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Executive Summary

The  gradual  improvements  in  dynamical  seasonal  forecasts  provide  an  opportunity  to  link  coming 

season’s weather with the dynamic crop models for agricultural applications including in-season crop 

yield prediction and management optimization.

Climate variability is a major source of crop yield variability, explaining roughly a third of the observed 

yield variability globally (Ray et al., 2015). Thus advance information on coming season weather can 

help in estimating crop yield.  Crop yield prediction is an important part of the famine early warning 

system (Thornton et al., 1997). Subjective methods of crop yield estimation without properly accounting 

for the weather related variability result in less accurate yield prediction. Lack of proper estimation of  

food supply limit country’s ability to manage food insecurity, and in some cases, lead to famine.

The high interannual variability in weather variables, including rainfall, makes the return on investment  

from agriculture  uncertain  and  therefore  is  a  major  disincentive  for  farmers  to  tap  full  potential  of  

farming. In an extreme case, hundred thousands of farmers in India have committed suicide due to crop 

failures related to no irrigation and poor water storage (Besten et al., 2016). Therefore, the risk-averse  

famers adopt low-risk (conservative) strategies with a lower expected profit than those which are more  

profitable on average. This reflected on the lowest rate of fertilizer applications and lowest rice yields in  

Nepal compared to the other South-Asian countries (WorldBank, 2015). Thus advance information on 

coming season weather can help farmers to maximize their benefits during the favourable seasons and 

minimize loss of inputs during unfavourable seasons. This is possible by evaluating yields under a variety 

of input options for the coming season weather using a dynamic crop model before the actual planting  

starts. 

The  importance  of  weather  related  variability  on  crop  yield  is  high  particularly for  rainfed  farming  

systems and for crops needing high amount of water. One such example is Nepal’s Terai, where most of 

the rice cultivable lands are still rainfed and depend entirely on the monsoon rain (MOAC, 2008; IRRI,  

2010). We selected rice crop because it needs high amount of water to grow (Bouman and Aureus, 2009).  

Moreover,  the seasonal  prediction systems (SPSs) have some skill  to predict  monsoon in the Indian  

region (Pokhrel Samir et al., 2013).

Various studies have been conducted in this direction using different types of seasonal forecasts. Some of  

them have used the El Nino Southern Oscillations (ENSO) to predict yields and optimize management  

(Ramirez-Rodrigues  et  al.,  2014;  Mavromatis  et  al.,  2002).  ENSO-based seasonal  forecasts  for  yield 
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prediction,  however,  have several  limitations.  First,  ENSO explains  only part  of  the  Indian Summer 

Monsoon (ISM) interannual variability (Goswami et al., 2006; Saji et al., 1999). Second, the strength of 

ENSO signal for the study area has been debated (Ichiyanagi et al., 2007). Moreover, there is a mismatch 

in the life cycles of ENSO and the ISM.

Other studies have used seasonal forecasts from the seasonal prediction systems (SPSs) (Pal et al., 2013;  

Mishra et al., 2008; Hansen et al., 2004). The SPSs are general circulation models (GCMs), which run  

with realistic initial conditions to predict the climatic anomalies for the coming season. The skill of the 

SPSs in  predicting anomalies  is  associated with slowly varying  boundary conditions  such as the sea  

surface temperature (SST), sea ice, snow cover and soil moisture.

However, the mismatch in the temporal and spatial resolutions of SPSs and crop models is a challenge.  

Since the SPSs do not have skill to predict daily weather for a particular grid point, usually the seasonal 

forecasts from the SPSs are issued in the form of monthly or seasonal means anomalies for a larger area. 

On the other hand, the crop models run on a station level using daily data. Therefore, for crop modelling  

and other applications, Weather Generators (WGs) are commonly used to generate daily data from the  

seasonal or monthly means anomalies.

The WGs have difficulty in accurately estimating precipitation especially for the tropical and sub-tropical 

regions (Schmidt et al., 1996). Moreover, WGs generate daily data based on the statistical properties of 

the historical climate, which might not remain constant under the context of climate change. Using daily  

weather outputs from dynamic climate models have potential to reduce biases. 

In our knowledge, this is the first study to use seasonal forecasts’ daily data from an SPS into a dynamic  

crop model for predicting rice yield and optimizing management for the Nepali regions.

Nonetheless, before using seasonal forecasts from SPSs, we need to be sure that the SPSs have prediction  

skill for our regions of interest. Therefore, this study has the following objectives:

 To evaluate the ability of the Climate Forecast System Version 2 (CFS v2) (Saha et al., 2010) and  

Centro Euro-Mediterraneo sui Cambiamenti Climatici Version 1.5 (CMCC v1.5) (Borrelli et al., 

2012) SPSs to predict the South Asian Monsoon with a focus on Nepal’s Terai region and on 

parameters relevant to crop modelling;

 To explore potential of seasonal forecasts to predict yield for Nepal’s Terai region; and 

 To use seasonal forecasts to optimize crop management.

These are described separately in the following three chapters. 
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Chapter-I deals with evaluating SPSs. However, comparing all available SPSs was beyond the scope of 

this study. We took two state-of-the-art SPSs the CFS v2 and the CMCC v1.5. Potential of the CFS v2 

and CMCC v1.5 SPSs to predict the ISM in a season advance is analysed in this chapter. We evaluated  

SPSs by comparing the hindcasts against observed and reanalysis data. We found that the CFS v2 has 

better skill in predicting temperature maximum/minimum and solar radiation demonstrated by the low 

biases and high correlation coefficients for both the Terai-East (TE) and All-India (AI) regions compared 

with the ERA-Interim reanalysis (Dee et al., 2011). CFS v2 was warmer, drier and it overestimated solar  

radiation than the ERA-Interim for both the AI and TE domains.  However,  the CFS v2 had a large 

systematic cold bias (upto -70C) when compared to the weather station data. Although, hindcasts from the 

one-month  lead experienced lower  biases  than the hindcasts  from longer  lead times,  considering the 

sensitivity of the crop models to temperature this reduction is not sufficient. Therefore, bias correction is 

needed. Also, as expected, the correlation coefficients between the hindcasts and reanalysis data were 

found higher for the short lead times hindcasts.

In  contrast,  both  the  models  were  less  skill  full  in  predicting  precipitation.  Although,  the  CFS  v2 

performed better than CMCC v1.5 in simulating precipitation over the Terai-East region, both SPSs were  

drier than the observed data from APHRODITE (Yatagai et al., 2012) and GPCP (Adler et al., 2003).  

Neither CFS v2 nor CMCC v1.5 was able to successfully simulate the monsoon climatology peak (both 

timing and magnitude). Similarly, both SPSs were able to capture the large-scale circulation features such 

as the ENSO-ISM teleconnection, strength of the Monsoon Indices, Flindlater Jet and monsoon onset and 

withdrawal. However, both SPSs failed to reproduce the Indian Ocean Dipole Index-ISM teleconnection 

and movement of the Inter Tropical Convergence Zone (ITCZ) above 200  N latitude in July as seen in 

observation.

In chapter II, we calibrated the Crop Estimation through Resource and Environment Synthesis (CERES)-

Rice model of the DSSAT v4.6 (Hoogenboom et al., 2015) with the experimental data from the regional  

agricultural research station from Nepal. The hindcasts simulations of the CERES-Rice model fed with 

station and reanalysis meteorological data were less able to capture the inter-annual variations in district  

yield  data.  This  could be because the district  average yield  comprised  yields  averaged from tens  of  

thousands of farmers.  These farmers  practice  dissimilar  management  in individual  years  on different 

farms. In contrast, the simulations were conducted for only one cultivar, soil and management practice.

After that we used yields simulated using observed weather as a reference for comparison. We used those 

reference yields, so as to capture the random errors related to the seasonal forecasts, while ignoring the 

crop model’s errors (Hansen et al., 2004). Even using a combination of one-month lead seasonal forecasts  

from June to December, we did not find satisfactory skill in predicting reference yields. The one-month  
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lead  seasonal  forecasts  consisted  of  July  data  from  forecasts  initialized  in  June,  August  data  from 

forecasts  initialized  in  July  and  so  forth  to  December.  Also,  we  used  the  one-and-two-month  lead 

forecasts in which July and August data came from forecasts initialized in June, August and September  

data came from forecasts initialized in July and so forth to December.

Finally,  we  compared  performances  of  predictions  involving  climatology  alone  with  the  predictions 

involving climatology combined with seasonal forecasts. The seasonal forecasts consisted of one-month  

and one-and-two-month  lead.  For  each  year,  weather  data  included observed weather  data  until  the 

forecast date, combined with seasonal forecasts and climatology or climatology alone for the remainder of  

the growing season. With the progress in growing season weather data were updated with the observed 

data. The model was run separately for each hybrid weather time series. For every month of prediction, 

we calculated average yield for each ensemble member by averaging 28 years of simulated yields.

In general, yield forecasts were better when combining observations for the past with climatological data 

for the remaining of the crop period compared to using observations and forecast data. This is evident  

from the lower mean percentage error (MPE), root mean square deviation (RMSD) and respective higher 

correlation  coefficients.  The  prediction  skill  was  even  lower  when  using  one-  and  two-month  lead 

seasonal forecasts compared to using only one-month lead seasonal forecasts. The poor prediction skill  

when using seasonal forecasts is associated with the low skill of the seasonal forecasts, particularly in  

predicting precipitation. Given that the SPSs were able to capture the large scale circulation features,  

there is a potential to improve prediction using CFSv2 seasonal or monthly mean anomalies with spatial 

and temporal downscaling. 

As expected, yield forecasts improved by incorporating successive monthly weather updates due to the 

increase in duration of observed weather. Predicting yield within 5% of error and with 0.99 correlation  

coefficient two and a half months before harvest using climatology alone is a promising result. However,  

it is important to note that this is not a true skill verified against observed yield. 

Given that the model did not have satisfactory skill to predict yield using daily forecasts from CFS v2, it  

cannot be used for optimizing management before planting starts. Since we found that the ENSO signal 

was stronger in western Terai, we selected a station (Bhairahawa) in that domain as the study area for 

using ENSO categories of weather for management optimization. Admittedly, even the ENSO signal in 

that area is not particularly strong, and this imposes limitations to the applicability of our conclusions. 

Using ENSO-phases for management  optimization is  described in the third chapter.  To that  end,  the 

CERES-RICE  model  was  run  using  the  weather  station  data  from  1983  to  2010.  The  years  were  

categorized on the basis of  the El  Nino-Southern Oscillation (ENSO) phases:  El  Nino,  La Nina and 

4



Neutral years using the Nino 3.4 seasonal (JJAS) sea surface temperature (SST) anomaly. Additionally,  

we classified years according to the amount of precipitation as above average, below average and average 

based on standardized precipitation anomaly.  The model  was run under a given weather category for  

different planting dates and levels of Nitrogen (N) fertilizer. The average yields under various weather  

categories and management options were compared to select the best management option for a given  

weather category. 

The rice yields simulated by the models were high in El Nino years, low in La Nina years and medium in 

the ENSO neutral years. Also, the yield increased in proportion to the amount of N fertilizer applied in all  

years. The rice yields were higher for the early planting date on June 14 than the existing practices in 

mid-July. These conclusions must be verified by the research stations.

The lower yields in La Nina years were associated with high (low) N leaching (uptake) due to the high 

drainage and runoff.  Moreover,  the lower yield  during the La Nina years  were associated with high  

minimum temperature anomaly during the second half of the growing season (Peng et al., 2004). 

Considering the existing practices of mid-July planting and low level  of  N fertilizer application,  rice  

yields could be increased in El Nino years, by adopting earlier planting dates. The net gross margin of US 

$34/ha can be achieved for the increase in N fertilizer application to 90 kg/ha and by planting on 14 June  

in El Nino years compared with the similar changes in other years. Since not every El Nino years are dry 

years,  the study’s  conclusions have a statistical  value but  may lead to failures and losses. Therefore,  

before putting these findings into practice, one should assess the probabilities and cost of these “failures”.
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CHAPTER I: Evaluating the ability of the CMCC v1.5 and CFS v2 
Seasonal Prediction Systems (SPSs) to predict the South Asian 

Monsoon
Abstract

Interannual weather variability is an important source of crop yield variability globally and particularly 

for the rainfed farming systems. Seasonal forecasts from the dynamic seasonal prediction systems (SPSs) 

have  potential  to  contribute  to  better  agricultural  decision  making  by  predicting  crop  yield  and  by  

evaluating crop management options in a season advance. The reliability of such predictions, however,  

depends, to a large extent, on the quality of seasonal forecasts. Therefore, it is important to evaluate the  

skill of the SPSs before using Seasonal forecasts for any applications. This part of the study analyses the  

Climate Forecast System Version 2 (CFS v2) and the  Centro Euro-Mediterraneo sui Cambiamenti 

Climatici Version 1.5 (CMCC v1.5) SPSs’ potential use in predicting the Indian Summer Monsoon (ISM) 

in a season advance. It compares the SPSs’ hindcasts with mean monsoon climatic features. We found 

that  the  CFS  v2  model  has  an  excellent  skill  to  predict  temperature  maximum  (T max)  at  2  meters, 

temperature minimum (Tmin) at 2 meters, and total incoming total surface solar radiation (S rad). Both of the 

models, however, less precisely predicted precipitation (Precip). The CFS v2 model has an edge over the  

CMCC v1.5 model in simulating precipitation over the Terai East (TE) region, while the CMCC v1.5 

performs better in Central India (CI). Both SPSs are unable to simulate the monsoon peak (timing and 

magnitude both). In the contrary, both SPSs can capture the large-scale negative correlation between the 

Nino 3.4 index and precipitation over the Indian land region. However, both SPSs fail to replicate the 

positive correlation between the Indian Ocean Dipole (IOD) index and precipitation over the Indian land 

region. The study’s findings indicate that the SPSs’ direct weather outputs are less skilful in predicting  

monsoon precipitation.

Keywords: CMCC v1.5, ISM, Nepal, Terai

I.1 Introduction

The simulation and prediction of the Indian Summer Monsoon (ISM) strongly affects the livelihoods of 

billions of people in Asia. The agricultural productivity of the South Asian region in general – and of 

Nepal, in particular – depends on the ISM, as most arable lands (79%) are still rainfed (MOAC, 2008; 

IRRI, 2010; IRRI, 2009).

If the comprehensive seasonal forecast (SF) is based on local farmers’ real needs and is disseminated  
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through  the  proper  channels,  it  can  provide  an  opportunity  to  manage  climate-related  risks  and  to  

maximize production  (Hansen, 2002). Precipitation is one of the most essential factors for determining 

crop productivity, especially in rainfed farming systems. However, from a physiological perspective, crop  

growth depends also on solar radiation. To predict yields, crop models (such as DSSAT-CERES) need, at 

minimum,  the  following input  variables:  Precip,  Srad,  Tmin,  and  Tmax on a  daily basis  for  a  particular 

location.  

Climate models have some degree of skill at predicting anomalies that depart from climate at seasonal  

lead  times.  In  other  words,  models  have  some  ability  to  forecast  whether  a  particular  region  will  

experience below or above average rainfall, temperature, or any other weather variable, in the coming 

season. Nevertheless, they are unable to predict, for example, how much rain a certain region will receive  

on a particular date in the subsequent season. 

This skill of predicting anomalies at seasonal lead time is associated with the slowly varying boundary 

conditions at the earth’s surface, such as the sea surface temperature (SST),  soil  moisture, and snow 

cover.  Since  these  slowly  changing  boundary  conditions  have  remarkable  impact  on  atmospheric 

development for the coming season on the tropics, they provide clue to the dynamic models for seasonal 

prediction. For example, when the SST in the equatorial Pacific region is higher (lower) than average SST 

(a condition called El Nino [La-Nina]), the summer monsoon is lower (higher) than normal (Sikka, 1980).

Before utilizing SPS forecasts as inputs for a crop model, one must first determine whether the model has 

adequate  predictive  skill.  Moreover,  multiplication  of  high  forecasts  error  with  the  error  inherent  in 

DSSAT can make the yield simulations far from reality.  The lack of reliability of forecasts demotivate 

farmers to use seasonal forecasts a permanent component of their climate risk-management approach. 

However, as various studies and model inter comparison projects have demonstrated, general circulation  

models (GCMs) significantly differ in their ability to predict the ISM (Kripalani et al., 2007; Annamalai et 

al., 2007; Kulkarni et al., 2013; Jiang et al., 2012). Pokhrel Samir et al. (2013) and Chaudhari et al. (2013) 

have  indicated  that  the  National  Centres  for  Environmental  Prediction  (NCEP)  CFS v2  is  the  best-

performing SPS for the Indian region. However, their focus was not on the Nepali region and neither did 

they  evaluate  the  CFS  v2’s  ability  to  predict  parameters  other  than  precipitation  required  for  crop 

modelling.

Furthermore, monsoon climatology widely varies from region to region within South Asia. Therefore,  

forecasters must test a model’s ability to simulate and predict the monsoon in a particular region before  

encouraging the use of that model’s seasonal forecasts for that area. Therefore, we utilized the NCEP CFS 

v2 along with another state-of-the-art SPS CMCC v1.5 with a focus on Nepal and North Central India 
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regions and all variables required for crop modelling. 

The study concentrates on Nepal’s Terai, because rice is the region’s main crop, cultivated on 66% of its  

arable  land.  Furthermore,  most  of  the  Terai’s  rice  production  areas  are  rainfed,  and thus  depend on  

monsoon rain (MOAC, 2008;  IRRI,  2010;  IRRI,  2009).  Moreover,  there  is  a lack of  similar  studies 

focusing on this region. 

This  research  project  began  by  evaluating  the  SPSs’ ability  to  predict  the  ISM  and  other  weather 

variables, including Srad, Tmax, and Tmin. To that end, we employed numerous diagnostics, including mean, 

standard deviation, coefficients of variation, correlation coefficient, spatial correlation, bias and root mean 

square error (RMSE). 

Section Two of this chapter describes the models, data, and methodology, while Section Three presents  

and discusses the results. Finally, the conclusions are in Section Four.

I.2 Data, models and methodology

I.2.1 Data 

Forecasts  were  taken  from  the  CFS  v2  SPS,  which  have  been  made  available  by  NCEP 

(http://nomads.ncdc.noaa.gov/modeldata/cfs_reforecast_6-hourly_9mon_flxf). The CFS v2 consisted of a 

set of nine-month hindcasts initialized at every five days’ interval and four times a day (00, 06, 12, and 18 

UTC)  from 1982  to  2010.  There  were  thus  24  forecasts  per  month,  which  were  considered  as  an 

ensemble. October and November were exceptions; each had only 20 members. We gave each ensemble  

member  a  three-digit  name.  The  first  digit  referred  to  the  date  of  the  initialization  month,  and  the  

following two digits signified the forecast hour. For example, for ensemble member “100”, “1” denoted 

the first date of the initialization month, while “00” referred to the forecast hour. 

The first date of a month was not necessarily the first calendar day of that month. For example, June 5 th 

was the first date in the June initialization. And, the 4 th, 3rd, and 2nd were the initial dates in the August, 

September, and December initializations, respectively. We constructed 24 different time series of daily 

hindcasts from 1983-2010 for seven months (June, July,  August,  September, October, November, and 

December) for four variables (Precip, Tmax, Tmin, and Srad). As we only had five initialization dates in both 

October and November, the time series from 17 to 24 employ November and December forecasts from 

the fifth initialization dates in October and November, respectively. 

