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2 Summary

The Thesis is composed by three papers that investigate from a theoretical perspective
the relationship between leverage, diversification and systemic risk. Starting from the folk
wisdom that asset diversification enhances financial stability by dispersing credit risks,
the papers contribute to the debate shedding light on a critical facet of this strategy.

The first paper “Leverage, Diversification and Default Risk” puts the fundaments for
the other papers of the Thesis. It undertakes a theoretical investigation of the following
fundamental question. Does diversification, based on modern portfolio theory wisdom,
lead to greater safety for leveraged investors? The hypothesis is that diversification can
have undesired effects when the initial wealth is leveraged with forms of debt that are,
in principle, decoupled from the value of assets in portfolio. In particular, it might exist
an optimal diversification level which minimizes the default probability of the investor.
In presence of a leveraged investor, a crucial issue is the optimal number of assets which
ensures the lowest default probability. Therefore, the object of the analysis is to find the
optimal “default-induced” portfolio size. In other words, we aim to determine the optimal
number n of securities to hold in a equally weighted portfolio in order to minimize the
default risk. Under the standard framework of asset pricing theory in a frictionless,
arbitrage-free and complete market, the paper shows that asset diversification is not
always beneficial. Beyond a given threshold, diversification may increase the default risk
of the leveraged investor.

The second paper “Diversification and Financial Stability” translates the concept of
knife-edge dynamics into an analytic form and investigates its impact on the stability
of the financial system. According to the knife-edge property, financial interconnec-
tion/diversification serves as shock-absorber (i.e., connectivity engenders robustness and
risk-sharing prevails) up to a certain tipping point, beyond which they act as shock-
amplifier (i.e., connectivity engenders fragility and risk-spreading prevails). The paper
considers a financial system composed of leveraged risk-averse financial institutions, which
invest in two classes of assets. The first class consists of obligations issued by other banks
in the network. The second class represents risky assets external to the financial net-
work, which may include securities on, e.g., real-estate, loans to firms and households and
other real-economy related activities. This balance-sheet approach is conjugated with a
stochastic setting. In a mean-field approximation, we derive the law of motion of the
financial system fragility and we use it to compute its probability to collapse. As first
result, the paper shows that banks’ default probability increases with diversification in
external assets in the case of a downtrend and decreases in the case of an uptrend. In
accordance, under the utility function framework, there exists a gap (which increases with
diversification) between the banking systems expected utility in uptrend and the expected
utility in downtrend. Thus, diversification generates and amplifies the knife-edge property
of the financial network. Moreover, for a given level of diversification, the spread between
utility levels increases with the magnitude of the trend. A second result shows that by



2 Summary 3

assigning a probability p to the downtrend event and 1− p to the uptrend, diversification
displays a tradeoff with regard to the banking system’s utility. The expected utility ex-
hibits a maximum which corresponds to an intermediate optimal level of diversification.
Such a level depends on the probability p of downtrend, on the magnitude of the expected
profit (loss) and on the values of the other parameters of the model. Finally, the paper
shows that individual banks’ incentives favor a financial network that is over-diversified
in external assets with respect to the level of diversification which is socially desirable.

The third paper “Leverage Cycle” detects the emergence of systemic risk in presence
of a feedback loop between asset prices and leverage caused by an active balance sheet
management. The object of the paper is to outline the aggregate consequences of procycli-
cal leverage by modelling the influence of expansions and contractions of balance sheets
on asset prices and vice-versa. We introduce a simplified economy of risk-averse intercon-
nected banks managing portfolios of risky assets. Through a risk management practice
that adjusts the Value-at-Risk (VaR) to a target level, the institutions actively manage
their balance sheet: it shrinks or enlarges according to asset price movements. The paper
offers three main contributions to the literature. First, we attempt a microfunded rela-
tionship between aggregate balance sheet size and leverage of the financial system. Far
from being passive, financial intermediaries adjust their balance sheets actively and do
so in such a way that leverage is high during booms and low during busts. Second, we
model the macro consequences of procyclical leverage and analyze the reciprocal influ-
ence between contraction-expansion of the aggregate balance sheet and asset pricing of
risky activity. Finally, the paper theoretically investigates how systemic risk is affected
by asset diversification when leveraged institutions manage their balance sheets actively
in response to price changes. The presence of a feedback loop between asset price and
leverage is supposed to amplified the knife-edge properties of the diversification strategy
analyzed in “Diversification and Financial Stability”.

Standard textbooks of Investment/Financial Management teach that portfolio diver-
sification help to reduce investment risk. How valid is this “common” knowledge? The
Thesis examines the issue on naive (equal weight) diversification. We analytically show
that in a idealized frictionless world, maximum diversification is not always desirable. In
presence of leverage, diversification can reveal to be a double-edge sword strategy: it re-
duces the default risk only up to a certain threshold beyond which, default risk increases.
Moreover, the Thesis studies the side effects of diversification also in a financial system of
interconnected banks. We shed light on the conflict between, on one hand, the individual
incentive to reduce, through diversification, the idiosyncratic risks and, on the other hand,
the emergence of systemic risk.

The financial stability have raised to the top of the agenda of economic policy discus-
sions because the world and the financial environment have substantially changed since
the mid seventies. This issues grew up even more at the dawn of the recent 2007-08
financial crisis. Therefore, the topic of the Thesis is on the same wave of works aiming at
rethinking the financial architecture after the “breaks” revealed during the recent crisis.
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From our analysis we draw the conclusion that the major problem of an individual insti-
tution perspective is a potentially misleading risk assessment for the financial system as a
whole. Then, even though it is uneasy to put in practice a system perspective, regulators
need to change into a more system oriented supervisory risk assessment policies. More-
over, they also need to face the challenge to design new approaches in order to strengthen
countercyclical regulatory instruments that work as cushions in booms and as buffers
when times deteriorate.
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Diversification, Leverage and Default Risk

Paolo Tasca, Stefano Battiston

Abstract

We model the financial fragility of a leveraged investor who borrows the funds to be invested
in a 1/n portfolio. The insolvency occurs when the value of the portfolio falls below the borrowed
amount. We investigate the optimal number n∗ of assets to hold in order to minimizes the default
probability. Under the standard framework of asset pricing theory in a frictionless, arbitrage-free and
complete market we analytically show that full diversification is not always desirable. Beyond a given
threshold n∗, diversification may increase the risk of default.

JEL Code: C32, C61, D53, G11, G32
Keywords: arbitrage pricing, leverage, portfolio diversification, default risk, first-passage time.

1 Introduction

Does diversification, based on modern portfolio theory wisdom, lead to greater safety for leveraged in-
vestors? In this paper, we undertake a theoretical investigation of this question. The evidence we present
suggests that, in contrast to the recommendations of traditional portfolio theories, in a idealized fric-
tionless world, maximum asset diversification is not always guaranteed to produce superior risk-adjusted
performance for leveraged investors.

The motivations for the benefits of diversification are well known. After the seminal papers of Markowitz
(1952, 1959) and Tobin (1958), analytic tools have been developed to show that no-perfect positive
correlation among risky assets’ returns provides an incentive to diversify. 1

Since the pioneering work of Evans and Archer (1968), the question of optimal diversification has been
answered by determining the rate at which risk-reduction benefits are realized as the number of securities
in a equally weighted portfolio is increased. This benchmark is the so-called, 1/n or naive rule. If lever-
age, costs of transactions, information and management are zero, the benefits derived from diversification
increase with the number of securities but at decreasing rate. See e.g.,(Bird and Tippett, 1986; Elton and
Gruber, 1977; Johnson and Shannon, 1974; Statman, 1987).

However, inspection of the literature suggests that relatively little attention has been given to the funda-
mental relationship between diversification and leverage. With this respect, we have to consider that a

1In particular, Samuelson (1967) Theorem III and Brumelle (1974) Theorem IV, have provided more general models which
show that nonpositive correlation (or negative correlation in a two-parameter model of Markowitz and Tobin) of asset returns
provides the strongest incentive to diversify.
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leveraged investor is subject to a default risk, by which we mean any type of failure to honor the financial
agreements embedded in the borrowing activity.

Our hypothesis is that diversification can have undesired effects when the initial wealth is leveraged with
forms of debt that are, in principle, decoupled from the value of assets in portfolio. In particular, it might
exist an optimal diversification level which minimizes the default probability of the investor.

Indeed, the performance of an asset allocation strategy depends not only on the investor profile (i.e.,
individual’s preferences in investments decisions), but also on the source of financing (i.e., internal or
external). A leveraged diversified portfolio displays a trade-off between two competing forces acting on
the risk side. The first is leverage which amplifies the portfolio risk (volatility) that in the traditional
capital structure theory translates into higher default risk.2 The second one is diversification through
which default risk can be reduced and managed.3

In detail, we study the risk profile of the 1/n allocation strategy performed by an investor allowed to
leverage k times the initial capital E.4 She borrows the amount H := kE from a unique source of funding
by paying a market premium over the riskless rate.5 Then, the overall wealth (A := E + kE ≡ E + H) is
invested in an equally-weighted combination of risky assets.

The object of our analysis is to find the optimal “default-induced” portfolio size. Namely, the number n
of securities to hold in a equally weighted portfolio in order to minimize the risk of a failure.6 To this end,
we model the default risk and we study how it changes with respect to the degree of asset diversification.

In the literature there are three main approaches to analyze the default (credit) risk : structural, reduced-
form and incomplete information approach.7 Many authors (e.g., Black and Cox, 1976) put forward
structural-type models in which the restrictive and unrealistic features of the structural model originated

2See e.g., Altman (1984); Harris and Raviv (1991); Jensen and Meckling (1976).
3Default risk, and the rewards for bearing it, will ultimately be owned by those who can diversify it best. Default risk refers

to the probability that the borrower will not meet her debt obligations. This risk is firm-specific and can be considered as part
of financial risks, the impact of which is reduced through the construction of a well-diversified portfolio. A bunch of theoretical
and empirical works have investigated the relation between default risk and diversification, (see e.g., Acharya et al., 2006;
Jarrow et al., 2005).

4There are two main reasons for using the naive 1/n rule as a benchmark. First, it is easy to implement because it does
not rely either on estimation of the moments of asset returns or on optimization. Second, despite the sophisticated theoretical
models developed in the last decades, investors continue to use such simple allocation rule for allocating their wealth across
assets (see e.g., Benartzi and Thaler, 2001; Pflug et al., 2012). Moreover, recent studies e.g. DeMiguel et al. (2009) Tu and
Zhou (2011), show that the naive 1/n investment strategy can perform better than those sophisticated Markowitz-type rules.

5 It should be noted that investors are generally subject to financing constraints. It is indeed more difficult to diversify debt
than assets (e.g., Guiso et al., 1996). For instance, when financing is obtained via short-selling, a number of limitations apply
to this practice (e.g., Sharpe, 1991).

6Precisely, the default is triggered as soon as, at any time t ≥ 0, the market value of the assets is lower than the debt’s market
value (i.e, when A < H).

7A review of the credit risk literature can be found in Ammann (2001), Bielecki and Rutkowski (2002), Duffie and Singleton
(2003) and Lando (2004). A systematic study of the mathematical techniques used in reduced-form models is available in Elliott
et al. (2000) and Jeanblanc and Rutkowski (2000).
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with Black and Scholes (1973) and Merton (1974) are relaxed.8 In most of these models, the time of
default is given as the first passage time of the value process across an exogenous9 or endogenous10

barrier, namely the distress boundary. The paper uses this first passage time approach. The default event
corresponds to the (mean) first passage time taken by the asset value process to hit (from above) the
debt value, which is a time-varying barrier, endogenously given with respect to the model. Since the
value of both A and H is described by continuous time processes, we turn to a fixed-barrier problem by
considering the (mean) first passage time taken by the debt-asset ratio (i.e., leverage) to hit the upper
(default) bound of its range of variation. More precisely, we use the log transformation of the leverage –
i.e., log(H/A) which, for the investor view point, denotes a condition of “fragility” when it tends to the
upper bound and “robustness” when it tends to the lower bound.

Under the standard assumptions from asset pricing theory, 11 we find that full diversification is not always
desirable. In particular, when either the expected value or the variance of the investor’s log-leverage
are U-shaped with respect to the number of securities in portfolio, there exists an intermediate optimal
diversification level (i.e., 1 < n∗ < N) which maximizes the mean-time to default.

The paper is organized in the following way. Section 2 presents the basic framework and assumptions.
Section 3 introduces the 1/n leveraged portfolio. In Section 4 the stochastic dynamics of investor’s log-
leverage is derived. Furthermore, we introduce the concept of default risk and compute the (mean) time
to default. In Section 5 comparative statics is used to analyze the effect of asset diversification on default
risk an the optimal 1/n leveraged portfolio is derived. Section 6 concludes the paper.

2 Continuous-time Setting

We introduce a stochastic framework to describe a continuous-time security market where a risk-averse
investor can choose between 1, 2, ...,N risky securities. The future states of the world are represented
by a probability space (Ω,F ,P) on the sample space Ω, with a filtration F = (F )t∈[0,T ] representing the

8Leland (1994) and Leland Hayne E. (1996) developed structural models that include four additional aspects: debt has an
average maturity T < ∞; coupon interest is tax deducible; default incurs default costs, the firm may have net cash payouts to
security holders.

9Zero net worth trigger (e.g., Brennan and Schwartz, 1978; Longstaff and Schwartz, 1995), zero cash-flow trigger, Kim et al.
(1993)

10Such that the default boundary maximizes the equity value (see e.g., Black and Cox, 1976; Leland, 1994; Mello and
Parsons, 1992)

11Security prices evolve in time according to a geometric Brownian motion. For simplicity, securities do not pay dividends
and are infinitely divisible. They are traded in a single purely competitive market at a given price which does not depend on the
investor transaction (i.e., the price-taking assumption holds). The market is frictionless, arbitrage-free and complete.
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information up to time t and a probability measure P. 12 The price processes of the risky securities form
an Ito process S := (S 1, ..., S N)T in RN . For the sake of simplicity, the securities pay no income during
the time interval [0,T ). Moreover, there exists a riskless security with price S 0 based on the riskless

short-term interest rate process r f such that S 0(t) = S 0(0)exp
(∫ T

0 r f (s) ds
)
.13 Therefore, S 0(t) can be

understood as the market value of an account that is continually reinvested at short-term riskless rate. To
sum up, the economy is described by the security-price process X := (S 0,S), with

dS(t) = diag(S(t))
[
µ(t)dt + Σ(t)dWP(t)

]
, (1)

and
dS 0(t) = r f (t)S 0(t)dt, S (0) > 0, (2)

where WP := (WP1 , ...W
P
N)T ∈ Rd is ad N-dimensional Wiener process, i.e., a vector of N correlated one-

dimensional standard Wiener processes on the given probability space (Ω,F ,P). The term diag(S(t))
denotes the (N × N)-matrix with the vector S along the main diagonal and zeros off the diagonal. The
processes µ, Σ and r f are adapted (valued in RN , RN×N and R, respectively) to the information filtration
F.14 The N-vector µ := (µ1, ..., µN)T ∈ RN contains the expected rates of returns and Σ := [σi j]N×N is the
(N × N)-matrix which measures the sensitivities of the risky asset prices with respect to the exogenous
shocks so that ΣΣT is the (N × N)-matrix containing the variance and covariance rates of instantaneous
rates of return. It is assumed that Σ is uniformly positive definite for all t ≥ 0.

The time-independent correlation matrix Q of WP, which is assumed to be positive definite, is of the
form Q := [ρi j]N×N with ρi j = cor{WPi ,W

P
j }. Of course, the diagonal elements of this matrix represent

the correlation of a variable with itself, and are all equal to one. We can write (1) in componentwise as
dS i(t) = S i(t)

[
µi(t)dt +

∑N
j=1 σi j(t)dWPj (t)

]
, for all i, j = 1, ...,N.

