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Abstract

Stochastic Petri nets (SPN) are a Markovian formalism for qualitative and quantita-
tive analysis of discrete event dynamic systems. Among other uses, they have been
used extensively in performance evaluation of telecommunication systems, computer
systems and networks. Analysis of steady-state behaviour of an SPN model usually
requires stationary analysis of a continuous-time Markov chain (CTMC) underlying
the SPN, whose state space for many practical models is too large to be analysed
by direct methods. This serious drawback is shared with many other modeling
formalisms and is usually referred to as state space explosion. Usually simulation
can be employed to analyse such models. An alternative is to restrict the SPN
formalism to product-form SPNs, a class of nets whose unnormalised stationary
probability distribution can be obtained in closed form, making stationary analysis
much simpler. In this thesis we present algorithms for stationary analysis of SPN
models based on efficient encoding of state spaces and transition functions by multi-
valued decision diagrams, an efficient data structure. After a short introduction to
SPNs and their steady-state analysis, we start with simulation of SPNs and present
an algorithm for perfect sampling of SPNs that can be used to directly obtain sam-
ples from the stationary distribution. After this, we turn to product-form SPNs
and present an algorithm for computation of normalising constant, needed for the
normalisation of stationary probabilities in the analysis of product-form models.
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Preface

By the efforts of other men we are led to contemplate
things most lovely that have been unearthed from dark-
ness and brought into light.

— Lucius Annaeus Seneca, On the Shortness of Life

This thesis is a result of three years long doctoral studies which were primar-
ily done at the Department of Environmental Sciences, Informatics and Statistics
(DAIS) of Ca’ Foscari University of Venice, Italy, while a small part of the research
was performed during my visit to the Department of Computer Science of University
of Dortmund, Germany.

During the studies, I have attempted to improve the state of the art in the
analysis algorithms for stochastic Petri nets by considering a class of models with
state spaces that are too large to be analysed by standard methods but which
can nonetheless be generated and stored in reasonable time and space by using
efficient data structures. It seemed to me that for this class of models the full
knowledge of structure of the state space and of the underlying stochastic process
could be further exploited—despite its prohibitive size—for the stationary analysis
of stochastic Petri nets.

Chapter 3, on perfect sampling, is based on three related papers published at the
2015 international conference on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS) [1], the 2016 international conference
on Quantitative Evaluation of Systems (QEST) [2] and the 2016 international con-
ference on Performance Evaluation Methodologies and Tools (VALUETOOLS) [3].
Chapter 4, on product-form models, is based on material from a paper [4] submitted
in 2016 to the international journal Performance Evaluation that was in the review
process at the time of the finalising of this thesis.

Finally, material from two further papers produced during my studies, a paper
on modeling and optimisation of an adaptive multiserver system [5], published at
the 2014 MASCOTS conference, and a paper on simulation stopping criteria for
product-form stochastic Petri nets [6], published at the 2015 EUROSIS European
Simulation Multiconference, was not included in the present thesis due to not fitting
thematically with the present material.
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1

Introduction

Stochastic Petri nets (SPN) [7, 8, 9] are a widely used Markovian formalism for
qualitative and quantitative analysis of discrete event dynamic systems. They have
been used for modeling and analysis of various types of systems, such as telecommu-
nications systems, computer systems and networks, manufacturing and biological
systems.

In order to perform steady-state performance analysis of an SPN model, an un-
derlying continuous-time Markov chain (CTMC) defined by the SPN model usually
needs to be solved (i.e., its stationary probability distribution needs to be com-
puted). Like many other state-based formalisms, in the practical use SPNs suffer
from the problem of state space explosion. This problem manifests in an exponen-
tial, in model size, growth of the number of states of the underlying CTMC. The
state space explosion limits the size of models which can be effectively analysed by
standard methods for the analysis of Markov chains (MC); this has resulted in the
development of various approximation and solution methods that aim at exploiting
the structure of an SPN model or of its underlying CTMC in order to more effi-
ciently analyse the model. In many cases the only feasible approach to the analysis
is stochastic simulation, unless the model in question belongs to one of the special
classes of models, such as product-form SPNs [10, 11, 12, 13], for which an analytic
solution can be efficiently found.

In this thesis we present two algorithms for stationary analysis of SPN models.
The algorithms are based on efficient generation and encoding of state spaces and
transition functions of SPN models by multi-valued decision diagrams (MDD) [14],
a data structure that encodes discrete functions of discrete variables and that has
been used successfully to generate very large state spaces of SPN models [15, 16].

The first of the presented algorithms [1] obtains samples directly from the sta-
tionary probability distribution of SPN models with finite state spaces, without
solving the underlying CTMC; in the literature, this is usually referred to as per-
fect simulation of perfect sampling. Like several previous approaches, we base the
presented algorithm on a classic perfect sampling algorithm, coupling from the past
(CFTP) [17]. The previous approaches [17, 18, 19, 20, 21] implement perfect sam-
pling by restricting the class of models on which they operate and exploit special
properties of models in the class to efficiently implement the CFTP algorithm. In
contrast, the approach taken in this thesis relies on multi-valued decision diagrams
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1 Introduction

in order to implement CFTP efficiently for a general class of SPN models, with the
only restrictions being that the SPN is required to have finite state space and its
transitions are required to have a particular form of marking-dependent firing rates.

The second algorithm [4] presented in this thesis computes a normalising constant
for product-from SPNs with finite state spaces. Product-form SPNs are a special
class of SPNs for which the stationary probability distribution can be efficiently
computed in the form of a product over the components of the SPN model. How-
ever, the stationary distribution is obtained in an unnormalised form: the obtained
state probabilities do not sum to 1 but to a number G ∈ R>0, called normalis-
ing constant (formally, a measure over the state space is obtained). A convolution
algorithm [22] for efficient computation of the normalising constant G has been
previously developed, but it can only be applied to a special class of SPNs. In con-
trast, the algorithm proposed in this thesis can compute the normalising constant
for a general class of SPNs with finite state spaces, and it can also be used as a
basis for algorithms that compute stationary performance measures, again without
restrictions on the SPN model other than the finiteness of the state space unlike
mean value analysis [23], a previous approach that requires the SPN to belong to a
special class of models with a specific structure of the state space.

The thesis is structured as follows. First in Chapter 2 we give a short introduction
to stochastic Petri nets and define related concepts and properties that are used
later in the thesis. We also define multi-valued decision diagrams and introduce
some operations on them. Then in Chapter 3 we present the algorithm for perfect
sampling in SPNs with finite state spaces and test it on a range of models as well
as on a class of SPNs that model fork-join queueing networks (QN), a class of
models very useful for the performance evaluation of distributed systems with task
concurrency and synchronisation. After this, In Chapter 4 we turn to product-
form SPNs and present the algorithm for computation of the normalising constant
as well as related algorithms for the computation of performance measures. We
test the performance of the proposed algorithm and compare it to the convolution
algorithm. Finally, Chapter 5 concludes the thesis.
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2

Preliminaries

In this chapter we briefly introduce basic definitions that are used in the later parts
of the thesis. First in Section 2.1 stochastic Petri nets are introduced along with
some of their qualitative properties. We overview their timed behaviour as well as
some of the common stationary performance measures whose computation is one
of the main goals of quantitative analysis of SPN models. Then in Section 2.2
we define multi-valued decision diagrams, efficient data structures that we use in
the implementation of the algorithms for the stationary analysis of SPNs. We list
operations that can be used to create and manipulate these data structures.

2.1 Stochastic Petri nets

Stochastic Petri nets [7, 8, 9] are a formalism used in computer science for mod-
eling and performance evaluation of computer systems, computer networks and
telecommunication systems. They have also found use in other fields such as in
logistics for modeling of manufacturing systems and in bioinformatics for modeling
of biological processes. They are based on untimed Petri nets (PN) [24, 25, 26]—
a graphical formalism for the specification and analysis of various types of sys-
tems that allows modeling of concurrent, parallel, asynchronous systems—which
allows use of the Petri net theory for the qualitative analysis of SPNs. In addition,
SPNs are a Markovian formalism—the stochastic process underlying an SPN is a
continuous-time Markov chain—which enables use of the rich Markov chain theory
for analysis of their timed behaviour. Many extensions of the SPN formalism have
been proposed, such as Well Formed stochastic Petri nets [27], Stochastic Activity
Networks [28] and Generalized stochastic Petri nets (GSPN) [29, 30]. GSPNs ex-
tend SPNs with immediate transitions, achieving the modeling power equivalent to
Turing machines [31]. In most cases analysis of a GSPN model involves its reduc-
tion to an SPN model, and so with the development of GSPNs the SPN formalism
has only gained in importance.

In this section we introduce stochastic Petri nets and briefly overview some of
their properties and performance measures that are needed in the later part of the
thesis.

3



2 Preliminaries

2.1.1 Basic definitions
Definition 2.1.1. Stochastic Petri net is a 6-tuple (P , T , I, O,W,m0), where P =
{P1, . . . , PNP

} is a nonempty set of places, T = {T1, . . . , TNT
} is a nonempty set

of transitions, I, O : T → NNP are transitions’ input and output functions, W :
T ×NNP → R>0 is a function that defines transition firing rates, and m0 ∈ NNP is
an initial marking of the net.

Fig. 2.1 shows an example SPN with five places depicted as circles and four
transitions depicted as bars. Places and transitions are two types of nodes that are
connected by arcs in a weighted directed bipartite graph. Functions I and O from
the definition of the SPN define the arcs of this graph in the following manner:
• Ij(Ti) > 0 if and only if there is an arc from place Pj to transition Ti with the

weight Ij(Ti). We say that Pj is an input place of transition Ti;

• analogously, Oj(Ti) > 0 if and only if there is an arc from transition Ti to
place Pj with the weight Oj(Ti). Pj is called an output place of transition Ti.

In the example SPN, arcs incident with transition T1 are defined by I(T1) =
[1, 0, 0, 0, 0]⊺ and O(T1) = [0, 1, 2, 0, 0]⊺.

P1
T1

P2

P3

T2

T3

P4

P5
T4

2 2

Figure 2.1: An SPN with five places, four transitions and initial marking m0 =
[1, 0, 0, 0, 0]⊺ .

Definition 2.1.2. Marking of an SPN is a vector m = (m1, . . . ,mNP
) ∈ NNP that

associates numbers m1, . . . ,mNP
of tokens with places P1, . . . , PNP

, respectively.
In the graphical representation of SPNs, marking is depicted with black circles

inside the corresponding places; alternatively it can be depicted with the number
of tokens inscribed inside the places.
Definition 2.1.3. A transition Ti ∈ T of an SPN is enabled to fire in a marking
m ∈ NNP if m − I(Ti) ≥ 0, i.e., all components of the vector on the left-hand
side are nonnegative. We denote the fact that Ti is enabled in marking m with
m

Ti−→. Enabling degree ei(m) of transition Ti in marking m is defined as ei(m) :=
max{k ∈ N : m − kI(Ti) ≥ 0}. It will become apparent from the discussion that
follows that ei(m) is equal to the number of times that the transition Ti can fire in
a row from marking m without firing any other transitions in the mean time. A
transition Ti that is enabled in a marking m is singly enabled if ei(m) = 1, and
multiply enabled if ei(m) > 1.

4



2.1 Stochastic Petri nets

In an untimed Petri net, marking process evolves by choosing in a non-determini-
stic manner one of the enabled transitions and firing it. When an enabled transition
Ti fires, marking m is transformed to marking m− I(Ti) + O(Ti). We denote the
firing of transition Ti with m

Ti−→m− I(Ti) +O(Ti). Similarly, we denote firing of
a sequence σ = Ti1 , . . . , Tik

of transitions that transforms marking m to a marking
m′ with m

σ−→m′. In the example SPN, transition T1 is the only enabled transition
and its firing is an atomic operation that consumes one token from place P1 and
deposits one token in place P2 and two tokens in place P3, resulting in the marking
[0, 1, 2, 0, 0]⊺. The set of all markings that are reachable by firing some sequence of
(enabled) transitions from the initial marking m0 is called reachability set of the
SPN and denoted with RS. By also considering the transitions that transform a
marking from the reachability set into another marking, reachability graph RG can
be constructed that encodes all possible executions of the SPN. Reachability graph
of the example SPN is shown in Fig. 2.2; its nodes are the seven reachable markings
from the RS and its arcs represent possible transitions between the markings. In
general, the reachability set, and thus the reachability graph, of an SPN can be
infinite.

[1, 0, 0, 0, 0]⊺ [0, 1, 2, 0, 0]⊺

[0, 1, 1, 0, 1]⊺

[0, 1, 0, 0, 2]⊺

[0, 0, 2, 1, 0]⊺

[0, 0, 1, 1, 1]⊺

[0, 0, 0, 1, 2]⊺

T1

T3

T3

T2

T2

T2

T3

T3

T4

Figure 2.2: Reachability graph of the SPN in Fig. 2.1

The model and its behaviour that we have discussed so far, without taking into
account function W from the definition of SPN, is a classic untimed Petri net.
Function W defines timed behaviour of the model by defining marking-dependent
transition firing rates. These rates are parameters of exponentially distributed
random variables that define transition firing delays. We define the timed behaviour
of SPNs in Section 2.1.3, after considering in the following sections some qualitative
properties that SPNs share with the untimed PNs.

2.1.2 Some qualitative properties of stochastic Petri nets
SPNs inherit most qualitative properties of interest from the basic untimed Petri
nets, which allows use of a rich set of methods for their qualitative analysis [9]. In
this section we recall a few of the qualitative properties of SPNs that we make use
of in the subsequent chapters.

5



2 Preliminaries

Definition 2.1.4. An SPN is said to be live if for every reachable marking m ∈ RS
and every transition Ti ∈ T there exists a sequence of transitions that, when fired
from the marking m, results in a marking in which transition Ti is enabled.

In other words, liveness is the property that characterizes nets in which, no matter
what sequence of transitions is fired from the initial marking, it is always possible
to enable any transition of the SPN.

Definition 2.1.5. An SPN is bounded if there exists a vector B ∈ NNP which is
an upper bound for the reachability set of the SPN, i.e., m ≤ B,∀m ∈ RS, where
≤ denotes pointwise vector comparison.

Obviously, an SPN is bounded if and only if the number of tokens in all places
is bounded. Another characterization of the boundedness is based on cardinality of
the reachability set: an SPN is bounded if and only if its reachability set is finite.

Definition 2.1.6. An S-invariant or place invariant of an SPN is a nonzero vector
U ∈ NNP such that U ⊺m0 = U ⊺m for all reachable markings m ∈ RS.

The product U ⊺m can be considered as a weighted sum of numbers of tokens
in places for which the corresponding elements of U are nonzero; existence of an
S-invariant thus signifies that the total weighted number of tokens in these places
is conserved during execution of the SPN.

Definition 2.1.7. The set of places for which corresponding elements of an S-
invariant U are nonzero is called the support of the S-invariant U . If an invariant
U 1) has a minimal support (in the sense that there is no S-invariant whose support
is a proper subset of the support of U), and 2) U is a minimal vector among the
S-invariants (in the sense that there are no S-invariant U ′ ≤ U and an index k for
which U ′

k < Uk) it is called a minimal support S-invariant.

For an arbitrary SPN the set of minimal support S-invariants is finite and forms
a basis of all its S-invariants [32], in the sense that all S-invariants of an SPN can
be represented as linear combinations of the minimal support S-invariants.

2.1.3 Timed behaviour of stochastic Petri nets
So far, timed behaviour was not considered. Firing delays of enabled transitions are
exponentially distributed with marking-dependent rates defined by the function W .
Via function W , various firing semantics can be defined. In this thesis we consider
the following firing semantics:

• single server (SS) semantics, where the firing delay of an enabled transition
Ti in marking m is exponentially distributed with rate that is independent of
the enabling degree (we write W (Ti,m) = W (Ti), for all m ∈ RS); Ti can
be considered to be processing only a single enabling set of tokens with the
rate W (Ti),

6



2.1 Stochastic Petri nets

• infinite server (IS) semantics, where the firing delay of an enabled transition
Ti in marking m is exponentially distributed with rate that depends linearly
on the enabling degree (we write W (Ti,m) = ei(m)W (Ti), for all m ∈ RS);
in this case Ti can be considered to be processing in parallel each of the ei(m)
enabling sets of tokens with rates equal to W (Ti).

When a marking m is entered at epoch t, firing delays are sampled for all transitions
enabled in m from exponential distributions with the rates defined as above, and
the transition Ti with the smallest firing delay ∆i fires next at epoch t + ∆i and
produces a new marking m − I(Ti) + O(Ti), at which point the firing delays are
resampled again for all transitions that are enabled in the new marking. The non-
determinism in untimed Petri nets is thus removed by the race policy among the
exponential distributions corresponding to the enabled transitions.

[1, 0, 0, 0, 0]⊺ [0, 1, 2, 0, 0]⊺

[0, 1, 1, 0, 1]⊺

[0, 1, 0, 0, 2]⊺

[0, 0, 2, 1, 0]⊺

[0, 0, 1, 1, 1]⊺

[0, 0, 0, 1, 2]⊺

W (T1)

2W (T3)

W (T3)

W (T2)

W (T2)

W (T2)

2W (T3)

W (T3)

W (T4)

Figure 2.3: CTMC underlying the SPN in Fig. 2.1, assuming infinite server firing
semantics.

