
THÈSE

PRÉSENTÉE À

L'ÉCOLE POLYTECHNIQUE

POUR OBTENIR LE TITRE DE
DOCTEUR EN SCIENCES DE L'ÉCOLE POLYTECHNIQUE

Discipline
Informatique

par

PIETRO FERRARA
22 mai 2009

ANALYSE STATIQUE DE LOGICIELS MULTITÂCHES
PAR INTERPRÉTATION ABSTRAITE

Static analysis via abstract interpretation of multithreaded programs

President Manuel Hermenegildo
Professeur, Universidad Politécnica Madrid, Espagne

Rapporteurs Manuel Hermenegildo
Professeur, Universidad Politécnica Madrid, Espagne

Helmut Seidl
Professeur, Technische Universität München, Allemagne

Examinateurs Eric Goubault
Directeur de Recherche, CEA, France

Francesco Logozzo
Chercheur, Microsoft Research, Etats Units

Directeurs de th è se Radhia Cousot
Directeur de recherche, CNRS/ENS, France

Agostino Cortesi
Professeur, Università Ca' Foscari di Venezia, Italie

Résumé

Le but de cette thèse est de présenter une analyse statique générique pour des pro-
grammes multitâche écrits en Java.

Les programmes multitâche exécutent plusieurs tâches en parallèle. Ces tâches com-
muniquent implicitement par le biais de la mémoire partagée et elles se synchonisent sur
des moniteurs (les primitives wait − notify, etc, . . .). Il y a quelques années, les archi-
tectures avec double processeurs ont commencé à être disponibles sur le marché à petit
prix. Aujourd’hui, presque tous les ordinateurs ont au moins deux noyaux, la tendance ac-
tuelle du marché étant de mettre de plus en plus de processeurs par puce. Cette révolution
amène également de nouveaux défis en matière de programmation, car elle demande aux
développeurs d’implanter des programmes multitâche. Le multitâche est supporté en natif
par la plupart des langages de programmation courants, comme Java et C#.

Le but de l’analyse statique est de calculer des informations sur le comportement
d’un programme, de manière conservative et automatique. Une application de l’analyse
statique est le développement d’outils qui aident au débogage des programmes. Plusieurs
méthodes d’analyse statique ont été proposées. Nous suivrons le cadre de l’interprétation
abstraite, une théorie mathématique permettant de définir des approximations correctes
de sémantiques de programmes. Cette méthode a déjà été utilisée pour un large spectre de
langages de programmation.

L’idée fondamentale des analyseurs statiques génériques est de développer un ou-
tils qui puissent être interfacé avec différents domaines numériques et différentes pro-
priétés. Pendant ces dernières années, beaucoup de travaux se sont attaqué à cet enjeu,
et ils ont été appliqués avec succès pour déboguer des logiciels industriels. La force de
ces analyseurs réside dans le fait qu’une grande partie de l’analyse peut être réutilisée
pour vérifier plusieurs propriétés. L’utilisation de différents domaines numériques permet
le développement d’analyses plus rapides mais moins précises, ou plus lentes mais plus
précises.

Dans cette thèse, nous présentons la conception d’un analyseur générique pour des
programmes multitâche. Avant tout, nous définissons le modèle mémoire, appelé happens-
before memory model. Puis, nous approximons ce modéle mémoire en une semantique
calculable. Les modéles mémoire définissent les comportements autorisés pendant l’exé-
cution d’un programme multitâche. Commençant par la définition (informelle) de ce
modèle mémoire particulier, nous définissons une sémantique qui construit toutes les
exécutions finies selon ce modèle mémoire. Une exécution d’un programme multitâche

est décrite par une function qui associe les tâches à des séquences (ou traces) d’états. Nous
montrons comment concevoir une sémantique abstraite calculable, et nous montrons for-
mellement la correction des résultat de cette analyse.

Ensuite, nous définissons et approximons une nouvelle propriété qui porte sur les com-
portements non déterministes causés par le multitâche, c’est à dire ceux qui sont dus
aux entrelacements arbitraires pendant l’exécution de differentes instructions de lecture.
Avant tout, le non déterminisme d’un programme multitâche se définit par une différence
entre plusieurs exécutions. Si deux exécutions engendrent des comportements différents
dus aux valeurs qui sont lues ou écrites en mémoire partagée, alors le programme est
non déterministe. Nous approximons cette propriété en deux étapes : dans un premier
temps, nous regroupons, pour chaque tâche, la valeur (abstraite) qui peut être écrite dans
la mémoire partagée à un point de programme donné. Dans un deuxième temps, nous
résumons toutes les valeurs pouvant être écrites en parallèle, tout en nous rapellant l’en-
semble des tâches qui pourraient les avoir écrites. À un premier niveau d’approxima-
tion, nous introduisons un nouveau concept de déterminisme faible. Nous proposons par
ailleurs d’autres manière affaiblir la propriété de déterminisme, par exemple par projec-
tion des traces et des états, puis nous définissons une hierarchie globale de ces affaiblis-
sements. Nous étudions aussi comment la présence de conflit sur les accès des données
peut affecter le déterminisme du programme.

Nous appliquons ce cadre de travail théorique à Java. En particulier, nous définissons
une sémantique du language objet de Java, selon sa spécification. Ensuite, nous approxi-
mons cette sémantique afin de garder uniquement l’information qui est nécessaire pour
l’analyse des programmes multitâche. Le cœur de cette abstraction est une analyse d’alias
qui approxime les références afin d’identifier les tâches, de vérifier les accès en mémoire
partagée, et de détecter quand deux tâches ont un moniteur commun afin d’en déduire
quelles parties du code ne peuvent pas être éxécutées en parallèle.

L’analyseur générique qui est décrit ci-dessus a été entierement implanté, dans un ou-
tils appelé �heckmate. �heckmate est ainsi le premier analyseur générique pour des pro-
grammes multitâche écrits en Java. Des résultats expérimentaux sont donnés et analysés
en détails. En particulier, nous étudions la précision de l’analyse lorsqu’elle est appliquée
à des schémas courants de la programmation concurrente, ainsi qu’à d’autres exemples.
Nous observons également les performances de l’analyse lorsqu’elle est appliquée à une
application incrémentale, ainsi qu’à des exemples de référence bien connus.

Une autre contribution de cette thèse est l’extension d’un analyseur générique existant
qui s’appelle Clousot et qui permet de vérifier le non débordement des mémoires tam-
pons. Il s’avère que cette analyse passe à l’échelle des programmes industriels et qu’elle
est précise. En résumé, nous présentons une application d’un analyseur statique générique
industriel existant pour détecter et prouver une propriété présentant un intérêt pratique, ce
qui montre la puissance de cette approche dans le développement d’outils qui soient utiles
pour les développeurs.

Riassunto

L’obiettivo di questa tesi è di presentare un’analisi statica generica per programmi Java
multithread.
Un programma multithread esegue molteplici task, chiamati thread, in parallelo. I thread
comunicano implicitamente attraverso una memoria condivisa, e si sincronizzano attra-
verso monitor, primitive wait-notify, etc... Le prime architetture dual-core sono apparse
sul mercato a prezzi contenuti alcuni anni fa; oggi praticamente tutti i computer sono al-
meno dual-code. L’attuale trend di mercato è addirittura quello del many-core, ovvero di
aumentare sempre di più il numero di core presenti su una CPU. Alcune nuove sfide sono
state introdotte da questa rivoluzione multicore a livello di linguaggi di programmazione,
dal momento che gli sviluppatori software devono implementare programmi multithread.
Questo pattern di programmazione è supportato nativamente dalla maggior parte dei lin-
guaggi di programmazione moderni come Java e C#.
Lo scopo dell’analisi statica è di calcolare automaticamente e in maniera conservativa una
serie di informazioni sul comportamento a tempo di esecuzione di un programma; una sua
applicazione è lo sviluppo di strumenti che aiutino a trovare e correggere errori software.
In questo campo svariati approcci sono stati proposti: nel corso della tesi verrà seguita
le teoria dell’interpretazione astratta, un approccio matematico che permette di definire e
approssimare correttamente la semantica dei programmi. Questa metodologia è già stata
utilizzata con successo per l’analisi di un vasto insieme di linguaggi di programmazione.
Gli analizzatori generici possono essere instanziati con diversi domini numerici e appli-
cati a svariate proprietà. Negli ultimi anni numerosi lavori sono stati centrati su questo
approccio, e alcuni di essi sono stati utilizzati con successo in contesto industriale. Il loro
punto di forza è il riutilizzo della maggior parte dell’analizzatore per verificare molteplici
proprietà, e l’utilizzo di diversi domini numerici permette di ottenere analisi più veloci
ma più approssimate, oppure più precise ma più lente.

Nel corso di questa tesi presenteremo un analizzatore generico per programmi multi-
thread.
Definiremo innanzitutto il modello di memoria happens-before sotto forma di punto fis-
so e lo approssimeremo con una semantica che sia calcolabile. Un modello di memoria
definisce quali comportamenti di un programma multithread sono consentiti durante la
sua esecuzione. A partire da una definizione informale del modello di memoria happens-
before, introdurremo una semantica che costruisca tutte le esecuzioni finite che rispettino
tale modello di memoria; in tale contesto un’esecuzione è rappresentata come una fun-

zione che associa ciascun thread ad una traccia di stati che rappresenta la sua esecuzione.
Introdurremo infine una semantica astratta che può essere calcolata, provandone la cor-
rettezza formalmente.
Definiremo e approssimeremo quindi una nuova proprietà focalizzata sui comportamenti
non deterministici causati dall’esecuzione multithread (ad esempio dall’intercalarsi arbi-
trario durante l’esecuzione in parallelo di diversi thread). Prima di tutto, il non determini-
smo di un programma multithread è definito come differenza tra esecuzioni. Un program-
ma è non deterministico se due diverse esecuzioni espongono comportamenti differenti a
causa dei valori letti e scritti sulla memoria condivisa. Astrarremo quindi tale proprietà
su due livelli: inizialmente tracceremo per ogni thread il valore astratto che potrebbe aver
scritto sulla o letto dalla memoria condivisa. Al successivo passo di astrazione traccere-
mo un solo valore, che approssimerà tutti i possibili valori scritti in parallelo, e l’insieme
dei thread che potrebbero aver fatto ciò. Sul primo livello di astrazione definiremo poi il
concetto di determinismo debole. Proporremo quindi diverse modalità di rilassamento di
tale proprietà, in particolare proiettandola su un sottoinsieme delle traccie di esecuzione
e degli stati, definendo una gerarchia complessiva. Infine studieremo come la presenza di
data race possa influenzare il determinismo di un programma.
Tutto questo lavoro teorico verrà quindi applicato a programmi Java. In particolare defi-
niremo una semantica concreta del linguaggio Java bytecode seguendo la sua specifica.
Quindi lo approssimeremo in maniera da astrarre precisamente le informazioni richieste
per poter analizzare un programma multithread. Il fulcro di ciò è l’approssimazione degli
indirizzi di memoria per poter identificare i diversi thread, per controllare gli accessi alla
memoria condivisa e per poter scoprire quando due thread sono sempre sincronizzati su
uno stesso monitor e quindi quali parti di codice non possono essere eseguite in parallelo.
L’analizzatore generico definito fin qui formalmente è stato implementato in �heckmate,
il primo analizzatore generico di programmi Java multithread. Riporteremo e studiere-
mo approfonditamente i risultati sperimentali: in particolare verrà studiata la precisione
dell’analisi quando utilizzata su alcuni pattern comuni di programmazione concorrente e
alcuni casi di studio, e le sue prestazioni quando eseguita su un’applicazione incrementale
e su un insieme di benchmark esterni.
L’ultimo contributo della tesi sarà l’estensione di un analizzatore generico industriale esi-
stente (Clousot) all’analisi degli accessi effettuati tramite puntatori diretti alla memoria.
In questa parte finale presenteremo l’applicazione di un analizzatore generico ad una pro-
prietà di interesse pratico su codice industriale, mostrando quindi la forza di questo tipo
di approccio allo scopo di costruire strumenti utili per sviluppare software.

Abstract

The goal of this thesis is to present a generic static analysis of Java multithreaded pro-
grams.
Multithreaded programs execute many task, called threads, in parallel. Threads communi-
cate through the shared memory implicitly, and they synchronize on monitors, wait-notify
primitives, etc... Some years ago dual core architectures started being distributed on the
broad market at low price. Today almost all the computers are at least dual core. Many-
core, i.e. putting more and more cores on the same CPU, is now the current trend of CPU
market. This multicore revolution yields to new challenges on the programming side too,
asking the developers to implement multithreaded programs. Multithreading is supported
natively by the most common programming languages, e.g. Java and C#.
The goal of static analysis is to compute behavioral information about the executions of
a program, in a safe and automatic way. An application of static analysis is the develop-
ment of tools that help to debug programs. In the field of static analysis, many different
approaches have been proposed. We will follow the framework of abstract interpreta-
tion, a mathematical theory that allows to define and soundly approximate semantics of
programs. This methodology has been already applied to a wide set of programming lan-
guages.
The basic idea of generic analyzers is to develop a tool that can be plugged with differ-
ent numerical domains and properties. During the last years many works addressed this
issue, and they were successfully applied to debug industrial software. The strength of
these analyzers is that the most part of the analysis can be re-used in order to check sev-
eral properties. The use of different numerical domains allows to develop faster and less
precise or slower and more precise analyses.

In this thesis, the design of a generic analyzer for multithreaded programs is presented.
First of all, we define the happens-before memory model in fixpoint form and we abstract
it with a computable semantics. Memory models define which behaviors are allowed
during the execution of a multithreaded program. Starting from the (informal) definition
of the happens-before memory model, we define a semantics that builds up all the finite
executions following this memory model. An execution of a multithreaded program is
represented as a function that relates threads to traces of states. We show how to design a
computable abstract semantics, and we prove the correctness of the resulting analysis, in
a formal way.
Then we define and abstract a new property focused on the non-deterministic behaviors

due to multithreading, e.g. the arbitrary interleaving during the execution of different thre-
ads. First of all, the non-determinism of a multithreaded program is defined as difference
between executions. If two executions expose different behaviors because of values read
from and written to the shared memory, then that program is not deterministic. We ab-
stract it in two steps: in the first step we collect, for each thread, the (abstract) value that it
may write into a given location of the shared memory. At the second level we summarize
all the values written in parallel, while tracking the set of threads that may have written
it. At the first level of abstraction, we introduce the new concept of weak determinism.
We propose other ways in order to relax the deterministic property, namely by projecting
traces and states, and we define a global hierarchy. We formally study how the presence
of data races may afflict the determinism of the program.
We apply this theoretical framework to Java. In particular, we define a concrete seman-
tics of bytecode language following its specification. Then we abstract it in order to track
the information required by the analysis of multithreaded programs. The core is an alias
analysis that approximates references in order to identify threads, to check the accesses
to the shared memory, and to detect when two threads own a common monitor thereby
inferring which parts of the code cannot be executed in parallel.
The generic analyzer described above has been fully implemented, leading to �heckmate,
the first generic analyzer of Java multithreaded programs. We report and deeply study
some experimental results. In particular, we analyze the precision of the analysis when
applied to some common pattern of concurrent programming and some case studies, and
its performances when applied to an incremental application and to a set of well-known
benchmarks.
An additional contribution of the thesis is about the extension of an existing industrial
generic analyzer, Clousot, to the checking of buffer overrun. It turns out that this analysis
is scalable and precise. In summary, we present an application of an existing, industrial,
and generic static analyzer to a property of practical interest, showing the strength of this
approach in order to develop useful tools for developers.

Acknowledgments

First of all, I would like to thank my PhD advisors, Radhia Cousot and Agostino Cortesi,
to have introduced me to abstract interpretation, and to have strongly supported my work
throughout all my thesis. Their encouragements, suggestions, and enthusiasm were very
helpful to me.
Manuel Hermenegildo and Helmut Seidl accepted to be the reviewers of my thesis: I am
proud of that, and they deserve my biggest thanks for the time spent to read, comment,
and discuss the critical points of my work. I would like to thank also Eric Goubault for
taking part in my jury.
I met Francesco Logozzo about 5 years ago. At that time, I was amazed by his passion and
his strong principles. His enthusiasm as young researcher touched me. I had the pleasure
and the honor of being one of his interns at Microsoft Research, and to have him in my
jury. For all these things, I am particularly grateful to him.
Patrick Cousot deserves a special thank for his great work. His course at École Normale
Supérieure was the best way to learn the deepest concepts of abstract interpretation. I
want to thank all the actual and former members of Cousots’ equipe that I met during my
thesis: first of all, Guillaume Capron and Elodie-Jane Sims that were my co-PhD at Ecole
Polytechnique, and also Julien Bertrane, Bruno Blanchet, Liqian Chen, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival, and Axel Simon.
Many thanks go also to all my friends, and in particular to Yasmina, Nicolas, Cesar,
Carolina, and China. It is impossible to remember all of them, so I chose to cite only the
ones that were at my PhD defense. These thanks extend to all other my friends of course.
I am particularly grateful to my family, that supported me all along my life, and thus
during the three years spent on my PhD thesis. In particular, I want to mention my mother
Luisella, my father Pino, my brother Jacopo, and my grandmother Lidia.
Last but not least, my deepest thank goes to Francesca, that strongly encouraged and
sustained me and my work. The time spent together in Paris will be one of the best
souvenirs of my life.

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Multicore Architectures: Why, Where, When 2
1.1.2 Multithreading . 4
1.1.3 Static Analysis . 4

1.2 Context . 5
1.2.1 Memory Models . 5
1.2.2 Static Analyses of Multithreaded Programs 6
1.2.3 Generic Static Analyzers . 7

1.3 Contribution . 7
1.3.1 Static Analysis of the Happens-Before Memory Model 7
1.3.2 Determinism of Multithreaded Programs 8
1.3.3 A Generic Static Analyzer of Java Multithreaded Programs . . . 8
1.3.4 An Industrial Case Study: Unsafe Code 8

1.4 Overview of the Thesis . 9

2 Preliminaries 11
2.1 Notation . 11

2.1.1 Sets . 11
2.1.2 Partial Orders and Lattices . 12
2.1.3 Functions . 12
2.1.4 Fixpoints . 13
2.1.5 Traces . 14

2.2 Abstract Interpretation . 14
2.2.1 Galois Connections . 15
2.2.2 Fixpoint Approximation . 16
2.2.3 Widening . 16

2.3 Running Example . 17

3 Static Analysis of the Happens-Before Memory Model 21
3.1 Memory Models . 21

3.1.1 An Example . 22
3.2 The Happens-Before Memory Model . 23

3.2.1 Reasoning Statically . 24
3.2.2 The Example . 25

3.3 Multithreaded Concrete Semantics . 25
3.3.1 Assumptions . 25

ii Contents

3.3.2 Thread-Partitioning Concrete Domain 26
3.3.3 Single Step Function . 28
3.3.4 Fixpoint Semantics . 30
3.3.5 Launching a Thread . 32
3.3.6 The Example . 32

3.4 Multithreaded Abstract Semantics . 33
3.4.1 Assumptions . 33
3.4.2 Thread-partitioning Abstract Domain 35
3.4.3 Upper Bound Operators . 35
3.4.4 Partial Order Operators . 36
3.4.5 Abstraction Functions . 41
3.4.6 step Function . 42
3.4.7 Fixpoint Semantics . 43
3.4.8 Launching a Thread . 47
3.4.9 The Example . 47

3.5 Related work . 47
3.6 Discussion . 49

3.6.1 Thread Identifiers . 49
3.6.2 Monitors . 49
3.6.3 Modular Analysis of Multithreaded Programs 49

4 Determinism of Multithreaded Programs 51
4.1 Analyzing Multithreaded Programs . 51

4.1.1 Data Races . 51
4.1.2 Model of Execution . 52
4.1.3 An Example . 52

4.2 Syntax and Concrete Semantics . 53
4.2.1 Syntax . 53
4.2.2 Concrete Domain . 53
4.2.3 Transfer Function . 54
4.2.4 An Example . 54

4.3 A Value for Each Thread (Abstraction 1) 54
4.3.1 Abstract Domain (First Level) 54
4.3.2 Upper Bound Operator . 55
4.3.3 Abstraction Function . 55
4.3.4 Transfer Function . 58
4.3.5 The Example . 59

4.4 Just one Value (Abstraction 2) . 60
4.4.1 Abstract Domain (Second Level) 60
4.4.2 Upper Bound Operator . 60
4.4.3 Abstraction Function . 61
4.4.4 Transfer Function . 63
4.4.5 The Example . 65

Contents iii

4.5 The Deterministic Property . 65
4.5.1 Determinism . 65
4.5.2 Formal Definition of Determinism on the Concrete Domain . . . 66
4.5.3 First Level of Abstraction . 66
4.5.4 Second Level of Abstraction . 67
4.5.5 The Example . 68

4.6 Weak Determinism . 69
4.6.1 Approximating Numerical Values 69
4.6.2 Formal Definition . 69
4.6.3 Example 2 . 70

4.7 Tracing Nondeterminism . 70
4.7.1 Modifying a Value . 70
4.7.2 An Example . 71
4.7.3 Writing on the Shared Memory 72
4.7.4 Discussion . 72

4.8 Projecting Traces and States . 73
4.8.1 Concrete States . 73
4.8.2 Abstract States . 74
4.8.3 Concrete Traces . 75
4.8.4 Abstract States . 76
4.8.5 Projecting both States and Traces 76
4.8.6 Hierarchy . 77
4.8.7 An example . 78
4.8.8 Discussion . 79

4.9 SQL Phenomena . 79
4.9.1 The SQL Approach . 79
4.9.2 SQL Phenomena in our Framework 80
4.9.3 Effects of Phenomena on the Determinism 80
4.9.4 Phenomena and Deterministic Property 81
4.9.5 In the Abstract . 82

4.10 Data Race Condition . 82
4.10.1 Synchronization . 82
4.10.2 Data Races and SQL Phenomena 83
4.10.3 Deterministic Property . 83
4.10.4 Abstract States . 84

4.11 From Determinism to Semi-Automatic Parallelization 84
4.11.1 Motivation . 84
4.11.2 Determinism and Parallelism . 84
4.11.3 Relaxing the Deterministic Property 84
4.11.4 An example . 85

4.12 Related Work . 85
4.13 Discussion . 86

4.13.1 Relational Domains . 86

iv Contents

4.13.2 States in Traces . 87
4.13.3 Thread Identifiers . 87

5 Concrete and Abstract Domain and Semantics of Java Bytecode 89
5.1 Notation . 89
5.2 Supported Language . 90
5.3 An Example . 91
5.4 Concrete Domain . 91
5.5 Concrete Operational Semantics . 93

5.5.1 Load and Store . 93
5.5.2 Monitors . 93
5.5.3 Objects . 93
5.5.4 Arrays . 94
5.5.5 Arithmetic Expressions . 94
5.5.6 Constants . 95
5.5.7 Jumps . 95
5.5.8 Method Invocation . 95
5.5.9 Applying it to the Example . 96

5.6 Control Flow Graph . 98
5.6.1 Formal Definition . 98
5.6.2 Soundness with respect to 〈℘(Σ~+),⊆〉 99

5.7 Method Calls . 100
5.8 Abstract Domain . 100

5.8.1 Alias Analysis . 101
5.8.2 Domain . 103

5.9 Abstract Operational Semantics . 104
5.9.1 Load and Store . 104
5.9.2 Monitors . 104
5.9.3 Objects . 105
5.9.4 Arrays . 106
5.9.5 Arithmetic Expressions . 106
5.9.6 Constants . 106
5.9.7 Jumps, If and Method Calls . 107
5.9.8 Applying it to the Example . 107

5.10 Soundness . 107
5.10.1 Domain . 107
5.10.2 Semantics . 109
5.10.3 Objects . 109

5.11 Related Work . 111
5.12 Application to the Happens-Before Memory Model 112

5.12.1 Concrete Domain . 112
5.12.2 Abstract Thread Identifiers . 113
5.12.3 Abstract Domain . 113

Contents v

5.13 Application to the Deterministic Property 114
5.13.1 Concrete Domain . 114
5.13.2 Abstract Domain . 114
5.13.3 Second Level of Abstraction . 115

5.14 Discussion . 115

6 �heckmate: a Generic Static Analyzer of Java Multithreaded Programs 117
6.1 Generic Analyzers . 117
6.2 On Native Methods . 118
6.3 An Example . 119
6.4 Structure . 120

6.4.1 Property . 120
6.4.2 Numerical Domain . 122
6.4.3 Memory Model . 122
6.4.4 An Example of Interaction . 123

6.5 Parameters . 125
6.5.1 Properties . 125
6.5.2 Numerical Domain . 125
6.5.3 Memory Models . 126

6.6 User Interfaces . 127
6.6.1 Command Line . 127
6.6.2 Eclipse Plugin . 129

6.7 Experimental Results . 130
6.7.1 Common Patterns of Multithreaded Programs 130
6.7.2 Weak Memory Model . 132
6.7.3 Incremental Example . 134
6.7.4 Benchmarks . 138

6.8 Related Work . 140
6.8.1 Concurrency Properties . 140
6.8.2 Other properties . 143

6.9 Discussion . 143

7 Static Analysis of Unsafe Code 145
7.1 What is Unsafe Code . 145
7.2 Design by Contracts . 146

7.2.1 Foxtrot . 147
7.3 Our Contribution . 147

7.3.1 Clousot . 147
7.3.2 Applying Clousot to the Analysis of Unsafe Code 149

7.4 Examples . 150
7.4.1 From Source Code to MSIL . 151
7.4.2 Array Initialization . 152
7.4.3 Callee Checking . 152

vi Contents

7.4.4 Interaction with the Operating System 153
7.5 Syntax and Concrete Semantics . 153

7.5.1 Syntax . 154
7.5.2 Concrete Domain . 155
7.5.3 Concrete Transition Semantics 155

7.6 Abstract Semantics . 157
7.6.1 Abstracting Away the Values . 157
7.6.2 Generic Memory Access Analysis 159

7.7 The Right Numerical Abstract Domain 161
7.8 The Stripes Abstract Domain . 165

7.8.1 Constraints . 165
7.8.2 Abstract Domain Structure . 165
7.8.3 Refinement of the Abstract State 167
7.8.4 Transfer Functions . 168
7.8.5 Representation of Strp . 168

7.9 Refined Abstract Semantics . 168
7.9.1 Checking Lower Bounds of Accesses 169
7.9.2 Compilation of fixed . 171

7.10 Experiments . 172
7.10.1 System.Drawing Case Study . 173
7.10.2 Summary . 174

7.11 Related Work . 174
7.12 Discussion . 176

8 Conclusions 177

A Source Code of Examples Taken from [85] 179
A.1 ExpandableArray . 179
A.2 LinkedCell . 181
A.3 Document . 183
A.4 Dot . 184
A.5 Cell . 185
A.6 TwoLockQueue . 186
A.7 Account package . 188

B Incremental application 193
B.1 Account . 193
B.2 ATM . 193
B.3 Bank . 194
B.4 BankAccount . 194
B.5 Card . 195
B.6 Cheque . 196
B.7 Money . 197

Contents vii

B.8 Person . 197
B.9 ThreadATM . 198
B.10 ThreadDeposit . 199
B.11 ThreadInterests . 199
B.12 ThreadWithdraw . 200
B.13 TransferFunds . 200
B.14 Test . 201

Bibliography 203

viii Contents

1
Introduction

In this thesis we present a generic approach to the static analysis of multithreaded pro-
grams based on abstract interpretation. In particular, we present a generic framework for
the static analysis of object oriented programs containing multithreading and we instan-
tiate it to the analysis of Java. Finally, we show the effectiveness of designing generic
static analyzers by extending an industrial one in order to analyze buffer overruns.

Static analysis of programs proves properties that are satisfied by all the possible ex-
ecutions at compile time. Since all the executions of a program cannot be computed (be-
cause of inputs, arbitrary interleaving of threads, etc..), static analysis needs to introduce
approximation. Because of this abstraction, we may not be able to prove the correctness
of a program even if all the executions respect the property of interest. In this case, our
analysis would produce false alarms. The optimal goal is to build a static analysis that is
precise enough to capture properties of interest, while producing as few as possible false
alarms, and coarse enough to be computable in an efficient way. Until now, static analy-
sis has been applied only to a relatively small part of the software developed worldwide,
while the most part is only tested on a finite number of cases. The situation seems to be
changing [37]: tools which automatically analyze programs are becoming of practical use
for almost all developers that have to deal with larger and mostly critical programs.

Multithreading consists in partitioning a large application into many different sub-
tasks, each of them possibly running in parallel. Threads can communicate through shared
memory and they can synchronize each other through monitors, rendez-vous style con-
structs (e.g. semaphores), etc.. The arbitrary interleaving occuring during the parallel
execution of different threads may lead to nondeterministic behaviors. These may be
difficult to reproduce, as they may depend upon a particular sequence of interleaving,
a specific compiler’s optimization, etc. It is therefore generally known that developing
multithreaded applications is strictly more difficult than designing sequential programs.

The development of bug-free sequential programs is proven impossible in the practice.
In addition, multithreaded programs are particularly bug-prone. In this context, tools able
to discover bugs and provide useful informations on them are particularly welcomed.
This motivates why the design of static analyses for multithreaded programs is not only
a challenging topic at theoretical level, but also an appealing issue from a practical and
industrial point of view.

2 1. Introduction

1.1 Motivation
Multithreading appears to be the most common way to build parallel applications in com-
mercial programming languages. Parallelism cannot be avoided: it is the only immediate
and native way in order to take advantage from multicore architectures, that represent
the most important trend of CPU market today. On the other hand, it is hard to debug
multithreaded programs. In fact, arbitrary interleaving and compiler’s optimizations may
expose unexpected behaviors. In addition, these are often difficult to reproduce.

1.1.1 Multicore Architectures: Why, Where, When
The focus of researchers on better models and tools for multithreaded programs are in-
duced by the multicore revolution.
Why should we be more interested in multicore architectures today than 10 years ago?

“Manufacturers have found themselves unable to effectively continue improv-
ing microprocessor performance the old-fashioned way – by shrinking tran-
sistors and packing more of them onto single-core chips. (...) Vendors are
increasing performance by building chips with multiple cores. (...) 16-core
chips will be available by the end of this decade. Intel has already developed
a research chip with 80 cores.” [52] (D. Geer, 2007)

In this context, multicore hardware seems to be the only way in order to extend
Moore’s law into the future. Increasing single-core performances today is too expen-
sive and difficult: it’s better to start thinking about multiple cores on the same computer.
In addition, many-core will be the trend in the next future. In fact, prototype of 80 cores
(Intel c© Teraflops Research Chip [72]) appeared in 2006, and 8 and 16 cores processors
(e.g. Intel c© Xeon) are already available on the market. On the other hand, another ques-
tion arises: are we still interested in Moore’s law? Processors today are enough powerful
in order to satisfy all the main needs of common people.

“Moore’s law holds because it is profitable for semiconductor manufacturers;
for forty years, large numbers of consumers have paid high prices for the
highest performance designs. The revenue from this market has enabled the
research and development needed to move along the exponential growth path.
If multicore microprocessors fail to impress consumers, sales will fall flat, and
revenue will be reduced” [12] (M. C. Bell and P. H. Madden, 2006)

A great economic interest is behind the multicore revolution. In addition, developing
more and more powerful processors often opens up new applications. Until some years
ago, computers were mostly used to write and store documents. Then Internet arrived, and
they were used to write and send email, download and see textual documents, communi-
cate with other people. Today they are often used for multimedia documents, as watching
videos and listening music. New applications that fully exploit powerful graphic cards

1.1. Motivation 3

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50
01

/0
1/

06

01
/0

4/
06

01
/0

7/
06

01
/1

0/
06

01
/0

1/
07

01
/0

4/
07

01
/0

7/
07

01
/1

0/
07

01
/0

1/
08

01
/0

4/
08

01
/0

7/
08

C
P

U
s

Month

Average Number of CPU per PC

All
Desktops
Portables

Figure 1.1: CPU per PC (c© 2008 PC Pitstop Research)

are commonplace on most of personal computers. As more powerful processors will be
released, new applications will exploit them.

The last question to be considered is: when and by whom will multicore architectures
be bought and exploited?

“Dual-core processors first appeared on the market in 2001. (...) The greatest
change in processor architecture came with the dual-core processors that
AMD and Intel introduced in 2005. (...) A desktop computer with a dual-core
processor can today be bought for less than $500” [96] (A. Marowka, 2007)

It suffices to look at the market of PCs to understand that almost all the computers
sold today are multicore. In the next future the most part of common people (i.e. not only
researchers or specialists of information technology) will exploit multicore architecture.
Figure 1.1 depicts the trend in the market of multicore PC from January 2006 to July
2008. While until 3 years ago almost all PCs had one CPU (in fact the average CPU per
PC was about 1.00), at July 2008 the average was about 1.50 (so, since the most part of
multicore PCs were dual core, about the 50% was multicore). In 2 years and half, about
the 50% of PCs passed from single-core to multicore.

4 1. Introduction

Multicore architectures cannot be avoided and are already sold to the masses; what
we need is to exploit them as much as possible. If we will not take advantage of these
architectures, people will not be interested anymore in buying multicore computers.

1.1.2 Multithreading
“Any application that will run on a single-core Intel processor will run on
an Intel dual-code processor. However, in order for an application to take
advantage of the dual-core capabilities, the application should be optimized
for multithreading” [79] (G. Koch, 2005)

“Multithreaded programming breaks an application into subtasks, or “thre-
ads”, that run concurrently and independently. To take advantage of multi-
core processors, applications must be redesigned for the processor to be able
to run them as multiple threads” [96] (A. Marowka, 2007)

Arguing about threads is intrinsically problematic [86, 109], because of the arbitrary
interleaving during the execution of different threads that causes unexpected and some-
times counterintuitive behaviors. Other patterns and styles of parallelism exist, e.g. Soft-
ware Transactional Memory [127] and message passing [57]. On the other hand, popular
programming languages, e.g. Java and C#, support threads natively. Runtime environ-
ments can implement threads without too much overhead, while other solutions may re-
quire more resources, or limit the parallelism.
In this context, multithreading appears to be today the most common way in order to
exploit multicore architectures.

1.1.3 Static Analysis
“Parallel programming, because of its unfamiliarity and intrinsic difficulty, is
going to require better programming tools to systematically find defects, help
debug programs, find performance bottlenecks, and aid in testing. Without
these tools, concurrency will become an impediment that reduces developer
and tester productivity and makes concurrent software more expensive and of
lower quality. (...) Conventional methods of debugging, such as re-executing
a program with a breakpoint set earlier in its execution, do not work well for
concurrent programs, whose execution paths and behaviors may vary from
one execution to the next. Systematic defect detection tools are extremely
valuable in this world. These tools use static program analysis to systemat-
ically explore all possible executions of a program, and so can catch errors
that are impossible to reproduce” [134] (H. Sutter and J. Larus, 2005)

The paragraph above fully explains the main motivations for applying static analysis
to multithreaded applications. Since it is not possible to compute all the executions of a

1.2. Context 5

Thread 1 Thread 2

i = 1; if(j == 1 && i == 0)
j = 1; throw new Exception();

Figure 1.2: Why multithreading is subtle

program, the key idea of static analysis is to approximate the semantics of a program in
order to focus on a particular observational property of the behaviors of the program, and
check if such a property always holds in all of its possible executions.
Abstract interpretation [25, 27] is a mathematical theory that allows to build up completely
automatic static analyses that may apply directly on the source code. This is not the
case of model checking, another static analysis approach, as it requires a model of the
program (usually a Kripke structure) provided by the user as an input. It also differs
from theorem proving techniques, as they often require an interaction with a specialized
user (i.e. someone that thoroughly knows how the theorem prover works) to generate the
proofs.

In this context, applying abstract interpretation to the analysis of multithreaded pro-
grams appears to be particularly appealing.

1.2 Context
“For many years parallel computers have been used by an exclusive scien-
tific niche. Only rich universities and research institutions backed by gov-
ernment budgets or by multibillion-dollar corporations could afford state-of-
the-art parallel machines. Multiprocessor machines are very expensive and
demand highly specialized expertise in systems administration and program-
ming skills.” [96] (A. Marowka, 2007)

Even if researchers have worked on parallel computing during almost the last 30 years,
there are still important shortcomings in formal methods and static analysis with respect
to multithreading.
Research on multithreading is still ongoing. On one hand, the specification of program-
ming languages has been longtime flawed [113], and only recent works tried to fix this
problem [95]. On the other hand, because of the inherently difficulty when dealing with
multithreading (both when developing applications and static analysis), most existing
static analyses are focused on specific properties.

1.2.1 Memory Models
What is legal during the execution of a program and what is not? Consider the example
depicted by Figure 1.2. If at the beginning of the computation the values of variables i and

6 1. Introduction

j are both equal to zero, it seems impossible that Thread 2 raises an exception. However,
this is a possible and even acceptable behavior. Why?
For instance, a common optimization performed by compilers is to reorder independent
statements. As the two actions performed by Thread 1 apply on disjoint sets of variables,
they are independent, and so the compiler may reorder them. This optimization does not
expose any new behavior at the single thread level, but it may cause Thread 2 to raise the
exception.

Memory models define which behaviors are allowed during the execution of a mul-
tithreaded programs. In particular, they specify which values written in parallel may be
read from shared memory. The interest in this topic has increased recently: for instance,
the first specification of the Java Virtual Machine [89] was flawed [113], and only recent
work [95] has revised it. This solution is quite complex, especially from a static analysis
point of view. Other memory models have been proposed in the past: [83] formalized the
sequentially consistency rule. It is quite simple, but too restrictive, as for instance it does
not allow the behavior presented in Figure 1.2.

1.2.2 Static Analyses of Multithreaded Programs
The problem of static analysis of multithreaded programs has already been partially in-
vestigated in the literature.

A large amount of work has been dedicated to specific properties, and, in particular,
races [106]. A general race happens when two threads access the same location of the
shared memory in parallel, and at least one of the two accesses performs a write opera-
tion. A data race additionally requires that the two threads are not synchronized at that
moment, e.g. they do not own a common monitor. The absence of general races guar-
antees the determinism of a multithreaded programs, but it is too restrictive: all commu-
nication between different threads must be strictly synchronized. In contrast, data races
allow some nondeterministic behaviors. For instance, if two threads are synchronized on
a monitor they can be executed in different orders in different executions. In addition, as-
suming freedom of data races may sometimes require additional synchronization, thereby
restricting the parallelism of the program.

Since considering all the possible executions of a multithreaded program is particu-
larly difficult, due to both arbitrary interleaving and compiler optimizations, not so many
generic static analyses have been proposed in this context. In the last years a huge amount
of work has been revolved around context bound analysis [114]. As verifying a program
is undecidable [118], a multithreaded program is analyzed until a given context bound,
that is until the number of context switchings has reached a given bound n. A context
switch happens when the control passes from a thread to another. In this way, these anal-
yses are not sound for all the possible executions, but only for the ones with at most n
context switchings. Furthermore, they take arbitrary interleavings into account, and not,
for instance, compiler optimizations. This approach is therefore closer to testing than to
static analysis. For instance, if the analysis proves a property, there may exist an execution
with a bigger number of context switchings for which the property is not validated.

1.3. Contribution 7

1.2.3 Generic Static Analyzers

Some generic static analyzers based on abstract interpretation have already been proposed
in the recent years. These static analyzers support the use of different domains (in order
to obtain faster and more approximated or slower and more refined analyses) and they can
analyze different properties. Some example of these analyzers are [92, 91, 130, 112].
The main advantage of this approach is that the most part of an analyzer can be reused
to analyze different properties and tuned at different levels of efficiency and precision
through the numerical domain. However, as far as we know, at the moment no existing
generic analyzers supports multithreading in non-trivial way.

1.3 Contribution

The main contribution of our work is to formalize and develop a generic static analyzer
of multithreaded programs. In order to achieve this goal, we define a generic static anal-
ysis of memory models by applying it to the happens-before model, and we introduce a
new property yielding a formal model of non-determinism. Then we develop an ad-hoc
semantics of Java bytecode language. We develop and implement a generic static ana-
lyzer that can be fitted with different memory models, numerical domains, and in order
to check several properties. Finally, we extend an existing industrial generic analyzer in
order to check buffer overruns, obtaining a scalable and precise analysis, then showing
the practical impact of generic analyzers.

1.3.1 Static Analysis of the Happens-Before Memory Model

In order to formally argue about concurrency, we need to define a static analysis sound
with respect to a memory model. But which model? Sequential consistency [83] has
been proved to be too much restrictive with respect to the needs of modern programming
languages. On the other hand, the Java memory model [95] strongly relies on some
runtime informations. How to apply a static analysis to it is not at all clear, and it seems
quite difficult to trace all the informations formalized by the definitions on executions at
static level. A good compromise is the happens-before memory model [82]: it is an over-
approximation of the Java one1, and it is simple enough to base a static analysis on it.
Tuning a static analysis at this level will allow us to obtain an analysis that is sound with
respect to Java execution, even if more approximated than the Java model.

We define the happens-before memory model in a way that is amenable to a fixpoint
computation, and then we abstract it to a computable semantics. This approach is com-
pletely modular with respect to the semantics of statements of the programming language,
the domains used in order to trace information on numerical values, references, etc.., and
the property of interest.

1Without considering out-of-thin-air values

8 1. Introduction

1.3.2 Determinism of Multithreaded Programs
In the literature, the proposed properties (e.g. general and data races) and models (e.g.
transactions) try to limit nondeterminism by defining a restricted model of execution or by
avoiding some types of uncontrolled communications through shared memory. We think
that studying directly the effects of this nondeterminism can allow us to achieve more
interesting results. Intuitively, we want to trace information on the effects of unordered
communications through shared memory, rather than working on the reasons that cause
them. To this end, we define and approximate the deterministic property of multithreaded
programs, and propose also a new property called weak determinism. We present some
different ways of projection on states and traces, thereby building up a global hierarchy.
We relate determinism to data races. This approach is strictly more flexible than existing
ones, as it can be easily restricted only on a part of the shared memory, on a subset of the
active threads, on some statements, etc..

1.3.3 A Generic Static Analyzer of Java Multithreaded Programs
If generic static analyzers have been successfully applied to the analysis of single-thread
programs, their application to multithreaded programs should be at least as successful as
for single-threading, since multithreading seems to be particularly interested in tools that
help to debugging.
We define and abstract the semantics of Java bytecode on a low-level domain, devel-
oping an alias analysis particularly focused on multithreading issues, i.e. identification
of threads, synchronization through monitors, and accesses on the shared memory. This
semantics is parameterized by

• a numerical domain,

• a property of interest,

• a memory model.

This work has resulted in a static analyzer called �heckmate. In this context, we imple-
mented also the happens-before memory model, and the deterministic property of multi-
threaded programs. The experimental results of �heckmate are quite promising.

1.3.4 An Industrial Case Study: Unsafe Code
Finally, we apply an industrial generic static analyzer (Clousot) to a specific property,
showing the effectiveness of this type of static analyzers.
In particular, we check the absence of buffer overruns in unsafe code (i.e. code containing
pointers) of MSIL (i.e. bytecode of .NET framework). In order to obtain a fast and precise
analysis, we develop Strp, a new relational domain, and combine it with some existing
numerical domains in order to increase its precision. The analysis is particularly fast and

1.4. Overview of the Thesis 9

precise: in average we are able to analyze about 20.000 methods in about 3 minutes, with
a precision of 58% on average, i.e. we validate automatically the 58% of unsafe accesses.

1.4 Overview of the Thesis
The results of Chapters 3, 4, 5, 6, and 7 have been published in the proceedings of inter-
national conferences with program committee [45, 44, 43, 46, 47].

Chapter 2 introduces the notation and some basic concepts about abstract interpreta-
tion.

Chapter 3 defines the happens-before memory model in fixpoint form and abstracts
it with a computable semantics. Starting from the (informal) definition of the happens-
before memory model [82, 95], we define a fixpoint semantics that builds up all the finite
executions following this memory model. An execution of a multithreaded program is
represented as a function that relates threads to traces of states. Then we abstract it with
a computable semantics before proving the correctness of our approach formally.

Chapter 4 defines and abstracts the deterministic property. First of all, the non-
determinism of a multithreaded program is defined as difference between executions. If
two executions expose different behaviors because of values read from and written to the
shared memory, then that program is considered as non-deterministic. Then we abstract
it in two steps: in the first step we collect, for each thread, the (abstract) value that it may
write into a given location of the shared memory. At the second level we summarize all
the values written in parallel, while tracking the threads that may have written it. At the
first level of abstraction, we introduce the new concept of weak determinism. We propose
other ways in order to relax the deterministic property, namely by projecting traces and
states, and we define a global hierarchy. We formally study how the presence of data races
may afflict the determinism of the program.

Chapter 5 defines a concrete semantics of Java bytecode language following its of-
ficial specification [89]. Then we abstract it in order to precisely track the information
required by the framework developed in the two previous chapters. The core is an alias
analysis that precisely approximates references in order to identify threads, to check the
accesses to the shared memory, and to detect when two threads own a common monitor
thereby inferring which parts of the code cannot be executed in parallel.

Chapter 6 presents �heckmate, a generic static analyzer of multithreaded programs
that implements the theoretical framework developed in Chapters 3, 4, and 5. We report
and deeply study some experimental results. In particular, we analyze the precision of the
analysis when applied to some common patterns of concurrent programming [85], cer-
tain case studies presented in [94], and its performances when applied to an incremental
application, and to a set of well-known benchmarks [73, 138].

Chapter 7 presents the application of an industrial generic static analyzer, Clousot,
to the analysis of unsafe code (i.e. code containing pointers) in the .NET framework. It
turns out that this analysis is scalable and precise when applied to industrial code. In
summary, we present an application of an existing, industrial, and generic static analyzer

10 1. Introduction

to a property of practical interest, showing the strength of this approach in order to develop
tools useful for developers.

Finally, Chapter 8 concludes and suggests the future work.

2
Preliminaries

This chapter introduces the mathematical background used throughout the thesis. In par-
ticular, we introduce some basic notation, and some well-known theoretical results on
lattices, fixpoints, and abstract interpretation theory. In addition, we present a running
example that will be used in the following chapters to explain the concepts in practice.

2.1 Notation

In this section, we introduce some basic mathematical concepts and notations on sets,
lattices, functions, and traces.

2.1.1 Sets

We denote sets with sans serif strings beginning always with a capital letter, and elements
by sans serif strings with only lower case characters. Let Set be a set, and el an element,
we denote by el ∈ Set the fact the el is a member of Set.
Let N be the set of natural numbers (where 0 ∈ N). Let Z be the set of integer numbers,
and let [a..b] be the set {i ∈ Z : i ≥ a ∧ i ≤ b}.
Given two sets X and Y, their Cartesian product is denoted by X × Y. This set contains all
the possible pairs composed by an element in X as first component and by an element in
Y as second component. Formally: X × Y = {(x, y) : x ∈ X ∧ y ∈ Y}.
A relation r between X and Y is a subset of their Cartesian product (i.e. r ⊆ X × Y), while
a relation on X is a subset of the Cartesian product X × X. We denote relations by italic
strings beginning with a lower case letter.
The set containing all the elements of X that are defined at least on one y ∈ Y in a relation
r is called domain and is denoted by dom(r). Formally dom(r) = {x : x ∈ X ∧ ∃y ∈
Y : (x, y) ∈ r}. In a similar way, the co-domain of a relation, codom(r), is defined as
codom(r) = {y : y ∈ Y ∧ ∃x ∈ X : (x, y) ∈ r}. We write xry to mean that (x, y) ∈ r.

12 2. Preliminaries

2.1.2 Partial Orders and Lattices
A partial order ≤ on a set X is a relation on X such that it is:

• reflexive: ∀x ∈ X : x ≤ x

• antisymmetric: ∀x1, x2 ∈ X : x1 ≤ x2 ∧ x2 ≤ x1 ⇒ x1 = x2

• transitive: ∀x1, x2, x3 ∈ X : x1 ≤ x2 ∧ x2 ≤ x3 ⇒ x1 ≤ x3

A partially ordered set (poset) is a set equipped with a partial order; we denote it by 〈X,≤〉.
A poset 〈X,≤〉 has a top element > iff > ∈ X ∧ ∀x ∈ X : x ≤ >. Dually, it has a bottom
element ⊥ iff ⊥ ∈ X ∧ ∀x ∈ X : ⊥ ≤ x.
Given X1 ⊆ X, x ∈ X is an upper bound of X1 iff ∀x′ ∈ X1 : x′ ≤ x. It is the least upper
bound (lub) if ∀x1 ∈ X such that x1 is an upper bound of X1, then x ≤ x1; we denote it by
x = tX1.
Symmetrically, we define lower bounds and greatest lower bounds (glb).
A lattice is a poset such that any two elements belonging to X have a least upper bound
and a greatest lower bound. A complete lattice is a poset such that every subset of X has
a least upper bound and a greatest lower bound.
A chain C in a poset 〈X,≤〉 is a subset of X such that ∀c1, c2 ∈ C : c1 ≤ c2 ∨ c2 ≤ c1.
An ascending chain is an ordered subset {xi : i ∈ [a..b] where a, b ∈ N ∪ {−∞,+∞}} of X
such that ∀j, k ∈ [a..b] : j ≤ k ⇒ xj ≤ xk. Dually, a descending chain is an ordered subset
of elements such that each element is less or equal than the previous ones.

2.1.3 Functions
A function is a relation r such that if (x, y1) ∈ r and (x, y2) ∈ r, then y1 = y2. In other
words, a function is a relation that relates each element of the domain to at most one
element of the co-domain. Thus, given an element x ∈ dom(r), we denote the element in
the co-domain by r(x). In order to define functions, we use the λ notation. By f = λx.Expr
we denote a function f that relates the evaluation of the expression Expr, which depends
on x, to the element x of its domain. We denote sets of functions by capital Greek letters.
Let f be a function, x an element in its domain and y an element in its co-domain. We use
the notation f [x 7→ y] to represent a function that behaves as f except for the input x, for
which it returns y. Similarly, [x 7→ y] denotes an elements (x, y) of a function.
By the notation f : [X → Y] we mean that the domain of the function f is included in X,
and its co-domain is included in Y. Let f : [X→ Y] and g : [Y→ Z], then g ◦ f : [X→ Z]
represents the composition of functions f and g, i.e. λx.g(f (x)).
Given two posets 〈X,≤X〉 and 〈Y,≤Y〉, a function f : [X→ Y] is:

• monotonic iff ∀x1, x2 ∈ X : x1 ≤X x2 ⇒ f (x1) ≤Y f (x2)

• join preserving iff ∀x1, x2 ∈ X : f (x1 tX x2) = f (x1) tY f (x2) where tX and tY are,
respectively, the lub on 〈X,≤X〉 and 〈Y,≤Y〉

2.1. Notation 13

• complete join preserving iff ∀X1 ⊆ X such that
⊔

X X1 exists, then f (
⊔

X X1) =⊔
Y f (X1)

• continuous iff for all chains C ⊆ X we have that f (
⊔

X C) =
⊔

Y{f (c) : c ∈ C}
A poset 〈X,≤〉 satisfies the ascending chain condition (ACC) if every ascending chain

c1 ≤ c2 ≤ · · · of elements in X is eventually stationary, i.e. ∃i ∈ N : ∀j > i : cj = ci.
Dually, a poset satisfies the descending chain condition (DCC) if there is not any infinite
decreasing chain.