We constructed the time series by taking forecasts with a one-month lead time. For instance, we took June 

forecasts  from May initialization,  July forecasts  from June  initialization  and so  on.  We utilized  this  
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approach to minimize the predictability error, although from an operational perspective, this would not be 

feasible. In practice, a set of nine-month forecasts are issued from each initialization time. Although our  

forecasting  approach  had  less  practical  relevance,  it  minimized  the  predictability  error,  which  was  

important, as we were primarily interested in the seasonal forecasts’ ability to predict yield. In general, the  

predictability errors drop with the reduction in lead times. Thus, we had 24 different time series for each  

ensemble member. These consisted of daily hindcasts from 1983-2010 for Precip, Tmax, Tmin, and Srad. We 

selected the months from June to December, as these represent the main rice-growing season in Nepal’s 

Terai. We henceforth named this set of 24 time series the Hybrid-one-month lead-time series. Averaging 

the 24 time series created an ensemble mean. 

Theoretically, the  ensemble  mean  time  series  should  minimize  the  forecast  errors  resulting  from 

differences in  initial  conditions.  To assess  the predictability error  stemming from the lead times,  we 

compared the monthly means of the forecasts with different lead times for all variables.

Moreover, CMCC v1.5 six-month hindcasts are available from 1981-2010 for four initialization times 

(February 1st,  May 1st,  August  1st,  November 1st).  To account for uncertainty resulting from initial  

conditions, the start date of each initial condition consisted of eight initial atmospheric conditions from 

the last four days at 12-hours interval along with initial condition of the start date. Thus we had nine 

different  initial  conditions  including the start  date  from where the CMCC v1.5 evolved producing a 

probability distribution of the forecasts (Borrelli et al., 2012).

I.2.2 Models

The NCEP CFS v2 (Saha et al., 2010)  is a fully coupled SPS, and it is comprised of the NCEP GFS 

(Moorthi et al., 2001) atmospheric model and the Modular Ocean Model version 4 (MOM4) p0d (Griffies 

et al., 2004) ocean GCM. The GFS has T126 (100 km) resolution and 64 hybrid vertical levels. Model  

physics include rapid radiative transfer model (RRTM) short-wave radiation (Iacono et al., 2000; Clough  

et al., 2005), Arakawa-Schubert convection with momentum mixing, orographic gravity drag from (Kim 

and Arakawa (1995) and sub-grid scale mountain blocking, based on Lott and Miller (1997). The MOM4 

is a finite differencing model with 0.250 - 0.50 grid and 40 vertical levels. The CFS v2 and MOM4 models 

are coupled with no flux adjustment. Also the CFS v2 has a separate sea ice model  (Wu et al., 1997; 

Winton, 2000) and Noah land surface model (Ek et al., 2003).

The CMCC v1.5 coupled General Circulation model (GCM) consists of four components: the ECHAM5 

(Roeckner et al., 2006; Roeckner et al., 2003; Roeckner et al., 1996)  representing atmosphere; SILVA 

(Alessandri et al., 2007) for the land-surface; OPA8.2 (Madec et al., 1998) for the ocean component; and 

LIM (Timmermann et al., 2005) for the sea ice component. These different components are coupled with 
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the OASIS3 coupler (Valke et al., 2000). The ECHAM5 is a global spectral model with T63 truncation 

and has 192 points along the longitude and 96 points along the latitude with a horizontal resolution of  

about 200 km. Moreover, it includes 19 vertical levels in sigma coordinates. It is coupled to the SILVA, a  

dynamic vegetation model with the same resolution. The OPA8.2 is an ocean GCM with ORAC2 grid.  

This is a quasi-isotropic tri-polar grid with two poles in the northern hemisphere: one above Siberia and 

the other above Canada. It has a horizontal resolution of 1.50 along the latitude and 20 along the longitude, 

with an increase of 0.50 near the equator. It has 31 levels in the vertical, with a resolution of 10-meter in  

the top 100 meters. It was coupled with the LIM sea ice model, which has the same resolution. Flux 

exchange was conducted with the coupler, without any adjustment in frequency. 

This study uses CMCC v1.5 SPS, in which all components (atmosphere, ocean and land surface) were 

initialized with a realistic state close to the observed data. The ECHAM5 was initialized using the ERA-

Interim reanalysis  (Berrisford et  al.,  2009).  And,  the  OPA8.2  is  initialized using  CMCC v1.5-INGV 

Global Ocean Data Assimilation (CIGODAS) (Di Pietro and Masina, 2009; Bellucci et al., 2007), which 

is based on the assimilation of temperature and salinity profiles and is forced by the ECMWF operational 

analysis using an optimum interpolation scheme. The sea ice initial condition was from simulation of  

CMCC v1.5-SPS.

 The model  was run from 1960 to 2010 in the  'present  climate'  state,  in  which the radiative forcing 

changes according to the actual greenhouse gases (GHG) concentration in the atmosphere every year. The 

sea ice concentration of the last 20 years was used.

I.2.3 Methodology

We assessed the models’ ability to simulate the ISM by comparing their simulations with mean monsoon  

features (DelSole and Shukla, 2010). The mean monsoon features this study investigated included the 

mean seasonal cycle, the Flindlater Jet, monsoon indices, proper representation of the maximum rainfall 

band’s movement, monsoon onset and withdrawal dates, and air-sea interactions. We also included the 

Indian monsoon teleconnections, including the El Nino Southern Oscillation (ENSO) and IOD.

The hindcasts precipitation was evaluated against the APHRODITE precipitation data (Yatagai  et al.,  

2012) and GPCP precipitation data  (Adler et al., 2003).  Similarly, the Nino 3.4 and IOD indices were 

calculated from the SST simulated by the models and compared against these indices using the SST from 

NOAA Optimum Interpolation v2 reanalysis (Reynolds and Smith, 1994). Moreover, the variables total 

incoming surface Srad, Tmax at 2 m and Tmin at 2 meter were validated against ERA-Interim reanalysis (Dee 

et al., 2011).

We  calculated  bias  and  grid-by-grid  anomaly  correlation.  We  also  compared the  area  average  daily 
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climatology  data  for the All India (AI) and Terai East (TE) domains, as well as for  one grid point in 

Nepal. The AI domain was bounded by 5-350N and 65-950E, while the TE domain fell between 26-26.90N 

and 84.6-88.20E. The grid point in Nepal was located in Hardinath, at 26.80N/85.90E. While the AI region 

is one of the most commonly researched domains in monsoon-related studies, this study focused on the 

TE domain. We used bilinear interpolation to get data for the exact point from the gridded data. We 

computed the daily climatology for the variables by averaging the daily weather from 1983-2010 and 

applying a 15-day moving average. The CFS v2 hindcasts were only available for June-December, but the 

APHRODITE and ERA-Interim data spanned the entire year. Furthermore, weather station data from the  

Department  of  Hydrology  and  Meteorology  (DHM)  and  data  from  the  NASA  POWER  project 

(http://power.larc.nasa.gov/cgi-bin/agro.cgi?email=agroclim@larc.nasa.gov)  were  used  to  cross-check. 

The reason for using weather station data is because some studies such as the van Wart et al. (2013) have  

pointed out that results from the studies relying on the reanalysis or satellite based gridded weather data  

for simulating yield are highly uncertain. 

I.3 Results and Discussion (Representation of the monsoon circulation)

I.3.1 Bias

I.3.1.1 Precipitation 

In Nepal, the observed climatology from 1976 to 2005 indicated a trend in which precipitation decreased  

moving from east to west (Marahatta et al., 2009). Similarly, the hill and mountain regions experienced  

increasing trends of precipitation, while the opposite was observed in the Terai region (MOPE, 2004). The 

orographic effect further altered precipitation, with the windward side receiving high amounts, while the 

leeward side saw significantly less (Marahatta et al., 2009).

Neither GPCP nor CMCC v1.5 model was able to capture the observed high precipitation pattern in the  

hilly areas of the eastern and central regions of Nepal (Fig. I.1(a) and (b)). However, the APHRODITE  

and CFS v2 had clearly captured the east-west and hill-plain gradient in precipitation (Fig. I.1(c) and (d)).  

Compared to the hilly regions the southern plain regions received less precipitation. 

Both CFS v2 and CMCC v1.5 underestimated rain in TE by 2-5 mm/day, although both were very wet  

(>10mm/day) in the Himalaya region (Table I.1). The excessive bias in the Himalayan region was related 

to the orography, which could not be resolved in the low-resolution models. 
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Fig. I.1 Seasonal (JJAS) climatology for the Indian region for the period of 1982-2005 for a) GPCP b) CMCC c)  
APHRODITE d) CFS v2.  

Fig. I.2 Bias in seasonal (JJAS) average precipitation (mm/day) from 1982-2005 for a) CFS v2 b) CMCC v1.5 with  
respect to APHRODITE and c) CFS v2 d) CMCC with respect to GPCP. 
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Except some patches of wet bias in the Northeast regions, CFS v2 has dry bias in most other land regions 

of India. However, the average seasonal (JJAS) precipitation for the AI land only region in both models  

was close to observation (Table I.1). 

In contrast to the other models, including the CFS v2, which demonstrated a dry bias over central India  

(Rajeevan  and  Nanjundiah,  2009;  Krishnamurthy  and  Shukla,  2001),  the  CMCC  v1.5  model  more 

successfully captured the precipitation climatology over central India, although it had a somewhat wet 

bias (Fig. I.1(b), I.2 (b) and I.2 (d)). However, unlike CFS v2, the CMCC v1.5 was not able to capture the 

higher precipitation along the North East  India,  the Himalayan region, the Western Ghat  region.  The  

CMCC v1.5 thus had a dry bias over these regions (Fig. I.1(b), I.2 (b) and I.2 (d)).

Both models underestimated daily precipitation climatology and variability averaged for the AI (land-

only) and TE domains (Fig. I.3a). However, both more successfully captured higher precipitation trends 

in TE region than in the AI domain. As Figure I.3a indicates, the CFS v2 predicted an earlier start to the 

rain than what was observed in both the AI and TE domains (Fig. I.3a). Also, the CFS v2 was unable to  

capture the peak intensity, or the timing of the peak. In the CFS v2 model, rainfall peaked at the end of  

June, while observations illustrated that rainfall actually peaked at the end of July. Moreover, the CFS v2  

had a dry bias for both the AI and TE domains.

In a study that compared 22 IPCC-AR4 models’ ability to simulate the monsoon, (Kripalani et al., 2007) 

found that, for the seven best-performing IPCC-AR4 models, the AI-averaged monsoon (JJAS) season 

precipitation varied from 5.73 to 8.11 mm/day and the coefficient of variation (CV) was between 5-10 % 

(Kripalani et al., 2007). For the AI land-ocean domain, both models’ mean and CV fell within the range of 

those seven models (Table I.1).

The RMSE was lower (higher) for AI (TE) for both these models when compared to the GPCP. However, 

the RMSE values for the CFS v2 and CMCC v1.5 were comparable with APHRODITE (Table I.2). But, 

the observations were not perfect as shown by the high RMSE between the two observational datasets in  

the TE domains (Table I.2).

The  correlation  coefficients  for  the  CFS  v2  model’s  simulated  interannual  seasonal  average  (JJAS)  

precipitation and observed values (GPCP/APHRODITE) demonstrate that the CFS v2 was moderately 

skilled for the AI domain (Table I.3). The CMCC v1.5 model, however, was not appropriate for the TE 

domain, as demonstrated by the very low and insignificant correlation coefficients (Table I.3).

Similar to the precipitation averages for the AI and TE domains, the CFS v2 hindcasts daily climatology 

for Hardinath grid point predicted an early start to the rain and also estimated that the peak would occur in 

June, rather than in July, as in the observations (Fig I.4a). It also dropped more rapidly after July than  
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what was observed. To further cross-check the observation data, we employed weather station data and 

NASA POWER project data at the same point. The CFS v2 forecasts had wet bias in June and dry bias in  

other months compared to the weather station data. But, the NASA POWER and APHRODITE data had 

dry  bias  until  July  end,  after  that  until  mid-September,  NASA  POWER  data  had  wet  bias  and  

APHRODITE had dry bias. From mid-September onwards, both NASA POWER and APHRODITE were 

very close to the weather station data (Fig. I.4a). Although most of the CFS v2 ensemble members had 

negative bias in estimating daily precipitation climatology, the observed data (from weather station and  

APHRODITE) fell inside the ensemble spread (Fig. I.4a). 

We also analysed biases in distribution of precipitation. We found that in 9 out of the 28 years, CFS v2  

less accurately captured precipitation’s distribution. For example, in 2009 and 2010 from August end to  

December end (almost 4 months) observation did not show any rain, except a few events in October (Fig.  

I.5). Similar were the case in 1991 and 1995, albeit to a lesser extent. But all ensemble members were  

showing regular rain during those periods. Similarly, in 2007 none of the ensemble members were able to  

represent the extreme rain (535 mm in 3 days) during July end. Also in 1994, observation did not show 

any regular and large rain until mid-July but all members were showing regular and high rainfall.  

Table I.1: Seasonal (JJAS) area average precipitation (mm/day), SD and CV for AI and the TE domains for models 
and observation for the period from 1981-2005. Values of the TE domain are shown in parenthesis.

Land only Land and ocean
Mean CV (%) Mean

CMCC v1.5 3.3 (7.6) 5 (4) 7.7
CFS v2 3.0 (7.3) 4 (10) 7.6
GPCP 3.5 (12) 6 (14) 6.7
APHRODITE 5.3 (9.4) 8.5 (20) 5.3

Table I.2: RMSE (mm/day) between models and observations for precipitation in the AI and TE domains. The 
values for the TE are in parenthesis. 
CFS 
v2/APHRODITE

CMCCv1.5/
APHRODITE

CFS v2/GPCP CMCC 
v1.5/GPCP

GPCP/
APHRODITE

2.3 (2.7) 2.1 (2.6) 0.6 (5.0) 0.3 (4.6) 1.8 (3.6)

Table I.3: The correlation coefficients, along with their significance values (p), for the interannual variation of 
seasonal (JJAS) mean precipitation between the models' (CMCC v1.5 and CFS v2) simulations and observations 
(GPCP and APHRODITE) for the AI domain and TE domain. The values in parentheses are for the TE domain.

r p
CFS v2/APHRODITE 0.4 (0.3) 0.02 (0.11)
CMCCv1.5/APHRODITE 0.4 (0.0) 0.1 (0.96)

CFS v2/GPCP 0.5 (0.4) 0.00 (0.07)
CMCC v1.5/GPCP 0.5 (0.2) 0.00 (0.45)
GPCP/APHRODITE 0.9 (0.9) 0.00 (0.00)
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In 1992, higher than normal rain fell during later part of the growing season but all ensemble members  

showed opposite.  In  2000 observation  did  not  show any high  rain  from September  onwards  but  all 

members  were  showing  high  rain.  Similarly,  in  1988  October  and  November  model  showed 

unrealistically high rains.

I.3.1.2 Temperature maximum 

The CFS v2’s seasonal (JJAS) mean Tmaxs, averaged from the monthly mean from 1983 to 2010, were 

colder than the ERA-Interim for the AI region, although the extent of biases varied over the regions (Fig.  

I.6a). Biases were smaller in TE and its immediate south near Indo-Nepal border than the Himalayan  

regions and its north. Saha et al. (2014) echoed our finding and showed that the CFS v2’s 2-meter air  

temperature has cold bias than the ERA-Interim for the AI region. In contrast, the CFS v2’s daily T max 

forecasts had positive biases than the ERA-Interim (Fig. I.3b). The reason for the difference between the  

CFS v2’s Tmax seasonal mean and daily climatology is because the daily forecasts were taken from the 

maximum of the 6-hourly forecasts for each day, while the seasonal mean was averaged from monthly  

mean forecasts. Although CFS v2’s daily Tmaxs had warm biases in both domains, the magnitude of these 

biases was higher in TE (Fig. I.3b). The bias in the AI region was reduced, since it was averaged over a  

larger region than the TE. The CVs for the CFS v2’s and ERA-Interim’s Tmaxs were 0.3 (1.6) and 1.0 (1.8) 

for the AI (TE) domains respectively. The CFS v2’s Tmaxs had RMSEs 1.5 (3.1) for the AI (TE) domains 

compared to the ERA-Interim. 

Although,  the  CFS  v2  predicted  daily  Tmax climatology  was  closer  to  the  ERA-Interim  and  NASA 

POWER data, all of them had very high negative bias when compared to the weather station data for the  

Hardianth grid point. The CFS v2’s, ERA-Interim’s and NASA POWER’s Tmax had significant systematic 

negative  biases  of  up  to  -60C compared  to  the  weather  station  (Fig.  I.4b).  Differences  between the 

reanalysis and observation data could stem from the nonlinear interaction among various errors including 

observational errors, model errors and methodological errors (Thorne and Vose, 2010; Dee et al., 2011). 

Considering the mean monsoon season temperature from ERA-Interim averaged for the Indian region has 

negative bias (Shah and Mishra, 2014) and the CFS v2 daily Tmax has positive bias than the ERA Interim, 

the average bias in CFS v2 daily Tmax forecasts is less than the ERA Interim.

I.3.1.3 Temperature minimum 

The CFS v2 model almost perfectly predicted seasonal (JJAS) mean Tmin  for the TE and South Indian 

region compared to the ERA-Interim reanalysis (Fig. I.6c). For the north Indian regions, however, the 
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Fig.  I.3 Daily climatology from 1983-2010, averaged for the AI and TE domains for:  (a) precipitation, (b)  
temperature maximum, (c) temperature minimum, and (d) solar radiation. The AI domain is shown with solid 
lines, and TE with dotted lines.

Fig. I.4 Daily climatology from 1983-2010 for Hardinath, Nepal for: (a) precipitation, (b) temperature maximum, (c) 
temperature minimum, and (d) solar radiation.
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Fig I.5 Daily precipitation observed versus CFS v2 ensemble members for Hardinath grid point from 1983 to 2010.  

Precipitation  intensity  (mm)  are  shown in  vertical  axis  and  number  of  days  starting  from June  are  shown in 

horizontal axis. The thick black line represents the observed precipitation and the thin 24 lines are the CFS v2 

ensemble members.
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CFS v2 predicted seasonal  (JJAS) mean Tmins were  slightly overestimated.  The CFS v2’s  and ERA-

Interim’s Tmin CVs for the AI (TE) domains were 1.2 (1.5) and 1.0 (1.7) respectively. The CFS v2’s Tmin 

RMSEs for the AI (TE) domains were 0.3 (0.7) respectively. 

The CFS v2 Tmin daily climatology for the AI domain were almost perfect until October, after which the 

bias increased (Fig. I.3c). Also, the temperature in the TE domain dropped more rapidly than in the AI  

domain during the cold season. Presence of the ocean and coastal areas in the AI domain resulted in less  

intense temperature drops than in the inland region. The reduction in Tmin, however, was more rapid in 

hindcasts than in the observations.

The CFS v2 ensemble  mean  daily  climatology for  Tmin was quite  close  to  ERA-Interim and NASA 

POWER data until August after that biases in CFS v2 forecasts increased gradually. Except for the first  

few days, differences between CFS V2’s and ERA-Interim’s Tmin were upto -10C until August followed by 

sharp  increase  and then  steady decline.  Compared  to  the  weather  station  data,  the  CFS v2’s,  ERA-

Interim’s and NASA POWER’s Tmin had bias upto -70C, -30C and -40C respectively. The ensemble spread 

reached a minimum for Tmin (Fig. I.4c). These biases are very high considering the sensitivity of dynamic 

crop  models  to  temperature  change.  Therefore,  proper  bias  correction  is  needed  before  using  these 

forecasts into crop models. 

I.3.1.4 Solar radiation 

CFS v2 overestimated solar radiation compared with the ERA-Interim reanalysis over a narrow strip  

along the Indo-Nepal border. This band extended west northward, running parallel to the Himalayas (Fig.  

