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Abstract

In the present PhD dissertation different phenomena of political and civil

violence are analysed using quantitative methods. In particular, the first

chapter of the thesis develops an agent-based model which is able to provide

an explanation for the multiplicity of political scenarios emerged after the

Arab Spring: the successful revolution in Tunisia, the failed protests in

Saudi Arabia and Bahrain, and civil war in Syria and Libya. The second

chapter evaluates the effects of gun availability on homicides with an agent-

based model: in the analysis conditions are derived under which the number

of deaths is minimised with restrictions on gun possession or, vice versa,

with a diffused gun ownership. In the third chapter, using crime data for

the US states and the distribution dynamics approach, two distinct phases

are detected in the evolution of the property crime distribution: a period

of convergence (1971-1980) is followed by a tendency towards bimodality

(1981-2010). Moreover, the analysis reveals that differences in income and

police can explain the emergence of this shape.
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Introduction

In the Preface to the Phenomenology of Mind, Hegel (1807 [1910], page 17)

famously wrote: “The truth is the whole. The whole, however, is merely

the essential nature reaching its completeness through the process of its own

development.”

This sentence captures well the essence of the present PhD dissertation,

which illustrates several applications of two, very different, methodologies

that have in common the attempt of overcoming, in their respective do-

mains, the limitations of the representative agent dogma, allowing the study

of the emergent properties of complex systems with heterogeneous players.

These two approaches are the agent-based modeling and the distribution

dynamics method. Both have been employed in this work to analyse three

phenomena of civil and political violence whose study can benefit from the

adoption of new methods. These phenomena are: the Arab Spring revolu-

tion, the relationship between gun diffusion and violence, and the evolution

of the distribution of property crime across the US states.

As pointed out by Hartley (1996), since the Marshall’s Principles of Eco-

nomics (1920 [1961]), the mainstream economic literature has been dom-

inated by the idea of the “representative agent”. However, although this

concept has been harshly criticised, such as in Kirman (1992), it is still the

dominant paradigm in many economic fields. As noted in Hartley (1996,

page 176), the main criticism consists in the difficulty “to give a consistent

and empirically usable definition of what a representative individual is like.

If we create an agent that is some sort of statistical average, the model using

13



14 INTRODUCTION

it will not necessarily explain aggregate data. If we try to define the rep-

resentative agent as the marginal purchaser, it becomes a will-o’-the-wisp

whose taste parameters are endogenously determined by market characteris-

tics.” Moreover, in the most favourable situation in which we can construct

a representative agent whose utility-maximizing choices correspond to those

of the population, Kirman (1992, page 123) stresses that “even in this case

the representative agent can lead to misleading policy analyses”, because we

have no assurance that the choice of the representative agent will coincide

with the aggregate choice of the population after the policy change.

In order to overcome these limitations, the agent-based literature presents

many models in which multiple and heterogeneous agents take their deci-

sions following simple behavioural rules and interacting with their peers

over time and, possibly, across different spatial units. Researchers usually

specify intuitive and behaviourally plausible heuristics for each agent and

observe the emergence of regular, aggregate bahaviours from the repeated

interactions of these players. In the First and Second Chapter of the present

thesis we decide to follow this approach to study two different phenomena

related to political and civil violence: the Arab Spring revolutions and the

impact of weapon diffusion on the number of homicides committed.

Another field dominated by the paradigm of the “representative unit”

is the empirical analysis of convergence. In this framework the mainstream

approach is represented by the beta-convergence (Baumol, 1986; Barro,

1991; Barro and Sala-i-Martin, 1991, 1992) and sigma-convergence analysis

(Sala-i-Martin, 1996). Essentially, the beta-convergence aims at testing the

convergence of a given process by looking at a negative correlation between

the initial values of the studied variable and its growth rates: if statistical

units with high values in the initial period show lower growth rates than

units with low values, this should mean that they converge to a common

steady state. However, it has been recognised that a negative relationship

between initial values and growth rates is a necessary but not a sufficient
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condition for convergence (Quah, 1993a): this is precisely due to the fact

that, by focusing on the behaviour of a representative unit towards its own

steady state, the beta-convergence analysis is completely silent on what

happens to the entire cross-sectional distribution of the studied statistical

units. Thus, it has been suggested to complement the beta-convergence

approach with the study of the cross-sectional variability over time (sigma-

convergence): the idea is that a reduction of the standard deviation of the

distribution, together with a negative relationship between initial values

and growth rates, should be a sufficient signal of convergence among the

units of interest. Indeed, as argued by Quah (1996a), a constant variability

is compatible with very different behaviours, from criss-crossing and leap-

frogging to persistent inequality. Distinguishing between these completely

different dynamics is crucial and it is possible only by analysing the entire

cross-sectional distribution.

The distribution dynamics methodology (Quah, 1993a and b, 1996a and

b, 1997) has been proposed as an alternative and more meaningful way to

analyse convergence: in fact, this approach allows the study of the entire

cross-sectional distribution of a given variable, both in terms of external

shape and intra-distributional dynamics, using stochastic kernels to describe

its evolution over time. This method has been adopted in the Third Chapter

to study the evolution of property crime rates across the 48 conterminous

and continental US states over the period 1971-2010.

In particular, this PhD dissertation is organised in three chapters. The

first one1 develops an agent-based computational model of violent politi-

cal revolutions in which a subjugated population of citizens and an armed

revolutionary organisation attempt to overthrow a central authority and its

loyal forces. The model replicates several patterns of rebellion consistent

with major historical revolutions, and provides an explanation for the mul-

1This chapter has been published in PLoS ONE as: Moro, A. (2016). “Understanding
the Dynamics of Violent Political Revolutions in an Agent-Based Framework.” PLoS
ONE, 11(4): e0154175.
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tiplicity of outcomes that can arise from an uprising. The relevance of the

heterogeneity of scenarios simulated by the model can be understood by

considering the recent experience of the Arab Spring involving several re-

bellions that arose in an apparently similar way, but resulted in completely

different political outcomes: the successful revolution in Tunisia, the failed

protests in Saudi Arabia and Bahrain, and civil war in Syria and Libya.

The aim of the Second Chapter is the evaluation of the effects of gun

availability on firearm-related homicides in an agent-based framework. Be-

hind this relationship there is a likely trade-off: on the one hand, a diffused

gun ownership can protect victims against the attacks of violent individuals;

on the other hand, a higher diffusion of weapons increases the probability

that a violent individual can obtain a gun. The analysis of this chapter

reveals that, with a high number of police officers relative to the space and

the number of citizens, it is possible to minimise the number of homicides

either with a complete ban of weapons or with a capillary diffusion of guns.

Conversely, when the number of police officers is relatively low, only a pol-

icy that reduces gun availability close to zero minimises the firearm-related

deaths. Moreover, a greater presence of policemen generates a transition

from a private kind of self-defense to a public one.

Finally, in the Third Chapter,2 using crime data for the 48 continental

and conterminous US states and the distribution dynamics approach, this

paper detects two distinct phases in the evolution of the property crime

distribution: a period of strong convergence (1971-1980) is followed by a

tendency towards divergence and bimodality (1981-2010). The analysis also

reveals that differences in income per capita and number of police officers

can explain the emergence of a bimodal shape in the distribution of prop-

erty crime rates: in fact, after conditioning on these variables, the bimodal-

ity completely disappears. This empirical evidence is consistent with the

2A slightly smaller version of this chapter has been published (published online before
print) in Urban Studies as: Moro, A. (2016). “Distribution Dynamics of Property Crime
Rates in the United States.” Urban Studies, doi:10.1177/0042098016652535.
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predictions of a two-region model, that stresses the importance of income

inequality in determining the dynamics of the property crime distribution.
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Chapter 1

Understanding the Dynamics

of Violent Political Revolutions

in an Agent-Based Framework

Abstract

This chapter develops an agent-based computational model of violent polit-

ical revolutions in which a subjugated population of citizens and an armed

revolutionary organisation attempt to overthrow a central authority and its

loyal forces. The model replicates several patterns of rebellion consistent

with major historical revolutions, and provides an explanation for the mul-

tiplicity of outcomes that can arise from an uprising. The heterogeneity of

scenarios generated by the model is a relevant feature whose importance

can be understood by considering the recent experience of the Arab Spring

involving several rebellions that arose in an apparently similar way, but re-

sulted in completely different political outcomes: the successful revolution

in Tunisia, the failed protests in Saudi Arabia and Bahrain, and civil war

in Syria and Libya.

19



20 CHAPTER 1. AN AGENT-BASED MODEL OF REVOLUTIONS

1.1 Introduction

The phenomenon of political revolutions has once again caught the attention

of researchers in the wake of the recent wave of uprisings in the Arab World.

The main purpose of this chapter is to present an agent-based computational

model that outlines the common dynamics of major political revolutions and

replicates a number of stylised facts.

The model features three types of agent that interact in a bidimensional

torus space: a population of citizens who are oppressed by a central govern-

ment; members of a revolutionary organisation who attempt to overthrow

the government by an armed uprising; and loyal policemen who are tasked

with suppressing the rebellion.

This simple model is able to reproduce several patterns of rebellion con-

sistent with major historical revolutions: a pre-revolutionary period charac-

terised by spontaneous riots, motivated mainly by poor economic conditions

and social inequality, gives way to an actual revolutionary rebellion, in which

organised elements mobilise popular masses against the central government.

Moreover, the model provides an explanation for the multiplicity of out-

comes that can arise from an uprising: a completely successful revolution

leading to the overthrow of the central authority; a failed rebellion followed

by a return to the status quo; an intermediate case where the uprising is

unable to change the political system, but is sufficiently strong to destabilise

the country and drive it towards anarchy.

The heterogeneity of scenarios generated by the model is a relevant fea-

ture whose importance can be understood by considering the recent ex-

perience of the Arab Spring involving several rebellions that arose in an

apparently similar way, but resulted in completely different political out-

comes: e.g. the successful revolution in Tunisia, the failed protests in Saudi

Arabia and Bahrain, and civil war in Syria and Libya.

For decades, the most popular conceptualisations of revolution were the
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Marxian theory and the relative deprivation theory. The former empha-

sises the role of changes in production methods in generating discontent

and rebellion; the latter focuses on the gap between economic expectations

and realised economic performances to explain the sense of frustration and,

consequently, riot participation. Both theories establish an automatic link

between the structural conditions that generate grievance in society and

the likelihood of revolutionary episodes. Moreover, in both theories par-

ticipation in rebellion is motivated by a collective good argument, such as

the desire to change the oppressive social order. Two of the most influ-

ential scholars in this stream of literature are Skocpol (1979) with regard

to the Marxian theory and Davies (1962) concerning the relative depriva-

tion theory. For a complete review of the political science literature about

revolutions, see Goldstone (2001).

In contrast, Tullock (1971) develops an economic approach to explain

participation in revolutions: since the benefit of an extra unit of public

good is small relative to the cost of obtaining it by participating in a rebel-

lion, individuals decide whether or not to participate based on their private

gains or losses. Silver (1974) provides a classification of revolutions based

on Tullock’s theory. Moreover, Kuran (1989, 1991, 1995) criticises the idea

of an automatic relationship between social grievance and revolution, ar-

guing that most historical revolutions were unanticipated. He provides an

explanation based on the observation that people who dislike their govern-

ment tend to conceal their political preferences as long as the opposition

seems weak. For this reason, regimes that appear to be absolutely stable

may experience a sudden loss of support in the event of a minor increase in

the size of the opposition, even if triggered by insignificant events.

The economic and political science literature have endeavoured to solve

the collective action problems inherent in revolutions. For example, in criti-

cism of Tullock, Lichbach (1994, 1995, 1996) identifies a number of solutions

based on sanctioning and group identification methods. These solutions
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include the possibility of imposing community obligations, establishing in-

stitutional mechanisms, arranging contracts and using authority. For an

example of an institutional kind of solution in the context of 18th century

merchant sailors, see Leeson (2010).

Furthermore, in line with Kuran’s theory, Rubin (2014) argues that cas-

cades of preference revelation are more likely to occur following a major

shock in highly centralised regimes. This is because citizens in such politi-

cal systems have a greater incentive to conceal their true political opinions

in order to avoid economic or legal sanctions being imposed by the central

authority. Makowsky and Rubin (2013) extend the previous work by devel-

oping an agent-based model to study how social network technology favours

preference revelation in centralised societies.

A number of game theoretic papers have also been produced that analyse

the economic causes of political change: for instance, following Acemoglu

and Robinson’s (2001) model of the economic origins of democracy, Ellis

and Fender (2011) derive conditions under which democracy arises peace-

fully, when it occurs after a revolution, and when oligarchic governments

persist. An alternative view is represented by the paper of Gard-Murray

and Bar-Yam (2015), who argue that democracies are more systemically

complex than autocracies and, since violent revolutions are likely to disrupt

existing evolved complexity, dictatorships have higher chances of emerging

after uprisings.

Finally, this paper is also influenced to a great extent by Granovetter’s

(1978) theory about threshold models of collective behaviours and by Ep-

stein’s (2002) agent-based model of civil violence. According to Granovetter,

individuals face many situations with multiple alternatives, and the costs

and benefits associated with these alternatives depend on how many other

individuals have chosen the various options in the past. For this reason,

each individual has a personal threshold, and decides to join collective ac-

tion, such as a riot or a strike, if the number of people participating at that



1.2. THE MODEL 23

time exceeds this threshold. Following this idea, Epstein develops an agent-

based model of civil violence involving two types of player, agents and cops,

interacting in a bidimensional torus space. In this model the agents decide

to rebel against the government if their level of grievance corrected by the

risk of being arrested by the cops exceeds their activation threshold. One

of the main findings of this model is that intermittent outbursts of violence

occur, distributed irregularly over time and space. Another study that ex-

plores the temporal and spatial diffusion of civil unrest is that produced by

Braha (2012). In particular, his paper demonstrates that the distribution

of real episodes of civil violence can be replicated using a spatially extended

dynamical model that incorporates the effects of social and communication

networks.

However, the existing literature does not consider the heterogeneity of

scenarios that can result after a revolution. Conversely, the capability of

generating multiple post-revolutionary outcomes is a prominent feature of

the model presented in this chapter and represents the main motivation of

the proposed approach.

The rest of the chapter is organised as follows: next section describes

the model; Section 1.3 presents the three outcomes generated by the model

and their dependence on the model parameters is highlighted using graphical

tools; in Section 1.4 some statistical models are estimated in order to analyse

the main features of the simulated data; Section 1.5 studies the emerging

outcomes of the model with respect to the categories of stationarity and

ergodicity; finally, Section 1.6 discusses the results and their relevance for

the analysis of contemporary revolutions.

