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ABSTRACT	
	

The	potential	of	satellite	remote	sensing	(active	and	passive)	has	been	investigated,	with	the	
aim	of	improving	the	assessment	of	flood	risk	and	social	vulnerability,	for	defining	the	three	
components	of	risk:	hazard,	exposure	and	vulnerability.		
A	new	method	for	flood	mapping	has	been	developed,	based	on	multi temporal	statistics	of	
radar	images.	Flood	depth	was	estimated	using	a	new	method	based	on	a	statistical	analysis	of	
elevation	data	along	the	contours	of	flooded	areas.	Taking	advantage	of	Earth	observation	big	
data,	land	cover	maps	have	been	derived	from	data	fusion	of	optical	and	radar	data,	allowing	
urban	 growth	 analysis.	 Population	 density	 maps	 were	 derived	 by	 means	 of	 a	 dasymetric	
mapping	technique,	as	well	as	indicators	of	social	vulnerability	by	means	of	network	analysis.	
The	methodologies	 have	 been	 applied	 to	 floods	 in	 Italy	 and	Malawi,	 with	 the	 objective	 of	
supporting	decision	makers	in	a	context	of	climate	change	adaptation.	
	

	
ESTRATTO	

	
Con	 lo	 scopo	di	migliorare	 la	 valutazione	del	 rischio	 idrico	e	della	 vulnerabilità	 sociale,	 si	 è	
esplorato	 il	 potenziale	 del	 telerilevamento	 satellitare,	 attivo	 e	 passivo,	 per	 definire	 le	 tre	
componenti	del	rischio:	hazard,	exposure,	vulnerability.	
Si	è	sviluppato	un	nuovo	metodo	per	la	mappatura	di	aree	inondate	basandosi	su	statistiche	
multi temporali	di	immagini	radar.	La	profondità	dell’inondazione	è	stata	stimata	utilizzando	
un	 nuovo	 metodo	 basato	 sull’analisi	 statistica	 dell’elevazione	 lungo	 i	 contorni	 delle	 aree	
inondate.	Sfruttrando	i	big	data	di	osservazione	della	Terra	(ottici	e	radar),	sono	state	ricavate	
mappe	di	land	cover,	permettendo	l’analisi	della	crescita	urbana.	Sono	state	ricavate	mappe	di	
densità	di	popolazione	utilizzando	tecniche	di	dasymetric	mapping,	e	indicatori	di	vulnerabilità	
sociale	basandosi	sull’analisi	delle	reti.	
Le	metodologie	sono	state	applicate	a	inondazioni	successe	in	Italia	e	in	Malawi,	con	lo	scopo	
di	 fornire	 un	 supporto	 ai	 decision	 makers	 in	 un	 contesto	 di	 adattamento	 ai	 cambiamenti	
climatici.		
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	 1	

1. Introduction	

1.1 Introduction	to	the	problem	context	and	relevance	of	the	research	

Climate	 science	 foresees	 a	 future	 where	 extreme	 weather	 events	 could	 happen	 with	
increased	 frequency	 and	 strength	 as	 a	 consequence	 of	 anthropogenic	 activities.	 Climate	
change	 would	 favor	 extreme	 precipitations,	 which	 could	 cause	 flooding	 to	 happen	 more	
frequently,	either	riverine,	flash	or	coastal	flooding.	The	probability	of	these	events	to	happen	
is	exacerbated	by	land	use	change	and	in	particular,	by	urban	growth	that	increases	soil	sealing	
and	water	 runoff.	 The	ultimate	 consequence	would	be	an	 increase	of	 impacts,	 in	 terms	of	
either	affected	people,	and	economic	losses	in	urban	areas,	commercial	and	productive	sites,	
infrastructures	 and	 agriculture.	 Impacts	 that	 are	 constantly	 increasing	 since	 decades	 as	
reported	by	MunichRE	(2014)	with	floods	as	the	main	source	of	losses	in	the	globe.	

In	the	Glossary	of	Terms	of	the	Intergovernmental	Panel	for	Climate	Change	(IPCC)	(Barros	
et	al.,	2012),	disaster	risk	 is	defined	as	“the	 likelihood	over	a	specified	time	period	of	severe	
alterations	in	the	normal	functioning	of	a	community	or	a	society	due	to	hazardous	physical	
events	 interacting	with	 vulnerable	 social	 conditions,	 leading	 to	widespread	 adverse	 human,	
material,	economic,	or	environmental	effects	that	require	immediate	emergency	response	to	
satisfy	 critical	 human	 needs	 and	 that	 may	 require	 external	 support	 for	 recovery”.	 In	 this	
research,	flood	risk	is	based	on	this	definition,	where	flood	substitutes	disaster.		Following	the	
definition	in	the	same	document,	a	flood	is	“the	overflowing	of	the	normal	confines	of	a	stream	
or	 other	 body	 of	 water,	 or	 the	 accumulation	 of	 water	 over	 areas	 that	 are	 not	 normally	
submerged.	Floods	include	river	(fluvial)	floods,	flash	floods,	urban	floods,	pluvial	floods,	sewer	
floods,	coastal	floods,	and	glacial	lake	outburst	floods”.	

Flood	 risk	 and	 impacts	 are	 not	 sufficiently	 understood	 and	 reported	 and	 need	 to	 be	
monitored	 systematically	 with	 improved	 precision	 as	 underlined	 by	 the	 European	 Flood	
Directive	 (European	 Commision,	 2007).	 This	 is	 important	 to	 support	 Climate	 Change	
Adaptation	(CCA)	policies,	to	develop	robust	public	disaster	relief	funds,	to	develop	risk	profile	
for	financial	 institutes,	risk	portfolio	for	re-insurance	companies	and	risk	 in	supply	chain	for	
multinational	 companies	 (Mysiak,	 2013;	 UNISDR,	 2015).	 An	 improved	 capacity	 of	
characterizing	 risks	 is	 vital	 especially	 for	 managing	 urban	 areas	 and	 planning	 economic	
activities,	not	only	to	save	lives,	but	also	to	reduce	losses	and	build	more	resilient	livelihoods.		

This	is	even	more	important	if	global	environmental	changes	are	taken	into	consideration.	
Climate	 change	 in	 fact,	 due	 to	 natural	 internal	 processes	 and	 external	 forcings	 (i.e.	
anthropogenic	 activities	 that	 modify	 atmosphere	 composition	 and	 land	 use),	 is	 causing	
environmental	changes	at	global	scale,	such	as	modification	of	precipitation	patterns,	which	
influence	the	occurrence	of	floods	(Oppenheimer	et	al.,	2014;	Turner	et	al.,	1990).	Therefore,	
to	be	able	to	reduce	risks	for	the	future,	risk	must	be	assessed	under	different	future	scenarios,	
either	climate	or	emission	scenarios.	A	climate	scenario,	based	on	the	 IPCC	definition,	 is	“a	
plausible	 and	 often	 simplified	 representation	 of	 the	 future	 climate,	 based	 on	 an	 internally	
consistent	 set	 of	 climatological	 relationships	 that	 has	 been	 constructed	 for	 explicit	 use	 in	
investigating	 the	potential	 consequences	of	anthropogenic	 climate	 change,	often	 serving	as	
input	to	impact	models.	Climate	projections	often	serve	as	the	raw	material	for	constructing	
climate	scenarios,	but	climate	scenarios	usually	require	additional	information	such	as	about	
the	observed	current	climate”	(Barros	et	al.,	2012).	Instead,	an	emission	scenario	is	“a	plausible	
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representation	 of	 the	 future	 development	 of	 emissions	 of	 substances	 that	 are	 potentially	
radiatively	 active	 (e.g.,	 greenhouse	 gases,	 aerosols)	 based	 on	 a	 coherent	 and	 internally	
consistent	set	of	assumptions	about	driving	forces	(such	as	technological	change,	demographic	
and	socioeconomic	development)	and	their	key	relationships”	(Barros	et	al.,	2012).		

Following	 the	 definition	 adopted	 by	 the	 IPCC,	 in	 order	 to	 assess	 flood	 risk,	 the	 three	
components	 of	 risk	 have	 to	 be	 characterized:	 hazard,	 exposure	 and	 vulnerability	
(Oppenheimer	et	al.,	2014).	In	particular,	within	the	Disaster	Risk	Reduction	(DRR)	community,	
flood	risk	is	considered	as	the	expected	damage	(direct	tangible	costs)	and	it	is	function	of	the	
three	components	above	mentioned	(Crichton,	1999;	Giupponi,	2014).	

Hazard	refers	to	the	physical	and	statistical	aspects	of	the	event.	For	a	flood,	it	means	its	
extent,	its	depth,	its	duration,	its	velocity	and	its	return	period	(Apel,	2009).	Maps	of	the	event	
are	 needed	 as	 detailed	 and	 quickly	 as	 possible	 for	 managing	 the	 crisis	 and	 for	 response	
activities	(Martinis,	2009).	A	map	with	an	accurate	flood	extent	is	important	to	determine	the	
domain	of	the	disaster	and	understand	which	areas	have	been	hit	by	the	event.	The	prompt	
availability	of	such	a	map	few	hours	after	the	event,	can	be	crucial	in	order	to	save	lives	and	
assets.	In	fact,	disaster	managers	need	maps	in	order	to	plan	intervention	and	manage	their	
resources.	An	accurate	map	is	also	needed	for	assessing	impacts	for	insurance	companies	and	
local	authorities,	which	may	need	to	know	in	the	shortest	time	possible,	how	to	allocate	their	
resources	and	budget.	Besides	flood	extent,	several	parameters	need	to	be	monitored	during	
a	flood	event,	such	as	flow	velocity,	debris	factor	and	inundation	depth.	Depth	is	particularly	
important	 since	 it	 governs	 the	 damage	 functions	 (also	 called	 vulnerability	 curves	 or	 loss	
functions),	which	define	the	expected	damage	given	a	certain	flood	depth	(Mojtahed,	2013;	
Scorzini,	2015).	Retrieving	such	information	could	be	quite	difficult.	Especially	if	the	flood	has	
a	big	extent,	the	capacity	needed	in	terms	of	work	force	and	resources	for	directly	assessing	
the	extent	and	depth	could	be	prohibitive.	Even	more	when	the	event	hits	developing	or	poor	
countries.	Regarding	rapid	mapping,	a	direct	assess	would	be	too	slow	to	be	effective.		

Moreover,	hazard	maps	are	important	also	in	the	frame	of	flood	risk	assessment	for	long-
term	planning.	In	this	case,	obtaining	a	map	in	the	shortest	time	possible	is	not	the	priority.	
Still,	obtaining	maps	with	an	 increased	precision	 is	very	 important.	This	means	that	all	data	
sources	can	be	exploited,	from	satellite	remote	sensing	to	local	sensors,	from	hydrological	and	
hydraulic	models	to	citizen	observations.	On	the	one	hand,	the	availability	of	more	time	for	
gathering	and	process	data	could	be	a	great	advantage	for	obtaining	an	increased	precision,	
on	the	other	hand,	if	data	are	not	collected	immediately	during	the	event	or	not	organized	and	
stored	properly	for	a	later	use,	the	more	availability	of	time	does	not	bring	advantages.	If	fact,	
if	satellites	are	not	activated	in	time,	they	may	not	provide	observations	of	the	event	(even	if	
this	is	now	changing	with	the	increased	frequency	of	observation	of	the	new	constellations)	or	
local	sensors	measurements	could	be	 lost	or	not	verifiable,	especially	 in	case	of	developing	
countries.	 Finally,	 in	 a	way,	 the	 increased	 computing	 capability	 and	easiness	of	 exchanging	
information	 are	 decreasing	 the	 differences	 between	 near-real	 time	 mapping	 and	 ex-post	
mapping.	The	precision	of	rapid	mapping	methodology	could	result	being	the	one	needed	also	
for	long-term	planning	or	at	least	the	one	needed	for	calibrating	other	mapping	methodology	
which	make	use	of	models.	Vice-versa,	the	complexity	and	the	quantity	of	information	needed	
in	case	of	modelling	technique,	may	soon	become	no	more	a	bottleneck	for	rapid	mapping	for	
emergency	management.		

Exposure	 refers	 to	 “the	 presence	 of	 people,	 livelihoods,	 environmental	 services	 and	
resources,	 infrastructure	 or	 economic,	 social,	 or	 cultural	 assets	 in	 places	 that	 could	 be	



	 3	

adversely	 affected”,	 as	 indicated	 in	 (Barros	 et	 al.,	 2012).	 Land	 cover	 or	 land	 use	maps	 are	
usually	employed	for	understanding	what	has	been	exposed	to	the	flood	(Alfieri	et	al.,	2016;	
Altieri	et	al.	2014;	Apel	et	al.,	2009;	Merz	et	al.,	2010;	Thieken	et	al.,	2006;	Vaz	&	Nijkamp,	
2015).	These	maps,	which	are	then	superimposed	to	the	flood	hazard	map,	report	the	physical	
material	at	the	surface	of	the	earth	and	how	it	is	used,	i.e.	built-up	areas,	agricultural	areas,	
forest,	etc.	Land	cover	maps	are	usually	produced	at	time	steps	of	5	or	more	years.	In	the	case	
of	Europe,	the	CORINE	Land	Cover1	inventory	started	in	1990	and	has	been	updated	since	2000	
every	 6	 years.	 The	 dataset	 is	 based	 on	 Earth	 Observation	 (EO)	 data	 and	 its	 resolution	 is	
somewhat	 coarse	 and	 more	 suitable	 for	 regional	 studies	 rather	 than	 local	 ones.	 Local	
governments	usually	dispose	of	more	detailed	maps,	such	as	the	case	for	Veneto,	a	region	in	
the	north-east	of	Italy2.	Nevertheless,	they	are	updated	with	similar	frequency.	Even	though	
land	cover	 in	developed	countries	do	not	 change	 rapidly,	 in	a	5-year	 time,	 changes	can	be	
important	 in	 terms	 of	 built-up	 areas,	 infrastructures	 and	 distribution	 of	 population.	When	
considering	developing	countries,	the	fast	dynamics	of	society	and	economy	in	the	same	time	
step,	can	create	significant	changes.	Thereby	the	need	of	up-to-date	products	that	can	allow	
the	assessment	of	exposed	elements.	In	order	to	assess	the	number	of	people	involved	in	a	
disaster,	 data	 about	 the	 population	 are	 needed.	 National	 statistical	 institutes	 collects	 this	
information	 up	 to	 building	 units.	 However,	 for	 developing	 countries	 and	 also	 for	 many	
European	ones,	they	are	normally	aggregated	at	the	municipality	level,	if	not	at	bigger	scale	
such	as	province	or	county	(Batista	e	Silva,	2013).	For	assessing	the	number	of	people	involved	
in	a	disaster,	most	of	the	time	this	data	need	to	be	disaggregated.	To	do	so,	precise	information	
about	 built-up	 area	 are	 needed,	 which,	 again,	 might	 not	 be	 available	 or	 be	 out	 of	 date.	
Moreover,	in	poor	or	developing	countries,	census	data	might	not	exist,	be	out	of	date	or	might	
be	inaccurate.	 In	certain	cases,	only	population	estimation	may	exists:	projections	based	on	
old	census	data	or	from	the	integration	of	different	datasets.	The	sum	of	all	these	uncertainties	
can	 lead	to	a	debatable	 impact	scenario.	Therefore,	having	up	to	date	and	precise	maps	of	
inhabited	areas,	together	with	an	effective	disaggregation	algorithm	can	significantly	increase	
the	capacity	of	assessing	people	affected	by	disasters.		

Vulnerability	 refers	 to	 the	 susceptibility	 of	 the	 exposed	 elements	 to	 suffer	 from	 flood	
damage	or	 “the	propensity	or	predisposition	 to	be	adversely	affected”	 (Barros	et	al.,	2012).	
Referring	 to	 exposed	 elements	 with	 an	 economic	 value,	 so	 called	 damage	 functions	 are	
employed	to	relate	the	hazard	to	the	resulting	monetary	damage	by	means	of	a	parameter,	i.e.	
flood	 depth.	 These	 depth-damage	 curves	 represent	 the	 standard	 in	 assessing	 urban	 flood	
damages	(Merz,	2010;	Smith,	1994)	even	though	a	large	degree	of	uncertainty	is	associated	in	
their	 construction	 (Jongman	 et	 al.,	 2012).	 De	Moel	 and	 Aerts	 (2011)	 shows	 that	 the	most	
important	factor	in	damage	estimation	is	the	uncertainty	associated	with	depth-damage	curves	
and	the	value	of	assets.	This	uncertainty	has	a	stronger	effect	on	the	outcome	than	the	one	
associated	 to	 the	 land	 use	 or	 the	 hydrological	 inputs.	 Nevertheless,	 there	 are	 efforts	 in	
improving	 these	 limitations,	 especially	 for	 local	 cases	and	 in	particular	by	adapting	existing	
curves	to	the	economic	circumstances	of	the	case	under	analysis	(Amadio	et	al.,	2016;	de	Moel	
et	al.,	2015).		Being	aware	that	more	efforts	are	needed	to	improve	depth-damage	curves	and	
therefore	 the	 representation	 of	 vulnerability	 and	 the	 associated	 estimation	 of	 economic	
damages,	at	the	same	time	it	is	also	important	to	improve	the	precision	of	depth	estimation.	
Flood	depth	 cannot	be	directly	measured	 for	 every	 asset	 hit	 by	 a	 disaster	 and	 it	 is	 usually	
																																																													
1	http://land.copernicus.eu/pan-european/corine-land-cover	
2	http://idt.regione.veneto.it/app/metacatalog/getMetadata/?id=551	
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estimated	superimposing	the	flood	extent	with	a	Digital	Elevation	Model	(DEM).	Thereby	the	
need	of	precise	 flood	maps	and	high	 resolution	DEM.	The	 social	dimension	of	 vulnerability	
refers	to	adaptive	capacity,	“the	ex-ante	preparedness	of	society	to	combat	hazard	and	reduce	
its	adverse	impact”,	and	to	coping	capacity,	“the	ex-post	skills	to	cope	with	and	overcome	the	
impacts	of	the	hazard	considered”	(Giupponi,	2014).	It	is	challenging	to	characterize	and	many	
information	are	needed,	such	as	socio-economic	and	demographic	data	(Cutter,	2003;	Fekete,	
2009).	These	datasets	might	be	not	easily	accessible,	not	up	 to	date	or	not	available	at	all,	
contributing	to	the	overall	uncertainty	in	flood	risk	assessment.	In	case	of	the	need	of	a	rapid	
risk	assessment,	social	vulnerability	seems	to	be	the	weakest	ring	of	the	chain,	even	more	in	
case	of	developing	countries.	

Satellite	 Remote	 Sensing	 (RS)	 has	 been	 used	 since	 decades	 as	 a	 source	 of	 Earth	
Observation	 (EO)	 data	 for	 assessing	 flood	 risk,	 given	 its	 synoptic	 observation	 capacity	 and	
ability	 to	 reach	 inaccessible	 areas	 (O’Grady,	 2011;	Waisurasingha,	 2007;	Wilson	 &	 Rashid,	
2005,	Martinis	2015).	Floods	are	regularly	mapped	by	means	of	reliable	and	well	consolidated	
methodologies	 that	 employ	 multi-spectral	 and	 Synthetic	 Aperture	 Radar	 (SAR)	 data	 (Bazi,	
2005;	 Brivio,	 2002;	 Mason,	 2007;	 Matgen,	 2007;	 Nico,	 2000).	 For	 instance,	 the	 European	
Copernicus	Emergency	Management	Service3	or	the	International	Charter	on	Space	and	Major	
Disaster4,	 two	 of	 the	major	 operative	 emergency	 response	 centres,	 are	 regularly	 providing	
flood	maps	in	response	to	emergencies.	Land	cover	maps	have	been	derived	with	regularity,	
from	the	local	the	global	scale,	by	means	of	different	source	of	EO	data,	with	different	level	of	
detail	 and	 by	 several	 institutions	 (Langanke,	 2014;	 Kovalskyy,	 2014,	 GLC2000,	 GlobCover,	
Geoland-2,	Copernicus	-	The	European	Earth	Observation	Programme).		

Various	indicators	of	vulnerability	have	been	derived	from	EO	data	contributing	to	assess	
and	improve	flood	risk	assessment	for	different	purposes,	for	rapid	assessment	of	impacts,	to	
support	emergency	management	and	for	reducing	risk	in	the	framework	of	CCA	(De	Sherbinin,	
2014;	 Esch	et	 al.,	 2013;	Giupponi	&	Biscaro,	 2015;	Wolters	&	Kuenzer,	 2015;	Wurm	et	 al.,	
2009).		

Nevertheless,	it	is	only	in	the	last	years,	namely	2014,	with	the	launch	of	the	Copernicus	
programme	 by	 the	 European	 Commission	 (Copernicus	 -	 The	 European	 Earth	 Observation	
Programme),	 that	 EO	 entered	 a	 new	 era.	 Images	 are	 now	 coming	 with	 unprecedented	
frequency	and	 free	of	 costs.	The	4	Sentinels	 satellites	already	 in	orbit	 (Sentinel	1A	and	1B,	
Sentinel	2	and	Sentinel	3)	provide	a	systematic	observation	of	the	whole	Earth	every	week	in	
multi-spectral	and	radar	mode	for	land	and	marine	services.	Adding	up	to	the	United	States	
Geological	Survey’s	(USGS)	Landsat	missions,	especially	the	last	Landsat	8	launched	in	2013,	
these	data	are	constituting	what	 it	 is	now	called	EO	big	data.	 In	 fact,	EO	data	have	 the	4V	
features	of	big	data,	volume,	variety,	veracity	and	velocity	(Guo	et	al.,	2014).	They	represent	a	
great	potential	 toward	 the	observation	of	global	environmental	 changes	and	 for	 improving	
flood	risk	assessment.	In	fact,	new	approaches	can	now	be	pursued	in	data	analysis	and	new	
services	can	be	developed	in	support	to	decision	making,	to	CCA	and	DRR,	for	the	private	and	
the	public	sector	(Guo	et	al.,	2015).	

	
This	research	had	the	aim	of	exploring	the	possibility	of	developing	new	EO	applications	

for	improving	flood	risk	assessment	and	taking	advantage	of	the	new	and	free	EO	big	data.	It	
developed	around	a	novel	methodology	 for	 risk	assessment	that	was	developed	for	 the	EU	

																																																													
3	http://emergency.copernicus.eu/mapping/	
4	https://www.disasterscharter.org	
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funded	 research	 named	 KULTURisk,	 which	 had	 the	 aim	 of	 developing	 a	 culture	 of	 risk	
prevention	 (Figure	 1).	 The	 methodological	 framework	 focuses	 on	 (i)	 the	 integration	 of	
physical/environmental	 dimensions	 with	 the	 socioeconomic	 ones;	 (ii)	 the	 consideration	 of	
adaptive	and	coping	capacities	of	reducing	risk,	(iii)	the	economic	valuation	of	risk	that	goes	
beyond	the	direct	tangible	costs	for	decision	support	on	risk	mitigation	measures,	and	(iv)	the	
integration	of	CCA	in	DRR	(Giupponi,	2013).		

	

	
At	the	core	of	the	KULTURisk	framework	there	is	the	SERRA	methodology:	Socio-Economic	

Regional	 Risk	 Assessment.	 SERRA	 aims	 at	 including	 a	 socio-economic	 dimension	 in	 the	
assessment	of	risk,	captured	by	the	vulnerability	and	exposure	dimension.	In	particular,	in	the	
exposure	 dimension,	 through	 the	 value	 factors,	 monetary	 terms	 are	 added	 allowing	 a	
monetization	of	the	non-dimensional	terms,	hazard	and	vulnerability	(Mojtahed	et	al.,	2013).	
The	 assessment	 of	 vulnerability	 in	 this	 research	 follows	 the	 one	 proposed	 in	 the	 SERRA	
methodology.	After	the	definition	of	vulnerability	indicators,	these	are	firstly	normalized	and	
then	 aggregated	 following	 a	 hierarchical	 aggregation	 tree.	 The	 KULTURisk	 framework	 was	
applied	by	Gain	et	al.	(2015)	in	the	assessment	of	flood	risk	in	the	eastern	part	of	Dhaka	city	in	
Bangladesh.	Direct	and	indirect	tangible	costs	have	been	valuated	including	social	dimensions	
in	vulnerability.	SERRA	was	applied	to	the	Vipacco	basin	in	north-east	Italy	in	order	to	assess	
the	benefits	derived	from	the	installation	of	an	Early	Warning	System	(EWS)	(Luca	et	al.,	2014).	
The	flexibility	and	adaptability	to	different	geographical	and	socioeconomic	contexts	of	SERRA	
and	 the	 KULTURisk	 framework,	 has	 been	 presented	 in	 Ronco	 et	 al.	 (2015),	 where	 the	
methodology	was	applied	to	the	Sihl	River	valley	including	Zurich,	Switzerland,	and	in	the	case	
of	river	flooding,	in	Longo	et	al.	(2016)	where	it	was	applied	to	the	2002	flood	in	Eilenburg,	
Germany.	

	
This	research	is	proposing	methodologies	based	on	EO	data	that	can	improve	each	of	the	

three	components	of	risk	based	on	the	KULTURisk	methodological	framework.	

Figure	1	KULTURisk	Methodological	Framework	applied	to	this	research	work	
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The	overall	research	question	that	has	been	investigated	is:	

Can	Earth	Observation	data	improve	flood	risk	assessment	in	a	global	environmental	change	
scenario?	

This	imply	the	following	sub-questions:		

1) Can	flood	mapping	be	improved	by	means	of	EO	big	data?	
2) Can	flood	depth	estimation	be	improved	and	suitable	for	rapid	assessment	of	impacts?	
3) Can	land	cover	classification	be	improved	and	easily	up	to	date?	
4) Is	it	possible	to	retrieve	meaningful	indicators	of	social	vulnerability	from	EO	big	data?	

Question	 1	 and	 2	 regard	 the	 definition	 of	 hazard.	 Question	 3	 regards	 exposure,	 while	
question	4	regards	vulnerability,	as	well	as	question	2.	The	4	points	face	different	issues	but	
have	 a	 least	 common	 denominator,	 i.e.	 image	 classification	 techniques,	 which	 therefore	
constitute	the	core	of	this	research.	Nevertheless,	despite	a	purely	technological	nature	of	the	
work,	the	climatic	aspect	as	well	as	the	socio-economic	one,	has	always	been	kept	as	the	main	
focus.		

1.2	Structure	of	the	thesis	

In	 Chapter	 2	 the	 case	 studies	 considered	 in	 the	 research	 are	 described	 taking	 into	
consideration	 the	 climatic	 and	 socio-economic	 context.	 Three	 main	 areas	 have	 been	
considered:	 i)	Veneto	 region,	north-eastern	 Italy,	as	an	example	 in	a	developed	country;	 ii)	
southern	Malawi	as	an	example	in	a	developing	country	and	iii)	north-eastern	Uganda	as	an	
example	of	operative	application.		

Chapter	3	presents	the	methodology	of	flood	mapping	developed	during	the	visiting	
period	 at	 the	 German	 Aerospace	 Centre	 (DLR)	 in	 Munich,	 Germany.	 An	 innovative	
methodology	of	flood	mapping	based	on	statistical	analysis	of	time-series	has	been	developed.	
A	normalized	index	is	computed	able	to	simplify	flood	mapping	and	being	independent	from	
the	type	of	data	used.		

Chapter	4	describes	the	methodology	for	flood	depth	estimation,	which	builds	on	top	
of	the	one	presented	in	Chapter	3.	Flood	maps	are	superimposed	to	a	high	resolution	DEM.	
From	a	statistical	analysis	of	elevation	values	along	the	contours	of	flooded	areas,	the	elevation	
of	the	water	plane	is	estimated	allowing	the	computation	of	the	depth.		

Chapter	5	is	developed	around	a	novel	land	cover	classification	method	based	on	multi-
temporal	statistics	of	optical	and	SAR	data.	From	the	land	cover	maps	so	derived,	built-up	areas	
are	isolated	and	used	for	analyzing	urban	growth,	useful	not	only	for	characterizing	exposure,	
but	also	vulnerability.		

Chapter	6	will	show	how	the	analysis	of	built-up	areas	can	provide	indicators	useful	to	
define	social	vulnerability.	These	indicators	are	combined	with	ancillary	socio-economic	data	
for	defining	an	index	of	social	vulnerability.			

Chapter	 7	 will	 discuss	 the	 overall	 research	 and	 will	 draw	 conclusions	 underlining	
possible	way	forward.	
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2. Case	Studies	
Three	are	the	case	studies	selected	for	this	work.	Two	of	them	are	considered	as	the	main	

ones,	while	 the	 third	has	been	considered	only	 as	 an	example	of	 applicability	 for	 the	 flood	
mapping	methodology.		

The	first	one	is	the	Veneto	region,	north-east	of	Italy,	where	in	the	recent	years	many	flood	
events	have	occurred	causing	huge	impacts,	especially	from	the	economic	point	of	view.	This	
area	is	interesting	because	rich	of	data,	both	geospatial	and	socio-economic	ones.	Data	that	
can	be	used	for	validating	new	methodologies	and	for	understanding	the	added	value	of	new	
tools	and	products,	such	can	be	EO.	All	the	methodologies	developed	in	this	work	have	been	
tested	in	the	Veneto	region.		

The	second	area	considered	is	southern	Malawi,	where	in	2015	a	huge	flood	caused	major	
problems	 in	 the	 region	 affecting	 nearly	 a	 million	 people.	 This	 case	 is	 the	 opposite	 of	 the	
previous	one,	i.e.	little	data	is	available	and	impacts	on	people	are	preponderant	on	impacts	on	
assets.	EO	has	great	potential	 in	providing	data	 in	area	like	that,	where	capacity	 is	 little	and	
disasters	are	vast.	In	this	area,	the	flood	mapping	methodology	has	been	applied	as	well	as	land	
cover	classification.	The	absence	of	a	high-resolution	DEM	prevented	the	estimation	of	a	flood	
depth.		

Finally,	a	third	case	has	been	considered	only	for	flood	mapping.	In	the	framework	of	the	
Forecast-based-Financing	project	of	the	Red	Cross	Red	Crescent	(see	paragraph	2.3),	a	flood	
alert	triggered	the	humanitarian	response	in	November	2015	and	maps	were	asked	for	proving	
the	presence	of	flood	in	the	area.	

	

2.1	Veneto	2010	

 

Figure	2	Flood	in	Veneto	2010	Areas	of	Interest	
From	October	31st	to	November	2nd,	in	the	Veneto	Region,	northern-eastern	Italy,	140	Km2	

of	land	have	been	flooded	with	major	damages	on	properties	and	infrastructures.	The	event	
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was	originated	by	an	Atlantic	perturbation,	which	caused	intense	precipitation	over	the	whole	
region,	with	extremes	in	the	Prealps	and	piedmont	areas.	Local	rainfall	accumulation	exceeded	
500	mm	 and	 the	 average	widely	 surpassed	 300	mm,	 leading	 to	 a	 serious	 hydraulic	 stress,	
especially	in	the	area	of	Vicenza	and	the	south	of	Padua.	Sirocco	wind,	persistent	on	sea	and	
inland,	 slowed	 the	 discharge	 of	 rivers	 into	 the	 sea.	 Early	 snow	 melted	 due	 to	 the	 warm	
temperature,	 adding	 water	 to	 the	 rainfall.	 The	 first	 rupture	 in	 the	 area	 occurred	 in	 the	
afternoon	 of	November	 1st	 at	 the	 south	 of	 the	 city	 of	 Vicenza.	 The	 flood	 then	 propagated	
southwards	until	Veggiano,	where	the	Bacchiglione	riverbanks	have	been	broken	in	the	night	
between	November	1st	and	2nd,	Bovolenta	and	Saletto	area.	An	overall	of	262	municipalities	
were	affected	leading	to	roughly	half	billion	Euros	damage,	three	fatalities,	3500	displaced	and	
more	the	500	thousand	people	affected.	The	flood	also	triggered	hundreds	of	landslides	in	the	
mountainous	 surroundings,	 which	 led	 to	more	 than	 500	warning	 of	 instability	 phenomena	
received	by	the	province	soil	protection	division	(Floris	et	al.,	2012;	Scorzini,	2015).	

The	event	is	among	the	three	most	intense	in	the	record	hitting	the	pre-alps	and	piedmont	
area	(the	rainiest	area	of	Veneto)	in	the	last	50	years,	together	with	the	flood	of	1966	and	1992.	
In	 the	 surrounding	of	Vicenza,	 the	maximum	precipitation	measured	during	 the	2010	 flood	
exceeds	by	far	the	previous	maximum,	such	as	in	the	case	of	Castana	–	Arsiero,	where	in	two	
days	431	mm	of	water	have	been	accumulated	in	contrast	to	326	mm	of	1966	and	313	mm	in	
1992.	The	precipitation	measured	have	been	compared	to	the	historic	record	for	the	same	area	
and	 return	 periods	 have	 been	 computed	with	 the	 hypothesis	 of	 a	 Gumbel	 distribution	 for	
annual	maxima	and	using	a	minimum	square	method	 for	estimating	 the	parameters	of	 the	
distribution.	Considering	 the	3	days	of	 the	event,	 for	 the	majority	of	 the	 recording	 stations	
affected	by	the	flood,	the	return	period	corresponds	to	more	than	50	years,	underlining	the	
magnitude	of	the	event	(Regione	del	Veneto,	2010).	

Veneto	 region	 is	 one	 of	 the	most	 economically	 competitive	 and	 extensively	 inhabited	
urban	 landscape	 in	Europe.	 In	the	 last	two	decades,	an	unstructured	development	of	urban	
areas	occurred	in	Veneto	region	due	to	the	increase	in	population	density.	In	less	than	10	years,	
population	has	 increased	by	10	per	 cent.	The	main	 responsible	 for	 this	growth	are	Verona,	
Padua	and	Venice,	which	are	the	major	hubs	of	the	region.	This	rapid	change	led	to	an	increased	
soil	sealing	and	urban	sprawl,	especially	within	the	open	space	between	cities	and	affecting	
ecosystems	located	therein	(Vaz	&	Nijkamp,	2015).	The	socio-economic	changes	of	the	last	50	
years,	 from	 subsistence	 agriculture	 to	 industrial	 agro-systems,	 led	 to	 dispersed	 low-density	
residential	 areas	and	 to	homogeneously	distributed	medium-small	 size	productive	activities	
(Fregolent,	2005).	Territorial	planning	have	been	often	short-sighted	in	the	past	half-century,	
with	 little	 attention	 paid	 to	 the	 relationship	 between	 environment	 and	 urban	 settlements,	
affecting	the	risk	connected	to	natural	hazard,	in	particular	floods	(Sofia,	2014).	In	fact,	in	the	
diffuse	urban	landscape	of	the	region,	the	number	of	hydraulic	dysfunctions	have	increased	
due	to	the	spatial	and	water	infrastructure	transformation	(Ranzato,	2011).		

The	climate	of	Veneto	is	variable	with	precipitation	concentrating	mostly	on	the	Prealps.	It	
is	 often	 affected	 by	 extreme	 meteorological	 events,	 especially	 in	 the	 coast,	 despite	 the	
precipitation	being	the	half	of	the	one	occurring	in	the	Prealps.	The	already	critical	situation	
resulting	 from	the	combination	of	 land	use	and	extreme	events	may	be	exacerbated	 in	 the	
future	due	to	climate	change.	In	fact,	projection	shows	an	increase	of	extreme	precipitations,	
which	may	lead	to	an	increased	frequency	of	floods	(Zollo,	2015).	

A	commission	established	by	the	regional	government	has	assessed	the	hydraulic	risk	of	
the	region	and	presented	a	mitigation	plan.	The	plan	highlighted	the	numerous	measures	that	
need	to	be	taken	with	urgency	to	reduce	the	risk	for	a	total	cost	exceeding	2.5	billion	€.	At	the	
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date	of	the	report,	end	of	2011,	only	a	small	part	of	these	measures	had	already	started	(for	a	
cost	around	100	million	€)	or	their	design	being	funded	(for	other	100	million	€).	Moreover,	the	
report	exposed	the	scarce	penetration	of	financial	products,	such	as	insurance	products,	for	
protecting	assets	against	floods,	leaving	to	local	government	the	burden	for	ex-post	support	to	
population	and	productive	activities	(Regione	del	Veneto,	2011).	

This	work	analysis	the	2010	flood,	first	creating	flood	maps	(Chapter	3)	and	later	estimating	
flood	depth	(Chapter	4).	The	analysis	of	land	cover	and	the	derivation	of	vulnerability	indicators	
are	showed	in	Chapter	5.	The	analysis	of	the	2010	flood	concentrates	on	three	main	areas	as	
shown	in	Figure	2:	Vicenza	and	its	surrounding	(A),	Bovolenta	area	at	the	south	of	Padua	(B)	
and	Saletto	area	at	the	south	of	Colli	Euganei	(C).	The	area	of	Veggiano	indicated	as	A1,	together	
with	area	B,	is	the	area	where	a	hydraulic	simulation	was	available	allowing	a	comparison	of	
flood	depth	results.	

2.2	Malawi	2015	

 
Figure	3	Malawi	Flood	2015	Area	of	Interest	

In	 January	 2015,	Malawi	 experienced	 exceptional	 rainfall,	 which	 led	 to	 a	 disastrous	
flood	especially	in	the	south	part	of	the	country	that	lasted	until	the	end	of	March.	The	amount	
of	rainfall	was	the	highest	on	records	and	the	event	constitutes	a	1	in	500-year.	The	already	
precarious	 situation	 for	 households,	was	 exacerbated	by	 the	 consequences	of	 the	disaster.	
More	than	1	million	people	were	affected,	more	than	200	thousand	displaced,	more	than	100	
killed.	On	 January	13th,	 2015,	 the	president	of	Malawi	declared	 the	 state	of	disaster	 for	15	
districts,	some	of	these	among	the	poorest	of	the	country.	

The	flood	impacted	on	the	productivity,	public	infrastructures	and	social	service	sectors.	
Public	 and	 community	 assets	were	 also	 affected,	 livestock	was	washed	away,	 thousands	of	
building	 and	 houses	were	 destroyed.	 Roads,	 bridges,	 school,	 health	 facilities	 and	 irrigation	
infrastructures	were	damaged.	In	addition,	the	rainy	season	was	delayed	of	more	than	30	days	
leading	 to	 a	 shorter	 growing	 season,	 reducing	 further	 the	 crop	 production	 already	
compromised	by	 the	disaster,	 in	a	 country	were	agriculture	 is	 the	main	driver	of	economic	
growth	 and	 subsistence.	 The	 government	 estimated	 a	 total	 of	 335	million	 USD	 in	 impacts	
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(approximately	5%	of	 the	GDP)	and	494	million	USD	 for	 recovery	and	 reconstruction	needs	
(Malawi	PDNA	Report,	2015).	

Big	weather-related	losses	have	occurred	in	the	past	too,	such	as	the	1991	flood	that	
caused	 the	highest	 economic	 impact	 or	 the	 1992	drought,	which	 affected	7	million	people	
(Venäläinen	et	al.,	2016).	For	the	future,	the	climate	of	the	region	is	expected	to	increase	its	
variability.	Natural	hazard,	and	especially	extreme	weather	events,	may	increase	intensity	and	
frequency.	Climate	models	project	warming	up	 to	2°	C	by	2050	even	 following	a	moderate	
Representative	Concentration	Pathway	RCP4.5.	Moreover,	changes	in	seasonal	rainfall	patterns	
are	indicated,	with	an	increase	of	rainfall	and	extreme	events	during	the	rainy	season	and	a	
decrease	of	rainfall	during	the	dry	season	(IPCC,	2014).	

Also	the	socio-economic	conditions	of	the	country	are	contributing	to	the	risk	scenario.	
Malawi	is	one	of	the	poorest	country	in	the	world	and	it	is	exposed	to	climate-related	disasters.	
The	agricultural	sector,	dominated	by	smallholder	farmers,	rely	on	flood	and	drought-prone	
land	and	depends	on	rain-fed	agriculture.	The	majority	of	the	poor	population	depends	heavily	
on	 agriculture,	 therefore	 poverty	 reduction	 is	 undermined	 by	 climate	 variability	 (Stringer,	
2010).	Moreover,	population	is	rapidly	growing	(2.8%	per	annum	according	to	2008	population	
survey)	 as	well	 as	 people	 living	 in	 highly	 vulnerable	 regions.	 Land	use	 and	especially	 urban	
areas,	are	strongly	affected.	This	increases	the	risk	of	human	and	economic	losses,	especially	
in	climate-sensitive	sectors	such	as	rain-fed	agriculture	(Hachigonta,	2013;	Venäläinen	et	al.,	
2016).	

In	 a	 country	where	 response	 to	 disaster	 is	 delayed	 and	 ineffective	 (Tall,	 2013),	 the	
management	 of	 natural	 hazards,	 the	 development	 of	 adaptation	 strategies	 and	 the	
establishment	of	Early	Warning	Systems	(EWS)	has	great	importance	(IPCC,	2012;	The	World	
Bank,	2010).	

In	this	work,	the	2015	flood	is	studied	in	Chapter	3,	where	flood	maps	are	derived	for	
the	southern	district	of	Chikwawa	and	Nsanje	as	showed	in	Figure	3.	In	chapter	5,	land	cover	
maps	are	derived	for	the	same	area.	

2.3	Uganda	2015	

 
Figure	4	Uganda	Flood	2015	Area	of	Interest	
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Forecast-based	Financing	(FbF)	project	of	the	Red	Cross	Red	Crescent	Climate	Centre	
consists	of	a	series	of	preparedness	actions	to	take	in	order	to	reduce	the	impact	of	possible	
flood	events,	after	the	triggering	of	a	warning	system,	which	is	based	on	the	river	discharge	
forecasts	 of	 the	 Global	 Flood	 Awareness	 System	 (GloFAS).	 Uganda	 Red	 Cross	 successfully	
initiated	 action	 for	 the	 first	 time	 in	November	2015	 following	 a	 forecast	 that	 triggered	 the	
warning	system	and	used	the	Preparedness	Fund	provided	by	the	project	(Coughlan	De	Perez,	
2015).	

To	validate	the	triggering	of	actions	in	the	Teso	region	of	North	Eastern	Uganda	(Figure	
4),	several	maps	have	been	produced	applying	the	methodology	developed	in	this	research	to	
Sentinel-1A	data	 (Chapter	 3).	 The	 aim	was	 to	 show	 the	presence	of	 flooded	 area	 after	 the	
intense	precipitation	of	early	November	and	the	following	weeks.		

The	region	analysed	is	swampy	and	prone	to	flood	during	the	two	rainy	seasons	of	May	
and	October,	with	farming	and	livestock	raising	as	main	activities.	Several	floods	in	recent	years	
caused	 loss	 of	 crops,	 collapse	 of	 houses	 and	 latrines,	 impassable	 roads	 and	 outbreak	 of	
waterborne	diseases.	
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3. Normalized	Difference	Flood	Index	for	rapid	flood	
mapping:	taking	advantage	of	EO	big	data	

	
This	chapter	describes	a	new	methodology	for	rapid	flood	mapping,	which	aim	at	exploiting	

the	big	amount	of	data	coming	from	new	satellite	mission,	such	as	the	ones	of	the	Copernicus	
programme.	Starting	from	a	literature	review	that	highlights	the	main	methodological	streams	
of	flood	mapping,	a	description	of	the	Normalized	Difference	Flood	Index	will	follow.	The	index	
allows	an	easy	and	fast	mapping	of	 flooded	areas.	The	chapter	has	the	objective	to	answer	
research	question	1:	“Can	flood	mapping	be	improved	by	means	of	EO	big	data?”	
	

