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Preface

The issues explored in this work concern economic interactions under bounded ratio-
nality. Each chapter considers these interactions from different angles.

In the first chapter, we characterize the optimal contract when a profit-maximizing
monopolist faces consumers that are diverse in preferences and in their bounded ra-
tionality. The bounded rationality is due to the individual’s cognitive limitation that
prevents him from making context-independent decisions and therefore leads to biased
choices. Each consumer is affected differently from this limitation, i.e., consumers are
diversely context-biased. Using the standard second-degree price discrimination model,
we characterize the optimal menu of contracts and show that the seller can increase
his profit by exploiting consumers’ bounded rationality. Our main result is that the
optimal contract has at most three menus even when the number of types is infinite.
The decision between two and three menus contract depends on the distribution of the
parameter 6 that models the level of context-bias of consumers. The contract with two
menus discriminates consumers based only on their preferences, whereas the contract
with three menus partitions the consumer set into three sets based on their preferences
and level of context-bias.

The second chapter is concerned with the interaction between fully and boundedly
rational agents in situations where their interests are perfectly aligned. The cognitive
limitations of the boundedly rational agent do not allow him to fully understand the
market conditions and lead him to take non-optimal decisions in some situations. Using
categorization to model bounded rationality, we show that the fully rational agent can
manipulate information to help decreasing the expected loss caused by the boundedly
rational agent. Assuming different types for the boundedly rational agent, who differ
only in the categories used, we show that the fully rational agent may learn the type of
the boundedly rational agent along their interaction. Using this additional information,
the outcome can be improved and the amount of manipulated information can be
decreased. Furthermore, as the length of the interaction gets longer the probability
that the fully rational agent learns the type of the boundedly rational agent increases.

The third chapter studies a model where a team of agents with limited problem-
solving ability face a disjunctive task over a large solution space. We provide sufficient
conditions for the following four statements. First, two heads are better than one:
a team of two agents will solve the problem even if neither agent will not. Second,
teaming up does not guarantee success: if the agents are not sufficiently creative, any



team (regardless of its size) may fail to solve the problem. Third, “defendit numerus”:
even if the agent’s problem-solving ability is adversely affected by the complexity of
the solution space, small teams of more than two people will still solve the problem.
Fourth, groupthink impairs the power of diversity: if agents’ abilities are positively
correlated, larger teams are necessary to solve a problem.



Chapter 1

Discrimination over Price and
Quality when Agents are
Context-Biased

1.1 Introduction

The assumption of full rationality is widely used in economic literature since it simplifies
economic models substantially and makes them analytically tractable. Wide literature
initiated by Amos Tversky, Daniel Kahneman, and their collaborators presents exper-
imental evidence that human beings depart systematically from full rationality due to
cognitive limitations.

The following experiment, performed by Simonson and Tversky (1992), exhibits
an abnormal decision pattern. There were two versions of the experiment. In the
first version, participants were asked to choose an item among three alternatives; high
quality brand of tissue, high quality brand of towel (a substitute product for tissue)
and low quality brand of towel. In the second version, low quality brand of towel was
replaced by its substitute, i.e., by low quality brand of tissue. Under the assumption
of full rationality, these two sets of alternatives are equivalent. That is because a
low quality brand item is always offered together with the high quality brand of the
same item in both sets of alternatives. Since low quality items are strictly dominated by
high quality ones, the decision of an individual would simplify to choose between a high
quality brand of towel and a high quality brand of tissue and therefore the results of
the experiment would be same in both versions. In other words, under the assumption
of full rationality the preference between alternatives is independent of the context.
However, it is shown that the market share of high quality brand towel in the first
version is significantly greater than its share in the second version. Even though the
low quality items are almost never chosen, their existence affects the choice of agents.
This suggests that consumer preferences are influenced by the context, i.e., they are
context-biased. Furthermore, we observe that a significant number of people tend to



choose the high quality item whose low quality is also present among alternatives.
This shows that introducing an inferior option in a category may help to increase the
attractiveness of that category.

The above fact may be a possible explanation why shopkeepers prefer to put fancy
and highly expensive or very cheap but low quality products on the window of their
shop even though the probability to sell these products is very low: to attract attention
to their shops. These type of products, that are defined as ‘pure attention grabbers’ in
Eliaz and Spiegler (2010), mostly provide low utility to consumers, either because they
are of high quality but too expensive or because they are cheap but of low quality. The
following example, inspired by Eliaz and Spiegler (2010), illustrates the usage of these
products. A consumer who wants to buy a new cellular phone may notice that a store
offers a model that is very small in size. In order to inspect this model, he enters the
store and figures out that the other features of this model are not that good (e.g., it
does not have a camera). Being already in the store, the consumer may browse other
models and find one that suits his needs. Thus, even though the phone that is small
in size is not sold, it grabs the attention of consumers and directs them to the store.

The main purpose of the paper is to study the effects of heterogeneity in the level
of context-bias of agents. For this purpose, we revisit the standard second degree
price model under the assumption that agents differ both in preferences and in the
level of context-bias. Using this setting, we examine what set of contracts would an
ordinary profit-maximizing monopoly offer when faced with such consumers. We use
representation of choice borrowed from Barbos (2010) where the variable 6 € [0, 1]
models the individual’s level of context-bias. In line with the terminology used in
Eliaz and Spiegler (2010), we say that an agent with 6 =0 is fully sophisticated and
an agent with 6 =1 is fully naive. There are two sources that identify the type of
a consumer: his valuation for the quality and his level of context-bias. For the first
entry, there are two alternatives: high and low. When it comes to the second entry,
we consider first the case where it has two possible values, #; and 65 (> 6,). We call
f,-consumers sophisticated and #,-consumers naive. In this case, there are four types
in the market: naive with high valuation, sophisticated with high valuation, naive with
low valuation, sophisticated with low valuation. Assuming that the seller knows 6, 65
and the probability of each type in the market, we show that the optimal contract has
either two menus that discriminates consumers based only on their valuation for the
quality or three menus that partitions the consumer set into three sets as: naive with
high valuation, sophisticated with high valuation and low valuation consumers. We
further show that the decision between contracts with two and three menus depends
on 1, f; and the probability of naive with high valuation type. Then, we move to a more
realistic case where we characterize the optimal menu of contracts with a continuum
of context-biased types. In other words, the second entry that identifies the type of a
consumer, f, takes values in a continuum. We assume that the seller does not observe
0 but he knows the distribution of it. We show that with continuous context-biased
types, the optimal contract has at most three menus. Whenever the fully sophisticated



consumer with high valuation is present then the optimal contract has exactly three
menus. In the case of a contract with three menus, the set of consumers is partitioned
into three subsets. One of the subsets is composed of low valuation consumers whereas
the other two belong to high valuation consumers. The seller has to optimally decide
on a threshold for € so that the contract discriminates high valuation types depending
on this threshold.

The idea of discriminating between consumer types according to their cognitive
features first appears in Rubinstein (1993). In this paper, monopolistic behavior when
consumers differ in their ability to process information regarding the economic market
is analyzed. It is shown that by complicating the price offers, a monopolist can limit
the number of consumers accepting his offer. A crucial assumption that is made in this
paper is that the high type (the type with low cost of production) is more sophisticated
than the low type, i.e., the high type is more capable of processing information than the
low type. This assumption narrows down the real life situations that can be covered
by Rubinstein’s model. In our model, however, we do not have such a restrictive
assumption. Piccione and Rubinstein (2003) model cognitive differences among agents
using the concept of DeBruijin sequences. They show that price fluctuations that are
independent of economic fundamentals can emerge in equilibrium when consumers have
diverse ability to understand market behavior. Furthermore, this can be recognized
only by more sophisticated agents. Eliaz and Spiegler (2006) study a model in which
agents differ in their ability to forecast changes in their future tastes. They show
that more naive types are more heavily exploited and generate a greater profit for the
principal, which is one of the conclusions that we too arrive at in this paper. Barbos
(2010) studies a model of choice from options grouped into categories that accounts
for the context-bias and shows that the proposed model yields a representation that
is unique. By using this representation in a second degree price discrimination model,
he shows that sellers facing context-biased consumers can increase their profits by
exploiting their bounded rationality. The main difference between this paper and ours
is that Barbos assumes implicitly that all the consumers have same 6, i.e., they are
homogeneous in their context-bias level, whereas we relax this assumption by letting ¢
vary in [0, 1] and study the optimal contract when agents are diversely context-biased.

The organization of the paper is as follows. In Section [1.2] we describe the model
by giving the assumptions and the representation of preferences. In Section [I.3] we
examine and characterize the optimal menu of contracts in discrete case, and continue
with the continuous case in Section [1.4] Finally Section concludes the paper, while
the proofs are presented in Appendix.

1.2 The Model

We study a second degree price discrimination model that shows how a monopolist
facing consumers differing in preference and in the level of context-bias could exploit
the bounded rationality of consumers and increase the profit.



Products on the market are characterized by quality-price pair, (¢,p) € ]Ri, and
utilities of consumers depend on these two variables. Consumers differ in their tastes
for quality; A€ (0, 1) share of consumers have low valuation for the quality denoted by
v;(.) and the rest have a higher valuation for the quality denoted by v, (.). The utility
of a consumer is given by

ui(q,p) = vi(q) — p, (1.1)
where i € {h,l}. The single crossing property is satisfied (v} (¢q) > v](q), for all ¢) and
outside option for the consumers is assumed to be zero. The profit of the seller is the
amount he receives from customers for the products he sells minus the total cost of
production that depends on the quality of the products. The cost function, c(q), is
strictly increasing, differentiable and convex.

We use the reference-dependent representation proposed by Barbos (2010) for choices
of consumers. This representation is consistent with the experimental evidence by Si-
monson and Tversky (1992), presented in the introduction. In this setup agents make
two sequential decisions. They choose first a category among the exogenously given
categories and then an item from that category. Being context-biased affects only the
first decision. This is due to the fact that the presence of an inferior option in a cate-
gory may increase the attractiveness of that category, as suggested by the experiment
of Simonson and Tversky (1992). A consumer makes his first decision by comparing
his own valuations of the exogenously given categories and chooses the category with
the highest valuation. The valuation of a consumer for a finite category A is given by

VA = | 5 U =0 B, ) =
where 6 € [0, 1] stands for the individual’s level of context-bias. Observe that when
0 =0, the second term of equation disappears and the individual’s valuation for
each category is based only on the product that provides the maximum utility in that
category. In this case, the choice will be optimal. Thus, §=0 represents the situation
where the individual is context-unbiased (fully sophisticated). For an individual with
a strictly positive 6, the resulting choice may deviate from the optimal one, meaning
that the individual is more naive than the fully sophisticated individual. Finally, the
case =1 represents the situation where the consumer is fully naive. Furthermore, the
above formulation considers only items that provide non-negative utilities, i.e., items
that provide higher utility than the outside option. This means that consumers take
into account products that they might end up buying when evaluating a category. In
the case when all the items in one category have negative value for the consumer, we
assume that his valuation for this category is zero.

The second decision that consumers make is to pick an item from the chosen cate-
gory. All consumers make this decision optimally by choosing the product that maxi-
mizes their utility. That is, given that a consumer chooses the category A in the first
stage of his decision process, his second decision is determined by

c(A) = arg max u(x).

6



The following example illustrates how the decision process works. Consider the first
version of the experiment from Simonson and Tversky (1992). Individuals are asked to
choose between a high quality brand of tissue, a high quality brand of towel and a low
quality brand of towel denoted by y, x and 2/, respectively. Assume that the utilities
of the alternatives for a consumer with 6 =0.5 are u(y) =12, u(z) =10 and u(z’) =5.
The first phase of the decision process is to select between the category of tissues and
the category of towels by comparing their valuations:

V(Tissues, 0 = 1/2) = u(y) — 0u(y)

= 12-1/2%12=6
V(Towels, 8 =1/2) = u(z) — Ou(z))

= 10-1/2%5=175

This individual chooses the category of towels since its valuation is higher. In the
second phase, he concentrates on the category of towels and chooses the high quality
one (z), since u(x)>wu(z"). In this example, we see that even though the high quality
brand of tissue (y) provides the individual with the highest utility, he ends up choosing
the high quality brand of towel (z) because of his context-bias. Observe that consumers
with 6 < % make the optimal choice since they are sophisticated enough not to be fooled
by the attractiveness of the towel category.

We start our analysis by assuming that there are two types of consumers accord-
ing to their level of context-bias: a sophisticated type with # = 6; and a naive type
with 0 = 0y > 0;. The seller knows the exact values of 0y, 6y and their distribution.
After characterizing the optimal contract in Section [I.3] we replace this assumption
by a less restrictive and more realistic one in Section [[.4] We assume that there are
infinitely many possible types based on the level of context-bias (# € [0, 1]) and work
on the optimal contract when the seller does not observe this variable, but knows its
distribution.

1.3 Discrete Case

There are two classes of consumers according to their level of context-bias: consumers
with 6; (sophisticated consumers), and consumers with 65( > ;) (naive consumers).
Overall, there are totally four types on the market with the following probabilities:

e sophisticated with high valuation ((1 — A)(1 — ay,))
e naive with high valuation ((1 — X)ay)
e sophisticated with low valuation (A(1 — «;))

e naive with low valuation (Aq)



The values given in the parentheses are the probabilities of types, where A € (0,1)
denotes the probability of being low valuation, a5 € (0,1) and o € (0,1) are the
conditional probabilities of being naive given the consumer has high and low valuation,
respectively.

The seller knows all the parameters described so far and wants to discriminate
between types in order to maximize his profit. Thus, the optimal contract has at least
two menus, each of which is designed for some types on the market. In other words, a
contract with a single menu is strictly dominated by a contract with two menus since
the seller is able to discriminate between low and high valuation types and increase
his profit by using a contract with two menus. Furthermore, the optimal contract
can have at most four menus since there are four types in the market. In the next
subsection, we characterize the optimal contract with two menus and show that there
is no need for the seller to discriminate between low valuation types, i.e., designing
different menus for sophisticated with low valuation type and naive with low valuation
type does not increase the profit. This fact suggests that the optimal contract has
either two or three menus. The contract with two menus, characterized in Section
[1.3.7] discriminates between high and low valuation consumers, whereas the contract
with three menus discriminates between naive with high valuation, sophisticated with
high valuation and low valuation consumers. After characterizing the contract with
three menus in Section [1.3.2] we show that in some situations the optimal contract has
two and in some others it has three menus.

1.3.1 Contract with Two Menus

There are two products in each menu of the contract; one of them is to be sold to
consumers who choose that menu in the first phase of the decision process and the other
product is there only to attract some types (e.g., the low brand of towel in the example
introduced at the beginning of Section and we call these products as primary
and secondary product, respectively. Since we have only two menus, this contract
discriminates between high and low valuation consumers. Figure [1.1]is an illustration
for this contract, where the first menu is designed for high valuation consumers and
the second menu is for low valuation consumers. The primary and secondary products
are denoted by (¢;, p;) and (¢}, p}) respectively, where ¢ = h for the first and i = [ for
the second menu.
The seller’s problem is

max 1-A —c +Ap—c s.t. for i € {h,l} (1.3
{((q:.90).(a] 7)) B2 xB2 } (1= [pn = clan)] + Alpe = cla)] {h,1} (1.3)

0 (L31)
,(qg,pg)}ﬁj) > V;({(Q—i;p—i)’ (q,—z‘ap/—i)}aej) JE {172} 3)

ui(q;, p;)
Ui(% pi)
Vi({(ai,ps)

>
>



(qn,pn) (@, 1)

(), 7)) (q],p})

Type H Type L

Figure 1.1: Contract with Two Menus

The first incentive restriction ([1.3[1]) guarantees that the secondary product in the
menu designed for consumers of type ¢ provides higher utility than the outside option
which is assumed to be zero. The restriction ((1.32)) guarantees that primary products
provide higher utility than the secondary products for the respective type. Finally,
the restriction ([1.3/3]) ensures that type i’s valuation for the menu designed for him is
higher than his valuation for the other menu. In other words, guarantees that
each consumer selects the menu that is designed for him.

Lemma (1| characterizes the solution to this optimization problem.

Lemma 1 The FOCs to the seller’s optimization problem are:

(@) = vh(@) (1.4)
pr = vn(qn) — (1 = 01) [on(@) — vilq)] (1.5)
¢(g)) = vila) = == (1= 01) [vh(a0) — vi(a)] (1.6)
p=ul(q) (1.7)

See Appendix[A.T] The implications of the FOCs are as follows:

i. The comparison of equation ([1.4) to (1.6, together with the fact that single
crossing property is satisfied, shows that ¢/(¢;) >¢/(¢/), and the convexity of ¢(.)
ensures gy >q; .

ii. The equation (|1.7)) implies that the consumers with low valuation pay a price that
is equal to their valuation for the quality of the product they are buying. Put
differently, they end up with zero utility. Therefore,

- Consumers with low valuation cannot be exploited more. Thus, it is unnec-
essary to discriminate these consumers based on their level of context-bias.
In other words, the contract with four menus is never optimal.

- We have Vl({(ql*,pf), (g 01}, 6i) =0 Vje{1,2}, since w(qg/, p;) =0. There-
fore, the incentive restriction (|1.3[3)) ensures that w;(g}, p;) <0 and this im-
plies p; > p;. The economic interpretation of this implication is as follows:



The fact that low valuation consumers end up with zero utility ensures that
their valuation for the menu designed for them is zero. But we also know
that their valuation for the other menu (the menu designed for high valu-
ation consumers) must be less than the valuation for this menu because of
the incentive compatibility constraint. Therefore, the utility of the product
that is sold to consumers with high valuation is negative for consumers with
low valuation. We already know that the product sold to high valuation
consumers has a higher quality than the one sold to low valuation consumers
(i >q;). Therefore, in order for its utility to be negative for low valuation
type, the price of the high quality product must be greater (pj > p;).

iii. Both the quality and the price of the product sold to low valuation consumers
and the price of the product sold to high valuation consumers (g}, p}, p;;) in the
optimal contract depend on 6; but not 5. The reasoning for this is the following:
the fact that the consumers with 6, are more sophisticated than the ones with 6,
implies that whenever the incentive constraint for sophisticated type is satisfied,
the one for naive type is already satisfied. Therefore, the contract is designed
based on #, rather than 6.

Finally, the profit of the seller from the contract with two menus is

I = (1 = Nph — clap)] + Alpi — cla))]
= (1= N)]enlap) — (1= 00) (on(ar) = wilap) — elai)] + Alunla?) = e(g))], (18)

where ¢; and ¢ are the solutions to equations (1.4)) and (1.6)), respectively. The profit
is increasing in 6; since as #; increases, the sophisticated type becomes more naive and
therefore can be exploited more heavily.

1.3.2 Contract with Three Menus

In this subsection, we characterize the contract with three menus using the same set-
tings of the previous subsection. Having three menus, this contract partitions con-
sumers into three sets. As we have already observed in the previous subsection, all
low valuation consumers are considered together without making any discrimination
based on their level of context-bias. Therefore, this contract has one menu designed
for sophisticated with high valuation consumers, another menu for naive with high
valuation consumers and the last menu for consumers with low valuation. Figure [1.2
shows an illustration of this contract. The primary and secondary products are de-
noted by (qx, pr) and (qj,, p.) respectively, where k=a for the first menu, designed for
sophisticated with high valuation consumers, k=10 for the second menu, designed for
naive with high valuation consumers and k=c for the third menu designed for all low
valuation consumers.

10



(9as Pa) (qv,p) (9e, pe)

(9a: o) (a5, P) (qc, PL)
Type H with 6 Type H with 6 Type L
(1 =21 —ap) (1 =Aan ()

Figure 1.2: Contract with Three Menus

The optimization problem in this case is as follows:

max (1 =N = an) [pa = e(ga)] + (1 = Man [py — ()] + Alpe — clge)]  (1.9)

{((grpr):(q},:p},)) ERZ xR }

s.t. for k € {a,b,c}

un (g ph) > 0, un(qp,ph) > 0, w(qe, ) > 0, o
Uh(Qavpa) > Uh(q:mp;)a uh(qbvpb) > uh(qg,,Pg), ul(QCapc) > Ul(Qéaplc)v 2)
Vi ({(gasPa), (¢}, P4)}, 61) > max {Vh({(%pb), (ab:05)}:01), Vi ({ (gcs pe), (a2, P} 91)},

([1.913)
Vh({(qbvpb)v (ql/)vp;)>}a 02) > max {Vh ({(Qaapa)a (q;,p;)}7 92)7 Vh({(qC7pC)7 (QQJ):;)}) 92) }7

[1.94)
Vi({(ge:pe), (q.P))},0;) > max {Vz({(qa,pa), (g0, 24)}05), Vi({ (g6, ), (a5, 1)} 93-)}7 ([L.95)
for j € {1,2}.