I.6c). Furthermore, the model yielded an excessive positive bias of approximately 3 MJ/m2/day for the TE 

region. The CFS v2 and ERA-Interim’s Srad CVs for the AI (TE) domains were 1.1 (2.5) and 6.7 (7.5) 

respectively. The CFS v2’s Srad RMSEs for the AI (TE) domains were 1.8 (3.0) respectively. Also, in the 

Northeast regions, the CFS v2 deeply overestimated Srad. Except for a few patches of overestimation in 

coastal regions, the CFS v2 underestimated Srad in the inlands regions of India. 

Unlike temperature, Srad was higher for the AI domain than for the TE domain (Fig. I.3d). Furthermore,  

the CFS v2 displayed a large, positive bias (approximately 3-4 MJ/m2/day) in both domains during the 

monsoon season. From November onwards, Srad began to rapidly decline in both domains. Since the AI 

domain contained more areas at lower latitudes than did the TE domain, Srad was higher in the AI domain. 

The ensemble spread for Srad daily climatology was larger during the monsoon season, due to differences 

in the initial cloud cover conditions (Fig. I.4d). The CFS v2 ensemble mean daily climatology was closer 

to the NASA Power data than the ERA-Interim. When compared to the ERA-Interim more of a bias was 

present from July onwards. 
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Fig. I.6 Seasonal (JJAS) bias for one-month lead-time for (a) maximum temperature (b) minimum temperature and 
(c) solar radiation. The bias is calculated as the difference between CFS v2 and ERA-Interim for the seasonal (JJAS) 
average of 1983-2010. Units are in degree Celsius for temperature and in MJ/m2/day for the solar radiation.
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I.3.2 Anomaly correlation 

We computed  the anomaly correlation between the CFS v2 and APHRODITE for  precipitation,  and 

between the CFS v2 and the ERA-Interim reanalysis for all other variables. The time series consisted of a 

28-year (1983-2010) series of data covering seasonal (JJAS) anomaly of each year.

I.3.2.1 Precipitation 

The anomaly correlation value was between 0.4-0.6 in the upper half of the Indian region, while there was  

either a very weak relationship (or no relationship) from the CI to the Southern tip of India (Fig. I.7a). In  

the northern regions, the anomaly correlation values slightly increased from east to west.  For the TE 

region, the figure was from 0.2 to 0.4, with westward regions seeing higher values. Despite the fact that  

North Nepal and South Nepal had opposite biases, both regions had positive anomaly correlation values.

I.3.2.2 Temperature maximum

The CFS v2 models’ forecasted Tmaxs were strongly correlated with the ERA-Interim, except for certain 

areas in the Himalayas and in South India, where the relationship was weaker (Fig. I.7b). In most other  

regions (including the TE), the correlation coefficient was higher than 0.7. Shah and Mishra (2014) found 

ERA-Interim reanalysis as the best performing reanalysis for reproducing observed temporal variability 

related  to  mean  monsoon  season  temperature,  with  the  correlation  coefficients  of  0.8  between  the 

observed and ERA-Interim AI-averaged monsoon season mean temperature.

I.3.2.3 Temperature minimum

Similar to Tmax, the ERA-Interim’s Tmins were strongly correlated with Tmins from the CFS v2 model except 

South India and coastal  regions (Fig.  I.7c).  The correlation coefficient  was greater than 0.8 in North  

Indian regions, including the TE.

I.3.2.4 Solar radiation

CFS v2 was very skilled at forecasting Srad, as illustrated by its strong correlation with the ERA-Interim 

for most of the Indian region, except for the eastern coastal region (Fig. I.7d). This model was also highly 

predicative for  the  TE,  with a  correlation  coefficient  of  approximately 0.7,  which increased moving 

westward. 
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I.3.3 Effect of lead time on the bias

I.3.3.1 On the bias
We attempted to examine whether these biases were systematic or whether decreasing the lead time could  

reduce them. To that end, we compared the biases for all four variables for the AI and TE domains. Fig.  

I.8a illustrates the magnitude of the biases for both domains. As Figure I.8a makes it clear, decreased lead 

times reduced the biases for both domains for all variables. The exception was Tmin in the TE domain, 

where biases slightly increased for the Hybrid initialization than the May initialization. The marginal lead  

time-driven reduction in the biases was greater for the TE domain than for the AI domain, partly because 

averaging the biases over large geographic areas reduced them. 

I.3.3.2 On the anomaly correlation
The correlation coefficients between CFS v2’s  hindcasts and APHRODITE’s precipitation and ERA-

Interim’s variables for the AI and TE domain were compared for different lead times – March, April,  

May, and a hybrid one-month lead. All weather variables were averaged for the AI and TE monsoon 

season (JJAS) from 1983 to 2010. Figure I.8 (b) clearly indicates that the correlation coefficients for the  

AI domain did not considerably change compared with the TE domain, regardless of the lead times. For  

Tmax,  Tmin,  and Srad,  the correlation coefficients remained constant at around 0.9. For Precip in the AI  

domain, however, the correlation coefficient slightly improved, shifting from 0.50 to 0.55. In contrast to  

the  AI domain,  the  TE domain  exhibited a slight  improvement  in the  correlation coefficients for  all 

variables. Specifically, the correlation coefficient increased from 0.19 to 0.30 for Precip, and up to 0.15  

for other variables in the TE region. 
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Fig. I.7 Spatial correlation grid-by-grid for a one-month lead-time, from 1983-2010 JJAS for: (a) precipitation, (b) 

maximum temperature, (c) minimum temperature, and (d) solar radiation. The correlations were computed between 
the  CFS  v2  and  APHRODITE for  precipitation,  and  between  the  CFS  v2  and  the  ERA-Interim  for  all  other 

variables.

Fig. I.8  Effect of lead times on: (a) bias, and (b) correlation coefficient. Dashed lines are for Terai-East and 

solid lines are for AI domains.
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The following sections evaluate the models (CMCC v1.5 and CFS v2) ability to capture key monsoon’s  

circulation features. Capturing these feature is very important in order to accurately simulate the South 

Asian monsoon, although it does not guarantee accurate predictions at the grid-point level. Nonetheless, if 

models are able to capture these large scale circulation feature, prediction can be improved by statistical  

downscaling. 

I.3.4 Movement of the Inter Tropical Convergence Zone (ITCZ)

The  monsoon  rainfall  evolves  as  the  ITCZ  makes  its  seasonal  movement  from  ocean  toward  the 

continents, due to seasonal variations in the latitude of maximum insolation. The GPCP observation data 

demonstrated that the maximum rainfall band (>10 mm/day) shifted to 250N in July (Fig. I.9a). However, 

both models limited that movement to 200N (Fig. I.9 b-c). As various other studies have described, this is 

a common problem found in most models (Rajeevan and Nanjundiah, 2009; Pokhrel Samir et al., 2013).  

Also unlike the observations, both models exhibited two ITCZs, with a second one positioned between 

the equator and 100S for the entire monsoon season.

I.3.5 Monsoon indices

Different monsoon indices have been used to examine the strength of the ISM including the Webster and 

Yang (WY) index (Webster and Yang, 1992) and the Goswami index (Goswami et al., 1999). If models 

are able to capture the strength of these indices accurately, it is highly likely that the skill of the model to 

predict precipitation at the grid point level can be increased through statistical downscaling. 

The WY index is the shear of the zonal winds between 850 hPa and 200 hPa over the domain from 40 0E-

1100E/00N-200N, and it illustrates the monsoon’s thermally driven nature. The index’s high (low) value 

signifies strong (weak) monsoon circulation.

Similarly, the Goswami index measures the meridional wind shear between 850 hPa and 200 hPa over the  

domain from 700E-1100E/00N-300N), and it is a good indicator of the Hadley circulation. The meridional 

wind shear is positive (negative) during the boreal summer (winter) season. The Goswami index is better 

related to the ISM’s inter-annual variability.
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Fig. I.9: Seasonal (JJAS) movement of the maximum rainfall band (mm/day) for: (a) GPCP (observation), (b) the  

CMCC v1.5, and (c) the CFS v2 averaged for the 700E to 900E longitudes. 
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We calculated these indices for observations from the NCEP reanalysis data and for the CFS v2 data from 

1982 to 2005. Although the CFS v2 simulated mean values for both the WY and Goswami indices were  

closer to observation, the correlation coefficient was only satisfactory (r=0.6) and significant at 1% level 

for the WY index (Fig. I.10, Table I.4-5). The simulated means for the WY and Goswami indices were  

close to the values found by Chaudhari et al. (2013). The correlation’s significance was calculated using 

the student’s t-distribution

Table I.4: Dynamic monsoon indices simulated by the CFS v2, as compared to observations.
Indices CFS v2 Observation
WY index 24 24.9
Goswami index 1.9 3.2

Table I.5: Correlation coefficient the models’ simulated monsoon indices and observations
Indices r p
WY index (CFS v2/NCEP) 0.6 0.001
Goswami index (CFS 
v2/NCEP)

0.2 0.289

I.3.6 Air-Sea interaction

The ISM is a coupled air-sea interaction phenomenon. The interaction between air and sea can be seen in  

the correlations between atmospheric variables (e.g. Precip) and oceanic variables (e.g. SST). Although  

various factors influence precipitation, it only occurs after a certain SST threshold has been crossed, for  

example, 27.50C in the tropical Indian Ocean (Gadgil et al., 2004). The correlation between the SST and 

rainfall  suggests  that  changes  in  the  SST  lead  to  quick  fluctuations  in  rainfall,  thanks  to  surface  

evaporation and low-level moisture convergence (Wang et al., 2005).

Both the CMCC v1.5 and CFS v2 SPSs were able to capture the strong positive correlation over the 

tropical Pacific, although the bands were narrower for the CFS v2 and stronger for the CMCC v1.5 (Fig. 

I.11b-c).  Neither  of  them could  capture  the  strong  negative  correlation  off  the  east  coast  of  China,  

although the CMCC v1.5 replicated the negative correlation off the coast of the Philippines (Fig. I.11b-c).  

Unlike the observations, the CMCC v1.5 exhibited the positive correlation over the South China Sea (Fig. 

I.11b). 
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Fig. I.10 Interannual variation of monsoon indices: (a) Webster Yang index, (b) Goswami index in the models (CFS 
v2/CMCC v1.5) and observations (NCEP reanalysis). The data are from 1982 to 2010.

However, both the CMCC v1.5 and CFS v2 models were able to capture the positive correlation over the 

Maritime Continent (Fig. I.11b-c). However, patches of negative correlations over the Gulf of Thailand 

and the Celebes Sea were found for the CMCC v1.5, and the positive correlation was weaker in the CFS 

v2 (Fig. I.11b-c).

Observations demonstrated a weaker positive correlation over the Indian Ocean, except for few patches of 

negative  correlation  off  the  coast  of  India’s  southern  tip  and  in  the  Northeast  BOB  (Fig.  I.11a).  

Nonetheless, the CMCC v1.5 demonstrated a positive correlation everywhere over the Indian Ocean, and 

this correlation was weaker in the CFS v2. 
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Fig. I.11 Correlation between JJAS averaged SST and rainfall (grid point correlation) for a) GPCP rainfall and 
Reynold’s SST, b) CMCC v1.5 and c) CFS v2 for the period 1981-2005. 
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I.3.7 Monsoon teleconnections

I.3.7.1 ENSO

Many studies have clearly established the relationship between the interannual variation of the ISM and 

ENSO (Shukla, 1987; Rasmusson and Carpenter, 1983; Sikka, 1980). The ISM is negatively correlated 

with the ENSO. Thus the information on coming season’s ENSO phase can be used to get indications on 

the  coming  season  weather.  Various  studies  have  used  ENSO  condition’s  forecasts  for  agricultural  

applications (Jones et al., 2000; Fraisse et al., 2006; Asseng et al., 2012).

The correlation coefficients between the precipitation averages over the AI land-only domain simulated 

by  the  models  and  the  Nino  3.4  SST  were  -0.61  and  -0.46  for  the  CFS  v2  and  the  CMCC v1.5, 

respectively, as compared to -0.46 for the GPCP (Table I.6). The correlation was significant at the 1% 

level for the CMCC v1.5 and the CFS v2, but only significant at the 5% level for the GPCP. Correlations’ 

significant levels were calculated using the student’s t-distribution for the 28 degree of freedom. For  

longer  periods  (1958-2004),  the  correlation  coefficient  between  the  ISM  and  ENSO  was  -0.5  and 

significant at the 1% level.

Table I.6: Correlation coefficient (r) between the AISMR and Nino 3.4 index, along with their significance values 
(p) for the models and observations 

Regarding  the  large-scale  spatial  distribution  of  correlation  coefficients,  the  CMCC v1.5  was  more 

successful than was the CFS v2 at capturing the negative correlation between the Nino 3.4 SST and  

precipitation over CI. Moreover, the CFS v2 SPS displayed an excessive negative correlation for regions 

above 200N, and it underestimated the positive correlation in the Northeast and in the BOB (Fig. I.12a-c). 

However, for Nepal, the CFS v2 was closer to the observed data in predicting the relationship between the 

ENSO and the summer monsoon. The CFS v2 found a weak to non-existent relationship in the Eastern 

Terai and a negative relationship for other areas, including a strong, negative relationship in Western  

Nepal (correlation coefficients varying from -0.4 to -0.8). In contrast, the CMCC v1.5 showed unrealistic 

strong positive correlation for the Eastern Terai region including some bordering Indian regions. 
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Fig. I.12 Mean seasonal (JJAS) one-point correlation between Nino 3.4 index and precipitation for a) GPCP, b) 
CMCC v1.5 and c) CFS v2 for the period 1982-2005.
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However, ENSO only explains part of the interannual ISM variability, and other sources include: snow 

cover variations over Eurasia (Blanford, 1884), the North Atlantic Ocean circulation (Goswami et al.,  

2006), the IOD (Saji et al., 1999; Ashok et al., 2001) and internal dynamics (Krishnamurthy and Shukla,  

2000; Cherchi and Navarra, 2003).

I.3.7.2 The IOD

The combined influence of ENSO and the IOD on the ISM’s interannual variability has become important  

in recent  decades (Ashok et  al.,  2001) which have seen a weakening of the ENSO-ISM relationship 

(Kumar et al., 1999). The IOD is a mode of climate variability, which occurs interannually in the Indian  

Ocean and is measured by the difference in seasonal (JJAS) SST anomalies between the western (50 0E-

700E, 100S-100N) tropical Indian Ocean and the eastern (900E-1100E, 100S-Equator) tropical Indian Ocean 

(Saji  et  al.,  1999).  Although  the  IOD alone  does  not  have  a  significant  correlation  with  the  ISM’s  

interannual variation, the combined effect of the IOD and ENSO on ISM is considerable. Ashok et al.  

(2001) found that whenever the ENSO-ISMR correlation is weak (strong), the IOD-ISMR correlation is  

stronger  (weaker).  Ashok and Saji  (2007)  and Ashok et  al.  (2004),  used the atmospheric  GCM and 

observation data to demonstrate that a positive IOD remarkably reduces ENSO’s negative impact  on  

ISMR, whenever the IOD and ENSO occur together with the same phase. 

 Both the CMCC v1.5 and CFS v2 models were able to capture the positive correlation between the IOD 

index and precipitation along the equatorial Pacific, as seen in observations (Fig. I.13a-c). However, the 

band was narrower in the CMCC v1.5, in which unrealistic patches of positive correlation prevailed over  

the eastern part of the Maritime Continent.  The models also replicated the positive correlation in the  

western and central equatorial Indian Ocean, although the models unrealistically extended this correlation 

to the eastern part of that ocean. However, both SPSs failed to simulate the positive correlation in most of 

India’s land regions.

Observations did not indicate a strong and significant correlation between the ISM and the IOD indices, 

although the relationship was relatively stronger and significant in the CMCC v1.5 (Table I.7). The 

significant levels were calculated using the student’s t-distribution for the 23 degree of freedom.

Table I.7:  Correlation between IOD index and ISM index for the months of JJAS from 1982 to 2005.
r p

CFS v2-IOD -0.3 0.200
CMCC v1.5-IOD 0.6 0.001
GPCP-IOD 0.3 0.170
APHRODITE-IOD 0.4 0.080
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Fig. I.13 One-point correlation maps between the IOD index (difference between SST JJAS anomalies between the 
western and equatorial Indian Ocean) and seasonal (JJAS) mean precipitation at all other points for: (a) GPCP and 
Reynold's SST, (b) the CMCC v1.5, and (c) the CFS v2.
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I.3.8 Monsoon onset and withdrawal

In this study, the monsoon onset and withdrawal dates refer to the monsoon’s start and end dates over  

Kerala. These dates can be calculated using the Wang et al. (2009) index, which defined the monsoon  

onset as the date on which the 850 hPa zonal winds averaged over the southern Arabian Sea (40 0E - 800E, 

50N - 150N ) had sustained speed of 6.2 m.s -1 for at least six consecutive days. The withdrawal date is the 

date on which this threshold is not met. The mean onset date simulated by the CMCC v1.5 was 11 days  

earlier than observed, and the model’s mean withdrawal date was delayed by 15 days (Table I.8). Saha et  

al. (2014) found the mean onset date simulated by the CFS v2 was 4 days later than observed, and its  

withdrawal date was delayed by 12 days. They used the Wang et al. (2009) to calculate the onset date,  

while the withdrawal date was computed using the  tropospheric temperature gradient  (Xavier et al.,  

2007).

The CMCC v1.5 provided a longer duration for the monsoon, as compared to the NCEP. Furthermore, the 

CMCC v1.5 and NCEP’s onset/withdrawal dates were not closely related to each other, with a correlation 

coefficient of approximately 0.1 (Fig. I.14).

Table I.8: Monsoon onset and withdrawal dates for the NCEP, CFS v2, and CMCC v1.5, using the Wang index
Mean onset (SD) Mean withdrawal (SD) Source

NCEP May 31 (3.9) September 14 (8.7) This study
CMCC v1.5 May 20 (7.7) September 29 (5.4) This study
CFS v2 June 5 (9.78) September 26 (9.9) Saha et al. (2013)

I.3.9 Wind Circulation-Low level

The low-level (850 hPa) monsoon circulation consists of the Flindlater Jet connecting the Mascarene 

High with the Monsoon trough over India, forming the lower branch of the Hadley cell (Flindlater, 1969).  

The CMCC v1.5 correctly simulated both the magnitude and direction of the Flindlater Jet, as seen in the  

NCEP reanalysis, although the model overestimated its intensity between the regions of 0 0N-100N and 

400E-900E (Fig. I.15a-c). This overestimation of the cross-equatorial flow was related to the CMCC v1.5  

model’s wet rainfall bias over CI. Saha et al. (2014) also found the CFS v2 simulated Flindlater jet closer,  

in both magnitude and direction, to the NCEP-II and ERA-Interim reanalyses than the CFS v1. 
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Fig. I.14 Monsoon onset and withdrawal dates for model (CMCC v1.5) and observations (NCEP), calculated using 
Wang et al. (2009) index, from 1982 to 2010 for: (a) onset and (b) withdrawal. Onset and withdrawal dates were 
calculated using June 1 as ‘0’ for the onset date and September 1 as ‘1’ for the withdrawal date.
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Fig. I.15 Seasonal (JJAS) average climatological mean winds at 850 hPa (in m/s) for: (a) the CMCC v1.5, (b) the 
CFS v2, and (c) the NCEP reanalysis. The shaded colouring represents the magnitude, and the arrows represent the 
direction. 

I.4 Conclusions

In this part of our study we evaluated the ability of the CFS v2 and CMCC v1.5 models to predict Precip,  

Tmin, Tmax, and Srad, with a focus on Nepal’s Terai region. This was done by comparing model hindcasts to  

observed data. In the case of precipitation, the study found that both models have moderate skill over the 

AI domain. Both models underestimated precipitation’s daily climatology as well as seasonal mean and 

neither of them were able to simulate the monsoon peak. However, for the TE domain, the CMCC v1.5 

did not have satisfactory ability to predict precipitation, as shown by the low correlation skill, the high 

RMSE and mean and CV not closer to the observation. At a grid point resolution, however, even the CFS 

v2 had problems in capturing the distribution of precipitation. For agricultural applications distribution of 

precipitation is more important than the total amount (Baigorria et al., 2007). The good news is that the  

observed daily climatology of precipitation is included within the ensemble spread of CFS v2. Therefore,  

there is a possibility of improving prediction skill using all ensemble members.

