples (left) and posterior histograms (right) for the Google daily
returns obtained by applying the Jeffreys prior (top), the loss-based prior
with M “ 10 (middle) and the loss-based prior with M “ 20 (bottom). . . . 115

3.11 Posterior sample (left) and posterior histogram (right) for the surname data
set obtained by applying the Jeffreys prior (top), the loss-based prior with
M “ 10 (middle) and the loss-based prior with M “ 20 (bottom). . . . . . 118

3.12 Posterior sample (left) and posterior histogram (right) for the music ‘number
one’ hits data set obtained by applying the Jeffreys prior (top), the loss-based
prior with M “ 10 (middle) and the loss-based prior with M “ 20 (bottom). 120

3.13 Data (histogram), predictive distribution for Yule–Simon (solid line) and
Geometric distribution (dashed line) for mixture of Geometric distributions
(left) and for Poisson distribution (right). . . . . . . . . . . . . . . . . . . . 124

3.14 Posterior sample (top), posterior histogram (middle) and progressive mean
(bottom) for the simulation study of a Yule–Simon distribution with ρ “ 5
and sample size n “ 30 (left) and n “ 100 (right). . . . . . . . . . . . . . . . 126

3.15 Posterior sample (top) and posterior histogram (bottom) for the simulation
study of a count data regression with β0 “ 3.5 (left) and β1 “ ´2.2 (right)
and sample size n “ 300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xvi



LIST OF FIGURES

3.16 Posterior sample (left) and posterior histogram (right) for the simulation
study of a count data regression with β0 “ 1.5 (top), β1 “ ´1.0 (middle)
and β2 “ 0.4 (bottom) and sample size n “ 300. . . . . . . . . . . . . . . . . 130

3.17 Posterior sample and posterior histogram for the frequency of words analysis
for the Ulysses (left) and the Don Quixote (right). . . . . . . . . . . . . . . 132

xvii



Acknowledgements

I acknowledge my two supervisors Monica Billio and Roberto Casarin from the University

Ca’ Foscari of Venice for their guidance and their support during the development of my

thesis. I am thankful to them for the opportunity that they gave me to collaborate with

them and with professors from other institutions during my Ph.D.

I acknowledge Fabrizio Leisen and Cristiano Villa (University of Kent, U.K.) for their

support, for accepting my visit to their institutions and for the future collaborations built

during my period in Canterbury. I acknowledge Luciana Dalla Valle (Plymouth University,

U.K.) for the collaborations and all the partecipants to the conferences for the helpful sug-

gestions. Many thanks goes to the editor and referees of Journal of Statistical Computation

and Simulation.

I would like to thank Stefano Tonellato (Ca’ Foscari University of Venice), Dimitris Koro-

bilis (University of Essex, U.K.) and Concepcion Ausin (Universidad Carlos III de Madrid,

Spain) for their valuable comments to the manuscript and their constructive suggestions.

I gratefully acknowledge the PhD scholarship award from the University Ca’ Foscari of

Venice by the Italian Ministry of Education, University and Research (MIUR).

Special thanks to my fiancee, Alice, and my parents, Marilena and Gianluigi, for helping

me during these three years of Ph.D.

xviii



LIST OF FIGURES

xix



Chapter 1

Bayesian Nonparametric Sparse Seemingly
Unrelated Regression Model (SUR)

Abstract. Seemingly unrelated regression (SUR) models are used in studying the

interactions among economic variables of interest. In a high dimensional setting and when

applied to large panel of time series, these models have a large number of parameters to

be estimated and suffer of inferential problems. In order to avoid overparametrization

and overfitting issues, shrinkage priors have been introduced, which usually shrink some

parameters to zero.

We propose a novel Bayesian nonparametric prior for SUR models, which allows shrink-

age of SUR coefficients toward multiple locations and identification of group of coefficients.

Our two-stage hierarchical distribution consists in a hierarchical Dirichlet process on the

parameters of a Normal-Gamma distribution.

This new multiple shrinkage prior model allows us to extract network structures from

panel data and to cluster the network edges between panel units. Applications both to

This chapter is based on: Billio, M., Casarin, R. and Rossini, L. (2016). “Bayesian Nonparametric Sparse
Seemingly Unrelated Regression Model (SUR)”. Working papers N. 20/WP/2016, Dept of Economics, Ca’
Foscari University of Venice. Working paper available at http://arxiv.org/abs/1608.02740.
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simulated data and to macroeconomic contagion show important gains from our prior com-

pared to existing priors in terms of parameter estimation and predictive abilities.

Keywords: Bayesian nonparametrics; Bayesian model selection; shrinkage; Large vec-

tor autoregression; Network representation.
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1.1. INTRODUCTION

1.1 Introduction

In the last decade, high dimensional models and large datasets have increased their impor-

tance in economics (e.g., see Scott and Varian (2013)). The use of large dataset has been

proved to improve the forecasts in large macroeconomic and financial models (see, Banbura

et al. (2010), Carriero et al. (2013), Koop (2013), Stock and Watson (2012)). For analyz-

ing and better forecasting them, seemingly unrelated regression (SUR) models have been

introduced (Zellner, 1962, 1971), where the error terms are independent across time, but

may have cross-equation contemporaneous correlations. SUR models require estimation

of large number of parameters with few observations. In order to avoid overparametriza-

tion, overfitting and dimensionality issues, Bayesian inference and suitable classes of prior

distributions have been proposed.

In vector autoregressive (VAR) modeling (see Sims (1980, 1992)) Bayesian inference

and related prior on the VAR parameters should be introduced to solve these problems

(see Litterman (1980)). Litterman (1986), Doan et al. (1984) and Sims and Zha (1998)

specify particular priors constraint on the VAR parameters for Bayesian VAR and Canova

and Ciccarelli (2004) discuss prior choice for panel VAR models.

Unfortunately these classes of priors may be not effective in dealing with overfitting in

very large SUR models. Thus, new priors have been proposed. George et al. (2008) intro-

duced Stochastic Search Variable Selection (SSVS) and spike-and-slab prior distribution.

Wang (2010) develops a sparse SUR model with Gaussian errors, where the coefficients

shrink near zero in both the regression coefficients and the error precision matrix. Koro-

bilis (2013) extend the use of SSVS to restricted VARs and particularly to select variables

in linear and nonlinear VAR using MCMC methods (see Koop and Korobilis (2010) for an

introduction). Ahelgebey et al. (2015, 2016) propose Bayesian graphical VAR (BGVAR)
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1.1. INTRODUCTION

and sparse BGVAR. Both SSVS and BGVAR use two separate sets of restrictions for the

contemporaneous and lagged interactions, where the SSVS uses the reduced-form model,

while in the BGVAR the restrictions are directly used in the structural model and help to

solve the identification problem of the SVAR using the graph structures. Furthermore, the

two models differ in the computational part, where George et al. (2008) use a single-move

Gibbs sampler, while Ahelgebey et al. (2015) focus on a collapsed and multi-move Gibbs

sampler. Koop and Korobilis (2015) build on SSVS prior of George et al. (2008) a new

parametric prior, which takes into a ccount the panel descriptions and Korobilis (2016)

proposed in the same way new parametric and semi-parametric priors for panel VAR.

In this paper, a novel Bayesian nonparametric hierarchical prior for multivariate time

series is proposed, which allows shrinkage of the SUR coefficients to multiple locations using

a Normal-Gamma distribution with location, scale and shape parameters unknown. In our

sparse SUR (sSUR), some SUR coefficients shrink to zero, due to the shrinking properties

of the lasso-type distribution at the first stage of our hierarchical prior, thus improving

efficiency of parameters estimation, prediction accuracy and interpretation of the temporal

dependence structure in the time series. We use a Bayesian Lasso prior, which allows us to

reformulate the SUR model as a penalized regression problem, in order to determine which

SUR coefficients shrink to zero (see Tibshirani (1996) and Park and Casella (2008)).

For alternative shrinkage procedures, see also Zou and Hastie (2005) (elastic-net), Zou

and Zhang (2009) (Adaptive elastic-net Lasso), Gefang (2014) (Doubly adaptive elastic-net

Lasso).

As regards to the second stage of the hierarchy, a mixture of hyperprior distributions

for the Normal-Gamma hyperparameters, which allows for shrinkage of different locations

has been used. This mixture consists of two different components, where we assigned a

Dirichlet process hyperpriors to achieve parameters parsimony due to clustering of the
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SUR coefficients. We build on Bassetti et al. (2014), which propose a vector of dependent

Dirichlet process prior to capture similarities in clustering effects across time series and on

MacLehose and Dunson (2010), which propose a Bayesian semiparametric approach that

allows shrinkage to multiple locations using a mixture of double exponential priors with

location and scale parameters assigned through a Dirichlet process hyperpriors to allow

groups of coefficients to be shrunk toward the same mean.

Hence, after the seminal papers of Ferguson (1973), Lo (1984) and Sethuraman (1994),

Dirichlet process priors and their multivariate extensions (e.g., see Müller et al. (2004),

Griffin and Steel (2006), Hatjispyros et al. (2011), Hjort et al. (2010) for a review of

Bayesian nonparametrics), are now widely used due to the availability of efficient algo-

rithms for posterior computations (Escobar and West, 1995; MacEachern and Müller, 1998;

Papaspiliopoulos and Roberts, 2008; Walker, 2007; Kalli et al., 2011), including but not

limited to applications in time series settings (Hirano, 2002; Chib and Hamilton, 2002;

Rodriguez and ter Horst, 2008; Jensen and Maheu, 2010; Griffin, 2011; Griffin and Steel,

2011; Bassetti et al., 2014; Jochmann, 2015).

As regards to the posterior approximation, we develop a MCMC algorithm. We rely

on slice sampling by Kalli et al. (2011), which is an improved version of the algorithm of

Walker (2007) and on the paper of Hatjispyros et al. (2011), where they present an approach

to modeling dependent nonparametric random density functions through mixture of DP

model.

Another contribution of this paper relates to the extraction of network structures from

panel data. As see, through the macroeconomic contagion application, we contribute to the

literature of financial and macroeconomic connectedness (Demirer et al., 2015; Diebold and

Yilmaz, 2014). The network connectedness has a central role in the financial, systemic and

credit risk measurement and helps us to understand fundamental macroeconomic risks (see

5



1.2. A SPARSE BAYESIAN SUR MODEL

Acharya et al. (2012), Billio et al. (2012) and Bianchi et al. (2015)). Our sparse Bayesian

nonparametric prior allows us to catch the most relevant linkages between different units

of the panel at different lags and for estimating the exact number of cluster in the network.

We show, through the definition of an adjacency matrix based on the pairwise probability

and the co-clustering matrix, the transmission of shocks from and to specific countries at

different lags (Diebold and Yilmaz (2015), Barigozzi and Brownlees (2016), Brownlees and

Engle (2016) and Diebold and Yilmaz (2016)). Applications both to simulated data and to

macroeconomic contagion show important gain from our prior compared to existing priors

in terms of parameter estimation and predictive abilities.

The paper is organized as follows. Section 1.2 introduces our sparse Bayesian SUR

model and the prior assumptions on the hyperparameters. In Section 1.3 we explain the

computational details of the model and the Gibbs sampling, while Section 1.4 through

simulated results illustrates the performance of the methodology compared to existing

popular prior for VAR and SUR models. Finally, in Section 1.5 an empirical macroeconomic

exercise on contagion shows clear advantages of the proposed prior.

1.2 A sparse Bayesian SUR model

In this section, we review preliminary notions on seemingly unrelated regression (SUR)

models and vector autoregressive (VAR) models. Furthermore we focus on the prior spec-

ifications for our specific sparse SUR.

1.2.1 SUR and VAR models

Zellner (1962) introduces the seemingly unrelated regression (SUR) model and analyzes

individual relationships that are linked by the fact that their disturbances are correlated.

Hence, SUR models have many applications in different fields, for example demand func-
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tions can be estimated for different households for a given commodity or for different

commodities.

In a SUR model with N units (or groups of cross-section observations) we consider

a sequence of mi-dimensional vectors of dependent variables, yi,t, that follow individual

regressions:

yi,t “ Xi,tβi ` εi,t, t “ 1, . . . , T i “ 1, . . . , N, (1.1)

where Xi,t is the pmi ˆ niq´ matrix of observations on ni explanatory variables with a

possible constant term for individual i at time t, βi “ pβi,1, . . . , βi,niq is a ni´vector of

unknown coefficients, and εi,t is a random error. We write (1.1) in a stacked regression

form:

yt “ Xtβ ` εt t “ 1, . . . , T, (1.2)

where yt “ py11,t, . . . ,y1N,tq1 is the m ˆ 1 vector of observations, with m “
řN
i“1mi, Xt “

diagpX1,t, . . . XN,tq is the mˆn matrix of observations on the explanatory variables at time

t with n “
řN
i“1 ni, β “ pβ11, . . . ,β1N q1, the n´vector of coefficients and εt “ pε11,t, . . . , ε1m,tq1

is the vector of errors distributed as Nmp0,Σq, where εt and εs are independent for t ‰ s.

The use of SUR models is important to gain efficiency in estimation by combining

different equations and to impose or test restrictions that involve parameters in different

equations.

An important special case of the SUR model is vector autoregressive (VAR) model.

Due to the work of Sims (1980), VAR models have acquired a permanent place in the

toolkit of applied macroeconomics to study the impact of a policy decision on the variables

of interest. A VAR model of order p (VAR(p)) is defined as

yt “ b`
p
ÿ

i“1
Biyt´i ` εt, (1.3)
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for t “ 1, . . . , T , where yt “ py1,t, . . . , ym,tq
1, b “ pb1, . . . , bmq

1 and Bi is a pmˆmq matrix of

coefficients. We assume that εt “ pε1,t, . . . , εm,tq
1 follows a Gaussian distribution Nmp0,Σq

with mean 0 and covariance matrix Σ.

The VAR(p) can be obtained as a special case of (1.2) by setting N “ 1, m “ m1 and

writing (1.3) in a stacked regression form:

yt “ pIm b x1tqβ ` εt, (1.4)

where xt “ p1, y1t´1, . . . , y
1
t´pq

1 is the vector of predetermined variables, β “ vecpBq, where

B “ pb, B1, . . . , Bpq, b is the Kronecker product and vec the column-wise vectorization

operator that stacks the columns of a matrix in a column vector.

1.2.2 Prior assumption

The number of parameters to estimate in (1.2) is q “ r ` pm ` 1qm{2, with r “
řN
i“1 ri,

ri “ ni. For large value of m, q can be large and add some problems during the estimation,

such as overfitting, or unstable predictions and difficult-to-interpret descriptions of the

temporal dependence. In order to avoid overparameterization issues and the overfitting

problems, a hierarchical strategy in prior specification has been suggested in the Bayesian

dynamic panel modelling literature (e.g., Canova and Ciccarelli (2004), Kaufmann (2010),

and Bassetti et al. (2014)). The hierarchical prior can be used to incorporate cross-equation

interdependences and various degrees of information pooling across units (e.g., see Chib

and Greenberg (1995) and Min and Zellner (1993)), while a different stream of literature

is using instead a prior model which induces sparsity (e.g., MacLehose and Dunson (2010),

Wang (2010)).

In this paper we combine the two strategies and define a hierarchical prior distribution

which induces sparsity on the vector of coefficients β. In order to regularize (1.2), we

incorporate a penalty using a lasso prior fpβq “
śr
j“1 N Gpβj |0, γ, τq, where N Gpβ|µ, γ, τq
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denotes the normal-gamma distribution with location parameter µ, shape parameter γ ą 0

and scale parameter τ ą 0. The normal-gamma distribution has density function

fpβ|µ, γ, τq “
τ

2γ`1
4 |β ´ µ|γ´

1
2

2γ´ 1
2
?
πΓpγq

Kγ´ 1
2
p
?
τ |β ´ µ|q,

where Kγp¨q represents the modified Bessel function of the second kind with the index

γ (see Abramowitz and Stegun (1972)). The normal-gamma distribution has the double

exponential distribution as a special case for γ “ 1 and can be represented as a scale

mixture of normals (see Andrews and Mallows (1974) and Griffin and Brown (2006)):

N Gpβ|µ, γ, τq “
ż `8

0
N pβ|µ, λqGapλ|γ, τ{2qdλ, (1.5)

where Gap¨|a, bq denotes a gamma distribution1.

The normal-gamma distribution in (1.5) induces shrinkage toward the prior mean of

µ, but we can extend the lasso model specification by introducing a mixture prior with

separate location parameter µ˚j , separate shape parameter γ˚j and separate scale parameter

τ˚j such that: fpβq “
śr
j“1 N Gpβj |µ˚j , γ˚j , τ˚j q. In our paper, we favor the sparsity of the

parameters through the use of carefully tailored hyperprior and we use a nonparametric

Dirichlet process prior (DPP), which reduces the overfitting problem and the curse of

dimensionality by allowing for parameters clustering due to the concentration parameter

and the base measure choice.

Also, following Bassetti et al. (2014), we assume that N blocks of parameters can be

exogenously defined. The blocks correspond to series from different countries which share

1 The gamma distribution of τ (τ „ Gapa, bq) used in this paper is parametrized as:

fpτ |a, bq “
ba

Γpaqτ
a´1 exp p´bτqIp0,`8qpτq
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a sparse component but have possibly different clustering features. Our framework can be

extended to include dependence in the clustering features (Bassetti et al., 2014; Taddy,

2010; Griffin and Steel, 2011).

In our case we define θ˚ “ pµ˚,γ˚, τ ˚q as the parameters of the Normal-Gamma

distribution, and assume a prior Ql for θ˚lj , that is

βj
ind
„ N Gpβj |µ˚j , γ˚j , τ˚j q, (1.6)

θ˚lj |Ql
i.i.d.
„ Ql, (1.7)

for j “ 1, . . . , rl and l “ 1, . . . , N .

Following a construction of the hierarchical prior similar to the one proposed in Hatjispy-

ros et al. (2011) we define the vector of random measures

Q1pdθ1q “ π1P0pdθ1q ` p1´ π1qP1pdθ1q,

... (1.8)

QN pdθN q “ πNP0pdθN q ` p1´ πN qPN pdθN q,

with the same sparse component P0 in each equation and with the following hierarchical

construction as previously explained,

P0pdθq „ δtp0,γ0,τ0qupdpµ, γ, τqq,

Plpdθq
i.i.d.
„ DPpα̃, G0q, l “ 1, . . . , N, (1.9)

πl
i.i.d.
„ Bepπl|1, αlq, l “ 1, . . . , N,

pγ0, τ0q „ gpγ0, τ0|ν0, p0, s0, n0q,

G0 „ N pµ|c, dq ˆ gpγ, τ |ν1, p1, s1, n1q

where δtψ0upψq denotes the Dirac measure indicating that the random vector ψ has a

degenerate distribution with mass at the location ψ0, and gpγ0, τ0q is the conjugate joint

10
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prior distribution (see Miller (1980)) with density

gpγ0, τ0|ν0, p0, s0, n0q9 τ
ν0γ0´1
0 pγ0´1

0 expt´s0τ0u
1

Γpγ0qn0
, (1.10)

and hyperparameters fixed such that ν0 ą 0, p0 ą 0, s0 ą 0 and n0 ą 0. From Miller (1980),

we construct the gamma two-parameters gpγ, τq “ gpτ |γqgpγq, where gpτ |γq „ Gapν0γ, s0q

and we marginalize out such that:

gpγq “

ż 8

0
gpγ, τqdτ “ C

Γpν0γq

Γpγqn0

pγ´1
0
sν0γ

0
, (1.11)

gpτ |γq “
gpγ, τq

gpγq
“
τν0γ´1e´s0τ

Γpν0γq
sν0γ

0 , (1.12)

with a normalizing constant C such that 1 “
ş8

0 gpγqdγ. Based on MacLehose and Dunson

(2010) and on our computational experiments, we assume the following parameter setting

for the sparse and nonsparse component in the gamma two parameters distribution, gpγ, τq,

v0 “ 30 s0 “ 1{30 p0 “ 0.5 n0 “ 18,

v1 “ 3 s1 “ 1{3 p1 “ 0.5 n1 “ 10.

As described in the hierarchical prior representations in (1.8) and in (1.9), with prob-

ability π (distributed as a beta2) a coefficient βj is shrunk toward zero as in standard

lasso, while with probability p1 ´ πq the coefficient is distributed as a DP pα̃, G0q. The

amount of shrinkage is determined by the shape and scale parameter pγ, τq, which moves

as a two-parameters gamma (Miller (1980)).