The first three incentive restrictions ([1.9} 1) guarantee that each secondary product
provides higher utility than the outside option, which is assumed to be zero, to the
specific type for whom the menu is designed. The second three restrictions (|1.9}2))
ensure that the primary products in each menu provide higher utility than that menu’s
secondary product to the specific type. Finally the last three restrictions ((|1.9.3)),
(1.9.4) and (1.9.5])) guarantee that each consumer selects the menu that is designed for
his type.

Lemma |2| characterizes the solution to this maximization problem.

11



Lemma 2 The FOCs to the seller’s optimization problem are:

(¢a) = v4(da) (1.10)

Pa = Vn(da) — [0n(ge) — vi(qe)] (1.11)

d(q) = U;L(Qb) 1.12

po = va(g) — (1 = 63) [va(ge) — vilgqe)] (1.13)
/ / I—A / /

(gc) = vi(ge) — — (1 — anby) [vp,(ge) — vilge)] (1.14)

pe = vi(qe) (1.15)

See Appendix [A.2]
The implications of the FOCs can be listed as follows:

i

ii.

1il.

1v.

Comparing equation (1.10) with (1.12) we see that ¢¢ =¢;. The products that
are sold to sophisticated consumers with high valuation and to naive consumers
with high valuation have the same quality.

The fact that ¢f =g¢; and the comparison of equation ((1.11)) with (1.13)) yield p} <
py- The seller sells the same quality product to consumers with high valuations

but charges the naive type more. Therefore, naive high valuation consumers are
more heavily exploited and generate a greater profit for the seller.

The implications of the FOCs of the problem of designing optimal contract with
two menus regarding the quality and the price of the product sold to low valuation
consumers are still valid. That is, ¢; < ¢ and p} <p}.

The quality of the product sold to low valuation consumers (¢}) and therefore
the prices of all primary products (p%,pi,p:) depend on 6 but not ¢;. This is
because the incentive of the sophisticated high valuation consumers to choose
the menu designed for them is given through their preferences, not through the
fact that they are context-biased. The secondary product designed for them has
the same utility as the primary product (see Claim |8 in Appendix . This
fact implies that the seller does not have to use the secondary product for that
menu. He can achieve his goal by using only the primary product for that menu.
However, the utility of the secondary product used for the menu of naive with
high valuation consumers is zero, that is, different than the utility of the primary
product in the same menu (see Claim in Appendix. Therefore, the incentive
of the naive with high valuation consumers to choose the menu designed for
them is given through both their preferences and the fact that they are context-
biased. Finally, the utility of the secondary product used for the menu of low
valuation consumers is equal to the utility of the primary product in the same

12



menu (see Claim@in Appendix. This implies that the incentive compatibility
constraint of low valuation consumers is satisfied through their preferences, not
through their context-bias. Hence among all consumers, only naive with high
valuation consumers are exploited depending on their context-bias.

Finally, the profit of the seller from the contract with three menus is

I =(1-XN1—an)lp, —clg)] + (1= A anlp, — c(gp)] + Alp; — c(qr)]

= (1= ) (1 — o) [vnlgs) — (vnlgs) — vi(g)) — clq;)]
+ (1= N an [valgy) — (1= 02) (vn(q) — vi(q})) — clgy)] + Moi(q}) — e(q))]

= (L= ) [onlaz) = c(az) = (1 = an 02) (valqz) — vi(a:))] + Alwi(az) — e(g?)] (1.16)

where ¢¢ and ¢! are the solutions to equations (1.10) and (1.14)), respectively. II} is

increasing in #,, since this is the level of context bias of the type that is discriminated
based on the cognitive limitations. Naturally, II5 is also increasing as the probability
of this type (a4) is increasing.

Comparing the profits of the contract with two menus (II3) given in and three
menus (IT}) given in (1.16]), we see that

II5 > 115 & ap > % (1.17)
2

The contract with two menus discriminates between high and low valuation con-
sumers. The incentive compatibility constraint for the high valuation consumers must
be binding for sophisticated ones so that both sophisticated and naive consumers with
high valuation choose the menu designed for them. Therefore the profit in this case
depends on the level of context-bias of sophisticated consumers (#;) and the above in-
equality implies that the contract with two menus must be used when 6, is high
enough. However the contract with three menus, on top of discriminating between high
and low valuation consumers, further discriminates high valuation consumers based on
their level of context-bias. In particular, this contract exploits the naive consumers
with high valuation whose level of context bias is 3 and the conditional probability
of being naive given high valuation type is «j. The inequality implies that this

contract needs to be used when the multiplication «y, 05 is high enough.

1.4 Continuous Case
In this section we characterize the optimal menu of contracts with a continuum of

types according to the level of context-bias. We keep all the assumptions related to
the consumers’ preferences made in previous sections, but now we assume that the
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seller does not observe . However, he knows that it is distributed according to a
cdf F(0) on [0, 1] for consumers with high valuation and G(6) for consumers with low
valuation again with support [0, 1]. We further assume that F'(0) is differentiable and
F’(#) > 0. We have no specific assumption on G since, as it is in the discrete case, we
show that also in the continuous case the optimal contract has one and only one menu
designed for all low valuation consumers, i.e., low valuation consumers are no further
discriminated based on their cognitive limitation.

Our first observation for the continuous case is that since we are dealing with a
continuum of types, there are infinitely many possible ways to discriminate consumers.
In order to characterize the optimal contract in this case, first we need to figure out
the number of menus that the optimal contract has. The following Lemma narrows
down the possibilities from infinity to two.

Lemma 3 The optimal contract has at most three menus.

See Appendix [A.3]

The following example is an illustration of Lemma [3| that shows a contract with
four menus is dominated by a contract with three menus.

Example. Assume that the valuations of high and low types are v;,(q) = 2In(¢+1) and
v(q) = In(g + 1), and 6 is distributed uniformly on [0, 1]. Consider the contract with
four menus given in Figure [I.3] where each product is characterized by quality-price
pair.

(el'-1,12) (ell-1,14) (ell-1,18) (el%-1,10)
(€59-1,90) (€501, 95) (€59-1,100 (el%-1,10)
Menu-A Menu-B Menu-C Menu-D

Figure 1.3: Example of a Contract with Four Menus

Menu-A is designed for high valuation consumers whose 6 belongs to interval € [0,0.4),
whereas Menu-B is also for high valuation consumers but with 6 € [0.4,0.8). Menu-C
is for the rest of high valuation consumers and finally Menu-D is designed for all low
valuation consumers. Figure gives all the utilities provided by the products of the
contract for high/low valuation consumers.

Our aim is to show that this contract is strictly dominated by another contract with
three menus. Before introducing the other contract, we want to demonstrate that
this menu satisfies all the incentive restrictions. From Figure [1.4] we see that all the
secondary products in Menu-A, Menu-B and Menu-C offer a positive utility to whom
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10/—1 8/-3 4/-7 10/0

10/—40 5/—45 0/—50 10/0

Menu-A Menu-B Menu-C Menu-D

Figure 1.4: Utilities provided by the Contract with Four Menus

the menus are designed, i.e., to high valuation consumers. Furthermore, the primary
products in these menus provide high valuation consumers with a utility that is greater
than the one provided by the secondary products. Furthermore both the primary and
the secondary product in Menu-D offer zero utility to low valuation consumers. Finally
we need to check for incentive compatibility restrictions. Menu-A, Menu-B and Menu-
C offer products with negative values for low consumers therefore they all have zero
value for low valuation consumers which is the same as his valuation for Menu-D.
This shows that the incentive compatibility constraint for low valuation consumers
is satisfied. Now consider the values of menus for high valuation consumers whose 6
belong to [0,0.4):

Vi(A, 0 €10,0.4)) = (1—6)10
Vi(B,0 €[0,0.4)) = 8 — 50
Vi(C,0 €10,04)) =4
Vi(D,0 € (0,0.4)) = (1 —0)10

Thus we have

V(4,6 € [0,04) = max {Vi(k.0 € [0,0.4))} = Va(D, € [0,0.4))

This shows that this type of consumers will choose Menu-A among all menus. In
the same way we can show that all the other incentive compatibility constraints are
satisfied with this contract. The profit of the seller from this contract is

I = (1 — A\){0.4[12 — c(e''=1)] + 0.4[14 — c(e''=1)] + 0.2[18 — c(e''-1)]}
+ A[10 — ¢(e'-1)]
= (1—A){14 — c(e"=1)} + A[10 — c(e'*-1)] (1.18)
Now consider the contract depicted in Figure Comparing this contract with the
previous one we see that Menu-A and Menu-D still exist in this contract however Menu-

B and Menu-C are replaced by Menu-B’. As in the first contract Menu-A and Menu-D
are designed for the high valuation consumers whose s belong to the interval [0,0.4)
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and low valuation consumers, respectively. Menu-B’ is constructed for all the other
consumers, i.e., for high valuation consumers whose s belong to [0.4,1]. Another way
to view this contract is that it is a version of the previous contract where Menu-B and
Menu-C are merged.

(el'-1,12) (ell-1,16) (e1—1,10)
(€59-1,90) (€501, 100 (e1-1,10)
Menu-A Menu-B’ Menu-D

Figure 1.5: Contract with Three Menus

In Figure we have all the utilities of high/low valuation consumers provided by
each product in the contract. We want to show first that all the incentive restrictions
are satisfied with this contract and then that the profit of the seller is higher in this
case. All the incentive restrictions for the low valuation consumers are satisfied since

10/—1 6/—5 10/0
10/—40 0/-50 10/0
Menu-A Menu-B’ Menu-D

Figure 1.6: Utilities provided by the Contract with Three Menus

this type receives zero utility from both the primary and secondary product in the
menu designed for him and his valuations for all the menus of the contract are equal
and zero. All high valuation consumers receive non-negative utility from the secondary
products and this is less than equal to the utility received from the primary products.
Now consider the values of menus for high valuation consumers whose 6 belong to

0,0.4):
Vi(A, 6 €100,04))=(1-6)10
Vi(B',0 €10,0.4)) =6
Vi(D,0 €10,0.4)) = (1 —6)10

Thus we have

Vi(4,6 € [0,04) = max {Vi(k,0 € [0,0.4))} = Vi(D, 0 € [0,0.4))
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This shows that this type of consumers choose Menu-A among all menus. The values
of menus for the rest of the high valuation consumers are

Vi(A, 0 € [0.4,1]) )

=(1-0)10
Vi(B',0 €10.4,1]) =6
Vi(D,0 € [0.4,1]) = (1 —0)10
Thus we have

Vi(B'0 € 04,1) =6 > max (Va(h0 €041} = (1-6)10,

ke{A,D

showing that this type of consumers choose Menu-B. Therefore, this contract satifies
all the incentive restrictions. The profit of the seller from this contract is

I3 = (1 — A\){0.4[12 — c(e''=1)] + 0.6[16 — c(e''—=1)]]} 4+ A[10 — c(e'*—1)]
= (1 =X {144 — c(e"'—1)} + A[10 — ¢(e'-1)] (1.19)

Comparing the profits from each menu given in (1.18]) and (1.19)) we see that II3 > I1,.
This completes the example by showing that any contract with four menus is dominated
by a contract with three menus. The last observation before finalizing this example
is that here we constructed the contract with three menus by merging Menu-B and
Menu-C, but in some other situations we may need to merge Menu-A and Menu-B
without changing Menu-C. There are two sources that determine which menus need to
be merged: the lowest levels of 6 for which the menus are designed (in the example they
are 0, 0.4 and 0.8 for Menu-A, Menu-B and Menu-C, respectively) and the distribution
of 6.

Without loss of generality we can say that any contract with more than three menus
is dominated by a contract with three menus. Thus the optimal contract has either
two or three menus. A contract with two menus partitions the set of consumers into
two subsets based on the differences in preferences. In other words, it discriminates
between high and low valuation consumers. This contract is the same as the one
characterized in Section except that 6; is replaced with the lowest possible level
of # for high valuations type, which is assumed to be zero here. A contract with three
menus partitions the set of consumers into three subsets as low valuation consumers,
high valuation consumers whose 6 is lower than a threshold, say 6, and high valuation
consumers whose 6 is greater than 6. The seller needs to decide optimally on the

threshold level, # € [0,1]. This contract resembles the one characterized in Section
152

Figure shows an illustration of the contract. The primary and secondary prod-
ucts are denoted by (qx, pr) and (g, p)) respectively, where k = a for the first menu
designed for high valuation consumers whose @ is less than the threshold, 6, k = b
for the second menu designed for high valuation consumers whose 6 is greater than
the threshold and k =c for the third menu designed for all low valuation consumers.
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(9as Pa) (qv,p) (9e, pe)

(9a: o) (a5, P) (qc, PL)
Type H Type H_ Type L
with 6 € [0,60) with 0 € [0, 1] with 6 € [0, 1]

Figure 1.7: Contract with a continuum of types according to the level of context-bias

Observe that the optimal contract has two menus if 8 is 0 or 1, otherwise it has three
menus.
The seller’s optimization problem is

I(0) = (e ez xm2 (1=XF(0) [pa — c(ga)] + (1 = N)(1 = F(0)) [ps — c(ap)] + A [pe — c(gc)]

s.t. for k € {a,b,c} (1.20)
un (g, 1) > un(qp,py) > 0, w(qe, pt) > 0, (201
Uh(Qaypa) > (qa,pa) un (qv, pv) > un(qy, 1h), ui(ges pe) > (g, pl), (1.2012)
Vi ({(¢aspa), (¢4, P,)}, 61) > max (Vh({((ﬂn o), (@, 23}, 01), Vh({(qmpc),(qé,p’c)},ﬁl)), (L:2013)
Vi ({ (a6, 2, (g4, p1)}, 02) > max (Vh({(ch Pa)s (4asP4)}02), Vi ({(ge, pe), (q&p’c)},@z)) (1.2014)
WG(QmPc)? (qé,plc)},g) = max (Vl ({(Qa»pa)a ( aapa)} 8) ({(Qb;pb) (qg,pg)}a 0))7 (1.205)

for 61 €[0,0), 6,€10,1], 6¢€][0,1].

This optimization problem is very similar to problem . Here the first menu
of the contract is designed for high valuation consumers whose @ lies between [0, §)
instead of a specific 6. Likewise, the second menu is designed for high valuation con-
sumers whose 0 lies between [f, 1] instead of a specific one. Furthermore the incentive
restrictions ((1.201)) and (|1.2012)) are the same as ((1.9/1)) and ensuring that each
secondary product provides higher utility than the outside option and that the primary
products in each menu provide higher utility than that menu’s secondary product to the
specific type, respectively. The incentive compatibility constraints (((1.20[3]), (1.20.4)
and (L.20[5))), which guarantee that each consumer selects the menu designed for his
type, are slightly different than ((L.9[3)), (1.9[4) and (L.9[5))) in that they are constructed
for a continuum of types rather than discrete.

Lemma 4] characterizes the solution to this maximization problem.
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Lemma 4 The FOCs to the seller’s optimization problem are:

(¢a) = v4(¢a) (1.21)

Pa = Vn(da) — [Un(ge) — vi(qe)] (1.22)
@) =vp(w) (1.23)

Po = vn(gs) — (1 = 0) [vn(ge) — vi(qe)] (1.24)
/ , 1—=A o ) )

(ge) = vi(ge) = —— (L =0+ 0 F(0)) [vi(a) = vilge)] (1.25)

Pe = vi(qc) (1.26)

See Appendix [A.4]
The implications of the FOCs, listed below, can be derived using the same reasoning
of the contract with three menus in the discrete case given in Section |1.3.2}

i. ¢¢ = ¢ and p; < p;. The seller uses the same quality product in the first and
the second menu but the price is higher in the second menu that is designed for
relatively more naive types.

ii. ¢& < q; and p} < p;. Both the quality and the price of the primary product in
the third menu are less than those in the first menu.

iii. Among all consumers, only high valuation consumers with 6 € [, 1] are exploited
by context-bias.

The profit of the seller from this contract depends on the threshold (#) in use and
is given by

°(0) = (1 = A) F(0) [pg — clga)] + (1 = A) (1 = F(9)) [py — e(gp)] + Alpe — e(qr)]

=(1-\) F(0) [Uh(Q_Z) — (vn(q}) — Ul(Q_:)) —c(q})]
+ (1 =N (1= F(0)) [valgs) — (1 = 0) (on(q}) —vi(q})) — elgp)] + Muilgh) — e(q))]

= (1= X) {(vnlqy) — () — (1 =0+ 0 F(0))[vn(q}) — vilg)]} + Aui(gr) — e(q))]
(1.27)

Now, we need to find the optimal § that maximizes the profit of the seller. Unfor-
tunately, it is not easy to show that the profit function ([1.27)) is concave. However, we
can make the following observations:

i. IT*(9) is a continuous function on its compact domain [0, 1]. According to Weier-
strass Theorem, IT* has a maximum on [0, 1].
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11.

1il.

1v.

I1*(0) = I1*(1). This is because when @ is 0 or 1, all high valuation consumers
are considered as whole, i.e., they are not exploited by their context-bias. There-
fore, the optimal contract has only two menus discriminating between high and
low valuations consumers and ignoring their context-bias. Hence, the optimal
contracts when § = 0 and # = 1 are the same.

I1*(0) = (1 — X\)(vn(qf) — vi(qf)) > 0, therefore limg_,y+ II*'(6) > 0 and

(1) = —(1 — N (vn(q) — w(q})) F'(1) < 0, therefore limg_,,- I1*() < 0. The
profit function is increasing to the right of 0 and decreasing to the left
of 1. Therefore, II* does not have its maximum on the boundary. This implies
that contract with two menus is never optimal. The reason for this is as follows:
the contract with two menus partitions the set of consumers into two as high
valuation and low valuation consumers. The incentive compatibility constraint
of low valuation consumers is satisfied through the utility arrangements. The
fact that they are context-biased is used only for the incentive compatibility
constraint of high valuation consumers. Furthermore, since the lower ¢ is the more
sophisticated the consumer becomes, the menu for high valuation consumers is
constructed by considering the lowest level of 8, which is assumed to be 0. In other
words, this menu is designed based on the fully sophisticated types. Therefore,
the resulting contract with two menus ignores the fact that consumers are context-
biased. However, the seller can use this fact and design a new menu using the
same product that is used for the high valuation type’s menu but with a higher
price. Therefore, whenever the fully sophisticated with high valuation consumer
is among the others, the contract with two menus is not optimal. This fact can
be also seen from inequality if we set #; = 0. We need to do this since
01 stands for the lowest 6 in the first menu. After this substitution, we see that
the inequality is always satisfied and thus the contract with two menus is
always dominated by a contract with three menus.

A stationary point, therefore a maximum, of IT* is given by

- 1—F()
0 = ) (1.28)

Remark 1 The observation given in (iii) implies that Lemma @ can be improved as
follows: Whenever the fully sophisticated (fully rational) consumer with high valuation
18 present, the optimal contract has three menus.

The following example illustrates a special case where the profit function given in
(1.27]) is concave that ensures that we have a maximum.

"

Example. Assume that F(f) = 0 on [0, 1] (uniform distribution) and v} (¢) — v, (q) <
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M < 0, where M = %. In this case II* is concave and the profit is maxi-
mized when 6 = 1/2 that is found by substituting F(6) =6 into equation (1.28)). The
optimal contract partitions the set of consumers into three: high valuation consumers

with 6 < 1/2, high valuation consumers with > 1/2 and low valuation consumers.

1.5 Conclusion

This paper studies the standard second degree price discrimination model by taking
into account the fact that agents are diversely bounded rational. We consider bounded
rationality that is due to individual’s context-bias, which is a cognitive limitation that
misleads the individual in making his choice depending on the context. Using this
fact, sellers can exploit context-biased consumers by making some arrangements in
the context of the contract. We study the optimal contract for a profit maximizing
monopoly under the assumption that there are two sources that identify the type of a
consumer: the valuation for quality, which can be either high or low, and the level of
context-bias.

We first study the discrete case, where there are only two levels of context-bias
among the consumers: naive and sophisticated consumers. We show that in some
situations the optimal contract has two menus separating high and low valuation con-
sumers. This contract sells a low quality but cheap product to low valuation consumers
and a high quality but expensive product to high valuation consumers. In other situa-
tions consumers are partitioned as sophisticated with high valuation, naive with high
valuation and low valuation by the optimal contract with three menus. This contract
again provides low valuation consumers with a low quality and cheap product, and high
valuation consumers with a high quality and expensive product but charges naive with
high valuation consumers more than sophisticated type for the same quality product.