From the above definition of the timed behaviour of an SPN model, it can be
shown that the stochastic process underlying an SPN is a time-homogeneous contin-
uous time Markov chain with a discrete state space that is equal to the reachability
set RS. Rates of the state transitions of the underlying CTMC depend on the
firing rates and firing semantics of the SPN transitions and are defined as follows.
For a marking m ∈ RS, let E(m) = {Ti : ei(m) > 0} be the set of transitions
that are enabled in marking m. Then, in the underlying CTMC, there are state
transitions from state m to states in the set {m − I(Ti) + O(Ti) : Ti ∈ E(m)}
where the rate of the exponentially distributed transition delay from state m to
state m − I(Ti) + O(Ti) is W (Ti,m). We denote this CTMC with (m(t))t≥0.
Fig. 2.3 shows the CTMC underlying the example SPN, assuming infinite server
firing semantics.

In this thesis we limit ourselves to the discussion of SPNs that are both bounded
and live. It can be shown that the CTMC underlying an SPN that has these two
properties is ergodic (we say also that the SPN is ergodic). Assuming some ordering
of the markings from the reachability set, we denote the stationary probability

7



2 Preliminaries

distribution of an ergodic SPN (i.e., of the CTMC (m(t))t≥0) with a row vector π:

πmi
:= lim

t→∞
Pr{m(t) = mi},∀mi ∈ RS. (2.1)

Here on the left side we denote the element of π corresponding to a marking mi.

2.1.4 Stationary performance measures
Stationary performance measures of an SPN model, such as for example expected
numbers of tokens in places or throughputs of transitions, can be calculated from
the stationary marking distribution π of the SPN. We adopt a flexible SPN reward
model for specification of performance measures [33]. In this reward model, reward
rates are introduced for markings via function r : RS → R where r(m) is a rate
at which the reward accumulates while the process sojourns in marking m ∈ RS.
Expected steady-state reward rate ρ can then be calculated in the following manner:

ρ =


m∈RS
r(m)πm (2.2)

In Table 2.1 we give specifications of some performance measures defined in terms
of the reward function r(·). Descriptions of the performance measures that we
consider are:

• Utilization of a transition is the probability that the transition is enabled.

• Throughput of a transition is the average number of firings of the transition
in a unit of time.

• Average number of tokens in a place is the expected number of tokens in the
place.

• Utilization of a place is the probability that the place is nonempty.

• Throughput of a place is the average number of tokens that are removed from
the place in a unit of time.

Table 2.1: Definitions of common performance measures in terms of the reward
function.

ρ r(·)
utilization u(Ti) of transition Ti r(m) = δm≥I(Ti)
throughput x(Ti) of transition Ti r(m) = δm≥I(Ti)W (Ti,m)
average number n(Pi) of tokens

in place Pi
r(m) = mi

utilization u(Pi) of place Pi r(m) = δmi>0

throughput x(Pi) of place Pi r(m) = 
T ∈T


δm≥I(T )W (T,m)Ii(T )



8



2.2 Multi-valued decision diagrams

2.2 Multi-valued decision diagrams
Multi-valued decision diagrams [14] are data structures used for encoding discrete
functions of discrete variables. They are a generalisation of binary decision diagrams
(BDD) which can encode Boolean functions of Boolean variables. BDDs have been
used for digital circuit verification [34] and in model checking [35], while MDDs have
been used in the performance analysis and verification of stochastic models [36],
including GSPNs [37].

In particular, MDDs have been used to encode state spaces and transition func-
tions of discrete event dynamic systems [15, 16], and efficient algorithms have
been developed that can generate decision diagram encodings of very large state
spaces [38, 39, 40] for many types of practical models. While efficiency of methods
based on decision diagrams is in worst-case no better than using explicit represen-
tation of state space and state space generation based on traditional breadth-first
search algorithm, in practice performance gains are significant for many models.

In this section we introduce MDDs and overview some of the usual operations
that can be used for their creation and manipulation.

2.2.1 Definition
Definition 2.2.1. Let K ∈ N>0 be a nonzero natural number, and let Sk =
{0, 1, . . . , nk − 1}, nk ∈ N>0, k = 1, . . . , K and R = {0, 1, . . . , n0 − 1}, n0 ∈ N>0
be nonempty sets. A multi-valued decision diagram (MDD) over Ŝ := SK×· · ·×S1
with values in R is a directed acyclic multi-graph with labeled arcs, and nodes or-
ganised into K + 1 levels. Nodes on levels K, . . . , 1 are called non-terminal nodes
while nodes on level 0 are called terminal nodes. A node in an MDD is denoted by
⟨k.p⟩, where k ∈ {K, . . . , 0} is the level of the node, and p is a unique node index in
level k. For each non-terminal node ⟨k.p⟩ there are exactly nk outgoing directed arcs
labeled with 0, 1, . . . , nk − 1 with the same source node ⟨k.p⟩ and destination nodes
in level k − 1. These destination nodes are denoted by ⟨k.p⟩[0], . . . , ⟨k.p⟩[nk − 1];
for example ⟨k.p⟩[j] = ⟨k − 1.q⟩ means that there is an arc labeled with j from
node ⟨k.p⟩ to node ⟨k − 1.q⟩. Readers familiar with MDDs will recognise that here
MDDs are assumed to be ordered (i.e., arcs are allowed to point only to nodes in
the neighbouring lower level). It is assumed that level K contains only a single root
node ⟨K.r⟩, and that there are no duplicate nodes; two nodes ⟨k.p⟩ and ⟨l.q⟩ are
duplicate if they are on the same level (k = l) and all their corresponding arcs point
to the same nodes (⟨k.p⟩[j] = ⟨l.q⟩[j], ∀j ∈ {0, 1, . . . , nk − 1}). MDDs satisfying
this requirement are said to be quasi-reduced. Level 0 contains exactly n0 (terminal)
nodes, denoted by ⟨0.0⟩, . . . , ⟨0.n0 − 1⟩, that have no outgoing arcs.

Figure 2.4 contains an example of a decision diagram with 4 levels. An MDD A
encodes a function fA : Ŝ → R in the following manner. To find the value fA(s),
where (sk, . . . , s1) = s ∈ Ŝ = Sk × · · · × S1, one follows from the root of the MDD
A the arcs labeled consecutively with sk, . . . , s1 and reaches a terminal node, say
⟨0.t⟩ for some index t ∈ R. The index, in this case t, of the reached terminal node
is the value of the function fA in s, fA(s) = t. The following definition introduces
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⟨3.1⟩
0 1 2

⟨2.1⟩
0 1

⟨2.2⟩
0 1

⟨2.3⟩
0 1

⟨1.1⟩
0 1 2 3

⟨1.2⟩
0 1 2 3

⟨0.0⟩ ⟨0.1⟩

K = 3

S3 = {0, 1, 2}
S2 = {0, 1}
S1 = {0, 1, 2, 3}

R = {0, 1}

S = {112, 113, 202, 203, 212, 213}

⟨3.1⟩[1] = ⟨2.2⟩
⟨3.1⟩[113] = ⟨2.2⟩[13] = ⟨1.2⟩[3] = ⟨0.1⟩
B(⟨2.3⟩) = {02, 03, 12, 13}

Figure 2.4: Example of a decision diagram. Arc labels are indicated in the bottom
halves of the decision diagram nodes. In an implementation, nodes with
gray background do not need to be stored and remaining arcs whose
labels have gray backgrounds can be redirected to point directly to node
⟨0.0⟩.

a related notation with brackets for the procedure of following a sequence of arcs
from an MDD node.
Definition 2.2.2. For a node ⟨k.p⟩ in an MDD over Ŝ := SK × · · · × S1 and for a
sequence of integers s = (sk, . . . , sl) ∈ Sk×· · ·×Sl, K ≥ k ≥ l ≥ 1, node ⟨k.p⟩[s] is
defined as the unique node that is reached from node ⟨k.p⟩ by following arcs labeled
with elements from s, and is given recursively with:

⟨k.p⟩[s] =

⟨k.p⟩[sk] if s = (sk) is a singleton,
⟨k − 1.q⟩[t] if s = (sk)t and ⟨k.p⟩[sk] = ⟨k − 1.q⟩.

Here (sk)t denotes the sequence obtained by concatenation of two sequences (sk) and
t.

In this thesis, when an MDD is used to encode some set of states of a model,
its levels K, . . . , 1 correspond to submodels (places in case of SPNs), labels of arcs
exiting level k correspond to local states of submodel k (markings of a place in case
of SPNs) and the set R is set to {0, 1}. In this case we consider the MDD to encode
the characteristic function of the encoded set of states, and we call sequences of the
form s = (sk, . . . , sl) ∈ Sk × · · · × Sl, K ≥ k ≥ l ≥ 1 substates or, when k = K
and l = 1, states. In line with this, we introduce a notion of the set of substates
encoded by a node of an MDD.
Definition 2.2.3. For a node ⟨k.p⟩ in an MDD over Ŝ = SK×· · ·×S1 with values
in R = {0, 1}, the set B(⟨k.p⟩) of substates encoded by the node ⟨k.p⟩ is defined as

B(⟨k.p⟩) = {s ∈ Sk × · · · × S1 : ⟨k.p⟩[s] = ⟨0.1⟩}.
It is said that an MDD with root ⟨K.r⟩ encodes state space S ⊆ Ŝ if the set of
states encoded by the root node is equal to S:

B(⟨K.r⟩) = S.

10
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An important property of ordered quasi-reduced MDDs is that they are a canon-
ical representation of the functions Ŝ → R; two functions f, g : Ŝ → R are equal
if and only if ordered quasi-reduced MDDs encoding f and g are isomorphic. A
useful consequence of canonicity is that two non-terminal nodes ⟨k.p⟩, ⟨l.q⟩ of an
MDD encode the same set if and only if k = l and p = q, that is if they are the same
node—otherwise, it can be shown that ⟨k.p⟩ and ⟨k.q⟩ are either duplicate nodes
or that there exist duplicate nodes in one of the lower levels k − 1, . . . , 1, violating
the quasi-reduced property from the definition of the MDD.

In the implementation of decision diagrams, nodes of the decision diagram from
which all paths lead to node ⟨0.0⟩ do not need to be stored, since they can be
deduced from the rest of the decision diagram. In the rest of the paper it is assumed
that nodes with this property are omitted from the decision diagrams and that the
remaining arcs that would point to such nodes point directly to node ⟨0.0⟩. If the
MDD has values in R = {0, 1} and is used to encode the characteristic function of
some set, then the following holds for all remaining non-terminal nodes:

∀⟨k.p⟩,∀sk ∈ Sk, B(⟨k.p⟩[sk]) = ∅ ⇐⇒ ⟨k.p⟩[sk] = ⟨0.0⟩.

Examples of these nodes and arcs are depicted in Figure 2.4 with gray backgrounds.

2.2.2 Operations with multi-valued decision diagrams
In this section we introduce some elementary operations on MDDs. For our pur-
poses, we distinguish four types of MDDs, depending on the domain and range of
the function that an MDD encodes. In the following, let Ŝ = SK × · · · × S1 be a
Cartesian product of K > 0 nonempty sets, as in the previous section.

• We call an MDD that encodes a function f : Ŝ → {0, 1} a binary-terminal
multi-valued decision diagram (BTMDD). BTMDDs can be used to encode
subsets of the set Ŝ. We use them to encode sets of states of SPNs.

• For f : Ŝ × Ŝ → {0, 1}, the MDD is a binary-terminal multi-valued matrix
diagram (BTMxD). BTMxDs can be used to encode relations on Ŝ. We use
them to encode transition functions of SPNs.

• For n0 ∈ N>0 and f : Ŝ → {0, . . . , n0 − 1} the decision diagram is a multi-
terminal multi-valued decision diagram (MTMDD).

• For n0 ∈ N>0 and f : Ŝ × Ŝ → {0, . . . , n0 − 1} the decision diagram is a
multi-terminal multi-valued matrix diagram (MTMxD). We use MTMxDs in
the generation of BTMxDs.

In the implementation of the algorithms from this thesis, we use a C++ pro-
gramming library MEDDLY [41] that supports creation and manipulation of all of
the above types of MDDs. In the rest of this section, we briefly introduce several
basic operations on MDDs that are supported by this library and that can be used
in order to create MDDs from scratch and to manipulate them.

11
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Generating simple MDDs For a vector s = (sK , . . . , s1) ∈ Ŝ, and for a value
t ∈ {0, . . . , n0 − 1} an MTMDD (or BTMDD if n0 = 2) can be generated that
encodes a function f : Ŝ → {0, . . . , n0 − 1} which maps s to t and other vectors to
0; more precisely, the resulting function is defined with

f(x) =

t, if x = s,
0, otherwise. (2.3)

Any number of the elements of s can be set to a special value DONT_CARE,
meaning that the corresponding function arguments can have any allowed value and
the generated function returns t if and only if the rest of the function arguments
are equal to the corresponding elements of s. For example, if we denote with C
the set of all indices of elements that are set to DONT_CARE, C := {k : sk =
DONT_CARE}, then the generated MDD encodes a function defined with

f(x) =

t, if xk = sk, ∀k ̸∈ C,
0, otherwise. (2.4)

Generating simple MxDs Analogously for matrix diagrams, given a vector (s, s′)
= (sK , . . . , s1, s

′
K , . . . , s

′
1) ∈ Ŝ × Ŝ and a value t ∈ {0, . . . , n0 − 1}, an MTMxD

(or BTMxD if n0 = 2) can be generated that encodes a function f : Ŝ × Ŝ →
{0, . . . , n0 − 1} defined with

f(x,x′) =

t, if x = s and x′ = s′,
0, otherwise. (2.5)

In this case also any number of the elements of (s, s′) can be set to the value
DONT_CARE with the same result as above. For example, if we denote with
C and C ′ the sets of all indices of elements of s and s′, respectively, that are
set to DONT_CARE, C := {k : sk = DONT_CARE} and C ′ := {k : s′

k =
DONT_CARE}, then the generated MxD encodes a function defined with

f(x,x′) =


t, if xk = sk,∀k ̸∈ C

and x′
k = s′

k,∀k ̸∈ C ′,
0, otherwise.

(2.6)

In addition, any number of elements of s (but not of s′) can be set to a spe-
cial value DONT_CHANGE. Denote the set of all elements of s that are set to
DONT_CHANGE with D := {k : sk = DONT_CHANGE}. In this case it is
required that the elements of x with indices in D are equal to the corresponding
elements of x′ in order for the function to map to t, i.e., the generated MxD encodes
the function defined with

f(x,x′) =


t, if xk = sk,∀k ̸∈ C ∪ D

and x′
k = s′

k,∀k ̸∈ C ′ ∪ D
and xk = x′

k,∀k ∈ D,
0, otherwise.

(2.7)
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2.3 Summary

Table 2.2: Operations (MTMDD A,MTMDD B)→ MTMDD C and analogous for
(MTMxD A,MTMxD B)→ MTMxD C

Operation Result

C ← PLUS(A,B) fC(x) = fA(x) + fB(x)
C ← MINUS(A,B) fC(x) = fA(x)− fB(x)

C ← MULTIPLY(A,B) fC(x) = fA(x)fB(x)
C ← DIVIDE(A,B) fC(x) = fA(x)/fB(x) (integer division)
C ← MIN(A,B) fC(x) = min(fA(x), fB(x))
C ← MAX(A,B) fC(x) = max(fA(x), fB(x))

Generating projections Decision diagrams that encode projections to a particular
variable can be created: for a given index k, an MTMDD (or BTMDD) can be
created that encodes the function which maps x = (xK , . . . , x1) →→ xk for every
x ∈ Ŝ. Similarly, MTMxDs and BTMxDs can be created that encode projections
to either unprimed or primed variables.

Operations on MDDs The above operations allow creation of decision diagrams
that encode very simple functions and relations. To encode more complex functions
and relations, one can combine these simple MDDs using a variety of operators.
Tables 2.2 to 2.5 contain an overview of basic operators supported by MEDDLY,
some of which we use in this thesis. For example, Table 2.2 lists operations that take
two MTMDDs (or MTMxDs) A and B that encode functions fA and fB and return
an MTMDD (or MTMxD, respectively) C that encodes function fC as defined in
the right column of the table. Operations BFS and DFS from table 2.5 can be
used to generate a reachability set of a Petri net. They generate the reachability
set by starting from a set of markings represented by MDD A and then repeatedly
applying transition relation represented by MxD B. BFS uses a breadth-first search
algorithm and DFS uses a more efficient saturation algorithm [42].

Notes on complexity Finally, we note that the size of an MDD (i.e., the number
of its nodes) depends both on the function that it encodes, and on the ordering of
its variables which defines the ordering of the levels of the MDD. The same holds
for the computational complexity of the operations on MDDs. In the worst case,
size of an MDD as well as the complexity of operations on MDDs are exponential
in the number of the function variables. For many practical applications, however,
MDDs are obtained that very efficiently encode the needed functions.