2 The beta distribution for x (x „ Bepα, βq) used in this paper is parametrized as follows:

fpx|α, βq “
1

Bpα, βqx
α´1

p1´ xqβ´1Ir0,1spxq

where Bpα, βq “ ΓpαqΓpβq{Γpα` βq and α, β ą 0
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Figure1.1: Probability density function fpγq for sparse (v0 “ 30, s0 “ 1{30, p0 “ 0.5, n0 “
18, dashed line) and nonsparse (v1 “ 3, s1 “ 1{3, p1 “ 0.5, n1 “ 10, solid line) case.

The Dirichlet Process, DPpα̃, G0q, can be defined by using the stick-breaking represen-

tation (Sethuraman (1994)) given by:

Plp¨q “
8
ÿ

j“1
wljδtθljup¨q l “ 1, . . . , N. (1.13)

Following the definition of the dependent stick-breaking processes, proposed by MacEach-

ern (1999) and MacEachern (2001) the atoms θlj and the weights wlj (for l “ 1, . . . , N)

are stochastically independent and satisfy the following hypothesis:

• θlj is an independent and identically distributed (i.i.d.) sequence of random elements

with common probability distribution G0 (θlj iid
„ G0);

• the weights pwljq are determined through the stick-breaking construction for j ą 1,

while for j “ 1 wl1 “ vl1:

wlj “ vlj

j´1
ź

k“1
p1´ vlkq l “ 1, . . . , N

12



1.2. A SPARSE BAYESIAN SUR MODEL

with vj “ pv1j , . . . , vNjq independent random variables taking values in r0, 1sN dis-

tributed as a Bep1, α̃q such that
ř

jě1wlj “ 1 almost surely for every l “ 1, . . . , N

.

After this definition, we are able to construct a random density function fpβ|Pq based

on an infinite mixture representation similar to the well known Dirichlet process mixture

model (Lo (1984)):

flpβ|P̃lq “
ż

Kpβ|θqP̃lpdθq, (1.14)

where Kpβ|θq is a density for each θ P Θ, the so called density kernel and P̃l is a random

measure. In our paper, the density kernel is defined as Kpβ|θq “ N Gpβ|µ,γ, τ q. Following

the definition of the density kernel and using the representation as infinite mixture, we have

that, for each l “ 1, . . . , N , the equation (1.14) has the following representation

flpβ|Qlq “ πlfpβ|P0q ` p1´ πlqfpβ|Plq “ πl

ż

N Gpβ|µ,γ, τ qP0pdpµ,γ, τ qq

` p1´ πlq
ż

N Gpβ|µ,γ, τ qPlpdpµ,γ, τ qq

“ πlN Gpβ|0, γ0, τ0q ` p1´ πlq
8
ÿ

k“1
wlkN Gpβ|µlk, γlk, τlkq

“

8
ÿ

k“0
w̌lkN Gpβ|θ̌lkq,

where

w̌lk “

"

πl, k “ 0
p1´ πlqwlk, k ą 0 θ̌lk “

"

p0, γ0, τ0q, k “ 0
pµlk, γlk, τlkq, k ą 0.

As regards to the choice of the prior for Σ, we model it by considering its restrictions

induced by a graphical model structuring. A graph G is defined by the pair pL,Eq, where

L is the vertex set and E is the edge-set, or the set of linkages. In our case the prior over

13
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the graph structure is defined as a Bernoulli distribution with parameter ψ, which is the

probability of having an edge. That is, a m node graph G “ pL,Eq, with |L| the cardinality

of the set of nodes and with |E| edges has a prior probability:

ppGq9
ź

i,j

ψeij p1´ ψqp1´eijq “ ψ|E|p1´ ψqT´|E|, (1.15)

with eij “ 1 if pi, jq P E and |T | “
`

|L|
2
˘

is the maximum number of edges, while to induce

sparsity we choose ψ “ 2{pp´1q which would provide a prior mode at p edges. Conditional

on a specified graph G we assume a Hyper Inverse Wishart prior distribution for Σ that is:

Σ „ HIWGpb, L̃q, (1.16)

where b means the degrees of freedom and L̃ is the scale hyperparameters. The density

function of the HIW is represented in the Appendix A.

1.3 Computational details

In this section we develop a Gibbs sampler algorithm in order to approximate the posterior

distribution. For simplicity of notations we focus on the bivariate case, N “ 2 and conse-

quently l “ 1, 2, and, without loss of generality, we can extend the following representation

to the multivariate case.

First of all, we focus on the slice latent variables for l “ 1, 2 through the introduction of

the latent variables, ulj , j “ 1, . . . , r1, for fl, which allows us to write the infinite mixture

model in an easy way. Hence we represent the full conditional of β1j as follows,

f1pβ1j , u1j |pµ1, γ1, τ1q, w1q “ π1

8
ÿ

k“0
Ipu1j ă w̃1kqN Gpβ1j |p0, γ1k, τ1kqq`

` p1´ π1q
8
ÿ

k“1
Ipu1j ă w1kqN Gpβ1j |µ1k, γ1k, τ1kq

14



1.3. COMPUTATIONAL DETAILS

“ π1Ipu1j ă w̃0qN Gpβ1j |p0, γ0, τ0qq`

` p1´ π1q
8
ÿ

k“1
Ipu1j ă w1kqN Gpβ1j |µ1k, γ1k, τ1kq,

where we introduce a variable w̃1k such that we can apply the slice sampler and then we

assume w̃1k “ w̃0 “ 1 if k “ 0 and w̃1k “ 0 for k ą 0 and, for simplicity of notations, we

denote p0, γ1,0, τ1,0q “ p0, γ0, τ0q.

Moving to the density function f2, we introduce the latent variables u2j , j “ 1, . . . , r2,,

which allows us to write the following density:

f2pβ2j , u2j |pµ2, γ2, τ2q, w2q “ π2Ipu2j ă w̃0qN Gpβ2j |p0, γ0, τ0qq`

` p1´ π2q
8
ÿ

k“1
Ipu2j ă w2kqN Gpβ2j |µ2k, γ2k, τ2kq.

The introduction of the slice variables pu1j , u2jq allows us to reduce the dimensionality

of the problem from a mixture with an infinite number of components to a similar finite

mixture model. In particular, letting

Aw1pu1jq “ tk : u1j ă w1ku, j “ 1, . . . , r1,

Aw2pu2jq “ tk : u2j ă w2ku, j “ 1, . . . , r2,

then it can be proved that the cardinality of the sets pAw1 ,Aw2q is almost surely finite.

Therefore, we express f1 and f2 as an augmented random joint probability density

function for β1j , β2j and u1j , u2j

flpβlj , ulj |pµl, γl, τlq, wlq “ πlIpulj ă w̃0qN Gpβlj |0, γ0, τ0q

` p1´ πlq
ÿ

kPAwl
puljq

N Gpβlj |µlk, γlk, τlkq.

We iterate the data augmentation principle for each fl (with l “ 1, 2) through the intro-

duction of two auxiliary variables, the latent variables δlj (j “ 1, . . . , rl) and the allocation
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variables dlj (j “ 1, . . . , rl). The first variable described above selects one of the two ran-

dom measures P0 and Pl, hence, when δlj is equal to zero, we choose the sparse component

P0, while if it is one, we choose the nonsparse component Pl and we need to introduce

the allocation variables. The second variable of interest, dlj , selects the components of the

Dirichlet mixture Pl to which each single coefficient βlj is allocated to. Then the density

function can be expressed as

flpβlj , ulj , dlj ,δljq “
´

Ipulj ă w̃dlj qN Gpβlj |0, γ0, τ0q
¯1´δlj

ˆ

´

Ipulj ă wldlj qN Gpβlj |µldlj , γldlj , τldlj q
¯δlj

π
1´δlj
l p1´ πlqδlj .

From (1.5), we demarginalize the Normal-Gamma distribution by introducing a latent

variable λlj for each βlj such that the joint distribution has the following representation:

flpβlj , λlj , ulj , dlj , δljq “

“

´

Ipulj ă w̃dlj qN pβlj |0, λljqGapλlj |γ0, τ0{2q
¯1´δlj

ˆ

´

Ipulj ă wldlj qN pβlj |µldlj , λljqGapλlj |γldlj , τldlj{2q
¯δlj

π
1´δlj
l p1´ πlqδlj .

Hence, we describe the joint posterior distribution based on the distribution previously

defined as follows

fpΘ,Σ,Λ, U,D, V,∆|Y q9

T
ź

t“1
p2π|Σ|q´1{2 exp

ˆ

´
1
2
`

yt ´X
1
tβ
˘1Σ´1`yt ´X

1
tβ
˘

˙

ˆ

r1
ź

j“1
f1pβ1j , λ1j , u1j , d1j , δ1jq

r2
ź

j“1
f2pβ2j , λ2j , u2j , d2j , δ2jqˆ (1.17)

ź

ką1
Bepv1k|1, αqBepv2k|1, αqHIWGpb, Lq ˆ gpγ0, τ0|ν0, p0, s0, n0qˆ
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ź

ką1
N pµ1k|c, dqgpγ1k, τ1k|ν1, p1, s1, n1qN pµ2k|c, dqgpγ2k, τ2k|ν1, p1, s1, n1q.

The distribution defined in (1.17) is not tractable thus we apply Gibbs sampling to

draw random numbers from it. We use the notation U “ tulj : j “ 1, 2, . . . , rl and l “

1, 2, . . . , Nu, V “ tvlj : j “ 1, 2, . . . and l “ 1, 2, . . . , Nu to describe the latent variables

and the stick-breaking components; D “ tdljj “ 1, 2, . . . , rl and l “ 1, 2, . . . , Nu and

∆ “ tδljj “ 1, 2, . . . , rl and l “ 1, 2, . . . , Nu to describe the new variables that we have

introduced in this section. The Gibbs sampler iterates over the following steps using the

conditional independence between the different variables as seen in the appendix:

1. The stick-breaking and the latent variables U, V are updated given rΘ, β,Σ, G,Λ, D,∆, π, Y s;

2. The latent variable Λ is updated given rΘ, β,Σ, G, U, V,D,∆, π, Y s;

3. The parameters of the Normal-Gamma distribution Θ are updated given rβ,Σ, G,Λ, U, V,D,∆, π, Y s;

4. The coefficients β of the SUR model are updated given rΘ,Σ, G,Λ, U, V,D,∆, π, Y s;

5. The matrix of variance-covariance Σ is updated given rΘ, β,G,Λ, U, V,D,∆, π, Y s;

6. The Graph G is updated given rΘ, β,Σ,Λ, U, V,D,∆, π, Y s;

7. The allocation and the latent variablesD,∆ are updated given rΘ, β,Σ, G,Λ, U, V, π, Y s;

8. The probability of being sparse π is updated given rΘ, β,Σ, G,Λ, U, V,D,∆, Y s.

The full conditional distributions of the Gibbs sampler and the sampling methods are

discussed in Appendix A.
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1.4. SIMULATION EXPERIMENTS

1.4 Simulation experiments

This section illustrates the performance of our Bayesian nonparametric sparse model with

simulated data. We generate different datasets sample size T “ 100 from a VAR model

with lag p “ 1:

yt “ Byt´1 ` εt for t “ 1, . . . , 100,

where the dimension of yt and of the square matrix of coefficients B takes different values,

m “ 20 (small dimension), m “ 40 (medium dimension), m “ 80 (big dimension). Fur-

thermore, the matrix of coefficients has different costruction, from a block-diagonal to a

random form, as follows:

• if m “ 20, the matrix of coefficients B “ diagtB1, . . . , B5u P Mp20,20q is a block-

diagonal matrix with blocks Bj (j “ 1, . . . , 5) of p4ˆ4qmatrices on the main diagonal:

Bj “

¨

˚

˝

b11,j . . . b14,j
...

...
...

b41,j . . . b44,j

˛

‹

‚

,

where the elements are randomly taken from an uniform distribution Up´1.4, 1.4q

and then checked for the stationarity conditions;

• if m “ 40, the matrix of coefficients B “ diagpB1, . . . , B10q is a block-diagonal matrix

with blocks Bj of p4ˆ 4q matrices on the main diagonal:

Bj “

¨

˚

˝

b11,j . . . b14,j
...

...
...

b41,j . . . b44,j

˛

‹

‚

,

where the elements are randomly taken from an uniform distribution Up´1.4, 1.4q

and then checked for the stationarity conditions;
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mean mode
m “ 20 9.48 9
m “ 40 12.32 12

m “ 80 (random) 11.49 11
m “ 80 (blocks) 11.29 12

Table 1.1: Summary statistics of the number of clusters with different dimensions m.

• if m “ 80, we analyse two different situations, when

– the matrix of coefficients B “ diagpB1, . . . , B20q is a block-diagonal matrix with

blocks Bj of p4ˆ 4q matrices on the main diagonal:

Bj “

¨

˚

˝

b11,j . . . b14,j
...

...
...

b41,j . . . b44,j

˛

‹

‚

,

where the elements are randomly taken from an uniform distribution Up´1.4, 1.4q

and then checked for the stationarity conditions;

– the p80 ˆ 80q matrix of coefficients has 150 elements randomly chosen from an

uniform distribution Up´1.4, 1.4q and then checked for the stationarity condi-

tions.

For all the cases, we run the Gibbs sampler algorithm described in Section 1.3 and

sample from the posterior distribution via Monte Carlo methods with 5, 000 iterations and

a burn-in period of 500 iterations. Furthermore, we have chosen the hyperparameters for

the sparse and non-sparse components as in Section 1.2.2 and the hyperparameters of the

Hyper-inverse Wishart as in Section 1.2.2, where the degree of freedom is b0 “ 3 and the

scale matrix L “ In. Figure 1.2 and A.1 show the histograms for the posterior distribution

of the number of clusters for each sample sizes, the comparison between the construction

of our simulated outputs and the posterior of the number of clusters highlights the good
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fit of our Bayesian nonparametric hierarchical model, which is also confirmed by the mean

and the mode of the number of cluster for every sample sizes (see Table 1.1).
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(b) m=40

Figure1.2: Posterior distribution of the number of clusters for m “ 20 (left) and for
m “ 40 (right).

Focusing on the posterior of the matrix of coefficients B, the proportion of elements

whose true simulated values fall inside their 95% credible intervals is 0.96 (for m “ 20),

0.983 (for m “ 40), 0.9939 (for m “ 80 in the block case) and 0.998 (for m “ 80 in the

random element case). We can compute the number of zeroes in the true simulated B,

which are 325 (m “ 20), 1452 (m “ 40), 6105 and 6261 for m “ 80 in the block and in

the randomly case, respectively. If we compare these values with the posterior number of

zeroes in the matrix B, which are 335 (for m “ 20), 1461 (for m “ 40), 6102 and 6192 for

m “ 80 in the block and in the randomly case, we have that the differences between them

are small, which allow us to consider our approach feasible for the inference of sparse and

nonsparse components.

We evaluate the accurancy of our estimates by using the Hamming distance for the

matrix of coefficients, which is the difference between the real values of the matrix of

coefficients B and the posterior values of it. In definition, the Hamming distance is

20



1.4. SIMULATION EXPERIMENTS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(a) m=20

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(b) m=40

Figure1.3: Hamming distance between B and its posteriors for m “ 20 (left) and for
m “ 40 (right).

|a´ b|H | “ |ti|ai ‰ biu|, where the difference a´b contains negative values corresponding

to points where bi ą ai. Figure 1.3 and A.2 show this difference for different sample sizes

and it converges to zero, which means that our posteriors for the matrix of coefficients are

exactly what we were expecting.
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Figure1.4: Posterior mean of the matrix of δ for m “ 20 (left) and for m “ 40 (right)

Figure 1.4 and A.3 explain the posterior mean of the matrix of δ, which shows us the

choice of the components between the two random measures P0 and Pl. In particular, we

have that the white color explains if the coefficient δ is equal to zero (i.e. sparse com-
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ponent), while the black one if the δ is equal to one, for nonsparse components. The

representation in Figure 1.4 and A.3 correctly explain the sparsity in the matrix of coeffi-

cients through the definition of the matrix of the latent variable δ. In order to identificate

the mixture components, we apply the least square clustering method proposed originally

in Dahl (2006). The method is based on the choice of the nonsparse components and on

the posterior pairwise probabilities of joint classification P pDi “ Dj |Y, δ “ 1q. To estimate

this matrix, we use the following pairwise probability matrix:

Pij “
1
Mi

Mi
ÿ

l“1
δDli
pDl

jq

where we use every pair of allocation variables Dl
i and Dl

j , with i, j “ 1, . . . , Tnsp, Tnsp is

the number of nonsparse component and l “ 1, . . . ,Mi, where Mi is the number of MCMC

iterations. The definition of the pairwise posterior probabilities and of the co-clustering

matrix for the atom locations µ allows us to built the weighted networks (see Figure 1.4 and

Figure A.4), where the blue edges represent negative weights, while the red ones represent

the positive weights. The curved edges follow a clockwise relations, which means that

a node A is related to a node B if there is a clockwise curved edge between them and

it allows us to explain the presence of different cliques in each simulated examples. As

known, the representation with block matrices confirms the presence of different cliques,

e.g. for n “ 20 exactly 5 cliques, while increasing the dimensionality, augment the number

of cliques.

We compare our prior with the Bayesian Lasso (Park and Casella (2008)), the Elastic-

net (Zou and Hastie (2005)) and to a prior for imposing restrictions on the VAR based on

Stochastic Search Variable Selection (SSVS) of George et al. (2008). For the SSVS, we use

the default hyperparameters τ2
1 “ 0.0001, τ2

2 “ 4 and π “ 0.5. We use the mean absolute
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1.5. MEASURING CONTAGION EFFECTS

(a) m=20 (b) m=40

Figure1.5: Weighted network for m “ 20 (left) and for m “ 40 (right), where the blue
edges mean negative weights and red ones represent positive weights.

deviation (MAD, Korobilis (2016)) for looking at the performance of the five different

priors: our Bayesian nonparametric prior (BNP), Bayesian Lasso (B-Lasso), Elastic-net

(E-Net), SSVS and OLS, unrestriced estimator, equivalent to diffuse prior.

If β̂ is an estimate of B based on the five priors and β̃ is it true value from the DGP,

MAD “
1
n

n
ÿ

k“1

ˇ

ˇ

ˇ
Zkβ̂k ´ Zkβ̃k

ˇ

ˇ

ˇ

where n denotes the number of VAR coefficients and Zk is the k-th column of Z “ pImbx1q.

Table 1.2 shows that the best perfomance is obtained from our prior for each dimension m

and all the priors are performing well related to OLS.

1.5 Measuring contagion effects

We apply the proposed Bayesian nonparametric sparse model to a macroeconomic dataset

and, following Diebold and Yilmaz (2015), we extract network structures to investigate the
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BNP B-Lasso E-net SSVS OLS
m “ 20 0.228 0.2513 0.2582 0.2938 0.3382
m “ 40 0.2663 0.3145 0.3143 0.401 0.4835

m “ 80 (random) 0.2294 0.3011 0.2951 0.5413 0.7048
m “ 80 (block) 0.2916 0.3773 0.3743 0.5633 0.7290

Table 1.2: Mean absolute deviation statistics for different m.

role of contagion effects between different cycles and the possible relations bewteen GDP

of different countries. Furthermore, we study the transmission of shocks and contagion

between different countries at different lags.

Following the literature on international business cycles in large models (Kose et al.,

2003, 2010; Del Negro and Otrok, 2008) we use a multi-country macroeconomic dataset to

study the role of contagion effects between different cycles in the panel, while Francis et al.

(2012) and Kaufmann and Schumacher (2012) investigate the role of global business cycles

for many different countries in large factor models.

For our analysis, we use a VAR(p), with quarterly lags of interest (p “ 4) and focus

on the GDP growth rate, which is the first difference of the logarithm of each GDP series.

We consider a dataset of the most important OECD countries, which will be described

below, from the first quarter of 1961 to the second quarter of 2015 for a total of T “ 215

observations.

Due to missing values in the GDP time series of some countries, we choose a subset

of all the OECD countries, which is formed by the most industrialised countries, and in

particular we focus on two big macroareas, the European one and the rest of the world,

where the latter is formed by the countries from Asia, Oceania, North and Central America

and Africa. Hereafter, we describe more in details the two macroareas:

• Rest of the World - Australia, Canada, Japan, Mexico, South Africa, Turkey, United

States;
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Figure1.6: Posterior distribution of the number of clusters for the macroeconomic appli-
cation (left) and the posterior sample (right) for the probability of being sparse π.

• Europe - Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland,

Iceland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzer-

land, United Kingdom;

Based on our empirical and computational experiments (see Section 1.4), we run the Gibbs

sampling algorithm described in Section 1.3 for 10, 000 iterations with a burn-in period of

1, 000 iterations adopting the same priors of the simulation studies. The location of the

posterior mode (value equals to 3) of the histograms in Figure 1.6 allows us to conclude

that following our approach there is evidence in favour of three type of macroeconomic

contagion effects between the countries in our panel. Figure 1.6 shows the MCMC samples

for the probability of being sparse, π, which has posterior mean 0.87 providing evidence of

high sparsity in the model.