1.2 The Model

In the agent-based computational model presented in this chapter, there are

three types of agent that interact in a bidimensional torus space: citizens,
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revolutionaries and policemen. Citizens are members of a population sub-

jugated to a central authority who decide whether or not to rebel against

the government based on their degree of economic and political grievance.

Revolutionaries are members of an organised opposition group that seeks to

overthrow the central government by an armed uprising. Policemen are the

forces loyal to the central authority that have been tasked to suppress any

kind of revolt by arresting rebellious citizens and killing revolutionaries.

In this section, the features of each agent are described in detail, begin-

ning with the citizen specification. As in Epstein (2002), social grievance

represents the motivation that potentially leads citizens to revolt; for each

citizen i the grievance is assumed to be the product of an index of economic

hardship H and a measure of government illegitimacy, defined as 1 − l,

where l is a parameter measuring the legitimacy of the central authority:

G (yi) = (1− l)H (yi) (1.1)

In contrast to Epstein’s specification, the perceived hardship, and conse-

quently grievance, is a function of citizens’ income yi. In fact, each citizen

is endowed with an income drawn from a lognormal distribution:1

yi ∼ logN
(

a, b2
)

(1.2)

The functional form chosen for the hardship index is:

H (yi) =
exp [E (yi)− yi]

1 + exp [E (yi)− yi]
(1.3)

This function allows each citizen’s economic condition to be mapped to

a value in the (0, 1) interval. This index is a logistic transformation of

1Although this assumption adds realism to the model with respect to the uniform
distribution of hardship in Epstein’s model, it does not determine the main results of the
following analysis. In fact, alternative distributions of income, such as the normal and
the gamma distributions, or the original hardship function in Epstein (2002) qualitatively
lead to the same conclusions.
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the difference between citizens’ income and the expected income in the

population E(yi) = exp(a + b2

2
). Given this monotonic transformation,

hardship is a decreasing function of citizens’ income.2

On the other hand, the cost of participating in a rebellion is defined

as the product of the estimated probability of being arrested Ai and the

opportunity cost of joining a revolt J :

N (yi) = AiJ (yi) (1.4)

In fact, each citizen estimates the probability of being arrested before ac-

tively joining a rebellion. This estimated probability is defined as in Epstein

(2002): it is an increasing function of the ratio of policemen to already re-

bellious agents inside the citizen’s vision radius. In particular, in this model

rebel agents can either be citizens and revolutionaries:

Ai = 1− exp

[

−w1

(

P v
i

1 + Cv
i +Rv

i

)]

(1.5)

where P v
i , C

v
i and Rv

i represent the number of policemen, rebellious citizens

and active revolutionaries within the citizen’s vision, respectively. The vi-

sion, a circular neighbourhood with centre located in the citizen’s position

and a radius equal to v, represents the set of lattice positions probed by

the citizen. The one in the previous formula makes explicit that, before

participating in a riot, a citizen will count himself as an active agent: thus

the ratio is always well defined. In practice, the floor operator is applied

to the ratio of policemen to rebel agents, as in Wilensky’s (1999) version of

Epstein’s model.

If an active citizen is arrested by a policeman, he remains in jail for

2This expression is similar to the definition of grievance employed by Kim and Han-
neman (2011). The main difference with respect to their specification is that the two
authors use a local measure of inequality, i.e. the distance between each agent’s wage
and the average wage in the agent’s neighbourhood; conversely, in this model a global
measure of inequality is preferred.
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a number of periods drawn from a uniform distribution on the (0, jmax)

interval. For this reason, the opportunity cost of rebelling is defined as

a function of the maximum number of periods in jail jmax, multiplied by

income loss whilst in jail:

J (yi) = 2
exp [w2 (yijmax)]

1 + exp [w2 (yijmax)]
− 1 (1.6)

Since the inner argument of the logistic transformation is positive, given

that income assumes only positive values, the logistic function is rescaled in

order to define a cost function J on the (0, 1) interval. Expression (1.6) is

also consistent with the literature on political violence, which finds a nega-

tive relationship between income and participation in civil violence phenom-

ena. For example, Collier and Hoeffler (1998, 2004) and Fearon and Laitin

(2003), using cross-country regressions, find that economic growth and per

capita income correlate negatively with the risk of civil conflict. Moreover,

Miguel, Satyanath and Sergenti (2004) identify a causal negative effect be-

tween positive income shocks and civil war incidence in Sub-Saharan African

countries employing an instrumental variable approach.

Having defined the incentives and the costs underlying participation in

riot activities, it is now possible to specify citizens’ rule of activation. Citi-

zens particularly become active, meaning that they decide to rebel against

the government, if the difference between their social grievance and the ex-

pected opportunity cost of joining a riot exceeds a fixed threshold; otherwise,

they will keep quiet. The citizens’ rule is therefore:

Rule C: if G (yi)−N (yi) > f be active; otherwise, keep quiet.

This rule can be interpreted using Kuran’s (1989) theory: the left-hand

side represents the expected utility of expressing opposition to the central

authority in public; the right-hand side f is the constant utility of staying

quiet and concealing private political preferences.
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The revolutionaries’ behaviour is simpler. Revolutionaries are members

of an organised group that attempts to overthrow the government by an

armed conflict. This kind of agent can be interpreted as a proper revo-

lutionary group or as defected elements from the military that decide to

side with the population in revolt. Historical examples of the first type

of organisation include the Bourgeois Militia of Paris in the French Revo-

lution (1789); the Bolsheviks and Red Guards in the Russian Revolution

(1917); the leftist revolutionaries of the Organisation of Iranian People’s

Fedai Guerrillas in the Iranian Revolution (1979); the Muslim Brotherhood

in the Egyptian Revolution (2011); the jihadist group of the Islamic State

of Iraq and the Levant in the Syrian Civil War (2011), and many others.

Defections from the military are also very common in all revolutions: a

typical example is the pro-Khomeini members of the Iranian Air Force who

fought against the loyal Immortal Guards during the 1979 uprisings.

It is assumed that revolutionaries behave according to the following rule:

Rule R: if R+C
P

> n be active and kill a randomly selected po-

liceman inside vision radius v with a probability equal to r;

otherwise, remain hidden.

Here R, C and P are the total number of revolutionaries, the total number

of active citizens and the total number of policemen, respectively. Rule R

means that revolutionaries decide to become active when the ratio of rebel

forces to policemen loyal to the government exceeds a given threshold n.

In this respect, revolutionaries are different from citizens: citizens choose

how to behave according to local information available within their vision

radius. In contrast, revolutionaries act on the basis of global information

and decide when to start a revolution by employing a threshold-based rule

involving the total number of active citizens in the population. In fact, it

is assumed that the revolutionary organisation is spread across the country,

enabling it to obtain an estimate of the total number of active agents in the
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population.

When a revolutionary is active, he kills a randomly selected policeman

in his vision radius with a probability equal to r. Otherwise, when the ratio

is less than the fixed threshold, all revolutionaries will remain hidden among

quiet citizens and policemen will be unable to identify them.

As far as policemen are concerned, they simply inspect the lattice po-

sitions inside their vision radius and randomly choose an active citizen or

active revolutionary: if the randomly selected agent is a citizen, the police-

man will arrest him, or will kill him if he is an active revolutionary with a

probability equal to p. The policemen’s rule is therefore:

Rule P: randomly select an agent from the active citizens and

active revolutionaries within vision radius v. If the randomly

selected agent is a citizen, arrest him; if he is a revolutionary,

kill him with a probability equal to p.

The same vision radius v is assumed for citizens, revolutionaries and po-

licemen. Furthermore, parameters r and p can also be interpreted in terms

of weapon precision or, more broadly, in terms of effectiveness in the mil-

itary capacity of the conflicting parties. Once killed, revolutionaries and

policemen are simply removed from the bidimensional space.

Finally, citizens who are not in jail, revolutionaries and policemen who

are not killed can move in the lattice space to a random site without agents

or in which there are only jailed citizens following this simple rule:

Rule M: within vision radius v, randomly move to an empty site

or to a site in which there are only jailed citizens.

Table 1.1 presents the parameter values that are kept constant in all

model simulations: the values assigned to the lognormal parameters (a, b)

and the cost function parameter w2 are selected in order to obtain a widespread

distribution of hardship and opportunity costs on the (0, 1) interval, avoid-

ing concentration at the extremes of that interval; the other values are
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Parameter Description Value
Citizen Density Space occupied by citizens 70%

Revolutionary Density Space occupied by revolutionaries 3%
Policeman Density Space occupied by policemen 4%
Lattice Dimension Dimensions of the bidimensional space 40x40

l Government legitimacy 0.85
(a, b) Lognormal parameters (0.5, 0.5)
w1 Arrest probability parameter 2.3
w2 Cost function parameter 0.025
f Citizens’ activation threshold 0.1
v Vision radius 7

jmax Maximum number of periods in jail 30

Table 1.1: Parameter values fixed in all model simulations.

assigned according to those selected by Epstein (2002). The next section of

the paper investigates the effects of the new parameters introduced by the

present model, i.e. the military effectiveness of the two factions (p, r) and

the revolutionaries’ threshold n.

At the beginning of each model simulation, the random values yi are

drawn from the lognormal distribution and the different agents are randomly

situated on the sites of the lattice. Then, an agent is selected at random.

Under rule M, he moves to a random position within his vision, where he

acts according to rule C if he is a citizen, rule R if he is a revolutionary or

rule P if he is a policeman. This procedure is replicated until a given time

or a specific condition (e.g. all revolutionaries or policemen are killed) is

reached. The model was written using NetLogo (Wilensky, 1999), whereas

the statistical analysis was performed using R (R Core Team, 2014).

1.3 Model Results

Three distinct outcomes can be identified by simulating this simple model:

a successful revolution in which all policemen are killed by revolutionaries,

leading to an overthrow of the central government; a failed revolution fol-

lowed by a state of anarchy due to the large number of policemen killed; a

completely failed revolution with only a few policemen killed, signifying a
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return to the status quo after the uprising.

Figure 1.1 shows these possible outcomes with three simulations in which

the random seed and the value of n (n = 1.2) are the same but the two

precision parameters take different values: in particular, in the two upper

graphs p = 0.4 and r = 0.3; in the middle pictures p = 0.9 and r = 0.3;

finally, in the lower graphs p = 0.9 and r = 0.1. All three simulations start

with a period of instability characterised by minor revolts where the poorest

component of the population, made up of citizens with the greatest degree of

grievance and the lowest opportunity cost, decides to rebel. However, these

riots are too small, meaning that they do not degenerate into a revolution.

This politically unstable pre-revolutionary period is a common feature of

many historical revolutions: e.g. the strikes and workers’ demonstrations in

Russia (1917), Iran (1977-1978) and the Arab World (2011), motivated to a

great extent by poor economic conditions such as low wages, high inflation

(especially high food prices, as documented by Lagi, Bertrand and Bar-Yam,

2011), inequality, unemployment, as well as by a small degree of political

legitimacy, due to the Russian Tsar’s war defeat or the Shah’s unpopular

westernised costumes in the case of Iran.

Around time 30 a major riot occurs, and the revolutionaries’ thresh-

old rule is satisfied: this implies that revolutionaries become active and

the rebellion, that started as a riot motivated by the poorest citizens’ bad

economic conditions, has now the features of a political revolution. The

revolutionaries’ threshold n therefore plays an important role because it

determines the time at which revolutionaries will become active (in this

specific simulation, n = 1.2). When revolutionaries become active, the

citizens’ estimated probability of arrest is lowered, creating a surge in the

number of active citizens. Moreover, this effect is reinforced by the fact

that revolutionaries start killing policemen, again lowering the probability

of arrest. What happens next depends on the parameters that regulate the

relative strength of the two factions.
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Figure 1.1: The three model outcomes.Time series graph for the different
model scenarios: (a) time series of the number of active and jailed citizens
in a successful revolution; (b) time series of the number of revolutionaries
and policemen who have survived a successful revolution; (c) time series of
the number of active and jailed citizens in an anarchic scenario; (d) time
series of the number of revolutionaries and policemen who have survived an
anarchic scenario; (e) time series of the number of active and jailed citizens
in a failed revolution; (f) time series of the number of revolutionaries and
policemen who have survived a failed revolution.
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In the two upper graphs (p = 0.4 and r = 0.3), once revolutionaries have

taken action, a large number of citizens become active, and policemen find

more readily active citizens than revolutionaries: this explains why, follow-

ing the surge, many citizens are arrested and only a few revolutionaries are

killed. Hidden among active citizens, revolutionaries shoot policemen; when

many are killed, the number of active citizens starts to increase again and,

when all policemen have been killed, it reaches its maximum, i.e. all citi-

zens with a degree of grievance exceeding the threshold become active: the

revolution is complete and the government is overthrown. Political scien-

tists (see Goldstone, 2001) have observed a common feature in all successful

revolutions: they only occur when there is a link between mass mobilisa-

tion and the revolutionary movements that place themselves at the head

of popular revolts, giving them organisation and coherence. This occurred

with the Bolsheviks and the workers’ riots in 1917 and with the Ayatollah

Khomeini and the protests in the Iran’s bazaars. The model is capable of

capturing this link between popular spontaneous riots and organised action

by revolutionaries. Examples of successful rebellions are represented by the

three major historical revolutions in France (1789), Russia (1917) and Iran

(1979), as well as by the recent uprisings in Tunisia (2011). In all these

cases, the pre-revolutionary government is overthrown and a new order is

established.

Conversely, in the middle graphs (p = 0.9 and r = 0.3), after the surge

of active citizens, the armed conflict between revolutionaries and policemen

is won by the latter. Nevertheless, a large number of policemen are killed

and the revolution is followed by a period of major, never-ending turmoil:

the huge reduction in the state’s legal capacity, caused by the uprising,

drives the country towards anarchy. A similar anarchic post-revolutionary

situation usually follows a rebellion when the percentage of policemen killed

exceeds 40% in the simulations. The anarchic outcome resembles the present

civil war scenarios in Syria and Libya, where the 2011 insurrections com-
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pletely destabilised these countries, reducing their government’s capacity to

rule.

Finally, in the lower graphs (p = 0.9 and r = 0.1), the difference in

the military effectiveness of the two factions is too large, and only a few

policemen are killed during the uprising (usually less than 40%). This means

that, following a major rebellion, the situation is similar to that in the pre-

revolutionary period: the status quo is maintained. Here the analogy is

with the 2011 riots in Saudi Arabia and Bahrain, where opposition groups

were very weak from a military perspective, and only a few police officers

were killed in the street violence episodes.