2.3 Summary
In this chapter we have introduced stochastic Petri nets and discussed some of their
qualitative properties that we make use of in the following chapters and defined
their timed behaviour as well as some common performance measures. Then we
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Table 2.3: Operations (MTMDD A,MTMDD B)→ BTMDD C and analogous for
(MTMxD A,MTMxD B)→ BTMxD C

Operation Result

C ← GREATER_THAN(A,B) fC(x) = 1⇔ fA(x) > fB(x)
C ← GREATER_EQUAL(A,B) fC(x) = 1⇔ fA(x) ≥ fB(x)

C ← LESS_THAN(A,B) fC(x) = 1⇔ fA(x) < fB(x)
C ← LESS_EQUAL(A,B) fC(x) = 1⇔ fA(x) ≤ fB(x)

C ← EQUAL(A,B) fC(x) = 1⇔ fA(x) = fB(x)
C ← NOT_EQUAL(A,B) fC(x) = 1⇔ fA(x) ̸= fB(x)

Table 2.4: Operations (BTMDD A,BTMDD B) → BTMDD C and analogous for
(BTMxD A,BTMxD B)→ BTMxD C

Operation Result

C ← A ∪B fC(x) = 1⇔ fA(x) = 1 or fB(x) = 1
C ← A ∩B fC(x) = 1⇔ fA(x) = 1 and fB(x) = 1
C ← A \B fC(x) = 1⇔ fA(x) = 1 and fB(x) = 0

Table 2.5: Operations (BTMDD A,BTMXD B)→ BTMDD C

Operation Result

C ← PRE_IMAGE(A,B)
fC(x) = 1⇔ ∃y s.t.

fA(y) = 1 and fB(x,y) = 1

C ← POST_IMAGE(A,B)
fC(y) = 1⇔ ∃x s.t.

fA(x) = 1 and fB(x,y) = 1
BFS(A,B) fixpoint of A ∪ POST_IMAGE(A,B)
DFS(A,B) fixpoint of A ∪ POST_IMAGE(A,B)

have defined multi-valued decision diagrams and discussed some of the operations
that can be used for their creation and manipulation.
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3

Perfect sampling in stochastic Petri nets

Simulation is widely used in stationary performance analysis of stochastic Petri nets
with large state spaces, when exact numerical solution of the underlying Markov
chain is infeasible. When simulation is used for stationary analysis, the warm-up
period of a simulation run needs to be discarded. This period is the initial period
of the simulation run in which state of the simulated system strongly depends
on the initial state from which the simulation was started, and any estimation of
performance indices in this period will be subject to this initialisation bias. After the
warm-up period has elapsed, statistical methods can be used during the sampling
period of the simulation run to estimate stationary performance indices of interest.
However, the above procedure requires estimation of the length of the warm-up
period, which can in some cases be done prior to simulation and in general can
be performed during the simulation [43] [44]. Accuracy of the derived performance
indices and their relevance—whether they pertain to the long-term behaviour of
the system which is of interest in the stationary analysis or they are too biased by
the initial state of the simulation—depend on the quality of the estimation of the
warm-up period length.

An alternative to the above approach is to estimate the stationary performance
indices by sampling directly from the stationary probability distribution of the
model; this is referred to as perfect or exact sampling or perfect simulation [17].
These samples are perfect in the sense that they are distributed according to the
exact stationary distribution of the model, and not according to the approximate
stationary distribution which is obtained from sufficiently long simulation runs. If
performance of a perfect sampling algorithm for a given model is good enough to
obtain enough samples needed to achieve the precision required in estimation of
the sought performance indices, then perfect sampling can be used instead of the
standard simulation of the model. In the contrary, if performance of the algorithm
prohibits the collection of the sufficient number of samples, a smaller number of
samples can be obtained and used as initial states of the stationary simulation
runs. Since such initial states are distributed according to the stationary probability
distribution, simulation can proceed without the warm-up period by immediately
starting the sampling period. This can be advantageous in case of models for
which the estimation of the length of the warm-up period is difficult. When perfect
samples are used in this manner, it is enough to obtain a single perfect sample per
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simulation run and the performance of perfect sampling is thus less critical.
Perfect sampling is based on a classic perfect sampling algorithm, coupling from

the past [17]. Previous approaches tailor the CFTP algorithm to specific classes
of models, relying on their specific structure or properties in order to efficiently
implement the algorithm. For example, such approaches are based on monotonic-
ity properties of the model and coupling [17], envelope methods [18], bounding
chains [20, 19] and existence of blocking states for a subclass of stochastic Petri
nets [21]. Unfortunately, all of these approaches require some restrictions on the
structure of the net.

In this chapter we present an algorithm for perfect sampling in stochastic Petri
nets with finite state spaces which implements CFTP using multi-valued decision
diagrams [14]. The algorithm exploits certain regularities present in the Markov
chain underlying the SPN model to greatly speed up the CFTP algorithm. In
contrast to previous work, the proposed algorithm is general and does not require
any structural conditions on the SPNs. Although in the worst case the time and
space complexities of the algorithm are more than exponential in the size of the SPN
(because the state space must be generated), we observed that in many practical
cases the structure of the model’s underlying reachability set has regularities that
can be efficiently exploited by decision diagrams and for which the performance of
the algorithm is acceptable even in the case of very large state spaces.

We also present a tool called Stochastic Petri Nets Perfect Sampling (spnps)
that implements the proposed algorithm and test its performance. The tool is
implemented in C++ and uses an MDD library MEDDLY [41] for the creation and
manipulation of the decision diagrams.

This chapter is structured as follows. First in Section 3.1 we recall the CFTP
algorithm. Then in Section 3.2 we introduce the perfect sampling algorithm and
establish its correctness after which in Section 3.3 we present the tool spnps that
implements the presented algorithm and test its performance on several models.
Finally, in Section 3.4 we test the performance of the tool on a model from the class
of fork-join queueing networks.

3.1 Coupling from the past

Coupling from the past [17] is an algorithm for obtaining samples from the station-
ary probability distribution of ergodic discrete time Markov chains (DTMC) with
finite state spaces. It is based on simulating the DTMC starting from all states
until the simulations corresponding to different starting states couple into a single
state.

In some cases, the simulation can be performed starting from a subset of states
instead of all states, which can greatly increase efficiency of the algorithm. An
approach [21] closely related to the one we propose applies coupling from the past
to event graphs (Petri nets where each place is restricted to having only a single
input and a single output transition), for which the authors show that it is possible
to perform the simulation starting from a small number of initial states. In contrast,
we do not require assumptions on the structure of the net and base our approach
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on a brute force version of coupling from the past—simulating from all states of the
Petri net. We use decision diagrams to efficiently encode and store subsets of the
state space and state transition functions needed in the algorithm.

Let (Xn)n∈N be an ergodic discrete time Markov chain with finite state space S
and transition probabilities pij, i, j ∈ S, (U−n)n∈N a sequence of independent uni-
formly distributed on [0, 1] continuous random variables, and ϕ : S × [0, 1] → S
a simulation update rule which respects the transition probabilities of the DTMC
(Xn)n∈N, i.e., for all states i, j ∈ S and U an uniformly distributed on [0, 1] contin-
uous random variable the following holds:

Pr{ϕ(i, U) = j} = pij. (3.1)

For a subset A ⊆ S of the state space we denote with ϕ(A, U) the set {ϕ(s, U) :
s ∈ A} of images of states in A.

Under these assumptions, Algorithm 1 (if it terminates) produces a sample from
the stationary probability distribution of the Markov chain (Xn)n∈N [17]. The inner
loop of the algorithm simulates the Markov chain starting from all states for m
iterations, and the outer loop repeats this process for increasing values of m until
simulations from all states couple into a single state. This state is returned as the
sample. The number of iterations m that produces coupling is highly dependent on
the Markov chain and the update rule ϕ.

Algorithm 1: CFTP(S, ϕ, U0, U−1, . . .)
Data: State space S, update rule ϕ and uniform on [0, 1] i.i.d. random variables

U0, U−1, . . .
Result: Sample from the stationary distribution.

1 begin
2 m← 1;
3 repeat
4 A ← S;
5 for i = −m+ 1 to 0 do
6 A ← ϕ(A, Ui);
7 m← 2m;
8 until |A| = 1;
9 return s ∈ A;

If the simulations that start from different states couple in a finite expected num-
ber of steps then the algorithm terminates with probability 1. In the next section
we construct update rule ϕ for stochastic Petri nets using efficient representation
with MDDs and we prove that it couples in finite expected number of steps the
simulations starting from all markings of the reachability set of the SPN. In other
words, we implement Algorithm 1 for SPNs and show that it terminates in finite
expected time, producing a sample from the stationary probability distribution.
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3.2 Algorithm for perfect sampling in stochastic
Petri nets

To implement coupling from the past, we first obtain a discrete time Markov chain
by uniformizing the continuous time Markov chain underlying the stochastic Petri
net. Then we define the update rule ϕ that we use for coupling and encode it using
decision diagrams. These steps are explained in the following subsections.

3.2.1 Uniformization
First we uniformize the CTMC underlying the SPN in order to obtain a DTMC
that we use in the CFTP algorithm. We assume a live and bounded stochastic Petri
net (and therefore ergodic) with transition firing rates that depend on the enabling
degree of the transitions, i.e., we restrict the function W : T × NNP → R>0 from
the definition of the SPN to have the form

W (Ti,m) = ri(ei(m)),∀Ti ∈ ,∀m ∈ RS, (3.2)

where ri : N → R≥0, i ∈ {1, . . . , NT} are functions that map enabling degrees
to firing rates of transitions. For simplicity of exposition, we assume that for all
transitions the firing rate is equal to 0 if the enabling degree is 0, and the firing rate
is nonzero otherwise:

∀Ti ∈ T , ri(k) = 0 if and only if k = 0. (3.3)

This type of rate dependency can represent the single server firing semantics—by
setting ri(k) := W (Ti)—and infinite server firing semantics—by setting ri(k) :=
kW (Ti)—as special cases, where with W (Ti) we denote a marking independent
base firing rate of transition Ti.

Since coupling from the past works with discrete time Markov chains, we use
uniformization to obtain a discrete time Markov chain with the same stationary
probability distribution as the continuous time Markov chain underlying the SPN. In
the following we describe the uniformization coefficient that we use. Let E1, . . . , ENT

be maximum enabling degrees of transitions:

Ei = max{ei(m) : m ∈ RS}, i = 1, . . . , NT (3.4)

and let R1, . . . , RNT
be maximum firing rates of transitions:

Ri = max{ri(k) : 0 ≤ k ≤ Ei}, i = 1, . . . , NT . (3.5)

We use uniformization coefficient Λ := NT
i=1 Ri equal to the sum of maximum tran-

sition rates. We choose this uniformization coefficient as a result of balancing two
requirements. First, we want a uniformization coefficient for which the uniformiza-
tion is as efficient as possible (i.e., we would like a small Λ). Second, we want to be
able to define update rule ϕ that for a given state m ∈ RS and a given sample from
the random variable U fires a single Petri net transition Ti(U) (if Ti(U) is enabled
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in m), and we want Ti(U) to depend only on the sample from the random variable
U and not on the state m to which we apply ϕ. Then, when we apply ϕ to a set
of markings A ⊆ RS, we will need to perform a very simple operation of adding
−I(Ti(U)) + O(Ti(U)) to all markings in A in which Ti(U) is enabled. We want this
property in order to be able to efficiently encode the update rule ϕ using decision
diagrams and also to simplify the proof that the algorithm terminates in finite ex-
pected time. The above definition of Λ satisfies the second requirement while being
as efficient as possible. For single server semantics, this uniformization coefficient
Λ is equal to the sum NT

i=1 W (Ti) of transition rates, as in [21]. For infinite server
semantics, Λ is equal to the sum NT

i=1 EiW (Ti) of base transition rates multiplied
by maximum enabling degrees of transitions.

3.2.2 Update rule
In this section we define the update rule ϕ by splitting it into a number of partial
update rules and defining which of the partial update rules should be applied for a
given sample from a random variable in the perfect sampling algorithm. By exploit-
ing special structure present in the CTMC underlying an SPN, we are able to define
very simple partial update rules which can be easily implemented using MDDs. For
each Petri net transition Ti and its possible enabling degree k ∈ {0, . . . , Ei}, we
define a partial update rule ψk

i : RS → RS in the following manner. For a set
A ⊆ RS of markings, ψk

i fires the transition Ti in states for which the firing rate of
transition Ti is at least ri(k), and leaves the rest of the states unchanged:

ψk
i (A) := {m− I(Ti) +O(Ti) : m ∈ A, ri(k) ≤ ri(ei(m))}

∪ {m : m ∈ A, ri(k) > ri(ei(m))}. (3.6)

Finally, we define the update rule ϕ for the perfect sampling algorithm with ϕ(m, U)
:= ψ

k(U)
i(U) (m), where i(U) is defined as the unique transition index such that

Λ−1
i(U)−1

i=1
Ri ≤ U < Λ−1

i(U)
i=1

Ri, (3.7)

and k(U) is an enabling degree associated with the minimum firing rate of transition
Ti(U) that is larger than ΛU −i(U)−1

i=1 Ri:

k(U) ∈ arg min
k

ri(U)(k) : ri(U)(k) ≥ ΛU −
i(U)−1

i=1
Ri

 . (3.8)

Note that if for some transition Ti and two enabling degrees k1 ̸= k2 transition rates
are equal, ri(k1) = ri(k2), then the partial update rules ψk1

i and ψk2
i will also be

equal and k(U) will not be uniquely determined. This happens, for instance, in case
of single server firing semantics, where the firing rate of transition Ti is equal to
W (Ti) for any nonzero enabling degree. In this case we can simply take the smallest
k(U) and discard the duplicate partial update rules (i.e., we redefine k(U) to return
the minimum enabling degree from the set of enabling degrees in 3.8). Because of
this, we can assume without loss of generality that for every transition Ti, rates
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3 Perfect sampling in stochastic Petri nets

for different enabling degrees are different, and that the enabling degree k(U) is
unique. Further, this ensures that the probability of selecting partial update rule
ψk

i in a step of perfect sampling algorithm is nonzero for all i and k.
With partial update rules ψk

i defined as above, we implement Algorithm 1 using
multi-valued decision diagrams to encode state space S (which is in our case the
reachability set RS of the SPN), set A and partial update rules ψk

i . At each step
of the inner loop, for the associated random variable U we select a partial update
rule ψk(U)

i(U) as described above and apply it to the set A. We describe encoding of
the partial update rules and the resulting algorithm in the following section.

3.2.3 Encoding partial update rules using decision diagrams
We encode sets of Petri net markings and transition functions using MDDs in which
each level corresponds to marking of a Petri net place. As mentioned before, effi-
ciency of operations on decision diagrams depends on the ordering of the variables
and finding the optimal ordering is computationally very expensive [45]. To avoid
bias that could be introduced by selecting the ordering using a fixed heuristic, in
our tests we select an efficient ordering of the Petri net places (and thus of the de-
cision diagram variables) manually by a process of trial and error. In the following,
we assume some ordering of the places and describe the construction of decision
diagrams.

For i = 1, . . . , NP , let Bi be the bound on the number of tokens in place Pi. We
assume the bounds Bi are known. In principle this is not a limitation of our ap-
proach, because for bounded Petri nets it is possible to generate an MDD encoding
the reachability set without knowledge of the bounds [40] and then the bounds on
the numbers of tokens in places can be obtained from this MDD. We define poten-
tial reachability set Ŝ of the Petri net as the Cartesian product of possible markings
for all places:

Ŝ =
NP
i=1
{0, . . . , Bi}. (3.9)

To encode partial update rule ψk
i with a decision diagram, we first encode two

functions for each transition Ti, STEPi : Ŝ × Ŝ → {0, 1} and EDEGi : Ŝ × Ŝ → N.
Using Algorithm 2, we encode in STEPi a characteristic function of a step relation
on Ŝ that corresponds to firing of the transition Ti, i.e., the function defined by

STEPi(m,m′) = 1⇔m− I(Ti) +O(Ti) = m′. (3.10)
In Algorithm 2, we first store in STEPi a characteristic function of a relation on Ŝ
such that two possible markings are in relation if they don’t differ on places that are
neither input nor output places of transition Ti. Then, for each place Pj that is input
or output place of transition Ti we define a relation EQUAL(PROJ’,DIFF) such
that two possible markings are in this relation if they differ in place Pj by exactly
−Ij(Ti) + Oj(Ti). We intersect STEPi with this relation. It is easy to see that the
algorithm generates the characteristic function of a relation satisfying (3.10).

Next, using Algorithm 3, we encode in EDEGi a function that returns the enabling
degree of transition Ti in the marking represented by the first argument:

EDEGi(m,m′) = ei(m). (3.11)
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3.2 Algorithm for perfect sampling in stochastic Petri nets

Algorithm 2: ENCODE_STEP(SPN, Ŝ, i)
Data: Stochastic Petri net SPN , potential reachability set Ŝ and transition index i.
Result: Encoding of step function for transition Ti.