Figure 1.7 shows the pairwise posterior probabilities Pij that two coefficients βi and βj

belong to the same cluster. We can detect the presence of four different clusters as seen also

from the co-clustering matrix based on the location atom (µ) generated at each iterations

of the MCMC method, which has been build up from the least square marginal clustering.

The procedure is the clustering Dl sampled at the l-th iteration which minimizes the sum

25



1.5. MEASURING CONTAGION EFFECTS

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure1.7: Pairwise posterior probabilities for the clustering (left) and Co-clustering ma-
trix for the atoms µ (right).

of squared deviations from the pairwise posterior probability:

l “ arg min
lPt1,...,Mu

n
ÿ

i“1

n
ÿ

j“1

´

δDli
pDl

jq ´ Pij

¯2

Figure 1.8 draws the weighted networks of the GDP connectivity between different

countries with respect to different time lags (a) t´ 1, (b) t´ 2, (c) t´ 3 and (d) t´ 4. As

seen from Figure 1.7, we have three types of relation: ”negative”, ”positive” and ”strong

positive”. Figure 1.8 shows the weighted networks at each lag, where blue edges represent

negative weights and red ones positive weights, and nodes’ size is based on the node degree,

which is its number of links to other nodes. In terms of directional connectedness received

from other countries (out-degree) or transmit to other countries (in-degree), we have:

• at lag t´ 1, Japan appears to be the country that received the highest percentage of

shocks from other countries, followed by Spain and Australia.

• at lag t´ 1, Australia is the country that transmit the highest percentage of shocks

to other countries, followed by France, Germany and United Kingdom.
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• at lag t ´ 2, Greece, France and Austria are the countries that receive highest per-

centage of shocks from other countries.

• at lag t´ 3 and t´ 4, Germany and Italy receive highest percentage of shocks from

other countries and Netherland transmits the highest percentage to other countries.

Table 1.3 shows the network statistics extracted from the four different graphs. Here,

the average path length represents the average graph-distance between all pair of nodes,

where connected nodes have graph distance 1. From Table 1.3 and Figure 1.8 the lag t´ 1

is more dense, from the average degree 2.92 and from the density of the graph 0.122, and

has the highest number of links (73). Indeed, in the lag t ´ 3 the average path length

reaches its minimum value meaning a faster shock transmission.

Links Avg Degree Density Avg Path length
t´ 1 73 2.92 0.122 3.423
t´ 2 45 1.80 0.075 3.211
t´ 3 41 1.64 0.068 2.479
t´ 4 52 2.08 0.087 2.718

Table 1.3: The network statistics for the 4 different lags. The average path length repre-
sents the average graph-distance between all pairs of nodes. Connected nodes have graph
distance 1.

Figure A.5 and Figure A.6 show the predictive distributions (solid lines) generated

by the nonparametric approach conditioning on all values of Yit, where t “ 1, . . . , T and

i “ 1, . . . , 25 (the number of the states) and the best normal fits (dashed lines) for the

empirical distributions of all the series. From a comparison with the empirical distribution,

we note that the nonparametric approach is able to capture skewness and excess of kurtosis

in the data. Furthermore, we observe that for the majority of the countries of interest, the

predictive densities (solid lines) generated with our nonparametric sparse approach have

fatter tails than the tails of the best normal (dashed lines) and they have long left tails.
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(a) lag t´ 1 (b) lag t´ 2

(c) lag t´ 3 (d) lag t´ 4

Figure1.8: Weighted Networks of GDP for OECD countries at lag: (a) t´1, (b) t´2, (c)
t´ 3, (d) t´ 4, where blue edges represent negative weights and red ones positive weights.
Nodes’ size is based on the node degree.

Our Bayesian nonparametric sparse model is suitable for describing and predicting these

data thanks to these features.

Figure A.7 and Figure A.8 show the one-step-ahead posterior predictive densities for Yit,

where t “ 50, . . . , T and i “ 1, . . . , 25, evaluated at the current values of the explanatory

variables Yit´1, . . . , Yit´p. In the same plot, the grey area represents the heatmap sequence

of the 95% high probability density region of the predictive densities (darker colors represent

higher density values). These densities are used to predict the peaks and the troughs of
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the cycles in the OECD countries. In particular we can see troughs near the 1980s and

2009s near the crisis in the majority of the European countries.

1.6 Conclusions

In this paper we have proposed a novel Bayesian nonparametric sparse model thourgh

the introduction of multiple shrinkage priors. In order to capture the sparsity structure

in the model, we introduce two stage of the hierarchy for the prior choice, where the

first one consists in a Bayesian lasso conditionally independent Normal-Gamma prior and

the second one is given by a random mixture distribution for the hyperparameters of the

Normal-Gamma distribution with a particular base measure, based on the two-parameters

gamma developed by Miller (1980).

The proposed hierarchical prior is used to proposed a Bayesian nonparametric model

for VAR models. We provide an efficient Monte Carlo Markov Chain algorithm for the

posterior computations and the effectiveness of this algorithm is assesed in simulation and

real data exercises. These simulation studies illustrate the good performance of our model

with different sample sizes and different constructions of the matrix of coefficients compared

to existing priors in the literature.

Besides through simulation studies, the application to the GDP growth rates in different

OECD countries shows the relevant linkages between different units of the panel at various

lags and the estimation of the number of cluster in the network. Furthermore we found

evidence of good predictive abilities of our Bayesian nonparametric model.

We conclude the paper with the indication of some future research lines. Our hierar-

chical prior and our nonparametric approach can be extended to the graphical models for

the study of the financial contagion with the introduction of link functions (such as the

probit or the logit function) or to the Factor autoregressive models (see Kaufmann and
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Schumacher (2012)) for the analysis of the stochastic volatility processes.
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Appendix A

Technical Details of Chapter 1

A.1 Gibbs sampling details

We introduce the following notations, for k ě 1, and l “ 1, 2,

Dlk “ tj P 1, . . . , rl : dlj “ k, δlj “ 1u,

D˚ “ tk|D1k YD2k ‰ 0u, D˚ “ max
l“1,2

max
jPt1,...,rlu

dlj ,

where Dk denotes the set of indexes of the coefficients allocated to the k-th component of

the mixture and D˚ the set of indexes of the non-empty mixture components, while D˚

is the number of stick-breaking components used in the mixture. As noted by Kalli et al.

(2011), the sampling of infinitely many elements of Θ and V is not necessarily, since only

the elements in the full conditional probability density functions of D,∆ are needed.

The maximum number of atoms and stick-breaking components to sample is N˚ “

maxtN˚1 , N˚2 u, where N˚l is the smallest integer such that
řN˚

l
k“1wlk ą 1 ´ u˚l , where

u˚l “ min1ďjďnltulju. In the following sections we explain in details all the steps of the

Gibbs sampler, which is built on the slice sampler algorithm of Walker (2007) and of Kalli

et al. (2011).
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A.1. GIBBS SAMPLING DETAILS

A.1.1 Update V,U

We treat V as three blocks of random length: V “ pV ˚, V ˚˚, V ˚˚˚q, where

V ˚ “ tVk : k P D˚u “ pvk1, . . . , vkD˚q,

V ˚˚ “ pvkD˚`1, . . . vkN˚q, V ˚˚˚ “ tVk : k ą N˚u.

In order to sample from the conditional distribution of pU, V q a further blocking is used:

i) Sampling from the full conditional posterior distribution of V ˚, is obtained by drawing

v1k, v2k, with k ď D˚ from the full conditionals

fpv1j | . . . q9Be

˜

1`
r1
ÿ

j“1
Ipd1j “ d, δ1j “ 1q, α`

r1
ÿ

j“1
Ipd1j ą d, δ1j “ 1q

¸

,

fpv2j | . . . q9Be

˜

1`
r2
ÿ

j“1
Ipd2j “ d, δ2j “ 1q, α`

r2
ÿ

j“1
Ipd2j ą d, δ2j “ 1q

¸

.

ii) Sampling form the full conditional posterior distribution of U is obtain by simulating

from, for 1 ď j ď r1,

fpu1j | . . . q9

"

Ipu1j ă w1d1j q
δ1j if δ1j “ 1,

Ipu1j ă 1q1´δ1j if δ1j “ 0,

and, for 1 ď j ď r2,

fpu2j | . . . q9

"

Ipu2j ă w2d2j q
δ2j if δ2j “ 1,

Ipu2j ă 1q1´δ2j if δ2j “ 0.

iii) For pV ˚˚, V ˚˚˚q given rΘ,Σ,Λ, V ˚, D,∆, Y s, we need to sample only the elements of

V ˚˚ from the prior distribution of the stick-breaking construction, that is, for each

l “ 1, 2,

fpvlj | . . . q9Bep1, αq.
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A.1. GIBBS SAMPLING DETAILS

A.1.2 Update the mixing parameters λ

We update the mixing parameters λlj (l “ 1, 2), where the full conditional posterior dis-

tribution of λlj is

fpλlj | . . . q9λ
´ 1

2 p1´δljq
lj exp

"ˆ

´
1
2

1
λlj

β2
lj ´

τ0
2 λlj

˙

p1´ δljq
*

λ
pγ0´1qp1´δljq
lj ˆ

ˆ λ
´ 1

2 δlj
lj exp

"

´
1
2

1
λlj
pβlj ´ µldlj q

2δlj

*

λ
pγldlj´1qδlj
lj exp

!´

´
τldlj

2 λlj

¯

δlj

)

9λ
Clj´1
lj exp

"

´
1
2

„

Aljλlj `
Blj
λlj

*

9GiGpAlj , Blj , Cljq,

where GiG stays for Generalize Inverse Gaussian of parameters Alj ą 0, Blj ą 0 and Clj

a real parameter (see Halphen (1941), Hoermann and Leydold (2013), Devroye (2014),

Dagpunar (1988) and Dagpunar (1989)), which, in our case, are defined as

Alj “
“

p1´ δljqτ0 ` δljτldlj
‰

, Blj “
“

p1´ δljqβ2
lj ` δljpβlj ´ µldlj q

2‰ ,

Clj “

„

p1´ δljqγ0 ` γldljδlj ´
1
2



.

We use the λlj just drawn for construct the matrix Λl “ diagtλlu, where diagtλlu returns a

diagonal matrix with the elements of λl “ pλl1, . . . , λlrlq1 on the main diagonal. In practice

we have two different matrix, Λ1 “ diagtλ11, . . . , λ1r1u and Λ2 “ diagtλ21, . . . , λ2r2u.

A.1.3 Update Θ

We consider two different cases: the sparse one, where the parameters are (µ0, γ0, τ0), and

the nonsparse case, where the parameters are (µk, γk, τk), with k ě 1. Since the prior for µ0

has unit probability mass at 0, the full conditional distribution of µ0 is fpµ0| . . . q “ δt0upµ0q.

The full conditional distribution of the shape and scale parameters pγ0, τ0q is:

fppγ0, τ0q| . . . q9 gpγ0, τ0|ν0, p0, s0, n0q
r1
ź

j“1|δ1j“0

ˆ

pτ0{2qγ0

Γpγ0q
λγ0´1

1j exp
"

´
τ0
2 λ1j

*˙
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A.1. GIBBS SAMPLING DETAILS

ˆ

r2
ź

j“1|δ2j“0

ˆ

pτ0{2qγ0

Γpγ0q
λγ0´1

2j exp
"

´
τ0
2 λ2j

*˙

, (A.1)

where we assume that:

r1,0 “
r1
ÿ

j“1
p1´ δ1jq “ r1 ´ r1,1, r1,1 “

r1
ÿ

j“1
δ1j ,

r2,0 “
r2
ÿ

j“1
p1´ δ2jq “ r2 ´ r2,1, r2,1 “

r2
ÿ

j“1
δ2j .

The distribution in (A.1) has the same kernel of the prior distribution gpγ0, τ0| . . . q given

in (1.10), that is:

fppγ0, τ0q| . . . q9 τ
ν0γ0´1
0 pγ0´1

0 expt´s0τ0u
1

Γpγ0qn0
ˆ

ˆ
pτ0{2qr1,0γ0

Γpγ0qr1,0

ˆ

ź

j|δ1j“0
λ1j

˙γ0´1
exp

"

´
τ0
2

ÿ

j|δ1j“0
λ1j

*

ˆ
pτ0{2qr2,0γ0

Γpγ0qr2,0

ˆ

ź

j|δ2j“0
λ2j

˙γ0´1
exp

"

´
τ0
2

ÿ

j|δ2j“0
λ2j

*

9 g

ˆ

γ0, τ0|ν0 ` r1,0 ` r2,0, p0
ź

j|δ1j“0
λ1j

ź

j|δ2j“0
λ2j ,

s0 `
1
2

ÿ

j|δ1j“0
λ1j `

1
2

ÿ

j|δ2j“0
λ2j , n0 ` r1,0 ` r2,0

˙

.

In order to draw samples from g we apply here a collapsed Gibbs sampler. Samples from

fpγq are obtained by a Metropolis-Hastings (MH) algorithm with the prior as proposal, we

start with a value of γ˚ „ Gap1{2, 2q, we remind qpγq is the probability density function of

γ and is distributed as a Gap1{2, 2q. The acceptance probability of the MH step is:

αpγ˚, γoldq “ min
"

1, fpγ
˚qqpγoldq

fpγoldqqpγ˚q

*

. (A.2)
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A.1. GIBBS SAMPLING DETAILS

The MH chain updates as follows:

γnew “

"

γold if u ą αpγ˚, γoldq,
γ˚ if u ď αpγ˚, γoldq,

where u is a random number from a standard uniform. Samples from the conditional fpτ |γq

are easily obtained since fpτ |γq is a Gamma distribution.

In the nonsparse case, we generate samples pµlk, γlk, τlkq, k “ 1, . . . , N˚, l “ 1, 2, by

applying a single move Gibbs sampler with full conditional distributions fpµlk| . . . q and

fpγlk, τlk| . . . q. The full conditional

fpµlk| . . . q9N pµlk|c, dq
ź

j|δlj“1,dlj“k
N pβlj |µlk, λljq

9
1

?
2πd

exp
"

´
1
2dpµlk ´ cq

2
*

ź

j|δlj“1,dlj“k

1
a

2πλlj
exp

"

´
1

2λlj
pβlj ´ µlkq

2
*

9 exp

$

&

%

´
1
2dpµlk ´ cq

2 ´
ÿ

j|δlj“1,dlj“k

1
2λlj

pβlj ´ µlkq
2

,

.

-

is proportional to the normal N pẼk, Ṽkq with parameters Ẽk “ Ṽk

´

c
d `

ř

j|δlj“1,dlj“k
βlj
λlj

¯

and Ṽk “
´

1
d `

ř

j|δlj“1,dlj“k
1
λlj

¯´1
. On the other hand, the joint conditional posterior of

pγlk, τlkq is:

fppγlk, τlkq| . . . q9 gpγlk, τlk|ν1, p1, s1, n1q
ź

j|δlj“1,dlj“k

ˆ

pτlk{2qγlk
Γpγlkq

λγlk´1
lj exp

!

´
τlk
2 λlj

)

˙

,

(A.3)

where we have defined rl,1k “
řrl
j“1 δljIpdlj “ kq. Hence (A.3) can be reduced as

fppγlk, τlkq| . . . q9 τ
ν1γlk´1
lk pγlk´1

1 expt´s1τlku
1

Γpγlkqn1
ˆ
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ˆ
pτlk{2qrl,1kγlk

Γpγlkqrl,1k

¨

˝

ź

j|δlj“1,dlj“k
λlj

˛

‚

γlk´1

exp

$

&

%

´
τlk
2

ÿ

j|δlj“1,dlj“k
λlj

,

.

-

9 g

¨

˝γlk, τlk|ν1 ` rl,1k, p1
ź

j|δlj“1,dlj“k
λlj , s1 `

1
2

ÿ

j|δlj“1,dlj“k
λlj , n1 ` rl,1k

˛

‚,

for k P D˚ and from the prior G0 for k R D˚. As in the sparse case, we apply a MH

algorithm, with the acceptance probability as described in (A.2).

A.1.4 Update β

The full conditional posterior distribution of β is:

fpβl| . . . q9 exp
"

´
1
2

ˆ

ÿ

t

β1lX
1
tΣ´1Xtβl`

´ 2β1l
ÿ

t

X 1tΣ´1yt
˙*

´

n
ź

j“1
exp

"

´
1
2
β2
l

λlj
p1´ δljq ´

1
2λlj

pβl ´ µdlj q
2δlj

*

9 exp
"

´
1
2

ˆ

ÿ

t

β1lX
1
tΣ´1Xtβl`

´ 2β1l
ÿ

t

X 1tΣ´1yt
˙

´
1
2

ˆ

β1lΛ´1
l βl ´ 2β1lΛ´1

l pµ
˚
l d δlq

˙*

„ Nrlpṽl,Mlq,

where

Ml “

˜

ÿ

t

X 1tΣ´1Xt ` Λ´1
l

¸´1

,

ṽl “Ml

˜

ÿ

t

X 1tΣ´1yt ` Λ´1
l pµ

˚
l d δlq

¸

,

and µ˚l “ pµldl1 , . . . , µldlrl q
1, δl “ pδl1, . . . , δlrlq1.
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A.1. GIBBS SAMPLING DETAILS

A.1.5 Update Σ

Let S “ tS1, . . . , SnSu and P “ tP1, . . . , PnP u be the set of separators and of prime

components, respectively, of the graph G. So the density of the hyper-inverse Wishart for

Σ conditional on the graph G is:

ppΣq “
ź

PPP
ppΣP q

˜

ź

SPS
ppΣSq

¸´1

, (A.4)

where

ppΣP q9 |ΣP |
´pb`2CardpP qq{2 exp

"

´
1
2trpΣ´1

P LP q

*

, (A.5)

with LP is the positive-definite symmetric diagonal block of L̃ corresponding to ΣP .

By using the sets S and P and since we are working with the decomposable graph,

we know that the likelihood of the graphical gaussian model can be approximated as the

ratio between the likelihood in the prime components and the likelihood in the separator

components. So the posterior for Σ factorizes as follows:

ppΣ| . . . q9
T
ź

t“1
p2πqn{2|Σ|´1{2 exp

ˆ

´
1
2
`

yt ´X
1
tβ
˘1Σ´1 `yt ´X

1
tβ
˘

˙

ppΣq

9 |Σ|T {2 exp
˜

´
1
2tr

˜

ÿ

t

`

yt ´X
1
tβ
˘1Σ´1 `yt ´X

1
tβ
˘

¸¸

ppΣq

9

ś

PPP |ΣP |
´T {2 exp

`

´1
2tr

`
ř

t pyt ´X
1
tβq

1Σ´1
P pyt ´X

1
tβq

˘˘

ś

SPS |ΣS |
´T {2 exp

`

´1
2tr

`
ř

t pyt ´X
1
tβq

1Σ´1
S pyt ´X 1tβq

˘˘ ˆ

ś

PPP |ΣP |
´pb`2CardpP qq{2 exp

 

´1
2trpΣ´1

P LP q
(

ś

SPS |ΣS |
´pb`2CardpSqq{2 exp

 

´1
2trpΣ´1

S LSq
(

9

ś

PPP |ΣP |
´pb`2CardpP q`T q{2

ś

SPS |ΣS |
´pb`2CardpSq`T q{2
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exp
`

´1
2tr

`

Σ´1
P

`
ř

t pyt ´X
1
tβq

1
pyt ´X

1
tβq ` LP

˘˘˘

exp
`

´1
2tr

`

Σ´1
S

`
ř

t pyt ´X
1
tβq

1
pyt ´X 1tβq ` LS

˘˘˘ .

So we have that the posterior distribution for Σ is drawn from:

ppΣ| . . . q9HIWG

˜

b` T, L̃`
T
ÿ

t“1
pyt ´X

1
tβq

1pyt ´X
1
tβq

¸

.

A.1.6 Update Graph G

We apply a Markov chain Monte Carlo for multivariate graphical models for learning the

graph structure G (see Giudici and Green (1999) and Jones et al. (2005)). We see due to

the prior independence assumption of the parameters that:

ppy|Gq “
ĳ T

ź

t“1
p2πq´n{2|Σ|´n{2 exp

ˆ

´
1
2pyt ´X

1
tβqΣ´1pyt ´X

1
tβq

˙

ppβqppΣ|GqdβdΣ.

This integral is difficult to compute and evaluate analytically and we apply a Candidate’s

formula along the line of Chib and Greenberg (1995) and Wang (2010). Following Jones

et al. (2005) we apply a local-move Metropolis-Hastings based on the conditional posterior

ppG| . . . q. A candidate G1 is sampled from a proposal distribution qpG1|Gq and accepted

with probability

α “ min
"

1, ppG
1|yqqpG|G1q

ppG|yqqpG1|Gq

*

.