This	chapter	have	been	submitted	to	the	journal	“Remote	Sensing	of	the	Environment”	and	
was	under	review	at	the	moment	of	submission	of	this	manuscript.	The	paper,	as	well	as	the	
chapter,	has	been	written	autonomously	by	the	author.	The	co-authors	of	the	paper	are	Dr.	
Mattia	 Marconcini	 of	 the	 German	 Aerospace	 Centre,	 Germany,	 who	 supervised	 the	 whole	
research	and	Dr.	Pietro	Ceccato	of	the	International	Research	Institute	of	Climate	and	Society,	
Columbia	University,	who	helped	developing	the	theoretical	part	of	the	research	and	revised	
the	results.		
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3.1	Earth	Observation	Big	Data,	Climate	Change	and	Flood	Mapping	

In	 the	era	of	EO	big	data,	with	 the	new	 information	coming	 from	 the	 recent	Sentinels	
constellation,	 we	 are	 entering	 a	 new	 paradigm	 for	 disaster	 monitoring	 and	 EO	 data	
exploitation.	The	European	Space	Agency	(ESA)	Sentinel-1	(S1)	radar	satellite	constellation	can	
map	 entire	 Earth	 every	 6	 days	 (with	 interferometric	 capabilities)	 giving	 an	 unprecedented	
opportunity	to	access	a	huge	number	of	archived	scenes,	which	is	of	key	importance	to	detect	
changes	and	assess	economic	impacts	in	case	of	disasters.	The	constellation	is	made	of	two	
satellites:	Sentinel-1A	(S1A)	launched	in	April	2014	and	operational	since	October	of	the	same	
year,	and	Sentinel-1B	(S1B)	launched	in	April	2016.	This	big	amount	of	data	provided	by	the	
constellation	 opens	 new	 frontiers	 in	 image	 processing,	 giving	 the	 possibility	 to	 perform	
statistical	 analysis	 on	 long	 time-series	 of	 data	 and	 to	 develop	 new	 approaches	 in	 change	
detection	analysis.	

In	the	context	of	climate	change	with	a	foreseen	increase	in	the	number	of	extreme	events	
such	 as	 precipitation	 and	 consequent	 flash	 and	 riverine	 floods,	 it	 becomes	 even	 more	
important	 to	monitor	and	map	 these	phenomena	with	 increased	accuracy	and	 rapidity.	An	
improved	 capacity	 of	 characterizing	 risks	 is	 vital	 especially	 for	 managing	 urban	 areas	 and	
planning	economic	activities,	not	only	to	save	lives,	but	also	to	reduce	losses	and	build	more	
resilient	livelihoods.	Satellite	remote	sensing,	and	especially	the	data	coming	from	the	ESA’s	
Copernicus	programme	is	helping	to	move	toward	an	improved	flood	risk	assessment.		

3.2	Flood	Mapping	by	means	of	Synthetic	Aperture	Radar		

Synthetic	Aperture	Radar	 (SAR)	data	have	been	used	since	decades	 for	 flood	mapping.	
Many	 reliable	and	well	 consolidated	methodologies	have	been	developed	 to	extract	 floods	
from	these	data	(Bazi,	2005;	Brivio,	2002;	Mason,	2007;	Matgen,	2007;	Nico,	2000).	Moreover,	
the	European	Copernicus	Emergency	Management	Service1	or	 the	 International	Charter	on	
Space	 and	 Major	 Disaster2,	 two	 of	 the	 major	 operative	 emergency	 response	 centres,	 are	
regularly	providing	flood	maps	in	response	to	emergencies	using	SAR	data	(Martinis	2015).			

SAR	data	are	particularly	useful	in	case	of	floods.	SAR	microwaves	can	penetrate	clouds	
allowing	 the	 monitoring	 of	 land	 in	 any	 weather	 conditions.	 Having	 its	 own	 source	 of	
illumination,	SAR	can	acquire	useful	data	also	during	nights	and	without	being	affected	by	the	
relative	position	of	the	sun	(O’Grady,	2011;	Waisurasingha,	2007;	Wilson	&	Rashid,	2005).	

Radar	backscattering	is	influenced	by	targets’	structural,	textural	and	dielectric	properties.	
The	 first	 two	depend	on	 the	 relative	dimension	of	 targets	and	wavelength,	 therefore	 it’s	 a	
matter	of	scale.	In	case	of	S1,	the	C-Band	signal	(5.405	GHz)	has	a	wavelength	of	5.6	cm	and	it	
interacts	with	small	branches,	leaves	and	objects	with	the	same	scale	order.	In	this	interaction,	
part	of	 the	 signal	will	be	backscattered	 towards	 the	 satellites	 that	will	 register	an	 intensity	
greater	than	zero,	the	higher	the	intensity	of	the	returned	signal,	the	brighter	the	relative	pixel	
will	be.	In	case	of	flood	or	water	bodies	in	general,	the	smooth	surface	of	the	water	(compared	
to	 the	wavelength)	 reflect	 the	 signal	 to	 a	 specular	 direction.	 Therefore,	 the	 return	 to	 the	
satellite	 will	 be	 theoretically	 null,	 letting	 the	 pixel	 representing	 water	 to	 be	 very	 dark.	
Nevertheless,	Bragg	resonance	can	happen	when	regular	waves	(with	comparable	size	of	the	

																																																													
1	http://emergency.copernicus.eu/mapping/	
2	https://www.disasterscharter.org	



	 15	

wavelength)	are	present	on	the	water	surface,	resulting	in	a	high	radar	backscatter	especially	
when	 the	waves	 are	 orthogonal	 to	 the	 radar	 signal	 (Schaber,	 1997).	 In	 partially	 inundated	
areas,	where	vegetation	and	buildings	emerge	from	the	water,	the	radar	signal	can	interact	
multiple	times	with	the	objects.	This	“double-bounce”	effect	(dihedral	scattering)	results	in	a	
very	high	return	to	the	sensor	when	the	scale	of	the	emerging	structure	is	comparable	to	the	
radar	wavelength.	 Considering	 the	 case	 studies	 presented	 in	 this	 chapter,	 in	 particular	 the	
flood	 in	Malawi	and	Uganda,	 it’s	 important	 to	note	 that	also	dry	and	smooth	bare	soil	 can	
appear	very	dark	 in	a	SAR	 image	since	 these	kind	of	soils	absorb	and	attenuate	microwave	
radiation	 and	 they	 can	be	 confused	with	open	water	 (O’Grady	 et	 al.,	 2011;	 Schaber	 et	 al.,	
1997).	The	analysis	of	multi-temporal	series	of	images	and	in	particular	the	use	of	the	flood	
index	presented	in	this	chapter,	allow	us	to	isolate	non-permanent	water	from	the	rest	of	the	
image.	

Radar	backscatter	is	also	function	of	the	incidence	angle.	In	addition	to	different	layover	
and	 shadowing	 effects,	 images	 acquired	 with	 different	 geometry	 have	 a	 different	 pixel	
intensity	for	the	same	observed	object.	This	problem	arises	using	for	example	COSMO-SkyMed	
(CSK)	data	as	shown	in	this	chapter,	where	the	comparison	of	images	acquired	with	different	
geometry	 can	 lead	 to	 less	 accurate	 flood	maps.	With	 S1	 data,	 given	 its	 stable	 acquisition	
geometry,	this	problem	does	not	occur	(Boni	et	al.,	2016).	

Given	the	capacity	to	look	through	clouds	(Schumann	et	al.,	2009),	SAR	acquisitions	during	
floods	can	be	available	with	more	frequency	than	optical.	However,	flood	mapping	from	SAR	
data	can	be	challenging	and	errors	due	to	adverse	environmental	factors	can	be	common.	For	
example,	when	wind	intensity	is	strong	enough,	it	can	lead	to	a	non-smooth	water	surface;	this	
increases	the	backscattering	and	it	makes	water	to	appear	much	brighter	than	how	it	normally	
appears	 (Bragg	 resonance).	 Different	 soil	 moisture	 contents	 also	 change	 the	 dielectric	
properties	of	the	surface	and	can	lead	to	different	radar	backscattering	for	the	same	soil	type,	
even	though	C-Band	signal	is	not	much	affected	(Paloscia	et	al.,	2013).	Presence	of	vegetation	
can	mask	parts	of	the	flood	leading	to	inaccurate	maps.	With	the	possibilities	to	analyse	and	
to	extract	statistical	information	from	long	time-series	of	images,	part	of	these	problems	can	
be	solved.		

Another	typical	problem	for	satellite	data	is	the	frequency	of	acquisition	that	is	given	by	
the	satellite	revisit	time	and	by	the	limited	duty	cycle	of	SAR	sensors	(maximum	time	during	
which	 the	 data	 can	 be	 acquired).	 Old	 missions,	 such	 as	 ESA’s	 ENVISAT	 or	 the	 Canadian	
Radarsat-1,	had	repeat	orbit	cycles	of	a	month	or	more	with	a	duty	cycles	of	30	minutes	per	
orbit.	The	chance	of	acquiring	images	covering	flood	events	were	really	low,	like	the	chance	to	
have	a	reference	image	of	the	same	area	acquired	with	the	same	geometry	(Martinis,	2013).	
Newer	radar	missions	like	the	Italian	CSK	have	a	theoretical	revisit	time	of	less	than	12	hours,	
optimal	for	disaster	monitoring.	In	order	to	achieve	such	revisit	time,	the	four	satellites	of	the	
constellation	have	to	be	tilted	changing	the	acquisition	geometry,	a	disadvantage	for	change	
detection	approaches	(Pulvirenti	et	al.,	2015).	The	new	S1	mission	instead,	has	a	repeat	cycle	
of	6	days	and	systematically	acquires	any	regions	 in	 the	world.	Even	though	 it	has	a	worse	
revisit	 time	 and	 resolution	 compared	 to	 CSK,	 S1	 has	 the	 advantage	 of	 a	 stable	 acquisition	
geometry	and	provides	a	large	amount	of	images	for	every	location	on	Earth	freely	available	
through	the	Copernicus	Scientific	Data	Hub3	 few	hours	after	 their	acquisition	 (Torres	et	al.,	
2012).		

																																																													
3	https://scihub.copernicus.eu	
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Image	 resolution	 is	 a	 parameter	 influencing	 revisit	 time	 and	 therefore	 frequency	 of	
acquisition.	A	higher	resolution	means	a	narrower	swath	and	therefore	a	higher	revisit	time	
leading	 to	 less	 frequent	 observations,	 reducing	 the	 chance	 to	 observe	 flood	 events,	which	
usually	last	for	few	days.	Using	low	repeat	cycle	satellites,	it	is	almost	impossible	to	have	more	
than	one	image	per	flood	(Di	Baldassarre	et	al.,	2011).	 	With	satellite	constellations	such	as	
COSMO-SkyMED	or	the	new	S1,	it	is	possible	to	have	high	resolution	and	low	revisit	time	(Yan	
et	al.,	2015).		

The	 potential	 of	 SAR	 images	 for	 near-real	 time	 flood	 mapping	 has	 already	 been	
demonstrated	in	the	past	(Horritt	2001,	Henry	et	al.,	2006;	Martinis	et	al.,	2009a;	Martinis	et	
al.,	2015)	and	it	is	going	to	be	further	improved	thanks	to	the	rapidity	of	data	availability,	and	
the	frequency	of	acquisition	allowing	the	analysis	of	temporal	dynamics	of	floods	(Pulvirenti	
2013;	Serpico	et	al.,	2012).	

Different	categories	of	algorithms	have	been	developed	in	the	past	decades	to	derive	very	
detailed	flood	maps	from	high-resolution	SAR	data.	Unsupervised	classification,	active	contour	
models,	change	detection	and	thresholding	are	some	of	the	most	used	approaches	in	flood	
mapping	(Bazi	et	al.,	2005;	Brivio	et	al.,	2002;	Di	Baldassarre	et	al.,	2011;	Horritt,	1999;	Mason	
et	al.,	2007;	Matgen	et	al.,	2007;	Nico	et	al.,	2000;	Schumann	et	al.,	2009;	Smith,	1997).	

Change	detection	techniques	compare	pre-event	images	with	images	of	the	event	in	order	
to	detect	the	changes	(Liu	et	al.,	2004;	Lu	et	al.,	2004).	The	advantage	of	using	identical	image	
geometry	 is	 that	areas	of	 low	backscattering	 like	 smooth	 tarmac	and	 radar	 shadow	can	be	
excluded	from	the	mapping	(Giustarini	et	al.,	2013).	Image	thresholding	assumes	that	all	the	
pixels	with	a	radar	intensity	lower	than	a	certain	value,	belong	to	the	water	class	(Mason	et	al.,	
2012;	Matgen	et	al.,	2011;	Pulvirenti	et	al.,	2012;	Schumann,	Di	Baldassarre	et	al.,	2010).	These	
techniques	are	computationally	not	 intense,	provide	 reliable	 results	and	are	 ideal	 for	 rapid	
mapping	(Brivio	et	al.,	2002;		Martinis	et	al.,	2009b).	

Operational	flood	mapping	technique	used	by	the	International	Center	on	Environmental	
Monitoring	(CIMA	foundation),	the	map	provider	for	the	Italian	civil	protection	mainly	working	
with	CSK	data,	follows	the	approach	proposed	by	Pulvirenti	et	al.	(2014).	It	uses	an	automatic	
algorithm	that	searches	for	 low	backscatter	areas	after	applying	an	automatic	thresholding,	
then	 it	 performs	a	 region	growing	 step.	Automatic	 thresholding	 is	performed	 looking	 for	 a	
double	 peak	 in	 the	 image	 histogram,	 dark	 pixel	 (flood)	 and	 areas	with	 higher	 backscatter.	
Histogram	analysis,	an	approach	followed	by	many	other	researchers	such	as	Martinis	(2009)	
for	the	operative	mapping	at	the	German	Aerospace	Centre	(DLR)	and	Long	(2014),	creates	
problems	when	the	extent	of	the	flood	is	small	compared	to	the	dimension	of	the	entire	image,	
something	that	happen	quite	often	in	case	of	Sentinel-1	data	given	the	large	footprint	of	its	
images.	In	such	cases,	the	double	peak	in	the	histogram	cannot	be	found	and	to	overcome	this	
problem,	these	approaches	have	to	add	an	additional	step:	image	tiling.		

An	interesting	example	combining	change	detection	and	thresholding	is	given	by	(Long	et	
al.,	2014).	First,	 the	difference	between	 the	 reference	 image	and	 the	 image	of	 the	 flood	 is	
computed,	then	a	threshold	is	applied	to	the	difference	image	issued	from	the	computation	
after	the	analysis	of	its	histogram.	In	the	difference	image,	areas	appearing	dark	solely	during	
the	 flood,	 still	 appear	 dark	 and	 correspond	 to	 non-permanent	 water.	 Dark	 areas	 in	 both	
images,	 such	as	permanent	water,	 instead	appear	grey	 in	 the	difference	 image	allowing	 to	
isolate	 flooded	 areas.	 Threshold	 values	 are	 decided	 after	 the	 analysis	 of	 the	 histogram	
distribution	(pixel	values)	of	the	difference	image.	To	isolate	flooded	area	(low	pixel	values),	
the	threshold	value	 is	found	subtracting	the	standard	deviation	of	the	entire	 image	times	a	
coefficient,	 to	 the	 mean	 pixel	 value.	 The	 same	 approach	 is	 followed	 to	 classify	 water	 in	
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vegetated	 or	 urban	 areas	 (high	 pixel	 value	 due	 to	 double-bounce	 effect).	 In	 this	 case	 the	
threshold	value	is	set	to	the	mean	pixel	value	plus	the	standard	deviation	of	the	entire	image	
times	another	coefficient.	The	two	coefficients	are	found	after	several	iterations	and	they	can	
be	user-dependent	or	they	can	change	from	case	to	case.		

A	tentative	to	finding	optimal	thresholds	 in	decibel	(dB)	to	be	used	in	a	generic	case	in	
order	 to	 allow	 a	 rapid	 map	 of	 foods	 (and	 maybe	 less	 user-dependent)	 was	 pursued	 by	
Manjusree	 et	 al.	 (2012).	 They	 studied	 RADARSAT-2	 (RS2)	 backscatter	 values	 for	 different	
polarizations	 (HH,	 VV,	HV)	 and	 for	 different	water	 bodies	 and	 they	 found	 a	 set	 of	 optimal	
thresholds	 for	 each	 polarization.	 The	 methodology	 was	 validated	 applying	 the	 identical	
thresholds	to	images	of	the	same	area	acquired	in	different	dates.	Despite	the	good	results	
shown,	the	study	does	not	show	the	validity	of	the	approach	for	different	sensors,	different	
resolutions	and	different	ecosystems.	

The	new	algorithm	proposed	here,	similarly	to	Long	(2014),	applies	a	change	detection	
analysis	as	a	 first	step,	 then	on	the	resulting	 image	a	threshold	 is	used	to	extract	 the	flood	
extent.	In	this	case,	the	change	detection	step	is	based	on	the	computation	of	an	innovative	
index	 that	 allow	 the	 identification	 of	 non-permanent	 water	 bodies	 easily,	 with	 less	 user-
dependency	 and	 can	 be	 suitably	 applied	 even	 by	 non-experts.	 Instead	 of	 a	 simple	 image	
differencing	between	one	image	of	the	event	of	one	of	reference,	we	compute	the	normalised	
difference	 of	 statistics	 of	 two	 time-series	 of	 the	 backscattering	 σ0	 acquired	with	 the	 same	
acquisition	geometry,	one	of	reference	images	(without	flood)	and	one	containing	images	of	
the	flood.	On	the	resulting	index	image	(with	values	between	0	and	1),	a	constant	threshold	is	
then	applied:	one	to	detect	flooded	areas,	and	one	to	detect	vegetated	flooded	areas	(flooded	
areas	covered	by	vegetation,	where	water	plane	is	below	the	top	of	the	vegetation);	the	two	
threshold	 values	 remain	 constant	 independently	 from	 the	dataset	 used	 and	 therefore,	 the	
user-dependency	of	the	methodology	is	decreased.	Moreover,	it	allows	the	detection	of	flood	
in	vegetated	areas	and	potentially	in	urban	areas,	even	with	usual	limitations	typical	of	these	
cases	(Pulvirenti,	2015).	Finally,	it	shows	a	new	approach	of	image	processing	by	means	of	EO	
big	data.	

	
3.3	Case	studies	

	

The	methodology	has	been	tested	in	the	three	case	studies	described	in	Chapter	3:	i)	the	
flood	of	January	2015	that	occurred	in	southern	Malawi	well	covered	by	S1A	Ground	Range	
Detected	High	resolution	(GRDH)	images;	it	was	the	first	flood	captured	by	S1A	and	the	huge	
extent	and	diversity	of	environment	makes	it	a	challenging	flood	to	map	and	a	good	example	
to	show	the	potential	of	these	new	data	and	methodology;	ii)	the	flood	event	that	occurred	in	
the	Veneto	region	(city	of	Vicenza	and	its	surroundings)	in	North	Eastern	Italy	for	which	multi-
temporal	 COSMO-SkyMed	 stripmap	 data	 have	 been	 used;	 it	 has	 been	 chosen	 because	 it	
represents	the	typical	situation	of	data	availability	before	the	advent	of	the	Sentinels	and	given	
our	 proximity	 to	 the	 area	 and	 the	 amount	 of	 data	 available,	 it	 is	 a	 perfect	 test	 bench	 for	
validating	the	methodology;	iii)	the	flood	that	occurred	in	North	Eastern	Uganda	in	November	
2015	also	well	covered	by	S1A	GRDH	data	and	it	was	a	first	chance	to	test	the	methodology	for	
validating	 a	 flood	 warning	 system	 (an	 alert	 system	 triggered	 when	 the	 simulated	 river	
discharge	trespass	a	certain	threshold	indicating	a	risk	of	flooding).	
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3.4	Data	Used			 	

3.4.1	Malawi	

S1A	was	launched	in	April	2014	and	became	operational	starting	the	following	October.	
Even	 if	at	the	very	beginning	of	 its	 life	and	not	at	 its	 full	acquisition	potential,	 the	frequent	
observation	 strategy	 of	 the	mission	 allowed	 an	 acquisition	 of	many	 images	 over	 southern	
Malawi	 prior	 to	 the	 flood	 occurrence.	 In	 the	 selection	 of	 images	 is	 important	 to	 take	 into	
consideration	 the	 climate	 of	 the	 region,	 which	 is	 sub-tropical,	 relatively	 dry	 and	 strongly	
seasonal.	The	95%	of	the	annual	precipitation	takes	place	from	November	to	April,	the	warm-
wet	season,	with	peak	humidity	in	January/February.	The	area	analyzed,	the	Lower	Shire	Valley,	
has	a	low	elevation	and	is	particularly	prone	to	floods	such	as	the	one	occurred	in	the	1988/89	
season.	From	May	to	August,	the	dry	winter	season	has	minimum	temperature	between	4	and	
10	degrees	Celsius	with	frost	in	isolated	areas	in	June	and	July.	From	September	to	October,	
the	hot	dry	season,	temperature	vary	between	25	and	37	degrees	Celsius	A	hot,	dry	season	
lasts	 from	 September	 to	 October	 with	 average	 temperatures	 varying	 between	 25	 and	 37	
degrees	Celsius	and	humidity	around	50%.		

In	 order	 to	 have	 robust	 statistics,	we	 considered	 only	 the	 acquisition	 during	 the	 rainy	
season	that	starts	in	November.	In	only	two	months,	S1A	had	the	availability	of	more	reference	
images	 than	 all	 SAR	 sensors	 used	 for	 the	 Veneto	 case	 study	 after	 years	 of	 operation.	
Concerning	the	coverage	of	the	flood,	except	for	the	initial	phase	of	the	event	(unfortunately	
the	most	important	in	order	to	understand	the	maximum	flood	extent),	S1A	observed	the	area	
every	12	days	allowing	the	monitoring	of	the	evolution	of	the	event	as	shown	in	Table	1.	

	

Table	1	Malawi	2015	Dataset	
Sensor 

Imaging Mode 
(Band) 

Orbit  
Rel. Orbit 

Number (Pol) 
Date Status 

Total N. 
Images 

S1A Ascending 17/11/2014 Reference 2 Reference 
GRDH 20 m 101 (VV) 11/12/2014 Reference 2 Flood 

(C)  04/01/2015 Flood  
  21/02/2015 Flood  

S1A Descending 11/11/2014 Reference 3 Reference 
GRDH 20 m 6 (VV) 05/12/2014 Reference 5 Flood 

(C)  29/12/2014 Reference  
  22/01/2015 Flood  
  03/02/2015 Flood  
  15/02/2015 Flood  
  27/02/2015 Flood  
  23/03/2015 Flood  

	

3.4.2	Veneto	

The	event	was	observed	in	different	dates	and	resolutions	by	many	SAR	sensors.	The	first	image	
available	came	from	the	CSK	constellation	few	hours	before	the	first	overflow,	at	5:30	am	of	
November	 1st	 2010.	 The	 image	 covers	 only	 the	 west	 side	 of	 Vicenza	 and	 shows	 a	 wet	
environment	with	little	areas	of	standing	water	at	the	south-west	of	city	toward	the	province	
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of	Verona.	At	9:30	of	the	same	day,	ENVISAT-ASAR	acquired	a	WideSwath	at	150	m	resolution,	
which	show	the	first	outflow	at	the	north	and	south	of	Vicenza.	This	image	was	acquired	in	HH	
polarization	on	the	contrary	of	the	usual	VV	polarization	of	ASAR	acquisitions.	No	other	HH	
polarized	images	were	found	in	the	archive	and	therefore	we	could	use	it	to	perform	change	
detection	only	with	another	HH	image	acquired	on	November	4th.	The	2nd	of	November,	RS2	
acquired	 an	 image	 at	 25	m	 resolution	 giving	 the	 first	 precise	 information	 about	 the	 flood	
extent.	Only	on	November	3rd,	after	the	activation	by	the	Italian	civil	protection,	CSK	was	able	
to	acquire	the	first	useful	image,	after	the	peak	of	the	flood	for	the	city	of	Vicenza,	but	around	
the	peak	for	the	other	two	areas.	CSK	acquired	one	image	a	day	until	November	7th,	allowing	
the	monitoring	of	the	event.	The	frequency	of	acquisition	and	the	very	high	resolution,	3	m,	
make	these	images	of	great	value	for	a	detail	flood	map.	Nevertheless,	all	the	images	acquired	
after	 the	 satellite	 activation	have	high	 incidence	angles,	which	makes	 flood	mapping	more	
difficult	due	to	the	increasing	of	shadowing	and	layover	effects	and	not	perfectly	suitable	for	
change	detection	approaches.	The	use	of	the	proposed	index,	even	though	it	has	been	thought	
for	working	with	 images	with	 the	 same	geometry	of	 acquisition,	was	 able	 to	produce	 very	
precise	maps.	

TerraSAR-X	(TSX)	provided	only	one	image	during	the	event,	namely	the	6th	of	November,	
which	 matches	 exactly	 in	 term	 of	 geometry	 the	 only	 archive	 image	 over	 the	 area,	 dated	
December	2008,	allowing	a	precise	and	easy	flood	mapping.		

Finally,	ASAR	provided	an	image	the	12th	of	November	showing	the	end	of	the	event.		
	

Table	2	Veneto	2010	Dataset	

Sensor 
Orbit  
(Pol) 

Date 
Incidence 

Angle 
Status 

Total N. 
Images 

COSMO-SkyMed Descending 31/10/2008 27.7-30.8 Reference 2 Reference 
Stripmap 3 m (HH) 28/04/2010 28.9-31.8 Reference 3 Flood 

(X)  03/11/2010 37.4-40.1 Flood  
  04/11/2010 40.1-42.6 Flood  
  06/11/2010 27.7-30.9 Flood  
 Ascending 29/08/2010 31.1-34.2 Reference 1 Reference 
 (HH) 01/11/2010 31.1-34.2 Flood 2 Flood 
  07/11/2010 47.0-49.2 Flood  

TerraSAR-X Ascending 24/12/2008 31.3 Reference 1 Reference 
Stripmap 3 m – (X) (HH) 06/11/2010 31.5 Flood 1 Flood 

Radarsat-2 Descending 11/02/2010 30.33 Reference 1 Reference 
ScanSAR 25 m (HH) 02/11/2010 30.28 Flood 1 Flood 

(C) Ascending 18/09/2010 30.17 Reference 1 Reference 
 (HH) 05/11/2010 30.3 Flood 1 Flood 

ENVISAT-ASAR Ascending 06/09/2010  Reference 1 Reference 
WideSwath 150 m (VV) 06/11/2010  Flood 1 Flood 

(C) Descending 19/09/2010  Reference 2 Reference 
 (VV) 11/10/2010  Reference 1 Flood 
  12/11/2010  Flood  
 Descending  01/11/2010  Reference 1 Reference 
 (HH) 04/11/2010  Flood 1 Flood 
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Table	2	summarizes	the	dataset	for	the	flood	in	Veneto	2010	and	show	clearly	that	many	
sensors	had	 to	be	used	 in	order	 to	monitor	 the	event,	which	have	acquisitions	 in	different	
geometries.	CSK	 images	with	the	same	acquisition	geometry	are	highlighted.	The	table	also	
shows	that	even	after	years	of	operation,	the	reference	images	covering	the	area	are	very	few.	
Finally,	in	order	to	retrieve	all	the	data	needed,	we	had	to	go	through	different	web	portals	
with	 long	 processes	 in	 order	 to	 access	 the	 data,	 except	 for	 ESA	 data,	which	 can	 be	 freely	
downloadable	 from	 the	 web	 portal	 (ESA	 EOLI).	 TSX,	 RS2	 and	 CSK	 were	 kindly	 provided	
respectively	by	the	German	Aerospace	Center,	Canadian	Space	Agency	and	the	Italian	Space	
Agency.		

	

Table	3	Uganda	2015	Dataset	

Sensor 
(Band) 

Orbit  
Rel. Orbit 

Number (Pol) 
Date Status 

Total N. 
Images 

S1A Ascending 19/10/2014 Reference 16 Reference 
GRDH 20 m 28-29 (VV) 12/11/2014 Reference 2 Flood 

(C)  06/12/2014 Reference  
  30/12/2014 Reference  
  16/02/2015 Reference  
  28/02/2015 Reference  
  24/03/2015 Reference  
  17/04/2015 Reference  
  11/05/2015 Reference  
  04/06/2015 Reference  
  28/06/2015 Reference  
  22/07/2015 Reference  
  15/08/2015 Reference  
  08/09/2015 Reference  
  02/10/2015 Reference  
  26/10/2015 Reference  
  19/11/2015 Flood  
  13/12/2015 Flood  

S1A Descending 26/11/2014 Reference 10 Reference 
GRDH 20 m 50 (VV) 20/12/2014 Reference 1 Flood 

(C)  13/01/2015 Reference  
  06/02/2015 Reference  
  14/03/2015 Reference  
  07/04/2015 Reference  
  01/05/2015 Reference  
  12/07/2015 Reference  
  29/08/2015 Reference  
  16/10/2015 Reference  
  09/11/2015 Flood  
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3.4.3	Uganda	

The	systematic	acquisition	over	Uganda	since	the	beginning	of	the	S1A	mission,	resulted	
in	a	total	of	26	reference	images	in	one	year	as	shown	in	Table	3.	Compared	to	the	pre-S1A	
scenario,	such	as	the	one	in	Veneto	explained	above,	this	is	a	huge	change.	The	methodology	
presented	is	thought	for	dealing	with	such	big	amount	of	data,	as	explained	in	the	following	
paragraph.	

Moreover,	 to	process	 this	big	 amount	of	data	 (29	S1A	GRDH	 images)	we	made	use	of	
Google	Earth	Engine	(GEE),	which	at	the	time	of	this	work	had	just	ingested	the	S1A	catalog.	
GEE	allowed	to	process	the	data	and	retrieve	the	results	in	a	matter	of	minutes.	Together	with	
Sentinels	data,	GEE	is	a	significant	improvement	for	rapid	mapping	and	image	processing	in	
general,	 allowing	 normal	 users	 to	 perform	 tasks	 that	 were	 limited	 to	 users	 with	 high	
computable	capabilities.	

3.5	Methodology		

S1A	 is	observing	 the	Earth	 systematically	with	a	 revisit	 frequency	of	12	days.	With	 the	
launch	of	the	second	satellite	of	the	constellation	on	April	2016,	Sentinel-1B,	the	revisit	time	
has	decreased	to	6	days.	This	leads	to	a	large	amount	of	reference	pre/post	event	scenes	in	
addition	 to	 those	 acquired	 during	 the	 investigated	 flood.	 Sentinel-1	 acquires	with	 a	 stable	
incidence	angle,	therefore	all	the	images	on	the	same	orbit,	descending	or	ascending,	and	the	
same	track,	can	be	directly	compared	as	they	have	the	same	shadowing	and	layover	effects.	
The	methodology	proposed	aims	at	exploiting	this	huge	amount	of	information,	therefore	a	
SAR	multi-temporal	series	of	radiometrically	calibrated	and	terrain	corrected	images	is	created	
and	a	statistical	analysis	of	the	backscattering	σ0	of	each	pixel	is	performed	throughout	the	
whole	temporal	series	covering	the	area	of	interest.	In	particular,	two	stacks	are	created:	one	
containing	only	reference	images	and	another	one	containing	also	images	of	the	flood	under	
investigation.	As	a	second	step,	for	each	pixel	we	calculate	the	minimum,	maximum	and	mean	
value	throughout	the	whole	stack	of	images,	either	for	the	stack	of	reference	image	and	for	
the	one	containing	the	images	of	the	flood.	The	statistics	so	computed	are	used	to	compute	
the	Normalized	Difference	Flood	Index	(NDFI):	

𝑁𝐷𝐹𝐼 = 	
𝑚𝑒𝑎𝑛	𝜎, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑚𝑖𝑛	𝜎, 𝑓𝑙𝑜𝑜𝑑
𝑚𝑒𝑎𝑛	𝜎, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝑚𝑖𝑛	𝜎, 𝑓𝑙𝑜𝑜𝑑

 
     

(1) 

The	mean	value	of	each	pixel	in	the	reference	stack	represents	its	average	behaviour.	For	
example,	permanent	water	surfaces	will	maintain	a	small	mean	value	even	though	some	pixels	
could	 assume	 medium-high	 backscatter	 in	 one	 image	 due	 to	 the	 presence	 of	 wind	 and	
consequently	 creating	a	 rough	 surface.	 The	advantage	of	 a	 statistical	 analysis	on	 the	 time-
series	 is	 that	we	 can	 better	 characterize	 each	 pixel.	 Also	 smooth	 surfaces	 such	 as	 road	 or	
airport	runways	will	have	backscatter	mean	linear	values	close	to	zero.	All	non-smooth	surfaces	
(urban	areas,	forest,	agriculture,	etc.)	will	have	a	mean	linear	value	well	above	zero.		
Vice	versa,	the	minimum	value	is	used	to	capture	a	specific	discontinuity	in	the	time	series,	i.e.	
flooded	areas,	those	pixels	that	during	the	flood	assumed	very	low	backscatter.	The	difference	
between	the	mean	value	and	the	minimum	highlights	those	discontinuities,	i.e.	flooded	areas,	
pixels	 that	during	 the	 flood	decrease	 significantly	 their	 backscatter	 values.	Normalizing	 the	
difference	allows	us	to	have	values	between	0	and	1	and	helps	to	define	a	threshold	in	order	
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to	mask	flooded	areas.	Furthermore,	all	the	unchanged	features	will	“disappear”	in	the	index	
image,	 i.e.	 their	 value	will	 be	 close	 to	 zero.	 Therefore,	 computing	 the	 index,	we	 get	 rid	 of	
permanent	water	bodies	and	we	can	exclude	non-water	pixels	with	low	backscattering	such	as	
road,	dry	bare	soil,	smooth	tarmac.		

Therefore,	NDFI	easily	allows	to	categorize	as	“flooded”,	those	areas	solely	temporarily	
covered	by	water	with	respect	to	permanent	water	bodies	and	non-water	land	cover	classes.		

In	order	to	detect	shallow	water	in	short	vegetation,	a	similar	index	is	created	aiming	at	
highlighting	the	increase	of	backscatter	that	happens	in	this	circumstances.	Using	the	statistics	
on	the	stacks	as	explained	above,	the	Normalized	Difference	Flood	in	Vegetation	Index	(NDFVI)	
is	compute:	

𝑁𝐷𝐹𝑉𝐼 = 	
𝑚𝑎𝑥	𝜎, 𝑓𝑙𝑜𝑜𝑑 − 𝑚𝑒𝑎𝑛	𝜎, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑚𝑎𝑥	𝜎, 𝑓𝑙𝑜𝑜𝑑 + 𝑚𝑒𝑎𝑛	𝜎, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 
     

(2) 

In	this	case	the	maximum	value	of	the	pixels	is	aiming	at	highlighting	the	discontinuity	in	
the	 time-series	caused	by	shallow	water	 in	short	vegetation.	The	difference	with	 the	mean	
value	will	highlight	only	those	pixels	that	experience	a	strong	increase	in	their	backscatter.	

	
Figure	5	Pre-processing	steps	and	indices	calculation	workflow	

Even	though	the	methodology	has	been	developed	having	in	mind	the	big	data	provided	
by	the	Sentinel-1	constellation,	it	can	be	applied	also	to	other	kind	of	data	as	it	will	be	shown	
in	the	following	paragraphs.	Figure	5	summarizes	the	pre-processing	steps	and	workflow	for	
computing	the	two	indices. 

As	explained	in	Figure	6,	after	the	computation	of	the	two	indices,	in	order	to	derive	the	
flood	map,	a	threshold	value	has	to	be	decided	and	applied	to	the	resulting	indices	images	in	
order	to	include	only	flooded	areas.		

	 (Long	et	al.,	2014)	finds	the	threshold	analyzing	the	histogram	of	the	difference	image,	
i.e.	reference	image	minus	the	image	of	the	flood.	The	threshold	is	the	mean	value	of	the	whole	
difference	image	minus	k	times	the	standard	deviation:	

𝑡ℎ = 	mean	 NDFIBCDDE − 𝑘 ∗ 𝑠𝑡𝑑	(NDFIBCDDE)      (3) 

Following	a	similar	approach,	we	analyzed	the	NDFI	values	over	surely	flooded	areas	and	
computed	the	same	metric.	The	value	obtained	was	0.7118,	obtained	using	k	=	1.5	and	with	a	
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mean	of	0.845	and	a	standard	deviation	of	0.089.	Following	several	 trial-error	attempts	and	
careful	analysis	of	the	statistics	computed,	the	value	of	0.7	for	NDFI	has	been	decided.		

The	same	approach	has	been	followed	for	the	NDFVI	and	the	resulting	threshold	was	0.75,	
using	k	=	1.5	given	by	a	mean	of	0.658	and	a	standard	deviation	of	0.187.		

𝑡ℎK = 	mean	 NDFVIBCDDE_KNO + 𝑘K ∗ 𝑠𝑡𝑑	(NDFVIBCDDE_KNO)      (4) 

The	maps	obtained	after	the	thresholding	have	been	filtered	following	the	scheme	in	Figure	
6.	Using	ENVI®,	the	classified	image	is	first	segmented	with	a	minimum	population	of	30	and	8	
neighbors,	then	filtered	using	the	dilate	morphological	filter	followed	by	the	closure	filtering,	
both	with	a	window	of	3	by	3	pixels.	Finally,	all	the	clusters	smaller	than	10	pixels	are	excluded	
as	well	as	all	the	pixels	falling	in	a	slope	of	more	than	5°.	

	

 
Figure	6	Flood	Mapping	workflow.	From	the	NDVI	and	NDFVI	indices,	a	threshold	

is	applied	followed	by	a	filtering	step	in	order	to	obtain	the	final	flood	maps.		

The	threshold	value	on	the	NDFI	that	has	been	chosen,	is	conservative	in	order	to	obtain	
a	cleaner	map.	In	fact,	pixels	with	NDFI	values	in	the	proximity	of	the	threshold	can	also	be	
found	in	dry	bare	soil,	shadow	or	other	smooth	surfaces	mainly	due	to	the	effect	of	the	speckle.	
Decreasing	the	threshold	would	result	 in	more	false	alarms.	On	the	other	hand,	transitional	
pixels	(pixels	at	the	boarders	of	flooded	area	or	party	inundated	ones)	can	be	excluded	by	the	
threshold	since	they	could	have	a	smaller	value	of	NDFI.	The	two	morphological	filters	allow	to	
include	in	the	map	those	flooded	pixels	that	have	slighter	lower	NDFI	value	but	still	with	high	
probability	to	be	part	of	the	flood,	i.e.	pixels	at	the	boarders	of	the	flooded	areas	or	which	are	
surrounded	by	flood,	without	adding	noise	to	the	map.	

3.6	Results	

The	methodology	has	been	applied	to	the	three	case	studies	previously	described.	The	
results	of	each	case	study	are	presented	separately	in	the	following	sub-sections.		

3.6.1	Southern	Malawi	2015 

The	frequent	acquisition	of	S1	during	the	flood	allowed	us	to	derive	7	flood	extent	maps	
using	the	data	listed	in	Table	1.	The	maps,	Figure	7,	show	flooded	areas	and	shallow	water	in	
short	 vegetation.	 They	 allow	 to	have	 an	overview	of	 the	 evolution	of	 the	 flood	 in	 the	 two	
months	of	observations,	from	January	4th,	2015,	right	before	the	start	of	the	event,	through	
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January	22nd	that	is	the	peak	of	the	flood	captured	by	S1,	until	March	23rd,	at	the	end	of	the	
emergency.	 

The	Copernicus	Emergency	Management	Service	(EMS)	issued	a	map	produced	using	the	
same	data	we	used	for	the	January	22nd	map.	The	two	products	were	compared	over	the	area	
they	 overlap.	 Figure	 8	 shows	 the	 comparison	 of	 the	 two	 maps	 highlighting	 agreement,	
omission	and	commission	error.	It	can	be	noted	how	the	agreement	between	the	two	product	
is	quite	high.	The	main	 source	of	 commission	error	 is	due	 to	an	area	of	partial	permanent	
water,	as	it	can	be	seen	in	central	bottom	part	of	the	figure.	Copernicus	EMS	product	discarded	
permanent	water	bodies	using	ancillary	data,	disconnected	from	the	SAR	data	used	to	produce	
the	map.	Since	we	did	not	make	use	of	ancillary	data,	but	instead	we	based	our	analysis	only	
on	the	observations	during	the	rainy	season,	we	reported	as	flooded	all	the	areas	that	did	not	
show	as	covered	by	water	in	the	reference	images.	The	same	thing	happens	for	the	omission	
error:	 EMS	 reported	 as	 flooded	 areas	 that	we	 found	 already	 covered	 by	water	 before	 the	
beginning	of	the	flood.	These	are	the	main	sources	of	difference	between	the	two	products	as	
quantitatively		shown	by	Table	4.	The	overall	accuracy	of	the	map	is	very	good,	96.75%,	but	the	
user’s	accuracy	on	the	flood	end	up	to	be	 low,	65.9%,	mainly	due	to	the	reasons	explained	
above.	The	accuracy	on	the	non-flooded	areas	is	very	high	mainly	due	the	big	dimension	of	the	
area	analyzed.	

	

Table	4	January	22nd	2015	confusion	matrix	for	NDFI	based	map	and	Copernicus	product		

Overall	Accuracy	(%)	 96.75	 	 	

	 Reference	(EMS	Copernicus)	
User's	
Accuracy	(%)	

NDFI	 No	Flood		 Flood		 	

No	Flood	 17143772	 228841	 98.7	

Flood	 370720	 715955	 65.9	

Producer's	Accuracy	
(%)	 97.9	 75.8	 	

	
	

For	a	further	comparison,	we	decided	to	derive	a	map	using	Landsat-8	(L8)	data.	We	used	
all	the	acquisitions	over	the	area	of	interest	(Landsat	Paths	166	and	167,	Rows	71,	72	and	73)	
with	 a	 cloud	 cover	 lower	 than	 60%.	 The	 images	 were	 cloud	 masked	 and	 the	 Normalized	
Difference	Flood	Index	(NDVI)	was	computed	for	each	scene.	For	each	pixel,	we	computed	the	
minimum,	maximum	and	mean	of	the	NDVI	throughout	the	whole	stack	of	images.	Finally,	a	
threshold	on	the	three	bands	was	applied	in	order	to	derive	the	flood	map.	The	idea	behind	
this	methodology	 is	 that	whenever	 there’s	a	 flooded	 surface,	 the	value	of	NDVI	 is	 strongly	
decreasing.	The	minimum	values	aim	at	capturing	this	anomaly.	In	fact,	over	permanent	water	
bodies	the	three	statistics	will	be	have	comparable	low	values,	instead	on	flooded	areas	the	
maximum	and	the	mean	will	follow	the	characteristic	of	the	land	cover.	Therefore,	combining	
the	three	statistics	together	we	can	understand	where	the	flood	hit.	Of	course,	in	this	case	we	
are	not	able	to	distinguish	in	which	date	the	flood	hit,	but	we	can	see	an	overview	of	all	the	
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areas	that	have	been	flooded.	Figure	9	shows	the	flood	map	obtained	using	this	approach	and	
Figure	10	shows	a	comparison	with	the	NDFI	based	flood	map	on	the	area	of	Bangula.	The	main	
limitation	 in	 this	 case	 is	 the	 cloud	 coverage	 and	 the	 longer	 revisit	 time	 of	 L8	 (16-day).	
Differently	to	SAR	data,	certain	flooded	areas	could	not	be	observed	due	to	the	presence	of	
clouds.	 Therefore,	 this	 product	 has	 been	 though	 only	 as	 a	 qualitative	 comparison	 for	 our	
methodology.		