We continue our analysis with the continuous case where we assume that the variable
measuring the level of context-bias, 0, is distributed according to a cdf F'(#) on [0, 1].
We characterize the optimal contract and show that it has at most three menus. If
the fully sophisticated with high valuation consumer is present, the optimal contract
has exactly three menus. For this contract the seller needs to decide optimally on
a threshold such that it partitions consumers into three as follows: high valuation
consumers whose fs are less than the threshold, high valuation consumers whose s
are greater than the threshold and low valuation consumers. This contract resembles
the three-menus contract of discrete case. It provides low valuation consumers with a
low quality and cheap product, and high valuation consumers with a high quality and
expensive product but charges high valuation consumers with higher #s more than the
ones with lower s for the same quality product.

Our conclusions suggest a seller manufacturing jeans, for example, open three dif-
ferent stores. One store is for low valuation consumers where he sells low quality jeans
with low prices. For example an outlet store where he sells defective jeans. Another
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store is for high valuation consumers with low #s where he sells high quality jeans with
reasonable prices. Finally the third store is for high valuation consumers with high 6s
where he sells high quality jeans with high prices, for example a very fancy store in the
most popular shopping center of the city next to other high-society stores.
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Appendix A

Proofs

A.1 Proof of Lemma [T

In this subsection we examine the optimization problem given in . We refer the
two menus depicted in Figure [1.1| as Menu-H and Menu-L, respectively. After giving
some claims that simplify the problem, we finalize this subsection with the proof of
Lemma, [TI

Claim 1 The optimal solution of the problem in requires that the utility of the
high valuation consumers from the secondary product offered in Menu-H is zero, i.e.,

uh<q;wp;z> =0.
Assume by contradiction that up(qj,,pj,) > 0. Take an e that satisfies

(Z) 0<e < Uh(q;wp;z)’ (Al)
(i) wlgh, ph) < e (A.2)

Observe that the choice of € is feasible since up(q, p) > w(q,p) ¥(¢,p) € RZ. Consider
the following adjustment:

D = pp + O¢, (A.3)
P =ph Tt € (A.4)
where the superscript a stands for the adjustment of the variable and § € (0, 6,]. Now,
we want to show that under this adjustment the constraints of the problem are still
satisfied. This will complete the proof of the claim since the objective function increases

strictly after the adjustment.
Observe first that the adjustment does not affect the incentive restrictions (|1.3]1)

and (L.3[2) for low valuation type ((L311), and (L312); henceforth). The incentive
restriction ([L31)), still holds by the choice of e: up(q},, p},*) = un(q),,p)) —€ > 0 ( by

(A.4) and (A.1))). The adjustment affects n as follows:

up(qn, pi) = un(qn, pr) — 0€ > up(qy,, p),) — 0€ > un(qy, pp) — € = un(qy, Pp°)-
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Therefore h is still satisfied. Concerning the incentive compatibility constraints
we have
Vha({(thp(flL>’ (qzapf)h Qj) = uh(Qh,pZ) - 9j Uh(CIZaplf?)
= (un(qn, pn) — 0€) = 0; (un(ay, ph) — €)
= Vi ({(qn: pn), (g, 01)}, 0;) + (05 — d)e
> Vi ({(q, p0) (a1 91)},05) + (05 — d)e
> Vit({(q,m1), (a1, m1) }, 0;) for j € {1,2}.

For low valuation types,

wi(qn, pr) — 05 wi(ay, py) i wilan, pr) > wilgy: ph) > 0,
(1 —0; )ul(qh,ph) if Ul(C]h,ph) Z 0 2 U <Qh>ph>

Vi({(an, pn), (g, 23) 1, 05) = Uz(%pﬁl) — 05 wilan, pr) i w(qy, py,) = wlgn, pr) 20,
(1—0;)wlqy,p}) if w(gp,py) > 02> u (qh,ph)’
0 otherwise.

and the fact that (¢, p},*) = w(q,, pj,) — € < 0 implies that

a a I la 1—-46;)u 7a if u ,“20,
Vi ({(an:03), (an, i)}, 6;) = { ( ) w(an: pf) 1(qn, DF)

0 otherwise.
Therefore,
Vi({(gn: on), (ah: pi) 3, 05) = Vi ({(an: 1) (ahs PR}, 65)
(0, (wi(qn, pr) — (g}, py)) + de(1 — 6;) if wi(qn, pr) > w(q), pj) > 0 and wy(gn, p) > 0,
de(1 —46,) if wi(qn, pn) > 0 > w(q},, p,) and w(gn, p§) > 0,
w (g, ph) — w(qn, pn) + 6e(1 — 6;) if w(qp,, ph) = wi(qn pr) > 0 and w(gs, pf) > 0
(1 —0;) (wilap, ph,) — wilqn. pr)) +0e(1 — 0;) if wlqp, pj) > 0> u ( qn, pr) and w(qn, py) >
=< wlqn,pn) — 0; w(q,, p) if w;(qn, pn) > w(qy,, p)) > 0 and w(qn, pf) <
(1—6; )W(q}mph) if w(qn, pn) > 0 > w(qy,, py,) and w(qn, pf) <
Uz((]mph) 0; wi(qn, pn) if w(qy,, py) > wi(qn, pr) > 0 and w(gn, pj) <
(1- )ul(qh,pz) if wi(qp,, ) = 0> wqn, pr) and w(gn, pf) <
\ 0 otherwise.
>0 (A.5)
Thus,
‘/l({<QIapl)> (QZ7pE)}> 6‘]) 2 W({(Qhaph)a (Q;wp;z)}a ‘9]) (by l)
> Vit ({(an- p3): (an, )}, 0;) (by (A.9))

We have shown that under the proposed adjustment all the incentive restrictions are
still satisfied. Due to the fact that the price of the product that is sold to high valuation
consumers (py) increases, the profit of the seller increases strictly and this completes
the proof.
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Remark 2 Claim implies that w(q,, p),) < 0 and therefore we have

Vz({(%,ph)a (Q;wp;z)}7 9]) = max{(l - ej)ul(qmph)a O}

For the high valuation types:

Vh({(%ph); (qﬁl,pﬁl)}, 9j) = up(qn, Pn) — ejuh<Q;wp;l>
= uh(Qhaph)-

Claim 2 The optimal solution of the problem in requires that the incentive com-
patibility constraint for high valuation consumers, (L3l3),, binds only for the sophis-
ticated high valuation type, i.e., Vh({(qh,ph), (qﬁl,p’h)},ﬁl) = Vh({(ql,pl), (qf,pﬁ)},@l).
Furthermore, high types receive same utility from the primary and the secondary prod-
ucts of Menu-L, i.e., up(q, p1) = un(q),p;))-

Observe that according to Claim , the secondary product provides zero utility
for both the naive and sophisticated high valuation types. As noted in Remark [2], this
implies that their valuation for this menu is the same since having a secondary product
with zero utility eliminates the effect of . Furthermore, Menu-L is more valuable to the
sophisticated high valuation type than to the naive high valuation type. This is because
the naive type multiplies the minimum utility with 6, and subtracts from the maximum
utility, whereas the sophisticated type uses a smaller multiplier, ;. Therefore we have

Vh({(QZapl)a (qgvp;)}’ ‘91) > Vh({(qlapl)v (QZap;)}7 92)

Now assume by contradiction Vh({(qh,ph), (q%,p%)},@l) > Vh({(ql,pl), (qf,pf)},@l)
and choose an € such that

Vh({<Qh,ph)> (Q;wp;z)}ael) - Vh({(QlaPl)? (CIZ?]?;)},el) >e>0

Consider an increase in the price of the primary product for high valuation types by e,
i.e., pf = pn+e€. This adjustment decreases the valuation of the low types for this menu
but that does not contradict with the incentive compatibility constraint for this type.
The valuation of high types decreases by € for this menu and thanks to the choice of e,
this adjustment does not violate n- The facts that all constraints of the problem
are still satisfied and the value of the objective function is strictly increased complete
the first part of the proof.

Assume that up(qi, p1) > un(q), p;) and therefore Vh({(ql,pl), (q],7))}, 91) = up(q, p1)—
61u(q), p;). Consider the following adjustment: (i.) a slight increase in ¢] coupled with
a corresponding increase in p; so that the utility of the product for the low valua-
tion types is not changed, (ii.) a corresponding increase in p;, so that the incentive
compatibility constraint h still binds. Mathematically,

9" =q +e
Pl =D+ e
Py =pn+ €3
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such that

w(q’,p") = wlq,p) (A.6)
up(qn, ph) = un(q, pr) — Orul(q®, pi*), (A7)

where ¢; > 0. The adjustment does not violate any of the restrictions of the low
types since their utilities for the secondary product are not changed and the increase
in p, does not do anything rather than relaxing the incentive compatibility constraint.
Observe that implies that up (g, pi*) > un(q, pj) and therefore, for high valuation
consumers the value of Menu-L decreases. However this decrease is compensated by the
decrease in the value of Menu-H given by . Thus the adjustment leads the value
of the objective function to increase without violating any restrictions of the problem.

Now, assume that up(q,p) < un(q),p;) and therefore Vh({(ql,pl), (q{,pﬁ)},@l) =
up(q,p;) — Oru(q, pr). We follow the same procedure as above with an exception:
instead of a slight increase, we make a slight decrease in ¢;, compensated with a corre-
sponding slight decrease in pj so that w;(q%, p/*) = w(q],p;). Once again, we increase
pr so that the incentive compatibility constraint (L.33]), still binds. This adjustment
strictly raises the objective function without violating any restrictions of the problem.
Therefore we have, up(qi, p1) = un(q), p})-

Remark 3 Claim @ implies that
Vh({(qh7ph)7 (q;wpéz)}J 01) = Vh({(mapl>7 (QZ7p2)}7 01)

= Uh(‘]lapl) - eluh(QI’vpl/)
= (1 =0)un(q, m)

Furthermore, we have seen in Remark that Vh({(qh,ph), (q,,0%) }s 01) = un(qn, pn)-
Combining the two, we get un(qn, pr) = (1 — 01)up(q, pr)-

Claim 3 The optimal solution of the problem in requires qn > q.

Assume ¢, < ¢ and consider the following adjustment:

g =qn+ A
q =q—B
P =pn+C
p=p—D

where g, + A = q — B = (1 — \)g, + Aq. Furthermore the above adjustment is such
that the utility of neither the high valuation nor the low valuation type is changed for
the product that is designed for them. Mathematically,

un(dys i) = un(qn: p)

w(q,p) = wla, p)-
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Therefore we have

vn(gn + A) —vn(qn) = C
vl(ql) — Ul<ql — B) =D.

Now consider the change in the objective function of the seller after the adjustment:

Al = (1 = N[C = e(gn + A) + c(gn)] + A[ = D — (g — B) + c(q)]
= [(1 —ANC — )\D] + [(1 —ANc(qn) + Ae(q) — e((1 = N)gp + )\ql)]

The second component of the summation above is positive, since the cost function ¢(.)
is convex. The first component is also positive since

(1=X)C —=AD = (1= [va(gn + A) — vn(qn)] — Mo(a) — vi(a — B)]
> (1= X)[(1 = Non(gn) + Aow(a) — vnlan)]
+A[(1 = Nuilgn) + M) — vila)]
= A1 = N [(vn(@) — vnlgn)) — (uila) = wilgn))] > 0.

In the second line above, we use the fact that both valuation functions (v, (.), v;(.)) are
concave, whereas we use the assumption ¢; > ¢, and single crossing property in the
last line. Therefore we have AIl > 0.

For high valuation type, the utility of the primary product in Menu-H does not
change and his utility from the primary product in Menu-L decreases since

un (g’ i) — unlq, o) = vn(@ — B) — vn(@) + D
= (vn(@ — B) —vq — B)) — (vn(@) — w(a)) < 0.

Similarly, the adjustment does not violate any of the incentive restrictions of low type
since it does not affect his utility of the primary product in Menu-L, whereas it decreases
his utility of the primary product in Menu-H since

w(qy, vy) — wi(qn, pr) = vi(gn + A) —vilqn) — C
= (vn(qn) — vilgn)) — (vn(gn + A) — vi(gn + A)) < 0.

Hence, the adjustment strictly increases the objective function while not violating any
of the constraints. This shows that ¢, > ¢, and completes the proof.

Claim 4 The optimal solution of the problem in requires w;(qn, pr) < 0.

Assume by contradiction that w;(qgn, pr) > 0, which implies that
Vl({(qh,ph),(qﬁl,pﬁl)},&j) = ul(qh,ph)(l — Gj) > 0 (for 7 € {1,2}) and therefore by
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incentive compatibility we have u;(q;, p;) > 0. Choose € > 0, ¢; >0, €3 > 0, and 5 > 0
satisfying the following conditions:

(1) wlg—€—-—p=0 (A.8)
(i) B =(1—01)[va(@) — val@ — €)] (A.9)
(111)  vn(q) — vn(@ — €) = vn(q) — valg — €1) — € (A.10)
(iv) wlg—e)—p+e=0 (A.11)

Consider now the following adjustment:

Py = pn+ 3
q=q—c¢
QZa:C]l,—El
pﬁazpﬁ—ez

This adjustment increases the objective function strictly since it increases the price
of the product sold to high valuation consumers (p,) and decreases the quality of
the product sold to low valuation consumers (¢g;), which decreases the cost. We want
to show that the proposed adjustment does not violate any of the constraints of the
problem ({1.3]).

We start by examining the constraints of low valuation consumers. The conditions

given in (A.8)) and (A.11)) yield w (¢!, pf) = w(q®, p)*) = 0, therefore both .1)); and

(L3L2)); are still satisfied. Moreover, the valuation of low types for the Menu-L becomes
zero. Therefore their valuation for Menu-H needs to be zero as well in order to satisfy

;- This can be shown as follows:

un(qp, ph) = un(qn,pn) — B

(1 =) un(q, o) — (1 = 61) [vn(q) — vn(q — €)]
(1—161) [Uh(QZ —€) — Pl}

(1 = 6)unlq’, pi)

< un(q',p1),

and therefore

un(q's i) = un(qy, ph)
vn(g) — pi > vn(ql) — pf,

using the fact that ¢, > ¢; that is proved in Claim we get
ph — i = vnlay) — va(a’) = vilay) — vilal),

and this implies
0 =wlq’) —p = vlay) — ph = wlas, i)
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Thus V({(qh,ph) (g, pf)},0;) = max{(1 — 6;)w(q,p}),0} = 0. Having showed that
the low types’ constraints are still satisfied, we move to the ones of the high types. The
high types’ secondary product ((qj,,p},)) is not affected by the adjustment, whereas the
value of the primary product decreases. The left hand side of n becomes

un(qy, P1) = un(qn, pr) — B
L —00)un(q, p) — 3

= (
= (1—6)[val@) —pu] = B
=(1-01) [Uh } (1—01) [Uh((ﬂ) —upq — 6)}
(1—91)[0 C]l—E ]
> (1= 61) [vlq —€) — pi]
> 0= un(qy, py)-

In the second line above we use the result given in Remark (3) whereas in the last line
we embed the condition (A.8) and the statement of Claim (l1f), and show that h
is still satisfied. Finally we check for the incentive compatibility constraint ((&ib)
For the sophisticated type it is still binding after the adjustment:

Vi ({(a p0)s (@, ")}, 1) = un(af's 7)) — Orun(q®, i)
=uvp(q—€)—p—b [Uh(CIZ —e)—p+ 62]
= Uh(%pl) - (Uh(QI) - Uh(CIz - 6))
— 01 [un(q, 1) — (vn(q) — vnlg — €1) — €2)]
= Uh(Qlapl) - 91uh(QZ:P2) - (1 - 91)(%(%) - ’Uh(Ql - 6))
= Vi({(a- ) (¢, 1))}, 61) — B
= Vi ({(an pn), (@ 03) }, 01) — B
= Va({(a ), (a1% P}, 01).

In the above set of equations we used the condition (A.10) in the fourth line and the
statement of Claim in the last line. For the naive type we have

Vi ({(ait, 2, (4%, 9 )}, 02) = Vi ({(ai, v, (a1, 97,%)} . 61)
= Vi({(g", D), (% ")}, 61)
= (1= 6)un(q’, p})
> (1= Oa)un(qr, pf) = Va({(a, p0). (@ 1)}, O2).
This shows that h is also still satisfied for the naive type. The first line is the
result of up(q),%, p),*) = un(g},. p,) = 0 and for the second line we use the above proved

fact, that is, the incentive compatibility constraint is binding for sophisticated type.
Hence the adjustment does not violate any of the restrictive incentives of the problem.
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Remark 4 Claim implies Vi({(an. pn), (€. },)},0;) = 0, therefore the incentive
compatibility constraint, (L33));, becomes

Vi({(ai, ), (a1, p)},05) = 0.

It is binding since otherwise it is possible to increase the objective function by increasing
q;. Furthermore, this implies

w(q, pr) = w(q,p) =0.

Proof of Lemma 1 Using Claim ,(@, and the observations given in Remark
(@, (@ and, the problem can be simplified as:

max 1= [pn — clqn)] + A pr — c(q
{((an-pn),(@,m1))ERT XRY } ( ) [P (qn)] [P ()]
s.t. w(q, pt) =0

un(qn, pr) = (1 — b)) un(q, pr)

From the two constraints above we get

b= Uz(Qz)
Pr = V(qn) — (1 = 01) [vn(@) — pi

Substituting these values into the objective function and taking the first order conditions
with respect to q; and q, we get:

Cl(Qh) = U;L(Qh)
pr=vn(qn) — (1 = 61) [vn(@) — vi(ar)]

() = vi(@) = == (1= 60) [t (@) = vi(a)

P = UZ(QZ) 4

A.2 Proof of Lemma 2

In this subsection we examine the optimization problem given in . We refer the
three menus depicted in Figure [1.2] as Menu-A, Menu-B and Menu-C, respectively.
After giving some claims that simplify the problem, we finalize this subsection with
the proof of Lemma 2]

Claim 5 The optimal solution of the problem in (@ requires that the utility of the
naive consumers with high valuation for the secondary product offered in Menu-B is
zero, i.e., up(q,, p,) = 0.
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Assume by contradiction that uy(g;,p;,) > 0 and follow the procedure in the proof
of Claim by choosing an € satisfying

(1) 0<e<ung,p),
(i) w(gppy) <€
and replacing the adjustment in (A.3]) and (A.4) by

Py = P + Je,
nt =D, + €,

where § € (01, 05). Under this adjustment, which does not violate any of the constraints,
the value of the objective function increases strictly.

Remark 5 Claim (@ implies that w/(q,, p,) < 0 and therefore we have

Vl({(%,pb)a (Qf)’pi)}a ej) = max{(1 — ej)ul(%’pb); 0}
and for the high valuation types:
Vi ({ (a0, po)s (a4, 23) }, 05) = un(as, 3),
where j € {1,2}.

Claim 6 The optimal solution of the problem in requires Vh({(qa,pa), (q.,p)}, 91) =
Vh({(qc,pc), (q., 1)}, 91). Furthermore, the high types receive same utility from the pri-
mary and the secondary product of Menu-C, i.e., up(qe, pe) = un(q., pl.).

Our first observation is that all the three incentive compatibility constraints (({1.93)),
1.94) and (L.9[5))) are binding. In order to see this, assume by contradiction that
1.9.3)) is unbinding. In this case the objective function can be increased by increasing
the price of the primary product of Menu-A (p,). This does not violate any constraint
since increasing p, decreases the attractiveness of Menu-A for other types. Following

the same reasoning and Remark (5)) we can write ([1.9.3),(1.9.4]) and (1.9/5) as
Vh({(chpa)» (Q;vp:z)}v 01) = Imax {uh(Qbapb)7 Vh({<QCapc)7 (q.lgap/c)}a 91) }a (A12)
uh(Qb:pb) = max {Vh({(Qaapa)a <Q¢/17p:1>}7 92)7 Vh({(Qmpc)? (QQap/c)}7 92) }7 <A13)
Vi ({<QC7PC>7 (qéap/c)}v HJ) = max {‘/l ({(Qaapa)a (qt/zﬂp;>}7 6]'), (1 - ej)“l(%,pb)}a <A14>

where j € {1, 2}.
We want to show Vh({(qc,pc), (¢, p.)}, 91) > up(qp, pp) and therefore

Vh({(Qaapa>7 (qa7p;)}7 91) = vh({(QCupC)7 (QZ;’p/c)}? 91)
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Assume by contradiction wuy(qy, pp) > Vh({(qc,pc), (q.,0.)}, 91). Now we have
Uh(Qb;pb) > Vh({<QC7pC)J (q:pp/c)}? 91) > Vh({(QCapC>7 (QZ;?p/c)}J 02)

In this case implies up(qp, pp) = Vh({(qa,pa), (4., )}, 02), whereas implies
un(qs, o) = Vi ({(gaspa), (¢, 1)}, 61). Therefore,

Vh({(qaupa>7 (q:z7piz)}7 91) = Vh({(QmPa% (QZ;7p:1)}7 92)
Up(qa, Pa) — 1un(d), Ph) = un(qa, Pa) — O2un(q,, pl,)
up (g, p,) =0

and

(vapb Vh({(Q(upa qaap;)} 91)
- h(Qmp ) - eluh(qGJpa)
- h(Q(mpa)
Since we have up(qa, Pa) = un(qp, pp) and up(q,, p,) = un(q,, p;) = 0, Menu-A and

Menu-B are same in the eye of high valuation type and this contradicts with the
fact that this contract has 3 menus. Hence, Vi ({(gc, pc), (¢ p.)},01) > un(qw, py) and

therefore V}, ({(qa, Pa), (4., 00)}, 81) =V ({(qc, pe), (4L, 00}, 91). This completes the first
part of the proof.