1 begin
2 STEPi ← {(m,m′, 1) : m,m′ ∈ B, Ij(Ti) = 0 and Oj(Ti) = 0⇒ mj = m′

j};
3 for j such that Ij(Ti) ̸= 0 or Oj(Ti) ̸= 0 do
4 PROJ’← {(m,m′,m′

j) : m,m′ ∈ Ŝ};
5 DIFF← {(m,m′,mj − Ij(Ti) +Oj(Ti)) : m,m′ ∈ Ŝ};
6 STEPi ← STEPi ∩ EQUAL(PROJ’,DIFF);
7 return STEPi;

This algorithm is a straightforward calculation of the enabling degree of a transi-
tion, performed efficiently over the entire set of possible markings by the functions
operating on MDDs.

Algorithm 3: ENCODE_EDEG(SPN, Ŝ, i)
Data: Stochastic Petri net SPN , potential reachability set Ŝ and transition index i.
Result: Encoding of enabling degree function for transition Ti.

1 begin
2 EDEGi ← {(m,m′,∞) : m,m′ ∈ Ŝ};
3 for j such that Ij(Ti) > 0 do
4 PROJ← {(m,m′,mj) : m,m′ ∈ Ŝ};
5 INP← {(m,m′, Ij(Ti)) : m,m′ ∈ Ŝ};
6 EDEGi ← MIN(EDEGi,DIVIDE(PROJ, INP));
7 return EDEGi;

Now we can finally encode partial step function ψk
i as a characteristic function

of a relation on Ŝ, as shown in Algorithm 4. In this algorithm we encode ψk
i as

a union of a step relation on markings for which the firing rate of transition Ti is
larger than rate ri(k), and an identity relation on the rest of the markings. As
decision diagrams STEPi and EDEGi could be used multiple times in invocations
of Algorithm 4 with different values of k, in the actual implementation we generate
these decision diagrams only once and cache them.

Having encoded the update rule, the only missing ingredient for the implemen-
tation of the CFTP algorithm is the reachability set of the SPN. After we generate
the reachability set RS of the SPN and encode partial update functions ψk

i with
MDDs as described above, we use coupling from the past to obtain a sample from
the stationary distribution of the net, as shown in Algorithm 5.

Because the size of an MDD encoding the reachability set is in the worst case
exponential in the size of the SPN, and the same holds in general for MDDs encod-
ing subsets of the reachability set and functions representing partial update rules,
performing a single iteration in line 15 of Algorithm 5 is in EXPSPACE, while the
number of these iterations depends on stochastic properties of the SPN. Aside from
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3 Perfect sampling in stochastic Petri nets

Algorithm 4: ENCODE_PSI(SPN, Ŝ, i, Ei, k)
Data: Stochastic Petri net SPN , potential reachability set Ŝ, transition index i,

maximum enabling degree Ei and enabling degree k.
Result: Encoding of partial update rule ψk

i .
1 begin
2 EDEGi ← ENCODE_EDEG(SPN, Ŝ, i);
3 GEQ←


j ∈ {0, 1, . . . , Ei} s.t.

ri(j) ≥ ri(k)

EQUAL(EDEGi, {(m,m′, j) : m,m′ ∈ Ŝ});

4 LT←


j ∈ {0, 1, . . . , Ei} s.t.
ri(j) < ri(k)

EQUAL(EDEGi, {(m,m′, j) : m,m′ ∈ Ŝ});

5 STEPi ← ENCODE_STEP(SPN, Ŝ, i);
6 NOSTEP← {(m,m, 1) : m ∈ Ŝ};
7 ψk

i ← (STEPi ∩GEQ) ∪ (NOSTEP ∩ LT);
8 return ψk

i ;

these iterations and the generation of the reachability set in line 5, which is also
in EXPSPACE, the rest of the steps of the algorithm are of a lower computational
complexity.

In the next section we show that the described algorithm terminates in finite
expected time, producing a sample from the stationary distribution of the CTMC
underlying the SPN.

3.2.4 Proof of coupling
In this section we prove the correctness of the proposed algorithm.

Proposition 3.2.1. Correctness of perfect sampling algorithm for SPNs Consider
a bounded and live stochastic Petri net with firing rate dependency as described in
Section 3.2.1 and let ϕ be an update rule defined by partial update rules ψi

k and
selection functions i(U) and k(U) as defined in Section 3.2.2.

Coupling from the past, given in Algorithm 1, terminates in finite expected time
and returns a sample from the stationary probability distribution of the SPN.

Proof. It is enough to show that for any two markings m,m′ ∈ RS of the SPN
there exists a finite coupling sequence of samples U0, U−1, . . . , U−m+1, for some
m ∈ N, with nonzero probability and such that the sequence of partial update
rules ψk(U−m+1)

i(U−m+1) , ψ
k(U−m+2)
i(U−m+2) , . . . , ψ

k(U0)
i(U0) , when applied to m and m′, yields the same

marking. From the existence of such coupling sequence, by applying Borel-Cantelli
lemma [46] it follows that markings m,m′ couple in finite expected number of steps.
From this, and the finiteness of the reachability set of the SPN it follows that the
reachability set will also couple into a single state in a finite expected number of
steps. This state is then a sample from the stationary distribution of the SPN [17].
In the following, we construct the finite coupling sequence of samples.
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3.2 Algorithm for perfect sampling in stochastic Petri nets

Algorithm 5: COUPLING_SPN(SPN, Ŝ, U0, U−1, . . .)
Data: Stochastic Petri net SPN , potential reachability set Ŝ, uniform on [0, 1] i.i.d.

random variables U0, U−1, . . .
Result: Sample from the stationary distribution.

1 begin
2 for i = 1 to NT do
3 STEPi ← ENCODE_STEP(SPN, Ŝ, i);
4 EDEGi ← ENCODE_EDEG(SPN, Ŝ, i);

5 RS ← DFS({m0},
NT
i = 1

STEPi);

6 for i = 1 to NT do
7 Compute maximum enabling degree Ei;
8 for k = 1 to Ei do
9 ψk

i ← ENCODE_PSI(SPN, Ŝ, i, Ei, k);

10 Compute selection functions i(U) and k(U);
11 m← 1;
12 repeat
13 A ← RS;
14 for j = −m+ 1 to 0 do
15 A ← POST_IMAGE(A, ψk(Uj)

i(Uj) );

16 m← 2m;
17 until |A| = 1;
18 return s ∈ A;

Let m1,m
′
1 ∈ RS be two different markings of the Petri net. Denote with

d1 = d(m1,m
′
1) the length of the shortest directed path in the reachability graph

from m1 to m′
1 and let σ1 = Ti1 , Ti2 , . . . , Tid1

be the shortest sequence of transitions
such that m1

σ1−→ m′
1 (if there are several shortest sequences, select one of them).

Since the reachability graph of the Petri net is finite, the length d1 of this sequence
is bounded by the finite diameter of the reachability graph.

By construction of partial update rules, for the sequence of transitions σ1 there
exists a corresponding sequence of partial update rules τ1 = ψk1

i1 , ψ
k2
i2 , . . . , ψ

kd1
id1

such
that:

τ1({m1}) := (ψkd1
id1
◦ · · · ◦ ψk2

i2 ◦ ψ
k1
i1 )({m1}) = {m′

1}. (3.12)

In general, every partial update rule ψk
i , when applied to a marking, either fires

corresponding transition Ti, or leaves the marking unchanged. By construction,
applying sequence τ1 to m1 fires a corresponding transition for every partial update
rule in τ1. We say that τ1 is fully fireable from marking m1. Applying sequence τ1
to m1 yields marking m′

1 = m1 +δ1 for some nonzero vector δ1 ∈ NNP . If τ1 is fully
fireable n ∈ N times from m1 (that is, sequence τn

1 , obtained by concatenating n
copies of τ1, is fully fireable from m1), the resulting marking will be equal to m1 +
nδ1. Because the reachability set is finite, τ1 is fully fireable only a finite number

23



3 Perfect sampling in stochastic Petri nets

of times from m1. Otherwise, we would obtain an infinite sequence {m1 +nδ1}n∈N
of different markings in the finite reachability set RS(m0) (a contradiction). Let
l1 ∈ N be the maximum number of times that τ1 is fully fireable from m1.

We now observe what happens when τ1 is applied l1 times to markings m1 and
m′

1. We denote:

{m2} := τ l1
1 ({m1}) and {m′

2} := τ l1
1 ({m′

1}). (3.13)

Since τ1 is fully fireable l1 times from m1, we have that m2 is obtained by firing l1
times the sequence of transitions σ1 from the marking m1:

m1
σ

l1
1−−→m2. (3.14)

Since {m′
2} = τ l1

1 ({m′
1}) = τ l1+1

1 ({m1}) = τ1({m2}), and τ1 is not fully fireable
from m2 we have that m′

2 is obtained by firing from m2 some strict subsequence
σ′

1 of the sequence of transitions σ1:

m′
1

σ
l1−1
1−−−→m2

σ′
1−→m′

2, where σ′
1 ⫋ σ1. (3.15)

Therefore, distance in the reachability graph between m2 and m′
2 is strictly less

than d1, the length of sequence σ1. To recapitulate, we have shown the following:

∃l1 ∈ N, ∃m2,m
′
2 ∈ RS such that

τ l1
1 ({m1}) = {m2}, τ l1

1 ({m′
1}) = {m′

2} and
d2 := d(m2,m

′
2) < d1.

(3.16)

Repeating the above argument for markings m2,m
′
2, we obtain another sequence

τ l2
2 of partial update rules and markings m3,m

′
3 such that d3 := d(m3,m

′
3) <

d2. Continuing in the same manner, for some t ∈ N we obtain markings mt,m
′
t

such that d(mt,m
′
t) = 0 or, equivalently, mt = m′

t. Concatenating all obtained
sequences of partial update rules we obtain a sequence τ = τ l1

1 τ
l2
2 . . . τ lt

t of partial
update rules such that:

τ lt
t ◦ · · · ◦ τ l2

2 ◦ τ l1
1 ({m1}) = τ lt

t ◦ · · · ◦ τ l2
2 ◦ τ l1

1 ({m′
1}). (3.17)

By construction of selection functions i(U) and k(U), it is easy to see that there
exists a finite sequence of samples corresponding to sequence τ and with nonzero
probability. This finishes the proof.

3.3 Tool spnps
In this section we present spnps, a tool for perfect sampling in stochastic Petri
nets that implements the algorithm described in the previous section. The tool is
implemented in C++ and is based on encoding in the form of multi-valued decision
diagrams of the state space and transition functions of the DTMC obtained by
uniformization of the CTMC underlying the SPN, in order to efficiently implement
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the CFTP algorithm, as described previously. The tool can be obtained at the web
page of one of its authors1.

In addition to obtaining perfect samples, the tool can also be used in the analysis
of models that exhibit multimodal behaviour. State spaces of such models can
be partitioned into subsets (we also call them modes) between which there is very
little communication (i.e., very low probability of transitioning from one subset to
another subset). When simulating such models, the model’s state usually stays
confined to one of the subsets for a large number of simulation steps, resulting in
meta-stable behaviour which can be easily mistaken for the stationary behaviour.
Such multimodal behaviour can be detected by the behaviour of the tool during
execution.

3.3.1 Objectives
This section describes main objectives of the tool, intended purpose and targeted
users.

Table 3.1: Objectives of spnps
Application domain Stationary performance analysis of SPN models

Targeted users Researchers and analysts
Primary purpose Sampling from stationary distribution of the SPN model

Secondary purpose Detection of multimodal model behaviour

Primary purpose of the tool is obtaining samples from stationary probability
distributions of stochastic Petri nets with finite state spaces. Secondary purpose of
the tool is detection of multimodality of behaviour in SPN models with finite state
spaces.

Intended use of the tool is as an aid in the stationary performance analysis of SPN
models with finite state spaces. As explained in the introduction to this chapter, the
obtained samples can be used directly to estimate stationary performance indices of
interest, or they can be used as initial states of stationary simulation runs in place
of a warm-up period.

The tool is intended to be used by researchers and analysts that employ stochastic
Petri nets in stationary analysis of systems. It could be useful in case of problems in
the simulation of the models indicating strong initialisation bias or multimodality
of behaviour; these problems include strong sensitivity of the obtained performance
indices to the initial state of the simulation, unreliable convergence of the stationary
performance indices during the simulation, or simulation not capturing the expected
range of model behaviour.

3.3.2 Functionality
Spnps is a command line application that allows the user to load from a file an
SPN model together with place marking bounds and an ordering of places, and

1Ivan Stojic - Software, http://www.dais.unive.it/~stojic/soft.html
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3 Perfect sampling in stochastic Petri nets

Table 3.2: Command line switches
Switch Parameter type Description

-x or --xml filename Input file
-r or --rng code PRNG
-s or --seed number PRNG seed
-n or --num number Number of samples
-c or --card number Target cardinality

-v or --verbose Verbose output
-d or --diagnostics Output of diagnostic information

-t or --time Output of timing information

generate a chosen number of perfect samples from the reachability set of the SPN.
When generating more than one sample, time taken to generate the reachability
set RS and the simulation update rule ϕ in Algorithm 5 is ammortized by reusing
these MDDs in the obtaining of further samples. Stopping criterion can be changed
so that the perfect sampling algorithm is stopped before the completion, when the
cardinality of the set A in Algorithm 5 becomes smaller than a chosen value instead
of being equal to 1 as in the basic version of the algorithm. The entire set A is then
returned as the result. Performing such incomplete perfect sampling runs can be
useful in the analysis of models that exhibit multimodal behaviour. This is further
detailed in Section 3.3.4.

Program Options

Table 3.2 lists command line switches supported by the tool. Switch -x selects
an input file containing a description of an SPN model and is the only mandatory
switch. Format and contents of the input file are described in the next subsection.
Switch -r allows selection of quality level of a high quality pseudorandom number
generator [47] (PRNG) and -s allows selection of PRNG seed; if the seed is omitted
or set to 0, local time is used as the seed. Switch -n specifies the number of
sampling runs that are to be performed by the tool. Switch -c sets the stopping
cardinality—as explained before, when stopping cardinality is set to 1, samples
from the stationary probability distribution are obtained, and larger values can be
used to examine multimodal models. Finally, switch -v enables verbose output,
and switches -d and -t enable output of additional information that is useful in
debugging a model and testing the tool.

Input

Input file is assumed to be in the Petri Net Markup Language (PNML) [48] format.
PNML is an XML-based syntax for Petri nets which aims at becoming the standard
interchange format for Petri net tools. Since PNML is very flexible and extendable,
leaving many format details to be defined based on specific needs of a tool using
the format, we include in the tool distribution archive an XML Schema defining the
particular format of PNML files that is supported by spnps. Fig. 3.1 shows part of
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<?xml version="1.0" encoding="UTF-8"?>
<pnml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="spnps01.xsd">
<net id="Example" type="P/T net">

<place id="P1">
<initialMarking>

<value>100</value>
</initialMarking>
<ddOrder>

<value>0</value>
</ddOrder>
<bound>

<value>100</value>
</bound>

</place>
<!-- Place P2 omitted... -->

<transition id="T1">
<rate>

<value>1.0</value>
</rate>
<timed>

<value>true</value>
</timed>
<infiniteServer>

<value>false</value>
</infiniteServer>

</transition>
<!-- Transition T2 omitted... -->

<arc id="P1 to T1" source="P1" target="T1">
<inscription>

<value>10</value>
</inscription>

</arc>
<!-- Three arcs omitted... -->

</net>
</pnml>

Figure 3.1: Example input file in PNML format; parts are omitted for brevity

the input file for the example SPN shown in Fig. 3.2. In the latter figure, all data
that are expected in the input file are depicted: aside from the structure and initial
marking of the SPN, additional data are firing rates and semantics for transitions
and marking bounds and ordering of places in the generated MDDs. PNML files
can contain multiple SPNs; in this case the tool loads the first net from the file.

Output

In normal usage, only the results of the sampling runs—perfect samples or sets
of markings, depending on the stopping cardinality—are output to the standard
output stream of the tool process. Using the verbose output switch -v causes
additional output to be produced during the sampling procedure. Switch -d enables
output of program options and loaded model data, and switch -t enables output of
timing information. When the tool is invoked without any parameters, a message
explaining the use of the tool is output. An example of the tool invocation and the
output are shown in Fig. 3.3. The input file used in this example contains the small
example SPN depicted in Fig. 3.2. Spnps is first invoked without any arguments
and it outputs the usage information. Then it is invoked with input file set to
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100

P1

T1T2

P2

rate = 1.0
single server

rate = 2.0
infinite server

bound = 100
dd_order = 0

bound = 100
dd_order = 1

10

10

Figure 3.2: Example stochastic Petri Net with additional data expected in the input
file, indicated next to corresponding places and transitions

Table 3.3: Interface of class rng
rng(int code, unsigned int seed, int verbose = 0)
double next()

example.pnml and with all output switches activated. The tool outputs program
options and PRNG seed, some parsing diagnostics, data loaded from the input
file, cardinality of the reachability set, progress of the sampling run containing the
numbers of simulation steps and cardinalities of the final obtained sets and finally
in the last line the obtained sample, in this case marking [96, 4]⊺.

3.3.3 Architecture
Spnps is a command line program written in C++. Aside from two helper func-
tions that parse command line arguments and print usage information, the code is
organised into three classes.

Class rng. This is a simple front-end to high quality pseudorandom number gen-
erators [47] which are available from the web page2 of its authors. The interface
of the class contains only two functions with signatures depicted in Table 3.3; con-
structor rng whose argument code specifies the PRNG quality level and argument
seed specifies PRNG seed and function next which returns a pseudorandom floating
point number between 0 and 1.