	

3.6.2	Veneto,	Italy	2010	

A	 total	 of	 11	 flood	maps	were	 produced	 for	 this	 flood	 event.	 Since	we	 used	 different	
sensors,	the	maps	do	not	offer	the	same	resolution	and	precision.	Only	maps	derived	from	CSK	
and	TSX	give	a	very	high	resolution.	Nevertheless,	also	lower	resolution	products,	such	as	the	
one	derived	from	RS-2	and	ASAR,	are	useful	to	understand	the	dynamics	of	the	flood.	It	has	to	
be	noted	that	the	images	did	not	always	covered	the	three	areas	of	interests	for	this	flood.	

Figure	11	 shows	 the	map	derived	 for	 the	area	of	Vicenza.	 For	November	4th	we	could	
derive	a	map	using	CSK	and	one	using	ASAR	and	for	November	6th	one	using	CSK	and	one	suing	
TSX.	 Figure	 12	 shows	 in	 chronological	 order	 all	 the	 maps	 produced	 for	 Saletto	 area.	 For	
November	4th	and	6th	respectively	2	and	3	maps	were	derived	thanks	to	the	multiple	acquisition	
from	different	satellites.	Figure	13	shows	the	maps	derived	for	the	area	of	Bovolenta.	In	this	
case,	the	first	image	we	could	use	is	of	November	2nd	and	the	last	of	November	6th.	Also	in	this	
case	on	November	4th	and	6th	we	could	make	use	of	two	different	acquisitions	and	therefore	
two	maps	per	day	have	been	derived.		

CIMA	foundation	produced	the	same	maps	for	the	Italian	Civil	Protection	during	the	event	
in	2010.	 In	order	 to	validate	our	methodology,	we	compared	our	products	with	 theirs.	The	
comparison	of	our	products	and	CIMA’s	obtained	with	CSK	acquisitions	can	be	seen	in	Figure	
14	for	November	3rd,	Figure	15	and	Figure	16	for	November	6th	and	Figure	18	for	November	
7th.		

	
Table	5,	Table	6	and	Table	7	show	the	dispersion	matrices	for	the	same	products.	Figure	

17	shows	a	comparison	of	the	product	obtained	for	the	6th	of	November	using	CSK	and	TSX	
data.	Also	in	this	case,	agreement,	omission	and	commission	errors	can	be	distinguished	in	the	
area	of	Saletto.	

Table	8	shows	the	dispersion	matrix	for	TSX	products	and	CIMA’s	for	the	6th	of	November	
and	Table	9	the	dispersion	matrix	for	CSK	and	TSX	products	based	on	the	NDFI	index.		

Figure	19	shows	one	of	the	errors	that	affects	the	dispersion	matrix.	For	the	product	of	
the	6th	of	November,	CIMA	foundation	reported	permanent	water	bodies	(in	red)	most	likely	
using	 an	 ancillary	 dataset.	 It	 can	 be	 noted	 how	 this	 layer	 (representing	 a	 river)	 is	 shifted	
compared	to	the	SAR	image.	Flooded	areas	(in	orange)	are	then	reported	over	the	same	river,	
this	time	in	the	right	position.	Having	taken	CIMA’s	product	has	a	reference,	this	kind	of	error	
is	decreasing	the	accuracy	of	our	product	reported	in	the	dispersion	matrix.	
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Figure	7	Flood	Evolution	from	January	4th	to	March	23rd	2015.	The	maps	show	also	shallow	

water	in	short	vegetation.		
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Figure	8	Comparison	of	the	results	in	the	area	of	the	city	of	Bangula	with	the	map	produced	by	
Copernicus	 Emergency	 Service	 for	 the	 status	 of	 the	 flood	on	 January	 22nd,	 2015.	 The	map	
shows	 the	agreement	between	 the	 two	maps,	 the	omission	and	commission	error.	A	 large	
commission	error	can	be	noted	in	the	central	bottom	part	of	the	image	due	to	the	fact	that	we	
did	not	excluded	permanent	water	bodies	using	ancillary	data.	Instead,	we	used	only	statistics	
form	the	images	available	during	the	rainy	season.		

 
Figure	9	Flood	map	derived	using	Landsat-8	date	of	the	entire	2015.	Normalized	Difference	
Vegetation	Index	was	computed	for	all	the	scenes	and	its	statistics	were	computed:	maximum,	
minimum	and	mean	value.	A	threshold	on	those	3	bands	was	applied	in	order	to	derive	the	
flood	extent.		
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Figure	10	Comparison	between	flood	maps	derived	using	Sentinel-1	data	and	Landsat-8	data.	
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Figure	11	Flood	Extent	for	Vicenza	area.	Flood	evolution	from	November	1st	to	November	7th	
2010.	Since	different	sensors	have	been	used,	on	the	4th	and	6th	of	November	more	than	one	map	
has	been	derived.		
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Figure	12	Flood	Extent	for	Saletto	area.	Flood	evolution	from	November	1st	to	November	12th	
2010.	Since	different	sensors	have	been	used,	on	the	4th	and	6th	of	November	more	than	one	
map	has	been	derived.		
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Figure	13	Flood	Extent	for	Bovolenta	area.	Flood	evolution	from	November	2nd	to	November	
6th	2010.	Since	different	sensors	have	been	used,	on	the	4th	and	6th	of	November	more	than	
one	map	has	been	derived.	
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Figure	14	 Comparison	of	 results	 for	Bovolenta	 area	with	CIMA	 foundation	product	 for	 the	
status	of	the	flood	on	November	3rd	2010.	The	map	shows	the	agreement	between	the	two	
maps,	the	omission	and	commission	error.	What	appear	as	commission	error	is	instead,	in	most	
of	the	cases,	a	more	precise	flood	mapping	using	the	methodology	proposed.	Moreover,	the	
omission	error	are	areas	of	permanent	water	(river	and	a	small	reservoir)	indicating	the	better	
precision	of	the	presented	methodology.		

 
Figure	15	Comparison	of	results	for	Saletto	area	with	CIMA	foundation	product	for	the	status	
of	the	flood	on	November	6th	2010.	The	map	shows	the	agreement	between	the	two	maps,	
the	omission	and	commission	error.	Also	in	this	case,	it	can	be	appreciated	how	the	omission	
error	are	instead	a	more	detail	mapping	of	the	flooded	areas.	

 
Figure	16	 Comparison	of	 results	 for	Bovolenta	 area	with	CIMA	 foundation	product	 for	 the	
status	of	the	flood	on	November	6th	2010.	The	map	shows	the	agreement	between	the	two	
maps,	 the	omission	and	commission	error.	Also	 in	 this	case,	 it	can	be	appreciated	how	the	
omission	error	are	instead	a	more	detail	mapping	of	the	flooded	areas.	
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Figure	17	Comparison	of	results	for	Saletto	area	obtained	with	CSK	and	TSX	data	of	November	
6th	2010.	The	map	shows	an	almost	perfect	agreement	between	the	two	products.		

 
Figure	18	Comparison	of	results	for	Saletto	area	with	CIMA	foundation	product	for	the	status	
of	the	flood	on	November	7th	2010.	The	map	shows	the	agreement	between	the	two	maps,	
the	omission	and	commission	error.	Also	in	this	case,	it	can	be	appreciated	how	the	omission	
error	are	instead	a	more	detail	mapping	of	the	flooded	areas.	

 
Figure	19	An	error	in	CIMA	foundation	map	of	6th	November	2010.	Flood	area	(in	orange)	are	
reported	over	permanent	water	bodies,	in	this	case	a	river.	In	red,	pixels	labelled	as	permanent	
water	in	CIMA’s	map.	It	 is	clear	that	these	are	shifted	compared	to	the	SAR	data,	indicating	
that	probably	an	external	layer	for	water	bodies	was	used.	These	errors	are	affecting	the	results	
in	the	confusion	matrix.		
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Table	5	3rd	November	2010	confusion	matrix	for	NDFI	based	map	obtained	using	CSK	data	and	
reference	CIMA	foundation	product	

Overall	Accuracy	(%)	 98.3	 	 	

	 Reference	(CIMA)	
User's	
Accuracy	(%)	

NDFI	 No	Flood		 Flood		 	

No	Flood	 14286721	 33447	 99.8	

Flood	 215878	 370569	 63.2	

Producer's	Accuracy	
(%)	 98.5	 91.7	 	

Table	6	6th	November	2010	confusion	matrix	for	NDFI	based	map	obtained	using	CSK	data	and	
reference	CIMA	foundation	product	

Overall	Accuracy	(%)	 99.5	 	 	

	 Reference	(CIMA)	
User's	
Accuracy	(%)	

NDFI	 No	Flood		 Flood		 	

No	Flood	 22376988	 23798	 99.9	

Flood	 100190	 172290	 63.2	

Producer's	Accuracy	
(%)	 99.6	 87.9	 	

Table	7	7th	November	2010	confusion	matrix	for	NDFI	based	map	obtained	using	CSK	data	and	
reference	CIMA	foundation	product	

Overall	Accuracy	(%)	 96.3	 	 	

	 Reference	(CIMA)	
User's	
Accuracy	(%)	

NDFI	 No	Flood		 Flood		 	

No	Flood	 888941	 15987	 98.2	

Flood	 20916	 63227	 75.1	

Producer's	Accuracy	
(%)	 97.7	 79.8	 	
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Table	8	6th	November	2010	confusion	matrix	for	NDFI	based	map	obtained	using	TSX	data	and	
reference	CIMA	foundation	product	

Overall	Accuracy	(%)	 99.6	 	 	

	 Reference	(CIMA)	
User's	
Accuracy	(%)	

NDFI	 No	Flood		 Flood		 	

No	Flood	 15936509	 23157	 99.9	

Flood	 47970	 112688	 70.1	

Producer's	Accuracy	
(%)	 99.7	 83.0	 	

	

	

Table	9	6th	November	2010	confusion	matrix	for	NDFI	based	maps	obtained	using	CSK	and	TSX	
data	

Overall	Accuracy	(%)	 99.7	 	 	 	

	 TSX	06/11	 		
User's	
Accuracy	(%)	

CSK	06/11	 No	Flood		 Flood		 	 	

No	Flood	 15509707	 8020	 99.9	 	

Flood	 38040	 152638	 80.1	 	

Producer's	Accuracy	
(%)	 99.8	 95.0	 	 	

 

 

3.6.3	Northern	Uganda	2015	

Three	flood	maps	were	produced	for	the	Uganda	flood.	This	event	was	not	big	and	not	many	
areas	were	reported	as	flooded.	The	mapping	was	not	easy	given	also	the	rapid	change	of	the	
land	cover	in	this	area.	We	cannot	see	large	flooded	areas	but	the	NDFVI	index	allowed	to	map	
shallow	water	in	short	vegetation	showing	that	in	fact	the	event	hit	a	wide	area	as	we	can	see	
in	Figure	20.	Figure	21	and	Figure	22	show	a	detail	respectively	on	the	North-East	of	the	area	
of	interest	(Kapelebyong	district)	and	on	the	East	side	(Katakwi	district).				



	 36	

 
Figure	20	Flood	Maps	(Overview)	for	the	Uganda	flood	2015.	
	

 

 
Figure	21	Flood	maps	detail	in	the	northern	East	of	Uganda,	Kapelebyong	area.	
	

 
Figure	22	Flood	map	details	in	the	Eastern	side	of	the	area	of	interest,	Katakwi	region.		
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3.7	Discussion	

3.7.1	Normalized	Difference	Flood	Index	Analysis	

Figure	27	shows	the	range	of	values	assumed	by	the	NDFI	index.	On	the	x-axis	we	have	
the	minimum	value	of	s0	in	the	stack	containing	the	images	of	the	flood,	in	the	y-axis	the	mean	
value	of	s0	in	the	stack	of	reference	images.	The	colors	indicates,	for	a	given	couple	(s0min,	
s0mean),	the	correspondent	NDFI	value.		

The	plane	is	divided	in	two	regions	by	the	diagonal;	the	area	below	it	and	marked	as	
(1),	corresponds	 to	values	of	NDFI	 that	are	unlikely	since	we	expect	 the	mean	value	of	 the	
reference	stack	to	be	always	greater	than	the	minimum	of	the	flood	image	and	we	can	exclude	
it	 from	our	 analysis.	Negative	 values	of	NDFI	 are	 actually	 possible	 since	 the	mean	 and	 the	
minimum	are	calculated	on	two	different	stacks	of	 images,	but	this	 is	something	unlikely	to	
happen	and	anyway	they	are	not	relevant	to	the	analysis	and	therefore	we	can	exclude	them.		

On	the	diagonal	NDFI	has	value	0,	in	fact	this	correspond	to	equal	values	of	the	mean	
and	the	minimum	throughout	the	two	stacks,	i.e.	no	change	between	the	reference	and	the	
flood	image.	Theoretically	here	lay	also	permanent	water	bodies	and	stable	features	such	as	
urban	areas,	roads,	smooth	tarmac	and	desert.	In	particular,	permanent	water	bodies	should	
lay	close	to	the	origin	of	the	plot	since	they	have	very	low	backscatter	values.	In	practice,	since	
small	fluctuations	of	backscatter	values	can	occur	caused	by	speckle	and	little	variations	at	the	
surface,	permanent	water	bodies	lay	on	area	(2)	represented	by	the	yellow	triangle.	Taking	as	
a	reference	the	values	of	S1A	data	for	Malawi,	s0	in	this	area	is	less	than	0.03	both	for	reference	
and	flood	image.	This	value	has	been	decided	studying	the	mean	value	of	the	backscattering	
in	the	stack	of	reference	images.	We	noted	that	for	s0	<	0.015	only	water	pixel	are	detected,	
which	lead	to	a	detection	of	water	bodies	that	leaves	out	only	their	outer	borders.	Increasing	
this	 threshold,	 dry	 bare	 soil	 pixels	 starts	 to	 be	 included.	When	s0=0.03,	 water	 bodies	 are	
delineated	very	precisely	(i.e.	the	borders	of	water	bodies	are	also	included)	but	also	dry	bare	
soil	is	included	(Figure	25).		

Figure	24	zooms	on	area	(2)	of	the	plot	considering	values	of	s0mean	from	0	to	0.03.	It	
shows	how	the	threshold	applied	on	the	NDFI	includes	part	of	this	area	in	the	flood	map	(left	
side	of	the	threshold	line,	i.e.	for	NDFI	values	greater	than	0.7).	The	area	included	in	the	map	
can	be	divided	in	two	further	areas:	(2A)	where	the	mean	value	of	the	reference	s0	is	smaller	
than	 0.015	 (value	 representing	 only	 water	 pixel)	 and	 area	 (2B)	 with	 mean	 value	 of	 the	
reference	s0	greater	than	0.015	(water	with	greater	backscattering	and	dry	bare	soil).	Area	
(2A)	in	the	NDFI	plots	represents	mainly	dry	bare	soil	that	decreased	its	backscatter	during	the	
flood	and	therefore	it	 is	correct	to	include	it	 in	the	flood	map.	Area	(2B)	instead	represents	
permanent	water	bodies	wrongly	 included	 in	the	flood	map.	Analyzing	these	values	 for	 the	
Malawi	case	study	as	shown	in	Figure	25,	we	found	that	out	of	5	million	pixels	of	flooded	pixels	
(NDFI	>	0.7,	indicated	in	Figure	25	as	“Flood”),	only	20	thousand	corresponded	to	area	(2B)	
(indicated	in	Figure	25	by	the	red	pixels	with	“s0	mean	<	0.015	and	NDFI	>	0.7”),	0.4%	of	the	total	
derived	 flood	 map	 and	 they	 are	 barely	 visible	 in	 the	 figure.	 The	 error	 can	 be	 considered	
negligible.	Nevertheless,	 these	pixels	 can	be	easily	 filtered	out	 from	 the	 final	 flood	map	as	
explained	in	the	following	paragraph	3.4.1.1.	
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Figure	25	Analysis	of	s0	statistics	and	correspondent	NDFI	and	NDFVI	values	on	the	Nsanje	area	
in	southern	Malawi	for	s0mean	values	smaller	than	0.03,	corresponding	to	Zone	2	of	the	plot	in	
Figure	24.	Light	blue	pixels	represent	permanent	water	bodies.	Orange	pixels	represent	mainly	
the	borders	of	water	bodies	and	dry	bare	soil.	Red	and	dark	blue	pixels,	barely	recognizable,	
represent	the	negligible	errors	in	the	final	flood	map	corresponding	to	zone	2A	and	2B	of	the	
plot	in	Figure	24.			
 

The	dashed-dotted	line	(s0min	=	0.03)	in	Figure	23	represents	the	maximum	backscatter	
for	water	pixels	in	the	stack	containing	the	images	of	the	flood.	Excluding	area	(2),	it	creates	
four	additional	areas	together	with	the	threshold	line	in	the	NDFI	plot.	Area	(3)	represents	non-
water	 pixels	 (medium-high	 backscattering,	 s0mean	 >	 0.03)	 that	 strongly	 decreased	 their	
backscatter	during	the	flood	(s0	min	<	0.03),	i.e.	they	are	the	flooded	pixel	included	in	the	flood	

	Figure	 23	 Normalized	 Difference	 Flood	
Index:	 index	 values	 are	 plotted	 with	
reference	to	the	minimum	pixels	intensity	
(in	 linear	 scale)	 throughout	 the	 “flooded”	
multi-temporal	series	(x	axis)	and	the	mean	
pixel	values	throughout	the	reference	time	
series	(y	axis).	The	white	line	indicates	the	
threshold	value	for	deriving	the	flood	map. 

Figure	 24	 Zoom	 on	 the	 zone	 2	 of	 NDFI	 plot	
(yellow	area	in	Figure	23).	The	threshold	on	the	
NDFI	 (0.7)	 includes	 part	 of	 the	 permanent	
water	pixels.	More	precisely	area	2A	represent	
dry	bare	soil	that	decreased	its	intensity	due	to	
flood,	 2B	 are	 most	 likely	 permanent	 water	
wrongly	 included	 in	 the	 flood	map.	 A	 careful	
analysis	shows	that	this	error	represents	only	a	
small	percentage	of	the	total	flood	map.	
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map.	Area	(4)	represents	non-water	pixels	with	low	reference	backscattering	(0.03	<	s0mean	<	
0.17)	that	slightly	decreased	their	backscatter	during	the	flood	(0.015	<	s0	min	<	0.03).	

	
	

 
Figure	26	Zoom	on	the	area	4	of	NDFI	plot.	The	threshold	on	the	NDFI	(0.7)	excludes	possible	
flooded	areas.	A	careful	analysis	shows	that	this	error	is	compensated	by	the	morphological	
filtering	steps	and	therefore	acceptable.		
	

Figure	26	shows	in	details	this	part	of	the	plot.	The	line	s0min	=	0.015	divides	area	(4)	in	
two	sub-regions.	Area	(4A)	is	most	probably	flood	but	with	a	fairly	low	mean	backscattering	in	
the	reference.	An	increase	in	the	NDFI	threshold	would	reduce	this	uncertainty	(on	the	other	
hand	adding	also	extra	noise).	Figure	27	and	Figure	28	show	that	these	pixel	are	eventually	
included	 in	 the	 flood	map	 thanks	 to	 the	morphological	 filtering.	Area	 (4B)	are	pixels	at	 the	
boundaries	of	water	surfaces	or	bare	soil	that	decreased	its	backscattering	during	the	flood.	
The	same	two	figures	show	that	 these	pixels	are	 instead	dropped	by	 the	 final	maps,	which	
make	sense	in	most	of	the	cases	except	in	the	proximity	of	flooded	areas,	where	they	could	be	
included	in	the	final	flood	map.	The	dilatation	filter	partly	adjust	this	possible	error,	which	is	
nevertheless	acceptable.		

Area	(5)	in	Figure	23	represents	pixels	that	could	be	wrongly	included	in	the	final	flood	
map	since	they	did	decreased	consistently	their	backscatter	during	the	flood,	indicating	that	
something	did	happen,	but	not	enough	to	reach	a	s0min	typical	of	water	pixels.	In	fact	in	this	
area	we	could	include	pixels	with	s0min	equal	up	to	0.176.	Analyzing	the	results	over	Malawi,	
we	see	that	these	pixels	are	only	the	1%	of	the	overall	pixels	that	have	NDFI	greater	than	0.7	
(53	thousand	over	5	million)	and	the	majority	of	them	falls	over	bare	soil	and	mountainous	
regions	and	are	eliminated	by	filtering	steps	(morphological,	area	and	slope	filtering).	In	fact,	
after	the	filtering	only	the	30%	of	them	(17	thousands)	are	kept	in	the	final	map.	Also	in	this	
case,	an	extra	filtering	step	can	be	applied	to	get	rid	of	them,	as	explained	 in	the	following	
paragraph	4.3.1.1.	In	the	Malawi	case,	the	error	is	negligible	as	shown	in	Figure	27	and	Figure	
28.	

Area	 (6)	 is	 correctly	 eliminated	 by	 the	 index	 threshold	 since	 those	 are	 pixels	 that	
decreased	their	backscatter	but	that	are	surely	not	water	pixels	since	their	s0min	is	too	high	
(s0min	>	0.03).		Figure	27	summarizes	the	concepts	for	an	area	North	of	Nsanje	city,	Figure	28	
for	the	area	of	the	city	of	Nsanje.		
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Figure	27	Analysis	of	NDFI	value	for	an	area	North	of	Nsanje.		
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Figure	28	NDFI	values	analysis	over	the	city	of	Nsanje	
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3.7.1.1	Additional	filtering	to	refine	the	flood	map	

We	showed	that	choosing	a	threshold	of	0.7	for	the	NDFI,	wrong	pixels	can	be	included	
in	the	flood	map.	Specifically,	pixels	belonging	to	areas	(2)	and	(5)	of	the	NDFI	plane	(Figure	
23).	Even	though	the	errors	has	been	shown	to	be	negligible,	we	can	refine	the	flood	map	with	
a	further	filtering	step	as	indicated	in	Figure	29.	Firstly,	the	raster	flood	map	is	converted	to	
polygons.	Secondly,	for	each	polygons,	we	compute	the	mean	and	standard	deviation	of	the	
s0min	and	s0mean.	The	polygons	with	mean	(s0	mean)	<	0.015	(area	2B	in	the	NDFI	plot)	can	
be	filtered	out	together	with	polygons	with	mean	(s0	min)	>	0.03	(area	5	in	the	NDFI	plot).		

 

Figure	29	Additional	filtering	steps	in	order	to	refine	the	flood	map	and	exclude	possible	
misclassified	pixels		

The	use	of	the	statistics	in	the	polygons	allowed	also	to	detect	false	alarms	caused	by	
other	effects	such	as	replacement	of	crop	(grapes	with	denser	crop	such	as	maize	or	wheat)	or	
different	 geometry	 of	 acquisition	 (difference	 in	 radar	 shadows)	 that	 occurred	 in	 the	
comparison	 of	 CSK	 images	with	 different	 incidence	 angle,	 as	 shown	 in	 Figure	 32.	 Also	 the	
appearance	of	new	constructions	can	cause	false	alarms	as	shown	in	Figure	31	where	a	new	
road	was	built	in	the	same	time	frame	(14-b),	which	was	not	present	in	14-a.	The	new	road	
causes	 a	 decrease	 in	 radar	 backscatter	 and	 therefore	 a	 high	 value	 of	 NDVI,	 causing	 some	
misclassification.	In	this	case	a	filter	in	the	mean	(s0	min)	allowed	the	detection	of	the	false	
alarm	

The	standard	deviation	can	be	useful	to	clean	even	further	the	map.	Very	high	values	
of	standard	deviation	either	in	the	reference	or	in	the	flood	images,	can	indicate	a	false	alarm.	
After	several	iterations,	we	found	out	that	a	threshold	of	2	(in	the	reference	or	in	the	flood	
image)	for	the	standard	deviation	allows	to	detect	misclassified	areas,	but	each	case	has	to	be	
analyzed	independently.		

For	example,	in	the	Veneto	flood	of	2010,	there	were	few	CSK	archive	images	available	
and	we	had	to	take	an	image	from	2008	in	order	to	perform	the	change	detection.	In	the	two	
year	time	in	between	the	two	acquisitions,	some	changes	occurred,	which	led	to	some	cases	
of	wrong	classification.	Figure	30	shows	one	of	this	cases:	a)	the	image	acquired	in	2008	shows	
a	 large	building	 in	construction.	The	backscattering	due	to	the	double-bounce	effect	 is	very	
high.	In	13-b)	the	same	building	is	completed	and	the	steep	roof	cause	some	radar	shadows.	
The	use	of	the	NDFI	highlights	this	decrease	of	backscattering	letting	this	area	to	fall	inside	the	
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flood	map	as	shown	in	13-c.	The	use	of	the	standard	deviation	on	the	reference	image	allowed	
us	to	filter	this	polygon	and	exclude	it	from	the	map.	In	fact,	the	value	of	the	standard	deviation	
was	very	high	inside	the	polygon	due	to	the	high	fluctuation	of	values.		

						 	

	

	
Figure	32	In	a)	and	b)	the	same	area	is	observed	with	different	incidence	angle	and	it	can	lead	
to	false	alarms	due	to	the	different	radar	shadow.		

3.7.2 Normalized	Difference	Flood	in	Vegetated	areas	Index	Analysis	

The	analysis	of	the	NDFVI	is	easier	since	the	pixels	that	increase	their	backscatter	during	
a	flood	are	typically	less	than	the	ones	decreasing	it.	Moreover,	the	reasons	for	that	to	happen	
are	also	less.		

Figure	33	shows	the	values	assumed	by	the	index	for	a	given	couple	(s0mean,	s0max).	As	
in	the	NDFI	case,	the	diagonal	divides	the	plane	in	two	areas	where	area	(1)	corresponds	to	
unlikely	index	values	and	therefore	is	exclude	from	our	analysis.	Area	(2)	represents	the	pixels	
included	in	the	flood	map	(NDFVI	>	0.75)	and	area	(3)	the	ones	excluded.	Figure	34	analyses	in	
detail	area	(2).	Area	(2A)	represents	very	dark	pixels	(s0mean	<	0.015,	most	probably	water)	that	
increased	more	or	less	consistently	their	backscatter	during	the	flood.	Part	of	this	increment	is	
due	to	fluctuation	of	the	backscattering	over	permanent	water	bodies	meaning	that	we	would	
include	a	very	small	part	of	permanent	water	bodies	in	the	final	map,	a	small	error	that	can	be	
accepted.	Instead	when	the	increment	is	very	high,	most	probably	is	due	to	the	effect	of	wind	

Figure	30	a)	CSK	reference	image	acquire	in	
2008	with	a	building	 in	 construction	b)	CSK	
image	 acquired	 during	 the	 2010	 flood	with	
the	 same	building	 completed	c)	 result	 after	
the	 threshold	 on	 the	 NDFI	 shows	 the	 roof	
shadow	as	flood	d)	Google	Earth	image	of	the	
same	area	
	

Figure	31	a)	CSK	reference	image	acquire	in	
2008	b)	CSK	image	acquired	during	the	2010	
flood	 where	 a	 new	 road	 has	 appeared	 c)	
result	after	the	threshold	on	the	NDFI	shows	
the	new	road	as	flood	d)	Google	Earth	image	
of	the	same	area	
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or	vegetation	in	water	surfaces.	Analysing	the	Malawi	case	study,	the	pixels	falling	in	the	area	
of	the	plot	and	appearing	in	the	final	flood	map	are	negligible.	Area	(2B)	represents	non-stable	
water	surface	or	very	dry	bare	soil	that	increased	the	backscatter	during	the	flood.	Area	(2C)	
and	the	remaining	of	area	(2)	represents	herbaceous	or	shrub	areas	that	experienced	the	same	
phenomenon,	most	probably	the	effect	of	shallow	water	or	increased	soil	moisture.	These	two	
areas	are	correctly	included	in	the	map	and	the	Malawi	case	study	confirms	that.	In	fact,	more	
than	the	95%	of	the	mapped	pixels	fall	in	these	two	regions	and	the	location	of	these	pixels	are	
contiguous	to	water	surface	as	expected.		

Figure	35	shows	the	pixels	belonging	to	these	areas	for	the	case	study	of	Malawi.	It	can	
be	noted	how	the	predominant	effect	is	the	one	of	area	(2B)	and	(2C).	

 
 

	

Using	the	methodology	proposed,	precise	flood	maps	could	be	derived	for	the	three	case	
studies.	The	use	of	the	two	indices	allowed	the	mapping	of	open	water	and	shallow	water	in	
short	vegetation.			

The	methodology	has	been	tailored	for	being	used	with	S1	data,	 i.e.	with	many	archive	
images	to	be	exploited	using	pixel	statistics.	The	idea	is	that	such	statistics	can	supply	a	more	
robust	information	on	the	pre-event	conditions.	Even	though	the	Malawi	case	study	was	not	
ideal	(the	first	flood	captured	by	S1	with	only	few	archive	images	due	to	the	short	operative	
life	of	S1	at	the	time	of	the	flood),	the	comparison	between	our	product	of	January	22nd	and	
Copernicus	EMS	(the	only	one	matching	our	products)	shows	a	very	good	accuracy	 (overall	
accuracy	of	96.75%)	as	we	can	see	in	the	map	of	Figure	8	and	in	the	dispersion	matrix	in	Table	
4.	In	fact,	even	though	the	user’s	accuracy	on	the	flooded	areas	resulted	in	a	rather	low	value	
(65.9%),	 it	 is	 straightforward	 to	 understand	 that	 the	 quality	 is	 indeed	 very	 high.	 The	main	
source	of	differences	between	the	two	products	comes	from	a	different	way	of	considering	

Figure	 33	 Normalized	 Difference	 in	
Vegetation	 Flood	 Index:	 index	 values	 are	
plotted	 with	 reference	 to	 the	 minimum	
pixels	 intensity	 (in	 linear	 scale)	 throughout	
the	reference	multi-temporal	series	(x	axis)	
and	 the	mean	 pixel	 values	 throughout	 the	
“flooded”	time	series	(y	axis).	
	

Figure	34	Zoom	on	the	area	2	of	NDFVI	plot	in	
Figure	9.	This	region	can	be	divided	into	other	
3	 sub-regions	 depending	 on	 the	 mean	
backscatter	in	the	reference	images	allowing	
to	understand	what	 it	 is	mapped	as	shallow	
water	 by	 means	 of	 the	 threshold	 on	 the	
NDFVI.			
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permanent	 water	 bodies.	 In	 our	 case,	 permanent	 or	 semi-permanent	 water	 bodies	 are	
excluded	from	the	map	only	if	they	appear	in	the	statistics	of		

	

 

	

3.7.3 Discussion	of	Results	

	
the	reference	images.	EMS	product	instead	takes	this	information	from	an	external	dataset.	
	 Areas	of	semi-permanent	water	could	be	in	fact	reported	as	permanent	water	in	the 
external	dataset	used	by	EMS.	Therefore,	EMS	maps	excluded	this	area	from	the	flood	map	a	
priori.	In	our	case,	the	same	area	is	compared	with	reference	images.	If	the	area	was	dry	during	
the	acquisition	of	reference	images,	it	will	show	up	in	the	final	flood	map.	The	opposite	effect	
can	also	happen	as	it	can	be	noted	in	Figure	8.	EMS	reported	as	flooded	all	the	areas	showing	
low	backscattering	in	the	images	of	the	event.	Part	of	these	areas	had	low	backscattering	also	
in	the	reference	images	we	used	and	therefore	they	are	excluded	from	our	map	creating	an	
omission	error.	Taking	into	account	this	considerations,	the	two	products	are	very	similar.	This	
prove	the	goodness	of	our	methodology,	which	highlight	the	real	changes	occurred	between	
ex-ante	and	ex-post	situation.	 

Furthermore,	even	if	we	have	no	data	to	validate	the	products,	we	are	able	to	report	a	
map	 of	 shallow	 water	 in	 short	 vegetation,	 an	 information	 that	 is	 not	 reported	 by	 any	

Figure	35	a)	Mean	backscatter	of	reference	images	b)	S1	image	of	the	flood	on	January	22nd,	
2015	c)	NDFVI	computed	for	the	same	date	d)	Pixels	that	increased	their	backscatter	due	to	
presence	of	water	and	captured	by	a	threshold	on	the	NDFVI	index.	The	colors	separate	the	
pixels	with	different	backscatter	values	in	the	reference	images	congruently	with	the	legend	
and	the	plot	in	Figure	34.	
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emergency	service.	These	areas	appear	in	proximity	of	zones	of	“normal”	flooding,	where	they	
are	more	likely	to	happened	and	where	we	were	expecting	them,	suggesting	the	accuracy	of	
the	results.	In	addition,	the	flood	evolution	suggests	the	validity	of	this	kind	of	information.		In		
fact,		from		February		15th	to		February	21st	there’s	a	flood	reduction	on	the	south	side	of	the	
map	and,	where	there	was	open	water,	the	map	is	showing	shallow	water	in	short	vegetation.	
This	suggests	that	the	water	has	receded	and	only	a	small	amount	of	it	remained	there.	On	
February	 27th	 due	 to	 further	 rainfall,	 we	 have	 a	modest	 increment	 of	 flooded	 area	 and	 a	
consequent	reduction	of	shallow	water	in	short	vegetation	in	the	same	area.			

Also	 the	 comparison	 with	 the	 map	 obtained	 using	 L8	 data,	 Figure	 10,	 shows	 a	 good	
correspondence	even	though	the	few	L8	acquisitions	during	the	event	and	the	limitation	of	
optical	sensor	with	cloud	coverage	influence	this	kind	of	product.	Using	only	the	statistics	on	
the	NDVI,	we	are	not	able	to	obtain	information	about	shallow	water	in	short	vegetation	since	
the	amount	of	vegetation	in	this	kind	of	situation,	and	therefore	the	NDVI	values,	is	comparable	
to	the	one	before	or	at	the	end	of	the	flood.	For	this	reason,	we	cannot	capture	any	change	
only	using	the	NDVI.		

Nevertheless,	the	methodology	based	on	the	NDVI,	here	presented	very	briefly,	can	be	
of	great	value.	Figure	9	 in	fact,	shows	an	overview	of	the	flood	that	was	obtained	with	few	
steps.	The	simplicity	and	the	effectiveness	of	this	approach	together	with	the	availability	of	L8	
data	 in	 the	GEE,	makes	 really	easy	 the	mapping	of	 floods	 in	 case	only	 a	qualitative	map	 is	
needed.			

Flood	indices	have	been	developed	having	in	mind	EO	big	data.	Nevertheless,	we	tested	
the	same	approach	on	a	typical	case	study	of	the	past,	i.e.	with	few	and	diverse	acquisitions	
and	almost	no	archive	data	useful	for	change	detection.	For	the	Veneto	flood	of	2010	we	tested	
the	method	with	4	different	sensors	at	4	different	resolutions:	CSK	and	TSX	at	3	meters,	RS2	at	
25	meters	and	ASAR	at	150	meters.	We	also	had	the	chance	to	test	it	for	HH	polarization	as	in	
the	case	of	ASAR	and	RS2.	The	method	showed	to	be	robust	since	the	 identical	processing	
steps	have	been	followed	obtaining	 in	all	the	cases	very	good	results.	The	threshold	on	the	
NDFI	was	the	same	for	each	dataset.	Figure	11,	Figure	12	and	Figure	13	show	the	evolution	of	
the	flood	for	the	three	area	of	interests	of	this	case	study.		

In	particular,	for	the	4th	and	the	6th	of	November	we	could	derive	more	than	one	products	
due	to	multiple	acquisition	 from	more	sensors.	This	shows	how	the	methodology	performs	
well	 also	 at	 lower	 resolutions,	 of	 course	with	 the	 expected	 decrease	 of	 details.	 Given	 the	
limited	fluctuation	of	SAR	backscattering	at	these	resolutions,	the	derivation	of	flood	maps	was	
easier	and	needed	less	filtering.	Finally,	we	can	see	how	CKS	and	TSX	products	are	practically	
identical	given	their	identical	resolution,	indicating	one	more	the	robustness	of	the	method.		

The	validation	in	this	case	has	been	performed	using	as	a	reference	the	maps	produced	by	
CIMA	foundation	for	the	Italian	Civil	Protection	during	the	event.	Figure	14,	Figure	15,	Figure	
16	 and	 Figure	 18	 show	 clearly	 how	 our	 methodology	 has	 comparable,	 if	 not	 better,	
performances	compared	to	CIMA’s	products.	In	fact,	comparing	with	the	original	SAR	data,	we	
can	note	how	our	maps	are	following	the	flood	extent	with	more	precision.	The	filtering	used	
by	CIMA	to	“clean”	the	map	from	small	objects	and	false	alarms	is	also	decreasing	the	details	
of	the	map,	something	not	happing	in	our	products.		

Table	5,	Table	6,	Table	7	and		
Table	8	 show	an	overall	accuracy	of	98.3%	 for	November	3rd,	99.5%	 for	November	6th,	

96.3%	 for	 November	 7th	 and	 99.6%	 for	 November	 6th	 using	 TSX	 data.	 User’s	 accuracy	 on	
flooded	 areas	 is	 instead	 of	 63.2	 %	 for	 November	 3rd,	 63.2%	 for	 November	 6th,	 75.1%	 for	
November	7th	and	70.1%	for	November	6th	using	TSX	data.	The	cause	of	these	low	values	is	the	
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less	details	of	CIMA	maps	that	increase	the	commission	errors	and	the	permanent	water	bodies	
wrongly	reported	by	CIMA,	which	make	the	omission	errors	to	increase	Figure	19.		

	
Table	9	shows	that	the	methodology	applied	to	two	different	but	comparable	SAR	images,	

CSK	and	TSX,	give	almost	identical	results,	99.7%	overall	accuracy.	The	80.1%	of	user’s	accuracy	
also	shows	an	improvement	in	this	comparison	but	also	reveal	the	imperfection	of	CSK	data.	
In	fact,	CSK	data	were	noisier	compared	to	TSX.	In	the	derivation	of	TSX	flood	map,	additional	
filtering	was	not	necessary	and	the	map	resulting	after	the	thresholding	was	almost	in	its	final	
version.	TSX	not	only	appeared	less	noisy	but	also	were	acquired	with	identical	geometry.	Since	
CSK	constellation	was	activated	during	the	flood	in	order	to	obtain	more	acquisitions	(1	a	day	
during	 the	 emergency),	 more	 false	 alarms	 appeared	 mainly	 due	 to	 differences	 in	 radar	
shadows	between	images	(Figure	32).	For	the	same	reason,	the	NDFVI	index	was	of	no	help	in	
this	 case.	 Few	 areas,	 especially	 along	 the	 rivers,	 showed	 signs	 of	 shallow	 water	 in	 short	
vegetation,	but	the	resulting	maps	were	too	noisy	to	be	trusted	and	it	has	been	preferred	to	
discard	them.			

In	the	Uganda	case	study,	the	derivation	of	flood	maps	was	difficult	for	several	reasons.	
First	of	all,	it	wasn’t	a	big	event,	in	fact	the	maps	were	produced	for	the	Red	Cross/Red	Crescent	
climate	centre	in	order	for	them	to	understand	if	a	real	flood	occurred	or	not	in	the	area	where	
their	emergency	warning	system	was	triggered.	The	flooded	areas	are	rather	small	and	looking	
at	the	maps	in	Figure	20,	we	can	see	how	part	of	these	are	in	fact	semi-permanent	water	bodies	
as	we	can	understand	from	their	river-shape	and	from	the	reference	Open	Street	Map	layer.	
Another	difficulty	comes	from	the	bimodal	rainy	season,	which	lead	to	a	frequent	change	in	
the	land	cover,	which	made	difficult	the	interpretation	of	the	statistics	given	that	no	ground	
truth	was	available.	 Thanks	 to	 the	high	number	of	 reference	 images,	we	 could	 rely	on	 the	
statistics	much	better	than	in	the	other	case	studies	presented.		

Radar	backscatter	 during	 the	days	when	 the	 alerting	 system	was	 triggered	 (November	
19th,	 2015),	 showed	 a	 strong	 increase	 compared	 with	 the	 mean	 value	 in	 the	 reference	
statistics.	The	 increase,	very	well	captured	by	the	NDFVI	 index,	was	non	comparable	with	a	
simple	change	in	vegetation	and	therefore	allowed	us	to	map	shallow	water	in	short	vegetation	
with	confidence	Figure	36.	

3.8	Conclusions		

A	new	methodology	based	on	time-series	statistical	analysis	has	been	proposed	for	rapid	
flood	mapping	with	the	aim	to	exploiting	the	big	EO	data	coming	from	the	new	Sentinels.	Two	
indices	are	proposed	for	highlighting	flooded	areas	and	for	an	easy	derivation	of	flood	maps:	
the	Normalized	Difference	Flood	Index	(NDFI),	for	mapping	open	water	and	the	Normalized	
Difference	Flood	in	Vegetation	Index	(NDFVI)	for	mapping	shallow	water	in	short	vegetation.	
The	two	indices	are	computed	comparing	two	statistics	on	two	different	time-series,	one	with	
only	reference	images	and	one	with	the	images	of	the	flood,	therefore	performing	a	change	
detection:	the	mean	value	(reference)	with	the	minimum	(flood)	for	the	NDVI,	the	maximum	
(flood)	with	the	mean	value	(reference)	for	the	NDFVI.	The	mean	value	aims	at	capturing	the	
normal	condition	of	the	land	cover	of	the	area	analyzed,	the	minimum	the	decreasing	in	radar	
backscatter	due	to	 the	presence	of	 temporary	water,	 the	maximum	the	 increasing	 in	 radar	
backscatter	due	to	shallow	water	in	short	vegetation.	A	threshold	is	then	applied	to	the	two	
indices	in	order	to	derive	the	flood	maps,	all	the	pixel	above	a	certain	value	are	classified	as	
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flooded.	The	maps	so	extracted	are	segmented,	dilatation	and	closure	morphological	filtering	
is	applied,	small	clusters	of	pixels	are	filtered	and	also	pixel	above	a	certain	steepness.		

	
	
	

 
Figure	36	a)	Minimum	pixel	values	of	the	reference	stack	b)	SAR	image	of	November	19th,	2015	
c)	NDFVI		d)	resulting	flood	map	
The	mean	s0	over	flooded	areas	increased	on	average	of	about	2.5	dB,	to	an	average	value	of	
-5	dB.	Moreover,	the	information	that	came	from	the	field	from	the	Red	Cross	indicated	that	
the	majority	of	the	reported	flood	was	exactly	of	this	kind	Figure	37.	
	