2.1 Free-arbitrage pricing

Under the following main assumption, we place the conditions to ensure the free-arbitrage micro-
structure of the market.

Assumption 2.1. We assume (i) There exists a frictionless market, (ii) Divisibility and no short-selling
constraint. All the securities are marketable, perfectly divisible and can be held only in positive quanti-
ties, (iii) Price Taking Assumption. Stock prices are beyond the influence of investors, (iv) Only expected

12We recall that a stochastic process {W(t, ω)t ∈ R+, ω ∈ Ω} is called (standard) Wiener process if: (i) W(0) = 0, (ii) it has
stationary, independent increments, (iii) it admits a Gaussian N(0, t) distribution, ∀t > 0, (iv) it has continuous sample paths
(non “jumps”). The Wiener process is said to be adapted to filtration F = (F )t∈[0,T ], if ω(t) is a random variable F-measurable
for all t ≥ 0.

13With the property that
∫ T

0
|r f (s)| ds is finite almost surely.

14Further technical requirements should be imposed, e.g., that the processes r, µ and Σ are progressively measurable, that
diag(St)µt is in L1-process and that diag(S(t))µ(t) is in L2-process. (We limit the discussion to diffusion processes -no jumps.)
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returns and variances matter. Quadratic utility or normally distributed returns, (v) Not-paying dividend
assumption. The return on any stock is simply the change in its market price during the holding period,
(vi) Homogeneous expectations.

The “First Fundamental Theorem of Asset Pricing” states that the absence of arbitrage opportunities in a
security market is equivalent to the existence of an equivalent martingale measure (EMM)Q under which
all securities’ prices relative to some numeraire are martingales. In a more formal way, the following
equivalence theorem holds.

Theorem 2.1. If Assumption 2.1 is satisfied, the following statements are equivalent: (i) there exists a
state-dependent discount factor M, the so-called deflator, such that for all time s, t ∈ [0,T ] with s ≤ t and
all assets i = 1, ...,N we have S i(s) = EPs

[
M(t)
M(s) S i(t)|Fs

]
, s.t. all prices can be represented as discounted

expectations under the physical measure P, (ii) there exists a risk-neutral probability measure Q such
that all discounted price processes Zi(t) := S i(t)

S 0(t) are martingales under Q, i.e. for all time s, t ∈ [0,T ]

with s ≤ t and all securities i = 1, ...,N we have Zi(s) = EQs [Zi(t)|Ft] ⇐⇒
S i(s)
S 0(s) = EQs

[
S i(t)
S 0(t) |Fs

]
, (iii) the

financial market contains no arbitrage opportunities.

The existence of the EMM Q such that this result holds is formally proven in M.Harrison and
D.Kreps (1979) and M.Harrison and S.Pliska (1979). The change of probability between the true and
risk-neutral measure is defined by the Radon-Nikodym derivative of Q with respect to P15, dQ

dP =

exp
(
− 1

2

∫ t
0 ||λ(s)||2 −

∫ t
0 λ(s)dW(s)

)
, where ||λ(s)||2 = E

[∫ s
0 λ

2
u du

]
. The process λ has the interpretation of

the vector λ := (λ1, ..., λN)T ∈ RN of market prices of risk (corresponding to the shock process W) since
it measures the excess rate of return relative to the standard deviation,

λ(t) = Q−1
[
µ(t) − r f (t)1

Σ(t)

]
:= Q−1



µ1(t)−r f (t)
σ1(t)

µ2(t)−r f (t)
σ2(t)
...

µN (t)−r f (t)
σN (t)


, for all t ≥ 0. (3)

Given that the market is complete, under the “Second Fundamental Theorem of Asset Pricing”, the EMM
Q is unique and (3) has a unique (uniformly bounded) solution.

In the next Section we derive the 1/n leverage portfolio under the following assumption.

Assumption 2.2. (i) Each ith security has the same time-independent variance: σi = σ for all i = 1, ...,N
and for all t ≥ 0, (ii) the variables r f and λi are real constants (i.e., no time-dependent),

Assumption 2.2 (i) does not violate the no-arbitrage condition. Nevertheless, in practice, under the above
framework, some statistical arbitrage techniques (e.g., pair trading) can be exploited by traders. Explic-

15In continuous-time, the deflator M(t) is given by M(t) := 1
S 0(t)

dQ
dP .
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itly, these trades suffer from some sources of risk. They are not arbitrages and they are only demonstrably
correct as both the amount of trading time an the liquidity approach infinity.

3 The 1/n Leveraged Portfolio

At time 0, the representative investor leverages k times the initial endowment E to A, s.t. the aggregated
wealth (namely, A := E + kE) is then invested according to the equally-weighted heuristic. The investor
allocates an equal weight of 1/n to each of the n securities in portfolio chosen from the homogeneous
asset class of N risky securities available for investment (with 1 ≤ n ≤ N). The amount of wealth which
is debt-financed (i.e., kE) originates from a unique source of financing H (i.e., no diversification on
debt-side) s.t. at time 0, kE ≡ H. At time t, the market value of debt is

H(t) = xH(t)S H(t) ,

with xH(t) and S H(t) respectively the quantity and price of debt. While, the asset side reads as

A(t) := E(t) + kE(t) =

n∑
i=1

yi(t)S i(t) + k
n∑

i=1

yi(t)S i(t) =

n∑
i=1

xi(t)S i(t) ,

where yi(t) is the number of the ith security held in the unlevered portfolio (i.e., initial endowment E) and
xi(t) = yi(t) + kyi(t) ≥ 0 is the number of the ith security held in the leveraged portfolio.16 Moreover,

ui(t) =
xi(t)S i(t)

A(t)
≡ 1/n , (4)

is the proportion of wealth invested in the ith security and
∑n

i=1 ui(t) = 1 represents the budget equation
for all i = 1, ..., n. We now define the leverage investor as follows.

Definition 3.1 (Leverage). The investor that at time 0, leverages the value of the initial endowment E
by the debt amount H := kE, is called a leveraged investor with a leveraged index Φ defined as

Φ(t) := H(t)/A(t) with ΩΦ = [a, 1] , for all t ≥ 0 .

where ΩΦ is the domain of Φ and 1 > a > 0.

In the above definition, a represents a lower bound on the level of leverage. This captures the assumption
that the investor does not have the incentive to reduce her debt and thus her leverage below a certain
level. While the upper bound fixed at one means that the market value of the investment position cannot
decreases below the market value of debt17 At time 0, the leverage is Φ(0) := k/(1 + k), with k := ΦA/E.

16 A(t) is the market value of the portfolio at time t which specifies the investor’s position in each security.
17Otherwise the investor is forced to close the positions or goes bankrupt.
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3.1 Self-Financing Condition

Under the assumption that the debt is a tradable asset, we incorporate short-long sales constraints into
the model by restricting the investor to hold non negative net positions in the securities composing the
1/n portfolio and a non positive position in the special “security” H .18 We say that the trading strategy
S (i.e., the pair of investment-borrowing positions), is admissible if it satisfies those constraints. More
generally we have the following definition.

Definition 3.2 (Admissible Strategy). Let S := (x, xH) be the pair of investment-borrowing positions
so that (i) x := (x1, ..., xn) ∈ Rn

+ is the vector of risky assets where each component xi ∈ x represents
the number of units of the ith security held in portfolio and (ii) xH ∈ R− indicates the quantity of the
borrowing. A simple strategy S is said to be admissible if on [0,T ] it does not require selling short
securities i = 1, ..., n, i.e., if xi ≥ 0 for all i = 1, ..., n, and if it does not require holding positive quantities
of H , i.e., if xH ≤ 0; s.t., {A(t)} > C and {H(t)} < −C for all t ≥ 0 and for some constant C ≥ 0.19

We now impose the self-financing condition which characterizes the leveraged portfolio with no ex-
ogenous infusion or withdrawal of money. Namely, we assume that (i) the purchase of a new assets is
financed solely by the sale of assets already in the portfolio, (ii) new funding is obtained solely by the
repayment of previous debts.

Definition 3.3 (Self-financing trading strategy). Let x and xH be adapted-valued processes which
are progressively measurable w.r.t. F20 s.t. both satisfy (P-a.s.)

∑n
i=1

∫ t
0 (xi(s)S i(s))2 ds < ∞ and∫ t

0 (xH(s)S H(s))2 ds < ∞.21 Then, S is said to be a trading strategy. If dA(t) =
∑n

i=1

∫ t
0 xi(s)dS i(s)

and dH(t) =
∫ t

0 xH(s)dS H(s) for all t ∈ [0,T ] hold, then S is said to be self-financing.

3.2 Investment-borrowing dynamics

Under the properties of admissible self-financing trading strategy S given in Definitions 2.3-4, and
considered the 1/n heuristic (4), we assume the investor adopts a dynamic strategy defined as follows.

Assumption 3.1 (1/n rebalanced allocation strategy). If the investment long-only position x of the
strategy S locks the amount of wealth allocated to each ith security in the 1/n portfolio, the strategy is
called rebalanced and is denoted as Sd.

18To borrow funds, the investor is restricted to hold a non-positive net position in “asset”H (i.e., xH < 0).
19Notice that if we work with the vector u := [u1, ...un] of wealth proportion invested in each security, then we need to require

that A(t) > C for all t ≥ 0. Otherwise, u is not well-defined. See eq. (4).
20This means the the investor can only use current and past information to trade, (no clairvoyants).
21This guarantee that the payoffs of the strategy have finite second moments.
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Then, Sd
22 represents a dynamic strategy where the composition of the investment long-only position x

changes over time sot that each xi ∈ x becomes a function of time and asset price S i

xi(t) =
A(t)

nS i(t)
, ∀ i = 1, ..., n and ∀ t ≥ 0. (5)

At each trading date the asset allocation is revised so that after rebalancing, the weights are such that
the amount invested in each of the assets is again 1/n. Generally speaking, the agent holds the portfolio
x(t) during the period [t − dt, t] and liquidates it at time t at the prevailing prices, simultaneously setting
up the new long-only portfolio x(t + dt). Therefore, x represents an F-predictable “contrarian” asset
allocation strategy because the portfolio is rebalanced by selling “winners” and buying “losers” at any
time t according to the formula xi(t + dt) =

1/n
∑n

i xi(t)S i(t+dt)−xi(t)S i(t+dt)
S i(t+dt) .23

Proposition 1 (Investment-borrowing dynamics). Considered the dynamic self-financing trading strat-
egy Sd in Assumption 2.3, under the condition that (i) the cost S H of debt follows the dynamics
dS H(t) = S H(t)

[
(r f + σλH)dt + σdWH(t)

]
, (ii) the innovation terms dW j=1,...n(t) are correlated Wiener

processes: E[dWi(t), dW j(t)] = ρi jdt. Then, the aggregate investment-borrowing process {A(t),H(t)}t≥0,
under P, is a continuous process with stochastic differential24 dA(t) = A(t)

[
µAdt + σAdWPA(t)

]
dH(t) = H(t)

[
µHdt + σdWPH(t)

] (6)

where µA = 1
n
∑n

i=1 µi = r f + σAλA, σA =

√
σ2

n + n−1
n ρAσ2, ρA =

∑n
i=1

∑n
j,i

ρi j
n(n−1)

25, µH = r f + σλH ,
E[dWA(t), dWH(t)] = ρdt and (dWPA, dWPH) ∼ N(0, dt).

Proof. See Appendix A. �

To avoid arbitrage opportunities in the market, a precise relation between λA and λH must hold under
certain conditions. Indeed, for a positive (negative) debt-asset correlation ρ, the increment of asset value
induces a higher (lower) debt value and vice-versa. This is stated in the following Proposition.

Proposition 2 (Assets and debt market prices of risk). Given the free-arbitrage investment-borrowing
dynamics in (6), the following relations hold

λA = λH ⇔ (ρ = 1 and σA = σ) .

22The subindex d stands for “dynamic” or “rebalanced” investment (long-only) position.
23The requirement of F-predictability ensures that x(t), the composition of the long-only portfolio to be held during the period

[t − dt, t], will be known at time t − dt, as soon as the information Ft−dt arrives. This is natural since x(t) has to be set up at time
t − dt.

24Notice that λH is the market price of risk associated to the Brownian shock WP
H .

25It is reasonable to assume that the average correlation among n risky assets is not negative. Particularly when n is suffi-
ciently large. Then, for the sake of simplicity and in line with other studies referring to stock correlation (e.g., Mao, 1970) we
concentrate the analysis only on the positive range of correlation values between risky assets in the portfolio. See Table 2 in
Appendix B.
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Proof. See Appendix A. �

Since the market securities have the same variance as the debt (see Assumption 2.2 and Proposition 1),
Proposition 2 says that if the investment is perfectly positively correlated with the the borrowing position
(i.e., ρ → 1) this directly implies that all the securities are perfectly positively correlated among them
(i., ρA → 1). Therefore, to avoid arbitrage opportunities, the market price of risks have to be the same.
Namely, λ1 = ... = λN ≡ λH .

3.3 How many and which securities ?

The 1/n rule raises two questions concerning the selection procedure. First, how many securities should
be included in the final long-only position of the dynamic strategy Sd ? Second, given that n securities
are in the portfolio, which n of the available securities are to be included ?

The first question has been answered for “not-leveraged” naive portfolios by measuring the reduction
of risk – mapped by the portfolio’s variance (or standard deviation), as the number of securities are
expanded (see e.g., Bird and Tippett, 1986; Elton and Gruber, 1977; Evans and Archer, 1968; Johnson
and Shannon, 1974; Statman, 1987). Section 5 through Section 4 will try to answer to this question in
the case of a “leveraged” naive portfolio. The benefit of diversification will be determined by measuring
the reduction of the default risk as the number of securities are expanded.

The second question has been usually answered by averaging the portfolios’ standard deviation obtained
by random selection procedures for increasing portfolio’s size (n = 1, 2, ...).26 See e.g.,Elton and Gruber
(1977); Evans and Archer (1968). Differently, we do not impose any selection criteria. The investor is
allowed to selects the 1/n portfolio which best satisfies her preferences with respect to risk and returns.
Since N is the population size, for a portfolio with size n < N we have a total of NCn possible portfolios
with the same portfolio size n. 27 The statistical properties that describe the difference between the 1/n
portfolios of equal size are the mean market price of risk λA and the mean pairwise correlation ρA. For
any portfolio of size n = 1, 2, ..., Section 5 explores the value of the investment-borrowing positions (6)
for all the values in the range of λA and ρA in Table 2 in Appendix B. This is equivalent to consider all
the combination NCn of portfolios with size n.

The question of optimal diversification cannot be answered by the simple average variance of equally
allocated portfolio returns. One must consider the possibility of alternative risk measures in presence of
borrowed funds. The following section addresses this issue.

26A part the random selection procedure, the second question can be answered by adopting the simplifying assumptions of
Sharpe’s diagonal model Sharpe (1963).

27For example, for a population of 10 stocks, we have 45 portfolios of size 2 (i.e., 45 = 10C2), 120 portfolios of size 3 (i.e.,
120= 10C3), etc.
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4 Log-Leverage and Default Risk

The default of an investor typically results from illiquidity. In this perspective, a leveraged investor faces
two inter-related types of liquidity risk: (i) asset liquidity, i.e., the ability to sell or unwind positions and
(ii) funding liquidity, i.e., the ability to meet obligations at due time. Leverage exacerbates both liquidity
risks. So, a low initial endowment E w.r.t. the debt value H, implies a high profitability, but also a high
liquidity risk. This is symptomatic of a fragile balance between internal and external sources of finance.