In order to explore how the different outcomes of the model vary with

the parameters associated with policemen’s and revolutionaries’ precision

as well as with the threshold revolutionaries employ in their decision rule,

the model was simulated for different values of these parameters: in par-

ticular, n takes values in the set {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4}, whereas

the two precision parameters p and r assume values in {0.1, 0.2, . . . , 0.8, 0.9}

and {0.1, 0.2, 0.3, 0.4}, respectively. Finally, for each combination of these

parameter values, the model is simulated 60 times, for a total of 17,280

simulations. Each simulation is halted after 300 time steps.

Figure 1.2 shows the average proportion of policemen killed in the sim-

ulations for different combinations of p and r (each mean is calculated em-

ploying 480 simulations, averaging over different values of n). The white

and light grey regions represent the cases in which a return to the status quo

arises after the uprising: the number of policemen killed is less than 40%.

In fact, these areas correspond to a high value for policemen’s precision and

a low value for that of revolutionaries. As r increases or p decreases, the

outcome of the simulations changes towards anarchy: these outcomes are

represented by the darker grey areas, where the percentage of policemen

killed is between 40% and 80%. Above a certain level for the two precision

parameters, the situation changes from anarchy to successful revolution: the
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Figure 1.2: Average proportion of policemen killed for different values of
the two precision parameters. For each combination of p and r, the average
proportion of policemen killed is calculated employing 480 simulations.

regions for successful revolutions, where the average percentage of policemen

killed exceeds 80%, are coloured black.

An important feature of the figure is that the white and light grey areas

are well below the 45 degree line: this means that policemen need a very

high level of precision compared to that of revolutionaries in order to win the

armed conflict. This is due to the revolutionaries’ strong advantage: in fact,

they can hide among active citizens and attack when government forces are

engaged in public order maintenance. This advantage results from the fact

that policemen randomly draw one agent from the set of both active citizens

and active revolutionaries within their vision radius (see rule P), and not

from the set formed by revolutionaries only. This part of the model offers

an incentive for revolutionaries to become active only when participation in

spontaneous riots exceeds a minimum threshold. It also helps explain why,

in the past, revolutionary movements occurred following strikes, protests

and riots.

Figure 1.3 shows the same graph, albeit with the standard deviation

of the proportion of policemen killed rather than the mean. First, it is
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Figure 1.3: Variability of the proportion of policemen killed for different
values of the two precision parameters. For each combination of p and r,
the standard deviation of the proportion of policemen killed is calculated
employing 480 simulations.

interesting to note that areas characterised by anarchy, in average terms,

are also associated with a high variability of policemen killed (the dark grey

and black areas). In contrast, the regions corresponding to a return to

the status quo and the regions of successful revolutions display much lower

levels of volatility: this means that, in these areas, the same outcome is

often observed, while in the regions where anarchy, on average, is observed

it is easier to observe diverse outcomes.

One of the main features shared by many revolutions in history is that

they were not anticipated, neither by the government nor by the opposition.

This pattern was first observed by Kuran (1989, 1991, 1995) in the dynam-

ics of the French, Russian and Iranian revolutions and in the fall of com-

munist regimes in Eastern Europe. A related interpretation was provided

recently by Taleb and Treverton (2015), who point out that apparently sta-

ble regimes may be less well equipped to manage political instability than

countries that are often affected by disorder and turmoil, which leads to

their decline in the presence of significant and unanticipated shocks.
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The model presented in this paper is able to replicate the unpredictable

nature of revolutions. In fact, Figure 1.4 shows for three different values

of n (n = 0.8, n = 1.1, n = 1.4) how many of the 2,160 simulations result

in a revolution and the distribution of the time when rebellion occurs (the

simulations employed have different values of p and r, but these parameters

do not affect the timing of revolutions). For low and medium values of n,

revolutionaries become active in every simulation and the time of activa-

tion is concentrated within 50 time steps. By increasing the value of the

revolutionaries’ threshold, a larger number of simulations do not result in a

revolution, because the number of active citizens never reaches the level re-

quired for revolutionaries to become active, and the distribution of the time

when rebellion occurs is more widespread. The revolutions generated by the

model are therefore random events. In fact, it is impossible to anticipate if

and when there will be a riot involving enough active citizens to activate

the revolutionaries and generate an uprising. This behaviour of the model

mimics real revolutionary events in which, as stressed by Goldstone (2011)

in the context of the Arab Spring, opposition elites or defected military of-

ficers and most individuals who want to rebel against the government have

an incentive to hide their true feelings until the crucial moment arises. It is

also impossible to know which episode will lead to mass, rather than local,

mobilisation.

1.4 Global Sensitivity Analysis

Using the same simulated data described in the previous section, several

statistical models are estimated, in line with Saltelli et al. (2008), so as to

help understand more rigorously how the three outcomes of the model de-

pend on the two precision parameters and the revolutionaries’ intervention

threshold. In particular, the statistical analysis of the simulated data allows

to estimate the impact of each model parameter controlling for the effects
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Figure 1.4: The unpredictability of revolutions. The graphs show how many
simulations result in the occurrence of a revolution and the distribution of
the time when rebellion occurs: (a) histogram of the number of revolutions
that take place in 2,160 simulations for n = 0.8; (b) histogram of the time
when revolutions occur for n = 0.8; (c) histogram of the number of revolu-
tions that take place in 2,160 simulations for n = 1.1; (d) histogram of the
time when revolutions occur for n = 1.1; (e) histogram of the number of
revolutions that take place in 2,160 simulations for n = 1.4; (f) histogram
of the time when revolutions occur for n = 1.4.
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of the others.

In each simulation s a binomial distribution is assumed for the cumula-

tive number of policemen killed zs. The two parameters of this distribution

are the number of policemen P and the probability of killing a policeman k,

respectively. This last quantity, which can also be interpreted as a measure

of the probability of a successful revolution, is assumed to be a function of

the three most important parameters of the model, i.e. the precision of po-

licemen ps, the precision of revolutionaries rs, the revolutionaries’ activation

threshold ns:

zs ∼ Binomial (P, k (ps, rs, ns)) (1.7)

The model is estimated with different link functions for probability k, and

the effect of n is included with a third-degree polynomial:

k (ps, rs, ns) = g
(

β0 + β1ps + β2rs + β3ns + β4n
2

s + β5n
3

s

)

(1.8)

where g(.) can be the linear, logit, probit or complementary log-log link

function.

The results are presented in Table 1.2: in the first column, the linear

probability model (LPM) is estimated using the ordinary least squares es-

timator; in the other three columns, a different generalised linear model

is estimated using the maximum likelihood estimator, assuming the link

function of the logit, probit and complementary log-log model, respectively.

In all models, the two precision parameters have the expected signs: the

policemen’s precision has a significant and negative impact on the probabil-

ity of killing a policeman because the higher the precision of governmental

forces, the larger the number of revolutionaries killed and, consequently,

the lower the effectiveness of revolutionaries in killing policemen; on the

other hand, as expected, the revolutionaries’ precision has a significant and
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(1) (2) (3) (4)
LPM Logit Probit CLogLog

p -0.498*** -4.969*** -2.740*** -2.438***
(0.006) (0.014) (0.008) (0.007)

r 2.015*** 20.120*** 10.868*** 9.154***
(0.014) (0.044) (0.022) (0.020)

n -0.079 -0.854 -1.917*** -2.722***
(0.582) (1.145) (0.641) (0.601)

n2 0.381 3.950*** 3.870*** 5.093***
(0.572) (1.116) (0.625) (0.585)

n3 -0.211 -2.181*** -1.846*** -2.440***
(0.183) (0.354) (0.198) (0.185)

Constant 0.432** -0.940** -0.047 -0.118
(0.193) (0.382) (0.214) (0.200)

Observations 17,280 17,280 17,280 17,280
R2/pseudo-R2 0.623 0.692 0.685 0.656

Table 1.2: Estimates of the statistical models. Column 1: linear probabil-
ity model estimated with ordinary least squares estimator, standard errors
corrected for heteroskedasticity. Column 2: logit model estimated with the
maximum likelihood estimator. Column 3: probit model estimated with the
maximum likelihood estimator. Column 4: complementary log-log model
estimated with the maximum likelihood estimator. (*** significant at 1%,
** significant at 5%, * significant at 10%)

positive effect on the probability of killing a policeman.

In order to analyse the effect of the revolutionaries’ threshold n on the

probability of killing a policeman, function k (0.9, 0.3, n) is plotted in Fig-

ure 1.5 (p = 0.9 and r = 0.3 are plausible values for the two precision

parameters) for the linear, logit, probit and complementary log-log model.

In all specifications, it is evident that the probability of killing a policeman

slightly increases in n up to a given value; then, the probability decreases

markedly if n increases. A third-degree polynomial is preferred to a second-

degree one because it allows this asymmetry to be captured. The intuition

behind this shape is the following: for a revolutionary organisation, it is not

optimal to start a revolution too early, when popular riots are small-scaled

(small value of n), because it would easily come under fire from policemen.

At the same time, however, revolutions may not occur if the revolutionary

organisation waits too long (high value of n). According to these estimates,
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Figure 1.5: Probability of killing a policeman as a function of the revolu-
tionaries’ threshold. Function k (0.9, 0.3, n) is plotted for the linear, logit,
probit and complementary log-log model. .

if the revolutionary organisation’s objective is to maximise the probability

of a successful revolution, the optimal behaviour is to choose n in [1.0, 1.1],

which suggests starting the uprising when the number of active agents is

equal to that of governmental forces or exceeds it by about 10%.

1.5 Stationarity and Ergodicity

In this section the emerging outcomes of the model are analysed with respect

to the categories of stationarity and ergodicity (Grazzini and Richiardi,

2015). A model or, in general, a data generator process is said to be sta-

tionary if it converges to an equilibrium, while ergodicity tells whether such

equilibrium is unique. Stationarity is a necessary but not a sufficient con-

dition for ergodicity: in fact, the latter implies that convergence to the

equilibrium state is guaranteed for every possible realization of the process,

i.e. for every random seed.

In the present model, these two properties strongly depend on the values
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of the precision parameters p and r. Figure 1.6a shows the time series of

the number of active citizens in 100 simulations performed with p = 0.4

and r = 0.3. Each series stabilises on a constant value after the uprising

which is equal to the number of citizens whose grievance is higher than

the participation threshold. As a consequence, it is possible to conclude

that each process is stationary. Moreover, since in every series the outcome

observed is always a successful revolution and assuming that the number

of simulations is sufficiently high and representative, we can also conclude

that the process is ergodic.

A similar conclusion on the stationary and ergodic features of the model

equilibrium can be derived in Panel 1.6b, in which p = 0.9 and r = 0.1: all

the series are characterised by random peaks of active citizens, both before

and after the rebellion. These outcomes correspond to the return to the

status quo after the turmoil.

Results change completely in the last picture of Figure 1.6, where p = 0.9

and r = 0.3. In fact, in this scenario it is quite easy to detect the existence

of three types of dynamics: some series are converging to the successful

revolution outcome, as happened in Panel 1.6a; in other realizations of

the process, the protests are completely suppressed and a pattern similar

to Figure 1.6b is detected; finally, in some other cases, we observe the

emergence of the intermediate outcome, labelled anarchy above, in which

policemen are not able to reduce the level of protests after the uprising.

This multiplicity of equilibria in correspondence to the same values of the

model parameters, which ultimately depends only on the initial random

seeds, is the typical expression of a non-ergodic behaviour.3

3It is worth stressing that the focus of this analysis is on the stationarity and ergodicity
of the model with respect to the three outcomes (successful revolution, anarchy, and
return to the status quo). Obviously, if the attention is strictly devoted to the number
of active citizens, the model always displays a non-ergodic behaviour (detected by the
formal test proposed by Grazzini, 2012) because the number of active citizens at the end
of each run depends on the realization of the income process at the beginning of the
simulation.
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Figure 1.6: Discussion of the stationary and ergodic properties of the model
for different values of the two precision parameters: (a) p = 0.4 and r = 0.3;
(b) p = 0.9 and r = 0.1; (c) p = 0.9 and r = 0.3.
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1.6 Discussion

Although the agent-based model presented in this paper is simple and makes

no claim of incorporating all of the complex aspects involved in historical

revolutions,4 it nevertheless captures several relevant stylised facts that are

common to most revolutionary episodes in the real world.

The most important of these facts is represented by the multiplicity of

different scenarios that can arise from a rebellion, i.e. a successful revolu-

tion, an anarchic scenario and the return to the status quo. The relevance

of this last aspect can be understood by considering recent experience in

the Arab Spring, where many rebellions, that seemed to start in 2011 in a

similar way, resulted in completely different political outcomes.

Moreover, this model generates a plausible dynamics, coherent with

major political revolutions, that can be summarised as follows: a pre-

revolutionary period characterised by spontaneous riots motivated mainly

by poor economic conditions and social inequality, followed by a proper

revolutionary rebellion where organised and politically oriented elements

mobilise popular masses against the central authority. This dynamics mim-

ics the sequence of events of most historical revolutions, and is consistent

with the political science literature, which stresses the role played by revo-

lutionary elites in the organisation of successful revolutions.

Furthermore, this paper examines the trade-off that revolutionaries face

in deciding when to become active: if they start an uprising too early, when

popular riots are minor, they will directly come under fire from policemen;

on the other hand, if they wait too long, the revolution may not occur at all.

If the revolutionary organisation’s objective is to maximise the probability

of a successful revolution, the optimal threshold should balance these two

4A debatable assumption of the model is that the size of the revolutionary group
is fixed and revolutionaries cannot be joined by new adepts from the civil population.
However, without this assumption, the likelihood of a successful revolution would be much
increased, reducing the probability of the other two scenarios. Consequently, this would
compromise the richness of the model predictions about the outcomes of a revolution.
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opposite forces, and riots that do not exceed this minimum level of rebels

will not degenerate into revolutions.

This paper also stresses the random nature of revolutions, pointing out

that rebellions arise from interactions between many agents, determining

their unpredictability: it is impossible to anticipate with certainty when

and which riot will degenerate into a revolution. This consideration implies

that similar countries, in terms of institutions and political systems, may

experience revolutionary events at different points in time, or that some

may not experience revolutions at all.

A policy implication that can be derived from the model is as follows.