	
	

      
Figure	37	Images	shot	by	the	Red	Cross	in	Kapelebyong	area	right	after	the	triggering	of	the	
alert	 (November	 13th	 2015)	 showing	 the	 kind	 of	 flooding	 that	 hit	 the	 area.	
https://www.flickr.com/photos/climatecentre/albums/72157660532090507/with/23066963
062/	
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Additional	filtering	steps	are	performed	in	cases	where	SAR	images	are	noisy	or	acquired	

with	different	geometry	in	order	to	reduce	false	alarms.	
The	methodology	is	non-user	dependent,	it	can	be	easily	automated	and	potentially	it	can	

be	applied	also	by	non	SAR	experts.	It	showed	great	robustness	since	the	same	workflow	has	
been	 applied	 to	 different	 floods	 in	 different	 environment	 and	 using	 different	 SAR	 data	
(different	sensors,	polarization	and	resolution)	giving	very	detailed	flood	maps,	which	show	
good	agreement	with	products	produced	by	third	parties.	Moreover,	shallow	water	in	short	
vegetation	is	derived,	a	product	usually	non	reported	by	emergency	management	services.	It	
is	suitable	for	rapid	mapping	even	though	there	could	be	a	big	amount	of	data	to	be	processed,	
such	as	in	the	case	of	Uganda.	The	advent	of	new	cloud	computing	capability,	such	as	the	one	
offered	by	GEE,	allow	a	fast	analysis	and	export	of	the	results	and	allow	users	with	low	capacity	
to	perform	high	quality	 flood	mapping.	 In	 fact,	 in	GEE	all	 the	S1	catalog	 is	easily	accessible	
online	without	the	need	of	downloading	the	original	product	 locally.	All	 the	analysis	can	be	
performed	online	and	only	the	final	result	has	to	be	downloaded.		

The	methodology	 presents	 a	 new	 promising	 approach	 for	 flood	mapping.	 Time-series	
analysis	 showed	 great	 potential	 also	 in	 the	 case	 of	 optical	 images	 as	 briefly	 showed	 in	
paragraph	3.6.1,	a	methodology	that	can	be	further	explored.	

Nevertheless,	there	are	still	some	limitation.	The	use	of	old	SAR	data,	which	usually	are	
sparse	and	acquired	with	different	geometry,	showed	to	be	more	complicated	and	required	
more	filtering	steps	even	though	we	obtained	very	good	result.	In	urban	areas	we	could	not	
obtain	good	results.	The	resolution	of	S1	did	not	allow	for	detecting	changes	using	only	radar	
intensity	and	at	the	moment	of	this	analysis	no	Single	Look	Complex	data	were	available	on	the	
areas	considered	in	this	paper	and	it	remains	a	possibility	for	further	improvement.	CSK	could	
have	the	potential	for	showing	changes	in	urban	areas	but	for	the	flood	analyzed	in	this	work	
the	 dataset	 did	 not	 allow	 the	 detection	 of	 floods	 because	 the	 images	were	 acquired	with	
different	geometry	and	therefore	the	different	radar	shadow	over	urban	areas	did	not	allow	
the	detection	of	water.	
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4. Flood	depth	estimation	by	means	of	high-resolution	SAR	
images	and	LiDAR	data	

This	 chapter	 presents	 a	 methodology	 for	 flood	 depth	 estimation	 by	 means	 of	 a	 high-
resolution	LiDAR	Digital	Elevation	Model	starting	from	the	flood	maps	derived	in	the	previous	
chapter.	 After	 a	 literature	 review,	 where	 other	 approaches	 to	 flood	 depth	 estimation	 are	
presented,	it	is	explained	how	the	elevation	of	the	water	plane	can	be	estimated	by	means	of	a	
statistical	 analysis	 of	 the	 elevation	 values	 along	 the	 contours	 of	 the	 flooded	 areas.	 The	
methodology	has	been	applied	only	to	the	case	study	of	Veneto	2010	because	no	high-resolution	
DEM	was	available	for	Malawi.	The	chapter	has	the	objective	to	answer	research	question	2:	
“Can	flood	depth	estimation	be	improved	and	suitable	for	rapid	assessment	of	impacts?”	

This	chapter	have	been	submitted	to	the	Journal	“Natural	Hazard	and	Earth	System	Sciences”.	
The	paper,	as	well	as	the	chapter,	has	been	written	autonomously	by	the	author.	The	co-authors	
of	 the	 paper	 are	 Dr.	 Mattia	 Marconcini	 of	 the	 German	 Aerospace	 Centre,	 Germany,	 who	
supervised	the	whole	research	and	Prof.	Carlo	Giupponi	of	the	Ca’	Foscari	University	of	Venice,	
who	revised	the	results.	
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4.1	Flood	depth	by	means	of	remote	sensing	for	assessing	impacts	

In	order	to	assess	impacts	caused	by	floods,	besides	flood	extent,	several	parameters	need	
to	be	monitored,	such	as	flow	velocity,	debris	factor	and	inundation	depth.	Depth	is	particularly	
important	 since	 it	 governs	 the	 damage	 functions	 (or	 vulnerability	 curves	 or	 loss	 functions),	
which	 define	 the	 expected	 damage	 given	 a	 certain	 flood	 depth	 (Mojtahed,	 2013;	 Scorzini,	
2015).	 Therefore,	 in	 ex-post	 assessment	 deriving	 flood	 depth	 is	 essential	 for	 quantifying	
impacts	 and	 damages	 and	 to	 better	 characterize	 flood	 risk	 and	 implement	 disaster	 risk	
reduction	 measures.	 It	 is	 also	 important	 in	 support	 to	 emergency	 response,	 to	 assess	
accessibility	and	design	a	correct	plan	of	intervention,	to	calculate	water	volumes	and	allocate	
resources	for	water	pumping,	to	estimate	rapidly	the	costs	for	intervention	and	reconstruction.	

Remote	sensing,	and	in	particular	Synthetic	Aperture	Radar	(SAR)	data,	have	been	playing	
a	big	role	in	flood	monitoring	since	decades	allowing	the	derivation	of	flood	extent	maps	during	
crisis	 events.	 Chapter	 3,	 in	 addition	 to	 showing	 the	 most	 popular	 methodologies	 of	 flood	
mapping,	presented	a	novel	approach	for	mapping	floods	by	means	of	big	EO	data.	Chapter	4	
builds	upon	the	results	there	presented	and	shows	how	flood	depth	can	be	derived.	

Once	the	flood	extent	is	available,	flood	depth	can	be	assessed	if	a	digital	elevation	model	
(DEM)	 is	 available.	 Different	 free	 global	 DEMs	 are	 available	 globally.	 The	 Shuttle	 Radar	
Topography	Mission	(SRTM)	provided	in	early	2000s	the	first	free	global	DEM	with	a	resolution	
of	3”	(approximately	90	m)	with	an	absolute	height	error	from	5.6	to	9	m	in	all	continents	at	
90%	confidence	level	(Farr	et	al.,	2007).	Advanced	Spaceborne	Thermal	Emission	and	Reflection	
Radiometer	(ASTER)	Global	DEM	is	another	freely	accessible	dataset	at	30	m	spatial	resolution	
with	an	accuracy	of	17	m	at	the	95%	confidence	level	(Tachikawa	et	al.,	2011).	A	more	recent	
dataset	 is	 the	 TanDEM-X	 developed	 by	 the	 German	 Aerospace	 Centre	 (DLR)	with	 a	 spatial	
resolution	of	12	m,	vertical	accuracy	of	2	m	and	a	cost	of	100€	per	quota,	i.e.	7700	Km2	(Eineder	
et	al.,	2012;	Schumann	et	al.,	2014).	This	kind	of	products	are	more	suitable	for	regional	studies.	
Local	datasets	instead	can	reach	much	higher	resolutions	at	the	cost	of	much	smaller	coverage	
and	 higher	 costs.	 In	 particular,	 DEM	 derived	 from	 Light	 Detection	 and	 Ranging	 (LiDAR)	
instrument	are	frequent	for	many	locations.	In	the	case	of	the	Italy,	as	presented	in	this	chapter,	
LiDAR	DEM	is	available	at	1	m	spatial	resolution	free	of	costs	for	non-private	purposes1.	The	
higher	the	resolution	of	a	DEM	is,	the	more	detailed	information	about	the	flood	depth	can	be	
derived.		

Several	approaches	have	been	followed	in	the	past,	as	far	as	the	80s,	for	deriving	flood	
depth	using	flood	maps	and	DEM	.	Gupta	&	Banerji	(1985)	used	Landsat	Multispectral	Scanning	
System	(MSS)	to	derive	the	water	volume	of	a	dam	reservoir	in	the	Himalayas.	Water	level	has	
been	estimated	superimposing	the	contour	of	the	water	surface	to	the	topography.	Ten	years	
later,	Oberstadler	et	al.	(1996)	used	ERS-1	data	to	derive	flood	extent	and	superimposed	the	
flood	map	plotted	in	transparencies	to	a	map	with	topographic	contours.	Water	stages	were	
registered	manually	at	500	m	steps.	Mason	et	al.	(2001)	derived	the	inter-tidal	shoreline	using	
several	ERS	SAR	data	and	heighted	them	using	a	hydrodynamic	model	based	on	depth-averaged	
hydrodynamics	including	the	effects	of	tides	and	meteorological	forcing.	Matgen	et	al.	(2007)	
used	ENVISAT-ASAR	at	12.5	m	resolution	and	a	Light	Detection	And	Ranging	(LiDAR)	DEM	at	2	
m	to	assess	water	depth	for	the	flood	of	the	Alzette	river	in	Luxembourg	in	2003.	Flood	edges	
derived	from	ASAR	were	intersected	with	LiDAR	data	to	estimate	elevation	at	the	contour.	The	
water	 surface	 was	 computed	 using	 two	 different	 interpolation	 modelling:	 Triangulated	

																																																													
1	http://www.pcn.minambiente.it/GN/	
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Irregular	Network	(TIN)	generation	and	multiple	linear	regression.	Subtracting	the	DEM	to	the	
water	elevation,	the	depth	was	calculated.	This	work	was	improved	by	Schumann	et	al.	(2007)	
where	the	authors	computed	the	water	elevation	combining	the	regression	model	with	the	TIN	
generation.	The	same	methodology	was	used	 in	Schumann	et	al.	 (2008)	 to	compare	results	
using	 different	 elevation	 data:	 LiDAR,	 topographic	 contours	 and	 Shuttle	 Radar	 Topographic	
Mission	(SRTM)	DEM.	The	study	showed	the	best	performance	of	 the	high-resolution	LiDAR	
data	(2	m)	but	also	an	acceptable	result	with	SRTM.	Zwenzner	&	Voigt	(2008)	proposed	a	similar	
methodology	also	based	on	a	model	to	fit	the	left	and	right	bank	elevation	derived	from	SAR	
based	water	map	and	DEM	intersection.	A	sequence	of	densely	spaced	river	cross	sections	is	
shifted	and	adjusted	individually	in	order	to	obtain	the	correct	water	level.		

These	methodologies	assume	that	water	level	must	be	the	same	at	the	left	and	at	the	right	
of	the	river	cross	section,	indirectly	assuming	that	the	riverbanks	are	perfectly	symmetric	and	
that	the	river	flow	dynamics	and	the	dynamics	in	the	flood	plain	is	not	conditioning	the	overflow	
and	the	following	stream.	If	on	the	one	hand	this	assumption	takes	into	consideration	the	slope	
of	the	river	and	define	an	equilibrium	condition	at	the	ends	of	the	cross-sections,	on	the	other	
hand	it	may	not	fit	many	types	of	floods	caused	by	riverbanks	ruptures,	asymmetric	river	banks	
and	complex	dynamics	of	the	inundation.		

More	recently,	Huang	et	al.	(2014)	derived	flood	depth	using	Landsat	and	LiDAR	data.	The	
assumption	 in	 this	 case	 is	 that	 if	 the	 flooded	area	 is	 small	 enough,	 the	water	plane	 can	be	
considered	flat.	Therefore,	they	divided	the	flood	extent	derived	from	Landsat	data	in	zones	
with	size	750	x	750	m.	For	each	of	these,	they	“filled”	the	correspondent	DEM	up	to	the	level	
that	gave	the	same	flood	extent	(measured	using	a	Kappa	coefficient).	Certain	zones	can	be	
completely	covered	by	water	and	this	method	cannot	be	applied.	 In	order	to	assign	them	a	
water	level,	the	average	of	the	height	neighbours	is	taken.	Finally,	a	water	surface	is	computed	
using	an	interpolation	method	(Kriging)	and	the	depth	computed	from	the	difference	with	the	
DEM	of	the	same	area.	A	similar	approach	was	followed	by	Brown	et	al.	(2016).	In	this	case,	a	
flood	extent	map	was	derived	 from	SAR	using	a	 semi-automated	method	 (thresholding	and	
manual	interpretation	and	correction)	and	elevation	along	the	flood	edges	was	measured	from	
a	LiDAR	at	100	m	intervals.	Elevation	points	were	inspected	and	in	certain	cases	corrected	or	
added	by	an	operator	in	order	to	improve	the	water	surface	elevation	estimation.	The	water	
surface	was	then	created	using	TIN	interpolation.	

Instead,	 Iervolino	et	al.	 (2015)	describes	a	SAR	backscattering	model	 in	case	of	 flood	 in	
contrast	 to	 a	 pre-event	 one	 and	 from	 its	 inversion,	 they	 derive	 the	 flood	 depth.	 Two	
methodologies	are	proposed:	Single	Image	Object	Aware	“allowing	the	evaluation	of	the	water	
level	in	the	proximity	of	a	selected	local	building	target	if	the	a	priori	knowledge	of	the	target	
ground	truth	and	two	gauges	in	its	premises	is	given	(Object	Aware)”	and	Two	Images	Areas	
Aware,	which	“relies	on	a	couple	of	images	pre-	and	during/post-	event,	and	permits	to	retrieve	
the	flood	level	at	a	global	scale	all	over	the	image	if	an	unflooded	area	in	the	during/post-event	
image	 is	available	to	perform	the	calibration	(Area	Aware)”.	Even	though	an	 interesting	and	
promising	 approach,	 the	 two	 methods	 look	 complex	 and	 not	 applicable	 by	 non-experts.	
Furthermore,	ancillary	data	of	difficult	retrieval	are	needed,	such	as	data	from	gauge	stations	
and	information	about	building	affected	by	the	flood.		

As	already	mentioned,	flood	depth	is	important	not	only	for	emergency	response,	but	also	
for	impact	assessment.	Purely	economic	works	use	flood	depth	for	assessing	direct	and	indirect	
impacts	of	floods	by	mean	of	depth-damage	functions.	Depth	is	usually	retrieved	from	third	
sources.	 In	certain	cases,	 such	as	 in	 (Carrera	et	al.,	2013),	 flood	depth	 information	was	not	
available	and	therefore	all	possible	flood	depth	values	were	taken	into	account	in	using	depth-
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damage	functions	for	computing	economic	 impacts.	The	uncertainty,	already	 intrinsic	 in	the	
methodology	used,	was	amplified	by	the	lack	of	depth	information,	resulting	in	a	huge	range	of	
possible	damage,	roughly	4	billion	€	in	case	of	minimum	flood	(1	m)	to	roughly	10	billion	€	for	
the	most	devastating	scenario	(6	m).	Even	though	the	work	considered	a	quite	vast	event	(1182	
Km2)	spreading	all	over	northern	Italy,	it	could	have	been	improved	if	flood	depth	was	available.	
In	a	similar	work,	Amadio	et	al.	(2016)	estimated	detailed	losses	caused	by	the	2014	flood	in	
Emilia	Romagna,	Italy.	They	made	use	of	a	simulated	max	flood	depth	computed	by	D’Alpaos	
et	al.	(2014)	by	means	of	hydraulic	models.	In	this	case,	depth	values	allowed	a	precise	impact	
assessment,	but	the	capacity	needed	is	higher	(such	as	the	amount	of	information	for	running	
the	model	and	the	time	needed)	and	the	uncertainty	introduced	by	the	model	has	to	be	taken	
into	account,	since	it	may	over-	or	under-estimate	the	extent	and	therefore	the	consequent	
depth.	

The	methodologies	based	on	satellite	data	and	the	one	proposed	in	this	chapter	instead,	
can	assist	economic	impact	assessment	methods	for	a	rapid	estimation	of	losses	(and	precise	
in	case	of	high-resolution	elevation	data	available)	as	well	as	the	development	of	emergency	
plans.	

4.2	Flood	depth	estimation	

The	methodology	 is	made	of	 three	main	 steps	 as	 explained	 in	 Figure	38:	 a)	 flood	map	
extraction,	b)	estimation	of	the	elevation	of	the	water	surface	and	c)	flood	depth	calculation.		

Flood	maps	 are	 obtained	 using	 a	 methodology	 developed	 by	 the	 authors	 (Cian	 et	 al.,	
submitted)	 based	 on	 the	 multi-temporal	 statistical	 analysis	 of	 two	 stacks	 of	 images:	 one	
containing	only	reference	 images	and	another	one	containing	also	 images	of	the	event.	The	
mean	 value	 of	 each	 pixel	 throughout	 the	 reference	 stack	 is	 computed	 together	 with	 the	
minimum	value	of	each	pixel	throughout	the	“flooded”	stack.	The	two	statistics	are	used	to	
derive	 the	 Normalized	 Difference	 Flood	 Index	 (NDFI),	 which	 is	 the	 normalized	 difference	
between	the	mean	(reference)	and	the	minimum	(flood)	value.	The	index	highlights	flooded	
area	and	allow	to	easily	separate	flooded	pixels	by	non-flooded	ones	by	means	of	a	constant	
threshold.	Additional	slope	and	morphological	filtering	is	used	in	order	to	clean	the	map	from	
spurious	flooded	areas	and	false	alarms.		

Similarly	to	Huang	et	al.	(2014)	and	Brown	et	al.	(2016),	we	supposed	that	the	water	surface	
of	the	flooded	areas	is	flat.	This	can	be	considered	a	fair	assumption	in	those	cases	where	the	
slope	of	the	affected	area	is	gentle	and	the	velocity	of	the	stream	is	modest.	More	precisely,	
we	do	not	 assume	a	 single	 constant	 elevation	 for	 each	 flooded	 area,	 but	 a	 constant	water	
elevation	 inside	 each	 flooded	 polygon.	 Therefore,	 we	 do	 take	 into	 consideration	 the	 usual	
decrease	of	elevation	along	a	river.	Under	this	assumption,	if	the	flood	extent	map	was	perfect,	
along	the	contour	of	flooded	areas	we	should	read	a	(quasi)	constant	value	of	elevation	from	
the	DEM,	which	would	be	the	elevation	of	the	water	surface.	In	practice,	this	is	not	happening	
because	of	different	sources	of	errors.	On	the	one	hand,	there	are	imperfections	in	the	SAR	
maps,	where	 the	nature	of	 SAR	 images	 (speckle,	 radar	 shadow,	 layover…)	 can	 lead	 to	 false	
alarms	or	omission	errors	and	where	vegetation	or	man-made	objects	can	cover	or	interfere	
with	the	flooded	area	leading	to	other	omission/commission	errors.	On	the	other	hand,	we	can	
have	errors	 in	 the	digital	elevation	model	and	misalignment	between	the	SAR	data	and	 the	
DEM.	Therefore,	if	we	want	to	estimate	the	right	elevation	of	each	water	surface,	on	the	one	
hand	we	should	look	for	the	maximum	elevation	along	the	contours	in	order	to	compensate	for	
omission	errors	 (e.g.	 flood	 covered	by	 vegetation),	 on	 the	other	hand	we	 should	 get	 rid	of	
outliers,	such	as	high	elevation	values	resulting	from	SAR	and	DEM	misalignment.		
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To	 do	 that,	 from	 the	 polygons	 representing	 the	 flooded	 areas,	 elevation	 values	 are	
extracted	 along	 their	 contours	 from	a	 high-resolution	DEM	by	means	 of	 a	 script	written	 in	
Python,	which	take	advantage	of	the	arcpy	library.	For	each	contour,	percentiles	are	computed	
and	values	below	the	30th	and	above	the	90th	percentile	are	removed.	In	fact,	we	assumed	that	
the	values	on	the	tails	of	the	distribution	are	outliers.	For	the	remaining	percentiles	 in	each	
polygon,	 the	 derivative	 is	 computed	 and	 a	 condition	 is	 applied	 from	 the	 highest	 percentile	
toward	the	lowest.	We	check	if	the	difference	between	the	nth	percentile	and	the	(n-2)th	is	lower	
or	equal	to	10	cm.	If	the	condition	is	not	satisfied,	the	nth	percentile	is	dropped	and	the	next	
difference	is	computed	((n-2)th	-	(n-4)	th,	((n-4)th	-	(n-6)	th,…).	Once	the	condition	is	satisfied,	the	
estimated	water	elevation	will	be	the	one	corresponding	to	the	second	to	highest	percentile	
satisfying	the	condition.	The	adaptive	threshold	takes	care	of	the	different	condition	of	each	
single	polygon	and	is	able	to	decrease	the	error	compared	to	the	fixed	threshold	set	on	the	90th	
percentile.		

Once	water	surface	is	computed,	we	can	easily	calculate	flood	depth	by	subtracting	to	it	
the	actual	 terrain	elevation	 value.	 In	 few	cases,	where	 the	geometry	of	 the	polygon	or	 the	
elevation	of	the	area	is	complex,	the	estimation	of	water	surface	can	be	wrong.	This	is	easily	
detectable	by	looking	at	the	flood	depth	values.	If	a	polygon	contains	too	many	negative	values,	
this	 indicates	that	we	underestimated	the	water	elevation.	 If	 it	contains	depth	values	much	
different	from	its	neighbours	or	very	high	value	of	depth,	it	indicates	that	we	overestimate	the	
water	elevation.	Therefore,	we	select	 the	polygons	showing	unexpected	behaviours	and	we	
compare	them	with	a	DEM	filled	with	the	same	water	elevation.	If	the	extent	does	not	match,	
we	manually	look	for	the	elevation	value	that	best	approximated	the	flood	extent	and	set	it	as	
the	water	elevation.	Then	we	compute	again	the	flood	depth	and	reiterate	the	steps	until	we	
have	a	satisfying	result.		

	

	
Figure	38	Flood	Depth	Estimation	Methodology	

4.3	Case	Study:	Veneto	2010		

The	methodology	has	been	applied	 to	 the	 flood	occurred	 in	Veneto	 in	November	2010	
presented	 in	 Chapter	 2.	 Three	main	 flooded	 areas	 are	 considered	 as	 shown	 in	 Figure	 2	 in	
Chapter	2:	Vicenza	and	its	surrounding	(A),	Bovolenta	area	at	the	south	of	Padua	(B)	and	Saletto	
area	at	the	south	of	Colli	Euganei	(C).	The	area	of	Veggiano	indicated	as	A1,	together	with	area	
B,	is	the	area	where	a	hydraulic	simulation	was	available	allowing	a	comparison	of	results.	
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4.4	Data	Used	

Flood	maps	were	derived	using	COSMO-SkyMED	data	provided	by	the	Italian	Space	Agency	
and	 following	 the	methodology	 proposed	 in	 Chapter	 3.	 Table	 10	 shows	 the	 complete	 SAR	
dataset	used.	In	addition	to	the	SAR	data,	different	DEMs	have	been	used	for	deriving	flood	
depth.	Table	11	shows	the	dataset.	The	LiDAR	from	the	Venice	River	Basin	Authority	at	2	m	
resolution	have	been	used	 for	 the	Vicenza	 area	of	 interest,	 the	 LiDAR	 from	 the	ministry	of	
Environment	at	1	m	for	the	other	two	areas	of	study.	The	DTM	at	5	m	from	the	Veneto	Region	
geodatabase	was	used	for	the	whole	area	of	interest.	

In	order	to	validate	the	results,	in	absence	of	proper	ground	truth,	we	made	use	of	different	
datasets	that	allowed	us	a	qualitative	assessment	of	our	maps:	

• A	simulation	of	the	event	by	means	of	a	hydrological	model	were	flood	depth	was	
obtain	as	described	by	(Viero	et	al.,	2013)	where	flooding	extents	were	estimated	
using	the	2DEF	finite	elements	model	(Viero	et	al.,	2014).	The	flood	depth	maps	
were	calculated	for	November	3rd	and	4th	at	the	same	time	of	the	SAR	acquisition	

• A	 set	 of	 aerial	 photographs	 acquired	 on	 November	 1st	 taken	 by	 the	 Firemen	
Department	of	Vicenza	covering	mainly	the	Vicenza	area	of	interest	

• A	set	of	field	photographs	taken	from	the	Civil	Protection	of	Saletto	on	November	
1st	and	2nd	covering	the	area	of	Saletto.		

Table	10	List	of	SAR	data	used	for	deriving	flood	maps	of	the	event		

Sensor	 Orbit		
(Pol)	 Date	 Incidence	

Angle	
Status	

Acquisition	
Time	(UTC)	

COSMO-SkyMed	 Descending	 31/10/2008	 27.7-30.8	 Reference	 17:35	
Stripmap	3	m	 (HH)	 28/04/2010	 28.9-31.8	 Reference	 17:30	

(X)	 	 03/11/2010	 37.4-40.1	 Flood	 17:22	
	 	 04/11/2010	 40.1-42.6	 Flood	 18:10	
	 	 06/11/2010	 27.7-30.9	 Flood	 17:28	
	 Ascending	 29/08/2010	 31.1-34.2	 Reference	 5:01	
	 (HH)	 01/11/2010	 31.1-34.2	 Flood	 5:01	
	 	 07/11/2010	 47.0-49.2	 Flood	 5:13	

	

Table	11	List	of	DEMs	used	for	deriving	flood	depth	

Dataset	
(Provider)	 Resolution	(m)	 Date	of	

production	
Vertical	
Accuracy	

DTM	–	LiDAR	
(The	Ministry	of	the	Environment	and	
Protection	of	Land	and	Sea	of	Italy)	

1	m	 2012	 20	cm	(1σ)	
25	cm	(2σ)	

DTM	–	LiDAR		
(Venice	River	Basin	Authority	)	

2	m	 2004	 /	

DTM	
(Veneto	Region	Geoportal)	

5	m	 	 /	
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4.5	Results	

The	 methodology	 is	 based	 on	 the	 statistical	 analysis	 of	 elevation	 values	 along	 the	
contours	of	the	flooded	polygons.	Figure	39	shows	the	percentile	values	of	elevation	for	all	the	
polygons	in	the	Vicenza	area	of	interest	on	November	3rd.	The	central	part	of	the	profiles	(from	
30th	to	90th	percentile)	is	reasonably	flat,	on	the	contrary	of	their	upper	and	lower	part.	The	
upper	part	 is	generally	steep	and	it	reaches	rapidly	a	plateau	below	the	90th	percentile.	The	
threshold	on	 the	90th	percentile	 cuts	out	most	of	 the	upper	outliers.	The	 lower	part	of	 the	
profiles	 (below	 the	30th	percentile)	 is	more	diverse,	 in	most	of	 the	cases	 it	 is	 flat	but	 some	
profiles	show	a	steep	increment	of	elevation	or	a	step-like	behaviour.	The	threshold	on	the	30th	
percentile	allow	to	get	rid	of	most	of	these	variations.	The	adaptive	threshold	allows	setting	the	
water	 elevation	 on	 the	 correct	 segment	 of	 the	 profile:	 it	 prevents	 to	 overestimate	 water	
elevation	since	it	gets	rid	of	upper	outliers	and	it	prevents	to	underestimate	it	posing	a	limit	on	
the	lower	percentile	and	setting	a	threshold	on	the	slope	of	the	profile.	Some	irregular	profiles	
can	be	seen	in	the	plot	and	for	them,	the	methodology	proposed	does	not	always	work	because	
of	the	complex	geometry	of	the	polygons	or	the	complex	terrain	elevation	underneath.	In	those	
few	 cases,	 the	 elevation	 increases	without	 showing	 a	 predominant	 value	 and	 the	 resulting	
maximum	 elevation	 does	 not	 always	 represent	 the	 correct	 water	 elevation.	 For	 those	 few	
cases,	 it	 is	necessary	 to	 intervene	manually	as	 it	 is	not	possible	 to	guess	 the	right	elevation	
simply	looking	at	the	statistics.	

	

Figure	39	Elevation	percentiles	for	each	flood	polygon	in	the	Vicenza	area	on	November	3rd.	
The	90th	percentile	and	the	30th	percentile	thresholds	are	highlighted.		

Flood	maps	were	 restricted	 to	 the	 area	 covered	 by	 LiDAR	 data	 and	 therefore	 flood	
depth	is	reported	only	limited	to	this	area.	LiDAR	data	covered	the	whole	flood	area	except	for	
some	parts	of	 the	 flood	 in	 the	Vicenza	area	of	 interest	as	 indicated	 in	Figure	44.	 	Figure	40	
shows	the	results	for	the	Vicenza	area	of	interest.	From	the	images	it	is	possible	to	appreciate	
the	dynamics	of	the	event,	i.e.	the	receding	of	water	from	the	3rd	to	the	6th	of	November,	where	
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extent	and	depth	decline	gradually.	In	this	case,	the	flooded	area	extends	for	several	kilometers	
along	the	Bacchiglione	river	where	the	terrain	elevation	decreases	gradually	from	the	north-
west	to	the	south-east.	Since	we	estimate	water	elevation	for	each	single	polygon,	we	are	able	
to	take	into	consideration	also	the	slope	of	the	river	as	shown	in	the	same	figure	on	the	top	left	
box.	For	a	flood	like	this,	the	hypothesis	of	a	flat	water	surface	inside	a	single	polygon	is	a	good	
approximation	since	the	flood	evolution	is	slow	and	therefore	water	surface	can	be	considered	
flat.	This	is	especially	true	in	case	of	the	Bovolenta	and	Saletto	area	of	interest.	Figure	41	shows	
the	flood	depth	for	the	Bovolenta	area	of	interest	on	November	4th	and	6th.	The	top	right	box	
shows	a	zoom	of	the	results	where	the	high	level	of	detail	can	be	appreciated.	Figure	42	shows	
the	results	for	the	Saletto	area	on	November	3rd,	4th,	6th	and	7th.	Also	in	these	cases,	we	can	
appreciate	the	receding	of	the	flood	and	the	consequent	decreasing	of	flood	depth.	

4.6	Discussions	

4.6.1	Comparing	results:	hydrological	simulation	

Flood	depth	obtained	with	the	presented	methodology	has	been	compared	with	the	
one	derived	by	means	of	a	hydrological	model	provided	by	(Viero	et	al.,	2013).	The	simulation	
was	available	for	the	area	of	Veggiano	and	Bovolenta	on	November	3rd	and	4th	at	the	same	time	
of	the	SAR	acquisitions	over	the	same	areas.	Figure	43	in	the	first	and	second	column,	shows	
the	water	elevation	simulated	and	the	correspondent	water	depth.	The	third	column	shows	the	
difference	between	the	flood	depth	derived	with	our	methodology	and	the	simulated	ones.	
The	 fourth	 column	 shows	 the	 difference	 between	 the	 water	 levels	 obtained	 with	 our	
methodology	and	the	simulated	ones.	Some	differences	can	be	seen	between	the	two	series	of	
results.	The	light	yellow	areas	in	the	difference	images	indicates	that	the	results	are	comparable	
since	the	±	15	cm	can	be	considered	a	tolerable	variance.	Water	level	estimation	is	very	similar	
between	the	two	methodologies	as	we	can	see	in	the	fourth	column	of	Figure	43.	In	the	areas	
were	we	notice	a	bigger	difference	between	the	two	products,	it	is	clear	that	our	methodology	
is	underestimating	the	water	level.	The	reason	for	this	is	the	difference	in	water	extent	between	
the	 simulation	 and	 the	 SAR	 based	 flood	 maps	 as	 highlighted	 in	 Figure	 44.	 The	 model	
overestimates	the	extent	of	the	flood	leading	to	a	higher	water	elevation.	The	third	column	of	
Figure	43	shows	 the	difference	 in	water	depth.	Given	 the	difference	 in	water	elevation,	we	
expected	 a	 similar	 difference	 in	 water	 depth.	 Instead,	 in	 certain	 areas	 (for	 example	 in	
Bovolenta,	bottom	right	of	water	depth	difference)	even	if	our	methodology	underestimated	
the	water	level,	flood	depth	results	to	be	overestimated.	Overall,	the	two	results	show	good	
agreement	even	if	the	differences	in	flood	depth	are	greater	compared	to	the	difference	on	
water	levels.	This	behaviour	indicates	that	the	main	source	of	discrepancies	must	be	the	DEM.		
Table	12	confirms	the	analysis	showing	the	Root	Mean	Square	Error	(RMSE)	and	the	maximum	
error	 between	 the	 two	 products.	 The	 RMSE	 on	 flood	 depth	 is	 74	 cm	 for	 November	 4th	 in	
Bovolenta,	80	and	83	 respectively	 for	 the	November	3rd	and	4th	 for	 the	Veggiano	area.	The	
maximum	error	 is	992	cm	in	Veggiano	on	November	3rd.	 If	we	compare	the	water	elevation	
instead		of	the	flood	depth,	the	difference	between	the	two	methodology	is	much	smaller:	the	
RMSE	for	Bovolenta	on	November	4th	is	only	22	cm,	47	and	69	respectively	for	Veggiano	area	
on	November	3rd	and	4th.	The	maximum	error	is	475	cm	in	Veggiano	on	November	4th.	
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Figure	40	Flood	Depth	for	Vicenza	area	of	 interest	on	November	3rd,	4th	and	6th.	Red	values	

indicate	 error	 in	 the	 estimation	of	 the	water	 surface	 elevation.	 The	 top	 left	 image	
shows	the	water	level	derived	for	November	3rd.	

	

Figure	41	Flood	Depth	for	 the	Saletto	
area	 of	 study	 on	 November	 4th	 and	
November	6th.	The	top	right	box	shows	
a	zoom	of	the	results	on	November	3rd	
highlighting	 the	 high	 level	 of	 detail	
achievable.	 Red	 pixels	 represent	 the	
error	in	the	water	level	estimation.				
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Summarizing,	the	main	sources	of	errors	are	two:	1)	the	extent	of	the	flood	simulated	by	
the	model,	which	is	different	from	the	observed	one	as	we	can	see	in	Figure	44	for	the	Veggiano	
area	on	November	3rd,	and	2)	the	difference	in	the	elevation	values	between	the	DTM	used	by	
the	model	(the	regional	DTM	at	5	m)	and	the	one	used	in	our	methodology	(LiDAR	at	1	and	2	
m).		

Table	13	shows	the	extent	comparison	between	our	flood	maps	and	the	simulated	ones.	
The	assessment	has	been	carried	out	on	the	whole	area	of	interest	of	Veggiano	and	Bovolenta.	
Despite	a	decent	overall	accuracy	for	all	the	maps,	the	accuracy	on	flood	is	quite	low.	Even	if	
we	know	that	SAR	based	flood	maps	are	not	perfect,	they	represent	with	good	confidence	the	
ground	truth.	The	model	overestimated	the	flood	extent	and	therefore	introduces	errors	in	the	
computation	of	water	levels	and	flood	depth.	In	the	case	of	Bovolenta,	the	overestimation	is	of	
35	Km2	(69.3	Km2	against	34.3	Km2),	which	introduces	the	difference	in	water	level	estimation.	

	

	

	

	

Figure	42	Flood	Depth	for	the	Saletto	area	of	interest	on	November	3rd,	4th,	6th		7th	
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Table	12	Comparison	between	water	elevation	and	flood	depth	obtained	with	the	hydrological	
model	and	the	proposed	methodology	

Bovolenta	

(LiDAR	1m)	

RMSE	

[cm]	

Max	Error	

[cm]	

4	Nov	–	Depth	 74	 370	

4	Nov	–	Water	Elevation	 22	 268	

Veggiano	

(LiDAR	2m)	

	 	

3	Nov	-	Depth	 80	 992	

3	Nov	–	Water	Elevation	 47	 294	

4	Nov	-	Depth	 83	 475	

4	Nov	–	Water	Elevation	 69	 174	

	

	

Table	13	Flood	extent	assessment:	extents	comparison	between	SAR	based	map	and	simulated	
flood.	Flood	extent	accuracy	has	been	calculated	as	the	ration	between	the	agreement	
in	flood	extent	and	the	total	simulated	extent			

	 Overall	
Accuracy	

[%]	

Flood	Extent	
Accuracy	

[%]	

Flooded	Area	
Model	

[Km2]	

Flooded	Area	SAR	
based	

[Km2]	

3	Nov	-	Veggiano	 78	 64	 6.81	 5.86	

4	Nov	–	Veggiano	 82.5	 57	 4.87	 3.82	

4	Nov	-	Bovolenta	 89.5	 45	 69.3	 34.3	

	

Figure	 45	 shows	 the	 comparison	 of	 flood	 extent	 obtained	 from	 the	 hydrological	
simulation	(left)	with	the	SAR-based	flood	map	on	the	same	day	(right),	where	the	estimated	
water	elevation	is	shown.	Comparing	the	two	products,	the	simulation	is	overestimating	the	
extent.	The	image	in	the	middle	of	Figure	45	is	the	LiDAR	DEM	classified	with	the	same	values	
of	the	estimated	water	elevation,	where	the	outline	of	the	SAR-based	flood	map	is	overlaid.	We	
can	notice	the	almost	perfect	correspondence	between	this	map	and	the	SAR-based	map:	the	
thresholds	on	elevation	create	areas	with	similar	extent	as	the	SAR	observation.	This	confirm	
that	the	hydrological	model	is	overestimating	the	flood.		
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4.6.2	Comparing	results:	LiDAR	and	DTM	

Flood	depth	was	computed	using	the	LiDAR	DEM	(at	1	m	resolution	for	the	Bovolenta	and	
Saletto	area,	and	at	2	m	resolution	for	the	Vicenza	area)	and	using	the	regional	DTM	at	5	m	
resolution	as	a	comparison.	Even	though	the	regional	DTM	has	a	good	resolution,	we	noticed	
big	differences	between	the	two	products.	 In	fact,	 in	certain	points	the	elevation	difference	
between	the	two	dataset	were	exceeding	10	m.	The	quality	of	the	regional	DTM	does	not	seem	
to	be	comparable	with	LiDAR	products.	This	is	of	course	affecting	the	results	obtained	using	the	
DTM,	which	are	less	precise.	Figure	46	shows	the	improvement	obtained	by	using	the	LiDAR	
compared	to	the	DTM.	Not	only	the	horizontal	resolution	can	be	improved,	but	especially	the	
vertical	resolution	and	therefore	the	flood	depth.	Many	differences	can	be	noticed	in	the	two	
products,	which	highlights	the	importance	of	a	good	DTM	in	depth	estimation.		

Table	14	shows	the	comparison	between	the	flood	depth	obtained	using	LiDAR	datasets	
and	the	DTM	at	5	m	resolution.	For	Vicenza	area	the	RMSE	exceeds	1	m	on	November	3rd	and	
4th	and	just	below	this	threshold	on	November	6th.	In	the	case	of	Bovolenta	and	Saletto	RMSE	
is	 lower	 (from	 0.82	 in	 Bovolenta	 on	 the	 4th	 of	 November	 to	 0.54	 in	 Saletto	 for	 the	 7th	 of	
November)	but	still	exceeding	half	a	meter.	The	analysis	shows	that	the	bigger	the	extent	of	
the	 flood,	 the	bigger	 the	difference	between	 the	 two	 results.	 This	 is	 also	 confirmed	by	 the	
comparison	 of	 the	 different	 DTMs.	 They	 have	 been	 compared	 on	 the	 area	 covered	 by	 the	
hydrological	model,	Veggiano	and	Bovolenta.		

Table	15	shows	the	RMSE	and	the	maximum	difference	between	the	different	datasets.	
The	RMSE	is	130	cm	for	the	Veggiano	area	with	a	maximum	error	of	460	cm,	for	the	Bovolenta	
area	 the	 RMSE	 is	 136	 cm	with	 a	maximum	 error	 of	 1365	 cm.	 The	 difference	 between	 the	
different	DTMs	is	big	and	explains	the	difference	in	flood	depth	using	the	different	DTMs.	As	
mentioned	in	the	previous	paragraph,	it	explains	also	part	of	the	discrepancies	in	the	results	
obtained	with	our	methodology	and	the	hydrological	simulation.	

4.6.3	Adaptive	Threshold	

Adaptive	threshold	 is	useful	for	estimating	the	correct	elevation	of	the	water	surface	in	
those	 cases	 where	 flood	 polygons	 have	 a	 complex	 geometry,	 which	 can	 overlap	 complex	
elevation	 or	 can	 encompass	 vegetation,	 roads,	 built-up	 areas.	 Theoretically	 we	 expect	 the	
elevation	along	the	contour	of	each	polygon	to	be	constant.	As	already	mentioned,	due	to	many	
sources	of	error,	in	practice	the	elevation	would	vary	along	the	contour.	A	static	threshold	on	
the	90th	percentile	would	cut	out	almost	all	the	outliers	allowing	to	estimate	as	a	first	guess,	
the	correct	elevation	of	the	water	surface.	Unfortunately,	a	fixed	threshold	cannot	work	for	all	
the	flooded	areas	as	well	as	the	same	percentile	for	different	case	study.	Therefore,	we	made	
it	adaptive	in	order	to	take	into	consideration	each	single	case.	Figure	47	shows	the	flood	depth	
estimated	with	 the	 fixed	and	with	 the	adaptive	 threshold.	 It	 can	be	easily	noticed	how	 the	
adaptive	threshold	allows	to	improve	the	estimation	of	water	depth	(A).	In	the	highlighted	area,	
a	fixed	threshold	on	the	90th	percentile	would	have	estimated	higher	values	of	flood	depth.	
Nevertheless,	in	few	cases,	the	methodology	still	makes	wrong	estimation	as	shown	in	Figure	
47	(B).	In	this	case,	too	many	negative	flood	depth	values,	indicates	an	underestimation	of	the	
water	 elevation,	 which	 was	 corrected	 manually	 as	 explained	 in	 the	 previous	 paragraphs.	
Nonetheless,	 despite	 some	 inaccuracies	 and	 some	 manual	 work	 needed,	 the	 use	 of	 the	
methodology	with	an	adaptive	threshold	had	improved	the	result	over	of	the	area	of	study.			
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Finally,	the	methodology	can	provide	a	rapid	flood	depth	map	useful	for	a	rapid	estimate	
of	 flood	 damages.	 In	 the	 future,	 the	 methodology	 may	 be	 further	 developed	 in	 order	 to	
automatize	the	manual	steps	needed	to	optimize	the	results.	An	integration	with	a	DEM	filling	
algorithm	seems	to	be	the	right	direction	to	take.	

4.6.4	Validation	with	Aerial	Photos		

	

Figure	 44	 Comparison	 between	 SAR-based	 flood	 extent	 and	 simulated	 flood	 extent	 for	 the	
Veggiano	 area	 on	 November	 3rd.	 In	 green,	 the	 coverage	 of	 the	 LiDAR	 DTM	 is	
highlighted.		