Class spn. This class represents a stochastic Petri net with additional data, as
described in Section 3.3.2. The constructor spn loads the SPN and data from a file

2Software developed by the Canada Research Chair in Stochastic Simulation and Optimization,
http://simul.iro.umontreal.ca
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$ ./spnps
spnps version 0.1
Usage: ./spnps -x xml_file [-r code] [-s seed] [-n num] [-c card] [-v] [-d] [-t]

-x or --xml input file
-r or --rng (optional, code is one of 512, 1024, 19937, 44497, default = 1024)

pseudorandom number generator
-s or --seed (optional, seed >= 0, default = 0) PRNG seed, 0 specifies clock
-n or --num (optional, default = 1) number of samples
-c or --card (optional, default = 1) stopping cardinality
-v or --verbose (optional) verbose output
-d or --diagnostics (optional) output of diagnostic information
-t or --time (optional) output of timing information

$ ./spnps -x example.pnml -v -d -t
Program options:

XML file: ’example.pnml’
RNG: WELL1024a
RNG seed: use clock
Samples: 1
Stopping cardinality: 1
Verbose output: 1
Print diagnostic information: 1
Print timing information: 1

RNG WELL1024a initialized with seed 1458864504.
Loading SPN from file ’example.pnml’.

Using net with id="Example".
Found 2 places.
Found 2 transitions.
Found 4 arcs.
Loading done.

Loaded data:
n = 2
m = 2
I =

10 0
0 1

O =
0 1
10 0

W = 1.0000000000000000e+00 2.0000000000000000e+00
M0 = 100 0
S = SS IS
B = 100 100
V = 0 1

Generating reachability set... done.
cardinality = 101

Generating simulation update rule... done.
Init time = 4.4442700000000002e-01 s
Sampling (1 of 1):

m = 1, card = 100
m = 2, card = 99
m = 4, card = 97
m = 8, card = 93
m = 16, card = 85
m = 32, card = 69
m = 64, card = 52
m = 128, card = 28
m = 256, card = 11
m = 512, card = 2
m = 1024, card = 1
Sample time = 5.4229999999999999e-03 s
Sample iterations = 1024

96 4

Figure 3.3: Example invocation and output of spnps
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Table 3.4: Interface of class spn
spn(char *xmlFile, int verbose = 0)
various getter functions such as int n() and const int *B()

Table 3.5: Interface of class sampler
sampler(spn &spn, rng &gen, int verbose = 0, int timing = 0)
set<vector<int> > sample(int card)

in PNML format. Parsing of the input is implemented using library libxml23. The
loaded data can then be queried using several getter functions. Two example getter
functions are listed in the second row of Table 3.4; they return number of places n
and the vector of place marking bounds, respectively.

Class sampler. This class implements the perfect sampling algorithm. It uses
library MEDDLY4 [41] that supports creation and manipulation of several types of
decision diagrams. Constructor sampler takes as parameters objects of type spn
and rng defining the SPN and PRNG to be used in sampling, and generates MDD
encoding the reachability set of the SPN and MDDs that encode the simulation
update rule. Function sample can then be used to obtain a sample, by setting its
parameter card to 1, or to perform an incomplete sampling run and obtain a set of
markings, by setting card to a number greater than 1.

3.3.4 Use Cases
Two use cases are envisioned for the tool: sampling from the stationary distribution
of an SPN and analysing multimodal model behaviour by performing incomplete
sampling runs. The former use case, sampling, has been described in previous
sections and the typical tool use for this purpose was shown in Fig. 3.3. For this
use case, performance of the tool suggests that its usefulness is more likely to be in
the obtaining of samples to use as initial states of simulation runs, and less likely
in the estimation of performance indices by directly obtaining a large number of
samples from the stationary probability distribution of the model. In the rest of
this section the latter use case, analysing multimodal behaviour, is illustrated with
a small example.

Analysing Multimodal Behaviour

Consider the SPN in Fig. 3.4, and assume that all transitions have equal firing
rates and infinite server firing semantics. Transition T3 is enabled only in marking
[0,M, 0, 0]⊺, when all tokens are in place P2, and its enabling degree is 1. Note that
it may take a large number of steps for the SPN to reach this marking because the
transitions T1 and T2 have infinite server firing semantics and will therefore result

3The XML C parser and toolkit of Gnome, http://www.xmlsoft.org
4Multi-terminal and Edge-valued Decision Diagram LibrarY, http://meddly.sourceforge.net
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Figure 3.4: A bimodal SPN

in the behaviour tending to equalise the number of tokens in places P1 and P2. In
the same marking [0,M, 0, 0]⊺, transition T2 is enabled with enabling degree M .
Since we assume equal firing rates and infinite server firing semantics, firing rate
of transition T2 in this marking is M times larger than the firing rate of transition
T3. Therefore, in the race between these two transitions, T3 fires with probability
1/(M + 1) and T2 fires with probability M/(M + 1). For a large M , it is easy
to see that in the simulation of this SPN, a large number of iterations will elapse
between the enablings of transition T3 and for each of these enablings the probability
for transition T3 to fire and transfer tokens to place P3 will be small. Because of
symmetry, the same holds for transition T6. This is an example of a bimodal SPN,
where the state space can be decomposed into two sets, {[M−i, i, 0, 0]⊺ : 0 ≤ i ≤M}
and {[0, 0,M−i, i]⊺ : 0 ≤ i ≤M}, between which there is very little communication.

If simulation is started in the marking depicted in Fig. 3.4, it will likely take a
large number of iterations for the transition T3 to fire. During this time, the SPN
will show meta-stable behaviour, estimates of performance measures will converge,
and the simulation will likely be stopped before the transition T3 fires. This scenario
is very likely if the analyst is not aware of the bimodality of the model behaviour.
While in the case of this small example SPN multimodality can be easily deduced
from the model description, in case of larger and more complex models it could
easily go unnoticed.

Spnps can be used in the detection and analysis of multimodal models. For
the example bimodal SPN with M = 100, running spnps with the verbose output
enabled produces output shown in Fig. 3.5, left. The code ^C at the end of the
output signifies that the user has interrupted execution because it stopped making
progress—cardinality of the obtained sets remained at 2 for increasing numbers
of simulation steps m. This kind of behaviour of the perfect sampling algorithm
shows that a standard simulation would need a very long warm-up period and is an
indication of possible multimodality of the model behaviour. The user can further
analyse the model behaviour by running the tool with target cardinality set to
2. Performing five incomplete sampling runs with this target cardinality produces
the output shown in Fig. 3.5, right. For each of the incomplete sampling runs,
the tool outputs the cardinality of the obtained set (here equal to 2 in all cases),
and the markings in the obtained set. For example, the first three lines of output
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$ ./spnps -x bimodal.pnml -v
[... some output omitted ...]
Sampling (1 of 1):

m = 1, card = 201
m = 2, card = 200
m = 4, card = 198
m = 8, card = 194
m = 16, card = 187
m = 32, card = 174
m = 64, card = 146
m = 128, card = 106
m = 256, card = 60
m = 512, card = 16
m = 1024, card = 3
m = 2048, card = 2
m = 4096, card = 2
m = 8192, card = 2
m = 16384, card = 2
m = 32768, card = 2
m = 65536, card = 2
m = 131072, card = 2

[... some output omitted ...]
m = 67108864, card = 2
m = 134217728, card = 2
m = 268435456, card = 2

^C

$ ./spnps -x bimodal.pnml -n 5 -c 2
2
0 0 43 57
49 51 0 0
2
0 0 45 55
55 45 0 0
2
0 0 57 43
45 55 0 0
2
0 0 62 38
52 48 0 0
2
0 0 44 56
40 60 0 0

Figure 3.5: Left: perfect sampling run for the bimodal SPN with M = 100, in-
terrupted by the user; right: incomplete sampling runs for the same
model

are to be interpreted as a set {[0, 0, 43, 57]⊺, [49, 51, 0, 0]⊺} containing two markings.
From the output, the bimodal nature of the model is apparent: the two weakly
communicating subsets of the reachability set have both completely coupled into
single states. For more complex models, a further analysis of the obtained sets
of markings may need to be performed to analyse the multimodality of the model
behaviour.

3.3.5 Experiments
In this section we test the performance of spnps by running experiments on several
models. Table 3.6 lists the models that were used for testing, along with short
descriptions. Full descriptions and figures of some of the models can be found
at the end of this section. For each combination of a model and parameters, 10
sampling runs have been performed. Rates of transitions were selected uniformly
from the segment [1, 10] for each testing run for all models. All tests were performed
on a Linux system with a 2.40GHz Intel Xeon E5-2665 CPU.

Results of tests are reported in Table 3.7. First column Model specifies the tested
model and second column Sem specifies the firing semantics that are used for all
transitions of the model. NP is number of places, NT is number of transitions
of the net, and |RS| is the size of the reachability set. Last two columns are
measurements of the performance of the tool, taken as averages over 10 runs. Init
is total execution time prior to the coupling phase of the algorithm, and includes
the generation of decision diagrams that encode the reachability set and partial
update rules. Coupling is the time needed for execution of coupling from the past.
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Table 3.6: Tested models.
Model Description

phil N N dining philosophers (take both forks at once)
rphil N N dining philosophers (take one fork at a time)
slot N slotted protocol model with N nodes

contention N M N CPUs, M tasks per CPU compete for a resource
loop N M simple loop of N places with M tokens

Table 3.7: Test results.
Model Sem NP NT |RS| Init (s) Coupling (s)
phil 10 SS 40 30 2.32× 104 0.011 0.011
phil 20 SS 80 60 5.37× 108 0.037 0.078
phil 50 SS 200 150 6.67× 1021 0.227 0.744
phil 100 SS 400 300 4.46× 1043 1.414 4.890
phil 200 SS 800 600 1.98× 1087 7.868 24.734
phil 500 SS 2000 1500 1.76× 10218 64.495 199.472

rphil 10 SS 60 70 4.68× 106 0.030 0.077
rphil 20 SS 120 140 2.19× 1013 0.122 0.537
rphil 50 SS 300 350 2.25× 1033 0.841 6.598
rphil 100 SS 600 700 5.08× 1066 5.615 31.023
rphil 200 SS 1200 1400 2.58× 10133 26.613 165.598

slot 5 SS 50 50 1.72× 106 0.015 1.562
slot 10 SS 100 100 8.49× 1012 0.072 113.182

contention 10 10 IS 31 30 2.62× 1011 0.083 0.136
contention 20 10 IS 61 60 1.29× 1022 0.345 1.342
contention 50 10 IS 151 150 5.45× 1053 2.417 23.282
contention 100 10 IS 301 300 1.27× 10106 10.901 268.370

loop 10 10 SS 10 10 9.24× 104 0.005 0.039
loop 10 20 SS 10 10 1.00× 107 0.019 0.253
loop 10 50 SS 10 10 1.26× 1010 0.169 4.904
loop 10 100 SS 10 10 4.26× 1012 0.995 30.004
loop 100 5 SS 100 100 9.20× 107 0.113 20.286
loop 100 10 SS 100 100 4.26× 1013 0.208 65.187
loop 10 10 IS 10 10 9.24× 104 0.024 0.261
loop 10 20 IS 10 10 1.00× 107 0.114 4.242
loop 10 50 IS 10 10 1.26× 1010 1.267 275.773
loop 100 5 IS 100 100 9.20× 107 0.544 278.475

The tool is very efficient for models phil, rphil and contention, allowing sam-
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pling despite very large reachability sets. Performance of the algorithm on these
models is comparable when one takes into account size of the reachability set and
number of iterations needed for coupling. We note that these models are some-
what similar, as they are all composed of a number of small components that share
resources.

For models slot and loop performance of the tool is worse. In case of model
slot this is mainly due to explosion of decision diagrams during the execution of
the algorithm. Investigation has shown that during execution of the coupling phase
on model slot, peak number of nodes of decision diagram encoding set A is up
to 100 times higher than when the algorithm executes on models phil, rphil and
contention with comparable sizes of the reachability sets. This decreased efficiency
of MDDs encoding subsets of the reachability set of model slot is likely due to this
model being more complex than the above models.

Similarly, the MDD encoding is also less efficient for model loop. While perfor-
mance of coupling is somewhat better than for model slot, this is mainly due to
a smaller number of iterations. For model loop 100 with single server semantics
performance of the algorithm drops in comparison to model loop 10 mainly due to
the increased number of iterations.

Finally, we compare performance for single server semantics and infinite server
semantics for the model loop. Figures 3.6 and 3.7 show number of states in set
A and number of nodes in decision diagram encoding of set A during execution
of the algorithm. We see that for the model with infinite server semantics more
iterations are needed to couple all states, and that the number of nodes in the
decision diagram is much higher than in the case of single server semantics, resulting
in longer execution time of the algorithm.
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Figure 3.6: Number of states in set A during execution of coupling phase.
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Figure 3.7: Number of nodes in decision diagram encoding of set A during execution
of coupling phase.

Description of tested models

Model phil N Model phil N is a stochastic Petri net for the dining philosophers
problem. In this model the starvation is avoided by the atomic taking of the two
forks placed near the philosopher. The whole net comprises N philosophers. In
Figure 3.8 we show the SPN associated with philosopher i, with 1 ≤ i ≤ N . The
initial marking has one token for each place Thinki and one token for each place
Forki, with 1 ≤ i ≤ N .

Model rphil N Analogously to model phil N , also rphil N is an SPN modeling
a solution for avoiding the starvation in the problem of the dining philosophers. In

Thinki

Hungryi

Eati

Forki Fork(i+1) mod N

Figure 3.8: Model for the i-th philosopher in the dining philosophers net phil N .
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Thinki

HungryiForki Fork(i+1) mod N

Lefti Righti

Eati

2

Figure 3.9: Model for the i-th philosopher in the dining philosophers net rphil N .

this case we allow the philosopher to take the two forks separately. However, when
a philosopher is in state Left (Right) he may either take the other fork and eat or
return to the state Hungry thus avoiding the starvation. The SPN consists of N
models of dining philosophers as the one shown in Figure 3.9.

Model slot N Model slot N , shown in Figure 3.10, is an SPN with 10N places
and 10N transitions, modeling a slotted ring protocol with N nodes. The model
was taken from [49].

Model contention N M This model is an SPN modeling N CPUs with M pro-
cesses each. All processes compete for a single global resource. One of the CPUs
for this model is shown in Figure 3.11.

Model loop N M The SPN for test model loop consists of N nodes and N
transitions forming a loop and the initial marking has M tokens in one of the
places. Model loop 5 M is depicted in Fig. 3.12.

3.4 Application to fork-join queueing networks
In this section we test spnps on a class of models which are known to play an im-
portant role in the analysis of distributed systems and telecommunication systems:
fork-join queueing networks [50, 51]. Fork-join queueing networks allow the jobs to
be split into several tasks that are processed in parallel. Once all the tasks have
been served, a join operation is performed and we consider the original job served.
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Acki Int acki Ack(i+1) mod N

Freei

Usedi

Give free sloti

Put msg in sloti

Owneri

Writei

Go oni

Otheri

Used(i−1) mod N

Free(i−1) mod N

Figure 3.10: Model for the i-th node in the net slot N .

M

shared resource

Figure 3.11: Model of a single CPU for net contention N M .

M

Figure 3.12: Model loop with N = 5 places and transitions and M tokens.
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Figure 3.13: Example of a fork-join queueing network.

These models are very useful for the performance evaluation of distributed systems
with task concurrency and synchronisation.

For these models very few exact results are known [52] mainly relying on product-
form theory. Therefore, the definition of techniques for approximation and simula-
tion are the principal approaches for the estimation of their stationary performance
indices. In [53, 54] the authors present algorithms for perfect sampling on restricted
classes of fork-join queueing networks (in the former case consisting of one node, in
the latter with limitation on the probabilistic routing). They take advantage of the
reachability graph properties in order to improve the efficiency of the algorithms.
Similarly, another approach [18] is applicable to a different class of fork-join queue-
ing networks; however, in the queueing networks considered there, customer routing
cannot depend on the total number of customers in a set of queues, while in the
models that we consider, queues can have a shared capacity (i.e., restriction on the
total number of customers in a set of queues) and a customer that cannot enter
a destination queue due to shared capacity being full is blocked. Further research
is needed in order to assess the possibility of applying to the models considered
here the general method proposed in [18]. While spnps is less efficient than these
approaches for particular classes of models, its generality allows for studying SPNs
(and hence fork-join queueing networks that are representable as SPNs) with a more
general structure. In particular, for fork-join queueing networks, the time required
for performing a perfect sampling is acceptable even for relatively large nets.

In the rest of this section we define the particular fork-join models used in testing,
describe the testing procedure and discuss the performance of the tool.