2.1.4 Fixpoints
Let f be a function on a poset 〈X,≤〉. The set of fixpoints of f is P = {x ∈ X : f (x) = x}.
An element x ∈ X is:

• a pre-fixpoint iff x ≤ f (x);

• a post-fixpoint iff f (x) ≤ x;

A fixpoint x ∈ P of f is a least fixpoint of f if ∀p ∈ P : x ≤ p. If f has a least fixpoint, this
is unique, and if it exists, we denote by lfp≤d f the least fixpoint of f greater than d with
respect to the order ≤.
A fixpoint x ∈ P of f is a greatest fixpoint of f if ∀p ∈ P : p ≤ x. If f has a greatest fixpoint,
this is unique, and if it exists, we denote by gfp≤d f the greatest fixpoint of f smaller than d
with respect to the order ≤.
The existence of the least and greatest fixpoints on a monotonic map is guaranteed by the
following theorem.

Theorem 2.1.1 (Tarski’s theorem [136]) Let 〈X,≤,⊥,>,t,u〉 be a complete lattice. Let
f : [X→ X] be a monotonic function on this lattice. Then the set of fixpoints is a not-empty
complete lattice, and:

lfp≤⊥ f = u{x ∈ X : f (x) ≤ x}
gfp≤⊥ f = t{x ∈ X : x ≤ f (x)}

This result is not constructive.

Theorem 2.1.2 (Constructive version of Tarski’s theorem [26]) Let 〈X,≤,⊥,>,t,u〉 be
a complete lattice. Let f : [X → X] be a monotonic function on this lattice. Define the
following sequence:

f 0 = ⊥
f δ = f (f δ−1) for every successor ordinal δ
f δ =

⊔
α<δ f α for every limit ordinal δ

Then the ascending chain {f i : 0 ≤ i ≤ δ} (where δ is an ordinal) is ultimately stationary
for some ρ ∈ N that is f ρ = lfp≤⊥ f .

14 2. Preliminaries

2.1.5 Traces
Definition 2.1.3 (Trace) Given a set S, a trace τ is a partial function [N→ S] such that

∀i ∈ N : i < dom(τ)⇒ ∀j > i : j < dom(τ)

This definition implies that the domain of all non-empty traces is a segment of N. In-
tuitively, a trace is an ordered sequence of elements such that it is defined on the first k
elements. The empty trace (i.e. the trace τ such that dom(τ) = ∅) is denoted by ε. Let be
S a generic set of elements, we denote by S~+ the set of all the finite traces composed of
elements in S.
len : [S~+ → N] is the function that, given a trace, returns its length. Formally: len(τ) =

i + 1 : i ∈ dom(τ) ∧ i + 1 < dom(τ). If τ = ε, then len(τ) = 0.
Usually, we represent a trace as a sequence of states, i.e. σ0 → σ1 → · · · represents the
trace {(0, σ0), (1, σ1), · · · }.
S~+

T→
represents the set of traces in S~+ ending with a final state with respect to the transition

T→, i.e. S~+
T→

= {σ0 → · · · → σi : σ0 → · · · → σi ∈ S~+, @σ j ∈ S : σi
T→ σ j}.

The concatenation of two traces τ1 and τ2 is written as τ1 →τ τ2 and represents the trace
τ1 ∪ {i 7→ σ : ∃j ∈ dom(τ2) : i = j + len(τ1), σ = τ2(j)}.
Given a set of initial elements S0 and a transition relation

T→⊆ Σ × Σ, the partial trace
semantics builds up all the traces that can be obtained by starting from traces containing
only a single element from S0 and then iteratively applying the transition relation until a
fixpoint is reached.

Definition 2.1.4 (Partial trace semantics [27]) Let Σ be a set of states, S0 ⊆ Σ a set of

initial elements, and
T→⊆ Σ × Σ a transition relation. Let f : [℘(Σ) → [Σ~+ → Σ~+]] be the

function defined as:

F(S0) = λT.{0 7→ σ0 : σ0 ∈ S0}∪
∪{σ0 → · · · → σi−1 → σi : σ0 → · · · → σi−1 ∈ T ∧ σi−1

T→ σi}

The partial trace semantics is defined as

PTJS0K = lfp⊆∅ F(S0)

2.2 Abstract Interpretation
Abstract interpretation is a mathematical theory of approximation of semantics developed
by P. and R. Cousot about 30 years ago [23, 25, 27]. Applied to static analysis of pro-
grams, abstract interpretation allows to approximate an uncomputable concrete semantics
with a computable abstract one. Approximation is required, then the result is correct but
incomplete. The inferred properties are satisfied by all the possible results of the concrete

2.2. Abstract Interpretation 15

semantics, but if a property is not inferred in the abstract it may still be satisfied by the
concrete semantics.
The main idea of abstract interpretation is to define the semantics of a program as the
fixpoint of a monotonic function.

2.2.1 Galois Connections
Definition 2.2.1 (Galois connection) Let 〈C,≤〉 and 〈C,v〉 be two posets. Two functions
α : [C→ C] and γ : [C→ C] form a Galois connection if and only if

∀x ∈ C : ∀x ∈ C : α(x) v x⇒ x ≤ γ(x)

We denote this fact by writing
〈C,≤〉 −−−→←−−−α

γ 〈C,v〉

Alternatively, 〈C,≤〉 −−−→←−−−α
γ 〈C,v〉 holds iff

• α and γ are monotone;

• α ◦ γ is reductive (i.e. ∀x ∈ C : α ◦ γ(x) v x);

• γ ◦ α is extensive (i.e. ∀x ∈ C : x ≤ γ ◦ α(x)).

Usually, we call the left part of the Galois as the concrete poset, and the right one as
the abstract one. Similarly, γ is called the concretization and α is the abstraction. The
concrete sets and elements are denoted as defined in Section 2.1.1, while the abstract ones
are over-lined. For instance, if S is a concrete set, the respective abstract set is denoted by
S. If fun is the concrete one, its abstract counterpart is denoted by fun.
A Galois connection can be induced by an abstraction function that is a complete u-
morphism, or dually by a function that is a complete �-morphism (where u and � are
respectively the lower bound operator on the abstract lattice and the upper bound operator
on the concrete lattice), as proved by Proposition 7 of [28].

Theorem 2.2.2 (Galois connection induced by lub preserving maps) Let α : [A → A] be
a complete join preserving maps between posets 〈A,≤〉 and 〈A,v〉. Define:

γ = λy.
j
{z : α(z) v y}

If γ is well-defined then
〈A,≤〉 −−−→←−−−α

γ 〈A,v〉
Theorem 2.2.3 (Galois connection induced by glb preserving maps) Let γ : [A → A] be
a complete join preserving maps between posets 〈A,≤〉 and 〈A,v〉. Define:

α = λy.
l
{z : y ≤ γ(z)}

If α is well-defined then
〈A,≤〉 −−−→←−−−α

γ 〈A,v〉

16 2. Preliminaries

An interesting property of Galois connections is that they are compositional, i.e. the
composition of two Galois connections is still a Galois connection.

Theorem 2.2.4 (Composition of Galois connections) Suppose that 〈A,≤1〉 −−−−→←−−−−α1

γ1 〈A,≤2〉
and 〈A,≤2〉 −−−−→←−−−−α2

γ2 〈A′,≤3〉. Then

〈A,≤1〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈A′,≤3〉

2.2.2 Fixpoint Approximation
Usually in abstract interpretation the concrete and abstract semantics are defined as the
fixpoint computation of monotonic functions. The ultimate goal is to prove the correct-
ness of the abstract semantics with respect to the concrete one, i.e. that the concretization
of the results of the abstract semantics over-approximates the output of the concrete se-
mantics.
Formally, let A : [C → C] and A : [C → C] be the concrete and the abstract semantics
respectively, where 〈C,≤〉 −−−→←−−−α

γ 〈C,v〉. The abstract semantics is sound iff for all the

prefixpoints p ∈ P ⊆ C of A, we have that γ ◦ AJpK ≥ AJγ(p)K.

When applied to the static analysis of programs, the transfer function depends on a
program P.
There are many different ways in order to prove that an abstract semantics is sound, re-
lying on some different properties of transfer functions, concrete and abstract lattices,
concretization and abstraction functions. We refer the interested reader to [29] for a com-
plete overview on this topic. In this thesis, we will rely on the following theorem.

Theorem 2.2.5 (Kleene-like, join-morphism-based fixpoint approximation [25]) Let 〈L,v
,t〉 and 〈L,v,t〉 be complete lattices. Let F : [L→ L] and F : [L→ L] be two monotone
functions with respect to v and v respectively. Let α : [L → L] be a join-morphism such
that α ◦F v̇F ◦α, where v̇ is the lifting of the ordering operator v to functions. Let a ∈ L
be a prefixpoint of F. Then α(lfpva F)v lfpvα(a) F.

2.2.3 Widening
If the abstract domain respects the ACC, the abstract semantics can be computed in a finite
time. Otherwise we need a widening operator in order to make the analysis convergent.

Definition 2.2.6 (Widening) Given an ascending chain d0 ≤ d1 ≤ d2 ≤ · · · in a poset
〈C,≤〉, a widening operator ∇ : [C→ C] is an upper bound operator such that the chain

w0 = d0,w1 = w0∇d1, · · · ,wi = wi−1∇di

is ultimately stationary, i.e. ∃j ∈ N : ∀k ∈ N : k > j⇒ wj = wk

2.3. Running Example 17

The use of widening on abstract domains not satisfying the ACC makes the analysis
convergent still obtaining sound (even if more approximated) results.

Theorem 2.2.7 (Widening soundness) Let 〈A,≤〉 and 〈A,v〉 be two complete lattices, γ :
[A→ A] and α : [A→ A] be two functions such that 〈A,≤〉 −−−→←−−−α

γ 〈A,v〉. Let F : [A→ A]

and F : [A→ A] be two monotonic function such that lfp(F) ≤ γ ◦ lfp(F).
Then the sequence defined by

x0 = ⊥
xi =

{
F(xi−1) if F(xi−1) v xi−1

F(xi−1)∇xi−1 otherwise

is ultimately stationary and its limit xk is a post-fixpoint of F. Hence, it soundly approxi-
mates the concrete semantics, i.e. lfp(F) ≤ γ ◦ lfp(F) ≤ γ(xk).

2.3 Running Example
We will often recur to some examples in order to explain the ideas and the formalizations
presented throughout the next chapters. Chapter 7 would be an exception, as we will
use some code taken from .NET shipped libraries. Figure 2.1 contains the code of a class
Account. It is aimed at simulating some of the most common operations performed on a
bank account, i.e. deposits and withdraws. Class Cheque is presented in Figure 2.2 and
represents a signed cheque that can be used to withdraw an amount. We can also check if
a cheque is valid, i.e. if it contains money that can be withdrawn, or if it is empty.
We will use these classes in order to illustrate how actions are performed in parallel and
thereby explain the formally defined concepts in practice.

18 2. Preliminaries

public class Account {
private int amount=0;
private final double interestRate=0.015;
public final Signature signature;

public Account(int am, Signature sign) {
this .amount=am;
this .signature=sign;

}
public void withdraw(int money) {

synchronized(this) {
this .amount−=money;

}
}
public void withdrawNoDebts(int money) {

synchronized(this) {
int temp=this.amount−money;
if (temp>0)

this .amount=temp;
}

}
public void deposit(int money) {

synchronized(this) {
this .amount+=money;

}
}
public void calculateInterests () {

synchronized(this) {
this .amount∗=1+this.interestRate;

}
}
public int getAmount() {

return this .amount;
}
public void printAmount() {

ATM.screen.print(this.amount);
}

}

Figure 2.1: The class Account

2.3. Running Example 19

public class Cheque {
private Signature sign;
private int amount;
private Account account;

public Cheque(Signature s, int am, Account acc) {
this .sign=s;
this .amount=am;
this .account=acc;

}
public boolean withdraw() {

if (account !=null && this.sign.equals(account.signature)) {
this .account.withdraw(amount);
this .amount=0;
account=null;
return true;

}
else return false;

}
public boolean isValid() {

if (this .amount>0 && this.account==null)
return false;

else return true;
}

}

Figure 2.2: The class Cheque

20 2. Preliminaries

3
Static Analysis of the Happens-Before

Memory Model

In this chapter, we will define the happens-before memory model in a fixpoint form and
we approximate it with a computable semantics.
Memory models define which executions of multithreaded programs are legal. The hap-
pens-before one was formalized about 30 years ago [82], and it is an over-approximation
of the one adopted by Java [95]. Our approach is completely independent of both the
programming language and the analyzed property. It appears to be a promising framework
to define, compare and statically analyze other memory models.
This chapter is based on the published paper [43].

3.1 Memory Models
The semantics of a programming language supporting multithreading must be defined
well enough that developers can fully and easily understand which behaviors are allowed
during an execution. A common approach in the literature has been to consider all the
programs containing data races as incorrect [120], and to let unspecified the semantics
in this case. Many static analyses have been aimed at proving the absence of data races
[106, 121]. Leaving the semantics of these programs completely unspecified is unsatis-
fying for modern programming languages, particularly those that are focused on security
issues.
On the other hand, guaranteeing the sequential consistency [83] for programs containing
data races is not possible, as this would forbid the most part of compilers optimizations.
In this context, weak memory models have been introduced [35, 55]. These models offer
greater performances [2].
The interest in this topic has increased during the last few years: for instance, the first
specification of the Java Virtual Machine [89], corrected in [95], was flawed [113]. Nowa-
days, the specification of the memory model appears to be the “lingua franca” to define
which behaviors of multithreaded programs are allowed. In this context, two different
approaches are considered:

• to restrict the non-deterministic behaviors in order to provide a simple reference to

22 3. Static Analysis of the Happens-Before Memory Model

the developers,

• to allow as many compiler optimizations as possible, introducing non-deterministic
behaviors.

On this topic, the debate is still in progress [19], and different ideas and solutions have
been proposed [126, 17]. In particular, the Java memory model seems to allow undesired
behaviors and to prohibit desirable executions [5].
Most state-of-the-art static analyses do not support multithreading, or they deal only with
the possible interleavings of instructions. This is why they are not sound with respect to
the memory model, as it usually allows more behaviors than the ones exposed by sequen-
tially consistent executions.

Contribution: Given the current state of the art, a static analysis able to approximate
all the possible runtime behaviors of a multithreaded program with respect to a memory
model seems to be particularly appealing, as it would help developers to reason about the
parallel execution of multiple threads [134]. Moreover, since threads communicate im-
plicitly through shared memory, particularly subtle and unwanted interactions may arise,
and a static analysis may detect and provide useful information about them. Some exam-
ples of these interactions, like the one depicted by Figure 1.2, are presented in [95].
In the definition of our concrete and abstract semantics we will focus on the consistency
condition [133]. In particular, it specifies which is the output of the shared memory when
a read is performed on it. This output is represented as a set of values written in parallel
with respect to the read action.
We first define the concrete trace semantics in a fixpoint form, aimed at formalizing the
happens-before memory model. Then we abstract it and we prove the soundness of our
analysis.
The semantics of statements does not to take multithreaded executions into account, i.e.
parallel writes on the shared memory and synchronization actions. In this way, we may
reuse the semantics on single-thread programs and apply them to the analysis of mul-
tithreaded programs. About synchronizations, we focus only on mutual exclusion and
launching of threads. Other synchronization patterns, e.g. Thread.end() in Java, may be
easily added to our framework.
Our analysis is generic on the programming language, as the happens-before memory
model is. The only restrictions we applied are that the small step semantics of statements
is atomic, and that some functions, that returns a part of information on a given state, are
provided. Thus, our framework may be used to formalize, compare, and statically analyze
other memory models.

3.1.1 An Example

Figure 3.1 depicts an example that will be used to illustrate the formal concepts introduced
in this chapter. It is composed of two threads that operate on a shared cheque. The code

3.2. The Happens-Before Memory Model 23

Thread 1 System Thread 2
Cheque cheque = new Cheque(sig, 1000, acc);

...
ppaaaaaaaaaaaaaaaaaaaaaaa

..]]]]]]]]]]]]]]]]]]]]]]]

cheque.withdraw(100) cheque.isValid()

Figure 3.1: Checking if a cheque is valid

of the called methods is presented in Section 2.3. We are interested in checking if the
method isValid() may return false when executed by Thread 2.

3.2 The Happens-Before Memory Model
In the recent literature, memory models have been aimed at formalizing the behaviors that
are allowed during the execution of a multithreaded program.
The Java Memory Model was presented in [113]. Its formalization involves many dif-
ferent run-time components. In the same paper the happens-before memory model is
formalized as an over-approximation of the Java memory model without considering
out-of-thin-air values. It allows a larger number of runtime behaviors. Its formalization
is simpler, and it allows us to reason in terms of static analysis. In addition, an abstract
analysis on this model will allow us to obtain results sound but more approximate with
respect to the Java memory model.
The main components of this model are (we denote some rules with a specific name which
will be used during the formalization):

• the program order, that, for each thread, totally orders the actions performed during
its execution;

• a synchronizes-with relation that relates two synchronized actions. For instance,
the acquisition of a monitor synchronizes-with all the previous releases of the same
monitor. Moreover the first action of the execution of a thread is synchronized-with
the action that launched it (rule IN);

• the happens-before order initially introduced in [82]. An action a1 happens-before
another action a2 (rule HB) if

– a1 appears before a2 in the program order;

– a2 synchronizes-with a1;

– if you can reach a2 by following happens-before edges starting from a1, i.e.
the happens-before order is transitive.

Through the happens-before order, a consistency rule is defined. In particular, it states
that a read r of a variable v is allowed to see a write w on v if:

24 3. Static Analysis of the Happens-Before Memory Model

Thread 1 Thread 2
lock(o) lock(o)
var = v1 temp = var
var = v2 unlock(o)
unlock(o)

Figure 3.2: An example

• r is not in happens-before relation with w, i.e. a read can not see a write that has to
be executed after it,

• there is not a write w′ on v that happens-before r and w happens-before it, i.e. there
is no write on the same variable that is executed between the observed write and the
read, thereby overwriting it (rule OW).

The happens-before memory model says nothing about what a variable is and its granu-
larity (an object, a field, an array, a primitive value, ...) is.

3.2.1 Reasoning Statically
One point is not clear in these definitions: on one hand the definition of the happens-before
consistency appears to be a static rule. On the other hand, the program order talks about a
total order covering all the actions of an execution: this concept is clearly dynamic. Our
approach is parameterized by the abstract intra-thread transition relation. So we suppose
that it approximates this program order. In this way if a state is before another one in the
trace produced through this relation, it means that it will always be executed before it.
With respect to the synchronizes-with relation, threads generally synchronize on some
elements (for instance in Java they synchronize on monitors defined on objects), and the
mutual exclusion during the execution of some parts of the code is guaranteed. In this
way, they acquire a synchronizable element, perform some actions, and finally release
it. In a static context, we do not know which thread acquires the synchronizable element
first. For instance, consider the multithreaded program of Figure 3.2.

Which values may thread two read? Before the read action, we acquire the same
monitor owned when executing both the writes of thread one. It may read the initial
value stored in var, or v2, but not v1, as the acquisition of the monitor of thread two
synchronizes-with the release of thread one or, vice versa, its release synchronizes-with
the acquisition of thread one.
This consideration leads us to the following conclusion. A read r synchronized on a set S
of synchronizable elements can see a value written by an action w performed by another
thread if it is not:

• overwritten by a following action w′

• such that all the actions between w and w are synchronized at least on a common
element in S, e.g. a monitor.

3.3. Multithreaded Concrete Semantics 25

This is a consequence of the mutual exclusion principle, i.e. that some instructions of two
parallel threads cannot be executed in parallel if they are synchronized.
The formalization of the concrete semantics takes into account these considerations.

3.2.2 The Example
Let us apply these concepts to the example depicted in Section 3.1.1, and in particular to
the question if method isValid() may return false. To answer this question, we evaluate
which values may be read by the condition of the if statement of isValid() method when
executed by Thread 2.
First of all, since there is no synchronization, the synchronize-with order is empty, and
all the actions of Thread 1 do not happen-before the evaluation of the condition. Then
this instruction is allowed to see the initial value of field this.amount which is equal to
1.000 and the value written by method withdraw to the field account which assigns null to
it. Therefore, it is consistent to evaluate this condition to true. So isValid() method may
return false.
For instance, suppose that the two statements that assign values to fields amount and
account of method withdraw are switched by the compiler. Then a single-core processor
may execute account = null, before the control switches to Thread 2, where the condition
of the if statement evaluates to true.

3.3 Multithreaded Concrete Semantics
In this section we present the multithreaded concrete semantics. This semantics is aimed
at formalizing the happens-before memory model in a fixpoint form. It is parameterized
by the concrete operational semantics that defines the behaviors of intra-thread compu-
tational steps and on some functions that return a part of a given state. In this way we
separate the semantics of the language from its memory model.
Since the happens-before memory model only refers to finite executions, we consider fi-
nite traces. Our multithreaded concrete semantics produces all complete executions, i.e.
executions in which all the threads end in a blocking state.

3.3.1 Assumptions
In order to define the happens-before memory model on the concrete semantics, we need
to introduce some sets and functions that extract information from states.
For the sets, we denote by TId the set of the thread identifiers, by Sh the set of shared
memories, by Loc the locations, by Val the values (e.g. numerical values and references),
by Sync all the shared elements on which a thread can synchronize, and by St the states
containing both memory and control state of a single thread.
We suppose that a transition function ◦→ : [St × St → {true, false}] is provided, and that
defines the single step behavior of the program. We require that these steps are atomic at

26 3. Static Analysis of the Happens-Before Memory Model

thread level, i.e. it is not possible for another thread to see an intermediate state during a
single intra-thread transition.
We also require that the following functions are provided:

• shared : [St → Sh]. Given a state, shared returns the shared memory contained in
it;

• action : [St → ⊥a ∪ ({r,w} × Loc × (Val ∪ ⊥v))]. Given a state, action returns the
operation it is going to perform (reading from or writing on the shared memory),
the shared location on which it operates and the written value or ⊥v if it is a read
action, or ⊥a if it has performed another type of operation;

• synchronized : [St → ℘(Sync)]. Given a state, synchronized returns all the ele-
ments on which it is synchronized, e.g. the set of all the monitors previously locked
and not yet released;

• assign : [Sh × Loc × Val → Sh]. Given a state of the shared memory, a location
and a value to be written, assign returns the shared memory obtained by assigning
the given value to the given location in the given shared memory;

• setshared : St × Sh → St. Given a state and a shared memory, setshared returns
a state equal to the given one but in which the shared memory is replaced by the
given one.

3.3.2 Thread-Partitioning Concrete Domain
The concrete domain is aimed at collecting information about the parallel execution of
different threads. To this end, we partition the trace, which represents one interleaving of
the global execution of different threads, relating each active thread to the trace containing
only its execution.
In current programming languages, threads are created and launched (i.e. their parallel
execution is started) by other threads during their execution. Then for each thread we
track also the thread that has launched it, and the index in its trace of the state that is
produced after the launch. For the main thread, that is launched by the system, we use a
special value ⊥Ω. We collect the number of the state in order to restrict the execution trace
to the states after the launch of the thread, and so to respect the rule IN. Thus, our concrete
domain is composed of two functions where the second one is aimed at maintaining some
information on the launches of threads:

Ψ : [TId→ St~+]
Ω : [TId→ ((TId × N) ∪ ⊥Ω)]

Our thread-partitioning domain is aimed at formalizing the executions of multithreaded
programs. In particular, it is generic with respect to the hardware architecture on which
the programs are executed. In this way, it abstracts away some information with respect
to real executions.

3.3. Multithreaded Concrete Semantics 27

Single-core architectures

When executing multithreaded programs on a single-core architecture, we have a total
order on the actions executed by all the threads. Let MSt be the set of multithreaded
states. Then a trace in MSt~+ represents an execution on a single-code architecture. Let
projectMSt : [MSt × TId → St] be the function that given a multithreaded state and a
thread identifier returns the local state of this thread. Let whichThread : [MSt → TId]
be the function that, given a multithreaded state, returns the thread that has executed the
last computational step. The abstraction function that, given a single-core architecture,
returns a state of our thread-partitioning concrete domain, is defined as follows.

αMSt : [MSt~+ → Ψ]
αMSt(σ0 → · · · → σi) = {[t 7→ {σ′0 → · · · → σ′j }] :

(i) σ′0 = projectMSt(σ0, t),
(ii) ∀k ∈ [1.. j − 1],∃w ∈ [1..i] : σ′k = projectMSt(σw, t),whichThread(σw) = t,
(iii) ∃z ∈ [1..w − 1] : σ′k−1 = projectMSt(σz, t) : whichThread(σz) = t,

∀i′ ∈ [z + 1..w − 1] : whichThread(σi′) , t
(iv) ∃h ∈ [w + 1..i] : σ′k+1 = projectMSt(σh, t) : whichThread(σh) = t,

∀i′′ ∈ [w + 1..h − 1] : whichThread(σi′′) , t
}

Note that two different single-core executions may be abstracted into the same ele-
ment of the thread-partitioning concrete domain. For instance, consider the two following

executions (where
T→ means that the transition is executed by thread T):

σ0
T1→ σ1

T2→ σ2

σ0
T2→ σ′1

T1→ σ′2

The two executions start with the same state σ0, and the two threads execute the same
statements. If the threads do not communicate, their intra-thread state is not influenced
by the order of execution and we will obtain that

projectMSt(σ2,T2) = projectMSt(σ′1,T2)
projectMSt(σ1,T1) = projectMSt(σ′2,T1)

and so they will be abstracted into the same element of our thread-partitioning domain.
In the case of dual core architectures we have no longer a total order on the executions

of all the threads, as the two cores may execute different threads in parallel. Intuitively,
we obtain two traces of executions (one for each core) and a partial (temporal) order
between statements executed by different cores. Without going into formal details deeply,
we abstract these executions in a similar way as for a single-core architecture, collecting
a trace of execution for each active thread. As above, two different executions may be
abstracted into the same element in our thread-partitioning concrete domain.

28 3. Static Analysis of the Happens-Before Memory Model

Discussion

We can deal with architectures with more than two cores in a similar way. As we pointed
out, our thread-partitioning concrete domain is already an abstraction of real executions.
Since we want to build up a static analysis that is generic with respect to hardware ar-
chitectures, this abstraction is mandatory. In particular, we abstract away the inter-thread
order of execution. On the other hand, this is exactly what developers do when writing
multithreaded applications: they think about threads separately, and they do not take the
inter-thread order of execution into account. Then they add some synchronization ac-
tions in order to avoid that some part of different threads are executed in parallel. The
definition of our fixpoint semantics will consider these actions, in order to discard the
computational steps that cannot be executed in parallel and whose effects are not visible
by another thread in a given point of its execution. Note that our approach is focused
only on synchronizations on monitors, and so we do not consider other synchronization
patterns like wait() and notify() in Java. With respect to these primitives our analysis is
sound but imprecise, as it abstracts away the fact that the two threads are synchronized
using them, and so that some parts of the code may be not executed in parallel.

3.3.3 Single Step Function
We define a step function that performs a single intra-thread step, that is consistent with
the happens-before memory model, and which returns the set of the possible states that
results from executing the step.

Definition 3.3.1 (step function) Given the identifier of the active thread, a multithreaded
state containing the traces of the executions of all the threads, and an element of Ω, the
step function returns the set of all the possible resulting states.
If the thread does not read from the shared memory, it computes the step given by the
intra-thread semantics (point (1)). Otherwise it may either

• perform the step given by the intra-thread semantics (point (1)),

• or select one visible value following the happens-before consistency rule and per-
form the step assigning this value in the shared memory (point (2)).

Formally,

step : [TId ×Ψ × Ω × St→ ℘(St)]
step(t, f, s, σi) = {σ} such that

(1) σi
◦→σ
∨

(2) if action(σi) = (r, l,⊥v) :
∃v ∈ vis(t, l, synchronized(σi), f, s(t)) :
σ′ = setshared(σi, assign(shared(σi), l, v)), σ′ ◦→σ

3.3. Multithreaded Concrete Semantics 29

Definition 3.3.2 (vis function) The vis function returns the values written in parallel to
a given location following the happens-before memory model. This set is built up by the
values produced by the thread that launched the one that is reading, restricting it only on
the part of the trace executed after the launch (point (1), rule IN), and the values produced
by other threads (point (2)).

vis : [TId × Loc × ℘(Sync) ×Ψ × ((TId × N) ∪ ⊥Ω)→ ℘(Val)]
vis(t, l,S, f, (t′, i′)) =

project(l, suffix(f(t′), i′),S)∪ (1)
{v : v ∈ project(l, f(t′′),S) : t′′ ∈ dom(f) \ {t, t′}} (2)

Definition 3.3.3 (suffix function) The suffix function, given a trace and an index, cuts the
trace at the i-th element and returns the suffix of the trace.

suffix : [St~+ × N→ St~+]

suffix(σ0 → · · · → σj, i) =

{
σi → · · · → σj if i ≥ 0 ∧ i ≤ j
ε otherwise

Definition 3.3.4 (project function) The project function, given a location, a trace, a set
of synchronizable elements locked previously and not yet released, and the thread that
is currently analyzed, returns the set of visible values in the given trace following the
happens-before consistency.

project : [Loc × St~+ × ℘(Sync)→ ℘(Val)]
project(l, σ0 → · · · → σi,S) = {v : ∃j ∈ [0..i] : action(σj) = (w, l, v) ∧

notsynchronized(σj → · · · → σi,S)}
The first part of the condition (action(σj) = (w, l, v)) excludes the transitions that do

not write to shared memory. The second part the ones whose values are overwritten by a
successive action following the happens-before order (rule OW).

Definition 3.3.5 (notsynchronized function) Given a trace and a set of synchronizable
elements, the notsynchronized function returns true if and only if

• the first state of the trace does not own one of the given synchronizable elements
(case (1)),

• or if there is not a write action that writes on the same location of the first action of
the given trace and that is synchronized-with it (case (2)).

notsynchronized : [St~+ × ℘(Sync)→ {true, false}]
notsynchronized(σ0 → · · · → σi,S) = true if and only if
(1)S ∩ synchronized(σ0) = ∅ ∨
(2)@σj ∈ cut(σ0 → · · · → σi,S) : action(σj) = (w, l, v),

action(σ0) = (w, l0, v0), l = l0

30 3. Static Analysis of the Happens-Before Memory Model

Definition 3.3.6 (cut function) Given a trace and a set of synchronizable elements, the
cut function project the given trace on the n initial states that own at least one of the given
synchronizable elements.

cut : [St~+ × ℘(Sync)→ St~+]

cut(σ0 → · · · → σi,S) =

{
ε if synchronized(σ0) ∩ S = ∅
σ0 →τ cut(σ1 → · · · → σi,S) otherwise

3.3.4 Fixpoint Semantics
By using the step function we define the fixpoint concrete semantics in order to compute
all the possible finite traces of a given multithreaded program.

Single-thread Semantics

Given a thread and an element of the thread-partitioning domain, the single-thread seman-
tics returns the traces of all possible partial finite executions, following the happens-before
memory model, when the parallel executions of other threads are the ones represented by
the given element of the thread-partitioning domain. It is the basic step that will be used
to define the multithread semantics. This approach is classic in literature, see for instance
the example 7.2.0.6.3 of [27].

Definition 3.3.7 (Single-thread semantics S◦) Let σ0 be the initial state of computation.

S◦ : [(Ψ × Ω × TId)→ ℘(St~+)]
S◦Jf, r, tK = lfp⊆∅ F◦

where

F◦ : [℘(St~+)→ ℘(St~+)]
F◦ = λT.{σ0} ∪ {σ0 → · · · → σi−1 → σi : σ0 → · · · → σi−1 ∈ T ∧ σi ∈ step(t, f, r, σi−1)}

Multithread Semantics

The multithreaded fixpoint semantics computes all the possible executions of a multi-
threaded program following the happens-before memory model.
It starts from an element of the thread-partitioning domain that relates each thread that is
active at the beginning of the computation to a trace containing only its initial state σ0

(f0 = {[t 7→ {[0→ σ0] : t is the identifier of an active thread]}), and in the second compo-
nent each active thread to⊥Ω (r0 = {[t 7→ ⊥Ω : t is the identifier of an active thread and σ0

is its initial state]}). At each iteration it computes the semantics using the multithreaded
element obtained at the previous step. In particular we have to discard all the elements that
are overwritten during a set of transitions that are synchronized-with the analyzed read ac-
tion. To do that, we need to consider only the traces that are complete, i.e. restricting the
traces only on the ones belonging to set St~+◦→.

3.3. Multithreaded Concrete Semantics 31

Definition 3.3.8 (Multithread semantics S‖)

S‖ : [Ψ × Ω→ ℘(Ψ × Ω)]
S‖Jf0, r0K = lfp⊆∅ F‖

where

F‖ : [℘(Ψ × Ω)→ ℘(Ψ × Ω)]
F‖ = λΦ.{(f0, r0)} ∪ {(fi, ri−1) : ∃(fi−1, ri−1) ∈ Φ : ∀t ∈ dom(fi−1) :

τ ∈ S◦Jfi−1, ri−1, tK, τ ∈ St~+◦→, fi(t) = τ}

The intuition behind this fixpoint definition is as follows:

• at the first iteration it computes the complete semantics of each thread “in isolation”
since the trace of the other threads is empty, and then the step function performs a
step using the last state of the given thread following ◦→;

• at the second (or i-th) iteration it computes the complete semantics of each thread in
which the visible values have been modified at most one (or i-1) times by different
threads.

Discussion

Computing this fixpoint may seem to be useless. A common (but unsound) intuition is
that as all the active threads are exposed, we can check which values they write to the
shared memory, then compute the semantics using this information, obtaining the result
of the analysis. The problem is that the values written by one thread may cause other
threads to write new values, and so on. Consider for instance the following example:

Thread 1 Thread 2

if(a == 0){ if(a == 1){
a = 1; a = 2;
if(a == 2){ if(a == 3){
a = 3; a = 4;
if(a == 4){ if(a == 5){
... ...

Even if we are considering a multithreaded program without loops and which is com-
posed only of two threads, there is not a clear number of iterations after which all the
possible behaviors would be exposed. In fact, at the first iteration thread 1 would expose
the value 1, at the second iteration thread 2 would expose 2, and so on. The number of
iterations required in order to expose all the possible behaviors relies on the structure of
the program, and so we need to compute a fixpoint in order to be sound.

32 3. Static Analysis of the Happens-Before Memory Model

Context bound analysis

Context bound analysis [114] is a novel approach that obtained a huge amount of both
theoretical and practical results during the last years. Starting from the premise that veri-
fying a concurrent program (with a context and synchronization sensitive analysis, when
dealing with rendezvous style synchronization primitives) is undecidable [118], a mul-
tithreaded program is analyzed until a given context bound, i.e. the number of context
switches is limited to n. A context switch happens when the control passes from one
thread to another. In this way, these analyses are not sound for all possible executions, but
only to those with at most n context switches. During the last years many analyses in this
field have been proposed, e.g. [102, 80, 16, 115].
Our approach relies on the idea of abstraction. We are able to build up an analysis sound
with respect to all the possible multithreaded executions, with an unbounded number of
context switches, executing on all the possible multi-core architectures, and considering
also compiler optimizations. This requires two nested fixpoints computation. Intuitively,
at the n-th iteration our multithread semantics computes all the executions with at most n
context switches. Iterating this process until a fixpoint is reached accumulates all possible
multithreaded executions. We will be able to build up a computable approximation of this
semantics using an abstraction.

3.3.5 Launching a Thread

The step function is not in the position to launch a new thread, as it concerns intra-thread
steps only. Thus, the multithread semantics must be extended to support the dynamic
creation and launching of threads. Since we are generic with respect to the programming
language, we do not present the details. On the other hand, it is important to define the
launching of threads in order to explain how the relations between threads are traced by
the thread-partitioning concrete domain.
In this context, we suppose that a function launch : [St → (TId × St × St) ∪ ⊥l] is
provided. Given a state, if its next action is the launch of a thread, it returns the identifier
of the new thread, its initial state and the next state of the execution. The computational
multithreaded step may be defined in the following way, where (f, r) is the previous state:

(f′, r′) : t ∈ dom(f), f(t) = σ0 → · · · → σi, launch(σi) = (t′, σ′0, σi+1),
f′ = f[t 7→ (σ0 → · · · → σi → σi+1), t′ 7→ (σ′0)], r′ = r[t′ 7→ (t, i)]

3.3.6 The Example

We apply these definitions to the example presented in Section 3.1.1. We focus only on
the analysis of the condition in Thread 2.
The result obtained by the first iteration of the computation of S‖ is depicted by Figure
3.3. We only represent the state of shared memory fields of cheque, ignoring the control
state and the private memory.

3.4. Multithreaded Abstract Semantics 33

Thread 1 7→ amount=100

account=#a1
→ amount=0

account=#a1
→ amount=0

account=null

Thread 2 7→ amount=100

account=#a1
→ amount=100

account=#a1

Figure 3.3: The result of the first iteration of the multithread semantics computation

Which are the values returned by the vis function when we are evaluating the condition
of Thread2 at the second iteration? In order to compute them, we need to consider which
values are returned by the project function. We ignore the first use of this function, as we
suppose there are two parallel threads at the beginning of the execution, such that both
are launched by the system. In the second case, we use the project function only with the
execution trace of Thread1, as it is the only thread in the domain of our multithreaded
state that is not the current thread. Note that there is no synchronization action. In this
situation, the read of the field amount may retrieve both 0 and 100, while reading account
may return both #a1 and null.

Finally, we are in position to check if, in this situation, the condition may be evaluated
to true. The condition to be evaluated is this.amount > 0&&this.account == null. If the
read action on amount sees 100, and it sees the value written by the second instruction of
Thread1 and returned by the vis function on account, the condition would be evaluated
to true. So isValid() method may return false. This behavior is sound with respect to the
happens-before memory model, as pointed out in Section 3.2.2.

3.4 Multithreaded Abstract Semantics
In order to develop a static analysis via abstract interpretation, we define an abstract se-
mantics aimed at computing an approximation of the concrete one. We also prove the
soundness of our approach.

3.4.1 Assumptions
As we did for the concrete semantics, in order to be generic with respect to the program-
ming language we need that some sets and functions are provided.
In particular, the required sets are the following, with the same semantics of the ones in-
troduced by the concrete semantics: Sh, Loc, Sync, and St.
In the same way the function ◦→ : [St×St→ {true, false}] defines the abstract single step
relation.

34 3. Static Analysis of the Happens-Before Memory Model

We require the following functions are provided, with the same meaning as the concrete
semantics: shared : [St → Sh], action : [St → ⊥a ∪ ({r,w} × Loc × (Val ∪ ⊥v))],
synchronized : [St → ℘(Sync)], assign : [Sh × Loc × Val → Sh], and setshared :
[St × Sh → St]. We suppose that all these functions are sound with respect to their
concrete counterparts.

Abstract Values

While in the concrete context it is quite easy to understand what values are (usually ref-
erences and numerical values), we need to go into more detail for abstract values. In
particular, we need to understand what may be an abstract numerical value when we as-
sign it.

Nonrelational domains: A first type of numerical domains are the nonrelational ones,
as for instance boxed intervals [25], i.e. a domain that relates each variable to an interval,
that approximates all the possible numerical values that variable may have in the concrete
executions. This approach is well-known [24]: a value is nothing more than the interval
assigned to a variable in the boxed domain or the one obtained evaluating an expression.
For instance, the abstract value of the expression x + 1 in the boxed intervals domain
{[y 7→ [0..2], x 7→ [3..5], z 7→ [−∞..0]]} is the interval [3..5] � [1..1] = [4..6] (where � is
the sum operator on intervals). This value can be assigned to a variable or a location.

Relational domains: Usually, relational domains such as polyhedra [31], octagons
[101], pentagons [93], and stripes [47] define the semantics of assignments, evaluating the
assigned expression, i.e. the right part of the statement, together with the assignment of its
value to the variable. This is an obvious consequence of the fact that they trace relations
between variables, and so they cannot deal separately with values but they must deal
with variables directly. On the other hand, we can define a value as the set of relational
constraints that holds for an expression.
For instance, imagine using the octagon domain (i.e. a domain that trace relations of type
±x ± y ≤ k) when evaluating i = j + 1 when the following constraints hold: +j ≤ 10,−j ≤
0, j+x ≤ 0. In this context, we can infer the set of constraints that holds for the expression
j + 1 (introducing a special variable e representing the abstract value of the expression),
and assign this value to i. So we obtain the constraints +e ≤ 11,−e ≤ 1, e + x ≤ 1, and
the final result is +i ≤ 11,−i ≤ 1, i + x ≤ 1 (note that we only need to replace e with i).
In a sequential context, these two steps has to be performed together, as in this way we can
infer the constraints on the assigned variable directly. Instead, in a multithreaded program
we have that a variable may be assigned in parallel by multiple threads, we need to take
the upper bound between all the possibly assigned values (i.e. the approximation of the
constraints that hold for all the values), and so we have to distinguish the value obtained
from evaluating the expression and the assignment of that value.
Note that classical relational domains are defined on a finite set of variables. Since we
deal with location of shared memory, we may be in a context in which locations are
dynamically created (which is the case for Java multithreading). Logozzo [91] already
applied the octagon domain in such a context, and other relational domains may work

3.4. Multithreaded Abstract Semantics 35

adopting a similar approach.

3.4.2 Thread-partitioning Abstract Domain

The abstract domain is similar to the concrete one: the only difference is that it deals with
abstract elements, while the meaning is exactly the same.

Ψ : [TId→ St
~+
]

Ω : [TId→ ((TId × N) ∪ ⊥Ω)]

3.4.3 Upper Bound Operators

We require that the upper bound operator between two single-thread states (tSt) and be-
tween two values (tVal) are provided.

Proposition 3.4.1 We assume that 〈St,vSt,tSt,uSt〉 is a complete lattice. Let αSt : [℘(St)→
St] be the abstraction function on set of concrete states such that:

αSt(S) =
⊔

St
σ∈S

α′St(σ)

where α′St : [St→ St] is the abstraction of a single concrete state.
We suppose that α′St function is a join-morphism, i.e. α′St(

⋃
i∈I

Si) =
⊔

St
i∈I

α′St(Si) for any

interval I ⊆ N.

Definition 3.4.2 (Upper bound operator on St
~+
) The upper bound on traces is defined as

tτ : [St
~+ × St

~+ → St
~+
]

(σ0 → · · · → σ j) tτ(σ′0 → · · · → σ′i) =

= (σ0 tSt σ
′
0)→ · · · → (σ j tSt σ

′
j)→ σ′j+1 → σ′i

supposing that j ≤ i.

Definition 3.4.3 (Upper bound operator on Ψ)

t f : [Ψ ×Ψ→ Ψ]
f1 t f f2 = {[t 7→ τ] : t ∈ dom(f1) ∪ dom(f2),

τ =

f1(t) tτ f2(t) if t ∈ dom(f1) ∩ dom(f2)
f1(t) if t ∈ dom(f1) \ dom(f2)
f2(t) if t ∈ dom(f2) \ dom(f1)

}

36 3. Static Analysis of the Happens-Before Memory Model

3.4.4 Partial Order Operators

Definition 3.4.4 (Partial order on St
~+
)

vτ: [St
~+ × St

~+ → {true, false}]
τ1 vτ τ2 ⇔ τ1 tτ τ2 = τ2

Lemma 3.4.5 tτ is well defined

Proof. Since we suppose that 〈St,vSt,tSt〉 is a complete lattice, then tSt is well-defined.
By definition of tτ:

(σ0 → · · · → σ j) tτ (σ′0 → · · · → σ′i) =

= (σ0 tSt σ
′
0)→ · · · → (σ j tSt σ

′
j)→ σ′j+1 → σ′i

supposing that j ≤ i (since tSt is commutative this supposition is not restrictive). In this
way each state of the trace is well-defined (as or it is composed by an element of the
second trace, or it is the result of tSt), and so also tτ is well defined.

Lemma 3.4.6 t f is well-defined

Proof. By definition of t f we have that:

f1 t f f2 = {[t 7→ τ] : t ∈ dom(f1) ∪ dom(f2),

τ =

f1(t) tτ f2(t) if t ∈ dom(f1) ∩ dom(f2)
f1(t) if t ∈ dom(f1) \ dom(f2)
f2(t) if t ∈ dom(f2) \ dom(f1)

}

So for each thread identifier in dom(f1) ∪ dom(f2) we have exactly one of the three
cases, as the three sets (dom(f1) ∩ dom(f2), dom(f1) \ dom(f2), and dom(f2) \ dom(f1)) are
a partition of the set dom(f1) ∪ dom(f2) by basic set properties. Each of these cases is
well-defined, as it keeps the thread related to thread in one of the two functions (and by
hypothesis of the case the function is defined on it), or it applies tτ between the two traces
contained by the two given function (and by hypothesis of the case the two functions are
defined on it, and tτ is well-defined as proved by lemma 3.4.5).

So t f is well-defined.

Lemma 3.4.7 〈St
~+
,vτ,tτ〉 is a complete lattice

Proof. First of all we prove that 〈St
~+
,vτ〉 is a partially ordered set. To do it, we need to

prove that vτ is a partial order operator, i.e. that it is:

3.4. Multithreaded Abstract Semantics 37

• reflexive: τ vτ τ.
By definition of vτ, we have that τ vτ τ ⇔ τ tτ τ = τ, so we need to prove that
τ tτ τ = τ.

τ tτ τ =

(supp. τ = σ0 → · · · → σi) = (σ0 → · · · → σi) tτ (σ0 → · · · → σi)
(by definition of tτ) = (σ0 tSt σ0)→ · · · → (σi tSt σi)

(by idempotence of tSt) = σ0 → · · · → σi

(by definition of τ) = τ

We proved that τ tτ τ = τ, and so, by definition of vτ, that τ vτ τ

• antisymmetric: τ1 vτ τ2 ∧ τ2 vτ τ1 ⇒ τ1 = τ2.
By definition of vτ, we have that τ1 vτ τ2 ⇔ τ1 tτ τ2 = τ2(1) and τ2 vτ τ1 ⇔
τ2 tτ τ1 = τ1(2). Supposing that τ1 = σ0 → · · · → σi, τ2 = σ′0 → · · · → σ′j, and
i ≤ j (the proof is similar if i > j), we have that:

τ2 =

(by (1)) = τ1 tτ τ2

(by definition of tτ) = (σ0 tSt σ
′
0)→ · · · → (σi tSt σ

′
i)→

→ σ′i+i → · · · → σ′j
(by commutative property of tSt) = (σ′0 tSt σ0)→ · · · → (σ′i tSt σi)→

→ σ′i+i → · · · → σ′j
(by definition of tτ) = τ2 tτ τ1

(by (2)) = τ1

So we proved that τ2 = τ1.

• transitive: τ1 vτ τ2 ∧ τ2 vτ τ3 ⇒ τ1 vτ τ3.
By definition of vτ, we have that τ1 vτ τ2 ⇒ τ1 tτ τ2 = τ2(1) and τ2 vτ τ3 ⇒
τ2 tτ τ3 = τ3(2).
Supposing that τ1 = σ0 → · · · → σi, τ2 = σ′0 → · · · → σ′j, τ3 = σ′′0 → · · · → σ′′k ,
by (1) and (2) we have that j ≥ i ∧ k ≥ j, and by definition of tτ we have that
τ1tττ2 = (σ0tStσ

′
0)→ · · · → (σitStσ

′
i)→ σ′i+1 → · · · → σ′j = σ′0 → · · · → σ′j(3),

and τ2 tτ τ3 = (σ′0 tSt σ
′′
0) → · · · → (σ′j tSt σ

′′
j) → σ′′j+1 → · · · → σ′′k = σ′′0 →

38 3. Static Analysis of the Happens-Before Memory Model

· · · → σ′′k (4).

τ1 tτ τ3 =

(by def. of tτ) = (σ0 tSt σ
′′
0)→ · · · → (σi tSt σ

′′
i)→ σ′′i+i → · · · → σ′′k

(by (4)) = (σ0 tSt σ
′
0 tSt σ

′′
0)→ · · · → (σi tSt σ

′
0 tSt σ

′′
i)→

→ (σ′i+1 tSt σ
′′
i+1)→ · · · → (σ′j tSt σ

′′
j)→

→ σ′′j+i → · · · → σ′′k
(by (2)) = (σ0 tSt σ

′
0 tSt σ

′′
0)→ · · · → (σi tSt σ

′
0 tSt σ

′′
i)→

→ σ′′i+i → · · · → σ′′k
(by (3)) = (σ′0 tSt σ

′′
0)→ · · · → (σ′i tSt σ

′′
i)→ σ′′i+i → · · · → σ′′k

(by (4)) = σ′′0 → · · · → σ′′i → σ′′i+i → · · · → σ′′k
(by def. of τ3) = τ3

We proved that τ1 tτ τ3 = τ3, and so τ1 vτ τ3 by definition of vτ.

The fact that every subset of St
~+

has a least upper bound is a trivial consequence
of the hypothesis that every subset of St has a least upper bound , as we suppose that
〈St,vSt,tSt〉 is a complete lattice, and of the definition of tτ.

We proved that 〈St
~+
,vτ〉 is a partial ordered set and, that every subset of St

~+
has a

least upper bound, so that 〈St
~+
,vτ,tτ〉 is a complete lattice.