Ground	 truth	 data	 consist	 of	 aerial	 pictures	 taken	 on	 November	 1st,	 right	 after	 the	
beginning	 of	 the	 event,	 and	 of	 field	 pictures	 taken	 on	November	 2nd	 from	 civil	 protection.	
Unfortunately,	they	do	not	match	the	dates	of	satellite	acquisitions.		

Nevertheless,	 given	 the	 dynamic	 of	 the	 flood,	 they	 can	 be	 used	 to	 assess	 the	 results	
obtained	with	the	methodology	proposed.	We	compared	this	ground	truth	with	the	flood	depth	
maps	of	November	3rd.	

Figure	48	shows	flood	depth	on	November	3rd	on	the	area	of	Ponti	di	Debba,	south	of	the	
city	of	Vicenza	(box	1).	Aerial	view	of	the	area	is	from	November	1st		at	3:45	pm	local	time	(box	
2).	 In	 between	 the	 two	 dates,	 the	 flood	 in	 this	 area	 receded	 and	 in	 fact	 is	what	 it	 can	 be	
observed	comparing	the	extent	in	box	1	with	the	observation	in	box	2.	The	two	red	
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Figure	45	Flood	extent	comparison	for	Bovolenta	area	on	November	4th:	simulated	flood	(left),	
DEM	filled	extent	(centre),	SAR	based	flood	map	(right)	

	

	

Figure	46	Flood	depth	estimation	by	means	of	LiDAR	DTM	at	1	m	resolution	(left)	and	by	means	
of	DTM	at	5	m	resolution	(right)	for	the	Bovolenta	and	Saletto	area	on	November	6th	

squares	in	box	1	highlight	the	correspondent	street	view	in	box	3	and	4,	from	where	we	can	
see	the	higher	elevation	of	the	road	compared	to	the	fields.	Moreover,	the	presence	of	a	white	
road	running	along	the	field	boarders	can	be	noticed,	which	also	has	higher	elevation.	Line	1	
and	 its	 plot	 in	 fact,	 show	 flood	depth	around	0	 cm	 (+	4	 to	–	6	 cm),	 very	 shallow	water	 (in	
accordance	to	the	SAR	image	that	shows	a	water	surface	with	higher	values	of	backscattering)	
compared	to	line	2	where	values	are	between	20	to	30	cm.	This	makes	sense	given	the	elevation	
of	the	area	and	corresponds	to	the	observation,	which	shows	roughly	a	flood	20	cm	deeper	in	
agreement	with	the	dynamics	of	the	event	(noticeable	comparing	the	aerial	view	to	the	street	
view).	Line	3	shows	the	depth	along	the	elevation	dividing	the	two	fields	in	the	far	end	in	the	
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image	 in	 box	 2.	 Here	 the	 depth	 goes	 from	 20	 to	 40	 cm	 and	 it	 is	 in	 agreement	 with	 the	
observation.	Line	4	instead	is	showing	big	negative	values.	This	error	could	be	due	to	an	error	
of	few	pixels	in	the	flood	map	(due	maybe	to	radar	shadow	or	presence	of	water	on	the	top	of	
the	elevation)	plus	a	possible	small	misalignment	between	the	DEM	and	the	SAR	data.	

	

Table	14	Comparison	of	flood	depth	obtained	using	LiDAR	datasets	and	regional	DTM	for	the	
areas	of	interest	and	for	each	date.		

Bovolenta	

(LiDAR	1m)	

RMSE	

[cm]	

Mean	Error	

[cm]	

Std	

[cm]	

4	November	 82	 14	 80	

6	November	 67	 0	 67	

Saletto	

(LiDAR	1m)	

	 	 	

3	November	 67	 30	 60	

4	November	 64	 16	 62	

6	November	 57	 9	 57	

7	November	 54	 -17	 51	

Vicenza	

(LiDAR	2m)	

	 	 	

3	November	 108	 26	 105	

4	November	 106	 23	 104	

6	November	 91	 -9	 91	

	

Table	 15	Comparison	of	 LiDAR	datasets	 and	 regional	DTM	dataset	 (Veneto	Regione	 at	 5	m	
resolution)	over	the	areas	covered	by	the	hydrological	model.		

	 RMSE	

[cm]	

Max	Error	

[cm]	

Bovolenta	

(LiDAR	1	m)	

136	 1365	

Veggiano	

(LiDAR	2m)	

130	 460	
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Figure	47	Flood	Depth	estimated	using	fixed	(left)	and	adaptive	(right)	threshold	

	

Figure	48	1)	Flood	Depth	on	November	3rd	over	Ponti	di	Debba	in	the	Vicenza	area	of	interest;	
2)	aerial	view	of	the	event	on	November	1st	at	3:45	pm	local	time;	3-4)	Google	Street	
View	of	the	area	analysed;	bottom	plots:	profiles	along	lines	in	box	1	

Figure	 49	 shows	 a	 comparison	 between	 the	 flood	 depth	 map	 of	 November	 3rd	 over	
Cabriani	in	the	Saletto	area	of	study	(box	1),	and	several	aerial	images	acquired	during	the	event	
on	November	1st	2010	at	4:30	pm	local	time	(box	2,	3,	4,	6	and	7).	We	know	that	in	Saletto	
area	the	flood	expanded	from	November	1st	to	November	3rd.	Nevertheless,	this	part	of	the	
Saletto	area	shows	little	change	from	November	2nd	to	November	3rd	in	the	SAR	based	flood	
maps.	Therefore,	we	can	consider	the	aerial	images	as	a	good	approximation	of	the	flood	on	
November	 3rd.	 In	 box	 1,	 two	 points	 are	marked	with	 A	 and	 B.	On	 the	 flood	 depth	map	 of	
November	3rd	they	show	respectively	depth	59	and	29	cm.	On	the	small	canal	next	to	point	B	
(on	the	left	of	the	road	in	box	1),	depth	is	between	109	and	130	cm.	Comparing	image	in	box	4	
(the	image	acquired	during	the	event	on	November	1st)	with	the	one	in	box	5	(a	Google	Street	
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View	image	of	the	same	location),	we	can	see	a	very	good	correspondence	with	these	values.	
Area	D	and	C	in	box	1	are	shown	by	aerial	images	in	box	2	and	3.	The	plot	named	“Line	1”	shows	
the	values	of	depth	along	the	same	line	in	box	1,	from	left	to	right.	It	can	be	noted	an	average	
of	50	cm	on	the	left	side	of	the	line	and	the	average	of	70	on	the	right	one,	reasonable	values	
if	compared	with	the	image	in	box	3.	Plot	“Line	2”	shows	flood	depth	from	the	bottom	to	the	
top	of	the	same	line	in	box	1.	It	shows	no	more	than	30	cm	over	the	road	at	the	top	edge	of	
line	2,	confirmed	by	images	in	box	2	and	7,	where	we	can	observe	how	water	cover	only	half	of	
the	 car’s	wheels.	 Box	 6	 shows	 the	 areas	 in	 the	 red	 rectangle	 in	 box	 1.	Once	 again,	 a	 good	
correspondence	 can	be	 noticed	between	 the	 aerial	 observations	 and	 the	 computed	depth.	
Here	we	 can	 also	 see	 the	 limitation	of	 SAR	based	 flood	mapping,	 namely	 the	difficulties	 in	
mapping	correctly	water	over	urban	areas.	

Figure	50	shows	another	part	of	the	Cabriani	area	covered	by	the	same	data.	Point	A	in	box	
1	does	not	show	water	as	instead	showed	in	box	3	by	the	aerial	image.	This	is	an	error	in	the	
flood	map	due	to	the	limitation	of	the	flood	mapping	methodology.	Point	B	shows	52	cm	of	
flood	depth	on	November	3rd.	In	box	5	and	6	we	can	see	the	aerial	images	from	where	we	can	
estimate	roughly	30	cm	of	water	depth.	Even	though	we	know	that	the	in	the	following	days	
the	flood	expanded,	comparing	the	extent	from	box	1	and	2,	we	can	see	very	small	differences.	
As	previously	said,	we	can	consider	the	situation	the	same	in	the	two	dates.	In	this	case,	our	
methodology	is	overestimating	the	depth	of	roughly	20	cm.		

	

	

Figure	49	1)	Flood	Depth	on	November	3rd	over	Cabriani	area	in	the	Saletto	area	of	interest;	2-
3-4-6)	Aerial	views	of	the	flood	taken	on	November	1st	at	16:30	local	time;	5)	Google	
Street	View	corresponding	to	image	4);	7)	Detail	of	image	2);	bottom	left:	flood	depth	
profiles	of	line	1	and	2	shown	in	1)	
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The	two	points	marked	as	C	show	a	depth	of	5	cm	on	the	road	and	34	cm	on	the	field,	
similar	values	of	the	one	that	can	be	estimated	in	box	2,	5	and	6.	The	plot	on	the	top	right	of	
the	 image	 is	 showing	 the	 depth	 profile	 along	 Line	 1	 in	 box	 1,	 from	 to	 top	 to	 bottom.	 The	
negative	values	are	indication	that	there	is	a	little	underestimation	of	few	centimetres	(max	9	
cm)	or	small	errors	in	the	flood	map.	In	fact,	from	box	2,	at	the	top	and	right	hand	side	of	the	
orange	building	in	the	lower	right	corner	of	the	image,	we	can	notice	that	small	parts	of	the	
terrain	are	not	covered	by	water.	Nevertheless,	this	indicates	that	water	is	shallow	in	that	field	
as	our	results	are	showing,	an	average	of	20	cm	of	water	depth.	

Figure	 51	 	 shows	 the	 flood	 depth	 on	November	 3rd	 in	 Via	 Isole,	 in	 the	 Saletto	 area	 of	
interest,	 not	 far	 from	 the	 previous	 area	 analysed.	 The	 same	 consideration	 about	 the	 flood	
dynamics	can	be	done.	The	situation	on	the	day	of	the	SAR	acquisition	is	more	likely	to	be	the	
one	in	box	3,	taken	on	November	1st	at	4:30	pm,	40	minutes	later	than	the	one	in	box	2.	In	box	
2	in	the	blue	circle,	we	can	note	a	man	standing	in	the	middle	of	the	street.	From	that,	we	can	
estimate	roughly	50	cm	of	water	depth.	Few	hours	later	the	water	level	increased	as	we	can	
see	in	box	3.	Comparing	box	4	(street	view)	to	2	and	3,	we	can	estimate	an	increase	of	10	to	20	
cm,	a	total	of	60/70	cm	of	depth.	The	results	from	our	method,	as	shown	in	the	plot	by	the	blue	
circle,	says	that	flood	depth	is	70	cm.	The	values	along	line	1	also	look	to	be	reasonable.	In	fact,	
we	have	a	maximum	of	95	cm	on	the	small	canal	along	the	street	and	a	minimum	of	–	10	at	the	
edges	of	the	flooded	area.	The	negative	values	are	the	errors	we	committed	in	the	estimation,	
a	combination	of	flood	mapping	error	and	DEM	and	SAR	misalignment.	

Figure	52	shows	an	area	along	Via	Roma	in	Saletto,	a	couple	of	kilometres	southern	than	
the	previous	case	described.	Box	1	shows	the	result	in	flood	depth	estimation,	while	box	2	and	
3	show	the	images	taken	on	November	2nd	by	civil	protection.	The	red	dot	in	box	1	corresponds	
to	the	building	indicated	in	box	2.	The	Line	1	plot	shows	a	depth	of	25	cm	right	next	to	that	
building.	Comparing	images	in	box	4	(street	view	of	the	same	area)	and	the	images	of	the	event,	
we	can	see	a	good	agreement.	Especially	in	box	3,	we	can	note	part	of	the	field	coming	out	of	
the	water	indicating	shallow	water,	as	reported	by	our	results.	

Figure	53	shows	results	along	the	new	motorway	on	November	3rd,	few	hundred	meters	
to	the	north	from	the	previous	case	(box	1).	The	 images	taken	on	November	2nd	during	the	
event	are	shown	through	box	3.1	to	4.3.	In	box	2.1	to	2.3	we	see	Google	Street	view	of	the	
same	area.	In	box	1	we	can	see	4	lines,	whose	correspondent	profile	plots	are	shown	on	the	
top	left	side	of	the	image.	Plot	of	Line	1	shows	30	cm	depth	on	the	left	side	of	the	line.	A	similar	
value	 can	 be	 estimated	 from	 image	 in	 box	 3.2,	where	 the	 height	 of	windowsills	 should	 be	
around	1	m.	Line	2	shows	depth	between	90	to	100	cm	on	the	other	side	of	the	yellow	building.		
From	street	view	in	box	2.1	we	can	notice	the	higher	elevation	of	the	building	that	justify	this	
change	in	depth.	Line	3	shows	an	average	depth	of	100	cm	with	a	peak	to	170	cm.	The	peak	
correspond	to	the	canal	parallel	to	the	motorway	noticeable	in	box	2.3,	the	same	that	is	flooded	
in	box	4.3,	the	one	at	the	right	side	of	box	4.1.	The	elevation	of	the	small	bridge	is	1080	cm,	
while	the	one	of	the	canal	next	to	it	is	around	890	cm	from	our	LiDAR.	Water	is	30	cm	below	
the	surface	of	the	bridge,	1050	cm	of	elevation.	That	makes	160	cm	of	flood	depth,	just	around	
10	cm	difference	with	our	result.	The	water	elevation	in	that	point	in	our	estimation	is	1066	
cm,	16	cm	higher	than	what	we	estimated	from	field	observation.	Similarly,	box	4.2	shows	the	
bridge	at	the	left	side	of	box	4.1.	Here	we	can	see	that	water	had	slightly	covered	the	surface	
of	the	bridge.	The	LiDAR	in	that	point	indicates	an	elevation	of	1050	cm,	exactly	the	one	of	the	
water	estimated	from	the	previous	image.	Right	next	to	the	canal,	the	elevation	is	around	900	
cm.	This	would	lead	to	150	cm	of	depth,	only	16	cm	less	that	what	we	estimated,	166	cm.	Line	
4	shows	lower	values	of	depth.	
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Figure	50	1)	Flood	Depth	on	November	3rd	over	Cabriani	area	in	the	Saletto	area	of	interest;	2-
3-5-6)	Aerial	views	of	the	flood	taken	on	November	1st	at	16:30	local	time;	4-7)	Google	
Street	View	corresponding	respectively	to	image	3	and	6;	top	right:	flood	depth	profile	
of	line	1	shown	in	1)							

	
This	is	explained	by	the	difference	in	elevation	between	the	two	fields	as	we	can	see	in	box	

2.2.	In	box	4.1	and	box	4.2	we	can	also	see	how	the	crop	covered	the	flood	and	prevent	the	
flood	map	to	show	as	flooded	that	area.		

Following	the	same	approach	 just	shown,	a	total	of	150	points	were	validated	trying	to	
select	as	many	different	flood	polygons	as	possible.	An	RMSE	of	22.3	cm	was	found.			
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Figure	51	1)	Flood	depth	on	November	3rd	over	Via	Isole	area	in	the	Saletto	area	of	interest;	2)	
picture	 captured	by	 the	civil	 protection	at	3:50	pm	 local	 time	on	November	1st;	 3)	
pictures	taken	at	4:30	pm	of	the	same	day	showing	an	increased	water	level;	4)	Google	
Street	View	of	the	same	area;	bottom	right	plot:	flood	depth	profile	along	line	1	in	box	
1.		

4.7	Conclusions	

In	 this	 chapter,	we	 showed	a	 fast	 and	accurate	methodology	 for	 assessing	 flood	depth	
based	on	a	statistical	analysis	of	elevation	data	along	the	contours	of	flooded	areas.	Starting	
from	 flood	extent	maps	and	using	high	 resolution	DEM,	water	 levels	 can	be	estimated	and	
therefore	flood	depth	computed.	The	RMSE	obtained	on	150	validation	points	is	22.3	cm.	The	
methodology	 could	 be	 suitable	 for	 operational	 mode.	 In	 fact,	 it	 could	 meet	 the	 ideal	
requirements	as	indicated	by	Brown	et	al.	(2016):	accurate,	simple	to	use	also	for	non-GIS	and	
RS	experts,	easily	applicable	to	different	satellite	data	(SAR	and	optical)	and	quick	to	apply.		
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Figure	52	1)	Flood	depth	on	November	3rd	 in	Via	Roma	 in	 the	Saletto	area	of	 interest;	2-3)	
pictures	taken	by	civil	protection	on	November	2nd	at	9:30	am	local	time;	4)	Google	
Street	View	of	the	same	area;	bottom	left:	flood	depth	profile	along	the	line	in	box	1		

	

In	 comparison	 to	 hydrological	models,	 this	methodology	 is	more	 easily	 implementable	
since	less	information	is	needed,	only	SAR	images	of	the	event	and	a	DEM.	Hydrological	models	
need	 additional	 information	 in	 order	 to	 derive	 depth,	 such	 as	 precipitation	 volumes,	
information	 about	 the	 soil,	 number	 and	 location	 of	 water	 pumps,	 etc.	 Moreover,	 the	
comparison	with	results	obtained	with	a	hydrological	model	gives	very	good	correspondence,	
the	main	difference	being	the	difference	in	the	DEMs	used	in	the	two	methodologies,	1	or	2m	
meter	and	very	accurate	in	our	case,	5m	with	most	probably	many	inaccuracies	in	the	case	of	
the	hydrological	model.	The	RMSE	on	the	water	elevation	is	as	good	as	22	cm	in	the	area	of	
Bovolenta	where	the	flood	dynamics	was	simpler,	and	69	cm	in	the	Veggiano	area	where	the	
flood	dynamics	was	more	complex.	The	comparison	of	flood	depth	gave	worse	results,	an	RMSE	
of	 74	 cm	 in	 Bovolenta	 to	 83	 cm	 in	 Veggiano.	 Nonetheless,	 the	 results	 of	 the	 hydrological	
simulation	cannot	be	considered	as	a	ground	truth	given	the	many	approximations	introduced	
for	 running	 the	model.	Models	 have	many	 sources	 of	 uncertainties	 such	 as	 data	 of	 gauge	
stations,	parameters	of	the	soils,	number	of	pumps,	etc.	
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Figure	53	1)	Flood	depth	on	November	3rd	along	the	new	motorway	crossing	Saletto	area;	2)	
Google	 Street	 View	 images	 of	 the	 areas	 in	 boxes	 3	 and	 4;	 3-4)	 Images	 taken	 on	
November	2nd	at	9:30	pm;	Top	left:	flood	depth	profiles	along	the	lines	in	box	1	

	

Despite	 the	very	good	 results	obtained,	 the	methodology	can	be	 further	 improved	and	
automatized.	 Future	work	may	 consider	 to	 integrate	 a	DEM	 filling	procedure	 for	 improving	
water	level	estimation	(Huang	et	al.,	2014).	The	use	of	a	vegetation	index	such	as	NDVI,	may	be	
used	to	exclude	wrong	points	along	the	contours.	 In	fact,	 if	presence	of	vegetation	 is	found	
along	the	contour,	that	may	indicate	an	error	in	the	flood	map	and	therefore	the	correspondent	
elevation	would	be	an	information	to	be	discarded.	Similarly,	slope	can	be	computed	from	the	
DEM	and	used	to	exclude	errors	due	to	radar	shadow	or	misalignment	between	SAR	and	DEM	
data.	 In	 fact,	 in	 case	 the	 elevation	measured	 is	 greater	 than	 a	 certain	 threshold,	 that	may	
indicate	that	the	point	is	on	a	steep	area	(e.g.	river	banks)	and	with	high	probability	the	point	
was	wrongly	included	in	the	flood	map	(radar	shadow),	or	the	pixel	in	the	flood	map	does	not	
exactly	overlay	the	DEM.	Excluding	these	possible	sources	of	error	would	improve	the	statistics	
and	therefore	the	estimation	of	 the	water	 level.	Another	 improvement	may	come	from	the	
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method	for	creating	the	water	elevation	plane.	Instead	of	relying	simply	on	the	elevation	values	
distribution,	the	plane	that	minimize	the	RMSE	could	be	found	using	the	contours	points	left	
after	the	exclusion	of	outliers.	The	plane	created	could	also	take	into	consideration	the	slope	
of	the	river	in	a	better	way	compared	to	the	current	method.	By	means	of	a	shape	index	and	
the	relative	position	between	the	river	and	the	flooded	area,	the	slope	of	the	polygons	can	be	
estimated	and	imposed	to	the	water	plane.	This	would	take	into	account	the	slope	of	the	river	
and	therefore	the	dynamics	of	the	flood	allowing	to	derive	better	results	also	for	floods	with	a	
fast	dynamic.	
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5. SAR	and	optical	data	fusion	for	land	cover	and	urban	growth	
analysis	

This	 chapter	 presents	 a	 methodology	 for	 land	 cover	 classification.	 It	 allows	 the	
characterization	of	exposed	elements	to	natural	hazards	and	the	analysis	of	urban	growth,	from	
which	landscape	metrics	will	be	derived	for	the	characterization	of	vulnerability.	

	The	need	of	up	to	date	land	cover	maps	for	assessing	exposed	elements	to	natural	hazards,	
led	to	the	development	of	a	classification	methodology	that	makes	use	of	the	new	EO	big	data	
coming	from	the	Sentinels	satellite.	Data	fusion	of	radar	and	optical	data	have	been	found	to	
provide	a	better	classification	compared	to	the	use	of	only	optical	data.	The	change	in	built-up	
areas	has	been	assessed	in	order	to	provide	information	regarding	urban	growth,	which	can	be	
useful	not	only	in	terms	of	exposure	to	hazards,	but	also	in	term	of	vulnerability.		

The	chapter	has	the	objective	to	answer	research	question	3:	“Can	land	cover	classification	
be	 improved	and	easily	up	 to	date?”	and,	partially,	 to	 research	question	4:	 “Is	 it	possible	 to	
retrieve	meaningful	indicators	of	social	vulnerability	from	EO	big	data?”	

The	chapter	will	be	submitted	to	the	Journal	“International	Journal	of	Remote	Sensing”.	The	
paper	(which	at	the	moment	of	the	submission	 is	 in	preparation)	as	well	as	the	chapter,	has	
been	 written	 autonomously	 by	 the	 author.	 The	 co-authors	 of	 the	 paper	 are	 Dr.	 Mattia	
Marconcini	of	 the	German	Aerospace	Centre,	Germany,	who	supervised	 the	whole	 research,	
José	Manuel	 Delgado	 Blasco	 of	 the	 European	 Space	 Agency,	 who	 provided	 support	 in	 data	
processing	 and	 results	 analysis,	 Dr.	 Pietro	 Ceccato	 who	 supported	 the	 validation	 of	 the	
classification	methodology	and	Prof.	Carlo	Giupponi	of	the	Ca’	Foscari	University	of	Venice,	who	
revised	the	results.	
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5.1	An	introduction	to	Land	Cover	and	Land	Use		

Land	Cover	(LC)	is	the	physical	material	at	the	surface	of	the	Earth;	the	physical	land	type	
such	as	forest,	open	water,	wetlands,	grass,	asphalt,	trees,	bare	ground,	etc.	(Lex	Comber	et	
al.,	2005).	LC	data	documents	how	much	of	a	region	is	covered	by	land	type	classes.	Instead,	
Land	Use	(LU)	shows	how	people	use	the	landscape,	whether	for	development,	conservation	
or	mixed	uses.	For	instance,	in	case	of	urban	areas,	LU	data	shows	how	these	areas	are	used,	if	
it	is	residential,	commercial	or	industrial.	LU	corresponds	to	“the	arrangements,	activities	and	
inputs	people	undertake	in	a	certain	LC	type	to	produce,	change	or	maintain	it"	(FAO/UNEP,	
1999;	FAO,	1997a).	At	any	one	point	or	place,	there	may	be	multiple	and	alternate	LUs.		

RS,	in	particular	from	satellite,	is	the	most	common	source	of	data	on	LC.	The	surface	of	
the	 Earth	 reflects	 solar	 radiation	 (or	 in	 case	 of	 active	 instruments,	 the	 Earth	 reflects	 the	
radiation	they	emit)	to	sensors	that	are	able	to	measure	the	intensity	of	the	reflected	radiance	
at	difference	frequencies.	In	fact,	depending	on	the	specific	characteristic	of	the	surface	type,	
the	 scattered	 radiation	 will	 have	 different	 responses	 at	 different	 wavelength,	 i.e.	 different	
spectral	signatures.	Different	soil	types	absorb	or	reflect	different	part	of	the	spectrum	of	the	
incident	radiation.	Therefore,	it	is	possible	to	deduct	the	cover	class	of	the	Earth	surface	from	
the	sensors	measurements.	Vice	versa,	it	is	not	always	possible	to	reveal	the	intended	use	of	
the	land.	However,	 in	some	cases,	putting	together	LC	with	spatial	structures	and	additional	
attributes,	it	may	be	possible	to	infer	the	LU	(Park	&	Stenstrom,	2008).	

A	wide	range	of	methods	exists	for	the	interpretation	of	remote	sensing	imagery	and	they	
can	 be	 classified	 in	 automated,	 semi-automated	 and	 pure	 interpretation	 (Richards,	 2012).	
Automated	approaches	have	the	advantage	of	being	fast	allowing	high	temporal	resolution	and	
replication,	 very	 useful	 for	 monitoring	 rapid	 changes	 such	 as	 deforestation	 (Asner,	 2009).	
Instead,	supervised	techniques	and	visual	interpretation	have	the	advantage	of	integrating	the	
knowledge	of	experts,	field	observations	and	pattern	recognition	(Sirén	&	Brondizio,	2009),	but	
have	the	drawback	of	being	subjective	and	therefore	dependent	on	the	observer	(Foody,	2002).	
Replication	and	change	detection	can	therefore	result	biased.	Surveys	and	census	data	are	also	
sources	 of	 LCLU	 data,	 in	 fact	 many	 countries	 and	 international	 agencies	 collect	 statistical	
information	on	LU,	such	as	agricultural	census,	which	usually	contain	management	information	
(irrigation,	fertilizer	use,	crop	yields,	etc.).	These	sources	of	data	are	highly	suitable	for	LU	maps	
production,	information	that	is	not	possible	to	retrieve	from	satellites.	Nevertheless,	in	many	
cases	the	focus	of	census	is	on	economic	sectors	disregarding	data	on	natural	LU.	Moreover,	
“data	are	often	aggregated	to	the	level	of	administrative	units	while	the	original	data	are	not	
available	as	result	of	privacy	legislation”	(Sabor	et	al.,	2007).	

Eventually,	even	if	less	frequently	used,	field	survey	and	cadastral	information	are	other	
sources	of	data	for	LCLU	maps	(Rambaldi	et	al.,	2007).	

The	 different	 sources	 of	 data	 above	 listed	 have	 different	 possible	 applications.	 Most	
advanced	 instruments	with	high-resolution	capability	 (such	as	the	one	on	board	of	 IKONOS,	
Quickbird,	 GeoEye-1,	 WorldView-2	 and	 RapidEye	 satellites)	 allow	 retrieving	 detailed	 LC	
information	and	the	derivation	of	LU.	Nevertheless,	high-resolution	data	have	the	drawback	of	
being	costly	and	feasibly	acquirable	and	interpretable	only	for	relatively	small	areas.	It	follows	
that	for	global	or	continental	coverage,	medium	to	coarse	resolution	is	normally	used.	Among	
the	existing	global	databases,	 the	Global	Land	Cover	2000	dataset	(GLC2000)	was	built	with	
SPOT	images	with	1	km	resolution	and	the	GlobCover	dataset	(GlobCover)	with	MERIS	images	
with	 300	 m	 resolution.	 Coarser	 scale	 allows	 global	 coverage	 but	 it	 also	 means	 a	 higher	
probability	 of	 errors	 in	 the	 representation	 of	 landscapes.	 In	 a	 LC	map,	 every	 single	 pixel	 is	
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usually	 classified	 as	 one	 well-defined	 cover	 class.	When	 the	 resolution	 is	 coarse,	 the	 area	
represented	by	the	pixel	very	often	contains	different	cover	types.	Therefore,	some	of	them,	
usually	the	less	dominant,	have	to	be	dropped,	resulting	in	an	underestimation	of	the	cover	
class	 dropped.	 The	 appropriate	 resolution	 has	 to	 be	 selected	 carefully	 depending	 on	 the	
landscape	 under	 analysis	 or	 some	 methods	 have	 to	 be	 employed	 to	 report	 the	 fractional	
coverage	of	each	LC	within	the	pixel	(Ozdogan	&	Woodcock,	2006).	

The	temporal	scale	also	play	an	important	role.	In	fact,	census	data	and	surveys	are	usually	
infrequent	and	changes	in	sampling	schemes	and	definitions	occur	between	surveys.	One	the	
contrary,	RS	 is	a	more	continuous	source	of	data,	but	suffering	 from	 inconsistencies	due	to	
improved	resolution	of	 sensors	over	 the	years	and	changes	 in	classification	schemes,	which	
make	difficult	to	compare	products	produced	in	different	times	or	from	different	institutions.	
Moreover,	cloud	cover	can	represent	a	limit,	especially	in	humid	tropics,	which	complicate	the	
collection	of	data	over	certain	areas,	a	problem	that	may	be	partially	overcome	using	SAR	data	
(Berberoglu	&	Akin,	2009;	DeFries,	2008;	Freitas	et	al.,	2008;	Hansen	et	al.,	2008).	Different	
issues	can	affect	the	comparison	and	integration	of	different	data	sources,	such	as	temporal	
and	spatial	consistency,	scaling	bias,	thematic	differences	and	inconsistencies,	and	differences	
between	LC	and	LU	(Verburg,	Neumann,	&	Nol,	2011).	

Consistent	data	over	a	long	period	is	necessary	in	case	of	change	detection	and	time	series	
analysis.	Ideally,	the	data	utilized	should	be	derived	from	the	same	source	and	processed	with	
the	same	techniques.	This	is	of	course	not	the	real	case;	in	particular,	short-term	funding	and	
specific	information	requirements	by	the	funding	agencies	have	often	driven	remote	sensing	
projects.	Therefore,	what	it	is	available	is	normally	a	wide	variety	of	data	generated	with	the	
most	diverse	techniques,	different	classification	systems	and	legend	classes.	It	has	to	be	bear	
in	mind	 that	 these	 inconsistencies	 could	be	 the	 source	of	 changes	 in	 the	dataset	 analyzed,	
which	should	be	distinguished	from	“real”	changes	(Verburg	et	al.,	2011).	

Errors	in	georeferencing	of	remote	sensing	data	can	be	a	source	of	spatial	inconsistencies	
between	 different	 datasets.	 Nevertheless,	 these	 inconsistencies	 can	 be	 rather	 small	 if	 the	
georeferencing	 is	 performed	 with	 accuracy	 and	 they	 can	 be	 neglected	 if	 compared	 with	
inconsistencies	coming	from	different	spatial	scale	and	aggregation.	In	fact,	a	coarser	scale	can	
be	a	great	 source	of	errors	especially	 in	 the	derived	statistics.	 For	 instance,	an	area	can	be	
classified	 100%	 grassland	 due	 to	 a	 coarse	 dataset	 resolution,	 neglecting	 the	 presence	 of	
wetlands	or	water	bodies	and	having	large	impact	on	the	estimation	of	GHGs	emissions	given	
the	large	difference	in	emission	between	the	two	cover	classes.	

Different	data	sources	have	different	capacities	in	capturing	specific	LCLU	types	given	the	
characteristics	of	the	observation	technique.	Each	data	source	will	therefore	lead	to	specific	
categorical	uncertainties	in	the	final	LCLU	data.	Moreover,	a	wide	range	of	definitions	is	used	
for	 the	 same	 LC	 class	 between	 different	 datasets	 and	 inventories.	 For	 example,	 the	 class	
“forest”	can	be	defined	based	or	not	on	certain	features	such	as	stand	height,	canopy	cover,	
strip	width,	 inclusion	of	grasses.	As	an	example,	area	without	trees	may	be	classify	as	forest	
cover	if	the	intention	is	to	replant	(UK),	or	areas	with	many	trees	may	not	be	classified	as	forest	
if	the	trees	are	not	growing	fast	enough	(Norway	and	Finland)	(Lex	Comber	et	al.,	2005).	The	
lack	of	an	international	organization	responsible	for	standardize	the	definitions	is	one	of	the	
causes	of	thematic	inconsistences	(Verburg	et	al.,	2011).	

One	of	the	major	challenges	for	analyzing	land	changes	is	the	relation	between	LC	and	LU.	
LC	addresses	 the	 layer	of	 soils	and	biomass,	 including	natural	 vegetation,	 crops	and	human	
structures	that	cover	the	land	surface.	LU	in	contrast	refers	to	the	purposes	for	which	humans	
exploit	the	LC.	LU	 is	not	always	easily	observable	from	RS	data,	but	 it	may	be	 inferred	from	
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observable	activities	(e.g.,	grazing)	or	structural	elements	in	the	landscape	(e.g.,	the	presence	
of	logging	roads).	Land	abandonment	for	example,	is	reported	to	be	decreasing	in	Europe.	This	
is	not	observable	from	RS	data.	For	example,	“abandoned”	grassland	may	be	used	for	other	
functions,	such	as	horse	keeping.	Even	if	the	LC	remains	the	same,	the	changing	LU	has	large	
implications	 for	 the	 functioning	 of	 the	 land	 and	 the	 rural	 economy	 (Verburg	 et	 al.,	 2011).	
Similarly,	 the	 decreasing	 agricultural	 areas	 in	 Europe’s	 mountain	 areas	 reported	 by	 many	
authors	(MacDonald	et	al.,	2000;	Etienne	et	al.	2003;	Tasser	et	al.,	2007),	is	not	observable	by	
RS,	which	is	unable	to	detect	changes	in	intensity	and	actual	use	of	the	grassland.	In	fact,	there	
are	two	major	changes	in	these	areas:	part	of	the	meadows	are	more	intensively	used,	while	
other	parts	have	been	converted	to	pasture	or	have	been	abandoned	(Mottet,	Ladet,	Coqué,	
&	Gibon,	2006).	Of	course,	this	can	lead	to	a	discrepancy	with	agricultural	statistics.	

LC	maps	are	a	valuable	source	of	vital	information	in	many	cases.	They	provide	support	to	
decision	makers	for	natural	landscape	management	when	no	picture	of	how	the	landscape	look	
like	 is	 available.	 As	 it	 has	 already	 been	 mentioned,	 time	 series	 allow	 seeing	 changes	 and	
therefore	 evaluating	 past	 land	 management	 decisions.	 In	 addition,	 the	 effect	 of	 current	
decisions	on	the	land	can	be	monitored	by	time	series,	which	can	also	be	used	as	a	baseline	to	
understand	the	effect	of	possible	future	decisions	before	their	implementation.	

More	specifically,	LC	maps	are	used	to	assess	urban	growth,	predict	and	assess	impact	of	
flood	or	storms,	potential	impact	of	see	level	rise,	track	wetland	losses,	prioritizing	areas	for	
conservation	efforts	or	purchases,	compare	LC	changes	with	effect	in	the	environment	or	to	
connection	with	socio-economic	changes	such	as	increasing	population.	

The	 production	 of	 LCLU	 dataset	 is	 limited	 by	 several	 factors	 and	 the	 production	 of	 a	
continental	map	 can	 take	 up	 to	 5	 years,	 as	 it	 is	 the	 case	 for	 United	 States	 (NOAA)	 or	 the	
European	 Union	 (Corine	 Land	 Cover	 (CLC)	 has	 a	 time	 interval	 of	 6	 years).	 First	 of	 all,	 the	
acquisition	of	the	imagery	can	be	very	slow	due	to	bad	weather	conditions	coupled	with	the	
revisiting	 time	of	 the	satellite	used.	 In	 fact	 the	presence	of	clouds	 inhibits	 the	possibility	 to	
retrieve	LC	 information,	therefore	 in	such	a	case,	the	acquisition	has	to	be	postponed	of	an	
interval	 equal	 to	 the	 satellite	 revisiting	 time,	 which	 can	 be	 up	 to	 a	month.	Moreover,	 the	
radiometric	calibration	of	all	the	data	acquired	is	a	complex	and	time-consuming	step.	Different	
illumination	conditions	among	all	the	acquisitions	have	to	be	taken	into	account,	in	addition	to	
the	 possible	 different	 disturbance	 of	 atmospheric	 conditions.	 Finally,	 data	 has	 to	 be	
geometrically	calibrated,	interpreted	and	classified,	validated	and	georeferentiated.	Therefore,	
there	is	a	limit	in	the	production	of	LCLU	dataset	with	a	frequent	temporal	baseline.	

There	are	many	existing	database	of	LCLU	maps	with	different	characteristics,	produced	
using	different	sensors	and	covering	different	areas	with	different	resolutions.	Table	16	shows	
some	 of	 the	main	 important	 projects	 and	 datasets	 worldwide.	 In	 spite	 of	 a	 coarse	 spatial	
resolution,	 global	 scale	 datasets	 are	 useful	 for	many	 scientific	 and	managerial	 applications.	
Global	Land	Cover	(GLC)	mapping	is	progressing	towards	higher	spatial	resolution,	increasing	
the	benefit	of	these	data	for	the	near	future.	GLC	maps	are	commonly	validated	using	higher-
quality	reference	data	such	as	independent	validation	datasets	and	regional	maps.	Currently,	
there	are	several	independently	validated	GLC	datasets	(Table	17),	which	generation	required	
significant	efforts	to	analyze	a	large	number	of	satellite	images	and	interpret	the	LC	type.	These	
reference	datasets	are	not	always	easily	accessible	to	the	community	and	are	not	used	to	their	
full	potential	despite	the	scarcity	of	such	datasets.	Some	of	them	have	been	produce	and	are	
available	at	the	Global	Observation	of	Forest	Cover	and	Land	Dynamics	–	Land	Cover	project	
(GOFC	-	GOLD).	
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Table	16	Global	Land	Cover	datasets	
Dataset	Name	 Provider	 Coverage	

GLC	2000	 EC	JRC	 Worldwide/	1	Km	(SPOT	4)	
VHSR	 Boston	University	 Worldwide/	1	Km	(VIIRS)	
GlobCover	2005	-	2009	 ESA/UCL	 Worldwide/	300	m	(MERIS)	
CLC	2012	 EEA	 Europe	/	25	m	(IRS/RapidEye)	
Landsat	GLC	Map	 China	 Worldwide/	30	m	(Landsat)	

GLCNMO	
International	Steering	
Committee	for	Global	
Mapping	

Worldwide/	1	Km	(MODIS)	

LC	CCI	 ESA	 Worldwide/	300	m	(SPOT/MERIS)	
FAO	FRA	 FAO	 Worldwide/	250	m	(MODIS/Landsat)	
MODIS	training	(STEP)	 Boston	University	 Worldwide/	2	km	(MODIS)	
GEO-WIKI	 GEO-WIKI	site	 Worldwide	
VIEW-IT	 	 Worldwide	
NELDA	dataset	 NELDA	 Northern	Euroasia	
TREES	 EC	JRC	 Worldwide	
Global	Human	Settlement	Layer	 EC	JRC	 Several	Countries	/	10-500m	(several	data)	
Global	Urban	ground	truth	data	 University	of	Tokyo	 Worldwide	
MODIS	Land	Cover	(MCD12Q1)	 USGS	 Worldwide	/	500	m	(MODIS)	

	
Table	17	Global	Land	Cover	reference	datasets  

Database	 Description	

GLC	2000	
Database	

It	is	the	result	of	a	consolidation	work	realized	on	the	original	GLC	2000	
dataset.	The	original	GLC	2000	classes	were	aggregated	following	the	
Aggregated	 Generalized	 Legend	 (AGL)	 resulting	 in	 a	 set	 of	 11	 LC	
classes. 

GlobCover	2005	
database	

It	 is	 the	 result	 of	 a	 consolidation	work	 realized	on	 the	original	 ESA-
GlobCover	2005	dataset.	A	total	of	186	points,	associated	with	a	pure	
LC	 class,	 were	 randomly	 selected	 and	 interpreted	 according	 to	 the	
GlobCover	 legend	 (which	counts	22	LC	classes).	The	purpose	of	 this	
dataset	was	 to	 validate	 the	 global	 GlobCover	 2005	 LC	map	 derived	
from	 300	 m	 MERIS	 time	 series.	 Each	 sample	 is	 a	 5*5	 MERIS	 pixel	
window	 (~225	 ha)	 drawn	 on	 Google	 Earth	 that	 was	 interpreted	 in	
terms	 of	 FAO-LCCS	 classifiers	 by	 independent	 experts.	 The	
consolidation	of	the	entire	dataset	is	still	going	on.	

System	for	
Terrestrial	
Ecosystem	
Parameterization	
(STEP)	database	

It	was	developed	and	maintained	by	Boston	University	between	2000-
2013.	 The	major	 purpose	 of	 this	 database	 is	 to	 train	 decision	 tree	
classifiers	that	are	used	by	the	MODIS	Land	Cover	(MCD12Q1)	product.	
Each	 site	 is	 a	 polygon	 (~4-sq	 km)	 drawn	 on	 Google	 Earth	 that	 is	
considered	 a	 stable	 example	 of	 a	 specific	 LC	 type.	 Recently	 STEP	
attributes	were	 revised	 to	be	compliant	with	 the	FAO-LCCS	and	 the	
database	was	filtered	for	sites	that	had	been	disturbed	through	time.	

Visible	 Infrared	
Imaging	
Radiometer	Suite	
(VIIRS)	database	

It	 was	 derived	 directly	 from	 the	 Boston	 VHSR	 database	 (under	
development)	 in	 order	 to	meet	 the	 validation	 requirements	 for	 the	
VIIRS	Surface	Type	(ST)	product	in	the	summer	of	2013.	Each	VIIRS	(~1-
km)	pixel	within	each	VHSR	site	was	manually	interpreted	according	to	
the	 17-class	 International	 Geosphere-Biosphere	 Programme	 (IGBP)	
legend.	The	database	contains	primary	and	secondary	IGBP	labels	at	
each	pixel,	a	confidence	for	the	first	label,	and	records	any	LC	changes	
that	may	have	occurred	between	the	date	of	the	imagery	and	the	year	
2012.	Because	of	 the	similarity	between	the	MODIS	and	VIIRS	grids,	
this	database	can	be	used	to	compare	these	two	LC	products. 
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5.1.1	European	state	of	the	art	on	LCLU	

Geoland-2	project	 started	 in	2008.	Funded	by	 the	European	Commission	within	 the	7th	
Framework	Program,	it	ended	in	2012.	The	aim	of	the	project	was	to	provide	decision	makers	
with	 accurate,	 up-to-date	 and	 reliable	 information	 on	 the	 changing	 condition	 of	 natural	
resources,	given	the	increasing	pressure	on	natural	biodiversity	and	on	human	living	conditions	
due	 to	 climate	 change.	 Geoland-2	was	 part	 of	 the	Global	Monitoring	 for	 Environment	 and	
Security	 (GMES)	 initiative	 and	 it	 inherited	 the	 knowledge	 and	 results	 of	 previous	 European	
projects	such	as	Geoland	and	BOSS4GMES	(Building	Operational	Sustainable	Services	for	GMES)	
of	the	EC,	and	GSE	Land	and	GSE	Forest	Monitoring	of	the	European	Space	Agency	(ESA).	The	
aim	was	to	provide	cross-border	harmonized	geo-information	at	global	to	local	scales	in	a	time-	
and	cost-effective	manner	(Geoland-2).	After	its	end,	the	EC	decided	to	start	the	Copernicus	
project,	a	European	system	for	monitoring	the	Earth.	It	makes	use	of	different	data	sources:	EO	
satellites,	ground	stations,	airborne	and	sea-borne	sensors.	It	 is	operated	by	the	ESA	for	the	
space	component	and	of	the	European	Environment	Agency	(EEA)	and	the	Member	States	for	
the	in-situ	component.	