4.1 Log-leverage

In the remainder, we characterize the investor’s solvency state by looking at the log-leverage

φ(t) := log [Φ(t)] = log
[
H(t)
A(t)

]
; (7)

where Ωφ := [−ε, 0] is the domain of φ and −ε = log(a).

We will refer to a situation of “fragility” if φ is closed to zero and of “robustness” if φ is close to −ε (i.e.,
the minimum debt state). This implies that a highly leveraged investor is also highly fragile and thus
prone to default. On the other hand, an investor almost entirely self-financed is highly robust. In short, Φ ∼ 1⇒ φ ∼ 0⇒ “fragility state”

Φ ∼ 0⇒ φ ∼ −ε⇒ “robustness state”.

Definition 4.1 (Default Event). The event that at any time t ≥ 0, the log-leverage ratio φ(t) is equal to
zero is classified as “default event”. Namely,

Defaul Event⇔ φ(t) = 0 , ∀t ≥ 0 .

Via the Ito’s Lemma we derive the dynamics of the investor’s log-leverage, from the aggregate wealth-
borrowing process (6), and eq.(7),

Proposition 3 (Log-Leverage Dynamics). From the investment-borrowing dynamics (6), the log-
transformation of leverage defined in 3.1, follows the dynamics

dφ(t) = µφdt + σφdWPφ (t) , (8)

where µφ = σ
(
λH −

σ
2

)
+ σA

(
σA
2 − λA

)
, σφ =

√
σ2 + σ2

A − 2ρσσA and dWPφ ∼ N(0, dt).

Proof. See Appendix A �
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Eq. (8), describes the dynamics of an arithmetic Brownian motion with linearly growing mean E[φt] and
linearly growing variance V[φt].28 Clearly, E[φt] := φ0 +µφ(t) and V[φt] := σ2

φ(t).29 In the following sec-
tions, we link together the concepts of diversification, leverage and default probability. Indeed, leverage
and diversification have adverse effects on default risk. On one hand, in the traditional capital structure
theory, leverage induces higher default risk. On the other hand, diversification reduces default risk. To
address this issue, we characterizes the default probability with a first passage time approach.

4.2 Mean Time to Default

From the Definition 4.1 of default event and the dynamics of log-leverage in Proposition 3, we describe
the default probability as follows.

Definition 4.2 (Default Probability). Consider the probability space (Ωφ,A,P) and the motion of
{φ(t)}t≥0 on R. Then, the default probability of a leveraged investor is P(D) :=

∫ ∞
0 fφ(0, t ≥ 0 | φ0, 0)dt,

where fφ is the density function of {φ(t)}t≥0 conditional to the initial value φ(0) := φ0 ∈ (−ε, 0).

In words, P(D) is the probability that the process {φ}t≥0, initially starting at an arbitrary level φ0 ∈ (−ε, 0)
exits through the default barrier at zero after time t ≥ 0. In a stochastic setting, it is common to relate the
probability of hitting an absorbing barrier to the first passage time at the same barrier.

Definition 4.3 (First Passage Time). Assuming that the diffusion process {φ(t)}t≥0 starts at φ0 and
its sample path is continuous, the first passage time of hitting the default barrier zero is defined by
τ = inf{t ≥ 0 : φ(t) ≥ 0}. In the case that zero is never reached, by convention, inf{∅} = ∞30.

The full characterization of τ depends on the transition probability density function fφ(0, t ≥ 0 | φ0, 0) =

1√
2πσ2

φt
exp

(
−

(−φ0−µφ)2

2σ2
φt

)
. The mean first passage time denoted by τ̄, is exactly the expected first hitting time

for the stochastic variable φ to reach the absorbing default barrier at zero.31 The transition probability
density function fφ(0, t ≥ 0 | φ0, 0) evolves in time according to the (forward) Fokker-Planck equation
∂p
∂t = − ∂

∂φ (µφp) + 1
2
∂2

∂φ (σ2
φp) where p = fφ(0, t ≥ 0 | φ0, 0). By working on the connection between the

Fokker-Planck equation and the stochastic differential equation (8), we obtain the expression for τ̄. See
Gardiner (2004).

28Since both drift and diffusion terms are constants we can write φt = φ0 +
∫ t

0
µφ d(s) +

∫ t

0
σφ dWφ(s) = φ0 + µφ(t) +

σφ limN→+∞

∑N
g=1(Wφ(tg) −Wφ(tg−1)) = φ0 + µφ(t) + σφWφ(t).

29Since W(t) is normal, it follows that φ(t) ∼ N
((
σ(λH − λA) +

σ2
A−σ

2

2

)
t, σ2

φt
)
.

30Recall that through (7) we simplify the problem moving from a term structure of threshold values H(t) to a fixed constant
barrier at zero.

31A standard approach to derive fφ(0, t ≥ 0 | φ0, 0) is to inverse its Laplace transform E[e−γτ], where γ < 0. The re-
lation between the mean first passage time and the Laplace transform of first passage time is established by the equation
τ̄ = − limγ→0+

∂E[e−γτ]
∂γ

.
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Lemma 4.4 (Mean Time to Default). Given the log-leverage dynamics (8), the definition of default
probability in 4.2 and first passage time in 4.3, the mean time taken by a leveraged investor to enter into
a default state is

τ̄ =

 σ2
φ

2µ2
φ

 exp

−2(ε + φ0)µφ
σ2
φ

 − exp

−2εµφ
σ2
φ

 − (
φ0

µφ

)
. (9)

Proof. See Appendix A. �

The extended form of expression (9), shows a direct dependence of τ̄ on various parameters and in
particular on the number n of securities in the long position of the strategy Sd.

τ̄ =

 σ2 + σ2
A − 2ρσσA

2
(
σ

(
λH −

σ
2

)
+ σA

(
σA
2 − λA

))2

 ×
exp

−2(ε + φ0)
(
σ

(
λH −

σ
2

)
+ σ2

A

(
σA
2 − λA

))
σ2 + σ2

A − 2ρσσA


− exp

−2ε
(
σ

(
λH −

σ
2

)
+ σ2

A

(
σA
2 − λA

))
σ2 + σ2

A − 2ρσσA


 −

 φ0(
σ

(
λH −

σ
2

)
+ σA

(
σA
2 − λA

)) .
where σA =

√
σ2

n + n−1
n ρAσ2.

Lemma 4.4 implies that the mean time to default grows with the inverse of the expected log-leverage,
E[φ]. Precisely, if the expected log-leverage increases (i.e., E[φ]→ 1) the mean time to default decreases
and vice-versa. Moreover, the mean time to default depends on the log-leverage’s volatility (measured
by the variance V[φt]), as follows.

Corollary 1. (i) The mean time to default decreases with the volatility of the log-leverage, if the investor’s
log-leverage trend is positive (more fragile investor); (ii) The mean time to default increases with the
volatility of the log-leverage, if the investor’s log-leverage trend is negative (more robust investor).

Proof. See Appendix A. �

In words, if the fragility is increasing (i.e., µφ > 0), the mean time to default is closer. Thus, lower
volatility is desirable because it reduces the likelihood that some trajectories of {φ(t)}t≥0 hit the upper
default bound (0). Namely, ∂τ̄/∂V[φt] < 0 for µφ > 0. While, if the robustness is increasing (i.e., µφ < 0),
the mean time to default is faraway. Thus, a higher volatility is desirable since it increases the likelihood
to reach the lower safe barrier (−ε). Namely, ∂τ̄/∂V[φt] > 0 for µφ < 0. Moreover, Proposition 3 implies
also a precise relation between the variance V[φt] and the debt-asset correlation ρ, which impacts on τ̄ as
follows.

Corollary 2. (i) The mean time to default increases with positive debt-asset correlation (i.e., ρ > 0), if the
investor’s log-leverage trend is positive (more fragile investor); (ii) The mean time to default increases
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with negative debt-asset correlation (i.e., ρ < 0), if the investor’s log-leverage trend is negative (more
robust investor).

Proof. See Appendix A. �

In a nutshell, Corollary 2 says that in bad times (i.e., when the investor’s fragility is raising), positive
debt-asset correlation is desirable so that lower market value of assets is coupled with a lower debt value
and the volatility of the log-leverage decays. While, in good times (i.e., when the investor’s robustness is
increasing), negative debt-asset correlation is desirable so that higher market values of assets is coupled
with a lower debt value and the volatility of the log-leverage growths.

5 The optimal 1/n Leveraged Portfolio

The aim of this section is to answer to the first question posed in the sub-Section 3.3. Namely, how
many securities should be included in the final long-only position of the dynamic strategy Sd in order
to minimize the portfolio’s risk. In a idealized frictionless world, we answer to this question by studying
the optimal number n which minimizes τ̄ in Lemma 4.4. In this respect, the present section provides the
result of a comparative static analysis of (8) supported by a numerical analysis of (9) – in reduced form
written as τ̄ = τ̄(φ(n)), conducted in Appendix B.

Definition 5.1 (Optimal 1/n Leveraged Portfolio). The optimal 1/n∗ leveraged portfolio is the one that
maximizes the mean time to default (i.e., minimizes the default probability)

n∗ = arg max
n

[
τ̄(φ(n))

]
. (10)

Proposition 4 (Optimal Diversification). Under the results in Corollary 1-2, in a frictionless free-
arbitrage market, the optimal 1/n∗ leveraged portfolio is

n∗ =

 σ2(ρA − 1)/(ρAσ
2 − λ2

A) when E[φt] is U-shaped w.r.t. n
(ρA − 1)/(ρA − ρ

2) when V[φt] is U-shaped w.r.t. n.
s.t., τ̄ ≤ τ̄∗ ,∀n ≷ n∗.

Proof. See Appendix A and Cases (a.iii), (b.i) , (b.ii) and (b.iii) in Appendix B (Analysis). �

In words, Proposition 4 says that when E[φt] or V[φt] are U-shaped w.r.t. n, there exists an optimal
intermediate 1/n∗ heuristic (i.e., 1 ≤ n∗ ≤ N), which maximizes τ̄ for all n ≷ n∗. See Figure 1 and 3 in
Appendix D. Two different critical points emerge n∗ = σ2(ρA−1)/(ρAσ

2−λ2
A) and n∗ = (ρA−1)/(ρA−ρ

2),
which converge to the same iff λA = σ|ρ|. Under this condition, there exists a unique critical point which
minimizes both E[φt] and V[φt]. (See Figure 2 in Appendix D). Instead, when both E[φt] and V[φt] are
not U-shaped w.r.t. n, the mean time to default is a concave monotonically increasing function of n s.t.,
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maximum diversification is the best default-induced portfolio strategy (i.e., n∗ → N). See Analysis in
Appendix B.

In Appendix C we carry out a robustness analysis by solving the maximization problem arg maxn[τ̄(φ(n)]
for the static (i.e., not-rebalanced) allocation strategy Ss.32 In this case, the investor allocates 1/n at the
initial date and then holds the portfolio until the terminal date (“buy-and-hold”). In the real world, it is
reasonable to think that investors re-adjust the weights xi ∈ x at any arbitrary time interval ∆t in order
to maintain a certain return-risk profile and minimize the rebalancing costs. Therefore, the two strategies
Sd and Ss delimit the span of all admissible 1/n self-financing trading strategies S . Even though we
are in a idealized frictionless world, as seen for Sd also for Ss maximum diversification is not always
desirable. We detect an optimal intermediate 1/n portfolio (with 1 < n < N) that minimizes the mean
time to default. See Appendix C and Figures 4 in Appendix D.

6 Conclusions

Since the pioneering work of Evans and Archer (1968), the optimal number of securities to include in a
portfolio in order to minimize the investor’s risk has been addressed both theoretically and experimentally
by several studies. They model the risk-reduction benefits of naive diversification, where risk is measured
by the portfolio’s standard deviation. Under the Efficient Market Hypothesis of an idealized frictionless
world, the authors suggest maximum diversification (a.k.a.,“buy the market portfolio”). Differently, our
theoretical findings show the existence of an intermediate optimal diversification level in the case of
leveraged naive portfolio. The crucial point to understand our results is the role played by the mean
pairwise asset correlation ρA and the debt-asset correlation ρ. For negative values of ρ (especially when it
is closed to −1), the paper confirms the standard results already known in the literature for the (unlevered)
naive diversification. The optimal 1/n∗ allocation is the one for which n∗ → N. Rather, when ρ from
negative values moves towards zero and beyond, maximum diversification is not always desirable in
terms of time to default. The optimal 1/n∗ diversification is an intermediate one for which 1 < n∗ < N.33

The mechanism behind this counterintuitive result is very simple and mainly explained in terms of the
log-leverage’s variance. As the variance of the assets is rescaled down by the number n of securities held
in portfolio, the log-leverage’s variance becomes a unimodal (U-shaped) function of n. Eventually, the
corresponding time to default assumes an inverted U-shaped form with respect to’ n.

32The subindex s stands for “static” or “not-rebalanced” investment (long-only) position.
33Also in the classic situation investigated since Merton (1974), debts are positively correlated with assets. There, however,

debt value is assumed to be a function of firm value and thus diversification would decreases both asset and debt volatility. As a
result, by repeating the same exercise in the Merton framework, the non-monotonic effect of diversification on time to distress
would not be present.
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A Proofs

A.1 Proposition 1

Proof. Let us describe the dynamics of the long-only position x which belong to the pair of investment-borrowing
positions S := (x, xH) in Definition 3.2. The resulting long-only portfolio is A := x′S. Despite Assumptions 2.2,
we start from a generic price equation dS i(t) = S i(t)

[
µi(t)dt +

∑d
j=1 σi j(t)dWPj (t)

]
. Then, A has dynamics

dA(t) =

n∑
i=1

xiS iµidt +

n∑
i=1

xiS iσi jdWPj (t) . (11)

We are interested in the dynamics of the 1/n portfolio composed by equally investments in n securi-
ties selected from the population of size N ≥ n. Under the Assumption 3.1, the portfolio is continu-
asly rebalanced over time so that xi(t) =

A(t)
nS i(t)

for all t ≥ 0. Then, the drift term of (11) becomes[
x1(t)S 1(t)µ1 + x2(t)S 2(t)µ2 + ... + xn(t)S n(t)µn

]
dt =

A(t)
n (µ1 +µ2 + ...+µn)dt + ... = A(t)µAdt where µA = 1

n
∑n

i=1 µi.
The diffusion term is a weighted sum of n Gaussian correlated shocks: A(t)

n
∑n

i=1 dWi(t) which is equivalent to
A(t) 1

n
∑n

i=1

√
dtξi with ξi ∼ N(0, 1). For the variance we obtain

σ2
A = A2(t)

dt
(n)2

n∑
i=1

Var(ξi) + A2(t)
dt

(n)2

√
Var(ξi)Var(ξ j)

n∑
i=1

n∑
j,i

ρi j

= A2(t)
dt
n
σ̄2
ξ + A2(t)

dt
(n)2

√
σ2
ξi
σ2
ξ j

n∑
i=1

n∑
j,i

ρi j

(12)

where σ̄2
ξ is the average variance among the n’s σ2

ξi=1,...n
. Now we consider Assumption 2.2, which imposes σ2

ξi
= σ2

for all i = 1, ...,N. Then multiplying and dividing the second term of (12) by n − 1 and taking its square root, we

get σA = A(t)
√

σ2

n + n−1
n ρAσ2

√
dtξ where ρA =

∑n
i=1

∑n
j,i

ρi j

n(n−1) and ξ ∼ N(0, 1). Hence (11) becomes dA(t) =

A(t)µAdt + AσAdWPA(t), where σA =

√
σ2

n + n−1
n ρAσ2, ρA =

∑n
i=1

∑n
j,i

ρi j

n(n−1) , µA = 1
n
∑n

i=1 µi and dWPA ∼ n(0, dt).