Definition 3.4.8 (Ordering operator on Ψ)

v f : [Ψ ×Ψ→ {true, false}]
f1 v f f2 ⇔ f1 t f f2 = f2

Lemma 3.4.9 (v f is reflexive) v f is reflexive

Proof. v f is reflexive iff f v f f. By definition of v f , f v f f⇒ f t f f = f

f t f f =

(by def. of t f and set properties) = {[t 7→ τ] : t ∈ dom(f), τ = f(t) tτ f(t)}
(by idempotence property of tτ) = {[t 7→ τ] : t ∈ dom(f), τ = f(t)}

= f

We proved that f t f f = f, and so that v f is reflexive

Lemma 3.4.10 (v f is antisymmetric) v f is antisymmetric

Proof. We have to prove that f1 v f f2 ∧ f2 v f f1 ⇒ f1 = f2.
By definition of v f we have that f1 v f f2 ⇒ f1 t f f2 = f2 (1) and f2 v f f1 ⇒ f2 t f f1 = f1

3.4. Multithreaded Abstract Semantics 39

(2).
By definition of t f and (1) we have that:

f2 = {[t 7→ τ] : t ∈ dom(f1) ∪ dom(f2),

τ =

f1(t) tτ f2(t) if t ∈ dom(f1) ∩ dom(f2)
f1(t) if t ∈ dom(f1) \ dom(f2)
f2(t) if t ∈ dom(f2) \ dom(f1)

}(3)

By definition of t f and (2) we have that:

f1 = {[t 7→ τ] : t ∈ dom(f2) ∪ dom(f1),

τ =

f2(t) tτ f1(t) if t ∈ dom(f2) ∩ dom(f1)
f2(t) if t ∈ dom(f2) \ dom(f1)
f1(t) if t ∈ dom(f1) \ dom(f2)

}(4)

By commutative property of ∪, tτ, and ∩ we can rewrite (4) in the following way:

{[t 7→ τ] : t ∈ dom(f1) ∪ dom(f2),

τ =

f1(t) tτ f2(t) if t ∈ dom(f1) ∩ dom(f2)
f2(t) if t ∈ dom(f2) \ dom(f1)
f1(t) if t ∈ dom(f1) \ dom(f2)

}

that is exactly the same results obtained in (3). Then f1 = f2.
We proved that if f1 v f f2 ∧ f2 v f f1 then f1 = f2, and so that v f is antisymmetric.

Lemma 3.4.11 (v f is transitive) v f is transitive

Proof. We have to prove that f1 v f f2 ∧ f2 v f f3 ⇒ f1 v f f3.
By definition of v f we have that f1 v f f2 ⇒ f1 t f f2 = f2 (1) and f2 v f f3 ⇒ f2 t f f3 = f3
(2).
By definition of t f and (1) we have that:

f2 = {[t 7→ τ] : t ∈ dom(f1) ∪ dom(f2),

τ =

f1(t) tτ f2(t) if t ∈ dom(f1) ∩ dom(f2)
f1(t) if t ∈ dom(f1) \ dom(f2)
f2(t) if t ∈ dom(f2) \ dom(f1)

}(3)

By definition of t f and (2) we have that:

f3 = {[t 7→ τ] : t ∈ dom(f2) ∪ dom(f3),

τ =

f2(t) tτ f3(t) if t ∈ dom(f2) ∩ dom(f3)
f2(t) if t ∈ dom(f2) \ dom(f3)
f3(t) if t ∈ dom(f3) \ dom(f2)

}(4)

40 3. Static Analysis of the Happens-Before Memory Model

Note that in (3) we have that dom(f1) ⊆ dom(f2) and in (4) dom(f2) ⊆ dom(f3); so by
transitive property of ⊆ we have that dom(f1) ⊆ dom(f3).
By (3) we have that if t ∈ dom(f1) then f2(t) = f1(t) tτ f2(t) (5). By (4) we have that if
t ∈ dom(f2) then f3(t) = f2(t) tτ f3(t) (6).
If t ∈ dom(f1) ⊆ dom(f2) then by (5) and (6) we obtain that f3(t) = f1(t) tτ f2(t) tτ f3(t) =

f1(t) tτ f3(t) (7).
So by (7) and (4) we obtain that:

f3 = {[t 7→ τ] : t ∈ dom(f3), τ =

f1(t) tτ f3(t) if t ∈ dom(f1) ∩ dom(f3)
f3(t) if t < dom(f1) ∩ dom(f3)

}(8)

Since dom(f1) ⊆ dom(f3), by basic set properties we have that dom(f3) = dom(f1) ∪
dom(f3), dom(f1) \ dom(f3) = ∅, and t < dom(f1) ∩ dom(f3) is equivalent to t ∈ dom(f3) \
dom(f1). So (8) can be rewritten as:

f3 = {[t 7→ τ] : t ∈ dom(f1) ∪ dom(f3),

τ =

f1(t) tτ f3(t) if t ∈ dom(f1) ∩ dom(f3)
f1(t) if t ∈ dom(f1) \ dom(f3)
f3(t) if t ∈ dom(f3) \ dom(f1)

}(9)

By (9) and by definition of t f follows that f3 = f1 t f f3, and by definition of v f we
obtain that f1 v f f3.
We proved that f1 v f f2 ∧ f2 v f f3 ⇒ f1 v f f3, and so that v f is transitive.

Lemma 3.4.12 〈Ψ,v f ,t f 〉 is a complete lattice

Proof. First of all we prove that 〈Ψ,v f 〉 is a partially ordered set. To do it, we proved
that v f is a partial order operator, alias that v f is:

• reflexive by lemma 3.4.9;

• antisymmetric by lemma 3.4.10;

• transitive by lemma 3.4.11.

The fact that every subset of Ψ has a least upper bound is a trivial consequence of the

fact that every subset of St
~+

has a least upper bound as guaranteed by lemma 3.4.7, and
by definition of t f .

We proved that 〈Ψ,v f 〉 is a partially ordered set and that every subset of Ψ has a least
upper bound, so 〈Ψ,v f ,t f 〉 is a complete lattice.

3.4. Multithreaded Abstract Semantics 41

3.4.5 Abstraction Functions
Note that in the following definitions and in the soundness proofs we focus only on the
first component of the domain Ψ, as the second component just traces some relations
between threads.

Definition 3.4.13 (Abstraction function of ℘(St~+))

ατ : [℘(St~+)→ St
~+
]

ατ(T) =
⊔

τ
τ∈T

α′τ(τ)

where
α′τ : [St~+ → St

~+
]

α′τ(σ0 → · · · → σi) = α′St(σ0)→ · · · → α′St(σi)

Definition 3.4.14 (Abstraction function of ℘(Ψ))

α f : [℘(Ψ)→ Ψ]
α f (Φ) =

⊔
f

f∈Φ

α′f (f)

where
α′f : [Ψ→ Ψ]
α′f (f) = {[t 7→ τ] : ∃t ∈ dom(f) : τ = α′τ(f(t))}

Lemma 3.4.15 ατ is a join-morphism

Proof. ατ is a join-morphism iff ατ

(⋃
i∈I

Ti

)
=

⊔
τ

i∈I
ατ(Ti) for any interval I ⊆ N.

ατ

(⋃
i∈I

Ti

)
=

(by def. of ατ) =
⊔

τ
σ0→···→σi∈⋃i∈I Ti

α′τ(σ0 → · · · → σi)

(by def. of α′τ) =
⊔

St
σ0→···→σi∈⋃i∈I Ti

α′St(σ0)→ ⊔
St

σ0→···→σi∈⋃i∈I Ti

α′St(σ1)→ · · ·
(by prop. 3.4.1) =

⊔
St

i∈I

⊔
St

σ0→···→σi∈Ti

α′St(σ0)→ ⊔
St

i∈I

⊔
St

σ0→···→σi∈Ti

α′St(σ1)→ · · ·
(by def. of tτ) =

⊔
τ

i∈I

⊔
τ

σ0→···→σi∈Ti

(α′St(σ0)→ · · · → α′St(σi))

(by def. of α′τ) =
⊔

τ
i∈I

⊔
τ

σ0→···→σi∈Ti

α′τ(σ0 → · · · → σi)

(by def. of ατ) =
⊔

τ
i∈I
ατ(Ti)

We prove that ατ

(⋃
i∈I

Ti

)
=

⊔
τ

i∈I
(ατ(Ti)), and so that ατ is a join-morphism.

42 3. Static Analysis of the Happens-Before Memory Model

Lemma 3.4.16 α f is a join-morphism

Proof. α f is a join-morphism iff α f

(⋃
i∈I

Φi

)
=

⊔
f

i∈I
(α f (Φi)) for any interval I ⊆ N.

α f

(⋃
i∈I

Φi

)
=

(by def. of α f) =
⊔

f
f∈⋃

i∈I
Φi

α′f (f)

(by def. of α′f) =
⊔

f
f∈⋃

i∈I
Φi

{[t 7→ τ] : ∃t ∈ dom(f) : τ = α′τ(f(t))}

t f by definition makes the least upper bound (through tτ) of the traces of all the

abstract functions defined on the same thread identifier. As 〈St
~+
,vτ,tτ〉 is a complete

lattice by lemma 3.4.7 and ατ is a join-morphism by lemma 3.4.15, for each Φi with i ∈ I
we obtain that the least upper bound between all its functions is equal to

⊔
f

f∈Φi

α′f , that, by

definition of α f is equal to α f (Φi).
So we obtain that α f (

⋃
i∈I

Φi) =
⊔

f
i∈I

(α f (Φi)), i.e. that α f is a join-morphism.

3.4.6 step Function

The step function is quite similar to the concrete one. If the action is not a read it just
performs the step through the ◦→ function. Otherwise it computes the next step injecting
the least upper bound of all the values returned by the vis function into the read value
and considering also the sequentially consistent case. The vis function is obtained as the
canonical abstraction of the vis function.

Definition 3.4.17 (step function)

step : [TId ×Ψ × Ω × St→ St]
step(t, f, r, σi) = σ such that

σi
◦→σ if π1(action(σi)) , r

σ′i
◦→σ : if action(σi) = (r, l,⊥v)

V = vis(t, l, synchronized(σi), f, r(t))
v =

⊔
Val

v′∈V
v′

sh = shared(σi), sh
′
= assign(sh, l, v)

σ′i = setshared(σ, sh
′
) t σi

3.4. Multithreaded Abstract Semantics 43

Definition 3.4.18 (vis function)

vis : [TId × Loc × ℘(Sync) ×Ψ × (TId × N)→ ℘(Val)]
vis(t, l,S, f, (t′, i′)) =

= project(l, suffix(f(t′), i′),S)∪
{v : v ∈ project(l, f(t′′),S) : t′′ ∈ dom(f) \ {t, t′}}

Definition 3.4.19 (suffix function)

suffix : [St
~+ × N→ St

~+
]

suffix(σ0 → · · · → σ j, i) =

{
σi → · · · → σ j if i ≥ 0 ∧ i ≤ j
ε otherwise

Definition 3.4.20 (project function)

project : [Loc × St
~+ × ℘(Sync)→ ℘(Val)]

project(l, σ0 → · · · → σi,S) = {v : ∃ j ∈ [0..i] : action(σ j) = (w, l, v)∧
notsynchronized(σ j → · · · → σi,S)}

Definition 3.4.21 (notsynchronized function)

notsynchronized : [St
~+ × ℘(Sync)→ {true, false}]

notsynchronized(σ0 → · · · → σi,S) = true if and only if
S ∩ synchronized(σ0) = ∅ ∨
@σ j ∈ cut(σ0 → · · ·σi,S) : action(σ j−1) = (w, l, v),
action(σ0) = (w, l0, v0), l = l0

Definition 3.4.22 (cut function)

cut : [St
~+ × ℘(Sync)→ St

~+
]

cut(σ0 → · · · → σi,S) =

{
ε if synchronized(σ0) ∩ S = ∅
σ0 →τ cut(σ1 → · · · → σi,S) otherwise

3.4.7 Fixpoint Semantics
We proceed as in Section 3.3.4: we define the single-thread semantics in fixpoint form
based on the step function just presented. Then we present the multithread semantics.

Definition 3.4.23 (S◦)
S◦ : [(Ψ × Ω × TId)→ St

~+
]

S◦Jf, r, tK = lfpvτε F◦

44 3. Static Analysis of the Happens-Before Memory Model

where

F◦ : [St
~+ → St

~+
]

F◦ = λτ.{σ0} tτ {σ0 → · · · → σi−1 → σi : σ0 → · · · → σi−1 = τ∧
σi = step(t, f, r, σi−1)}

Definition 3.4.24 (S‖)
S‖ : [Ψ × Ω→ Ψ × Ω]
S‖Jf0, r0K = lfpv f

∅ F‖

where

F‖ : [Ψ × Ω→ Ψ × Ω]
F‖ = λ(f, r).{(f0, r0)} t f {(fi, r) : ∀t ∈ dom(f) : fi(t) = S◦Jf, r, tK}

The intuition of these definitions is exactly the same of the concrete semantics: S◦
computes the semantics of a single thread given a multithreaded state (from which the step
function extrapolates the visible values of the shared memory through the vis function),
while S‖ iterates this computation using the previous multithreaded state for each thread
until a fixpoint is reached.
The definition of the multithread semantics may be straightforwardly extended in order
to support widening and narrowing operators [25], which are required to guarantee the
convergence of the analysis and refine the results when the abstract domain is of infinite
height.

Lemma 3.4.25 (Soundness of step) Supposing that ◦→ is sound, then ∀t ∈ TId, (f, r) ∈ Ψ ×
Ω, σ ∈ St : αSt(step(t, f, r, σi)) vSt step(t, α f (f), αr(r), αSt(σi))

Proof. We reason by case:

• if π1(action(σi)) , r, then, by definition of step, step(t, f, r, σi) = σ : σi
◦→σ. By

definition of step, step(t, α f (f), αr(r), αSt(σi)) = σ : αSt(σi)
◦→σ. As by hypothesis

◦→ is sound, then αSt(σ) vSt σ. Finally, we proved that in this case ∀t ∈ TId, (f, s) ∈
Ψ × Ω, σi ∈ St : αSt(step(t, f, r, σi)) vSt step(t, α f (f), αr(r), αSt(σi)) where α′r : Ω 7→
Ω is the abstraction function on the concrete set of functions Ω.

• if π1(action(σi)) = r, then, by definition of step, we can have two cases:

– step(t, f, r, σi) = σ : σi
◦→σ. It is the same situation of the first case. The

step function makes the least upper bound between all the visible values, and
it considers also the value exposed at single-thread level. In this way the
soundness is preserved

3.4. Multithreaded Abstract Semantics 45

– otherwise the step function takes a value returned by the vis function, injects
it in the state, executes the step through the ◦→ function, and returns the ob-
tained state. Indeed, the step function makes the least upper bound between all
the values returned by the abstraction of vis function. Since we suppose that
the functions that operates on abstract states are a sound approximation of the
concrete ones, and step performs the same operations of its concrete counter-
part, it soundly approximates step for all the possible values provided by vis.
As step makes the least upper bound between all the values, it is sound with
respect to any value that may be returned by vis function, and so the result of
step is sound.

We proved that in all the possible cases step is sound with respect to step.

Lemma 3.4.26 ∀T ∈ ℘(St~+) : ατ(F◦(T)) vτ F◦(ατ(T))

Proof.

ατ(F◦(T)) = (by definition of F◦)
ατ(λT.{σ0} ∪ {σ0 → · · · → σi−1 → σi :
σ0 → · · · → σi−1 ∈ T ∧ σi ∈ step(t, f, r, σi)})

= (by functional lifting)
λατ(T).ατ({σ0} ∪ {σ0 → · · · → σi−1 → σi :
σ0 → · · · → σi−1 ∈ T ∧ σi ∈ step(t, f, r, σi)})

= (as ατ is a join-morphism as proved in Section 3.4.15)
λατ(T).ατ({σ0}) tτ ατ({σ0 → · · · → σi−1 → σi :
σ0 → · · · → σi−1 ∈ T ∧ σi ∈ step(t, f, r, σi)})

= (by definition of ατ)
λατ(T).α′τ(σ0) tτ {α′τ(σ0 → · · · → σi−1 → σi) :
σ0 → · · · → σi−1 ∈ T ∧ σi ∈ step(t, f, r, σi)}

vτ (by lemma 3.4.25 and definition of vτ)
λατ(T).α′τ(σ0) tτ {σ0 → · · · → σi−1 → σi :
σ0 → · · · → σi−1 = ατ(T)∧
σi ∈ step(t, α f (f), αr(r), αSt(σi))}

= (by definition of F◦)
F◦(ατ(T))

Lemma 3.4.27 Let be f ∈ Ψ, r ∈ Ω, and t ∈ TId. Supposing that Stpre is the set of all the
prefixpoints of F◦, then ∀σ0 ∈ Stpre : ατ(S◦)Jf, r, tK vτ S◦Jf, r, tK.
Proof. Note that:

• F◦ is monotonic for ⊆ as trivial consequence of its definition

46 3. Static Analysis of the Happens-Before Memory Model

• F◦ is monotonic for vτ as trivial consequence of its definition

• 〈℘(St),⊆,∪〉 is a complete lattice by properties of set union operator and subset
ordering

• 〈St,vτ,tτ〉 is a complete lattice as proved by lemma 3.4.7

• σ is a prefixpoint of F◦ by hypothesis

• ατ is a join-morphism as proved by lemma 3.4.15

• ατ(F◦) vτ F◦(ατ) as proved by lemma 3.4.26

Then, by theorem 2.2.5, ∀σ ∈ Stpre : ατ(S◦)Jf, r, tK vτ S◦Jf, r, tK.

Lemma 3.4.28 ∀Φ ∈ ℘(Ψ) : α f (F‖(Φ)) v F‖(α f (Φ))

Proof.

α f (F‖(Φ)) = (by definition of F‖)
α f (λΦ.{(f0, r0)} ∪ {(fi, ri−1) : ∃(fi−1, ri−1) ∈ Φ :
∀t ∈ dom(fi−1) : τ ∈ S◦Jfi−1, ri−1, tK, τ ∈ St~+→, fi(t) = τ})

= (by functional lifting)
λα f (Φ).α f ({(f0, r0)} ∪ {(fi, ri−1) : ∃(fi−1, ri−1) ∈ Φ :
∀t ∈ dom(fi−1) : τ ∈ S◦Jfi−1, ri−1, tK, τ ∈ St~+→, fi(t) = τ})

= (as α f is a join-morphism by lemma 3.4.16)
λα f (Φ).α f ({(f0, r0)}) t f α f ({(fi, ri−1) : ∃(fi−1, ri−1) ∈ Φ :
∀t ∈ dom(fi−1) : τ ∈ S◦Jfi−1, ri−1, tK, τ ∈ St~+→, fi(t) = τ})

= (by definition of α f)
λα f (Φ).α′f (f0, r0) t f {α′f (fi, ri−1) : ∃(fi−1, ri−1) ∈ Φ :
∀t ∈ dom(fi−1) : τ ∈ S◦Jfi−1, ri−1, tK, τ ∈ St~+→, fi(t) = τ}

v f (by lemma 3.4.27)
λα f (Φ).α′f (f0, r0) t f {(fi, ri−1) : ∃(fi−1, ri−1) = α f (Φ) :
∀t ∈ dom(fi−1) : fi(t) = S◦Jfi−1, ri−1, tK}

= (by definition of F‖)
F‖(α f (Φ))

Theorem 3.4.29 Supposing that Ψpre × Ωpre is the set of all the prefixpoints of F‖ × Ω,
then ∀(f, r) ∈ Ψpre × Ωpre : α f (S‖)Jf, rK v f S‖Jf, rK.
Proof. Note that:

• F‖ is monotonic for ⊆ as trivial consequence of its definition

3.5. Related work 47

• F‖ is monotonic for v f as trivial consequence of its definition

• 〈℘(Ψ),⊆,∪〉 is a complete lattice by properties of set union operator and subset
ordering

• 〈Ψ,v f ,t f 〉 is a complete lattice as proved by lemma 3.4.12

• f is a prefixpoint of F‖ by hypothesis

• α f is a join-morphism as proved by lemma 3.4.16

• α f (F‖) v f F‖(α f) as proved by lemma 3.4.28

Then, by theorem 2.2.5, ∀(f, r) ∈ Ψpre × Ωpre : α f (S‖)Jf, rK v f S‖Jf, rK.

3.4.8 Launching a Thread
The launch of a thread can be directly abstracted from the concrete definition presented
in Section 3.3.5.

3.4.9 The Example
We analyze the example presented in Section 3.1.1 using the Interval domain in order to
infer information about numerical values.
For the first iteration we obtain the same results as the concrete semantics, completely de-
scribed in Section 3.3.6. The only difference is that now we deal with abstract values, and
so we relate each numerical variable to an interval instead of an integer, and the concrete
reference would be abstracted into an abstract one. Note that Chapter 5 will introduce an
ad-hoc analysis in order to abstract references.
We analyze which abstract values are returned by the visible function when reading
amount and account during the second iteration of the fixpoint computation. In partic-
ular, both the initial values (amount = [100..100] and account = #aba1) and the values
written by Thread 1 (amount = [0..0] and account = null) are visible. The least upper
bound of these elements returns amount = [0..100] and account = {#aba1, null}. Then
we check the condition of Thread 2 this.amount > 0&&this.account == null may be
evaluated to true, and we conclude that method isValid() when executed by Thread 2
may return false. This result is sound with respect to the concrete semantics, and so to
the happens-before memory model.

3.5 Related work
Many approaches have been developed in order to statically analyze multithreaded pro-
grams. Most of them deal with deadlock and data race detection [121]. In the last few
years other approaches, analyzing other and more generic properties, have been proposed

48 3. Static Analysis of the Happens-Before Memory Model

[125, 20, 141, 41]. Usually these approaches suppose that the execution is sequentially
consistent, but this assumption is not legal under, for instance, the Java Memory Model.
On the other hand, many definitions and some static analyses with respect to a memory
model have been proposed.
Roychoudhury and Mitra [122] present a semantics for Java multithreaded programs that
respects on an earlier version of the Java Memory Model. In particular, it presents an ex-
ecutable semantics that is sound and complete with respect to the Java Memory Model,
and it verifies programs on it using model checking techniques. It is specific to the Java
programming language, and it is affected by the state space explosion problem.
In a similar way, Huynh et al. [71] develop a model checker for the .NET memory model
[36]. It is specific to the C# language, and it suffers from the state explosion problem.
Cenciarelli, Knapp and Sibilio [19] propose a formalization of the Java Memory Model
through a semantics that combines operational, denotational, and axiomatic approaches.
The authors build up a subset of the legal executions under the Java Memory Model. This
approach is different from ours, since we compute a superset of these executions. How-
ever this approach is specific to the Java programming language, and it does not introduce
any static analysis.
Boudol and Petri [17] propose an operational approach to the definition of a relaxed mem-
ory model. In particular, this work is focused on the formalization of the behaviors of
buffers and how communications through shared memory use them.
Steinke and Nutt [133] propose an unifying approach to the definition of consistency rules
on multithreaded executions. All consistency rules previously proposed can be defined in
this framework. We think that this generality may be achieved also in our framework
tuning on different memory models the vis function.
Rakamaric and Hu [116] propose a new memory model for low-level code. In particular,
previous memory models require some checks before each memory access at runtime.
This approach is not scalable. So the authors propose a static analysis to validate some
properties of interest. So many runtime checks can be safely removed, and the resulted
memory model is scalable. On the other hand, this static analysis is focused on some par-
ticular properties, and so it is not a generic static analysis sound with respect to a memory
model.
Given this context, our work appears to be

• the first definition in a fixpoint form of a memory model,

• the first static analysis sound with respect to the happens-before memory model,

• the first static analysis of a memory model based on abstract interpretation theory,

• the first work that combines together a generic definition of a memory model and
its static analysis.

3.6. Discussion 49

3.6 Discussion
In this chapter we presented a whole-program analysis of multithreaded programs. Our
analysis is as generic as possible with respect to the programming language. It requires
only that some functions and a small step semantic atomic at multithreaded level are
provided. In addition, it is generic with respect to the abstract numerical domain, and the
property of interest. In order to apply it to a real programming language, and in particular
Java, we need to study in the details some issues related with this approach.

3.6.1 Thread Identifiers
In Java threads are objects. In order to create and launch a thread, developers have to
create a class that extends java.lang.Thread, override the method run() with the code
that has to be executed in parallel, instantiate an object of this class, and then invoke the
method start() on it. In this context, threads are objects. In the Java virtual machine
objects are stored in the heap, and thus they are identified by reference.
In our approach, we considered that the set of thread identifiers is the same in our concrete
and abstract domain. This means that the set of active threads is statically determined at
the beginning of the computation, and it is finite. This is not the case when analyzing Java
programs, as in the concrete context we may have an unbounded allocation of references,
and we need to approximate it in the abstract. Chapter 5 will present an ad-hoc may-alias
analysis in order to soundly abstract concrete references.

3.6.2 Monitors
In a similar way, Java bytecode has two primitives (monitorenter and monitorexit) in
order to lock and unlock monitors. Each object is related to a monitor: in order to manage
it, the Java Virtual Machine uses the reference that identifies the object.
In our approach, the abstract semantics supposes that if two threads own a common ab-
stract synchronizable element then they are synchronized in all the possible executions.
As in Java monitors are identified by reference, we need to develop a must-alias analysis.
Chapter 5 will present it.

3.6.3 Modular Analysis of Multithreaded Programs
When developing programs, we often want to reason modularly, i.e. to partition an ap-
plication into different tasks, reason on and develop separately each of them, and finally
compose them through some well-defined interfaces. Modularity is a key objective of
many programming languages, and indeed it is one of the main motivations of object
oriented languages [100]. One of the consequences of modular programming is that a
practical analysis must fit the toolchain the developer uses, that is, an analysis for Java
must be modular. For instance, Logozzo [90] analyzes each class separately from the
others, inferring properties that are valid in all possible environments of execution.

50 3. Static Analysis of the Happens-Before Memory Model

However, modular reasoning on multithreaded programs is not possible. For instance,
when we develop the code of a thread we cannot specify some constraints on how other
threads would access shared data in parallel, and they may read and write them freely.
Comparing multithreading to object oriented languages, while in the second case we have
public, protected, and private fields, and through these modifiers we may avoid other
classes to access them, in multithreading there is no way to locally forbid parallel ac-
cesses or put some constraints on them. In addition in object oriented programs other
constraints may be specified at runtime, for instance using contracts. Instead, usually
there is no way to check at runtime what other threads are doing (e.g. if they have written
a shared variables without owning a given monitor).
Some extensions of contracts to multithreaded programs have been proposed recently
[108, 87]. On one hand, the authors propose some restrictions (e.g. through ownership
types) on how threads interacts to avoid data races and deadlocks [107]. On the other
hand, they propose some automatic synchronization actions, called wait-semantics, to
enforce assertions, class invariants, pre- and post-conditions also in multithreaded pro-
grams. Finally, monitor invariants hold when no thread is executing within the monitor,
that is, between acquire and release operations [11]. Our approach is slightly different
with respect to this one, as we want to

• analyze all Java multithreaded programs, and not to restrict programs in order to
avoid data races and deadlocks,

• check properties for all the possible executions without requiring additional auto-
matic synchronizations.

In this context, we had to develop a whole-program analysis. On the other hand, it seems
evident that something more is required semantically in order to put developers in position
to modularly think about threads. For instance, a different approach has been adopted
by the Software Transactional Memory [127]. However, STM has not been adopted by
common programming languages (e.g. Java and C#) which, so far, offer threads rather
than transactions.

4
Determinism of Multithreaded

Programs

In this chapter, we will define and abstract a deterministic property focused on multi-
threaded programs. Our property is aimed at checking the nondeterministic behavior that
is due to the arbitrary interleaving during the execution of different threads. We define it
as difference among concrete traces. Then we abstract it in two separate steps in order to
statically analyze it. At the intermediate level of abstraction, we propose the new idea of
weak determinism. We discuss how nondeterminism may flow. We relax the deterministic
property projecting it on a part of traces and states. We introduce how data races and SQL
phenomena affect the determinism of multithreaded programs. Finally, we sketch how
the proposed property may be used in order to semi-automatically parallelize sequential
programs.
This chapter is based on previously published work [44].

4.1 Analyzing Multithreaded Programs
A topic thoroughly studied has been how parallel threads can communicate in order to
limit nondeterministic behavior. In this context, many different approaches have been
developed.

4.1.1 Data Races

The first way is the static or dynamic checking on threads’ actions like general and data
races [106]. When two threads access the shared memory, and at least one performs a
write operation, they form a general race. The data race requires also that the concurrent
accesses are not synchronized. The idea is that races cause nondeterminism and that are a
symptom of bugs. The efforts in the static analysis of races have been huge: Rinard [121]
has presented a complete overview until some years ago. Many other approaches have
been proposed during the last few years, e.g. [1, 21, 41, 49, 61, 63, 81, 104, 137, 141].
Nevertheless, it seems that the data race condition is not expressive and flexible enough. In
fact, the absence of general races is a too restrictive condition for multithreaded programs

52 4. Determinism of Multithreaded Programs

Thread 1 System Thread 2
Account a = new Account();

a.amount = 1.000;
...

qqbbbbbbbbbbbbbb
--\\\\\\\\\\\\\\

a.deposit(100) a.withdraw(100)

Figure 4.1: Depositing and withdrawing in parallel

that communicate asynchronously through shared memory. On the other hand, avoiding
data races does not guarantee the determinism of a program.
In addition, a race does not take into account

• which statements and threads cause it,

• which area of the shared memory it deals with,

• if the informations written in parallel are different and how much.

Our idea is to directly study determinism. The aim is to relax the deterministic property
on a critical subset of the shared memory, considering only some statements and threads,
looking also at the (abstract) values written and read in parallel. Our approach is thus
more flexible than general and data races.

4.1.2 Model of Execution
Another large amount of work has focused on consistency conditions that multithreaded
programs have to provide. The best known model is sequential consistency [83], that has
been shown to be too restrictive for modern programming languages. For instance, the
Java memory model [95] is more relaxed than it. Our approach is orthogonal with respect
to these consistency conditions that define which states of shared memory are visible dur-
ing the execution of different threads.
A similar approach is the definition of a specific programming model that restricts the
non-determinism of multithreaded programs by allowing certain interactions between th-
reads. The Software Transactional Memory (STM) [127, 60] allows to specify that the
execution of a given part of a program is atomic, i.e. it is viewed as a unique operation
by other threads. A large work on the semantics of parallel languages has been devel-
oped by trace theory [98], e.g. [51]. In this case, we distinguish the model of execution
from the determinism of a program. Our deterministic property may be applied to anal-
yses sound with respect to sequential consistency, happens-before memory model, Java
memory model, software transactional memory, etc..

4.1.3 An Example
In order to illustrate the concepts presented throughout this chapter, we will always refer
to the following example.

4.2. Syntax and Concrete Semantics 53

Figure 4.1 depicts a multithreaded execution that uses the class Account introduced in
Section 2.3. The system is going to execute in parallel a deposit of 100 and a withdrawal
of the same amount of money. At the beginning, the value contained in account is 1.000.

4.2 Syntax and Concrete Semantics

In this section, we present

• a syntax focused on write and read operations on shared memory,

• the concrete domain and semantics. They are augmented in order to trace, for each
value, the thread that wrote it in the shared memory.

4.2.1 Syntax

For the sake of readability, we consider a very restricted syntax. It is focused on the
interactions with the shared memory, i.e. read and write actions. In this way we consider
only statements of the form sh var = value and read(sh var).
Statement sh var = value writes on a shared variable sh var a given value. read(sh var)
reads a shared variable sh var and returns its value. Note that this syntax can be easily
extended with other statements (if, while, etc..).

4.2.2 Concrete Domain

The concrete domain we consider is strictly focused on the shared memory. For each
value, we trace the thread that wrote it. As we are in the concrete context, we know ex-
actly which thread wrote a value at each point of the computation. Thus, we relate each
shared variable to a pair composed of its value and an identifier of the thread that has
written the values.
Formally, let TId be the set of the identifiers of threads, Var be the set of shared vari-
ables, and V be the set of concrete values. The shared memory is a function that relates
each variable to a pair composed by its value and the identifier of the thread that wrote it
(S : [Var → (V × TId)]). Note that this representation of shared memory is quite differ-
ent with respect to the approach usually adopted by current programming languages. For
instance, in Java the shared memory is the heap, and values are accessed by reference.
At the static level this approach would lead to multiple issues that are orthogonal with
respect to our goal, e.g. alias analysis. These will be considered in Chapter 5.
The concrete domain is the thread-partitioning one introduced in Section 3.3.2. In partic-
ular, the states are the shared memories (Ψ : [TId→ S~+]).

54 4. Determinism of Multithreaded Programs

4.2.3 Transfer Function
In order to define the concrete semantics of write actions on shared memory, we introduce
W : [(S×TId)→ S] applied to sh var = value. It is defined asWJsh var = valueK(s, t) =

s[sh var 7→ (value, t)].
The value read from a shared memory s is given by the function R : [S → V] applied
to eval(sh var). It is defined as RJeval(sh var)K(s) = π1(s(sh var)), where π1 is the
projection on the first component.

4.2.4 An Example

Thread 1 : [a.amount 7→ (1.000,System)]→ [a.amount 7→ (1.100,Thread 1)]

Thread 2 : [a.amount 7→ (1.100,Thread 1)]→ [a.amount 7→ (1.000,Thread 2)]

Thread 1 : [a.amount 7→ (900,Thread 2)]→ [a.amount 7→ (1.000,Thread 1)]

Thread 2 : [a.amount 7→ (1.000,System)]→ [a.amount 7→ (900,Thread 2)]

Figure 4.2: The concrete semantics

Figure 4.2 presents the two multithreaded concrete executions obtained using the do-
main and the semantics just introduced. The first element represents the case in which
Thread 1 is executed before Thread 2. The second element depicts the opposite situa-
tion. Note that other executions are not possible as both the methods are synchronized on
the same monitor.

4.3 A Value for Each Thread (Abstraction 1)
In this section, we present the first level of abstraction where each shared variable is
related to an abstract value for each thread that may write on that. Our analysis is param-
eterized by the abstract non-relational domain that approximates numerical values.

4.3.1 Abstract Domain (First Level)
We consider the following Galois connection between the concrete domain of values and
its abstract counterpart.

〈℘(V),⊆, ∅,V,∪,∩〉 −−−−→←−−−−αV

γV 〈V̂,vV̂,⊥V̂,>V̂,tV̂,uV̂〉
As we work pointwisely on values, this means that the non-relational abstract domain has
to soundly approximate the concrete values. In the concrete context, different executions

4.3. A Value for Each Thread (Abstraction 1) 55

may contain values written by different threads because of their arbitrary interleavings.
The first level of abstraction approximates all the concrete executions with a unique ab-
stract trace. For each shared variable it gathers all the values written by the same thread
on the same shared variable. So it collects an abstract value for each thread.
Formally, a shared memory ŝ relates each variable to a function that maps a thread to the
abstraction of the values that it may have written, i.e. Ŝ : [Var→ [TId→ V̂]].
As in the concrete semantics, we adopt the thread-partitioning trace domain (Ψ̂ : [TId →
Ŝ~+]).

4.3.2 Upper Bound Operator
The upper bound operator on shared memories keeps all the values written by different
threads. It relies on the join operator of the abstract numerical domain.

ŝ1 tŜ ŝ2 = ŝ : ∀var ∈ dom(̂s1) ∪ dom(̂s2),∀t ∈ dom(̂s1(var)) ∪ dom(̂s2(var)),

ŝ(var)(t) =

ŝ1(var)(t) if var < dom(̂s2) ∨ t < dom(̂s2(var))
ŝ2(var)(t) if var < dom(̂s1) ∨ t < dom(̂s1(var))
ŝ1(var)(t) tV̂ ŝ2(var)(t) otherwise

The upper bound operator on traces simply applies the upper bound operator of shared
memories on all traces’ states.

τ̂1 tŜ~+ τ̂2 = σ̂0 → ..→ σ̂i : i = max(len(̂τ1), len(̂τ2)),∀ j ∈ [0..i] :

σ̂ j =

τ̂1(j) tŜ τ̂2(j) if j < len(̂τ1) ∧ j < len(̂τ2)
τ̂2(j) if j ≥ len(̂τ1)
τ̂1(j) if j ≥ len(̂τ2)

The upper bound operator on the multithreaded state is the pointwise extension of the
upper bound of traces on all the elements of the codomain.

f̂1 tΨ̂ f̂2 = f̂ : ∀t ∈ dom(̂f1) ∪ dom(̂f2) :

f̂(t) =

f̂1(t) tŜ~+ f̂2(t) if t ∈ dom(̂f1) ∩ dom(̂f2)
f̂1(t) if t ∈ dom(̂f1) ∧ t < dom(̂f2)
f̂2(t) if t ∈ dom(̂f2) ∧ t < dom(̂f1)

4.3.3 Abstraction Function
The abstraction function maps a set of concrete shared memories into an abstract memory.

αS : [℘(S)→ Ŝ]
αS(S) = f̂ : ∀var ∈ ⋃

s∈S dom(s),∀t ∈ ⋃
s∈S dom(s(var)) :

f̂(var)(t) = αV({v : ∃s ∈ S : s(var) = (v, t)})
The abstraction of a set of traces produces an abstract trace such that its i-th element

is the abstraction of the i-th elements of all the given concrete traces.

56 4. Determinism of Multithreaded Programs

αS~+ : [℘(S~+)→ Ŝ~+]
αS~+(T) = σ̂0 → · · · → σ̂i : i = max(

⋃
τ∈T len(τ)),

∀ j ∈ [0..i] : σ̂ j = αS(
⋃

τ∈T:len(τ)> j τ(j))

When considering traces, the abstraction function returns a unique function. This
abstracts together all the traces produced by the same thread in the different concrete
executions.

αΨ : [℘(Ψ)→ Ψ̂]
αΨ(Φ) = f̂ : ∀t ∈ ⋃

f∈Φ dom(f) : f̂(t) = αS~+(
⋃

f∈Φ:t∈dom(f) f(t))

Proposition 4.3.1 (αV is a join preserving map) We suppose that αV is a join preserving
map, i.e. ∀V1,V2 ⊆ V : αV(V1 ∪ V2) = αV̂(V1) tV̂ αV(V2)

Lemma 4.3.2 (αS is a join preserving map) αS is a join preserving map, i.e. ∀S1,S2 ∈ S :
αS(S1 ∪ S2) = αS(S1) tŜ αS(S2)

Proof.

αS(S1 ∪ S2)
(by definition of αS)

= f̂ : ∀var ∈ ⋃
s∈S1∪S2

dom(s),∀t ∈ ⋃
s∈S1∪S2

dom(s(var)) :
f̂(var)(t) = αV({v ∈ V : ∃s ∈ S1 ∪ S2 : s(var) = (v, t)})
(by basic set properties)

= f̂ : ∀var ∈ ⋃
s∈S1

dom(s) ∪⋃
s∈S2

dom(s),
∀t ∈ ⋃

s∈S1
dom(s(var)) ∪⋃

s∈S2
dom(s(var)) : f̂(var)(t) =

= αV({v ∈ V : ∃s ∈ S1 : s(var) = (v, t)} ∪ {v ∈ V : ∃s ∈ S2 : s(var) = (v, t)})
(by proposition 4.3.1)

= f̂ : ∀var ∈ ⋃
s∈S1

dom(s) ∪⋃
s∈S2

dom(s),
∀t ∈ ⋃

s∈S1
dom(s(var)) ∪⋃

s∈S2
dom(s(var)) : f̂(var)(t) =

= αV({v ∈ V : ∃s ∈ S1 : s(var) = (v, t)}) tV̂ αV({v ∈ V : ∃s ∈ S2 : s(var) = (v, t)})
(by definition of αS the abstract result is defined on the union of all the domains)
(of all the concrete elements)

= f̂ : ∀var ∈ dom(αS(S1)) ∪ dom(αS(S2)),
∀t ∈ dom(αS(S1)(var)) ∪ dom(αS(S1)(var)) :
f̂(var)(t) = αV({v ∈ V : ∃s ∈ S1 : s(var) = (v, t)})tV̂

αV({v ∈ V : ∃s ∈ S2 : s(var) = (v, t)})

We reason by case:

• if var < dom(αS(S2)) ∨ @s ∈ S2 : s(var) = (val, t), then f̂(var)(t) = αV({val : ∃s ∈
S1 : s(var) = (val, t)}). By definition of αS we have that αV({val : ∃s ∈ S1 :

4.3. A Value for Each Thread (Abstraction 1) 57

s(var) = (val, t)}) = αS(S1)(var)(t) and that @s ∈ S2 : s(var) = (val, t) ⇒ t <
dom(αS(S2)(var)). Combining them, we obtain that

var < dom(αS(S2)) ∨ @t < dom(αS(S2)(var))⇒ f̂(var)(t) = αS(S1)(var)(t) (4.3.1)

• in the same way but inverting S1 and S2 we obtain that

var < dom(αS(S1)) ∨ @t < dom(αS(S1)(var))⇒ f̂(var)(t) = αS(S2)(var)(t) (4.3.2)

• otherwise, the value would be the least upper bound between the values contained
in S1 and S2, and so we obtain that

f̂(var)(t) = αS(S1)(var)(t) tV̂ αS(S2)(var)(t) (4.3.3)

Combining 4.3.1, 4.3.2, and 4.3.3 we obtain that

f̂ : ∀var ∈ dom(αS(S1)) ∪ dom(αS(S2)),∀t ∈ dom(αS(S1)(var)) ∪ dom(αS(S2)(var)),

f̂(var)(t) =

αS(S1)(var)(t) if var < dom(αS(S2)) ∨ @t < dom(αS(S2)(var))
αS(S2)(var)(t) if var < dom(αS(S1)) ∨ @t < dom(αS(S1)(var))
αS(S1)(var)(t) tV̂ αS(S2)(var)(t) otherwise

and so by definition of tŜ that f̂ = αS(S1) tŜ αS(S2).

We proved that f̂ = αS(S1 ∪ S2) and that f̂ = αS(S1) tŜ αS(S2). So, by transitive property
of equivalence, we proved that αS(S1 ∪ S2) = αS(S1) tŜ αS(S2).

Lemma 4.3.3 (αS~+ is a join preserving map) αS~+ is a join preserving map, i.e. ∀T1,T2 ∈
S~+ : αS~+(T1 ∪ T2) = αS~+(T1) tŜ~+ αS~+(T2)

Proof.

αS~+(T1 ∪ T2)
(by definition of αS~+)

= σ̂0 → · · · → σ̂i : i = max(
⋃

τ∈T1∪T2
len(τ)),∀ j ∈ [0..i] :

σ̂ j = αS(
⋃

τ∈T1∪T2:len(τ)> j τ(j))
(by basic set properties)

= σ̂0 → · · · → σ̂i : i = max(
⋃

τ∈T1
len(τ),

⋃
τ∈T2

len(τ)),
∀ j ∈ [0..i] : σ̂ j = αS(

⋃
τ∈T1:len(τ)> j τ(j) ∪⋃

τ∈T2:len(τ)> j τ(j))
(by Lemma 4.3.2)

= σ̂0 → · · · → σ̂i : i = max(
⋃

τ∈T1
len(τ),

⋃
τ∈T2

len(τ)),
∀ j ∈ [0..i] : σ̂ j = αS(

⋃
τ∈T1:len(τ)> j τ(j)) tŜ αS(

⋃
τ∈T2:len(τ)> j τ(j))

(by definition of tŜ~+)
= αS~+(T1) tŜ~+ αS~+(T2)

58 4. Determinism of Multithreaded Programs

Lemma 4.3.4 (αΨ is a join preserving map) αΨ is a join preserving map, i.e. ∀Φ1,Φ2 ∈
Ψ : αΨ(Φ1 ∪Φ2) = αΨ(Φ1) tΨ̂ αΨ(Φ2)

Proof.

αΨ(Φ1 ∪Φ2)
(by definition of αΨ)

= f̂ : ∀t ∈ ⋃
Φ1∪Φ2

dom(f) : f̂(t) = αS~+(
⋃

f∈Φ1∪Φ2:t∈dom(f) f(t))
(by basic set properties)

= f̂ : ∀t ∈ ⋃
Φ1∪Φ2

dom(f) : f̂(t) = αS~+(
⋃

f∈Φ1:t∈dom(f) f(t) ∪⋃
f∈Φ2:t∈dom(f) f(t))

(by Lemma 4.3.3)
= f̂ : ∀t ∈ ⋃

Φ1∪Φ2
dom(f) : f̂(t) = αS~+(

⋃
f∈Φ1:t∈dom(f) f(t)) tS~+ αS~+(

⋃
f∈Φ2:t∈dom(f) f(t))

(by definition of tŜ~+)
= αΨ(Φ1) tΨ̂ αΨ(Φ2)

Theorem 4.3.5 Let ≤Ψ̂ be the partial order induced by tΨ̂, and γΨ be defined as

γΨ = λ̂y.
⋃
{z : αΨ(z) vΨ̂ ŷ}

Then
〈℘(Ψ),⊆, ∅,Ψ,∪,∩〉 −−−−→←−−−−αΨ

γΨ 〈Ψ̂,vΨ̂,⊥Ψ̂,>Ψ̂,tΨ̂,uΨ̂〉
Proof. Lemma 4.3.4 proved that αΨ is a join preserving map.
Then by Theorem 2.2.2 we proved that

〈℘(Ψ),⊆, ∅,Ψ,∪,∩〉 −−−−→←−−−−αΨ

γΨ 〈Ψ̂,vΨ̂,⊥Ψ̂,>Ψ̂,tΨ̂,uΨ̂〉

4.3.4 Transfer Function
In correspondence to the semantic functions W and R, we introduce their abstract coun-
terpart Ŵ and R̂ as follows.
Ŵ : [(Ŝ × TId)→ Ŝ] of sh var = value is defined as

ŴJsh var = valueK(̂s, t) = ŝ[sh var 7→ [t 7→ αV(value)]]

R̂ : [Ŝ→ V̂] of eval(sh var) is defined as

R̂Jeval(sh var)K(̂s) =
⊔

t∈dom(̂s(sh var))

ŝ(sh var)(t)

Lemma 4.3.6 (Soundness of Ŵ) Ŵ is the abstraction ofW, i.e.

∀s ∈ S,∀t ∈ TId : αS(WJsh var = valueK(s, t)) = ŴJsh var = valueK(αS({s}), t)

4.3. A Value for Each Thread (Abstraction 1) 59

Proof.
αS(WJsh var = valueK({s}, t))

(by definition ofWJsh var = valueK)
= αS({s[sh var 7→ (value, t)]})

(by definition of αS)
= αS({s})[sh var 7→ (αV(value), t)]

(by definition of ŴJsh var = valueK)
= ŴJsh var = valueK(αS({s}), t)

Lemma 4.3.7 (Soundness of R̂) R̂ is the abstraction of R, i.e.

∀s ∈ S : αV({RJeval(sh var)K(s)}) = R̂Jeval(sh var)K(αS({s}))
Proof.

αV({RJeval(sh var)K(s)})
(by definition of {RJeval(sh var)K)

= αV({π1(s(sh var))})
(by definition of αS)

= π1(αS({s})(sh var))
(by definition of R̂Jeval(sh var)K)

= R̂Jeval(sh var)K(αS({s}))

4.3.5 The Example

Thread 1 :

[
a.amount 7→

{
System 7→ [1.000..1.000]
Thread 2 7→ [900..1.000]

}]

↓
[a.amount 7→ {Thread 1 7→ [1.000..1.100]}]

Thread 2 :

[
a.amount 7→

{
System 7→ [1.000..1.000]
Thread 1 7→ [1.000..1.100]

}]

↓
[a.amount 7→ {Thread 2 7→ [900..1.000]}]

Figure 4.3: The abstract semantics

Figure 4.3 depicts the results of the abstract semantics. In order to capture numerical
information we use the Interval domain.
From these results, we discover that the value read from the field a.amount by Thread 1
may have been written by System or Thread 2. The value read by Thread 2 may have
been written by System or Thread 1. This makes evidence that some nondeterministic
behaviors due to arbitrary interleaving of threads arise.

60 4. Determinism of Multithreaded Programs

4.4 Just one Value (Abstraction 2)
In this section we present the second level of abstraction: all values written by different
threads collapse into the same abstract element.

4.4.1 Abstract Domain (Second Level)
A shared memory s ∈ S relates each variable var to a pair composed by a value and the
set of threads that may have written it. Formally S : [Var→ (V̂ × ℘(TId))].

Then our abstract domain is represented as a function in Ψ : [TId→ S
~+
].

4.4.2 Upper Bound Operator
The upper bound operator on shared memories produces for each variable a pair composed
by

• the upper bound between the abstract numerical values assigner to the given vari-
able,

• and the set union of all the threads that may have written on it.

s1 tS s2 = s : ∀var ∈ dom(s1) ∪ dom(s2) :

s(var) =

(π1(s1(var)) tV̂ π1(s2(var)), π2(s1(var)) ∪ π2(s2(var)))
if var ∈ dom(s1) ∩ dom(s2)

s1(var) if var ∈ dom(s1) ∧ var < dom(s2)
s2(var) if var ∈ dom(s2) ∧ var < dom(s1)

The upper bound operator on traces is the pointwise application of the upper bound
operator of shared memories.

τ1 tS
~+ τ2 = σ0 → ..→ σi : i = max(len(τ1), len(τ2)),

∀ j ∈ [0..i] : σ j =

τ1(j) tS τ2(j) if j < len(τ1) ∧ j < len(τ1)
τ1(j) if j < len(τ1) ∧ j ≥ len(τ2)
τ2(j) if j < len(τ2) ∧ j ≥ len(τ1)

The upper bound operator on the multithreaded state is the pointwise application of
the upper bound of traces on all the elements of the codomain.

f1 tΨ f2 = f : ∀t ∈ dom(f1) ∪ dom(f2) :

f(t) =

f1(t) t
S
~+ f2(t) if t ∈ dom(f1) ∩ dom(f2)

f1(t) if t ∈ dom(f1) ∧ t < dom(f2)
f2(t) if t ∈ dom(f2) ∧ t < dom(f1)

4.4. Just one Value (Abstraction 2) 61

4.4.3 Abstraction Function
For each variable the abstraction of shared memories takes the join all the values written
by different threads.

αŜ : [Ŝ→ S]
αŜ(̂s) = s : ∀var ∈ dom(̂s) : s(var) = (

⊔
t∈dom(̂s(var)) ŝ(t), dom(̂s(var)))

The abstraction of traces is the pointwise application of the abstraction of the shared
memory.