The	 services	 it	 provides,	 address	 six	 thematic	 areas:	 land,	marine,	 atmosphere,	 climate	
change,	 emergency	management	 and	 security.	 They	 support	 a	 wide	 range	 of	 applications,	
including	environment	protection,	management	of	urban	areas,	 regional	and	 local	planning,	
agriculture,	forestry,	fisheries,	health,	transport,	climate	change,	sustainable	development,	civil	
protection	and	 tourism.	The	main	users	of	Copernicus	 services	are	policymakers	and	public	
authorities	who	need	the	information	to	develop	environmental	legislation	and	policies	or	to	
take	critical	decisions	in	the	event	of	an	emergency,	such	as	a	natural	disaster	or	a	humanitarian	
crisis.	

The	 land	monitoring	 service	 provides	 geographical	 information	 on	 LC	 and	 on	 variables	
related,	for	instance,	to	the	vegetation	state	or	the	water	cycle.	It	supports	applications	in	a	
variety	 of	 domains	 such	 as	 spatial	 planning,	 forest	 management,	 water	 management,	
agriculture	and	food	security,	etc.	The	service	became	operational	in	2012	and	it	consists	of	
three	main	components:	global,	pan-European	and	local.	The	global	component,	coordinated	
by	 the	 EC	 Joint	 Research	 Centre	 (JRC),	 produces	 data	 across	 a	 wide	 range	 of	 biophysical	
variables	at	a	global	scale	(i.e.	worldwide),	which	describe	the	state	of	vegetation,	the	energy	
budget	 and	 the	 water	 cycle.	 The	 Pan-European	 component,	 coordinated	 by	 the	 EEA,	 will	
produce	5	high-resolution	data	sets	describing	the	main	LC	types:	artificial	surfaces	(e.g.	roads	
and	 paved	 areas),	 forest	 areas,	 agricultural	 areas	 (grasslands),	 wetlands,	 and	 small	 water	
bodies.	The	pan-European	component	has	also	updated	the	CLC	dataset	to	the	reference	year	
2012.	The	local	component,	also	coordinated	by	the	EEA,	aims	to	provide	specific	and	more	
detailed	 information	 that	 is	 complementary	 to	 the	 information	 obtained	 through	 the	 Pan-
European	 component.	 It	 focuses	 on	 "hotspots"	 which	 are	 prone	 to	 specific	 environmental	
challenges.	 The	 local	 component	 provides	 detailed	 LCLU	 information	 over	major	 European	
cities,	which	are	the	first	type	of	"hotspots”.	In	addition	to	the	above-mentioned	components,	
the	 service	 also	 supports	 the	 generation	 of	 a	 Pan-European	Digital	 Elevation	Model	 (DEM)	
(Copernicus	-	The	European	Earth	Observation	Programme).	
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5.1.2	Upcoming	products	

The	combination	of	improved	sensor	technology	(Landsat	8,	the	new	Sentinels	and	EnMAP	
(Environmental	Mapping	and	Analysis	Program)1),	advanced	computational	capacity	(Google	
Earth	Engine	and	other	cloud	computing	services)	and	open	data	access	(Landsat	and	Sentinel	
datasets),	has	fueled	the	development	of	improved	LC	information	derived	from	satellites	and	
it	will	further	enhance	opportunities	in	mapping	and	modeling	ecosystems	and	their	changes	
over	time	in	the	global	scale	(Udelhoven,	2014).	This	improved	information	is	transforming	this	
discipline	and	it	is	enabling	advances	in	LU	science	and	practical	application	of	social	benefit	
(Justice,	2014).	

However,	recent	data	deluge	makes	it	increasingly	difficult	to	identify	data	of	relevance	to	
a	given	issue	and	finding	useful	information	often	requires	cross	disciplines	expertise.	The	size	
and	complexity	of	available	RS	resources	gives	rise	to	the	development	of	data	intensive	and	
innovative	 processing,	 visualization,	 analytics	 and	 integration	 of	 heterogeneous	 RS	 data.	
Moreover,	LCLU	analysis	requires	RS	affording	high	temporal,	spectral	and	spatial	resolution,	
which	can	be	provided	only	by	multiple	sensors,	therefore	data	fusion	methodologies	will	be	
needed.	

Furthermore,	 the	 problem	 of	 uncertainty	 is	 evident	 and	 it	 is	 not	 addressed	 in	 recent	
research.	In	fact,	class	definition,	subjective	of	reference	data	collection,	mixed	pixel	problems,	
data	processing,	limitation	in	statistical	methods,	are	all	topic	that	need	to	be	faced	(Udelhoven,	
2014).	

Another	 important	 effort	 that	 the	 LCLU	 community	 is	 facing,	 is	 in	 standardizing	 the	
production	and	use	of	LCLU	data.		In	fact,	GLC	datasets	still	show	high	degree	of	disagreement.	
LCLU	classes	are	often	mixed	(such	as	the	case	of	the	Corine	Land	Cover)	and	defined	in	too	
many	 different	 ways.	 The	 Global	 Observation	 of	 Land	 Dynamics	 (GOFC	 -	 GOLD)	 is	 an	
international	effort	that	aims	at	providing	the	most	appropriate	databases	among	the	existing	
ones	 based	 on	 internal	 quality	 criteria,	 fostering	 the	 use	 of	 recommended	 practices	 for	 LC	
validation	and	direct	users	 to	 the	most	appropriate	dataset	according	 to	 their	needs.	Many	
steps	still	have	to	be	done,	but	many	improvements	have	been	achieved	in	the	past	decade.	
Two	 concrete	 examples	 come	 from	 the	 two	biggest	 community	of	 LCLU.	 The	NASA	 funded	
Web-Enabled	Landsat	Data	(WELD)	project	has	systematically	generated	30m	weekly,	seasonal,	
monthly	and	annual	composited	Landsat	mosaics	of	the	United	States	for	more	than	10	years.	
The	 Landsat	 moderate	 spatial	 resolution	 is	 sufficiently	 resolved	 to	 enable	 chronicling	 of	
anthropogenic	and	natural	change	at	local	to	global	scale	and	the	data	are	calibrated	to	enable	
discrimination	between	data	artifacts	and	actual	land	surface	changes	(Kovalskyy,	2014).	This	
can	lead	to	think,	that	based	on	this	example,	in	the	near	future	the	LULC	community	could	
dispose	of	such	kind	of	data	in	a	global	scale.	In	fact,	also	from	the	European	side	there	are	
encouraging	 signals.	 	 Although	 the	 Corine	 Land	 Cover	 is	 widely	 and	 successfully	 used,	 its	
limitations	are	also	know,	in	particular	the	course	spatial	resolution,	mixing	of	LC	and	LU	classes	
in	 its	 nomenclature	 and	 a	 few	 problematic	mixed	 classes.	More	 demanding	 requirements,	
including	 increased	 update	 frequencies	 for	 environmental	 information,	 urge	 for	
complementary	 information	 services.	 The	Copernicus	 project	 is	 currently	 implementing	 the	
mapping	of	5	High	Resolution	Layers	(HRLs),	100	m	validated	resolution,	on	LC	characteristics	
at	pan-European	and	at	 local	 level	 (imperviousness,	 forest,	 permanent	 grassland,	wetlands,	
permanent	water	bodies)	(Langanke,	2014).	The	HRLs	are	part	of	a	trend	towards	higher	spatial	

																																																													
1	http://www.enmap.org/	
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and	temporal	resolution	LCLU	products.	This	trend	is	being	enabled	partly	by	better	RS	data	
availability,	in	particular	by	the	new	Sentinel-2	data.	

5.2	The	need	of	new	and	detailed	land	cover	maps	

The	start	of	the	Sentinels	missions,	Europe’s	eyes	on	Earth	of	the	Copernicus	programme,	
set	 forth	 a	 revolution	 on	 land	monitoring.	 Commencing	 from	October	 2014	when	 the	 first	
satellite	of	the	constellation	Sentinel-1A	radar	mission	began	its	operative	phase,	followed	by	
its	optical	twin	Sentinel-2A	in	late	2015,	a	huge	amount	of	data	(Earth	Observation	big	data)	
are	 freely	available	on	a	weekly	basis	 for	every	 location	on	 the	planet.	 For	 the	 first	 time	 in	
history,	we	now	have	an	opportunity	to	access	diverse	data	for	precision	mapping	covering	the	
Earth’s	surface	and	its	dynamics,	allowing	tracking	changes	due	to	human	activities	or	as	result	
of	natural	disasters.	

This	in	fact	is	one	of	EU’s	response	to	tackle	an	era	of	global	changes,	in	particular	climate	
change,	which	is	threatening	our	environment	from	different	sources.	On	the	one	hand,	Earth’s	
biosphere	is	threatened	by	temperature	rise	and	human	activities;	therefore,	thereby	the	need	
to	monitor	biodiversity	and	the	effect	of	policies	enforced	to	control	human	effects	on	land	
use.	On	the	other	hand,	with	a	foreseen	increasing	number	of	extreme	events,	such	as	extreme	
precipitations	and	the	consequent	flash	and	riverine	floods,	there	is	a	need	to	understand	what	
is	at	stake	when	these	events	occur	(Mysiak,	2013;	MunichRE,	2014;	UNISDR,	2011).	

Despite	the	efforts	described	in	the	previous	paragraph,	the	need	of	new	and	detailed	land	
cover	maps	is	evident.	With	these	motivations,	this	work	has	explored	the	potential	of	new	EO	
data	for	the	derivation	of	land	cover	maps	and	indicators	of	exposure	and	vulnerability	useful	
for	flood	risk	assessment.	The	data	fusion	of	the	new	Sentinel-1	and	2	images	allowed	deriving	
land	cover	maps	at	20	meter	resolutions,	which	can	be	seen	as	an	improvement	of	state-of-
the-art	products	such	as	CORINE	land	cover,	in	terms	of	accuracy	and	possibility	to	be	updated	
more	 frequently.	Moreover,	 the	 potential	 of	 new	 cloud	 computing	 environments	 has	 been	
exploited	for	a	faster	analysis	of	a	big	amount	of	data.	Google	Earth	Engine2	(GEE)	allows	a	quick	
access	 to	 data,	 which	 are	 available	 directly	 in	 the	 cloud,	 and	 provide	 a	 huge	 computation	
capacity	for	a	quick	and	reliable	analysis.	In	fact,	for	characterized	different	types	of	land	cover,	
temporal	statistics	on	time-series	of	2	years	of	observations	have	been	derived	online	and	later	
classified	by	means	of	a	Support	Vector	Machine	(Cristianini	&	Shawe-Taylor,	2000a).	Different	
datasets	have	been	considered	to	assess	the	usefulness	of	data	fusion.		

Land	cover	analysis	can	be	used	to	derive	indicators	of	exposure	and	vulnerability	and	in	
particular	we	propose	 indicators	 extracted	 from	 the	 analysis	 of	 urban	 growth	 and	network	
analysis	of	settlements3.		

Two	are	 the	areas	analysed:	 i)	 the	Veneto	 region,	North-Eastern	 Italy,	an	area	 that	has	
experienced	profound	changes	in	the	past	decades	and	has	been	hit	recently	by	several	natural	
disasters	and	where	 local	authorities	have	urgent	need	of	 improved	 land	cover	maps,	more	
precise	 and	more	 up-to-date	 (Floris	 et	 al.,	 2012;	 De	 Natale	 &	 Pignatti,	 2014);	 ii)	 southern	
Malawi,	hit	by	disastrous	flood	in	early	2015,	an	area	lacking	any	source	of	data	and	in	need	to	
increase	its	capacity	towards	risk	reduction	and	climate	change	adaptation.		

																																																													
2 https://earthengine.google.com 
3 Network analysis is explained with more details in the next chapter.  
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Providing	 improved	 indicators	of	exposure	and	vulnerability	 is	 vital	 for	 creating	a	more	
resilient	environment	and	livelihood,	for	better	land	management,	preservation	of	ecosystems	
and	adaptation	to	climate	change,	as	well	as	for	disaster	risk	reduction	and	protection	of	human	
lives	 and	 economic	 activities	 (de	Moel	 et	 al.,	 2015).	 This	work	 is	 an	 attempt	 to	 fulfil	 these	
requirements	and	demonstrate	the	benefit	of	the	new	Sentinel	constellation,	which	in	future	
could	also	be	applied	at	larger	scale.	

	
5.3	Land	cover	classification	and	urban	growth	

In	 order	 to	 create	 a	 land	 cover	map,	 remotely	 sensed	 images	 have	 to	 be	 interpreted,	
assigning	to	every	pixel	(or	set	of	measurement	associated	to	the	pixel)	a	specific	class	(spectral	
class	 or	 land	 cover	 class).	 We	 can	 distinguish	 between	 two	 main	 groups	 of	 classification	
techniques,	supervised	and	unsupervised	classification	(Angiuli	&	Trianni,	2013;	Verburg	et	al.,	
2011).	In	unsupervised	classification	or	clustering	techniques,	pixels	are	automatically	grouped	
based	on	their	position	in	the	multidimensional	space	of	the	input	features	(spectral	bands,	i.e.	
radiances,	or	derived	indices,	etc.)	and	associated	to	a	real	class	(land	cover	class)	(Richards	&	
Jia,	2006).	In	supervised	classification,	the	class	of	the	pixels	is	determined	based	on	a-priori	
statistical	information	(spectral	signature	of	classes).	An	analyst	select	training	samples	(points	
or	clusters	of	points	that	represent	distinct	sample	areas	of	the	different	land	cover	types)	to	
classify	the	image	(Foody,	2002;	Sirén	&	Brondizio,	2009).	

There	is	a	vast	literature	regarding	classification	techniques	for	deriving	LC	maps	from	RS	
data	 and	 classifiers	 may	 come	 from	 different	 disciplines	 with	 diverse	 purposes.	 There	 are	
classifier	adopted	 from	statistics,	 symbolic	artificial	 intelligence,	data	mining,	 some	that	use	
neural	networks	or	that	are	ensembles	and	use	regression	or	clustering	approaches.	We	can	
also	distinguish	among	several	 families	of	classifiers,	such	as	Discriminant	Analysis,	Bayesian	
approaches,	Neural	Networks,	Decision	Trees,	Random	Forest,	Support	Vector	Machines	and	
many	others.	Support	Vector	Machines	(SVMs),	which	have	been	selected	for	this	work,	have	
been	found	to	be	robust	and	effective	algorithms	for	land	cover	classification	(Burges,	1998;	
Cristianini	&	Shawe-Taylor,	2000;	Fernández-Delgado	et	al.,	2014;	Mountrakis	et	al.,	2011).	
	
	
Multi-spectral	indices	

Multi-spectral	data	such	as	the	images	acquired	by	Landsat	satellites	since	more	than	40-
years	and	by	the	new	Sentinel-2	have	been	extensively	used	in	land	cover	classification.	These	
freely	accessible	datasets	have	a	spatial	resolution	(30	m	for	Landsat,	10/20	m	for	Sentinel-2)	
that	allows	the	identification	of	small	features	on	the	Earth	surface	needed	for	local	and	global	
studies	and	have	a	spectral	resolution	that	allows	the	identification	of	spectral	signatures	for	
different	land	cover	classes	(Angiuli	&	Trianni,	2013).	Instead	of	using	images’	spectral	bands,	
many	works	make	use	of	combination	of	bands	and	more	specifically	of	normalized	differences	
of	different	bands	(Angiuli	&	Trianni,	2013;	Aswatha	et	al.,	2016;	Joshi	et	al.,	2016;	Patel	et	al.,	
2015).	In	the	literature,	many	indices	have	been	defined	as	normalized	difference	of	two	bands	
with	the	aim	of	highlighting	certain	features	of	land	cover,	such	as	vegetation,	water	surfaces,	
built-up	areas,	etc.		(Aswatha	et	al.,	2016;	Li	&	Chen,	2014;	Silleos	et	al.,	2006;	Zha	et	al.,	2003;	
Zhou	et	al.,	2014).		
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Angiuli	&	 Trianni	 (2014)	 introduced	 the	Normalized	Difference	 Spectral	 Vector	 (NDSV),	
which	is	a	vector	of	15	elements	derived	from	all	the	possible	bands	combinations	(normalized	
difference	of	band	1	to	6)	of	Landsat	8	data.	The	idea	was	to	“extract	the	information	contained	
in	the	multispectral	image	removing	errors	and	ambiguities	due	to	differences	in	time,	space,	
acquisition,	etc.”	Among	the	15	elements	of	the	NDSV,	indices	already	defined	in	the	literature	
can	be	found,	such	as	the	Normalized	Difference	Vegetation	Index	(the	normalized	difference	
of	band	5	and	band	4	for	Landsat	8),	the	Normalized	Difference	Water	Index	(the	normalized	
difference	of	band	4	and	band	2	for	Landsat	8)	or	the	Normalized	Difference	Built-up	Index	(the	
normalized	difference	of	band	4	and	band	5	for	Landsat	8).	The	advantages	of	this	method	are	
that	data	are	intrinsically	normalized	and	consistent	globally,	the	information	provided	by	each	
index	gives	the	opportunity	for	analysing	the	contribution	of	different	features	in	mixed	urban	
areas	and	risk	of	ambiguities	are	minimized	since	the	lack	of	each	index	is	compensated	by	the	
others.	This	approach	has	been	found	to	be	effective	by	several	studies	(Aswatha	et	al.,	2016;	
Lopez-Caloca,	2015;	Patel	et	al.,	2015;	Trianni	et	al.,	2014)	and	it	has	been	selected	as	a	base	
for	this	work.	
	
	
Data	fusion	

Given	the	amount	of	free	multi-spectral	and	SAR	data	continuously	acquired	by	the	new	
Sentinels	satellites	over	the	whole	globe,	the	fusion	of	the	two	types	of	data	has	been	explored	
with	the	aim	of	improving	land	cover	classification	especially	concerning	built-up	areas.	In	fact,	
SAR	 and	multi-spectral	 can	 be	 complementary	 (Tupin,	 2010).	 In	 the	 case	 of	 vegetation	 for	
example,	 the	 information	 derived	 from	 multi-spectral	 data	 (leaf	 structure,	 pigmentation,	
moisture)	 can	 be	 complemented	 by	 the	 one	 derived	 from	 SAR	 (size,	 density,	 orientation,	
dielectric	properties).	In	general,	optical	data	can	be	more	suitable	for	delineating	broad	land	
cover	classes,	while	SAR	can	allow	the	characterization	of	land	management	and	modifications	
thanks	to	the	information	on	surface	roughness	and	moisture.	

Joshi	(2016)	distinguishes	three	main	groups	of	image	fusion	methods:	i)	pixel-level	fusion,	
the	combination	of	original	image	pixels;	ii)	feature	fusion,	combination	of	features	extracted	
from	the	individual	datasets;	and	iii)	decision	fusion,	a	separate	classification	of	SAR	and	optical	
with	a	combination	of	the	two	outputs	to	obtain	the	final	result.		

Several	works	have	employed	data	fusion	improving	classification	results	(Amarsaikhan	et	
al.,	2007;	Pereira	et	al.,	2013;	Dusseux	et	al.	2014;	Erasmi	&	Twele,	2009;	Joshi	et	al.,	2016;	
Stefanski	et	al.,	2014;	Waske	&	Van	Der	Linden,	2008).	For	example,	Amarsaikhan	et	al.,	(2010)	
compared	different	 techniques	of	 data	 fusion	 at	 pixel	 level	 for	 improving	urban	 land	 cover	
classification,	 finding	 the	 Brovey	 transformation	 to	 be	 the	 one	 giving	 better	 results.	 Later,	
features	 were	 extracted	 and	 the	 dataset	 classified	 using	 a	 Bayesian	 Maximum	 Likelihood	
classification.	In	another	work	based	on	feature	fusion,	ENVISAT-ASAR	and	Landsat	data	have	
been	used	together	for	 identifying	urban	areas.	Spectral	characteristics	were	retrieved	from	
Landsat	bands	 (normalized	difference	 indices)	and	spatial	 characteristics	were	derived	 from	
SAR	data.	Later,	a	majority	voting	method	were	used	to	classify	the	image	allowing	to	identify	
urban	areas	with	precision	(Lopez-Caloca,	2015).	

In	this	work,	we	make	use	of	features	fusion	at	first,	with	a	successive	step	of	data	fusion,	
as	it	will	be	explained	more	in	details	in	the	following	paragraph.	
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Classification	

As	already	mentioned,	several	are	the	available	techniques	of	supervised	classification.	A	
technique	that	has	been	increasingly	used	in	land	cover	classification	is	the	SVM	(Mountrakis	
et	al.,	2011),	which	has	been	selected	for	this	work.	SVMs	are	suited	for	RS	classification	given	
their	robustness	and	ability	to	work	well	even	with	 limited	training	samples	(Mantero	et	al.,	
2005)	and	given	their	high	performances	(Fernández-Delgado	et	al.,	2014).	SVM	has	been	used	
by	Waske	&	Van	Der	Linden	(2008)	for	land	cover	classification	by	means	of	SAR	and	optical	
decision	fusion,	by	Dusseux	et	al.	(2014)	by	means	of	data	fusion	and	by	Dalponte	et	al.	(2008)	
for	classification	of	complex	forest	areas	by	fusion	of	hyperspectral	and	LiDAR	data.	Esch	et	al.	
(2009),	Huang	&	Zhang	(2009),	Inglada	(2007),	Licciardi	et	al.	(2009)	and	Song	&	Civco	(2004)	
used	SVMs	for	classification	of	impervious	surfaces	and	urban	areas.	Dixon	&	Candade	(2008),	
Huang	et	al.	(2008)	and	Li	et	al.	(2010)	used	SVMs	for	general	land	cover	classification	obtaining	
good	results.	In	the	next	paragraph,	a	more	detailed	description	of	the	SVM	employed	in	this	
work	is	provided.	

	
	
Urban	Growth	

The	mapping	of	built-up	areas	is	a	topic	that	gained	increasing	interest	in	the	past	decades.	
In	 fact,	 the	 rapid	 urbanization	 of	 many	 areas	 of	 the	 world	 has	 strong	 impact	 on	 the	
environment,	 on	 the	 economy	 and	 society,	 posing	 challenges	 in	 terms	 of	 sustainable	
development	and	management	of	natural	resources.	Benefits	and	challenges	of	urbanization	
are	many	and	complex	and	they	need	to	be	studied	(Dye,	2008;	Seto	et	al.,	2011).	On	the	one	
hand,	 negative	 effects	 of	 urbanization	 needs	 to	 be	monitored,	 such	 as	 the	 loss	 of	 natural	
habitats	 and	 biodiversity,	 or	 transportation	 and	 traffic	 problems.	 On	 the	 other	 hand,	
urbanization	 can	 increase	 living	 standards,	 societal	 values,	 education	 and	 protection	 and	 a	
support	 for	 planning	 development	 may	 be	 crucial.	 Moreover,	 in	 terms	 of	 management	 of	
natural	disasters	and	disaster	risk	reduction,	detailed	maps	of	built-up	areas	and	of	population	
are	fundamental	in	order	to	estimate	impacts,	create	safer	settlements	and	reducing	losses	in	
terms	of	people	and	assets.	The	maps	currently	available	not	always	are	detailed	enough	and	
do	not	always	allow	to	detected	rapid	changes,	therefore	improved	maps	of	built-up	areas	are	
needed	in	order	to	study	urbanization	and	its	growth		(Esch	et	al.,	2014;	Potere	et	al.,	2009;	
Potere	&	Schneider,	2007;	Seto,	2009).	

Urbanization	has	been	studied	by	means	of	RS	since	decades,	using	either	optical	(Angiuli	
&	Trianni,	2013;	Estoque	&	Murayama,	2015;	Patel	et	al.,	2015a;	Schneider,	2012;	Taubenböck	
et	al.,	2012)	and	SAR	data	(Dell’Aqua	&	Gamba,	2010;	Esch	et	al.,	2011,	2012;	Marconcini,	et	
al.,	2013;	Taubenböck	et	al.,	2012)	or	data	fusion	of	the	both	(Amarsaikhan	et	al.,	2010;	Joshi	
et	al.,	2016;	Lopez-Caloca,	2015;	Tupin,	2010).	In	the	years,	methods	have	improved	as	well	as	
accuracy	(Patel	et	al.,	2015a),	leading	to	improvement	also	in	population	mapping	(Gaughan	et	
al.,	2013;	“The	WorldPop	Project,”	2014).	Moreover,	the	availability	of	new	sensors	and	the	
quantity	of	free	new	data	opens	up	new	opportunities	for	urban	mapping	and	urban	growth	
analysis.		
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5.4	Case	Studies	

5.4.1	Veneto,	North-Eastern	Italy	

The	importance	of	the	region	in	terms	of	change,	either	form	the	climate	and	from	the	socio-
economic	point	of	view,	has	been	explained	in	Chapter	2.	Figure	54	shows	the	Veneto	region	
(shaded-green)	and	the	area	considered	for	the	analysis	(red	box).	

	

Figure	54	Veneto	region	(shaded	green	areas)	case	study.	The	red-box	corresponds	to	the	area	
analysis.	Footprints	of	the	images	are	highlighted		

	
5.4.2	Southern	Malawi	

	

Figure	55	Southern	Malawi	with	Chikwawa,	Thyolo	and	Nsanje	districts.	The	analysis,	as	shown	
by	the	red	box,	is	concentrated	in	the	Nsanje	district	cover	by	Landsat	Path	167	row	
71	and	72.	
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Figure	55	shows	the	area	of	interest	for	the	case	of	Malawi.	The	analysis	has	been	concentrated	
on	the	Nsanje	district	over	an	area	of	50	by	100	kilometers	as	shown	by	the	red	box.	In	Chapter	
2,	 the	region	has	been	described	with	more	details	highlighting	 its	 issues	with	flood	events,	
climate	change	and	its	capacity	from	the	socio-economic	point	of	view.	
	
5.5	Data	Used	

Land	cover	classification	has	been	performed	for	both	case	studies.	We	made	use	of	Google	
Earth	Engine	for	pre-processing	the	images	and	therefore,	the	data	there	available	have	been	
used.		

For	Veneto,	regarding	the	classification	of	2015,	we	made	use	of	data	fusion	of	S1	and	S2	
data.	For	S2,	which	started	the	acquisition	in	July	2015,	we	made	use	of	all	the	images	available	
in	the	archive	at	the	moment	of	the	processing	(end	of	April	2016).	We	also	made	use	of	Landsat	
8	(L8)	Surface	Reflectance	for	an	independent	classification	to	be	used	as	comparison.	Since	L8	
data	in	GEE	where	not	available	with	cloud	mask	and	given	the	lack	of	a	reliable	cloud	masking	
algorithm	in	GEE,	a	threshold	of	70%	on	the	cloud	cover	was	set.	For	1995,	we	considered	a	
period	of	acquisition	of	two	years	given	the	small	amount	of	observations	available.	We	made	
use	of	Landsat	5	Surface	Reflectance	acquired	from	January	1994	to	December	1995	with	a	
cloud	cover	threshold	of	70%.	

For	Malawi,	at	the	moment	of	the	processing	there	were	not	enough	S1	and	S2	acquisitions	
over	our	area	of	interest	and	therefore	only	Landsat	data	have	been	used.		

Table	 18	 summarized	 the	 data	 used	 and	 specifies	 the	 orbits	 considered	 for	 both	 case	
studies.	

	
	
	

	
Table	18	Dataset	

	 2015	 1995	
Cloud	
Cover	

Orbit	
	

S1	 S2	 Landsat	

Veneto,	
Italy	

100	L8	from	01/14	to	
12/15	

	23	S1	from	01/15	to	
12/15	

	34	S2	from	07/15	to	
04/16	

37	L5	from	1/1/94	
to	31/12/95	

	

<70%	
/	
/	

95	D	
22	
122	

192/28-
29	

193/28	

Southern	
Malawi	

79	L8	from	01/14	to	
12/15	

	
/	 <70%	 /	 /	

167/71-
72	
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5.6	Methodology	

5.6.1	Land	Cover	Classification	

	

	
Figure	56	Classification	Methodology	

	
In	order	to	perform	the	land	cover	classification,	several	pre-processing	steps	had	to	be	

performed.	Given	the	availability	of	the	data	in	the	GEE	and	given	its	ease	of	use	and	very	high	
performances,	all	the	pre-processing	steps	have	been	performed	in	its	platform	as	shown	in	
Figure	56.	Later,	pre-processed	data	have	been	transformed	by	means	of	Principal	Components	
Analysis	(PCA)	using	the	R	software	and	classified	using	a	Support	Vector	Machine	implemented	
in	the	PKTools4.		
	
Pre-processing	in	Google	Earth	Engine	

The	S1	Ground	Range	Detected	High	resolution	SAR	dataset,	which	comes	radiometrically	
calibrated,	thermal	noise	corrected	and	terrain	corrected,	have	been	statistically	analysed	and	
the	 following	 feature	 extracted:	 i)	minimum	 pixel	 intensity;	 ii)	maximum	 pixel	 intensity;	 iii)	
median	 pixel	 intensity;	 iv)	 amplitude	 dispersion;	 v)	mean	 slope	 index.	 Each	 band	 has	 been	
normalised	 in	 order	 to	 have	 value	 from	 -1	 to	 1	 consistently	with	 the	 values	 of	 the	 feature	
derived	from	optical	data.	

Amplitude	dispersion	gives	an	indication	of	the	stability	of	the	pixel	and	therefore,	of	the	
observed	object.	It	has	been	computed	using	the	formula	(Ferretti,	Prati,	&	Rocca,	2001):	
	

AD	=	standard	deviation	(Amplitude)	/	mean	(Amplitude)	 (1)	
	

Stable	and	strong	scatterers,	such	as	buildings,	have	small	standard	deviation	with	high	
amplitude	resulting	in	a	small	amplitude	dispersion	value	(<	0.25).	Non-permanent	vegetated	
																																																													
4 http://pktools.nongnu.org (Pieter Kempeneers) 
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areas,	such	as	agricultural	areas,	compared	to	urban	areas	have	higher	standard	deviation	with	
lower	mean	 amplitude,	 resulting	 in	 a	 higher	 value	 of	 amplitude	 dispersion.	 Therefore,	 this	
parameter	is	useful	for	discriminating	different	type	of	land	cover	and	most	of	all,	it	gives	an	
indication	of	the	stability	or	variation	of	the	land	cover	(Ferretti	et	al.,	2001).		
	

The	mean	slope	index	is	defined	as:	
	

Mean	Slope	index	=		 |𝒙𝒊%𝟏'𝒙𝒊|𝑵)𝟏
𝒊*𝟏

𝑵'𝟏
	 (2)	

	
where	x	is	the	pixel	intensity	value	and	N	the	number	of	available	observations	ordered	by	date	
of	 acquisition.	 This	 index	 gives	 an	 indication	of	 the	 type	of	 variation	of	 scatterers.	 A	 stable	
object,	 such	as	a	building,	has	a	 slope	 index	very	close	 to	 zero.	A	 scatterer	 that	varies	very	
rapidly	and	exhibits	changes	at	every	acquisitions	will	have	a	high	value	of	slope	 index.	The	
variation	registered	by	the	index	is	not	scaled	by	the	intensity	of	the	object	observed,	i.e.	that	
changes	on	high	 reflective	scatterers	will	have	 the	same	 importance	of	 the	changes	on	 low	
reflective	scatterers.		

From	the	optical	images,	S2	and	Landsat,	the	following	indices	have	been	extracted:	
	
	

Normalized	Difference	Built-Up	Index	 NDBI	=		𝑺𝑾𝑰𝑹𝟏'𝑵𝑰𝑹
𝑺𝑾𝑰𝑹𝟏/𝑵𝑰𝑹

	 (3)	

Modified	Normalized	Difference	Water	Index	 MNDWI	=		𝐆𝐫𝐞𝐞𝐧'𝑺𝑾𝑰𝑹𝟏
𝑮𝒓𝒆𝒆𝒏/𝑺𝑾𝑰𝑹𝟏

	 (4)	

Atmospheric	Resistant	Vegetation	Index	 ARVI	=		𝑵𝑰𝑹'𝟐𝑹𝒆𝒅/𝑩𝒍𝒖𝒆
𝑵𝑰𝑹/𝟐𝑹𝒆𝒅'𝑩𝒍𝒖𝒆

	 (5)	

Normalized	Difference	Vegetation	Index	 NDVI	=		𝑵𝑰𝑹'𝑹𝒆𝒅
𝑵𝑰𝑹/𝑹𝒆𝒅

	 (6)	

Normalized	Difference	B5	-	B7	 ND57	=		𝑺𝑾𝑰𝑹𝟏'𝑺𝑾𝑰𝑹𝟐
𝑺𝑾𝑰𝑹𝟏/𝑺𝑾𝑰𝑹𝟐

	 (7)	

	
	

	The	Normalized	Difference	Built-up	Index	(NDBI)	is	the	normalized	difference	between	the	
middle	infrared	(MIR	or	shortwave	infrared	1	(SWIR1)	in	case	of	Landsat)	and	the	near	infrared	
(NIR)	as	reported	in	equation	(3).	Built-up	areas	have	higher	reflectance	in	the	MIR	wavelength	
compared	to	the	reflectance	in	the	NIR	band,	allowing	the	index	to	highlight	them	(Zha	et	al.,	
2003).	However,	 similar	behavior	occurs	 for	dry	 vegetation	and	water	with	high	 suspended	
matter	concentration,	which	can	create	noise	in	a	NDBI	image	(Xu,	2007).		

The	Normalized	Difference	Water	Index	(NDWI)	is	the	normalized	difference	between	the	
green	band	and	the	NIR	band	as	in	equation	(4).	It	exploits	the	high	reflectance	of	water	in	the	
green	wavelength	and	the	low	reflectance	in	the	NIR	band.	Moreover,	it	takes	advantages	of	
the	high	reflectance	in	the	NIR	by	vegetation	and	soil	features.	Positive	values	of	NDWI	indicates	
the	 presence	 of	 water,	 while	 zero	 or	 negative	 values	 indicates	 vegetation	 or	 soil	 features	
(McFeeters,	 1996).	 However,	 this	 index	 do	 not	 work	 properly	 in	 areas	 with	 built-up	 land	
background,	which	in	fact	have	positive	value	of	NDWI	(Xu,	2006).	If	instead	of	the	NIR	band,	
the	MIR	is	used,	built-up	areas	can	be	discriminated	from	water	since	their	reflectance	in	this	



	 89	

band	is	much	higher	than	that	of	water	(Xu,	2006).	For	this	reason,	the	used	of	the	Modified	
NDWI	(MNDWI)	has	been	chosen.		

The	Normalized	Difference	Vegetation	Index	(NDVI)	is	the	normalized	difference	between	
the	NIR	and	red	band.	The	red	channel	is	strongly	absorbed	by	chlorophyll	while	NIR	is	strongly	
reflected	 by	 vegetation,	 allowing	 the	 highlight	 of	 vegetated	 areas.	 NDVI	 is	 sensitive	 to	
atmospheric	 effects	 (Gao,	 1996).	 Similarly,	 the	 Atmospherically	 Resistant	 Vegetation	 Index	
(ARVI)	 (Kaufman	 &	 Tanre,	 1992)	 highlights	 vegetation	 comparing	 the	 NIR	 channel	 with	 a	
combination	 of	 the	 red	 and	 blues	 channels,	 which	 is	 less	 sensitive	 to	 the	 effects	 of	 the	
atmosphere.		

ND57	index	in	equations	(7)	has	been	chosen	based	on	its	use	in	the	literature	and	in	order	
to	have	a	representation	of	the	remaining	bands	of	the	Landsat	sensors	(Lu,	Mausel,	Brondízio,	
&	Moran,	2004).	

For	each	of	the	five	computed	index,	the	following	statistics	have	been	derived:	i)	minimum	
pixel	value;	ii)	maximum	pixel	value;	iii)	mean	pixel	value;	iv)	standard	deviation;	v)	slope	index,	
which	has	been	computed	using	the	formula	(2).	This	set	of	statistics	is	intended	to	capture	the	
variability	of	the	land	cover	throughout	the	year	and	allowing	a	better	separation	of	land	cover	
classes’	spectral	signature.	

The	two	sets	of	features	created,	one	derived	from	SAR	and	the	other	from	optical	data,	
have	been	stacked,	resample	at	the	same	resolution,	converted	to	UTM	projection	and	finally	
exported	from	GEE.	
	
Classification	using	Support	Vector	Machines	

Support	 Vector	 Machines	 (SVMs)	 is	 a	 supervised	 non-parametric	 statistical	 learning	
technique	 that	 in	 the	 last	 years	 have	 been	 increasingly	 used	 on	 RS	 problems.	 A	 training	
algorithm	finds	a	hyperplane	that	separates	optimally	the	dataset	in	a	number	of	predefined	
classes	consistently	to	the	training	examples	provided.	Optimality	is	obtained	setting	a	margin	
around	the	hyperplane	(decision	boundary)	that	minimizes	misclassifications	as	shown	for	the	
linear	case	in	Figure	57.	It	is	a	learning	technique	because	of	the	iterative	process	for	finding	
the	 optimal	 boundary	 that	 separates	 the	 training	 patterns	 and	 later,	 with	 identical	
configurations,	the	dataset.	
	
	
	

	
Figure	57	Supper	Vector	Machine	example	(linear).	Source:	(Mountrakis,	2011)	
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In	practical	cases,	 linear	separability	 is	difficult	since	points	of	different	classes	overlap	each	
other.	The	soft	margin	method	or	the	kernel	trick	are	workarounds	that	solve	the	inseparability	
problem	by	introducing	additional	variables	or	incrementing	the	space	dimensionality.	

SVMs	work	well	with	small	amount	of	training	samples,	a	typical	scenario	when	working	
with	 RS	 applications,	 providing	 high	 classification	 accuracy	with	 a	 finite	 amount	 of	 training	
patterns.	They	minimize	misclassification	without	prior	assumptions	made	on	the	probability	
distribution	of	data	such	as	in	the	case	of	maximum	likelihood	estimation.	The	drawbacks	on	
RS	application	are	the	difficulty	in	choosing	the	right	kernel	and	the	intimidating	theory	for	non-
experts	(Burges,	1998;	Vapnik,	1998;	Cristianini	et	al.,	2000;	Fernández-Delgado	et	al.,	2014;	
Mountrakis	et	al.,	2011).	
	
PKTools	

We	made	use	of	the	open	source	pktools4,	a	C++	suite	of	utilities	for	RS	image	processing	
(McInerney	&	Kempeneers,	2015).	It	implements	a	C-SVM	(classification	SVM)	for	supervised	
classification	 based	 on	 the	 library	 libSVM5	 and	 it	 uses	 a	 radial	 basis	 function	 (RBF)	 kernel	
(Keerthi	 &	 Lin,	 2003;	 Lin	&	 Lin,	 2003;	 Vapnik,	 1998).	 Several	 steps	 are	 needed	 in	 order	 to	
perform	the	classification:	i)	the	input	features	composing	the	dataset	to	be	classified,	have	to	
be	scaled	in	order	to	avoid	that	attributes	in	greater	numeric	ranges	dominates	those	in	smaller	
numeric	ranges	(e.g.	-1	to	1);	ii)	prepare	a	training	dataset	(a	shapefile	of	points)	for	each	class	
to	be	classified	where	each	points	bear	the	value	of	the	input	features;	iii)	using	the	RBF	kernel,	
the	optimal	parameters	C	(penalty	parameter	for	wrong	classification)	and	g	(transformation	
parameter	 in	 the	 kernel)	 have	 to	 be	 found	 for	 allowing	 the	 classifier	 to	 accurately	 predict	
unknown	data;	iv)	finally	the	classification	has	to	be	performed.	

	
Input	datasets	

The	input	dataset	to	the	SVM	classifier	is	the	stack	of	SAR	and	optical	data	exported	from	
GEE.	 The	 stack	 is	 composed	of	30	bands:	25	bands	 resulting	 from	 the	 statistical	 analysis	of	
optical	data	(5	indices	with	5	statistics	each)	plus	5	resulting	from	the	analysis	of	the	SAR	data.	
Given	dimension	of	such	input	dataset	and	given	that	certain	statistics	could	be	redundant,	we	
performed	a	Principal	Component	Analysis	(PCA)	transformation	using	the	raster	package	 in	
the	 R	 software	 environment.	 With	 this	 processing,	 data	 fusion	 of	 optical	 and	 SAR	 data	 is	
performed.	 We	 decided	 to	 keep	 the	 principal	 components	 that	 represents	 the	 99%	 of	
information	of	the	original	dataset.	Only	18	bands	were	kept	form	the	initial	35	and	were	used	
as	input	for	the	SVM	classifier.	

PCA	 is	 commonly	 understood	 as	 a	 technique	 of	 data	 compression	 used	 for	 reducing	
dimensionality	of	multidimensional	data	sets	(Richards,	2012).	It	is	a	statistical	techniques	used	
for	image	encoding,	change	detection	and	multi-temporal	dimensionality,	which	transforms	a	
set	 of	 inter-correlated	 variables	 into	 a	 new	 set	 of	 uncorrelated	 linear	 combinations	 of	 the	
original	variables	(Pohl	&	van	Genderen,	1998).	It’s	implementation	in	R	is	easy	to	use	and	has	
very	good	performances.		
	

	

																																																													
5 https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 



	 91	

Training		

The	 training	 file	 have	 been	manually	 created	 by	 photointerpretation.	We	made	 use	 of	
Google	Earth	images	and	photos	acquired	during	field	work	for	assessing	the	land	cover	type.	
For	the	case	study	of	Veneto,	an	up	to	date	and	detailed	land	cover	map	were	also	available	
and	 use	 for	 creating	 the	 training	 set.	 After	 the	 manual	 classification,	 the	 training	 set	 was	
randomly	sampled	to	partially	remove	errors	and	bias.	The	classes	created	are:		
	
1:	Urban	
2:	Agriculture	
3:	Forest	
4:	Bare	Soil	
5:	Water	
	

We	made	use	of	the	PKTools	function	pkextract6	for	creating	the	training	dataset	needed	
by	the	SVM,	where	each	training	point	bears	the	values	of	the	input	features.	
	
Search	of	the	optimal	C	and	g	parameters	

We	made	use	of	the	PKTools	function	pkopt7	for	finding	the	optimal	C	and	g	parameters.	
The	function	needs	as	input	the	range	of	C	and	g	among	which	looking	for	the	optimal	ones.	
Moreover,	a	cross-validation	parameter	has	to	be	specified,	which	is	used	to	divide	the	training	
set	in	v	subsets	of	equal	size.	Iteratively,	one	subset	is	tested	using	the	classifier	trained	on	the	
remaining	v-1	subsets.		

First,	we	look	for	the	optimal	C	and	g	in	a	coarser	grid,	and	after	individuating	the	best	area	
in	the	C-g	plane,	we	look	for	the	optimum	in	a	finer	grid.	
	