3.4.1 The testing model
We consider the fork-join queueing network depicted in Figure 3.13. The model is
described by parameters: n, m, r. Figure 3.13 shows the leftmost service station
Q0 that initially contains m jobs. Once a job is served, it is forked into n sub-
tasks which are enqueued in Q1, . . . , Qn, respectively. After being served by station
Qi, the sub-task i is routed to one of the stations Qi1f , . . . , Qinf according to a
uniform probabilistic choice: this is the first phase of service. The second phase
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Figure 3.14: SPN associated with the fork-join queueing network of Figure 3.13 for
n = 2, m = 3 and r = 1.

is performed by stations Qi1s, . . . Qins with a constraint on the available resources:
at most r sub-tasks can simultaneously be in the queues Qi1s, . . . , Qins for each
i = 1, . . . , n. All the service times are independent and exponentially distributed
and the stations are equipped with a single server. We assume a processor sharing
queueing discipline.

The queueing network for parameters n = 2, m = 3, r = 1 is modeled by the
Petri net in Figure 3.14. There are m = 3 tokens in place P0, representing jobs.
Transition T1 models the fork and T14 the join. The resources are modelled as tokens
in places Pr1 and Pr2. Places P1j and P2j model the waiting room for sub-tasks which
have been served and are waiting to be joined. The remaining places model the
waiting/service rooms of the corresponding queueing stations. The resulting Petri
net has 2n2 + 3n+ 1 places and 3n2 + 2 transitions.

We make two important observations on the model of Figure 3.14: the first is that
the SPN for n ≥ 2 is not a free choice SPN. In fact, in a free choice Petri net if there
is an arc from a place s to a transition t, then there must be an arc from any input
place of t to any output transition of s [55]. Now, consider the net of Figure 3.14
and let s be for example Pr1 and t be transition T4. Consider the input place P11f of
T4 and the output transition T5 of Pr1: since there is no arc from P11f to T5 the net
is not free choice. Therefore, the optimised algorithms for perfect sampling of free
choice SPNs cannot be applied (see [54] and the references therein). The second
observation is on the semantics of the join specified in terms of SPN. In fact T14
does not guarantee that the join occurs among the sibling sub-tasks since a sub-
task may overtake another sub-task that was previously forked. The more detailed
representation of the join operation requires a much more complicated stochastic
process and is out of the scope of this thesis.
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3.4.2 Performance evaluation
To test the performance of spnps on the fork-join model we performed two groups
of tests.

In the first group of tests, we study how the performance scales with number of
initial jobs. We fixed the size of the SPN by setting n = 2 and run the tests for
parameter m ranging from 2 to 40 with step 2 and with number of resources per
fork equal to half the number of jobs, r = m/2.

In the second group, we examine how the performance scales with the size of the
SPN by fixing the number of jobs to m = 2 and number of resources per fork to
r = 1 and running the tests for parameter n ranging from 2 to 16.

For each of these 20 + 15 = 35 sets of parameters, 50 independent tests were run
by performing the perfect sampling procedure with different random seeds. Rates
of all transitions of the tested SPN models were set to 1. We report the results as
95% confidence intervals for the means of measured values.

Testing was done on a GNU/Linux system with Intel(R) Core(TM) i5-2310 CPU
with maximum clock of 3.2 GHz and with 8GB of main memory.

The results of the testing are shown in Table 3.8 and 3.9 for the first and second
batch of tests, respectively. The meaning of the columns is the following:

• NP : number of places of the SPN.

• NT : number of transitions of the SPN.

• |RS|: cardinality of reachability set of the SPN.

• Init (s): time in seconds spent in generating decision diagrams that encode
the reachability set and simulation update rule used in perfect sampling. If
multiple samples are generated, this needs to be done only once and these
decision diagrams can be reused in different sampling runs (i.e., this time can
be ammortized over the sampling runs). The init times are independent of the
random seed, resulting in very tight confidence intervals; we therefore report
only the means.

• Sampling (s): 95% confidence interval for mean time in seconds spent in a
perfect sampling run.

• Memory (kB): 95% confidence interval for mean peak memory use in kilobytes
for the entire program. The program loads the SPN from a PNML file, parses
it and runs the perfect sampling. The non-sampling parts use about 5MB of
memory.

Common magnitudes of intervals’ boundaries are shown outside the intervals.
We observe that the tool scales very well with the size |RS| of the reachability set

when we vary the size of the net (second group of tests), but not as well when we
vary the size of the initial marking (first group of tests). Figure 3.15 shows log-log
plots of memory use on the top and sampling time on the bottom as functions of the
reachability set size. For the model from the first group of tests with largest tested
reachability set size |RS| ≈ 4.857 × 1012, the memory consumption is comparable
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m r |RS| Init (s) Sampling (s) Memory (kB)
2 1 361 3.204× 10−3 [3.735, 4.489]× 10−3 [5.638, 5.682]× 103

4 2 14207 5.294× 10−3 [1.530, 1.754]× 10−2 [5.900, 5.945]× 103

6 3 214492 8.835× 10−3 [4.449, 4.929]× 10−2 [6.618, 6.659]× 103

8 4 1.865× 106 1.372× 10−2 [1.068, 1.181]× 10−1 [7.836, 7.981]× 103

10 5 1.130× 107 2.134× 10−2 [2.250, 2.472]× 10−1 [7.897, 8.074]× 103

12 6 5.290× 107 3.101× 10−2 [4.277, 4.707]× 10−1 [1.053, 1.062]× 104

14 7 2.045× 108 4.568× 10−2 [7.911, 8.528]× 10−1 [1.057, 1.141]× 104

16 8 6.809× 108 6.338× 10−2 [1.434, 1.568] [1.546, 1.606]× 104

18 9 2.012× 109 8.897× 10−2 [2.255, 2.441] [1.583, 1.597]× 104

20 10 5.392× 109 1.185× 10−1 [3.861, 4.229] [2.072, 2.379]× 104

22 11 1.332× 1010 1.554× 10−1 [5.724, 6.221] [2.721, 2.747]× 104

24 12 3.071× 1010 1.998× 10−1 [9.056, 9.640] [2.739, 3.011]× 104

26 13 6.673× 1010 2.606× 10−1 [1.286, 1.389]× 101 [3.620, 4.244]× 104

28 14 1.378× 1011 3.263× 10−1 [1.854, 2.021]× 101 [4.916, 5.118]× 104

30 15 2.719× 1011 4.086× 10−1 [2.607, 2.824]× 101 [5.150, 5.164]× 104

32 16 5.158× 1011 5.004× 10−1 [3.521, 3.757]× 101 [5.207, 5.737]× 104

34 17 9.446× 1011 6.199× 10−1 [4.481, 4.871]× 101 [6.514, 7.456]× 104

36 18 1.676× 1012 7.517× 10−1 [6.095, 6.723]× 101 [8.265, 8.833]× 104

38 19 2.890× 1012 9.036× 10−1 [8.086, 8.860]× 101 [9.042, 9.256]× 104

40 20 4.857× 1012 1.080 [1.011, 1.106]× 102 [9.651, 9.976]× 104

Table 3.8: First group of tests with n = 2, m ranging from 2 to 40 and r = m/2.
The net has 15 places and 14 transitions.

n NP NT |RS| Init (s) Sampling (s) Memory (kB)
2 15 14 361 3.204× 10−3 [3.589, 4.216]× 10−3 [5.645, 5.679]× 103

3 28 29 27513 9.316× 10−3 [2.081, 2.523]× 10−2 [6.654, 6.691]× 103

4 45 50 4.111× 106 2.401× 10−2 [7.792, 9.251]× 10−2 [8.101, 8.181]× 103

5 66 77 9.927× 108 5.041× 10−2 [2.329, 2.687]× 10−1 [1.123, 1.129]× 104

6 91 110 3.513× 1011 9.699× 10−2 [6.775, 7.887]× 10−1 [1.698, 1.726]× 104

7 120 149 1.714× 1014 1.656× 10−1 [1.572, 1.925] [2.754, 2.771]× 104

8 153 194 1.103× 1017 2.890× 10−1 [3.153, 3.755] [3.229, 3.460]× 104

9 190 245 9.065× 1019 5.198× 10−1 [5.843, 6.849] [5.155, 5.226]× 104

10 231 302 9.261× 1022 7.359× 10−1 [1.087, 1.298]× 101 [9.214, 9.395]× 104

11 276 365 1.152× 1026 1.223 [1.715, 2.031]× 101 [1.009, 1.025]× 105

12 325 434 1.714× 1029 1.616 [2.683, 3.184]× 101 [1.522, 1.585]× 105

13 378 509 3.006× 1032 2.558 [3.772, 4.537]× 101 [1.888, 1.920]× 105

14 435 590 6.141× 1035 3.175 [6.133, 7.234]× 101 [2.101, 2.114]× 105

15 496 677 1.445× 1039 4.103 [8.546, 9.790]× 101 [2.653, 3.148]× 105

16 561 770 3.882× 1042 6.012 [1.067, 1.259]× 102 [3.798, 4.173]× 105

Table 3.9: Second group of tests with n ranging from 2 to 16, m = 2 and r = 1.
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to the model from the second group of tests for which |RS| ≈ 1.152× 1026, and the
sampling time is comparable to the model from the second group of tests with the
largest tested |RS| ≈ 3.882× 1042.

As performance of the algorithm depends in large part on efficiency of MDDs
that are used to encode subsets of the reachability set and the simulation update
rule, and efficiency of MDDs depends on the properties of the sets or functions
that they encode, the observed difference in performance between the two groups
of tests is likely in part due to the structure of the reachability sets. If we consider
the reachability sets of the n SPN components between fork and join transitions,
then for m = 1 the reachability set of the entire SPN is equal to the union of
a singleton set containing initial marking (where the single token is in the initial
place) and the Cartesian product of the n components’ reachability sets restricted
to the case when the initial place is empty. This is highly structured and is well
suited to representation using decision diagrams (but note that the high symmetry
of the reachability sets is not exploited in the decision diagram representation, only
the high decomposability; i.e., the important property is that the reachability set
is similar to a Cartesian product and not that the sets in the Cartesian product
are equal). Similar considerations apply for other small values of m. In contrast,
for small n and large m, the reachability set is not as well structured (we obtain a
large union of m+ 1 Cartesian products over components).

In addition, because the implementation encodes reachability sets and their sub-
sets by decision diagrams in which levels correspond to Petri net places, enlarging
the net makes the decision diagrams taller (more levels), while enlarging the marking
makes them wider (more arcs per node). Since the decision diagrams gain efficiency,
in comparison to a tree representation of the reachability set, by reusing nodes on
lower levels, this makes them likely to be more efficient in the former case—in taller
diagrams there are more levels and reusing nodes deeper in the diagram is often
more profitable for efficiency.

3.5 Summary
In this chapter we have introduced a perfect sampling algorithm for SPNs that, in
contrast to previous work, does not require any restrictions on the structure of the
analysed nets. The only required restrictions are the finiteness of the reachability
set and a restriction on the type of marking-dependence of transition firing rates
(however, common semantics such as single server and infinite server can be accom-
modated). The algorithm achieves its generality by encoding the reachability set
and transition functions of an SPN using MDDs, implementing coupling from the
past efficiently without relying on special structure of the SPN.

Next, we have presented a tool, called spnps, that implements the described
algorithm and tested its performance on several models, ending the chapter with
a test on fork-join queueing networks. While the time and space complexities of
the algorithm are in the worst case more than exponential in the size of the SPN,
the tests show that the performance is acceptable in many cases even for very large
state spaces.
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Figure 3.15: Comparison of the memory usage and the sampling time for the first
and the second batch of tests.
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4

Computation of normalising constant for
product-form stochastic Petri nets

A special class of product-form models has been identified first in QNs [56, 57]
and later in SPNs [10, 11, 12, 13] and other modeling formalisms; for a model in
this class, its stationary probability distribution can be obtained in the form of a
product over model components. State probabilities for these models are usually
obtained in an unnormalised form (formally, a measure over the state space of the
stochastic process is obtained), requiring computation of the normalising constant
which in principle can be directly computed as a sum of unnormalised probabilities
over the state space of the underlying CTMC or using more efficient convolution
algorithms [58, 22]. Because of the simple form of the stationary probability dis-
tribution, the stationary analysis of product-form models is greatly simplified in
comparison to other models and more complex models with larger state spaces can
be efficiently analysed using special algorithms such as mean value analysis (MVA)
algorithm [23] for performance evaluation of product-form SPNs. However, convo-
lution algorithm and MVA for SPNs require a special structure of the reachability
set: they can only be applied to the special class of S-invariant reachable SPNs.
Furthermore, at the state of the art it is not known how to automatically check the
membership of this class without generating the reachability set. In addition, the
convolution algorithm for SPNs is less efficient than in the case of QNs due to the
need to solve a large number of systems of linear Diophantine equations.

In this chapter we propose a formalism-agnostic recursive algorithm for compu-
tation of the normalising constant for general product-form models with finite state
spaces. In contrast to the convolution algorithm for SPNs, we need to generate
the reachability set of the analysed SPN, but we do not require S-invariant reacha-
bility and the proposed algorithm can thus be applied to general SPNs with finite
reachability sets. Also, we do not need to solve systems of Diophantine equations
and performance of the proposed algorithm is thus much better than the convolu-
tion algorithm if reachability set generation is not taken into account, while being
comparable otherwise. We also propose related methods for computation of perfor-
mance measures of product-form SPNs with finite reachability sets.

Section 4.1 introduces the algorithm for computation of normalising constant for
product-form models. In Section 4.2 we compare the proposed algorithm to the
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4 Computation of normalising constant for product-form stochastic Petri nets

convolution algorithm for a class of S-invariant reachable product-form SPNs [22]
and in Section 4.3 we propose methods for performance evaluation based on the
proposed algorithm, comparing them to MVA. Finally, in Section 4.4 we report
results of computational experiments on SPNs in which we test performance of the
proposed algorithm and compare it to the performance of the convolution algorithm,
showing that the proposed algorithm compares favourably to convolution.

4.1 Computation of normalising constant – algorithm
MDD-rec

We assume throughout this chapter that the model under consideration is decom-
posed into K submodels, K ∈ N. State space of the model is assumed to be finite,
and (also finite) local state spaces of the submodels are denoted by SK , . . . ,S1. Lo-
cal state space Sk of cardinality nk ∈ N is identified with the set {0, 1, . . . , nk − 1}.
Cartesian product SK×· · ·×S1 of local state spaces is denoted by Ŝ and called po-
tential state space and state space of the model is denoted by S; in general S ⊆ Ŝ.
State of the model is denoted by a K-tuple of integers (sK , . . . , s1) ∈ S, where
sk ∈ Sk is the local state of the submodel k.

As explained in Chapter 2, a state space S of a model that is decomposed into K
submodels as above, can be encoded using a multi-valued decision diagram (MDD).

In this chapter, models with product-form stationary probability distribution are
taken into consideration. Such models are defined by their state probabilities being
products over submodels of the probabilities of submodels’ states, i.e. stationary
probability πs of an arbitrary state s = (sK , . . . , s1) ∈ S can be computed as

πs = 1
G

1
k=K

gk(sk) (4.1)

where G is a normalising constant needed for the probabilities to sum to 1:

G =

s∈S

1
k=K

gk(sk) (4.2)

and gk : Sk → R≥0, k = K, . . . , 1 are functions defining (not necessarily normalised)
probabilities of local states of the submodels. One of the main problems in the
analysis of product-form models is efficient computation of the normalising constant
G. A recursive algorithm for its computation is described in this section. This
algorithm computes the normalising constant by walking over nodes of an MDD
that encodes the state space S of the model. While in the theoretical exposition
of the algorithm in this chapter we assume that the MDD encoding S is taken as
input to the algorithm, in the implementation we efficiently generate this MDD by
using the same encoding and saturation algorithm [42] described in Section 2.2.

Definition 4.1.1. Mass of an MDD node Let M : MDD → R≥0 be a function on
the nodes of the MDD encoding S, defined as follows. For an arbitrary MDD node

46



4.2 Comparison of MDD-rec with convolution algorithm

⟨l.p⟩, its mass M(⟨l.p⟩) is defined as

M(⟨l.p⟩) =




s∈B(⟨l.p⟩)

1
k=l

gk(sk) if l > 0,

p otherwise.
(4.3)

From the definitions of M , B and G it can be easily seen that the mass of the
root node ⟨K.r⟩ of the MDD is equal to the normalising constant G:

M(⟨K.r⟩) =


s∈B(⟨K.r⟩)

1
k=K

gk(sk) =

s∈S

1
k=K

gk(sk) = G. (4.4)

Thus, computing G can be performed by computing the mass of the root node of
the MDD. The rest of this section is concerned with efficient computation of the
mass M(⟨K.r⟩).

In general, mass M(⟨l.p⟩) of an arbitrary non-terminal node can be obtained as
a weighted sum of masses of its neighbouring nodes in the level l − 1:

M(⟨l.p⟩) =


s∈B(⟨l.p⟩)

1
k=l

gk(sk) =


sl∈Sl
t∈B(⟨l.p⟩[sl])

gl(sl)
1

k=l−1
gk(tk) =

=


sl∈Sl

gl(sl)


t∈B(⟨l.p⟩[sl])

1
k=l−1

gk(tk) =


sl∈Sl

gl(sl)M(⟨l.p⟩[sl]).

This recurrence relation leads to a recursive algorithm for computation of the mass
M(⟨K.r⟩). The algorithm recursively walks over the nodes of the MDD encoding
the set S, computing masses of MDD nodes and caching them in node labels, as
depicted in Algorithm 6. The computation of normalising constant G is then simply
a matter of invoking MDD-rec(⟨K.r⟩, MDD, NONE, gK , . . . , g1) on the root note
⟨K.r⟩ of an MDD encoding state space S of the model, with labeling function L set
to sentinel value NONE for all nodes, L ≡ NONE.