αŜ~+ : [Ŝ~+ → S
~+
]

αŜ~+(σ̂0 → ..→ σ̂i) = αŜ(σ̂0)→ ..→ αŜ(σ̂i)

The abstraction on the multithreaded state is the pointwise application of the abstraction
of traces.

αΨ̂ : [Ψ̂→ Ψ]
αΨ̂(̂f) = f : ∀t ∈ dom(̂f) : f(t) = αŜ~+ (̂f(t))

Lemma 4.4.1 (αŜ is a join preserving map) αŜ is a join preserving map, i.e. ∀̂s1, ŝ2 ∈ Ŝ :
αŜ(̂s1 tŜ ŝ2) = αŜ(̂s1) tS αŜ(̂s2)

Proof.

αŜ(̂s1 tŜ ŝ2)
(by definition of αŜ)

= s : ∀var ∈ dom(̂s1 tŜ ŝ2) :
s(var) = (

⊔
t∈dom((̂s1tŜŝ2)(var)) ŝ1 tŜ ŝ2(t), dom((̂s1 tŜ ŝ2)(var)))

(by definition of tŜ we have that)
(dom(̂s1 tŜ ŝ2) = dom(̂s1) ∪ dom(̂s2) and ∀var ∈ dom(̂s1) ∪ dom(̂s2) :)
(dom((̂s1 tŜ ŝ2)(var)) = dom(̂s1(var)) ∪ dom(̂s2(var)))

= s : ∀var ∈ dom(̂s1) ∪ dom(̂s2) :
s(var) = (

⊔
t∈dom(̂s1(var))∪dom(̂s2(var)) ŝ1 tŜ ŝ2(t), dom(̂s1(var)) ∪ dom(̂s2(var)))

We reason by case:

• if var < dom(̂s2) we have that s(var) = (
⊔

t∈dom(̂s1(var)) ŝ1(t), dom(̂s1(var))). By defini-
tion αŜ we have that (

⊔
t∈dom(̂s1(var)) ŝ1(t), dom(̂s1(var))) = αŜ(̂s1), and, by transitive

property of the equivalence operator, s(var) = αŜ(̂s1). So we obtain that

var < dom(̂s2)⇒ s(var) = αŜ(̂s1) (4.4.1)

• in the same way but inverting ŝ1 and ŝ2 we obtain that

var < dom(̂s1)⇒ s(var) = αŜ(̂s2) (4.4.2)

62 4. Determinism of Multithreaded Programs

• otherwise, we have that

s(var) = (
⊔

t∈dom(̂s1(var))∪dom(̂s2(var)) ŝ1 tŜ ŝ2(t), dom(̂s1(var)) ∪ dom(̂s2(var)))
= (

⊔
t∈dom(̂s1(var)) ŝ1(t) tV̂

⊔
t∈dom(̂s2(var)) ŝ2(t), dom(̂s1(var)) ∪ dom(̂s2(var)))

by definition of tŜ. By definition of αŜ we have that

(
⊔

t∈dom(̂s1(var)) ŝ1(t) tV̂

⊔
t∈dom(̂s2(var)) ŝ2(t), dom(̂s1(var)) ∪ dom(̂s2(var))) =

= (π1(αŜ(̂s1)(var)) tV̂ π1(αŜ(̂s2)(var)), π2(̂s1(var)) ∪ π2(̂s2(var)))

So we obtain that

var ∈ dom(̂s1) ∩ dom(̂s2)
⇓

s(var) = (π1(αŜ(̂s1)(var)) tV̂ π1(αŜ(̂s2)(var)), π2(̂s1(var)) ∪ π2(̂s2(var)))
(4.4.3)

Combining 4.4.1, 4.4.2, and 4.4.3 we obtain that

s : ∀var ∈ dom(̂s1) ∪ dom(̂s2) :

ŝ(var) =

αŜ(̂s1) if var < dom(̂s2)
αŜ(̂s2) if var < dom(̂s1)
(π1(αŜ(̂s1)(var)) tV̂ π1(αŜ(̂s2)(var)), π2(̂s1(var)) ∪ π2(̂s2(var)))

if var ∈ dom(̂s1) ∩ dom(̂s2)

and so by definition of tS that s = αŜ(̂s1) tS αŜ(̂s2).

We proved that αŜ(̂s1 tŜ ŝ2) = s and that s = αŜ(̂s1) tS αŜ(̂s2). So, by transitive property
of equivalence, we get αŜ(̂s1 tŜ ŝ2) = αŜ(̂s1) tS αŜ(̂s2).

Lemma 4.4.2 (αŜ~+ is a join preserving map) αŜ~+ is a join preserving map, i.e. ∀̂τ1, τ̂2 ∈
Ŝ~+ : αŜ~+ (̂τ1 tŜ~+ τ̂2) = αŜ~+ (̂τ1) t

S
~+ α

S
~+ (̂τ2)

Proof. Supposing that τ̂1 = σ̂0 → · · · → σ̂i, τ̂2 = σ̂′0 → · · · → σ′j, and i > j we obtain
that:

αŜ~+((σ̂0 → · · · → σ̂i) tŜ~+ (σ′0 → · · · → σ′j))
(by definition of tŜ~+)

= αŜ~+((σ̂0 tŜ σ
′
0)→ · · · → (σ̂ j tŜ σ

′
j)→ σ̂ j+1 → · · · → σ̂i)

(by definition of αŜ~+)
= αŜ(σ̂0 tŜ σ

′
0)→ · · · → αŜ(σ̂ j tŜ σ

′
j)→ αŜ(σ̂ j+1)→ · · · → αŜ(σ̂i)

(by Lemma 4.4.1)
= αŜ(σ̂0) tS αŜ(σ′0)→ · · · → αŜ(σ̂ j) tS αŜ(σ′j)→ αŜ(σ̂ j+1)→ · · · → αŜ(σ̂i)

(by definition of tŜ~+)
= αS~+ (̂τ1) tŜ~+ αS~+ (̂τ2)

The proof is the same when the situation is opposite, i.e. when j ≥ i.

4.4. Just one Value (Abstraction 2) 63

Lemma 4.4.3 (αΨ̂ is a join preserving map) αΨ̂ is a join preserving map, i.e. ∀̂f1 ,̂ f2 ∈ Ψ̂ :
αΨ̂(̂f1 tΨ̂ f̂2) = αΨ̂(̂f1) tΨ αΨ̂(̂f2)

Proof.
αΨ̂(̂f1 tΨ̂ f̂2)

(by definition of αΨ̂)
= f : ∀t ∈ dom(̂f1 tΨ̂ f̂2) : f(t) = αŜ~+((̂f1 tΨ̂ f̂2)(t))

(by definition of tΨ̂)
= f : ∀t ∈ dom(̂f1) ∪ dom(̂f2) : f(t) = αŜ~+ (̂f1(t) tŜ~+ f̂2(t))

(by Lemma 4.4.2)
= f : ∀t ∈ dom(̂f1) ∪ dom(̂f2) : f(t) = αŜ~+ (̂f1(t)) t

S
~+ αŜ~+ (̂f2(t))

(by definition of t
S
~+)

= αΨ̂(̂f1) tΨ αΨ̂(̂f2)

Theorem 4.4.4 Let ≤Ψ be the partial order induced by tΨ, and γΨ̂ be defined as

γΨ̂ = λy.
⊔

Ψ̂

{̂z : αΨ̂(̂z) vΨ y}

Then
〈Ψ̂,vΨ̂〉 −−−−→←−−−−αΨ̂

γΨ̂ 〈Ψ,vΨ〉
Proof. Lemma 4.4.3 proved that αΨ̂ is a join preserving map.
So by Theorem 2.2.2 we proved that

〈Ψ̂,vΨ̂〉 −−−−→←−−−−αΨ̂

γΨ̂ 〈Ψ,vΨ〉

4.4.4 Transfer Function
The transfer functionW : [(S × TId)→ S] of sh var = value is defined as

WJsh var = valueK(s, t) = s[sh var 7→ (v̂alue, {t})]

The function R : [S→ V̂] of eval(sh var) is defined as

RJeval(sh var)K(s) = π1(s(sh var))

Lemma 4.4.5 (Soundness ofW) W is the abstraction of Ŵ, i.e.

∀̂s ∈ Ŝ,∀t ∈ TId : αŜ(ŴJsh var = valueK(̂s, t)) = WJsh var = valueK(αŜ(̂s), t)

64 4. Determinism of Multithreaded Programs

Proof.
αŜ(ŴJsh var = valueK(̂s, t))

(by definition of ŴJsh var = valueK)
= αŜ(̂s[sh var 7→ [t 7→ αV(value)]])

(by definition of αŜ)
= αŜ(̂s)[sh var 7→ (αV(value), {t})]

(by definition ofWJsh var = valueK)
= WJsh var = valueK(αŜ(̂s), t)

Lemma 4.4.6 (Soundness of R) R is equal to R̂ ◦ αŜ, i.e.

∀̂s ∈ Ŝ : αV̂(R̂Jeval(sh var)K(̂s)}) = RJeval(sh var)K(αŜ({̂s}))

Proof. By definition of R̂Jeval(sh var)K we have that

∀̂s ∈ Ŝ : R̂Jeval(sh var)K(̂s) =
⊔

t∈dom(̂s(sh var))

ŝ(sh var)(t) (4.4.4)

In the same way, by definition of R̂Jeval(sh var)K we have that

∀̂s ∈ Ŝ : RJeval(sh var)K(αŜ(̂s)) = π1(αŜ(̂s)(sh var)) (4.4.5)

By definition of αŜ(̂s) we have that

∀var ∈ dom(̂s) : αŜ(̂s)(var) = (
⊔

t∈dom(̂s(var))

ŝ(t), dom(̂s(var))) (4.4.6)

Combining 4.4.5 and 4.4.6, we obtain that

RJeval(sh var)K(αŜ(̂s)) = π1((
⊔

t∈dom(̂s(sh var))

ŝ(t), dom(̂s(sh var))))

So by definition of the projection function, we finally obtain that

RJeval(sh var)K(αŜ(̂s)) =
⊔

t∈dom(̂s(sh var))

ŝ(t) (4.4.7)

Combining 4.4.4 and 4.4.7, we prove that

RJeval(sh var)K(αŜ(̂s)) = R̂Jeval(sh var)K(̂s)

by transitive property of equivalence.

4.5. The Deterministic Property 65

Thread 1 : [a.amount 7→ ([900..1.000], {System,Thread 2})]→ [a.amount 7→ ([1.000..1.100], {Thread 1})]

Thread 2 : [a.amount 7→ ([1.000..1.100], {System,Thread 1})]→ [a.amount 7→ ([900..1.000], {Thread 2})]

Figure 4.4: The abstract semantics on the example

4.4.5 The Example

Figure 4.4 presents the results of the abstract semantics. Also in this case we use the
Interval domain in order to capture numerical information.
This level of abstraction infers that the value read by Thread 1 in a.amount may have
been previously written by both System and Thread 2. The value read by Thread 2 may
have been written by System or Thread 1.

4.5 The Deterministic Property

In the last three sections we presented the concrete domain and semantics, and the two
levels of abstraction. In this section, we define the deterministic property on them.

4.5.1 Determinism

A program is said to be deterministic “if given an input it returns always the same out-
put” [38]. This definition does not specify what the input and the output of a program is.
Someone may think that the output is what is written on the screen, by it may also be the
state of the memory at the end of the execution, or during it.
A too restrictive application of the concept of determinism may lead to a definition where
a multithreaded program is deterministic if all the statements are always executed in the
same total order. We face this problem through the thread-partitioning domain that ab-
stracts away the inter-thread order in which the statements are executed.
Moreover we focus on the non-determinism induced by the arbitrary interleavings of the
execution of different threads. As we do not make any supposition or restriction on the
programming language and its semantics, many different forms of non-determinism may
exist, e.g. a random number produced by the system, or the inputs received by a user.
We want to catch and analyze only the non-deterministic behaviors due to the parallel
execution of threads.
This goal can be reached by using the information collected by our analysis. We trace for
each value on the shared memory which thread may have written it. Then it is sufficient
to check if a value could have been written by two different threads at a given point, i.e.
for a given state of execution of a given thread.

66 4. Determinism of Multithreaded Programs

4.5.2 Formal Definition of Determinism on the Concrete Domain

We first define the determinism as difference between two shared memories, and then we
apply it to a set of elements of the concrete multithread semantics.

Definition 4.5.1 (Determinism on shared memory) Given two shared memories, they un-
derline a nondeterministic behavior due to the multithreaded execution if they relate the
same variable to values written by different threads.

ds : [S × S→ {true, false}]
ds(s1, s2) = false

m
∃var ∈ dom(s1) ∩ dom(s2) : s1(var) = (val1, t1), s2(var) = (val2, t2), t1 , t2

Definition 4.5.2 (Determinism on multithreaded state)

d : [℘(Ψ)→ {true, false}]
d(θ) = false

m
∃f1, f2 ∈ θ : ∃t ∈ dom(f1) ∩ dom(f2) : τ1 = f1(t), τ2 = f2(t),
∃i ∈ [0..min(len(τ1), len(τ2))] : ds(τ1(i), τ2(i)) = false

4.5.3 First Level of Abstraction

Definition 4.5.3 (d̂s)

d̂s : [Ŝ→ {true, false}]
d̂s(̂s) = false

m
∃var ∈ dom(̂s) : |dom(̂s(var))| > 1

Definition 4.5.4 (̂d)

d̂ : [Ψ̂→ {true, false}]
d̂(̂f) = false

m
∃t ∈ dom(̂f) : τ̂ = f̂(t),∃i ∈ [0..len(̂τ)] : d̂s(̂τ(i)) = false

Lemma 4.5.5 (Soundness of d̂) .

∀θ ∈ ℘(Ψ) : d(θ) = false⇒ d̂(αΨ(θ)) = false

4.5. The Deterministic Property 67

Proof. We have to prove that d̂(αΨ(θ)) = false. By definition of d̂, this implies that:

∃t ∈ dom(αΨ(θ)) : τ̂ = αΨ(θ)(t),
∃i ∈ [0..len(̂τ)] : ŝ = τ̂(i),∃var ∈ dom(̂s) : |dom(̂s(var))| > 1

By definition of αΨ, we have that

∃f1, f2 ∈ θ,∃t ∈ dom(f1) ∩ dom(f2) : τ̂ = αS~+({f1(t), f2(t)}),
∃i ∈ [0..len(̂τ)] : ŝ = τ̂(i),∃var ∈ dom(̂s) : |dom(̂s(var))| > 1

By definition of αS~+ it implies that

∃f1, f2 ∈ θ,∃t ∈ dom(f1) ∩ dom(f2) : τ1 = f1(t), τ2 = f2(t),
∃i ∈ [0..min(len(τ1), len(τ2))] : ŝ = αS({τ2(i), τ2(i)}),

∃var ∈ dom(̂s) : |dom(̂s(var))| > 1

By definition of αS we obtain that

∃f1, f2 ∈ θ,∃t ∈ dom(f1) ∩ dom(f2) : τ1 = f1(t), τ2 = f2(t),
∃i ∈ [0..min(len(τ1), len(τ2))] : s1 = τ1(i), s2 = τ2(i),

∃var ∈ dom(s1) ∩ dom(s2) : s1(var) = (val1, t1), s2(var) = (val2, t2), t1 , t2

By definition of d it implies that d(θ) = false. This condition is true by hypothesis.
So we proved that

∀θ ∈ ℘(Ψ) : d(θ) = false⇒ d̂(αΨ(θ)) = false

4.5.4 Second Level of Abstraction
Definition 4.5.6 (ds)

ds : [S→ {true, false}]
ds(s) = false⇔ ∃var ∈ dom(s) : |π2(s(var))| > 1

Definition 4.5.7 (d)

d : [Ψ→ {true, false}]
d(f) = false

m
∃t ∈ dom(f) : τ = f(t),∃i ∈ [0..len(τ)] : ds(τ(i)) = false

Lemma 4.5.8 (Soundness of d) .

∀̂f ∈ Ψ̂ : d̂(̂f) = false⇒ d(αΨ̂(̂f)) = false

68 4. Determinism of Multithreaded Programs

Proof. We want to prove that d(αΨ̂(̂f)) = false. By definition of d, this implies that:

∃t ∈ dom(αΨ̂(̂f)) : τ = αΨ̂(̂f)(t),∃i ∈ [0..len(τ)] :
s = τ(i),∃var ∈ dom(s) : |π2(s(var))| > 1

By definition of αΨ̂, it implies that

∃t ∈ dom(̂f) : τ = αŜ~+ (̂f(t)),∃i ∈ [0..len(τ)] :
s = τ(i),∃var ∈ dom(s) : |π2(s(var))| > 1

By definition of αŜ~+ , this implies that

∃t ∈ dom(̂f) : τ̂ = f̂(t),∃i ∈ [0..len(̂τ)] :
s = αŜ(τ(i)),∃var ∈ dom(s) : |π2(s(var))| > 1

By definition of αŜ, this implies that

∃t ∈ dom(̂f) : τ̂ = f̂(t),∃i ∈ [0..len(̂τ)] :
ŝ = τ(i),∃var ∈ dom(̂s) : |dom(̂s(var))| > 1

By definition of d̂ it implies that d̂(̂f) = false. This condition is true by hypothesis.
So we proved that

∀̂f ∈ Ψ̂ : d̂(̂f) = false⇒ d(αΨ̂(̂f)) = false

4.5.5 The Example

Thread 1 : [a.amount 7→ (1.000,System)]→ [a.amount 7→ (1.100,Thread 1)]

Thread 2 : [a.amount 7→ (1.100,Thread 1)]→ [a.amount 7→ (1.000,Thread 2)]

Thread 1 : [a.amount 7→ (900,Thread 2)]→ [a.amount 7→ (1.000,Thread 1)]

Thread 2 : [a.amount 7→ (1.000,System)]→ [a.amount 7→ (900,Thread 2)]

Figure 4.5: The non-deterministic behaviors in the concrete semantics

The deterministic property on the concrete semantics discovers that the example in-
troduced in Section 4.1.3 does not respect it. In particular, the two executions differ on
the read values. In the first case Thread 1 reads a value written by System and Thread 2
the one written by Thread 1. In the second case Thread 1 reads the value of Thread 2
and Thread 2 the one of System. In Figure 4.5 we underlines the identifiers of threads in
the cases in which a non-deterministic behavior arises.
The deterministic property is not validated in the two level of abstractions as they are
sound.

4.6. Weak Determinism 69

4.6 Weak Determinism
In this section we introduce a new concept of determinism which is weaker than the
previous definitions. It is defined on the first level of abstraction.

4.6.1 Approximating Numerical Values
The first level of abstraction is parameterized by a non-relational abstract domain that ap-
proximates the numerical values. Moreover, we collect an abstract value for each thread
that approximates all the concrete values it may have written at that point on a given
shared variable. We are in position to define a new idea through these observations: the
weak determinism.
The idea is that two different concrete values do not produce different observable behav-
iors if their abstraction is the same. This concept has to be tuned on an abstract domain.
For instance, with the Sign domain it would mean that at a given point all the values
written in parallel on a given variable have the same sign.

4.6.2 Formal Definition
Definition 4.6.1 (Weak determinism on shared memory)

ŵds : [Ŝ→ {true, false}]
ŵds(̂s) = false

m
∃var ∈ dom(̂s) : |dom(̂s(var))| > 1 ∧ ∃t1, t2 ∈ dom(̂s(var)) : ŝ(var)(t1) , ŝ(var)(t2)

Definition 4.6.2 (Weak determinism on multithreaded state)

ŵd : [Ψ̂→ {true, false}]
ŵd(̂f) = false

m
∃t ∈ dom(̂f) : τ̂ = f̂(t),∃i ∈ [0..len(̂τ)] : ŵds(̂τ(i)) = false

Note that even if a program is not deterministic the weak determinism may validate it.
In fact the values written by different threads may produce the same abstract element. On
the other hand, if the weak deterministic property is not respected also the deterministic
one will not be.

Lemma 4.6.3 (ŵd(̂f) = false⇒ d̂(̂f) = false) If ŵd(̂f) = false then d̂(̂f) = false.

Proof. The proof follows immediately from the definitions of ŵds and d̂s as ŵd and d̂
performs exactly the same checks, the first one relying on ŵds while the second one uses
d̂s.

70 4. Determinism of Multithreaded Programs

Thread 1 :
[
a.amount 7→

{
System 7→ +

Thread 2 7→ +

}]
→ [a.amount 7→ {Thread 1 7→ +}]

Thread 2 :
[
a.amount 7→

{
System 7→ +

Thread 1 7→ +

}]
→

a.amount 7→

System 7→ +

Thread 1 7→ +

Thread 2 7→ +

Figure 4.6: The abstract semantics

4.6.3 Example 2
Suppose to modify the multithreaded program introduced in Section 4.1.3 executing me-
thod withdrawNoDebts of class Account (defined in Section 2.3) instead of method with-
draw. This method allows the withdrawing only if there is enough money in the bank
account. We use the Sign domain to capture numerical information. In this way we cap-
ture for each numerical value if it is positive (+), negative (−) or equal to zero (0). The
results of the analysis at the first level of abstraction are depicted by Figure 4.6.
Applying the weak deterministic property we obtain that it is validated. In fact the value
stored in the field amount is always positive in all the possible executions. On the other
hand, the full determinism is not guaranteed as the amount of money may have been
written in parallel by different threads.

4.7 Tracing Nondeterminism
Until now, we studied the non-deterministic behaviors when accessing the shared mem-
ory. In this section we sketch some different approaches in order to

• trace how non-determinism may influence the execution of a thread,

• trace how it may flow starting from the read and write operations on the shared
memory,

• abstract it.

4.7.1 Modifying a Value
At the first level of abstraction we collected the value that each thread may have written
on a shared variable. When the information flows from the shared to the private memory,
we can distinguish three approaches. For instance, consider the case in which

1. a value is read from the shared memory,

2. an arithmetic operation is performed on that,

3. and finally the result is stored on the shared memory.

4.7. Tracing Nondeterminism 71

In this context we may have:

• first approach: we extract the abstract value making the least upper bound between
all the values written by different threads. Then we perform the arithmetic op-
eration. Finally we relate the result to the thread that is writing it on the shared
memory. In this way, the only complexity added by our approach is the computa-
tion of the least upper bound. Note that we trace only the non determinism induced
on read and write actions on the shared heap, but not how it is propagated during
the computation. This is the approach adopted until here.

• second approach: we perform on each value the arithmetical operation relating the
result to the initial thread. In this way we obtain precise information about

– which thread induces nondeterministic behavior,

– on which variables,

– and which are the different abstract values.

This approach is the most complex one.

• third approach: we perform the operation using the least upper bound of values, and
we relate the result to the set of threads that may influence it. So the set of abstract
values is Val × ℘(TId). In this way, we trace which thread induces nondeterministic
behaviors and on which variables, but not which are the different abstract values.

4.7.2 An Example

Thread 1 Main Thread Thread 2
o = new Account(1.000e, sign);

thread1.start();

ssggggggggggggggggggg
thread2.start();

--[[[[[[[[[[[[[[

o.deposit(100e); o.calculateInterests();

Figure 4.7: Using different approaches

Consider the example presented by Figure 4.7. The main thread instantiates an ac-
count with 1.000 e, and it launches in parallel two threads. The first one deposits 100 e,
while the second one calculates the interests.
Using the three approaches just presented we obtain the following results:

• first approach: we are able to check that the value read by Thread 2 may be non-
deterministic. In fact, it may have been written by the main thread or by Thread 1.
Since this information does not propagate when a value is modified, we do not ar-
rive to check that at the end of the execution of Thread 2 also the field o.amount
may be influenced by it;

72 4. Determinism of Multithreaded Programs

• third approach: in this case we propagate the information that the value read by
Thread 2 may be nondeterministic. So we arrive to conclude that the value written
in the field o.amount may be influenced by both the other threads at the end of the
execution of Thread 2;

• second approach: applying the Sign domain we trace that both the written values are
positive. We discover that the value written by Thread 2 is positive. For instance,
we can conclude that they do not expose non-deterministic behaviors on the sign of
the variables through the weak deterministic property. Instead, using the Interval
domain we check that the two values are different. Using the value written by
Thread 1 we obtain a bigger amount of money as the interests are calculated after
that the deposit has been registered.

4.7.3 Writing on the Shared Memory

When a value is written on the shared memory we relate it to the identifier of the thread
that performs this operation. In this way we trace the origin of the values. Also in this
case, other approaches are possible.
During the analysis we may have to perform the least upper bound of many values orig-
inated by the same thread but at different points of the program. At abstract level, our
approach approximates together all the values written at different points. We can obtain
a more precise analysis tracing also the program point. In this way, we would collect for
each variable an abstract value for each pair composed by

• a thread identifier,

• a program counter that points to the statement that writes in parallel.

Note that in this case the complexity of the analysis increases noticeably in particular
when combining it with the second approach presented in Section 4.7.1.

4.7.4 Discussion

In this section we sketched some ideas on how tuning the analysis at different levels.
These approaches allow to obtain a more precise and complex or a faster but less precise
analysis. It is necessary to further investigate which approaches are more appropriate and
in which contexts. We do not think that a unique final solution exists: it depends on what
we are interested to analyze. Moreover it is necessary to perform some practical tests in
order to understand how the computational times of the analysis change adopting different
approaches.

4.8. Projecting Traces and States 73

4.8 Projecting Traces and States
Usually, we are interested in proving the determinism of a program only on a part of the
memory or of the performed actions. In this section, we formalize this intuition. In this
way we are able to build up a hierarchy of different levels of determinism. We will use
these projections in order to formally link the deterministic property with data races and
SQL phenomena in the next two sections.

4.8.1 Concrete States
The first way adopted to project the analysis of the determinism is to check it only on a
part of the shared memory. We represent it as an abstraction parameterized by a selector
that given a variable in the shared memory returns true or false.

Definition 4.8.1 (αstPrj
S) Let stPrj : [Var → {true, false}] be a function that given a vari-

able returns true or false. Through this function we define the projection of states as an
abstraction:

α
stPrj
S : [S→ S]
α

stPrj
S (s) = {s′ : dom(s′) ⊆ dom(s),∀var ∈ dom(s′) :

s′(var) = s(var) ∧ stPrj(var) = true}

We can build up a deterministic property parameterized by this abstraction in order to
check it only on the selected variables.

Definition 4.8.2 (dsstPrj) dsstPrj checks the deterministic property only on the shared vari-
ables such that stPrj = true.

dsstPrj : [S × S→ {true, false}]
dsstPrj(s1, s2) = false

m
∃var ∈ dom(αstPrj

S (s1)) ∩ dom(αstPrj
S (s2)) : s1(var) = (val1, t1), s2(var) = (val2, t2), t1 , t2

Lemma 4.8.3 (dsstPrj(s1, s2) = false⇒ ds(s1, s2) = false) If dsstPrj detects a non-deterministic
behavior, then also ds will detect it.

Proof. The proof follows immediately from the fact that dsstPrj checks the determinism
on a subset of the shared variables with respect to ds.

Lemma 4.8.4 (dstPrj(θ) = false⇒ d(θ) = false) Let dstPrj be the deterministic property as
defined by Definition 4.5.2, in which ds is replaced by dsstPrj.
If dstPrj(θ) = false then d(θ) = false.

Proof. The proof follows immediately from Lemma 4.8.3.

74 4. Determinism of Multithreaded Programs

Lemma 4.8.5 (dstPrj(θ) = false⇒ d(θ) = false) Let dstPrj be the deterministic property as
defined by Definition 4.5.2, in which ds is replaced by dsstPrj.
If dstPrj(θ) = false then d(θ) = false.

Proof. The proof follows immediately from Lemma 4.8.3.

Lemma 4.8.6 (Hierarchy of shared memory’s projections) Given two functions stPrj1 and
stPrj2 such that {var : stPrj1(var) = true} ⊇ {var : stPrj2(var) = true}, then dstPrj1(θ) =

false⇒ dstPrj2(θ) = false.

Proof. Also this proof follows immediately from Lemma 4.8.3.

In this context, Lemma 4.8.5 can be seen as a particular case of Lemma 4.8.6 in which
d = dstPrj′ : ∀var ∈ Var : stPrj′(var) = true.

4.8.2 Abstract States
All these definitions can be canonically extended to the deterministic properties of the first
and second level of abstraction, and they can be applied also on the weak determinism. In
particular, we denote by:

• αstPrj

Ŝ
the abstraction function that projects the shared memories of the first level of

abstraction only on the variables such that stPrj = true;

• αstPrj

S
this function on the second level of abstraction;

• d̂sstPrj the deterministic property at the first level of abstraction projecting shared
memories following stPrj;

• dsstPrj this function on the second level of abstraction;

• d̂stPrj the deterministic property on the traces of the first level of abstraction project-
ing shared memories following stPrj;

• dstPrj this function at the second level of abstraction;

• ŵdsstPrj the weak deterministic property on states projecting shared memory follow-
ing stPrj;

• ŵdstPrj this function applied to traces.

As in the previous subsection, some lemmas define links between deterministic prop-
erties on full memories or on their projection. Without entering in formal details, the most
interesting relations are the following ones.

Lemma 4.8.7 d̂stPrj(̂f) = false⇒ d̂(̂f) = false

4.8. Projecting Traces and States 75

Lemma 4.8.8 dstPrj(f) = false⇒ d(f) = false

Lemma 4.8.9 ŵdstPrj(̂f) = false⇒ ŵd(̂f) = false

Following Lemma 4.8.6 we obtain the following results (where stPrj1 and stPrj2 are
such that {var : stPrj1(var) = true} ⊇ {var : stPrj2(var) = true}).
Lemma 4.8.10 d̂stPrj1 (̂f) = false⇒ d̂stPrj2 (̂f) = false

Lemma 4.8.11 dstPrj1(f) = false⇒ dstPrj2(f) = false

Lemma 4.8.12 ŵdstPrj1 (̂f) = false⇒ ŵdstPrj2 (̂f) = false

Finally, following the results of Lemma 4.6.3 we obtain that if the projected weak
determinism is not validated then the same will be done by the projected determinism.

Lemma 4.8.13 ŵdstPrj(̂f) = false⇒ d̂stPrj(̂f) = false

Thanks to all these lemmas, we will be in position to provide a global hierarchy of
deterministic properties using different projections.

4.8.3 Concrete Traces
We follow an approach quite similar to the one adopted for concrete states. In particular,
we define the deterministic property projected following a selector. Given an index it
returns true iff the deterministic property has to be checked on the states at that index
in the traces. Then we prove some relations between the deterministic property and its
projected versions.

Definition 4.8.14 (dtrPrj) Let trPrj : [N → {true, false}] be a function that, given an nat-
ural number, returns true or false. dtrPrj checks the deterministic property only on the
indexes of traces such that trPrj = true.

dtrPrj : [℘(Ψ)→ {true, false}]
dtrPrj(θ) = false

m
∃f1, f2 ∈ θ : ∃t ∈ dom(f1) ∩ dom(f2) : τ1 = f1(t), τ2 = f2(t),

∃i ∈ [0..min(len(τ1), len(τ2))] : trPrj(i) = true ∧ ds(τ1(i), τ2(i)) = false

Lemma 4.8.15 (dtrPrj(θ) = false⇒ d(θ) = false) If dstPrj(θ) = false then d(θ) = false.

Proof. The proof follows immediately from the fact that dtrPrj controls the determinism
on a subset of the states checked by d.

Lemma 4.8.16 (Hierarchy of traces’ projections) Given two functions trPrj1 and trPrj2
such that {i : trPrj1(i) = true} ⊇ {i : trPrj2(i) = true}, then dtrPrj1(θ) = false⇒ dtrPrj2(θ) =

false.

Proof. The proof follows immediately from the fact that by hypothesis dtrPrj1 controls the
determinism on a subset of the states checked by dtrPrj2 .

76 4. Determinism of Multithreaded Programs

4.8.4 Abstract States
In parallel with the approach adopted in previous subsections we briefly introduce the
same concepts in the first and second level of abstraction. So we denote by:

• d̂trPrj the deterministic property on the traces of the first level of abstraction project-
ing traces following trPrj;

• dtrPrj this function at the second level of abstraction;

• ŵdstrPrj the weak deterministic property on states projecting traces following trPrj;

• ŵdtrPrj this function applied to traces.

Lemma 4.8.17 d̂trPrj(̂f) = false⇒ d̂(̂f) = false

Lemma 4.8.18 dtrPrj(f) = false⇒ d(f) = false

Lemma 4.8.19 ŵdtrPrj(̂f) = false⇒ ŵd(̂f) = false

Following Lemma 4.8.16 we obtain the following results (where trPrj1 and trPrj2 are
such that {i : trPrj1(i) = true} ⊇ {i : trPrj2(i) = true}).

Lemma 4.8.20 d̂trPrj1 (̂f) = false⇒ d̂trPrj2 (̂f) = false

Lemma 4.8.21 dtrPrj1(f) = false⇒ dtrPrj2(f) = false

Lemma 4.8.22 ŵdtrPrj1 (̂f) = false⇒ ŵdtrPrj2 (̂f) = false

Lemma 4.8.23 ŵdtrPrj(̂f) = false⇒ d̂trPrj(̂f) = false

4.8.5 Projecting both States and Traces
We can combine together the projections on states and traces. We denote by stPrj� trPrj
the composition of these two projections, and so by dstPrj�trPrj, d̂stPrj�trPrj, dstPrj�trPrj, and
ŵdstPrj�trPrj the determinism projected both on traces and state applied respectively to
the concrete domain, to the first and second level of abstraction, and the projected weak
determinism.

Intuitively, all the lemmas defined on the projections on states and traces hold also
on these composed projections. So the following lemmas relates this combination to the
projections on states and traces.

Lemma 4.8.24 dstPrj�trPrj(θ) = false⇒ dtrPrj(̂f) = false

Lemma 4.8.25 dstPrj�trPrj(θ) = false⇒ dstPrj(̂f) = false

4.8. Projecting Traces and States 77

Lemma 4.8.26 d̂stPrj�trPrj(̂f) = false⇒ d̂trPrj(̂f) = false

Lemma 4.8.27 d̂stPrj�trPrj(̂f) = false⇒ d̂stPrj(̂f) = false

Lemma 4.8.28 dstPrj�trPrj(̂f) = false⇒ dtrPrj(̂f) = false

Lemma 4.8.29 dstPrj�trPrj(̂f) = false⇒ dstPrj(̂f) = false

Lemma 4.8.30 ŵdstPrj�trPrj(̂f) = false⇒ ŵdtrPrj(̂f) = false

Lemma 4.8.31 ŵdstPrj�trPrj(̂f) = false⇒ ŵdstPrj(̂f) = false

Lemma 4.8.32 ŵdstPrj�trPrj(̂f) = false⇒ d̂stPrj�trPrj(̂f) = false

4.8.6 Hierarchy

ŵdstPrj�trPrj

4.8.32
vvv

vvv
vvv

v

vvv
vvv

vvv
v 4.8.31 4.8.30

GGGGGGGGG

GGGGGGGGG

d̂stPrj�trPrj ŵdtrPrj ŵdstPrj

d̂trPrj

4.8.26
4.8.23

vvvvvvvvvvvvvvvvvvvvv

d̂stPrj

4.8.27

IIIIIIIIIIIIIIIIIIII

4.8.13

wwwwwwwwwwwwwwwwwwww

ŵd

4.8.9
4.8.19

GGGGGGGGGGGGGGGGGGGG

d̂

4.8.17IIIIIIIIIII

IIIIIIIIIII
4.8.7 4.6.3vvvvvvvvvv

vvvvvvvvvv

Figure 4.8: A global hierarchy of deterministic properties

Figure 4.8 depicts a global hierarchy on the first level of abstraction of the determin-
istic and the weak deterministic property. Similar hierarchies can be defined at concrete
level and on the second level of abstraction. We focused on the first level as weak deter-
minism is defined at this level. The upper a property is in the diagram, more relaxed it is.
This means that it may validate programs that are not validated at lower levels. The num-
ber depicted on the links between different deterministic properties reports the Lemma
that proves the connection.

78 4. Determinism of Multithreaded Programs

Thread 1 Thread 2
a.deposit(100) a.printAmount()

Figure 4.9: Depositing and printing the amount in parallel

In addition each projection can be expanded into a similar hierarchy following for the
first level of abstraction Lemmas 4.8.10 and 4.8.20.
In particular, we can build up a lattice on the functions used to project states and traces.
The ordering operator on stPrj is defined as follows:

≤stPrj: [([Var→ {true, false}] × [Var→ {true, false}])→ {true, false}]
≤stPrj (stPrj1, stPrj2) = true iff

{var : stPrj1(var) = true} ⊇ {var : stPrj2(var) = true}

As the ordering operator relies on the superset operator 〈stPrj,≤stPrj〉 is a poset. Following
this ordering we can define a hierarchy using different stPrj functions.

The same result can be obtained on trPrj, defining the partial ordering as follows:

≤trPrj: [([N→ {true, false}] × [N→ {true, false}])→ {true, false}]
≤trPrj (trPrj1, trPrj2) = true iff

{i : stPrj1(i) = true} ⊇ {i : stPrj2(i) = true}

Finally we obtain a similar result on stPrj� trPrj simply defining the partially ordered
set as the Cartesian product between 〈stPrj,≤stPrj〉 and 〈trPrj,≤trPrj〉.

Each of these results allows us to define a local hierarchy on different types of projec-
tion.

4.8.7 An example

Consider the example depicted by Figure 4.9. Two threads are executed in parallel and
they work on the same bank account. The first thread withdraws 100. The second one
prints the amount of money in the account. A non-deterministic behavior may arise when
executing Thread 2 on the screen of the ATM, and so the full deterministic property is
not validated. Instead, we may be not interested to detect this behavior. For instance, it
may be the case that:

• printAmount() is not a critical operation, and so we are not interested to prove its
determinism. We can project the trace not to check the deterministic property when
analyzing the traces produced by this method;

• the screen of the ATM can tolerate non-deterministic behaviors as it is not a critical
area of memory, and so we can project the states of execution ignoring this area.

4.9. SQL Phenomena 79

4.8.8 Discussion
In this section we formalized some ways of relaxing the deterministic property projecting
traces and states. Other solutions can be adopted, as for instance the weak determinism
introduced in Section 4.6. All these solutions can be combined together in order to obtain
multiple levels of determinism.

These results make evidence of the flexibility of the deterministic property. Focusing
on particular properties like data and general races obliges to develop programs respecting
some rigid rules. Instead, we can tune the property to the program we want to analyze
with our approach, and in particular to the level of determinism we want to achieve.

In this context, we think that the deterministic property we proposed can get over the
actual limits of static analysis applied to multithreaded programs. In the next sections we
will sketch which level of determinism two well-known properties, i.e. SQL phenomena
and data races, correspond to.

4.9 SQL Phenomena
In this section we link the phenomena defined on SQL language by the ANSI SQL stan-
dard [4] to our deterministic property.

4.9.1 The SQL Approach
In the SQL approach a program is composed by a set of transactions that may be executed
in parallel. A transaction is composed by a sequence of SQL queries, and it is seen
as a sequence of actions executed by the same process. The execution of a program is
represented by a sequence of actions a1[x1]a2[x2]...end1. An action ai[x] is performed by
process i on the memory location x. A read action is denoted by ri[x], while a write one
by wi[x]. endi denotes the end of the execution of process i. The three dots ... means that
there may be an undefined number of actions. Since all the executions end we consider
only finite traces.
The DBMS is aimed at guaranteeing that the execution of a program is serializable (i.e. its
result can be obtained with a serial execution) or it respects one of the relaxed versions of
this property. As the DBMS works checking at run-time the actions, this goal is obtained
through the definition of 4 phenomena that must be avoided during the execution. The
relaxed versions are obtained allowing one or more of them.

Berenson et al. [15] defined 4 types of phenomena:

• dirty read - ...w1[x]...r2[x]...end1

• non-repeatable read - ...r1[x]...w2[x]...end1

• phantom - ...r1[P]...w2[y ∈ P]...end1, where w2[y ∈ P] means that transaction two
writes a value that would have been read by r1[P] if it had been executed before it

80 4. Determinism of Multithreaded Programs

• lost update - ...w1[x]...w2[x]...end1.

4.9.2 SQL Phenomena in our Framework

Since in our framework we can read and write on a memory location and not on a set, the
phantom phenomenon collapses in the non-repeatable read one.
The model of execution in SQL is to partition the application into many tasks (i.e. trans-
actions) to be executed in parallel. It is exactly the same approach of multithreaded pro-
grams that define an application as composed by many threads. Each transaction is an
ordered sequence of actions. This corresponds exactly to representing an execution of a
multithreaded program as a trace. In this way our thread-partitioning domain is well-fitted
in order to represent also transactions. A transaction can be seen as a trace related to a
thread in this domain. In addition SQL phenomena read and write in the database that is
shared among all the transactions: this corresponds to the concept of shared memory.
In our thread-partitioning domain wi[x] is equivalent to a state σ belonging to a trace
related to thread i. This chapter studies the determinism and so we represent states col-
lecting only the state of the shared memory. On the other hand, in Chapter 3 we have
defined the same domain, and we can obtain some information on that through few func-
tions. In this way, if we collect states instead of shared memories only, we can check
through action(σ) (this function was defined in Section 3.3.1) if the performed action is a
write one.
In the same way, ri[x] is equivalent to a state σ related to the thread i in our thread-
partitioning domain and such that π1(action(σ)) = r.

Phenomena work analyzing the arbitrary interleaving during the execution of different
transactions. In the SQL environment we have that actions are totally ordered during the
execution, as the DBMS does not execute actions in parallel. We can see it similar to a
mono-core processor. The order of execution is abstracted away by our thread-partitioning
domain. On the other hand, we may analyze the effects of the execution in different order
of the actions on the shared memory. Note that the actions interesting for SQL phenomena
are only reads and writes on the database.

4.9.3 Effects of Phenomena on the Determinism

DBMS does not provide any synchronization primitive. Then if a phenomenon happens
there would be another execution (in which the two transactions are serially executed)
without it. The following proposition explains this concept formally:

Proposition 4.9.1 Let T be the set of all the finite executions of a SQL program. Let
t = ...a1[x]...a′2[x]...end1 ∈ T be a trace representing an execution, where a and a′

are two actions, performed respectively by thread 1 and 2, that work on a same area of
memory x, and such that at least one is a write action. Then ∃t′ = ...a1[x′]...end1 ∈ T :
a′2[x′] < a1[x′]...end1.

4.9. SQL Phenomena 81

In our framework, if two actions represented by states σi and σ j are executed by
two different threads, then our thread-partitioning domain relates it to different threads.
Formally, it means that a given concrete states f of our multithreaded domain is such that
σi ∈ τ1, σ j ∈ τ2 : ∃t1, t2 ∈ TId : f(t1) = τ1 ∧ f(t2) = τ2 ∧ t1 , t2. The type of action and the
location on which it works are obtained through the function action.
Applying these considerations we define the phenomena function. Given two types of
action and the set of all the executions, it returns true if the phenomenon represented by
the given two types happens at least in one execution.

Definition 4.9.2 (phenomena function)

phenomena : [{read, write} × {read, write} × ℘(Ψ)→ {true, false}]
phenomena(a1, a2,Φ) = true

m
∃f ∈ Φ : ∃t ∈ dom(f) : ∃σk ∈ f(t) : action(σk) = (a1, x),
∃t1 ∈ dom(f) : t1 , t,∃σw ∈ f(t1) : action(σw) = (a2, x)

Let Φ ∈ Ψ be the set of all possible executions of a transaction. As our multithreaded
domain abstracts away the order of execution of different threads, the dirty read and the
non-repeatable read phenomena correspond to the same case of phenomena function. So a
dirty or non-repeatable read phenomenon happens if and only if phenomena(write, read,
Φ) = true. A lost update phenomenon happens if and only if phenomena(write, write,
Φ) = true.

4.9.4 Phenomena and Deterministic Property
As SQL transitions have no synchronization primitives, all the transitions are executed in
parallel. So if a phenomenon happens, our concrete semantics will contain two executions
in which the two actions are executed in the opposite order. In this context, they expose a
non-deterministic behavior and we can relate them to our deterministic property.

Since all the phenomena deal only with read and write actions, we can project the
traces on the read and write transitions following the approach described in Section 4.8.3.
For each phenomenon we check which version of the deterministic property checks it
surely, i.e. such that if the phenomenon happens it discovers that the program is not
deterministic.

Dirty read or non-repeatable read: By definition of dirty read phenomenon on
traces the difference between the two traces is on a read action. Since a read action
modifies the private memory of the thread that executes the action we can project also the
states on the private memory of thread.

Lost update: In the same way, by definition of dirty read phenomenon on traces the
difference between the two traces is on a write action. Thus we can project the states on
the shared memory.

Absence of phenomena: If phenomena do not happen during the execution of a
program, this means that there will not be two parallel actions (and at least a write) on

82 4. Determinism of Multithreaded Programs

the shared memory executed in parallel by different threads. Supposing that the only way
that threads have to communicate is through the shared memory, this guarantees that the
program is deterministic as

• two reads do not expose non-deterministic behavior since they do not modify the
state of the shared memory

• there is no other way to produce a non-deterministic behavior through the arbitrary
interleaving of threads’ execution.

4.9.5 In the Abstract
Thanks to the soundness of our approach, all the results obtained on the concrete exe-
cutions can be applied to the abstract semantics. In this way, we can check at compile
time if a phenomenon may happen in any execution of a program. In addition, if our
deterministic property is validated we are sure that phenomena do not happen.

4.10 Data Race Condition
A data race occurs when “multiple threads access the same data without any intervening
synchronization operation, and one of the accesses is a write”[121]. Data races have been
widely studied in the field of static analysis. The intuition is that a data race may be the
symptom of a bug. The absence of data races does not guarantee the determinism of the
program. In fact, even if two accesses to the same shared location are synchronized, we
may not be sure that they will be executed always in the same order.

4.10.1 Synchronization
A new concept is introduced by the definition of data race with respect to the database
approach: the synchronized accesses. While the SQL language does not provide any
primitive to synchronize different transactions, usually a multithreaded programming lan-
guage does it.
In Chapter 3 we suppose that a function synchronized is provided. Given a state, it returns
the set of synchronizable elements owned at that point of the execution. These synchro-
nizable elements may be monitors, objects, etc.. In this way, two states σ1, σ2 ∈ Σ are
respectively synchronized if synchronized(σ1) ∩ synchronized(σ2) , ∅.

Definition 4.10.1 (Data races) Given a set of trace-partitioning domain elements repre-
senting all the executions of a program, the datarace function returns true if and only if
at least one of these executions contains a data race.

datarace : [℘(Ψ)→ {true, false}]
datarace(Φ) = true⇔ ∃f ∈ Φ : dataracesingleexecution(f) = true

4.10. Data Race Condition 83

where

dataracesingleexecution : [Ψ→ {true, false}]
dataracesingleexecution(f) = true⇔ ∃t1, t2 ∈ dom(f) : t1 , t2,
∃σ1 ∈ f(t1) : action(σ1) = (a1, l1),
∃σ2 ∈ f(t2) : action(σ2) = (a2, l2) : l1 = l2∧
(a1 = write ∨ a2 = write) ∧ synchronized(σ1) ∩ synchronized(σ2) = ∅

This function will be used to formally compare the data race condition with the phe-
nomena.

4.10.2 Data Races and SQL Phenomena

The last definition is quite similar to the SQL phenomena one presented in Section 4.9.
Since the SQL language does not provide any synchronization primitive, we analyze the
definition of data races without any synchronization constraint. Formally, it means that
∀σ ∈ Σ : synchronized(σ) = ∅. In this way the difference between the definitions of
datarace and phenomena functions is only on the actions checked. While the phenomena
function is generic on them, the datarace one checks that at least one of the two actions
is a write one.
The phenomena function is a generalization of the SQL phenomena, and we instantiated
it in two ways. Through the instances that check the dirty or non-repeatable read phe-
nomenon and the lost update one, we obtain exactly the results of datarace function. This
consideration leads to the following proposition.

Proposition 4.10.2 Let Φ ⊆ Ψ be the set of all the executions of a program. If ∀σ ∈
Σ : synchronized(σ) = ∅ (where Σ is the set of all the states that can compose traces of
elements in Ψ), then datarace(Φ) = true ⇔ phenomena(write, read,Φ) = true ∨
phenomena(write, write,Φ) = true.

4.10.3 Deterministic Property

In the previous section we proved that the absence of phenomena implies a well-defined
level of determinism. In this section we proved that the absence of data races corresponds
to the absence of SQL phenomena if we do not consider the synchronization actions.
In this way we also prove a relation between the absence of data races and the determin-
istic property. Note that it does not mean that the data race condition assures the full
determinism of a program: if two parallel accesses are synchronized they still may cause
non-deterministic behaviors, but they do not form a data race. This idea is quite similar to
the one introduced by weak determinism. While this property relaxes determinism check-
ing only if at abstract level the values written are different, data race condition restricts it
only on values accessed by threads while they were not reciprocally synchronized.

84 4. Determinism of Multithreaded Programs

4.10.4 Abstract States
As our abstract semantics are sound all the results obtained on the concrete executions
can be applied in the abstract. In this way, we can check at compile time if a data race
may happen. In particular, if our deterministic property is validated on a given program,
we are sure that it does not contain any data race.

4.11 From Determinism to Semi-Automatic Paralleliza-
tion

In this section we sketch how the determinism may be useful in order to semi-automatically
parallelize sequential programs.

4.11.1 Motivation
As already pointed out, multi-core architectures appeared recently in a broad market.
The only way for a single application to take advantage from this technology is to be
partitioned in many subtasks that may be run in parallel. On the other hand reasoning on
parallel applications is strictly more difficult than on sequential programs. A consequence
is that (semi-) automatic tools in order to find and detect possible parallelizable fragments
of sequential code are particularly useful.

4.11.2 Determinism and Parallelism
A sequential program performs an ordered set of operations. An operation may read some
data written or modified by previous statements, and it may write values that will be used
during the rest of the computation. When each sequential operation deals with a disjointed
set of variables the program is trivially parallelizable. However this condition does not
apply to the majority of sequential programs.
Given two parts of a sequential program we can analyze them as if they were executed
in parallel, and check if there are some non-deterministic behaviors due to the parallel
execution. If it is not the case, the two parts of the sequential program can run in parallel
without inducing any new behavior because of the parallel execution.