For the second part, assume that up(qe, pe) > un(q., p.) and therefore

Vi ({(ges o), (6 D)}, 01) = wn(ges pe) — Orul, 1),

Consider the following adjustment:

¢ =dq.+e
P =p.te

pg = Pa t+ €3
such that
w (g, p)t) = w(qe, p),) (A.15)
Up(qa, P2) — O1u(d,, 1)) = un(qe, pe) — Or1u(g, pit), (A.16)

where €; > 0. The adjustment does not violate any of the restrictions of the low types
since their utilities for the secondary product are not changed and the increase in p,
does not do anything rather than relaxing the incentive compatibility constraint. Ob-
serve that implies that u, (¢, p/*) > un(q., pl.) and therefore, for high valuation
consumers the value of Menu-C decreases. However this decrease is compensated by
the decrease in the value of Menu-A given by . Thus the adjustment leads the
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value of the objective function to increase without violating any restrictions of the
problem.

Now, assume that up(qe, p.) < up(q., p.) and therefore Vh({(qc,pc), (qé,p’c)},Hl) =
up(q., p.) — 01u(ge, ). We follow the same procedure as above with an exception:
instead of a slight increase, we make a slight decrease in ¢/, compensated with a corre-
sponding slight decrease in p/, so that u;(¢/%, p/*) = w;(¢., p.). Once again, we increase p,,
so that the incentive compatibility constraint still binds. This adjustment strictly raises
the objective function without violating any restrictions of the problem. Therefore we

have, up(ge, pe) = un(q, pe).
Remark 6 Claim (@ implies
Vi ({(ga: pa), (3 P) }.01) = (1 — 61)un(ge, pe).-
Claim 7 The optimal solution of the problem in requires
up(qy, Po) = Vh({(%,pa)’ (qgvpfl)}? 92)-

We want to show that up(qa,pa) — O2un(qs,p,) > un(ge, pe)(1 — 63) therefore by
equation (A.13) up(qy, ps) = Vi({(dasPa), (¢}, D))}, 02). Assume by contradiction

U (Gas Pa) — O2un(q,, Pl) < un(ge, pe)(1 — 0s).

Therefore we have

uh(QaaPa) - Uh(QCupc) < 0 (uh(qé,p;) - uh(Qmpc))u <A17)

which implies
uh(QmPc) > uh(Qavpa) Z Uh(Q:wp;)' <A18)
Using the result given in Remark @ we get

U (Gas Pa) — Orun(dl, pl) = (1 — 01)up(qe, pe)
= up(qa, Pa) — un(ge, pe) = 01 (un(d), Py) — un(ge, pe)) (A.19)

Substituting equation (A.19) into (A.17) we get
01 (un(dy, 1ly) — wn(qe, pe)) < 62 (un(dl, pl) — un(ge, pe))-

This implies
Un(Ga; Pa) = (e, Pa) > un(ge, pe),
which contradicts with (A.18]), showing that the assumption is wrong.

Claim 8 The optimal solution of the problem in (1.9) requires up(qa, pa) = un(q}, pl).
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Assume by contradiction up(qq, pa) > un(q,, pl,). If ap > 01/65, choose an € > 0 such

that 9 _g
6( 29 1) < un(qv, Pv)
1
and make the following adjustment:
Pa =DPa—€
P, =1, —¢/0
0y — 0
pr=py+e 29 5
1

This adjustment does not violate any of the incentive restrictions. For sophisticated
with high valuation type, constraints (1.9}1]) and ([{1.9,2)) are satisfied by the assumption
and by the choice of €. The adjustment does not affect this type’s incentive compat-
ibility constraint since it does not make any change in his valuation of Menu-A and
of Menu-C but decreases the value of Menu-B. The no-change in the value of Menu-A
can be shown as follows:

Vi ({(q2, p2), (4, p8)}, 0h) = wn,

/a

Ga: Pa) — Oun(qe”, p,")
Qavpa) +e—06 (uh(%’z?p:z) + 6/91)
qaapa) — eluh(qtlmpg)

= Vh({(‘]mpa)a (qéwp;)}? 01)
Obviously, the value of Menu-B decreases since the price of the primary product in-
creases and the value of Menu-C is not changing since we do not change anything in
that menu. For naive with high valuation type, constraints (1.9/1]) and (1.9/2]) are sat-

isfied by the choice of €. According to Claim this type’s valuation for Menu-B and
for Menu-A must be equal. This can be shown as follows:

Vh({<qg>pg)7 (qg)avp;)a>}7 02) = uh(qg7pl?)
0y — 6,

= (g, ) — € ( 5 )

I
<
=
~—~ I~

o 0y — 0
= uh(qaapa) - 92uh(qa7pa) - 6( 2‘91 1)

= un(dq, Pa) — Oaun(qy”, po")
= Vh({(qg7pg)7 <q;tl,p;a)}’ 92)

Finally, since no change is made in Menu-C, the incentive restrictions and
hold for low types. Moreover for both naive and sophisticated low valuation types the
values of Menu-A and Menu-B are decreasing, therefore their incentive compatibility
constraints are not violated.
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Now consider the change in the objective function:

6y — 6
AIl = (1 — o) (—€) + e ( 291 1)
6
IEOéh(e—?)>0

Thus, if ap, > 60 /0, the adjustment that brings us(qa, pa) closer to uy(q, pl,) increases
the objective function. Therefore we have if ay, > 601/0s, then up(qa, pa) = un(d,, vl,).
If a, < 61/65, contract with 2-Menu beats contract with 3-Menu. We prove this
by showing in this case up(q,, p,) = un(q,, p,) = 0 and up(qa, pa) = un(qs, py) therefore
Menu-A and Menu-B are the same and thus there are not three, but two menus in the
optimal contract.
We start with the following adjustment:

Pa = Pa + €
p;a=p;+6/91

0 — 0
pgzpb—G( 201 1)

Following the same procedure above it is trivial to show that this adjustment does not
violate any incentive restrictions.
Now consider the change in the objective function:

01 — 05

All = (1—ah)(6)—i—ahe( 01 )
:e(l—ah%) >0

Thus, if ap < 601/65 the adjustment that removes uy(q,, p,) far from wup(qa, pa) in-
creases the objective function. Therefore we have if ay, < 61/6,, then uy (g, p)) =0 =
un(q,, p,). In this case according to Claim we have up(qq, pa) = un(qy, pp). There-
fore, Menu-A and Menu-B are same and this implies that the contract has 2 menus.
We conclude that in the optimal contract with 3 menus we have u(qq, pa) = un(dq,, p}).

Remark 7 Claim (@ together with Claim (@ implies

Vh({<qaapa)7 (Q(/mp;)}a 01) = Vh({(Qcapc)a (qéaplc)}v 01)
(1 - el)uh(qua) = (1 - 91)“’h(QC7pC)
Un(qas Pa) = tn(ge, Pe)

Remark 8 Claim @ together with Claim (@ implies

Uh(‘]bapb) = Vh({(Qaypa)a (qgvpfz)}v 92)
= (1 - ‘92)uh(Qaapa)
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Claim 9 The optimal solution of the problem in requires q. < qp and q. < q,.-
This can be proved following the same procedure of the proof of Claim .
Claim 10 The optimal solution of the problem in requires Qo = qp.

First assume g, > ¢, and consider the following adjustment:

Qg = Ga— A
% =@+ B
Pe=0a—C
Py =+ D

where ¢, — A = ¢+ B = (1 — a)qa + apqy. Furthermore the above adjustment is
such that the utility of neither the sophisticated nor the naive high valuation type is
changed for the product that is designed for them. Mathematically,

uh(qg,pg) = uh(‘]mPu)
un(qy, y) = un(qo, Pb)-
Therefore we have

Uh(Qa) - Uh(Qa - A) =C
V(g + B) — vn(q) = D.

Since the utilities are not changed, the adjustment does not violate any constraints.
Now consider the change in the objective function of the seller after the adjustment:

ATl = (1 —op)[ = C —c(ga — A) + c(¢a)] + an[D — clgo + B) + c(av)]
= [anD — (1 = a;)C] + [(1 = an)elga) + anclagn) — (1 — an)qa + angy)]

The second component of the summation above is positive, since the cost function ¢(.)
is convex. The first component is also positive since

anD — (1 —ap)C = o vr(gs + B) — vn(a)] — (1 — an) [vn(ga) — va(ga — A)]
= vp((1 = an)qa + angy) — anvn(as) — (1 — an)va(ga) > 0.
Therefore we have AII > 0.
In the second part of the proof we assume ¢, < ¢ and making a similar adjust-
ment, where we increase ¢, and p,, and decrease g, and p, so that the high valuation

consumers’ utilities do not change, we show that the objective function increases. This
shows ¢, = ¢, and completes the proof.
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Claim 11 The optimal solution of the problem in requires

Vi({(das pa), (4, P}, 05) = Vi({(aes p). (a4, 13) }. 0;) = O,
for j € {1,2}.

The secondary product in Menu-A can be adjusted in a such way that u;(¢,,p,) <0
while the utility it provides the high types does not change. This adjustment does
not change the profit since secondary products are never sold. Therefore, we have
Vi({(¢a,pa), (ds, 2)}, 05) = (1 — 6;)wi(qa, pa). Furthermore, in Claim (5)) we show that
un(q,, p,) = 0 and this implies w;(q;, pj,) < 0. Therefore we have V, ({(qb, ), (a4, 1))}, Gj) =
(1 —05)wi(gn, ps)-

Observe that since q, = g, and uy,(qa, pa) > un(qp, Pp) We have w;(qa, pa) > wi(qs, Po)-
This implies that if we show that u;(q,, p.) < 0, it would automatically imply w;(gy, ps) >
0 and therefore this would mean that the valuation of the low types for Menu-A and
Menu-B are both zero. Hence showing u;(q.,p,) < 0 is sufficient to complete the
proof. To do that we use the following procedure that is similar to the one used in
the proof of Claim . We assume by contradiction u;(q,, p,) > 0, which implies that
Vi({(¢a,pa), (s, 2)}, 05) = w(qa,pa)(1 — 6;) > 0 (for j € {1,2}) and therefore by
incentive compatibility for low types we have u;(g.,p.) > 0. Choose € > 0, ¢; > 0,
€ > 0, f; > 0 and [y > 0 satisfying the following conditions:

) u(ge—¢€)—p.=0 (

) B =vn(ge) — vn(ge — €) = vn(q)) — vnlg. — €1) — € (A.21
(#11)  fa = Bi(1 —by) (

) uld,—e)—p,+e=0 (

Consider now the following adjustment:

pZ:pa"i_ﬁl
Py =p, + 5
Py = Db + P
quQC_G
' =gc—a
/a /

P. =P, — €2

This adjustment increases the objective function strictly since it increases the prices of
the products sold to high valuation consumers (p, and p,) and decreases the quality of
the product sold to low valuation consumers (q.), which decreases the cost. We want
to show that the proposed adjustment does not violate any of the constraints of the

problem ((1.9)).

We start by examining the constraints of low valuation consumers. The conditions

given in (A:20) and (&:23) yield w(q¢, p?) = u(, p) = 0, therefore both (L9T) and
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(1.9/2)) are still satisfied for low types. Moreover, the valuation of low types for the
Menu-C becomes zero. Therefore their valuations for both Menu-A and Menu-B need
to be zero as well in order to satisfy (1.9.5). This can be shown as follows:

un(qa, P5) = n(Gas Pa) —
= up(qe, pe) — [vh(qc) — Vh(qe — €)]
= Up(ge — €) —
= un(qe, pe)

and therefore

Pa — P2 = val(ds) — vn(qe) = vilgq) — uilql),
and this implies
0 =wlq) —pe = vlgq) — pa = wlds, o)
Thus V({(qa,pa) (¢, p/*)},0;) = max{(1 — 6;)w(qs, p),0} = 0. Having showed that
the low types’ constraints are still satisfied, we move to the ones of the high types. For
the sophisticated with high valuation type, the incentive restrictions 1)) and -

are not violated by the assumption and the choice of 3;. Now we cons1der this type’s
valuation for each menu:

Vh({(qgvpg)v (qga>p:za)}’ ‘91) - (1 - 91)Uh(qu,p3)
(1 - 91)(uh(Qa;pa> - 61) <A24)

Vi ({(a8,18), (a5, p4") }, 61) = un(gs, p})
= up(qy, po) — B2
= (1 - 92)%(%,%) — s
= (1= 02) (un(ga, pa) — 1), (A.25)

where we use Remark in the third line.

Vi ({(a2,00), (€, 9)}, 1) = un(aZ, pe) — Orun(q”, i)
= Up(qe, pe) — B — 01 (uh(q;p'c) - 51)
= (1 - 91)(uh<QC7pC> - 51)
= (1= 01) (un(gas ) — B1), (A.26)
where we use Claim and Remark @ in the last two lines. Comparing ,
(A.25)) and (A.26)), we have

Vi({(qq,08), (g, i)}, 01) = Vi ({(q2, 08), (g, )}, 01) > Via({ (a5, 08) (a7, pi) }, 01),
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therefore the adjustment does not violate the incentive compatibility constraint of the
sophisticated with high valuation type, (1.9.3). Moreover it satisfies the requirement
of the optimal contract given in Claim @ For the naive with high valuation type, the

incentive restrictions (1.9} 1)) and ([1.9.2)) are still satisfied by the assumption u;(q,, ps) >
0 and by the choice of F3. Now we consider this type’s valuation for each menu that

are very similar to those of the sophisticated with high valuation type with a single
difference: instead of 8; we have 6.

Vi ({(g, 1), (45, 0i)}, 62) = (1 = 02) (un(a, Pa) — 5r)

Vi ({(a p3), (g, pi) 3, 62) = (1= 63) (un(gas pa) — B1)

Vi ({(g2. p2), (g, i)}, 62) = (1 — 02) (un(ga, pa) — B1)
Therefore, for the naive with high valuation type all the menus become equal. This
does not violate the incentive compatibility constraint and shows that the re-
quirement of the optimal contract given in Claim is satisfied. This suggests that

the adjustment increases the objective function without violating any of the constraints
and completes the proof.

Remark 9 Claim implies that the incentive compatibility constraint be-

comes
Vi({(ge. pe), (), 1)}, 0;) >0

for j € {1,2}. In fact, in the optimal contract this constraint is binding since otherwise
it is always possible to increase p. and increase the objective function. Therefore we

have w(qe, p.) = wi(q., p,) = 0.

Proof of Lemma 2 Using Claim (@,(@ and the observations given in Remark (@,

(@) and(@, the problem can be simplified as:

max (T =X = an) [pa — c(qa)] + (1 = Nan [po — c(gp)] + A [pe — c(qe)]

{(ak:pk)ERT Yhefarb,c}
(e, pe) = 0
Up(Gas Pa) = Un(qe: De)
up(qo, o) = (1 — 02) un(qa; Pa)

From the constraints above we get

pe = v(qe)
Pa = Vn(qa) — [Vn(qe) — pe]
P = V(@) — (1 — 02) [Un(da) — Pd]

Substituting these values into the objective function and taking the first order conditions
with respect to q., qp and q. we get

39



(qa) = v3,(qa)
Pa = vn(da) = [vn(ge) — vi(ge)]

(@) = vi (@)
Py = vn(q) — (1 —62) [on(ge) — vi(qe)]

1—A

(ge) = vi(ge) = —— (1 — anb2) [vi(ae) — vilge)]

De = UZ(QC) O

A.3 Proof of Lemma [3

In this subsection, following some simplifying claims, we give the proof of Lemma [3
For the sake of ease of exposition, we assume that there are three different levels of
0 for high valuation consumers. However all the analysis of this subsection can be
easily extended to the continuous case. The three levels are 0 < 0, < 6y < 03 < 1
with probabilities a;, ap and ag such that a; + as + a3 = 1. Furthermore we assume
by contradiction that the optimal contract has four menus and we want to show that
canceling one of the menus increases the objective function.

The first three menus of this contract are designed for high valuation consumers
with 6;,  and 63, respectively, and the last one is designed for all low valuation types.
Remark [J] justifies that there is a single menu for all low valuation consumers. In other
words, Remark [9 points out that it is possible to construct a feasible contract that
gives zero utility to low valuation consumers without discriminating them depending
on the level of context-bias. Figure gives an illustration of this contract. We refer
these four menus as Menu-A, Menu-B, Menu-C and Menu-D, respectively.

(90> Pa) (qb,Pv) (ges pe) (94, pa)

(4, 1%) (a3, P}) (4., p.) (s 0ly)
Type H with 64 Type H with 0 Type H with 05 Type L

(1 — /\)041 (1 — )\)042 (1 — )\)043 ()\)

Figure A.1: Contract with Four Menus

We will be characterizing this contract in the following claims in order to show that
a contract with three menus beats this contract, i.e., the optimal contract has no more
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than three menus.
Observe that by assuming that the contract with four menu is optimal, we assume
implicitly that this contract satisfies all the incentive restrictions given below:

un(qy, py) >0, up(qy, pp) > 0, up(q.,p.) >0 u(qy, py) > (A.27)
uh(Ga,Pa) = un(dy, 0h)s wn(as, pb) = un(ay, py), wn(ge, pe) = unlqe, pl)s w(qa,pa) = wi(qy, vy,

(A.28)

Vh({ qa7pa qaap;)}701) Z k:EI?baX }Vh({(qkapk)a (q;mp;c)}?el)a (A29)

Vi ({(qv, pv), (. 03)},62) > pnax Vio ({(ar, pr), (a4 P2) 3, 62), (A.30)

Vh ({ qf'vp(‘ qcvpc)} 03) > kel?agid} Vh({(qupk)7 (Q;cap;c)}793)7 (ASI)

Vi({(ga, pa); (s, p4)},05) > kergagic}‘/l({(q;e,pk), (qhs 21} 05) for 6; € [0,1]. (A.32)

Without loss of generality, the incentive compatibility constraints (A.29)-(A.32)) are
all binding, since otherwise it is always possible to increase the objective function by
increasing the price of the relative good.

Claim 12 The optimality assumption requires up(q., p.) = 0.

Follow the procedure in the proof of Claim [I]

Claim 13 This contract requires up(qa, Pa) > tn(qo, o) and up(ql,, pl) > un(q,, p})-
The incentive compatibility constraints given in and imply

un(Ga, Pa) — O1un(qy, vy) > un(ay, o) — O1un(ay, py) (A.33)
un(qy, pv) — O2un(qy, 1) > Un(qa, Pa) — O2un(qy, vyy) (A.34)

Combining (A.33]) and ( - we get
0o (uh(q;,p;) — uh(q{,,pé)) > up(Ga, Pa) — wn(qos o) = 01 (un(dy, vly) — un(aqy, py)) (A

Given the fact that 6, > 6; > 0, the above inequality shows that (g, pl,) —un (g, D})

0. However if uy(q,, pl,) — uh(qb,pb) = 0, then by inequality - we have up,(qq, Do)
un(qp, ). In this case Menu-A and Menu-B would be the same, therefore uy(q,, pl,)

un(qy, py) and up(qa, Pa) > wn(qs, Do)

VoIV

Remark 10 The incentive compatibility constraint given in together with the
fact that up(q.,pl.) = 0 implies up(qy, pp) — O2un(qy, vy) > un(qe, pe), therefore we have

un(qas Pa) > un(qv, Pb) > Un(ge, Pe)- (A.36)
Remark 11 We have

up (qy, po) — Orun(qy, p) = un(qp, pp) — Ooun(qy, ) = un(ge, pe)
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implying that the incentive compatibility constraint given in can be replaced with

Vh({(Qaypa)v (Q;’p;)}a 01) = maX{Vh<{(Qb7pb)7 (QéaPZ)}» 91) ) Vh({<qd7pd>a (6121719:1)}» 91)}

(A.297)
Remark 12 One implication of the incentive compatibility constraint given in
18
un(qo, Po) — O2un Gy, Py) > Un(Gas Pa) — O2un(q, ))
Therefore,
Un(Gas Pa) — un(qs, o) < 02 (un(qy, 1) — un(ay, p)) < Os(unlay, p) — unlas, p}))
implying

Un(Ga; Pa) — O3un(dy: py) < un(gs, py) — Osun(dh, 1y)-
This observation shows that the incentive compatibility constraint given in can
be replaced with

Vh({(qcapc)7 (q;p;)}, ‘93) - maX{Vh({(qbapb)7 (qgvpg;)}7 93)7 Vh({(Qdan)? (qz/#pil)}? 93)}

(A31))
Claim 14 up(4e, pe) = un(qv, Po) — O3un(dp, 1p)-
Remark [12] implies
un (e, Pe) = maX{Vh<{(Qb7Pb)a (QI/)vp;))}a 93)7Vh({(Qd>pd)a (C]ézapfj)}a 93)}-
Assume by contradiction that
Vi, ({(ga, pa), (4, )}, 03) > Vi({(av, pv), (a4, 03)}. 05) (A.37)

and therefore

un(Ges pe) = Va({(ga, pa), (44, Py) }: 03) = (1 — O3)un(qa, pa)- (A.38)

The second equality comes from the fact that the product (¢),p}) can be arranged in
such a way that us(qq, pa) = un(q}, p);) while the value of w;(q}, p;) is not changing. For
more details see the second part of the proof of Claim [6]

From equation (A.38]) we get

un(Ge, pe) = (1 — 03)un(qa, pa) < (1 — 02)un(qa, pa)

The incentive compatibility constraint (A.30]) together with the above inequality im-
plies

un (g, pb) — O2un(qp, ) = max {un(qa, pa) — O2un(ql, pl), (1 — 02)un(qa, pa)}
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Case

Case

L up(gy, o) — O2un(qy, py) = (1 — 62)un(ga, pa)
In this case, incentive restrictions (A.27)) and (A.28)) imply

wn (g, o) € [(1 = O2)un(qa, pa), wn(qa, Pa)] (A.39)
Furthermore, the assumption given in (A.37) yields

un (o, pb) — O3un(qy, py) < (1 — O3)un(qa; pa)
(1 = 02)un(qa; pa) — (03 — O2)un(qy, py) < (1 — O3)un(qq, pa)
(03 — 02)un(qa, pa) < (05 — O2)un(qy, 3

up(qa, Pa) < un(qy, py),

which contradicts with the observation given in (A.39). Therefore Case 1 is not
possible.