Let us suppose that a foreign state wants to intervene in another state to

support a revolutionary group by providing more effective weapons in order

to overthrow the existing government. In the framework of the model, this

is translated into an increase in the revolutionaries’ effectiveness captured

by parameter r. It is also assumed that, without external intervention, the

initial configuration of precision parameters would have led to a rebellion

followed by a return to the status quo. If the increase in revolutionaries’

precision is not sufficiently large, as shown in the graph in Figure 1.2, the

political situation may degenerate from a relatively stable situation, the

return to the status quo (the white and light grey areas in the figure), to an

unstable one, characterised by a rebellion resulting in anarchy (the darker

grey area in the figure). This implies that the foreign government should

provide enough support in order to deliver a successful revolution as the

final result (the black area in the figure). Mistakes in the determination of

this support may precipitate a country towards a state of persistent turmoil

and civil war.

In conclusion, it is worth stressing that having real data, on a daily or

monthly basis, on the number of citizens who decide to rebel against a gov-

ernment and on the participation of revolutionaries in these events, it would

be possible to calibrate the model using such data and to identify the most
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probable outcome in the case of future revolutionary episodes. Therefore,

despite this falls outside the limits of the present analysis, the proposed

approach can be useful to derive important policy recommendations.
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Chapter 2

Evaluating the Effect of Gun

Availability on Homicides

through an Agent-Based Model

Abstract

The aim of this chapter is the evaluation of the effects of gun availability

on firearm-related homicides in an agent-based framework. Behind this

relationship there is a likely trade-off: on the one hand, a diffused gun

ownership can protect victims against the attacks of violent individuals;

on the other hand, a higher diffusion of weapons increases the probability

that a violent individual can obtain a gun. The analysis of this paper

reveals that, with a high number of police officers relative to the space and

the number of citizens, it is possible to minimise the number of homicides

either with a complete ban of weapons or with a capillary diffusion of guns.

Conversely, when the number of police officers is relatively low, only a policy

that reduces gun availability close to zero minimises the firearm-related

deaths. Moreover, a greater presence of policemen generates a transition

from a private kind of self-defense to a public one. Furthermore, the model

discusses the impact of some social variables included in the model on the

47
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number of killings. Finally, the analysis of simulated data reveals that the

variability of homicides closely tracks the behaviour of their average value.

2.1 Introduction

The aim of this paper is the evaluation of the effects of gun availability on

firearm-related homicides in an agent-based framework. The topic of gun

violence has received an increasingly greater attention in the public debate,

especially in the United States, and in the scientific literature because its

incidence can be compared to that of diseases of major public health concern

(Hemenway and Miller, 2000; Hemenway, 2006). Moreover, the frequency of

gun-related homicides has been associated with many social, economic and

political factors (Kennedy et al., 1998; McCall et al., 2008): for instance,

one of the most crucial variables that should affect homicides is represented

by the degree of diffusion of guns in the population, which depends on the

legislation and the controls adopted in each country.

However, the possible presence and sign of the effects of gun availability

on firearm-related homicides have been debated (Kleck and Gertz, 1995;

Jacobs, 2002; Lott, 2010). In fact, behind the relationship between weapon

availability and homicide rates there is a likely trade-off: on the one hand,

a diffused gun ownership can protect victims against the attacks of violent

individuals; on the other hand, a higher diffusion of weapons increases the

probability that a violent individual can obtain a gun.

Several empirical studies have investigated the relationship between homi-

cides and having a gun in the home (Kellermann et al., 1993; Wiebe, 2003),

purchasing a gun (Cummings et al., 1997; Grassel et al., 2003), owning a

gun (Kleck and Hogan, 1999), or possessing a gun in proximity of shoot-

ings (Branas et al., 2009). However the results of these studies can only

be interpreted as correlations without any claim of causal effects: in fact,

these works do not address the endogeneity issue due to the possible re-
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verse causality between gun possession and gun assault. The limitations of

the existing data on gun possession and homicides suggest the adoption of

different approaches.

A paper that explores in depth the trade-off behind the relationship

between gun availability and firearm-related homicides in a mathematical

framework is represented by the work of Wodarz and Komarova (2013): the

authors find that in principle two possible scenarios can minimise the death

rate, i.e. a ban of private weapon possession or a complete liberalization of

gun ownership. Which of these two policies really minimises the number of

homicides depends on some important parameters, including the fraction of

offenders that illegally possesses a gun, the degree of protection provided

by gun ownership and the fraction of the population who owns a gun and

carries it when attacked.

The present paper examines a similar trade-off but using a computa-

tional agent-based model. This methodology represents a more powerful

framework to analyse problems in which the time and space dimensions as

well as the interactions among different players, like victims and offenders,

play a fundamental role because these features are easily implementable

within the agent-based approach.

To the best of our knowledge, there is only another paper written by

Hayes and Hayes (2014) that uses an agent-based model to study a similar

phenomenon, i.e. mass shootings. However, the aim of that work is the

evaluation of a specific policy intervention, namely an assault weapons and

high-capacity magazines bill, and the focus of the paper is therefore on

technical variables, like the accuracy, the magazine capacity and the rate of

fire of weapons, and on their impact on mass shootings.

Conversely, the present paper is more concentrated on other factors, like

the presence of police officers, the effect of a lower lifetime combined with

higher birth rates, the incidence of a more violent society, and on the effects

of these variables on the trade-off described above.
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The analysis reveals that, in the presence of many police officers and

a diffused control of the territory, it is possible to minimise the number

of homicides either with a complete ban of weapons or with a capillary

diffusion of guns. On the contrary, with a low number of police officers

relative to the space and the number of citizens, only a gun availability

close to zero minimises the firearm-related deaths. Moreover, the greater

presence of policemen generates a transition from a private kind of self-

defense to a public one. The model also predicts that an increase of natural

mortality, associated also with high birth rates, and a more violent society

can have a greater impact on homicides than more precise weapons.

The paper also examines the variability of homicides committed for dif-

ferent values of the model parameters: results indicate that the behaviour of

the variability of killings closely tracks the dynamics of their average value,

meaning that the same value of gun availability maximises both the average

number and the standard deviation of homicides.

Finally, the model is slightly modified in order to consider the effects

of the spatial concentration of agents in specific neighbourhoods and more

sophisticated forms of interaction between violent and nonviolent citizens.

The rest of the chapter is organised as follows: next section describes in

detail the theoretical framework and the adopted agent-based model, focus-

ing on the description of the different agents and their simple behavioural

rules; Section 2.3 presents the experiments performed and analyses the main

results; finally, Section 2.4 concludes.

2.2 The Model

This section of the chapter firstly presents a theoretical framework, similar

to the one of Wodarz and Komarova (2013), in which the gun diffusion trade-

off is formally presented and discussed. The adopted agent-based model

immediately follows as a natural extension of this framework. This modeling
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approachis motivated by the capability to enrich the analytical analysis

by explicitly considering important factors, like the interactions between

victims and offenders or between killers and policemen, and studying the

impact of scale and spatial effects on the evolution of the system.

2.2.1 A Theoretical Framework

It is assumed that a population consists of C citizens and P policemen. In

this population there is a percentage υ of violent individuals and a frac-

tion α of armed individuals: these two characteristics are independently

distributed in the population. These two parameters significantly affect the

number of killers K trough the following relationship:

K = φ(α)αυC (2.1)

where αυC is the number of individuals that are both violent and armed

(potential killers), whereas φ(α) represents the fraction of potential killers

that really decide to commit homicide. This last quantity is negatively af-

fected by the deterrence effect represented by the number of policemen P

and by the number of citizens carrying a gun αC, because each potential

killer takes into account the possible presence of policemen or armed indi-

viduals who can defend themselves before selecting a victim. The chosen

expression for φ(α) is therefore:

φ(α) = exp (−βP − γαC) (2.2)

in which β and γ are two positive coefficients. The number of homicides H

is simply a function of the number of killers K:

H = ψ (K) (2.3)
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where ψ (.) is a strictly increasing function. Finally, the government chooses

the optimal gun control policy α in order to minimise the number of homi-

cides or, equivalently, the number of killers:

min
α

{exp (−βP − γαC)αυC} (2.4)

The first order condition (FOC) of the above minimisation problem is given

by:

∂K

∂α
= −φ(α)γαυC2 + φ(α)υC (2.5)

The FOC makes explicit the trade-off behind gun diffusion: the first term in

the right-hand side represents the negative effect on the number of killers due

to the increase of the number of armed citizens that can defend themselves

from the attacks of violent individuals; the second term captures the positive

effect given by the easier access to weapons for criminals. The deterrence

effect prevails on the diffusion effect if the following inequality holds:

γαC > 1 (2.6)

The inequality is more likely satisfied if the fraction of killers φ(α) is more

sensible to the number of armed citizens (high value of γ) or if there are

more armed individuals αC. Furthermore, the FOC implies that K, as a

function of α, has a hump-shaped profile in which the maximum number of

killers is obtained for a value of α equal to:

αM =
1

γC
(2.7)

For values of α < αM , a higher diffusion of weapons increases the number of

killers because the diffusion effect prevails; on the other hand, beyond αM

the deterrence effect is stronger andK is a decreasing function of α. For this

reason there are two minima, whose coordinates are (αm
1 = 0, Km

1 = 0) and
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(αm
2 = 1, Km

2 = φ(1)υC > 0): therefore, for the problem specified above, the

optimal policy is a complete ban of weapons.

However, in some cases, a value of α equal to zero might be unfeasible:

for instance, in the presence of an illegal market of weapons the government

is not able to enforce a complete ban of guns. Under these circumstances,

a widespread diffusion of guns may be optimal. Formally, if α denotes the

minimum possible value of α, the scenario in which α = 1 is the optimal

policy as long as:

exp (γ (1− α)C)α > 1 (2.8)

whose likelihood, as inequality (2.6), positively depends on both the sensi-

bility to the presence of armed citizens γ and to the difference in the number

of armed individuals (1− α)C in the two cases.

The rest of the chapter will enrich this analysis using an agent-based

model that considerably extends the present framework.

2.2.2 The Agent-Based Extension

The agent-based model presented in this subsection consists of C citizens

interacting over time in a bidimensional torus space.1 As in the previously

described theoretical framework, each citizen has an exogenous probabil-

ity υ of being violent and an exogenous probability α of being armed: the

former parameter indicates the rate of violence in the society, while the lat-

ter measures the degree of gun availability. At each time step citizens can

move to a random site within their vision radius, where they act according

to some simple behavioural rules: in particular, citizens that are both vio-

lent and armed decide whether or not to kill other citizens, whereas armed

citizens that are nonviolent can react when attacked by violent individuals

protecting themselves and killing violent agents. In the model there are

1It is possible to interpret this bidimensional space as an urban environment, like a
town or a city.
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also P policemen that have being tasked to suppress the killers. The rules

and the behaviours of each type of agent will be described in detail in this

subsection.

Individuals that are both violent and armed decide to become active

killers or remain quiet using a threshold-based rule involving the number

of policemen and the number of potentially armed citizens in their neigh-

bourhood, i.e. inside the space within their vision radius, and they become

killers if the number of policemen and armed citizens is low. According to

this idea, citizen i, if armed and violent, counts the number of policemen

Pi and the expected number of potentially armed citizens αCi inside his

vision radius;2 then, he becomes an active killer if and only if the following

inequality holds:

Pi + αCi < τ (2.9)

in which τ represents the maximum number of opponents that the killer is

willing to face. If citizen i decides to be a killer, he randomly chooses a

citizen as a potential victim inside his neighbourhood, and kills him with a

probability equal to π.3 The idea of employing a threshold-based model was

introduced in Granovetter’s (1978) fundamental paper and it is widely used

in the agent-based literature, such as in the civil violence model of Epstein

(2002). It is worth stressing that violent and armed citizens are endowed

with some degree of rationality: in fact, according to inequality (2.9), they

take into account the risk of meeting policemen and armed citizens before

becoming active killers.

Conversely, armed citizens who are not violent can defend themselves

by killing, with the same probability π, a killer picked at random in their

2It is assumed that the theoretical probability that a citizens is armed in the popula-
tion, i.e. α, is common knowledge, while the fact that a single citizen is effectively armed
is private information. Therefore, killers estimate the expected number of potentially
armed citizens in their neighbourhood as the product between the number of citizens Ci

inside their vision radius multiplied by the probability that each of them is armed α.
3A complementary interpretation is that homicides can be the result of the interactions

and relationships between a violent individual and his peers in the neighbourhood.
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vision radius. Moreover, the elimination of killers is the main task of the

other type of agent in the model, i.e. the police officers: they have the duty

to inspect the positions in their neighbourhood and suppress a randomly

selected killer with the same probability π. Therefore, the only difference

between policemen and nonviolent and armed citizens is that the former

agents cannot be selected as potential victims by killers and, hence, they

never die.

As in the civil violence model of Epstein’s (2002) paper, each citizen is

endowed with a maximum number of periods of life, drawn from a discrete

uniform distribution on the (0, Lmax) interval: age is increased by one unit

at the end of each time step and citizens die once their maximum age is

reached. When citizens die, either by natural or violent causes, they are

replaced by an exact number of new agents, so that the population of citizens

is constant over time.

The model is implemented in NetLogo (Wilensky, 1999). The user

can choose the values of the model parameters, agents are randomly lo-

cated in the bidimensional torus space, and each citizen randomly receives

the maximum number of life periods and the two characteristics (i.e., vio-

lent/nonviolent and armed/unarmed). In every time period the simulation

evolves through the following steps:

1. an agent is randomly selected;

2. the chosen agent moves to a random site within his vision radius;

3. the selected agent behaves according to the specific rules of his type:

(a) if he is a violent and armed citizen, he decides whether or not

to become a killer following inequality (2.9): if he becomes a

killer, he randomly chooses a citizen inside his vision radius and

he kills the victim with the given probability. Otherwise, he

remains quiet;
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(b) if he is a nonviolent and armed citizen, he randomly chooses a

killer inside his vision radius and he kills him with the given

probability;

(c) if he is a police officer, he randomly chooses a killer inside his

vision radius and he kills him with the given probability;

(d) unarmed citizens, both violent and nonviolent, do not perform

specific tasks.

These simple rules are replicated for all agents. Once all agents have per-

formed their tasks, the age is increased by one unit, and citizens who reach

their maximum age die. All agents that die due to natural or violent death

are removed from the bidimensional space. Then, a new time period begins,

new citizens replace the dead ones and the procedure is performed again un-

til the user quits the simulation or a specified time is reached. At the end of

each simulation, the cumulative number of homicides committed by killers

and the number of killings performed by police officers or by self-defense

are recorded.

2.3 Results

The previous model is simulated for different values of the parameters with

the aim of analysing how homicides depend on the degree of gun availability

and testing whether this relationship is robust to alternative specifications

of the model and to different values of its parameters.