Classification	

The	PKTools	function	pksvm8	 is	used	for	classifying	the	input	dataset.	The	training	file	is	
needed	as	well	as	the	optimal	C-g.	The	result	is	a	land	cover	map	classified	using	the	classes	
specified	in	the	training.		
	

5.5.2	Urban	Growth	Analysis	for	Veneto	case	study	

As	summarized	in	Error!	Reference	source	not	found.,	land	cover	maps	have	been	obtained	
for	the	year	2015	and	the	year	1995,	allowing	to	perform	a	change	detection	analysis	on	built-
up	areas.	From	each	map,	built-up	areas	have	been	selected	and	compared.	The	comparison	
has	been	performed	at	pixel	level	allowing	to	obtain	a	change	detection	image	useful	for	an	
overall	analysis	of	change,	such	as	the	computation	of	increment	or	loss	of	built-up	area.	For	
each	study	area,	administrative	units	have	been	used	to	compute	several	parameters	useful	for	
a	further	analysis	of	urban	growth.	For	Veneto,	we	disposed	of	three	levels	of	administrative	

																																																													
6 http://pktools.nongnu.org/html/pkextractogr.html 
7 http://pktools.nongnu.org/html/pkoptsvm.html 
8 http://pktools.nongnu.org/html/pksvm.html 
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units:	census	cell,	municipality	and	province.	Census	cells	can	have	dimensions	from	about	100	
m2	 in	 city	 centres	 up	 to	 about	 100	 Km2	 in	 mountainous	 areas	 with	 little	 population.	
Municipalities	can	be	as	little	as	3	Km2	for	small	villages	up	to	several	hundreds	of	Km2	for	cities	
such	as	Padua	or	Vicenza.	 In	order	to	analyze	urban	growth,	the	following	parameters	have	
been	computed:	
	
	

Absolute	Built-Up	
Growth	 (Built-Up	Area)2015-(Built-Up	Area)1995	 [m2]	

Relative	Built-Up	
Growth	

(𝐁𝐮𝐢𝐥𝐭 − 𝐔𝐩	𝐀𝐫𝐞𝐚)𝟐𝟎𝟏𝟓 − (𝐁𝐮𝐢𝐥𝐭 − 𝐔𝐩	𝐀𝐫𝐞𝐚)𝟏𝟗𝟗𝟓
(𝐁𝐮𝐢𝐥𝐭 − 𝐔𝐩	𝐀𝐫𝐞𝐚)𝟏𝟗𝟗𝟓

	 [%]	

Largest	Patch	Index	
(LPI)	

max	(patch	Area)
Areaabcd	efgg

	 [%]	

Patch	Density	(PD)	
number	patches
Areaabcd	efgg

∗ 10000 ∗ 100	 [Number/100	
ha]	

Euclidean	Nearest	
Neighbor	Distance	
(ENN)	

ℎm 	 [m]	

Type	of	growth	
imperviouness	pixelc
number	pixelsabcd	efgg	

	 [%]	

Proportion	of	built-
up	areas	 (Built-Up	Area)cell	-	(Area)cell	 [%]	

	

With	the	exception	of	Patch	Density	and	Euclidean	Nearest	Neighbor	Distance,	which	have	
been	 computed	 only	 at	municipality	 level,	 these	 parameters	 have	 been	 computed	 at	 both	
municipalities	and	census	cells	level.		

Relative	indicators	are	important	in	order	to	satisfy	the	additivity	property	as	described	in	
Jaeger	et	al.	(2010).	In	particular,	when	parameters	(such	as	built-up	growth	area)	are	weighted	

Figure	58	Urban	Growth	Analysis	
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by	their	own	areas,	they	became	area-proportionately	additive	and	they	allow	the	comparison	
of	patches	with	different	 size.	Moreover,	 they	allow	 to	compare	a	 local	analysis	 taking	 into	
consideration	what	happen	in	the	whole	region	(Altieri	et	al.,	2014).	

Absolut	growth	of	built-up	areas	allow	a	spatial	comparison	of	growth	for	each	unit	cell,	
relative	growth	on	the	other	hand,	allow	for	a	comparison	of	growth	dynamics.	The	Largest	
Path	Index	(LPI)	is	the	percentage	of	the	largest	patch	in	the	area	of	measurement	compared	
to	the	total	area	of	the	unit	cell	and	it	describes	the	dominance	of	the	urban	core	(McGarigal	&	
Marks,	1994;	Taubenböck	et	al.,	2009).	Patch	Density	(PD)	of	built-up	patches	inside	the	unit	
cell	 express	 in	 hectares	 and	 it	 measures	 the	 fragmentation	 of	 the	 settlement	 pattern	
(McGarigal	&	Marks,	1994;	K	C	Seto	&	Fragkias,	2005).	Patch	dispersion	is	measured	by	means	
of	 the	Mean	Euclidean	Nearest	Neighbor	distance	 (ENN),	where	 small	distances	 indicates	a	
more	 compact	 distribution	 of	 built-up	 areas	 and	 large	 distances	 a	 more	 disperse	 pattern	
(Hannes	Taubenböck	et	al.,	2011).	Type	of	growth	is	the	average	value	of	imperviousness	for	
the	grown	built-up	area	and	 it	gives	an	 indication	on	the	type	of	built-up	areas.	 It	has	been	
calculated	 following	 the	methodology	proposed	by	 Esch	 et	 al.	 (2009).	Higher	 values	 of	 this	
indicators	 imply	 a	more	 sealed	 surface.	Proportion	of	built-up	areas	allows	 to	 compare	 the	
intensity	of	urbanization	between	areas	of	different	size	(Altieri	et	al.,	2014)	and	can	indicate	
the	vulnerability	to	floods	(Nirupama	&	Simonovic,	2007;	Taubenböck	et	al.,	2011).	

5.7	Land	Cover	Classification	Results	and	Discussions	

5.7.1	Veneto	

Land	 cover	 maps	 have	 been	 derived	 for	 1995	 and	 2015	 following	 the	 methodology	
presented	in	this	chapter.	As	a	training	input,	a	minimum	of	500	points	were	selected	for	each	
of	 the	5	 classes.	 The	 set	of	points	has	been	 randomly	extracted	 from	a	bigger	 set	 selected	
manually	from	photointerpretation.	The	validation	of	the	derived	products	has	been	performed	
using	and	independent	set	of	ground	truth	points	extracted	from	photointerpretation	and	form	
the	land	use	map	available,	dated	2012	and	provided	by	the	Veneto	region.	Every	validation	
has	been	performed	using	14.716	points.		

Given	 that	 S2	 mission	 was	 at	 the	 beginning	 of	 its	 life,	 the	 distribution	 of	 acquisitions	
throughout	the	year	was	not	optimal.	For	this	reason	and	for	the	sake	of	comparison,	land	cover	
maps	for	2015	has	been	derived	using	data	fusion	of	L8	indices	statistics	and	S1	statistics.	The	
two	 results	 are	 shown	 in	 Figure	 59	 (L8	 and	 S1)	 and	 Figure	 60	 (S2	 and	 S1).	 From	 a	 visual	
inspection,	it	is	possible	to	see	that	the	two	products	are	very	similar.	This	is	confirmed	also	by	
Table	25	and	Table	20,	which	show	respectively	the	classification	error	matrix	for	the	L8	and	S1	
classification	and	for	S2	and	S1	classification.	The	overall	accuracy	is	of	93%	in	the	case	using	
L8	with	K	of	0.906.	89%	is	the	overall	accuracy	in	the	case	using	S2,	with	a	K	of	0.86.	The	accuracy	
for	built-up	areas	shows	the	greatest	difference,	80%	in	the	case	of	fusion	of	L8	and	S1,	75%	in	
the	case	of	fusion	of	S2	and	S1.	This	difference	is	also	noticeable	in	the	two	land	cover	maps.		

In	order	to	justify	the	use	of	the	data	fusion	of	optical	and	SAR	and	the	use	of	the	statistics	
on	 the	 indices,	 sever	 products	 have	 been	 derived	 as	 a	 comparison.	 Table	 21	 shows	 the	
classification	error	matrix	for	the	land	cover	obtained	using	as	input	dataset	only	the	L8	indices	
statistics,	without	SAR	data.	This	gave	an	overall	accuracy	of	91%	and	a	value	of	the	coefficient	
K	of	0.88.	Table	22	shows	the	error	matrix	for	the	land	cover	map	obtained	using	as	input	only	
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the	statistics	on	the	L8	bands,	which	gave	overall	accuracy	of	88%	and	K	of	0.83.	The	statistics	
computed	were	the	same	computed	on	the	indices,	i.e.	maximum,	minimum,	mean,	standard	
deviation	and	slope	index.	Table	23	shows	the	error	matrix	for	the	map	obtained	using	statistics	
on	S2	indices,	which	gave	overall	accuracy	of	88%	and	K	of	0.84.		
	

			 	

	
Table	19	

L8	Indices	+	S1	-	Classification	Error	Matrix 
Pixels	 	      Ground Truth   [Pixels]		  

	
	

Land Cover Class 
Urban 

(1) 
Agriculture 

(2) 
Forest 

(3) 
Water 

(5) 
Bare Soil 

(13) 
Total 
Row 

C
la

ss
ifi

ca
tio

n 
20

15
	 Urban (1) 2085 5 0 0 42 2132 

Agriculture (2) 48 6148 74 0 78 6348 
Forest (3) 294 158 2522 0 2 2976 
Water (5) 52 17 62 2021 35 2187 

Bare Soil (13) 109 9 7 17 931 1073 
Total Column 2588 6337 2665 2038 1088 14716 

       

 
Agreement 
Accuracy 

0.8 0.97 0.95 0.99 0.856  

 
Commission 

Error 
0.022 0.031 0.15 0.076 0.132  

 Omission Error 0.19 0.03 0.054 0.008 0.144  
 Overall accuracy 0.93      
 Kappa coefficient  0.906      

	

Figure	 59	 Land	 Cover	 for	 Veneto	 2015	
obtained	 from	 data	 fusion	 of	 L8	 Indices	
statistics	and	S1	statistics	

	Figure	 60	 Land	 Cover	 for	 Veneto	 2015	
obtained	 from	 data	 fusion	 of	 S2	 Indices	
statistics	and	S1	statistics	



	 95	

	

Table	20	
S2	Indices	+	S1	-	Classification	Error	Matrix 

Pixels	 	      Ground Truth   [Pixels]		  

	
	

Land Cover Class 
Urban 

(1) 
Agriculture 

(2) 
Forest 

(3) 
Water 

(5) 
Bare Soil 

(13) 
Total 
Row 

C
la

ss
ifi

ca
tio

n 
20

15
	 Urban (1) 2125 1 0 0 6 2132 

Agriculture (2) 429 5287 419 0 213 6348 
Forest (3) 190 153 2633 0 0 2976 
Water (5) 20 4 2 2161 0 2187 

Bare Soil (13) 81 7 0 8 977 1073 
Total Column 2845 5452 3054 2169 1196 14716 

       

 
Agreement 
Accuracy 

0.747 0.97 0.862 0.996 0.817  

 
Commission 

Error 
0.003 0.17 0.115 0.012 0.089  

 Omission Error 0.253 0.03 0.138 0.004 0.183  
 Overall accuracy 0.896      
 Kappa coefficient  0.86      

	
	

	

	

	

Table	21	
Landsat	8	Indices	-	Classification	Error	Matrix 

Pixels	 	      Ground Truth   [Pixels]		  

	
	

Land Cover Class 
Urban 

(1) 
Agriculture 

(2) 
Forest 

(3) 
Water 

(5) 
Bare Soil 

(13) 
Total 
Row 

C
la

ss
ifi

ca
tio

n 
20

15
	 Urban (1) 2128 0 0 0 4 2132 

Agriculture (2) 64 6183 63 0 38 6348 
Forest (3) 464 294 2217 0 1 2976 
Water (5) 108 9 17 2034 19 2187 

Bare Soil (13) 145 10 1 44 873 1073 
Total Column 2909 6496 2298 2078 935 14716 

       

 
Agreement 
Accuracy 

0.73 0.95 0.96 0.98 0.93  

 
Commission 

Error 
0.002 0.025 0.25 0.07 0.19  

 Omission Error 0.268 0.05 0.03 0.02 0.07  
 Overall accuracy 0.91      
 Kappa coefficient  0.88      
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Table	22	
Landsat	8	Bands	-	Classification	Error	Matrix 

Pixels	 	      Ground Truth   [Pixels]		  

	
	

Land Cover Class 
Urban 

(1) 
Agriculture 

(2) 
Forest 

(3) 
Water 

(5) 
Bare Soil 

(13) 
Total 
Row 

C
la

ss
ifi

ca
tio

n 
20

15
	 Urban (1) 2130 0 0 0 2 2132 

Agriculture (2) 89 6234 10 0 15 6348 
Forest (3) 1038 26 1912 0 0 2976 
Water (5) 73 28 150 1936 0 2187 

Bare Soil (13) 320 37 0 14 702 1073 
Total Column 3650 6325 2072 1950 719 14716 

       

 
Agreement 
Accuracy 

0.58 0.985 0.922 0.993 0.976 
 

 
Commission 

Error 
0.001 0.018 0.357 0.115 0.346 

 

 Omission Error 0.48 0.014 0.077 0.007 0.024  
 Overall accuracy 0.877      
 Kappa coefficient  0.83      

	
	
	

	
Table	23	

S2	Indices	-	Classification	Error	Matrix 
Pixels	 	      Ground Truth   [Pixels]		  

	
	

Land Cover Class 
Urban 

(1) 
Agriculture 

(2) 
Forest 

(3) 
Water 

(5) 
Bare Soil 

(13) 
Total 
Row 

C
la

ss
ifi

ca
tio

n 
20

15
	 Urban (1) 2081 31 0 0 20 2132 

Agriculture (2) 567 5546 31 0 204 6348 
Forest (3) 405 235 2336 0 0 2976 
Water (5) 28 7 1 2151 0 2187 

Bare Soil (13) 170 21 1 8 873 1073 
Total Column 3251 5840 2369 2159 1097 14716 

       

 
Agreement 
Accuracy 

0.64 0.95 0.986 0.996 0.80  

 
Commission 

Error 
0.024 0.126 0.215 0.016 0.19  

 Omission Error 0.36 0.05 0.014 0.004 0.2  
 Overall accuracy 0.88      
 Kappa coefficient  0.84      
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5.7.2	Malawi	

For	 Malawi,	 the	 training	 has	 been	 created	 by	 photointerpretation	 using	 Google	 Earth	
images	and	photos	collected	by	field	work.		Among	the	all	points	created,	a	minimum	of	500	
points	were	 randomly	 selected	 for	each	of	 the	7	 classes	of	 land	cover	and	use	 to	 train	 the	
classifier.	The	validation	has	been	performed	against	the	land	cover	map	of	2010	available	in	
the	Malawi	Spatial	Data	Portal	(MASDAP)9	using	a	total	of	10.355	points.		

Figure	 61	 show	 the	 resulting	 land	 cover	 map.	 In	 this	 classification	 we	 distinguished	
perennial	agriculture	from	annual	agriculture	and	we	used	the	class	sparse	vegetation	for	shrub	
land,	grassland	and	very	 sparse	 trees.	The	 resulting	map	 looks	quite	detailed	and	 is	able	 to	
detect	settlements	even	if	they	are	very	challenging	to	classify.	In	fact,	there	are	no	big	cities	in	
the	 area	 analysed,	 which	 is	 mainly	 characterized	 by	 rural	 settlements.	 With	 the	 spatial	
resolution	offered	by	Landsat	(30	m),	detecting	the	presence	of	small	buildings	is	not	easy.	The	
map	reports	many	forested	areas	along	the	Shire	river	on	the	North	side	of	the	area.	Technically	
this	is	not	a	mistake	given	that	the	images	clearly	show	the	presence	of	thick	vegetation	in	this	
area.		Nevertheless,	this	area	is	reported	in	other	maps	as	wetland	as	indicated	in	Figure	62	
(left	and	right).	This	area	is	known	to	be	covered	by	water	periodically	and	both	classification	
may	be	correct.	Figure	62	shows	the	comparison	of	our	result	over	the	north	side	of	the	Nsanje	
district	with	the	land	cover	map	of	2010	available	in	the	MASDAP	portal	and	the	open	street	
map.	It	can	be	clearly	seen	that	settlements	have	a	very	good	correspondence	with	the	open	
street	map	layer.	Instead,	land	cover	of	MASDAP	appears	less	accurate	and	certainly	not	up	to	
date.	In	fact,	the	big	area	of	permanent	agriculture	at	the	North	of	the	city	of	Bangula	is	not	
present	in	this	map.			

Table	24	shows	the	error	matrix	computed	using	the	MASDAP	land	cover	as	a	reference.	
As	already	mentioned,	this	map	is	dated	2010	and	therefore	does	not	report	recent	changes.	
Moreover,	from	a	qualitative	analysis	it	does	not	seem	as	detailed	as	the	result	that	is	presented	
here.	The	lack	of	other	products,	prevented	other	comparisons.	The	validation	with	this	map	
using	10.355	points	shows	an	overall	accuracy	of	76%	with	a	K	coefficient	of	0.52.	Even	though	
these	numbers	do	not	indicate	outstanding	performances,	given	the	circumstances	explained	
above,	they	can	be	considered	very	good.		

	

																																																													
9 www.masdap.mw 
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Figure	61	Malawi	Land	Cover	Map	2015	obtained	using	data	fusion	of	Landsat	8	and	Sentinel	
1	images	statistics		
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Figure	62	A	zoom	of	different	products	over	the	North	side	of	the	Nsanje	district:	Land	cover	
map	of	2010	available	in	the	Malawi	Spatial	Data	Portal	(left);	Malawi	Land	Cover	
map	of	2015	(centre);	Open	Street	Map	(right)		

	

Table	24		
	 	 L8	+	S1	Indices	-	Classification	Error	Matrix	

	 Pixels	 	 					Ground	Truth			[Pixels]		 	 	

	
	

Land	Cover	Class	 Urban	
(1)	

Agricult.	(2)	 Forest	
(3)	

Wetland	
(4)	

Water	
(5)	

Bare	
Soil	
(6)	

Sparse	Veg.	
(7)	

Total	
Row	

Cl
as
si
fic
at
io
n	
20

15
	

Urban	(1)	 165	 42	 0	 0	 0	 3	 4	 214	
Agriculture	(2)	 0	 4025	 239	 79	 0	 0	 988	 5331	
Forest	(3)	 1	 16	 1693	 84	 3	 0	 6	 1803	
Wetland	(4)	 0	 8	 0	 1052	 314	 0	 167	 1541	
Water	(5)	 0	 0	 0	 8	 942	 0	 6	 956	
Bare	Soil	(6)	 0	 221	 0	 0	 0	 9	 49	 279	

Sparse	Vegetation	
(7)	

0	 223	 2	 0	 0	 0	 6	 231	

Total	Column	 166	 4535	 1934	 1223	 1259	 12	 1226	 10355	
	 	 	 	 	 	 	 	 	

	 Agreement	
Accuracy	

0.99	 0.89	 0.87	 0.86	 0.75	 0.75	 0.005	 	

	 Commission	Error	 0.23	 0.24	 0.06	 0.31	 0.01	 0.96	 0.97	 	
	 Omission	Error	 0.01	 0.11	 0.12	 0.93	 0.25	 0.25	 0.86	 	
	 Overall	accuracy	 0.76	 	 	 	 	 	 	 	
	 Kappa	coefficient		 0.52	 	 	 	 	 	 	 	
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5.7.3	Discussions	

The	 results	 show	 the	 strength	of	 the	methodology	proposed	and	 the	usefulness	of	 the	
metrics	derived	from	indices.	The	highest	accuracy	has	been	obtained	using	the	fusion	of	L8	
and	S1,	93%	overall	accuracy	with	K	of	0.9.	The	use	of	only	L8	indices	gives	a	lower	accuracy,	
91%,	and	a	lower	K,	0.88.	Adding	statistics	derived	from	S1	SAR	data	improve	the	results.	The	
fusion	of	Sentinel-2	and	Sentinel-1	gave	slightly	lower	accuracy,	89%	of	overall	accuracy	and	K	
of	0.86.	As	already	mentioned,	the	reason	for	this	is	a	sub-optimal	distribution	of	the	acquisition	
throughout	the	year	and	an	overall	lower	number	of	acquisition	of	S2	image,	which	do	not	allow	
to	build	a	statistics	as	robust	as	in	the	case	of	L8.	The	use	of	S2	would	allow	to	obtain	land	cover	
maps	with	an	increased	resolution,	20	m	against	the	30	m	of	the	Landsat.	Once	the	S2	archive	
will	be	enough	populated,	it	will	be	possible	to	derive	more	robust	statistics	and	obtain	more	
precise	results.	Also	in	the	case	of	S2,	the	use	of	only	optical	data	allows	to	have	a	result	with	
lower	accuracy,	88%	overall	accuracy	and	K	of	0.84.			

The	fusion	of	SAR	and	optical	data	and	the	use	of	the	metric	proposed	is	justified	by	these	
results.		

For	each	land	cover	class	considered,	the	spectral	signature	has	been	plotted	as	shown	in	
Figure	63.	The	plots	show	clearly	how	the	statistics	allow	to	discriminate	form	one	class	to	the	
other.	In	the	case	of	forest	and	agriculture,	we	can	see	very	similar	signatures.	The	use	of	the	
mean	value	for	each	index	would	not	allow	to	discriminate	accurately	the	two	classes.	The	use	
of	the	other	statistics,	 in	particular	the	minimum,	plus	the	use	of	SAR	statistics	 improve	the	
capability	of	separating	forest	from	agriculture.		

	
	

Table	25 
L8	Indices	+	S1	(full	input	features)	-	Classification	Error	Matrix 

Pixels	 	      Ground Truth   [Pixels]		  

	
	

Land Cover Class 
Urban 

(1) 
Agriculture 

(2) 
Forest 

(3) 
Water 

(5) 
Bare Soil 

(13) 
Total 
Row 

C
la

ss
ifi

ca
tio

n 
20

15
	 Urban (1) 2101 5 0 0 26 2132 

Agriculture (2) 5 6202 88 0 53 6348 
Forest (3) 320 52 2604 0 0 2976 
Water (5) 12 17 111 2038 9 2187 

Bare Soil (13) 109 4 3 5 952 1073 
Total Column 2547 6280 2806 2043 1040 14716 

       

 
Agreement 
Accuracy 

0.825 0.987 0.928 0.997 0.915  

 
Commission 

Error 
0.014 0.023 0.125 0.068 0.113  

 Omission Error 0.175 0.012 0.072 0.002 0.085  
 Overall accuracy 0.94      
 Kappa coefficient  0.92      
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Figure	63	Spectral	signatures	of	the	five	land	cover	classes.	
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Figure	64	Spectral	Signatures	for	each	land	cover	class	in	the	principal	component	domain	
	

The	use	of	Principal	Component	Analysis	allowed	to	reduce	the	input	features	from	30	to	
18,	improving	the	efficiency	of	the	classification	methodology.	The	PCA	analysis	showed	that	
the	first	18	components	allowed	to	keep	the	99%	of	the	original	information.	In	order	to	prove	
that	the	reduction	would	not	compromise	the	accuracy	of	the	classification,	we	derived	a	land	
cover	map	using	as	input	the	original	L8	statistics	plus	the	S1	statistic.	The	classification	error	
matrix	shown	in	Table	25,	indicates	that	the	overall	accuracy	94%	with	a	K	0f	0.92.	The	quality	
of	the	result	is	comparable	with	the	one	obtained	with	the	reduced	dataset,	showing	that	the	
efficiency	obtained	in	terms	of	computation	is	not	at	the	expense	of	the	accuracy.	In	fact,	the	
classification	 process	was	much	 faster	with	 the	 reduced	 dataset,	 either	 regarding	 the	 SVM	
optimization	 step	 and	 the	 classification	 step.	 Moreover,	 once	 the	 principal	 component	
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reduction	is	performed,	there	is	an	advantage	also	in	term	of	size	of	files.	If	the	area	analysed	
is	 not	 small,	 the	 full	 statistics	 file	 could	 be	 challenging	 to	 handle.	 Figure	 64	 shows	 spectral	
signatures	for	each	land	cover	class	in	the	principal	component	domain.	The	upper	part	of	the	
image	shows	the	values	of	each	component	for	every	land	cover	class,	the	lower	part	shows	
the	 same	 values	 but	 in	 a	 relative	 percentage	 form.	 This	 plot	 shows	 that	 also	 the	 last	
components	provided	useful	information	for	discriminating	each	class.		

5.8	Veneto	Urban	Growth	Results	and	Discussions	

The	 first	 product	 computed	 in	 order	 to	 analyse	 urban	 growth	 has	 been	 the	 change	
detection	map	shown	in	Figure	65.	Built-up	areas	in	1995	have	been	compared	with	the	ones	
in	2015.	The	resulting	map	shows	reddish	pixels,	which	represent	unchanged	built-up	areas,	
yellow	pixels,	which	are	the	new	built-up	areas,	and	light	blue	pixels,	which	are	the	built-up	
areas	present	in	1995	and	which	have	changed	to	another	land	cover	type	in	2015.		

Table	26	shows	that	 from	1995	to	2015	the	area	has	gained	402.1	km2	of	new	built-up	
areas	losing	70.4	km2	of	the	older	one,	resulting	in	a	net	gain	of	331.7	km2	(64.8	%).	From	the	
map	we	can	clearly	see	the	construction	of	new	roads	and	the	expansion	of	the	existing	towns.	
The	city	of	Padua,	centre	right	of	the	image	shows	a	fairly	big	expansion	toward	the	south-east,	
with	a	remarkable	expansion	of	the	industrial	area	(east	side	of	the	city	centre).			

	
	

	 	

Figure	65	Change	detection	between	built-up	area	in	1995	and	2015	over	the	region	of	interest	
of	 Veneto.	 Red	 pixels	 represent	 stable	 built-up	 areas,	 yellow	 pixels	 represent	 new	
built-up	areas,	while	purple	pixels	represent	built-up	areas	present	in	1995	and	which	
has	disappeared	in	2015.	
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Based	on	 administrative	 subdivision	of	 the	 area	 analysed,	 parameters	 of	 urban	 growth	
have	been	computed	for	municipalities	and	for	census	cells.	Figure	66	shows	absolute	(left)	and	
relative	(right)	growth	aggregated	at	municipalities	(top)	and	census	cells	(bottom)	level.	It	can	
be	noted	that	the	two	main	cities	in	the	area,	Vicenza	(North-West)	and	Padua	(centre-East),	
show	the	highest	level	of	growth	in	absolute	terms.	In	relative	terms,	though,	they	don’t	not	
show	relevant	changes.	Vice	versa,	the	municipalities	in	the	piedmont	area	(North/North-East),	
such	as	Castelfranco	Veneto	and	Cittadella,	show	a	significant	increase	of	built-up	areas,	either	
in	absolute	and	in	relative	terms,	indicating	a	more	significant	impact	of	built-up	growth	on	this	
area.	Moreover,	 looking	at	the	level	of	municipalities,	 it	can	be	observed	how	this	growth	is	
more	 concentrated	 in	 certain	 specific	 locations,	which	 in	 general	 excludes	 city	 centres	 and	
highlights	urban	sprawl.	The	analysis	at	census	cells	 level	highlights	changes	that	are	not	so	
evident	at	the	municipality	level.	This	is	evident	in	the	south	side	of	the	area,	where	the	smaller	
resolution	of	census	cells,	exposes	the	quite	intense	growth	of	this	area.			

	
	

	
Table	26	Built-Up	areas	analysis	1995	–	2015	for	Veneto	

 

2015   
Built-Up Non-Built-Up  

Pixel 
Area 
(km2) 

Pixel 
Area 
(km2) 

Total Built-Up 1995 
Pixel        Area (km2) 

1995 Built-Up 490327 441.3 78257 70.4 568584 511.7 

 
Non-Built-

Up 446805 402.1 5442623 4898.4  

 
Total Built-

Up 2015  
937132 843.4    

	
	 1995	 2015	
%	Built-Up	on	total	area	 8.8%	 14.5%	
%	of	absolute	built-up	growth	 /	 5.7%	
%	Built-Up	growth	compared	to	1995	 /	 78.6%	
%	Built-Up	Loss	compared	to	1995	 /	 13.8%	

	
	
	
	

The	comparison	of	built-up	areas	in	1995	and	2015	is	shown	in	the	plot	of	Figure	67	(left)	
highlighting	a	general	growth	of	built-up	areas	at	municipality	level.	As	expected,	in	absolute	
terms,	the	bigger	the	original	built-up	area	was,	the	more	it	has	increased.	At	census	cells	level,	
data	show	a	more	diverse	behaviour,	which	was	also	expected	given	the	small	dimensions	of	
many	cells,	but	on	average	it	confirms	the	same	general	trend.	The	right	side	of	the	figure	shows	
instead	the	comparison	between	absolute	and	relative	growth	at	municipality	level.	Even	if	the	
polynomial	regression	has	a	low	coefficient	of	determination,	the	plot	shows	that	the	higher	
relative	growths	correspond	to	small	absolute	growths.	In	other	words,	the	municipalities	that	
experience	the	major	development,	are	the	smaller	ones.	This	is	confirmed	also	in	the	maps	of	
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Figure	66,	as	explained	above,	and	in	the	plot	at	the	bottom	right	of	in	Figure	67,	which	shows	
the	relative	growth	versus	the	area	of	each	municipality.	

Figure	 68	 shows	 the	 Patch	Density	 for	municipalities	 in	 1995,	 2015	 and	 the	 difference	
between	 the	 two	 dates.	 Generally,	 municipalities	 corresponding	 to	 bigger	 cities	 or	
municipalities	 in	the	outskirt	of	 these,	experienced	a	decrease	of	PD	or	a	very	 little	change,	
highlighting	 the	 fact	 that	 these	 have	 become	 more	 compacted	 in	 terms	 of	 urbanizations.	
Municipalities	 corresponding	 to	 smaller	 towns,	 experienced	 instead	 an	 increase	 of	 PD	
indicating	a	more	scattered	development.	The	plot	in	Figure	69	shows	that	there	is	a	general	
decrement	of	PD	and	the	bigger	decrement	tend	to	occur	to	municipalities	that	were	originally	
more	scattered.	

Figure	70	shows	the	Largest	Patch	index	computed	for	municipalities	and	census	cells	in	
1995	and	2015.	Its	difference	shows	that	the	major	changes	occurs	mainly	in	North	part	of	the	
area	confirming	what	has	been	found	in	the	other	parameters,	i.e.	that	the	piedmont	area	has	
gone	through	a	significant	urban	expansion.	The	analysis	at	census	cell	level	in	this	case	allow	
to	have	a	better	understanding	of	the	process,	showing	in	fact	that	the	major	increment	of	LPI	
occurred	 in	 the	 outskirt	 of	 the	 urban	 centres.	 The	 plots	 in	 Figure	 71	 confirm	 the	 general	
increment	of	LPI,	either	at	municipality	and	at	census	cell	 level.	At	census	cell	 level	a	more	
scattered	behaviour	is	observed,	due	to	the	small	size	of	many	of	these	cells.		

Figure	 72	 shows	 the	 difference	 in	 the	 mean	 Euclidean	 Nearest	 Neighbours	 distance,	
computed	between	1995	and	2015	at	municipality	level.	The	map	shows	a	general	decrease	of	
this	 parameters	 confirmed	 by	 the	 plot	 in	 the	 same	 figure.	 This	 indicates	 a	 more	 compact	
distribution	of	built-up	areas,	as	expected	given	the	generalized	growth	of	built-up	areas.		

Figure	 73	 shows	 the	 mean	 value	 of	 imperviousness	 for	 the	 new	 built-up	 areas	 at	
municipality	and	at	census	cell	level.	If	the	analysis	at	municipality	level	can	give	a	general	idea	
about	 the	 increment	of	 imperviousness	 in	 the	 area,	 the	 analysis	 at	 census	 cell	 level	 is	 very	
interesting	since	it	can	show	the	type	of	expansion	that	occurred.	In	fact,	the	mean	value	of	the	
imperviousness	in	cells	of	such	small	dimensions,	can	be	correlated	to	the	dominant	type	of	
growth.	As	an	example,	the	dark	red	area	at	the	east	side	of	Padua	(centre-East	side	of	the	map)	
correspond	to	a	high	value	of	imperviousness	compared	to	the	average	in	the	area	of	study.	
This	correspond	to	the	expansion	of	the	industrial	area	of	the	city,	which	has	a	much	higher	
imperviousness	compared	to	new	residential	areas	built	in	the	same	time	frame.		

Finally,	Figure	74	shows	the	proportion	of	built-up	areas	at	municipality	and	census	cell	
level.	 It	can	be	seen	that	there	 is	an	overall	 increase	of	this	parameter	 in	the	whole	area	of	
study,	which	is	more	consistent	in	the	north	side	of	the	areas	and	in	the	surroundings	of	the	
two	main	cities,	Padua	and	Vicenza.		
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Figure	 66	 Absolute	 and	 Relative	 growth	 of	 built-up	 areas	 computed	 for	municipalities	 and	
census	cells	
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Figure	67	Comparison	of	built-up	areas	in	1995	and	2015	at	municipality	and	census	cells	level	
(left);	comparison	of	absolute	and	relative	growth	computed	at	municipalities	(top	
right)	and	comparison	of	relative	growth	and	area	computed	at	census	cells	level	
(bottom	right)	
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Figure	68	Patch	Density	index	computed	for	municipalities	in	1995,	2015	and	its	difference	
	

	

	

	

Figure	69	Comparison	of	Patch	Density	in	1995	and	2015	computed	at	municipalities	level		
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Figure	70	Largest	Patch	Index	computed	for	municipalities	and	census	cells	in	1995,	2015	and	
its	difference		

	

	

	

Figure	71	Comparison	of	Largest	Patch	Index	in	2015	and	1995	computed	at	municipalities	
and	census	cells	level	
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Figure	 72	 Difference	 of	 Mean	 Euclidean	 Nearest	 Neighbors	 distance	 computed	 for	
municipalities	 between	 1995	 and	 2015	 (left)	 and	 comparison	 of	 Mean	 Euclidean	
Nearest	Neighbors	distance	in	1995	and	2015	computed	at	municipality	level	(right)	

 
	

	

  

Figure	73	Mean	imperviousness	of	new	built-up	areas	computed	for	municipalities	and	census	
cells	
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Figure	74	Proportion	of	built-up	areas	for	municipalities	and	census	cells	
	

	

5.8	Conclusions	

In	this	chapter,	a	classification	method	based	on	data	fusion	of	radar	and	optical	images	
has	been	presented	and	tested	in	the	area	of	Veneto	and	Malawi,	the	same	hit	by	the	flood	
events	presented	in	the	previous	chapters.	The	classification	methodology	has	been	proven	to	
be	fast	(thanks	to	the	capability	of	the	GEE	and	the	PKTools-SVM),	reliable	(good	performances	
with	different	datasets)	and	accurate.	Data	fusion	has	 increased	the	accuracy	of	the	results.	
Worse	performance	has	been	obtained	using	Sentinel-2	data,	only	because	the	satellite	has	
been	operative	for	less	than	a	year	at	the	moment	of	data	processing	and	acquisitions	over	the	
overall	phenological	cycle	were	not	available.	Most	of	the	inaccuracy	occurred	over	agricultural	
areas	classified	as	urban	or	forest,	forested	areas	classified	as	agriculture	or	urban,	and	bare	
soil	classified	as	urban.	A	time-series	over	the	whole	year,	which	is	possible	already	available	
for	2016,	will	improve	the	classification,	not	only	in	terms	of	classification	accuracy	but	also	in	
terms	of	spatial	resolution.	The	use	of	SAR	data	made	the	classifier	training	easier	compared	to	
the	case	of	only	optical	images,	especially	for	urban	areas	where	SAR	response	is	very	stable.		

Therefore,	new	and	up	to	date	land	cover	maps	can	be	produced	in	case	of	needs	with	the	
purpose	of	a	rapid	impact	assessment	following	a	disaster.	Moreover,	the	methodology	could	
be	totally	implemented	in	the	GEE,	using	the	built-in	classifier	available	or	programming	a	new	
one.	This	could	eventually	speed	up	the	process	even	more.		
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In	 the	 second	 part	 of	 the	 chapter,	 a	 methodology	 for	 assessing	 urban	 growth	 has	 been	
presented,	proposing	a	series	of	parameters	that	could	be	used	as	indicators	of	vulnerability.	
The	analysis,	applied	to	the	case	study	of	Veneto,	showed	interesting	information	about	the	
development	of	built-up	areas	in	the	region,	allowing	to	highlighting	sprawls,	more	scattered	
settlements	or	more	connected	one.	The	analysis	and	the	parameters	proposed	could	be	useful	
for	 ecology-	 or	 biodiversity-based	 study,	 for	 studying	 ecological	 corridors	 or	 the	 effect	 of	
conservation	policies	on	biodiversity.	Moreover,	this	analysis	may	be	the	base	for	a	dasymetric	
mapping	technique	for	distributing	population	data	at	pixel	level,	an	information	that	would	be	
very	useful	in	the	framework	of	disaster	impact	assessment	and	risk	reduction.		
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6. Social	Vulnerability	Index:	use	of	remote	sensing	and	census	
indicators		

This	chapter	presents	a	methodology	 for	 computing	a	social	vulnerability	 index	by	means	of	
remote	sensing	and	census	data.	Based	on	the	KULTURisk	methodological	framework,	the	three	
components	 of	 vulnerability	 will	 be	 defined:	 adaptive	 capacity,	 coping	 capacity	 and	
susceptibility.	Network	analysis	is	employed	for	describing	the	distribution	of	urban	areas	in	the	
area	of	study,	aiming	at	providing	indicators	for	vulnerability.	

The	 chapter	 has	 the	 objective	 to	 answer	 research	 question	 4:	 “Is	 it	 possible	 to	 retrieve	
meaningful	indicators	of	social	vulnerability	from	EO	big	data?”	

The	chapter	will	be	submitted	to	the	Journal	“Natural	Hazard	and	Earth	System	Sciences”.	The	
paper	(which	at	the	moment	of	this	thesis	submission,	is	in	preparation)	as	well	as	the	chapter,	
has	been	written	autonomously	by	the	author.	The	co-author	of	the	paper	is	Prof.	Carlo	Giupponi	
of	the	Ca’	Foscari	University	of	Venice,	who	helped	developing	the	methodology	and	supervised	
the	whole	work.	
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6.1	Introduction		

Damages	deriving	from	floods	can	have	different	dimensions	depending	on	the	degree	of	
monetization	and	level	of	physical	contact	of	the	hazard.	Therefore,	we	can	have	four	different	
categories	of	impacts:	direct	tangible,	indirect	tangible,	direct	intangible	and	indirect	intangible	
(Giupponi	et	al.,	2014).	Tangible	costs	are	the	damage	to	receptors	with	a	market	value,	while	
intangible	costs	are	the	one	with	only	an	intrinsic	value.	The	majority	of	available	methods	for	
flood	impact	assessment,	focuses	only	on	direct	tangible	ones	and	only	few	try	to	go	beyond	
this	limit	(Balbi	et	al.,	2013;	Jonkman	et	al.,	2008;	Merz	et	al.,	2010).	The	KULTURisk	framework,	
introduced	 in	 Chapter	 1,	 was	 created	 with	 the	 precise	 goal	 of	 assessing	 also	 indirect	 and	
intangible	damages,	as	shown	in	the	case	of	Dhaka	City,	Bangladesh	(Gain	et	al.,	2015),	where	
socioeconomic	 factors	have	been	 considered	 in	 addition	 to	physical	 ones	especially	 for	 the	
characterization	of	vulnerability.	

Vulnerability	 is	 the	 variable	 that	 allows	 to	 assess	 damages	 given	 the	 hazard	 and	 the	
exposed	elements.	This	chapter	addresses	this	topic	for	the	case	study	of	Veneto,	considering	
only	direct	 impacts,	 finalizing	the	aim	of	 this	 research,	 i.e.	 to	show	the	potential	of	satellite	
remote	sensing	in	assessing	each	component	of	flood	risk	and	therefore	assessing	the	related	
impacts.	

The	 definition	 of	 vulnerability	 can	 vary	 significantly	 depending	 on	 the	 community	
addressing	it.	The	IPCC,	with	its	Special	Report	on	Managing	the	Risks	of	Extreme	Events	and	
Disasters	 to	 Advance	 Climate	 Change	 Adaptation	 (IPCC-SREX,	 2012),	 made	 an	 effort	 for	
harmonizing	the	definition	of	vulnerability	among	the	communities	of	Disaster	Risk	Reduction	
(DRR)	 and	 Climate	 Change	 Adaptation	 (CCA).	 The	 KULTURisk	 framework	 is	 based	 on	 the	
definition	 of	 the	 IPCC	 and	 brings	 innovations	 in	 terms	 of	 (a)	 integration	 of	 the	
physical/environmental	 dimension	 and	 the	 socio-economic	 ones,	 and	 (b)	 in	 terms	 of	
considering	 social	 capacities	 of	 risk	 reduction,	 other	 than	 the	 already	 mentioned	 four	
dimensions	of	impacts	(Giupponi,	2013).	More	precisely,	KULTURisk	considers	vulnerability	as	
“the	propensity	of	 predisposition	of	 exposed	 receptors	 to	be	negatively	 affected	by	hazard	
events”	 (IPCC-SREX,	 2012)	 and	 it	 considers	 both	 the	 physical	 and	 human	 dimensions.	 The	
physical	dimension	is	the	susceptibility	of	man-made	structures,	namely	their	predisposition	of	
being	 negatively	 affected	 by	 hazards.	 The	 human	 dimension	 is	 made	 of	 two	 components:	
adaptive	 capacity	 (ex-ante)	 that	 is	 “the	 ability	 to	 anticipate	 and	 transform	 structure,	
functioning,	or	organization	to	better	survive	hazards”,	and	coping	capacity	 (ex-post)	 that	 is	
“the	ability	 to	 react	 to	and	reduce	the	adverse	effects	of	experienced	hazards”	 (Gain	et	al.,	
2015).	