Under the law of one price, the return of the portfolio (i.e., µA) has to obey the no-arbitrage condition. Indeed the
portfolio A can be understood as a new security generated from a linear combination of n securities, each with price
S i dependent on a different exogenous factor (with i = 1, ..., n). Then, A is affected by a “new” Brownian shock WPA,
which synthesizes the contribution of all WPi . The extra return over the risk-less rate per unit of volatility loading
onto the “new” factor, is represented by the new market price of risk λA associated with the Brownian shock WPA.
To show this, let assume the presence of a pricing kernel M with dynamics dM(t) = −r f Mdt−MλAdWPA(t). Where
r f is the risk-free rate, λA is the market price of risk associated to the ’new’ Brownian shock WPA. Now, in order
to avoid arbitrage opportunities we apply the martingale condition. Hence, with slight abuse of notation, there is
no arbitrage if and only if EPt [d{AM}] = 0 which has the precise mathematical meaning that the drift in the SDE
for the product of A and M is zero (hence, the product is a martingale). By Ito’s lemma, this condition implies[
µA − r f − λAσA

]
dt = 0 which turns out to express the expected return of portfolio A in a free arbitrage economy

µA = r f + σAλA. �
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A.2 Proposition 2

Proof. We have to check the conditions under which the market prices of risk (i.e., λA, λH) of the aggregated
wealth-borrowing process in (6) are related to each other. In a similar spirit as Merton (1974, 1973), Let’s normalize
to one the total amount of dollars invested in the aggregate portfolio such that Φ is the fraction of wealth debt-
financed and 1−Φ is covered by the initial endowment (See Definition 2.2). The fraction Φ, is a zero-net investment
which is achieved by using the proceeds of short-sales (or borrowing) to finance long positions. The condition of
zero aggregate investment can be written as Φ(dA/A) − Φ(dH/H) = 0. Given the investment-borrowing dynamics
(6), we can rewrite the condition as Φ

[
µAdt + σAdWPA(t)

]
−Φ

[
µHdt + σdWPH(t)

]
= 0 which hold for any choice of

Φ > 0, s.t. Φ
[
µA − µH

]
dt+Φ

[
σAdWPA(t) − σdWPH(t)

]
= 0. Since there are two distinct positions (A and H) and two

different sources of risk (dWPA and dWPH) only under certain conditions on their correlation ρ it would be possible
to eliminate the risky part of the zero aggregate investment position s.t.

Φ
[
σAdWPA(t) − σdWPH(t)

]
= 0 . (13a)

A nontrivial solution Φ , 0 to (13a) implies σAdWPA(t) = σdWPH(t) and so σA
σ

=
dWPH (t)
dWPA(t) . Considered that

E[dWPA(t)dWPH(t)] = ρdt, we have
σA
σ

=
dWPH (t)
dWPA(t)

dWPH(t) =
ρdt

dWPA(t)

=⇒

 σA = ρσ

σA = σ
ρ

=⇒

{
ρ = 1
σ = σA

Since, σA =

√
σ2

n + n−1
n ρAσ2, the solution σA = σ from the condition (13a) imposes ρA = 1. Moreover, to prevent

arbitrage opportunities, the excess return above the short rate r f must be zero

Φ
[
(µA − r f ) − (µH − r f )

]
= 0 . (13b)

A nontrivial solution Φ , 0 to (13b) is given by (µA − r f ) = (µH − r f ). Together, the two solutions define the
free-arbitrage condition on the market prices

µA − r f

σA
=
µH − r f

σ
⇔ (ρ = 1 and σA = σ) .

This means that in equilibrium, the investment-borrowing strategy defined in (6) is riskless with an expected return
equal to zero only when (i) the securities in the asset side are perfectly correlated; (ii) the asset portfolio is perfectly
correlated with the debt (i.e., E[dWPA(t)dWPH(t)] = 1). Both borrowing and asset values will be driven by the same
shock, which –in order to avoid arbitrage–, have to be reflected in the same market price of risk. Under these two
conditions, the market price of risk of assets and the market price of risk of debt converges together such that the
expected return on the investment-borrowing position becomes zero, i.e., E(dA + dH) = 0. �

A.3 Proposition 3

Proof. From (7), we compute the partial derivatives with respect to t, H and A: φt(t,H, A) = 0, φH(t,H, A) = 1
H ,

φHH(t,H, A) = − 1
H2 , φA(t,H, A) = − 1

A , φAA(t,H, A) = 1
A2 , φHA(t,H, A) = φAH(t,H, A) = 0. Then we use the product
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rule to compute the square and the cross-product of the single processes (dH)2 = σ2H2dt and (dA)2 = σ2
AA2dt.

Now using (6), by Ito’s lemma we obtain

dφ = φtdt + φHdH + φAdA +
1
2

[φHH(dH)2 + 2φAHdHdA + φAA(dA)2]

=
1
H

[(r f + σλ)Hdt + σHdWP] −
1
A

[(r f + σAλA)Adt + σAAdWPA] +
1
2

[−
1

H2σ
2H2dt +

1
A2σ

2
AA2dt]

=

(r f + σλH) − (r f + σAλA) +
σ2

A − σ
2

2

 dt + σdWP − σAdWPA

=

σλH − σAλA +
σ2

A − σ
2

2

 dt + σφdWPφ = (σA(σA/2 − λA) + σ(λH − σ/2)) dt + σφdWPφ ,

(14)

where σφ =

√
σ2 + σ2

A − 2ρσσA and dWPφ ∼ N(0, dt). �

A.4 Lemma 3.4

Proof. Let us consider the log-leverage process {φ(t)}t≥0 with dynamics described in (8), and assume that (i) it
moves in R; (ii) at time t = 0, φ(0) := φ0 is at an arbitrary level in (−ε, 0) = {φ | −ε ≤ φ0 ≤ 0}, where −ε is the
reflecting barrier and 0 is the absorbing one. Then, following Gardiner (2004), the mean first passage time taken
by {φ(t)}t≥0 to touch the upper default barrier 0, is the solution of the following equation

τ̄ = 2
∫ 0

φ

dφ′
∫ φ′

−ε

exp
(∫ φ′′

0
2µ(φ′′′)
σ(φ′′′)2 dφ′′′

)
exp

(∫ φ′

0
2µ(φ′′′)
σ(φ′′′)2 dφ′′′

)
σ(φ′′)2

dφ′′

= 2
∫ 0

φ

dφ′
∫ φ′

−ε

1
σ(φ′′)2 exp

(∫ φ′′

0

2µ(φ′′′)
σ(φ′′′)2 dφ′′′ −

∫ φ′

0

2µ(φ′′′)
σ(φ′′′)2 dφ′′′

)
dφ′′

= 2
∫ 0

φ

dφ′
∫ φ′

−ε

exp
(∫ φ′′

φ′
2µ(φ′′′)
σ(φ′′′)2 dφ′′′

)
σ(φ′′)2 dφ′′ ,

(15)

where µ(φ) = (σ(λH − σ/2) + σA(σA/2 − λA)) and σ(φ) =

√
σ2 + σ2

A − 2ρσσA. The solution of (15) yields (9).
�

A.5 Corollary 1

Proof. The first statement to be verified is that the partial derivative of the mean time to default w.r.t. µφ is positive
when µφ < 0 and is negative when µφ > 0. From (9), we get ∂τ̄/µφ = 1

2µ3
φ

(
Mε(2εµφ + σ2

φ) − Mα(2αµφ + σ2
φ) + 2φ0

)
,

where M := exp
(
−

2µφ
σ2
φ

)
and α := ε + φ0 > 0.

∴ if

 µφ < 0, Mα > Mε ⇒ ∂τ̄
µφ
> 0

µφ > 0, Mα < Mε ⇒ Mε(2εµφ + σ2
φ) − Mα(2αµφ + σ2

φ) + 2φ0 < 0⇒ ∂τ̄
µφ
< 0.
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The second statement says that a lower variance V[φt] induces a longer mean time to default. Let’s analyze the
partial derivative of τ̄[φt] w.r.t. V[φt]. We get ∂τ̄/σ2

φ = 1
2µ2

φσ
2
φ

(
Mα(2αµφ + σ2

φ) − Mε(2εµφ + σ2
φ)

)
.

∴ if

 µφ < 0, Mα > Mε ⇒ ∂τ̄
σ2
φ

> 0

µφ > 0, Mα < Mε ⇒ Mα(2αµφ + σ2
φ) − Mε(2εµφ + σ2

φ) < 0⇒ ∂τ̄
σ2
φ

< 0.

To explain why the inequality Mα(2αµφ + σ2
φ) − Mε(2εµφ + σ2

φ) < 0 holds true in case µφ > 0 is explained

as follows. First, the expression can be read also as exp
(

2µφ
σ2
φ

(ε − α)
)
< ε/α. It is immediate to observe that

since µφ > 0, also 2µφ/σ2
φ > 0 and for any α and ε s.t. a > ε, the inequality is always verified. In the

case the log-leverage is decreasing, higher volatility is desirable because increase the time to default. While,
in the case the log-leverage is increasing, lower volatility is desirable because it lengthens the time to default.
In particular, let for the sake of simplicity, the assets in portfolio to be uncorrelated (i.e., ρA = 0). Then,
the drift term in (8) becomes µφ = σ

(
λH −

σ
2

)
+ σ/

√
n
(
σ/
√

n
2 − λA

)
. It can either assume positive or negative

values. Ceteris paribus, µφ is positive when n >
(
2λ2

A − 2λHσ + σ2 + 2
√
λ2

A(λ2
A − 2λHσ + σ2)

)
/(σ − 2λH)2.

In this case, further diversification would be desirable. While, for a diversification range below the threshold

n <
(
2λ2

A − 2λHσ + σ2 + 2
√
λ2

A(λ2
A − 2λHσ + σ2)

)
/(σ−2λH)2, the investor will benefit from lower diversification.

�

A.6 Corollary 2

Proof. Consider the expression for V[φt] in expanded form. Namely, V[φt] :=(
σ2 + σ2

n + n−1
n ρAσ

2 − 2ρσ
√

σ2

n + n−1
n ρAσ2

)
t. Since ρ ∈ [−1, 1], the differentiation of V[φt] w.r.t. ρ > 0,

gives ∂V[φt]/∂ρ = −2σ
√

σ2

n + n−1
n ρAσ2 which is always negative. While, the differentiation of V[φt] w.r.t.

ρ < 0, gives ∂V[φt]/∂ρ = 2σ
√

σ2

n + n−1
n ρAσ2 which is always positive. Then, for any ρa, ρb ∈ (0, 1] s.t. ρa < ρb,

V[φt](ρa) > V[φt](ρb). While, for any ρa, ρb ∈ [−1, 0) s.t. ρa < ρb, V[φt](ρa) < V[φt](ρb). So, V[φt] is a monotone
decreasing function of ρ when ρ ∈ (0, 1] and it is a monotone increasing function of ρ when ρ ∈ [−1, 0). Since
the Proof of Corollary 1 shows that τ̄ is a monotonic decreasing function of V[φt] when µφ > 0, when ρ ∈ (0, 1],
then V[φt] is monotone decreasing in ρ. So, when µφ > 0, positive debt-asset correlation is desirable since reduces
the default risk by increasing the mean time to default. Moreover, the Proof of Corollary 1 shows that τ̄ is a
monotonic increasing function of V[φt] when µφ < 0. Then when ρ ∈ [−1, 0), V[φt] is monotone increasing in ρ.
So, when µφ < 0, negative debt-asset correlation is desirable since reduces the default risk by increasing the mean
time to default. Then, we conclude that, the default risk is reduced (increased) for (i) positive (negative) debt-asset
correlation when the investor’s log-leverage is increasing, (ii) negative (positive) debt-asset correlation when the
investor’s log-leverage is decreasing. �
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A.7 Proposition 4

Proof. Let explicitly write the dependency of φt from n (φt = φt(n)) and take its first and second moment i.e.,
consider E[φt(n)] and V[φt(n)]. Hereafter we study how they change w.r.t. n. Then in Appendix B (Analysis), the
results obtained here are jointly analyzed.

Expected value E[φt(n)] as a function of n. Let us consider lim
n→+∞

E[φt(n)] = φ0 +σ
√
ρA

(
σ
√
ρA

2 − λA

)
+σ

(
λH −

σ
2

)
and E[φt(1)] = φ0 + σ (λH − λA). The order relation between lim

n→+∞
E[φt(n)] and E[φt(1)] is explained by the fol-

lowing table

E[φt(1)] > lim
n→+∞

E[φt(n)] E[φt(1)] < lim
n→+∞

E[φt(n)]

λA ρA λA ρA

[0, σ2 ) [0, 1) (σ2 , σ] [0,−4 λA
σ

+
4λ2

A+σ2

σ2 )

(σ2 , σ) (−4 λA
σ

+
4λ2

A+σ2

σ2 , 1) (σ, 1] [0, 1]

for any value of σ2 and λH in Table 2. A priori, it is not well defined the comparison between E[φt(1)] and
lim

n→+∞
E[φt(n)]. As shown in the previous table, their difference depends on the values assumed by λA and ρA. The

partial derivative of E[φt] with respect to n is ∂E[φt(n)]/∂n = σ(ρA − 1)(σA − λA)/2σAn2. By imposing the FOC:
∂E[φt(n)]/∂n = 0 and avoiding boundary solutions (i.e., solutions for ρA = 1, λA = 0, λA = 1, n = 1), the critical
point is n∗ = σ2(ρA−1)/(ρAσ

2−λ2
A).34 The second partial derivative ∂2E[φt(n)]/∂n2 is always negative in n∗, hence

it is a minimum. Under the condition of positive mean correlation between assets in portfolio (i.e., ρA > 0), the
optimal portfolio size takes values in the interval [1,∞). 35 In particular, the optimal size n∗ is lower then infinity
when the mean asset correlation is below a certain threshold (i.e., when ρA << λ2

A/σ
2). In this particular set,

E[φt(n)] is a unimodal (U-shaped) function of n which is monotonically decreasing for all n < n∗ and monotonically
increasing for all n ≥ n∗. Hence, by Corollary 1, the mean time to default is monotonically increasing for all n < n∗

and monotonically decreasing for all n ≥ n∗. While for a mean asset correlation value that converges to the
threshold (i.e., for ρA → λ2

A/σ
2), the optimal size n∗ tends to infinity and E[φt(n)] is monotonically decreasing in

n. Therefore, the mean time to default is monotonically increasing in n. In this case, full diversification is optimal.
(See Figure 1 and 3 in Appendix).

Variance V[φt(n)] as a function of n. In expanded form, V[φt(n)] reads as σ2
φ(t) :=(

σ2 + σ2

n + n−1
n ρAσ

2 − 2ρσ
√

σ2

n + n−1
n ρAσ2

)
t. The asymptotic analysis of the function gives V[φt(1)] =

−2σ2(ρ − 1) and lim
n→+∞

V[φt(n)] = σ2
[
1 + ρA

(
1 − 2ρ

√
ρA

)]
such that for n ≥ 1 the following order relation holds.

34Which holds for the set of values λA ∈ (0, 1), σ2 ∈ (λ2
A, 1) and ρA ∈ [0, λ2

A/σ
2).

35 In fact, lim
ρA→0

n∗ = σ2

λ2
A

which is equal to 1 for σ2 = λ2
A or to 1

λ2
A

when σ2 = 1. Then, lim
ρA→λ

2
A/σ

2
n∗ = ∞ for any value of σ and

λA.
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V[φt(1)] = lim
n→+∞

V[φt(n)] V[φt(1)] > lim
n→+∞

V[φt(n)] V[φt(1)] < lim
n→+∞

V[φt(n)]

ρ ρA ρ ρA ρ ρA

[0, 1/2) 1 [0, 1/2) [0, 1) (1/2, 1]
[
0, 1 − 4ρ(ρ − 1)

]
[1/2, 1) 1 − 4ρ(ρ − 1) or ρA = 1 [1/2, 1)

[
1 − 4ρ(ρ − 1), 1

]
1 1

As reported in Table 1, V[φt(n)] can assume four increasing levels of complexity.