We use the add/delete edge move proposal of Jones et al. (2005).

A.1.7 Update D and ∆

The full conditionals of D are obtain by sampling from the two different cases, when δlj “ 1

and δlj “ 0 (l “ 1, 2). Starting for δlj “ 1, we have

P pdlj “ d,δlj “ 1| . . . q9 p1´ πlqN pβlj |µld, λljqGapλlj |γld, τld{2qIpulj ă wldq
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9
p1´ πlqN pβlj |µld, λljqGapλlj |γld, τld{2q

ř

kPAwl puljq
N pβlj |µlk, λljqGapλlj |γlk, τlk{2q

@d P Awlpuljq,

for δlj “ 1, while we have

P pdlj “ d, δlj “ 0| . . . q9πlIpulj ă w̃ldq,

with d P Aw̃puljq, where Aw̃puljq “ tk : ulj ă w̃ku which is equal to t0u, because w̃k “ 0,

@k ą 0,

P pdlj “ d, δlj “ 0| . . . q9
"

πlIpulj ă 1qN pβlj |0, λljqGapλlj |γ0, τ0{2q if d “ 0,
0 if d ą 0.

9πlN pβlj |0, λljqGapλlj |γ0, τ0{2q if d “ 0.

A.1.8 Update π “ pπ1, π2q

We assume that the prior for πl is Bep1, αlq, so we have that the full conditional for πl is,

fpπl| . . . q9Be

˜

rl ` 1´
rl
ÿ

i“1
Ipδli “ 1q, αl `

rl
ÿ

i“1
Ipδli “ 1q

¸

.
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A.2 Simulated and Real Data Results
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(b) m=80 with block matrices

FigureA.1: Posterior distribution of the number of clusters for m “ 80, with random
elements in the B matrix (left) and with block matrix (right).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(a) m=80 with random numbers

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(b) m=80 with blocks

FigureA.2: Hamming distance between B and its posteriors for m “ 80, with random
elements (left) and with block matrix (right).
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(b) m=80 with block matrices

FigureA.3: Posterior mean of the matrix of δ for m “ 80 with random element (left) and
with block matrix (right).

(a) m=80 with random numbers (b) m=80 with block matrices

FigureA.4: Weighted network for m “ 80 with random elements in the B matrix (left)
and with block matrix (right), where the blue edges mean negative weights and red ones
represent positive weights.
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FigureA.5: GDP growth rates Yit (histogram), predictive distribution (solid line) and best normal
(dashed line) for all the countries of the panel.
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FigureA.6: GDP growth rates Yit (histogram), predictive distribution (solid line) and best normal
(dashed line) for all the countries of the panel.

52



A.2. SIMULATED AND REAL DATA RESULTS

(a) Australia (b) Austria (c) Belgium

(d) Canada (e) Denmark (f) Finland

(g) France (h) Germany (i) Greece

(j) Iceland (k) Ireland (l) Italy

FigureA.7: Predictive results for all countries. In each plot: GDP growth rates Yit (black lines);
heatmap (grey areas) of the 95% high probability density region of the predictive density functions (darker
colors represent higher density values) evaluated at each time point, for t “ 1, . . . , T at the value of the
predictors Yit´1, . . . , Yit´p for i “ 1, . . . , 25.
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(m) United States

FigureA.8: Predictive results for all countries. In each plot: GDP growth rates Yit (black lines);
heatmap (grey areas) of the 95% high probability density region of the predictive density functions (darker
colors represent higher density values) evaluated at each time point, for t “ 1, . . . , T at the value of the
predictors Yit´1, . . . , Yit´p for i “ 1, . . . , 25.
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Chapter 2

Bayesian Nonparametric Conditional Copula
Estimation of Twin Data

Abstract. Several studies on heritability in twins aim at understanding the different con-

tribution of environmental and genetic factors to specific traits. Considering the National

Merit Twin Study, our purpose is to correctly analyse the influence of the socioeconomic

status on the relationship between twins’ cognitive abilities. Our methodology is based on

conditional copulas, which allow us to model the effect of a covariate driving the strength

of dependence between the main variables. We propose a flexible Bayesian nonparametric

approach for the estimation of conditional copulas, which can model any conditional copula

density. Our methodology extends the work of Wu, Wang, and Walker (2015) by intro-

ducing dependence from a covariate in an infinite mixture model. Our results suggest that

environmental factors are more influential in families with lower socio-economic position.

Keywords: Bayesian nonparametrics, Conditional Copula models, Slice sampling.

This chapter is based on: Dalla Valle, L., Leisen, F. and Rossini, L. (2016). “Bayesian Nonparametric
Conditional Copula Estimation of Twin Data”, Working Papers N. 08/WP/2016, Dept. of Economics, Ca’
Foscari University of Venice. Working paper available at http://arxiv.org/abs/1603.03484.
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2.1. INTRODUCTION

2.1 Introduction

The literature on heritability of traits in children often focusses on twins, due to the shared

environmental factors and the association of genetical characteristics. Among studies on

the heritability of diseases, Wang et al. (2011) applied an efficient estimation method to

mixed-effect models to analyze disease inheritance in twins.

One of the main purposes of studies on heritability is to estimate the different contri-

bution of genetic and environmental factors to traits or outcomes (see, for example, the

latent class twin method of Baker (2016)). Bates et al. (2013) studied the interactions

between environmental and genetic effects to intelligence in twins, showing that higher so-

cioeconomic status is associated with higher intelligence scores. Bioecological theory states

that environmental factors may significantly influence the heritability of certain character-

istics, such as cognitive ability, which is the readiness for future intellectual or educational

pursuits. Several studies have found that cognitive ability is more pronounced and ev-

ident among children raised in higher socioeconomic status families. Such families can

offer greater opportunities to children, due to their socioeconomic wealth status, and rep-

resent stimulating environments where children’s inherited capabilities may become more

manifest.

The aim of this paper is to correctly analyse the effect of socioeconomic factors on the

relationship between twins’ cognitive abilities. From a sample of 839 US adolescent twin

pairs who completed the National Merit Scholarship Qualifying Test, we consider each

twin’s overall school performance (measured by a total score including English, Mathemat-

ics, Social Science, Natural Science and Word Usage), the mother’s and father’s education

level and the family income. The data are plotted in Figure 2.1, which shows the scatter-

plots of the twins’ school performances, on each axis, against the socioeconomic variables,
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whose values are in different colours (dark brown denotes low values, while light rose de-

notes high values). Figure 2.1 indicates that the twins’ school performances are positively

correlated and their dependence is influenced by the values of the socioeconomic variables

(the mother’s (panel (a)), the father’s level of education (panel (b)) and the family income

(panel (c))). Indeed, most of the light rose dots (denoting high values of the covariates)

are grouped in the upper right corner, while the dark brown dots (denoting low values of

the covariates) lie in the bottom left corner of each plot. Hence, the higher the parents’

education or family income, the higher the twins’ school performance. This means that

the association between the twins’ performance scores is a function of each covariate and

it varies according to the values of the covariates.

In Figure 2.2 we selected only data corresponding to the minimum and maximum value

of each covariate and we produced the scatterplots of the twins’ school performance scores.

The left plots correspond to the minimum value of each covariate, while the right plots

correspond to the maximum value of each covariate. The top plots refer to the mother’s

level of education, the central plots refer to the father’s level of education and the bottom

plots refer to the family income. In all three cases we notice that, as already pointed out, low

values of covariates correspond to low performance scores, while high values of covariates

correspond to high performance scores. In addition, the scatterplot points corresponding

to low covariate values (left plots) tend to lie closely to the diagonal, while the points

corresponding to high covariate values (right plots) tend to be more spread around the

diagonal. This suggests that the school outcomes of children belonging to less affluent

families are generally more similar to each other, while the outcomes of children belonging

to privileged families tend to be more different to each other.

In order to model the dependence structure between the twins’ school performances, we

used copulas, which are popular modeling approaches in multivariate statistics allowing the
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Figure2.1: Scatterplots of the twins overall scores with respect to the mother’s (panel (a)) and
father’s level of education (panel (b)) and family income (panel (c)).

separation of the marginal components of a joint distribution from its dependence structure.

More precisely, Sklar (1959) proved that a d-dimensional distribution H of the random

variables Y1, . . . , Yd can be fully described by its marginal distributions and a function C :

r0, 1sd Ñ r0, 1s, called copula, through the relation Hpy1, . . . , ydq “ CpF1py1q, . . . , Fdpydqq,

where H is the joint cumulative density function. In the literature, copulas have been

applied to model the dependence between variables in a wide variety of fields (see Kolev,

dos Anjos, and Vaz de Mendes (2006) and Cherubini, Luciano, and Vecchiato (2004)). In

particular, applications of copula models involved lifetime data analysis (Andersen (2005)),

survival analysis of Atlantic halibut (Braekers and Veraverbeke (2005)) and transfusion-
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Figure2.2: Scatterplots of the twins overall scores with respect to the mother’s (top panel) and
father’s level of education (middle panel) and family income (bottom panel). Each panel shows on
the left (right) the points corresponding to the minimum (maximum) value of the covariate. The
black line corresponds to the 45 degrees diagonal.

related AIDS and cancer analysis (Emura and Wang (2012), Huang and Zhang (2008) and

Owzar, Jung, and Sen (2007)).

The introduction of covariate adjustments to copulas has attracted an increased interest

in recent years, since it allows the dependence structure to be explained by a specific covari-
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ate. Craiu and Sabeti (2012) propose a conditional copula approach in regression settings

where the bivariate outcome can be mixed or continuous. Patton (2006) introduce time-

variation in the dependence structure of ARMA models (see also Jondeau and Rockinger

(2006) and Bartram, Taylor, and Wang (2007) for other applications of time-series analysis

to dependence modelling). The paper of Acar, Craiu, and Yao (2010) provides a nonpara-

metric procedure to estimate the functional relationship between copula parameters and

covariates, showing that the gestational age drives the strength of dependence between the

birth weights of twins. Abegaz, Gijbels, and Veraverbeke (2012) and Gijbels, Omelka, and

Veraverbeke (2012) propose semiparametric and nonparametric methodologies for the es-

timation of conditional copulas, establishing consistency and asymptotic normality results

for the estimators. The methodology is then applied to examine the influence of the gross

domestic product (GDP), in USD per capita, on the life expectancies of males and females

at birth. Following this literature, we adopt a conditional copula approach to model the

effect of a covariate, such as the parents’ education or the family income, on the strength

of dependence between twins’ school performances.

The literature offers a rich range of copula families, such as elliptical copulas (e.g.

Gaussian and Student’s t) and archimedean copulas (e.g. Frank, Gumbel, Clayton and

Joe copulas) to accommodate various dependence structures. Nonetheless, the choice of

the copula family may be controversial and it is still an open problem (see Joe (2014)).

To overcome this issues, Wu et al. (2015) propose a Bayesian nonparametric procedure to

estimate any unconditional copula density function. The authors combine the well-known

Gaussian copula density with the modeling flexibility of the Bayesian nonparametric ap-

proach, proposing to use an infinite mixture of Gaussian copulas. Our paper extends the

work of Wu et al. (2015) to the conditional copula setting, by proposing a novel method-

ology which combines the advantages of a conditional copula approach with the modeling
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flexibility of Bayesian nonparametrics. In particular, we included a conditional covariate

component to explain the variables dependence structure, allowing us further flexibility to

the copula density modelling. Up to our knowledge, this is the first Bayesian nonparametric

proposal in the conditional copulas literature.

The outline of the chapter is the following. In Section 2.2 we briefly review the literature

about conditional copulas and Bayesian nonparametric copula estimation. In Section 2.3

we introduce our novel Bayesian nonparametric conditional copula setting. Section 2.4

provides an algorithm for estimating the posterior parameters and Section 2.5 illustrates

the performance of the methodology. Section 2.6 is devoted to the application of our

methodology to the analysis of the National Merit Twin Study. Concluding remarks are

given in section 2.7.

2.2 Preliminaries

In this Section, we review some preliminary notions about conditional copulas and illustrate

the Bayesian nonparametric copula density estimation introduced in Wu et al. (2015). In

what follows, we focus on the bivariate case for simplicity, however the arguments can be

easily extended to more than two dimensions.

2.2.1 Copula and Sklar’s Theorem

Copulas are particular functions which account for dependence between multivariate data.

Sklar (1959) introduces the idea of copula for separating the joint distribution function

Hpy1, y2q into two parts respectively. The first part describes the dependence structure of

the distribution, while the second one describes the marginal distribution functions Fi, for

i “ 1, 2.

Definition 2.2.1. Let Y “ pY1, Y2q be a random vector with distribution function H and
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with marginal distribution functions Fi, Yi „ Fi, i “ 1, 2. A distribution function C with

uniform marginals on r0, 1s is called ”copula” of Y if:

H “ CpF1, F2q.

If the marginal distributions are continuous and FipYiq „ Up0, 1q then C is a copula

and we have the following representation:

Cpu1, u2q “ P pF1pY1q ď u1, F2pY2q ď u2q “ P pY1 ď F´1
1 pu1q, Y2 ď F´1

2 pu2qq “

“ HY pF
´1
1 pu1q, F

´1
2 pu2qq,

where F´1
i ptq “ inf tx P R : Fipyq ě tu denotes the generalized inverse of Fi and a copula

C follows from the expression:

Hpy1, y2q “ P pY1 ď y1, Y2 ď y2q “ P pF1pY1q ď F1py1q, F2pY2q ď F2py2qq “

“ CpF1py1q, F2py2qq.

Definition 2.2.2. A copula C : r0, 1s2 Ñ r0, 1s has the following properties:

1. C is grounded, i.e. for every u “ pu1, u2q P r0, 1s2, Cpuq “ 0 if at least one coordinate

ui “ 0, i “ 1, 2;

2. C is 2´increasing, i.e. for every u P r0, 1s2 and v P r0, 1s2 such that u ď v, the

C-volume VCpru, vsq of the box ru, vs is non-negative;

3. Cp1, u2q “ u2 and Cpu1, 1q “ u1 for all ui P r0, 1s2.

After the definition of the properties of a copula, we can explain the main result re-

garding the theory of copula (Sklar (1959)).

Theorem 2.2.1 (Sklar’s Theorem). Let H be the joint distribution function with marginals

F1, F2. Then there exists a copula C such that for all py1, y2q P r´8,8s
2,

Hpy1, y2q “ CpF1py1q, F2py2qq.
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If the marginals are all continuous, then C is unique.

Proof. Let Y “ pY1, Y2q be a random vector on a probability space pΩ,A, P q with distribu-

tion H and let V „ Up0, 1q be independent of Y . Considering the distirbutional transforms

Ui “ FipYi, V q, we have that Ui d
“ Up0, 1q and Yi “ F´1

i pUiq almost surely, i “ 1, 2. Thus

defining C to be the distribution of U “ pU1, U2q we obtain:

Hpy1, y2q “ P pY ď yq “ P pF´1
i pUiq ď yi, i “ 1, 2q

“ P pUi ď Fipyiq, i “ 1, 2q “ CpF1py1q, F2py2qq,

and we can conclude that C is a copula.

When Hp¨q and Cp¨q are differentiable, the equation

Hpy1, y2q “ CpF1py1q, F2py2qq,

for the joint cumulative distribution function implies that the joint probability density

function satisfies:
hpy1, y2q

f1py1qf2py2q
“ crF1py1q, F2py2qs,

where cp¨q is the probability density function of the copula distribution:

cpu1, u2q “
B2

Bu1Bu2
Cpu1, u2q.

In the above part of the section we have discussed the properties of a copula, while in the

following we will analyse different classes of copula that are of interest for our analysis: the

Archimedean and the Gaussian copulas. The latter one is a class of copula, which allows

for a variety of different dependence structures and it is fully described in Nelsen (2006)

and in Genest and MacKay (1986).
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Definition 2.2.3. Let ϕ : r0, 1s Ñ r0,8q be a continuous, strictly decreasing function such

that ϕp1q “ 0. The pseudo-inverse of ϕ is the function ϕr´1s : r0,8q Ñ r0, 1s given by:

ϕr´1sptq “

"

ϕ´1ptq, 0 ď t ď ϕp0q,
0, ϕp0q ď t ď 8.

Note that ϕr´1s is continuous and decreasing on r0,8q and strictly decreasing on

r0, ϕp0qs. Hence, ϕr´1spϕpuqq “ u on r0, 1s and

ϕpϕr´1sptqq “

"

t, 0 ď t ď ϕp0q,
ϕp0q, ϕp0q ď t ď 8.

If we assume ϕp0q “ 8, then we have that ϕr´1s “ ϕ´1. The following theorem will

introduce the archimedean copulas and the proof can be found in Nelsen (2006).

Theorem 2.2.2. Let ϕ : r0, 1s Ñ r0,8q be a continuous, strictly decreasing function such

that ϕp1q “ 0 and let ϕr´1s be the pseudo-inverse of ϕ. Let C : r0, 1s2 Ñ r0, 1s be the

function given by:

Cpu, vq “ ϕr´1spϕpuq ` ϕpvqq. (2.1)

Then C is a copula if and only if ϕ is convex.

The copula defined in (2.1) is called Archimedean copula, where the function ϕ is called

the generator of the copula and it has the following properties:

Theorem 2.2.3. Let C be an Archimedean copula with generator ϕ. Then

1. C is symmetric, i.e. Cpu, vq “ Cpv, uq for all u, v P r0, 1s.

2. C is associative, i.e. CpCpu, vq, wq “ Cpu,Cpv, wqq for all u, v, w P r0, 1s.

In the last part of this section we describe briefly the two families of copula of our

interest for the rest of the paper, the Clayton and the Frank copula and the Gaussian

copula.
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Example 1 (Clayton copula). Let ϕptq “ pt´θ ´ 1q{θ, where θ P r´1,8qz0, then the

Clayton copula is:

Cθpu, vq “ max
ˆ

”

u´θ ` v´θ ´ 1
ı´1{θ

, 0
˙

.

For values of θ ą 0 the copula is strictly positive and the previous definition can be rewritten

as:

Cθpu, vq “
´

u´θ ` v´θ ´ 1
¯´1{θ

.

Example 2 (Frank Copula). Let φptq “ ´ ln e´θt´1
e´θ´1 , where θ P Rz0, then the Frank copula

is given by:

Cθpu, vq “ ´
1
θ

ln
ˆ

1` pe
´θu ´ 1qpe´θv ´ 1q

e´θ ´ 1

˙

.

On the other hand, the last example of this section describes the Gaussian copula.

Example 3 (Gaussian Copula). Let Φρpy1, y2q denote the standard bivariate normal dis-

tribution function of the form:

Φρpy1, y2q “
1

2π
a

1´ ρ2
exp

„

´
y2

1 ´ 2ρy1y2 ` y
2
2

2p1´ ρ2q



,

where ρ P p´1, 1q is the correlation coefficient. Then the Gaussian copula is given by:

Cρpu, vq “ ΦρpΦ´1puq,Φ´1pvqq.

Furthermore, in the next section, we will describe the conditional copula and their

estimation.

2.2.2 The conditional copula

Let Y1 and Y2 be continuous variables of interest and X be a covariate that may affect the

dependence between Y1 and Y2. Following Gijbels et al. (2012), Abegaz et al. (2012) and
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Acar et al. (2010), we suppose that the conditional distribution of pY1, Y2q given X “ x

exists and we denote the corresponding conditional joint distribution function by

Hxpy1, y2q “ P pY1 ď y1, Y2 ď y2|X “ xq.

If the marginals of Hx, denoted as

F1xpy1q “ P pY1 ď y1|X “ xq, F2xpy2q “ P pY2 ď y2|X “ xq,

are continuous, then according to Sklar’s theorem there exists a unique copula Cx which

equals

Cxpu, vq “ HxpF
´1
1x puq, F

´1
2x pvqq, (2.2)

where F´1
1x puq “ infty1 : F1x ě uu and F´1

2x pvq “ infty2 : F2x ě vu, are the conditional

quantile functions and u “ F1xpy1q and v “ F2xpy2q are called pseudo-observations. The

conditional copula Cx fully describes the conditional dependence structure of pY1, Y2q given

X “ x. An alternative expression for (2.2) is

Hxpy1, y2q “ CxpF1xpy1q, F2xpy2qq. (2.3)

2.2.3 Bayesian nonparametric copula density estimation

Let Φρpy1, y2q denote the standard bivariate normal distribution function with correlation

coefficient ρ. Then, Cρ is the copula corresponding to Φρ, taking the form:

Cρpu, vq “ ΦρpΦ´1puq,Φ´1pvqq (2.4)

where Φ is the univariate standard normal distribution function. The Gaussian copula

density is:

cρpu, vq “ |Σ|´
1
2 exp

"

´
1
2pΦ

´1puq,Φ´1pvqqpΣ´1 ´ Iq
ˆ

Φ´1puq
Φ´1pvq

˙*

(2.5)
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where the correlation matrix is:

Σ “
„

1 ρ
ρ 1



.