In particular, Table 2.1 summarises the main experiments performed:

the first experiment is the baseline scenario, in which the bidimensional

space has dimensions equal to 16x16 patches, the precision of weapons π is

0.6, and each of the 700 citizens has a maximum life drawn from a discrete

uniform distribution on the (0, 100) interval and a probability of being vio-

lent υ equal to 0.05; in the second experiment, the space is enlarged (32x32
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Experiment Name Space π Lmax υ Simulations
1 Baseline 16x16 0.6 100 0.05 1,040
2 Larger Space 32x32 0.6 100 0.05 1,040
3 Higher Precision 16x16 0.8 100 0.05 1,040
4 Higher Mortality 16x16 0.6 50 0.05 1,040
5 More Violence 16x16 0.6 100 0.10 1,040

Table 2.1: Values chosen for the main parameters of the model in the five
experiments performed. The baseline scenario is represented by experiment
1. The changes made with respect to the values of the parameters in the
first scenario are highlighted in bold. In all experiments the number of
citizens C is equal to 700, the killers’ threshold τ is equal to 2, the length of
the vision radius is 1.5 patches for each agent, while α and P take different
values in the simulations performed.

patches), keeping fixed the values of the other parameters; in the third sce-

nario the precision is higher and equal to 0.8, while in the fourth one the

maximum life Lmax is reduced to 50, coeteris paribus ; finally, in the last

experiment the percentage of violent citizens is equal to 10%.

In all simulations, the number of citizens C is 700, the killers’ threshold

τ is equal to 2, the length of the vision radius is 1.5 patches for each agent,

and the halting time is 500 time steps. Moreover, in order to analyse the

behaviour of the model for different values of the gun availability parameter

α and for different numbers of police officers P , in every scenario these two

parameters take values in the following sets: {0.01, 0.05, 0.10, 0.20, ..., 0.80,

0.90, 0.95, 0.99} and {50, 100, 200, 300}, respectively. For each combination

of parameter values, the model is simulated 20 times: this implies that each

experiment consists of 1,040 simulations.

The values of the parameters in the baseline scenario as well as in the

alternative settings are chosen in order to ease interpretation and explore a

variety of possible parametric constellations.

In every scenario, the number of homicides performed by killers is recorded,

together with the number of killings made by armed and nonviolent citizens

for self-defense or by police officers: these variables will be the objective of

the following analysis.
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2.3.1 Homicides Committed and Gun Availability

In this subsection, the dependence of the number of homicides committed on

gun availability is studied. In particular, the results for the first scenario are

displayed in Figure 2.1. This picture shows on the horizontal axis different

values for the gun availability parameter, whereas on the vertical axis the

total number of homicides performed by killers is reported. Each curve is

a non-parametric estimate of the relationship between homicides and gun

availability using the simulated data and corresponds to a different number

of police officers. All of them exhibit a hump-shaped profile (similar to the

graph in Wodarz and Komarova, 2013) and the minimum number of killed

agents is reached when α is close to zero, i.e. when weapons are banned and

it is not possible to obtain them in any legal or illegal way. By increasing the

value of gun availability beyond zero, the number of homicides raises because

the likelihood that a violent citizen is armed increases too. However, this

profile reaches a maximum and then declines: the reason is that nonviolent

citizens are also more likely to have a gun and, therefore, they can shoot

killers for self-defense; at the same time, the higher likelihood of meeting

armed citizens discourages the activation of killers through inequality (2.9).

These reasons explain why the peak in the number of homicides is reached

in correspondence to the same value of α for which the number of active

killers is maximised.

It is worth noting that, when the number of police officers is high, it is

possible to reduce the number of homicides to a value comparable to the

situation in which α is close to zero even when α assumes a much higher

value: this happens because the combination of a high number of policemen

and armed citizens lowers the probability that the killers’ threshold rule is

satisfied. On the other hand, when there are few police officers, even a value

of α close to one is not able to reduce the number of homicides to zero.

This last effect is more evident considering the curves of the experiment



2.3. RESULTS 59

Figure 2.1: Number of homicides committed for different values of gun
availability and different numbers of police officers in the baseline scenario
(experiment 1).

with a larger bidimensional space, plotted in Figure 2.2. In this scenario,

the number of homicides is an increasing function of the percentage of gun

diffusion α: this means that, when α increases, the greater presence of

potential killers overcomes the deterrence effect of a higher number of armed

and nonviolent citizens. The weakness of the deterrence effect is motivated

by the low number of policemen compared to the new dimensions of the

space.

It is interesting to notice that in both experiments the marginal effect

of adding new police officers is a decreasing function of the number of po-

licemen: in fact, the increase of police officers from 100 to 200 has a much

larger effect on the number of committed homicides than the increase from

200 to 300. This feature of the police repression technology is also present

in Hayes and Hayes (2014).

2.3.2 Police versus Self-Defense

It is reasonable to think that a lower presence of police officers should be

associated with an increase in the relevance of self-defense, because citizens



60 CHAPTER 2. GUN AVAILABILITY AND VIOLENCE

Figure 2.2: Number of homicides committed for different values of gun avail-
ability and different numbers of police officers in the larger space scenario
(experiment 2).

are forced to protect themselves with their own weapons. It is possible to

test this hypothesis using the simulated data.

Considering again the baseline scenario, the difference between the num-

ber of violent and armed citizens killed by police and those killed for self-

defense is analysed in Figure 2.3 according to different values of the gun

availability parameter and different numbers of police officers. This picture

reveals that when the number of policemen is low (50 or 100) there is a

prevalence of self-defense killings for almost all values of the gun availabil-

ity parameter: the minimum of the difference of killings coincides with the

intermediate value of α for which the activation of killers is maximised.

On the other hand, for a high number of police officers (for instance, 300)

there is a prevalence of killings caused by police intervention. Therefore,

the greater presence of police officers leads to a transition from a private to

a public kind of defense.
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Figure 2.3: Difference between killings performed by police officers and
those committed for self-defense in correspondence to different values of gun
availability and different numbers of police officers in the baseline scenario
(experiment 1).

2.3.3 The Other Factors

This subsection explores the dependence of the homicides committed on the

other variables of the model. In particular, the effects of a higher precision

of weapons, a lower lifetime and a more violent society on the number of

homicides are compared to the baseline scenario in Figure 2.4. The picture

shows that all these factors increase the number of killings performed by

violent citizens.

In particular, the effect of the increase of gun precision is positive because

killers’ guns are more lethal. However, this effect is the smallest one because

police officers and armed nonviolent citizens have more precise weapons too.

The positive effect of the lifetime reduction on the number of homicides

committed can be understood considering that a higher mortality is com-

pensated by the birth of new agents in this model. Since at every time step

a higher number of citizens is generated, keeping fix the probability that

each of them is violent and armed, the number of potential killers increases

on average.4

4In order to understand if this feature assumed in the model is realistic, i.e. the
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Figure 2.4: Number of homicides committed for different values of gun
availability and different numbers of police officers in the baseline, high
precision, low lifetime and high violence scenarios (experiments 1, 3, 4, 5).

On the other hand, the highest effect on the number of homicides com-

mitted is obtained in correspondence to an increase in the percentage of vi-

olent agents, meaning that a violent society is the principal cause of crimes

and disorders, at least according to the model.

It is worth noting that these effects are amplified for the intermediate

values of α in which the activation of violent agents is maximised, whereas

they are reduced significantly in correspondence of both low and high values

of α, i.e. when there are few weapons or the maximum deterrence effect of

gun availability is reached.

2.3.4 Variability of Homicides

With the same simulated data it is also possible to study the variability

of homicides, by calculating the standard deviation of killings for different

positive relationship between a lower lifetime and a higher number of agents generated
in each period, we have to consider that poor societies, characterised by a low life ex-
pectancy, often tend to present high birth rates too. Therefore, the prediction of the
model about a positive correlation between mortality and violence may be plausible for
those societies. Certainly, this implication of the model must be considered with caution
because we are not controlling for the other socio-economic factors which are likely to
have an impact on the number of homicides.
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Figure 2.5: Variability of homicides committed for different values of gun
availability and different numbers of police officers in the baseline scenario
(experiment 1).

values of the model parameters.

In particular, the curves in Figure 2.5 represent a non-parametric fit of

the standard deviation of homicides in correspondence to different values of

gun availability and different presence of police officers, using the data of the

first experiment. By comparing this picture with Figure 2.1, we can see that

the maximum in the variability is reached in proximity of the peak in the

number of killings: in other words, roughly the same value of gun availability

α maximises both the number of homicides and their variability. From

Figure 2.5, it is also evident that an increase in the presence of policemen

leads to a reduction in the variability of homicides, and not only to a fall

in the number of homicides, as was clear in Figure 2.1. Moreover, the

same decreasing marginal effects of the police presence are observable in

this picture as they were in Figure 2.1.

Figure 2.6 compares the variability profile in the baseline scenario with

those in the last three experiments, characterised by higher precision, lower

lifetime and more violence, respectively. By comparing this picture with

Figure 2.4, a similar conclusion can be derived as before: the impact of the
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Figure 2.6: Variability of homicides committed for different values of gun
availability and different numbers of police officers in the baseline, high
precision, low lifetime and high violence scenarios (experiments 1, 3, 4, 5).

considered factors on the standard deviation is analogous to the effect that

these variables have on the average number of homicides. In fact, a lower

lifetime and a more violent society increase the variability of killings more

than the precision of weapons.

Therefore, both Figure 2.5 and 2.6 illustrate a similarity between the

behaviour of the level of homicides and the dynamics of their variability.

2.3.5 The Effect of Spatial Concentration

Within the framework of the present model it is also possible to test whether

the concentration of people in specific areas, such as a ghetto, increases or

decreases the rate of violence and the number of homicides.

In order to perform this test two different scenarios are considered: the

case in which citizens are randomly located in the bidimensional space and

the one in which they are concentrated in the centre of the lattice (more

precisely, in a square whose dimensions are half of those of the lattice). In

both situations it is assumed that citizens cannot move.

The model is simulated under these two scenarios assigning to the pa-
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Figure 2.7: Number of homicides committed for different values of gun avail-
ability when agents are spatially concentrated and when they are randomly
located in the bidimensional space.

rameters the same values of the second experiment, i.e. the one with the

larger bidimensional space. The results of the simulations are presented in

Figure 2.7.5

For low values of the gun availability parameter the number of homicides

is higher in the ghetto scenario because in this framework few policemen

are inside the space occupied by agents and the number of nonviolent and

armed citizens is very low: both these factors strongly favour the activation

of potential killers inside the ghetto.

Conversely, for higher values of weapon diffusion, in the spatially con-

centrated scenario there are many nonviolent citizens endowed with a gun

in the centre of the lattice and this lowers the probability of killers’ activa-

tion: in fact, killers perceive the presence of multiple and potentially armed

individuals inside their vision radius. This consideration explains the rea-

son way, in the case of random allocation of agents in the lattice, there are

more homicides compared to the alternative scenario when guns are easily

available.

5The number of policemen employed in these simulations is 50.
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2.3.6 More Sophisticated Interactions

The previous agent-based model assumes that there is a complete symmetry

between violent and nonviolent citizens in their ability to kill. In fact,

violent and nonviolent agents kill and defend themselves, respectively, with

the same probability π. In order to prove that this restrictive assumption

does not alter the broad conclusions of the model, more realistic forms of

interaction are investigated in this subsection.

In particular, it is assumed that armed and violent citizens select their

target. Then, what happens next depends on the nature of the victim: if the

target is an unarmed citizen, the killer kills him with a probability equal to

πk; if the victim is armed, with probability πk the target is killed, but with

probability πv < πk the killer can also be suppressed, due to the reaction of

the attacked person.

Figure 2.8 shows the total number of killings perpetrated both by killers

and by nonviolent citizens for self-defense when πk = 0.6 and πv = 0.1

(solid line). The hump-shaped profile appears to be preserved even in this

scenario, possibly hinting at the fact that the main results of the previous

analysis are robust. Interestingly, if the probability πv assumes a larger

value (πv = 0.6, dashed line in Figure 2.8) and the self-defence capacity is

consequently increased, the total number of killings decreases with respect

to the previous scenario in correspondence to medium and low values of gun

diffusion, but it increases when α exceeds a certain threshold: this raise of

mortality can be ascribed to the gun diffusion that magnifies the likelihood

that crimes end up in a bloodshed.

2.4 Concluding Remarks

The present chapter examines the effects of gun availability on firearm-

related homicides in an agent-based framework. This simple model can be
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Figure 2.8: Total number of killings perpetrated by killers and by nonviolent
citizens for self-defense with more realistic interactions and different self-
defense abilities.

used to derive some important policy implications. For instance, when the

number of police officers suffices to control the territory, either a complete

ban of private weapons or a widespread gun ownership allow to minimise

the number of homicides committed. Conversely, when the number of po-

lice officers is relatively low, the number of violent deaths is an increasing

function of the gun availability parameter and, therefore, the minimum is

reached with a diffusion of weapons closed to zero.

This last result is quite problematic due to the difficulties of implement-

ing a zero-gun policy without a significant number of policemen.6 Under

these circumstances, cultural factors, like a less exacerbated individualism

and the preeminence of public forms of defense, may play a fundamental

role in reducing the diffusion of guns.

Moreover, the model highlights the trade-off between private and public

defense: in fact, a reduction in the number of police officers causes a shift

towards private forms of self-defense, especially for relatively high values of

gun diffusion. In addition, the model predicts that the number of firearm-

related homicides increases more in scenarios characterised by a higher nat-

6We thank Ugo Fratesi for pointing this out.
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ural mortality, associated also with high birth rates, or in more violent

societies rather than in scenarios with more precise and lethal weapons.

Finally, the analysis of simulated data reveals that the variability of

homicides clearly tracks their level: this means that the same value of

gun availability maximises both the number and the standard deviation of

killings, and a violent society is characterised by a higher and more volatile

homicide rate than the baseline scenario.

Agent-based modeling is a natural framework to study phenomena in

which interactions between many heterogeneous agents play a fundamen-

tal role. The problem addressed in this paper clearly falls in this cate-

gory and this explains the reason why some important results, such as the

hump-shaped profile of homicides with respect to gun availability, emerges

naturally from the interplay of the different agents, while in the standard

analytical models such results usually require artificial and clearly ad hoc

assumptions.

The proposed methodology also allows to introduce in a quite easy fash-

ion some important elements, such as the presence of police officers and spa-

tial effects, that are difficult to incorporate in standard approaches. These

ingredients add realism to the model and increase the reliability of results

for policy purposes.