σ2
φ ρA = 0 ρA > 0

ρ = 0 Case (i) σ2 + σ2

n Case (ii) σ2 + σ2

n + n−1
n ρAσ

2

ρ ∈ [−1, 0) ∪ (0, 1] Case (iii) σ2 + σ2

n − 2ρ σ2
√

n Case (iv) σ2 + σ2

n + n−1
n ρAσ

2 − 2ρσ
√

σ2

n + n−1
n ρAσ2

Table 1: The variance V[φt(n)] can have four possible forms according to the values assigned to ρ and ρA.

Case (i) The variance V[φt(n)] is a strictly decreasing function in n s.t. V[φt(1)] = 2σ2 > lim
n→+∞

V[φt(n)] = σ2 and

∂V[φt(n)]/∂n = − (σ/n)2 < 0.

Case (ii) The variance V[φt(n)] is decreasing in n36 s.t. V[φt(1)] = 2σ2 ≥ lim
n→+∞

V[φt(n)] = (ρA + 1)σ2 and

∂V[φt(n)]/∂n = (ρA − 1)σ2/n2 ≤ 0 for any value of ρA, n and σ.

Case (iii) The variance V[φt(n)] is a unimodal (U-shaped) function of n. The partial derivative w.r.t. n is
∂V[φt(n)]/∂n = (

√
nρ − 1)σ2/n2. By imposing the FOC: ∂V[φt(n)]/∂n = 0, we get n∗ = 1/ρ2. Other-

wise ∂V[φt(n)]/∂n < 0 if n∗ − δ < n < n∗ and ∂V[φt(n)]/∂n > 0 if n∗ < n < n∗ + δ; The hump shape is due
to the following general lemma.

Lemma A.1. Take any generic twice-differentiable function f , of two processes X and Y such that the new
process Z = f (X,Y) has variance of the form σ2

z = σ2
x +σ2

y − 2ρσxσz. Then, if the variance of either X or Y
is re-scaled down by a generic factor n > 0, σ2

z becomes a unimodal (U-shaped) function of n with a global
minimum in

n∗ =


1
ρ2

(
σy

σx

)2
if σy is re-scaled by n

1
ρ2

(
σx
σy

)2
if σx is re-scaled by n.

Case (iv) The study of the function shows a conflicting role between ρ and ρA. The partial derivative with respect to

n, is equal to ∂V[φt(n)]/∂n =

(
σ2(ρA−1)

n2

) (
σA−ρσ
σA

)
such that V[φt(n)] is (a) decreasing in n if ρ ≤ 0 or ρ > 0

and ρA ≥ ρ
2 or (b) unimodal (U-shaped) with an absolute minimum in n∗ = (ρA − 1)/(ρA − ρ

2) if ρ > 0 and
ρA < ρ

2.

Both Cases (i) and (ii) show that is assets and debt are uncorrelated (i.e., ρ = 0), the variance of the process (8)
diminishes with n. Differently, Cases (iii) and (iv.b) show that when assets and debt are positively correlated (i.e.,

36For ρA < 1, V[φt(n)] is strictly decreasing in n.
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ρ > 0), for any arbitrary time value t, increasing levels of portfolio diversification n, generate a non-constant, non-
monotonic behavior of the dispersion around the mean value E[φt(n)], measured by the standard deviation σφ(t).
(See Figure 2 in Appendix). �

B Analysis

Parameter Set of Values
n {n ∈ N : n > 0}
σ {σ ∈ R : 0 < σ < 1}
λA {λA ∈ R : 0 ≤ λA ≤ 1}
λH {λH ∈ R : 0 ≤ λH ≤ 1}
ρA {ρA ∈ R : 0 ≤ ρA ≤ 1}
ρ {ρ ∈ R : −1 ≤ ρ ≤ 1}
a {a ∈ R : a < 1}

Table 2: Support of the parameters.

To conclude our analysis about the default-induced optimal level of portfolio diversification, let us consider the
jointly impact of both first and second moments of log-leverage on the mean time to default. For the set of values
in Table 2, the expected value of the log-leverage E[φt(n)], can decrease or have a non-monotonic behavior w.r.t.
n (see proof Proposition 4). In particular, E[φt(n)] depends on the reciprocal values taken by σ and λA s.t., two
different cases exist

Case (a) E[φt(n)] decreases for σ2 ∈ (λ2
A, 1] and ρA ∈

[
λ2

A/σ
2, 1

)
.

Case (b) E[φt(n)] have a non-monotonic (U-shaped) behavior if ρA ∈
[
0, λ2

A/σ
2
)
. Thus, only for sufficiently low

levels of mean asset correlation, the expected log-leverage is monotonically decreasing up to an optimal
diversification level n∗ = σ2(ρA − 1)/(ρAσ

2 − λ2
A) and then monotonically increasing. This behavior may be

amplified by the fluctuations around the mean.

Since we are interested to the mean time taken by {φ(t)}t≥0 to reach the upper distress barrier fixed at zero, we
want to consider the impact of the upward variance on E[φt(n)]. For the set of values in Table 2, V[φt(n)] behaves
in two different ways (see proof Proposition 4). Case (i): V[φt(n)] decreases w.r.t. n when ρ ∈ [−1, 0]. Case (ii):
V[φt(n)] decreases w.r.t. n when ρ ∈ (0, 1) but the mean asset correlation is sufficiently high, namely ρA ∈ [ρ2, 1).
Case (iii): V[φt(n)] is a non-monotonic (U-shaped) function of n, if ρ ∈ (0, 1] and ρA ∈ [0, ρ2) with a minimum in
n∗ = (ρA − 1)/(ρA − ρ

2). For positive debt-asset correlation (i.e., ρ > 0), and sufficiently low mean asset correlation
(i.e., ρA < ρ

2), the fluctuations around the mean exhibit a minimum in n as shown in Figure 2 in Appendix D.

The match of the above results, brings us to the following six likely events:

Case (a.i) E[φt(n)] and V[φt(n)] are decreasing in n.
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Case (a.ii) E[φt(n)] and V[φt(n)] are decreasing in n.37

Case (a.iii) Both E[φt(n)] and V[φt] display a non monotonic (U-shaped) behavior w.r.t. n, such that (by Corollary 1) τ̄
is a unimodal (inverted U-shaped) function of n.38

Case (b.i) E[φt(n)] is a non monotonic (U-shaped) function of n which is monotonically decreasing up to n∗ = σ2(ρA−

1)/(ρAσ
2 − λ2

A) and then monotonically increasing. The debt-asset correlation is negative (i.e., ρ < 0) and
τ̄ is a unimodal (inverted U-shaped) function of n only for values of mean asset correlation very close to
the lower bound (i.e., ρA → 0). Otherwise, τ̄ is concave monotonically increasing function (vertically shift
downwards as ρ→ −1). See Figures (1.a), (1.b), (1.c) in Appendix.

Case (b.ii) E[φt(n)] is a non monotonic (U-shaped) function of n which is monotonically decreasing up to n∗ = σ2(ρA−

1)/(ρAσ
2 − λ2

A) and then monotonically increasing. As soon as as ρA → λ2
A/σ

2, τ̄ changes from a unimodal
(inverted U-shaped) function of n to a concave monotonic increasing function of n.

Case (b.iii) E[φt(n)] is a non monotonic (U-shaped) function of n which is monotonically decreasing up to n∗ = σ2(ρA−

1)/(ρAσ
2 − λ2

A) and then monotonically increasing. E[φt(n)] is a non monotonic (U-shaped) function in n
which is monotonically decreasing up to n∗ = σ2(ρA − 1)/(ρAσ

2 − λ2
A) and then monotonically increasing.

Moreover, the upward variance is U-shaped around E[φt(n)]. Hence, by Corollary 1, τ̄ behaves as non
monotonic (inverted U-shaped) function of n. 39

Summarizing the analysis, we get the following result. When either E[φt(n)] or V[φt(n)] are U-shaped w.r.t. n, τ̄
is a unimodal (inverted U-shaped) function of n.40 While, when both E[φt(n)] and V[φt(n)] are not U-shaped w.r.t.
n, the mean time to default is a concave monotonically increasing function of n s.t., maximum diversification is
the best default-induced portfolio strategy.41 In those cases, for decreasing levels of debt-asset correlation (namely
ρ → −1), the asymptote to which V[φt(n)] converges, is increasing. Therefore, τ̄ becomes shorter (i.e., it shifts
downward). This leads to the statement in Corollary 2.

Despite its low likelihood to occur in reality, the case of a portfolio with securities highly correlated (i.e., ρA ≈ 1),
deserves some attention. In the particular case of assets correlation equal to one, diversification has not potential
benefits. This effect is directly captured in our analysis and explained by a mean time to default which is a constant
function of n when ρA = 1. See Figure 3: black line in Appendix D.

C The 1/n not-rebalanced allocation. A Monte Carlo simulation

In the case without rebalancing, the strategy is a “buy-and-hold” portfolio according to which any quantity xi ∈ x
composing the trading strategy Ss is chosen at the beginning of the investment horizon and the position is never

37By Corollary 1, in Case (a.i-ii) τ̄ is a concave increasing function of n (i.e., nondecreasing for all values of n below some
n∗ and non increasing for all values of n above n∗) which is vertically shift downwards for ρ → −1, see Case (a.i), or for high
levels of ρA, see Case (a.ii).

38Strictly increasing on [1, n∗] and decreasing on [n∗,∞] with positive asymptote τ̄ = k > 0.
39Such as τ̄ it is strictly increasing on [1, n∗] and strictly decreasing on [n∗,∞]. The asymptote k, to which τ̄ tends as n→ ∞

is shift upward as ρA → ρ2.
40Compare Case (a.iii), Case (b.i), Case (b.ii) and Case (b.iii).
41Compare Case (a.i) and Case (a.ii).
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rebalanced thereafter. 42 If we define n∗d (n∗s) as the optimal number of securities that solves arg maxn(τ̄(n)) of
the strategy Sd (Ss), two central questions arise: (i) τ̄(n∗d) ∼ τ̄(n∗s) ? ; (ii) n∗d ∼ n∗s ? In order to answer to
these questions, we resort to a Monte Carlo simulation technique in four steps: (i) Numerical approximation of
investment position; (ii) Numerical approximation of borrowing position; (iii) Numerical approximation of log-
leverage dynamics; (iv) Estimation of expected time to default. For convenience, the time interval [0,T ] is assumed
to be discretized as 0 = t1 < t2 < ... < tn = T where the time increments are equally spaced with width dt = T/n.43

Numerical approximation of investment position The investment dynamics is discretized starting from
the price processes of the risky securities S := (S 1, ..., S n)T in Rn. We take the system of equations (1) and integrate
from t to t + dt

ln
[
S i(t + dt)

S i(t)

]
=

∫ t+dt

t

(
µi −

1
2
σ2

)
du +

∫ t+dt

t
σdWui. (16)

Eq. (16) is the starting point for any discretization scheme according to which at time t the value of S i(t) is known
and we want to obtain the next value S i(t + dt). The simplest way to discretize the process in (16) is the Euler
discretization

S i(t + dt) = S i(t) + µiS i(t)dt + σS i(t)(dt1/2)ξi + O(dt3/2) , ∀i = 1, ..., n (17)

where, ξi
√

dt = Wi(t + dt)−Wi(t) and ξi ∼ N(0, 1). 44 From eq. (17) let compose a long-only portfolio A with fixed
weights xi for all t ≥ 0. Namely, A(t) = x1S 1(t) + x2S 2(t) + ..., so that

A(t + dt) = x1S 1(t + dt) + x2S 2(t + dt) + ...

A(t + dt) = x1

(
S 1(t) + µ1S 1(t)dt + σS 1(t)(dt1/2)ξ1

)
+ x2

(
S 2(t) + µ2S 2(t)dt + σS 2(t)(dt1/2)ξ2

)
+ ...

= A(t) + x1

(
µ1S 1(t)dt + σS 1(t)(dt1/2)ξ1

)
+ x2

(
µ2S 2(t)dt + σS 2(t)(dt1/2)ξ2

)
+ ...

In vector notation, A(t + dt) − A(t) = xT∆S.

Numerical approximation of borrowing position Consider the discretized value of the debt cost process
in Proposition 1

S H(t + dt) − S H(t) = µHS H(t)dt + σS H(t)(dt1/2)ξi + O(dt3/2) ,

where µH = r f + σλH . Since H = xHS H , the borrowing position in (6) is redly discretized as

H(t + dt) − H(t) = xH[S H(t + dt) − S H(t)]. (18)

42Differently from the case of Sd, - see eq. (5), the vector x is neither a function of time nor of asset price S.
43Equally-spaced time increments is primarily used for notational convenience, because it allows us to write ti− ti−1 as simply

dt. All the results derived with equally-spaced increments are easily generalized to unequal spacing.
44Since µi and σ are real constants, this discretization coincides with the more sophisticated classical Runge -Kutta methods

and can be equivalently be generated from the log-stock prices lnS i(t+dt) = lnS i(t)+
(
µi −

σ2

2

)
dt+σ(dt)1/2ξi so that S i(t+dt) =

S i(t)exp
((
µi −

σ2

2

)
dt + σ(dt)1/2ξi

)
.
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Numerical approximation of log-leverage dynamics The Euler-Maruyama method applied to the log-
leverage dynamics in (8), yields

φ(t + dt) − φ(t) = µφ(t) dt + σφ(t) (dt1/2)ξ + O(dt3/2) ,

where µφ = (µH − xT(diag(S)µ)/A + 1
2A2 (xT((diag(S)Σ)2)x) − 0.5σ2) and µφ = (σ2 + (xT((diag(S)Σ)2)x)/(A2) −

2ρσ
√

(xT((diag(S)Σ)2)x))/A.

Estimation of expected time to default By using a Monte Carlo method, we simulate a total of R sample
paths for {φ}t≥0 and estimate the expected exit time with the sample average of the time taken by {φ}t≥0 to cross
the default boundary. Let the rth realization of the path of {φ}t≥0 be denoted as {φr}t≥0 with r = 1, ...,R. For each of
these paths the random variable τ exits through the default boundary is defined as τr = inf{t ≥ 0 : φrt ≥ 1}. The
expected default time τ̄ is approximated as the total sum of exit times divided by the number of realizations

τ̄ =
1
R

R∑
r

τr(11φt=0) ≈

 σ2
φ

2µ2
φ

 exp

−2(ε + φ0)µφ
σ2
φ

 − exp

−2εµφ
σ2
φ

 − (
φ0

µφ

)
.

Comparison between the rebalanced and the not no-rebalanced 1/N heuristic The comparison be-
tween the optimal default time and the optimal degree of diversification for Sd and Ss suggests the following
differences: (i) τ̄(n∗d) ≤ τ̄(n∗s); and (ii) n∗d ≤ n∗s. The intuition behind the first result is straightforward. According
to Assumption 3.1, Sd is a “contrarian” asset allocation which implies re-adjustments of the portfolio weights by
selling (buying) the securities that are over (under) performing w.r.t. to the average.45 Ultimately, a rebalance exe-
cuted in continuous time negatively affects the overall portfolio performance as asset price noises may be wrongly
confused as informative signals. This means that a debt-financed rebalanced counter-trade, induces a higher default
risk with respect to a debt-financed fixed-trade which is not-rebalanced (see Figure 4 in Appendix D). We are not
arguing that the “contrarian” trading is a riskier strategy than a buy and hold strategy. More deeply, we say that the
goodness of the “contrarian” trade depends on the optimal timing of rebalance which investigation goes beyond the
scope of the present paper. The second result is based on the fact that, for Sd, diversification exhausts its benefit at
a lower number of securities. In fact, higher the number of securities, the greater the likelihood that some of them
under-perform or even perform negatively. Eventually, the mean time to default is reduced.