Wu et al. (2015) proposed to use an infinite mixture of Gaussian copulas for the estimation

of a copula density, as follows

cpu, vq “
8
ÿ

j“1
wjcρj pu, vq (2.6)

where the weights wj ’s sum up to 1 and the ρj ’s vary in p´1, 1q. Given a set of n observa-

tions pu1, v1q, . . . , pun, vnq, their model can be described through a hierarchical specification,

i.e.

pui, viq | ρi
ind
„ cρipui, viq, i “ 1, . . . , n,

ρi | G
iid
„ G,

G „ DP pλ,G0q,

(2.7)

where G is a Dirichlet Process prior with total mass λ and base measure G0. This proposal

is motivated by the fact that bivariate density functions on the real plain can be arbi-

trarily well approximated by a mixture of a countably infinite number of bivariate normal

distributions of the form

fpy1, y2q “
8
ÿ

j“1
wjNppy1, y2q|pµ1j , µ2jq,Σjq

where Nppy1, y2q|pµ1j , µ2jq,Σjq is the joint bivariate normal density with mean vector

pµ1j , µ2jq and correlation matrix Σj (see Lo (1984) and Ferguson (1983)). Roughly speak-

ing, the authors are mimicking the Dirichlet process mixture model in the copula setting

(see Escobar (1994) and Escobar and West (1995)). The sampling strategy follows the
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slice sampler of Walker (2007) and Kalli et al. (2011). The authors show that the Gaussian

mixture is flexible enough to accurately approximate any bivariate copula density.

2.3 Conditional copula estimation with Dirichlet process priors

The data object of study requires a model which can take into account the effect of the

covariate. We build on the model introduced by Wu et al. (2015) and illustrated in the

previous section. The idea is to replace the Gaussian copula with a conditional version

where the correlation is a function of the covariate, i.e.

cρpu, v|xq “ cρpxqpu, vq.

The function ρpxq can be modelled as preferred, for instance, with a generalized linear

model or with a non-linear function. In any case, we have that ρpxq will depend on a

vector of parameters β, so that

cρpxqpu, vq “ cρpx|βqpu, vq.

We assume a Dirichlet process prior on the vector of parameters β “ pβ1, . . . , βdq. Following

the model description provided in equation (2.7), we can summarize our model as follows,

pui, viq | ρpxi|βiq
ind
„ cρpxi|βiqpui, viq, i “ 1, . . . , n,

βi | G
iid
„ G,

G „ DP pλ,G0q,

(2.8)

where G is a Dirichlet process prior with total mass λ and base measure G0. As in Wu

et al. (2015), our model can be described as an infinite mixture of Normal distributions,

cρpu, v|xq “
8
ÿ

j“1
wjcρpx|βjqpu, vq,
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and hence suitable for implementing a slice sampling algorithm, as explained in the next

section.

In order to model the function ρpx|βq, we would like to follow some standard approaches

in the literature. Abegaz et al. (2012) model the dependence of the parameter of interest,

with respect to the covariate, through a calibration function θpx|βq. It is important to

highlight that in many copula families the parameter space is restricted. In contrast,

the calibration function θpx|βq can assume any value on the real line. In our case, our

parameter is restricted to the interval p´1, 1q and we need a transformation which can

link the calibration function θpx|βq to ρpx|βq. In this paper, we adopt the following

transformation,

ρpx|βq “
2

|θpx|βq| ` 1 ´ 1.

In our simulated and real data examples we focus on two particular calibration functions

studied in the literature, which are

θpx|βq “ β1 ` β2x
2

θpx|βq “ β1 ` β2x` β3 exp p´β4x
2q

respectively, such that θpx|βq P p´8,`8q and, consequently, ρpx|βq P p´1, 1q.

2.4 Posterior sampling algorithm

Suppose that, given the observations py1i, y2iq, for i “ 1, . . . , n, the corresponding pseudo-

observations pui, viq are calculated using a nonparametric rank-based estimation approach,

where ui “ r1i{pn`1q and vi “ r2i{pn`1q, for i “ 1, . . . , n, where rki, for k “ 1, 2, denotes

the rank of yki among all ykh, with h P 1, ..., n.

Following equation (2.6), given pui, viq for i “ 1, . . . , n, and the conditional variable xi,

the conditional copula density function for each pair pui, viq can be written as an infinite
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mixture of conditional Gaussian copulas, such that:

cpui, vi|xiq “
8
ÿ

j“1
wjcρpxi|βjqpui, viq (2.9)

where wj ’s are the stick-breaking weights, i.e.

wj “ πj

j´1
ź

l“1
p1´ πlq

where the πj are distributed as a Bep1, λq, λ ą 0. In order to sample from the infinite

mixture displayed in equation (2.9), we use the slice sampling algorithm for mixture models

proposed by Walker (2007) and Kalli et al. (2011). To reduce the dimensionality of the

problem, the authors introduce a latent variable zi for each i which allows us to write the

infinite mixture model as follows:

cpui, vi, zi|xiq “
8
ÿ

j“1
Ipzi ă wjqcρpxi|βjqpui, viq. (2.10)

The introduction of the slice variable zi reduces the sampling complexity to the analogous

of a finite mixture model. In particular, letting

Aw “ tj : zi ă wju, (2.11)

then it can be proved that the cardinality of the set Aw is almost surely finite. Consequently,

there is a finite number of parameters to be estimated. By iterating the data augmentation

principle further, we introduce another latent variable di, which is called allocation variable,

allowing us to allocate each observation to one component of the mixture model. Then,

the conditional copula density cpui, vi, zi, di|xiq takes the form:

cpui, vi, zi, di|xiq “ Ipzi ă wdiqcρpxi|βdi q
pui, viq (2.12)
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where di P t1, 2, . . . u. Hence, the full likelihood function of the conditional copula model

is:
n
ź

i“1
cpui, vi, zi, di|xiq “

n
ź

i“1
Ipzi ă wdiqcρpxi|βdi q

pui, viq. (2.13)

We use the notation pU, V q “ ti “ 1, . . . , n : pui, viqu, X “ tx1, . . . , xnu to describe

the pseudo-observations and the covariate values, respectively. We denote with β “

tβ1,β2, . . . u the vector of parameters and D “ td1, . . . , dnu, Z “ tz1, . . . , znu and π “

tπ1, π2, . . . u the new variables that we have introduced in this Section.
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(g) Predictive, 2nd cal.
fun.

(h) Predictive, 2nd cal.
fun.

Figure2.3: Gaussian copula with sample size n “ 500. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and predictive samples,
respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the second
calibration function, of the simulated and predictive sample, respectively.

Therefore, we used a Gibbs sampler to simulate iteratively from the posterior distribu-

tion function, according to the following steps:

1. The stick-breaking components π are updated given rZ,D,β, pU, V q, Xs;

2. The latent slice variables Z are updated given rπ, D,β, pU, V q, Xs;
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3. The allocation variables D are updated given rπ, Z,β, pU, V q, Xs;

4. The vector of parameters β are updated given rπ, Z,D, pU, V q, Xs.

The Gibbs sampling details are explained in Appendix B.1.

Note that, once the marginals and the conditional copula are estimated according to

the approach described above, the conditional joint distribution function Hxpy1, y2q can be

easily obtained from expression 2.3.
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(e) Simulated, 2nd cal.fun. (f) Simulated, 2nd cal.fun.
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(h) Predictive, 2nd cal.
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Figure2.4: Frank copula with sample size n “ 500. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and predictive samples,
respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the second
calibration function, of the simulated and predictive sample, respectively.

2.5 Simulation experiments

This section illustrates the performance of our Bayesian nonparametric conditional copula

model with simulated data. We generate datasets pU, V q of sizes n “ 250, 500 and 1000 from

elliptical and archimedean copula families, such as the Gaussian, Frank and Double Clayton

copula, which combines the regular Clayton copula with its 900 rotation, allowing positive
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and negative dependence modelling. The copula dependence parameter is considered as a

function of the exogenous variable X, which is simulated from a Uniform distribution in

the interval r´2, 2s and the base measure G0 is a multivariate Normal distribution with a

vector of zeros as mean and a variance-covariance matrix σ2 ¨ I and σ2 big enough.
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(c) Predictive, 1st cal.fun. (d) Predictive, 1st cal.fun.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Simulated, 2nd cal.fun. (f) Simulated, 2nd cal.fun.
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(g) Predictive, 2nd cal.
fun.

(h) Predictive, 2nd cal.
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Figure2.5: Double Clayton copula with sample size n “ 500. Panels (a), (b), (c) and (d) depict the
scatter plots and histograms, obtained with the first calibration function, of the simulated and predictive
samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the
second calibration function, of the simulated and predictive sample, respectively.

We run the Gibbs sampler algorithm described in Section 2.4 for 4000 iterations with

(i) 500 burn-in iterations and (ii) 3500 burn-in iterations. Aiming at a parsimonious repre-

sentation of the results, we focussed on 3500 burn-in iterations, since 500 burn-in iterations

gave very similar results.

Figures B.1, 2.3 and B.2 illustrate the results of the application of the Bayesian non-

parametric conditional copula model to data simulated from a gaussian copula, with sample

sizes n “ 250, 500 and 1000, respectively. Figures B.3, 2.4 and B.4 illustrate similar results

for the Frank copula; while Figures B.5, 2.5 and B.6 illustrate analogous results for the

Double Clayton copula. In Figures 2-14, panels (a), (b), (c) and (d) show the scatter plots
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and histograms of the simulated data and the predictive samples, respectively, obtained

using the first calibration function; while panels (e), (f), (g) and (h) show the scatter plots

and histograms of the simulated data and the predictive sample, respectively, obtained us-

ing the second calibration function. The comparison between the simulated and predictive

outputs highlights the good fit of the Bayesian nonparametric conditional copula model

using either calibration function and with different sample sizes. The model performance

appears to be consistent across all three copula families, demonstrating that the approach

is suitable to model different dependence patterns and tail structures.
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(c) Predictive sample
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(e) Histogram of real data (f) Predictive histogram

Figure2.6: Panels (a) and (b): scatterplots of the twins’ overall scores for the real and pseudo-
observations with respect to the mother’s level of education; panels (c) and (d): scatterplots of the predictive
and transformed predictive sample; panels (e) and (f): histograms of the real data and the predictive sample.

2.6 Real Data applications

We now apply the proposed Bayesian nonparametric conditional copula method to a sample

of 839 adolescent twin pairs, which is a subset of the National Merit Twin Study (Loehlin

and Nichols, 2009, 2014). The dataset contains questionnaire data from 17 years old twins
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and their parents, where the twins were identified among 600.000 US high school juniors

who took part to the National Merit Scholarship Qualifying Test (NMSQT). The NMSQT

was designed to measure cognitive aptitude, that is students’ readiness for future intel-

lectual or educational pursuits. The participants to the test include identical twins and

same-sex fraternal twins who were asked to fill in a complete questionnaire in order to

understand their school performance and attitude. Our purpose is to examine whether the

relationship between twins’ cognitive ability, measured by the NMSQT, is influenced by

their socioeconomic status, measured by parent education and parental income. The vari-

ables we considered from this study are the overall measures of each twin’s performance at

school (obtained as the sum of individual scores in English Usage, Mathematics Usage, So-

cial Science Reading, Natural Science Reading and Word Usage/Vocabulary), the mother’s

and father’s level of education and the family income. The overall scores range from 30 to

160, the education covariates range from 0 to 6, while the family income covariate ranges

from 0 to 7. The levels of the education covariates correspond to: less than 8-th grade,

8-th grade, part high school, high school graduate, part college or junior college, college

graduate, and graduate or professional degree beyond the bachelor’s degree. The levels of

the income covariate correspond to values going from less than $5000 per year to over than

$25000 per year.

As discussed in Section 3.1, the scatterplots in Figure 2.1 clearly show that there is a

positive correlation between the twins’ school performance and the strength of dependence

varies according to the values of a covariate, which is the mother’s (panel (a)) or father’s

level of education (panel (b)) or the family income (panel (c)). In Figure 2.1 the effect

of the covariates is illustrated by dots of different colours, where we notice that most of

the light rose dots are grouped in the upper right corner, while the dark brown dots lie

in the bottom left corner. Therefore, the higher the parents’ education or family income,
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(c) Predictive sample
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Predictive trans-
formed sample

(e) Histogram of real data (f) Predictive histogram

Figure2.7: Panels (a) and (b): scatterplots of the twins’ overall scores for the real and pseudo-
observations with respect to the father’s level of education; panels (c) and (d): scatterplots of the predictive
and transformed predictive sample; panels (e) and (f): histograms of the real data and the predictive sample.

the higher the twins’ school performance. In order to model the effect of a covariate, such

as the mother’s and father’s education and family income, on the dependence between the

overall scores of the twins, we implement the Bayesian nonparametric conditional copula

model.

Note that, with a different dataset, the methodology may be extended to include more

than one covariate. However, model specification issues and increased computational costs

must be carefully considered.

Note that the pseudo-observations are obtained using the nonparametric rank-based

approach described in Section 2.4.

Adopting the same priors of the simulation studies, we run the Gibbs sampling algo-

rithm described in Section 2.4 for 4000 iterations. Figures 2.6, 2.7 and 2.8 show, with

respect to the mother’s and father’s education and family income, respectively, the scat-

terplots of the twins’ overall scores using the real and transformed pseudo-observations
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Figure2.8: Panels (a) and (b): scatterplots of the twins’ overall scores for the real and pseudo-
observations with respect to the family income; panels (c) and (d): scatterplots of the predictive and
transformed predictive sample; panels (e) and (f): histograms of the real data and the predictive sample.

(panels (a) and (b)), the scatterplots of the predictive and transformed predictive samples

(panels (c) and (d)) and the histograms of the real and the predictive samples (panels

(e) and (f)). From the comparison between the scatterplots and histograms of the real

and predictive samples obtained with the three different covariates, it emerges that the

Bayesian nonparametrics conditional copula model accurately captures the tail structures

and the dependence patterns between the twins’ overall scores. We note that the good

performance of this approach in tail modelling makes it suitable to various applications

focussing on extremes. Figure 2.9 shows the conditional Kendall’s tau1 estimated from the

model against the mother’s (top panel) and father’s level of education (middle panel) and

1 The conditional Kendall’s tau of pY1, Y2q given X “ x is a nonparametric measures of correlation between
two ranked variables pY1, Y2q with respect to a covariate X “ x and has the following form:

τpxq “ 2P ppY1 ´ Y
1

1qpY2 ´ Y
1

2q ą 0|X “ X 1 “ xq ´ 1 “ 4
ż ż

Cxpu1, u2qdCxpu1, u2q ´ 1,

where Cx is the appropriate conditional copula and pY 11 , Y 12 , X 1q is an independent copy of the random
vector pY1, Y2, Xq.
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(c) Family income

Figure2.9: Estimated Kendall’s tau against the mother’s (top panel) and father’s level of education
(middle panel) and the family income (bottom panel) and an approximate 95% confidence interval (dotted
lines).

the family income (bottom panel). The plots clearly illustrate the negative effect of all

three covariates on the dependence between the twins’ overall scores. The effect is greater

for the family income, where the Kendall’s tau decreases from approximately 0.83 to 0.33,

while for the parents’ education levels the Kendall’s tau decreases from approximately 0.8

to 0.6. Therefore, the higher the parents’ education and family income, the better the so-

cioeconomic status and the higher the differences between the twins’ school performances.

The cognitive aptitudes of twins from less advantaged families are more similar to each

other than those from high income, highly educated families. Families of high socioeco-

nomic status represent supportive and challenging environments, able to offer a wide range

of opportunities and choices to their children, and allowing them to express themselves
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freely. Hence, twins raised in wealthy families are encouraged to develop differences in

their traits, and may show rather dissimilar cognitive abilities, albeit high on average.

On the contrary, families of low socioeconomic status offer scarce opportunities to

their children and may represent limiting and restrictive environments. In less advantaged

families, twins cannot develop their full potential and differences and both tend to show

low cognitive abilities.

This might suggest, as in Loehlin et al. (2009), an interaction between genetic and en-

vironmental factors. Genes multiply environmental inputs that support intellectual growth

such that an increased socioeconomic status raises the average cognitive ability but also

magnifies individual differences in cognitive ability (see Bates et al. (2013)).

2.7 Conclusion

In this paper we proposed a Bayesian nonparametric conditional copula approach to model

the strength and type of dependence between two variables of interest and we applied the

methodology to the National Merit Twin Study. In order to capture the dependence struc-

ture between two variables, we introduced two different calibration functions expressing

the functional form of a covariate variable. The statistical inference was obtained imple-

menting a slice sampling algorithm, assuming an infinite mixture model for the copula.

The methodology combines the advantages of the conditional copula approach with the

modeling flexibility of Bayesian nonparametrics.

The simulation studies illustrated the good performance of our model with three distinct

copula families and different sample sizes. The application to the twins data revealed the

importance of the environment in the development of twins belonging to low socioeconomic

classes and suggest that socioeconomic factors are more influential in families with lower

social levels.
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Although this paper focusses on bivariate copula models, the methodology can be

extended to multivariate copulas including more than one covariate. However, the inclusion

of multiple covariates needs special attention regarding the choice of variables prior to

estimate the calibration functions. Moreover, the increasing computational cost due to the

additional covariates should be taken carefully into consideration.

We are currently working on extending the framework of the conditional copula ap-

proach presented here by considering the hierarchical/nested copulas (see Segers and Uyt-

tendaele (2014)) in order to allow a vast class of Archimedean copulas and study the tree

copulas structure.
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Appendix B

Technical Details of Chapter 2

B.1 Gibbs sampling details

Let Dj “ ti “ 1, . . . , n : di “ ju be the set of indexes of the observations allocated to the

j-th component of the mixture, while D “ tj : Dj ‰ Hu is the set of indexes of non-empty

mixtures components. Let D˚ “ sup tDu be the number of stick-breaking components used

in the mixture. As in Kalli et al. (2011), the sampling of infinite elements of π and β is

not necessary, since only the elements of the full conditional probability density functions

of D are need.

The maximum number of stick-breaking components to be sampled is:

N˚ “ max ti “ 1, . . . , n|N˚i u,

where N˚i is the smallest integer such that
řN˚i
j“1wj ą 1´ zi.

B.1.1 Update of π

We update the stick-breaking components and consequently the weights wj based on the

equation wj “ πj
ś

kăjp1´ πkq. Assuming that πj is distributed as a Beta (Bep1, λq), the
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full conditional distribution of πj is:

πj | ¨ ¨ ¨ „ Bep1`#tdi “ ju, λ`#tdi ą juq, (B.1)

where #tdi “ ju are the number of di equal to j and #tdi ą ju is the number of di greater

than j for j ă D˚.

On the other hand, if j “ D˚ ` 1, . . . , N˚ we have that

πj | ¨ ¨ ¨ „ Bep1, λq.

B.1.2 Update of Z

From the full likelihood function (2.13), zi follows a uniform distribution

zi| ¨ ¨ ¨ „ Up0, wdiq (B.2)

and it is sampled accordingly.

B.1.3 Update of D

The allocation variable di values lie between 0 and Ni and the density of di satisfies

P pdi “ j| . . . q9 Ipzi ă wdiqcρpxi|βdi q
pui, viq. (B.3)

B.1.4 Update of β

The full conditional of the vector of parameters βk, for k ě 1 is:

fpβk| . . . q9πpβkq
ź

di“k

cρpxi|βkqpui, viq, (B.4)

where πpβkq is the prior on β. Since the (B.4) is not a standard distribution, we used a

Random Walk Metropolis Hastings.

B.2 Graphical part of the simulated examples
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(e) Simulated, 2nd cal.fun. (f) Simulated, 2nd cal.
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(g) Predictive, 2nd cal.
fun.

(h) Predictive, 2nd cal.
fun.

FigureB.1: Gaussian copula with sample size n “ 250. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and predictive samples,
respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the second
calibration function, of the simulated and predictive sample, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Simulated, 1st cal.fun. (b) Simulated, 1st cal.fun.
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FigureB.2: Gaussian copula with sample size n “ 1000. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and predictive samples,
respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the second
calibration function, of the simulated and predictive sample, respectively.
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(a) Simulated, 1st cal.fun. (b) Simulated, 1st cal.fun.
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(c) Predictive, 1st cal.fun. (d) Predictive, 1st cal.fun.
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(e) Simulated, 2nd cal.fun. (f) Simulated, 2nd cal.fun.
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FigureB.3: Frank copula with sample size n “ 250. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and predictive samples,
respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the second
calibration function, of the simulated and predictive sample, respectively.
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(a) Simulated, 1st cal.fun. (b) Simulated, 1st cal.fun.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) Predictive, 2nd cal.
fun.