In terms  of teleconnections,  both the CMCC v1.5 and the CFS v2 captured the large-scale  negative 

correlation between the Nino 3.4 index and summer  monsoon rainfall  over the Indian region but  the 

CMCC v1.5 displayed unrealistic positive correlations for the Terai East and its bordering Indian regions. 

Nonetheless,  both models failed to capture the positive correlation between the IOD and ISMR. The 

CMCC v1.5 SPS simulated an early onset and late withdrawal for the monsoon, and thus overestimated  

its duration. Both models correctly replicated the low-level cross equatorial Flindlater Jet, while slightly 

overestimating its magnitude. The CFS v2 model’s simulated mean values for both the WY and Goswami 

indices were closer to observation, but only the correlation coefficient for the WY index was satisfactory.  

On the basis of the above analysis, it can be concluded that neither the CMCC v1.5 model nor the CFS v2 
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model are able to predict precipitation precisely for the grid points in the TE region. As the CFS v2 was 

more  successful  in  capturing  the  general  circulation  features,  another  possibility  for  improving 

precipitation prediction skill is through statistical downscaling.  

In contrast, the CFS v2 was quite skilled at predicting Tmax, Tmin, and Srad considering the ERA-Interim 

reanalysis as observations. The CFS v2 was warmer and drier than the ERA-Interim, and it overestimated 

Srad for both the AI and TE domains. However, at a grid point resolution in the TE, the CFS v2’s Tmax and 

Tmin daily climatology, from the Hybrid-one-month-lead time forecasts, had a large systematic negative 

bias of up to -60C and -70C compared to the observed data from the weather station. Even the ERA-

Interim’s Tmax and Tmin daily climatology experienced a negative bias of up to -60C and -30C compared to 

the weather station data. Hindcasts from the nearest initialization months reduced biases, except for T min 

in the TE region. Unlike the bias, the correlation skill remained unchanged, regardless of the lead-time,  

for the AI domain. For the TE domain, however, the correlation increased as the lead time of initialization 

decreased. Considering the sensitivity of the dynamic crop models to temperature change, the systematic  

bias in CFS v2’s Tmax and Tmin daily forecasts needs to be corrected before using them in the crop models. 

Based on the above analysis, it can be concluded that the SPSs’ potential use for agricultural applications 

is limited by their skill. In order to exactly understand to what extent these biases are translated into crop  

growth and yield prediction a separate study is needed. 
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CHAPTER II: Using seasonal climate forecasts to predict rice yield 
over Nepal's Terai

Abstract

Skilful  seasonal  climate  predictions  paired with a  dynamical  crop model  can assist  with agricultural  

management  and help  farmers  minimize  risk.  However,  until  now,  the  potential  applicability of  this 

approach have not  been assessed.  This study’s  goal  was to link seasonal forecasts with the Decision 

Support  System  for  Agrotechnology  Transfer’s  (DSSAT)  Cropping  System  Model  (CSM)  Crop 

Estimation through Resource and Environment Synthesis (CERES)-Rice crop model for predicting rice  

yields in Nepal’s Terai. The predictive skill of the coupled forecast system model version 2 (CFS v2)  

hindcasts initialized at different lead times was examined against ERA-Interim reanalysis, weather station  

data and other observational data sets. Prior to running the hindcasts the CSM-CERES-Rice crop model 

was calibrated using the varietal trial data from the Hardinath station of the Nepal Agricultural Research  

Council  and  evaluated  using  the  district  yield  data  from the  Ministry  of  Agriculture.  Rice  growth,  

development and yield, were simulated using weather station data, other observational datasets and daily  

hindcasts  from CFSv2  at  different  lead  times.  The  hindcasts  simulation  with  the  CSM-CERES-Rice 

model  using  station  meteorological  data  shows that  climatic  variability,  especially  rainfall,  can  only 

explain a small part of the interannual variability of rice yield. This variability is further reduced when  

using the forecasts. The results from our study indicate that the potential application of seasonal climate  

forecasts to the dynamical crop model, in the particular case here considered, is limited by the skill of the  

seasonal forecasts. Before generalizing, further comparisons should be made, including a similar analysis  

for  an area  where quality  meteorological  and  agricultural  data  are  available  and where the  seasonal 

forecasts exhibit better skill.

Keywords: CFS v2, DSSAT, CSM-CERES-Rice, climate variability

II.1 Introduction 

Crop yield prediction is an important component of the early warning system for the food security related  

planning  (Thornton  et  al.,  1997).  It  is  also  useful  for  trade,  development  policies  and  humanitarian 

assistance related to food security. Similarly, it helps farmers and/or decisions makers to prepare for the 
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crop growing season (Cabrera, 2009; Hansen, 2002). Moreover, it serves as an important indicator of the 

national income where agriculture contribution to gross domestic product (GDP) is high.

The crop yield for a given region and for a particular year or season can be predicted by estimating the  

area under a given crop and the yield per unit area. Carefully designed sampling techniques or aerial  

surveys  can approximate  the  area  under  crop,  as well  as crop conditions.  Yield can be predicted by 

establishing  statistical  relationships  among  yield  per  unit  area,  area  under  a  given  crop  and  crop 

conditions. All of these methods assume that weather conditions during the remainder of the growing 

season will be similar to those in previous years, which is not always the case. However, either statistical 

or dynamic models can estimate the following season’s crop yield with a high degree of accuracy, if high-

quality seasonal climate forecasts are available at the beginning of or during the cropping season.

These statistical models are based on the empirical relationship between the a region’s final yield and  

mean  weather  variables,  without  taking  physiological  causalities  into  account  (Thompson,  1969b;  

Thompson, 1969a). Statistical models have been used to determine the impact of increase in temperature 

on crop yield and to analyze the crop yield gap (Lobell et al., 2011; Lobell, 2013). In general, statistical  

models’ results cannot be applied directly to other areas and time as the variations in factors affecting  

crop growth are not included in the population from which the models are derived.  

Nonetheless, dynamic models are gradually replacing statistical models in agriculture due to the latter’s  

many limitations (Abbaspour, 1992).  Dynamic  models  are a mathematical representation of the plant  

growth and development process. Plant growth and development are determined by interactions among  

the soil, plant, atmosphere and management factors. Moreover, dynamic models are simulation models, as  

they  involve  a  set  of  differential  equations,  calculate  rate  and  produces  output  variables  over  time 

(Hoogenboom, 2000). 

We are interested in predicting variability in crop yield associated with interanual variility in weather.  

Observation  shows  that  the  climate  variability  explains  roughly a  third  of  the  crop  yield  variability 

globally (Ray,  et  al.,  2015).  Monsoon rainfall  has been becoming more  variable.  Some studies  have 

indicated that  monsoon rainfall  patterns have significantly changed in recent  years,  in  terms  of both 

magnitude and duration (Ramesh and Goswami, 2007; Goswami et al., 2006b). Extreme events, such as 

break  periods  or  heavy rain  events,  have  been  increasing,  while  the  total  amount  of  rain  has  been  

declining. This trend has rendered rainfed cultivation areas more vulnerable to risks.

By inputting seasonal climate forecasts into a crop model at the beginning of the cropping season (or  

earlier),  scientists  can  predict  crop  productivity  for  the  coming  season  under  different  management  

options. Researchers are increasingly employing the dynamic cropping system model to study potential  

impact of interannual climatic variability and/or climate change on agriculture (Paz et al., 2007; Mikhail 
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and Francisco, 2007). The beauty of process-based crop models is that they can disentangle the effects of  

climate, soil and management on crop growth and productivity.  Various types  of seasonal forecasts have 

been used to predict yield. 

One common approach to yield  forecasting is  on the basis of  El  Nino Southern Oscillation (ENSO)  

categories (Fraisse et al., 2006). Utilizing advance information on ENSO categories, scientists can predict 

the coming season’s yield as the average of simulated yields for all years with similar ENSO phases.  

Using ENSO categories  for  yield  prediction,  however,  have  several  limitations  when applied to  this 

study’s area.  First, ENSO’s exact effect on weather is not clear for the study area. Shrestha et al. (2000)  

found  a  strong  positive  correlation  between  the  All-Nepal  monsoon  precipitation  and  the  Southern 

Oscillation Index (SOI) series  but  Ichiyanagi  et  al.  (2007) found a weak positive correlation for the 

stations in western Nepal and negative correlation for the stations in eastern Terai. The SOI is measured 

by the Mean Sea Level Pressure difference between Tahiti and Darwin and is one of the most common  

indexes used to get an indication on the development and strength of ENSO events.

Secondly, the ENSO explains only a portion of variability (Goswami et al., 2006a; Blanford, 1884), and  

sometimes, other sources of variability compensate ENSO’s effect. For example, effect of the strong El  

Nino in 1997 was, to a large extent, nullified by the Indian Ocean Dipole (IOD) (Saji et al., 1999; Gadgil  

et al., 2004; Ashok et al., 2001). Third, the relationship between ENSO and the Indian Summer Monsoon 

(ISM) is weakening in recent years (Kumar et al., 1999). Moreover, there is a mismatch in the life cycles  

of ENSO and the ISM. The rice-growing season extends from July to December, and monsoon season  

(JJAS)  weather  is  crucial,  as  more  than  80% of  rainfall  arrives  during  this  time  of  year.  However,  

ENSO’s evolution does not exactly match the monsoon season. Rather, ENSO peaks in the cold season 

and dies during the spring or summer. Shrestha et al. (2000) found that the correlation coefficient between  

all-Nepal monsoon season precipitation and the SOI was higher with the SOI of the succeeding season 

(October-November) than the antecedent pre-monsoon (March-May) season. Therefore, it is difficult to  

predict whether the ENSO evolved during a particular year will be continued or dissipated away during 

the monsoon season.

Another common approach is to use seasonal climate forecasts from dynamic climate models. However,  

the mismatch in the dynamic climate models’ and crop models’ temporal and spatial scales present a  

challenge. Dynamic climate models’ seasonal forecasts are issued in the form of a monthly or seasonal 

means or anomalies at a relatively low-resolution grid (approximately 100 km x 100 km in CFS v2), but  

crop models run on station-level daily data. To obtain daily data from these monthly or seasonal means or  

anomalies, Weather Generators (WG) have commonly been utilized. WGs generate daily data from the 

monthly or seasonal mean on the basis of the statistical methods using historical climatology (Dubrovský  
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et al., 2000). Ghosh et al. (2014) used statistical disaggregation to get daily data from seasonal means and  

to  evaluate  seasonal  forecasts’  performance  by  comparing  simulated  yields  from  the  observed  and 

forecasted weather.

For a WG, accurately generating precipitation (both occurrence and amount) is the most difficult task, 

especially for the tropical and sub-tropical regions (Schmidt  et al.,  1996; Jimoh and Webster,  1996). 

When using a dynamic crop model to simulate yield, the specific timing of dry spells is more essential  

rather than the total amount of rainfall (Baigorria et al., 2007). The crop yield is primarily affected by the  

stress caused by lack of soil-water. 

In  general,  the  process-based  crop  models  can  be  categorized  into  three  groups  depending  on  the  

approach used for aboveground biomass (AGB) accumulation. The first category includes models which 

consider the net carbon accumulation as a balance between the carbon accumulation and consumption for 

growth and maintenance respiration. The SUCROS (Keulen and Wolf, 1986) is one example of this type 

of models. The requirement of large number of input variables and parameters makes this type of models 

difficult to use. The second category of crop models use the radiation-use-efficiency (RUE) approach to 

compute the AGB. The CERES group of models (Jones et al., 2003) and APSIM crop models (Keating et 

al.,  2003)  use  this  approach.  The  third  category of  crop  models  use  the  transpiration-use-efficiency 

approach (Tanner and Sinclair, 1983). One limitation of this approach is that the simulated yield becomes 

zero when the average saturated vapour pressure deficit is zero.

We utilized the CERES-Rice crop model from the DSSAT v4.6 (Hoogenboom et al., 2015), one of the  

most  widely  used  models  to  forecast  crop  yields  associated  with  climate  variability  and  change 

(Bannayan et al., 2003; Soler et al., 2007; Pal et al., 2013; Shin et al., 2010). The DSSAT v4.6 includes 

27 different process-based crop models, such as the CERES-Rice used in this study. The CERES-Rice 

model is used to simulate growth rate, duration and yield along with change in soil water, carbon and  

Nitrogen  (Jones  et  al.,  2003;  Hoogenboom  et  al.,  2012).  The  model’s  simulation  processes  are  

environment-  and  cultivar-specific,  while  the  duration  depends  on  the  thermal  environment  and 

photoperiod. Various studies have used the CERES-Rice model in Nepal (Rai et al., 2011; Lamsal et al., 

2013; Timsina and Humphreys, 2006), however none of these utilized seasonal forecasts for in-season 

yield prediction.

Using CERES-Maize and CROPGRO-Peanut crop models of DSSAT in the Southeast United States, 

Shin et al. (2010) compared how different types of seasonal forecasts affected simulated yields. They 

found that the downscaled global climate model data (statistical or dynamical) had greater predictive skill  

than the ENSO-based approach. However, they used an earlier model, the CFS v1 (Saha et al., 2006),  

which is relatively less skilful than the current version, the CFS v2,  at predicting the ISM (Acharya et al.,  
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2014). Rainfall was the only variable taken from the CFS v1; temperature and solar radiation came from 

observed  data.  These  dissimilar  data  sources  might  have  led  to  physical  inconsistency  with  other  

variables. Moreover, the impact of interannual weather variability on crop yield varies, not only across 

global regions, but also within individual countries. For example, rice yields in southern (non-southern) 

China are negatively (positively) affected during El Nino years (Iizumi et al., 2014).

We selected Nepal, because most (79%) of the rice production areas are still rainfed and 66% of the total 

rainfed areas are in the Terai (MOAC, 2008; IRRI, 2010; IRRI, 2009). Moreover, Nepal’s Terai is the  

country’s  main  rice  cultivation  area,  covering  71% of  the  country’s  total  rice  area  (MOAC,  2008).  

Furthermore, seasonal prediction systems (SPSs) have some skill to predict the monsoon over the South 

Asian region (Pokhrel Samir et al., 2013; Chaudhari et al., 2013).

We concentrated on the rice crop due to its economic significance in Nepal. Additionally, rice needs a  

considerable amount of water to grow. Rice is one of the most important staple foods for majority of 

Nepal’s  population.  In  Nepal,  rice  is  cultivated  on  1.53  million  hectares  (ha)  of  land,  and  annual  

production during 2011-2012 totalled 5.07 million tons (MOAD, 2012). Rice contributes to 23% of the 

country's agricultural GDP, and it comprises 52% of the total food grains produced in Nepal. Moreover,  

rice consumption meets half of the total calorie requirements of the Nepalese people (MOAD, 2012). 

Nearly two thirds (65.6%) of the country’s total population is engaged in rice cultivation. Rice production  

needs high amounts of water as compared to other crops. On average, 2500 liters of water are required to  

produce one kilogram of rice (Bouman and Aureus, 2009).  

Rainfed rice  cultivation is  entirely dependent  on monsoon rain,  and therefore  is  concentrated mostly 

during the monsoon season. Thus, rainfed rice production is subject to a high level of risk, due to the  

uncertainty posed by monsoon rain. These hazards include the late onset of the monsoon, droughts caused 

by breaks in the monsoon, and extremely heavy rainfall resulting in floods. This threats induce risk-averse 

farmers to adopt conservative strategies. As a result, the annual rice yield in Nepal is low (2.8 ton/ha) as 

compared to India (3.6 ton/ha), Bangladesh (4.4 ton/ha), Indonesia (5.2 ton/ha) and China (6.7 ton/ha) 

(FAOSTAT, 2015). Similarly, average fertilizer (N/P/K) application totals only 28.4 kg/ha in Nepal, as  

compared to 163.7 kg/ha in India, 278.6 kg/ha in Bangladesh, 194.8 kg/ha in Indonesia, and 647.6 kg/ha 

in China (WorldBank, 2015).

To our knowledge, this is the first study to predict rice yields using a dynamic climate model’s daily 

forecasts as inputs for a dynamic crop model, particularly for Nepal. The findings of this study, therefore,  

could serve as a bench mark in a sense paving the way for using SPSs’ seasonal forecasts daily input. The  

CFS  v2’s  seasonal  forecasts  are  able  to  accurately  predict  interannual  variability  of  temperature 

maximums (Tmax), temperature minimums (Tmin), and solar radiations (Srad), but they predict precipitation 
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relatively less precisely (Jha et al., 2016). We thus explored multiple approaches, all with the goal of  

improving yield predictions. First, we used all one-month-lead SF time series. Next, we employed a real-

time  simulation  approach,  in  which  we utilized  observed weather  data  until  the  point  of  prediction, 

followed  by  the  forecasts  (one-  or  one-and-two  month-lead  time)  supplemented  with  the  historical 

climatology data for the remainder of the growing season.

Section II of this chapter describes the study area and weather data (including seasonal forecasts), the 

CERES-Rice model, the model data, and the calibration process. Section III describes and discusses the 

results, while the conclusion is in Section IV.

II.2 Methodology

II.2.1 Study area

The study area is centred on Hardinath station (260 48' N and 850 58' E) in Dhanusha district of Nepal’s 

Terai. The Terai is comprised of flat lands in the south of Nepal, and it runs parallel to the foothills of the 

Himalayas. The Terai is a northern extension of the Indo-Gangetic plain, and its elevation ranges from 60 

to 300 m. The Terai has tropical to subtropical climate and average daily temperature ranges from 7 0C to 

240C in December/January and from 240C to 410C in June/July (Pariyar,  1998).  The average annual 

rainfall ranges from 600 mm in the west to 1300 mm in the east (Pariyar, 1998). The average onset date  

of effective monsoon is the second week of June, and it ends in September.  Alluvial soils are common,  

with old alluvial soils poor in nutrients more widespread than newer ones. 

II.2.2 Daily meteorological data

The minimum weather variables required to run DSSAT are precipitation, Tmax, Tmin and Srad on a daily 

basis (Jones et al., 2003). We focused on time series between 1983 to 2010, because of the availability of 

the CFS v2 hindcasts for that time period. We made use of different sources of weather data to explore  

their potential applicability.  These sources included: weather station data, reanalysis data and CFS v2 

forecasts. 

II.2.2.1 Weather station data

The Department of Hydrology and Meteorology (DHM) Nepal’s Janakpur Airport weather station is the 

closest  (~7 km)  weather station to the  Hardinath agricultural  research station.  The weather variables  

incorporated from this weather station included daily Tmax, Tmin, and rainfall data for the period 1983 to 
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2010. For that periods, the weather station has less than 10% of missing data. However, the station did not  

have Srad data for that period. Missing values were generated using the DSSAT Weatherman v4.6, while 

solar  radiation  was  produced  using  the  DSSAT Weatherman  v4.6.  conditioned on  temperature.  The 

Weatherman generated missing values from calculated mean and variances using the option fill  short 

(<=7 days) with 10-day running mean. Although, it would be more accurate to use data  from nearby  

stations, we did not find any weather stations nearby with complete data. 

 

II.2.2.2 Reanalysis data

Along with the weather station data, ERA-Interim reanalysis (Dee et al., 2011) and APHRODITE data 

(Yatagai et al., 2012) were also used. For rainfall, the APHRODITE dataset was closer to observations in 

the South Asian region than was the ERA-Interim dataset.  Therefore,  we used APHRODITE rainfall 

values. The ERA Interim was available in 0.10 x 0.10 resolution, and APHRODITE was available in 0.250 

x 0.250  resolution.