Generating the MDD that encodes the reachability set of an SPN is in EXPSPA-
CE—in the worst case the size of the resulting MDD is exponential in the size of
the SPN. Because MDD-rec visits all nodes of this MDD, it is also in EXPSPACE.

4.2 Comparison of MDD-rec with convolution
algorithm

In this section we first recall the convolution algorithm [22] for the computation of
normalising constant of the product-form SPNs from the class of S-invariant reach-
able SPNs and compare it with the proposed algorithm MDD-rec. We show that,
in terms of data flow, the two algorithms are equivalent on the class of S-invariant
reachable product-form SPNs with finite state spaces. While the convolution al-
gorithm can handle SPNs with unbounded state spaces (but only under further
assumption that closed form solutions can be obtained for the infinite sums that
appear in the computation of the normalising constant), MDD-rec can handle a
larger class of finite state space SPNs.
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4 Computation of normalising constant for product-form stochastic Petri nets

Algorithm 6: MDD-rec(⟨l.p⟩,MDD, L, gK , . . . , g1)
Data:

node ⟨l.p⟩ of the MDD
multi-valued decision diagram MDD encoding set S
node labels L : MDD→ R≥0 ∪ {NONE}
functions gk : Sk → R≥0, k = K, . . . , 1 defining the product-form

Result: mass M(⟨l.p⟩), modified node labels L
1 begin
2 if l = 0 then
3 return p

4 if L(⟨l.p⟩) = NONE then
5 L(⟨l.p⟩)←


sl∈Sl

gl(sl)MDD-rec(⟨l.p⟩[sl],MDD, L, gK , . . . , g1)
6 return L(⟨l.p⟩)

4.2.1 Convolution algorithm for computation of normalising
constant for stochastic Petri nets

The convolution algorithm [22] for computation of the normalising constant assumes
a particular structure of the reachability set that allows for a recursive decomposi-
tion. Let S be the matrix with rows comprised in all minimal support S-invariants
of the SPN, and let V = Sm0 be load vector of the SPN. SPN is S-invariant
reachable if its reachability set RS satisfies the following condition:

∀m ∈ Nn, m ∈ RS ⇐⇒ Sm = V . (4.5)

For any subset of SPN places P ′ ⊆ P and any vector W ∈ Rn, set E(P ′,W ) ⊆ Nn

of markings is defined with

E(P ′,W ) = {m ∈ Nn : Sm = W and ∀p ∈ P \ P ′,mp = 0}. (4.6)

It can be easily seen that RS = E(P ,V ). Given a set of markings E(P ′,W ),
marking set Mp(P ′,W ) of place p ∈ P is defined as

Mp(P ′,W ) = {i ∈ N : ∃m ∈ E(P ′,W ) such that mp = i}. (4.7)

This is the set of all different markings for place p that appear in the given set of
markings.

The following Lemma appears in [59] but in a different formulation, so we include
the proof here for clarity.

Lemma 4.2.1. For any S-invariant reachable SPN (P , T , I, O,W,m0) with load
vector V = Sm0, the following decomposition of set E(P ′,W ) holds for all subsets
P ′ ⊆ P, arbitrary place p ∈ P ′ and all vectors W , 0 ≤W ≤ V :

E(P ′,W ) =


i∈Mp(P ′,W )
[iep + E(P ′ \ {p},W − iSp)] , (4.8)
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4.2 Comparison of MDD-rec with convolution algorithm

where the union is over mutually disjoint sets (i.e., the sets that appear in the
union on the right-hand side define a partition of the set that appears on the left-
hand side). Here ep is a vector of length n with all elements equal to zero except
the p-th element which is equal to one, and Sp is the p-th column of the matrix S.

Proof.
E(P ′,W ) = {m : Sm = W and ∀q ∈ P \ P ′,mq = 0} =

=


i∈Mp(P ′,W )
{m : Sm = W and mp = i and ∀q ∈ P \ P ′,mq = 0} =

=


i∈Mp(P ′,W )
{iep + m : Sm = W − iSp and mp = 0 and ∀q ∈ P \ P ′,mq = 0} =

=


i∈Mp(P ′,W )
[iep + E(P ′ \ {p},W − iSp)] .

Clearly this union is over mutually disjoint sets.

In particular, note that the reachability setRS can be partitioned by conditioning
on the number of tokens in some place p ∈ P :

RS = E(P ,V ) =


i∈Mp(P,V )
[iep + E(P \ {p},V − iSp)] , (4.9)

and all of the sets E(P \ {p},V − iSp), i ∈ Mp(P ,V ) that appear on the right-
hand side can be further partitioned in the same manner. This yields a recursive
state space decomposition scheme that is the basis for the convolution algorithm
for computation of the normalising constant. Note that this decomposition exists
only for the S-invariant reachable SPNs.

For product-form S-invariant reachable nets, a recurrence relation, derived from
the decomposition of the state space, is used as the basis of convolution algorithm.
For any nonempty subset P ′ ⊆ P of the set of places, and any vector W , 0 ≤W ≤
V , the following value is defined:

G(P ′,W ) =


m∈E(P ′,W )


p∈P ′

gp(mp). (4.10)

Obviously, for an S-invariant reachable product-form net with set of places P and
load vector V = Sm0, G(P ,V ) is equal to the normalising constant G. From the
lemma it directly follows that for a nonempty subset P ′ ⊆ P of the set of places,
any place p ∈ P ′ and any vector W , 0 ≤W ≤ V , the following recurrence relation
holds:

G(P ′,W ) =


i∈Mp(P ′,W )
gp(i)G(P ′ \ {p},W − iSp), (4.11)

and the boundary conditions can be derived from the definition of G(·, ·):

G({p},W ) = 
i∈Mp({p},W ) gp(i),∀p ∈ P ,∀W such that 0 ≤W ≤ V ;

G(P ′,W ) = 0, ∀P ′ ⊆ P ,∀W such that E(P ′,W ) = ∅. (4.12)

The convolution algorithm is a recursive algorithm that is based on the above
recurrence relation; assuming some ordering of the set of places P , it computes the
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4 Computation of normalising constant for product-form stochastic Petri nets

normalising constant G = G(P ,V ) by conditioning on the number of tokens in the
first place p, as in recurrence relation (4.11). Values G(P \ {p},V − iSp) needed in
the computation are computed by recursively applying the same recurrence relation,
until one of the boundary conditions (4.12) is reached. The convolution algorithm
for SPNs has two drawbacks:
• It can only be applied to S-invariant reachable SPNs, and verification of S-

invariant reachability in general requires either generation of the reachability
set or a manual proof.

• It computes marking sets Mp(P ′,W ) for all combinations of places p, subsets
P ′ of the set of places and vectors W that are encountered during the recursive
computation. This in general requires solving systems of linear Diophantine
equations—where solutions are sought only in the set of integers—which is a
difficult problem and in principle represents a serious limitation of the algo-
rithm. For practical models, the systems in question are often feasible and
the marking sets can sometimes be manually deduced from the definition of
the model.

Later in this section, we present in Proposition 4.2.2 a method for computing the
marking sets by determining feasibility of certain integer linear programming prob-
lems (ILP); this is also a difficult problem (in fact, it is NP-complete [60]) but as
shown in Section 4.4 for tested models the obtained ILPs are manageable.

4.2.2 Comparison of MDD-rec with the convolution algorithm
for stochastic Petri nets

In the following, MDDs with levels corresponding to SPN places will be used to
encode the reachability set of the SPN. Since arc labels with source nodes in levels
l ∈ {n, . . . , 1} of the MDD are confined to sets {0, 1, . . . , kl} for some numbers
kl ∈ N, functions ϕl : Ml(P ,V ) → {0, . . . , |Ml(P ,V )| − 1}, l ∈ {n, . . . , 1} are
defined that rename SPN place markings into MDD arc labels:

ϕl(i) = |{j ∈Ml(P ,V ) : j < i}|, ∀i ∈Ml(P ,V ). (4.13)

Function ϕl can be seen to map marking i of place l to its ordinal number in the
set Ml(P ,V ) of all possible markings of place l. Since by assumption all places are
bounded, these functions are well defined. For l ∈ {1, . . . , n}, where n is the number
of SPN places as before, sets of places Pl ⊆ P are defined with Pl = {P1, . . . , Pl},
and sets of renamed submarkings Sϕ(Pl,W ) ⊆×1

i=l
{0, . . . , |Mi(P ,V )| − 1} for a

vector W ∈ Rn are defined with

Sϕ(Pl,W ) = {(ϕl(ml), . . . , ϕ1(m1)) : m ∈ E(Pl,W )}. (4.14)

With these definitions, from Lemma 4.2.1 the following formulation of the renamed
state space decomposition directly follows. For all levels l ∈ {1, . . . , n} and all
vectors W such that 0 ≤W ≤ V ,

Sϕ(Pl,W ) =


i∈Ml(Pl,W )
(ϕl(i))Sϕ(Pl−1,W − iSl). (4.15)
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Lemma 4.2.2. Let an ordered quasi-reduced MDD over the renamed potential
reachability set Ŝ =×1

i=n
{0, . . . , |Mi(P ,V )| − 1} with n levels corresponding to

Petri net places encode the renamed reachability set Sϕ(Pn,V ) = {(ϕn(mn), . . . ,
ϕ1(m1)) ∈ Ŝ : Sm = V } of an S-invariant reachable stochastic Petri net with n
places, load vector V = Sm0 and matrix of minimal support S-invariants S. As-
sume that a non-terminal node ⟨l.W ⟩ on level greater than 1, l > 1, encodes set
Sϕ(Pl,W ) for a subset of places Pl ⊆ P and some vector W , 0 ≤W ≤ V , that is
B(⟨l.W ⟩) = Sϕ(Pl,W ).

Then there exist nodes on level l − 1 that encode sets from family {Sϕ(Pl−1,
W −iSl) : i ∈Ml(Pl,W )}; denote these nodes with ⟨l−1.W −iSl⟩, i ∈Ml(Pl,W ),
respectively. Destination nodes of outgoing arcs of node ⟨l.W ⟩ are:

⟨l.W ⟩[ϕl(i)] =

⟨l − 1.W − iSl⟩ if i ∈Ml(Pl,W ),
⟨0.0⟩ otherwise. (4.16)

Proof. From the following equalities
Sϕ(Pl,W ) = 

i∈Ml(Pl,W )(ϕl(i))Sϕ(Pl−1,W − iSl)

=

B(⟨l.W ⟩) = 
i∈Ml(P,V )(ϕl(i))B(⟨l.W ⟩[ϕl(i)])

(4.17)

and because ϕl is an injective function, it easily follows that

B(⟨l.W ⟩[ϕl(i)]) =

Sϕ(Pl−1,W − iSl) if i ∈Ml(Pl,W ),
∅ otherwise. (4.18)

Therefore there exist nodes on level l − 1 that encode sets from family {Sϕ(Pl−1,
W − iSl) : i ∈ Ml(Pl,W )}; denote these nodes as in the statement of the lemma
and the configuration of the arcs follows.
Proposition 4.2.1. Structure of an MDD encoding state space of an S-invariant
reachable SPN Let an ordered quasi-reduced MDD over the renamed potential reach-
ability set Ŝ =×1

i=n
{0, . . . , |Mi(P ,V )|−1} with n levels corresponding to Petri net

places encode the renamed reachability set Sϕ(Pn,V ) = {(ϕn(mn), . . . , ϕ1(m1)) ∈
Ŝ : Sm = V } of an S-invariant reachable stochastic Petri net with n places, load
vector V = Sm0 and matrix of minimal support S-invariants S.

Then the structure of the MDD is as follows:
1. Top level n contains a single root node, denoted here with ⟨n.V ⟩, which en-

codes the renamed reachability set Sϕ(Pn,V ).

2. Levels l ∈ {n−1, . . . , 1} each contain exactly the nodes which encode sets from
the family {Sϕ(Pl,U − iSl+1) : ∃ node on level l+ 1 that encodes Sϕ(Pl+1,U)
and i ∈Ml+1(Pl+1,U )}. A node that encodes set Sϕ(Pl,W ) from this family

is denoted with ⟨l.W ⟩.

3. Each non-terminal node ⟨l.W ⟩ has exactly |Ml(P ,V )| outgoing arcs with des-
tination nodes as follows. For all i ∈Ml(P ,V ),

⟨l.W ⟩[ϕl(i)] =


⟨l − 1.W − iSl⟩ if l > 1 and i ∈Ml(Pl,W ),
⟨0.1⟩ if l = 1 and i ∈Ml(Pl,W ),
⟨0.0⟩ otherwise.

(4.19)
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4 Computation of normalising constant for product-form stochastic Petri nets

Proof. Since, by definition, root node ⟨n.V ⟩ is the only node at level n and it
encodes set Sϕ(Pn,V ) by assumption, statement 1. holds.

We now prove statements 2. and 3. for the lower levels by finite induction,
starting from the level n − 1. For n = 1, statement 2. is trivial and statement 3.
can be easily checked by inspection of the decision diagram. In the following we
assume that n > 1.

Induction base By applying Lemma 4.2.2 on node ⟨n.V ⟩, it follows that statement
2. holds for level n− 1 and statement 3. holds for the single node in level n.

Induction step Let l ∈ {n−1, . . . , 2} and assume that statement 2. holds for level
l and that statement 3 holds for all nodes in level l+1. Applying the Lemma 4.2.2 to
each of the nodes ⟨l.W ⟩ from statement 2. in turn, and noting that, due to canon-
icity, same sets cannot be encoded by different nodes, we obtain that statement 2.
holds for level l − 1, and that statement 3. holds for level l.

By induction, statement 2. holds for all levels 1, . . . , n−1 and statement 3. holds
for all nodes in all levels 2, . . . , n.

We still need to show that statement 3. holds for all nodes in level l = 1. In this
case, since B(⟨1.W ⟩) = Sϕ(P1,W ) = {ϕ1(m1) : m1 ∈ M1(P1,W )}, it is easy to
establish:

⟨l.W ⟩[ϕl(i)] =

⟨0.1⟩ if i ∈Ml(Pl,W ),
⟨0.0⟩ otherwise (4.20)

which concludes the proof.

Since the described MDD encodes the renamed reachability set of the SPN, and
computation of the normalising constant requires the original place markings, we
define functions h1, . . . , hn with:

hl : {0, . . . , |Ml(P ,V )| − 1} → R, hl(i) = gl(ϕ−1
l (i)), (4.21)

where g1, . . . , gn are the functions that define product-form (4.1). Mass of the root
node is then computed using functions hl instead of gl to compute the normalising
constant. With these definitions and from the definition of the mass of MDD node
from Section 4.1, it can be easily seen that the following recurrence relation holds
for an MDD that encodes the state space of an S-invariant reachable SPN:

M(⟨l.W ⟩) =


i∈Ml(Pl,W )
gl(i)M(⟨l − 1.W − iSl⟩). (4.22)

After identification M(⟨l.W ⟩) ≡ G(Pl,W ), it is obvious that the above recurrence
relation is equivalent to the recurrence relation (4.11). Further, from the described
structure of the MDD, the following boundary conditions can be derived:

M(⟨1.W ⟩) = 
i∈M1(P1,W ) g1(i) = G(P1,W ),∀W such that 0 ≤W ≤ V ;

M(⟨l.W ⟩) = 0 = G(Pl,W ),∀l ∈ {1, . . . , n},∀W such that E(Pl,W ) = ∅.
(4.23)

While these boundary conditions include only a subset of the boundary condi-
tions (4.12), they do include all boundary conditions that can be encountered in a
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convolution algorithm when computing the normalising constant of an SPN with
load vector V , assuming the places in the convolution algorithm are taken in the
order Pn, Pn−1, . . . , P1. Since M(⟨n.V ⟩) = G = G(P ,V ), from the above equiva-
lence it follows that MDD-rec computes the normalising constant for an S-invariant
reachable product-form SPN with load vector V = Sm0 and is equivalent to the
convolution algorithm in terms of data flow. The following paragraphs discuss the
differences between MDD-rec and convolution.

Computation of marking sets An MDD encoding reachability set of an S-inva-
riant reachable SPN effectively also encodes marking sets of places that are needed
in the convolution algorithm. For example, if the node ⟨l.W ⟩ appears in the MDD,
marking set Ml(Pl,W ) is encoded by the outgoing arcs of the node ⟨l.W ⟩:

i ∈Ml(Pl,W ) ⇐⇒ ⟨l.W ⟩[ϕ(i)] ̸= ⟨0.0⟩. (4.24)

Thus the difficult problem of computing marking sets is here solved by generation of
the reachability set. In contrast, for convolution algorithm a marking set Ml(Pl,W )
can be obtained by considering feasibility of certain ILPs, as follows.

Proposition 4.2.2. Computing marking sets Let (P , T , I, O,W,m0) be an S-
invariant reachable SPN with n places and load vector V = Sm0. Consider a
nonempty subset P ′ of places, ∅ ≠ P ′ ⊆ P, place p ∈ P ′ and vector W ∈ Nn such
that 0 ≤W ≤ V .