2: un(qe, po) — O2un(qy, Py) = Un(qa, Pa) — O2un(q), %)
In this case, we have
Vi, ({(¢a o), (dh, 22) Y, 01) = un(qa, Pa) — O1un(d,, pl,)
= un(qp, po) — O2un(q, py) + (02 — O1)un(ds, p,) — Orun(ah, py)
+ 01 un(gp, p})
= up(qy, po) — Or1un(qy, py) + (02 — 61) (un(dl, P) — unlap, 1y)
> un(qy, py) — Orun(qy, pp)

Thus (A.29])) implies
un(4a, Pa) — O1tn(qq, Py) = (1 — 01)un(qa, pa) (A.40)

and therefore

un(qas pa) € [(1 — 01)un(qa, pa), un(qa; pa)] (A.41)
Combining the incentive compatibility constraint (A.31) with the assumption

(A.37) and the observation (|A.40)) we get

Un(Gas Pa) — Osun(dy, P,) < (1 — O3)un(qa, pa)
Un(Gar Pa) — Orun(q,, ) — (05 — 01)un(qs, py) < (1 — 03)un(qa, pa)
(1 = 01)un(qa, pa) — (03 — 01)un(qq, po) < (1 — O3)un(qa, pa)
(03 — 01)un(qa, pa) < (05 — 01)un(q,, pl,)
un(qa, a) < un(q,, y)

This shows that up(qa, pa) = un(qs, pl,) = un(qa, pa), which yields

un(qo, po) — O2un(qy, ) = wn(qa, Pa) — O2un(q, p,) = (1 — O2)un(qa, pa)

and this takes us back to Case 1. We have already seen that Case 1 is not possible,
therefore Case 2 is not possible, too.
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This completes the proof.

Claim 15 up(qy, p») — Goun(qy, p,) = un(qa, Do) — O2un(q,, p,)-

Using Claim [14] the incentive compatibility constraint given in (A.30)) can be rewrit-
ten as follows:

wn(qos py) — Oauun(y, Py) = max {un(qa; Pa) — 2un(ds, 1), (1 — O2)un(ga; pa) }
Assume by contradiction

un(qo, Pv) — O2un(gy, py) = (1 — O2)un(qa, Pa) > un(da, Pa) — Ooun(qo, pp)  (A42)
This assumption implies

un(qv, ps) € [(1 = 02)un(qa, pa); un(qa. pa)] (A.43)

Furthermore,

(1 = 01)un(qa, pa) = (1 — O2)un(qa, pa) + (02 — 01)un(qa, pa)
= Un (o, p») — O2un(qy; Py) + (02 — 01)un(qa, pa)
= up(qv, o) — O1un(qy, ) + (02 — 01) (wn(qa, pa) — un(qy, 13))
> up(qo, o) — Ohun(gy, 1p)

After this observation the incentive compatibility constraint (A.29) becomes
Un(Qas Pa) — O1un(q: p,) = (1 — 01)un(qa, pa)-
Using this we can rewrite the assumption (A.42)) as

(1 —61)(1 = O2)un(qa, pa) > (1 — 01) (un(gas pa) — O2un(dl, 1l))
(1 = 02) (un(qas pa) — Orun(qy. 1)) > (1 = 01) (wn(qa, pa) — O2un(qy. 1))
(92 - 91)Uh(qa7 ;) (92 - gl)uh(Qzupa)
un(qy 1) > un(qa, Pa)

which contradicts with the incentive restriction (A.28)).

Claim 16 up(¢a, pa) — Orun(qy, py) = (1 — 01)un(qa; pa)-
Remark [11] implies

uh(Qa;pa) - eluh(qiwp;) = maX{Vh({(Qbapb) (Qb7pb)} ‘91) ({(Qd,pd) (qghpél)}? 91)}

Assume by contradiction that
Vh<{(Qbapb>7 (Q{)ap;;)}a 91) > Vh({(Qd,Pd)a (qghpél)}J 91) (A-44)
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and therefore
un(Qas pa) — Orun(d, p) = Va({(a6, 2s), (a5, 1)}, 01) = un(qs, p) — Orun(ah, pj). (A.45)
Using Claim (15 and equation we get
U (Gas Pa) — wn(Gos po) = O2(un(ds, vly) — wn(ay, 1)) = 61 (un(al, pl) — un(gp, p})).
This implies up (¢, p),) = un(q,, p,), contradicting with Claim .

Remark 13 The incentive compatibility constraints for high valuation consumers -
can now be written as follows:

un(Gas Pa) — O1un(qy, py) = (1 — 01)un(qa, pa), (A.46)
un(qy, pv) — O2un(qy, 2y) = Un(qa, Pa) — b2un(q,, v,,) (A.47)
un (e, Pe) = un(qy, Po) — Osun(qy, py) (A.48)

Proof of Lemma 3 Take € such that

0<c< 12 (un(qo o) — un(ap, 1)), if s > (az + az)ba;
= | Oun(q, p}), otherwise.

Consider the following adjustment:

o= Py — € if asls > (o + az)by;
’ Dy + €, otherwise.

py =

ra __ p;, - 6/02a Zf Oé303 > (Oég + OZ3)92,‘
P, + €/02, otherwise.

O3 — 0,

Pe + € ( ), Zf 06393 > (Oég + @3)92,’

P = 93_292
pc_e( 0

), otherwise.

To complete the proof we need to show that the adjustment increases the value of the
objective function while not violating any of the incentive restriction. We start with
the case when asls > (g + az)0y. First consider the change in the objective function:

All = ag(—€) + age (93 _ 02)
02
03
:G(—(Oé2+a3)+@30—> >0
2
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Now we need to see if this adjustment violates any of the incentive restrictions. It
18 obvious that the constraints and for high valuation consumers are
satisfied by the choice . We want to show that all the incentive compatibility constraints
for high valuation consumers - are still satisfied. The adjustment does not

require any change for the products in Menu-A and Menu-D, therefore 1S not
affected. The incentive compatibility constraint for high valuation consumer with 6

becomes
a a a a 6
un (g, py) — Ooun(qy, vy = un(qe, po) + € — O2(un(gy, p) + 9—2)

€
= un(qp, pp) — O2un(qy, pp,) + € — 929—
2

= un(qp, pp) — O2un(qh: P))
= uh(Qmpa) - 92uh(qzﬁp;/)'
Furthermore, becomes
a a a a €
un(gs, py) — Osun(ay’, pi') = un(do, py) + € — 03 (un(gy, pp) + 9—2)

€
= (o, py) — Osun(qy, py) + € — O3~

02
03 — 0
:uh(QCapC)_e( 392 2)

= up(qg, p).

This shows that all the incentive restrictions for high valuation consumers are satis-
fied. Observe that this adjustment decreases the value of Menu-C' for all low valuation
consumers and this does not affect any of the constraints of this type. However it in-
creases the value of Menu-B only for those whose 6 < 65. This means that in order
to complete the proof, we need to show that the increase in the valuation of Menu-B
of low valuation consumers whose context-bias is less than 0y does not violate their in-
centive compatibility constraint. This can be done in two steps. First we can show that
Q@ > qa using the technique of the proof of Claim[3 and then we can use this fact to show
Vi ({(qb,pb), (q,,7,)}, Hj) < 0 by using the technique of the proof of C’laim. This implies
that it is always possible to find a positive € such that Vl({(ql‘j,pg), (@, pi*) }, Qj) —e <0.
By updating € by "W = min{e, €'} we can show that none of the constraints are vio-
lated.

Observe that this adjustment implies up(qy, pp) = un(qy,py,). From the incentive

compatibility constraint given in we get
uh(Qaapa) - Uh(Qb,pb) = 02 (Uh((I:ppg) - uh(QI/wp;))) < Uh(q:ppil) - U’h(qllyap;;)7

which implies up(qa, Pa) < un(q,,pl) and therefore we have

un(ql, Pl) = un(qa, Pa) = un(qs, o) = un(qy, pp)
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The fact that Menu-A and Menu-B are the same implies that this contract has three
menus, not four. Obviously this contradicts with the optimality assumption of four-
menu contract.

For the case when asfs < (ag + ag)by, we proceed likewise. First we consider the
change in the objective function:

f; — 0
AH:C{Q(E)—O@E( 302 2)
:E(O{2+013—Oé3%)20
0o

Following similar arguments as before, it is possible to prove that the adjustment
does not wviolate any constraints. In this case the adjustment implies u(q,,p,) =
0. From the incentive compatibility constraint given in we get up(qe, pe) =
un(qp, pv), therefore Menu-B and Menu-C' are the same. This is a contradiction with
the assumption that the contract with four menus is optimal. [J

A.4 Proof of Lemma 4

In order to prove this lemma, it is enough to realize that each menu in this contract
has to be constructed based on the most sophisticated one in the set of the consumers
for which that menu is designed. In particular, the first menu that is for the set of
high valuation consumers whose s belong to the interval [0, #) must be constructed in
such a way that the incentive constraints of the most sophisticated type in this set (the
fully sophisticated consumer) need to be satisfied. All the other consumers in this set
(the high valuation consumers for which @ € (0, 8)) follow the fully sophisticated one,
since once the incentive constraint of this type is satisfied the incentive constraints of
all the other types are already satisfied. In the same way, the second menu must be
constructed based on the context-bias level of the most sophisticated type for which this
menu is designed, i.e., high valuation consumer with . Finally, the last menu needs to
be concerned with the most sophisticated type among low valuation consumers. This
observation concludes that the contract is constructed based on three types on the
market; the most sophisticated types from each subset of consumers that the contract
partitions. Therefore it is equivalent to the contract examined in Section [1.3.2| with
0, =0,0,=0and aj, = 1 — F(f). Using Lemma we get
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C/(qtz) = /U;L(qa)
Pa = Vn(da) — [Un(ge) — vilqe)]

(q) = vy (@)
o = (@) — (1 = 0) [vn(gc) — vilge)]
/ / 1—A n n ) / /
c (QC) = UZ(QC) - T (1 -0+ 0F<0)) [vh(QC) - Ul(Qc)]
pe = vi(qe)
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Chapter 2

Lying for the Greater Good:
Bounded Rationality in a Team

2.1 Introduction

In economic literature, one of the most commonly used assumptions about decision
makers is full rationality. When faced with an economic decision problem, a fully ra-
tional decision maker has the ability to see and understand what is feasible and what is
preferable. Furthermore, he is also able to calculate the optimal course of action given
these two constraints. This widely used assumption that simplifies economic models
has received many criticisms for overlooking real life situations by ignoring cognitive
limitations. Wide literature initiated by Amos Tversky, Daniel Kahneman, and their
collaborators provides us with experimental evidence that human beings depart sys-
tematically from full rationality due to cognitive limitations. These limitations affect
their ability to recognize the available information on markets and their ability to
compute. Herbert Simon, the originator of the phrase, defines bounded rationality as
"rational choice that takes into account the cognitive limitations of the decision-maker-
limitations of both knowledge and computational capacity” (Simon 1987).

Boundedly rational agents try to simplify and structure the economic decision pro-
cess. One of the possible ways to do this is to use categories. The usage of categories
is also supported by psychological evidence that people in environments with abun-
dance of information show the tendency to group events, objects or numbers into
categories depending on their perceived similarities (Rosch and Mervis 1975). The
social psychologist Gordon Allport states that ”the human mind must think with the
aid of categories. We cannot possibly avoid this process. Orderly living depends upon
it” (Allport 1954, pg 20). Both in economic and social psychological literature, there are
many studies aiming to explain human behavior using categorization (e.g. see Macrae
and Bodenhausen 2000 or Fryer and Jackson 2008).

The following example illustrates one possible way how the categorization process
works. Consider a consumer who wants to buy a new television. There are an over-
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whelming number of available alternatives on the market. In order to make a decision,
the consumer has to compare a long list of attributes among all products. These at-
tributes include a wide variety of technical features (e.g. screen size, aspect ratio,
resolution, contrast ratio, sound system, dimension, weight, etc.), price arrangements
(price of the product, payment schedule, service fees), brand, warranty, product sup-
port, delivery service, etc. Unless the consumer is an expert on televisions, he may
have difficulties in making decision because of this long list of items to consider for
each product on the market. What happens most of the time is that after eliminat-
ing the obviously undesirable products (e.g. too expensive products), the consumer
categorizes all the remaining products on the market so that in each category there
are products with some similar attributes. One possible categorization process works
as follows. At each step of the process, the consumer chooses an attribute, attaches
some criteria to the attribute and partitions the set of products based on the criteria.
Say, for example, he considers the screen size attribute and the criteria he attaches is
if it is less than 45 inches or between 45 and 55 inches or larger than 55 inches. In
this way, he partitions the products into three sets as ”products with screen sizes less
than 45 inches”, ”products with screen sizes between 45 and 55 inches” and ”products
with screen sizes higher than 55 inches”. He continues the categorization process by
choosing another attribute-criterion tuple, say resolution and a threshold for resolu-
tion. He further refines each set in his partition based on this new attribute-criterion
tuple and obtains a new partition. In particular, he divides each of the three sets
into two as high-resolution and low-resolution, and ends up with 6 sets (categories) in
his new partition (low resolution-small size, high resolution-small size, low resolution-
medium size, high resolution-medium size, low resolution-big size, high resolution-big
size). Repeating this process for a number of steps, he ends up with a final partition of
products.ﬂ Each category in this partition includes a subset of products on the market
having similar features. He chooses one product from each category as a representative
and compares all the representatives. Then he considers only the category whose rep-
resentative gives the maximum utility. The final decision is made among the products
in that category. This process may lead to a non-optimal decision since the consumer
considers only a small subset of products (the category whose representative gives him
the highest utility) rather than the whole set. Furthermore, another feature of cate-
gorization is that even if their preferences are perfectly aligned, the decisions made by
different individuals may not be the same. The reason is that the final partition for
a consumer is most likely to be different than the final partition of another consumer,
since it depends on the number of steps and the criteria the individuals use.

The main purpose of the paper is to analyze the interaction between fully and
boundedly rational people. More specifically, we focus on situations in which both
agents work together in a team and the boundedly rational agent has to make a deci-

The number of steps depends on the degree of the individual’s bounded rationality. In the limit case
(when the individual is fully rational, say, an expert on televisions), the number of steps is sufficiently large
that each category contains only one product (finest partition).
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sion after receiving a message from the fully rational agent. In such setups, although
being fully rational, an agent might suffer from possible non-optimal decisions made
by boundedly rational agent. We investigate how a fully rational agent can decrease
the expected loss due to bounded rationality. We show that this is possible by manip-
ulating information sent to the boundedly rational agent. Furthermore, we focus on
what the fully rational agent can infer about the categories used by boundedly rational
agent among their interaction and we show that it is possible to decrease the amount
of manipulated information.

The following setting about a fully rational boss and his boundedly rational name-
sake can be considered as a motivating example for our model. The boss, who can be
regarded as the principal, is willing to buy arms for hunting animals. Having a crim-
inal record, he does not meet the conditions for registration of arms with the police
forces. Therefore he asks his namesake, who does not have any records of criminal
commitment, to buy a weapon for him. The namesake, who can be regarded as the
agent, has also some connections in the weaponry black market. Therefore he can buy
the weapon from either the legal or illegal market. At this point, it is important to
note that the problem we are dealing with is not a principal-agent problem, but an
instance of team theory initiated by Roy Radner. In principal-agent problems there is
a conflict of interest giving rise to agency cost. In our setting, however, this is not the
case since the preferences of the boss and his namesake are perfectly aligned.

Our paper takes as a departure point Dow (1991), where an economic decision
problem for a boundedly rational agent visiting two stores and searching for the lowest
price is modeled. The bounded rationality of the agent comes from his limitations in
memory. More specifically, when the agent is in the second store, he cannot remember
the exact price in the first store, but only remembers to which category it belongs.
The agent makes a decision by comparing the price in the second store with the rep-
resentative of the category to which the price in the first store belongs. Dow (1991)
characterizes the optimal categorization. We depart from Dow’s setting by introducing
a fully rational agent and examining the interaction between the two agents.

Considering a similar setting to Dow’s (1991), Chen, Iyer and Pazgal (2005) and
Luppi (2006) examine the price competitions in the market and show that fully rational
firms can take advantage of boundedly rational consumers. Chen, Iyer and Pazgal
(2005) depart from Dow’s setting by introducing two different types of consumers:
totally uninformed consumers, who only consider buying from a specific store as long
as the price is below their reservation value, and informed consumers with perfect
memory, i.e., fully rational consumers. They characterize the Nash equilibrium of the
game in which firms choose pricing strategies and consumers with limited memory
choose their categories. It is shown that having bounded rational agents in the market
softens price competition. A similar setting is used by Luppi (2006), where there are
rational firms on one side and boundedly rational consumers on the other side of the
market. Consumers categorize the price space and make their decision based on their
categories. She demonstrates that in the presence of boundedly rational consumers two
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firms competing a la Bertrand depart from the standard equilibrium and make positive
profits. The difference between these two papers and ours comes basically from the
difference in the settings. In our case fully rational and boundedly rational agents are
working as a team and their common aim is to improve the outcome. In other words,
the fully rational agent is not trying to take advantage of the boundedly rational agent
like in Chen, Iyer and Pazgal (2005) and Luppi (2006), but he is trying to learn how
to deal with the latter one in order to achieve the common goal.

Another literature strand to which this paper refers is the field of Information
Transmission. Crawford and Sobel (1982) analyze costless strategic communication
between a better-informed, fully rational sender and a fully rational receiver. The
sender categorizes the support of messages and sends the category to which the realized
message belongs instead of sending the real value. This situation arises because the
players’ preferences are not perfectly aligned. The receiver, after reading the signal,
takes an action that affects both his and the sender’s payoffs. They show that as the
preferences become more aligned, the number of categories the sender uses increases,
i.e., the signal becomes more informative. The main difference from our model relies on
differences in assumptions: full rationality of both agents and differences in preferences.

Although there have been many studies in economic literature on bounded ratio-
nality, studies on interaction between fully and boundedly rational agents are limited
in number. To our knowledge all these studies concern with how fully rational agents
take advantage of boundedly rational agents (see Rubinstein 1993, Piccione and Ru-
binstein 2003, Eliaz and Spiegler 2006). The main novelty of our paper lies in our team
approach. Both type of agents work together to decrease the inefficiency caused by
bounded rationality since their preferences are perfectly aligned.

Another interpretation of our model could be done by using the concept of inter-
preted signals rather than bounded rationality. This concept, introduced by Hong and
Page (2009), is based on the assumption that people filter reality into a set of cate-
gories. Hong and Page call the predictions that agents make about the value of the
variable of interest by using their own categories as interpreted signals. They state
that ”7... two agents’ signals differ if the agents rely on different predictive models.
This can only occur if agents differ in how they categorize or classify objects, events
or data, if agents possess different data, or if agents make different inferences.” In our
model, we can think that the interpreted signal of the boss and his namesake may
differ due to their different ways to categorize the real world. In this case, the action
taken by the namesake may cause a loss for the boss because the good bought by his
namesake might be less valuable for the boss than the alternative. In order to decrease
this expected loss, the boss manipulates the information he sends to his namesake.
Moreover, it might be possible to decrease the amount of manipulated information,
since the boss might infer the categorization of his namesake among their interaction.