4.11.3 Relaxing the Deterministic Property
In order to find parallelizable blocks in a program, we may relax the deterministic property
in order to focus only on the critical parts of the program. Section 4.6 presented the weak
determinism that is a relaxation of the deterministic property. Section 4.8 sketched some
different ways in order to project traces and states with the final goal of relaxing the
deterministic property.
All these approaches require the developer to give an input to the analysis. In particular,

4.12. Related Work 85

he has to specify which type of abstract information we have to infer and how to project
states and traces. Given this input we can check if two sequential blocks cause non-
deterministic behaviors if executed in parallel. If it is not the case we can automatically
parallelize a sequential program.

4.11.4 An example

Consider the following sequential program:

Account account=new Account(1000, mysignature);
account.deposit(100);
account.printAmount();

We might be not interested that the print of the amount reports exactly the last updated
value. So we may accept that the deposit of money and this action are executed in parallel.
Eventually they may produce a non-deterministic behavior. We can relax our determinis-
tic property projecting traces or states as described in Section 4.8.7. Then we can prove
that this program respect it, and so we can parallelize this sequential program.

4.12 Related Work
Data race: We introduced the effects of data races on determinism in Section 4.10. Data
race condition allows some nondeterministic behaviors, e.g. when the communications
through shared memory are synchronized on a monitor. This may be represented in our
framework as a way of relaxing our deterministic property. In addition, if a program
respects the full deterministic property, it does not contain data races. Our framework
appears to be more expressive and flexible than data race condition.
Software transactional memory: Using the Software Transactional Memory (STM)
[127] a developer can tag a piece of code called transaction as atomic. The execution of
a transaction will be seen as performed completely in a unique step by other transactions.
This idea is the extension of database transactions [117] to programming languages. The
DBMS checks that some interactions, i.e. SQL phenomena [4], do not happen during the
execution of a transaction, and in this way it enforces the atomicity (i.e. that the execution
of a transaction can be seen as executed in one unique step) at runtime. SQL phenomena
have been introduced in our framework in Section 4.9, and they have been related to data
race condition in Section 4.10. In this context, atomicity and the data race condition seem
to be two close ideas with respect to the determinism of multithreaded programs. Even if
we did not investigate deeply this relation, we think that

• the deterministic property may be used to check if two transactions are atomic in
all the possible executions, and so we have not to perform runtime checks on them.
The intuition is that if a multithreaded program is deterministic, then the execution
of threads can be seen as atomic;

86 4. Determinism of Multithreaded Programs

• as for the data race condition, our approach seems to be more flexible and expressive
than atomic transactions. In particular, the relaxed versions of the deterministic
property have no counterpart in STM.

Automatic parallelization: The automatic parallelization of programs has been studied
by optimizing compilers [6]. These techniques have been applied to many languages, and
in particular they obtain significant results for logic and constraint programming [62].
When applied to imperative languages, the efforts are focused on the parallelization of
computations involving arrays and loops.
The basic idea of optimizing compilers is to perform a program transformation if the trans-
formed program produces the same output of the original one when applied to the same
input. Usually these techniques relies on an independence analysis [119, 58, 70, 67]. The
idea is that if two sets of sequential statements are independent, then they may be executed
in parallel as they access disjointed areas of memory. Intuitively, this corresponds to us-
ing full determinism in order to parallelize sequential programs. In fact, if two partitions
of a sequential program respect the full deterministic property when executed in parallel,
they will produce the same output when applied to the same input. The idea sketched in
Section 4.11 is a little bit different, as we talked about semi-automatic parallelization of
programs. This process requires the developer to provide an input in order to know which
nondeterministic behaviors may be tolerated. Finally, our approach is slightly different,
even if a comparison is possible.
We can apply the full deterministic property in order to automatically parallelize pro-
grams. In this context, the resulted multithreaded program would usually be less opti-
mized than the ones obtained applying specific techniques of optimizing compilers on
arrays and loops. On the other hand, the semi-automatic parallelization using relaxed ver-
sions of the deterministic property may gain more parallelism than optimizing compilers,
but it requires an input from developers.

4.13 Discussion
In this chapter we presented a generic approach to the study of the determinism of mul-
tithreaded programs. In order to apply it to a real programming language and to a more
generic context, we need to analyze deeply some details of our approach.

4.13.1 Relational Domains

In the definition of the abstract domain, we supposed that our analysis is parameterized
by a non-relational numerical domain. We built up a boxed representation (i.e. a domain
that is a function that relates each variable to its abstract value) on this, we defined the
semantics of read and write statements on the shared memory and the determinism, and
we proved the soundness of our approach. On the other hand, our approach has to be
extended in order to support also relational domains.

4.13. Discussion 87

In order to achieve this goal, we have to redefine only the part of the analysis that concerns
the read and write operations on the shared memory. These have to be expressed in terms
of evaluation of expressions (read) and value assignments (value). The soundness of this
approach would follow directly from the soundness of these primitives of the relational
abstract domain.
On the first level of abstraction for each variable the relational domain is required to trace
an abstract value for each thread. This means that the set of variables on which relations
are inferred will be the Cartesian product of the set of the program’s variables and the one
of threads’ identifiers.
On the second level of abstraction, we gathered together all the values written by different
threads. In this context, the relational domain infers relations on the set of program’s
variables. Then we make the Cartesian product of this domain with a domain that traces
for each shared variable the set of threads that may have written concurrently on it.

4.13.2 States in Traces
In order to check the determinism of multithreaded programs we compared states of dif-
ferent executions that appear in the same position in the trace. This simplistic approach
hides some important issues on how executions are represented. For instance, we may
have that the number of iterations of a loop depends on an input of the user. So we obtain
traces with different lengths and in which states at the same position are the results of the
executions of different statements. Usually, when reasoning on the determinism we want
to compare the results of the execution of the same statements. In this context, we have
to represent the executions of a program with a control flow graph. This approach will be
formalized by the next Chapter, and in particular in Section 5.6.

4.13.3 Thread Identifiers
When dealing with multithreading, we assumed that the sets of threads’ identifiers in the
concrete and in the abstract are the same. However, this condition does not apply to mod-
ern programming languages. For instance, in Java threads are objects and so they are
identified by reference. In this context, the number of threads is potentially unbounded,
as references are created at runtime. This issue will be considered in Chapter 5, where we
will introduce an ad-hoc alias analysis in order to abstract the concrete references. This
abstraction will allow us to keep the initial assumption on threads’ identifier, approximat-
ing the concrete threads in a finite way.

88 4. Determinism of Multithreaded Programs

5
Concrete and Abstract Domain and

Semantics of Java Bytecode

In this chapter, we define and abstract a low-level domain and semantics of Java bytecode.
First of all, we define the concrete domain and semantics and then we abstract it proving
the correctness of our approach. These definitions formalize the specification of the Java
Virtual Machine [89]. Finally, we instantiate all the functions (as stated in previous chap-
ters) in order to apply the happens-before memory model and the deterministic property
on the analysis of Java multithreaded programs. In this way, we apply the theoretical
results introduced in Chapters 3 and 4 to a real-world programming language.
This chapter is partly based on the published work [43].

5.1 Notation
In order to formalize the behaviors of the Java virtual machine we need to deal formally
with arrays and stacks. An array is a partial function that relates natural numbers to
elements. Formally, let A be a generic set. An array on this set is defined as AR(A) :
[N→ A].
We define a stack ST(A) : [N→ A] as an array on which two functions are defined.

Definition 5.1.1 pop : [ST(A)→ ST(A)× (A∪ {⊥})] returns the element at the top of the
stack (i.e. the element related with the greatest integer value in the domain) and the stack
without that element. It returns ⊥ if the stack is empty.

pop(s) =

{
(∅,⊥) if dom(s) = ∅
(s \ [i 7→ s(i)], s(i)) : i ∈ dom(s) ∧ ∀j ∈ dom(s) : i ≥ j otherwise

Definition 5.1.2 push : [(ST(A) × A) → ST(A)] pushes the given element on the top of
the stack and returns the stack containing this element.

push(s, v) = s[i 7→ v : i =

{
0 if dom(s) = ∅
m + 1 : m ∈ dom(s) ∧ ∀j ∈ dom(s) : m ≥ j otherwise]

Finally, we denote by

90 5. Concrete and Abstract Domain and Semantics of Java Bytecode

• C the set of Java classes’ names,

• M the set of methods’ names,

• F the set of fields’ identifiers,

• MSig the set of methods’ signatures, i.e. the name of the method and the list of
parameters.

5.2 Supported Language
Our analysis supports all the Java bytecode language. Most of the bytecode statements
are specific for a given type (e.g. aload, iload, ...), a particular context (e.g. invokevirtual,
invokespecial, invokestatic, ...), etc.. So many of them have almost the same semantics.
This is why we formalize the semantics on a representation of Java bytecode language.
This approach is common when dealing with bytecode [131]. The language on which we
formalize our semantics is as follows:

• putfield < class > < id > and getfield < class > < id > (read and write on ob-
ject’s fields), where < class > < id > identifies a field

• load i and store i (load and store of local variables), where i is an index in the local
variables array

• const < val > (creation of numerical or string constants), where < val > may be
null, a numerical (both integer or float) value, or a constant string

• arith < op > (arithmetic operations), where < op > is an arithmetical binary oper-
ator (e.g. +)

• new < class >, and newarray (instantiation of objects and arrays), where < class >
is a class of the current Java program

• aload and astore (loads and stores on arrays)

• goto #i

• if < op > #i (conditional jumps), where < op > is a conditional operator (e.g. <);

• monitorenter and monitorexit (lock and release of monitors)

• invoke < method >, where < method > is the signature of a method in MSig

• return (end the execution of a method) and vreturn (return a value ending the exe-
cution of a method)

5.3. An Example 91

public void withdraw(int money) {
synchronized(this) {

account.amount−=money;
}

}

Figure 5.1: withdraw method

5.3 An Example
In order to show how our concrete and abstract domains and semantics work, we will
apply them to the method withdraw of class Account introduced in Section 2.3. The code
is reported by Figure 5.1.

Once compiled with javac, the resulting Java bytecode is represented in our syntax
by following program

1 load 0
2 monitorenter
3 load 0
4 load 0
5 getfield <Account> <amount>
6 load 1
7 arith <sub>
8 putfield <Account> <amount>
9 load 0

10 monitorexit
11 return

In the following of this chapter, we will suppose that, when this method is called,
this.amount is equal to 1.000 and the parameter amount is equal to 100.

5.4 Concrete Domain
This section formalizes the structure of the computation of the Java Virtual Machine
presented in Chapter 3 of its specification[89].

For the sake of simplicity we consider as values only integers and references. Other
types can be added to our formalization.

Definition 5.4.1 (Values) Let Ref be the set of addresses. A value may be an address or
a numerical value: Val = Ref ∪ Z

The operand stack is used to pass values and to perform arithmetical operations on
them.

92 5. Concrete and Abstract Domain and Semantics of Java Bytecode

Definition 5.4.2 (Operand stack) The operand stack is a stack of values: Op = ST(Val)

Local variables store the values of variables that are accessible only from the current
method.

Definition 5.4.3 (Local variables) The local variables are represented as an array of
values: LV = AR(Val)

A monitor is defined on each object. Objects are identified by reference and it is
possible to lock more than once on the same monitor.

Definition 5.4.4 (Monitors) The owned monitors are represented by functions that relate
references to integers. The integers represent the number of times which the current thread
has locked (and not yet released) on the given monitor: L : [Ref→ N]

The state of an object relates its fields to values. A field is identified by a name and a
class. Notice that is not sufficient considering the name only, as through polymorphism a
class may contain a field with the same name of one of its superclass.

Definition 5.4.5 (Objects) We represent the state of objects as functions that relate fields
to numerical values or references: Obj : [(C × F)→ Val]

Definition 5.4.6 (Arrays) An array is a function that relates integer indexes to concrete
values, and an integer value that contains the length of the array: Arr = AR(Val) × N
Definition 5.4.7 (Strings) Strings are a particular case of an array, i.e. an array of char-
acters. At bytecode level characters are represented by integer values: Str = AR(N) ×N
Definition 5.4.8 (Heap) The heap relates each address to an object, an array, or a string:
H : [Ref→ (Obj ∪ Arr ∪ Str)]

The single thread state contains also the control of the program.

Definition 5.4.9 (Program counters) A program counter identifies a statement. It is rep-
resented as a triple composed by a Java class, a method in it, and an integer value repre-
senting the index of the statement inside the method: PC = C ×M × N ∪ {−1}
We suppose to have a function next : [PC → PC] that given a program counter returns
the next one following the sequential order. Given a class c and a method m, the program
counter (c,m,−1) means that we are at an exit point of the method.

Definition 5.4.10 (Single-thread state) A single-thread state is a tuple composed by

• the operand stack,

• the array of local variables,

• the heap,

• the owned monitors,

• the program counter pointing to the next statement to be executed

Formally, Σ = Op × LV × H × L × PC

5.5. Concrete Operational Semantics 93

5.5 Concrete Operational Semantics
This section is based on the specification of the Java Virtual Machine instruction set
presented in [89], namely on Chapter 6.

5.5.1 Load and Store
Statement load #i pushes on the top of the operand stack the value at index i in the local
variables. Statement store #i pops the operand stack, and it stores this value at index i in
the local variables. These descriptions can be formalized by the following rules.

os′ = push(os, lv(i))
〈load #i, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉

(os′, v) = pop(os), lv′ = lv[i 7→ v]
〈store #i, (os, lv, h, l, pc)〉→〈os′, lv′, h, l, next(pc)〉

5.5.2 Monitors
Statement monitorenter pops a reference from the operand stack and it acquires this mon-
itor. Statement monitorexit pops a reference from the operand stack and it releases this
monitor. As monitor re-entrance is allowed, we count the number of times a monitor has
been already locked without being released yet.

(os′, r) = pop(os), l′ = l[r 7→ l(r) + 1] if r ∈ dom(l)
〈monitorenter, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉

(os′, r) = pop(os), l′ = l[r 7→ 1] if r < dom(l)
〈monitorenter, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉

(os′, r) = pop(os), l(r) = n, l′ = l[r 7→ n − 1] if n > 1
〈monitorexit, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉

(os′, r) = pop(os), l(r) = n, l′ = l \ {r 7→ 1} if n = 1
〈monitorexit, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉

5.5.3 Objects
Statement new < class > creates a new object of type < class > in the heap, and it
pushes the allocated reference on the operand stack. Statement getfield < class > < id >
pops a reference from the operand stack, and it pushes the value contained by field
(< class >,< id >) of the objects pointed by this reference. Finally, statement putfield
< class > < id > pops a value and a reference from the operand stack, and it assigns the
given value to the field (< class >,< id >) of the object pointed by this reference.

(r, h′) = alloc(< class >, h), os′ = push(os, r)
〈new < class >, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉

94 5. Concrete and Abstract Domain and Semantics of Java Bytecode

(os1, r) = pop(os), v = h(r)(< class >, < id >), os′ = push(os1, v)
〈getfield < class > < id >, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉

(os1, v) = pop(os), (os′, r) = pop(os1), obj = h(r),
obj′ = obj[(< class >, < id >) 7→ v], h′ = h[r 7→ obj′]

〈putfield < class > < id >, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
alloc : [(C × H) → (Ref × H)] creates a location containing the default values (i.e. 0

or null) for all the fields of the given class. It returns a fresh reference that points to this
location.

5.5.4 Arrays

Statement newarray creates a new array in the heap, and it pushes the allocated address
on the operand stack. Statement aload pops an index and a reference, and it pushes the
value contained at the given index by the array pointed by the given reference. Statement
astore pops a value, an index, and a reference, and it assigns the value to the array pointed
by the given reference at the given index.

(os1, i) = pop(os), (r, h′) = allocArray(i, h), os′ = push(os1, r)
〈newarray, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉

(os1, i) = pop(os), (os2, r) = pop(os1), v = h(r)(i), os′ = push(os1, v)
〈aload, (op, lv, h, l, pc)〉→〈op′, lv, h, l, next(pc)〉

(os1, v) = pop(os), (os2, i) = pop(os1), (os′, r) = pop(os1), ar = h(r),
ar′ = ar[i 7→ v], h′ = h[r 7→ ar′]

〈astore, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
allocArray : [(N × H)→ (Ref × H)] receives a numerical value representing a length and
a heap. It returns a fresh reference and a heap. This relates the returned reference to an
array of the given length in which all the elements have been set to default value, and the
updated state of the heap.

5.5.5 Arithmetic Expressions

Statement arith < op > pops two numerical values from the operand stack, and it pushes
the result of the arithmetical operation < op > applied on them.

(os1, (i1)) = pop(os), (os2, i2) = pop(os1), os′ = push(os2, i2< op >i1)
〈arith < op >, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉

5.5. Concrete Operational Semantics 95

5.5.6 Constants

Statement const < val > pushes on the operand stack the value < val >. This can be an
integer or a string.

os′ = push(os, < val >), if < val > is a numerical value, or it is equal to null

〈const < val >, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉

(r, h′) = allocString(< val >, h), os′ = push(os, r), if < val > is a string
〈const < val >, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉

allocString : [(Str×H)→ (Ref×H)] receives as parameters a string and a heap. It returns
a fresh reference and the heap that relates it to the given string.

5.5.7 Jumps

Statement goto #i jumps the control to the instruction at index #i of the current method.
Statement if < op > #i jumps to the given index if the boolean condition < op > applied
to the two elements at the top of the operand stack is evaluated to true. Otherwise it goes
on with the next instruction.

pc = (c,m, n), pc′ = (c,m, #i)
〈goto #i, (os, lv, h, l, pc)〉→〈os, lv, h, l, pc′〉

if evalCondition(< cond >, os) = (false, os′)
〈if < op > #i, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉

pc = (c,m, n), pc′ = (c,m, #i) if evalCondition(< cond >, os) = (true, os′)
〈if < op > #i, (os, lv, h, l, pc)〉→〈os′, lv, h, l, pc′〉

evalCondition receives as parameters a boolean condition and an operand stack. It returns
the result of the condition’s evaluation and the resulting operand stack.

5.5.8 Method Invocation

We suppose to have a global stack callStack. It contains the stack of the invoke statements
and the local states. These states are represented as triples composed by

• the program counter that invokes the method,

• the local state of the operand stack,

• the local state of the local variables.

96 5. Concrete and Abstract Domain and Semantics of Java Bytecode

Statement return ends the execution of the current method, getting the control back to the
caller or ending the computation possibly. Statement vreturn passes the value at the top
of the operand stack to the caller, pushing it on the operand stack of the caller. Statement
invoke < method > invokes the method identified by a given method signature, accord-
ing to the type of the reference on which it is invoked.

(r, lv′, os1) = extractLV(os, < method >), callStack = push(callStack, (pc, os1, lv)),
(c,m) = solveDynamicClass(r, < method >), pc′ = (c,m, 0)
〈invoke < method >, (os, lv, h, l, pc)〉→〈∅, lv′, h, l, pc′〉

(callStack, (pc1, os′, lv′)) = pop(callStack) if callStack , ∅
〈return, (os, lv, h, l, pc)〉→〈os′, lv′, h, l, next(pc1)〉

(callStack, (pc1, os1, lv′)) = pop(callStack),
v = pop(os), os′ = push(os1, v) if callStack , ∅
〈vreturn, (os, lv, h, l, pc)〉→〈os′, lv′, h, l, next(pc1)〉

pc = (c,m, i), pc′ = (c,m,−1) if callStack = ∅
〈return, (os, lv, h, l, pc)〉→〈os, lv, h, l, pc′〉

pc = (c,m, i), pc′ = (c,m,−1), (os′, v) = pop(os) if callStack = ∅
〈vreturn, (os, lv, h, l, pc)〉→〈os′, lv, h, l, pc′〉

extractLV : [(Op × MSig) → (Ref × LV × Op)] receives as parameters an operand stack
and the signature of a method. It returns

• the reference on which the method is called,

• the local variables at the beginning of the called method, i.e. with the reference to
this at index 0, followed by the arguments of the method,

• the operand stack obtained after the extraction of the arguments.

solveDynamicClass : [(Ref × MSig) → (C × M)] receives as parameters a reference and
its signature. It returns the called method and the class to which it belongs.

5.5.9 Applying it to the Example
Table 5.1 depicts the complete execution of the example introduced in Section 5.3 graph-
ically. For each state, we show its four components: on the left there is the operand stack,
then the local variables, the heap, and finally the function that traces the owned monitors.
We do not trace the program counters, as it is a sequential piece of code without nor jumps
neither if statements. In this representation, we suppose that the address of this, which is
stored at index 0 of local variables according to the Java Virtual Machine Specification,
is #0. Note that the value of the parameter amount is passed through index 1 of local
variables.

5.5. Concrete Operational Semantics 97

0 1

#0 100
#0 (Account, amount) 7→ 1.000 ∅

↓ load 0

#0

0 1

#0 100
#0 (Account, amount) 7→ 1.000 ∅

↓ monitorenter

0 1

#0 100
#0 (Account, amount) 7→ 1.000 #0 7→ 1

↓ load 0

#0

0 1

#0 100
#0 (Account, amount) 7→ 1.000 #0 7→ 1

↓ load 0

#0

#0

0 1

#0 100
#0 (Account, amount) 7→ 1.000 #0 7→ 1

↓ getfield < Account > < amount >

1.000

#0

0 1

#0 100
#0 (Account, amount) 7→ 1.000 #0 7→ 1

↓ load 1

100

1.000

#0

0 1

#0 100
#0 (Account, amount) 7→ 1.000 #0 7→ 1

↓ arith < sub >

900

#0

0 1

#0 100
#0 (Account, amount) 7→ 1.000 #0 7→ 1

↓ putfield < Account > < amount >

0 1

#0 100
#0 (Account, amount) 7→ 900 #0 7→ 1

↓ load 0

#0

0 1

#0 100
#0 (Account, amount) 7→ 900 #0 7→ 1

↓ monitorexit

#0

0 1

#0 100
#0 (Account, amount) 7→ 900 ∅

↓ return

#0

0 1

#0 100
#0 (Account, amount) 7→ 900 ∅

Table 5.1: The concrete execution of the example

98 5. Concrete and Abstract Domain and Semantics of Java Bytecode

5.6 Control Flow Graph
So far, we described executions as traces of states. Since bytecode programs are not
structured, we have to build up a structured representation of their execution. The aim of
this section is to formalize the construction of executions on the control flow graph as an
abstraction of the trace of execution. Note that all the targets of branch instructions can
be statically determined. So we do not need to take into account indirect branches. Oth-
erwise, if the target of jump and conditionals statements were not statically determined,
we would require an ad-hoc static analysis in order to reconstruct the control flow graph
[78]. This is not necessary on the language defined in Section 5.2.

5.6.1 Formal Definition
Let St be the set of bytecode statements. A program is represented as a trace of state-
ments, i.e. P = St~+. The control flow graph is composed by an array of blocks (i.e. traces
of statements) and by a set of edges that relate blocks.

Definition 5.6.1 (Control Flow Graph) A control flow graph is composed by

• an array of sequential blocks (V = AR(St~+)),

• a set of edges linking different blocks (E = N × N × < cond >).

Each block is identified by its position in the array. The third component of edges stores
the condition required in order to cross this edge.

CFG = V × E

Since the outgoing edges can be defined only by jump statements, we need to consider
three cases:

• the last statement of the block is return or vreturn. In this case there is no outgoing
edge;

• the last statement of the block is goto. In this case we have only one outgoing edge
in which the condition is true;

• the last statement of the block is if < cond >. In this case we have two outgoing
edges. One of them points to the next block (in the case the condition is evaluated
to false), while the other one points to a given index (if the condition is evaluated
to true).

As the indexes of if and goto instructions are statically known, we can build up this
graph before analyzing the program. This information is provided by function extractCFG :
St~+ → CFG. Then, we may disregard if and goto statements, as they are represented by
edges in the control flow graph.

5.6. Control Flow Graph 99

An execution on a control flow graph is represented as an array of set of traces. Since
the program may contain loops, the same block may be executed more than once. This is
why each block is related to a set of its executions.

Definition 5.6.2 (Control Flow Graph execution) An execution on a control flow graph
is represented by the control flow graph itself and an array of set of traces of executions.

exCFG = CFG ×AR(℘(Σ~+))

5.6.2 Soundness with respect to 〈℘(Σ~+),⊆〉
The partial order operator simply applies the subset ordering on all the elements of the
two executions of the control flow graph.

Definition 5.6.3 (Ordering operator vCFG)

(cfg1, ex1) vCFG (cfg2, ex2) = true iff
∀i ∈ dom(ex1) : i ∈ dom(ex2) ∧ ex1(i) ⊆ ex2(i)

Lemma 5.6.4 〈exCFG,vCFG〉 forms a complete lattice

Proof. The proof follows trivially from the fact that vCFG is the pointwise application of
⊆.

Lemma 5.6.5 〈℘(Σ~+),⊆〉 forms a complete lattice

Starting from an execution of a control flow graph we can build up the set of all the
possible executions represented by it.

Definition 5.6.6 (Concretization γCFG)

γCFG : [exCFG→ ℘(Σ~+)]
γCFG((b, v), ex) = {τ0 → ..→ τn :
(1) τ0 ∈ ex(0),
(2) τn ∈ ex(k) : k ∈ dom(ex), @(i1, i2) ∈ v : i1 = k,
(3) ∀i ∈ [1..n − 1] : ∃j ∈ dom(ex) : τi ∈ ex(j),∃j1, j2 ∈ dom(ex) :

τi−1 ∈ ex(j1), τi+1 ∈ ex(j2), (j1, j) ∈ v, (j, j2) ∈ v
}

• (1) formalizes that the block 0 is the entry point of the control flow graph.

• (2) means that the last part of the trace is the execution of an exit-point block.

• (3) formalizes that all the intermediate traces must be obtained as the concretization
of a block such that there is

100 5. Concrete and Abstract Domain and Semantics of Java Bytecode

– an edge from the previous block to the current one,

– an edge from the current one to the next one.

Lemma 5.6.7 γCFG is a completeuCFG-morphism, whereuCFG is the lower bound operator
induced by vCFG

Theorem 5.6.8 〈℘(Σ~+),⊆〉 −−−−−−→←−−−−−−
αCFG

γCFG 〈exCFG,vCFG〉 where

αCFG : [℘(Σ~+)→ exCFG]
αCFG = λT.

d
CFG{ex : T ⊆ γ(ex)}

Proof. By Lemma 5.6.7 γCFG is a complete uCFG-morphism. Therefore, by applying
Theorem 2.2.3 we get that 〈℘(Σ~+),⊆〉 −−−−−−→←−−−−−−

αCFG

γCFG 〈exCFG,vCFG〉.

In this way, we provide a sound abstraction of the possible executions of a program as
executions on a control flow graph.

5.7 Method Calls

Another level of abstraction is the representation of method calls as control flow graph
executions. When we represent the executions as traces, method calls are represented in
this way too. For instance, suppose to have executed a trace σ0 → · · · → σi. Then the
analysis of a method call produces a trace σ′0 → · · · → σ′i . Finally, we go on with the
execution with σk → · · · . This execution is represented by the trace σ0 → · · · → σi →
σ′0 → · · · → σ′i → σk → · · · .
When we deal with a control flow graph of a program (and so also the body of a method)
we represent the invocation of a method as a control flow graph and an array of set of
traces, i.e. with an element in exCFG.
Given a trace representing an execution, we can build up a function translateMethodCall :
[℘(Σ~+) → ℘((exCFG ∪ Σ)~+)]. This represents each method call as an element in exCFG.
Intuitively, once this function detects one method call, it can extract the trace that repre-
sents its execution, and it can abstract the execution through αCFG.

5.8 Abstract Domain

While abstracting the concrete domain presented in Section 5.4, the most important issue
is the analysis of addresses through an ad-hoc alias analysis. For other components, the
abstract domain is the simple approximation of its concrete counterpart.

5.8. Abstract Domain 101

5.8.1 Alias Analysis
In order to obtain an effective analysis of Java multithreaded programs we need to pre-
cisely trace

• when two accesses on the shared memory may be on the same location,

• when two threads are always synchronized on the same monitors.

In Java the shared memory is the heap. It relates references to objects, arrays, or strings.
Monitors are defined on objects, and threads are objects. So they are both identified by
reference.
In this context alias analysis (i.e. the way in which we abstract references) is the critical
point of our analysis. We need to precisely check

• when two references always point to the same location (must-aliasing),

• when two references may point to the same location (may-aliasing).

Must-Aliasing

In order to check when two references point to the same location, we link each abstract
reference to an equivalence class. Two values related to the same equivalence class con-
tain the same value at that point in all possible executions of the program. Each time we
analyze a new statement we create a new equivalence class. When we make the join, if
a variable points to two different equivalence classes in the two branches we instantiate a
new equivalence class. Note that in this way we have a loss of precision: two variables
may be equal in both branches but through different equivalence classes. When we join
them, we lose this relation. We may refine our operator but this would increase its com-
plexity. In fact, for each variable we would have to check all the variables that point to
the same equivalence class. On the other hand this operator may be easily optimized. On
the examples on which we tested our analysis we did not need to refine and optimize the
join operator.
Formally, we denote by E the set of the equivalence classes on references. The function
fresh() returns a new equivalence class. The join operator tE is defined as:

e1 tE e2 =

{
e1 iff e1 = e2

fresh() otherwise

In order to define the ordering operator, we need to work on a boxed domain in which
each variable is related to an equivalence class. Let be f1, f2 ∈ [Var→ E], where Var is the
set of the variables of the program. Then f1 ≤E f2 iff ∀v1, v2 ∈ dom(f2) : f2(v1) = f2(v2) ⇒
v1, v2 ∈ dom(f1) ∧ f1(v1) = f1(v2).
The concretization function must be defined on [Var→ E] too.

γE(f) = {f : ∀v1, v2 ∈ dom(f) : f(v1) = f(v2)⇒ f(v1) = f(v2)}
A special equivalence class is reserved to null pointers.

102 5. Concrete and Abstract Domain and Semantics of Java Bytecode

May-Aliasing

The basic idea of our may-alias analysis is to represent all the possible concrete references
with a finite set of abstract references. Then we link them to the point of the program that
instantiated them. This approach is similar to the one adopted in [42].

Definition 5.8.1 (May-aliasing) The may-aliasing represents references as triples com-
posed by

• the program counter that created the reference;

• the stack of the called methods. Each method call is represented by the program
counter of the invoke statement. The stack is reduced in order to approximate
recursive calls with the same abstract reference. Intuitively, each time we found
twice the same program counter in the stack, this means that we are analyzing a
recursive method. So we project the stack to the first method call, tracing that we
are analyzing a recursive method;

• the abstract reference of the thread that instantiated the reference.

Formally, D = (PC × ST(PC) × D) ∪ {#mainthread}.

This definition is recursive as each abstract reference contains another abstract refer-
ence representing the thread that instantiated it. The set of abstract references contains
also the special element #mainthread that represents the main thread. We need this el-
ement as the main thread is instantiated by the system and not by another thread. In
addition all the threads are started directly or indirectly from it, and this guarantees that
recursion is not possible. Intuitively, the creation of threads can be represented as a tree.
In fact, each thread is created by another one (except the main thread, that is the root of the
tree), and it can create a set of threads. In addition, loops are not possible, as you cannot
have that a thread t1 creates a thread t2 which creates t1. So recursion is not possible.
A value may contain references created at different program points, e.g. because of a non
deterministic if statement. Then the may-alias analysis represents an abstract reference
as a set of these triples. In this way the ordering, join and meet operators are the ones of
sets. The set of program counters is finite and the stack of the called methods is reduced
in order to avoid recursive calls. So the set of abstract references is finite. Finally the
lattice satisfies the ascending chain condition, and so we do not need to define a widening
operator.
The concretization function returns all the possible concrete addresses that may be created
by the given program counter following the given call stack (and all its possible recursive
extensions).
Static references: This aliasing domain has to be extended in order to support static
references. Since static fields are initialized by the system before the launch of the ap-
plication calling the static constructors of the classes, we need to define specific abstract

5.8. Abstract Domain 103

references for them. In this context, we augment our may aliasing domain adding an ab-
stract address for each class identified by the class itself. This address is used to store the
information on static fields and when static methods are invoked.

Definition 5.8.2 (May-aliasing of static references) The set of abstract static references
S is represented by the set of classes: S = C.

The concretization function γS simply returns the concrete references pointing to the
static object of the given class.

Definition 5.8.3 (May-aliasing) The may-aliasing domain is the union between the may-
aliasing of dynamic and static references: P = D ∪ S ∪ null. null element is used in order
to represent null pointers.

Definition 5.8.4 (May-aliasing lattice) The may-aliasing lattice is the one composed by
a set of elements of the may-aliasing domain using the common set operators: 〈℘(P),⊆
, ∅,P,∪,∩〉.

Abstract References

The abstract domain represents references as the Cartesian product of may- and must-
aliasing domains.

Definition 5.8.5 (Abstract References) Ref = E × P

5.8.2 Domain
Our analysis is parameterized by a non-relational numerical domain.

Proposition 5.8.6 (Abstract numerical domain) We suppose that a non-relational numer-
ical domain Num is given. It has to approximate concrete numerical values soundly.

〈℘(N),⊆〉 −−−−−−→←−−−−−−
αNum

γNum 〈Num,vNum〉

Definition 5.8.7 (Values) Val = Ref ∪ Num

Definition 5.8.8 (Operand stack) Op = ST(Val)

Definition 5.8.9 (Local variables) LV = AR(Val)

Definition 5.8.10 (Monitors) L : [Ref→ N]

Definition 5.8.11 (Objects) Obj : [(C × F)→ Val]

104 5. Concrete and Abstract Domain and Semantics of Java Bytecode

Analyzing precisely arrays is an orthogonal issue with respect to our goal. It deserves
to be considered separately. Nevertheless, we implement a simple analysis of arrays in
which all the cells are abstracted into a unique abstract value. In addition we trace also
the abstract length of the array. This minimal approach allows us to deal with programs
that contain arrays. For the properties on which we are interested, it seems not to afflict
the precision of the analysis.

Definition 5.8.12 (Arrays’ state) The abstract state of an array is a pair composed by
an abstract value (approximating the values of all the cells of the array) and an abstract
numerical value (approximating the length of the array) : Arr = Val × Num.

Definition 5.8.13 (Strings) Str = AR(Num) × Num

Definition 5.8.14 (Heap) The abstract heap relates elements of may-alias domain to ob-
jects or arrays: H : [P→ (Obj ∪ Arr ∪ Str)]

Definition 5.8.15 (Single-thread state) Σ = Op × LV × H × L × PC

5.9 Abstract Operational Semantics
The abstract operational semantics is mostly the abstraction of the concrete definition
presented in Section 5.5.

5.9.1 Load and Store

os′ = push(os, lv(i))

〈load #i, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉
(os′, v) = pop(os), lv′ = lv[i 7→ v]

〈store #i, (os, lv, h, l, pc)〉→〈os′, lv′, h, l, next(pc)〉

5.9.2 Monitors

(os′, r) = pop(os), l′ = l[r 7→ l(r) + 1] if r ∈ dom(l)

〈monitorenter, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉
(os′, r) = pop(os), l′ = l[r 7→ 1] if r < dom(l)

〈monitorenter, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉
(os′, r) = pop(os), l(r) = n, l′ = l[r 7→ n − 1] if n > 1

〈monitorexit, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉

5.9. Abstract Operational Semantics 105

(os′, r) = pop(os), l(r) = n, l′ = l \ {r 7→ n} if n = 1

〈monitorexit, (os, lv, h, l, pc)〉→〈os′, lv, h, l′, next(pc)〉
Note that since our abstract references are an approximation of the concrete ones, we may
be not able to unlock monitors precisely. For instance, consider the following piece of
code:

if (i>0)
lock(a)

else lock(b);
// do something without modifying i, a, and b
if (i>0)

unlock(a)
else unlock(b);

If at the abstract level we would not be able to precisely check the condition i > 0, we may
be not able to check that we always release a monitor previously locked. In this case, we
should release all the owned monitors in order to preserve the soundness of the approach.
On the other hand, we never found such a case when analyzing a bytecode obtained by
compiling Java code through javacc. At bytecode level monitorexit always deals with
monitors that can be trivially proved to be acquired by a previous monitorenter statement.

5.9.3 Objects

(r, h′) = alloc(< class >, h, pc), os′ = push(os, r)

〈new < class >, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
(os1, (R, e)) = pop(os), v =

⊔

r∈R
h(r)(< class >, < id >), os′ = push(os1, v)

〈getfield < class > < id >, (op, lv, h, l, pc)〉→〈op′, lv, h, l, next(pc)〉
(os1, v) = pop(os), (os′, (e,R)) = pop(os1), obj = h(r),

h′ = h[{r 7→ obj′ : r ∈ R, obj′ = h(r)[(< class >, < id >) 7→ v]}]
if R = {r} ∧ isSingle(r) = true

〈putfield < class > < id >, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
(os1, v) = pop(os), (os′, (e,R)) = pop(os1), obj = h(r), h′ = h[{r 7→ obj′ : r ∈ R,

obj′ = h(r)[(< class >, < id >) 7→ h(r)(< class >, < id >) tVal v]}]
if R , {r} ∨ isSingle(r) = false

〈putfield < class > < id >, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
alloc : [(C×H×PC)→ (Ref×H)] receives as parameters a class, a state of the heap,

and a program counter. It allocates an abstract location containing the abstraction of the
default values for all the fields of the given class. Finally it returns a fresh reference that

106 5. Concrete and Abstract Domain and Semantics of Java Bytecode

points to this location in the returned heap.
isSingle : [P → {true, false}] is a function that, given an abstract element of our may
aliasing domain, returns true iff it represents exactly one concrete reference. Since each
abstract element is related to a specific program counter and to the stack of method called,
we can check if this allocation may be inside a loop or if it is inside a recursive context. If
both these condition are false, we prove statically that the abstract reference approximates
exactly one concrete address, and so isSingle returns true.

5.9.4 Arrays

(os1, i) = pop(os), (r, h′) = allocArray(i, h), os′ = push(os1, r)

〈newarray, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
(os1, i) = pop(os), (os2, (R, e)) = pop(os1), v =

⊔

r∈R
(π1(h(r))), os′ = push(os1, v)

〈aload, (op, lv, h, l, pc)〉→〈op′, lv, h, l, next(pc)〉
(os1, v) = pop(os), (os2, i) = pop(os1), (os′, (R, e)) = pop(os1),

h′ = h[{r 7→ ar′ : r ∈ R, ar′ = (π1(ar′(r)) t v, π2(ar′(r)))]

〈astore, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
allocArray : [(Num×H)→ (Ref×H)] receives as parameters an abstract numerical value
representing a length and a heap. It returns an abstract reference and the heap that relates
this reference to an array of the given length.

5.9.5 Arithmetic Expressions

(os1, (i1)) = pop(os), (os2, i2) = pop(os1),
os′ = push(os2, evalExprAr(i2, i1, < op >))

〈arith < op >, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉
evalExprAr receives as parameters two abstract numerical values and a binary arithmetic
operator. It returns the result of the abstract execution of this arithmetic operation. We
suppose that this evaluation is sound, i.e.

αNum(i1 < op > i2) vNum evalExprAr(αNum(i1), αNum(i2), < op >)

5.9.6 Constants

os′ = push(os, evalConst(< val >)), if < val > is a numerical value

〈const < val >, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉

5.10. Soundness 107

os′ = push(os, null), if < val > = null

〈const < val >, (os, lv, h, l, pc)〉→〈os′, lv, h, l, next(pc)〉
(r, h′) = allocString(< val >, h), os′ = push(os, r), if < val > is a string

〈const < val >, (os, lv, h, l, pc)〉→〈os′, lv, h′, l, next(pc)〉
allocString : [(Str×H)→ (Ref×H)] receives as parameters a string and an abstract heap.
It returns an abstract reference and the heap that relates it to the abstract representation of
the given string.
evalCondition : [N→ Num] is a function that given a numerical value returns its abstract
representation.

5.9.7 Jumps, If and Method Calls
Our abstract semantics is defined on the control flow graph depicted in Sections 5.6 and
5.7. In this way we do not need to deal with goto, if statements, and method calls.

5.9.8 Applying it to the Example
Table 5.2 depicts the results of the abstract analysis of the example presented in Section
5.3 using the Interval domain. Since we are analyzing this method when the current object
has been already allocated, we represent its abstract reference by ({r}, 0). We suppose that
isSingle(r) = false, e.g. because the program counter of the new statement that allocated r
is inside a loop. So when we analyze putfield we perform a weak assignment. At the end
of the computation in the abstract the field (Account, amount) is related to the interval
[900..1.000]. So we obtain a final result approximated with respect to the concrete result
because of this weak assignment.

5.10 Soundness

5.10.1 Domain
Thanks to our low-level approach, the abstraction function can be defined as the pointwise
applications of the abstraction of numerical values and of references. In general we define
by αS this function when applied to elements in S.

Theorem 5.10.1 (Soundness of 〈Σ,vΣ〉) 〈Σ,vΣ〉 is a sound approximation of 〈℘(Σ),⊆〉, i.e.

〈℘(Σ),⊆〉 −−−−→←−−−−αΣ

γΣ 〈Σ,vΣ〉

Proof. For numerical values, Proposition 5.8.6 guarantees that our non-relational numer-
ical domain is sound. For references, the abstraction of may-aliasing domain can be easily
built up by tracing for each concrete address, which threads and statements create it, and

108 5. Concrete and Abstract Domain and Semantics of Java Bytecode

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ∅

↓ load 0

({r}, 0)

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ∅

↓ monitorenter

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ({r}, 0) 7→ 1

↓ load 0

({r}, 0)

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ({r}, 0) 7→ 1

↓ load 0

({r}, 0)

({r}, 0)

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ({r}, 0) 7→ 1

↓ getfield < Account > < amount >

[1.000..1.000]

({r}, 0)

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ({r}, 0) 7→ 1

↓ load 1

[100..100]

[1.000..1.000]

({r}, 0)

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ({r}, 0) 7→ 1

↓ arith < sub >

[900..900]

({r}, 0)

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [1.000..1.000] ({r}, 0) 7→ 1

↓ putfield < Account > < amount >

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [900..1.000] ({r}, 0) 7→ 1

↓ load 0

({r}, 0)

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [900..1.000] ({r}, 0) 7→ 1

↓ monitorexit

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [900..1.000] ∅

↓ return

0 1

({r}, 0) [100..100]
r (Account, amount) 7→ [900..1.000] ∅

Table 5.2: The abstract analysis of the example

5.10. Soundness 109

which was the call stack at that point of the computation (possibly projecting it in order
to avoid recursion). αP represents this abstraction function. Equivalence classes of the
must-aliasing domain can be abstracted checking which concrete references are equal.
The abstraction function on operand stacks, local variables, heaps, etc.. are the pointwise
application of these two abstraction functions.

The same situation occurs for the upper bound operator, that can be obtained as the
pointwise application of upper bound operators of numerical values and references. As
for abstraction functions, vS and tS represents respectively the partial order and the upper
bound operators on elements of the set S.

As abstraction functions and upper bound operators rely on sound operators on refer-
ences and numerical values, we get that our abstract domain forms a Galois connection
with respect to its concrete counterpart.

5.10.2 Semantics
We need to prove the soundness of our abstract semantics when reading from and writing
on objects. The other cases can be trivially proved as they are obtained as the abstraction
of the concrete definition, or rely on the soundness of the numerical domain.

5.10.3 Objects
Lemma 5.10.2 (Soundness of getfield) → is sound with respect to → when applied to
getfield, i.e.

∀σ ∈ Σ : αΣ({σ′ : σ→σ′}) vΣ σ
′ : αΣ({σ})→ σ′

Proof. By definition of→when applied to getfield (Section 5.5.3) the local variables, the
heap, and the locked monitors are not modified. So we need to focus only on the operand
stack.
→ pops from the operand stack a reference r, and it pushes the value h(r)(< class >,
< id >). Finally, the abstraction of this state will approximate the top of the stack with
αVal(h(r)(< class >, < id >))
When applying → to the abstraction of the initial state (Section 5.9.3), we would have
at the top of the operand stack the value

⊔
r∈αP({r})(αH(h)(r)(< class >, < id >)), where αP

is the abstraction function of our may-aliasing domain. αP and αH are the pointwise
application of sound abstractions of numerical values and references. As we take the
upper bound of all the possible abstract references, we have that

αVal(h(r)(< class >, < id >)) vVal

⊔

r∈αP({r})
(αH(h)(r)(< class >, < id >))

As vΣ is the pointwise application of the ordering of numerical values and references, and
the other components of the state are not modified, we proved that

∀σ ∈ Σ : αΣ({σ′ : σ→σ′}) vΣ σ
′ : αΣ({σ})→ σ′

110 5. Concrete and Abstract Domain and Semantics of Java Bytecode

when working on getfield.

Lemma 5.10.3 (Soundness of putfield) → is sound with respect to → when applied to
putfield, i.e.

∀σ ∈ Σ : αΣ({σ′ : σ→σ′}) vΣ σ
′ : αΣ({σ})→ σ′

Proof. By definition of → when applied to putfield (Section 5.5.3) the local variables,
and the locked monitors are not modified. So we need to focus only on the operand stack
and the heap.
→ pops from the operand stack a value v and a reference r, and it assigns the value to the
given field of the given reference, i.e. obj′ = obj[(< class >, < id >) 7→ v], h′ = h[r 7→
obj′]. Finally, the abstraction of this state will contain the abstraction of the popped value
assigned the given field of the object pointed by the abstraction of the given reference.
When applying→ to the abstraction of the initial state (Section 5.9.3), we need to distin-
guish two cases:

• αP(r) = {r} ∧ isSingle(r) = true: in this case the may-aliasing abstraction of the
concrete reference represents exactly one reference. In this way, assigning to h(r)
the object that relates the given field to the abstraction of the concrete value is
sound.

• αP(r) , {r} ∨ isSingle(r) = false: in this case the may-aliasing abstraction of the
concrete reference may represent more than one concrete references. Then we are
not sure on which concrete reference we are assigning. In order to be sound we
need to assign to each possible abstract reference the upper bound between the old
value and the abstraction of the assigned one, and this is performed by→.

As vΣ is the pointwise application of the ordering of numerical values and references,
and the other components of the state are not modified, we proved that

∀σ ∈ Σ : αΣ({σ′ : σ→σ′}) vΣ σ
′ : αΣ({σ})→ σ′

when working on putfield.

Theorem 5.10.4 (Soundness of→ with respect to→) → is sound with respect to→, i.e.

∀σ ∈ Σ : αΣ({σ′ : σ→σ′}) vΣ σ
′ : αΣ({σ})→ σ′

Proof. Lemma 5.10.2 and 5.10.3 prove the soundness of→ respectively on getfield and
putfield. When it is applied to load and store statements (Section 5.9.1), it is defined as
the application of the abstraction function on its concrete counterpart (Section 5.5.1 and
5.5.2). The soundness of lock and release of monitors (Section 5.9.2) relies on the sound-
ness of E domain. About arithmetic expressions (Section 5.9.5) and constants’ evaluation
(Section 5.9.6), the soundness is guaranteed as we suppose that the abstract numerical
domain correctly approximates the concrete one. Finally, when it is applied to arrays
(Section 5.9.4) it is sound as it approximates all the concrete cells with one abstract value,
and we consider the upper bound between old and new values when assigning.
So in all the possible cases we have that→ is sound with respect to→.

5.11. Related Work 111

5.11 Related Work

Many generic analyses of Java programs have been proposed recently.
Some of them have been applied at source code level. It is the case of Cibai [91]. Its
aliasing analysis is quite similar to our: each new statement can allocate at most k ab-
stract references (where k is a parameter of the analysis). This alias domain is sometimes
more precise than our may-aliasing, e.g. inside a loop it tracks k abstract addresses for the
same new statement, while our analysis tracks just one reference. In other cases our may
aliasing domain is more precise, e.g. in case of several method calls. In addition, there
is no must alias analysis. Cibai is parameterized on a numerical domain, it supports also
relational domains, and octagons were implemented in it. Its domain is composed by an
environment and a store. Intuitively, these concepts are translated at bytecode level into
local variables and heaps. Cibai is applied to the modular analysis of verification of Java
classes.
Another analysis at source code level is the one presented by Pollet [111, 112]. It can
be tuned with three different alias analyses. It performs an inter-procedural analysis. It
abstracts away numerical values. The structure of the domain is similar to our one and to
the one of Cibai, but it is more generic as it can be plugged with different abstractions of
the store. On the other hand, in our case it is not possible to be generic on it, as we need to
deal with the structure of the store and its abstraction in order to develop a static analysis
of multithreaded programs.
Clousot is a generic static analyzer that works at MSIL bytecode level. It is parame-
terized on an abstract numerical domain and on a property, and it has been successfully
applied to the analysis of array out-of-bounds accesses [92], of buffer overrun [47], and to
a new relational domain [84]. It performs three transformations of the bytecode (i.e. stack
elimination, heap abstraction, and expression recovery) [93] in order to obtain a precise
analysis. In this way, it results to be more precise than our approach. On the other hand,
we cannot abstract the heap, as in this way we would not be able to check when two th-
reads communicate through the shared memory. In addition, it performs an intra-method
analysis, relying on the Design by Contract methodology [100] in order to gain precision
on method calls, while our analysis is whole-program.
Julia [131] is another generic analyzer at Java bytecode level. It can be plugged with
different abstract domains. In this way, the level of parameterization is higher than in our
approach: the user can define his domain freely. On the other hand, this requires the user
to define it fully, and he cannot focus only on the numerical domain and on the property of
interest. In particular, no alias analysis is implemented in Julia, and the plugged domain
has to care about references. Julia has been applied to a wide set of properties: informa-
tion flow analysis [53], escape analysis [64], magic-sets transformation [110], constancy
analysis [54], and nullness analysis [132].
Navas, Mendez-Lojo and Hermenegildo propose a language independent analysis [105].
They represent a program through a control flow graph, and they are parameterized both
on the semantics of statements and on the abstract domain.

112 5. Concrete and Abstract Domain and Semantics of Java Bytecode

5.12 Application to the Happens-Before Memory Model

In order to apply the static analysis of the happens before memory model introduced in
Chapter 3 we need to define on our domain some elements and functions as required by
Sections 3.3.1 and 3.4.1.

5.12.1 Concrete Domain

In Java threads are objects and so identified by reference, i.e. TId = Ref. In the same
way, the shared memory is the heap, i.e. Sh = H, and locations are identified by reference,
i.e. Loc = Ref. Threads can synchronized on monitors that are defined on objects and so
identified by reference, i.e. Sync = Ref. The set of states of the concrete domain is Σ, i.e.
St = Σ.
The transition function ◦→ : [St × St→ {true, false}] is→ as defined in Section 5.5.
About the functions, they are defined as follows.