45In the case without rebalancing, the portfolio over time assigns higher weight to securities that have done well in the past.
So, this can be interpreted as a “momentum” strategy.
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Figure 1: Mean time to default as a function of portfolio size at different levels of λA.
(Parameters: σ2 = 0.5, λH = 0.5, a = −2, φ0 = −1).
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Figure 2: For an arbitrary time t∗, E[φt] is decreasing in N (thick black line). While the fluctuations around the
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Figure 3: − ρA = 0 · · · ρA=[0.1, ..., 0.9] − ρA = 1. Mean time to default as a function of portfolio size at dif-
ferent correlation levels. (Parameters: σ2 = 0.25, λH = 0.35, λA = 0.5, a = −2, φ0 = −1).
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Figure 4: Theoretical τ̄(n) of dynamic strategy (bold black line). Numerical τ̄(n) of dynamic strategy (black
stars). Numerical τ̄(n) of static strategy (gray stars). Spline (bold gray line). Volatility (dashed line).
(Parameters: ρA = 0.1, σ2 = 0.5, λH = 0.35, λA = 0.5, r f = 0.03, a = −2, φ0 = −1).
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Diversification and Financial Stability

Paolo Tasca, Stefano Battiston

Abstract

The recent credit crisis of 2007/08 has raised a debate about the so-called knife-edge properties
of financial markets. The paper contributes to the debate shedding light on the controversial rela-
tion between risk-diversification and financial stability. We model a financial network where assets
held by borrowers to meet their obligations, include claims against other borrowers and securities
exogenous to the network. The balance-sheet approach is conjugated with a stochastic setting and
by a mean-field approximation the law of motion of the system’s fragility is derived. We show that
diversification has an ambiguous effect and beyond a certain level elicits financial instability. More-
over, we find that risk-sharing restrictions create a socially preferable outcome. Our findings have
significant implications for policy recommendation.

JEL Code: G01, G11, G18, G2, G32, G33
Keywords: Systemic Risk, Financial Crisis, Diversification, Default Probability.

1 Introduction

Thus far, many theoretical models of finance pointed towards the stabilizing effects of a diversified (i.e.,
dense) financial network (e.g., Allen and Gale, 2001). Recently, some studies have started to challenge
this view, investigating conditions under which diversification may have ambiguous effects; e.g., Battis-
ton et al. (2009); Brock et al. (2009); Ibragimov et al. (2011); Ibragimov and Walden (2007); Stiglitz
(2010); Wagner (2009). In particular, the recent financial crisis is attracting increasing attention on the
knife-edge properties of the financial system and its optimal architecture (see e.g., Gai and Kapadia,
2007; Haldane and May, 2011; Nier et al., 2007). According to Haldane (2009), financial interconnec-
tions serve as shock-absorber (i.e., connectivity engenders robustness and risk-sharing prevails) up to a
certain tipping point, beyond which they act as shock-amplifier (i.e., connectivity engenders fragility and
risk-spreading prevails).

The paper translates the concept of knife-edge dynamics into an analytic form and investigates its impact
on the stability of the financial system.

In a similar spirit as Shin (2008, 2009), we model a financial network composed of leveraged risk-averse
financial institutions (hereafter “banks”), which invest in two classes of assets. The first class consists of
obligations issued by other banks in the network. 1 The second class represents risky assets external to the

1Although in our simplified economy, the securities in this class are priced depending on the financial health of the obligors,
in reality, the debt-claim structure of the financial system is much more intricate. To better understand this view, we need to
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financial network, which may include securities on, e.g., real-estate, loans to firms and households and
other real-economy related activities, (hereafter “external assets”). The external assets may be in a down-
trend with probability p, or in an uptrend with probability 1− p. In this uncertain world, it is assumed that
banks have an incentive to diversify across external assets.2 Precisely, banks adopt the “naive” heuristic
which involves holding an equally weighted portfolio of external assets. Two important assumptions of
the model are as follows: first, the up (down) trend is persistent i.e., approximately constant during a
given period ∆t; second, due to information-gathering and transaction costs, the diversification strategy
is assumed to be static for a given period ∆t.3 These two assumptions imply that, based on the expecta-
tion about the future trend of external assets, each bank sets up a diversified portfolio which will be held
for a finite arbitrary interval ∆t.

As first result, the paper shows that banks’ default probability increases with diversification in case of
a downtrend and decreases in case of an uptrend.4 In accordance, under the utility function framework,
there exists a gap (which increases with diversification) between the banking system’s expected utility
in uptrend and the expected utility in downtrend. Thus, diversification generates and amplifies the knife-
edge property of the financial network. Moreover, for a given level of diversification, the spread between
utility levels increases with the magnitude of the trend.

A second result shows that by assigning a probability p to the downtrend event and 1 − p to the uptrend,
diversification displays a tradeoff with regard the banking system’s utility. The expected utility exhibits
a maximum which corresponds to an intermediate optimal level of diversification. Such a level depends
on the probability p of downtrend, on the magnitude of the expected profit (loss) and on the values of the
other parameters of the model.

In addition, we find that individual banks’ incentives favor a financial network that is over-diversified in
external assets with respect to the level of diversification which is socially desirable. This result is rooted
on the asymmetry of expected losses between individual banks and regulator. Whereas individual banks’
losses are bounded above,5 at system level externalities associated with the failure of interconnected

achieve a clear understanding of the building blocks of financial system, mostly in the presence of amplification mechanism
stemming from leverage and other factors, (see Trichet, 2009). The banks’ asset values depend on the payoffs received from the
claims on other banks in which they have invested. But the value of these issuing banks depends, in turn, on the financial health
of yet other banks in the system. Moreover, linkages between banks can be cyclical. See Eisenberg and Noe (2001).

2Generally, this practice is desirable since it allows banks to promise investors a lower repayment or increase the amount of
debts. See Allen et al. (2010).

3In the real-world, portfolio adjustments are costly. In particular, the revision costs sometimes could be greater than the
increase of the expected rate of return of the revised portfolio. So, portfolio revision is not always convenient.

4There is a simple intuition for this effect in terms of the Sharpe ratio which allows to compare different investment returns
per unit of risk. When assets have positive expected cash-flows the Sharpe ratio is positive as well. Then it is desirable to
combine them in a well diversified portfolio since diversification lowers portfolio’s volatility and in doing so, increases its
Sharpe ratio. In contrast, when assets have negative expected cash-flows, the Sharpe ratio is negative. Then, a well diversified
portfolio is no longer desirable.

5In presence of limited liability.
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institutions, amplify the expected losses.6 These externalities reflect the “incremental costs” due to a
system collapse which are ultimately borne by taxpayers. In other words, the cost of recovery from a
systemic crisis, grows with the number of defaults. Under these conditions, the optimal diversification
level for the regulator view point is always smaller than the one desirable by individual banks. These
results brings about implications for risk management policies to mitigate systemic risk.

The paper is organized as follows. In Section 2 we introduce the model. Section 3 derives the financial
fragility under the mean-field approach. Section 4 computes the systemic default probability. Section
5 studies the optimal diversification policy. In Section 6 we investigate the dichotomy between private
incentives of diversification and its social effects. Section 7 concludes and considers some extensions.

2 Model

To keep notations simple as much as possible, whenever it is unambiguous from the context that a vari-
able or parameter are time-dependent, we will omit the time index t.

In a similar spirit as Shin (2008, 2009), we model a system of N financial risk-averse leveraged insti-
tutions (“banks”). The balance-sheet identity conceives the equilibrium between asset an liability side,
which for the representative bank i ∈ {1, ...,N}, is

ai = p̄i + ei , (1)

where a := (a1, ..., aN)T is the column vector of market values of the banks’ assets; p̄ := ( p̄1, ..., p̄N)T

is the column vector of the book-face values of the banks’ obligations (e.g., zero-coupon bonds); 7 e :=
(e1, ..., eN)T is the column vector of equity values.

Notably, the market is composed of two investment classes: (i) N obligations issued by the banks in
the system, and (ii) M exogenous investment opportunities non related to the financial sector (external
assets). Each bank i selects a portfolio composed of: (i) n ≤ N−1 securities selected from N−1 securities
issued by the other banks, and (ii) m ≤ M assets selected from M external assets.

Then, the asset-side in (1) becomes

ai :=
m∑
j

Zi jy j +

n∑
j

Wi j p j , (2)

where

p j := p̄ j/(1 + r j)−t (3)

6Either due to direct or indirect exposures.
7In particular, p̄i is the value of the payment at maturity that each obligor-i promised to the lenders. For all the banks in the

system, the equation indirectly assumes only one issue of bonds with the same maturity date t.
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is the market value of debt issued by bank- j, defined as the discounted value of future payoffs; y :=
(y1, ..., ym)T is the column vector of external investments; Z := [zi j]n×m is the n × m weighting matrix of
external investments where each entry zi, j is the proportion of activity- j held by bank-i; W := [wi j]n×n is
the n × n adjacency matrix where each entry wi j is the proportion of bank- j debt held by bank-i; r j : is
the rate of return used to discount the debt-face value of the obligor- j. In brief, the bank-i manages the
following balance-sheet

Assets Liabilities∑m
j Zi jy j p̄i∑n
j Wi j p j ei

External assets include e.g., activities related to the real-economy, loans to firms and households, etc.,
and each of them it is assumed to generates a log-normal cash flows process

dlog(Y j)(t) := dy j(t) = µ jdt + σ jdB j(t) ∀ j = 1, ...,m , (4)

where B j(t) is a standard Brownian motion defined on a complete filtered probability space
(Ω;F ; {Ft};P), with Ft = σy{B(s) : s ≤ t}, µ j is the instantaneous risk-adjusted expected growth rate,
σ j > 0 is the volatility of the growth rate. We assume correlation across processes E(dBi, dB j) = ρi jdt.
The processes in (4) have the relevant property that they preclude instantaneous external assets’ distribu-
tions from becoming negative at any time t ≥ 0 and are therefore an economically reasonable assumption.

The results in the next sections hold under the following main assumption of the model.

Assumption 2.1. (i) There exists a frictionless market where all debt-securities have the same maturity
date and seniority; (ii) Divisibility and No short-selling constraint. All the securities are marketable,
perfectly divisible and can be held only in positive quantities; (iii) Price Taking Assumption. Securities
prices are beyond the influence of investors; (iv) Only expected returns and variances matter. Quadratic
utility or normally distributed returns; (v) Not-paying dividend-coupon assumption. The return on any
security is simply the change in its market price during the holding period; (vi) Homogeneous expecta-
tions

2.1 Leverage and Balance-Sheet Management

The objective function of a risk-averse bank is to adopt an investment strategy that, regardless the shape
of its utility function with respect to risk and return, it will minimize the risk for a given expected return,
or conversely, maximize the expect return for a given level of risk. Following the same line of reasoning
adopted in Evans and Archer (1968), we assume the bank i includes some form of marginal analysis in
its portfolio selection model.
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Definition 2.1. Management Strategy The bank i is interested in the marginal reduction in portfolio
variation resulting from successive increases in the number of securities held in the asset side of its
balance sheet –that is, the marginal benefits derived from increased diversification.

Since the aforementioned strategy is (partially) debt-financed, bank i may face the problem to determine
the “optimal” capital structure that minimizes the default risk. To this end, corporate leverage has to be
managed and constrained. A standard accounting approach to define leverage is the debt-asset ratio. For
the bank-i,

φi := p̄i/ai

:= p̄i/

 m∑
j

Zi jy j +

n∑
j

Wi j p j

 . (5)

Since debts cannot exceeds the asset side, φ is bounded between the lower safe barrier ε → 0+ and
the upper default barrier 1. Let a := ε and b := 1. Then, if we consider the process {φ}t≥0 driving the
dynamics of φ, Ωφ = {φ ∈ R+ | a ≤ φ ≤ b, } represents the set of values taken by {φ}t≥0, at any time t ≥ 0.

The balance-sheet equilibrium between sources of finance and investments cash-flows is a precondition8

to solvency. In fact, the solvency of a bank is indicated by the positive net worth as measured by dif-
ference between assets and liabilities (excluding capital and reserves). Then, the problem of a failing
bank normally emerges through illiquidity. In this perspective, the debt-asset ratio is a leverage indicator
resuming the potential insolvency of a bank due to a fragile capital structure.

Definition 2.2. Bank Fragility. The debt-asset ratio φ is a leverage index that maps the bank’s fragility
between zero and one.

A leverage φ which tends to one is symptomatic of a very fragile bank that is prone to be highly sensitive
to external shocks which may force the bank towards a bankruptcy regime. On the other hand, a leverage
φ close to zero describes a bank with a solid balance-sheet equilibrium between internal and external
sources of finance.

In line with a large body of theoretical and empirical literature, the rate of return on future payments
depends upon the payor’s credit-worthiness (e.g. measured by its leverage), the contractual features (e.g.,
time to maturity) and the market factors. In our simplified economy, the only two factors explaining the
internal rate of return, are the risk-free rate r f and the indicator of fragility φ. Thus, for each obligor- j
the following equation holds true

r j := r f + βφ j . (6)

8Necessary but not sufficient.
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The risk-free rate9 is fixed over time and is in the common knowledge of every institution. The parameter
β in R ∈ (0, 1) can be interpreted as the responsiveness of the rate of return to a firm’s financial condition.

An extensive form of the balance-sheet management of the bank can be now derived substituting (6) into
(3)10 and then (3)11 into (5)

φi = p̄i/

 m∑
j

Zi jy j +

n∑
j

Wi j p̄ j/
(
1 + r f + (βφ j

) . (7)

Eq. (7) shows a non-linear dependence of the fragility φi related to the bank-i, with the fragilities φ j=1,...,n

of the j-banks, obligors of i. The following feature of our model is then immediate.

Lemma 2.3. At a macro level, it can be shown that the fragility of the banking system is the positive root
of a system of quadratic expressions in φ := (φ1, ..., φn)T.

Proof. See Appendix A. �

Differently from Shin (2008) - Eq. (5), Lemma 2.3 suggests that, under the economically reasonable as-
sumption that banks’ leverage impacts on the mark-to-marked values of their debts, the system’s balance
sheet is described by a quadratic expression in φ.

Since (7) is too complex to analyze directly under arbitrary network structures, in the next section we
follow the usual technique of analyzing a mean-field approximation to the given expression (see e.g.,
Vega-Redondo, 2007).

3 Analysis

An approximate description of the equilibrium properties of the system is obtained by using a mean-field
analysis of (7) under the following conditions.12 According to the managerial practice defined in 2.1, we
impose that each bank i composes an equally weighted portfolio of randomly selected:

9The risk-free rate is paid by an asset without any default, timing or exchange rate risk; as such, it is a non-observable
theoretical construct. It is usually measured by the rates of return on government securities, which have the lowest risk, in any
particular currency.

10This substitution makes evident that pi is an inverse function of φi. Higher leverage implies a lower market price of the
claims and a greater internal rate of return.

11Since, pi in its interval of existence, is a monotonic decreasing function in t, without loss of generality, we consider the
time interval in (3) to be t = 1.