The organization of the paper is as follows. Section describes our two-period
toy model, gives the details of learning mechanism and presents results obtained using
myopic approach. Section recaptures the results using a farsighted approach and
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Section concludes.

2.2 A Toy Model

We consider a two-period decision problem, in which a fully rational boss wants to
buy a product in each period. There are two markets having a huge number of al-
ternatives for the product. The first market is more complex than the second one.
A possible explanation for this could be that the first market is a legal market with
many regulations and the second market is an illegal one with less complexity. The
boss can only observe the products in the first market but cannot perform any trans-
action since he does not have access to neither of the markets. Therefore he asks his
boundedly rational namesake, who has access to both markets, to compare products
in the two markets and buy from one. However, cognitive limitations of the namesake
do not allow him to fully understand the complex (first) market. Being aware of his
limitations, he categorizes the price space for the first market to simplify the decision
process and uses the representatives of his categories in order to compare the prices
in two markets. The objective of the boss is to minimize the expected loss due to the
cognitive limitations of his namesake.

It is common knowledge that the boss is fully and the namesake is boundedly
rational. It is also known by both parties that the bounded rationality of the namesake
is due to his limited ability in understanding the first market. It should be noted that
for simplicity we consider only a single number (price) for a product, but in fact this is
a combination of many elements, like the type, quality, brand, and age of the product,
length of the warranty, payment arrangements and service fees. It is the multiplicity
of such items that makes the namesake unable to fully understand the first market.
However, the number of elements that are embedded in prices of the second market
is less than those of the first market. In case of an illegal market, for example, there
are no warranties, no payment arrangements, no service fees, etc. This is what makes
the first market more complicated than the second market. In other words, this is
the reason why the namesake is unable to fully understand the first market whereas
he understands the second market. Being aware of his limitation, the namesake fully
trusts his boss. This is because he knows that their preferences are perfectly aligned
and that the boss is fully rational, i.e., that the boss does not have any limitations in
understanding the market. Furthermore, the namesake is aware of the fact that the
boss may lie to him. However he knows that the reason for that is not that the boss
wants to take advantage of him but to improve the outcome. Finally, the boss knows
that his namesake fully trusts him.

In the first period, the boss observes the price on the first market, pi, and then
reports a price to his namesake, p* (not necessarily the true observed value). Receiving
the report, the namesake understands to which category the reported price belongs.
Then he compares the representative of that category with the price on the second
market, p3, and decides from which market to buy. Note that he may take a non-
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optimal action since he uses the representative instead of the realized price for the
product in the first market. Finally, he informs his boss about the price on the second
market. Therefore, the boss is able to understand whether the decision was optimal or
not.

At the beginning of the second period, the boss updates his beliefs about the name-
sake’s categories by looking at the realized prices on both markets and the action of
the namesake. Then the first period is repeated. The notations used for the second
period are as follows: p? stands for the realized price on the first market, whereas p3 is
the price on the second market, and p? is the reported price.

We assume that prices on both markets are independent and distributed uniformly
between 0 and 1. There are three possible types for the namesake. All types use
two categories, namely, they all partition the price space in two. In order to do that
they choose a cutoff price level. Prices lower than the cutoff level belong to the first
category (low) and prices higher than the cutoff belong to the second category (high).
The representative of each category which is used to compare with the price on the
second market is the median of that category. Types differ in their choices of cutoff
price level. Type-1 uses 1/4 as the cutoff level and the representative price of his
low category is 1/8, whereas it is 5/8 for his high category. Type-2 uses 1/2 as the
cutoff level, thus 1/4 and 3/4 are the representatives for his low and high categories,
respectively. Finally, type-3 who uses 3/4 as the cutoff level, has 3/8 and 7/8 as the
representatives for his low and high categories, respectively. The prior belief of the
boss is that all types are equally likely.

Given the number of categories and price distribution, type-2 uses optimal cate-
gories. The cutoff that is used by type-1 is lower than what it should be. It can be
thought that type-1 believes that the mean of prices is low. On the contrary, type-3
uses a cutoff higher than the optimal. With the same logic, he can be thought as a
person who believes that the mean is high. The distances of cutoffs of type-1 and
type-3 from the optimal level of cutoff (1/2) are the same but in reverse directions.
This is to say that type-1 and type-3 behave symmetrically.

The objective of the boss is to minimize his expected loss caused by bounded ra-
tionality. His action is the price that he reports to the namesake. There are 4 different
types of available action that are given in Table [2.1l For example, if the boss chooses
to report a price in [0, 1/4], then all the types consider their low categories, and use
1/8, 1/4, 3/8 as representative, respectively.

type-1 | type-2 | type-3 | used prices
pel0g L 1 L [ L [{gpg)
PEl A m [T [ L [ {u50)
el A m [ m | L [ {.50)
p'e[g1] H H H {3,585}

Table 2.1: Action Space
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2.3 Myopic Approach

In this section we consider a myopic approach. That is, we assume that the boss is
only concerned with the expected loss of the current period, not with the aggregate
expected loss. A farsighted approach is considered in the following section. Table [2.2
shows the expected loss for each possible combination of price realizations on the first
market (p}) and actions taken by the boss. Each number in bold gives the minimum
expected loss for the relevant price realization. Given the myopic approach, the action
that corresponds to each bold number is the optimal choice of action for the boss for
the relevant price realization. For example, if the boss observes a price on the first
market that belongs to interval [0, 1/8], he will report a price that belongs to interval
[0,1/4]. At this point we make another assumption about the boss. We assume that
he prefers to tell the truth whenever it is among the optimal actions. This assumption
together with the fact that [0,1/8] C [0,1/4] (truth-telling is among optimal actions)
imply that the boss reports the true value in this case. However, if pi € [1/4,3/8] it
is optimal to report p' € [0,1/4]. In this case, the reported price is less than its true
value (the boss under-states the price). The other case in which the boss lies is when
pi € [5/8,3/4]. The reported price in this case is p' € [3/4,1], i.e., it is higher than its
true value (the boss over-states the price).

Observed Price\ Report | p' € [0, 1] [ pt €[5, 5] | p' € [3,3] | p! € [3,1]
pi €10, 4] 9 29 57 93
pi € (3 1] 3 15 35 63
pi € (3. 3] 3 7 19 39
pi €3 3] 9 5 9 21
pi €[5, 5] 21 9 5 9
pi € [2,4] 39 19 7 3
pi €3, 1] 63 35 15 3
pl €[5, 1] 93 57 29 9

Table 2.2: Expected Loss (common multiplier: ﬁ)

Table [2.2] results in the following reaction function:

C[rptpeod] itpeltd,
R(p1) = report p' € [$,1] if py € [2, 3], (2.1)
report the true price  otherwise.

Under-statement of the price occurs only if p} € [1/4,3/8] and receiving this report all
types use their low (L) categories (see Table 2.1). However, if p} € [1/4,3/8] and the
boss reports the true value of the price rather than under-stating, type-1 uses his high
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(H) category whereas type-2 and 3 stick to their low (L) categories. So, it is only type-1
who is affected by under-statement. Since the boss prefers to tell the truth whenever
it is among the optimal actions and under-statement does not affect other types, the
boss uses this strategy only if type-1 is among possible types when the observed price
belongs to interval [1/4,3/8].

Over-statement of the price occurs only if p} € [5/8,3/4]. By the same reasoning
above, over-statement affects only type-3, not others. Therefore, the boss uses this
strategy only if type-3 is among possible types when p} € [5/8,3/4]. Otherwise, he
prefers to report the truth.

Figure represents the reaction function of the boss. Here, we can observe
that the behavior of the boss is symmetric around 1/2. The arrow on the left repre-
sents under-statement and in case of under-statement only type-1 switches category,
whereas the arrow on the right represents over-statement and only type-3 switches
category in this case. As noted earlier, these types behave symmetrically which results
in symmetric behavior of the boss.

Figure 2.1: Reaction Function

At the end of the first period, the boss updates his beliefs by looking at the prices
realized in both markets and the action taken by the namesake. To see how this works
let us consider the following example. Say, p; € [0,1/8], p3 € [1/8,1/4]. Given the
price on the first market, the boss reports the true value (see ) In this case, the
representative price is 1/8 for type-1, 1/4 for type-2 and 3/8 for type-3. The namesake,
comparing the representative price with the price on the second market, buys the good
from the first market if he is of type-1 and buys from the second market if he is of
type-2 or type-3. If the product is bought from the first market, the boss understands
that his namesake is of type-1 and updates his belief such that with probability 1 the
namesake is of type-1. If instead, it is bought from the second market, the boss updates
his belief such that with probability 1/2 the namesake is of type-2 and with probability
1/2 the namesake is of type-3.

Figure summarizes the learning process at the end of period-1. Numbers in bold
stand for the numbers of possible types of the namesake. The boss starts with three
possible and equally likely types. The probability that he learns the exact type, i.e.,
that the number for possible types is 1, at the end of the first period is 3—32 = 0.09375.
The probability that the number of possible types decreases to 2 (elimination of one
type) is 1%. = (0.1875, and finally the probability that the boss learns nothing is g—g =
0.71875.

Figure 2.2: Learning Process, 1st Period
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The boss starts the second period with updated beliefs. The objective is again
to minimize the expected loss caused by bounded rationality. When type-1 is among
possible types and the observed price on the first market in the second period (p?)
belongs to the interval [1/4,3/8], he uses the under-statement strategy described above.
Furthermore, when type-3 is among possible types and p? € [5/8,3/4], he uses the
over-statement strategy. In all the other cases he reports the true observed value. The
reaction function for the second period coincides with the one for the first period
if both type-1 and type-3 are among possible types.

Figure 2.3: Learning Process, 2nd Period

Figure summarizes the learning process for the whole game. If the boss figures
out the exact type of the namesake (arrives to node 1) at the end of the first period,
there is nothing left to learn and he continues the second period with the relevant
strategy. If he arrives to node 2 at the end of the first period, the learning process
continues and he might either figure out the type and arrive to node 1 or not learn
anything and stay in node 2. If he does not learn anything about the type at the end
of the first period (stays at node 3), there are three possibilities for the second period.
He might figure out the exact type and arrive to node 1, or he might eliminate only one
possible type and arrive to node 2, or he might not learn anything and stay at node
3. The overall probability that the boss figures out the exact type of the namesake by
the end of the game is 0.19238, that he eliminates only one possible type is 0.29102
and that he does not learn anything is 0.51660.

The transition matrix of the learning process is given in Table 2.3] It is a finite
Markov Chain and has three ergodic states. According to the Theorem by Kemeny
and Snell (1976), the probability after n steps that the process is in an ergodic state
tends to 1, as n tend to infinity. This means that if the game is repeated for n periods
the probability that the boss learns the exact type of the namesake tends to 1 as n
gets larger.

possible types | {1,2,3} | {1,2} {1,3} {2,3} {1} {2} {3}

{1,2,3} 0.71875 | 0.08333 | 0.02083 | 0.08333 | 0.04167 | 0.01042 | 0.04167

{1,2} 0 0.84375 0 0 0.07813 | 0.07813 0
{1,3} 0 0 0.75000 0 0.12500 0 0.12500
{2,3} 0 0 0 0.84375 0 0.07813 | 0.07813

5 0 0 0 0 1 0 0

2 0 0 0 0 0 1 0

(3} 0 0 0 0 0 0 1

Table 2.3: Transition Matrix
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The relationship between the number of periods and the probability of learning the
exact type is given in Table 2.4 The probability increases in the number of periods,
and it becomes almost 1 after 30 periods.

n P
5 | 0.46344
7 | 0.60419
10 | 0.75543
15 | 0.89388
20 | 0.95465
30 | 0.99178

Table 2.4: Number of periods/probability

A crucial point to be noted is that in this section we use a myopic approach to
solve the optimization problem. This means that we assume the boss is concerned only
with the expected loss of the period he is in. Whereas with a farsighted approach,
he considers the overall expected loss that is the sum of discounted expected losses.
However, both approaches yield the same results with the given available types. In
this setting, a manipulated message affects only one type, while other types stick to
their category that they would consider without the manipulated message. In other
words, a strategy that needs to be used in order to decrease the expected loss caused
by one type does not conflict with the strategies that need to be used for other types.
For example, the under-statement strategy is used whenever type-1 is among possible
types. The fact that type-2 and/or type-3 are among possible types does not change
this strategy, because it induces only type-1 to change his category, not the other types.

Therefore, the boss can continue to use the reaction function given in even if he
knows the exact type of the namesake. It should be noted that if he does so, he might
report a manipulated price although reporting the true value is also among optimal
actions. Even tough this violates our assumption that the boss prefers reporting the
truth whenever it is possible, it yields the same expected loss for the boss. This fact
ensures that he can use the same reaction function for each period no matter if he
is farsighted or myopic. In the following section we show that myopic and farsighted
optimizations do not always coincide.

2.4 Farsighted Approach

In this section, we consider a farsighted approach. That is, we assume that the objective
of the boss is to minimize the sum of discounted expected losses. We modify the model
by changing the possible types. Here, we assume that the namesake has two possible
types. The first type uses two categories (low and high) and his cutoff price level is
1/3. Therefore he uses 1/6 as the representative for low category (L) and 2/3 for high
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category (H). The second type uses three categories (low, medium and high) and his
cutoff price levels are 1/3 and 2/3. Thus 1/6, 1/2 and 5/6 are the representative prices
for his low (L), medium (M), and high (H) categories, respectively. The prior belief of
the boss is that both types are equally likely.

In this setting, the boss can choose his strategy among three different types of
action, that are represented in Table If he reports a price belonging to [0, 1/3], both
types use low categories and 1/6 as representative price. If he reports p' € [1/3,2/3],
then type-1 uses his high category and 2/3 as his representative for the first market
price, and type-2 uses his medium category and 1/2 as the representative (i € {1,2}
represents the period). Finally, if the boss reports p’ € [2/3,1], both types will use
high categories and type-1 uses 2/3 whereas type-2 uses 5/6 as representative price.

type-1 | type-2 | used prices
pelosl| L L {52
Vel B | M [ {L1)
pelzl]] H H {587

Table 2.5: Action Space

We solve the optimization problem by backward induction since we are considering
a farsighted approach. If the boss does not learn anything about the type of his
namesake during the first period, he starts second period with the belief that both
types are equally likely. Following the same reasoning of the previous section, we get
the following reaction function:

report p® € [0, 3] if p} €[5, 2],

report the true price  otherwise, (2:2)

R(pi| typel & type2) = {

where R(p?|typel & type2) stands for the reaction function for the second period given
that both type-1 and type-2 are among possible types. And the expected loss in this
case 1S

151

Ey(L| typel & type2) = 17980

(2.3)
where Fy(L) denoted the expected loss in the second period. If the boss learns that
his namesake is of type-1 during the first period, his reaction function for the second
period is

report p? € [0, 3] if p € [3, 2],

2 _
R(pi| typel) = { report the true price  otherwise.
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The expected loss in this case is

7
Es(L| typel) = — 2.5
S (L] typel) = oo (2.5
If the boss learns that his namesake is of type-2 during the first period, his reaction
function for the second period is to always report the true value, since given the number
of categories and the distribution of the price this type uses optimal categorization. In
this case, the expected loss is

1

Ey(L| type2) = 5o (2.6)
Now, we move to the first period. If the boss, after observing the price on the
first market, reports p' € [0,1/3] then both types will use low category and 1/6 as
representative price for the first market (see Table . Since both types will be
using the same representative, they will behave in the same way. Therefore, it will
be impossible for the boss to distinguish between the two, i.e., the boss will not learn
anything about the type of his namesake and will continue with his initial belief. In
this case, the overall expected loss will be the sum of the expected loss from the first
period and the expected loss of the second period multiplied by the discount factor of

the boss, 0 € [0, 1].

1/6
/ (py — pi) dpy + 0 Ea(L| typel & type2). (2.7)
p

1

If the boss reports p' € [1/3,2/3] then type-1 will use his high category and 2/3 as
representative price for the first market, whereas type-2 will use his medium category
and 1/2 as representative (see Table [2.5]). If the price realization on the second market
is below 1/2 then both types will act in the same way and will buy from second market.
If it is greater than 2/3 both types will act again in the same way and will buy from
the first market. However, if p3 € [1/2,2/3], type-1 will buy from the second whereas
type-2 will buy from the first market. Thus, the boss will learn the exact type of his
namesake only if pi € [1/2,2/3] and this occurs with probability 1/6. Hence, with
this strategy the probability that he boss figures out that his namesake is of type-1 is
% X % = 1—12, which is the same for type-2. In this case, the expected loss is

1
2

pi pi

(2.8)
If the boss reports p' € [2/3,1] then type-1 will use his high category and 2/3 as
representative price for the first market, whereas type-2 will also use his high category
and 5/6 as representative (see Table . In this case, both types will act in the same

way unless the price realization on the second market belongs to [2/3,5/6]. Thus, the
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boss will learn the exact type of his namesake only if p} € [2/3,5/6] and this occurs
with probability 1/6. Hence, the expected loss in this case is

1 283 1 [5/6 5 1 1
= / (py—p1) dpy+= / (pé—pi)dz%%[EEQ(L|typ61&type2)+ﬁEz(thyp61)+ﬁEz(L|type2)]

2 Juy 2 Jp;
(2.9)
Inserting (2.3)), (2.5) and (2.6) into (2.7)), (2.8) and (2.9) we derive the reaction

function of the boss as follows:

report p! € [0, %] if pi € [0,q],
R(p}) = { report p' € [%, 2] ifp € a, 3], (2.10)
report pl € (1] ifpl € (21]
where a = 2502

Taking into account the assumption that the boss prefers to tell the truth whenever it
is among the optimal actions, the above reaction function becomes

1y _ [ report p' € [0, 5] if p} € [3, 4],
R(py) = { report the true price  otherwise. (2.11)

The reaction function shows that the optimal strategy depends on the dis-
count factor of the boss. If the boss concentrates only on the expected loss of the current
period and does not take into account future expected losses, i.e., if & = 0, then my-
opic and farsighted optimization results coincide. Whenever the boss considers current
losses together with future losses (i.e., whenever § # 0), there is a difference, albeit
small, between the reaction functions resulted from myopic and farsighted approach.

Here we consider a game with only two periods. Before the last, there is only
one period in which the boss can learn something about the type of his namesake.
Furthermore, he has only one period, namely the second period, where he can use this
information. This is the reason why the difference between reaction functions resulting
from myopic and farsighted optimizations is so small. This difference is increasing in
the number of periods of the game as well as in . A boss with high ¢§ is more concerned
about future loss compared to a boss with lower §. Therefore he is more willing to
invest in learning the type of his namesake in order to decrease his future loss.

2.5 Conclusion

We have constructed a model in order to study the interaction between fully and
boundedly rational agents when they are parts of the same team and have perfectly
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aligned preferences. In an environment with abundance of information (type, quality,
brand, age of the good, length of the warranty, payment arrangements and service
fees), boundedly rational agents are having difficulties in making decision due to their
cognitive limitations. In order to simplify the situation, they try to group events,
objects or numbers into categories. In our model we consider a boundedly rational
agent who partitions the price space into connected sets. The decision made by this
agent might be non-optimal in some cases, since he is using categories instead of realized
prices and regards prices belonging to the same category as equal.

Assuming different types for the boundedly rational agent and that types differ only
in categories they use, we show that during his interaction, the fully rational agent
may learn about the type of the boundedly rational agent, and using this additional
information, he can improve the outcome. The probability that he learns the type
of the boundedly rational agent increases in the length of this interaction, whereas it
decreases in the number of available types.

Finally, we show that myopic and farsighted approaches yield different results in
some cases, depending on the available types. This difference is caused by the tradeoff
between experimenting for the future and starting to cope with the problem right away.
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Chapter 3

The Power of Diversity over Large
Disjunctive Tasks

3.1 Introduction

“Two heads are better than one” or “A camel is a horse designed by committee”?
This question has long been studied in the literature and raised equivocal research
findings. The former adage has been supported by a number of studies indicating
that the functional diversity that comes along with the formation of a group results in
improved group performance.

Simons et al. (1999) study how the interaction between top management team
diversity variables (like perceived environmental uncertainty diversity, education level
diversity, functional background diversity, age diversity) and debate influences the
financial performance. By analyzing the data from the top management teams of 57
manufacturing companies in electronics industry, they conclude that the interaction of
debate with more job-related types of diversity positively affects sales and profitability.