Chapter 3

Distribution Dynamics of

Property Crime Rates in the

United States

Abstract

Using crime data for the 48 continental and conterminous US states and

the distribution dynamics approach, this paper detects two distinct phases

in the evolution of the property crime distribution: a period of strong con-

vergence (1971-1980) is followed by a tendency towards divergence and bi-

modality (1981-2010). Moreover, the analysis reveals that differences in

income per capita and police can explain the emergence of a bimodal shape

in the distribution of property crime: in fact, after conditioning on these

variables, the bimodality completely disappears. This empirical evidence is

consistent with the predictions of a two-region model, that stresses the im-

portance of income inequality in determining the dynamics of the property

crime distribution.

69
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3.1 Introduction

A huge literature has tried to understand the causes and the dynamics of

crime and important contributions can be found in different social science

disciplines: from economics (Becker, 1968) to sociology (Cohen and Felson,

1979), from politics (Smith, 1997) to law (Marvell and Moody, 2001). A

huge set of determinants has been considered to explain crime, including un-

employment, income inequality, police officers, the legalization of abortion,

and many others: see, inter alia, Cornwell and Trumbull (1994), Marvell

and Moody (1996), Kapuscinski et al. (1998), Donohue and Levitt (2001),

Greenberg (2001), Paternoster and Bushway (2001), Raphael and Winter-

Ebmer (2001), Gould et al. (2002), Levitt (2002), Machin and Meghir

(2004), Baltagi (2006), Rosenfeld and Fornago (2007).

Moreover, the US empirical crime literature has focused its attention on

the dynamics of the aggregate level of crime in the United States, such as

Cook and Cook (2011). In particular, many papers have tried to explain the

raise of crime rates in the 1970s and 1980s and their decline in the 1990s.

Reviewing the evidence from these numerous papers, Levitt (2004) identifies

four factors that explain the decrease of crime started in the 1990s: the

increasing number of policemen, the skyrocketing number of prisoners, the

ebbing of the crack epidemic and the legalization of abortion in the 1970s.

Another paper trying to explain the dynamics of crime is represented by

Shoesmith (2010), who uses an error correction model and four factors to

explain both the raise and fall of crime rates. The employed factors are

arrest rates, income per capita, the proportion of justice resources devoted

to drug crime, and alcohol consumption.

The aim of this paper is different because it does not focus on the aggre-

gate value of crime but on the analysis of the entire distribution of property

crime rates for the US states and on its evolution over time. Other papers

have tried to address this issue using standard approaches, like the beta-
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convergence and sigma-convergence concepts: for instance, Cook and Win-

field (2013), employing growth regressions and measures of cross-sectional

variation, provide evidence of convergence for the US states, whereas, using

a different probabilistic approach, Cook and Watson (2013) find different

results depending on the period analysed and on the crime typology con-

sidered.

However, it has been recognised that a negative relationship between

initial values and growth rates, which is the essence of the beta-convergence

analysis (Baumol, 1986; Barro, 1991; Barro and Sala-i-Martin, 1991, 1992),

is a necessary but not a sufficient condition for convergence (Quah, 1993a):

in fact, the regression approach, being inspired by the neoclassical model

of growth and focusing on the behaviour of a representative economy to-

wards its own steady state, is completely silent on what happens to the

entire cross-sectional distribution. Moreover, the sigma-convergence analy-

sis (Sala-i-Martin, 1996) is also affected by significant drawbacks because, as

argued by Quah (1996a), a constant variability is compatible with very dif-

ferent dynamics, from criss-crossing and leap-frogging to persistent inequal-

ity. Distinguishing between these completely different patterns is crucial

and is possible only by analysing the entire cross-sectional distribution.

In order to overcome these criticisms affecting the existing literature

about convergence analysis of crime, the present paper adopts an alternative

methodology, i.e. the distribution dynamics approach (Quah, 1993a and b,

1996a and b, 1997), which allows the study of the entire distribution of

crime rates, both in terms of shape and of intra-distributional dynamics.

In particular, this paper considers the dynamics of property crime rates

for 48 conterminous US states during the period 1971-2010. Results indi-

cate different phases for this typology of crime: in fact, a period of strong

convergence (1971-1980) is followed by a tendency towards divergence and

bimodality (1981-2010).

Furthermore, the analysis reveals that differences in the levels of income
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per capita, whose divergence starting from the 1980s has been documented

by Gerolimetto and Magrini (2014) in a distribution dynamics setting, and

in the numbers of state police employees, which also exhibit a divergent

pattern starting from the 1980s, can explain the emergence of a bimodal

shape in the distribution of property crime rates: in fact, after conditioning

on these two variables, the bimodality completely disappears.

The rest of the chapter is organised as follows: Section 3.2 presents a two-

region model which investigates the relationships between crime and other

socio-economic variables from a theoretical point of view; Section 3.3 intro-

duces the adopted empirical methodology, whereas Section 3.4 describes the

data employed; Sections 3.5-3.7 present the empirical results obtained with

the distribution dynamics technique and explore the relationship between

crime and some of its determinants; finally, Section 3.8 concludes.

3.2 A Two-Region Model of Crime Dynam-

ics

This section presents a theoretical framework in which it is possible to

explore the dynamics of crime over time and across different spatial units.

In particular, in this model there are two regions or states, indicated by

A and B. In each state i ∈ {A,B} and at each time t ∈ {1, 2, ..., T}, the

number of property crimes committed is denoted by ci,t. The evolution of

property crime in each region depends on its past value ci,t−1, on the number

of police resources pi,t and on the level of after-tax income (1− τi,t) yi,t:

ci,t = (1 + ρ) ci,t−1 − ψpi,t − σ (1− τi,t) yi,t (3.1)

where ρ is the growth rate of crime when police and income are both zero,

while ψ and σ measure how much crime is sensible to current variations

of police resources and after-tax income, respectively. The reason for this
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specification is very intuitive: a higher level of police resources means more

crime repression activities, whereas a higher value of legal income makes

crime less attractive. Moreover, this specification is consistent with eco-

nomic models of crime, such as Becker (1968), which show that individuals

tend to commit crime when the probability of punishment or the opportu-

nities in the legal labour market are low.

On the other hand, the future value of income depends on the current

level of crime, because the presence of high crime rates reduces the resources

available in each state by discouraging investments:

yi,t+1 = (1 + θ) yi,t − ωci,t + ηi,t+1 (3.2)

in which θ is the growth rate of income in the absence of crime, ω measures

how much income is sensible to current variations of crime, and, finally, ηi,t+1

is an exogenous, independently distributed shock with zero-mean, capturing

all the future positive or negative surprises (e.g. unexpected increase or

decrease of labour productivity).

The two states decide, through taxation, the share of resources τi,t to

allocate to police:

pi,t = τi,tyi,t (3.3)

Consequently, the expenditure in crime repression improves the future level

of income by reducing crime and its negative effect on the level of resources,

but it is a costly investment because it requires an increase of the tax rate.

It is assumed that politicians choose in each period the level of taxation

by maximising the probability of being re-elected Π, which is a strictly

increasing function of the expected economic performance minus the current
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costs of taxation:1

max
τi,t

Π

(

δEi,t (yi,t+1)− φ
τ 2i,t

2

)

(3.4)

where Π
′

(.) > 0, Ei,t (.) is the expected value conditioned on the information

set available at time t in state i, while δ and φ are the two weights associated

to the expected future economic performance Ei,t (yi,t+1) and the political

costs of taxation
τ2
i,t

2
, respectively.

The first order conditions of the problem can be rewritten in the follow-

ing way:

φτi,t = ωδ (ψ − σ) yi,t (3.5)

in which the left-hand side represents the marginal cost of taxation, whereas

the right-hand side is the marginal benefit. It is worth noting that taxation

has a positive benefit only if the crime sensitivity to police, measured by ψ,

is higher than the degree of dependence on after-tax income, indicated by

σ.

The optimal level of taxation equalizes marginal benefits and marginal

costs:

τ ∗i,t =
ωδ (ψ − σ) yi,t

φ
(3.6)

This expression shows that the optimal tax is higher when: the weight

associated to taxation, measured by φ, is lower; the net benefit of taxation

(ψ − σ) yi,t is higher; income is more sensitive to crime, as indicated by ω;

the effect of the economic performance on the probability of being re-elected

δ is higher. Substituting the last quantity in the equation of crime, income

and police, it is possible to obtain the optimal dynamics for these three

variables. In the model calibration, it is reasonably assumed that the net

benefit of taxation is positive (ψ = 0.08, σ = 0.05) and that the probability

of being re-elected is more sensible to the economic performance than the

1For simplicity, it is assumed that elections take place at the end of each period. In
fact, this assumption allows to derive solutions in closed form simplifying the analysis of
the model.
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cost of taxation (δ = 0.95, φ = 0.35).

This model allows to analyse the effects of an exogenous income shock

and its propagation to the other variables of the system. In particular,

the case of an increase in income inequality is considered because this sce-

nario is related to the increasing inequality in terms of income per capita

observed across the US states, starting from the 1980s. Consequently,

it is assumed in the main calibration that state A is the richest region

(yA,0 = 18 > yB,0 = 16), which also starts with the highest level of crime

(cA,0 = 13 > cB,0 = 11). The growth rates of income and crime are θ = 0.05

and ρ = 0.085, respectively, and the sensitivity of income to crime is

ω = 0.06. The two regions are followed for 40 periods (T = 40) to mimic the

forty years considered in the next empirical analysis, i.e. the period from

1971 to 2010.2 It is assumed that the richest region has the highest number

of crimes committed because this is consistent with the data, showing a

positive correlation between property crime and income per capita at the

beginning of the 1970s. Moreover, the shocks ηi,t are always zero, except for

region A at time 10, and the analysis considers a low (1.8), medium (2.6)

and high value (3.8) of the shock ηA,10. Table 3.1 summarises the values

chosen for the model parameters.

Figure 3.1 reports the dynamics implied by the model for the main

variables in the different scenarios considered. In particular, the columns

correspond to the small, medium and big shock scenario, respectively. The

first row shows the timing and magnitude of the shock; the second and third

rows present the dynamics over time of income and crime in the two regions,

compared to the average of the two states in each period, respectively (the

time series of tax rate and police have the same pattern of income and, for

2The model and its predictions have been conceived to be valid for a finite time
horizon, such as 40 years, in order to be tested in the next empirical analysis with US
crime data from 1971 to 2010. It is worth stressing that long-run steady state implications
cannot be derived from the proposed approach. In fact, the model is unbounded in the
long term, but still it is suggestive to explore a transient phase lasting for about half a
century. We thank Matteo Richiardi for pointing this out.
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Parameter Interpretation Value
T Time horizon 40
ρ Crime growth rate 0.085
ψ Crime sensitivity to police 0.08
σ Crime sensitivity to income 0.05
θ Income growth rate 0.05
ω Income sensitivity to crime 0.06
δ Re-election sensitivity to income 0.95
φ Re-election sensitivity to taxation 0.35
cA,0 Initial crime in region A 13
cB,0 Initial crime in region B 11
yA,0 Initial income in region A 18
yB,0 Initial income in region B 16
ηA,10 Income shock in region A at time 10 {1.8, 2.6, 3.8}

Table 3.1: Values chosen for the parameters of the model.

this reason, are omitted); finally, the last row depicts the trajectory of the

aggregate value of crime, which is the sum of the crime levels in the two

regions. In every scenario the mechanism behind the model is the same:

a higher (lower) level of income leads to a decline (raise) of crime through

both the opportunity cost and the police channel.

In the case of a small shock affecting the income of the richest region,

this state has not enough resources to reduce its crime level, which continues

to grow and subtract wealth to the state, and this leads to a divergent crime

pattern. Moreover, the aggregate level of crime exhibits an explosive trend

due to the strong growth of crime in both regions.

On the other hand, the second column shows that a bigger income shock

provides to state A enough resources to limit the growth of its crime level: as

a consequence, the time series of crime in the two regions converge to their

average at the end of the forty periods considered. However, the aggregate

level of crime presents an increasing linear trend.

Finally, with an even bigger shock, the dynamics of the system changes

completely: in this scenario the richest region is able to reduce its crime

level compared to the poorest region. Benefiting from this crime reduction,

income in region A displays an increasing pattern, which also leads to a
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Figure 3.1: Time series of the main variables of the model in the presence
of different income shocks in region A (solid line) and in region B (dashed
line): income shock (first panel); relative income in the two regions (second
panel); relative crime in the two regions (third panel); sum of the crime
levels in the two regions (fourth panel).
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greater inequality in the available resources. Since the richest region is able

to lower its crime level more than the poorest state, the result is that the

two crime trajectories converge in a first phase, but then they diverge in the

final periods. Furthermore, looking at the aggregate value of crime in the

two states, an increasing trend in the first periods is followed by a decline,

because the decrease of crime in region A is larger than the increase in state

B.

If the values assigned to the weight of taxation φ, the income sensitivity

to crime ω, or the crime growth rate ρ are increased, results gradually change

towards a divergence of the distribution of crime in the two states and to

an explosive trend in the aggregate level of crime. The same happens if the

crime sensitivity to police ψ and after-tax income σ, the effect of economic

performance on the probability of re-election δ, or the income growth rate

θ are reduced.

The three scenarios considered reveal that, from a theoretical point of

view, a greater income inequality between regions, such as the one expe-

rienced in the US starting from the 1980s, can have completely different

consequences on the dynamics of crime and on its distribution, depending

on the size of the shocks that drive this phenomenon. The following em-

pirical analysis will reveal which theoretical scenario best approximates the

US experience.

3.3 Methodology

The aim of this section is to provide a brief technical description of the

methodology chosen to analyze convergence, i.e. the distribution dynamics

approach, and the reasons why this methodology is preferred to standard

methods, like the beta- and sigma-convergence concepts.
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3.3.1 Distribution Dynamics Approach

As mentioned in the Introduction of this chapter, there are two approaches

to the analysis of convergence: the regression approach (beta-convergence),

complemented by the study of the cross-sectional variability (sigma-convergence),

and the distribution dynamics method. In this paper the latter approach is

chosen because it allows the study of the entire cross-sectional distribution

of a given variable, both in terms of external shape and intra-distributional

dynamics, using stochastic kernels to describe its evolution over time. This

paragraph provides a brief description of the adopted methodology.