We used the reanalysis data for multiple reasons. First, it is difficult to obtain long-term weather station 

data for some regions in developing countries. Even when weather station data are available, the high  

number of missing values makes such data unusable. Finally, unlike weather station data, reanalysis data 

are easily available online, whilst some countries have strict policies on weather data sharing, and in some  

cases, the user must be physically present to submit an application for use and to pay. Chapter I contains a  

detailed assessment of the reanalysis weather data (Tmax, Tmin, Srad, and precipitation) as compared to the 

weather station data. In brief,  APHRODITE was drier and ERA-Interim was colder than the weather  

station data.

II.2.3 CFS v2 forecasts

Forecasts  were  taken  from  the  CFS  v2  SPS,  which  the  NCEP  made  available 

(http://nomads.ncdc.noaa.gov/modeldata/cfs_reforecast_6-hourly_9mon_flxf).  We  selected  the  CFS  v2 

for  its  superior  performance  than  the  other  General  Circulation Models  (GCMs) for  the  South  Asia  

region, as reported by other studies (Pokhrel Samir et al., 2013). The CFS v2 consisted of a set of nine-

month hindcasts initialized at five-day intervals, four times per day (00, 06, 12, and 18 UTC) from 1982  

to 2010. Thus, there were 24 ensemble members per month, except in October and November, which 

each had only 20 members. We used all members of the daily hindcasts of four variables (precipitation, 

Tmax, Tmin, and Srad) from 1983 to 2010 for the Terai’s rice-growing season (June-December). The daily 

CFS v2 forecasts for each month had leads of one month and one-and-two months. For example, we took 

June forecasts from May initialization, July from June initialization and so on for one-month lead time. 
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Regarding the mixed forecasts one-and-two-month lead, the June and July forecasts were based on the  

May initialization, the August and September forecasts were based on the July initialization, and so on. 

II.2.3.1 Skill of the forecasts and bias correction

In general, CFS v2 forecasts were colder and drier than the weather station data (Jha et al., 2016). Chapter  

I contains a comprehensive evaluation of the forecasts. The skill assessment indicated the presence of 

systematic biases in the CFS v2’s Tmin and Tmax hindcasts. These biases were so significant that it was 

impossible to run the crop model using daily forecast data without correcting these biases. 

Since the model simulates a cultivar’s growth and development based on thermal degree-days, it takes  

fewer days for a cultivar to progress from one stage to the next in a warmer environment than in a colder  

environment. Given that the CFS v2 forecasts were colder than the weather station data, the crop model  

simulated  an unrealistically lengthy crop  growth  and development  period  when forecasts  were used. 

Therefore, bias correction was needed to achieve a realistic simulation. We thus corrected the bias of the  

CFS v2 forecasts against the climatology of weather station data. This is particularly relevant when not  

using a WG but raw daily data from the seasonal forecasts.

Therefore, before using seasonal forecasts, bias correction was completed for Tmin and Tmax. However, we 

did  not  correct  the  precipitation  bias  due  to  the  complexity  associated  with  correcting  frequencies.  

Similarly, bias correction for Srad was not undertaken, due to the absence of weather station data. Bias 

correction for crop models’ weather variables also increases those models’ predictability (Baigorria et al.,  

2008).

Bias correction was conducted by subtracting the average daily climatology of the observed weather  

variables for the Janakpur weather station from the average daily climatology of the CFS v2 hindcasts for  

the nearest grid point.  The resulting bias in daily climatology was subtracted from each year’s  daily  

hindcasts from 1983 to 2010.

II.2.4 Real time simulation approach

When yield forecasting at long lead time is unable to produce the desired accuracy, a real-time simulation 

approach is one method to improve precision. Here, the model is updated with measured data over time 

(Bannayan et al., 2003). In our case, we combined daily CFS v2 forecasts with 28 years of historical daily 

weather  data.  We  also  included  seasonal  forecasts  (one-month  and  one-and-two-month  lead  time) 

immediately after observed weather data to compare predictability with and without seasonal forecasts.  

The daily climatology, calculated by averaging all years, was not used, as it produced unrealistically high  

occurrences of rainfall because we are using the daily data.
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Thus yield forecasts were conducted from every month, from July 1 st to December 1st, for each year from 

1983  to  2010,  using  a  combination  of  weather  data  from  observations,  forecasts,  and  past  year 

observations. For each year, weather data for yield forecasts consisted of observed daily weather data  

until the forecast date, combined with forecast data for the next one (two) month(s) and 28 years of daily  

historical weather data for the remainder of the growing season (Fig. II.1 a-b). For example, the weather 

data  for  yield  forecasts  from July 1st was  comprised  of  June weather  station  data,  CFS v2 seasonal 

forecasts for July, and 28 years of historical daily data from August to December. Similarly, weather data  

for yield forecasts from August 1st included June and July weather station data, CFS v2 forecasts for 

August, and 28 years of historical daily data from September to December. For the one-and-two-month 

lead seasonal forecasts, all details remained the same, except that two-month forecasts replaced the one-

month forecasts. 

 (a) 

(b)

Fig. II.1 (a) Observed weather until the time of prediction (one time series), CFS v2 forecasts one (two)-month lead 

times (24 time series) and historical data (28 time series) and (b) change in composition of observed, forecasts and 

historical weather data with the progress in growing season.

Given that we had 24 CFS v2 ensemble members and 28 years of  historical weather station data, we had 

672 distinct virtual weather time series from June to November for each point of prediction, except for  
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December 1st. We only had 24 time series for December 1st, because we only used the observed weather 

until November for that date, followed by forecasts until the end of December. Thus, we did not need  

historical weather data for the December 1st prediction point,  as the rice-growing season ends in that 

month. For the simulations not using seasonal forecasts, we had 28 virtual time series for every year from 

every points of prediction. 

 Considering  the  aforementioned  weather  time  series,  the  model  was  run  672  times  for  each  yield  

forecasting point (July 1st to November 1st), and 24 times for December 1st, for each year (1983 to 2010). 

In each case, we utilized the DSSAT v4.6’s sensitivity analysis tool. The sensitivity analysis tool allows 

users  to  test  model’s  sensitivity  to  a  certain  input  by varying  that  input  while  keeping  other  inputs 

constant. In our case, we wanted to identify the impact of changes in weather; therefore, we selected a  

single treatment and different weather files under the model-levels. The average annual yield for each 

CFS v2 forecast ensemble member was calculated as the average of the 28 individual simulations from  

the 28 historical weather years. We thus had 24 mean simulated yields per year for each yield prediction  

point. For the simulations not using seasonal forecasts, every year’s yield was calculated by averaging 28 

individual runs using the historical weather.  

II.2.4.1 Statistical tools for evaluating performance

The yields simulated using weather station data were the reference yields for comparison. The ensemble  

means and standard deviations were calculated from the annual mean yields for the 24 ensemble members 

for each year for each prediction point. Each prediction point’s mean yield and standard deviation were  

plotted in an error bar diagram, along with the annual simulated yields based on weather station data.  

Also, the correlations between the reference yields and the yields simulated using CFS v2 forecasts were  

computed for 24 ensemble members for each yield prediction point from 1983 to 2010. 

Similarly, the ensemble means of the simulated yields were compared with the reference yield for each  

year  from 1983 to 2010.  We evaluated model  performance by calculating the mean percentage error  

(MPE), root mean square deviation (RMSD), correlation coefficients and model efficiency. The MPE and 

RMSD are defined by Bannayan et al. (2003) as follows:

Similarly, the efficiency (EF) index is defined by Loague and Green (1991)  as follows:
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Where model(i)  is the ith  simulated yield, obs(i)  is the ith  observed yield value, obs(i) is the mean of the 

observed values and n is the number of observations. 

The lower the MPEs and RMSDs values are, the better is the performance of models. 

The EF index is one of the highly informative indices used for model evaluation. Its value range is 

[-∞, 1].  Models’ performance is best when EF is 1. The negative values of EF indicate that the average 

observed values have better skill than the model.

Despite  some  caveats  (Legates  and  McCabe,  1999),  the  Pearson’s  correlation  coefficient  is  another 

commonly used diagnostic  for evaluating models’  performance.  Its  value can range from -1 (perfect 

negative correlation) to +1 (perfect positive correlation), with the values closer to +1 representing better 

model performance.

II.2.5 Crop yield simulation

II.2.5.1 How DSSAT simulates yield?

The DSSAT integrates species,  weather, soil,  and management-option effects to simulate growth and 

yield processes on a daily basis for a particular location. These factors collectively determine various  

dynamic  variables,  which DSSAT then uses to simulate  a crop’s  growth and yield.  Various DSSAT 

modules and sub-modules separately compute these variables for each day on the basis of various input  

files in DSSAT (e.g.,  species,  cultivar,  weather, and soil)  through the experimental  file (Jones et al.,  

2003). The calculated variables are then passed to an interface called the land-unit module (LUM), which 

makes them available to all modules. 

The main program (MP) then calls the LUM and provides timing and simulation control variables. The 

MP starts the simulation by establishing the variables for initializing the run and calling the LUM (Jones  

et al., 2003). The MP then starts the season loop and calls the LUM for initializing variables at the start of 

every season loop. After that, it begins the daily loop and calls the LUM for rate calculations, integration,  

and output reporting. After the season loop is completed, the MP calls the LUM to produce season-end 

variables and summary output files.
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The CERES-Rice model helps to include rice crop specific variations. Potential biomass production for a 

plant is calculated as a product of the RUE and fraction of the Photosynthetically Active Radiation (PAR) 

intercepted by the plant (Ritchie et al., 1998). The RUE value for rice is fixed from 2.6 to 4.0. The actual  

biomass  is  limited by the deficiency of water and nutrients.  The biomass  produced is  then allocated  

among different parts of plant based on a sink-source concept. Crop yield is calculated by multiplying 

total number of grains per plant by unit grain weight at physiological maturity. Grain numbers per plant  

are estimated from the panicle weight at maturity, using the cultivar coefficient (G2), which is the single  

grain weight under ideal growing conditions. The grain weight is calculated by multiplying the cultivar  

specific potential growth rate by the grain filling duration.

We used the default simulation option in DSSAT v4.6 (Hoogenboom et al., 2015). This option took initial 

soil conditions and the reported weather from the soil input file. Evapotranspiration was calculated using 

the  Priestley-Taylor/Ritchie  method,  and  photosynthesis  was  estimated  using  the  leaf  photosynthesis 

response curve method. Similarly, the Ritchie water balance was used for hydrology,  while infiltration 

was calculated using the Soil Conservation Services method. Likewise, the CERES (Godwin) computed 

the soil organic matter, the Suleiman-Ritchie method estimated soil evaporation, and the modified soil  

profile method gauged the soil layer distribution. Furthermore, the actual CO2 from Mauna Loa, Hawaii  

(Keeling curve), was used.

II.2.5.2 Management data

The experimental data on rice crop growth and yield came from the National Rice Research Program 

(NRRP) Hardinath of the Nepal Agricultural Research Council (NARC). 

The management-related factors were fixed in all simulations, in order to assess the effects of changes in  

weather. All simulations were conducted for the Masuli cultivar. Although Masuli contributes only 3% of 

the total rice yield in Dhanusha district (CDD, 2015), we selected this cultivar because of the availability 

of data for calibration.

The planting date was fixed as July 14th, which is the common planting date for Masuli rice in the Terai’s 

rainfed system (Personal  communication with farmers).  The 25-day-old transplants were planted at  a 

depth of 3 cm, and at a rate of two plants per hill. The temperature of the transplants environment was 

assumed as 300C considering daily climatology. The row spacing was 20 cm x 20 cm, with a planting 

density of 25 plants per square meter (Akhtar et al., 2004; Chaoudhary et al., 2004). As our goal was to  

understand  the  effect  of  weather,  all  simulations  assumed  rainfed  conditions.  The  average  fertilizer 

application rate was fixed at 60:30:30 N:P:K kg/ha, and fertilizer was applied in two phases: at the time of 
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planting,  and 25 days  post-planting (Chaoudhary et  al.,  2004;  Akhtar et  al.,  2004).  In the model  the 

harvest was set at physiological maturity.

II.2.5.3 Soils

The soil  profiles were taken from the International  Soil Reference and Information Center’s (ISRIC)  

(World Inventory of Soil  Emission Potentials)  WISE soil  database (Batjes,  1995;  Batjes,  2002).  The 

ISRIC is located in Wagenignen, The Netherlands (Batjes, 1995). Gijsman et al. (2007) converted 1,125 

global soil profiles from WISE version 1.0 into a format that can be directly inputted into DSSAT using  

either WISE parameters or a theoretical approach (Jones et al., 2003; Hoogenboom et al., 2015). Romero 

et al. (2012) converted 4,382 soil profiles from WISE v1.1 into a DSSAT-compatible crop model format  

and applied various error-checking procedures.

Since the WISE database was compiled using different sources and methods,  it cannot be considered 

error-free. And, these errors are further multiplied when converting WISE data into DSSAT inputs due to 

the uncertainty in several WISE parameters and theoretical estimations. Therefore, the WISE database  

only contains educated guesses regarding possible values for certain soil classes (Gijsman et al., 2007). 

Hardinath soil falls into the CMIT043 category. This category has a silt loam texture, is 44% silt, 20%  

clay, and 36% sand, and reaches a depth of 1.2 m. Complete descriptions of each soil profile by soil  

horizon used in this study are shown in Table II.1.

Table II.1: CMIT043 Soil profile description (Source: (Romero et al., 2012) 
Depth 
base  of 
layer 
(m)

Master 
horizon

Wilting 
point 
(cm3 

cm-3)

Field 
capacity
(cm3 cm-

3)

Max. 
water 
holding 
capacity
(cm3 cm-3)

Root 
growth 
factor

Saturated 
hydraulic 
conductivity
(cm h-1)

Bulk 
density 
(G  cm-

3)

Organic 
carbon

15 A1 0.148 0.337 0.560 1.00 1.75 1.02 4.30
60 A2 0.068 0.232 0.451 0.47 3.40 1.37 1.10
120 B 0.183 0.274 0.374 0.17 0.70 1.58 0.05

Depth base of 
layer (m)

Master 
horizon

Clay
(%)

Silt Total 
Nitrogen 
(%)

pH  in 
water

Magnesiu
m 
(cmol kg-1)

Calcium, 
exchangeable, 
(Cmol kg -1)

15 A1 20 44.00 0.43 5.3 0.5 0.1
60 A2 22 31.00 0.11 5.4 0.5 0.1
120 B 12 18.00 0.01 5.6 0.6 0.1
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II.2.6 Calibration of DSSAT model

CERES Rice model includes various cultivars of rice and each cultivar has a unique set of crop-specific  

parameters called genetic coefficients. Cultivars grown under the same environmental conditions have 

different yield and traits because of these coefficients (Bertin et al., 2010). Genetic coefficients can be  

broadly  categorized  into  three  types  based  on  their  relation  to:  life  cycle,  vegetative  growth  and 

reproductive growth. For CERES-Rice model we need the following eight genetic coefficients:

o P1 estimates the time period of vegetative phase of the plant in growing degree days  

(GDD); 

o P2O estimates the longest day length at which the maximum development occurred;

o P2R estimates the delay in panicle initiation due to the per hour increase in P2O;

o P5 estimates the time period needed for grain filling to maturity;

o G1 is the spikelet number per gram of main culm;

o G2 is the single grain weight;

o G3 is the tillering coefficient; and 

o G4 is the temperature tolerance coefficient.

Crop models  should  be  calibrated  for  the  study area  if  the  results  are  to  be  credible  (Timsina  and 

Humphreys, 2006). Since not all cultivar traits can be confidently replicated using the genetic coefficients 

calibrated in different environment (Mavromatis et al., 2002), calibration is needed for better prediction. 

Various methods have been used to estimate genetic coefficients and each method has its own strengths  

and  limitations.  Trial  and  error  is  the  most  common  approach  for  the  model  parameter  estimation 

(Wallach et al., 2001). In this method, various parameter values are tested until an acceptable fit to the 

observed data is found. Nonetheless, trial and error process has limitations such as lack of reliability and  

replicability (Lyneis and Pugh, 1996). 

Considering our limitations (interpolated soil data, lack of time-series crop measurement data and some  

measured data from crops cultivated under environmental stresses), we did not rely on a single method 

alone.

We used the GLUE (Generalized Likelihood Uncertainty Estimation), a commonly used Bayesian method 

(Beven and Binley, 1992), which has been widely used in environmental modelling for model parameter 
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estimation (Blasone et al., 2008). The GLUE tool in DSSAT v4.6 uses the Gaussian likelihood function to 

assess the likelihood value of a given prior set of parameters (He et al., 2010; He et al., 2009). From the  

likelihood values, it is possible to get the estimated mean and variance of the posterior distribution of  

parameters.

Also,  we  considered  the  genetic  coefficients  calibrated  by  other  studies  in  Nepal  (Timsina  and  

Humphreys, 2006; Rai et al., 2011; Lamsal et al., 2013) for the same cultivar but for different sites for  

comparison. We compared the RMSE, the index of agreement (d-stat) and coefficient of determination 

(R2) of the simulated growth and yield values obtained using the genetic coefficients from GLUE and 

other  studies  with  the  measure  data.  Jones  and Kiniry (1982)  justified  the  use of  mean  and R 2 and 

Willmott  et  al.  (1985);  Willmott  (1982)  recommended  using  RMSE and d-stat  for  analysing  model 

performance.  Then  we  used  trial  and  error  process  to  adjust  the  coefficients  until  the  RMSE  was 

minimized, and until the d-stat and R2 values neared to one. 

A simulation was considered ‘excellent’ if the RMSEn was less than 10%, ‘good’ if between 10‒20%, 

‘fair’ if between 20‒30%, and ‘poor’ if the RMSEn was higher than 30%.

Since most model users do not have controlled-environment facilities, measured data from the field are  

used. We used measured data on the Masuli rice cultivar from NRRP Hardinath varietal trial plots for the  

years 2002 to 2005 (Chaoudhary et al., 2004; Akhtar et al., 2004). The measured variables included:  

anthesis day, maturity day and yield at maturity. Before running the DSSAT, we entered the weather, soil, 

management, and measured data files in DSSAT format. 

Model evaluation was done using the multiple statistics mentioned in the section II.2.4.1 
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II.3 Results and discussion 

II.3.1 Genetic coefficients

Table II.2 provides the Masuli rice’s genetic coefficients obtained from the calibration process. For set  

weather conditions, P1 and P5 were higher for the long duration cultivar and lower for the short duration 

cultivars. The genetic coefficients obtained from the calibration process were compared with the findings 

of other studies on the same cultivar in other parts of Nepal (Timsina and Humphreys, 2006; Rai et al.,  

2011; Lamsal et al., 2013). Although some coefficients were close to one another, other exhibited larger  

differences  (Table  II.2).  The  inconsistencies  in  the  genetic  coefficients  calibrated  using  data  from 

different regions were common, even for the same cultivar.

Table II.2: Calculated genetic coefficients for Masuli rice.

Cultivar P1 P2R P5 P2O G1 G2 G3 G4 PHINT References
Masuli 900.0 290.0 280.0 10.7 42.0 0.017 1.00 1.0 83.0 This study
Masuli 853.5 170.5 476.5 10.9 71.1 0.020 0.87 1.0 83.0 GLUE DSSAT
Masuli 830.0 200.0 600.0 11.4 35.0 0.030 (Timsina and 

Humphreys, 2006)
Masuli 840.7 186.1 251.0 10.8 42.0 0.020 (Lamsal et al., 

2013)
Masuli 502.3 168.0 500.0 11.2 54.0 0.030 (Rai et al., 2011)

II.3.2 Main growth and development variables for Masuli rice 

Table II.3 displays the main growth and development variables for Masuli rice from 2002 to 2005, both 

measured at  the NRRP Hardinath station and simulated by the CERES-Rice model.  The RMSEs for  

anthesis and maturity dates were excellent, and were good for the yield. In contrast, the d-stat for yield  

was  better  than  the  d-stat  for  the  anthesis  and  maturity  dates.  Similarly,  the  correlation  coefficient  

between the simulated and observed yields was also excellent, but fair for the other variables.