More evidence supporting the first adage is provided by Blinder and Morgan (2005).
Their departing point is the observation that many important decisions, including those
on monetary policy, are made by groups rather than individuals. In order to study
the performance of monetary policies made by committees against the ones made by
individuals, they run two laboratory experiments. Even though the set-ups of the
experiments are very different from each other, they almost yield the same results:
groups are not slower than individual in reaching decisions and groups perform better
than individuals.

Kocher and Sutter (2005) study individual versus group decision makers in an exper-
imental beauty-contest game. The results suggest that there is no significant difference
between individual and group decision makers in the first round; however, when the
game is repeated, groups exhibit more rational behavior; that is, their decisions are
closer to the equilibrium of the game. This implies that groups are able to learn and
adapt much faster to the environment. Therefore, when competing against individuals,
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groups outperform them in terms of payoft.

More support for the first adage is offered by Cooper and Kagel (2005), who study
differences between individuals and teams in learning and adjusting process. Based
on the results from a signaling game experiment, they find that teams, playing more
strategically, outperform individuals. Moreover, as it becomes more difficult to learn
to play strategically, the advantage of being part of a team is even greater.

The final first-adage-supporting study that we introduce here is from the ecological
literature. Liker and Békony (2009) compare small versus large groups of house spar-
rows in terms of problem solving performance. Large groups of birds are both faster
and better in foraging performance. This superiority of large groups is not only due
to high number of attempts but also due to high effectiveness in problem solving and
this fact is attributed to the diversity of large groups in skills and experiences by the
authors.

However, there have been a number of other studies that indicate that forming
a group creates a negative or non-significant impact on performance. This finding
is mainly attributed to poor relations impairing collective effort. For example, in
brainstorming groups, members are asked to generate as many ideas as possible and
encouraged to build on the ideas of others. It is observed that groups generate much
fewer ideas then when agents work in isolation. Possible reasons for this unexpected
loss in the number of ideas are fear of negative evaluation, social loafing, free-riding
and production blocking (Paulus and Yang, 2000).

Similarly, the psychological literature produces two main approaches to explain
why individuals might be better than groups in decision making: groupthink and risky
shift. Groupthink is mainly self-censorship and group conformity that may lead to
oppressing those who disagree, closed-mindedness, stereotyping, and incomplete survey
of alternatives/objectives. Risky shift is group polarization that can be explained as
the tendency of people to make riskier decisions when they are in a group.

In our model, we eliminate all but one problems listed above by the use of a sequen-
tial search procedure and the assumption that the aim of the team is to maximize a
given one-to-one objective function. A tentative solution found by an agent is handed
over the next agent and he is asked to improve it. This process continues, cycling over
all agents, until no one can find further improvements. The sequential nature of this
interaction dispels social loafing and free-riding problems. Furthermore there is never
a disagreement, since improvements are always objective. This fact cuts out the fear
of negative evaluation. Finally there is no group polarization since there is no uncer-
tainty involved in the model. The only problem that could impair the collective effort
is groupthink that we embed in our model.

The aim of this paper is to study the effect of diversity in problem-solving ability on
the team performance when a disjunctive task over a large solution space is faced. A
disjunctive task refers to a task in which all members of a team work together in order
to produce a single solution. We model the limitations in agents’ abilities by using
partitions. We show that under some conditions a team of two agents will succeed in
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solving a difficult problem with a large solution space. Even though neither can do
it alone, when they pool their abilities the power of diversity helps them to achieve
the goal. In other words, it takes two to solve a problem. We also provide sufficient
conditions under which teaming up does not always guarantee success. This happens
when the agents are not sufficiently creative. In this case, forming a team improves
the outcome but does not necessarily ensure that the team finds the optimal solution
to the problem.

Afterwards, we consider situations in which the ability of agents is adversely affected
by the complexity of the solution space. As the solution space gets larger, the problem
becomes more complex since the number of elements among which the search is done
increases. We use graph theory in order to model the ability of an agent that is
diversely affected by the complexity. More specifically, we use the Erdds-Rényi Model
of random graphs. We show that small sized teams will still solve the problem. The
size of a successful team is determined by the cardinality of the solution space, i.e., by
the complexity of the problem.

Finally, we deal with the effect of groupthink on the performance of a team. When
the members of a team begin to think and act alike, its performance decreases. In
other words, groupthink harms the performance and impairs the power of diversity.
We study the case in which the abilities of agents are both positively correlated and
adversely affected by the complexity of the problem. We show that the size of a team
and the magnitude of correlation are the key components in these situations. Unless
there is a perfect correlation, a team can still solve the problem but it requires a larger
team to achieve this goal.

The organization of the paper is as follows. Section describes the model and
presents some technicalities used in our analysis. Section gives sufficient conditions
for a team of two agent to be always successful. We show that our model is equivalent
to the model used in Hong and Page (2004), and compare them by pointing out the
novelties of our perspective in Section [3.4l Section [3.5] gives sufficient condition under
which teaming up does not guarantee success. We continue by assuming that abilities
are adversely affected by the complexity of the problem in Section [3.6| and present our
result that small teams of more than two people will still solve the problem. Section (3.7

is concerned with groupthink and shows that larger teams are necessary to solve a
problem. Finally, Section [3.§] concludes.

3.2 The model

There is a team T of m problem-solving agents of limited ability who attempt to maxi-
mize an objective function V' that maps a finite set X of n solutions into real numbers.
The function V' : X — R is one-to-one; in particular, it has a unique maximizer at z*.
The task of the team is locating 2* and it can be carried out disjunctively: if only one
of the agents finds z*, the task is accomplished. However, due to their limited ability,
the agents may fail to do so.
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We represent the limited problem-solving ability of each agent ¢ by a partition II;
of X. Suppressing momentarily subscripts, consider one agent. The mutually disjoint
and exhaustive classes constituting the partition II are called blocks. The agent can
find the best solution within the block is working on, but he is impervious to the other
blocks unless his attention is redirected there by someone else. The availability map
IT: X — 2%\ 0 describes the search space of the agent: for each x € X, II(z) is the
set of solutions that he can explore when he is aware of a candidate solution x. The
availability map is consistent: z is in II(z) for all z in X; that is, the search space of
an agent always contains the candidate solution.

We assume that each agent correctly identifies and compares the values of V' for
each solution he examines. Therefore, given a candidate solution x, he explores the
search space II(z) C X and finds zq = argmaxyecn(z) V (y): since V(xg) > V(z), the
search is always (weakly) improving. More generally, when the agent has access to an
initial subset S C X of candidate solutions, he explores I1(S) = U,esII(x) and finds
the solution zy = arg maxyer(s) V (y)-

When two or more agents work together, they can pool their abilities and ex-
pand their search spaces. Following the general framework developed in Hong and
Page (2001), it is not necessary to specify the minute details of their interaction but,
for the sake of clarity, we provide an illustrative example inspired by sequential search.
Number agents from 1 to m. Agent 1 works on the task from an initial set S of can-
didate solutions and finds a tentative solution zj that he hands over to Agent 2. She
uses x; as a starting point and explores the search space I1y(z7) from her partition Ils,
locating a (possibly new) tentative solution x5 = arg max{V (x) : x€lly(z7)}. Clearly,
V(z3) > V(a}) so the search is (weakly) improving. The process continues, cycling
over all agents, until no one can find further improvements; then the search stops and
the current tentative solution becomes final. If, along the process, no agent ever gets to
explore that block in his partition that contains x*, the optimal solution is not found
and the team fails (although it may succeed in discovering a very good local optimum).

We formalize the problem-solving ability of a team T = {1,2,...,m} as follows.
Each agent ¢ in T' is associated with a partition II; that represents his ability to explore
the search space. Starting with an initial set S of candidate solutions, each agent
explores I1(.S); analogously, any team of two agents i = 1,2 explore II;(II3_;(.S)); and,
more generally, the team jointly explores the union of all subsets representable as
IL, (1L, _, ... (IL; (s))) C S for any k and any sequence iy, i, . . . , if.

When X is finite, there is a simple characterization of the set of solutions that are
jointly explored by a team. The finest common coarsening of the partitions (II;,i€T)
is another partition M called their meet. Then, from an initial subset S of candidate
solutions, the team jointly explores M (S). In other words, the meet describes the
problem solving abilities commonly attained by the team. The next short subsection
conveniently collects a few technicalities to be used later in the paper.
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3.2.1 Technicalities

We assume that X is a finite set with n elements; when useful, we write it as X,, to
make the number of elements evident. We label the elements of X,, with the integers
{1,...,n}. Following custom, we list the blocks of a partition of X in increasing order
of their least elements and the elements of each block in increasing order. For instance,
the blocks of the partition {3,4,5},{6,1},{2} of a set with six elements are listed
{1,6},{2},{3,4,5}. For brevity, we often simplify notation and write the partition as
16]2|345.

We write IT < II' to denote that II is coarser than II’. Clearly, an agent endowed
with partition II has a higher problem-solving ability than another agent endowed
with II'. The trivial partition Iy that has X as its unique block satisfies the property
[y < II for any partition II; therefore, an agent endowed with the trivial partition
has the highest problem-solving ability of all and, indeed, will find the global optimum
from any starting point. The set of all the partitions of X partially ordered by the
refinement relation =, is a lattice. In particular, the notation II; AIl; denotes the finest
coarsening of II; and Ily; analogously, I1; VII, stands for their coarsest refinement. The
meet of (II;,i€T)is M = N\, ., 1L;.

The number of partitions for a (finite) set X,, of n elements is given by the Bell
number B,. As an example, consider X3 = {1,2,3}. The set of all its partitions,
denoted by (X3), is (X3) = {123, 1]23, 2|13, 3|12, 1|2|3} and thus B; = |(X3)| = 5. The
first few Bell numbers are By = 1, By = 1, B, = 2, B3 = 5, By = 15, Bs = 52, and
Bg = 203. The Bell numbers satisfy the recursive formula

- n
Buj1=) ( k) By
k=0

as well as the Dobinsky’s formula
+oc0 6_1
n=3 (%)
k=0

according to which B, is the n-th moment of a Poisson distribution with expected
value 1.

We are to study large spaces of possible solutions, when n is large. An asymptotic
formula for the Bell numbers as n T 400 is

B. ~ 1 rn+l/2€r—n—1
n
n

where 7 is defined as the root of re” = n; see Pitman (2006). It is also known that for
every € > () there exists n. such that

( - )n<Bn<(L>n (3.1)

elnn el=¢clnn
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for all n > n; see De Bruijn (1958). Recently, Berend and Tassa (2010) have proved
a convenient (albeit less tight) upper bound

B, < 0.792n
In(n +1)
that holds for all n.

3.3 Two heads are better than one

This section studies the performance of a randomly chosen team of problem-solvers.
We fix both the number n of solution in X,, and the size m of the team T,,. A team
is always successful if it can find the optimal solution in X,, from any starting point;
that is, if the meet of the partitions of its agents is the trivial partition. We assume
that the agents in the team are randomly chosen so that the composition of the team
is stochastic and we ask what is the probability that the team is always successful.

Since a problem-solver is represented by a partition, we need to construct a model
of how agents are randomly drawn from the set of partitions of X,, . To stack the deck,
we borrow from Hong and Page (2004) the assumption that no single agent can find
the optimum alone.

Assumption 1 (Difficulty). No agent in the team is endowed with the trivial par-
tition.

The simplest way to build a random model of team formation is to assume that
agents are independently chosen according to the uniform distributions over all parti-
tions. Formally, let (X,,) denote the set of all partitions of X,,. The number of elements
of (X,) is the Bell number B,. The uniform distribution on (X,,) assigns probability
B! to each partition. We call this the uniform model. In order to satisfy the difficulty
assumption, it suffices to attach zero probability to the trivial partition and update
the uniform model by giving probability (B, — 1)~! to every nontrivial partition. We
call this the uniform model with difficulty. This is the model studies in this section.
Section [3.5] and [3.6] consider two alternative models.

3.3.1 Small teams over small solution spaces

Consider two agents and three elements, so that m = 2 and n = 3 with X = {1,2,3}.
There are B3 = 5 possible partitions, namely: 123; 1]23; 2|31; 3|12; 1|2|3. Each of
these five partitions has identical probability 1/5 and each pair of partitions (one for
each agent) has identical probability 1/25 of occurring. Denoting by x the event that
the meet of two partitions is the trivial coarse partition, we obtain the left-hand side of
Table [3.1) where it is easy to check that there are 15 favorable events out of 25 possible
ones. Since the joint probability distribution is uniform, the probability that a team
of two agents is always successful under the uniform model is 15/25 = 0.6.
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123 1)23 231 312 1]2/3

123 231 3[12 1]2)3

123 X X X X X

1/23 X X
1123 | x X X

2131 [ x x
2|31 | X X X

3|12 | x X
3|12 | x X X 1213
1123 [ x

Table 3.1: When the meet of two partitions is the trivial partition.

Under the difficulty assumption, the probability that an agent is endowed with the
trivial partition 123 is zero: so we delete the first row and the first column and get the
right-hand side of Table [3.1} Now, there are 6 favorable events out of 16. Thus, under
the uniform model with difficulty, the probability that a team of two agents is always
successful is 6/16 = 0.375.

Using similar reasoning, we have computed the probability that a team of m = 2
agents is always successful under the uniform model with difficulty for n = 2.4,5 as
well. The results are summarized in Table [3.2] It is obvious that the probability that
the team is always successful is higher when no difficulty is assumed.

n=2 n=3 n=4 n=2>5
| 0 ]6/16=0.375 [ 90/196 = 0.459 | 1240/2601 ~ 0.477 |

Table 3.2: Probability that a team of 2 agents is always successful.

In the case when n = 2, there are only two possible partitions: 12 and 1|2. Under
the difficulty assumption, the probability that an agent is endowed with the trivial
partition 12 is zero. Therefore, there is only one possible partition, namely: 1]|2. This
means that all the agents are endowed with the same ability and hence there is no
diversity. The fact that the meet of a partition with itself is again itself implies that
the probability of being always successful for a team with no diversity is zero. This
holds no matter how large the team is.

Table shows that the probability that a team of 2 agents is always successful
is increasing in n under the uniform model. The basic idea behind this fact is the
following: In (X,,), the partitions with about an average number of blocks have the
highest occurrence. The more the number of blocks goes away from this average, the
less the occurrence. For example, the set (X5) has 51 elements, out of which 25 have
three blocks, 15 have two blocks, 10 have four blocks and, finally, 1 has five blocks.
Since the uniform model assigns the same probability to each partition in (X,), the
overall probability assigned to partitions with about an average number of blocks is
higher. Furthermore, as n increases this overall probability for partitions with about
an average number of blocks increases. This leads to the fact that as n increases it is
getting more likely for the members of a team to have an average number of blocks in
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their partitions. Hence, the overall effect of an increase in n results in an increase in
the probability that a team of 2 agents is always successful. In fact; Theorem [3.3.2]
given in the next section, proves that this probability goes to one when n T oco.

3.3.2 Small teams over large solution spaces

This section studies what is the probability that a team of m people is always successful
under the uniform model when the space X, of solutions grows large. We find that
(with or without difficulty), the probability approaches one for any m > 2 when n 1 oo.
On the other hand, the probability that an agent is always successful is zero by the
difficulty assumption. (And even without difficulty it goes down to zero as 1/B,,.) This
is a sharp difference: when the space of solutions is sufficiently large, we are almost
sure that no single agent is able to solve it but a team of even only two people will.
Tossing many solutions around unclench the power of diversity.

Let P,,, the probability that the meet of m > 2 partitions of X, chosen under
the uniform model with difficulty is the trivial partition. Then, P, — 1 as n T oco.
Denote by P/ the probability that the meet is the trivial partition under the uniform
model without difficulty. Theorem 5 in Pittel (2000) shows that

logm—‘rl n

from which it follows immediately that lim,;. P, = 1. We establish the claim by
proving that P, /P,, — 1 asn T co.

The difficulty assumption removes the trivial partition from the set of possible
partitions of each agent. This decreases by one the number of equally likely partitions
for each agent, from B, to B, — 1. On the other hand, this removal does not affect the
total number of m-tuples of partitions whose meet is not the trivial partition. Denote
this number by W,,. Then

/ m _ m

Note that the proof shows also that P/ — 1, so Theorem holds for the uniform
model regardless of whether difficulty is assumed or not.

3.4 A comparison with Hong and Page

The seminal reference for the power of diversity is the work of Hong and Page (2001,
2004), recently popularized in Page (2007). This section shows that the model used in
Hong and Page (2004) for the limited problem-solving ability of an agent is equivalent
to ours. Moreover, we abide by the same three main assumptions (Difficulty, Diversity,
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and Uniqueness) made there. However, even though we have made a conscious effort
to stay close to the paradigm, our perspective is novel in two important respects.

First, from a methodological point of view, we introduce partitions as an effective
tool to represent the limitations in problem-solving ability. Second, and perhaps more
importantly, from a substantial point of view, the main result in Hong and Page (2004)
assumes that the number m of agents is sufficiently large while the solution space X,
has a fixed finite size n. We take the opposite point of view and let n grow large
while keeping fixed the cardinality of the team of problem solvers who are in charge of
tackling it. They are interested in large teams; we study large solution spaces. So we
view the two papers as complementary with regard to exploring the power of diversity.

We also argue that proving the power of diversity over a large solution space X, is
more challenging than establishing it for a large team of m agents. If we assemble a
larger team to work over a fixed solution space, it stands to reason that it should have
a better chance to succeed. On the other hand, consider a team of fixed size working
on an ever larger solution space. It is far less obvious that the team should always be
successful. A simple example may help to ground this intuition.

Table exhibits the probability that a team of m = 2,4,8,16 agents is always
successful for n = 3,4 under the uniform model with difficulty. All values are rounded

Uniform m =2 m =4 m=8 m=16
n =231 0.37500 | 0.82031 | 0.98831 | 0.99995
n=4|0.45918 | 0.91977 | 0.99881 1~

Table 3.3: Probability that a team of m agents is always successful over X,,.

to the closest fifth decimal digit. We write 1~ when the probability is within 107°
from 1. Assuming ever larger teams over a given solution space X, corresponds to
reading a row in the table from left to right: as expected, for small values of n, the
probability that a team of m is always successful is rapidly approaching 1. Our paper,
on the other hand, is concerned with what happens when we descend a column in a
table.

The general framework in Hong and Page (2001) describes the problem-solving abil-
ity of an agent as the pairing of his perspective with a set of heuristics. The perspective
is the agent’s internal representation of a problem; the heuristics are the algorithms
he applies to locate solutions. To facilitate the mathematical study of disjunctive
tasks, Hong and Page (2004) suppress their own distinction between perspectives and
heuristics and characterize each agent ¢ by a mapping ¢; : X — X and a probability
distribution v on X. The initial distribution v has full support and it is the same for
all agents: it is used to randomly generate the starting point of the search process;
without loss of generality, let v be the uniform distribution on X.

For each x, ¢;(z) denotes the local solution found by Agent i when he starts his
search at z. Assumption 0 in Hong and Page (2004) states two properties valid for any
mapping ¢; and encapsulating the assumption that each Agent ¢ is intelligent:
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(0.a) V(pi(z)) > V(z) for all z in X;
(0.b) pi(pi(x)) = p(x) for all z in X.

Assumption (0.a) is the obvious requirement that the agent never finds a local solution
worse than his starting point. Assumption (0.b) states that the local solution found
starting at x cannot be further improved upon by the agent and that the final point of
his search is unique. This is natural if we take the point of view that Agent ¢ tries his
best given his set of heuristics.

Under Assumption 0, it takes a simple change of perspective (pun intended) to
derive the equivalence between our partitional model and the ¢-representation. Sup-
pressing subscripts momentarily, consider an agent associated with the mapping ¢ and
the equivalence relation x ~ y on X x X defined by ¢(z) = ¢(y). When = ~ y, the
agent starting his search at either point ends up discovering the same local optimum.
With respect to the objective of maximizing V', he is indifferent between x and y be-
cause they both lead to an identical result. Hence, ~ defines an indifference relation
that partitions X into equivalence classes such that each starting point in the same
class leads to the same local maximum.

Clearly, the problem-solving ability of an agent represented by ¢ is uniquely identi-
fied with the partition II induced by ¢. In this respect, it is worth noting that Assump-
tion (0.b) implies x ~ ¢(x) for any = and thus plays the important role of ensuring
that ¢ induces a partition II that is consistent in the sense defined in Section [3.2]

Vice versa, any partition II of X uniquely defines a problem-solving mapping ¢ by
the following construction. Let ~ be the equivalence relation on X x X defined by x ~ y
if and only if y € ®(x). Then, for each x in X, the mapping ¢(z) = argmax,., V (y)
characterizes the problem-solving ability of the agent endowed with the partition II.
This establishes a formal equivalence between the mapping ¢ and the partition II as
models of limited problem-solving for an agent.