Another	aspect	of	vulnerability,	which	is	difficult	to	capture,	is	its	dynamics.	As	explained	
in	Adger	et	al.	(2013),	Di	Baldassarre	et	al.	(2013)	and	Di	Baldassarre	et	al.	(2015)	the	dynamics	
of	vulnerability	is	intertwined	with	the	occurrence	of	extreme	events.	In	particular,	Adger	et	al.	
(2013)	investigated	what	changes	happen	in	the	context	of	social	contract	when	the	status	quo	
is	disrupted	by	extreme	events	such	as	floods.	The	study	found	out	that	the	direct	experience	
of	flooding,	 influences	the	perception	of	future	risk	and	the	responsibility	to	act.	One	of	the	
case	study	presented	showed	that	people	that	already	experienced	a	flood	had	a	propensity	to	
believe	 that	 they	would	be	affected	again	 in	 the	 future.	Moreover,	 these	people	 showed	a	
stronger	sense	of	personal	duty	and	willingness	to	adapt.		
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A	 very	 effective	 attempt	 to	 frame	 the	 interplay	 between	 physical	 and	 social	 processes	
intrinsic	to	flood	risk,	was	presented	by	Di	Baldassarre	et	al.	(2015).		The	first	type	of	dynamics	
relates	 to	 the	 observed	 decreasing	 social	 vulnerability	 linked	 to	 the	 frequent	 occurring	 of	
floods,	i.e.	the	so-called	“adaptation	effect”	(Mechler	&	Bouwer,	2015;	Penning-Rowsell,	1996;	
Wind	et	al.,	1999).	During	an	experience	of	flooding,	a	community	gains	coping	and	adaptive	
capacity,	which	may	reduce	vulnerability.	Moreover,	the	government	or	local	authorities	may	
intervene	 after	 an	 event	 by	means	 of	 flood	 risk	management	 policies	 (e.g.	 EWS,	 flood	 risk	
awareness	programs	or	 land	use	planning	 regulations),	which	may	also	 reduce	vulnerability	
(Johnson	et	al.,	2005;	Pahl-Wostl	et	al.,	2013;	Penning-Rowsell	et	al.,	2006).	Another	type	of	
dynamics	of	vulnerability	relates	to	the	observed	increasing	social	vulnerability	 linked	to	the	
non-occurrence	of	frequent	flooding,	i.e.	the	so-called	“levee	effect”	(Montz	&	Tobin,	2008),	
which	 is	 possibly	 caused	 by	 flood	 protection	 structures	 such	 as	 levees.	 There	 are	 many	
examples	in	the	literature	reporting	an	empirical	evidence	of	increased	social	vulnerability	and	
flood	risk	due	to	flood	control	structures.	In	fact,	measures	taken	in	order	to	prevent	flooding	
may	lead	to	a	shift	from	frequent	but	small	flooding,	to	rare	but	catastrophic	ones	(Bohensky	
&	Leitch,	2014;	Burton	&	Cutter,	2008;	Di	Baldassarre	et	al.,	2013;	Kates	et	al.,	2006;	Ludy	&	
Kondolf,	2012).		

The	dynamics	of	 vulnerability	 are	not	 captured	by	most	of	 the	many	methodologies	of	
vulnerability	and	flood	risk	assessment	in	the	literature.	Changes	in	risk	are	usually	assessed	by	
comparing	 scenarios	of	 climate	 change	and	 socioeconomic	development	 (Apel	 et	 al.,	 2009;	
Winsemius	et	al.,	2013).	Flood	policies	are	considered	an	external	forcing	to	the	physical	system	
and	the	impacts	triggered	by	the	physical	systems	are	considered	as	an	external	forcing	to	the	
human	system,	therefore	missing	to	capture	the	dynamics	explained	above	(Di	Baldassarre	et	
al.,	2015).			

Figure	75	shows	how	vulnerability	is	considered	in	this	work.	The	physical	dimension,	which	
weights	for	the	40%,	is	the	susceptibility	and	it	is	given	by	the	properties	of	the	buildings	and	
the	value	of	imperviousness	of	the	area.	The	social	dimension,	which	weights	for	the	60%,	is	
made	of	coping	capacity	(weighting	for	the	60%)	and	of	adaptive	capacity	(weighting	for	the	
40%).	 Coping	 capacity	 takes	 into	 consideration	 demography,	 the	 urban	 growth	 and	 the	
characteristics	of	the	urban	environment.	Adaptive	capacity	takes	in	to	consideration	the	skills	
of	the	society,	such	as	employment	and	income	level.	

For	the	three	main	components	of	vulnerability,	different	indicators	have	been	identified	
and	 data	 from	 RS	 and	 census	 have	 been	 used	 for	 a	 quantitative	 analysis.	 The	 appropriate	
indicators	have	been	selected	from	the	generalized	list	of	indicators	proposed	by	Giupponi	et	
al.	(2013)	and	Mojtahed	et	al.	(2013)	for	the	three	components	of	vulnerability.	The	selection	
has	been	based	on	data	availability,	and	on	characteristic	and	spatial	extent	of	the	area	of	study.	

One	of	the	limitation	of	the	proposed	methodology	is	that	it	does	not	capture	the	dynamics	
of	vulnerability.	This	was	in	fact	out	of	the	scope	of	this	research,	where	the	focus	is	to	show	
how	EO	can	provide	added	value	to	the	existing	methodologies,	 rather	 than	develop	a	new	
methodological	 framework.	 Nevertheless,	 this	 work	 is	 intended	 to	 be	 the	 base	 for	 future	
research	where	the	interplay	between	the	physical	and	social	processes	of	vulnerability	will	be	
at	the	core	of	the	activity.						

Paragraph	 6.2	 lists	 the	 available	 census	 data	 and	 the	 useful	 parameters	 of	 the	 urban	
growth	analysis.	Paragraph	6.3	shows	the	methodology	used	to	compute	each	component	of	
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vulnerability.	Paragraph	6.4	shows	results	and	discusses	them.	Paragraph	6.5	draws	conclusions	
and	the	way	forward.	

	

Figure	75	Vulnerability	

	

6.2	Indicators	of	social	vulnerability	

6.2.1	Census	Data	

Census	data	for	Italy	comes	every	ten	years.	Based	on	the	analysis	performed	on	the	hazard	
and	exposure	dimensions,	the	census	of	1991	and	2011	are	the	one	useful	for	this	analysis.	
They	 provide	 a	 wide	 range	 of	 information	 about	 demography,	 education,	 employment,	
characteristic	of	buildings.	Data	are	aggregated	at	 census	 cell,	which	are	 very	detailed	 sub-
divisions	of	municipalities.	Their	dimensions	can	go	from	few	hundreds	square	meters	in	case	
of	densely	populated	city	centres,	to	several	tens	of	square	kilometers	for	mountainous	area	
with	little	population.	

Concerning	coping	capacity,	census	data	provide	useful	indicators:		
o Demography	

§ Population	divided	by	age	groups	and	gender		
§ Family	status		
§ Education	divided	by	gender	
§ Commuters	
§ Foreigners	divided	by	age	groups	and	region	of	provenience		
§ Number	of	families	made	of	1,	2,	3,	4,	5	or	6+	people	
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Concerning	adaptive	capacity,	census	data	provide	the	following	indicators:	

§ Employment	divided	by	gender	
§ Families	in	rented	houses	
§ Families	in	property	houses	

Concerning	susceptibility,	census	data	provide	useful	information	about	buildings,	aggregated	
at	census	cell:		

§ Number	of	buildings	divided	by	type:	commercial,	residential,	etc.	
§ Buildings	occupied	by	at	least	one	person	
§ Empty	Buildings		
§ Type,	age,	material	
§ Status	of	conservation			
§ 	Number	of	storeys,	number	of	apartments	per	storey	

Moreover,	the	census	gives	indication	about	economic	activities	with	the	following	parameters:	

§ Activity	sector	
§ Number	of	units	for	each	company	
§ Number	of	employees	
§ Number	of	other	workers	(not	employees	but	working	for	the	company)	
§ Volunteers		

Income	of	each	family	is	also	collected	by	the	census	and	it	would	be	a	useful	indicator	of	
the	capacity	of	each	family	to	take	adaptation	actions.	Unfortunately,	these	data	are	not	freely	
accessible	due	to	privacy	reasons	and	therefore	they	could	not	be	used.	Nevertheless,	given	
the	level	of	wealth	in	the	area	analyzed,	this	is	not	a	limitation	and	it	has	been	hypothesized	
that	 a	 similar	 discriminant	 in	 terms	 of	 adaptive	 capacity	 can	 be	 the	 percentage	 of	 rented	
houses.	

6.2.2	Urban	Growth	Analysis	

From	urban	growth	analysis	of	Chapter	5,	the	following	parameters	are	available:	

Absolute Built-Up Growth (Built-Up	Area)2015-(Built-Up	Area)1995 [m2] 

Relative Built-Up Growth 
(Built − Up	Area)6789 − (Built − Up	Area)8::9

(Built − Up	Area)8::9
 [%] 

Largest Patch Index (LPI) 
max	(patch	Area)

Area?@AB	CDEE
 [%] 
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Patch Density (PD) 
number	patches
Area?@AB	CDEE

∗ 10000 ∗ 100 [Number/100 
ha] 

Euclidean Nearest Neighbor 
Distance (ENN) ℎK [m] 

Type of growth 
imperviouness	pixelA
number	pixels?@AB	CDEE	

 [%] 

Proportion of built-up areas (Built-Up Area)cell - (Area)cell [%] 

Moreover,	 a	 geometrical	 network	 for	 built-up	 areas	 has	 been	 created	 based	 on	 the	
methodology	proposed	by	Marconcini	et	al.	(2015).	Each	isolated	cluster	of	pixel	is	transformed	
in	a	polygon.	For	each	polygon,	 its	 centroid	 is	 computed.	Starting	 for	 the	centroid	 location,	
edges	are	constructed	in	order	to	connect	neighbouring	polygons	in	a	radius	of	5,	4,	3,	2	and	1	
km	(Figure	76).		

	

Figure	76	Network	of	built-up	areas	for	the	Veneto	case	study	

This	allowed	us	to	extract	several	additional	parameters	that	could	be	useful	for	the	
definition	of	vulnerability:	

o Edges	

§ Euclidean	Nearest	Neighbour	Distance	
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§ Minimum	distance	between	each	polygon	
§ Centroid	distance	

o Nodes	

§ Degree	centrality	of	each	polygon	(number	of	neighbours)	in	a	radius	of	
5,	4,	3,	2	and	1	km.		

§ Sum	of	areas	of	all	neighbours	in	a	radius	of	5,	4,	3,	2	and	1	km	

o Polygons	

§ Area	
§ Perimeter	
§ Outer	perimeter	
§ Compactness	

Network	 analysis	 is	 important	 in	 order	 to	 take	 into	 consideration	 the	 location	 of	 each	
settlement	in	its	region	and	therefore	allow	to	perform	an	analysis	that	is	not	only	local,	but	
also	regional.	For	example,	degree	centrality	gives	a	measure	of	the	importance	of	a	node	in	
the	network	and	how	much	information	can	be	shared	among	the	population	in	the	area.		

6.2.3	Indicators	of	social	vulnerability	

Table	 27	 shows	 the	 list	 of	 indicators	 of	 social	 vulnerability	 used	 in	 this	work	 and	 their	
description.		

Table	27	List	of	indicators	used	in	the	assessment	of	vulnerability	

Variable	 Indicators	/	Proxies	 Definition	

COPING	CAPACITY	 	 	

Dependency	Ratio	 total	labor	force	/	total	
population	[%]	

Population	 with	 higher	 DR	 leads	 to	
lower	 CC	 and	 therefore	 increase	
vulnerability	

Literacy	Ratio	 literate	/	total	population	
[%]	

Population	 with	 higher	 LR	 leads	 to	
higher	 CC	 and	 therefore	 decrease	
vulnerability	

Population	Age	 (people	>	74	yo	+	people	<	
5	yo)	/	total	population	[%]	

Population	 with	 higher	 percentage	 of	
children	or	elderly	have	 lower	CC	and	
therefore	increase	vulnerability	
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Foreigners	 (Non-EU	immigrant	
resident)	/	total	population	
[%]	

A	higher	number	of	foreigners	leads	to	
lower	CC	and	increase	vulnerability	

New	comers	 Relative	built-up	areas	
growth	[%]	

Relative	built-up	area	growth	is	used	as	
a	 proxy	 of	 new	 comers.	 Higher	
percentage	 of	 new	 comers	 leads	 to	
lower	CC	and	increase	vulnerability	

Compactness	of	
urban	areas	

Mean	Euclidean	Nearest	
Neighbors	distance	[m]	

It	used	a	proxy	for	intervention	capacity	
in	case	of	disaster.	An	urban	area	more	
scattered	 will	 need	 more	 capacity	 in	
case	 of	 intervention,	 therefore	 this	
reduce	CC	and	increase	vulnerability	

	 	 	

ADAPTIVE	CAPACITY	 	 	

Employment	 Active	labor	force	/	total	
population	[%]	

It	 is	used	as	a	proxy	 for	 income	 level.	
Given	 that	 in	 the	area	analyzed	 it	 can	
be	 hypnotized	 that	 everyone	 with	 an	
income	 have	 capacity	 to	 adapt,	 a	
higher	 percentage	 of	 employment	
increases	 AC	 and	 decreases	
vulnerability	

Education	 People	with	high	school	
diploma	/	total	population	
[%]	

Higher	percentage	of	educated	people	
leads	to	an	increased	AC	and	
decreases	vulnerability		

House	Property	 Rented	houses	/	total	
houses	

A	higher	percentage	of	rented	houses	
lead	to	a	decrease	of	AC	and	increase	
vulnerability	

	 	 	

SUSCEPTIBILITY	 	 	

Building	Age	 [0.75*(Building	older	than	
45	yo)	+	0.25*(	Building	
between	25	and	45	yo)	+	
0.05*(	Buildings	between	
25	and	15	yo)]	/	total	
number	of	buildings	

A	higher	percentage	of	old	building	
increases	susceptibility.	The	degree	of	
susceptibility	increases	with	the	age	of	
the	building		
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Conservation	Status	 (0.25	*	bad	condition)	+	
(0.75	*	very	bad	condition)	
/	number	of	buildings	[%]	

A	higher	percentage	of	buildings	in	
bad	condition	increases	susceptibility	

Number	of	multi-
storey	buildings	

Building	with	more	than	
one	storey	/	total	number	
of	buildings	[%]	

A	higher	percentage	of	building	with	
more	than	one	storey	decrease	
susceptibility	

Empty	buildings	 Number	of	empty	
buildings	/	Number	of	total	
buildings	[%]	

Social	vulnerability	does	not	apply	to	
empty	building,	therefore	this	
indicator	is	used	to	reduce	
vulnerability	to	only	occupied	
buildings	

Imperviousness	 Mean	value	of	
imperviousness	of	the	new	
built-up	areas	[%]	

Increased	imperviousness	leads	to	an	
increased	susceptibility	

	

6.3	Social	Vulnerability	Index	

To	aggregate	indicators,	they	need	to	be	normalized.	The	generalized	approach	of	value	
function	 has	 been	 followed,	which	 is	 a	mathematical	 representation	 of	 human	 judgements	
through	 the	 determination	 of	 a	 an	 upper	 and	 lower	 threshold	 and	 different	 levels	 of	
performance	depending	on	the	defined	goals	(Beinat	&	Nijkamp,	1998;	Thieken	et	al.,	2005).	
Normalized	indicators	have	been	then	categorized	into	five	classes	as	presented	in	Table	28,	
following	the	methodology	presented	in	Giupponi	et	al.	(2014).		

Table	28	Definition	of	normalized	scores	

Normalized	Value	 Vulnerability	Level	

0	 Not	Vulnerable	

0.25	 Slightly	Vulnerable	

0.5	 Highly	Vulnerable	

0.75	 Extremely	Vulnerable	

1	 Fully	Vulnerable	
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Aggregation	has	been	performed	applying	weighted	average	(WA)	method	(Birkmann	et	
al.,	2010),	with	weights	as	 indicated	 in	Figure	75	 for	coping	capacity,	adaptive	capacity	and	
susceptibility.	 For	 coping	 and	 adaptive	 capacity,	 equal	 weights	 have	 been	 given	 to	 each	
indicator:		

	

For	susceptibility,	the	characteristics	of	the	building	have	been	first	aggregated	together	
using	equal	weights,	then	reduced	by	the	percentage	of	empty	buildings.	To	this	component,	
which	has	a	weight	of	0.75,	imperviousness	has	been	added	with	a	weight	of	0.25:	

	

Summarizing,	the	final	formula	for	the	Social	Vulnerability	Index	(SVI)	is:	

𝑆𝑉𝐼 = 	 𝑥KS ∗ 	𝑤KS ∗ 𝑊KS

VW

SX8

Y

KX8

	

where	i	is	the	number	of	the	n	principal	components	of	vulnerability	(coping	capacity,	adaptive	
capacity	 and	 susceptibility),	 j	 is	 the	 number	 of	 the	m	 indicators	 in	 each	 component,	 x	 the	
indicator,	w	the	weight	assigned	to	the	j	indicator	and	W	the	weight	assign	to	the	ith	component.		
SVI	has	been	computed	for	1995	and	2015.	In	the	case	of	1995,	which	is	used	as	a	baseline,	the	
indicator	“New	Comers”	has	not	been	used	and	therefore	the	weights	used	in	the	computation	
of	cooping	capacity	is	1/5	instead	of	1/6.	

Each	 indicator	 has	 been	 normalized	 following	 the	 schemes	 presented	 in	 Figure	 77.	
Following	 this	 methodology,	 the	 final	 Social	 Vulnerability	 Index	 is	 obtained	 with	 a	 score	
between	0	and	1,	where	1	represent	high	vulnerability	and	0	no	vulnerability.		
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Figure	77	Normalization	Functions	

6.4	Results	and	discussions	

Figure	78	shows	coping	capacity,	adaptive	capacity	and	susceptibility	computed	for	year	
1995	and	2015	at	census	cells	level.	Coping	and	adaptive	capacity	have	to	be	read	with	inverse	
meaning,	i.e.	high	value	of	them	indicate	higher	vulnerability,	lower	values	of	capacity	indicate	
lower	vulnerability.	Vulnerability	connected	to	coping	capacity	 is	 lower	 in	cities	and	in	more	
compact	 urban	 areas.	 A	 slightly	 increase	 of	 this	 component	 of	 vulnerability	 can	 be	 seen	
between	 1995	 and	 2015.	 Looking	 in	 details	 to	 the	 data,	 we	 can	 see	 that	 the	 vulnerability	
connected	to	dependency	ratio	has	increased	on	average	by	2%	and	the	one	connected	to	the	
percentage	of	children	and	elderly	has	increased	on	average	by	6%,	mainly	due	to	the	decrease	
in	percentage	of	children	and	teen-agers	and	the	increment	of	elderly	in	the	population.	The	
vulnerability	 connected	 to	 the	 literacy	 ratio	 decreased	 on	 average	 by	 3.5%	 and	 the	 one	
connected	 to	 the	percentage	of	 foreigners	 from	non-EU	 countries	 increased	on	 average	of	
1.8%.		
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Figure	78	Coping	capacity,	adaptive	capacity	and	susceptibility	for	1995	and	2015	
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Figure	79	Social	Vulnerability	Index	for	1995	and	2015	at	census	cell	level	(top)	and	reduced	for	
only	built/up	areas	(bottom)	

	

Finally,	the	vulnerability	connected	to	the	compactness	of	the	urban	areas	has	decreased	
by	30%,	 to	 the	new	comers	 it	has	 increased	by	60%.	Therefore,	 from	the	one	hand	a	more	
compact	built-up	scenario	can	lead	to	a	lower	vulnerability,	to	the	other	hand	a	big	increment	
of	urban	areas	increases	vulnerability,	and	this	last	one	is	the	main	responsible	to	this	increment	
of	vulnerability	associated	to	coping	capacity.	

Regarding	vulnerability	connected	to	adaptive	capacity,	we	can	observe	a	more	diverse	
behavior	even	if	a	slightly	 increase	is	noticeable	in	the	rural	areas.	 In	this	case,	employment	
rate	has	decreased	 (0.6%	on	average)	 increasing	vulnerability,	education	has	also	 increased	
(13%)	decreasing	vulnerability,	the	percentage	of	rented	house	has	decreased	(3%)	increasing	



	 126	

vulnerability.	 Education	 is	 the	 predominant	 factor	 in	 adaptation	 capacity	 and	 despite	 it	
decreasing	 effect	 in	 vulnerability,	 a	 general	 increment	 is	 noticed	 because	 of	 the	 non-
homogeneous	behavior	of	this	indicator	between	cities	and	rural	areas,	in	particular	associated	
to	the	other	two	indicators.		

Regarding	susceptibility,	we	can	notice	a	substantial	reduction	in	vulnerability.	The	census	
data	of	1991	did	not	report	information	about	the	status	of	conservation	of	the	building	and	
the	number	of	storey	for	each	building.	Therefore	these	two	components	do	not	enter	in	the	
computation	 of	 vulnerability,	 with	 the	 result	 that	 building	 age	 receive	 full	 weight	 in	 the	
computation	of	susceptibility.	Nevertheless,	these	two	factors	in	2011	has	a	very	low	weight	
since	 the	percentage	of	building	 in	bad	and	very	bad	 conditions	 is	negligible	as	well	 as	 the	
percentage	of	building	with	only	one	storey.	The	number	of	empty	buildings	is	the	one	having	
the	major	 effect,	 in	 fact	 there	 is	 an	 increment	 of	 almost	 5%	 of	 empty	 buildings,	 reducing	
susceptibility.	The	increase	of	imperviousness	(an	average	of	19%)	has	also	a	very	low	weight	
in	the	final	computation	of	susceptibility.	

Figure	79	shows	the	values	of	the	SVI	for	1995	and	2015.	The	results	are	also	reported	for	
built-up	areas	only.	It	can	be	observed	a	general	slight	increase	of	SVI,	which	can	be	attributed	
mainly	to	the	widespread	increase	of	vulnerability	connected	to	coping	capacity.		

Finally,	analyzing	the	value	of	SVI	over	the	areas	affected	by	the	flood	occurred	in	2010	
analyzed	in	Chapter	2	and	3,	we	find	an	increase	of	SVI	of	7.6%	(from	0.296	to	0.372).		

6.5	Conclusions	

This	chapter	presented	a	methodology	for	assessing	social	vulnerability	to	floods,	which	
has	been	applied	to	the	case	study	of	Veneto.	The	combined	use	of	socio-economic	and	remote	
sensing	data	allowed	to	characterize	the	three	dimensions	of	vulnerability:	coping	and	adaptive	
capacity	for	the	social	dimension,	and	susceptibility	for	the	physical	dimension.	The	analysis	is	
showing	an	increased	vulnerability	in	the	area	from	1995	to	2015,	mainly	due	to	the	growth	of	
built-up	areas.	Moreover,	the	increase	of	vulnerability	in	the	same	time	frame,	is	shown	also	in	
the	 areas	 where	 the	 flood	 of	 2010	 occurred,	 highlighting	 the	 increased	 predisposition	 to	
damage	and	losses	in	the	area.		

Of	 the	 long	 list	 of	 data	 and	 indicators	 available	 from	 census	 and	 from	 urban	 growth	
analysis,	 only	 a	 subset	of	 this	 has	been	used	 for	 the	 sake	of	 simplicity.	Nevertheless,	more	
information	could	have	been	used.	For	example,	the	data	about	commuters	could	be	useful	for	
differentiating	 vulnerability	 during	 day	 and	 night	 time.	 The	 data	 about	 the	 population	 are	
aggregated	at	the	level	of	census	cell.	Even	though	the	cells	are	generally	quite	small,	in	some	
cases	they	are	not.	Moreover,	their	dimension	is	different	from	one	census	to	the	other,	not	
allowing	the	direct	comparison	of	certain	parameters.	For	example,	one	cannot	simply	compute	
the	difference	of	population	between	two	different	census	for	the	same	cell.	This	expose	the	
need	of	a	technique	of	dasymetric	mapping	which	would	allow	to	distribute	population	data	at	
the	pixel	level.	This	is	even	more	important	in	the	case	of	developing	country,	such	as	Malawi.	
In	this	case	in	fact,	there	are	no	reliable	or	up	to	date	data	about	population	and	the	only	data	
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available	may	be	aggregated	in	cells	of	some	square	kilometres	(for	example	the	one	provided	
by	CIESIN	which	comes	in	cells	of	12	by	12	Km)1.	

Moreover,	 the	 methodology	 was	 not	 applied	 to	Malawi	 for	 the	 lack	 of	 reliable	 socio-
economic	data.	Using	as	a	starting	point	the	analysis	presented	here,	in	the	future	a	dasymetric	
mapping	technique	may	be	developed	using	the	built-up	area	classification	methodology,	the	
urban	growth	analysis	and	settlement	pattern	analysis.	This	would	allow	to	have	disaggregated	
population	 data,	 which	 would	 allow	 to	 assess	 vulnerability	 to	 disaster	 with	 an	 increased	
precision.	

This	methodology	for	vulnerability	assessment,	even	with	some	 limitations,	showed	the	
potential	of	EO	data	to	improving	flood	risk	assessment.	As	already	mentioned,	one	of	the	main	
limitations	of	 the	methodology	 is	 that	 it	 does	not	 capture	 the	dynamic	of	 vulnerability,	 i.e.	
adaptation	and	 levee	effects	 (Di	Baldassarre	et	 al.,	 2015).	Nevertheless,	 the	use	of	new	EO	
products	is	promising	especially	if	coupled	with	the	use	of	socio-economic	data	and	embedded	
in	emerging	frameworks.	In	fact,	new	interdisciplinary	approaches	are	emerging	(e.g.	complex	
system	 theories,	 socio-hydrology	 or	 socioecological	 systems),	 which	 are	 considering	 the	
dynamics	 of	 risk	 through	 the	 modelling	 of	 continuous	 interactions	 and	 mutual	 feedbacks	
between	flooding	and	society	 (Di	Baldassarre	et	al.,	2013;	Liu	et	al.,	2007;	Montanari	et	al.,	
2013;	Ostrom,	2009;	Srinivasan	et	al.,	2012;	Werner	&	McNamara,	2007).	This	research	can	be	
a	starting	point	for	new	investigations	with	the	aim	of	capturing	the	dynamics	of	vulnerability	
and	 exploring	 the	 impact	 of	 global	 changes	 on	 floodplains	 or	 urbanizing	 deltas.	 In	 fact,	 as	
reported	by	Di	Baldassarre	et	al.	(2015),	there	is	the	need	to	go	beyond	traditional	scenarios	
and	capture	relevant	dynamics	driving	changes	in	flood	risk.	EO	data	can	play	a	key	role	in	this	
framework	and	to	help	gaining	further	insights	into	the	interplay	between	physical	and	social	
processes.	

	
	

	

	

	

	

	

	

	

	

	

	

	

																																																													
1 http://sedac.ciesin.columbia.edu/data/sets/browse?facets=theme:population 
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7. Conclusions	
.		

This	research	had	the	aim	of	exploring	the	possibility	of	developing	new	EO	applications	
for	improving	social	vulnerability	and	flood	risk	assessment	and	taking	advantage	of	the	new	
and	 free	EO	big	data.	 The	 idea	was	 to	provide	new	 tools	 to	 the	 climate	 change	adaptation	
community	for	monitoring	disasters	and	planning	disaster	risk	reduction	measures.	In	chapter	
1,	the	following	research	question	has	been	posed:	

Can	Earth	Observation	data	improve	flood	risk	assessment	in	a	global	environmental	change	
scenario?	

In	 order	 to	 reply	 to	 this	 question,	 the	 three	 components	 of	 risk,	 hazard,	 exposure	 and	
vulnerability,	 have	 been	 investigated	 separately.	 Each	 component	 has	 been	 analysed	 and	
characterized	using	EO	data.	In	the	same	chapter,	the	research	question	has	been	divided	in	
four	sub-questions.	The	first	one	was:	“Can	flood	mapping	be	improved	by	means	of	EO	big	
data?”	

Chapter	3	dealt	with	this	problem	and	presented	a	new	methodology	for	flood	mapping.	
The	Normalized	Difference	Flood	Index	was	developed	by	means	of	a	statistical	analysis	of	time-
series	 of	 archive	 images	 and	 images	 of	 the	 event.	 The	 index	 allows	 a	 precise	 extraction	 of	
flooded	 area	 from	 SAR	 images	 and	 of	 areas	 with	 the	 presence	 of	 shallow	 water	 in	 short	
vegetation.	 The	 methodology	 is	 much	 less	 user-dependent	 than	 common	 flood	 mapping	
techniques,	 it	 can	 be	 easily	 automated	 and	 it	 is	 very	 robust	 since	 it	 performs	 equally	 well	
independently	from	the	type	of	data	used	and	the	environment	under	analysis.	In	fact,	floods	
in	completely	different	regions	have	been	analysed	using	different	type	of	SAR	data	(different	
sensors,	polarization	and	resolution).	The	obtained	results	show	good	agreement	with	products	
produced	by	third	parties.	Moreover,	shallow	water	in	short	vegetation	is	derived,	a	product	
that	usually	is	not	reported	by	emergency	management	services.		

The	methodology	is	suitable	for	rapid	mapping	even	though	there	could	be	a	big	amount	
of	data	to	be	processed,	such	as	in	the	case	of	Uganda.	The	advent	of	new	cloud	computing	
capability,	such	as	the	one	offered	by	Google	Earth	Engine,	allows	a	fast	analysis	and	export	of	
the	results	and	allows	users	with	low	capacity	to	perform	high	quality	flood	mapping.	In	fact,	in	
Google	 Earth	 Engine	 all	 the	 S1	 catalog	 is	 easily	 accessible	 online	 without	 the	 need	 of	
downloading	the	original	products	on	a	local	computer.	All	the	analysis	can	be	performed	online	
and	only	the	final	result	has	to	be	downloaded.		

The	 methodology	 is	 suitable	 also	 as	 a	 support	 to	 flood	 risk	 assessment	 for	 long-term	
planning.	 The	 precision	 of	 the	 resulting	maps	 is	 valuable	 in	 this	 framework,	 as	 well	 as	 for	
calibrating	hydrological	models.		

One	of	the	main	limitations	of	the	flood	mapping	methodology	is	that	it	did	not	improve	
flood	mapping	in	urban	areas.	The	resolution	of	S1	did	not	allow	for	detecting	changes	using	
only	 radar	 intensity	 and	 at	 the	moment	 of	 the	 analysis	 no	 Single	 Look	 Complex	 data	were	
available	on	the	areas	considered	in	this	research.	Therefore,	it	was	not	possible	to	exploit	radar	
coherence	to	investigate	the	possibility	of	mapping	floods	in	urban	areas.	Despite	the	very	high	
resolution	of	CSK	data,	also	in	this	case	it	was	not	possible	to	detect	changes	in	urban	areas.	
The	main	problem	 in	 this	 case	was	 that	 the	 images	were	acquired	with	different	 incidence	
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angles	introducing	different	geometrical	distortions.	Radar	shadow	over	urban	areas	did	not	
allow	the	detection	of	water.	Nevertheless,	the	methodology	is	very	promising	and	it	 leaves	
room	 for	 further	 investigations.	 Improving	 the	 methodology	 in	 urban	 areas	 is	 one	 of	 the	
potential	development	of	this	research.	

	
The	second	sub-question	posed	in	the	introduction	was:	“Can	flood	depth	estimation	be	

improved	and	suitable	for	rapid	assessment	of	impacts?”	
Chapter	4	described	the	methodology	for	flood	depth	estimation,	which	builds	on	top	of	

the	one	presented	in	Chapter	3.	Flood	maps	obtained	using	the	Normalized	Difference	Flood	
Index	are	superimposed	to	a	high-resolution	DEM.	From	a	statistical	analysis	of	elevation	values	
along	the	contours	of	flooded	areas,	the	elevation	of	the	water	plane	is	estimated	allowing	the	
computation	of	flood	depth.	The	RMSE	obtained	on	150	validation	points	is	22.3	cm.		

In	 comparison	 to	 hydrological	models,	 this	methodology	 is	more	 easily	 implementable	
since	less	information	is	needed,	only	SAR	images	of	the	event	and	a	DEM.	Hydrological	models	
need	additional	 information	 for	deriving	 flood	extent	and	 then	depth,	 such	as	precipitation	
volumes,	information	about	the	soil,	number	and	location	of	water	pumps,	etc.		

Despite	 the	very	good	 results	obtained,	 the	methodology	can	be	 further	 improved	and	
automatized.	 Future	work	may	 consider	 to	 integrate	 a	DEM	 filling	procedure	 for	 improving	
water	level	estimation	(Huang	et	al.,	2014).	The	use	of	a	vegetation	index	such	as	NDVI,	may	be	
used	to	exclude	wrong	points	along	the	contours.	 In	fact,	 if	presence	of	vegetation	 is	 found	
along	the	contour,	that	may	indicate	an	error	in	the	flood	map	and	therefore	the	correspondent	
elevation	would	be	an	information	to	be	discarded.	Similarly,	slope	can	be	computed	from	the	
DEM	and	used	to	exclude	errors	due	to	radar	shadow	or	misalignment	between	SAR	and	DEM	
data.	Finally,	the	slope	of	the	river	could	be	taken	into	consideration	during	the	estimation	of	
water	level	allowing	to	derive	better	results	for	floods	with	fast	dynamics.		

The	methodology	presented	answered	the	question	that	was	posed	at	the	beginning.	Flood	
depth	estimation	can	be	obtained	with	a	precision	in	the	order	of	centimetres,	when	a	high-
resolution	DEM	is	available.	This	could	be	a	support	both	for	rapid	assessment	of	impacts,	given	
the	little	amount	of	data	needed	and	the	fast	computation	required,	and	for	long-term	planning	
given	the	accurate	derivation	of	depth	values.	Moreover,	with	a	further	development	of	the	
methodology,	especially	for	what	concerns	automatization,	it	could	also	become	an	operative	
tool	to	be	use	in	disaster	management	activities.		

Together	with	the	methodology	presented	in	chapter	3,	it	improves	the	characterization	
of	the	hazard	component	in	the	flood	risk	assessment.		

	
The	third	sub-question	was:	“Can	land	cover	classification	be	improved	and	easily	up	to	

date?”	
Chapter	5	is	developed	around	a	novel	land	cover	classification	method	based	on	multi-

temporal	statistics	of	optical	and	SAR	data.	These	statistics	have	been	merged	using	Principal	
Component	Analysis	as	a	 technique	of	data	 fusion.	Finally,	using	a	Support	Vector	Machine	
classification	methodology,	 land	cover	maps	have	been	derived	for	Veneto	and	Malawi.	The	
use	of	 statistics	allows	 to	distinguish	spectral	 signatures	of	different	 land	cover	classes.	The	
analysis	of	a	big	amount	of	data	allows	to	create	more	robust	statistics	and	improve	the	results.	
The	data	fusion	step,	not	only	allows	to	exploit	information	from	both	radar	and	optical	data,	
but	 it	 also	 allows	 to	 reduce	 the	 size	 of	 the	 input	 dataset	 and	 improve	 the	 algorithm	
performances.	 The	 availability	 of	 new	 EO	 data,	 such	 as	 the	 data	 acquired	 by	 the	 Sentinel	
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constellation,	allow	to	obtain	land	cover	maps	with	an	increased	resolution	and	accuracy.	Their	
frequency	of	acquisition	allows	to	create	updated	maps	whenever	it	is	needed.	Even	though	
the	accuracy	obtained	with	the	use	of	S2	data	was	slightly	worse	compared	to	the	one	obtained	
using	Landsat	8	data	(due	to	a	sub-optimal	distribution	of	acquisitions	during	the	year),	the	big	
amount	of	data	that	S2	is	providing	now	that	it	is	fully	operational,	will	allow,	employing	the	
methodology	presented,		to	improve	existing	land	cover	maps,	which	can	be	a	great	advantage	
for	flood	risk	assessment.			

Therefore,	chapter	5	answered	to	the	third	sub-question	showing	how	the	characterization	
of	the	exposure	component	of	flood	risk	can	be	improved.		

	
The	 fourth	 sub-question	was:	 “Is	 it	 possible	 to	 retrieve	meaningful	 indicators	 of	 social	

vulnerability	from	EO	big	data?”	
The	second	part	of	chapter	5	presented	a	methodology	for	assessing	urban	growth	and	

proposed	a	series	of	parameters	that	could	be	used	as	indicators	of	vulnerability.	The	analysis,	
applied	to	the	case	study	of	Veneto,	showed	interesting	information	about	the	development	of	
built-up	areas	 in	the	region,	allowing	to	highlighting	sprawls,	more	scattered	settlements	or	
more	connected	one.	The	analysis	and	the	parameters	proposed,	other	than	being	useful	for	
characterizing	 vulnerability,	 could	 be	 useful	 for	 ecology-	 or	 biodiversity-based	 studies,	 for	
studying	ecological	corridors	or	the	effect	of	conservation	policies	on	biodiversity.	Moreover,	
this	analysis	may	be	the	base	for	a	dasymetric	mapping	technique	for	distributing	population	
data	at	pixel	level,	an	information	that	would	be	very	useful	in	the	framework	of	disaster	impact	
assessment	and	risk	reduction.		

Chapter	6	showed	how	social	vulnerability	can	be	defined	using	census	data,	the	indicators	
derived	 in	 Chapter	 5	 from	 urban	 growth	 analysis	 and	 settlement	 patterns	 analysis.	 The	
methodology	has	been	applied	to	the	Veneto	case	study	and	both	the	physical	component	of	
vulnerability	was	considered	as	well	as	the	social	dimension,	i.e.	coping	and	adaptive	capacity.	

This	methodology	for	vulnerability	assessment,	even	with	some	 limitations,	showed	the	
potential	of	EO	data	to	improving	social	vulnerability	and	flood	risk	assessment.	As	mentioned	
in	the	chapter,	one	of	the	main	limitations	of	the	methodology	is	that	it	does	not	capture	the	
dynamic	 of	 vulnerability,	 i.e.	 adaptation	 and	 levee	 effects	 (Di	 Baldassarre	 et	 al.,	 2015).	
Nevertheless,	 the	use	of	new	EO	products	 is	promising	especially	 if	coupled	with	the	use	of	
socio-economic	data	and	embedded	in	emerging	frameworks.	Therefore,	also	this	part	of	the	
research	leaves	rooms	for	further	developments.		

	
This	research	showed	some	of	the	potential	of	EO	data	in	the	framework	of	vulnerability	

and	flood	risk	assessment.	The	methodologies	developed	have	been	applied	to	different	case	
studies	showing	the	big	impact	that	EO	can	have	either	in	data-reach	and	in	data-poor	contexts.	
In	fact,	in	the	case	of	Veneto,	EO	allows	to	increase	the	precision	of	the	analysis,	while	in	the	
case	of	Uganda	or	Malawi,	the	methodologies	allow	to	derive	information	that	is	otherwise	not	
existent	of	very	difficult	to	retrieve.		

Finally,	given	the	focus	of	the	research	and	the	available	resources	in	terms	of	time,	it	
was	not	possible	to	develop	all	the	aspects	of	social	vulnerability.	In	particular,	in	chapter	6,	the	
limits	in	terms	of	vulnerability	dynamics	have	been	highlighted	as	well	as	the	need	to	capture	
“adaptation	 effect”	 and	 “levee	 effect”.	 It	 seems	 promising	 to	 continue	 this	 work	 following	
emerging	interdisciplinary	frameworks	that	proposes	to	capture	vulnerability	dynamics,	such	
as	 complex	 system	 theories,	 socioecological	 systems	 or	 socio-hydrology.	 With	 a	 vision	 to	



	 131	

contribute	 to	 the	 research	 activities	 of	 Ca’	 Foscari	 University	 and	 in	 particular	 of	 the	
Department	of	Economics	and	the	Venice	Centre	of	Climate	Studies,	these	are	fields	that	would	
put	together	the	expertise	of	established	scientists	in	the	institute	and	for	which	the	institute	
would	benefit	 from	new	contributions	 (Balbi	et	al.,	2013;	Balbi	et	al.,	2016;	Giupponi	et	al.,	
2013;	Mojtahed	et	al.,	2016).	In	fact,	agent-based	modelling	is	a	method	that	has	got	increasing	
momentum	in	social	science.	This	kind	of	modelling	prescribes	interaction	rules	to	individual	
and/or	institutions	(agents)	and	allow	to	include	heterogeneity.	The	models	compute	agents‘	
interaction	at	mircolevel	and	allow	to	observe	behaviour	at	higher	levels	(Evans	&	Kelley,	2004;	
Gilbert,	2008;	Gilbert	&	Terna,	2000).	Another	method	that	is	increasingly	used	in	the	literature	
is	the	use	of	sets	of	differential	equations	that	describe	fundamental	processes	and	systems	
behaviour.	There	are	studies	in	neoclassic	economic	models	or	social	science	that	make	use	of	
differential	 equations	 for	 dynamic	 modelling	 in	 order	 to	 understand	 complex	 systems	 (Di	
Baldassarre	 et	 al.,	 2015;	 Liu	 et	 al.,	 2015;	 Nefedov,	 2003;	 Turchin	 &	 Korotayev,	 2006;	 Van	
Emmerik	 et	 al.,	 2014).	 In	 particular,	 Di	 Baldassarre	 et	 al.	 (2015)	 proposed	 an	 approach	 for	
capturing	dynamics	of	flood	and	societies	using	a	set	of	differential	equations.	The	human-flood	
interaction	is	conceptualized	in	a	way	where	a	community	settles	and	develops	in	a	flood-prone	
area	to	gain	economic	benefits.	The	occurrence	of	flood	makes	the	memory	of	the	community	
to	change,	which	in	turn	modify	population	density	or	the	protections	to	flood.	The	tendency	
to	resettle	and	 increase	population	density	again	resumes	as	 the	memory	decays	with	 time	
(Viglione	et	al.,	2014).		

The	 integration	 of	 these	 emerging	methods	with	 the	 techniques	 based	 on	 EO	 data	
presented	in	this	work,	can	have	an	impact	in	the	community	of	climate	change	adaptation	and	
disaster	risk	reduction.	This	research	created	a	solid	base	in	the	application	of	EO	products	in	
the	field	of	risk	and	climate	change	adaptation,	and	it	may	become	the	starting	point	for	future	
activities,	with	the	aim	to	fill	the	gaps	that	emerged	and	to	connect	with	new	research	frontiers.	
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Titolo della tesi : Social Vulnerability and Flood Risk Assessment Using Satellite Remote Sensing. 
A support for decision making in a changing climate scenario

Abstract:

The potential of satellite remote sensing (active and passive) has been investigated, with the aim 
of improving the assessment of flood risk and social vulnerability, for defining the three 
components of risk: hazard, exposure and vulnerability. 

A new method for flood mapping has been developed, based on multi-temporal statistics of radar 
images. Flood depth was estimated using a new method based on a statistical analysis of 
elevation data along the contours of flooded areas. Taking advantage of Earth observation big 
data, land cover maps have been derived from data fusion of optical and radar data, allowing 
urban growth analysis. Population density maps were derived by means of a dasymetric 
mapping technique, as well as indicators of social vulnerability by means of network analysis. 
The methodologies have been applied to floods in Italy and Malawi, with the objective of 
supporting decision makers in a context of climate change adaptation.

Estratto:

Con lo scopo di migliorare la valutazione del rischio idrico e della vulnerabilità sociale, si è 
esplorato il potenziale del telerilevamento satellitare, attivo e passivo, per definire le tre 
componenti del rischio: hazard, exposure, vulnerability.
Si è sviluppato un nuovo metodo per la mappatura di aree inondate basandosi su statistiche 
multi-temporali di immagini radar. La profondità dell’inondazione è stata stimata utilizzando un 
nuovo metodo basato sull’analisi statistica dell’elevazione lungo i contorni delle aree inondate. 
Sfruttando i big data di osservazione della Terra (ottici e radar), sono state ricavate mappe di 
land cover, permettendo l’analisi della crescita urbana. Sono state ricavate mappe di densità di 
popolazione utilizzando tecniche di dasymetric mapping, e indicatori di vulnerabilità sociale 
basandosi sull’analisi delle reti.
Le metodologie sono state applicate a inondazioni successe in Italia e in Malawi, con lo scopo 
di fornire un supporto ai decision makers in un contesto di adattamento ai cambiamenti climatici. 
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