(h) Predictive, 2nd cal.
fun.

FigureB.4: Frank copula with sample size n “ 1000. Panels (a), (b), (c) and (d) depict the scatter
plots and histograms, obtained with the first calibration function, of the simulated and predictive samples,
respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the second
calibration function, of the simulated and predictive sample, respectively.
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FigureB.5: Double Clayton copula with sample size n “ 250. Panels (a), (b), (c) and (d) depict the
scatter plots and histograms, obtained with the first calibration function, of the simulated and predictive
samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the
second calibration function, of the simulated and predictive sample, respectively.
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(a) Simulated, 1st cal.fun. (b) Simulated, 1st cal.fun.
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(e) Simulated, 2nd cal.fun. (f) Simulated, 2nd cal.fun.
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FigureB.6: Double Clayton copula with sample size n “ 1000. Panels (a), (b), (c) and (d) depict the
scatter plots and histograms, obtained with the first calibration function, of the simulated and predictive
samples, respectively; panels (e), (f), (g) and (h) depict the scatter plots and histograms, obtained with the
second calibration function, of the simulated and predictive sample, respectively.
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Appendix C

Technical Details of Chapter 1 and of Chapter 2

C.1 Slice Sampling Representation

Walker (2007) and Kalli et al. (2011) proposed a new algorithm, called slice sampling, for

sampling the mixture of Dirichlet process model. First of all, let us define the mixture of

Dirichlet process model with Gaussian kernel as follow:

fP pyq “

ż

N py|µ, σ2qdP pφq

where P „ DPpM,P0q means P follows a Dirichlet Process with concentration parameter

M and based measure P0 and φ “ pµ, σ2q is the parameter of interest, where µ is the

mean and σ2 is the variance of the Normal distribution. The Dirichlet process, P has a

stick-breaking representation as:

P “
8
ÿ

j“1
wjδφj

where δφj is the delta of Dirac with a point mass of 1 at φj and φ1, φ2, . . . are indepen-

dent and identically distributed from P0 and the weights follow from the stick-breaking
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representation:

w1 “ v1, wj “ vj
ź

lăj

p1´ vlq

where the variables pv1, v2, . . . q are independent and identically distributed as a Bep1,Mq.

Given the form of P , we can write

fv,µ,σ2pyq “
8
ÿ

j“1
wjN py|µj , σ2

j q

and we need to find the finite number of variables need to be sampled to produce a sta-

tionary Markov chain. Therefore we introduce a latent variable u such that:

fv,µ,σ2py, uq “
8
ÿ

j“1
Ipu ă wjqN py|µj , σ2

j q “

8
ÿ

j“1
wjUpu|u,wjqN py|µj , σ2

j q (C.1)

and with probability wj , we have that u and y are independent and are uniform and normal

distributed. We introduce the set Awpuq “ tj : wj ą uu, which is a finite set for all u ą 0,

then we can reformulate (C.1) as:

fv,µ,σ2py, uq “
ÿ

jPAwpuq

N py|µj , σ2
j q

The introduction of the latent variable u allows us to have a finite mixture model and we

can introduce a new latent variable d, which will identify the component of the mixture

from which y is to be taken. Hence the joint density has the following form:

fv,µ,σ2py, u, dq “ Ipu ă wdqN py|µd, σ2
dq

Finally the joint posterior distribution is proportional to

n
ź

i“1
Ipui ă wdiqN pyi|µdi , σ

2
diq. (C.2)
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The previous slice sampling mix often slowly due to the correlation between u and w and

during the update of the latent variable u and of the finite set Awpuq can lead to simulation

of more w’s. For solving these problems, the positive sequence ξ1, ξ2, . . . is introduced and

fv,µ,σ2py, u, dq “ ξ´1
d Ipu ă ξdqwdN py|µd, σ2

dq

The choice of ξ depends on the rate at which the ratio ri “ Erwis{ξi increases with i. In

fact, faster rates of increase are associated with better mixing but longer running times.

In the Gibbs sampler, we need to update the following variables:

tpµj , σ
2
j , vjq, j “ 1, 2, . . . ; pdi, uiq, i “ 1, . . . , nu (C.3)

If the variables ξ and v are conditionally independent then the step of the Gibbs sampler

are the following:

• πpµj , σ
2
j | ¨ ¨ ¨ q9 p0pµj , σ

2
j q
ś

di“j
N pyi|µj , σ2

j q

• πpvjq9Bepvj |aj , bjq where aj “ 1`
řn
i“1 Ipdi “ jq and bj “M `

řn
i“1 Ipdi ą jq;

• πpui| ¨ ¨ ¨ q9 Ip0 ă ui ă ξdiq;

• P pdi “ k| ¨ ¨ ¨ q9 Ipk|ξk ą uiqwk{ξkN pyi|µk, σ2
kq

The variables pµj , σ2
j , vjq need to be sample up to the integer N “ maxi tNiu, where Ni

is the largest integer l for which ξl ą ui. On the other hand, the retrospective sampler

(Papaspiliopoulous and Roberts (2008)) is an alternative conditional methods which defines

a Markov chain with the correct posterior of the infinite dimensional model. The principal

difference is in the update of the allocation variable di, in fact in the slice sampling di is

finite at each iteration of the Gibbs sampler, while in the retrospective sampler the value

of di is computed through a Metropolis-Hastings update. This Metropolis-Hasting update
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involves the potential simulation of extra variables n times per iteration, while the slice

sampling only generates extra variables once per iteration.
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Chapter 3

The Yule–Simon Distribution: an Objective
Bayesian Analysis and a Posterior Inference

Abstract. The Yule–Simon distribution is usually employed in the analysis of fre-

quency data. As the Bayesian literature, so far, ignored this distribution, here we show the

derivation of two objective priors for the parameter of the Yule–Simon distribution and an

explicit Gibbs sampling scheme when a Gamma prior is chosen for the shape parameter. In

particular, we discuss the Jeffreys prior and a loss-based prior, which has recently appeared

in the literature. We illustrate the performance of the derived priors and of the proposed

algorithm through simulation studies and the analysis of real datasets.

Keywords: Kullback-Leibler divergence, Loss-based prior, Objective Bayes, Social

Network daily returns, Text Analysis, Data Augmentation.

This chapter is based on:
• Leisen, F., Rossini, L. and Villa, C. (2016). “Objective Bayesian Analysis of the Yule–Simon Distri-

bution with Applications”. Working paper available at http://arxiv.org/abs/1604.05661;
• Leisen, F., Rossini, L. and Villa, C. (2016). “A Note on the Posterior Inference for the Yule–Simon

Distribution”. Forthcoming in the Journal of Statistical Computation and Simulation.

94

http://arxiv.org/abs/1604.05661


3.1. INTRODUCTION

3.1 Introduction

In this work we aim to fill a gap in the Bayesian literature by proposing two objective priors

for the parameter of the Yule–Simon distribution. The distribution was firstly discussed

in Yule (1925) and then re-proposed in Simon (1955), and can be used in scenarios where

the center of interest is some sort of frequency in the data. For example, Yule (1925) used

it to model abundance of biological genera, while Simon (1955) exploited the distribution

properties to model the addition of new words to a text. It goes without saying that

other areas of applications can be considered where, for instance, frequencies represent the

elementary unit of observation. For example, in this chapter we show the employment of

the Yule–Simon distribution in modelling daily increments of social network stock options,

surnames and ’superstar’ success in the music industry.

Despite the wide range of applications, the literature on the Yule–Simon distribution

appears to be limited. For example, Gallardo et al. (2016) highlight that the heavy-tailed

property of the Yule–Simon distribution allows for extreme values even for small sample

sizes. In particular, they claim that the above property is suitable to model short survival

times which, due to the nature of the problem, happen with relatively high frequency. And,

more surprisingly, to the best of our knowledge it seems that no attention has been given

to the problem by the Bayesian community. Given the challenges that classical inference

faces in estimating the parameter of the distribution (Garcia Garcia, 2011), the possibility

of tackling the problem from a Bayesian perspective is, undoubtedly, appealing.

In addressing the estimation of the shape parameter of the Yule–Simon distribution

by means of the Bayesian framework, we opted for an objective approach. We propose

two priors: the first is the Jeffreys rule prior (Jeffreys, 1961), while the second is obtained

by applying the loss-based approach discussed in Villa and Walker (2015). Although we
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formally introduce the Yule–Simon distribution and its derivation in the next Section, it is

important to give an anticipation of the general idea here, so to fully appreciate the gain in

adopting an objective approach. As nicely illustrated in Chung and Cox (1994), the shape

parameter of the distribution is linked via a one-to-one transformation to the probability

that the next observation will not take a value previously observed. For example, if we

have observed n words in a text, we wish to make inference on the probability that the

pn ` 1q observation is a word not yet encountered in the text, assuming this probability

to be constant. It is then clear that the Yule–Simon distribution models extremely large

events. As such, the information in the data about these events is limited and a “wrongly”

elicited prior could end up dominating the data. On the other hand, a prior with minimal

information content would allow the data “to speak”, resulting in a more robust inferential

procedure. We do not advocate that in every circumstance an objective approach is the only

suitable. In fact, if reliable prior information is available, an elicited prior would represent,

in general, the natural choice. Alas, in the presence of phenomena with extremely rare

events, the above information is often insufficient or incomplete, and an objective choice

would then represent the most sensible one.

On the other hand, we propose an explicit Gibbs sampling scheme when a Gamma

prior is chosen for the shape parameter. The algorithm we propose is based on a stochas-

tic representation of the Yule–Simon distribution as a mixture of Geometric distributions.

This naturally suggests a data augmentation scheme which can be employed to address

Bayesian inference. In particular the choice of a Gamma prior leads to explicit full condi-

tional distributions.

The chapters is organized as follows. In Section 3.2 we set the scene by introducing

the Yule–Simon distribution and the notation that will be used throughout the chapter.
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The proposed objective priors are derived and discussed in Section 3.3. Section 3.4 collects

the analysis of the frequentist performances of the posterior distributions yielded by the

proposed priors. Through a set of several simulation scenarios, we compare and analyse

the inferential capacity of the objective priors here discussed. In Section 3.5 we illustrate

the application of the priors to three real-data applications. In Section 3.6 we present

the algorithm related to the data augmentation scheme and we illustrate it by means of

simulations, where we consider both a single i.i.d. sample and a count data regression.

Section 3.7 discusses applications to text analysis and comparison with the frequentist

results in the literature. Finally, Section 3.8 is reserved to concluding remarks and points

of discussion.

3.2 Preliminaries

The most known functional form of the Yule–Simon distribution, possibly, is the following:

fpk; ρq “ ρBpk, ρ` 1q, k “ 1, 2, . . . and ρ ą 0, (3.1)

where Bp¨, ¨q is the beta function and ρ is the shape parameter. The distribution in (3.1)

was firstly proposed by Yule (1925) in the field of biology; in particular, to represent the dis-

tribution of species among genera in some higher taxon of biotic organisms. More recently,

Simon (1955) noticed that the above distribution can be observed in other phenomena,

which appear to have no connection among each others. These include, the distribution

of word frequencies in texts, the distribution of authors by number of scientific articles

published, the distribution of cities by population and the distribution of incomes by size.

The derivation process followed by Simon (1955) was based on word frequencies, and it

consisted of two assumptions:

(i) The probability that the pn ` 1q-th word is a word observed exactly k times in the
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first n words, is proportional to k ¨ hpk, nq, which is the total number of occurences

of all the words that have been observed exactly k times. In particular, hpk, nq is

the number of different words that have occured exactly k times in the first n words

(e.g. if in a text there are 300 different words that have appeared once each, then

hpk, nq “ 300);

(ii) The probability that the pn` 1q-th word is new (i.e. not being observed in the first

n words) is constant and equal to α P p0, 1q.

Simon (1955) shows that, under the condition of stationarity, the process defined by the

above two assumptions yields (3.1) by setting ρ “ 1{p1´ αq, obtaining:

fpk;αq “ 1
1´ αB

ˆ

k,
1

1´ α ` 1
˙

. (3.2)

An important consequence of the above assumption (ii) is that the shape parameter ρ of

the distribution takes values in p1,`8q. In other words, should we use the model as in Yule

(1925), which includes the possibility that 0 ă ρ ď 1, we would loose the interpretation

of the generating process described by the two assumptions above. In fact, for ρ ă 1, the

probability of observing a new word would be negative; while for ρ “ 1 the probability

would be zero, rendering the process trivial (i.e. all the observed words will be equal to the

first one observed). Furthermore, the expectation of the Yule–Simon distribution is defined

only for values of the shape parameter larger than one, and this property is something one

would expect in most applications. For all the above reasons, in the first part of the chapter

we focus on the parametrization of the Yule-Simon given in (3.2), and we will discuss prior

distributions for α.

In addition to the parametrization of the Yule–Simon distribution as in (3.2), we will

also consider the possibility of having the parameter α discrete. This is a common finding in
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literature, especially when implementations of the model are considered. See, for example,

Simon (1955) and Garcia Garcia (2011). The discretization of α will be discussed in detail

in Section 3.3.2.

On the other hand, the probability distribution defined in (3.1) can be seen as a mix-

ture of Geometric distributions. Precisely, let W be an exponentially distributed random

variable with parameter ρ, and let K be a Geometric distribution with probability of suc-

cess equal to e´W . Therefore, it is easy to see that the Yule-Simon distribution can be

recovered as the marginal of the random vector pK,W q, i.e.

fpk; ρq “
ż 8

0
e´wp1´ e´wqk´1ρe´ρwdw. (3.3)

The above description of the Yule-Simon distribution is crucial to define a data augmen-

tation scheme in a Bayesian setting.

3.3 Objective Priors for the Yule-Simon distribution

This section is devoted to the derivation of two objective priors for the Yule-Simon distribu-

tion: the Jeffreys prior and loss-based prior. The former assumes that parameter space of

α is continuous and it is based on the well-known invariance property proposed by Jeffreys

(1961); the latter assumes the parameter space discrete and is based on Villa and Walker

(2015).

Based on the previous description of the Yule–Simon distribution, we consider the

following Bayesian model,

k1, . . . , kn|α
i.i.d
„ fpk;αq

α „ πpαq

where fpk;αq is the Yule–Simon distribution described in 3.2 and πpαq is the objective

prior distribution of the parameter of interest α, either the Jeffreys or the loss-based prior.
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The likelihood function of the above model, conditionally to the parameter α, is the

following:

Lpk;αq “
n
ź

i“1
fpki, αq “

n
ź

i“1

1
1´ αB

ˆ

ki,
1

1´ α ` 1
˙

,

where k “ pk1, . . . , knq is the vector of observations. In order to compute the Bayesian

analysis of the model, we consider the posterior distribution for α:

πpα; kq9Lpk;αqπpαq,

where πpαq is the objective prior as described in the following part of the section.

3.3.1 The Jeffreys Prior

The Jeffreys prior is defined in the following way (Jeffreys, 1961):

πpαq9
a

Ipαq,

where Ipαq “ Eα
„

´
B2 logpfpk;αqq

Bα2



is the Fisher Information. In the next Theorem (which

proof is in the Appendix) an explicit expression of the Jeffreys prior for the Yule-Simon

distribution is provided.

Theorem 3.3.1. Let fpk;αq be the Yule-Simon distribution defined in equation (3.2), with

0 ă α ă 1. The Jeffreys prior for α is

πpαq9 qpαq, (3.4)

where

qpαq “
1

1´ α

d

1´ 1
p2´ αq2 3F2

ˆ

1, 1
1´ α ` 1, 1; 1

1´ α ` 2, 1
1´ α ` 2; 1

˙

,

with 3F2 being the generalized hypergeometric function.
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The Jeffreys prior stated in Theorem 3.3.1 is a proper prior. In fact, let

πpαq “
qpαq

K
,

where

K “

ż 1

0

1
1´ α

d

1´ 1
p2´ αq2 3F2

ˆ

1, 1
1´ α ` 1, 1; 1

1´ α ` 2, 1
1´ α ` 2; 1

˙

dα

is the normalizing constant of πpαq. It is not difficult to prove that

K ă 8.

Indeed,

K ď

ż 1

0

c

3´ α
1´ α

1
2´ αdα “

1
3π ´ lnp2´

?
3q ă 8.

The result above follows from the following inequality (see Figure 3.1)

3F2

ˆ

1, 1
1´ α ` 1, 1; 1

1´ α ` 2, 1
1´ α ` 2; 1

˙

ě 1.

The properness of the prior in (3.4) ensures the properness of the yielded posterior distri-

bution for α, as such suitable for inference.

3.3.2 The Loss-based Prior

Villa and Walker (2015) introduced a method for specifying an objective prior for discrete

parameters. The idea is to assign a worth to each parameter value by objectively measuring

what is lost if the value is removed, and it is the true one. The loss is evaluated by applying

the well known result in Berk (1966) stating that, if a model is misspecified, the posterior

distribution asymptotically accumulates on the model which is the nearest to the true one,

in terms of the Kullback–Leibler divergence.
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Figure3.1: Plot of the generalised hypergeometric function
3F2

´

1, 1
1´α ` 1, 1; 1

1´α ` 2, 1
1´α ` 2; 1

¯

, where α takes values in p0, 1q.

Given that the parameter α P p0, 1q of the Yule–Simon is in principle continuous, the

above method can not be applied. However, the boundedness of the interval allows for an

easy discretization, directly we can consider the set

DM “

"

α “
i

M
: i “ 1, . . . ,M ´ 1

*

.

Therefore, the worth of the parameter value α is represented by the Kullback–Leibler

divergence

DKLpfpk|αq}fpk|α
1qq “

ż

fpk|αq log
"

fpk|αq

fpk|α1q

*

dk,

where α1 ‰ α is the parameter value that minimizes the divergence. To link the worth of

a parameter value to the prior mass, Villa and Walker (2015) use the self-information loss

function. This particular type of loss function measures the loss in information contained

in a probability statement (Merhav and Feder, 1998). We can write the loss-based prior

as utility functions, where in our special case u1pαq “ log pπpαqq is the utility associated

with the prior for our model fpk|αq and u2pαq is the minimum divergence from fpk|αq,

i.e. the utility of keeping α in DM . The utility described above are 2 different ways of
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measuring the same utility in α. Hence, u1pαq P p´8, 0s and u2pαq P r0,8q, while we want

u1pαq “ ´8 when u2pαq “ 0. If we use an exponential transformations exp tu1pαqu and

exp tu2u ´ 1, then the scales are matched. Therefore, we have

eu1pαq “ πpαq9 egpu2pαq,

where gpuq “ log peu ´ 1q. As we now have, for each value of α, the loss in information

measured in two different ways, we simply equate them obtaining the loss-based prior of

Villa and Walker (2015):

πpαq9 exp
"

min
α1‰α

DKLpfpk|αq}fpk|α
1qq

*

´ 1 α, α1 P DM , (3.5)

where

DKLpfpk|αq}fpk|α
1qq “ log

ˆ

1´ α1
1´ α

˙

` Eα
"

log
„

B

ˆ

k; 1
1´ α ` 1

˙*

´ Eα
"

log
„

B

ˆ

k; 1
1´ α1 ` 1

˙*

.

As the discretized parameter space is finite, no matter what value of M one chooses, the

prior (3.5) is proper, hence, the yielded posterior will be proper as well.

An important aspect is that the value α1 minimizing the Kullback–Leibler divergence

can not be analytically determined, and the prior has to be computationally derived. How-

ever, even for large values of M , the computational cost is trifling compared to the whole

Monte Carlo procedure necessary to simulate from the posterior distribution.

To have a feeling of the prior distributions derived above, we have plotted them in

Figure 3.2. The behaviour of the priors is similar, in the sense that they tend to increase

as α increases and, for increasing values of M , the two distributions seem to converge.
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Figure3.2: Prior distribution for α in panel obtained by applying, in panel (a), Jeffreys
rule, while, in panel (b), the loss-based method with M “ 10 (blue dots), with M “ 20
(black dots) and with M “ 100 (red dots).

However, we note that the Jeffreys prior is flatter than the loss-based priors for large

values of the parameter, i.e. for α approximately greater than 0.8.

3.4 Simulation Study for objective priors

The objective priors defined in Section 3.3 are automatically derived by taking into con-

sideration properties intrinsic to the Yule–Simon distribution. In other words, they do not

depend on experts knowledge or previous observations. It is therefore necessary, in order

to validate them, to assess the goodness of the priors by making inference on simulated

data. This section is dedicated in performing a simulation study on the parameter α using

observations obtained from fully known distributions.