The high error in the maturity date’s  estimation could be due to the mismatch in dates between the 

model’s  simulation  of  physiological  maturity  and  field  measurements  of  the  harvest  maturity  date.  

Similarly, the inconsistency in the anthesis dates could have stemmed from the subjective criteria used to 

measure them. Unlike these two variables, the yield could be measured very accurately, even under the  

local conditions. In personal communication with the scientists at the NRRP Hardinath during my field 

visit, they admitted that the measured maturity dates might not match the exact dates of physiological  
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maturity. They further told me that they use subjective criteria to estimate the anthesis dates, and that it  

was common for the measured anthesis date to be inaccurate by a few days. 

Table II.3: Main growth and development variables for Masuli rice for the year 2002, 2003, 2004 and 2005 using the 
experimental data from NRRP Hardinath for calibration

II.3.3 Model evaluation

We evaluated the DSSAT’s ability to predict rice yields by comparing simulated yields with district-

average yield data. The mean simulated rice yields for the Hardinath point in Dhanusha district were 

compared against observed district-average rice yield data for Dhanusha district from the Ministry of 

Agricultural Development (MOAD) Nepal. 

The model successfully simulated district-average yields for the shorter time period from 2002 to 2005, as  

demonstrated by the correlation coefficient of 0.7 and d-stat of 0.8. For the longer period from 1983 to 

2010, however, its predictive skill dropped remarkably. The correlation coefficients were -0.1 and -0.2 

for the  weather station data, and  for the ERA-Interim reanalysis combined with APHRODITE rainfall  

data respectively. The MPEs were as high as -23 (30) % and the RMSDs were as high as 804 (825) kg/ha 

for  the  simulations  using  weather  station  (ERA-Interim)  data  (Table  II.4).  Similarly,  the  model  EF 

indexes were -3.6 (-4.0)  for  the  simulations  using weather  station (ERA-Interim)  data.  The negative 

values of model efficiency indicate that the model did not have skill to simulate the district average yield  

data. We repeated the process for other representative stations (Parwanipur and Bhairahawa) in Terai, but 

without any success in improving the prediction skill (Table II.4 and Fig. II.2). 

The model’s drop in skill for district-average yields was related to the simulation’s use of interpolated soil  

data and only a single management practice. The district is home to hundreds of thousands of small-scale 

farmers, who practice dissimilar management techniques in individual years and on different lands. In 

contrast, the simulation focused on a single point (Hardinath) with a fixed soil, and only one cultivar and 

management approach. It would have been impossible to acquire historical crop management data for all 

small-scale farms, because techniques differ from farm to farm, and farmers themselves would not be able  

to remember all data from past years.
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Figure II.2 Time series of simulated versus observed yield of rice for Dhanusha, Parwanipur and Bhairahawa  for a) 
using weather station data b) using ERA-Interim data. The solid lines are for the district yield for the three stations 
and dashed line for the simulated yields. The simulated yields are obtained from the DSSAT-CERES-Rice model  
run while the measured yields are taken from the MOA.

Fig. II.3 Correlation between district statistical yield, yield simulated using weather station data and yield simulated  
using CFS v2 forecasts July-Dec (all 1-month lead only) for 24 members for the periods 1983-2010. The simulations 
were done for both N-limited and N-unlimited yields.

Since the model did not have skill to simulate the district average yield data, we employed the yields  

simulated using observed weather as references for comparison. We used these reference yields, so as to  

capture the random errors related to the seasonal  forecasts,  while ignoring the crop model’s  inherent  

errors (Hansen et al., 2004). Then we calculated the correlation coefficients between yields simulated  

using  one-month  lead  forecasts  (24  ensemble  members)  and  the  reference  yields.  We  found  the 

correlation coefficients ranged from 0.4 to -0.5 for different ensemble members (Fig II.3). We tried to  
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improve skill  by removing N limitation but it did not help (Fig II.3).  Thus, we concluded that using 

seasonal forecasts alone could not accurately predict yields. Therefore, in the next step we used mixed 

weather data. 

Table II.4: Model MPE, RMSD and EF for different sites compared to the district average yield data. The statistics 
are computed seperately for the simulations using weather station data and ERA-Inerim reanalysis data. 

II.3.4 Model’s skill in simulating yields using climatology and CFS v2 hindcasts

In this section, we are comparing performance of seasonal forecasts and climatology in simulating yields.  

Also,  we  are  comparing  the  yield  prediction  skills  of  one-month  lead  and  one-and-two-month  lead 

forecasts. The assessment was done by quantifying yield prediction biases at different prediction time  

points, using the following tools: mean percentage error (MPE) and root mean square deviation (RMSD). 

Also,  we  compared  correlation  coefficients  between  the  yields  simulated  using  these  hypothetical 

weathers and yields simulated using observed weather, hereafter named as reference yields. 

II.3.4.1 Bias in prediction 

In  general,  yield  forecasts’  improved  in  accuracy  as  successive  monthly  weather  updates  were 

incorporated, as demonstrated by the gradual decrease in MPE and RMSD (Fig. II.4). The reason that the 

yield predictions improved over time was that, as the season progressed, actual weather data replaced 

forecasts. This result is consistent with the finding of other studies (Hansen et al., 2004; Mishra et al., 

2008; Pal et al., 2013).

Yield can be better predicted by using climatology alone than using forecasts combined with climatology.  

The  MPE for  the  simulated  grain  yield  using  observations  combined  with  one-month  lead  seasonal 

forecasts and climatology varied from 3% for the last date of prediction (December 1 st) to 15% for the 

first  date  of  prediction (July 1st),  while  the RMSD ranged from 83 kg/ha to 384 kg/ha (Table  II.5).  

Normally,  the MPE and RMSD for the simulated grain yield using observation and climatology was  

lower  than  the  MPE for  the  simulated  yield  using  observations  combined  with  the  one-month  lead 

seasonal  forecasts  and  climatology.  The  MPE  for  the  simulated  grain  yield  using  observation  and 

climatology varied from 3% for the last date of prediction (December 1st) to 12% for the first date of 
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prediction (July 1st), while the RMSD ranged from 85 kg/ha to 381 kg/ha. We repeated the process using 

observations combined with one-and-two-month lead forecasts and climatology.  In general, prediction 

worsened when the one-month-lead forecasts were replaced by one-and-two-month forecasts. The MPEs 

for the simulated yields using weather data including one-and-two-month lead forecasts ranged from 6% 

for the last date of prediction (November 1st) to 19% for the first date of prediction (July 1st), while the 

RMSD ranged from 196 kg/ha to 484 kg/ha (Table II.5).  

Careful analysis of individual year’s prediction, however, suggested that during most of the years, the 

simulated yields predicted using weather data including seasonal forecasts have lower MPEs and RMSDs 

than the yields simulated without using seasonal forecasts. Consequently, the median MPEs and RMSDs 

values for the predictions with seasonal  forecasts were lower than the prediction done without  using 

seasonal forecasts. 

By excluding four extreme years (out of 28 total years) from the analysis, the MPEs ranged from 6% to  

25% (for the December 1st and July 1st predictions, respectively) (Table II.6). In order to understand the 

reasons  for  extreme  biases  in  prediction  in  these  years,  we  investigated  the  impact  of  weather  on  

simulated yields for these years. Following paragraphs describes the results from these investigations.

The analysis illustrated that the years 1992, 2007, 2009, and 2010 were extreme in terms of biases (Fig  

II.4). Biases were excessive in these years, mainly due to the poor quality of rainfall forecasts. Although 

1992 was, on average, a dry year, an above-average amount of rain fell in October during the panicle 

initiation, thus boosting crop yields. However, all forecast members predicted a dry October. The actual  

total monthly rainfall was 176 mm, while all CFS v2 ensemble forecasts ranged from 0 to 17 mm of  

rainfall. This caused the model to underestimate crop yields.

 In contrast, the extreme biases in 2009 and 2010 were associated with all CFS v2 ensemble members’ 

forecasts overestimation of rainfall in August. In 2009, from August 25 to October 7, a prolonged 43-day 

drought occurred during the crucial stages of rice growth. This led to decreased yields simulated with 

observed weather. However, in the CFS v2 forecasts, rain fell continuously for five days, bringing a total  

of 163 mm of rain during the last week of August in 2009. The forecasts’ overestimation of rain amounts 

increased simulated yields. Similarly, extreme biases in 2010 were related to forecasts’ overestimation of  

rainfall.

In 2007, rain fell continuously for 17 days during a 22-day period immediately after planting, with fields 

receiving 1,082 mm of rain. In a 3-day period from 26 July 2007 to 28 July 2007, total rainfall equalled  

535 mm. However, all forecast members indicated normal rainfall, and therefore predicted higher yields 

as compared to the yields simulated using observed weather. Because of a decrease in rain from 
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Fig. II.4 Mean Percentage Error (MPE) in simulated yield predicted at different months before harvest using:        (a)  
one-month lead seasonal forecasts and (b) one-and-two-month lead forecasts. Root Mean Square Deviation (RMSD) 
of the predicted yield at different lead months before harvest using: (c) one-month lead seasonal forecasts and (d) 
one-and-two-month lead forecasts. The yield simulated using observed weather serve as the reference yields, and are  
compared against the yields simulated using weather station data/climatology from Janakpur Airport and CFS v2 
forecasts. 
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September onwards after the end of the ISM, the mismatch declined between the observations and the 

forecasts. Consequently, the biases were reduced for predictions from September onwards.

We additionally analysed whether including the two-month lead forecasts reduced the extreme errors. For  

the yields predicted from 1 October 1992, the MPE was higher for the predictions using two-month lead  

forecasts than the predictions using one-month forecasts. This was because, for October 1 st predictions, 

November weather came from forecasts and historical weathers for predictions using two-month and one-

month lead respectively. The excessively dry forecasts substantially decreased the yields, and the error  

consequently increased.  Similar  results occurred when yields  were predicted from 1 October 2005,  1 

November 2009, and 1 November 2010. In general, yields predicted from September 1 st using two-month 

lead forecasts had larger errors than yields predicted on that date with one-month lead forecasts. This is  

because of the poor quality of forecasts for those months, as compared to historical weather data.

Table II.5: Measures of maximum possible model deviation between the simulated yields using weather station data  
and forecast data considering all years 

Weather July 1st Aug 1st Sep 1st Oct 1st Nov 1st Dec 1st 

MPE

Obs+climate 12 9 8 3 3 3
Obs+1-mon-
lead+Climate

15 13 12 6 5 3

Obs+2-mon-
lead+Climate

19 13 12 8 6

RMSD

Obs+climate 381 324 300 173 87 85
Obs+1-mon-
lead+Climate

384 311 318 193 144 83

Obs+2-mon-
lead+Climate

484 363 404 235 196

Table II.6: Measures of maximum possible model deviation between the simulated yields using weather station data  
and forecast data during average years (excluding extreme years 1992, 2007, 2009 and 2010)

II.3.4.2 Correlation coefficient

Correlation coefficients between the yields simulated using CFS v2 forecasts (24 members) mixed with 

historical weather data and the reference yields for the period from 1983 to 2010 were calculated from 

different months of prediction. CFS v2 forecasts included both one-month lead and one-and-two-month 

lead.  These  correlation  coefficients  were  compared  with  the  correlation  coefficients  between  the 

simulated yields without using forecasts and reference yields at different months before harvest.
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The correlation skill of predictions was consistent with our earlier findings related to MPEs and RMSDs  

that  the  correlation  coefficients  between  the  simulated  and  reference  yields  increased  as  successive 

monthly weather updates were incorporated regardless of the weather types. The correlation between the 

reference yields and the yields forecasted from July 1st was poor with the average correlation coefficient  

lower than 0.2 for all types of weather (Fig. II.5). This finding signifies a high degree of uncertainty in  

yield prediction at five months. The height of the boxes depicts the variations in correlation coefficient 

among 24 ensemble members. For early predictions (until September 1st), some of the ensemble members 

had  better  correlation  coefficient  than  climatology,  as  shown  by  the  height  of  the  whiskers.  The  

correlation skill of prediction increased as the growing season gradually advanced, as the duration of  

known weather increased and the duration of unknown weather thus decreased. The average correlation  

coefficient  was  satisfactory (0.7-0.9)  when we predicted  yields  from end of  September  or  from the  

beginning of October, two-and-a-half months before physiological maturity. As expected, the correlation 

coefficient was almost perfect (0.91-0.99) when we estimated yields from the end of October or from the  

beginning of November, one-and-a-half months before physiological maturity for all types of weather.  

However, by not using seasonal forecasts we can achieve almost perfect (0.91) correlation coefficient one  

month earlier (in October 1st) than when using seasonal forecasts.

Fig II.5 Correlation coefficient between simulated yield using CFS v2 forecasts (24 members) and yield simulated  
using weather station data from Janakpur Airport for the period 1983-2010 at different months before harvest. CFS 
v2  forecasts  included  both  one-month  lead  and  one-and-two-month  lead.  These  correlation  coefficients  are 
compared with the correlation coefficients between the simulated yields without using forecasts and simulated yields 
using weather station data at different months before harvest.
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Our results related to increase in correlation coefficient between the simulated yields and reference yields  

with the successive monthly weather updates are supported from the findings of other studies (Pal et al.,  

2013; Mishra et al., 2008; Hansen et al., 2004). 

The  correlation  coefficients  between  the  yields  simulated  without  using  the  seasonal  forecasts  and 

reference  yields  were  always  higher  than  the  simulations  using  forecasts  regardless  of  the  time  of  

prediction. Similarly, the yields simulated using two-month lead forecasts, from all ensemble members,  

had relatively lower correlation coefficient than the yields simulated with one-month lead forecasts except  

for the July 1st prediction. The poor correlation skill of the yields simulated using seasonal forecasts than 

using climatology and further worsening in correlation skill with the increase in seasonal forecasts’ lead  

time are associated with poor quality of seasonal forecasts, particularly in predicting precipitation. This 

justified the use of observations and climatology alone rather than using forecasts.

Consistently and satisfactorily predicting yields two-and-a-half months before harvest for 28 years seems 

to be a promising result. Using a combination of actual daily weather data for 2002 and daily historical  

weather data for 25 years, Soler et al. (2007) were able to accurately predict the yields of four maize  

hybrids  at  least  one-and-a-half  months  before the harvest  in  Brazil.  Yield prediction is  an important 

component of food security-related vulnerability analysis and planning (Thornton et al., 1997). 

Duchon  (1986)  utilized  a  mix  of  observed  weather  before  the  forecast  time,  followed  by  historical  

weather sequences from the CERES-Maize model, and was able to perfectly predict yields between the  

beginning  and  the  end  of  the  grain  filling  stage  for  Peoria,  Illinois.  His  findings  were  based  on 

experiments from 1983 and 1976, and even during these years, there was a lack of consistency regarding 

maturity dates and accurate yield prediction dates.

II.3.4.3 Statistical significance of the difference between mean yields across members and years

To understand  the  statistical  significance  of  the  differences  in  mean  yields  across  years  and  across 

members,  we  performed  the  analysis  of  variance  (ANOVA)  (Table  II.7).  The  ANOVA  analysis 

demonstrated that the interannual variations in mean yields were highly significant for the simulations 

using both one- and two-month lead times (Table II.7). Similarly, the differences among the ensemble  

members’ predicted mean yields were significant for yields predicted from July 1st at both one- and two-

month lead times. 

68



Table II.7: ANOVA to find the statistical significance of the difference in mean yield across members and years.

Null hypotheses (one-month lead-time forecasts) One-
month-
lead

p-value
(One-
month-
lead)

Two-
month-
lead

p-value
(Two-
month-
lead)

The inter-annual variation in yield related to weather 
is not significant

Reject 2.7e-14 Reject 1.52e-06

The  mean  yield  predicted  using  different  ensemble 
members does not differ significantly when predicted 
from July 1st

Reject 3.28e-05 Reject 0.02

The  mean  yield  predicted  using  different  ensemble 
members does not differ significantly when predicted 
from August 1st

Accept 0.65 Accept 0.83

The  mean  yield  predicted  using  different  ensemble 
members does not differ significantly when predicted 
from September 1st

Accept 0.30 Accept 0.28

The  mean  yield  predicted  using  different  ensemble 
members does not differ significantly when predicted 
from October 1st

Accept 0.72 Accept 0.62

The  mean  yield  predicted  using  different  ensemble 
members does not differ significantly when predicted 
from November 1st

Reject 0.03 Accept 0.19

The  mean  yield  predicted  using  different  ensemble 
members does not differ significantly when predicted 
from December 1st

Reject 0.004 - -

For all other predictions points, the differences among the mean yields simulated by different ensemble  

members were not significant at a two-month lead. However, the differences were significant at a one-

month lead for yield predictions from November 1st and December 1st (Table II.7).

II.3.4.4 Error bar

The crop was planted in mid-July and harvested in December. In most years, variability in yield forecasts,  

(shown by the bar) was higher when for yields predicted from July, August, and September (Fig. II.8).  

Theoretically, the standard deviation of the simulated yield should decrease as the duration of observed 

weather  increases.  This  rule  only seemed  to  apply one-and-half  months  after  planting.  The standard 

deviation indeed decreased as the duration of the observed weather grew in length as the growing season 

progressed. Standard deviation minimum values reached 30 kg/ha, 18 kg/ha, and 8 kg/ha, when predicted 

from October 1st, November 1st, and December 1st, respectively. 
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(a)
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(b)

Fig. II.6: Average forecasted yield and standard deviation for year 1983-2008 (left to right) as a function of the  
forecast date and observed yield (kg/ha). Forecast date are 1st of July (J), August (A), September (S), October (O), 
November (N), December (D) and Observed (Ob). (a) one-month-lead time; (b) two-month-lead-time.
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I.4 Conclusions 

The study evaluated application of seasonal forecasts for rice yield prediction via a case study of Nepal’s  

Terai. Rice is the country’s main staple crop and contributes to half of the total calories required by the  

Nepalese  people.  In  Nepal,  rice  is  primarily  cultivated  in  the  lowland  Terai  region,  and  most  rice 

production areas are still rainfed. Rainfed cultivation depends on the monsoon rain and entails a high  

degree of risk, due to the uncertainty posed by the monsoon (e.g., late onset, breaks, and extremely heavy 

rainfall). 

Crop models provide an opportunity to quantify the effect of climate, soil, cultivar, and management on 

crop growth and productivity. We used the DSSAT v4.6’s CERES-Rice model, which simulates cultivar-

specific yields based on environmental conditions. 

The DSSSAT v4.6 model was calibrated using experimental data from the NRRP Hardinath and weather 

station data from a nearby station for the Masuli cultivar. It was evaluated using district statistical yield 

data from the MOAD. Before using seasonal forecasts for yield prediction, we tested the crop model’s 

ability to simulate the interannual district-average yield using observed weather and reanalysis data. 

We found that  the  CERES-Rice model  did not  have satisfactory skill  to  simulate  long-term district-

average  yield  data,  as  demonstrated  by the  low correlation  coefficient,  high  MPE,  high  RMSD and 

negative EF. Our results were consistent for other representative stations in Terai.  

Our goal was to focus on how weather affects yields and to ignore crop-model errors. We thus took yields  

simulated using observed weather as reference yields for comparison. The reference yields were then  

compared against yields simulated using hypothetical weather data. 