Then for every i ∈ N, i ∈Mp(P ′,W ) if and only if ILP

maximize 0
subject to Sx = W − iSp

xq = 0, ∀q ∈ P \ (P ′ \ {p})
xq ≥ 0,∀q ∈ P ′ \ {p}
x ∈ Zn

(4.25)

is feasible.

Proof.
i ∈Mp(P ′,W ) ⇐⇒

⇐⇒ ∃m ∈ E(P ′,W ) s.t. mp = i
Lemma 4.2.1⇐=====⇒ E(P ′ \ {p},W − iSp) ̸= ∅ ⇐⇒

⇐⇒ ∃x ∈ Nn s.t. Sx = W − iSp and ∀q ∈ P \ (P ′ \ {p}), xq = 0

It is clear that the last statement is equivalent to the feasibility of ILP (4.25).

Therefore the convolution algorithm can be compared to a recursive walk on an
MDD that encodes the reachability set of the SPN where, instead of simply following
arcs in the MDD, a feasibility of ILP of the form (4.25) is solved for each possible
marking of the considered place (up to the bound of the marking of the place).
Based on these considerations, for S-invariant reachable SPNs with known place
marking bounds, it follows that the convolution algorithm can be used to generate
an MDD encoding of its reachability set.
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4 Computation of normalising constant for product-form stochastic Petri nets

Checking S-invariant reachability condition As mentioned before, the S-inva-
riant reachability condition on the SPNs is needed for the convolution algorithm
to be able to decompose the reachability set by conditioning on the number of
tokens in a place. In contrast, an MDD that encodes the reachability set of an SPN
already defines such decomposition by its very structure; the S-invariant reachability
condition is thus not needed for MDD-rec. Thus, for SPNs with finite reachability
sets, MDD-rec is more general than the convolution algorithm because it can handle
any product-form SPN with finite state space, in principle. In practice, the set of
SPNs that MDD-rec can handle is the set of SPNs for which the MDDs encoding the
reachability set can be generated in reasonable time. Furthermore, to the best of
our knowledge there is no known algorithm that can decide S-invariant reachability
for a general SPN without generating its reachability set, which further limits the
practical scope of the convolution algorithm.

4.3 Efficient computation of performance measures
In this section we consider computation of performance measures. First, we note
that it is very easy to modify MDD-rec to compute the probability Pr{mj = k}
that some place Pj contains k ∈ N tokens: in line 5 of Algorithm 6, if j = l then
perform the sum over the single index sl ∈ {ϕl(k)}; otherwise perform the sum as
stated in the algorithm. The unnormalised probability GPr{mj = k} is obtained
in this manner, from which the sought probability is obtained by multiplying with
1/G. The following performance measures can now be easily computed:

• average number n(Pj) of tokens in place Pj, n(Pj) = Bj

k=1 kPr{mj = k}
where Bj is the bound on the number of tokens in place Pj;

• utilization u(Pj) of place Pj (probability that place Pj is nonempty), u(Pj) =
1− Pr{mj = 0}.

Similarly, to compute the probability Pr{ej ≥ k} that transition Tj is enabled
with enabling degree equal to or larger than some k ∈ N, we modify line 5 of
Algorithm 6 so that the sum is always taken over indices sl ∈ {ϕl(i) : i ≥ kIl(Tj)};
this is the set of renamed markings of place Pl for which the transition Tj can
possibly have enabling degree at least k, depending on the markings of other places.
We again obtain the unnormalised probability and multiply it with 1/G as before.
From this it is easy to obtain the probability Pr{ej = k} that transition Tj is enabled
with enabling degree exactly k: Pr{ej = k} = Pr{ej ≥ k} − Pr{ej ≥ k + 1}. Now,
assuming for example that all transitions have IS firing semantics, we easily compute
the following performance measures:
• utilization u(Tj) of transition Tj (probability Pr{ej > 0} that transition Tj is

enabled), u(Tj) = Pr{ej ≥ 1};

• throughput x(Tj) of transition Tj (average number of firings of Tj in a unit of
time), x(Tj) = Ēj

k=1 kW (Tj)Pr{ej = k}, where Ēj = min1≤i≤n{⌊Bi/Ii(Tj)⌋ :
Ii(Tj) > 0} is an upper bound on the maximum enabling degree of transition
Tj;
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• throughput x(Pj) of place Pj (average number of tokens that is removed from
Pj in a unit of time), x(Pj) = 

T ∈T Ij(T )x(T ).

More complex performance measures that cannot be computed by a straight-
forward modification of MDD-rec could be computed by generating MDDs that
encode subsets of the reachability set whose probability masses are needed in the
computation of the sought performance measure. The unnormalised probability
masses can then be computed by applying unmodified algorithm MDD-rec to the
generated MDDs and then normalised using the normalising constant. MDDs as a
data structure support many useful set and arithmetic operations that can be used
in the generation of the needed MDDs.

MVA [23] is an algorithm for computation of performance measures of product-
form SPNs. Compared with the methods proposed above, however, MVA has several
disadvantages: 1) like convolution it assumes S-invariant reachability, in general
requiring check of this condition by reachability set generation or manual proof, 2)
it assumes SS firing semantics (i.e., it only allows marking-independent transition
firing rates), and 3) it computes certain measures for all vectors W such that
0 ≤ W ≤ V , where V is the load vector of a considered SPN, which makes its
performance likely to be much worse than the algorithms proposed here which,
due to equivalence of MDD-rec and convolution algorithm for S-invariant reachable
SPNs, always perform a recursive walk over MDD nodes defined using only those
vectors that are encountered during execution of the convolution algorithm.

4.4 Experiments
We have implemented the proposed algorithm MDD-rec for SPNs in C++, using
library MEDDLY [41]. In our implementation, generation of the MDD encoding of
the reachability set of the SPNs is handled by an efficient saturation algorithm [61]
provided by MEDDLY. We have implemented labeling function L from the algo-
rithm MDD-rec using the hashing-based map implementation unordered_map from
the C++11 standard.

To compare performance with the convolution algorithm for SPNs, we have also
implemented the convolution algorithm in C++. First the matrix S of minimal-
support place invariants is computed using the standard algorithm [32]. Then the
convolution algorithm, based on recurrence (4.11) (4.12) is performed. We use op-
timisation solver Gurobi [62] for the computation of marking sets by solving ILPs
from the Proposition 4.2.2. We selected Gurobi based on its good performance on
mixed integer linear programming benchmark problems [63]. In order to lower the
number of ILPs that need to be constructed and solved during execution of the
convolution algorithm, we implemented two optimisations based on place invari-
ants: when computing a marking set Mp(P ′,W ), we 1) search for a place invariant
in matrix S of minimal-support place invariants that uniquely determines marking
of place p (i.e., an invariant whose support contains p and all other places from
the support have already been considered in ancestor recursive calls) and 2) if such
invariant is not found, then we consider only possible markings ranging from 0 to
a bound on the number of tokens in place p that is obtained from the invariants
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in matrix S and the vector W . These two optimisations result in a reduction on
the scale of orders of magnitude in the number of considered ILPs and in corre-
spondingly much shorter execution time of the convolution algorithm. Caching of
values G(·, ·) computed during execution was also implemented using the C++11
unordered_map.

4.4.1 Performance comparison of MDD-rec and convolution
To test performance of the algorithms, we have adapted models from [64]. All
the models that follow are S-invariant reachable SPNs with finite reachability sets,
with exception of Example 3 model depicted in Fig. 4.3 which is only S-invariant
reachable for parameter k = 1. For k > 1 this SPN is not S-invariant reachable
because place P3 can be marked only with numbers of tokens that are multiples of
k—so that the reachability set is smaller than the one for k = 1—while the matrix
of minimal-support S-invariants is the same as in case k = 1; thus in condition 4.5
only sufficiency (direction ⇒) holds. In this case convolution algorithm cannot be
used to compute the normalising constant, while MDD-rec can.

Fig. 4.1 shows an S-invariant reachable SPN parameterized by n ∈ N and com-
posed of n identical subnets—first of which contains places P1, P2 and transitions
T1, T2—connected in a series. Tokens in places P2k, k = 1, . . . , n−1 model resources
that are reserved by the firing of transitions T2k+1, k = 1, . . . , n − 1, respectively,
and are released by the firing of transitions T2k+2, k = 1, . . . , n−1, respectively. The
resulting net has 2n places and the same number of transitions. It was obtained by
scaling a variant of the Example 1 net from [64].

n
P1

T1

P2

T2

n
P3

T3

P4

T4

n
P2n−1

T2n−1

P2n

T2n

. . .

Figure 4.1: Example 1 SPN.

Likewise, Fig. 4.2 shows an S-invariant reachable SPN parameterized by n and
consisting of the same n subnets which compete for central resources modeled by
tokens in place P0. This net has 2n+ 1 places and 2n transitions. This model was
obtained by scaling the Example 2 net from [64].

In order to measure performance of the algorithms, we run them on the Example
1 and Example 2 SPNs for parameter n ranging from 5 to 100 with step 5. For both
SPNs, this results in a range of models with reachability set cardinalities ranging
from 252 for n = 5 to approximately 9.055 × 1058 for n = 100. In the MDDs and
the convolution algorithm, places for Example 1 and Example 2 SPNs are taken in
the orders in which they are numbered in the figures. For Example 1 and Example
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n
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n
P2n−1

T2n−1

P2n

T2n

. . .

n
P0

Figure 4.2: Example 2 SPN.

2 SPNs, Fig. 4.4 and 4.5, respectively, contain log-log plots of average times in
seconds measured over 10 runs for the MDD generation, the proposed algorithm
MDD-rec and the convolution algorithm, as functions of the reachability set size
|RS|. The error bars, too tight to see on the plots, represent 95% confidence
intervals for the average times. In both cases, time taken for MDD-rec is orders
of magnitude lower than the time taken for convolution algorithm; this is due to
convolution algorithm needing to solve many ILPs during execution. Time taken to
generate the MDDs is in both cases within an order of magnitude of the time taken
for convolution. While both the convolution algorithm and the combined MDD
generation + MDD-rec take a comparable amounts of time (note that the y-axis in
the plots is logarithmic so that time needed for MDD generation can be taken as a
good approximation of the total time needed for MDD generation and MDD-rec),
MDD-rec is fully automatable and applicable to general SPNs while the convolution
algorithm works only on S-invariant reachable SPNs and requires a separate proof
of S-invariant reachability which to the best of our knowledge in the general case
requires either generating the reachability set or performing a manual proof.

nP1
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P3

T4

nP2

T2 T3

P4
P5

T5 T6

k

k

k

k

Figure 4.3: Example 3 SPN which is S-invariant reachable only for k = 1.
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Figure 4.4: Measured times for Example 1 net.

1

10

10−5

10−4

10−3

10−2

10−1

102

103

1 1010 1020 1030 1040 1050 1060

ti
m
e
(s
)

|RS|

Computation time as function of |RS| for Example 2

MDD generation
MDD-rec

convolution

Figure 4.5: Measured times for Example 2 net.

4.4.2 Sensitivity to ordering of places

Performance of all three algorithms depends on the order in which SPN places are
taken. We analyse this sensitivity to ordering of places on an SPN model adapted
from Example 3 in [64] and reproduced here in Fig. 4.3. This SPN has only 5 places
and it is thus possible to systematically test performance of the algorithms for all
5! = 120 possible orderings of places. For k = 1 it is S-invariant reachable.

Fig. 4.6 shows a plot of average times in seconds over 10 runs for Example 3
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Figure 4.6: Measured times for Example 3 net (n = 50) and all place orderings.

class MDD nodes ILPs solved
{1, . . . , 24} 157 1479
{25, . . . , 72} 2757 6579
{73, . . . , 120} 5307 72879

Table 4.1: Classes of place permutations for Example 3 SPN with n = 50.

SPN with k = 1 and n = 50 with error bars (again too tight to see on the plots)
representing 95% confidence intervals for the average times. On y-axis are the
times, and on the x-axis are all 120 possible permutations of places. For clarity, the
permutations of places are sorted so that the time taken by convolution algorithm
appears monotonically increasing on the plot.

We note that the set of all permutations of places can be partitioned into three
equivalence classes with regard to the execution time of the convolution algorithm.
These are depicted in Table 4.1 where class is the set of indices of permutations
as depicted on the x-axis of Fig. 4.6, MDD nodes is the number of nodes in the
MDD that encodes the reachability set of the SPN, and ILPs solved is the number
of ILPs solved during execution of the convolution algorithm. The table shows that
the number of nodes in the MDD over which MDD-rec walks and, equivalently,
the same number of values G(·, ·) which the convolution algorithm computes are
highly sensitive to the ordering of places, as well as the number of solved ILPs in
convolution.

As can be expected, convolution algorithm and MDD-rec are fastest on the first
class which has the lowest number of MDD nodes and are slowest on the third class
with the highest number of MDD nodes. The times obtained for MDD generation
are more variable due to the saturation algorithm that is used in reachability set
generation which generates many intermediate MDDs. MDD generation is in some
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cases faster and in some cases slower than the convolution algorithm. Additional
measurements show that for n = 10 MDD generation is faster than convolution for
all permutations of places, and for n = 100 it is slower than convolution for all
permutations. MDD-rec is faster than both by orders of magnitude in all cases.

From the above considerations and other more limited experiments, we expect
to find a similar situation for other models as well; performance of all algorithms
will likely vary over orders of magnitude with the permutations of places, but the
MDD-rec will always be much faster than the other two algorithms.

4.5 Summary
In this chapter we have proposed an algorithm MDD-rec for computation of normal-
ising constant for product-form models with finite state spaces, and have presented
related analysis methods for the computation of stationary performance indices.

In contrast to previously developed convolution algorithm for the computation
of the normalising constant and MVA algorithm for computation of the stationary
performance measures, the algorithm MDD-rec and the related analysis methods do
not require the analysed product-form SPNs to be in the special class of S-invariant
reachable SPNs, membership of which, at the state of the art, can in general only
be tested computationally by the generation of the reachability set of the SPN.

We have tested the performance of the algorithm MDD-rec, showing that its
performance is comparable to the performance of the convolution algorithm even
when the generation of the reachability set is taken into account.
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5

Conclusion

In this thesis we have presented two algorithms for stationary analysis of stochastic
Petri nets: an algorithm for perfect sampling in SPNs and an algorithm for com-
putation of the normalising constant for product-form SPNs. The algorithms use
efficient data structures and methods—multi-valued decision diagrams and the sat-
uration algorithm—in order to optimise the key step of generation of reachability
sets of SPN models, allowing analysis of models with very large reachability sets.

5.1 Algorithm for perfect sampling in SPNs

First we have presented an algorithm for sampling from the stationary probability
distribution of stochastic Petri nets, based on coupling from the past and efficient
encoding of reachability sets and transition functions of the SPNs using MDDs. In
contrast to previous approaches which require some constraints on the structure of
the Petri net, the proposed algorithm can be applied to general stochastic Petri nets,
requiring only the finiteness of the reachability set and some assumptions on the
type of marking-dependence of firing rates of transitions. We have then presented
spnps, a tool that implements the previously presented algorithm. By testing the
tool on several SPNs we have shown that the algorithm generally performs well,
in some cases allowing sampling from reachability sets with more than 10200 states
in reasonable time. We have also evaluated the performance of the tool on SPN
models of fork-join queueing networks with some resource competition. The results
of our tests suggest that the algorithm as implemented is likely to be more efficient
for sampling in models that are composed of many loosely coupled components.

Future work on this algorithm can be taken in several directions. First, it might
be worthwhile to explore different MDD encodings of the SPN reachability set, as
in [40], in order to improve running time of the algorithm. Second, the algorithm
should be easy to adapt to other structured stochastic formalisms used in perfor-
mance evaluation. Third, the notion of multimodal behaviour could be formalised
and the spnps tool extended so that it computes some measures of multimodal-
ity. Fourth, the spnps tool could be integrated with one of the software tools that
support SPN simulation.
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5 Conclusion

5.2 Algorithm for computation of normalising
constant for product-form models

We have also proposed algorithm MDD-rec for computation of normalising constant
for product-form models with finite state spaces, based on efficient generation and
encoding of the models’ state spaces using MDDs. We have shown that MDD-rec
is equivalent to convolution on S-invariant reachable product-form SPNs in terms
of data flow but, unlike convolution, it does not require S-invariant reachability
and is therefore more general. We have also proposed related methods for compu-
tation of performance measures for product-form SPNs. These methods are more
general than the MVA algorithm which shares with convolution the requirement
of S-invariant reachability and in addition requires marking-independence of transi-
tion firing rates. Finally, we have implemented the proposed algorithm MDD-rec for
SPNs and compared its performance to the convolution algorithm on two example
models, showing that the performance of the algorithms is comparable.

Similarly to the perfect sampling algorithm, future work could be done on differ-
ent MDD encodings of the reachability set with the aim of improving the run time
of the algorithm. Also, the algorithm could be generalised to models with product-
forms that include factors which depend on states of multiple submodels. Finally,
for product-form models with infinite state spaces, normalising constant could be
approximated by applying MDD-rec to a finite subset of the state space obtained
by bounding the model, where this subset is selected so that its probability mass is
close to 1.
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