We have considered different sample sizes, n “ 30, n “ 100 and n “ 500, to analyse the

behaviour of the prior distributions under different level of information coming from the

data. Here we show the results for n “ 100 only, as the sole differences in using n “ 30 and

n “ 500 sample sizes are limited to the precision of the inferential results: relatively low for

n “ 30 and relatively high for n “ 500, as one would expect. Besides that, the differences in
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the performance of the two priors noted for n “ 100 remain for the other sample sizes. As

the loss-based prior depends on the discretization of the parameter space, for illustration

purposes, we have considered M “ 10 and M “ 20, that is α P t0.1, 0.2, . . . , 0.9u and

α P t0.05, 0.10, . . . , 0.95u, respectively.

Both the Jeffreys prior and the loss-based prior yield posterior distributions for α

which are not analytically tractable, hence, it is necessary to use Monte Carlo methods.

The reasons behind this choice are discussed in the following two remarks.

Remark 1. In the case of the Jeffreys’ prior, one may use univariate numerical integration

to compute quantities of interest, such as mean and credible intervals. However, in our

experience, numerical integration may fail when the complexity on the integrand increases.

Remark 2. For the Loss based prior, one may be tempted to compute the posterior prob-

abilities as

πpαj |kq “
Lpk|αjqπpαjq

ř

αiPDM Lpk|αiqπpαiq
.

However, the Kullback-divergence in equation (3.5) may take values close to zero, leading

to probabilities which can be interpreted as zero by the computational software employed.

This is particularly true for moderately large values of M . Therefore, a Metropolis-Hastings

in the logarithmic scale allows to overcome the above problem.

We have generated 100 samples from a Yule–Simon distribution with the parameter α

set to every value in the discretization of the parameter space, 9 for M “ 10 and 19 for

M “ 20. For each sample we have simulated from the posterior distribution of α, under

both priors, by running 10, 000 iterations, with a burn-in period of 2, 000 iterations.

To evaluate the priors we have considered two frequentist measures. The first is the

frequentist coverage of the 95% credible interval. That is, for each posterior, we compute

105



3.4. SIMULATION STUDY FOR OBJECTIVE PRIORS

the interval between the 0.025 and 0.975 quantiles and see if the true value of α is included

in it. Over repeated samples, one would expect a proportion of about 95% of the posterior

intervals to contain the true parameter value. The second frequentist measure gives an idea

of the precision of the inferential process, and it is represented by the square root of the

mean squared error (MSE) from the mean, relative to the parameter value:
a

MSEpαq{α.

We have considered the MSE from the median as well but, due to the approximate sym-

metry of the posterior, the results are very similar to the MSE from the mean. Figure 3.3
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Figure3.3: Frequentist properties of the Jeffreys prior (dashed line) and the loss-based
prior (continuous line) for n “ 100. The loss-prior is considered on the discretized param-
eter space with M “ 10. The left plot shows the posterior frequentist coverage of the 95%
credible interval, and the right plot represents the square root of the MSE from the mean
of the posterior, relative to α.

details the results for the simulations with n “ 100 and a parameter space for α discretized

with increments of 0.1, that is α P t0.1, 0.2, . . . , 0.9u. If we compare the coverage, we note

that the loss-based prior tends to over-cover the credible interval, while the Jeffreys prior,

although shows a better coverage for values of α ă 0.5, deteriorates in performance as

the parameter tends to the upper bound of its space. Looking at the MSE, both priors

appear to have very similar performance, and the (relative) error tends to decrease and
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α increases. In Figure 3.4 we have compared the frequentist performance of the Jeffreys
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Figure3.4: Frequentist properties of the Jeffreys prior (dashed line) and the loss-based
prior (continuous line) for n “ 100. The loss-prior is considered on the discretized param-
eter space with M “ 20. The left plot shows the posterior frequentist coverage of the 95%
credible interval, and the right plot represents the square root of the MSE from the mean
of the posterior, relative to α.

prior with the loss-based prior defined over a more densely discretized parameter space, i.e.

α “ t0.05, 0.10, . . . , 0.95u. We note a smoother behaviour of the priors compared to Figure

3.3, which is obviously due to the denser characterization considered. The coverage still

reveals a tendency of the loss-based prior to over-cover, although less pronounced than the

previous case. Jeffreys prior does not present any significant difference from the previous

case, as one would expect. For what it concerns the MSE, the differences between the

two priors are negligible, and the only aspect we note, as mentioned above, is a smoother

decrease of the error as the parameter increases.

We look more into the details of the objective approach by analysing two i.i.d. samples.

In particular, we consider a random sample of size n “ 100 from a Yule–Simon distribution

with α “ 0.40 and a sample, of the same size, from a Yule–Simon with α “ 0.68.

In both cases, since we do not have an explicit form of the posterior distribution,
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we have sampled from the posterior distribution via Monte Carlo methods, in particular

using a Metropolis–Hastings in logarithmic scale (with the proposal transition kernel for

α distributed as a Beta for the Jeffreys prior and as a Discrete Uniform on the interval

p1{M, pM ´1q{Mq for the loss-based prior), with 10, 000 iterations and a burn-in period of

2, 000 iterations. Figure 3.5 shows the posterior samples and posterior histograms derived

by applying the Jeffreys prior and the loss-based prior with two different discretizations,

that is M “ 10 and M “ 20. The summary statistics of the three posteriors are reported

in Table 3.1, where we have the mean, the median, and the 95% credible interval. By

Prior Mean Median 95% C.I.
Jeffreys 0.40 0.41 (0.23,0.53)

Loss-based pM “ 10q 0.40 0.4 (0.2,0.5)
Loss-based pM “ 20q 0.40 0.41 (0.22,0.56)

Table 3.1: Summary statistics of the posterior distributions for the parameter α of the
simulated data from a Yule-Simon distribution with α “ 0.40.

comparing the mean of the posterior distributions, we see that they are all centered around

the true parameter value. The credible interval yielded by the loss-based priors with the

most dense discretization (M “ 20) is larger than the other two intervals. However, the

difference is very small and we can conclude that the three prior distributions result in

posteriors which carry the same uncertainty. In other words, the three objective priors

perform in the same way.

Similar considerations can be made for the case where we have sampled n “ 100

Prior Mean Median 95% C. I.
Jeffreys 0.68 0.68 (0.57,0.77)

Loss-based (M “ 10q 0.68 0.7 (0.6,0.8)
Loss-based (M “ 20q 0.68 0.68 (0.55,0.79)

Table 3.2: Summary statistics of the posterior distributions for the parameter α of the
simulated data from a Yule-Simon distribution with α “ 0.68.
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Figure3.5: Posterior samples (left) and histograms (right) of the analysis of an i.i.d.
sample of size n “ 100 from a Yule–Simon distribution with α “ 0.40. From top to
bottom, we have Jeffreys prior, loss-based prior with M “ 10 and loss-based prior with
M “ 20.
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Figure3.6: Posterior samples (left) and histograms (right) of the analysis of an i.i.d.
sample of size n “ 100 from a Yule–Simon distribution with α “ 0.68. From top to
bottom, we have Jeffreys prior, loss-based prior with M “ 10 and loss-based prior with
M “ 20.
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observations from a Yule–Simon distribution with α “ 0.68. By inspecting Figure 3.6

and Table 3.2, we note a very similar behaviour of the three priors, in the sense that the

posterior distributions are still centered around the true value of α and that the credible

intervals do not present important differences. Note that the choice of a true parameter

value which would have not been included in any of the two discretized sample spaces,

upon which the loss-prior is based, allows to show that the inferential process appears to

be not affected by the discretization, hence motivating it.

To conclude, the simulation study shows no tangible differences in the performance of

the prior distributions, in the spirit of objective Bayesian analysis.

3.5 Real Data Application for objective priors

To illustrate the proposed priors, both the Jeffreys and the loss-based prior for the Yule-

Simon distribution, we analyze three datasets. The first dataset concerns daily increments

of four popular social networks stock indexes in the US market, the second contains the

frequencies of surnames observed in the 1990 US Census, and the last dataset consists of

’number one’ hits in the US music industry.

3.5.1 Social network stock indexes

We analyze different data in the social media marketing, in particular we focus on Face-

book, Twitter, Linkedin and Google. These four major companies are the most pow-

erful social networks in the world and are listed in the Wall Street exchange market

(http://finance.yahoo.com). We analyze the daily increments for the stocks and, in par-

ticular, we consider the adjusted closing price from the 1st of October 2014 to the 11th of

March 2016, for a total of n “ 365 observations. The daily increments are obtained by

applying zt “ |rt{rt´1 ´ 1| ¨100, for t “ 2, . . . , 365, where rt is the adjusted closing price for
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Figure3.7: Daily increments for Facebook, Google, Linkedin and Twitter from the 1st of
October 2014 to the 11th of March 2016.

the index at day t, and we built our frequency on it. These are shown in Figure 3.7, while

Figure 3.8 shows the histogram of the frequencies of the discretized data. The discretiza-

tion has been done by counting the number of times a daily return took a value truncated

at the second decimal digit. For example, if two observed daily returns are 1.2494 and

1.2573, they were both considered as two occurrences of the same value. By inspecting the

histograms in Figure 3.8 is seems that the (transformed) Yule–Simon distribution might

be a suitable statistical model to represent the data. We apply the Bayesian framework

and obtain the posterior distribution for the parameter of interest as

πpα|kq9Lpk|αqπpαq,
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Figure3.8: Histograms of the discretized daily returns for Facebook, Google, Linkedin
and Twitter.

where k “ pk1, . . . , knq represents the set of observations, i.e. the frequencies of the dis-

cretized daily returns, Lpk|αq the likelihood function and πpαq the prior distribution which,

in turn, has the form of the Jeffreys prior in (3.4) or the loss-based prior (3.5). We have

obtained the posterior distributions for the parameter α of the transformed Yule-Simon

distribution by Monte Carlo methods. We run 25,000 iterations with a burn-in period of

5, 000 iterations. We have reported the chain and the histogram of the posterior distribu-

tions in Figure 3.9 and in Figure 3.10, with the corresponding summary statistics in Table

3.3. Note that, with the purpose of limiting the amount of space used, we have included

the plots of the Facebook and Google daily returns only.
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Figure3.9: Posterior samples (left) and posterior histograms (right) for the Facebook daily
returns obtained by applying the Jeffreys prior (top), the loss-based prior with M “ 10
(middle) and the loss-based prior with M “ 20 (bottom).
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Figure3.10: Posterior samples (left) and posterior histograms (right) for the Google daily
returns obtained by applying the Jeffreys prior (top), the loss-based prior with M “ 10
(middle) and the loss-based prior with M “ 20 (bottom).

115



3.5. REAL DATA APPLICATION FOR OBJECTIVE PRIORS

Company Prior Mean Median 95% C.I.
Facebook Jeffreys 0.53 0.53 (0.43, 0.61)
Facebook Loss-based pM “ 10q 0.53 0.5 (0.4, 0.6)
Facebook Loss-based pM “ 20q 0.52 0.55 (0.40, 0.60)
Google Jeffreys 0.47 0.47 (0.37, 0.55)
Google Loss-based pM “ 10q 0.47 0.5 (0.4, 0.6)
Google Loss-based pM “ 20q 0.47 0.46 (0.35, 0.55)

Linkedin Jeffreys 0.56 0.57 (0.47, 0.64)
Linkedin Loss-based pM “ 10q 0.57 0.6 (0.5, 0.6)
Linkedin Loss-based pM “ 20q 0.56 0.55 (0.45, 0.65)
Twitter Jeffreys 0.68 0.68 (0.62, 0.73)
Twitter Loss-based pM “ 10q 0.69 0.7 (0.6, 0.7)
Twitter Loss-based pM “ 20q 0.68 0.70 (0.60, 0.75)

Table 3.3: Summary statistics of the posterior distribution for the parameter α of the social
network stock index data.

# Surname Frequency # Surname Frequency
1 Smith 2502021 6 Davis 1193807
2 Johnson 2014550 7 Miller 1054530
3 Williams 1738482 8 Wilson 843126
4 Jones 1544488 9 Moore 775975
5 Brown 1544488 10 Taylor 773488

Table 3.4: Ten most common Surname in United States from the Census 1990 analysis.

For all the four assets we notice that the results for α are very similar, as can be inferred

by the minimal (or absence of) difference between the means and the medians. The credible

intervals, as well, are very similar, with a slight larger size for the case where the loss-based

prior with (M “ 20) is applied. One way of interpreting the results is as follows. The

parameter α can be seen as the probability that the next observation is different from the

ones observed so far, and therefore we note that Twitter has the highest chance to take a

daily increment not yet observed, while Google has the smallest.
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Prior Mean Median 95% C. I.
Jeffreys 0.53 0.54 (0.47, 0.58)

Loss-based pM “ 10q 0.52 0.5 (0.5, 0.6)
Loss-based pM “ 20q 0.53 0.55 (0.45, 0.60)

Table 3.5: Summary statistics of the posterior distributions for the parameter α of the
Census surname analysis.

3.5.2 Census Data - Surname analysis

The second example we examine the frequency of surnames in the US (http://www.census.gov/en.html).

From the population censuses (Maruka et al., 2010), we focus on the US Census completed

in 1990 and consider the first 500 most common surnames. Refer to Table 3.4 for a list of

the first 10 most frequent surnames. Briefly, the process followed by Maruka et al. (2010)

to obtain the data converts the surname with Senior (SR), Junior (JR) or a number in the

last name field (f.e. Moore Sr or Moore Jr or Moore III are converted to Moore) and, in

addition, the authors examined each name entry for the possibility of an inversion (e.g. a

first name appearing in the last name fields or vice-versa). However, as there is the possi-

bility of having many surnames that also inverted can sound absolutely right, the authors

considered also the surname of the spouse, obtaining additional information to invert the

name field of the entire family.

The analysis has been performed by running both the Markov Chain Monte Carlo for

25,000 iterations, with a burn-in of 5,000 iterations.

The posterior samples and the posterior histograms are shown in Figure 3.11, with the

corresponding summary statistics of the posterior distributions reported in Table 3.5. We

again notice similarities to the simulation study and the analysis of daily increments, in

the sense that means and medians are very similar for each prior, and the 95% credible

interval obtained by applying the loss-based prior with M “ 20 is slightly larger than the

one obtained by using either the Jeffreys prior or the loss-based prior with M “ 10.
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Figure3.11: Posterior sample (left) and posterior histogram (right) for the surname data
set obtained by applying the Jeffreys prior (top), the loss-based prior with M “ 10 (middle)
and the loss-based prior with M “ 20 (bottom).
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The estimated value of α, on the basis of the 500 most common surnames in the US

(and if we consider the posterior mean) is, roughly, 1{2. In other words, there are about

50% chances that the next observed surname is not in the list of the 500. Obviously, a

larger sample size would yield a smaller posterior mean, as the number of surnames is finite

and the more we observe, the harder is to find a “new” one.

3.5.3 ‘Superstardom’ analysis

The last example consists in modelling the number of ‘number one’ hits a music artist had

in the period 1955–2003 on the Billboard Hot 100 chart. The data, which is displayed in

Table 3.6, has been used by Chung and Cox (1994) and Spierdijk and Voorneveld (2009) to

show an apparent absence of correlation between talent and success in the music industry.

Hits Observations Hits Observations
1 119 9 4
2 57 10 2
3 30 11 1
4 13 12 2
5 10 13 1
6 4 14 1
7 1 15 1
8 1 16 1

Table 3.6: Number of ‘number one’ hits per artist from 1955 to 2003.

We have run the Monte Carlo simulation for 25,000 iterations, with a burn in period of

5,000, for each of the considered priors. The posterior samples and histograms are shown

in Figure 3.12, with the corresponding statistic summaries in Table 3.7.

This example of the music hits allows for some interesting points of dicussion. First, we

note that the posterior distributions of for α are skewed; therefore, the posterior median

represents a better centrality index than the posterior mean. Second, it is clear that the

“true” value of α may be close to zero. As such, in order to explore better the parameter
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Figure3.12: Posterior sample (left) and posterior histogram (right) for the music ‘number
one’ hits data set obtained by applying the Jeffreys prior (top), the loss-based prior with
M “ 10 (middle) and the loss-based prior with M “ 20 (bottom).
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Prior Mean Median 95% C.I.
Jeffreys 0.08 0.07 (0.004, 0.24)

Loss-based pM “ 10q 0.13 0.1 (0.1, 0.3)
Loss-based pM “ 20q 0.11 0.10 (0.05, 0.25)
Loss-based pM “ 100q 0.10 0.08 (0.01, 0.29)

Table 3.7: Summary statistics of the posterior distribution for the parameter α of the
analysis of the music ‘number one’ hits.

space when the loss-based prior is used, a denser discretization is more appropriate. We

have then considered M “ 100, resulting the posterior summary statistics in Table 3.7.

We note now that the posterior median is similar to the one obtained using the Jeffreys

prior. It is therefore recomendable that, when the inference on α indicates values near the

parameter space boudaries, the level of discretization to be considered should be relatively

dense.

3.6 Bayesian inference for Data Augmentation problem

In this section we will consider the data augmentation algorithm and the Gibbs sampling

scheme when we choose a Gamma prior for the shape parameter. Based on (3.3), we can

consider the following Bayesian model,

k1, . . . , kn|ρ „ fpk; ρq

ρ „ Gammapa, bq,
(3.6)

where fpk; ρq is the Yule-Simon distribution defined in (3.1). The likelihood function of

the above model, conditionally to the parameter ρ, is the following:

Lpk, ρq “
n
ź

i“1

ż 8

0
e´wip1´ e´wiqki´1ρe´ρwidwi

“

ż

p0,8qn

n
ź

i“1
e´wip1´ e´wiqki´1ρe´ρwidw
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“

ż

p0,8qn
Lpk,w, ρqdw (3.7)

where k “ pk1, . . . , knq is a vector of observations, w “ pw1, . . . , wnq is a vector of auxiliary

variables, and

Lpk,w, ρq “
n
ź

i“1
e´wip1´ e´wiqki´1ρe´ρwi . (3.8)

In order to perform the Bayesian analysis of the model introduced in (3.6), we consider the

following augmented version of the posterior distribution:

πpρ,w|kq9Lpk,w, ρqπpρq,

where πpρq9ρa´1e´bρ is the Gamma prior. To sample from the posterior distribution

we adopt a Gibbs sampling scheme and compute the full conditional distribution. It is

straightforward to note that

ppwi|w´i,k, ρq9 e´ρwie´wip1´ e´wiqki´1.

The change in variable ti “ e´wi , leads to a full-conditional distribution which is distributed

as a Betapρ` 1, kiq. On the other hand, the full-conditional distribution for ρ is

ppρ|k,wq9ρa`n´1e´ρpb`
řn
i“1 wiq „ Gamma

˜

a` n, b`
n
ÿ

i“1
wi

¸

.

To sum up, the updating rule of the Gibbs sampler is as follows:

• Sample ti|ρ, ki „ Betapρ` 1, kiq, for i “ 1, . . . , n;

• Compute wi “ ´ log ti, for i “ 1, . . . , n;

• Sample ρ|w,k „ Gamma pa` n, b`
řn
i“1wiq.
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In the following part we analyse the performance of the above algorithm by considering a

i.i.d. sample generated from a Yule–Simon distribution (Section 3.6.1), and on a regression

model for count data where the shape parameter of the Yule–Simon distribution is modelled

in a similar fashion to the one in the classical Poisson regression (Section 3.6.2).

3.6.1 Single i.i.d. sample

This section is devoted to test the performance of the data augmentation algorithm on

simulated data. To do this, we sample from a Yule–Simon distribution with two values of

the parameter, ρ “ 0.8 and ρ “ 5. For each value of the parameter, we have simulated

samples of different sizes, respectively n “ 30, n “ 100 and n “ 500. Note that the choice

of a relatively small sample size has the purpose to leverage on the Bayesian property of

giving sensible results even when the information coming from the data is limited.

For the simulations, we have chosen a Gamma prior with shape parameter a “ 0.25

and rate parameter b “ 0.05. The choice was made with the intent of having a large

variance in the prior, reflecting a fairly large prior uncertainty. The Gibbs sampler is run

for 50, 000 iterations, with a burn-in period of 10, 000 iterations. This is repeated 20 times

per sample to capture the variability in the procedure. Table 3.8 displays the summary

statistics of the posteriors, that is, the mean, the median and mean square errors from

these two indexes. Both in terms of central value and mean square error the simulation

results are excellent, proving the soundness of the algorithm and, more in general, of the

whole proposed approach.