This formal equivalence allows us to rephrase results from one perspective to the
other. For instance, Hong and Page (2004) note that the image ¢(X) of the mapping is
the set of local optima discoverable by the agent. Since the elements in ¢(X) are in a
one-to-one correspondence with the blocks in the partition II, the cardinality of p(X)
is the same as the number of blocks in II. In a similar vein, it is easy to check that our
paper satisfies the three main assumption (Difficulty, Diversity, and Uniqueness) made
by Hong and Page (2004).

For instance, consider Difficulty. We use ® = {y; : i €T} or = {Il; : i €T} to
denote the team of agents in either perspective. Hong and Page (2004) state that, for
any o in @, there exists a solution x such that ¢(x) # z*. That is, for each agent, there
exists at least one starting point from which the global optimum z* is not available;
any problem solver has a nut he cannot crack. Hence, the problem is difficult because
no agent alone is sure to be always successful. Our Assumption 1 that no agent is
endowed with the trivial partition is logically equivalent.
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3.5 Teaming up does not ensure success

The uniform model, studied in Section [3.3] assumes that agents are independently
chosen according to the uniform distributions over all partitions. This is the simplest
way to build a random model of team formation since it assigns the same probability
to each available partition. This section studies an alternative randomization, what we
call the urn model. After describing the construction of this model, we will study how
it affects the results obtained under the uniform model.

For a given mapping f : X,, — X,,, the sets {z € X : f(z) = y} form a partition
mp of X,,. If f is chosen uniformly at random from the set of all n" mappings then
I1; is random, but not uniform. For instance, suppose that n = 3. There are 3° =
27 possible mappings, each of which is chosen with the same probability. Three of
them generate the trivial partition 123; six of them generate the other four possible
partitions 1|23, 2|13, 3|12 and 1|2|3. Therefore, the probability distribution over the
set of possible partitions generated by this model assigns probability 3/27 = 1/9 to the
trivial partition and 6/27 = 2/9 to each of the other four partitions.

This model takes its name from the fact that it can be expressed by using a urn
problem: There are n numbered balls that need to be distributed in n numbered urns.
It is allowed to have empty urns. Here, balls correspond to solutions and urns to
blocks of partitions. For example, suppose that n = 3. There are three balls to be
distributed in three urns. Therefore, there are 3% = 27 possible ways to do this. The
trivial partition (all three balls in the same urn) is generated three times. Hence, under
the assumption that each possible way is equally likely, the probability for the trivial
partition is 3/27 = 1/9. Similarly, there are six possible ways to generate the other four
possible partitions 1|23, 2|13, 3|12 and 1|2|3. Hence, the urn model assigns 6/27 = 2/9
probability to each of these partitions.

Note that the urn model generates higher probabilities for partitions with a higher
number of blocks. The higher the number of blocks in a partition, the less able the
agent in problem solving. Therefore, this models assigns higher probabilities to agents
with less ability. As a result, it is less likely to generate the trivial partition. In fact,
the probability to draw such partition for a set X,, is 1/n"!, whereas it is 1/B,, under
the uniform model.

3.5.1 Small teams over small solution spaces

To compute the probability that the two agents always discover the global maximum, it
suffices to apply the marginal probabilities generated by this model to Table 1. We do
so in Table where we add the marginal probabilities on the rightmost column and
the bottom row, as well as the joint probabilities for the relevant events. The panels
are arranged as in Table [3.1; on the left, the case without difficulty; on the right, the
case with difficulty. Adding up the joint probabilities, we find that the probability is
41/81 ~ 0.506 without difficulty and 3/8 = 0.375 with difficulty.
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123 1)23 2131 3|12 1|23

123 231 312 123

123 [1/81[2/81[2/81[2/8T[2/81]1/9 /161 1/16 1/4
1123 [2/81 4/81 | 4/81 2/9

231 [ 1/16 1/16 1/4
2[31 | 2/81 | 4/81 4/81 219 3119 /16 [ 1/16 1/4
3112 [ 2/81 | 4/81 | 4/81 2/9° 93 1/4
123 [ 2/81 2/9

179 2/9 2/9 2/9 2/9 /4 1/4 1/4 1/4 1/4

Table 3.4: Probability of the trivial partition under the urn model with (right) and without
(left) difficulty.

Table [3.5] summarizes the probability that the team of m = 2 agents is always
successful for n = 2,3,4,5 under the urn model with difficulty. Note that this prob-
ability is decreasing in n. It becomes less and less possible for a team of 2 agents to
always find the global optimum as the number of available solutions is increasing. In
fact; Theorem [3.5.2] given in the next section, proves that this probability goes to zero
when n T oco.

n=2 n=3 n=4 n=>5
| 0 [6/16=0.375 | 138/441 ~ 0.313 | 5400,/24336 ~ 0.222 |

Table 3.5: Probability that a team of 2 agents is always successful under the urn model.

3.5.2 Small teams over large solution spaces

Let P,,, the probability that the meet of m > 2 partitions of X,, chosen under the urn
model with difficulty is the trivial partition. Then, P, — 0 asn ] co.  Denote by
P/ the probability that the meet is the trivial partition under the urn model without
difficulty. Since P, > P, it suffices to show that P/ ~— 0. The strategy of the
proof is the following.

We say that a solution j is isolated for an agent i when {j} is a singleton block for
his partition. Analogously, a solution j is isolated for the team if it is isolated for each
agent. Let Aé- and A; denote the event that the j-th solution is isolated for Agent i
and for the team, respectively. When the meet of the agents’ partitions is the trivial
partition, no solution j can be isolated for the team. Therefore,

P < 1—P<UAj> .
j=1
We are going to show that P <U?:1 Aj> — lasn T oo.
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We begin with a few preliminary observations. Given a set X,, of n possible solu-
tions, A; corresponds to the event that the j-th ball ends up alone in one of the n urns;

thus
p(A;j) — ”(”_—1)”_1 — (1 — l)nl

nr n

Analogously, for j; < ja ... < jg, the probability that & < n solutions in X, are isolated

for Agent i is
k k 1 n—s
P Al = 11— — .
() =110 =)

s=1
To see why, use the following inductive argument. The probability that the j;-th
solution is isolated (or, equivalently, the j;-th ball ends up alone) is (1 — 1/n)"1,
Conditional on this event, the other n — 1 balls are distributed uniformly in the re-
maining n — 1 urns. Hence, the probability that the j,-th solution is isolated (or,
equivalently, the jy-th ball ends up alone) is (1 — 1/(n — 1))"=2. And so on.

Finally, since all agents’ partitions are identically and independently distributed,

m

P(4;) = [ P(A}) = (P(A})"

=1

and thus, for j; < j5... < J&, the probability that £ < n solutions in X,, are isolated
for the team is

k m ok k 1 m(n—s)
P (m Ajs> _p (m N A;S> “T1 (1 - n_—ﬂ) (3.2

1=1s=1 s=1

Note that, for any fixed k, P (ﬂle Ajs> —e ™ asn T oo.

We are now ready for the main argument. Given € > 0, choose a sufficiently large
integer M so that (1 — e ™)™ < . By the inclusion-exclusion formula, we have

P(UAj): SPA) - > P(ANAL) 4.+ ()M P 4))

Taking limits on both sides,

lim P (Cj Aj> = ﬁ:(—l)”l <M> e = — i (M> (—e )

Jj=1



where the last step follows from our choice of M. This concludes the proof.

Note that the proof works unchanged for m = 1 as well, so that the conclusion of
Theorem [3.5.2] actually holds for m > 1. Moreover, similarly to Theorem [3.3.2] it holds
regardless of whether difficulty is assumed or not.

The reason why the limit probability of always success goes to one under the uniform
model but it goes to zero under the urn model is the following: When n is large, the
expected number of blocks in a random partition under the uniform model is much less
than under the urn model; n/logn and (1 — e~ !)n, respectively (see Sachkov (1997)).
The fewer the number of blocks in partitions, the easier it is to get the trivial partition
in the meet. Having a few number of blocks means, in general, having large blocks in
the partition. Finally, to reach to the trivial partition in the meet of two partitions
with large blocks is of high probability.

Theorem [B.5.2] shows that the results under the uniform model and under the urn
model differ substantially. When the solution space is large, a team of 2 agent is always
successful under the uniform model, whereas any team (regardless of its size) may fail
to solve problem under the urn model. Hence, the assumption on the randomization
is crucial.

3.6 Defendit numerus

This section examines another model for randomizing partitions using graph theory.
Here, we study the size it requires for a team to be always successful when the solution
space is large. The complexity of solution space makes it hard for agents to solve the
problem. To capture this idea, we assume that the ability of an agent decreases as the
solution space gets larger.

We consider a partition of X,, as a graph GG having n vertices and each block of
the partition as the connected subgraphs of G. With this setting, the trivial partition
correspondences to the connected graph and the finest partition, in which each solution
is in a single block, correspondences to the graph having n isolated vertices.

In graph theory, a random graph is obtained by starting with a set of n vertices
and adding edges between them at random. Here, we consider the Erdos-Rényi Model,
G(n, p), for generating random graphs. In this model, a graph is obtained by connecting
n vertices randomly and an edge between any two vertices is included in the graph with
probability p. The structure of a graph (partition) is determined by p; as this parameter
increases the number of blocks in a partition decreases. For instance, when p = 0 all
vertices are isolated (finest partition) and when p = 1 each vertex is connected to
another, i.e., the graph is fully connected (trivial partition). As mentioned earlier, we
assume that the ability of an agent decreases with n. In other words, we assume that
the number of blocks in an agent’s partition is increasing as the solution space gets
larger. Therefore, p is a decreasing function of n.

In order to have an edge between two specific vertices in the meet of k partitions, it
is required that at least one of the k partitions has an edge between the two vertices.
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The probability of this event is given by 1—(1—p)*. Therefore, the meet of k partitions
of X, is G(n,1—(1—p)*). Furthermore, according to the theorem by Palmer (1985, pg
54, Theorem 4.3.1), for p > 10% a graph in G(n,p) is almost surely connected. Thus

10% is a sharp threshold for the connectedness of G(n,p). This implies that the meet
of k partitions of X,, is almost surely the trivial partition if 1 — (1 — p)¥ is greater than
this threshold. In other words, the meet is almost surely the trivial partition if

logn

1-(1-p)> (3.3)

Observe that when calculating the probability of having an edge between two spe-
cific vertices in the meet of k partitions we assumed that in all the given k graphs
(partitions) the probabilities of having an edge between two vertices are equal to
p. However, our inference does not change even if these probabilities are differ-
ent. To see how, assume that the probabilities are pi, po, ..., pr, i.e., the graphs are
G(n,p1),G(n,pa), ..., G(n,pr). Assume further that p; > ps > ... > p; and define
p := pr. Therefore, the probability of having an edge between two specific vertices in
the meet is at least 1 — (1 — p)* and the meet is almost surely the trivial partition if
holds.

The smallest integer k that satisfies gives the minimum number of partitions
that it is required for the meet to be the trivial partition. This correspondences to the
minimum number of agent we need in order to find the global optimum.

Example In this example we assume that p = 1/n and calculate the minimum size of
a team in order to get the trivial partition in the meet for n = 10,102, 103, 10*, 10°, 106.

El n D threshold | 1 — (1 — p)*
3] 10 0.1 | 0.230258509 | 0.271000000
5 | 10 0.01 | 0.046051702 | 0.049009950
7110 0.001 | 0.006907755 | 0.006979035
10 | 10% 0.0001 | 0.000921034 | 0.000999550
12 | 10° [ 0.00001 | 0.000115129 | 0.000119993
14 | 10° | 0.000001 | 0.000013816 | 0.000013999

Table 3.6: The minimum size of an always-successful-team

From Table we see that when a solution space has 10 elements, a team of 3
agents is almost always successful. As the cardinality of the solution space increases,
the ability of an agent decreases, and the size it requires for a team to be always
successful increases. It reaches to 14 when the solution space has one million elements.
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3.7 Groupthink impairs the power of diversity

This section concerns groupthink, which is a situation in which all members of a team
begin to think alike or pretend to think alike. No members are then willing to raise
objections or concerns about an issue. In psychological literature, groupthink is given
as a possible explanation why individuals might be better than groups in decision
making.

In this section, we explore the effect of groupthink on the team performance. To
this aim, we continue to use the Erdds-Rényi Model, introduced in the previous section.
In order to model the idea that members of a team are similar, we assume that the
probability of having an edge between any two vertices p is positively correlated among
agents.

In order to study the minimum size (k) it requires for a team to be always successful,
we follow the same procedure as in the previous section: derive the probability that
at least one of the k partitions has an edge between two vertices (Py,) and increase k
until the probability crosses the threshold.

We start the analysis by studying two extreme cases: (i) when there is no correlation
among the team members (independent case) and (ii) when there is a perfect correlation
among team members (complete dependence case). In the independent case, Py, =
1—(1—p)*. In the complete dependence case, all agents act the same. In other words,
they are exact replicas of each other. Hence, Py, = p. This shows that P, belongs to
the interval [p, 1 — (1 —p)*] and is increasing as the correlation decreases. At this point,
we appeal to copulas. Without entering in details, we use the family B11 copula in Joe
(1997): C(u;0) = 0C2(u)+ (1 —9)Cy(u), where § € [0, 1] is the dependence parameter,
C1(u) and Cy(u) are the independent and the Fréchet upper bound copula (obtained in
the case of complete dependence), respectively. Thus Py, = dp+ (1 — ) (1 — (1 — p)*)
for § € [0,1]. This implies the meet of k correlated partitions of X,, is almost surely
the trivial partition if

logn

5(p)+(1—0) (1- (1-p)") > (3.4)

Example Here, we repeat the example of the previous section for 6 = 0, 0.25, 0.50,
0.75, 1 with n = 10, 103, 10°.

Note that when 6 = 0, there is no correlation. Therefore, the first rows in Table|3.7
are the same the first, third and the fifth row of the Table 3.6l As § increases, Py,
decreases and hence the minimum size of an always-successful-team increases. When
d = 1 (complete dependence), all the agents are exact replicas of each other and
Py, = p. Therefore, no team is always successful. This example illustrates that
groupthink harms the performance, but it is still possible to build an always-successful-
team unless there is a perfect correlation. This goal can be achieved by increasing the
size of the team.
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) P, k B P, k B P, k
0] 0.271000 | 3 0 [ 0.006979 | 7 0 | 0.0001201 | 12
0.25 | 0.282925 | 4 0.25 [ 0.006973 | 9 0.25 | 0.000122 | 16
0.50 | 0.254755 | 5 0.50 | 0.006961 | 13 0.50 | 0.000120 | 23
0.75 | 0.237830 | 10 0.75 | 0.006926 | 25 0.75 | 0.000117 | 44
1 [0.100000 | oo 1] 0.001000 | oo 1| 0.000010 | oo
n=10,p=0.1 n=10%p=10"3 n=10°p=10"°

Table 3.7: The minimum size of an always-successful-team in case of groupthink

3.8 Conclusions

The power of diversity is explored in this paper. We study a model where a team of
agents with limited problem-solving ability face a disjunctive task over a large solution
space. The limitations in agents’ abilities are formalized using partitions. We provide
sufficient conditions under which two heads are better than one. In this case, a team
of two agents pool their abilities and always succeed in solving the difficult problem,
whereas neither can do it alone. We also provide sufficient conditions for the situation
in which teaming up does not guarantee success. When agents are not sufficiently
creative, it is also possible for any team, no matter how large, to fail to solve the
difficult problem.

We further study situations in which the ability of agents is adversely affected by
the complexity of the solution space. As the solution space gets larger, the problem
becomes more complex since the number of elements among which the search is done
increases. By using graph theory in order to model limited ability, we show that small
sized teams will still solve the problem. The size of a team is determined by the
cardinality of the solution space, i.e., by the complexity of the problem.

Our final finding is about the effect of groupthink on the performance of a team.
When members of a team begin to think and act alike, its performance decreases. In
other words, groupthink harms the performance and impairs the power of diversity.
We show that a team whose members’ abilities are both positively correlated and
adversely affected by the complexity of the problem will still be able to solve the
problem. However, larger teams are necessary in this case.

82



Bibliography

[1]

[12]

[13]

D. Berend and T. Tassa (2010), “Improved bounds on Bell numbers and on moments of
sums of random variables”, Probability and Mathematical Statistics 30, 185—-205.

A.S. Blinder and J. Morgan (2005), “Are two heads better than one?: Monetary policy
by committee”, Journal of Money, Credit and Banking 37, 798-811.

D.J. Cooper and J.H. Kagel (2005), “Are two heads better than one? Team versus
individual play in signaling games”, The American Economic Review 95, 477-509.

N.G. de Bruijn (1958), Asymptotic Methods in Analysis, Dover.

J.M. DeLaurentis and B. G. Pittel, (1983),“Counting subsets of the random partition
and the ‘Brownian Bridge’ process”, Stochastic Processes Appl. 15, 155-167.

L. Hong and S. Page (2001), “Problem solving by heterogeneous agents”, Journal of
Economic Theory 97, 123-163.

L. Hong and S. Page (2004), “Groups of diverse problem solvers can outperform groups
of high-ability problem solvers”, Proceedings of the National Academy of Sciences 101,
16385-16389.

L. Hong and S. Page (2009), “Interpreted and Generated Signals”, Journal of Economic
Theory 144, 2174-2196.

H. Joe (1997), Multivariate Models and Dependence Concepts, Chapman Hall, London.

M.G. Kocher and M. Sutter (2005), “The decision maker matters: individual versus
group behavior in experimental beauty-contest games”, The Economic Journal 115,
200-223.

A. Liker and V. Békony (2009), “Larger groups are more successful in innovative problem
solving in house sparrows”, Proceedings of the National Academy of Sciences 106, 7893—
7898.

S. Page (2007), The Difference: How the power of diversity creates better groups, firms,
schools, societies 97, 123-163.

E. M. Palmer (1985), Graphical Evolution, John Wiley and Sons.

83



[14] P. B. Paulus and H. C. Yang (2000), “Idea generation in groups: a basis for creativity
in organizations”, Organizational Behavior and Human Decision Processes 82, 76-87.

[15] J. Pitman (2006), Combinatorial stochastic processes, Springer-Verlag.

[16] B. Pittel (2000), “Where the typical set partitions meet and join”, Electronic Journal of
Combinatorics 7, R5.

[17] V.N. Sachkov (1997), Probabilistic Methods in Combinatorial Analysis, Cambridge Uni-
versity Press.

[18] T. Simons, L.H. Pelled and K.A. Smith (1999), “Making use of difference: diversity,
debate, and decision comprehensiveness in top management teams”, The Academy of
Management Journal 42, 662-673.

84



Estratto per riassunto della tesi di dottorato

Studente:  Oktay Surucu
Matricola: 955287
Dottorato: Economia
Ciclo: 22°

Titolo della tesi : Three Essays on Economic Interactions under Bounded Rationality

Abstract: The issues explored in this work concern economic interactions under bounded
rationality. Each chapter considers these interactions from different angles. The first chap-
ter characterizes the optimal contract designed by an ordinary profit-maximizing monopoly
when facing diversely bounded rational agents. The second chapter analyses the interaction
between fully and boundedly rational agents in situations where their interests are perfectly
aligned. Finally, the third chapter studies a model where a team of agents with limited
problem-solving ability face a disjunctive task over a large solution space.

Estratto: Ogni capitolo di questo lavoro di ricerca considera diversi temi concernenti inter-
azioni economiche in presenza di razionalitd limitata. Il primo capitolo propone il contratto
ottimale di un monopolio ordinario il quale massimizza il suo profitto in un contesto in cui
gli agenti sono caratterizzati da diversa razionalitd limitata. Il secondo capitolo analizza
linterazione tra agenti con razionalitd piena e quelli con razionalitd limitata nel caso in cui
i loro interessi siano perfettamente allineati. Infine, il terzo capitolo analizza un modello
in cui un gruppo di agenti con limitata capacita di risolvere problemi affronta un compito
disgiuntivo su uno spazio di soluzione di grandi dimensioni.



	Discrimination over Price and Quality when Agents are Context-Biased
	Introduction
	The Model
	Discrete Case
	Contract with Two Menus
	Contract with Three Menus

	Continuous Case
	Conclusion

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Bibliography
	Lying for the Greater Good: Bounded Rationality in a Team
	Introduction
	A Toy Model
	Myopic Approach
	Farsighted Approach
	Conclusion

	Bibliography
	The Power of Diversity over Large Disjunctive Tasks
	Introduction
	The model
	Technicalities

	Two heads are better than one
	Small teams over small solution spaces
	Small teams over large solution spaces

	A comparison with Hong and Page
	Teaming up does not ensure success
	Small teams over small solution spaces
	Small teams over large solution spaces

	Defendit numerus
	Groupthink impairs the power of diversity
	Conclusions

	Bibliography