12 The mean-field approach is a useful simplification that allows to characterize analytically the behavior of the system
under certain assumptions. The main idea is to replace the state variable of each individual with the average state variable
across the system. In this approximation, the individual interacts with the “average individual”. Clearly, under this condition,
some network aspects become unobservable. On the other hand, it has been argued that the financial sector exhibits increasing
levels of homogeneity. Many risk management models (e.g., VaR) and investment strategies tend to look and act alike with the
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(i) 1/n claims against the other banks. Namely, wi1 ≈ wi2... ≈ win ≈ 1/n, ∀ j = 1, ..., n, such that, the
aggregate value of the claims is replaced by the average market value

∑n
j Wi j p j ≈

1
n
∑n

j p j := p.

(ii) 1/m external asset. Namely, zi1 ≈ zi2... ≈ zim ≈ 1/m, ∀ j = 1, ...,m, such that, the value of investment
in external assets is substituted by the average value of external assets in portfolio

∑m
j Zi jy j ≈

1
m

∑m
j y j :=

y.

Since the total population size of claims and external assets is N − 1 + M, for portfolios composed of
n < (N − 1) and m < M securities, we have a total of N−1Cn +M Cm possible portfolios with the same
size n + m. We assume that all the portfolios with the same size, even though comprise different type of
securities, have similar distribution properties. Lastly, the book value of promised payments at maturity
is assumed to be equal for every bank. Namely, p̄i = p̄ for all i = 1, ..., n.

Under the mean-field approximation, banks have portfolios of largely overlapping external assets. Banks
engage in similar activities (e.g., mortgages concentrated in specific areas, loans to specific sectors of the
economy) and doing so, are, indirectly, linked as they are exposed to the same risk drivers. Therefore,
large losses due to exogenous factors hitting a single bank, lead to a chain reaction in the financial
network such that when a single bank is close to default, it is likely that several other banks are also
close to default. Since at the same time, the financial network of claims and obligations is homogeneous
and dense enough 13, the fragility of the individual bank i, i.e., φi, is very likely to coincide with the
average market fragility denoted as φ. Namely, φi ≈

1
n
∑n

j φ j := φ for all i = 1, ..., n. Then, (7) becomes
φ = p̄/(y +

p̄
1+r f +βφ

). Solving for φ, we get

φ
(
y + r f y + βφy + p̄

)
= p̄(1 + r f + βφ)

...

φ2βy + φ (yR + p̄(1 − β)) − p̄R = 0 .

Then, the fragility is the positive root of a quadratic expression in φ14

φ =
1

2βy

[
p̄(β − 1) − Ry +

(
4β p̄Ry + ( p̄(1 − β) + Ry)2

)1/2
]
, R = 1 + r f . (8)

Eq. (8), remarks a dependence of φ from the aggregated value of external assets/projects y.

Proposition 1. Let Ωy be the sample space of y and let f − : Ωφ → Ωy be a measurable function defined
by the inverse of (8) that associates each element φ in Ωφ with an element y in Ωy, s.t., y ∈ f −(φ). Then,
the probability space (Ωφ,A,P) can be mapped into the probability space (Ωy,A,P), s.t. Ωy = {y ∈ R+ |

a′ ≤ y ≤ b′} where a′ = p̄(r f + β)/(R + β) and b′ = p̄(βε − ε + 1)/(βε2 + ε).

consequence that the balance sheets’ structure of the banks are homogenized. “[...]The level playing field resulted in everyone
playing the same game at the same time, often with the same ball” (Haldane (2009).

13According to the empirical evidence (see e.g., Elsinger et al., 2006; Iori et al., 2006), bank networks feature a core-periphery
structure with a dense core of large banks and a periphery of small banks. Our hypothesis about the density of Wn×n is thus
realistic for the banks in the core.

14 The fragility φ takes values in the set Ωφ = [a, b] only under a precise constraint. In particular φ is always greater or equal
to a. While, φ is lower or equal to b under the condition that p ∈

(
0, y(β + R)/(β + r f )

)
.
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Proof. See Appendix A. �

Proposition 1, exactly maps together the value of the external assets with the extrema (maximum and
minimum) of banking system fragility. The maximum level of financial system robustness – up to its
maximum resilience –, occurs when φ = a or equivalently when y = b′. On the contrary, the collapse
of the banking system occurs when φ = b or when y = a′. Moreover, it can be shown (through Ito’s
Lemma), that the process {φ}t≥0 driving the dynamics of (8) is fully characterized by the underlying
process {y}t≥0 which describes the average portfolio of external assets with size m.

Proposition 2. Given a system of SDEs in (4) and under the mean-field approximation, the average
m-tuple of external assets follows the dynamics dy = µydt + σydB where B is a Brownian motion.

Proof. See Appendix A. �

From the definition of φ in (5), a downtrend of {y}t≥0 implies an increase of φ. While, an uptrend of {y}t≥0

causes φ to decrease.15 In the next sections we will refer to the downtrend, when those assets generate
a negative cash-flow (on average). Namely, when µy < 0. While, we will refer to the uptrend when they
engender a positive cash-flow (on average). Namely, when µy > 0. We summarizes this feature of our
model as follow.

Assumption 3.1 The aggregate value of external assets can be in uptrend or in downtrend such to en-
genders positive or negative cash-inflows for the holder. Both trends are assumed to be persistent i.e.,
approximately constant during a given period ∆t.

For the remainder of the analysis, all statements refer to mean-field approximations.

4 Systemic Default Probability

4.1 From Individual to Systemic Default

Before to give a formal definition of default probability expressed in terms of leverage, consider that,
under the mean-field analysis, the leverage of every bank is assumed to “converge” in distribution to φ
(i.e., the average leverage over all banks). Therefore, the following assumption enables one to assign a
systemic meaning to the results of the next sections.

Assumption 4.1 Let P(φi ∈ C) and P(φ ∈ C) represent the default probability of a single bank and the

system, respectively. Since, under the mean-field approximation, φi
d
' φ, for the simplified version of the

Continuous Mapping Theorem, P(φi ∈ C) ' P(φ ∈ C) for all continuity sets C ⊆ Ωφ and all i = 1, ...n.

15Thus, the soundness of one bank and the benefit of its diversification in external assets, is conditioned to the up and down
trends of the non-financial activities into which the bank invests. Namely, a positive E(y j)t defines an uptrend. While, a negative
E(y j)t maps a downtrend.
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For the remainder, unless specified differently, the analysis will refer to the systemic default probability,
rather than to the failure probability of a single bank.

4.2 Diversification and Systemic Default Probability

Under the mean-field conditions which lead to Assumption 4.1, the leverage in (8), takes the meaning
of systemic fragility. When a large part of banks manages highly leveraged balance-sheets, the system
equilibrium is more sensitive to external shocks, such that even a small one may trigger the system
towards a distress regime. 16 The systemic default probability (i.e., probability of a financial collapse) is
stated in terms of first exit time T which is defined as follows.

Definition 4.1. Under the results in Proposition 1, the first exit time T , is defined as the first time the
process {φ}t≥0 touches one of the extrema of Ωφ. Equally T is defined as the first time the process {y}t≥0

touches one of the extrema of Ωy. Namely,

T := inf {t ≥ 0 | 11φt=b + 11φt=a ≥ 1} ≡ inf {t ≥ 0 | 11yt=b′ + 11yt=a′ ≥ 1} . (9)

Applying Gardiner (1985), the systemic default probability can be derived either from the dynamics of
the process {φ}t≥0, or equally from the underlying process {y}t≥0.

Proposition 3. Systemic Default Probability From Definition 4.1, let A := {φT = a} ≡ {yT = b′} be the
event exists through the safe barrier and let B := {φT = b} ≡ {yT = a′} be the event exists through the
default barrier. Then, the systemic default probability is the probability of the event B

P(B) := P(φT = b) =
(∫ φ0

a dφ′ψ(φ′)
)
/
(∫ b

a dφ′ψ(φ′)
)
, (10a)

:= P(yT = a′) =

(∫ b′

y0
dxψ(x)

)
/
(∫ b′

a′ dxψ(x)
)
, (10b)

where ψ(φ′) = exp
(∫ φ′

0 −
2µφ
σ2
φ

dφ
)

and ψ(x) = exp
(∫ x

0 −
2µy

σ2
y

dy
)
. While µφ = yµy

∂ f (y)
∂y + 1

2 y2σ2
y
∂2 f (y)
∂y2 and

σφ = yσy
∂ f (y)
∂y .

Proof. See Appendix A. �

In words, P(B) is the probability that the process {φ}t≥0 initially starting at an arbitrary level φ(0) := φ0 ∈

(a, b) exits through the default barrier b at any time t ≥ 0. Equivalently, P(B) is the probability that the
process {y}t≥0 initially starting at an arbitrary level y(0) := y0 ∈ (a′, b′) exits through the default barrier a′

at any time t ≥ 0. Unless otherwise stated, in the remainder when referring to P(B), we use the expression

16Moreover, a status of system fragility is usually accompanied by costs (e.g., higher passive interest rates) which exacerbate
the situation of the investors and may even lead to the collapse of the system.
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(10b). In particular, we will observe how P(B) is influenced by: (i) the number m of external assets or
projects into which the banking system invests its wealth; (ii) the condition of the non-financial sectors,
measured by the instantaneous aggregated expected growth rate µy. An asymptotic analysis of (10b),
reveals that for an infinite population of external assets (i.e., M tends to infinity), increasing levels of
diversification, P(B) exhibits a bifurcated behavior which depends on the condition of the non-financial
sector underlying the external assets. Precisely, P(B) decreases with diversification in periods of uptrend.
While, it increases with diversification in periods of downtrend. Then, the asymptotic behavior of P(B),
yields the following proposition.

Proposition 4. With respect to (10b), the management strategy defined in 2.1 is desirable in uptrend and
is undesirable in downtrend. The degree of (un)desirability increases with the level of diversification.

Proof. See Appendix A. �

In words, Proposition 4 says that the benefit of diversification in external assets is influenced by the
returns generated by these activities. In periods of uptrend, banking diversification is desirable since the
probability of default will asymptotically be reduced to zero as m → ∞. While, in period of downtrend,
banking diversification is undesirable since the probability of default will asymptotically goes to one as
m → ∞. (See Figure 1 in Appendix). The intuition behind this polarization of probability to “survive”
and probability to “fail” is beguilingly simple, but its implications profound. To paraphrase Haldane
(2009), in uptrend periods, the system acts as a mutual insurance device with disturbances dispersed
and dissipated. Connectivity engenders robustness. In this case, diversification would serves as a shock-
absorber. But in downtrend, the system flips the wrong side of the knife-edge. Diversification serve as
shock-amplifier, not dampener, as losses cascade.

5 Optimal Diversification Policy

Based on the management strategy in Definition 2.1, banks may choose from a finite set of diversification
strategies m, with m = 1, 2, ...,M. It represents a set of mutually exclusive alternatives s.t. only one of
them may be chosen in any period ∆t. The “rebalanced” asset allocation would be the following one.

Definition 5.1. Asset Allocation. Select the number m of external investments (assets and/or projects) in
which to invest an equal dollar amount. Then, hold the selected assets for an arbitrary period ∆t.

By Proposition 1, the payoff from investment is external assets, is bounded.

Definition 5.2. Max Profit/Loss. The profit (from exogenous investments) of the financial system is
bounded between an upper bound at y = b′ and a lower bound at y = a′. Then, given the initial aggregate
value of the external assets yt=0 := y0, the gain from investment in external assets is π+ := b′ − y0; while,
the loss is π− := y0 − a′.
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The payoffs resulting from the choice of a diversification strategy m are represented by a random vari-
able Πm that takes values π in the set Ωπ = [π−, ..., π+]. More specifically, given m alternatives 1, 2, ...
and their corresponding random return Π1,Π2, ..., with distribution function F1(π), F2(π), ..., respectively,
preferences satisfying the von Neumann-Morgenstern axioms imply the existence of a measurable, con-
tinuous utility function U(π) such that Π1 is preferred to Π2 if and only if EU(Π1) > EU(Π2). We
assume banks are mean-variance (MV) decision makers, such that the utility function EU(Πm) may be
written as a smooth function V

(
E(Πm), σ2(Πm)

)
17 of the mean E(Πm) and the variance σ2(Πm) of Πm

or V
(
E(Πm), σ2(Πm)

)
:= EU(Πm) = E(Πm) − (λσ2(Πm))/2 so that Π1 is preferred to Π2 if and only if

V
(
E(Π1), σ2(Π1)

)
> V

(
E(Π2), σ2(Π2)

)
. 18 Then, the maximization problem is

max
m
EU(Πm) = E(Πm) −

λσ2(Πm)
2

(11)

s.t.: m ≥ 1 .

To simplify notations, let P(µy < 0) := p and P(µy ≥ 0) := 1 − p. Moreover, let P(B | µy < 0) := q
be the conditional default probability given a downtrend and P(B | µy ≥ 0) := g the conditional default
probability given an uptrend. Then, the expected profit E(Πm) of the financial system is

E(Πm) = p
[
qπ− + (1 − q)π+] + (1 − p)

[
gπ− + (1 − g)π+] . (12)

In Table 1 in Appendix, the expected profit from banking diversification is considered in three different
states of nature. (See Table 1 in Appendix). The variance σ2(Πm) of the profit is

σ2(Πm) = p
[
q
(
π− − E(Πm)

)2
+ (1 − q)

(
π+ − E(Πm)

)2]
+ (1 − p)

[
g
(
π− − E(Πm)

)2
+ (1 − g)

(
π+ − E(Πm)

)2]
.

(13)

5.1 Comparative Statics

Here below we conduct an analytical study of EU(Πm) for the parameters’ range in Appendix (Table 2).

Analysis (i). In this analysis (11) is simplified since two mutually exclusive events are considered. First,
the event downtrend which occurs with probability p = 1. Second, the uptrend event which occurs with
probability 1 − p = 1. In the downtrend case, EU(Πm) is maximized for decreasing range of diversifica-
tion. While, in the uptrend case, EU(Πm) is maximized for increasing levels of diversification. Then, the
following holds true.

17To say that V is smooth it is simply meant that V is a twice differentiable function of the parameters E(Πm) and σ2(Πm).
18Only the first two moments matter for the decision maker, so the expected utility can be written as a function in

terms of the expected return (increasing) and the variance (decreasing) only, with ∂V
(
E(Πm), σ2(Πm)

)
/∂E(Πm) > 0 and

∂V
(
E(Πm), σ2(Πm)

)
/∂ σ2(Πm) < 0.
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Corollary 1. Let mmax (mmin) be the max (min) attainable diversification strategy. Assume banks: (i)
invest in external assets with dynamics defined in Proposition 2; (ii) use an allocation strategy as defined
in 5.1; (iii) adopt a quadratic utility function of the form in (11). Then, in downtrend, mmin � mmax.
Conversely, in uptrend, mmax � mmin.

Proof. See Appendix A. �

The Corollary 1 follows immediately from Proposition 4. When external assets pay (with probability
one) a negative or positive cash-flow, banks’ utility function in (11), respectively decreases or increases
with increasing diversification. See results in Table 1, (Case 1 and Case 3) and see Figure 1 in Appendix.

Analysis (ii). In this analysis (11) is maximized w.r.t. m in the case the downtrend and the uptrend are
two likely events that might occur with some probability. Then, the following proposition holds.

Corollary 2. Under the results in Corollary 1, let the event downtrend (uptrend) occur with probability
p, (1−p) where p ∈ ΩP := [0, 1]. Then, there exists a subset ΩP∗ ⊂ ΩP s.t., to each p∗ ∈ ΩP∗ , corresponds
an optimal strategy m∗ ∈ (mmin,mmax) that maximizes the MV utility function in (11).