Definition 5.12.1 (shared)

shared((op, lv, h, l, pc)) = h

Definition 5.12.2 (action)

action((op, lv, h, l, pc)) = ⊥a iff ns(pc) < {putfield, getfield}
action((op, lv, h, l, pc)) = (r, l,⊥v) iff ns(pc) = getfield where (op′, l) = pop(op)
action((op, lv, h, l, pc)) = (w, l, v) iff ns(pc) = putfield where (op′, v) = pop(op),

(op′′, l) = pop(op′)

where ns : [PC → S] is the function that returns the statement pointed by the given
program counter.

Definition 5.12.3 (synchronized)

synchronized((op, lv, h, l, pc)) = dom(l)

Definition 5.12.4 (assign)

assign(h, r, v) = h[r 7→ v]

Definition 5.12.5 (setshared)

setshared((op, lv, h, l, pc), h′) = (op, lv, h′, l, pc)

5.12. Application to the Happens-Before Memory Model 113

5.12.2 Abstract Thread Identifiers
At abstract level we identify threads through the may-alias domain. In Chapter 3 we sup-
posed that the set of threads is exactly the same both in the abstract and in the concrete
domains. This is not true in Java, as threads are objects, and they can be dynamically cre-
ated and launched. An abstract element of our may-aliasing can represent many concrete
references, i.e. when we have a new statement inside a loop or a recursive method.
In particular, vis function is defined as follows:

vis : [TId × Loc × ℘(Sync) ×Ψ × (TId × N)→ ℘(Val)]
vis(t, l,S, f, (t′, i′)) =

= project(l, suffix(f(t′), i′),S)∪
{v : v ∈ project(l, f(t′′),S) : t′′ ∈ dom(f) \ {t, t′}}

Intuitively,

• in the first part of the definition of vis (project(l, suffix(f(t′), i′),S)) if the abstract
identifier (i.e. an element of our may-alias domain) that corresponds to t’ approx-
imates many concrete references, we cannot discard the values written in parallel
by this thread before the launch of the current thread. In fact, these values may be
written in parallel by another thread represented by the same abstract identifier, but
that does not launch the current thread;

• in the second part of the definition of vis ({v : v ∈ project(l, f(t′′),S) : t′′ ∈ dom(f) \
{t, t′}}) if the abstract identifier of the current thread t approximates many concrete
references, we cannot discard the values written in parallel by t. In fact, these
values may be written in parallel by another concrete thread represented by the
same abstract identifier, but that is different from the current one.

Applying these considerations, we preserve the soundness of the analysis.
The vis can be redefined as follows when applied to this context and using the may-alias
abstract domain to identify threads:

vis : [P × Loc × ℘(Sync) ×Ψ × (P × N)→ ℘(Val)]
vis(t, l,S, f, (t

′
, i′)) =

= project(l, suffix(f(t
′
), i′),S)∪

{v : v ∈ project(l, f(t
′′

),S) : t
′′ ∈ dom(f) \ {t′′ : t′′ ∈ {t, t′} ∧ |γP(t′′)| = 1}

where γP is the concretization function of the may-alias domain.

5.12.3 Abstract Domain
We use the may-alias domain in order to trace on which locations of the heap threads
access, i.e. Loc = P. We use the must-alias domain in order to infer on which monitors

114 5. Concrete and Abstract Domain and Semantics of Java Bytecode

threads synchronize, i.e. Sync = E. The other sets are obtained as the pointwise abstrac-
tion, i.e. Sh = H and St = Σ.
The abstract transfer function ◦→ : [St×St→ {true, false}] is→ as defined in Section 5.9.
The other functions can be obtained as the pointwise application of the abstraction func-
tion on the concrete functions just defined.

5.13 Application to the Deterministic Property
In Chapter 4 we stated a few assumptions on how concrete and abstract shared memo-
ries are defined. We need to discuss these issues in order to apply the analysis of the
determinism of multithreaded programs to the analysis presented right now.

5.13.1 Concrete Domain
In the concrete domain we defined the shared memory as a function that given a shared
variable returns the value contained in it and the thread that wrote it, i.e. S : [Var →
(V × TId)]. In this chapter the shared memory, i.e. the heap, has been defined as H :
[Ref→ (Obj ∪ Arr ∪ Str)].
The set of shared variables is

• a reference when we are accessing an array or a string,

• a triple composed by a reference, a class, and a field’s identifier when we are ac-
cessing an object, as object are defined as Obj : [(C × F)→ Val].

The codomain of the shared memory relates values to threads. The heap traces only
values. The thread that has written it can be easily inferred. In particular we have simply
to augment the vis function when reading through the shared memory values written in
parallel by other threads following the approach defined in Chapter 3.

5.13.2 Abstract Domain
The first level of abstraction relates each shared variable to a function. This infers for
each thread the abstract value it may have written in parallel, i.e. Ŝ : [Var→ [TId→ V̂]].
The domain of the heap introduced by this Chapter is composed by elements of the may-
aliasing domain. So the abstract domain soundly approximates the concrete heap with
these elements. We combine with class and fields’ identifiers that are statically defined in
the Java bytecode each time heaps are accessed.
When reading a value through the shared memory, the abstract value is obtained making
the upper bound of all the values written in parallel. In order to infer the information
required by the first level of abstraction, we need to track one abstract value for each
thread, that can be easily inferred thanks to the structure of the thread-partitioning domain
(as it relates each thread identifier to the abstract trace approximation its executions).

5.14. Discussion 115

5.13.3 Second Level of Abstraction
At the second level of abstraction we relate each shared variable to a pair composed by an
abstract value and a set containing threads’ identifiers, i.e. S : [Var→ (V̂ × ℘(TId))].
This level of abstraction can be directly obtained from the previous one. In it we traced a
value for each thread. So we need only to collapse all these values considering their upper
bound, and the set of threads’ identifiers as the second component of the pair.

5.14 Discussion
In this chapter we presented the concrete and abstract domains and semantics of Java
bytecode. These are aimed at applying the theoretical frameworks defined in Chapters
3 and 4 to the analysis of Java multithreaded programs. Our domains and semantics
are tuned at low-level in order to soundly and precisely infer how threads access the
shared memory and synchronize. We proved the soundness of our approach. This chapter
represents the bridge between the theoretical approaches developed until here and their
application to a real language.
In this way, we are now in position to

• implement a static analyzer generic with respect to an abstract numerical domain, a
memory model, and a property of interest,

• extend it in order to soundly analyze a program with respect to the happens before
memory model,

• analyze the determinism of multithreaded programs.

In addition we may instantiate this analyzer to other properties (like the data race con-
dition, presence of deadlocks, access to null pointers). We can also apply it to some
well-known non-relational domains.
This analyzer will be presented in the next Chapter.

116 5. Concrete and Abstract Domain and Semantics of Java Bytecode

6
�heckmate: a Generic Static Analyzer

of Java Multithreaded Programs

In this chapter we present the implementation of �heckmate, a generic static analyzer of
Java multithreaded programs at bytecode level. This analyzer is generic with respect to
a non-relational numerical domain, the property of interest, and a memory model. In this
context, we implemented the happens-before memory model, the deterministic and weak
deterministic properties. We adopt the domain and semantics introduced in Chapter 5.
After an overview of the structure of �heckmate, we will study the experimental results
deeply in order to investigate both the precision and the complexity of our approach.
�heckmate can be freely downloaded at URL http : //www.pietro.ferrara.name/check−
mate.
This chapter is based on the published work [46].

6.1 Generic Analyzers

Many authors proposed and developed generic analyzers relying on the abstract inter-
pretation theory. We have already introduced some of them in Section 5.11. There we
studied the theoretical approach of such analyzers mostly. We recall them here fusing on
the practical and implementation details.
JULIA [131, 130] is a free tool that implements a generic static analysis of Java bytecode
based on the abstract interpretation theory. It analyzes sequential program. In addition,
when some particular conditions are satisfied it may obtain sound results for multithreaded
programs. Moreover the author argues that there was a theoretical lack about the static
analysis of multithreaded, imperative, and object-oriented programs. Our work is aimed
exactly to fill this lack.
Clousot [93, 47, 92, 84] analyzes MSIL bytecode. It is parameterized by the property
and the numerical domain. It is sound only with respect to single thread executions. It
has been already successfully applied to the verification of some properties on industrial
software.
Cibai [91] is a generic static analyzer for modular analysis and verification of Java classes.
It is not sound with respect to multithreaded executions.

118 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

Pollet et al. [112] developed a generic static analyzer for Java code. It does not support
concurrency as Cibai, and so it is not sound with respect to multithreaded executions.
Méndez-Lojo et al.[105] presents a generic framework based on a representation of a pro-
gram as a control flow graph. The overall framework is generic also with respect to the
programming language, and it has been implemented in order to analyze Java programs
at bytecode level. In particular, a great effort has been made in order to optimize the fix-
point computation [99]. It is sound only on single-thread executions.
JAIL [42] is a generic static analyzer of JavaCard programs at source code level. It has
been successfully applied to the firewall analysis. It can be plugged with different nu-
merical domains and in order to analyze different properties. As JavaCard supports only
mono-thread programs, it does not deal with concurrency.

Contribution: In this context, �heckmate is the first generic static analyzer of Java
multithreaded programs. In particular, it is generic with respect to the numerical domain,
the analyzed property, and the memory model. �heckmate comprehends some well-
known numerical domains (e.g. Intervals), some properties (e.g. null pointer accesses
and deadlocks on monitors), and some memory models. It supports the main features of
Java multithreading system, and in particular

• dynamic unbounded threads creation,

• runtime creation and management of monitors,

• method-calls in presence of overloading, overriding and recursion,

• dynamic allocation of shared memory.

In addition, it supports all the common features of Java as strings, arrays, static fields and
methods, etc..
�heckmate supports only Java bytecode language, and so it does not support all the
features implemented through native methods, e.g. reflection and wait/notify on objects.

6.2 On Native Methods
Native methods are piece of code written in languages different from Java. They are
interfaced with Java programs through the “Java Native Interface”[88]. They are used
when developers need to go over the limits imposed by Java language, e.g. to use direct
pointers to the memory. These functionalities are required in order to develop some spe-
cific applications, e.g. to interface with the operating systems or with memory-mapped
devices.
Native methods cannot be automatically analyzed by �heckmate as we defined the se-
mantics of Java bytecode statements only. In addition, they may depend on the operating
system on which we are executing the applications or on its hardware architecture. Then
it is not sufficient to analyze one implementation, but we should take into account all the
versions of the Java virtual machine.

6.3. An Example 119

System MyThread
public static Account a = new Account(); private Account a;

public static int main(String[] args){
MyThread th = new MyThread();
System.a.amount = 1.000;
th.start();

..]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] public void run(){
synchronized(System.a) { synchronized(System.a) {
System.a.printAmount(); int temp = System.a.getAmount();
} if(temp < 100)
} System.a = null;

else System.a.withdraw(100);
}
}
}

Figure 6.1: A multithreaded application

We adopt a minimal approach to the analysis of native methods. We define and imple-
ment by hand the semantics of a restricted number of native methods, e.g. the ones of
java.lang.StrictMath.

6.3 An Example

Figure 6.1 depicts a program composed by 2 threads. System creates an Account object
that instances the class presented in Section 2.3. The initial value is set to 1.000. The
object is stored on a public static field, and then MyThread is launched. The two threads
are both synchronized on the same monitor. System prints the amount contained by
the account. MyThread sets to null the amount if there is less than 100. Otherwise it
withdraws 100 from that.
On this example we may be interested to analyze different properties and in particular the
presence of data races and of accesses to a null pointer. In order to check them precisely,
we would need specific numerical domains and memory models. We will show in Section
6.5 how using different parameters in �heckmate to analyze it successfully. Note that the
example is written in Java style code, but the analysis works on the bytecode obtained
compiling it with javac.

120 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

Figure 6.2: Overall structure of �heckmate

6.4 Structure

Figure 6.2 depicts the overall structure of �heckmate. The first step of the analysis is to
receive the source code of a Java program, compile it with javac, and build up the control
flow graph. Then �heckmate builds up an approximation of the program’s semantics, i.e.
an element of the thread-partitioning trace semantics. The inputs are a memory model
and an abstract numerical domain. Finally it checks if a given property received as input
is respected by the given abstraction. If it is not the case, a list of warnings is displayed
following one of the two user interfaces introduced in Section 6.6.
In the following of this section we present the interfaces of the three inputs of the analysis,
i.e. memory models, numerical domains, and properties.

6.4.1 Property

Figure 6.3 depicts the UML object diagram of the implementation of properties. Property
Interface requires to define a method check that given a state of thread-partitioning trace
domain returns an object of type Alert. This contains all the warnings produced checking
the property.
Property interface is implemented by two classes:

• DeadlockProperty: it checks if a program may contain a deadlock on monitors.
When a monitor is locked, the reference representing this monitor is passed to
monitorenter. Through our may-aliasing domain we have an over-approximation
of all the possible concrete references that may be locked by each monitorenter
statement. So we can build up an abstract waiting graph that over-approximates all

6.4. Structure 121

Figure 6.3: The UML object diagram of Property class

122 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

Figure 6.4: The UML object diagram of NumericalDomain class

the concrete waiting graphs. We check on it if a loop may appear. If it is the case,
it means that the program may contain a deadlock on monitors;

• SingleStatementProperty: it is a generic class that allows to instantiate different
properties. These have to work checking each state of computation separately. In
particular, the constructor of this class receives an object of type Visitor. This in-
terface requires to implement a method checkSingleStatement. It receives as pa-
rameters a state, an object Alert, a thread identifier, the analyzed statement, and the
call stack. It checks if the property is validated, and eventually it adds warnings on
the given Alert object. All the properties except deadlock are implemented through
these visitors.

6.4.2 Numerical Domain
Figure 6.4 depicts the UML object diagram of the implementation of numerical domains.
Interface NumericalValue requires to implement all the abstract arithmetical operators
(add, multiply, ...), the evaluation of conditions (testTrue and testFalse), and the com-
mon operators on lattices (lessEqual, lub, and widening). This interface is directly im-
plemented by all our numerical domains.

6.4.3 Memory Model
Figure 6.5 depicts the object diagram of the interface of the memory model following the
standard UML. The core of the diagram is the description of the interface MemoryModel.

6.4. Structure 123

Figure 6.5: The UML object diagram of MemoryModel class

Two methods are defined on it:

• get: it receives as parameters a reference, a string identifying the field to be read, the
current state (containing also the call stack and the thread that executes the current
read), and the statement that is used to read the value. It returns the value read on
that locations. It takes the upper bound of all the values written in parallel by other
threads and that can be seen following a memory model.

• factory: it receives as parameters an object of type MultiThreadResult (that is the
class that represents elements of our abstract thread-partitioning trace semantics)
and the number of iteration of the multithreaded fixpoint semantics. It returns an
object of type MemoryModel. This has to provide the values written in parallel
following the given abstract element. It chooses to apply the lub or the widening
operators relying on the number of iterations already performed.

In �heckmate this interface is implemented only by the class HBMemoryModel. The
three memory models implemented in �heckmate are obtained instantiating this class
passing different parameters to the constructor. The implementation is based on the theo-
retical approach developed in Chapter 3.

6.4.4 An Example of Interaction
Figure 6.6 depicts an UML sequence diagram that represents one possible execution of
�heckmate. The analyzer requires a memory model and a numerical domain when the
analysis is launched. During the analysis, �heckmate uses the memory model in order
to know which values written in parallel are visible at a given point of execution, and the
numerical domain in order to approximate numerical values. Once a fixpoint is reached,
the analysis obtains an object representing the abstraction of all the possible executions
of the program. Then this abstract result is passed to a Property object that checks if the
property is respected. Also in this context, the memory model and the numerical domain
are used in order to have information on the execution as during the analysis. Finally,
�heckmate obtains an object of type Alert: it contains all the warnings produced while
checking the property. So it shows the warnings and it ends the analysis.

124 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

Figure 6.6: An example of interaction during the analysis

6.5. Parameters 125

>

~~
~~

~~
~~

@@
@@

@@
@@

+ 0 −

⊥

@@@@@@@@

~~~~~~~~

(a) Sign lattice

>

~~
~~

~~
~

@@
@@

@@
@

P D

⊥

@@@@@@@

~~~~~~~

(b) Parity lattice

Figure 6.7: Numerical domains

6.5 Parameters
In this section we introduce the main parameters of �heckmate.

6.5.1 Properties
Many different properties of multithreaded programs may be interesting. A first set is
composed by the ones interesting also at single-thread level, e.g. division by zero. In
addition there are other properties specific of parallel programs, e.g. data race condition.
In �heckmate we implemented a representative set of properties of both groups:

• division by zero,

• null pointer accesses,

• overflow,

• data races,

• deadlock on monitors,

• determinism and weak determinism, as defined in Chapter 4.

Other properties may be easily added to �heckmate.
Example: On the example presented in Section 6.3 we are interested in checking if

a data race may happen, and if a NullPointerException may be thrown. As �heckmate
is parameterized by the property, we can build up an abstraction of its multithreaded
executions, and we can check on that both the properties.

6.5.2 Numerical Domain
We implemented some well-known non-relational abstract domains: Sign [25] (Figure
6.7a), Interval [25] (Figure 6.8), Parity [27] (Figure 6.7b), and Congruence [56] (Figure
6.9).
Example: Suppose to analyze the example introduced in Section 6.3 using Sign domain.

126 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

[−∞.. +∞]

⊥

[0..0] [1..1][−1.. − 1]

[0..1][−1..0]

[−1..1]

tttttttt

jjjjjjjjjjjjjjjjjj

JJJJJJJJ

TTTTTTTTTTTTTTTTTT

¨̈
¨̈

¨

¨̈
¨̈

¨

77777

77777

77777
¨̈

¨̈
¨

Figure 6.8: Interval lattice

>

||
||

||
||

CC
CC

CC
CC

QQQQQQQQQQQQQQQQ

2 3 5 ...

6

}}}}}}}}
15

||||||||
10

PPPPPPPPPPPPPPPP
...

AAAAAAAAA

PPPPPPPPPPPPPPPP

UUUUUUUUUUUUUUUUUUUUUUUU

...

zzzzzzzz

lllllllllllllll ...

DDDDDDDD

yyyyyyyy ...

EEEEEEEE

RRRRRRRRRRRRRRRR ...

DDDDDDDD

RRRRRRRRRRRRRRR

VVVVVVVVVVVVVVVVVVVVVVV

⊥

DDDDDDDD

yyyyyyyy

lllllllllllllll

Figure 6.9: Congruence lattice

We check that the amount of the bank account is positive (+), but we cannot precisely
analyze the condition if(temp < 100) of MyThread. In fact, + may be < 100. So we
conclude that null may be assigned to System.a. After that this write action is propagated,
System.a.printAmount() in System may cause a NullPointerException as System.a may
be null. This happens because the numerical domain is too approximated. If we use the
Interval domain, we check that the value written by System is [1000..1000]. So the
condition if(temp < 100) cannot be evaluated to true, null cannot be assigned to field
System.a, and finally the NullPointerException cannot be thrown.

6.5.3 Memory Models

Memory models specify which values written in parallel may be seen by a read action.
Intuitively, it may be implemented as a method that given a point of the computation, a
shared variable, and a state of the multithreaded execution, returns a set of visible values,

6.6. User Interfaces 127

i.e. values written in parallel by other threads. This approach has been formalized in
Chapter 3. In this way, we are in position to parameterized �heckmate on it, and we may
develop many memory models.
First of all, we implement the happens-before memory model. In addition, �heckmate
contains other two memory models that are more approximated. The goal of their im-
plementation is to compare the computational overhead induced by more precise memory
models. A first abstraction ignores the synchronize-with relation on monitors. The second
one abstracts away also the relation that traces when and by whom a thread is launched.
Example: Suppose now to analyze the data race condition on the example introduced
in Section 6.3. If we use the most approximated memory model, we suppose that all the
values might be written in parallel. This means that the synchronize-with relation is not
traced when a thread is launched. So the values written before this action would be seen
as written in parallel with the statements executed by the started thread. Then System.a.
amount = 1.000 of System would be seen as written in parallel with all the statements of
MyThread. As the first action is not synchronized on any monitor, �heckmate produces
a false alarm signaling that there may be a data race. Using a more refined memory model
(both the happens-before one and the intermediate version, that traces the synchronize-
with relation when a thread is launched) we check that System.a.amount = 1.000 of
System cannot be executed in parallel with statements of MyThread. So that they do not
form a data race.
Thanks to our must-aliasing domain we precisely discover that the accesses performed
inside the two synchronized blocks are synchronized on the same monitor, and so that
they cannot produce a data race.

6.6 User Interfaces
We implemented two user interfaces:

• a command line tool,

• an Eclipse plugin, that can be installed in this development tool and used through a
graphic interface.

6.6.1 Command Line
The command line tool is composed by one file. It can be executed launching java -jar

checkmate.jar [...].
[...] contains the parameters of the analysis as follows:

<mainclass> -p:<prop> [-d:<dir>] [-n:<num>] [-m:<mm>] where:

• <mainclass> is the name of the class to be analyzed. It has to contain the main

method of the multithreaded application.

128 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

• -p:<pro> sets the property to be analyzed.
<pro>:

– d : Data race

– l : Deadlock

– n : Null pointer access

– o : Overflow

– z : Division by zero

– p : Determinism

– w : Weak determinism

• -d:<dir> sets the directory containing the .class files to be analyzed.

• -n:<num> sets the numerical domain, where
<num>:

– t : Top (don’t collect numerical information)

– s : Signs

– p : Parity

– i : Intervals (default)

– c : Congruence

• -m:<mm> sets the memory model, where
<mm>:

– a : All values in parallel

– t : Launch of threads

– h : Happens-before (default)

The name of the class and the property must be specified. The other parameters are
optional.
Typically during the analysis some informations are printed on the standard output.

• “Iteration n”: it reports which iteration of fixpoint computation is going to be
computed. A priori we do not know after how many iterations the computations
will end. Usually it requires no more than 5 iterations, but this value may change
considerably from a program to another, and it also relies on the numerical domain.

• “Class <class> not found in the provided directory. Read from

the local repository of JVM. Static variables not initialized”:
it means that a class has not been found in the directory passed to the analyzer, and
it was read by the repository of the current virtual machine. In this way we cannot

6.6. User Interfaces 129

Figure 6.10: Launching the analysis

Figure 6.11: Choosing
the property

Figure 6.12: Output

analyze the static fields at the beginning of the computation. Accessing one of these
fields would produce an error. Usually we need to read classes from the current
repository because all the Java applications refer to libraries. For instance all the
classes when are instantiated call the constructor of class java.lang.Object.

The warnings will be display on the standard output at the end of the analysis. If the
property is validated a specific message will confirm it.

6.6.2 Eclipse Plugin
Installation

As common for Eclipse plugins, the application is composed by a .jar file. This file has
to be copied inside plugins directory of Eclipse main directory. Then it is necessary to
launch Eclipse with -clean option.

Running the Analysis

In order to start the analysis, the class to be analyzed has to be opened in the package
explorer window. Then the user has to click on “Checkmate”. Figure 6.10 shows it.
Once he clicks on it, a dialog will appear (Figure 6.11). This requires to select which
property we want to analyze. Finally, the results of the analysis will be displayed in a

130 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

view (Figure 6.12).
In addition, the user can set which memory model and numerical domain apply during
the analysis. The default values are the happens-before memory model and the Interval
domain.

6.7 Experimental Results
We test �heckmate on some multithreaded programs presented in [138, 94, 85, 73]. We
investigate both the precision and the performances of the analysis.
We execute it on an Intel Pentium D 3.0 Ghz with 2 GB of RAM running a Windows
Server 2003 with Java virtual machine version 1.6.0 06.

6.7.1 Common Patterns of Multithreaded Programs
Lea [85] presented an overview of common patterns when developing concurrent pro-
grams in Java. In particular, he introduced some representative examples in order to
explain in practice the concepts presented throughout the book. He showed which er-
rors may arise on these examples and how these can be fixed. We apply �heckmate to
some examples in order to discover such errors. Usually Lea presents some classes, and
then explains by words why this class has to be considered correct, or which undesirable
behaviors may expose. Since �heckmate performs a whole-program analysis, for each
example we develop a main method that exposes the behavior of interest.
ExpandableArray (Appendix A.1): This class implements an array that is automatically
expanded if the user want to append an object when the array is full. All the methods are
synchronized. If an user performs in parallel two writes or a read and a write, a conflict
arises. In fact, even if all the methods are synchronized, the position of the elements in
the array and the read element may be non deterministic because of different interleavings
of threads’ executions.
This program does not contain data races, and �heckmate precisely discovers it. Instead
the conflicts are exposed by the deterministic property, that precisely signals the non de-
terministic behaviors of the two accesses.
LinkedCell (Appendix A.2): This class implements a list of double values. The meth-
ods that read the value contained in the current cell and write a new value are both
synchronized. The method that returns the sum of all the cells is not synchronized but it
relies on synchronized methods, and so it does not expose any data race. Finally, a method
perform an incorrect sum, reading without synchronized methods the value contained by
the first element of the list, thus potentially causing a data race.
�heckmate precisely discovers that the well-synchronized sum method does not expose
any data race if executed in parallel with writes on the list. In the same way, it discovers
that the ineffectively synchronized sum causes a data race. If we apply the deterministic
property we discover that a non deterministic behavior happens even if the program is
well-synchronized.

6.7. Experimental Results 131

Document (Appendix A.3): This class implements a document that contains an enclo-
sure. A synchronized print method that prints the content of the document is provided.
Another synchronized printAll method prints all the content using the synchronized print
method of the current object, and then invokes the same method on the enclosure. Sup-
pose now to have two documents d1 and d2 whose enclosure is the other document, e.g.
the enclosure of document d1 is d2. If we print concurrently these two documents, this
may cause a deadlock. For instance the first thread may start the execution of printAll and
acquire the monitor of d1 starting the execution of printAll. Then the control may switch
to the second thread, that acquires the monitor of d2 and it yields on the monitor of d1.
Finally, the control switches to the first thread, that start yielding on the monitor of d2,
causing a deadlock.
�heckmate precisely discovers that this program may contain a deadlock.
Dot (Appendix A.4): This class implements a dot in a Cartesian plane. Its coordinates
are stored in a Point object. The methods provided by Point class in order to access the
information are not synchronized, but all the methods of class Dot are synchronized. On
the other hand, if we move a point and shift its x axis value concurrently we may obtain
nondeterministic executions.
�heckmate validates this program applying the data race condition, as in fact this pro-
gram is data race free. In addition, it discovers the nondeterministic behaviors precisely
applying the deterministic property.
Cell (Appendix A.5): This class implements a cell containing an integer value. The get
and set methods are both synchronized. In addition, another synchronized method allows
to swap the content of the current object with the one of the object passed to the method
as parameter, using the getter and setter methods. If we swap the content of two cells
twice in parallel, we may obtain a deadlock.
�heckmate detects this behavior precisely applying the deadlock property.
TwoLockQueue (Appendix A.6): This class implements a queue on which we can take
and put objects. If we execute a take and a put action in parallel when the queue is empty,
the take action may return a null value, as it may be executed before the put action.
�heckmate precisely discovers it. In particular, if the queue is empty when the two th-
reads are executed in parallel, it signals that the value returned by the take action may be
null. In order to obtain this result, we add an access to a field of the object returned by
the take action, and then we analyze this program with the NullPointerException prop-
erty, that discovers that a NullPointerException may happen. If we add an element before
launching the two actions in parallel, �heckmate precisely discovers that the value re-
turned by the take action cannot be null.
Account (Appendix A.7): This example is quite complex and involves many classes. In
particular, it implements an immutable and an updatable account, an account holder, and
two account recorders, one correct and the other one evil. We refer the interested reader
to [85] for more details about the implementation of this classes. The potential problem
is that if the account holder accepts money without using an immutable instance of the
recorder, an evil recorder may cause a non-deterministic behavior.
�heckmate precisely signals it. In particular, if the account recorder is not evil or the

132 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

account holder use an immutable instance of the recorder, it proves that the program is
deterministic. On the other hand, if the account recorder is evil and the account holder
does not oblige the use of an immutable instance of the recorder, it signals that a non-
deterministic behavior may happen.

Discussion

�heckmate performs a precise and correct analysis of the representative set of examples
we chose from [85]. In particular, in each case it discovers the bug or proves that the
program is correct with respect to the behavior of interest. This result is achieved through
the high level of flexibility of �heckmate. Using different properties allows us to tune
the analysis in order to catch all the bugs. In addition, we found out that the deterministic
property is often the only way to discover the behavior of interest. This confirms our
impression that this property is in position to break the limits of existing properties applied
to multithreaded programs, e.g. the data race condition.

6.7.2 Weak Memory Model
We take some challenging examples presented in [94] (journal version of the paper that
introduced the Java memory model [95]) in order to test the precision of �heckmate.
We write them in Java style (i.e. adding a method main that instantiates and launches the
threads), we compile them with javacc, and we analyze the bytecode with �heckmate
using the happens-before memory model and the Interval domain.
Figure 6.13a: This example is quite similar to the one presented in Section 3.1.1. A
compiler may switch the statements of each thread. In fact they work on disjoint sets of
variables, and so they are independent. Our analysis correctly traces this behavior, and it
checks that r1, r2, and r3 may be equal to zero at the end of the execution.
Figure 6.13b: In order to obtain the required behavior, it seems that a thread may write
a variable before it reads it. Instead, this behavior may be exposed by some compiler
optimizations as pointed out in Section 2.2.2 of [94]. Our analysis soundly approximates
it. This behavior is exposed after the third iteration of the multithread semantics as

• at the first iteration value 1 is written on x,

• at the second iteration this value is written by Thread1 on r1 and then on y,

• at the this iteration 1 is read by Thread2 through y and written in r2,

• during the fourth and last iteration the analysis does not expose any new behavior
and so it converges.

Figure 6.13c: Thanks to the Interval domain, �heckmate precisely traces that only [0..0]
can be assigned to r1 and r2. As our analysis is context-sensitive, it checks that the con-
ditions of both threads cannot be evaluated to true, and so that value 42 will never be
assigned.

6.7. Experimental Results 133

Thread1 Thread2

r1 = x; x = 1;
y = 1; r3 = y;
r2 = x;

(a) Figure 1. Ini-
tially, x == y == 0.
r1 == r2 == r3 == 0 is
legal behavior

Thread1 Thread2

r1 = x; r2 = y;
y = r1; r3 = r2|1;

x = r3;
(b) Figure 3. Ini-
tially, x == y == 0.
r1 == r2 == r3 == 1 is
legal behavior.

Thread1 Thread2

r1 = x; r2 = y;
if(r1! = 0) if(r2! = 0)
y = 42; x = 42;

(c) Figure 4. Initially,
x == y == 0. Correctly syn-
chronized, so r1 == r2 == 0 is
the only legal behavior.

Thread1 Thread2

r1 = x; r2 = y;
if(r1 == 1) if(r2 == 1)
y = 1; x = 1;

if(r2 == 0)
x = 1;

(d) Figure 7. Initially,
x == y == 0. r1 == r2 == 1 is
legal behavior.

Thread1 Thread2

r3 = x; r2 = y;
if(r3 == 0) x = r2;
x = 42;
r1 = x;
y = r1;

(e) Figure 11. Ini-
tially, x == y == z == 0.
r1 == r2 == r3 == 42 is a
legal behavior.

Thread1 Thread2 Thread3 Thread4

r1 = x; r2 = y; z = 42; r0 = z;
y = r1; x = r2; x = r0;

(f) Figure 12. Initially, x == y == z == 0.
r0 == 0, r1 == r2 == 42 is legal behavior.

Thread1 Thread2

do{ do{
r1 = x; r2 = y;
}while(r1 == 0); }while(r2 == 0);
y = 42; x = 42;

(g) Figure 25. Initially, x == y == 0. Correctly
synchronized, so non-termination is the only le-
gal behavior

Thread1 Thread2

r1 = x; r3 = y;
if(r1 == 0) x = r3;
x = 1;
r2 = x;
y = r2;

(h) Figure 27. Initially,
x == y == 0. Compiler
transformations can result in
r1 == r2 == r3 == 1.

Figure 6.13: Some examples taken from [94]

134 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

Figure 6.13d: We need three iterations in order to propagate the value 1. The first iter-
ation writes it on variable x, the second propagates it on r1 and y, and finally the third
iteration assigns it to r2. In this way we obtain the result required by the example.
Figure 6.13e: Value 42 is assigned to x and y by Thread1. Then it is assigned by
Thread2. Finally it comes back to the first statement of Thread1 that assigns to r3 the
value contained by x. In this way we capture the behavior of interest.
Figure 6.13f: As this example involves 4 threads, it requires some more iterations of
multithread semantics in order to reach a fixpoint. �heckmate soundly discovers that a
possible behavior is r1 == 0, r1 == r2 == 42.
Figure 6.13g: This example is similar to the one contained by Figure 6.13c. Interval
domain precisely finds out that the condition of while loops cannot be evaluated to false.
Then value 42 is never assigned neither to x nor to y, and so the threads never exit the
loops. �heckmate discovers it.
Figure 6.13h: The situation is quite similar to the one depicted by Figure 6.13e. �heckmate
is precise with respect to the expected behavior.

Discussion

In all the examples �heckmate analyzes them successfully producing a sound and precise
abstraction of the behavior of interest. As the figures depict toy examples (usually no more
than 200 bytecode statements and 4 threads), �heckmate requires always less than one
second in order to execute the analysis.
These results are quite encouraging. We deal with examples aimed at explaining the main
features of the Java memory model, and this is more refined than the happens-before one.
Nevertheless, we precisely analyze them. In general, our analysis is able to catch the
behaviors presented by the examples in [94] in all the cases in which they do not involve
volatile variables. In other cases, our analysis does not take into account the fact that a
variable is volatile. So we obtain results that are still sound but too much approximated.
On the other hand, we think that our framework is extensible and flexible enough in order
to take into account also volatile variables.
In addition, note that our analysis provides an approximation of all the possible behaviors
of a multithreaded programs, and not only on a subset (e.g. with at most n interleavings)
of them. Nevertheless, the analysis is really fast, as it is able to obtain an immediate
output when analyzing small programs, i.e. with a couple of threads and less than 200
bytecode statements.

6.7.3 Incremental Example
We apply �heckmate to an incremental example that simulates the operations performed
by a bank. The Java code used in these examples is reported by Appendix B. �heckmate
analyzes the bytecode obtained compiling it with javac.
Table 6.1 reports the number of abstract threads and statements of each program. Table
6.2 reports the time of execution in milliseconds required to build up the abstraction of the

6.7. Experimental Results 135

Program # ab. th. # st.

Test1 3 452
Test2 5 684
Test3 7 807
Test4 11 1049
Test5 13 1173
Test6 15 1405
Test7 17 1526
Test8 19 1758
Test9 20 1878
Test10 24 2294

Table 6.1: Number of abstract threads and statements

Top Sign Intervals Parity Congruence

1 814 361 217 404 294
2 409 391 356 620 545
3 712 595 925 521 642
4 799 823 3806 703 642
5 1090 919 5887 779 616
6 1382 824 7161 900 986
7 1071 1647 9289 1340 863
8 1018 1269 10999 1263 1221
9 1421 2212 11691 1274 1623
10 1466 2432 17016 863 1906

Table 6.2: Times of analysis (msec)

Weak det. Det. Data race Null Overflow Div. by 0 Deadlock

1 31 32 47 31 15 16 16
2 78 78 125 47 47 47 15
3 125 125 172 187 63 62 16
4 250 250 359 125 94 94 62
5 359 360 484 172 125 125 78
6 547 562 828 266 219 203 125
7 719 734 1047 313 250 250 156
8 1000 1047 1609 438 359 360 250
9 1203 1234 1938 516 406 422 265
10 2031 2094 3609 828 688 687 500

Table 6.3: Times of properties’ analysis (msec)

136 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Top domain

(a) Top domain

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Sign domain

(b) Sign domain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Intervals domain

(c) Interval domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Parity domain

(d) Parity domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Congruence domain

(e) Congruence domain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5 6 7 8 9 10

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

Program

Time of execution per thread

Top
Sign

Int.
Par.

Cong.

(f) Per thread

Figure 6.14: Times of execution

6.7. Experimental Results 137

Program # st. # ab. th.

philo 213 2
forkjoin 170 2
barrier 363 3
sync 320 3
crypt 2636 3
sor 1121 2
elevator 1829 2
lufact 3732 2
montecarlo 3864 2

total 14248 21

Table 6.4: The analyzed programs

program using different numerical domains. The analyzer is quite fast: rarely it requires
more than a couple of seconds in order to converge. Only Interval domain requires more
time (about 17” in the worst case), as it is the more complex domain that we implemented.
In particular we are interested in studying the complexity of the analysis with respect to
the number of statements and abstract threads analyzed. So we draw a plot for each nu-
merical domain with the number of abstract threads in x-axis, and the time of execution
in y-axis.
The behavior of the Top domain (Figure 6.14a) is not regular. The time of executions
increases but, as the analysis is quite fast, it is hard to conclude which is exactly the be-
havior of the analysis. More regular results are obtained with Parity (Figure 6.14d), Sign
(Figure 6.14b), and Congruence (Figure 6.14e). The complexity is linear with respect to
the number of abstract threads in all the cases. Finally, Interval domain (Figure 6.14c)
seems to expose a quadratic complexity.
We study how the time of the analysis changes with respect to the number of abstract
threads analyzed. Figure 6.14f plots the times of execution per thread. All the domains
except Intervals require a constant time per thread. Instead, analyzing the application with
Intervals the times per thread augment with respect to the number of abstract threads. This
increase seems to be linear, and this confirms that the overall time required by the analysis
is quadratic with respect to the number of abstract threads.

Starting from these experimental results, we can conclude that in practice the com-
plexity of �heckmate is quadratic with respect to the number of threads and statements.
This result is promising, but we think that the analysis must be optimized. In particular the
fixpoint computation of single-thread semantics is sometimes slow as it works at really
low level, i.e. simulating step by step the actions of the Java virtual machine.

138 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

6.7.4 Benchmarks
We apply �heckmate to the analysis of some well-known examples and benchmarks
taken from the literature. Two applications (philo, and elevator) are taken from [138],
while the others (barrier, forkjoin, sync, sor, crypt, lufact, and montecarlo) are taken from
the Java Grande Forum Benchmark Suite [73]. We remove from the original programs
only the calls to system functions (e.g. System.out.println) as sometimes they deal with
native methods or reflection that are not supported by �heckmate. Table 6.4 reports the
analyzed programs, the number of statements and the number of abstract threads. Note
that in all the cases the abstract threads approximate a potentially unbounded number of
concrete threads.
We apply the analysis to all the benchmarks with all the possible combinations of memory
models and abstract numerical domains. Table 6.5 reports the computational times. For
each numerical domains we report the times of execution

• using the more relaxed memory model (column AP),

• using the memory model that traces only when a thread is launched (column TL),

• using the happens-before memory model (column HB),

• required to compute the semantics of each thread in isolation (column S.T.).

For each numerical domain, we plot the times of the analysis using the three memory
models with respect to the overall number of analyzed statements. Figure 6.15a reports
the result obtained applying the top domain, Figure 6.15b with Sign domain, Figure 6.15c
with Interval domain, Figure 6.15d with Parity domain, and Figure 6.15e with Congru-
ence domain. In all the cases, for programs with less than 500 statements the analysis
is quite fast. In addition, the computational times of the same program are comparable
using different numerical domains. The analysis of crypt is always quite faster than the
one of elevator, even if it is bigger. This happens because of the internal structure of the
program. With the exception of Interval and in part of Sign domains, the time of the anal-
ysis does not grow too much with respect to the number of statements. The complexity
seems to be almost linear with respect to it.
Intervals and in part Signs do not respect this rule. In particular, the analysis of montecarlo
is quite slower. We want to check if this slowness is due to our approach or to the fixpoint
computation of a single thread, i.e. to the structure of the program. Table 6.6 reports
the overhead due to the multithread fixpoint computation with respect to the single-thread
fixpoint semantics. In this way, we can check if the slowness depends only on the single-
thread semantics, or on our global approach, i.e. the computation of two nested fixpoints.

6.7. Experimental Results 139

To
p

Si
gn

In
t.

Pa
r.

C
on

g.
Pr

og
ra

m
A

P
T

L
H

B
S.

T.
A

P
T

L
H

B
S.

T.
A

P
T

L
H

B
S.

T.
A

P
T

L
H

B
S.

T.
A

P
T

L
H

B
S.

T.

ph
ilo

<
1”

<
1”

<
1”

<
1”

<
1”

<
1”

<
1”

<
1”

<
1”

<
1”

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
fo

rk
jo

in
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
<

1”
ba

rr
ie

r
<

1”
<

1”
<

1”
<

1”
<

1”
1”

1”
<

1”
1”

1”
2”

1”
<

1”
1”

1”
<

1”
1”

1”
1”

<
1”

sy
nc

1”
1”

1”
<

1”
1”

1”
1”

<
1”

2”
2”

3”
1”

1”
1”

1”
<

1”
1”

1”
2”

1”
cr

yp
t

4”
4”

5”
1”

6”
6”

6”
3”

16
”

17
”

17
”

13
”

5”
5”

6”
1”

4”
5”

5”
2”

so
r

4”
4”

4”
2”

6”
6”

7”
2”

16
”

17
”

17
”

5”
5”

5”
6”

2”
5”

5”
5”

2”
el

ev
at

or
27

”
28

”
31

”
11

”
10

”
11

”
11

”
4”

18
”

18
”

19
”

7”
29

”
30

”
30

”
11

”
28

”
29

”
29

”
11

”
lu

fa
ct

25
”

25
”

27
”

10
”

52
”

52
”

53
”

20
”

5’
52

”
5’

56
”

5’
59

”
2’

08
”

28
”

29
”

29
”

12
”

27
”

29
”

29
”

11
”

m
on

te
ca

rlo
54

”
56

”
1’

02
”

23
”

2’
23

”
2’

26
”

2’
35

”
45

”
1h

00
’3

3”
1h

00
’3

8”
1h

00
’5

6”
16

’4
8”

1’
38

”
1’

38
”

1’
43

”
31

”
54

”
1’

00
”

1’
04

”
25

”

Ta
bl

e
6.

5:
Ti

m
es

of
an

al
ys

is

To
p

Si
gn

In
t.

Pa
r.

C
on

g.
To

ta
l

Pr
og

ra
m

A
P

T
L

H
B

A
P

T
L

H
B

A
P

T
L

H
B

A
P

T
L

H
B

A
P

T
L

H
B

A
P

T
L

H
B

ph
ilo

22
1%

26
3%

28
2%

24
5%

24
6%

25
9%

45
0%

48
0%

53
2%

14
5%

19
8%

19
8%

16
0%

29
7%

31
9%

23
3%

28
2%

30
0%

fo
rk

jo
in

35
2%

40
3%

53
1%

28
2%

31
5%

33
2%

27
9%

31
4%

31
7%

42
2%

31
9%

55
9%

43
2%

45
4%

49
5%

34
8%

38
0%

43
4%

ba
rr

ie
r

14
8%

19
3%

20
7%

17
3%

21
2%

25
5%

19
3%

20
5%

22
4%

18
2%

19
9%

21
8%

27
5%

27
8%

29
9%

19
3%

21
5%

23
6%

sy
nc

23
3%

29
6%

31
0%

31
6%

32
3%

36
9%

39
8%

40
0%

43
5%

26
8%

30
0%

30
7%

22
8%

24
2%

28
2%

29
5%

30
9%

34
3%

cr
yp

t
29

5%
33

4%
34

9%
20

1%
20

8%
21

4%
12

0%
12

7%
12

8%
36

6%
34

1%
39

5%
25

8%
27

7%
28

1%
17

1%
18

1%
18

6%
so

r
26

3%
26

1%
26

7%
25

2%
26

0%
30

1%
30

4%
32

4%
32

5%
22

5%
26

5%
24

7%
25

1%
25

6%
26

4%
26

9%
28

2%
29

2%
el

ev
at

or
24

0%
24

9%
27

2%
23

4%
24

8%
25

2%
24

3%
25

2%
25

8%
25

6%
25

3%
26

6%
24

4%
25

1%
25

2%
24

5%
25

4%
26

2%
lu

fa
ct

25
9%

26
2%

27
9%

25
2%

25
3%

25
8%

27
4%

27
7%

27
9%

23
0%

26
7%

23
8%

23
5%

24
9%

25
4%

26
5%

26
9%

27
2%

m
on

te
ca

rlo
23

5%
24

5%
26

8%
32

0%
32

8%
34

7%
36

1%
36

1%
36

3%
31

1%
29

5%
32

8%
21

2%
23

5%
25

1%
35

2%
35

3%
35

7%

av
er

ag
e

24
9%

27
9%

30
7%

25
3%

26
6%

28
7%

29
1%

30
4%

31
8%

26
7%

27
1%

30
6%

25
5%

28
2%

30
0%

Ta
bl

e
6.

6:
O

ve
rh

ea
d

of
m

ul
tit

hr
ea

d
fix

po
in

tc
om

pu
ta

tio
n

140 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

Figure 6.15f depicts the overhead of the multithread fixpoint computation using Inter-
vals and the happens-before memory model. It makes clear that this overhead does not
depend on the number of threads or statements analyzed. Its values are between 250%
and 450% (with the exception of crypt), they do not depend on the length of the program.
In fact, we often obtain the biggest overhead for the smallest application. In addition,
for bigger application (sor, elevator, lufact, and montecarlo) the overhead is almost sta-
ble (300% in average). This result is quite encouraging: it means that in average we need
about 3 iterations of single-thread semantics in order to reach a fixpoint in our multithread
semantics. In addition, we think that we can improve this result as our implementation
is not optimized at all. For instance, we may parallelize the analysis of different threads
during the same iteration of the multithread semantics.

Finally we compare the computational times using different memory models. For
programs with less than 500 statements, the analysis is too fast to obtain significant com-
parisons. So we consider only the analysis of crypt, sor, elevator, lufact, and montecarlo.
Figure 6.16a depicts the overhead of the analysis of happens-before memory model with
respect to AP memory model. Figure 6.16b depicts it with respect to TL memory model.
The overhead of HB with respect to AP is rarely more than 10%. In average it is about
5%. It is in average about 2% with respect to TL and rarely more than 5%. Also these
results are quite encouraging: the overhead of more refined memory models is quite lim-
ited. This means tracing more and more relations between threads seems not to afflict
dramatically the performances of the analysis.

6.8 Related Work
In the literature, some generic analyzers applied to sequential programs, and some anal-
yses particular for a specific property have been proposed. We related our work with the
existing generic analyzer in Section 6.1. Here we relate �heckmate with other analyses
specific for a given property that is implemented in �heckmate.

6.8.1 Concurrency Properties
Many approaches have been developed in order to statically analyze multithreaded pro-
grams. Most of them deal with deadlock and data race detection [121]. First of all,
usually these approaches suppose that the execution is sequentially consistent, but this
assumption is not legal under, for instance, the Java Memory Model. In addition, these
analyses are particular for this property, and they cannot be applied to other properties,
while �heckmate has been already applied successfully to a wide set of properties.

Data Race Analysis

The (maybe) most known work of last years has been the type system developed by Abadi,
Flanagan and Freund [1]. This work is modular, and it is proved to scale as it was suc-

6.8. Related Work 141

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Top domain

AP
TL
HB

(a) Top domain

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Signs domain

AP
TL
HB

(b) Sign domain

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Intervals domain

AP
TL
HB

(c) Interval domain

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Parity domain

AP
TL
HB

(d) Parity domain

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Congruence domain

AP
TL
HB

(e) Congruence domain

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

philo forkjoin barrier sync crypt sor elevator lufact montecarlo

O
v
e

rh
e

a
d

 (
%

)

Program

Overhead in % of multithread fixpoint computation using Intervals and HB memory model

(f) Overhead of multithread fixpoint computa-
tion using Intervals

Figure 6.15: Times of execution using HB memory model

142 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

 0

 2

 4

 6

 8

 10

 12

 14

 16

crypt sor elevator lufact montecarlo

O
v
e

rh
e

a
d

 (
%

)

Program

Overhead of HB w.r.t. AP in %

Top
Sign

Int.
Par.

Cong.

(a) With respect to the AP memory model

 0

 2

 4

 6

 8

 10

 12

 14

crypt sor elevator lufact montecarlo

O
v
e

rh
e

a
d

 (
%

)

Program

Overhead of HB w.r.t. TL in %

Top
Sign

Int.
Par.

Cong.

(b) With respect to the AP memory model

Figure 6.16: The overhead in % of the HB memory model

cessfully applied to programs of a couple of hundreds of thousands of code lines. On
the other hand, it requires manual annotation, and it does not provide any information on
possible missing locks when a data race is detected.
Naik and Aiken [103] apply a must not alias analysis through a specific type system in
order to check the absence of data races. Race freedom is proved by checking that if two
locks must not alias the same monitor, then the accesses to the shared memory must not
be on the same location. The experimental results seem to underline that the approach
can not scale up and they are worse than our results, as this analysis requires more than 3
minutes to analyze only 2 classes.
Kahlon et al. [75] presents a model-checking based analysis in order to statically detect
data races. The work has been divided into three different steps: (i) discovering which
variables share information (ii) checking through a must alias analysis the owned moni-
tors when shared variables are accessed (iii) reducing the false warnings. The proposed
must-alias analysis is quite similar to ours. This approach does not provide any informa-
tion about possible missing locking actions.
Another data race detector based on model checking has been proposed by Henzinger
et al. [61]. The analyzed programming language synchronizes through atomic sections,
and so it is quite different from the lock-based synchronization of Java. Moreover the
experimental results are afflicted by the well-known state explosion problem.

Deadlock Detection

Many works are focused on the dynamic detection of deadlocks [13, 14, 39]. These tools
are able at runtime to detect if a deadlock happens at runtime. On the other hand, if a
program may expose a deadlock but we test it only on deadlock-free executions, these
tools do not discover the deadlock.
About static analyses, Williams et al. [140] propose an analysis that detects deadlock

6.9. Discussion 143

on synchronized statements and wait invocations. This analysis was implemented and
applied to many libraries, and it discovered 14 distinct deadlocks. This analysis makes
some assumptions on how an user interacts with the libraries. In order to analyze a library
it supposes that the client code “well-behaved”. In this way, even if a library is validated
by this analysis, there may be a deadlock when using it without respecting these assump-
tions.
Awargal et al. [3] present a type system in order to detect at compile time potential dead-
locks on synchronized statements. The information inferred by this static analysis is
used in order to restrict the runtime checks of possible deadlocks only on locks that are
not proved to be deadlock free at compile time. The analysis has not been implemented
but only applied by hand. The authors studied in the details the speedup of the runtime
that uses this information.