Let ct and ct+s represent the crime rates, relative to the group average,

of a set of n states at time t and t+s, respectively. Moreover, assuming that

the two random variables admit a density, denoted by f(ct) and f(ct+s), and

that f(.) can be modeled as a first order process, the density at time t + s

is given by:

f(ct+s) =

+∞
ˆ

−∞

f(ct+s|ct)f(ct)dct (3.7)

in which f(ct+s|ct) is the conditional density function that maps the val-

ues at time t into the values at time t + s. This density function is called

stochastic kernel and it plays a crucial role within this approach: in fact, it

provides information on the movements from one part of the distribution to

another one between time t and t + s. For this reason, once the stochastic

kernel is estimated, convergence can be analysed directly from its shape or,

assuming a time homogeneous markov process for the studied phenomenon,

by comparing the initial distribution at time t to the so-called ergodic dis-

tribution, which is the limit of f(ct+s) when s goes to infinity. In more

intuitive terms, the ergodic distribution is the characterisation of the likely

long-run cross-sectional distribution of the variable of interest.

Observing a given variable c on a set of n statistical units at two points

in time, t and t + s, the easiest way to estimate the stochastic kernel is
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through the kernel density estimator, which takes the following expression:

f̂(ct+s|ct) =
f̂(ct+s, ct)

f̂(ct)
(3.8)

where the kernel estimator of the the joint density function is:

f̂(ct+s, ct) =
n

∑

i=1

1

nhct+s
hct

K

(

ct+s − ci,t+s

hct+s

)

K

(

ct − ci,t

hct

)

(3.9)

and the kernel density estimator of the initial density is:

f̂(ct) =
n

∑

i=1

1

nhct
K

(

ct − ci,t

hct

)

(3.10)

in which K(.) is a kernel function and h is a chosen bandwidth parameter

that controls the degree of smoothing applied to the density estimate.

However, as argued by Hyndman et al. (1996), this estimator might

have poor properties in terms of bias: the authors propose to adjust the

estimate of the mean function implicit in the kernel density estimator with

one obtained from a smoother with better bias properties. For this reason,

according to Loader (1999), the local linear estimator should be chosen in

the analysis. Following Gerolimetto and Magrini (2014), in order to esti-

mate the conditional density, a Gaussian kernel is selected with a nearest-

neighbour bandwidth in the initial year dimension, with a span of 30% of

the data, and a fixed Normal Scale bandwidth, as suggested by Silverman

(1986), in the final year dimension. The local linear estimator for the mean

function has a nearest-neighbour bandwidth with a span chosen to minimise

the AIC criterion.

The output of this type of analysis is represented by a set of figures: (i)

a three-dimensional plot of the estimated stochastic kernel; (ii) the corre-

sponding contour plot, highlighting the contours at the 90%, 50% and 10%

level; (iii) the Highest Density Regions (HDR) plot, proposed by Hyndman



3.3. METHODOLOGY 81

(1996), in which the vertical strips represent conditional densities given spe-

cific values for the initial year and, for each strip, darker to lighter areas

indicate the 10%, 50% and 90% highest density regions; (iv) a graph com-

paring the initial year distribution with the final year one and the ergodic.

Then, convergence is analysed by looking at the three-dimensional shape

of the stochastic kernel and at the corresponding contour and HDR plots

or by comparing the initial distribution with the final one and the ergodic.

In more detail, a probability mass located along the main diagonal in the

contour and HDR plots indicates a persistence feature of the studied phe-

nomenon, because the elements in the cross-sectional distribution remain

where they started. On the other hand, a convergence process is high-

lighted by a probability mass concentrated around the mean value at time

t+ s and parallel to the time t axis, while a distribution parallel to the t+ s

axis is a signal of divergence: in fact, in the first case, the units of analysis,

characterised by different values at time t, will exhibit a similar value at

time t+ s, whereas, in the second case, the opposite behaviour is observed.

Finally, the formation of two, or more, modes in the ergodic distribution

revels a tendency towards polarization or stratification.

3.3.2 Criticisms of Other Approaches

This subsection provides a brief motivation of the reasons why the distribu-

tion dynamics approach should be preferred to standard methodologies, like

the beta-convergence (Baumol, 1986; Barro, 1991; Barro and Sala-i-Martin,

1991, 1992) and sigma-convergence analysis (Sala-i-Martin, 1996).

Essentially, the beta-convergence aims at testing the convergence of a

given process by looking at a negative correlation between the initial values

of the studied variable and its growth rates: if statistical units with high

values in the initial period show lower growth rates than units with low

values, this should mean that they converge to a common steady state.
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However, it has been recognised that a negative relationship between initial

values and growth rates is a necessary but not a sufficient condition for

convergence (Quah, 1993a): this is because the regression approach, by

focusing on the behaviour of a representative unit towards its own steady

state, is completely silent on what happens to the entire cross-sectional

distribution of the studied statistical units.

Thus, it has been suggested to complement the beta-convergence ap-

proach with the study of the cross-sectional variability over time (sigma-

convergence): the idea is that a reduction of the standard deviation of the

distribution, together with a negative relationship between initial values

and growth rates, should be a sufficient signal of convergence among the

units of interest. Indeed, as argued by Quah (1996a), a constant variability

is compatible with very different behaviours, from criss-crossing and leap-

frogging to persistent inequality. Distinguishing between these completely

different dynamics is crucial and it is possible only by analysing the entire

cross-sectional distribution.

3.4 Data

The crime data used in this paper are from the Federal Bureau of Investiga-

tion (FBI)’s Uniform Crime Reports (UCR),3 which include crime reports

submitted voluntarily either directly by local, state, federal or tribal law en-

forcement agencies or through centralised state agencies across the country.

Data are freely available online for each year, starting from 1960, and for the

50 US states, plus the District of Columbia. Crimes are classified accord-

ing to the following categories: burglary, larceny-theft, motor-vehicle theft,

murder, rape, robbery, assault. The first three typologies are grouped in

the property crime category while the others are classified as violent crimes.

The attention of this paper is devoted to the aggregate category of prop-

3Data on property crime rates are available at http://www.ucrdatatool.gov/.
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Figure 3.2: Time series of the property crime rate in the US from 1971 to
2010.

erty crime, which is measured by a standard index, the property crime rate,

defined as the number of reported property crimes committed per 100,000

inhabitants.

Figure 3.2 plots the time series of the property crime rate in the US.

This picture shows a very well-known pattern in the crime literature: the

aggregate level of property crime increases up to the beginning of the 1990s

and then falls. It is worth stressing that this trend seems consistent with

the predictions of the model in the third theoretical scenario of Figure 3.1.

The UCR data have many advantages: they cover a long period of time

with a stable methodology, allowing a meaningful trend analysis; they are

the only source of geographically disaggregated crime data available for the

US; they offer a good coverage in terms of crime typologies and in terms

of geographic locations considered. On the other hand, the UCR program

has some limitations: it covers only crime reported to the police and many

crimes are reported in low percentages; furthermore, since reporting is vol-

untary, some enforcement agencies may not report information or informa-

tion may be incomplete. In the presence of incomplete data, the FBI uses

specific protocols to impute the missing values: the imputation is based

on crime rates of agencies considered similar according to population size,
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type of agencies (city, rural and state, suburban counties) and geographic

location.4

In order to bring the model to the data, a measure of income and police

is needed. The relationship between property crime and income will be

explored in the following analysis using data on real per capita personal

income: the personal per capita income net of current transfer receipts

comes from the Bureau of Economic Analysis,5 while the consumer price

index (CPI) used to deflate income is from the Bureau of Labor Statistics.6

On the other hand, the level of crime repression activities in each state is

measured by the number of state police employees per 100,000 inhabitants,

as recorded in the UCR data.7 Furthermore, our analysis is restricted to

the forty-year period from 1971 to 20108 and to the 48 continental and

conterminous US states.9

Figure 3.3 shows the Moran scatterplot map and significance map (Anselin,

1995) of property crime for these states in 1971 and 2010, highlighting with

different colours the four types of local spatial association: locations with

a high value of crime, with respect to the cross-sectional average, associ-

ated to neighbours with high values (HH); states with a high value located

4For a more detailed description of the UCR program, in particular, and of crime
reports and statistics, in general, see Rennison (2009).

5Data on personal per capita income are available at
http://www.bea.gov/iTable/index regional.cfm.

6The time series of the CPI index is available at http://www.bls.gov/cpi/.
7The number of state police employees is reported in the annual publications of the

Uniform Crime Reports: to the best of our knowledge, for the earliest periods only the
paper version is available (at https://archive.org/index.php). There are missing values
for some states in few years: in the period from 1968 to 2013, 1.3% of the data are
missing. To overcome this problem, in this study, the missing values have been imputed
in two ways: by replacing them with the average of the values of the two closest years
or, if the missing value is at the end of the period considered, by forecasting it using an
ARIMA model. Moreover, in order to have a coherent measure of state police employees,
only the police agencies that report their employment since the beginning of the period
analysed have been considered.

8This choice is motivated by a lack of observations for the New York state in the
period 1960-1964 and by the use of out-of-sample lags and leads in the next conditioning
procedure.

9Therefore, the state of Alaska and the Hawaii are excluded from the sample, as well
as the District of Columbia. These states have been excluded to make the results of
the present analysis comparable to those of other studies focusing on the continental US
states, such as Gerolimetto and Magrini (2014).
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Figure 3.3: Moran scatterplot map (left) and significance map (right) of
property crime rates in 1971 (top) and 2010 (bottom).

around neighbours with low values (HL); regions with a low value of crime

associated to neighbours with high values (LH); finally, locations with a low

value located around neighbours with low values (LL). These maps show

that in 1971 property crimes are concentrated in the south-west region with

a significant group of states, represented by California and its neighbours,

characterised by high crime rates. In 2010 the situation changes: high lev-

els of property crime are visible in the south-east, with a significant cluster

that includes Texas, Florida and their neighbours. However, the prevalence

of the white colour in the significance map, indicating spatial associations

that are not statistically significant, suggests that the data considered are

not strongly affected by spatial autocorrelation.
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3.5 Distribution Dynamics of Property Crime

Using the methodology described in Section 3.3, the dynamics over time of

the distribution of property crime is analysed.

Figure 3.4 shows the results for the overall period, from 1971 to 2010.

The first three graphs are related to the shape of the estimated stochastic

kernel. In particular, if we look at the contour levels and at the 45 degree

line, it is possible to analyse the intra-distributional dynamics between the

two considered periods: observations with a high property crime rate in

1971 are likely to have a lower crime rate in 2010; states with a low rate

in the initial year tend to present a higher crime rate in the final year;

moreover, there is a group of states located around the mean in the initial

year experiencing the highest crime rates in the final period. This situation

results in a final and ergodic distribution affected by bimodality, as displayed

in the fourth graph.10 The states that are responsible for the first mode of

the final density are those located in the northern part of the US while the

second mode can be attributed to the states in the south-east.

However, behind this dynamics, two distinct phases are identifiable.11 In

fact, Figure 3.5 depicts a period of strong convergence from 1971 to 1980,

made evident by a sharply concentrated unimodal ergodic distribution and

by a noticeable clockwise rotation of the estimated probability mass: this

rotation represents evidence of convergence because it implies that states

with a low crime rate at the beginning of the period considered present

higher rates at the end; and the opposite holds for states with high crime

rates. Conversely, Figure 3.6 shows a phase of divergence, from 1981 to

2010, in which the distribution of property crime rates shows a clear ten-

10The bimodal shape is confirmed by the formal Silverman’s (1981) test performed on
the final distribution, whose shape is very close to that of the ergodic distribution.

11The split between the two periods, 1971-1980 and 1981-2010, is obtained as a result
of a statistical analysis aimed at detecting a structural break. In particular, the forty-
year period from 1981 to 2010 has been divided in four decades and the distribution
dynamics analysis has been applied to each of them. Then, the decades with a similar
convergent or divergent behaviour have been aggregated.
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Figure 3.4: Distribution dynamics analysis of property crime rates for the
period 1971-2010 using the 48 continental US states. A three-dimensional
plot of the estimated stochastic kernel (top-left); the corresponding contour
plot, highlighting the contours at the 90%, 50% and 10% level (top-right);
the Highest Density Regions (HDR) plot (bottom-left); a graph comparing
the initial year and the final year distribution with the ergodic distribution
(bottom-right). Notes : estimates of the stochastic kernel adopt a nearest-
neighbour bandwidth in the initial year dimension with a span equal to 0.3,
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and
a Gaussian kernel. The mean bias adjustment (Hyndman et al., 1996) is
obtained using a local linear estimate with a nearest-neighbour bandwidth,
whose span is chosen in order to minimise the AIC. In contour and HDR
plots, the dashed line indicates the main diagonal, the asterisks represent
the modes.
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dency towards bimodality, made transparent by the comparison of the initial

distribution with the final one and the ergodic.

3.6 Robustness Checks

These findings seem to suggest a dynamics more similar to the third scenario

predicted by the model. In order to test the robustness of the obtained

results and to address the concern that a particular city or county is driving

the whole of the distribution (e.g. the city of New York in the state of New

York), the analysis is replicated considering the 9 regions in which the US

territory is divided according to the definition of the United States Census

Bureau.

Figure 3.7 presents the distribution dynamics analysis for these regions

in the period 1971-1980: convergence is highlighted by a clockwise rotation

of the probability mass and by the transition from an initial distribution

characterised by high variability to a more concentrated, although bimodal,

final distribution. A further evidence of convergence is represented by the

ergodic distribution which exhibits lower variability than the final distri-

bution and in which any evidence of bimodality disappears. Figure 3.8

replicates this exercise for the period 1981-2010: the last picture in this

figure reveals the emergence of a final and ergodic distribution far less con-

centrated than the initial one. With only 9 regions it is not possible to

capture the bimodal shape observed in Figure 3.6; however, the tendency

towards divergence is clear.