The study used the dynamic climate model CFS v2’s seasonal forecasts to predict rice yields. In order to 

improve yield predictability,  we tested a range of operational  configurations. These included all  one-

month lead forecasts’ time series for the entire growing season, so that July forecasts were based on June 

initializations, August forecasts were based on July initializations, and so on. We found the forecasts-only 

weather time series did not have a strong ability to predict yields, as evident from the low correlation 

coefficients  (ranging  from -0.4  to  0.4)  between  the  yields  simulated  using  forecasts  and  the  yields  

simulated using weather station data.

 Next,  we  followed  the  real-time  simulation  approach,  using  observed  weather  until  the  time  of  

prediction, followed by the forecasts and historical weather data. Forecasts at one and one-and-two-month 

leads were employed combined with observed weather before prediction date and climatological time  

series after the end of the forecasts. Yields predicted using seasonal forecasts were then compared with  

yields  predicted without  using seasonal  forecasts  (using observed weather  and climatology alone)  to  
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understand the importance of seasonal forecasts. Yield predictions were conducted for the first date of  

every month,  starting from July 1st and ending on December 1st.  Statistical tools (e.g.,  MPE, RMSD, 

correlation, and error bar) were used to quantify biases and evaluate the predictive skill.

In  general,  yield  forecasts  improved  by  using  climatology  alone  than  using  seasonal  forecasts  and 

climatology,  as  suggested by the gradual  decrease in  the  MPE,  and RMSD, and the increase in  the 

correlation coefficients. Similarly, the prediction using one-and-two-month lead forecasts together with  

climatology had higher MPE, and RMSD and lower correlation coefficients than the prediction using one-

month  lead  forecasts  along  with  climatology.  Likewise,  the  yield  forecasts  improved  as  successive 

monthly weather updates were incorporated. The MPEs of yields predictions from November 1 st (July 1st) 

were 3% (12%) for the prediction using climatology alone, 5% (15%) for the prediction using one-month 

lead seasonal forecasts along with climatology and 6% (19%) for the prediction using one-and-two-month 

lead seasonal forecasts together with climatology. Similarly, the average correlation coefficients of yield 

predicted from November 1st (July 1st) were 0.99 (0.1) for the prediction using climatology alone, 0.97 (-

0.1) for the prediction using one-month lead seasonal forecasts as well as climatology and 0.96 (0) for the 

prediction using one-and-two-month lead seasonal forecasts along with climatology.

Predicting yield  within 5% error  and with 99% correlation coefficient  two-and-a-half  months  before  

harvest using climatology alone is an encouraging result. However, the predictions combining seasonal 

forecasts and climatology were less capable of predicting yields than were the one-month lead forecasts,  

as evident from the increase in MPE and the lower correlation coefficients as compared to the prediction  

using climatology alone. This justified using climatology alone rather than including seasonal forecasts.  

The  worsening  of  skill  by including  seasonal  forecasts  were  related  to  the  poor  quality  of  seasonal  

forecasts’ daily data, particularly precipitation. 

The study suggests to compare prediction skill using CFS v2’s monthly mean and using WGs to generate 

daily data. We also recommend to explore the potential of using spatially downscaled precipitation data in  

improving prediction skill. 
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CHAPTER III: Using ENSO conditions to optimize rice crop 
management for Nepal’s Terai

Abstract

Seasonal prediction systems (SPSs) are gradual improving in terms of their ability to predict the El Nino 

Southern Oscillation (ENSO). This advance provides an opportunity to link the coming season’s weather 

with  dynamic  crop  models  to  evaluate  various  crop  management  options.  Assessment  of  these  crop 

management approaches can help farmers to make better decisions before the beginning of the planting 

season. Although the potential benefits of this approach have been tested in many areas of the world, to  

our knowledge, limited scientific evidence exists regarding its application in South Asian (SA) regions. 

Most  rice  cultivation  in  SA regions  remains  rainfed  and is  heavily reliant  on  monsoon  rainfall.  By 

incorporating  ENSO-  and  rainfall-based  weather  categories  into  the  Decision  Support  System  for  

Agrotechnology Transfer’s  (DSSAT)  v4.6  Cropping System Model  (CSM)  Crop Estimation  through 

Resource and Environment Synthesis (CERES)-Rice crop model, this study evaluates planting dates and 

fertilizer levels for Nepal’s Terai region. The Terai  is Nepal’s principal  rice-growing region,  and the  

majority of its lands are still under rainfed cultivation. The model simulations indicated that rice yields 

were higher in below-average rainfall (dry) years and in El Nino years. Moreover, rice yields were lower  

in above-average (wet) rainfall years and La Nina years. Rice yields increased as additional Nitrogen (N)  

fertilizer was added, but they decreased with late planting from 14 June onwards. The lower yields during 

La Nina and wet years were associated with high (low) N leaching (uptake) resulting from high drainage 

and runoff levels. Furthermore, the reduced yields in La Nina years were also related to a high minimum  

temperature  anomaly  during  the  second  half  of  growing  season.  However,  the  addition  of  fertilizer 

increased yields in all years, although the efficiency of fertilizer use was greater in dry years and El Nino  

years  than  at  other  times.  Considering  the  existing  practices  of  mid-July  planting  and  low-level  N 

fertilizer application, rice yields could be increased in an efficient manner by adding N fertilizer in dry 

years and El Nino years, and by adopting earlier planting dates. In El Nino years, a 14 June planting date, 

coupled with an increase in fertilizer to 90 kg/ha and 60 kg/ha, resulted in net gross margins of US$ 34/ha  

and US$ 15/ha, respectively, as compared with similar changes in other years. These results should be  

taken as indicative only as the ENSO signal was not strong in the study area, and soil profiles were based 

on reanalysis data.

Keywords: ENSO, DSSAT, Terai, rice, planting date, fertilizer
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III.1 Introduction

Climate variability is a major sources of interannual crop yield variability, explaining roughly a third of 

the observed yield variability globally (Ray et al., 2015). The high interannual variability in weather 

variables, including rainfall, constitutes the primary obstacle that limits risk-averse farmers from fully 

realising  their  farms’  potentials.  This  is  particularly  true  for  rainfed  farming  systems  and for  crops  

requiring high amounts of water. The uncertainty associated with climate variability and unpredictability 

compel risk-averse farmers to adopt low risk strategies than those which are more profitable on average. 

As dynamic climate models gradually become more skilled at ENSO prediction, crop models can be run 

using historical  weather data representing ENSO categories for a particular  year.  By utilizing a crop  

model to evaluate alternative crop-management options for given weather categories, farmers’ optimum 

management  options  for  the  coming  growing  season  can  be  identified  (Hoogenboom,  2000).  This 

knowledge  will  help  famers  to  optimize  their  farming  management  techniques.  Intensifying  inputs 

(fertilizers) and technologies during favourable weather, while simultaneously preventing resource losses 

during unfavourable weather, will allow farmers to achieve maximum potential production.

The ENSO is irregular variations in sea surface temperature (SST) and wind in the equatorial Pacific, and 

its effect can be felt around much of the globe. Various studies have demonstrated that positive ENSO 

phases – a condition called El Nino – are associated with low levels of summer monsoon rainfall in SA 

regions. Similarly, negative ENSO phases – a condition called La Nina – are associated with increased  

rainfall  during  the  summer  monsoon  season (Sikka,  1980;  Shukla,  1987;  Rasmusson  and Carpenter, 

1983). Thus, ENSO prediction, along with dynamic crop models’ use of predicted ENSO categories to 

evaluate  management  options,  has substantial  potential  to increase production and to  minimize input 

losses for regions like Nepal’s Terai. We selected the Terai, because rice is the main staple food in Nepal 

(MOAD, 2012), and the Terai is the country’s primary rice-growing region (MOAC, 2008). Moreover,  

rice production requires significant amounts of water (Bouman and Aureus, 2009) and the Terai is home 

to the majority of Nepal’s rainfed rice cultivation areas (MOAC, 2008). 

The ENSO’s exact effect on the monsoon in Nepal’s Terai region is unclear. Shrestha et al. (2000) found 

a strong positive (0.64) correlation between the average annual Southern Oscillation Index (SOI) and all-

Nepal summer monsoon precipitation for the period from 1970 to 1994. In contrast, Ichiyanagi  et al. 

(2007) established a weak positive relationship between the SOI and the summer monsoon precipitation 

for the weather stations in western Terai and negative correlation for the weather stations in eastern Terai 

from 1987 to 1996. They also demonstrated that monsoon precipitation significantly varied across regions 

of Nepal. While Shrestha et al. (2000) found the relationship became stronger after 1970, Kumar et al.  

(1999) wrote that the relationship has weakened in recent years. Therefore, it is necessary to revisit the  
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relationship  between  the  ENSO  and  monsoon  precipitation  in  Terai.  Additionally,  dynamic  climate 

models’ ability to predict the ENSO for Nepal’s Terai region must be assessed before ENSO is employed 

as a planning tool.

Various studies have determined that advance information on the coming season’s ENSO phase can be  

utilized as a planning tool to optimize farm management practices, so as to increase yields and profits  

(Jones et al., 2000; Asseng et al., 2012). The ENSO’s influence on rice yields varies, not only across  

global regions, but also within individual countries. For example, rice yields in southern (other) China are 

negatively  (positively)  affected  during  El  Nino  years  (Iizumi  et  al.,  2014).  The  economic  value  of 

forecasting information varies across regions and crops, and quantitative assessments of forecast values  

for smallholder rainfed farmers in developing countries are virtually absent (Meza et al., 2008).

Crop growth does not depend solely on rainfall. Therefore, even if the ENSO and precipitation are not  

strongly related, crop yield could be different due to other weather variables such as temperature as crops  

are the integrator. 

The chapter’s objectives are to reassess the link between the ENSO and the summer monsoon and EN ­

SO’s predictability for Nepal’s Terai region. After evaluating the ENSO-monsoon link and predictability, 

the study’s second objective is to evaluate how various crop management options affect rice yields for 

different ENSO phases, using the CERES-RICE model of the DSSAT v4.6 (Hoogenboom et al., 2015),  

with the aim of maximizing crop yield while minimizing the loss of inputs. 

III.2 Methods

III.2.1 Climate data

To examine the relationship between the ENSO and the monsoon in the Terai, the observed Nino 3.4 sea­

sonal (JJAS) anomaly for the period from 1982 to 2005 was calculated from the NOAA Reynold v2 SST 

(Reynolds and Smith, 1994). The ensemble means of the monthly SST forecasts, which were based on 

May initializations, were taken from the Centro Euro-Mediterraneo sui Cambiamenti Climatici Version 

1.5 (CMCC v1.5) (Borrelli et al., 2012) and the coupled forecast system model version 2 (CFS v2) (Saha 

et al., 2010). Seasonal (JJAS) Nino 3.4 index anomalies for both CMCC v1.5 and CFS v2 were calculated 

from their corresponding SSTs.

Similarly, the observed precipitation data were taken from different sources including the Global Precipit ­

ation Climatology Project (GPCP) (Adler et al., 2003) and the Asian Precipitation - Highly-Resolved Ob­
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servational Data Integration Towards Evaluation (APHRODITE) (Yatagai et al., 2012). Finally, daily pre­

cipitation data came from four Department of Hydrology and Meteorology (DHM) weather stations: Jana­

kpur, Parwanipur, Bhairahawa, and Nepalgunj.  The standardized monsoon-season (JJAS) precipitation 

anomaly was calculated separately from these data for every year. These standardized values were then  

correlated with the Nino 3.4 index.

III.2.2 Categorizing years

III.2.2.1 On the basis of ENSO phase

There is no consensus regarding the most appropriate index for ENSO phase classification (Hanley et al.,  

2003). Some common indexes used for ENSO classification include: the SOI (Stone et al., 1996), the 

Nino 3.4 index (Trenberth and Stepaniak,  2001) and the Japan Meteorological  Agency (JMA) Index  

(Hanley et al., 2003). In the context of the weakening relationship between the ENSO and the Indian  

monsoon, (Kumar et al. (1999) demonstrated that the central equatorial Pacific’s SST anomaly is becom­

ing more effective at predicting the Indian monsoon (Kumar et al., 2006). The Nino 3.4 (5 oN-5oS, 120o-

170oW) index more accurately represents the central equatorial Pacific region than does the Nino 3.0 

(5oN-5oS, 1500W-900W) (Trenberth and Stepaniak, 2001).

In this study, the seasonal (JJAS) average of the Nino 3.4 index anomalies assigned rice growing seasons  

to the El Nino (La Nina) phase for anomalies at or above (at or below) 0.5 0C. The historical years were 

categorized as El Nino, La Nina or Neutral years based on the above threshold (Table III.1).

Table III.1: ENSO classification following the mean seasonal (JJAS) anomalies for Nino 3.4 index from 

1983 to 2010

El Nino 1987, 1991, 1997, 2002, 2009
La Nina 1984, 1985, 1988, 1989, 1998, 1999, 2000, 2010
Neutral 1983, 1986, 1990, 1992, 1993, 1994, 1995, 1996, 2001, 2003, 2004, 2005, 2006, 2007, 

2008

III.2.2.2 On the basis of rainfall amount

Because the ENSO signal had a weak link with rainfall at many stations, we repeated the simulations by 

categorizing historical years according to their average annual rainfall. Years with above-average rainfall  

(based on the standardized normal anomaly >0.5), were defined as wet years. Similarly, years with below-

average rainfall (based on the standardized normal anomaly <-0.5) were deemed dry years, while years  

with rainfall within the standardized normal anomaly (between -0.5 to 0.5) were described as normal  

years (Table III.2). 
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Table III.2: Year categories based on the standardized normal anomaly of seasonal (JJAS) rainfall from  

1983 to 2010. 

Dry 1983, 1985, 1987, 1991, 1992, 1993, 1994, 2002, 2004, 2006
Wet 1984, 1988, 1989, 1996, 1998, 1999, 2001, 2003, 2010
Normal 1986, 1990, 1995, 1997, 2000, 2005, 2007, 2008, 2009

II.2.2.3 Relation between ENSO and precipitation

In order to understand the interaction between ENSO signal and precipitation in our study area, we cat­

egorized years based on both ENSO phases and precipitation categories. From the categorization, we 

found that neither all El Nino years were dry years nor all La Nina years were wet years. For example,  

1997 and 2009 were El Nino years but were normal in terms of precipitation (Table III.3). Similarly, 1985 

was a La Nina year but was dry and 2000 was a La Nina year but was normal in terms of precipitation. 

On the other hand, the ENSO-Neutral years were on all categories in terms of precipitation but majority 

of them were either dry or normal.

Table III.3: Year categories based on ENSO phases and precipitation combined.

El Nino La Nina Neutral
Dry 1987, 1991, 2002 1985 1983, 1992, 1993, 1994, 2004, 2006
Wet 1984, 1988, 1989, 1999, 2010 1996, 2001, 2003
Nor­
mal

1997, 2009 2000 1986, 1990, 1995, 2005, 2007, 2008

III.2.3 Crop model 

The DSSAT v4.6’s CERES-RICE model (Hoogenboom et al., 2015) was run using the Seasonal Analysis  

tool for the historical weather years that are representatives of ENSO events, to determine rice yield’s  

sensitivity to N fertilizer levels and to different planting dates. The DSSAT v4.6 is a dynamic model that 

simulates plant growth, development, yield, soil water and N balance, based on the daily crop develop ­

ment process for a particular location (Jones et al., 2003). The model employs user-specified inputs to cal­

culate dynamic variables using various modules, sub modules and a main program. 

All simulations assumed rainfed conditions and focused on the Masuli cultivar. We selected the Masuli  

cultivar, because it is grown in the Terai, and previous studies have used the CERES-RICE model to cal ­

ibrate its genetic coefficients for Terai (Timsina and Humphreys, 2006; Lamsal et al., 2013). We designed 

20 individual treatments to examine how the planting date and N fertilizer level affected yields, soil N 
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levels,  and the water balance in different  weather-year  categories.  These 20 treatments  included five  

planting dates (at two-week intervals, starting from 14 June) and four N fertilizer levels (0 kg/ha, 30 

kg/ha, 60 kg/ha, and 90 kg/ha). The N fertilizer was applied in two phases: once during planting, and 

again at 25 days post-planting. We selected the initial planting date of 14 June, because in rainfed sys ­

tems, rice transplanting starts after the monsoon’s onset. Considering onset of monsoon in Kerala in 1 

June and time needed for monsoon to arrive in Nepal, June 14 is taken as the start date. Further, rice is not  

commonly planted after mid-August in Terai.

In all simulations, 25-days-old transplants were planted at a depth of three centimetres (cm) and at a rate 

of two plants per hill. All simulations assumed a soil temperature of 300C, a row spacing of 20 cm x 20 

cm, and a planting density of 25 plants per square metre (Akhtar et al., 2004). The representative soil type 

for the Terai, CMNP002, was taken from the World Inventory of Soil Emission Potentials (WISE) data­

base (Gijsman et al., 2007; Batjes, 2002), which was also available in DSSAT v 4.6 format. The soils’(all  

layers) stable organic carbon percentage was fixed to 90%, the initial soil water was set at half of the  

field’s capacity and no initial soil N was assumed at the start of simulations. Daily weather data from 

Bhairahawa airport weather station were utilized for the simulations, as strong ENSO signal was found 

for that station. The model was run using the DSSAT v 4.6’s default simulation option, except that the or­

ganic matter simulation made use of the Century option. For each planting date, the simulation began ex ­

actly one month before the day of planting. DSSAT v4.6 has adapted the Ritchie’s soil water balance 

model for use by all crop models (Ritchie and Otter, 1985) (Ritchie, 1998). Daily rainfall was portioned 

into runoff and infiltration using the Soil Conservation Service (SCS) method (S.C.S, 1972). For each 

weather-year category, simulated yields, soil water, and N were then compared to identify the effect s of 

the different management options.

III.2.4 Informal discussion

In order to understand the existing rice-cultivation practices, informal discussions were held with farmers  

from the Terai’s Dhanusha district. The goal of the conversations was to learn more about rice planting  

dates, N fertilizer application, fertilizer costs, and rice prices in the Terai’s local market. Biases related to 

rapport building were minimal, because the respondents had been acquainted with the researcher for the 

last 30 years. Moreover, as the researcher was born in Dhanusha district and completed school there, he  

had insight into the existing rice cultivation practices. The information from these discussions was then  

verified using the available literature.  
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III.3 Results and Discussion

III.3.1 How strong is the ENSO signal in the study area?

We found the strong negative correlation between seasonal (JJAS) anomalies of the Nino 3.4 index and 

precipitation from the GPCP for Nepal from 1982 to 2005. The correlation coefficients varied from -0.5 

to -0.8 except some regions (7 of the 30 grid boxes) in the Eastern Terai and Eastern Mid mountains, 

where relationship was weaker (Fig. I.12 Chapter I). Results for the APHRODITE daily precipitation data 

were consistent with those for the GPCP data. Again the correlation coefficients were stronger for west ­

ern Nepal than for eastern Nepal. The correlation coefficients were -0.6 for the weather stations (Bhaira­

hawa airport and Tikapur) in the western Terai and -0.2 for the eastern weather stations (Janakpur airport  

and Parwanipur). In contrast, when weather station data from the DHM was used, the relationship was  

only strong for the Bhairahawa airport station (correlation coefficient -0.6) and weak-to-very-weak (cor ­

relation coefficients -0.1 to -0.2) for the other three stations for the period 1983 to 2010. Therefore, Bhair­

ahawa airport weather station data was used for crop model simulation. 

III.3.2 Can we predict ENSO?

The models, the CFS v2 and the CMCC v1.5, successfully captured the negative correlation between the  

ENSO and the summer monsoon in the SA region. The correlation coefficients between the models’ sim­

ulated seasonal (JJAS) Nino 3.4 index anomalies and all-India region average precipitation were -0.6 and 

-0.5 for the CFS v2 and the CMCC v1.5, respectively.