As an example, in Figure 3.14 we show the posterior results for one simulation of the

sample of size n “ 30 from the Yule–Simon with ρ “ 5, and one simulation from the same

distribution with n “ 100. We see that the chains exhibit a good mixing and that the

means converge to the true value rather quickly. In detail, we have the posterior mean
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ρ n Mean Median MSE Mean MSE Median Fixed-Point Alg
0.8 30 0.7955 0.7800 0.00002 0.00041 0.785
0.8 100 0.7606 0.7564 0.00160 0.00190 0.7582
0.8 500 0.8045 0.8035 0.00002 0.00001 0.8034
5 30 4.9800 4.5600 0.00046 0.19000 4.42
5 100 4.8200 4.7000 0.03600 0.10000 4.66
5 500 4.9000 4.8700 0.00990 0.01670 4.85

Table 3.8: Summary statistics of the posterior distributions for the parameter ρ of the
simulated data from a Yule-Simon distribution with different values of ρ “ t0.8, 5u and
sample sizes n “ t30, 100, 500u compared with the fixed-point algorithm of Garcia Garcia
(2011).

equal to 4.98 for n “ 30 and equal to 4.81 for n “ 100, and the 95% credible intervals are,

respectively, p2.22, 10.17q and p3.10, 7.30q. As one would expect, the credible interval for

the smaller sample size is larger than the one obtained with n “ 100. This is reflected in

the histogram in Figure 3.14 as well.
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Figure3.13: Data (histogram), predictive distribution for Yule–Simon (solid line) and
Geometric distribution (dashed line) for mixture of Geometric distributions (left) and for
Poisson distribution (right).

Remark 3. As suggested, we compare the computational times to approximate the posterior

for each of the three priors. We run a Gibbs sampler for 10, 000 iterations for a simulated

example with n “ 100. As expected, the posterior computation for the gamma prior
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takes only 9.43 seconds for running 10, 000 iterations, while the computational time to

approzimate the posterior for the objective priors takes 12.35 and 141 seconds for the loss-

based prior and for the Jeffreys prior, respectively, due to the use of the M-H algorithm.

Remark 4. As regard to the predictive densities, we generate the data with n “ 500 from

a mixture of Geometric distribution (0.75 ¨ Gep0.4q ` 0.25 ¨ Gep0.1q) and from a rescaled

Poisson distribution with parameter λ “ 1. We compare our Yule–Simon distribution

with Gamma prior (solid lines in Figure A.7) with a standard Geometric distribution with

conjugate beta prior (Bepa, bq, with a “ b “ 1) for the probability of success (dashed lines

in the same figure). Figure 3.13 shows that our approach approximate both heavy and

light tails with respect to the Geometric distribution with beta prior.

3.6.2 Count data regression

In a count data regression model we are interested in the relations between the probability

of a dependent variable ki and the vector of independent variables xi. The model is based

on the following three assumptions:

1. the observation ki follows the Yule–Simon distribution with parameter ρi, i.e.

fpki; ρiq “ ρiBpki, ρi ` 1q, ki “ 1, 2, . . . , ρi ą 0;

2. the parameters of interest are modelled in the following way:

ρi “ exp px1iβq, i “ 1, . . . , n,

where β is a pnβ ˆ 1q vector of parameters and x1i “ p1, xi2, . . . , xinβ q is a p1 ˆ nβq

vector of regressors including a constant;

3. the observation pairs pki, xiq, i “ 1, . . . , n are independently distributed.
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Figure3.14: Posterior sample (top), posterior histogram (middle) and progressive mean
(bottom) for the simulation study of a Yule–Simon distribution with ρ “ 5 and sample size
n “ 30 (left) and n “ 100 (right).
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For sake of illustration we focus on the case with one regressor only, although the arguments

can easily be extended to include multiple regressors. Therefore, we have β1 “ pβ0, β1q,

x1i “ p1, xi2q and ρi “ exp tβ0 ` β1xi2u. Assuming a standard bivariate normal prior for β,

we obtain the following augmented version of the posterior distribution:

πpβ,w,x|kq9

«

n
ź

i“1
e´wip1´ e´wiqki´1

ff

exp
#

n
ÿ

i“1
x1iβ

+«

n
ź

i“1
e´e

x1
i
βwi

ff

e´
1
2β
1β.

Therefore, the full conditional distribution for the parameter of interest β is given by:

πpβ|w,x,yq9

«

n
ź

i“1
exp

!

´ex1iβwi

)

ff

exp
#

´
1
2β

1β `
n
ÿ

i“1
x1iβ

+

. (3.9)

As the expression in (3.9) is not an explicit known distribution, Monte Carlo methods have

to be used. In particular, we adopt a Metropolis within Gibbs to obtain samples from

the posterior distribution. We use a random walk proposal and the Gibbs sampler for the

count data regression is as follows:

• Sample ti|β0, β1, xi, ki „ Beta pexp tβ0 ` β1xi2u ` 1, kiq, for i “ 1, . . . , n;

• Compute wi “ ´ log ti, for i “ 1, . . . , n;

• Sample β|w,k,x from the random walk Metropolis-Hastings algorithm.

We test the proposed data augmentation algorithm on two simulated data sets: for the

first data set we have pβ0, β1q “ p1.5,´1.0q, and for the second one we have pβ0, β1q “

p´0.5, 5.0q. In both cases, the regressor values are sampled from a uniform p0, 1q. We ran

50, 000 iterations with a burn-in period of 10, 000 iterations, and this has been repeated 20

times per sample. For comparison purposes, we use the R function (VGLM ) developed by

Yee (2008, 2016) in the package VGAM. The function allows us to estimate the vector gen-

eralized linear model (see Yee (2014, 2015)), when we consider a Yule–Simon distribution.
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Table 3.9 shows the posteriors mean, median, mean square errors and credible intervals

for the two different scenarios. Overall, the results obtained by applying our algorithm are

very close to the true parameter values. As noted in Section 3.6.1, the Bayesian approach

outperforms the frequentist for small sample sized.

In both cases and for all the different sample sizes, the results are interesting for our

approach and in particular, as seen in the previous simulated example, for small sample size

the results are better from a Bayesian perspective with respect to the frequentist approach.

n β Mean Median MSE Mean 95% C.I. VGLM
30 β0 “ ´0.5 -0.5 -0.5 0.0012 (-0.7,-0.2) -0.2

β1 “ 5.0 5.0 5.0 0.0014 (4.7,5.2) 7.7
30 β0 “ 1.5 1.6 1.6 0.0035 (1.3,1.8) 3.0

β1 “ ´1.0 -1.0 -1.0 0.0025 (-1.2,-0.7) -0.9
100 β0 “ ´0.5 -0.6 -0.6 0.0069 (-0.8,-0.4) -0.7

β1 “ 5.0 4.9 4.9 0.0071 (4.7,5.2) 4.8
100 β0 “ 1.5 1.4 1.4 0.0103 (1.2,1.6) 1.4

β1 “ ´1.0 -1.0 -1.0 0.0021 (-1.3,-0.8) -1.2
500 β0 “ ´0.5 -0.5 -0.5 0.0000 (-0.7,-0.3) -0.5

β1 “ 5.0 5.0 5.0 0.0029 (4.7,5.2) 5.1
500 β0 “ 1.5 1.5 1.5 0.0002 (1.3,1.7) 1.5

β1 “ ´1.0 -1.0 -1.0 0.0004 (-1.2,-0.8) -0.9

Table 3.9: Summary statistics of the posterior distributions for the parameter pβ0, β1q
of the Yule–Simon regression with pβ0, β1q “ tp´0.5, 5.0q; p1.5,´1.0qu and sample sizes
n “ t30, 100, 500u and VGLM estimators.

To better illustrate the performance we have simulated 300 observations for a case

with β0 “ 3.5 and β1 “ ´2.2. Figure 3.15 shows the posterior samples and the posterior

histograms obtained with a Gibbs sampler run for 50,000 iterations with a burn-in period

of 10,000. We see that for both parameters of the regression the chain has a good mixing,

and the posterior means for β0 and β1 are, respectively, 3.40 and ´2.195. The 95% credible

intervals are, respectively, p3.2, 3.6q and p´2.4,´2.2q which comfortably contain the true

values of the parameters.
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Figure3.15: Posterior sample (top) and posterior histogram (bottom) for the simulation
study of a count data regression with β0 “ 3.5 (left) and β1 “ ´2.2 (right) and sample size
n “ 300.

As above highlighted, the procedure can be applied to multiple regressors, Figure 3.16

shows the posterior samples and posterior histograms for a scenario with β0 “ 1.5, β1 “

´1.0 and β2 “ 0.4. For a sample of n “ 300, and with the same setting of the Gibbs

sampler used in the previous illustration, we see a good mixing of the chains as well as good

inferential results. In particular, the three means for β0, β1 and β2 are, respectively, 1.5,

-0.9 and 0.4, with respective 95% credible intervals p1.3, 1.7q, p´1.2,´0.7q and p0.1, 0.6q.
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Figure3.16: Posterior sample (left) and posterior histogram (right) for the simulation
study of a count data regression with β0 “ 1.5 (top), β1 “ ´1.0 (middle) and β2 “ 0.4
(bottom) and sample size n “ 300.
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3.7 Applications to text analysis

To illustrate our data augmentation algorithm, we use the Yule-Simon distribution to

model word frequency in five novels: Ulysses by James Joyce, Don Quixote by Miguel

de Cervantes, Moby Dick by Herman Melville, War and Peace by Leo Tolstoi and Les

Miserables by Victor Hugo. All texts are the English version present in the website of

the Gutenberg Project (http://www.gutenberg.org). We have selected the above novels as

they have been analysed in Garcia Garcia (2011), and we can compare our results with the

author’s.

The key information for each data set is n, the number in the text of distinct words in

the text (see Table 3.10), and k, the frequency at which each of the words appears in the

text.

The inferential procedure consists in the Gibbs sampling algorithm introduced in Sec-

tion 3.6. For each text, we run three chains, from different starting points, for 10,000

iterations and a burn-in period of 1,000 iterations. The convergence of the sampler has

been assessed by graphical means (e.g. progressive means, Gelman and Rubin’s plot) and

numerical means, such as the Gelman and Rubin’s convergence diagnostic and the Geweke’s

convergence diagnostic. The summary of a posterior for each text are shown in Table 3.10,

where we have reported the posterior mean and median, and the 95% credible interval of

the posterior. Figure 3.17 shows the posterior chain and the posterior histogram for two

of the analysed texts: the Ulysses and the Don Quixote.

To support our conclusions, we compare our estimation results with the ones obtained

by applying the fixed-point algorithm proposed by Garcia Garcia (2011). We have imple-

mented the above algorithm on the data available to us, and the right column of Table

3.10 reports the maximum likelihood estimates for each text. First, we note that our fixed-
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Figure3.17: Posterior sample and posterior histogram for the frequency of words analysis
for the Ulysses (left) and the Don Quixote (right).

Novel n Mean Median 95% C.I. Fixed-Point Alg
Ulysses 29,841 1.09 1.09 (1.08,1.11) 1.09
Don Quixote 15,180 0.68 0.68 (0.67,0.70) 0.68
Moby Dick 17,221 0.88 0.88 (0.86,0.89) 0.88
War and Peace 18,239 0.63 0.63 (0.62,0.64) 0.63
Les Miserables 23,248 0.69 0.69 (0.68,0.70) 0.69

Table 3.10: Summary statistics of the posterior distributions for the parameter ρ for fre-
quency of words compared with the fixed point algorithm.
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point estimates are very similar to the results in Garcia Garcia (2011), with the exception

of the Don Quixote where we have used a different version of the text. Second, and most

important, the mean of our posterior is virtually identical to the estimate in Garcia Garcia

(2011).

3.8 Discussions

It is surprising how, from time to time, the Bayesian literature presents gaps even for prob-

lems which appear to be straightforward. The Yule–Simon distribution has undoubtedly

many possibilities of application, as the discussed examples and the refereed papers show,

and therefore demanded for a satisfactory discussion within the Bayesian framework.

Given the importance that objective Bayesian analysis can have in applications, and not

only (Berger, 2006), we have presented two priors which are suitable in scenarios with mini-

mal prior information. The first prior is the Jeffreys prior which, as it is well known, has the

appealing property of being invariant under monotone differentiable transformations of the

parameter of interest. The second prior is derived considering the loss in information one

would incur if the ‘wrong’ model was selected. Although the latter requires a discretization

of the parameter space, we have shown through simulation studies that the performance of

the yielded posterior are very similar, both between the Jeffreys and the loss-based prior,

and between different structures of the discretized parameter space. This is not surprising

as both priors, i.e. the Jeffreys and the loss-based, have a similar behaviour, in the sense

that they increase as the parameter α increases.

We have limited our analysis to the case where the shape parameter of the Yule–Simon

distribution, ρ, is strictly larger than one. Doing so, we allow for a more convenient

parametrization of the distribution where the new parameter α “ pρ ´ 1q{ρ has the in-

terpretation of being the probability that the next observation takes a value not observed
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before.

Besides through a simulation study, we have compared the objective priors by applying

them on three data sets: the first related to financial data, the second to surnames in the

US and the third one on the number of hits in the music industry. All comparisons allowed

to show that the two proposed objective priors lead to similar results, in terms of posterior

distributions. For obvious reasons, we have not considered if the choice of the Yule–Simon

is the best model to represent the data, but limited our analysis to make inference for the

unknown parameter α.

On the other side, the data augmentation algorithm introduced in Section 3.6 performs

an efficient and fast estimation of the shape parameter of the Yule–Simon distribution. The

simulation study presented in Section 3.6, which discussed both a single i.i.d. sample and

a count data regression sample, shows a clear out-performance of the Bayesian approach

against the appropriate frequentist procedures. This is particularly true for relatively small

sample sizes, rendering the Bayesian inference for the Yule–Simon distribution attractive

to practitioners.

For the real data examples discussed in this note, where the sample sizes are large, we

see equivalent results of the proposed data augmentation algorithm and of the fixed-point

algorithm. This, somehow, validates both approaches.

We are interested, in the future works, to expand the literature related to the Yule–

Simon distribution, in particular, to work with a multivariate expansion of it. On the other

side, in the last years, the literature on integer time series has increased importance and

the Yule–Simon distribution can be applied to Autoregressive models and integer GARCH

models.
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Appendix D

Technical Details of Chapter 3

D.1 Proof of Theorem

Proof of Theorem 3.3.1. First of all, we note that

B2 logpfpk;αqq
Bα2 “

1
p1´ αq2 `

2
p1´ αq3

„

ψp0q
ˆ

1
1´ α ` 1

˙

´ ψp0q
ˆ

1
1´ α ` k ` 1

˙

`
1

p1´ αq4

„

ψp1q
ˆ

1
1´ α ` 1

˙

´ ψp1q
ˆ

1
1´ α ` k ` 1

˙

,

where ψpiq is the polygamma function:

ψpiqpxq “
Bi`1

Bxi`1 logpΓpxqq “ p´1qi`1i!
8
ÿ

k“0

1
px` kqi`1 i “ 1, 2, . . . .

It’s easy to see that

ψp0q
ˆ

1
1´ α ` 1

˙

´ ψp0q
ˆ

1
1´ α ` k ` 1

˙

“

k
ÿ

j“1

1
1

1´α ` j
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and

ψp1q
ˆ

1
1´ α ` 1

˙

´ ψp1q
ˆ

1
1´ α ` k ` 1

˙

“

k´1
ÿ

j“0

1
p 1

1´α ` 1` jq2
.

Therefore, we have that the Fisher information is:

Ipαq “ ´ 1
p1´ αq2 `

2
p1´ αq3Eα

„ k
ÿ

j“1

1
1

1´α ` j



´
1

p1´ αq4Eα
„k´1
ÿ

j“0

1
p 1

1´α ` 1` jq2



. (D.1)

In order to compute the Jeffreys prior, we need compute the two expected value of equation

(D.1) separately.

Eα
„ k
ÿ

j“1

1
p 1

1´α ` jq



“

8
ÿ

k“1

k
ÿ

j“1

1
p 1

1´α ` jq

1
1´ αB

ˆ

k,
1

1´ α ` 1
˙

“

8
ÿ

j“1

1
p 1

1´α ` jq

8
ÿ

k“j

1
1´ αB

ˆ

k,
1

1´ α ` 1
˙

. (D.2)

The second summation with respect to k in equation (D.2) can be rewritten as:

8
ÿ

k“j

1
1´ αB

ˆ

k,
1

1´ α ` 1
˙

“

8
ÿ

k“j

1
1´ α

ż 1

0
xk´1p1´ xq

1
1´αdx

“

8
ÿ

l“0

1
1´ α

ż 1

0
xlxj´1p1´ xq

1
1´αdx

“
1

1´ α

ż 1

0
xj´1p1´ xq

1
1´α´1dx

“
ΓpjqΓp 1

1´α ` 1q
Γp 1

1´α ` jq
. (D.3)
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Finally, we have that :

Eα
„ k
ÿ

j“1

1
p 1

1´α ` jq



“ Γp 1
1´ α ` 1q

8
ÿ

j“1

Γpjq
Γp 1

1´α ` jqp
1

1´α ` jq

“ Γ
ˆ

1
1´ α ` 1

˙ 8
ÿ

j“1

Γpjq
Γp 1

1´α ` j ` 1q

“

8
ÿ

j“1

ˆ

1´ α
1´ α

˙Γp 1
1´α ` 1qΓpjq

Γp 1
1´α ` j ` 1q

“ p1´ αq
8
ÿ

j“1

1
1´ α

Γp 1
1´α ` 1qΓpjq

Γp 1
1´α ` j ` 1q

“

“ p1´ αq, (D.4)

where the summation
ř8
j“1p

1
1´αqBpj,

1
1´α ` 1q “ 1, since we are summing over all the

possible values of the probability function of the Yule-Simon distribution.

As we have done with the first expected value of (D.1), now we compute the second

expected value of equation (D.1):

Eα
„k´1
ÿ

j“0

1
p 1

1´α ` 1` jq2



“

8
ÿ

k“1

k´1
ÿ

j“0

1
p1` 1

1´α ` jq
2

1
1´ α

ΓpkqΓp 1
1´α ` 1q

Γp 1
1´α ` 1` kq

“

8
ÿ

k“1

k
ÿ

j“1

1
p 1

1´α ` jq
2

ˆ

1
1´ α

˙ΓpkqΓp 1
1´α ` 1q

Γp 1
1´α ` 1` kq

“

8
ÿ

j“1

1
p 1

1´α ` jq
2

8
ÿ

k“j

1
1´ αB

ˆ

k,
1

1´ α ` 1
˙

“

8
ÿ

j“1

1
p 1

1´α ` jq
2

ΓpjqΓp 1
1´α ` 1q

Γp 1
1´α ` jq

, (D.5)

where the last equality follows from (D.3).Finally we obtain the following form:

Eα
„k´1
ÿ

j“0

1
p 1

1´α ` 1` jq2



“

8
ÿ

j“1

Bpj, 1
1´α ` 1q

1
1´α ` j

. (D.6)
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The equation (D.6) can be written in a more simple way as a function of an Hyperge-

ometric function.
8
ÿ

j“1

Bpj, 1
1´α ` 1q

1
1´α ` j

“

8
ÿ

j“1

1
1

1´α ` j

ż 1

0
xj´1p1´ xq

1
1´αdx

“

ż 1

0
p1´ xq

1
1´α

8
ÿ

j“1

1
1

1´α ` j
xj´1dx. (D.7)

Looking at the summation we have:
8
ÿ

j“1

1
1

1´α ` j
xj´1dx “

8
ÿ

l“0

xl

1
1´α ` l ` 1

. (D.8)

But the denominator can be written as a ratio of Pochhammer representations:

1
1

1´α ` l ` 1
“

` 1
1´α ` 1

˘

l
` 1

1´α ` 2
˘

l

1
1

1´α ` 1
.

Hence the equation (D.8) is written as:

8
ÿ

l“0

xl

1
1´α ` l ` 1

“
1

1
1´α ` 1

8
ÿ

l“0

` 1
1´α ` 1

˘

l
` 1

1´α ` 2
˘

l

xl
p1ql
l! “

“
1

1
1´α ` 1 2F1

ˆ

1, 1
1´ α ` 1, 1

1´ α ` 2, x
˙

,

where 2F1pα, β, γ, xq is the hypergeometric function. So we have that equation (D.7) can

be rewritten as:
ż 1

0

p1´ xq
1

1´α

1
1´α ` 1 2F1

ˆ

1, 1
1´ α ` 1, 1

1´ α ` 2, x
˙

“

“
p1´ αq2
p2´ αq2 3F2

ˆ

1, 1
1´ α ` 1, 1; 1

1´ α ` 2, 1
1´ α ` 2; 1

˙

,
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where the last equality follows from 7.512.5 of Gradshteyn and Ryzhik (2007). Summing

up,

Ipαq “ ´ 1
p1´ αq2 `

2
p1´ αq3 p1´ αq`

´
1

p1´ αq4
p1´ αq2
p2´ αq2 3F2

ˆ

1, 1
1´ α ` 1, 1; 1

1´ α ` 2, 1
1´ α ` 2; 1

˙

and this concludes the proof.
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