The analysis performed on more aggregated regional divisions proves

the robustness of the results regarding the existence of two phases in the

evolution of the distribution of property crime, i.e. a period of convergence

followed by a divergent dynamics.12 This evidence is again consistent with

12Moreover, it is possible to affirm that the main results are robust to changes in the
scale used in the analysis (states or regions).
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Figure 3.5: Distribution dynamics analysis of property crime rates for the
period 1971-1980 using the 48 continental US states. A three-dimensional
plot of the estimated stochastic kernel (top-left); the corresponding contour
plot, highlighting the contours at the 90%, 50% and 10% level (top-right);
the Highest Density Regions (HDR) plot (bottom-left); a graph comparing
the initial year and the final year distribution with the ergodic distribution
(bottom-right). Notes : estimates of the stochastic kernel adopt a nearest-
neighbour bandwidth in the initial year dimension with a span equal to 0.3,
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and
a Gaussian kernel. The mean bias adjustment (Hyndman et al., 1996) is
obtained using a local linear estimate with a nearest-neighbour bandwidth,
whose span is chosen in order to minimise the AIC. In contour and HDR
plots, the dashed line indicates the main diagonal, the asterisks represent
the modes.
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Figure 3.6: Distribution dynamics analysis of property crime rates for the
period 1981-2010 using the 48 continental US states. A three-dimensional
plot of the estimated stochastic kernel (top-left); the corresponding contour
plot, highlighting the contours at the 90%, 50% and 10% level (top-right);
the Highest Density Regions (HDR) plot (bottom-left); a graph comparing
the initial year and the final year distribution with the ergodic distribution
(bottom-right). Notes : estimates of the stochastic kernel adopt a nearest-
neighbour bandwidth in the initial year dimension with a span equal to 0.3,
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and
a Gaussian kernel. The mean bias adjustment (Hyndman et al., 1996) is
obtained using a local linear estimate with a nearest-neighbour bandwidth,
whose span is chosen in order to minimise the AIC. In contour and HDR
plots, the dashed line indicates the main diagonal, the asterisks represent
the modes.
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Figure 3.7: Distribution dynamics analysis of property crime rates for the
period 1971-1980 using the 9 US regions. A three-dimensional plot of the
estimated stochastic kernel (top-left); the corresponding contour plot, high-
lighting the contours at the 90%, 50% and 10% level (top-right); the Highest
Density Regions (HDR) plot (bottom-left); a graph comparing the initial
year and the final year distribution with the ergodic distribution (bottom-
right). Notes : estimates of the stochastic kernel adopt a bandwidth selected
with the direct plug-in method in the initial year dimension, a Normal Scale
(Silverman, 1986) bandwidth in the final year dimension and a Gaussian ker-
nel. The mean bias adjustment (Hyndman et al., 1996) is obtained using
a local linear estimate with a nearest-neighbour bandwidth, whose span is
chosen in order to minimise the AIC. In contour and HDR plots, the dashed
line indicates the main diagonal, the asterisks represent the modes.
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Figure 3.8: Distribution dynamics analysis of property crime rates for the
period 1981-2010 using the 9 US regions. A three-dimensional plot of the
estimated stochastic kernel (top-left); the corresponding contour plot, high-
lighting the contours at the 90%, 50% and 10% level (top-right); the Highest
Density Regions (HDR) plot (bottom-left); a graph comparing the initial
year and the final year distribution with the ergodic distribution (bottom-
right). Notes : estimates of the stochastic kernel adopt a bandwidth selected
with the direct plug-in method in the initial year dimension, a Normal Scale
(Silverman, 1986) bandwidth in the final year dimension and a Gaussian ker-
nel. The mean bias adjustment (Hyndman et al., 1996) is obtained using
a local linear estimate with a nearest-neighbour bandwidth, whose span is
chosen in order to minimise the AIC. In contour and HDR plots, the dashed
line indicates the main diagonal, the asterisks represent the modes.
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the third scenario predicted by the model, characterised by the presence of

strong income shocks.

3.7 Conditional Distribution Dynamics

According to the theoretical framework of Section 3.2, the divergence of

property crime rates is driven by income shocks that affect crime through

the channels of opportunity cost and police. Moreover, in the same period in

which a tendency towards bimodality has been detected for property crime

rates, i.e. the years from 1981 to 2010, Gerolimetto and Magrini (2014) find

an analogous divergent pattern using real per capita personal income for the

same 48 conterminous US states: in fact, the ergodic distribution of income

in the last picture of Figure 3.9 presents a higher concentration in the right

tail than the initial one. By applying the distribution dynamics technique,

the same divergent tendency can be observed in the number of state police

employees, starting from the 1980s: Figure 3.10 shows this feature. These

considerations motivate the idea to explore more deeply the relationship

between income, police and crime from an empirical point of view.

In order to understand if income and police can explain the bimodality of

property crime, the conditional distribution of the variable of interest must

be considered. Since both income and police are likely to be endogenous

variables,13 the method proposed by Quah (1996b) is considered in the

following analysis.

The first step of the procedure consists in estimating a growth regression,

in which the growth rate of the dependent variable is regressed on a set

of potentially endogenous variables, and then taking the fitted values for

subsequent analysis: in order to consider the possible endogenous nature of

these variables and, in particular, the presence of feedback effects, both the

13In states with high crime rates there might be less investments and, hence, lower
income. Moreover, the higher the crime rate is, the more a state should be willing to
invest in police and crime repression.
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Figure 3.9: Distribution dynamics analysis of real per capita personal in-
come for the period 1981-2010 using the 48 continental US states. A three-
dimensional plot of the estimated stochastic kernel (top-left); the corre-
sponding contour plot, highlighting the contours at the 90%, 50% and 10%
level (top-right); the Highest Density Regions (HDR) plot (bottom-left); a
graph comparing the initial year and the final year distribution with the
ergodic distribution (bottom-right). Notes : estimates of the stochastic ker-
nel adopt a nearest-neighbour bandwidth in the initial year dimension with
a span equal to 0.3, a Normal Scale (Silverman, 1986) bandwidth in the
final year dimension and a Gaussian kernel. The mean bias adjustment
(Hyndman et al., 1996) is obtained using a local linear estimate with a
nearest-neighbour bandwidth, whose span is chosen in order to minimise
the AIC. In contour and HDR plots, the dashed line indicates the main
diagonal, the asterisks represent the modes.
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Figure 3.10: Distribution dynamics analysis of state police employees per
100,000 inhabitants for the period 1981-2010 using the 48 continental US
states. A three-dimensional plot of the estimated stochastic kernel (top-
left); the corresponding contour plot, highlighting the contours at the 90%,
50% and 10% level (top-right); the Highest Density Regions (HDR) plot
(bottom-left); a graph comparing the initial year distribution with the final
year one and the ergodic (bottom-right). Notes : estimates of the stochastic
kernel adopt a nearest-neighbour bandwidth in the initial year dimension
with a span equal to 0.3, a Normal Scale (Silverman, 1986) bandwidth in
the final year dimension and a Gaussian kernel. The mean bias adjustment
(Hyndman et al., 1996) is obtained using a local linear estimate with a
nearest-neighbour bandwidth, whose span is chosen in order to minimise
the AIC. In contour and HDR plots, the dashed line indicates the main
diagonal, the asterisks represent the modes.
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current values, the lags and the leads are considered in the regression.

In the present context, the growth rate of the property crime rate is

regressed on the growth rates of personal per capita income and state police

rates, current, lagged and leaded:

gci,t = α+
l

∑

j=−l

(

βjg
y
i,t+j + γjg

p
i,t+j

)

+ εi,t (3.11)

where gxi,t is the growth rate of the variable x between time t − 1 and t in

state i, whereas l represents the number of lags and leads considered in the

regressions.14

The results of the estimates are presented in Table 3.2: in particular,

the three columns show the estimates with one, two and three lags/leads,

respectively. The period considered is from 1971 to 2010 for the 48 conter-

minous US states (1920 observations in total) in all specifications.15 The

estimated coefficients are substantially constant across the three specifica-

tions. For the next analysis, the fitted values from the third regression are

selected, although the subsequent results seem robust and are not heavily

affected by this choice.

The second step of the procedure consists in the accumulation of these

fitted values, state by state, to obtain the time-varying trend paths ex-

plained by the conditioning variables:

g∗i,t =
t

∑

j=1

ĝci,j (3.12)

This determines up to a multiplicative time-invariant level,16 given by the

initial region-specific value of crime, the component for each state explained

14The inclusion of leads might not solve completely the endogeneity problem due to
the many possible channels of reversed causality between dependent and independent
variables: this means that the following results shall be interpreted with caution and on
a descriptive basis.

15Out-of-sample values have been used to compute the lags and leads at the beginning
and at the end of the period considered.

16In Quah’s (1996b) procedure the accumulation of fitted values determines up to an
additive constant level the component explained by the conditioning variables because
the variable of interest in that paper is in logarithm.
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Conditioning Variables (1) (2) (3)

g
y
t−3 0.3755 (0.0562)

g
y
t−2 0.6378 (0.0676) 0.5653 (0.0694)

g
y
t−1 0.4261 (0.0731) 0.3355 (0.0755) 0.3819 (0.0780)

g
y
t -0.5208 (0.0678) -0.4615 (0.0652) -0.4307 (0.0643)

g
y
t+1 -0.4308 (0.0633) -0.3760 (0.0653) -0.3467 (0.0635)

g
y
t+2 0.1025 (0.0632) 0.0545 (0.0630)

g
y
t+3 0.1828 (0.0625)

g
p
t−3 0.0206 (0.0131)

g
p
t−2 0.0126 (0.0155) 0.0115 (0.0164)

g
p
t−1 0.0371 (0.0186) 0.0287 (0.0195) 0.0246 (0.0197)

g
p
t 0.0249 (0.0153) 0.0172 (0.0155) 0.0186 (0.0149)

g
p
t+1 0.0068 (0.0133) 0.0100 (0.0127) 0.0126 (0.0124)

g
p
t+2 0.0017 (0.0144) 0.0098 (0.0144)

g
p
t+3 0.0178 (0.0137)

Constant 0.0055 (0.0021) -0.0064 (0.0023) -0.0155 (0.0027)

Observations 1920 1920 1920

Sum of Coefficients: Income -0.5255 0.2383 0.7825

Sum of Coefficients: Police 0.0688 0.0702 0.1156

R2 0.1182 0.1825 0.2117

Table 3.2: Conditioning regressions. Notes : each column reports estimates
of the coefficients in the projection. Numbers in parentheses are the White
heteroskedasticity-consistent standard errors. The dependent variable is the
growth rate of property crime rate while the conditioning variables are the
current, lagged and leaded growth rates of personal per capita income and
state police rates. The years from 1971 to 2010 are considered for the 48
conterminous US states (1920 observations in total): out-of-sample values
have been used to compute the lags and leads at the beginning and at the
end of the period considered.
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by income and police: as in Quah (1996b), it is assumed that this state-

specific multiplicative level is equal to a linear combination of the time av-

erages of income ȳi and police p̄i. The parameters of this linear combination

are determined by solving the following minimisation problem:17

min
a,b

∑

i

∑

t

[

ci,t − (aȳi + bp̄i)
(

1 + g∗i,t
)]2

(3.13)

The difference between actual and fitted paths in squared brackets can be

interpreted as the conditional or unexplained component of property crime

and it is used in the following distribution dynamics exercise: in fact, Figure

3.11 and 3.12 are obtained by applying the distribution dynamics analysis

to the unexplained component for the periods 1971-2010 and 1981-2010, re-

spectively. The conditional convergence is made evident by the noticeable

clockwise rotation of the estimated probability mass in both figures. More-

over, any sign of bimodality is completely disappeared from the ergodic

distribution, which is also more concentrated than the initial and final one.

Thus, the divergence in the number of state police forces and the increasing

income inequality started in the 1980s explain well the tendency towards a

bimodal shape in the property crime distribution.

3.8 Concluding Remarks

The importance of analysing the convergence of crime rates, as stated by

Cook and Winfield (2013), is related to the existence of a possible national

crime trend and whether there are movements towards it. Moreover, the

analysis of convergence helps in choosing between competing sociological

theories, like the modernization and the conflict theories (LaFree, 2005):

in fact, according to the modernization view, crime rates should converge

given the spread of developments and advances across regions, whereas the

17Again, the difference with respect to Quah’s (1996b) procedure is related to the
logarithm transformation adopted in that study.
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Figure 3.11: Distribution dynamics analysis of property crime rates for the
period 1971-2010 conditioning on income and police. A three-dimensional
plot of the estimated stochastic kernel (top-left); the corresponding contour
plot, highlighting the contours at the 90%, 50% and 10% level (top-right);
the Highest Density Regions (HDR) plot (bottom-left); a graph comparing
the initial year and the final year distribution with the ergodic distribution
(bottom-right). Notes : estimates of the stochastic kernel adopt a nearest-
neighbour bandwidth in the initial year dimension with a span equal to 0.3,
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and
a Gaussian kernel. The mean bias adjustment (Hyndman et al., 1996) is
obtained using a local linear estimate with a nearest-neighbour bandwidth,
whose span is chosen in order to minimise the AIC. In contour and HDR
plots, the dashed line indicates the main diagonal, the asterisks represent
the modes.
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Figure 3.12: Distribution dynamics analysis of property crime rates for the
period 1981-2010 conditioning on income and police. A three-dimensional
plot of the estimated stochastic kernel (top-left); the corresponding contour
plot, highlighting the contours at the 90%, 50% and 10% level (top-right);
the Highest Density Regions (HDR) plot (bottom-left); a graph comparing
the initial year and the final year distribution with the ergodic distribution
(bottom-right). Notes : estimates of the stochastic kernel adopt a nearest-
neighbour bandwidth in the initial year dimension with a span equal to 0.3,
a Normal Scale (Silverman, 1986) bandwidth in the final year dimension and
a Gaussian kernel. The mean bias adjustment (Hyndman et al., 1996) is
obtained using a local linear estimate with a nearest-neighbour bandwidth,
whose span is chosen in order to minimise the AIC. In contour and HDR
plots, the dashed line indicates the main diagonal, the asterisks represent
the modes.
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conflict theory predicts their divergence, arguing that these developments

have uneven speed in the different regions.

The proposed theoretical model reproduces the emergence of two distinct

phases in the dynamics of property crime distribution when spatial units are

affected by strong income shocks generating greater inequality: a period of

convergence followed by the divergence of crime rates. This scenario fits the

situation of the US states, because economic disparities were exacerbated

in those regions, starting from the 1980s.

This theoretical prediction is confirmed by the descriptive analysis pre-

sented in this paper. In fact, using the distribution dynamics methodology,

two different patterns are identified during the period 1971-2010 for the

property crime distribution: a phase of strong convergence (1971-1980), fol-

lowed by a period of divergence and a tendency towards bimodality (1981-

2010). These two distinct phases, to the best of our knowledge, have not

been highlighted by the existing literature.

Moreover, the contemporaneous divergence of personal per capita in-

come and of state police rates can account for the observed dynamics of

property crime rates: in fact, conditioning on income per capita and state

police, the distribution of property crime does not exhibit a bimodal shape,

thus indicating the presence of conditional convergence.

An important policy implication that can be derived from the analysis

is as follows. The theoretical framework suggests that significant income

disparities are translated into different concentrations of crime through the

opportunity cost and the police channel. Moreover, given that poor states

have lower resources to fight crime, they are likely to exhibit higher crime

rates too. Since the presence of crime discourages investments and lowers

income, these states are trapped in a vicious circle. Therefore, mitigating

the effects of inequality with cross-state compensations, in terms of financial

and police resources, may help avoiding both the concentration of crime ac-

tivities in specific regions and the emergence of self-reinforcing gaps between
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poor and rich states.
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