6.8.2 Other properties
Many static analyses and tools have been proposed in order to detect accesses to null
pointers [132, 40, 68, 69], divisions by zero [30, 48], and overflows [74]. Without entering
in the details, usually these approaches are sound only for sequential programs and they
do not support concurrency. On the other hand, they are often more precise than the
ones obtained applying �heckmate to these properties, as we applied our analyzer to this
property without developing a specific analysis, e.g. a specific numerical domain.

6.9 Discussion
In this chapter we presented �heckmate, a generic static analyzer of Java multithreaded
programs. We implemented some well-known non-relational numerical domains, some
properties, and some memory models. We applied it to some interesting case studies, to
an incremental application, and to a set of well-known benchmarks. These experimental
results show both its precision and efficiency. In this way we applied the theoretical frame-
works developed in Chapter 3 and 4 through the semantics of Java bytecode statements
introduced in Chapter 5.

144 6. �heckmate: a Generic Static Analyzer of Java Multithreaded Programs

7
Static Analysis of Unsafe Code

The last step of our work will be to prove the industrial interest of generic analyzers,
and to show the efforts required in order to instantiate such analyzers on a specific prop-
erty. In this context, we extend an industrial product to the analysis of a specific property.
Clousot is a generic static analyzer based on abstract interpretation developed at Mi-
crosoft Research. Even if it is sound only at single-thread level, it allows us to investigate
generic techniques of static analysis and to show the efforts required in order to apply a
generic analyzer to a property of interest. In the future, the same analysis might be intro-
duced in �heckmate. This opens the way in order to apply our prototype to the analysis
of industrial programs.
In particular, in this Chapter we apply Clousot to the analysis of unsafe code, i.e. .NET
code containing direct pointers. We develop a new focused relational domain (Strp), and
we combine it with some other well-known numerical domain improving its precision.
We implement the analysis, and we study the experimental results. The analysis results
to be both precise and scalable. It is in position to analyze more than 20.000 methods in
a couple of minutes, and we find bugs on shipped code analyzing just a small case study.
This chapter is based on the published work [47].

7.1 What is Unsafe Code

The .NET framework provides a multi-language execution environment which promotes
the safe execution of code. For instance, in (safe) C# it is not possible to have un-
initialized variables, unchecked out-of-bounds runtime accesses to arrays or dangling
pointers. Memory safety is enforced by the type system and the runtime: it is not possible
to access arbitrary memory locations. Object creation and references are allowed freely,
but object life-time is managed by a garbage collector and it is not possible to get the
address of an object; pointers’ arithmetic is not allowed. Many other current program-
ming languages as Java apply the same type of restrictions. As a consequence, safe C#
provides a safer execution environment than C or C++.

Nevertheless, there are situations where direct pointer manipulations and direct mem-
ory accesses become a necessity. This is the case when interfacing with the underlying op-
erating system, when implementing time-critical algorithms or when accessing memory-

146 7. Static Analysis of Unsafe Code

mapped devices. For this purpose, C# provides the ability to write unsafe code (unsafe
C#). In unsafe code, it is possible to declare and operate on pointers, to perform arbitrary
casts, to take the address of variables or fields. C# provides syntactic sugar to denote
blocks of unsafe code, which avoids the accidental use of unsafe features. Unsafe code
cannot run in untrusted environments. This is the solution provided by .NET framework;
instead Java does not allow at all the free management of pointers. Nevertheless, also
Java programs need sometimes to use pointers; in order to do that, the solution provided
by this language is to define native methods.

7.2 Design by Contracts

Our work can be seen also as a contribution in the context of the ongoing effort to improve
the reliability of the .NET platform by systematic use of the Design by Contracts (DbC)
methodology [100] supported by static checking tools.
The basic idea of DbC approach is to define some constraints on how software elements
interact. Through these constraints the software reliability is improved, and developers
can reason modularly when writing programs.
A huge application of this methodology has been in object-oriented programs. In this
context, contracts are commonly used to specify:

• preconditions of methods, i.e. contracts that have to be satisfied each time the
method is called;

• postconditions of methods, i.e. contracts that have to be satisfied at the end of the
method;

• class invariants, i.e. contracts on class fields that have to be always satisfied.

For instance, consider the following method:

int div(int a, int b)
{

int res=a;
for(int i=0; i<=b; i++)

res/=b;
if (res<0) return −res;
else return res;

}

A precondition of this method is that b must not be equal to zero; indeed, an implicit
precondition is that b has to be positive. A valid postcondition is that the result is always
≥ 0.

7.3. Our Contribution 147

7.2.1 Foxtrot

FoxTrot is a language independent solution for contract specifications in .NET. It does
not require any source language support or compiler modification. Preconditions and
postconditions are expressed by invocations of static methods (Contract.Requires and
Contract.Ensures) at the start of methods. Class invariants are contained in a method with
an opportune name (ObjectInvariant) or tagged by a special attribute ([ObjectInvariant]).
Dummy static methods are used to express meta-variables such as e. g. Contract.Old(x)
for the value in the pre-state of x or Contract.WritableBytes(p) for the length of the mem-
ory region associated with p. These contracts are translated to MSIL using the standard
source language compiler.

Contracts in the FoxTrot notation (using static method calls) can express arbitrary
boolean expressions as pre-conditions and post-conditions. We expect the expressions
to be side effect free (and only call side-effect free methods). We use a separate purity
checker to optionally enforce this.

A binary rewriter tool enables dynamic checking. It extracts the specifications and
instruments the binary with the appropriate runtime checks at the applicable program
points, taking contract inheritance into account. Most FoxTrot contracts can be enforced
at runtime.

For static checking, FoxTrot contracts are presented to Clousot as simple assert or
assume statements. E.g., a pre-condition of a method appears as an assumption at the
method entry, whereas it appears as an assertion at every call-site.

7.3 Our Contribution
Most of the checks commonly enforced by the runtime, such as bounds checking, are
not present on pointer manipulating code. As a consequence the programmer is exposed
when developing unsafe code to all the vagaries of C/C++ programming, such as buffer
and array overflows, reading of un-initialized memory, type safety violations, etc.. Those
errors are difficult to detect and track down, as no runtime exception is thrown at the error
source. For instance, an application cannot immediately detect that some buffer overflow
compromising its data consistency has occurred. Instead, it continues its execution in a
bad state, only to fail (much) later due to a corrupted state. Tracing back the cause of such
bugs to the original memory corruption is often very complicated and time consuming.

In this context, applying static analysis to check the respects of the bounds of allocated
memory is particularly appealing. In order to gain this goal, we extend Clousot with a
specific numerical domain in order to develop a precise and fast analysis of unsafe code.

7.3.1 Clousot

Clousot is a generic, language agnostic static analyzer based on abstract interpretation
for .NET. It is generic in that it presents a pluggable architecture: analyses can be easily

148 7. Static Analysis of Unsafe Code

Figure 7.1: Clousot architecture

ldstack.i duplicate i-th value on evaluation stack
ldresult load the current result value
assert assert top of stack is true
assume assume top of stack is true
begin old evaluate next instructions in method pre-state
end old switch back to state at matching begin old

Table 7.1: MSIL+ synthetic instructions

added by providing an implementation of a suitable abstract domain interface. In partic-
ular, it can be plugged with different numerical domains and in order to analyze different
properties. It is language agnostic as it analyzes MSIL. All the programming languages in
.NET emit MSIL: using the debug information we can trace back the results of the analysis
to the source program.

Clousot has a layered structure as shown in Fig. 7.1. Each layer on the left presents
an increasingly abstract view of the code. An MSIL reader sits at the lowest level,
which presents a stack-based view of the code. Above that sits the FoxTrot extractor,
which turns the dummy method calls expressing pre- and post-conditions into actual rep-
resentations of these, separating them from the method body. The analysis performed
by Clousot is intra-procedural. When a method is called, contracts written through
FoxTrot are extracted; then Clousot checks if preconditions are respected, and assumes

7.3. Our Contribution 149

postconditions in order to go on with the analysis after the method call.
The layer labeled MSIL+ represents an extension of MSIL with a number of syn-

thetic instructions that allow us to express all contract code as simple stack instructions,
similar to MSIL. The extensions used are listed in Table 7.1. Instruction ldstack.i is a
generalization of a typical dup instruction that allows one to access values on the eval-
uation stack that are not at the top. This instruction is useful for example to access the
parameters inside a pre-condition inserted at a call-site. The ldresult instruction is used in
post-conditions to refer to the result of the method. The meaning of assert and assume
is equivalent for run-time checking: they both result in failure if the condition is false.
For static checking, they differ in that the checker tries to validate an assert condition
and issues an error if it cannot be proven. However, the static checker simply adds the
condition of an assume to its knowledge base without trying to validate it.

The next layers in the Clousot infrastructure (1) get rid of the stack by providing a
view of the code in the 3-address form (the direct analysis of a stack-based language is
hard and error-prone, [66]); (2) abstract away the heap by providing a view of the code as
a scalar program, where aliasing has been resolved (a common approach to separate heap-
analysis and value analysis, e. g. [18, 91]); and (3) reconstruct (most of the) expressions
that have been lost during the compilation (large chunks of expressions are vital for a
precise static analysis [92]).

On top of this infrastructure we build particular analyses, such as the one presented
in this paper regarding unsafe memory accesses. Such analyses are built out of atomic
abstract domains (e. g. Intv, LinEq, Pntg[93]), a set of generic domains (e. g. set of
constraints), and a set of operators on abstract domains (e. g. the reduced cartesian
product [27], the functional lifting). As a consequence Clousot allows building new and
powerful abstract domains by refinement and composition of existing ones.

7.3.2 Applying Clousot to the Analysis of Unsafe Code

Our analysis infers and checks the memory regions accessed by read and write operations.
A region of memory is denoted by a pair 〈p,WB(p)〉, where p is a pointer and WB(p)
stands for the WritableBytes of p, i.e., the size of the region in bytes accessible from p.
We only allow positive offsets of pointers, thus WB(p) is always non-negative.

Differently stated, the pair stands for the range of addresses [p, p + WB(p) − 1]. For
instance, if x is an Int32 and p is an Int32∗, then the read operation x = ∗(p + 2) is safe in
the region 〈p, 12〉: It reads 4 bytes (the size of an Int32 in .NET) starting from the address
p + 8 (as p is a pointer to Int32).

We use a combination of three domains to infer bounds on memory-accessing expres-
sions. The core is the new abstract domain of Stripes (Strp) which captures properties
of the form of x − a ∗ (y[+z]) ≥ b, where a and b are integer constants, x and y are
variables and z is an optional variable ([+z] means that z may be part of the constraint
or not). Intuitively, a stripe constraint is used to validate the upper bound on memory
accesses. Intervals (Intv) [25] are used to validate the lower bound of accesses. We use (a

150 7. Static Analysis of Unsafe Code

modified version of) the Linear equalities domain (LinEq) [76] to track equalities between
variables.

We implemented our analysis in Clousot, a generic, intraprocedural and language-
agnostic static analyzer for .NET[9, 93]. It uses FoxTrot contracts to refine the analysis
and to support assume/guarantee reasoning for method calls. FoxTrot allows specifying
contracts in .NET without requiring any language support. Contracts are expressed directly
in the language as method calls and are persisted to MSIL using the normal compilation
process of the source language. We tried our analysis on all the assemblies of the .NET
framework, validating on average about 57% of unsafe memory accesses automatically in
a few minutes. In practice, the false alarms that we get are due to missing contracts: the
use of contracts will allow us to improve the precision. The analysis is fast enough to be
used in test builds.

The main contributions of the present work can be summarized as follows:

• We introduce the first static analysis to check memory safety in unsafe managed
code. Our analysis handles the entire MSIL instruction set and is fully implemented
in Clousot. This analyzer statically checks contracts, and can use them to refine
the precision of the analysis, e. g. by exploiting preconditions. We tested it on all
the assemblies of the .NET framework.

• We define the concrete and abstract semantics for an idealized MSIL-like bytecode.
We prove soundness by using the abstract interpretation framework to relate the
abstract semantics with the concrete semantics.

• We present a new abstract domain for the analysis of memory bounds. It is based
on the co-operation of several specialized domains. We prove its soundness, and
we show how it is effective in practice, by enabling a fast, yet precise analysis.

• We discuss some implementation issues necessary to avoid loss of precision, as e.
g. the special handling that is required for the C# fixed statements (fixed is used
to set a pointer to the address of an allocated area of memory, and to pin this area
during the execution of the following sequence of instructions in order to prevent
the garbage collector from moving it).

7.4 Examples

In order to develop a specific analysis for unsafe code, we need to look deeply into the
peculiarities of this code. So our work starts analyzing the methods in .NET framework
that deals with pointers. In this section, we report some representative examples taken
from or inspired by this framework.

7.4. Examples 151

public virtual unsafe int GetByteCount(char∗ chars, int count, bool flush)
{

// ... rest of the method omitted
char[] chArray = new char[count];
for (int i = 0; i < count; i++)
{

chArray[i] = chars[i];
}
// ... rest of the method omitted

}

Figure 7.2: A method that copy count chars starting from a given pointer

7.4.1 From Source Code to MSIL

When unsafe code is compiled into MSIL, some transformations are automatically done,
following the type of pointers. When we access the i-th element starting from a pointer
ptr of type type, we are accessing sizeof(type) bytes starting from the sizeof(type) ∗ i-th
byte of ptr. This operation is made explicit at MSIL level.
For instance consider the method depicted by Figure 7.2. The access chars[i] performed
inside the for loop is compiled into the following bytecode:

ldarg.1
ldloc .1
conv.i
ldc . i4.2
mul
add
ldind .u2

Without entering too much into details of bytecode semantics, we have that

• ldarg.1 loads the argument chars,

• ldloc.1 loads the local variable i,

• it is converted to int, it is multiplied with the integer constant 2 (i.e. sizeof(char)),

• finally, the value is read.

This piece of MSIL code can be decompiled into the arithmetical expression ∗(chars+

2 ∗ i). The unsafe access respects the bound of the allocated memory if and only if chars
is defined at least on ∗(chars + 2 ∗ i + 1) bytes (as ∗(chars + 2 ∗ i) reads two bytes starting
from index 2 ∗ i), i.e. WB(chars) ≥ 2 ∗ i + 1.

152 7. Static Analysis of Unsafe Code

static unsafe void InitToZero(int∗ a, uint len)
{

Contract.Requires(Contract.WritableBytes(a) >= len ∗ sizeof(int));

for (int i = 0; i < len; i++)
{
∗(a + i) = 0; // (1)
}
}

Figure 7.3: A method that zeros a region of memory

7.4.2 Array Initialization

Consider the InitToZero method in Fig. 7.3. It initializes the memory region [a, a+4∗len−
1] to zero. The precondition requires that at least len∗ sizeof(int) bytes starting from a are
allocated. We express it using FoxTrot notation: contracts are specified by static method
calls (e. g. Contract.Requires(. . .) for preconditions), and lengths of memory regions are
denoted by Contract. WritableBytes(. . .). Section 7.2.1 contains more information about
contracts.

The write operation at (1) is correct provided that: (a) i ≥ 0, and that (b) WB(a) − 4 ∗ i
≥ 4. We prove (a) using the Intv abstract domain, which infers the loop invariant i ≥ 0.
We prove (b) using the Strp abstract domain, which propagates the entry state WB(a) −
4 ∗ len ≥ 0 to the loop entry point, discovering the loop invariant WB(a) − 4 ∗ (i + 1) ≥ 0.

7.4.3 Callee Checking

Methods such as InitToZero that use unsafe pointers are typically internal to the .NET
framework and accessible only through safe wrappers such as FastInitToZero shown in
Fig. 7.4. This code casts the parameter array of int to a pointer to int, and then invokes
InitToZero. This pattern of a safe wrapper around unsafe pointer manipulating code is
pervasive in the .NET framework. Using our analysis together with method pre-conditions
allows us to validate that callers into the framework cannot cause unintended memory
access via the internal pointer operations.

In this example, Clousot figures out that at line 4 of Figure 7.4 the invariant WB(a) =

4 ∗ arr.Length holds, which is enough to prove the pre-condition of InitToZero. In order
to track affine linear equalities as above, we use the abstract domain of LinEq. The com-
bination of Strp, Intv and LinEq allows us to precisely analyze memory accesses in unsafe
code without turning to expensive (exponential) abstract domains.

7.5. Syntax and Concrete Semantics 153

1 static public unsafe void FastInitToZero(int [] arr)
2 {
3 fixed (int∗ a = arr)
4 {
5 InitToZero(a, (uint) arr .Length);
6 }
7 }

Figure 7.4: Passing to functions pointers to arrays

7.4.4 Interaction with the Operating System
Unsafe code is also necessary for interfacing with the underlying operating system. Con-
sider the code in Fig. 7.5. FastCopy uses the CopyMemory method from the Win32
API to copy the values of the array s into the array p. FoxTrot allows attaching exter-
nal contracts to assemblies, and in particular to annotate external calls. For the sake of
presentation, we made these contracts explicit in a proxy method.

The precondition for CopyMemory, informally stated in the Win32 documentation,
is formalized in CopyMemoryProxy. It requires that (a) the destination buffer is large
enough to hold szsrc bytes; (b) the two buffers are defined at least on the memory regions
accessed by CopyMemory.

Clousot can then statically check the right usage of the API. For instance, it checks
that FastCopy satisfies the precondition, provided that the length of the destination array
is not strictly smaller than the source.

Discussion: Application to security. The example shows the relevance of our analysis
to enforce security. Unsafe code in the .NET framework is a potential security risk if it is
exploitable from safe managed code. Analyses such as Clousot provide more confidence
that the managed to unmanaged transition does not expose the framework to such attacks.
The same technique could be applied at the Java to native boundary which exhibits the
same problems.

7.5 Syntax and Concrete Semantics
We present an idealized and simplified subset of MSIL, uMSIL. We define its transi-
tion semantics. The concrete semantics is instrumented to trace the region of allocated
memory associated with a pointer. We treat out-of-region memory accesses as errors.

In �heckmate, this part corresponds to

• Section 5.2, in which we defined a representation of the Java bytecode language,

• Section 5.4, in which we defined the concrete domain,

154 7. Static Analysis of Unsafe Code

[DllImport(”kernel32. dll ”)]
unsafe static extern void CopyMemory(char∗ pdst, char∗ psrc, int size);

static unsafe private void CopyMemoryProxy(char∗ pdst, char∗ psrc, int szdst, int szsrc)
{

Contract.Requires(szdst >= 0 && szsrc >= 0);
Contract.Requires(szdst >= szsrc);
Contract.Requires(Contract.WritableBytes(pdst) >= szdst∗sizeof(char));
Contract.Requires(Contract.WritableBytes(psrc) >= szsrc∗sizeof(char));

CopyMemory(pdst, psrc, szsrc);
}

public unsafe static void FastCopy(char[] d, char[] s)
{

Contract.Requires(d.Length >= s.Length);

fixed (char∗ pdst = d, psrc = s)
{

CopyMemoryProxy(pdst, psrc, d.Length, s.Length);
}
}

Figure 7.5: An example illustrating the invocation of the Win32 API

• Section 5.5, in which we defined the transition semantics.

7.5.1 Syntax

We focus our attention on the MSIL instructions that are particular to our unsafe analysis.
Thus, we do not discuss: (a) instructions that are “standard” such as jumps, assignments,
method invocations, etc. (b) issues that are orthogonal to the unsafe code analysis, such
as the precise handling of tests, expressions refinement, etc. We refer the interested reader
to [92] that debates these topics and depicts the solution implemented in Clousot.
The instruction set we consider, uMSIL, is shown in Tab. 7.2. T∗ p = stackalloc T[exp]
allocates exp elements of type T on the stack. In .NET, memory can be allocated in the
heap in two ways : (a) use the new keyword to allocate an object or (b) directly call
the underlying operating system (e. g. by using the HeapAlloc Win32 API). In gen-
eral, the garbage collector is free to move heap allocated objects. However, the construct
fixed(T ∗ p = &x + exp){istr} (a) sets a pointer p to the address &x + exp; and (b) pins
the variable p during the execution of the sequence of instructions istr, to prevent the
garbage collector from moving it. The instruction x = ∗(p + exp) reads the value at ad-
dress p + exp and stores its value in x whereas ∗(p + exp) = x stores at the address p + exp

7.5. Syntax and Concrete Semantics 155

istr ::= T∗ p = stackalloc T[exp]
| fixed(T ∗ p = &x + exp) { istr }
| x = ∗(p + exp)
| ∗(p + exp) = x
| istr; istr

Table 7.2: uMSIL: an idealized version of the MSIL instructions

the value of x. Finally, we have instruction sequencing.

7.5.2 Concrete Domain

Let Var be a set of variables, let Add be a set of addresses, Z be the set of numerical
values (note that Add ⊆ Z) and Ω a special state standing for a program error. For each
variable v ∈ Var we express by WB(v) the number of bytes on which it is defined (if
it is not a pointer, the domain would not trace information about it). We let WB(Var)
= {WB(v) | v ∈ Var} and VarWB = Var ∪WB(Var).

The domain of concrete execution states is

C = ([VarWB → Z] × [Add→ Byte] × Add) ∪ {Ω}

A concrete state is either: (a) a tuple consisting of an environment f mapping variables to
values, a memory g mapping addresses to bytes, and a set t of addresses of objects pinned
for the garbage collector, or (b) the special value Ω denoting that an error has occurred.

7.5.3 Concrete Transition Semantics

Figure 7.6 formally defines the concrete transition semantics. We use some auxiliary
functions:

• eval(exp, (f, g)) evaluates a side-effect free expression exp in state (f, g);

• alloc(T, n, g) returns a pair 〈a, g′〉 where a is the starting address of a freshly allo-
cated region of g containing n elements of type T, and g′ is the modified memory;

• write(g, a, n, v) returns the updated memory g[a + i 7→ v[i] | i ∈ [0, n)], v[k] denotes
the k-th significant byte of v;

• read(g, a, n) reads n bytes from memory g and returns them packed as an integer;

• sizeof(T) and sizeof(x) return the length, expressed in bytes, respectively of an
element of type T and of the variable x.

156 7. Static Analysis of Unsafe Code

eval(exp, (f, g)) < 0
CJT ∗ p = stackalloc T[exp]K(f, g, t)→ Ω

n = eval(exp, (f, g)), n ≥ 0, 〈a, g′〉 = alloc(T, n, g), f′ = f[p→ a][WB(p)→ n ∗ sizeof(T)]
CJT ∗ p = stackalloc T[exp]K(f, g, t)→ (f′, g′, t)

WB(p) < dom(f) ∨ eval(exp, (f, g)) < 0 ∨
f(WB(p)) < sizeof(x) + eval(exp, (f, g)) ∗ sizeof(∗p)

CJ∗(p + exp) = xK(f, g, t)→ Ω

WB(p) ∈ dom(f), n = eval(exp, (f, g)), n ≥ 0, f(WB(p)) ≥ sizeof(x) + n ∗ sizeof(∗p)
g′ = write(g, f(p) + n ∗ sizeof(∗p), sizeof(∗p), f(x))

CJ∗(p + exp) = xK(f, g, t)→ (f, g′, t)

WB(p) < dom(f) ∨ f(eval(exp, (f, g))) < 0 ∨
f(WB(p)) < sizeof(x) + eval(exp, (f, g)) ∗ sizeof(∗p)

CJx = ∗(p + exp)K(f, g, t)→ Ω

WB(p) ∈ dom(f) n = eval(exp, (f, g)), n ≥ 0, f(WB(p)) ≥ sizeof(x) + n ∗ sizeof(∗p)
v = read(g, f(p) + n ∗ sizeof(∗p), sizeof(x)), f′ = f[x→ v]

CJx = ∗(p + exp)K(f, g, t)→ (f′, g, t)

var is a T array, t′ = t ∪ {f(var)} CJistrK(f′, g, t′)→ (f′′, g′′, t′′)
f′ = f [p→ f(var) + (eval(exp, (f, g))) ∗ sizeof(T)]

[WB(p)→ (eval(var.length,−)exp(f, g)) ∗ sizeof(T)]
CJfixed(T ∗ p = &var + exp){istr}K(f, g, t)→ (f′′, g′′, t)

CJistr1K(f, g, t)→ Ω

CJistr1; istr2K(f, g, t)→ Ω

var is a string, t′ = t ∪ {f(var)} CJistrK(f′, g, t′)→ (f′′, g′′, t′′)
f′ = f [p→ f(var) + (eval(exp, (f, g))) ∗ 2]

[WB(p)→ (eval(var.Length − exp(f, g)), ∗)2]
CJfixed(T ∗ p = &var + exp){istr}K(f, g, t)→ (f′′, g′′, t})

CJistr1K(f, g, t)→ (f′, g′, t′)
CJistr1; istrs2K(f, g, t)→ CJistr2K(f′, g′, t′)

Figure 7.6: The concrete transition semantics

7.6. Abstract Semantics 157

The description of the transitions in Fig. 7.6 follows. The semantics for stackalloc
first evaluates exp. If it is negative, it fails. Otherwise, it allocates a new region, sets a
pointer for it to p and records the length of the region, expressed in bytes, in WB(p).

A write operation ∗(p + exp) = x stores a number of bytes equal to the size of the type
of x in the memory location p + exp ∗ sizeof(∗p). If the region for p does not contain at
least sizeof(x) + exp ∗ sizeof(∗p) bytes, a buffer overrun occurs, denoted by the error state
Ω. The read operation is analogous.

The semantics for fixed is defined according to the type of var. In the two cases, (a) p
will point to a memory address that is obtained by combining the address value f(var) and
the offset exp ∗ s, where s is the size of the elements; (b) the address of the pinned object
f(var) is added to the set of pinned objects during the execution of st. As for the length
of the memory regions associated with p: when var is (a) an array, then the size of the
memory region associated with p is given by the length of the array minus the offset of the
first element times the size of an element; (b) a string, then p will point to an element to
the internal representation of the string as an array of char, and the length of the memory
regions is computed accordingly.

The semantics of a sequence of instructions is the compositions of the semantics,
unless the result is Ω. In this case, the error state is propagated.

7.6 Abstract Semantics

We derive our analysis by stepwise abstraction, [24]. First, we abstract away the values
read and written through pointers and the aliasing introduced by the fixed instruction.
Then, we derive a generic analysis for checking buffer overruns. The analysis is parame-
terized by the numerical abstract domain used to evaluate region indices.

In �heckmate, this part corresponds to

• Section 5.8, in which we defined the abstract domain,

• Section 5.9, in which we defined the abstract transition semantics,

• Section 5.10, in which we proved the soundness of our approach.

7.6.1 Abstracting Away the Values

The Domain

We preserve just the information on memory regions. We abstract away the second and
the third component of C, and we project the first component onto the memory regions,
i.e. WB(Var). The abstract domain is C = ([WB(Var) → Z ∪ {>}]) ∪ {Ω?}. We add (a) >
to model values that are abstracted away, (b) Ω? to model a set of concrete states that may
contain the error state Ω.

158 7. Static Analysis of Unsafe Code

!(eval(exp, f) ≥ 0)
AJT ∗ p = stackalloc T[exp]K(f)→ Ω?

eval(exp, f) ≥ 0, f′ = f[WB(p)→ eval(exp, f) ∗ sizeof(T)]
AJT ∗ p = stackalloc T[exp]K(f)→ f′

!(eval(exp, f) ≥ 0) ∨WB(p) < dom(f)∨!(f(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f))
AJ∗(p + exp) = xK(f)→ Ω?

WB(p) ∈ dom(f), eval(exp, f) ≥ 0, f(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f)
AJ∗(p + exp) = xK(f)→ f

!(eval(exp, f) ≥ 0) ∨WB(p) < dom(f)∨!(f(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f))
AJx = ∗(p + exp)K(f)→ Ω?

WB(p) ∈ dom(f), eval(exp, f) ≥ 0, f(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f)
AJx = ∗(p + exp)K(f)→ f

var is T array

f
′
= f[WB(p)→ eval(var.length − exp, f) ∗ sizeof(T)], f

′′
= AJistrK(f′)

AJfixed(T ∗ p = &var + exp){istr}K(f)→ f
′′

AJistr1K(f)→ Ω?

AJistr1; istr2K(f)→ Ω?

var is a string

f
′
= f[WB(p)→ (eval(var.Length − exp, f)) ∗ 2], f

′′
= AJistrK(f′)

AJfixed(T ∗ p = &var + exp){istr}K(f) = f
′′

AJistr1K(f)→ f
′

AJistr1; istr2K(f)→ AJistr2K(f
′
)

Figure 7.7: The abstract transition semantics for uMSIL

7.6. Abstract Semantics 159

The Abstract Transition Semantics

The abstract semantics is in Fig. 7.7. The abstract function eval lifts its concrete counter-
part to handle >. > values occur for instance when exp contains a variable x whose value
is read through a pointer and we do not trace the value for x. eval simply propagates >
through all strict operator positions, e.g., eval(5 + >, f) = eval(>, f) = >.

The semantics is a little bit more than the projection of the concrete semantics on its
first component: if eval(exp, f) = >, then we cannot decide if exp ≥ 0 and hence if a
buffer overrun has occured. In this case, we force the transition to the Ω? state, which
means that a buffer overrun may occur.

For the fixed instruction, we abstract away (a) the fact that the object is pinned: in our
abstract semantics we do not need to model the garbage collector; (b) the aliasing between
p and &var + exp: we are interested just in checking that memory accesses are valid.

Abstraction and Concretization Function

The concretization function returns the set of all the concrete states such that the first
component is compatible with one of the abstract states. If the abstract state contains the
unknown state Ω?, then all the concrete states are returned, included the error state Ω.
As a consequence, in order to show that a program has no memory access violations, it
suffices to prove that its abstract semantics in Fig. 7.7 never reduces to Ω?.

The next two theorems guarantee the soundness of the approach. The first states that
the abstract elements are a correct approximation of the abstract ones. The second one
states that no concrete behavior is forgotten in the abstract semantics.

Theorem 7.6.1 Soundness of the abstraction. Let γ : [℘(C) → ℘(C)] be the concretiza-
tion function defined as

γ(F) =
⋂

f∈F{(f, g, t) | ∀WB(p) ∈ dom(f). f(WB(p)) , >
=⇒ f(WB(p)) = f(WB(p)) ∧ p ∈ dom(f)}

∪{(f, g, t) | Ω? ∈ F}.

Then γ is a complete ∩-morphism, so that it exists an abstraction function α : [℘(C) →
℘(C)] such that ℘(C) −−−→←−−−α

γ

℘(C) as proved by Theorem 2.2.3.

Theorem 7.6.2 Soundness of the abstract semantics. Let f ∈ C, (f, g, t) ∈ γ(f) and ist ∈
uMSIL. If AJistK(f)→ f

′
and CJistK(f, g, t)→ (f′, g′, t′), then (f′, g′, t′) ∈ γ(f

′
).

7.6.2 Generic Memory Access Analysis
If we extend uMSIL with (conditional) jumps, e. g. to enable loops, then the abstract
semantics in Fig. 7.7 will no longer be computable. In particular, the expressions used for
memory accesses may evaluate to infinitely many values. As a consequence, in order to

160 7. Static Analysis of Unsafe Code

check(exp ≥ 0, s) = >
FJT ∗ p = stackalloc T[exp]K(f)→ Ω?

check(exp ≥ 0, s) = true, s′ = assign(WB(p), size ∗ sizeof(T), s)
FJT ∗ p = stackalloc T[exp]K(s)→ s′

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s) = > ∨ check(exp ≥ 0, s) = >
FJ∗(p + exp) = xK(s)→ Ω?

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s) = true, check(exp ≥ 0, s) = true
FJ∗(p + exp) = xK(s)→ s

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s) = > ∨ check(exp ≥ 0, s) = >
FJx = ∗(p + exp)K(s)→ Ω?

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s) = true, check(exp ≥ 0, s) = true
FJx = ∗(p + exp)K(s)→ s

var is a T array

s′ = assign(WB(p), (var.length − exp) ∗ sizeof(T), s),FJistrK(s′)→ s′′

FJfixed(T ∗ p = &var + exp){istr}K(s)→ s′′

FJistr1K(s)→ Ω?

FJistr1; istr2K(s)→ Ω?

var is a string

s′ = assign(WB(p), (var.length − exp) ∗ 2, s),FJistrK(s′)→ s′′

FJfixed(T ∗ p = &var + exp){istr}K(s)→ s′′

FJistr1K(s)→ s′

FJistr1; istr2K(s)→ FJistr2K(s′)
Figure 7.8: The generic abstract semantics for memory access validity checking

7.7. The Right Numerical Abstract Domain 161

cope with a more realistic scenario, we need to perform a further abstraction, to capture
the values of index expressions.

We assume a numerical domain N which correctly approximates ℘(C) (〈℘(C),⊆〉 γN←−
〈N,v〉) and with two primitives: (a) assign(x, exp, s) ∈ N which is (an overapproximation
of) the assignment x := exp in the abstract state s (∈ N); (b) check(exp, s) ∈ {true,>}
which checks whether, in the abstract state s (∈ N), the expression exp holds (true) or it
cannot be decided (>).

The generic abstract semantics for checking memory safety, parameterized by N is
reported in Fig. 7.8.

7.7 The Right Numerical Abstract Domain

Figure 7.9: The concrete points, and the property of interest

The generic abstract semantics in Fig. 7.8 can be instantiated with any numerical ab-
stract domain containing the primitives assign and check. As a consequence the problem
of checking the validity of memory accesses boils down to the problem of choosing the
right abstract domain. In particular, we want to obtain a scalable and precise analysis. In

162 7. Static Analysis of Unsafe Code

Figure 7.10: The abstraction of Intv

this way, we need to use a domain that is not expensive but enough accurate in order to
capture the property of interest.
First of all, we investigate if any existing domain fill these requirements when analyzing
unsafe code.

Let us consider the set of pointsA of Fig. 7.9 corresponding to all the possible values
that WB(ptr) and index assume at some memory access c = ∗(ptr + index). Supposing
that the type of WB(ptr) is char, we want that WB(ptr) ≥ 2 ∗ index holdsalways. This is
the property of interest: if we access the memory through ptr with an index that does not
respect this constraint, the bounds are not respected. So in this figure we color in grey the
area in which the property is respected.

Fig. 7.10 shows that Intv alone is not precise enough for our purposes: the best ap-
proximation forA with Intv goes outside the grey area, and so false alarms are produced
by this domain. Intuitively, this is because Intv does not keep relational information, e. g.,
any relation between WB(p) and index is abstracted away.

Weakly-relational numerical abstract domains such as Octagons [101] (that captures
relations in the form ±x ± y ≤ a) or Pentagons [93] (a ≤ x ≤ b ∧ x < y) have been
introduced as lightweight solutions for array bounds checking. Fig. 7.11 shows that

7.7. The Right Numerical Abstract Domain 163

Figure 7.11: The abstraction of Oct

Octagons are more precise than Intv, but they are still not precise enough to validate
memory accesses due to the multiplicative factor sizeof(∗p) which makes the slopes in
Fig.7.9 possibly non-45◦.

Fig. 7.12 shows that Poly (Σiai · xi ≤ b) is precise enough, as approximates correctly
the concrete points. The main drawback of using Poly is its worst case cost, which for
the most common operations is exponential in time and space (and this is a lower-bound
[77]). But is the worst case common when analyzing unsafe code or it never happens in
this context?
We apply the implementation of Poly in Boogie [8] to the analysis of unsafe code. Al-
though this implementation of Polyhedra is not as optimized as for example [7], it has
been well debugged and in use for a number of years. The results are shown in Table
7.3 (the experiments were conducted on a 2.4Ghz Intel Core Duo laptop, with 4Gbytes of
RAM, running Windows Vista).

In our runs, we used a 2 minute timeout per method. The timeout was reached 23
times on mscorlib.dll and 13 times on System.dll. In all fairness, the Parma library [7]
is likely to be much faster than the implementation of Polyhedra we used. However, it is
unlikely to consistently improve the execution by two orders of magnitude and it would

164 7. Static Analysis of Unsafe Code

Figure 7.12: The abstraction of Poly

still suffer from exponential behavior on some methods where the 2 minute timeout was
reached. When removing the timeout, one method in mscorlib.dll took 49 minutes to
reach a fixpoint using Polyhedra.

Finally, Poly do not scale to the code that we want analyze. So we chose a different
approach: (a) to design abstract domains focused on a particular property; and (b) to
combine domains using well-known techniques such as the reduced product. For our
analysis, we designed a new numerical abstract domain, Strp, and we combined it with
Intv and LinEq to achieve precision without giving up on performance.

In the next sections we present the details of Strp, its reduction with Intv and LinEq,
and the results of our practical experiments.

Accesses
Assembly Time Checked Validated %

mscorlib.dll 125m52s∗ 3 070 1 610 52.46
System.dll 257m27s∗ 1 576 744 44.94

Table 7.3: Unsafe code analysis using the Polyhedra domain

7.8. The Stripes Abstract Domain 165

7.8 The Stripes Abstract Domain
We introduce a novel, weakly-relational domain Stripes, Strp, focused on the inference
and checking of (upper bounds on) memory accesses that use a base, an index, and a
multiplicative factor. We define the order, the join, the meet and the widening operators.

7.8.1 Constraints
As a first approximation, Strp captures constraints of the form WB(p) − sizeof(T) ∗
(count[+base]) > k where WB(p), count, and optionally base are variables, T is a type,
and k is an integer constant. The intuition behind it is that the pointer p is defined at least
on count[+base] elements of its type, and on k additional bytes.

In practice, these constraints are used in a more generic way: the first element may
be any variable (and not only the writable bytes of a pointer) and the sizeof(T) may be
any numerical value (and not only the size of the type of the pointer target). Then the
constraints captured by the Stripe domain are z − k1 ∗ (x[+y]) > k2, where z, x, and y are
variables, and k1 and k2 are integer values.

7.8.2 Abstract Domain Structure
Abstract Elements

We represent Strp elements as maps from variables to constraints. We chose maps as they
allow efficient manipulation of directional constraints:

Strp = [VarWB → ℘(VarWB × (VarWB ∪ ⊥) × Z × Z)].

Intuitively, the domain of the map contains the variable z, the first and second component
of the 4-tuple represent the two variables x and y (⊥ if it is not present), the third compo-
nent is k1 and the last one is k2.

Example (Representation of stripes constraints)

The two constraints z − 4 ∗ y > 0 and z − 2 ∗ (x + u) ≥ 5 are represented in Strp by the
map [z→ {(y,⊥, 4, 0), (x, u, 2, 4)}].

Order

An abstract state s1 in Strp is more precise than s2 iff for each constraint in s2, s1 contains
a constraint such that (a) the three variables and the integer constant k1 are the same; and
(b) k2 is less or equal than the k2 of s2 since if x > y and y > z then x > z by transitivity
of >. Formally:

s1 v s2 ⇐⇒ ∀z ∈ dom(s2),∀(y, x, k1, k2
2) ∈ s2(z) :

z ∈ dom(s1) ∧ ∃(y, x, k1, k1
2) ∈ s1(z).k2

2 ≤ k1
2

166 7. Static Analysis of Unsafe Code

Top and Bottom

The largest element of Strp is a map with no information: λz. ∅. An abstract state s is
bottom iff it contains a contradiction: e. g. [z 7→ {(y,⊥, 1, 0)}, y 7→ {(z,⊥, 1, 0)}].

Join

The upper bound operator (a) keeps the constraints that are defined in both operands; (b)
takes the smallest lower bound k2 if it is different in the two constraints since if exp > a,
exp > b and a ≥ b then exp > b is an upper bound for both constraints. Formally:

s1 t s2 = λz.{(y, x, k1, k2) | (y, x, k1, k1
2) ∈ s1(z), (y, x, k1, k2

2) ∈ s2(z), k2 = min(k1
2, k

2
2)}

Meet

The lower bound operator traces the constraints of both operands. If both contain a con-
straint with the same variables x, y, and z, and the same integer value k1, the operator
keeps the largest integer value for the numerical lower bound.

s1 u s2 =λz.

(y, x, k1, k2) | (y, x, k1, k1

2) ∈ s1(z),
(y, x, k1, k2

2) ∈ s2(z),
k2 = max(k1

2, k
2
2)

∪

λz.

(y, x, k1, k2) | ((y, x, k1, k2) ∈ s1(z)∧
(y, x, k1,) < s2(z))
∨ ((y, x, k1, k2) ∈ s2(z)∧

(y, x, k1,) < s1(z))

Widening

Strp does not satisfy the ACC condition. As a consequence, we need to define a widening
operator to ensure convergence. Our widening simply drops the constraints that are not
stable between two iterations:

s1∇s2 = λz.s1(z) ∩ s2(z).

Concretization

The concretization function γStrp : [Strp → ℘(C)] returns all the possible states that
satisfy the constraints represented by the abstract state:

γStrp(s) = {f | ∀z ∈ dom(s)∀(y, x, k1, k2) ∈ s(z).f(z) − k1 ∗ (f(y) + f(x)) > k2}.

It is immediate to see that γStrp is monotonic, and furthermore that it is a complete
∩-morphism. Therefore, as the composition of monotonic functions is monotonic, the
following theorem stating that Strp is a sound approximation holds:

7.8. The Stripes Abstract Domain 167

Theorem 7.8.1 Abstraction γStrp as defined above is a complete ∩-morphism. Therefore,

it exists an αStrp such that 〈℘(C),⊆〉 −−−−−→←−−−−−
αStrp

γStrp 〈Strp,v〉 as proved by Theorem 2.2.3. As a

consequence, 〈℘(C),⊆〉 −−−−−−−→←−−−−−−−
αStrp◦α
γ◦γStrp 〈Strp,v〉 as proved by Theorem 2.2.4.

7.8.3 Refinement of the Abstract State
A state of the Stripe domain may be internally refined, by carefully propagating informa-
tion between constraints.

Example (Refinement of constraints)

Consider the two stripes constraints x − 2 ∗ (y + u) > 4 and y − z > 0. From the first
constraint we derive:

x − 2 ∗ (y + u) > 4⇐⇒ x − 2 ∗ u − 4 > 2 ∗ y⇐⇒ x/2 − u − 2 > y.

From the second constraint we derive that y > z ⇐⇒ y ≥ z + 1. Combining the two, we
derive a new stripe constraint: x/2 − u − 2 > z + 1⇐⇒ x − 2 ∗ (u + z) > 6.

The above example can be easily generalized:

Lemma 7.8.2 Saturation If an abstract state contains the two constraints

x − k1 ∗ (y[+u]) > k2

y − 1 ∗ z > k3

then we can infer the constraint x − k1 ∗ (z[+u]) > k2 + k1 ∗ (k3 + 1).

The refinement enabled by this Lemma above is important in practice. It allows adding
new constraints to the abstract state, without requiring an expensive closure to propagate
the information. Off course, Lemma 7.8.2 does not guarantee the completeness of the
saturation, but it is sufficient for our purposes, as illustrated by the next example. In
addition, when we need to apply widening in order to make convergent the analysis, we
do not apply refinement in order to assure that the analyses ends.

Example (Saturation)

Let us consider the example in Fig. 7.3. Inside the loop, we have the abstract state
s = {WB(a)−4∗ len > −1, len− i > 0} 1. We have to check whether WB(a) ≥ 4∗ i+4. We
cannot do it directly by inspecting s as there is no direct relation between WB(a) and i.
Applying the refinement of Lemma 7.8.2, we infer the constraint WB(a)− 4 ∗ i > 3 which
suffices to validate the access: WB(a)−4∗i > 3⇐⇒ WB(a) > 4∗i+3⇐⇒ WB(a) ≥ 4∗i+4
.

In our implementation we perform this refinement only on-demand when we need to
check the proof obligations.

1To simplify the reading, we present a stripe abstract state as a set of constraints.

168 7. Static Analysis of Unsafe Code

7.8.4 Transfer Functions
Assignment

When an expression is assigned to a variable, we first drop all the constants that are
defined on the assigned variable, and then we add some inferred constraints. Formally:

assign(x, exp, s) = let s′ = drop(x, s) in s′ ∪ C(x, exp, s′)

where

drop(x, s) = λy.{(z, u, k1, k2) | y , x, (z, u, k1, k2) ∈ s(y) =⇒ z , x ∧ u , x};
and C infers new constraints from an assignment and an abstract state. Few representative
cases for C follow. In our implementation we consider a richer structure of expressions
and cases.

C(x, y, s) = [x→ s(y)] ∪ [v1 7→ {(x, v2, k1, k2) | (y, v2, k1, k2) ∈ s(v1)}]
C(x, u + v, s) = [v1 7→ {(u,w, k1, k2) | (x,⊥, k1, k2) ∈ s(v1)}]
. . .

Abstract Checking

To check a boolean expression, we first try to normalize it into a form like x−k1∗(y[+z]) >
k2, and then we check if the abstract state contains a constraint which implies it. Formally:

check(exp, s) = let(x − k1 ∗ (y + z) > k1
2, b) = normalize(exp) in

if (b ∧ ∃(y, z, k1, k2
2) ∈ s(x).k1

2 ≤ k2
2) then true else >

We skip the details of normalize. Roughly, it applies basic arithmetic identities to rewrite
the expression. If it fails to put the expression into a stripe constraint form, it returns a
boolean value signaling the failure.

7.8.5 Representation of Strp

Figure 7.13 depicts the area captured by Strp when applying it to the set of concrete
points depicted by Figure 7.9. The relational information between variables index and
WB(ptr) is sufficient in order to prove that, when accessing the memory, the upper bound
is respected. Indeed, Strp are not enough in order to prove the lower bound (i.e. that the
index used to access memory is positive), and so we need to refine it.

7.9 Refined Abstract Semantics
We refine the information captured by the Strp domain with Intv and the LinEq domain.
Intv is needed to check lower bounds of accesses. LinEq is needed to track linear equali-
ties, and in particular to handle the compilation schema for fixed in C#.

7.9. Refined Abstract Semantics 169

Figure 7.13: The abstraction of Strp

7.9.1 Checking Lower Bounds of Accesses
Strp allows representing just partial numerical bounds on variables. In fact, when k1 = 0,
a stripe constraint boils down to a numerical lower bound: z > k2. Nevertheless, in general
we need to track numerical upper bounds on variables: Those may appear in expressions
that must be evaluated to check under-flow accesses. We use Intv to track the numerical
bounds on variables. Figure 7.14 depicts the are captured by the Cartesian product of
Strp and Intv. It makes evidence graphically that this domain is sufficient enough in order
to precisely analyze both lower and upper bound of memory accesses, as the area that
approximates the concrete values is inside the one that proves the property is respected.

Example (Need for numerical bounds)

Let us consider the following code snippet (“...” denotes an arbitrary boolean expression):

int ∗p;
...
// suppose that WB(p) = 12, a = 5
if (...) {

170 7. Static Analysis of Unsafe Code

Figure 7.14: The abstraction of Strp×Intv

b = 3;
}
else {

b = 4;
}
∗(p + (a−b)) = 0; // (∗)

If we track just lower bounds, at (∗) we have a > 4, b > 2, so that we cannot prove the
memory access correct. If we track both numerical bounds, at (∗) we have that a = 5, b ∈
[3, 4], so that b − a ∈ [1, 2] which suffices to prove the access correct.

The numerical abstract domain for the analysis is the product domain Intv ⊗ Strp.
All the domain operations are lifted pair-wise to the product domain. Sometimes we
may want to use the information contained in Intv to refine the information in Strp. For
instance, to improve the precision of the join operator, as shown by the next example.

Example (Refinement of Strp with Intv)

Consider the following piece of code:

7.9. Refined Abstract Semantics 171

if (arr == null)
p = null ;

else if (arr .Length == 0)
p = null ;

else
p = &arr [0];

Figure 7.15: The code generated by the C# compiler for the statement
fixed(T ∗ p = arr) . . .

int [] array;
...
// suppose that array.Length − count > 0
if (count == 0)

array = new int[1];
else

/∗ do nothing ∗/ ;

Using just Strp, at the join point we cannot conclude that array.Length−count > 0: inside
the conditional, array is assigned a new value, so that the entry constraint is dropped.

Using Intv ⊗ Strp, the abstract state after array creation is p1 = 〈〈count ∈ [0, 0],
array.Length ∈ [1, 1]〉, λz. ∅〉; the abstract state at the end of the false branch is p2 =

〈∅, [array.Length → (count, 1, 0)]〉. The join is 〈∅, [array.Length → (count, 1, 0)]〉, as
the interval component of p2 implies that array.Length − count > 0.

7.9.2 Compilation of fixed

When the C# compiler compiles a fixed statement which assigns an array arr of type T[]
to a pointer p, it generates code to check whether the arr is null or if its length is 0. If it is
the case, then it assigns null to p. Otherwise it assigns the address of the first element of
arr to p. Fig. 7.15 depicts this compilation schema.

Without any refinement, the analysis performed by Clousot cannot capture that WB(p) =

sizeof(T) ∗ array.length. There are two main reasons for that: (1) it is not possible to rep-
resent a constraint in the form of x − a ∗ y = 0 in Intv ⊗ Strp; (2) At the join point, a state
where p is null is merged with one where WB(p) = sizeof(T) ∗ array.length.

For (1), we refine the abstract domain to use LinEq, to retain linear equalities: the
abstract domain used in the analysis becomes LinEq ⊗ Intv ⊗ Strp.

For (2), if arr = null or arr. Length = 0, then 0 = sizeof(T)∗ array.Length = WB(p)
trivially holds. As we are performing an over-approximation of the reachable states, we
can safely add WB(p) = sizeof(T) ∗ array.length to our abstract state.

172 7. Static Analysis of Unsafe Code

Accesses
Assembly # Methods Time Checked Validated %

mscorlib.dll 18 084 3m43s 3 069 1 835 59.79
System.dll 13 776 3m18s 1 720 1 048 60.93
System.Data.dll 11 333 3m45s 138 59 42.75
System.Design.dll 11 419 2m42s 16 10 62.50
System.Drawing.dll 3 120 19s 48 29 60.42
System.Web.dll 22 076 3m19s 88 44 50.00
System.Windows.Forms.dll 23 180 4m31s 364 266 73.08
System.XML.dll 10 046 2m41s 772 311 40.28

Average 57.96

Table 7.4: Experimental results

7.10 Experiments

We implemented the analysis for unsafe memory accesses using the Stripes domain in
Clousot. We tested extensively our analysis on all the libraries of the .NET framework.
Our experiments were conducted on a 2.4Ghz Intel Core Duo laptop, with 4Gbytes of
RAM, running Windows Vista (Windows processor score 5.3). The target assemblies are
taken from the %WINDIR%\ Microsoft\ Framework\ v2.0.50727 directory of the test
laptop. No pre-processing, manipulation or filtering of the assemblies has been conducted.