For Nepal, the CFS v2 model came closer to the observed data in capturing the relationship between the 

ENSO and the summer monsoon. It established a weak to non-existent relationship in the Eastern Terai  

and a negative relationship for other areas, including a strong, negative relationship in Western Nepal  

(correlation coefficients varying from -0.4 to -0.8). The CMCC v1.5 model exhibited an unrealistically  

strong and positive relationship between the two variables in some parts of the Eastern Terai and near the 

Indo-Nepal border in the east. Both models simulated the Nino 3.4 index very closely. The correlation 

coefficients between the observed and model-simulated seasonal (JJAS) Nino 3.4 index anomalies from 

May initializations were 0.8 and 0.7 for the CFS v2 and the CMCC v1.5, respectively. Thus, it is expected 

that these models can predict the ENSO from May initializations fairly well. Failures occurred in years  

when SSTs in the Nino 3.4 region drastically changed after May, resulting in an ENSO phase change 

(Torrence and Webster, 1998).

However, not all El Nino years were drier, as the ENSO explains only a part of the interannual variability.  

Other sources of variability include: snow cover variations over Eurasia (Blanford, 1884), the North At ­

lantic Ocean circulation (Goswami et al.,  2006), Indian Ocean dipole (Saji et al., 1999; Ashok et al.,  
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2001) and internal dynamics (Krishnamurthy and Shukla, 2000; Cherchi and Navarra, 2003).

III.3.2 Weather conditions

On average, the monsoon onset was earlier in La Nina years than in other years, as demonstrated by the  

higher rainfall  amounts  in June in La Nina years  (Fig III.1).  Additionally,  the  seasonal  total  rainfall  

amount was higher in La Nina years. In contrast, El Nino years were drier than others. 

Fig III.1 Monthly mean precipitation (mm) for Bhairahawa from 1983 to 2010 for each ENSO phase.

Fig III.2 Monthly mean temperature anomaly (0C) for Bhairahawa, from 1983 to 2010, for: (a) average maximum 
temperature and (b) average minimum temperature for each ENSO phases - El Nino phase (dashed line), La Nina  
phase (dotted line) and Neutral phase (solid line). 

The El Nino (La Nina) years had a positive (negative) maximum temperature anomaly (Fig. III.2). The 

highest maximum temperature anomaly of 0.8  0C (-0.6  0C) occurred during June (July) in El Nino (La 

Nina) years. The trend, however, reversed after the second half of the growing season.  

The El Nino years displayed a negative minimum temperature anomaly during the entire growing season,  

with a maximum value of -0.7 0C in October (Fig.III.2). In contrast, La Nina years had a positive minim­
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um temperature anomaly from August onwards, which reached a maximum (0.7 0C) in October. 

These temperature and rainfall variations contributed to differences in yields across the ENSO phases.

III.3.3 Effect of weather, fertilizer and planting date on yields 

III.3.3.1 Wet/dry categories

In general, rice yield was higher in dry years, average in normal years and lower in wet years for all fertil ­

izer application levels and planting dates (Fig. III.3). These results are in alignment with the findings from 

Mavromatis et al. (2002), who achieved higher peanut yields in La Nina years with below-average rain­

fall. Regardless of the year, rice yields depended on the amount of N fertilizer applied and on the planting  

date. Normally, yields increased in proportion to amount of the N fertilizer utilized. Furthermore, yields  

slightly decreased for planting dates after 14 June, and sharply declined for planting dates after 28 June.

Thus, the average highest yield 2,578 kg/ha, was obtained in dry years under 90 kg N/ha for the crops  

planted on 14 June. And, the lowest yield, 64 kg/ha was produced in wet years with without N fertilizer  

for crops planted on 14 June. Fig. III.3 illustrates interannual variations in rice yields for different cat­

egories of years, corresponding to various fertilizer application levels and planting dates.

Interannual variability in rice yields, demonstrated by the box heights, was high, particularly during dry  

years with late planting dates and high N fertilizer levels. Therefore, we have more confidence that yields  

increased in dry years with higher levels of fertilizer and early planting dates than that late planting dates  

led to declining yields. 

In Nepal rice planting usually starts from July’s so called “plantation day”  (Ropain Diwas in Nepali), 

peaks in mid-July and ends in July. Moreover, under existing practices, farmers apply less than 90 kg/ha 

of N fertilizer. Thus, rice yields in the Terai could be increased with an earlier planting date (approxim ­

ately 14 June) and by amplified N fertilizer application, regardless of weather categories. However, any 

conclusions of this type should be first tested and verified by research stations locally.
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Fig. III.3 Simulated yield as a function of planting date and rainfall for: (a) without N fertilizer, (b) 30 kg/ha N  
fertilizer, (c) 60 kg/ha N fertilizer, and (d) 90 kg/ha N fertilizer for Bhairahawa station from 1983 to 2010.

III.3.3.2 ENSO categories

In general, rice yields were higher in El Nino years and lower in the La Nina years, with the Neutral years  

in the middle (Fig. III.4). These results agreed with findings by Mavromatis et al. (2002), who found  

higher peanut yields in La Nina years with below-average rainfall. Moreover, rice yields also depended 

on the planting date and on the amount of N fertilizer was applied. Normally, yields increased in propor­

tion to the amount of N fertilizer applied but decreased slightly if planted after 14 June, and fell sharply  

for planting dates after 28 June.

Thus, the average highest yield, 2,512 kg/ha, was obtained in El Nino years under 90 kg N/ha for crops  

planted on 14 June. And, the lowest yield, 83 kg/ha, was produced in La Nina years without N fertilizer  

for crops planted as late as 14 June. Fig. III.4 depicts rice yields in different years, corresponding to vari ­

ous fertilizer application levels and planting dates.
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The lower yields in La Nina years were associated with above-average minimum temperature during the 

latter parts of the growing season, high (low) N leaching (uptake) and above-average rainfall. Peng et al.  

(2004) also found that rice yields declined as minimum night-time temperatures (Tmin) increased.

The interannual variability in rice yield was lower in El Nino years than other years, particularly for the  

early planting dates. As a result, it is more certain that the selection an earlier planting date and the applic­

ation of additional N fertilizer can increase rice yields in El Nino years than that other year categories and  

later planting dates.

In light of these findings and existing planting practices, rice yields could be increased in the Terai if  

earlier planting dates (approximately 14 June) were adopted and if N fertilizer levels were increased, re­

gardless of weather categories. However, these practices would have a higher likelihood of leading to  

greater yields and profits in El Nino years. The use of additional N fertilizer would be more profitable in 

El Nino years than in other years, because the marginal increase in yields due to the extra fertilizer would 

be higher during those years. Yet, these conclusions should be first verified by research stations before  

farmers are advised accordingly.
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Fig. III.4 Simulated yield as a function of planting date and ENSO phases for: (a) without N fertilizer, (b) 30 kg/ha  
N fertilizer, (c) 60 kg/ha N fertilizer, and (d) 90 kg/ha N fertilizer for Bhairahawa station from 1983 to 2010.

To investigate the causes behind the low yields realised in wet years and Lan Nina years, we analysed the  

model-simulated N leaching from the soil and plants’ N uptake for the various weather-year categories.  

Similarly, we conducted a separate evaluation of simulated drainage and runoff for the different categor ­

ies of years. 

III.3.4 Effect of precipitation on Nitrogen leaching

III.3.4.1 Wet/dry categories

N leaching increased in proportion to the amount of rainfall, as evident from the fact that N leaching was 

higher in above-average rainfall years, medium during normal years and low during below-average years  

(Fig.  III.5).  Mavromatis  et  al.  (2002)  also  found 15-40 % more  N leaching  in  the  cropping  season 
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followed by an El Nino phase with above-average rainfall. The rate of N leaching gradually declines if  

planting is delayed past 14 June, but it increases disproportionally as additional N fertilizer is added.

The highest N leaching rate, 38 kg/ha, occurred in the above-average rainfall years for the crops planted 

on 14 June with 90 kg N/ha. The lowest N leaching rate, 7 kg/ha, occurred during dry years for crops  

planted on 09 August without N fertilizer application. The yearly variations in N leaching, according to 

different fertilizer application levels and planting dates, are illustrated in Fig. III.5. The interannual vari­

abilities in N leaching, depicted by the height of the boxes, increased as fertilizer was added.

These findings imply that it is less efficient to use high levels of N fertilizers in wet years and normal  

years. In order words, increasing N fertilizer levels more efficiently boosts rice yields in dry years than in  

other years.

Fig III.5 Simulated N leaching as a function of planting date and rainfall for: (a) without N fertilizer, (b) 30 kg/ha N 
fertilizer, (c) 60 kg/ha N fertilizer, and (d) 90 kg/ha N fertilizer for Bhairahawa station from 1983 to 2010.

93



III.3.4.2 ENSO categories

Regarding the ENSO categories, the N leaching rate was high in La Nina years, medium in El Nino years  

and low in Neutral years (Fig. III.6). In terms the leaching rate, La Nina years were closer to wet years, El  

Nino years were closer to dry years and neutral years were closer to normal years. The N leaching rate  

increased in proportion to the amount of N fertilizer applied, and it decreased over time as planting dates  

were delayed. However, the increase in N leaching was disproportionally higher in La Nina years, when 

higher levels of  N fertilizer  were applied.  Similarly,  the N leaching rate slightly increased for crops  

planted on 28 June than on 14 June, followed by moderate but steady decrease. For the planting without  

N fertilizer, however, leaching rate steadily decreased after 14 June.

The highest N leaching rate, 38 kg/ha, occurred in La Nina years with an early planting date (28 June) and 

90 kg N/ha, while the lowest N leaching rate, 7 kg/ha, was found for El Nino years with a late planting 

date (09 August) without N fertilizer. Fig. III.6 provides the variations in annual N leaching rates, accord­

ing to fertilizer levels and planting dates.

Interannual variabilities in N leaching, illustrated by box height,  increased as additional fertilizer was 

applied. This growth, however, was disproportionally high for La Nina years, as demonstrated by the long 

whiskers of the wet years’ boxes. 

These findings imply that it is less efficient to use high level of N fertilizers in La Nina years, and they 

also suggest that early planting can reduce N leaching. This proves that when large amounts of N are  

applied during wet years, plants are unable to make use of the fertilizer, as it is instead leached away from 

the soil. Thus, applying high levels of N fertilizers during La Nina years is a waste of resources.
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Fig III.6 Simulated Nitrogen leaching as a function of planting date and ENSO phases for: (a) without N fertilizer, 
(b) 30 kg/ha N fertilizer, (c) 60 kg/ha N fertilizer, and (d) 90 kg/ha N fertilizer for Bhairahawa station from 1983 to  
2010.

III.3.5 Effect of precipitation on Nitrogen uptake

III.3.5.1 Wet/dry categories

N uptake was high during below-average rainfall years, medium during normal years, and low during 

above-average years (Fig. III.7). Normally, at high levels of N fertilizer, the rate of N uptake slowly fell  

when  planting  was  delayed  from past  14  June.  However,  it  increased  disproportionally  as  more  N 

fertilizer was added.

The highest N uptake rate, 120 kg/ha, occurred during below-average rainfall years for the 14 June plant­

ing date and 90 kg N/ha. Similarly, the lowest N leaching rate, 15 kg/ha, occurred during above-average 

rainfall years for crops planted on 14 June without N fertilizer. These yearly variations in the N uptake 

rate differed according to fertilizer level and the planting date are demonstrated in Fig. III.7.
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Fig III.7 Simulated Nitrogen uptake as a function of planting date and rainfall for: (a) without N fertilizer, (b) 30  
kg/ha N fertilizer, (c) 60 kg/ha N fertilizer, and (d) 90 kg/ha N fertilizer for Bhairahawa station from 1983 to 2010.

These findings indicate that high levels of N fertilizers are less efficient in wet years and normal years. In  

general,  applying large volumes of fertilizer in wet years is less efficient,  especially for late planting 

dates, as the plants can only access a small portion of the fertilizer, while the majority of it is lost. 

III.3.5.2 ENSO categories

N uptake was higher (lower) during the El Nino (La Nina) years. On average, the N uptake in Neutral 

years was very close to El Nino years (Fig. III.8). The N uptake rate slowly declined when planting was  

delayed past 14 June, but it increased out of proportion to additional N fertilizer levels.

The average highest N uptake rate, 116 kg/ha, occurred during El Nino years when planting took place on 

June 14 June and when 90 kg N/ha was applied. In contrast, the average lowest N leaching rate, 16 kg/ha,  
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was for La Nina years when planting took place on 14 June without N fertilizer. The annual variations in  

N uptake fluctuated according to fertilizer application level and planting date, and are depicted in Fig.  

III.7. The interannual variabilities in the N uptake rate, expressed by the box heights, increased for higher  

N fertilizer levels. 

These results infer that it is less efficient to use high levels of N fertilizers in La Nina years. In general,  

high volumes of fertilizer are less efficient in La Nina years, especially for late planting dates, as only a  

small portion of the fertilizer is taken up by the plants, and while the greater part is lost. 

Fig III.8 Simulated N uptake as a function of planting date and ENSO phases for: (a) without N fertilizer, (b) 30  
kg/ha N fertilizer, (c) 60 kg/ha N fertilizer, and (d) 90 kg/ha N fertilizer for Bhairahawa station from 1983 to 2010.
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III.3.6 Drainage and runoff

La  Nina  and  above-average  rainfall  years  experienced  more  drainage,  not  only  due  to  the  high 

precipitation levels,  but  also  the  higher  percentage of  precipitation contribution to  drainage  than  the 

runoff (Fig. III.9). The drainage-to-precipitation ratio was higher (40-42 %) in wet and La Nina years and 

lower in dry and El Nino years (34-35 %). 

Fig. III.9 Drainage and runoff for: (a) rainfall categories of years and (b) ENSO categories of years.

The average drainage (runoff) varied from 436 (220) mm during dry years to 816 (541) mm during wet 

years (Fig III.11). Similarly, the average drainage (runoff) varied from 465 (230) mm in El Nino years to 

811 (465) mm in La Nina years. The upper whiskers for drainage reached approximately 1,200 mm for 

wet years and La Nina years (Fig. III.11).

III.3.7 Value of forecasts

III.3.7.1 Existing practice

Based on informal discussion with farmers, we found that rice planting dates in the Terai’s rainfed system 

varied according to the monsoon onset date and the amount of soil water available in the soil. Usually,  

seeds are sown a few days after the monsoon’ onset, and transplanting takes place when the seedlings are  

25 days old. However, in extreme weather years, rainfall amounts and the available soil water can lead to  

altered transplanting dates. For example, when there is a monsoon break or heavy flooding, farmers must  

delay transplanting. In general, however, the transplanting date is around mid-July, although it can occur 

a few weeks before or after, depending on labour availability.
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Like the planting date, the N fertilizer level is not fixed. Rather, it varies from farmer to farmer, and indi ­

vidual farmers apply dissimilar amounts in different years. However, the most common application is 75 

kg/ha Diammonium Phosphate (DAP) during planting and 45 kg/ha Urea in top dressing, about 25 days  

post-planting. Since DAP is comprised of 18% N, and Urea is comprised of 46% N, this is equivalent to 

34 kg N/ha. Moreover, this figure is close to the World Bank’s data on Nepal’s average fertilizer applica­

tion rate of 28.4 kg/ha, which includes, Nitrogen, Phosphorus and Potassium (WorldBank, 2015). There­

fore, an average 15 July planting date and 30 kg N/ha are considered to constitute the existing rice cultiv­

ation practices in the Terai, which we employed as a baseline for comparison. 

III.3.7.2 Value of forecasts

A forecast’s value is calculated as the additional benefits from switching from existing rice cultivation 

practices to optimal management techniques. In our case, the model simulations identified the following 

optimal management methods: 14 June planting date, high levels of N fertilizer (60 kg/ha and 90 kg/ha),  

and El Nino years. The analysis indicated that increasing N fertilizer levels could boost rice yields in all  

years. However, net gross margins increased more substantially for crops planted on 14 June in El Nino 

years.

To that end, informal discussions at the local level estimated the cost of additional N fertilizer, as well as  

paddy prices. At the local level, Urea costs US$ 0.19/kg (1 US$=106 Nepali Rupees [Nrs.]) and a paddy 

with husk costs US$ 0.23/kg. The necessary quantity of Urea fertilizer was estimated on the basis of its 

46% N content. It was assumed that all Nitrogen came from Urea.

The net gross margins associated with 60 kg N/ha and 90 kg N/ha were US$ 15/ha and US$ 34/ha, re ­

spectively, for a June 14 planting date in El Nino years, as compared with similar change in other years.  

The values of the ENSO-based forecasts differed considerably from those found by other studies. For ex­

ample, Ramirez-Rodrigues et al. (2014) determined the ENSO-persistence-based forecasts were valued up 

to US$ 178/ha, while Asseng et al. (2012) found lower figure, only A$ 50/ha.

III.4 Conclusions

This study’s objective was to evaluate different management options’ effect on the coming season’s rice 

yields to better understand optimal management methods for maximizing yields and minimizing resource 

wastage. The analysis employed the DSSAT v4.6’s CERES-RICE model and employed advance informa­

tion on the coming season’s ENSO category. 
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The historical years were categorized into El Nino, La Nina, or Neutral years, according to the Oceanic  

Nino  Index  (ONI).  Similarly,  the  standardized  annual  precipitation  anomaly,  obtained  from weather 

station data, classified years as wet, dry, or normal. The DSSAT version 4.6’s Seasonal Analysis tool 

simulated yields for different weather categories under various fertilizer levels and planting dates. 

In general, rice yields were higher during dry and El Nino years and were lower in wet and La Nina years.  

The lower yield in La Nina years and wet years were associated with higher N leaching rates, as well as  

with reduced N uptake by plants (in wet years). Moreover, the reduced yields in La Nina years were re­

lated to an increase in minimum temperatures during the second half of the growing season. Similarly, the 

high leaching rate during wet years was associated with high drainage and runoff during wet years. In  

contrast, the N leaching (uptake) were lower (higher) during dry and El Nino years. 

Rice yield also depended on the amount of N fertilizer applied and on the planting date. Overall, addition ­

al N fertilizer caused yields to increase, but this effect weekend for crops planted from 14 June onwards.  

Considering that under existing practices in the Terai, rice planting takes place in mid-July and with low 

levels of N fertilizer, all years’ rice yields could be enlarged with additional N fertilizer and earlier plant ­

ing dates. However, the marginal increase in yield associated with additional N fertilizer was higher dur­

ing dry years and El Nino years. These conclusions must be verified by research stations.  

Therefore, extra N fertilizer is more efficient in dry years and El Nino years. This is also because a high  

portion of N leached away in wet years and La Nina years. Consequently, plants could only access a lim­

ited amount of fertilizer in those years. We calculated a forecast’s value as the additional benefit to be 

achieved from switching from existing practices to optimal management techniques in El Nino years, as 

compared with similar changes in other years. Increasing fertilizer levels to 90 kg/ha and 60 kg/ha resul ­

ted in net gross margins of US$ 34/ha and US$ 15/ha, respectively, for rice planted on 14 June in El Nino 

years. 

The interannual variability of N leaching and uptake was lower for crops planted on 14 June in dry and El 

Nino years than for other planting dates and other categories of years. This reduced interannual variability  

increases our confidence that N leaching (uptake) was lower (higher) in dry years for earlier planting 

dates than those currently employed. However, every La Nino years is not necessarily a wet year and 

every wet years has different intraseasonal variability. Therefore, the study’s conclusions have a statistical  

value but may lead to failures and losses. From an operational viewpoint, one should assess the probabil ­

ities and the cost of these “failures”.   
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