A primary goal for Clousot is its use at development time during compilation or even
within the integrated development environment. Thus, the performance of the analysis is
crucial. Our specialized domains provide us with excellent performance as reported in
Tab. 7.4.

The analysis is fast: the average analysis time per method is 12ms. We validate on
average 57.96% of the unsafe memory accesses. This may not seem high at first glance.
However, consider the burden of human code reviews for unsafe code which is currently
a necessary practice. Our analysis cuts down the work load in half, focusing the reviews
on accesses that seem non-obvious to prove correct. Nevertheless, we feel that we can
improve the precision of the unsafe analysis in two ways:

1. We intend to remove short-comings in the current implementation of the domains,
resulting in unnecessary precision loss or inability to prove facts that are implied.
We intend to improve the domains as described e.g. in Section 7.8.3.

2. The code we analyzed does not contain contracts. This leads to loss of precision
when the proof obligation required in one method is established by the caller of the
method, or sometimes several call frames higher on the stack. As a consequence,
without contracts on the intermediate methods Clousot reports warnings on those
memory accesses.

7.10. Experiments 173

7.10.1 System.Drawing Case Study
We analyzed the 19 warnings in System.Drawing.dll to determine what contracts need to
be written to avoid them, or whether they represent true vulnerabilities.

First, we found the use of two helper methods that required pre-conditions:

short GetShort(byte∗ ptr) {Contract.Requires(Contract.WritableBytes(ptr) >= sizeof(short));
...

}
int GetInt(byte∗ ptr) {Contract.Requires(Contract.WritableBytes(ptr) >= sizeof(int));

...
}

These helper methods simply load 16 bits or 32 bits from the given pointer location using
little-endian encoding and avoiding unaligned accesses.

With the pre-conditions written as above, Clousot no longer reports warnings within
these helper methods. Instead, it reports warnings at 26 call-sites to these methods. The
remaining warnings are all located within 5 distinct methods.

1. One method uses an unmanaged heap allocation routine to obtain memory from the
marshal heap. Writing an appropriate post-condition for this allocator eliminates
the warnings in that method.

public static IntPtr AllocHGlobal(int cb) {
Contract.Ensures(Contract.WritableBytes(Contract.Result<IntPtr>()) == cb);

...
}

2. The next method we examined actually contained an error leading to buffer overruns
on read accesses.

3. The third method uses a complicated invariant on a data structure that involves
indexing using a product expression of two variables. Our domains cannot currently
track such products (only variables multiplied with constants). However, the code
appears to be safe.

4. The fourth method extracts a byte[] from an auxiliary data structure and indexes
it assuming the array contains 1K elements. Examining the data structure and all
its construction sites, we determined that it is built via marshalling from an un-
managed Windows API call and the marshal annotation specifies that the buffer is
to be allocated with the fixed size of 1K. Although we can specify this size as an
object invariant on the auxiliary structure leading to the removal of the warning
by Clousot, our tool chain does not yet understand the marshalling constraints
establishing the invariant.

5. Finally, the last function containing most of the accesses and calls to the helper
functions GetShort and GetInt, whose pre-conditions must be validated, exposed

174 7. Static Analysis of Unsafe Code

a shortcoming in our implementation. Upon examination, we determined that the
analyzer infers a sufficiently strong loop invariant which implies the safety of the
memory accesses and pre-conditions. However, our implementation was not able
to show this implication automatically.

With the above contracts and fixes, Clousot would validate 3 additional methods, but
report false warnings in one method due to an index expression we cannot handle, and
another false warning in a new method due to the lack of support for marshal annotations.

7.10.2 Summary
Overall, the analysis is fast enough to use in integrated development environments. It
achieves a higher level of automation and scalability than existing tools. In fact, we found
that the tool rarely fails to infer the necessary loop invariants to validate the memory
accesses. More often, it is the lack of contracts that limits our modular intra-procedural
analysis. The use of contracts not only allows reducing the false positive rate, the contracts
furthermore serve as checked documentation on important safety invariants. Clousot

can catch code changes or additions that fail to live up to the existing specifications and
thereby provide excellent static regression checking.

7.11 Related Work
We developed a sound and scalable analysis to statically check memory safety in unsafe
code. Scalability, without giving up precision, was a main goal for the analysis. Similar
work for C does not fulfill these two requirements. For instance the analysis introduced
by Wagner et al. [139] is not precise enough to check memory accesses that involve a
pointer, a base and an offset, which we found to be pervasive in mscorlib.dll, the main
library of the .NET framework. On the other hand, the analysis of Dor et al. [33, 34]
is precise enough to capture these relations, but it is based on the use of the Polyhedra
(Poly) abstract domain [31] which is known to have severe scalability problems2. The
work of Simon and King [128, 129] improved on that by using an abstraction of Poly,
where linear inequalities were restricted to buckets of two variables. However, we did not
find it precise enough to match the programming style adopted in the code we analyzed.
In particular, we found that a common pattern in unsafe code of .NET libraries uses both
a base and a number of element to be accessed starting from a pointer. This requires
to deal with constraints with three variables, and this is not supported by the domain
developed by Simon and King. Our approach differs from earlier work in that it is based
on the combination of lightweight and focused abstract domains, instead of a monolithic,
precise domain. Each abstract domain is specialized (and optimized) toward a particular

2The worst case complexity of Poly is exponential. To the best of our knowledge, at the moment of
writing, the most optimized implementations do not scale to more than 40 variables [7, 8]. In the analysis
of .NET assemblies, we need to capture up to 965 variables.

7.11. Related Work 175

program property, and their combination provides a powerful analysis without sacrificing
performance.

Bounds Analysis for C

Rinard and Rugina published a powerful analysis of C programs to determine aliasing,
bounds, and sharing of memory, enabling bounds optimizations, and parallelization [123,
124]. Their analysis infers a set of polynomial bounds on variables that are solved using a
linear programming problem to minimize the spread of the bound. The reported analysis
times are fast (in the same range as ours), but they only report results for small examples.
Their technique based on solving a linear programming problem is quite different from
using symbolic abstract domains, but equally promising. A benefit of their approach is
that it performs inter-procedural analysis by inferring relations for function inputs and
outputs using a bottom up call graph approach. However, this is also a major drawback,
as for strongly connected components of functions (recursively calling each other), their
analysis needs to compute a fixpoint. It is well known that call-graphs built for very large
applications (in particular object-oriented programs) are imprecise, leading to very large
components [32], making such an approach unlikely to scale.

Das et. al. describe buffer overflow checking and annotation inference on large Mi-
crosoft C/C++ code bases [59]. Few details of the used numerical domains are public,
but from the paper it is apparent that for precision, their analysis performs path splitting,
meaning it analyzes paths separately through a function whenever the abstract state at join
points disagrees. The Stripes domain described in this paper and the associated transfer
functions and join operations are geared towards providing precision without path split-
ting (our analyzer does not perform path splitting).

Analysis of JNI

A few analyses for Java handle programs using the Java Native Interface (JNI) [88].
Furr and Foster in [50] present a restricted form of dependent types used to infer and
type-check the types passed to foreign functions via the JNI. Tan et al proposed a mixed
dynamic/static approach to guarantee type safety in Java programs that interface with C.
We are not interested in type safety: in unsafe C#, type errors are less common than with
the JNI, since the unsafe context is integrated in C#, so that (a) the compiler can still
perform most type checking and (b) types do not need to be serialized as strings (the most
common type error in using the JNI). Instead our analysis focuses directly on memory
usage via pointers, whereas previous work did not.

Interoperability of Languages

Recent work focuses on language interoperability. Tan and Morrisett, [135], advocate an
approach in which the Java bytecode language is extended with a few instructions useful
to model C code. Hirzel and Grimm, [65], take an alternative approach with Jeannie,

176 7. Static Analysis of Unsafe Code

which is a language which subsumes Java and C, and the burden of creating the “right”
JNI for interfacing the two languages is left to the compiler. Matthews and Findler, [97],
give an operational semantics for multi-language programs which uses contracts as glue
for the inter-operating languages. The MSIL instruction set is rich enough to allow an
agile compilation of several languages: our analysis, working at the MSIL level does not
need to take into account inter-operability issues.

Static Analyzers

ESC/Java 2 [22] and Spec# [10] use automatic theorem provers to check programs. Au-
tomatic theorem provers provide a strong engine for symbolic reasoning (e. g. quantifiers
handling). The drawbacks are that: (a) they require the programmer to provide loop in-
variants and (b) they present scalability problems. Analysis times close to the one we
obtain in Clousot on shipped code are well beyond the state-of-the art in automatic the-
orem proving.

7.12 Discussion
We presented a new static analysis for checking memory accesses in unsafe code in .NET.
The core of the analysis is a new abstract domain, Strp, which combined with Intv and
LinEq, allows the analysis to scale to hundreds of thousands of lines of code. We proved
the soundness of the approach by designing the static analysis using stepwise abstraction
of a concrete transition semantics.
In this way we applied Clousot, an industrial generic static analyzer, to the study of a
property of practical interest. The analysis is both scalable (we are in position to analyze
.NET libraries in a couple of minutes) and precise (we found bugs on shipped code ana-
lyzing only a small case study). This chapter makes evidence that generic analyzers seem
to be a promising way to build up tools to debug real applications: the idea of re-using
the most part of the analysis and of focusing only on the property of interest and on the
numerical domain puts us in position to precisely and efficiently analyze industrial code.

8
Conclusions

In this thesis we presented a generic approach to the analysis of multithreaded programs,
we applied it to Java programs, we implemented it, and we extended an industrial generic
analyzer proving the practical and industrial interest of this type of analyzers.

The first contribution is the development of a generic theoretical framework in order
to define a static analysis sound with respect to the happens-before memory model. Mem-
ory models define which behaviors are allowed during the execution of a multithreaded
program. In particular they define at a given point of the execution which values can be
seen through shared memory. We defined the concrete semantics of the happens-before
memory model in a fixpoint form, and then we abstracted it with a computable semantics
proving formally the soundness of our approach.

A second contribution is the definition of a new deterministic property. The most part
of static analyses of multithreaded programs is focused on particular properties like data
races and deadlocks. Proving the absence of data races and deadlocks is not sufficient for
developers to prove the correctness of a multithreaded program. In fact, even if a program
is data races and deadlocks free, it may still expose nondeterministic behaviors because
of arbitrary interleaving of threads. Starting from these considerations we developed a
deterministic property aimed at checking directly the nondeterministic behaviors because
of unordered communications of threads through shared memory. We defined it on a
concrete semantics, we abstracted it in two steps proving formally the correctness, we
proposed the new idea of weak determinism, we proposed other two ways of projecting
this property (on states and on traces) defining a global hierarchy, we related the data race
condition to the deterministic property, and finally we sketched how this property may be
used in order to semi-automatically parallelize sequential programs. We believe that the
deterministic property, dealing with the effects of unordered communications through the
shared memory instead of its causes (as data races do), provides a more expressive and
flexible instrument in order to debug multithreaded programs.

In order to apply this generic framework to Java, we defined a domain particularly
focused on the main features of multithreading and an operational semantics of bytecode
statements. Our approach supports all the main features of Java programs, e.g. arrays,
strings, overloading and overriding of methods, and dynamic creation of threads, shared
locations, and monitors. In this context, we proposed a specific alias analysis that pre-
cisely approximates threads’ identifiers, monitors, and accesses to the shared memory.

178 8. Conclusions

All these features were implemented in �heckmate, a new generic static analyzer of
Java multithreaded programs. We developed some well-known non-relational numerical
domains, some properties of interest (included determinism and weak determinism), and
some memory models (included the happens-before one). The experimental results were
deeply studied both in term of precision and efficiency obtaining encouraging conclusions.

Finally, we extended an industrial generic analyzer (Clousot) to the study of a prop-
erty of interest, i.e. the detection of buffer overruns. In order to obtain a precise and
scalable analysis, we developed a new relational domain, Strp, and we combined it with
Intervals, and Linear Equalities. The analysis was proved to be scalable and precise:
we are able to analyze about twenty thousands of methods in a couple of minutes, and
we found bugs on shipped code analyzing a really small case study only. In this way, we
showed the industrial interest of generic analyzers in order to develop powerful and useful
tools to debug programs.

Future work: The main challenge is the application of the overall approach devel-
oped by this thesis to the analysis of industrial software. In this context, we will need to
deeply study in which way our analysis has to be refined in order to keep precise results
also when dealing with large size programs and commercial software.

First of all, we would check if the happens-before memory model is precise enough,
or if we need to take into account other features of the Java one. In addition, our approach
considers as synchronization primitives only launchings of threads and mutual exclusion
on threads. It is clear that we will need to consider more synchronization actions, but we
believe that our framework can be easily extended to support the most part of them. Then
we want to investigate the relaxations of the deterministic property that may be interest-
ing in order to find bugs on real software and in order to semi-automatically parallelize
sequential programs. It is clear that both these two issues will require to refine our do-
main and semantics of Java bytecode. In particular, we will need to eliminate the stack
representing the code in the 3-address form, and to reconstruct expressions.

It is important to notice that modularity remains an issue that cannot be dealt with at
the moment for the analysis of multithreaded programs, because of actual limits in the
semantics of modern programming languages supporting multithreading as pointed out in
Section 3.6.3. In the last decade modularity has been the most appealing feature of object-
oriented languages. We think that in order to correctly develop large multithreaded ap-
plications, it is necessary to provide additional primitives that allow developers to reason
in a modular way. In order to achieve this goal, it will be necessary to deeply investigate
what developers may be interested to specify, and the best way they can express it.

A
Source Code of Examples Taken from

[85]

A.1 ExpandableArray

public class ExpandableArray {
private Object[] data ;
private int size ;

public ExpandableArray(int cap) {
data =new Object[cap];
size =0;
}

public synchronized int size() {
return size ;
}

public synchronized Object at(int i) throws Exception {
if (i<0 || i>=size)
throw new Exception();

else return data [i];
}

public synchronized void append(Object x) {
if (size >= data .length) {
Object[] olddata=data ;
data =new Object[3∗(size + 1)/2];
for(int i=0; i < size ; ++i)
data [i]=olddata[i];
}
data [size ++]=x;
}

180 A. Source Code of Examples Taken from [85]

public synchronized void removeLast() throws Exception {
if (size ==0)
throw new Exception();

else
data [−−size]=null;
}

private static class RemoveLastThread extends Thread {
ExpandableArray array;

public RemoveLastThread(ExpandableArray array) {
this .array=array;
}

public void run() {
try{array.removeLast();}
catch(Exception e) {}
}
}

private static class AppendThread extends Thread{
ExpandableArray array;

public AppendThread(ExpandableArray array) {
this .array=array;
}

public void run() {
try{array.append(new Object());}
catch(Exception e) {}
}
}

static class ReadWriteConflict {
public static void main(String[] args) {
ExpandableArray array=new ExpandableArray(10);
array.append(new Object());
array.append(new Object());
array.append(new Object());
new RemoveLastThread(array).start();
try{array.at (1);}
catch(Exception e) {}
}
}

A.2. LinkedCell 181

static class WriteWriteConflict {
public static void main(String[] args) {
ExpandableArray array=new ExpandableArray(10);
array.append(new Object());
array.append(new Object());
array.append(new Object());
new AppendThread(array).start();
try{array.append(new Object());}
catch(Exception e) {}
}
}

}

A.2 LinkedCell

public class LinkedCell {
protected double value ;
protected LinkedCell next ;

public LinkedCell(double v, LinkedCell t) {
value =v;
next =t ;
}

public synchronized double value() {
return value ;
}

public synchronized void setValue(double v) {
value =v;
}

public LinkedCell next() {
return next ;
}

public double sum() {
double v=value();
if (next() ! =null)
v+=next().sum();

return v;
}

182 A. Source Code of Examples Taken from [85]

public boolean includes(double x) {
synchronized(this) {

if (value ==x)
return true;
}
if (next()==null)
return false;

else return next (). includes(x);
}

double ineffectivelyUnsynchedSum() {
double v=value ;
return v+nextSum();
}

double nextSum() {
return (next()==null) ? 0 : next (). sum();
}

private static class SynchronizedSumThread
extends Thread{

LinkedCell list ;

public SynchronizedSumThread(LinkedCell list) {
this . list = list ;
}

public void run() {
list .sum();
}
}

static class SynchronizedSum {
public static void main(String[] args) {
LinkedCell list =new LinkedCell(1.0, null);
LinkedCell list1 =new LinkedCell(2.0, list);
LinkedCell list2 =new LinkedCell(3.0, list1);
LinkedCell list3 =new LinkedCell(4.0, list2);
new SynchronizedSumThread(list3).start();
list1 .setValue(5.0);
}
}

private static class NotSynchronizedSumThread

A.3. Document 183

extends Thread{
LinkedCell list ;

public NotSynchronizedSumThread(LinkedCell list) {
this . list = list ;
}

public void run() {
list . ineffectivelyUnsynchedSum();
}
}

static class NotSynchronizedSum {
public static void main(String[] args) {
LinkedCell list =new LinkedCell(1.0, null);
LinkedCell list1 =new LinkedCell(2.0, list);
LinkedCell list2 =new LinkedCell(3.0, list1);
LinkedCell list3 =new LinkedCell(4.0, list2);
new NotSynchronizedSumThread(list3).start();
list3 .setValue(5.0);
}
}
}

A.3 Document

public class Document {
Document otherPart ;

synchronized void print() {
// print something
}

synchronized void printAll() {
otherPart . print ();
this . print ();
}

private static class PrintThread extends Thread{
Document doc;

public PrintThread(Document doc) {
this .doc=doc;

184 A. Source Code of Examples Taken from [85]

}

public void run() {
doc. printAll ();
}
}

public static void main(String[] args) {
Document letter=new Document();
Document enclosure=new Document();
letter .otherPart =enclosure;
enclosure.otherPart = letter ;
new PrintThread(letter). start ();
enclosure. printAll ();
}

}

A.4 Dot

public class Dot {

class Point {
private int x , y ;

public Point(int x, int y) {
x =x;
y =y;
}

public int x() {
return x ;
}

public int y() {
return y ;
}

}

protected Point loc ;

public Dot(int x, int y) {

A.5. Cell 185

loc =new Point(x,y);
}

public Point location () {
return loc ;
}

protected synchronized void updateLoc(Point newLoc) {
loc =newLoc;
}

public synchronized void moveTo(int x, int y) {
updateLoc(new Point(x, y));
}

public synchronized void shiftX(int deltaX) {
Point currentLoc=location();
updateLoc(new Point(currentLoc.x()+deltaX, currentLoc.y()));
}

private static class ShiftXThread extends Thread{
Dot dot;

public ShiftXThread(Dot dot) {
this .dot=dot;
}

public void run() {
dot. shiftX (1);
}
}

public static void main(String[] args) {
Dot dot=new Dot(0, 0);
new ShiftXThread(dot).start();
dot.moveTo(1, 1);
}
}

A.5 Cell

public class Cell {
private int value ;

186 A. Source Code of Examples Taken from [85]

public synchronized int getValue() {
return value ;
}

public synchronized void setValue(int v) {
value =v;
}

public synchronized void swapContents(Cell other) {
int newValue=other.getValue();
other.setValue(this.getValue());
this .setValue(newValue);
}

private static class SwapThread extends Thread{
Cell x, y;

public SwapThread(Cell x, Cell y) {
this .x=x;
this .y=y;
}

public void run() {
x.swapContents(y);
}
}

public static void main(String[] args) {
Cell x=new Cell(), y=new Cell();
new SwapThread(x, y).start();
y.swapContents(x);
}

}

A.6 TwoLockQueue

public class TwoLockQueue {
private TLQNode head ;
private TLQNode last ;
private Object lastLock ;

A.6. TwoLockQueue 187

public TwoLockQueue() {
head =last =new TLQNode(null, null);
lastLock =new Object();
}

public void put(Object x) {
TLQNode node=new TLQNode(x, null);
synchronized(lastLock) {

last .next=node;
last =node;
}
}

public synchronized Object take() {
Object x=null;
TLQNode first=head .next;
if (first ! =null) {
x= first .value;
head =first ;
}
return x;
}

private final class TLQNode {
Object value;
TLQNode next;

TLQNode(Object x, TLQNode n) {
value=x;
next=n;
}
}

private static class TakeThread extends Thread{
TwoLockQueue queue;

public TakeThread(TwoLockQueue queue) {
this .queue=queue;
}

public void run() {
((IntWrapper) queue.take()).val++;
}
}

188 A. Source Code of Examples Taken from [85]

static class IntWrapper {
int val ;
IntWrapper(int val) {this . val=val ;}
}

public static void main(String[] args) {
TwoLockQueue queue=new TwoLockQueue();
new TakeThread(queue).start();
queue.put(new IntWrapper(1));
queue.put(new IntWrapper(2));
queue.put(new IntWrapper(3));
}
}

A.7 Account package

Account

package Account;

public interface Account {
public long balance();
}

AccountHolder

package Account;

public class AccountHolder {
private UpdatableAccount acct =

= new UpdatableAccountObject(0);
private AccountRecorder recorder ;

public AccountHolder(AccountRecorder r) {
recorder =r;
}

public void acceptMoney(long amount) {
try{
acct . credit (amount);
recorder .recordBalance(new ImmutableAccount(acct));
}

A.7. Account package 189

catch(InsufficientFunds ex) {}
}

public void acceptMoneyWithoutImmutable(long amount) {
try{
acct . credit (amount);
recorder .recordBalance(acct);
}
catch(InsufficientFunds ex) {}
}
}

AccountRecorder

package Account;

public class AccountRecorder {
public void recordBalance(Account a) {
a.balance();
}
}

EvilAccountRecorder

package Account;

public class EvilAccountRecorder extends AccountRecorder {
private long embezzlement ;

public void recordBalance(Account a) {
if (a instanceof UpdatableAccount) {
UpdatableAccount u=(UpdatableAccount) a;
try {
u.debit (10);
embezzlement +=10;
}
catch(InsufficientFunds e) {}
}
super.recordBalance(a);
}

}

190 A. Source Code of Examples Taken from [85]

Immutable

package Account;

public interface Immutable {}

ImmutableAccount

package Account;

public class ImmutableAccount
implements Account, Immutable {

private Account delegate ;

public ImmutableAccount(long initialBalance) {
delegate =new UpdatableAccountObject(initialBalance);
}

ImmutableAccount(Account delegate) {
delegate =delegate;
}

public long balance() {
return delegate .balance();
}

}

InsufficientFunds

package Account;

public class InsufficientFunds extends Exception {
public InsufficientFunds () {}
}

UpdatableAccount

package Account;

public interface UpdatableAccount extends Account {

A.7. Account package 191

public void credit (long amount) throws InsufficientFunds;
public void debit(long amount) throws InsufficientFunds;
}

UpdatableAccountObject

package Account;

public class UpdatableAccountObject
implements UpdatableAccount {

private long currentBalance ;

public UpdatableAccountObject(long initialBalance) {
currentBalance =initialBalance;
}

public long balance() {
return currentBalance ;
}

public void credit (long amount) throws InsufficientFunds {
if (amount >=0 || currentBalance >=−amount)
currentBalance +=amount;

else throw new InsufficientFunds();
}

public void debit(long amount) throws InsufficientFunds {
credit (−amount);
}

}

MainClass

package Account;

public class MainClass {

private static class Balance extends Thread {
AccountRecorder recorder;

public Balance(AccountRecorder recorder) {
this .recorder=recorder;

192 A. Source Code of Examples Taken from [85]

}

public void run() {
recorder.recordBalance(new UpdatableAccountObject(100));
}
}

static class CorrectExample extends Thread {
public static void main(String[] args) {
AccountRecorder recorder=new AccountRecorder();
AccountHolder holder=new AccountHolder(recorder);
new Balance(recorder).start();
holder.acceptMoney(100);
}
}

static class FirstBadExample extends Thread {
public static void main(String[] args) {
AccountRecorder recorder=new AccountRecorder();
AccountHolder holder=new AccountHolder(recorder);
new Balance(recorder).start();
holder.acceptMoneyWithoutImmutable(100);
}
}

static class SecondBadExample extends Thread {
public static void main(String[] args) {
AccountRecorder recorder=new EvilAccountRecorder();
AccountHolder holder=new AccountHolder(recorder);
new Balance(recorder).start();
holder.acceptMoney(100);
}
}

static class WrongExample extends Thread {
public static void main(String[] args) {
AccountRecorder evilrecorder=new EvilAccountRecorder();
AccountHolder holder=new AccountHolder(evilrecorder);
new Balance(evilrecorder).start ();
holder.acceptMoneyWithoutImmutable(100);
}
}

}

B
Incremental application

B.1 Account

package name.ferrara.pietro.checkmate.bankapplication;

public class Account {
protected int creditRate;
protected int debitRate;
protected int amount;

public Account() {
synchronized(this) {

creditRate=2;
debitRate=10;
amount=0;

}
}

}

B.2 ATM

package name.ferrara.pietro.checkmate.bankapplication;

public class ATM {

protected void perform(Card c, int pin, int action, int amount) {
new ThreadATM(c, pin, action, amount).start();

}

}

194 B. Incremental application

B.3 Bank

package name.ferrara.pietro.checkmate.bankapplication;

public class Bank {

public Person openAccount(int money) {
BankAccount account1=new BankAccount(1000);
Card card1=new Card(account1, 1234);
return new Person(card1, account1);

}

}

B.4 BankAccount

package name.ferrara.pietro.checkmate.bankapplication;

public class BankAccount {

private Account account;

public BankAccount(int money) {
account=new Account();

synchronized(account) {
account.amount=money;

}
}

protected void withdraw(int money) {
synchronized(account) {

account.amount−=money;
}

}

protected int getBalance() {
synchronized(account) {

return account.amount;
}

}

protected void deposit(int money) {
synchronized(account) {

B.5. Card 195

account.amount+=money;
}

}

protected void deposit(Money money) {
synchronized(account) {

account.amount+=money.getValue();
money.destroy();

}
}

protected void action(int choice) {
if (choice==1) this.withdraw(100);
if (choice==2) this.deposit(100);

}

protected void calculateInterests() {
synchronized(account) {

int temp=account.amount;
if (temp>=0)

temp=temp+temp∗account.creditRate;
else temp=temp−temp∗account.debitRate;
account.amount=temp;

}
}

protected boolean thereAreMoney() {
synchronized(account) {

return account.amount>0;
}

}
}

B.5 Card

package name.ferrara.pietro.checkmate.bankapplication;

public class Card {

private int code;
private BankAccount account;

protected Card(BankAccount b, int pin) {
synchronized(this) {

code=pin;

196 B. Incremental application

account=b;
}

}

protected Money action(int pin, int action, int amount) {
synchronized(this) {

if (pin==code) {
if (action==0) {

this .show();
return new Money(0);

}
if (action==1) {

this .withdraw(amount);
return new Money(amount);

}
return new Money(0);

}
}
return new Money(0);

}

protected void show() {
account.getBalance();

}

protected void withdraw(int amount) {
new ThreadWithdraw(account, amount).start();

}

}

B.6 Cheque

package name.ferrara.pietro.checkmate.bankapplication;

public class Cheque {
BankAccount account;
int amount;

protected Cheque(BankAccount account, int amount) {
this .account=account;
this .amount=amount;

}

protected void executes(BankAccount to) {

B.7. Money 197

new ThreadWithdraw(account, amount).start();
new ThreadDeposit(to, amount).start();
amount=0;

}

protected Money executes() {
new ThreadWithdraw(account, amount).start();
int temp=amount;
amount=0;
return new Money(temp);

}
}

B.7 Money

package name.ferrara.pietro.checkmate.bankapplication;

public class Money {
protected int amount;

protected Money(int amount) {
this .amount=amount;

}

protected void destroy() {
amount=0;

}

protected int getValue() {
return amount;

}
}

B.8 Person

package name.ferrara.pietro.checkmate.bankapplication;

public class Person {

Card card;
BankAccount account;
Money cash;

public Person(Card c, BankAccount acc) {
this .account=acc;

198 B. Incremental application

card=c;
cash=new Money(0);

}

public void withdraw(int amount, int pin) {
new ATM().perform(card, pin, 1, amount);
cash=new Money(cash.getValue()+amount);

}

public void checkMoney(int pin) {
new ATM().perform(card, pin, 0, 0);

}

public void closeYear() {
new ThreadInterests(account).start();

}

public void pay(int amount) {
cash=new Money(cash.getValue()−amount);

}

public void transferFound(Person receiver, int amount) {
new TransferFunds(this.account, receiver.account, amount).executes();

}

public void receiveFound(Person receiver, int amount) {
new TransferFunds(receiver.account, this.account, amount).executes();

}

public void withdrawCheque(Cheque c) {
cash=new Money(cash.getValue()+c.executes().getValue());

}

public void depositCheque(Cheque c) {
c.executes(account);

}

public Cheque giveCheque(int amount) {
return new Cheque(account, amount);

}
}

B.9 ThreadATM

package name.ferrara.pietro.checkmate.bankapplication;

B.10. ThreadDeposit 199

public class ThreadATM extends Thread {

Card c;
int pin;
int action;
int amount;

public ThreadATM(Card c, int pin, int action, int amount) {
this .c=c;
this .pin=pin;
this .action=action;
this .amount=amount;

}

public void run() {
c.action(pin, action, amount);

}
}

B.10 ThreadDeposit

package name.ferrara.pietro.checkmate.bankapplication;

public class ThreadDeposit extends Thread {
BankAccount bank;
int amount;

public ThreadDeposit(BankAccount b, int amount) {
bank=b;
this .amount=amount;

}

public void run() {
bank.deposit(amount);

}
}

B.11 ThreadInterests

package name.ferrara.pietro.checkmate.bankapplication;

public class ThreadInterests extends Thread {

200 B. Incremental application

BankAccount bank;

public ThreadInterests(BankAccount b) {
bank=b;

}

public void run() {
bank.calculateInterests ();

}
}

B.12 ThreadWithdraw

package name.ferrara.pietro.checkmate.bankapplication;

public class ThreadWithdraw extends Thread {
BankAccount bank;
int amount;

public ThreadWithdraw(BankAccount b, int amount) {
bank=b;
this .amount=amount;

}

public void run() {
bank.withdraw(amount);

}
}

B.13 TransferFunds

package name.ferrara.pietro.checkmate.bankapplication;

public class TransferFunds {
BankAccount sending, receiving;
int amount;

public TransferFunds(BankAccount sending, BankAccount receiving, int amount) {
this .sending=sending;
this . receiving=receiving;
this .amount=amount;

}

B.14. Test 201

public void executes() {
new ThreadWithdraw(sending, amount).start();
new ThreadDeposit(receiving, amount).start();
amount=0;

}
}

B.14 Test

package name.ferrara.pietro.checkmate.bankapplication;

public class Test {
public static void main(String[] args) {

Bank bank=new Bank();
Person person1=bank.openAccount(1000);
Person person2=bank.openAccount(100);

person1.checkMoney(1234);
// end of 1st test
person2.withdraw(100, 1234);
// end of 2nd test
Cheque cheque=person1.giveCheque(100);
person2.depositCheque(cheque);
// end of 3rd test
person1.transferFound(person2, 100);
person2.receiveFound(person1, 100);
// end of 4th test
person1.closeYear();
person2.closeYear();
// end of 5th test
person1.withdraw(100, 1234);
// end of 6th test
person2.depositCheque(person1.giveCheque(100));
// end of 7th test
person2.withdraw(200, 1234);
// end of 8th test
person1.withdrawCheque(person1.giveCheque(200));
// end of 9th test
person1.checkMoney(1234);
person2.checkMoney(1234);
// end of 10th test

}
}

202 B. Incremental application

Bibliography

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race
detection for java. In Proceedings of TOPLAS ’06. ACM Press, 2006.

[2] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In Proceedings
of ISCA ’90, pages 2–14, 1990.

[3] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential deadlocks with static
analysis and runtime monitoring. In Proceedings of PADTAD ’05. Springer-Verlag,
2005.

[4] American National Standards Institute. ANSI/ISO/IEC 9075: Information Technol-
ogy — Database Languages — SQL. ANSI, 1999.

[5] David Aspinall and Jaroslav Sevcik. Java memory model examples: Good, bad
and ugly. In Proceedings of VAMP ’07, 2007.

[6] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys, 26:345–420, 1994.

[7] R. Bagnara, P.M. Hill, and E. Zaffanella. The Parma Polyhedra Library.
http://www.cs.unipr.it/ppl/.

[8] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for Object-Oriented programs. In Proceedings of FMCO
’05. Springer-Verlag, November 2005.

[9] M. Barnett, M. Fähndrich, and F. Logozzo. Foxtrot and Clousot: Language Ag-
nostic Dynamic and Static Contract Checking for .Net. Technical Report MSR-
TR-2008-105, Microsoft Research, Redmond, WA, August 2008.

[10] M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Proceedings of CASSIS ’04, 2004.

[11] Mike Barnett, Robert Deline, Manuel Fahndrich, K. Rustan, M. Leino, and Wol-
fram Schulte. Verification of object-oriented programs with invariants. Journal of
Object Technology, 3:2004, 2004.

[12] M. C. Bell and P. H. Madden. On the marketing of multicore. In Proceedings of
EDPS 06, 2006.

204 Bibliography

[13] S. Bensalem, J. Fernandez, K. Havelund, and L. Mounier. Confirmation of dead-
lock potentials detected by runtime analysis. In Proceedings of PADTAD ’06. ACM
Press, 2006.

[14] S. Bensalem and K. Havelund. Scalable dynamic deadlock analysis of multi-
threaded programs. In Proceedings of PADTAD ’05. ACM Press, 2005.

[15] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ansi sql isolation levels. In Proceedings of SIGMOD ’95.
ACM Press, 1995.

[16] A. Bouajjani, S. Fratani, and S. Qadeer. Context-bounded analysis of multithreaded
programs with dynamic linked structures. In Proceedings of CAV 07, LNCS.
Springer-Verlag, 2007.

[17] G. Boudol and G. Petri. Relaxed memory models: an operational approach. In
Proceedings of POPL ’09. ACM Press, 2009.

[18] G. P. Brat and A. Venet. Precise and scalable static program analysis at NASA. In
Proceedings of IEEE Aerospace Conference. IEEE Computer Society Press, 2005.

[19] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. The java memory
model: Operationally, denotationally, axiomatically. In Proceedings of ESOP 07,
LNCS. Springer-Verlag, 2007.

[20] S. Chaumette and A. Ugarte. A formal model of the java multi-threading system
and its validation on a known problem. In Proceedings of IPDPS ’01. IEEE Com-
puter Society, 2001.

[21] R. Chugh, J. W. Voung, R. Jhala, and S. Lerner. Dataflow analysis for concurrent
programs using datarace detection. In Proceedings of PLDI ’08. ACM Press, 2008.

[22] D. R. Cok and J. Kiniry. ESC/Java 2: Uniting ESC/Java and JML. In Proceedings
of CASSIS ’04, 2004.

[23] P. Cousot. Méthodes itératives de construction et d’approximation de points fi
xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes
(in French). Thèse d’État ès sciences mathématiques, Université Joseph Fourier,
Grenoble, France, 21 March 1978.

[24] P Cousot. The calculational design of a generic abstract interpreter. In Calcula-
tional System Design. NATO ASI Series F. IOS Press, Amsterdam, 1999.

[25] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of POPL ’77. ACM Press, 1977.

Bibliography 205

[26] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 81(1):43–57, 1979.

[27] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings of POPL ’79. ACM Press, 1979.

[28] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.
Journal of Logic Programming, 13:103–179, 1992.

[29] P. Cousot and R. Cousot. Abstract interpretation frameworks. In Journal of Logic
and Computation. Oxford University Press, 1992.

[30] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. The ASTRÉE analyzer. In Proceedings of ESOP ’05, LNCS. Springer-
Verlag, 2005.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proceedings of POPL ’78. ACM Press, 1978.

[32] Manuvir Das. Unification-based pointer analysis with directional assignments. In
Proceedings of PLDI ’00. ACM Press, 2000.

[33] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically
detecting all buffer overflows in c. In PLDI’03. ACM Press, 2003.

[34] N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking of string manipulations in c
programs via integer analysis. In Proceedings of SAS ’01, LNCS. Springer-Verlag,
2001.

[35] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access buffering
in multiprocessors. In Proceedings of ISCA ’98. ACM Press, 1998.

[36] Standard ECMA-335. Common Language Infrastructure (CLI). ECMA, 4th edi-
tion, June 2006.

[37] The Economist. Software that makes software better. The Economist Technology
Quarterly, 8th March:20–21, 2008.

[38] Perry A. Emrath and David A. Padua. Automatic detection of nondeterminacy in
parallel programs. In Proceedings of PADD ’88. ACM Press, 1988.

[39] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a framework and a bench-
mark for testing tools for multi-threaded programs. Concurr. Comput. : Pract.
Exper., 19(3), 2007.

[40] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an
object-oriented language. In Proceedings of OOPSLA ’03. ACM Press, 2003.

206 Bibliography

[41] A. Farzan and P. Madhusudan. Causal dataflow analysis for concurrent programs.
In Proceedings of TACAS ’07, LNCS. Springer-Verlag, 2007.

[42] P. Ferrara. JAIL: Firewall analysis of java card by abstract interpretation. In Pro-
ceedings of EAAI ’06, 2006.

[43] P. Ferrara. A fast and precise analysis for data race detection. In Proceedings of
Bytecode ’08, ENTCS. Elsevier, 2008.

[44] P. Ferrara. Static analysis of the determinism of multithreaded programs. In Pro-
ceedings of SEFM ’08. IEEE Computer Society, 2008.

[45] P. Ferrara. Static analysis via abstract interpretation of the happens-before memory
model. In Proceedings of TAP ’08, LNCS. Springer-Verlag, 2008.

[46] P. Ferrara. Checkmate: a generic static analyzer of java multithreaded programs.
In Proceedings of SEFM ’09. IEEE Computer Society, 2009.

[47] P. Ferrara, F. Logozzo, and M. Fähndrich. Safer unsafe code for .net. In Proceed-
ings of OOPSLA ’08. ACM Press, 2008.

[48] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In Proceedings of PLDI ’02. ACM Press, 2002.

[49] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In Proceedings of PLDI ’08. ACM
Press, 2008.

[50] M. Furr and J. S. Foster. Polymorphic type inference for the JNI. In Proceedings
of ESOP ’06, LNCS. Springer-Verlag, 2006.

[51] Paul Gastin and Michael W. Mislove. A truly concurrent semantics for a simple
parallel programming language. In Proceedings of CSL ’99. Springer-Verlag, 1999.

[52] David Geer. For programmers, multicore chips mean multiple challenges. Com-
puter, 40(9):17–19, 2007.

[53] S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In Pro-
ceedings of VMCAI ’05, LNCS. Springer-Verlag, 2005.

[54] Samir Genaim and Fausto Spoto. Constancy analysis. In Proceedings of FTfJP
’08, 2008.

[55] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of ISCA ’90, 1990.

Bibliography 207

[56] P. Granger. Static analysis of linear congruence equalities among variables of a
program. In Proceedings TAPSOFT ’91, LNCS. Springer-Verlag, 1991.

[57] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, 1994.

[58] Rajiv Gupta, Santosh Pande, Kleanthis Psarris, and Vivek Sarkar. Compilation
techniques for parallel systems. Parallel Computing, 25:1741–1783, 1999.

[59] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for buffer overflows
in the large. In ACM ICSE’06. ACM Press, 2006.

[60] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-
able memory transactions. In Proceedings of PPoPP ’05. ACM Press, 2005.

[61] T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In Proceedings of PLSI ’04, 2004.

[62] Manuel Hermenegildo. Parallelizing irregular and pointer-based computations au-
tomatically: Perspectives from logic and constraint programming. Parallel Com-
puting, 26(13–14):1685–1708, 2000.

[63] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic sections. In
Proceedings of TRANSACT ’06, 2006.

[64] Patricia M. Hill and Fausto Spoto. Deriving Escape Analysis by Abstract Interpre-
tation. Higher-Order and Symbolic Computation, 19:415–463, 2006.

[65] M. Hirzel and R. Grimm. Jeannie: granting Java native interface developers their
wishes. In Proceedings of OOPSLA ’07. ACM Press, 2007.

[66] R. N. Horspool and J. Vitek. Static analysis of postscript code. In Proceedings of
ICCL ’92. IEEE Computer Society Press, 1992.

[67] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables.
SIGPLAN Not., 24(7):28–40, 1989.

[68] D. Hovemeyer and W. Pugh. Finding more null pointer bugs, but not too many. In
Proceedings of PASTE ’07. ACM Press, 2007.

[69] L. Hubert, T. Jensen, and D. Pichardie. Semantic foundations and inference of
non-null annotations. In Proceedings of FMOODS ’08. Springer-Verlag, 2008.

[70] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. A general data de-
pendence test for dynamic, pointer-based data structures. In Proceedings of PLDI
’94. ACM Press, 1994.

208 Bibliography

[71] Thuan Quang Huynh and Abhik Roychoudhury. A memory model sensitive
checker for c#. In Proceedings of FM ’06, LNCS. Springer-Verlag, 2006.

[72] Intel. Teraflops research chip, http://techresearch.intel.com/articles/tera-
scale/1449.htm.

[73] Java Grande Forum Benchmark Suite. http://www.epcc.

ed.ac.uk/research/activities/java-grande/.

[74] Jlint: Java program checker. http://artho.com/jlint/.

[75] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and accurate static
data-race detection for concurrent programs. In Proceedings of CAV ’07, LNCS.
Springer-Verlag, 2007.

[76] M. Karr. On affine relationships among variables of a program. Acta Informatica,
6(2):133–151, July 1976.

[77] L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni, and M. Gurvich. Generating
all vertices of a polyhedron is hard. In Proceedings of SODA ’06. ACM Press,
2006.

[78] Johannes Kinder, Helmut Veith, and Florian Zuleger. An abstract interpretation-
based framework for control flow reconstruction from binaries. In Proceedings of
VMCAI ’09, LNCS. Springer-Verlag, 2009.

[79] G. Koch. Discovering multi-core: extending the benefits of Moore’s law. In Tech-
nology Intel Magazine. Intel, July 2005.

[80] A. Lal, T. Touili, N. Kidd, and T. W. Reps. Interprocedural analysis of concurrent
programs under a context bound. In Proceedings of TACAS ’08, LNCS. Springer-
Verlag, 2008.

[81] P. Lammich and M. Müller-Olm. Conflict Analysis of Programs with Proce-
dures, Dynamic Thread Creation, and Monitors. In Proceedings of SAS 08, LNCS.
Springer-Verlag, 2008.

[82] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In
Commun. ACM. ACM Press, 1978.

[83] L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. In IEEE Trans. Computers, 1979.

[84] V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer
linear inequalities. In Proceedings of VMCAI ’09, LNCS. Springer-Verlag, 2009.

[85] D. Lea. Concurrent Programming in Java. Addison-Wesley, 1996.

Bibliography 209

[86] E. A. Lee. The problem with threads. In Computer. IEEE Computer Society Press,
2006.

[87] Rustan Leino and Peter Muller. A basis for verifying multi-threaded programs. In
Proceedings of ESOP ’09, LNCS. Springer-Verlag, 2009.

[88] Sheng Liang. Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[89] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[90] F. Logozzo. Modular Static Analysis of Object-oriented Languages. PhD thesis,
Ecole Polytechnique, France, 2004.

[91] F. Logozzo. Cibai: An abstract interpretation-based static analyzer for modular
analysis and verification of Java classes. In Proceedings of VMCAI ’07, LNCS.
Springer-Verlag, 2007.

[92] F. Logozzo and M. Fähndrich. On the relative completeness of bytecode analysis
versus source code analysis. In Proceedings of CC ’08, LNCS. Springer-Verlag,
2008.

[93] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational domain for the
efficient validation of array accesses. In Proceedings of SAC ’08. ACM Press,
2008.

[94] J. Manson, W. Pugh, and S. Adve. The Java Memory Model. journal version, to
appear.

[95] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In Proceedings of
POPL ’05. ACM Press, 2005.

[96] Ami Marowka. Parallel computing on any desktop. Commun. ACM, 50(9):74–78,
2007.

[97] J. Matthews and R. B. Findler. Operational semantics for multi-language programs.
In Proceedings of POPL ’07. ACM Press, 2007.

[98] A Mazurkiewicz. Trace theory. In Advances in Petri nets 1986. Springer-Verlag,
1987.

[99] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. Efficient, parametric fixpoint
algorithm for analysis of java bytecode. In Proceedings of Bytecode ’07, ENTCS.
Elsevier, 2007.

[100] B. Meyer. Object-Oriented Software Construction (2nd Edition). Professional
Technical Reference. Prentice Hall, 1997.

210 Bibliography

[101] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
2006.

[102] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. In Proceedings of PLDI ’07. ACM Press, 2007.

[103] M. Naik and A. Aiken. Conditional must not aliasing for static race detection. In
Proceedings of POPL ’07. ACM Press, 2007.

[104] S. Nanz, F. Nielson, and H. R. Nielson. Modal Abstractions of Concurrent Be-
haviour. In Proceedings of SAS ’08, LNCS. Springer-Verlag, 2008.

[105] J. Navas, M. Mndez-Lojo, and M. Hermenegildo. A generic, context sensitive
analysis framework for object oriented programs. In Proceedings of FTfJP ’07,
2007.

[106] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and
formalizations. In ACM Lett. Program. Lang. Syst. ACM Press, 1992.

[107] Piotr Nienaltowski. Efficient data race and deadlock prevention in concurrent
object-oriented programs. In Proceedings of OOPSLA ’04. ACM Press, 2004.

[108] Piotr Nienaltowski and Bertrand Meyer. Contracts for concurrency. In Proceedings
of CORDIE ’06, 2006.

[109] J. K. Ousterhout. Why threads are a bad idea (for most purposes). In Presentation
given at the 1996 Usenix Annual Technical Conference, 1996.

[110] É. Payet and F. Spoto. Magic-Sets Transformation for the Analysis of Java Byte-
code. In Proceedings of SAS ’07, LNCS. Springer-Verlag, 2007.

[111] I. Pollet. Towards a Generic Framework for the Abstract Interpretation of Java.
PhD thesis, Department of Computing Science and Engineering, Catholic Univer-
sity of Louvain, 2004.

[112] I. Pollet and B. Le Charlier. Towards a complete static analyser for java: an abstract
interpretation framework and its implementation. In Proceedings of AIOOL ’05,
ENTCS. Elsevier, 2005.

[113] W. Pugh. The Java memory model is fatally flawed. In Concurrency - Practice and
Experience 12(6). Wiley, 2000.

[114] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In Proceedings of TACAS ’05, LNCS. Springer-Verlag, 2005.

[115] S. Qadeer and D. Wu. KISS: keep it simple and sequential. SIGPLAN Not., 39:14–
24, 2004.

Bibliography 211

[116] Zvonimir Rakamaric and Alan Hu. A scalable memory model for low-level code.
In Proceedings of VMCAI ’09, 2009.

[117] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill Higher Education, 2000.

[118] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst., 22:416–430, 2000.

[119] Mohammad Raza, Cristiano Calcagno, and Philippa Gardner. Automatic paral-
lelization with separation logic. In Proceedings of ESOP ’09, LNCS. Springer-
Verlag, 2009.

[120] J. C. Reynolds. Towards a grainless semantics for shared-variable concurrency. In
Proceedings of FSTTCS ’04, LNCS. Springer-Verlag, 2004.

[121] M. C. Rinard. Analysis of multithreaded programs. In Proceedings of SAS ’01,
LNCS. Springer-Verlag, 2001.

[122] Abhik Roychoudhury and Tulika Mitra. Specifying multithreaded java semantics
for program verification. In Proceedings of ICSE ’02. ACM Press, May 2002.

[123] R. Rugina and C. R. Rinard. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. In Proceedings of PLDI ’01. ACM Press, 2000.

[124] R. Rugina and M. C. Rinard. Symbolic bounds analysis of pointers, array indices,
and accessed memory regions. ACM Transactions on Programming Languages
and Systems, 27(2):185–235, 2005.

[125] Theo C. Ruys and Niels H.M. Aan de Brugh. Mmc: the mono model checker. In
Proceedings of Bytecode ’07, ENTCS. Elsevier, 2007.

[126] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of memory
models. In Proceedings of PPoPP ’07. ACM Press, 2007.

[127] Nir Shavit and Dan Touitou. Software transactional memory. In Symposium on
Principles of Distributed Computing. ACM Press, 1995.

[128] A. Simon and A. King. Analyzing string buffers in c. In Proceedings of AMAST
’02, LNCS. Springer-Verlag, 2002.

[129] A. Simon, A. King, and J. Howe. Two variables per linear inequality as an abstract
domain. In LOPSTR’02, LNCS. Springer-Verlag, September 2002.

[130] F. Spoto. The Julia Generic Static Analyser. http://profs.sci.univr.it/

∼spoto/julia/.

212 Bibliography

[131] F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proceedings
of FTfJP’2005, 2005.

[132] F. Spoto. Nullness analysis in boolean form. In Proceedings of SEFM ’08. IEEE
Computer Society Press, 2008.

[133] Robert C. Steinke and Gary J. Nutt. A unified theory of shared memory consis-
tency. Journal of the ACM, 51(5):800–849, 2004.

[134] H. Sutter and J. Larus. Software and the concurrency revolution. In ACM Queue.
ACM Press, 2005.

[135] G. Tan and G. Morrisett. Ilea: inter-language analysis across java and c. In Pro-
ceedings of OOPSLA ’07. ACM Press, October 2007.

[136] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics, 5:285–309, 1955.

[137] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-
concurrent linearisable objects. In Proceedings of PPoPP 06. ACM Press, 2006.

[138] C. Von Praun and T. R. Gross. Object race detection. In Proceedings of OOPSLA
’01. ACM Press, 2001.

[139] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. In Proceedings of NDSS ’00, 2000.

[140] A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for Java libraries.
In Proceedings of ECOOP ’05, LNCS. Springer-Verlag, 2005.

[141] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Rigorous concurrency analysis of
multithreaded programs. In Proceedings of CSJP ’04, 2004.

	copertina
	abstractFrancese
	abstractItaliano
	tesi