Proof. See Appendix A. �

In words, when the event downtrend occurs with probability p < 1, there exist a specific optimal level
of diversification m∗ which is a function of p. (See Figure 2 in appendix). Corollary 2 suggests that only
m∗ is the optimal diversification strategy that has to be chosen in order to maximize the expected MV
utility. Values of m ≷ m∗ are second-best choices. In particular, for m approaching m∗ from below, the
system increases its robustness, while for m bigger then m∗, the system is beyond its tipping point and
becomes more fragile. Then the utility function may exhibit a non-monotonic behavior with respect to
m. (See Figure 2 in Appendix).

6 Private Incentives vs Social Welfare

Here we discuss the different implications of diversification at system level from the standpoint of the
regulator. Let’s consider the case of a policy maker that has to include some negative externalities which
might be engendered by losses occurred in downtrend periods. Indeed, in an deeply downward trend, the
wealth generated by the financial system is below the average-trend and might even be negative due to
generalized losses and failures. Because of deadweight costs of systemic failure that exceed the costs of
individual failures, the regulator is plausibly considering social costs19 that might emerge due to losses

19Social costs include costs of financial distress and economic distress.
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suffered by the financial system. 20 Then, if K is the number of simultaneously crashing banks, treating
the policy maker as an expected utility maximizer, it is reasonable to assume the followings.

Assumption 6.1 The total loss to be accounted by the regulator in downtrend periods, is a monotonically
increasing function f (·) of (i) the expected number k of bank crashes given a collapse of at least one bank
E(K|K ≥ 1) = k, (ii) the magnitude of the loss π−. Let the function f (·) be defined by f (k, π−) := kπ−.

Under this new perspective, the optimal diversification strategy (mR) from the policy maker point of view
does not coincide with the diversification desirable from the financial system point of view (m∗). More
precisely,

Corollary 3. Individual banks’ incentives favor a financial network that is over-diversified in external
assets w.r.t. to the level of diversification that is socially desirable

m∗ ≥ mR . (14)

Proof. See Appendix A. �

In the presence of limited liability, the expected losses of private firms are bounded. In contrast, at the
system level, either due to direct or indirect exposures, the externalities associated with the failure of
interconnected institutions amplify the expected losses. Those spillovers reflect the incremental costs
due to a system collapse which are ultimately borne by taxpayers. Under this condition, Corollary 3
says that the optimal level of diversification for the regulator is always smaller than the one desirable at
individual level.

7 Concluding Remarks

In this paper, we have combined the balance-sheet approach (Shin, 2008) with a stochastic setting a’ la
Merton (1974). We consider a financial network of risk-averse banks, whose wealth is partially invested
in assets external to the financial network, such as mortgages, loans to firms and other activities/projects
related to the real-side of the economy. Starting from the law of motion of the value of assets and lia-
bilities, we developed a parsimonious, yet micro-founded, stochastic framework in which the fragility
of a bank depends on the fragility of the other banks and on the value of its external assets. Under a
mean-field approximation, the systemic failure probability can be derived analytically.

In this setting, we shed light on the conflict between, on one hand, the individual incentive to reduce,
through diversification, the idiosyncratic risks of the external assets and, on the other hand, the emergence
of systemic risk. In contrast with some optimistic views about diversification, but in line with other recent
works (see e.g., Battiston et al., 2009; Ibragimov et al., 2011; Stiglitz, 2010; Wagner, 2009), we find that

20The definition of social losses is rather flexible since it depends on the characteristics of the financial system under analysis.
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diversification fuels the double-edged property of the financial system. Indeed, diversification increases
the default probability of the banking system in case external assets pay a negative cash-flow (downtrend)
and decreases the default probability in case of positive cash-flows (uptrend).

Two main effects emerge in our model. The first is that the gap between maximal and minimal MV utility
is exacerbated with higher degrees of diversification. Moreover, for a given fixed degree, the spread
increases the larger is the absolute value of the growth rate (i.e., higher the divergence of returns between
the up-down trend. This implies that, for a given probability of occurrence of the down(up) trend, there
exists an optimal level of risk diversification which maximize the banking MV utility function.

By including in the analysis social costs due to generalized losses or defaults in the case of a downtrend,
we obtain the next final result. Banks’ incentives favor a financial network that is over-diversified in
external assets w.r.t. to the level of diversification that is socially desirable. Thus, to preserve a stable
financial system, diversification should be encouraged in periods of economic boom and constrained in
periods of recession. Nevertheless, as diversification of the financial system towards external activities is
assumed to be a rigid strategy, the policy should be to adjust the system within a certain diversification
range. In line with Ibragimov et al. (2011), our model suggests that policy restrictions to risk-sharing in
uptrend periods would limit excessive risk-spreading in downtrend periods. Hence, an important point of
our analysis is in recognizing that the objective of the regulator is not to target a specific level of default
risk, but rather to manage the tradeoff between the social losses from defaults and the social costs of
avoiding defaults.
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A Proofs

PROOF OF LEMMA 2.3. The leverage at banking system level can be described starting from (7) which can be
rewritten as

p̄i = φi

 m∑
j

Zi jy j +

n∑
j

Wi j p̄ j/
(
1 + r f + βφ j

)
which at system dimension, becomes

p̄ = Iφ ×
[
Zy + (R + βIφ)−1Wp̄

]
= Φ ×

[
Zy + (R + βΦ)−1Wp̄

]
= ΦZy +Φ(R + βΦ)−1Wp̄.

Let define the column vector δ := Wp̄. Then,

p̄ = ΦZy +Φ(R + βΦ)−1δ

p̄δT = ΦZyδT +Φ(R + βΦ)−1δδT

p̄δT(δδT)−1 = ΦZyδT(δδT)−1 +Φ(R + βΦ)−1

p̄δT(δδT)−1(R + βΦ) = ΦZyδT(δδT)−1(R + βΦ) +Φ.

Let ∆ := (δδT)−1 and let K := ZyδT∆. Then,

p̄δT∆R + p̄δT∆βΦ = ΦKR +ΦKβΦ +Φ

0 = ΦK
[
R + βΦ

]
− p̄δT∆βΦ +Φ − p̄δT∆R

= ΦK
[
βΦ + R

]
+Φ

[
I − p̄δT∆β

]
− p̄δT∆R,

which is a quadratic expression in Φ. �

PROOF OF PROPOSITION 1. First let write (8) in compact form as φ = f (y). Observe that, by definition, the
value of external assets cannot be negative, y ∈ R+. Since the derivative f ′(y)

f ′(y) =
−p

(
(β − 1)2 p + (1 + β)Ry + (−1 + β)

√
(−1 + β)2 p2 + 2(1 + β)pRy + R2y2

)
2βy2

√
4βpRy(p − βp + Ry)2

< 0

is negative for all y and for any value of β, r f , p in their range of variation (see Table 2 in Appendix), the Inverse
Function Theorem implies that f is invertible on R+

f −1(φ) =
p(φ + βφ + R)
φ(βφ + R)

, s.t. ( f −1)′(φ) =
1

f ′(y)
.

Moreover, one can show that the inverse f −1 is continuous. Given the above result, we obtain the following mapping
between the values of φ and y at the infimum and supremum of Ωφ:{

f (y) = b iff f −1(φ) = p̄(r f + β)/(R + β) := a′

f (y) = a iff f −1(φ) = p̄(βε − ε + 1)/(βε2 + ε) := b′ .

�
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PROOF OF PROPOSITION 2. The portfolio composed by the linear combination of m processes described in
(4), each of them weighted by 1/m, is

dy(t) =
1
m

m∑
j=1

µ jdt +
1
m

m∑
i= j

σ jdB j(t) = µydt + ... (15)

To derive the diffusion term, it is convenient to think about a sum of m Gaussian correlated error terms weighted
by 1

m . Namely, 1
m

∑m
j=1 σ jdB j which is equivalent to write 1

m
∑m

j=1 σ j
√

dtξ j with ξ j ∼ N(0, 1). Taking the variance
yields

σ2
y =

dt
(m)2

m∑
j=1

Var(ξ j) +
dt

(m)2

√
Var(ξ j)Var(ξl)

m∑
j=1

m∑
j,l

ρ jl

=
dt
m
σ̄2
ξ +

dt
(m)2

m∑
j=1

m∑
l,i

√
σ2
ξ jσ

2
ξlρ jl

(16)

where σ̄2
ξ is the average variance among the m’s σ2

ξ j=1,...m
. We assume σ2

ξ j
is constant, say σ2 for all j = 1, ...,m

and all t ≥ 0. Then multiplying and dividing the second term of (16) by m − 1 and taking its square root, we get

σy :=
√

σ2

m + m−1
m ρ̄σ2 where ρ̄ =

∑m
j=1

∑m
l, j

ρ jl

m(m−1) . Hence (15) becomes

dy(t) = µydt + σydB(t) , dB ∼ N(0, dt) . (17)

Tanking all possible MCm combinations of portfolios into consideration is the same as considering the average value
of a portfolio with size m. This is equivalent to adjust the investment position dy(t) in (17) with the following substi-
tutions: µy →

1
M

∑M
j=1 µ j, which is the expected return of all external assets in the population; ρ̄→

∑M
i=1

∑M
j,i

ρi j

M(M−1)
which is the expected pairwise correlation of all stocks in the population.

�

PROOF OF PROPOSITION 3. The default probability of the financial system can be expressed in two equal
measures: (i) the probability that the process {φ}t≥0, derived by Ito’s lemma from (17), initially starting at an
arbitrary level φ(0) := φ0 ∈ (a, b), exits through the default barrier b := 1 after time t ≥ 0; (ii) the probability that
the process {y}t≥0 in (17), initially starting at an arbitrary level y(0) := y0 ∈ (a′, b′), exits through the default barrier
a′ := p̄(r f + β)/(R + β) after time t ≥ 0. From Gardiner (1985), given the definition of first exit time T in (9), the
probability of the event B = {φT = b} = {yT = a′} has two equivalent explicit forms

P(B) =

(∫ φ0

a
dφ′ψ(φ′)

)
/

(∫ b

a
dφ′ψ(φ′)

)
where ψ(φ′) = exp

∫ φ′

0
−

2µφ
σ2
φ

dφ

 ,
≡

(∫ b′

y0

dyψ(x)
)
/

(∫ b′

a′
dxψ(x)

)
where ψ(x) = exp

∫ x

0
−

2µy

σ2
y

dy
 .

Where φ0 ∈ (a, b) with a = ε→ 0+ and b = 1. While, µφ = yµy
∂ f (y)
∂y + 1

2 y2σ2
y
∂2 f (y)
∂y2 and σφ = yσy

∂ f (y)
∂y are derived by

Ito’s Lemma applied to the function φ = f (y) in (8) by using the dynamics of the process {y}t≥0 in (17) Moreover,
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y0 ∈ (a′, b′) and σy :=
√

σ2

m + m−1
m ρ̄σ2, a′ = p̄(r f + β)/(R + β), b′ =

p̄(βε−ε+1)
(βε2+ε) . Then, P(B) has the closed form

solution

P(B) =

exp

−2µφφ0

σ2
φ

 − exp

−2µφb

σ2
φ

 / exp

−2µφa

σ2
φ

 − exp

−2µφb

σ2
φ

 ,
≡

exp
−2µyy0

σ2
y

 − exp
−2µyb

σ2
y

 / exp
−2µya

σ2
y

 − exp
−2µyb

σ2
y

 .
�

PROOF OF PROPOSITION 4. Let us first provide an heuristic explanation of results in Proposition 3. Consider
µy to be a random variable µy : Ωµy 7→ R defined on the probability space (Ωµy ,A,P) where Ωµy = [−1, 1] with
distribution function F : R→ R of µy as F(x) =

∫ x
−∞

f (t) dt = P(µy ≤ x) 21 To simplify notations, let P(µy ≤ 0) := p
and P(µy ≥ 0) := 1 − p. Moreover, let P(B | µy < 0) := q be the conditional default probability given a downtrend
and P(B | µy ≥ 0) := g the conditional default probability given an uptrend. Now, let consider the solution of
(17) i.e., y = y0 + µy + σyBt and for simplicity, let ρ̄ = y0 = 0. The limit of y for m → ∞, yields a measurable
function y = µy. Thus, y is also a random variable on Ωµy , since the composition of a measurable function is also
measurable. Now let bound the variation of y into an arbitrary small subset Ξ ⊂ Ωµy such that y ∈ [−ξ, ξ]. Then,
for µy ≤ 1, the probability of y to be equal to the upper bound is P(y = ξ | µy ≤ 1) = 1 − ε. While, for µy ≥ −1, the
probability of y to be equal to the lower bound is P(y = −ξ | µy ≥ −1) = 1 − ε. We can now obtain a more formal
asymptotic result if we substitute −ξ and ξ with a′ and b′ respectively. Let rewrite (10b) as (My0 −Mb′ )/(Ma′ −Mb′ )

where M = exp
(
−2µy

σ2
y

)
. After some arrangements, P(B) becomes (My0−b′ )(Ma′−b′ − 1) − 1/(Ma′−b′ − 1). Taking the

limit for m→ ∞ we get that P(B | µy ≥ 0) = 0 − 0 = 0 and for P(B | µy < 0) = 0 − (−1) = 1. Then,

∀ε > 0, ∃ m̄ > 1 | (q − g) > 1 − ε ∀m > m̄

�

PROOF OF COROLLARY 1. Based on the “state of nature” of external-assets, Corollary 1 shows the polariza-
tion of the expected utility for increasing levels of diversification in those assets. The proof of Corollary 1 moves
from the results in Proposition 4. Let first study P(B) in (10b) as a function of m and for the sake of simplicity, let
ρ̄ = β = r f = 0 and let σ = p̄ = 1. 22. Then (10b) becomes

P(B) =
(
exp(−2µyy0m) − exp(−µym)

)
/
(
1 − exp(−µym)

)
. (18)

When µy > 0 (µy < 0), (18) is negative (positive) for any parameters’ value in the set of Table 2. Its partial
derivative w.r.t. m is

∂P(B)
∂m

= µy exp
(
µym(1 − 2y0)

) (
exp(2µyy0m) − 1 + 2y0 − 2y0 exp(µym)

)
/
(
exp(µym) − 1

)2
,

which is equal to zero if µy = 0, negative if µy > 0 and positive if µy < 0. Stated otherwise, from the definition
of q and g, we have ∂q

∂m > 0 and ∂g
∂m < 0. Let now, study how the utility function changes w.r.t. m in two mutually

exclusive cases. Namely, when the external assets are in uptrend or downtrend period for a certainty.

21With the usual properties: (i) F(x) ≥ 0; (ii) lim
x→+∞

F(x) = lim
x→+∞

P(µy ≤ x) = P(µy < +∞) = 1; (iii) lim
x→−∞

F(x) = lim
x→−∞

P(µy ≤

x) = P(µy < −∞) = 0.
22By Proposition 2, in this simplified case, y0 ∈ [0, 1/2]
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(1) The case p = 0 implies a sure uptrend (i.e., µy > 0) and the utility function in (11) is simplified as

EU(Πm)µy>0 =
(
gπ− + (1 − g)π+) − λ (

g
(
π− − E(Πm)

)2
+ (1 − g)

(
π+ − E(Πm)

)2
)
/2 (19)

Then,
∂EU(Πm)µy>0

∂m
=

(
π−

∂g
∂m
− π+ ∂g

∂m

)
+
∂g
∂m

λ

2

(
∆2

+ − ∆2
−

)
,

where ∆2
+ :=

(
π+ −

∂g
∂m (π− − π+)

)2
and ∆2

− :=
(
π− − ∂g

∂m (π− − π+)
)2

. After some rearrangements

∂EU(Πm)µy>0

∂m
= g

(
∂g
∂m

) (
π− − π+) > 0 , (20)

which is positive since ∂g
∂m < 0 and π− − π+ < 0. Then we conclude that, for p = 0, EU(Πm) is an increasing

function of m.

(2) The case p = 1 implies a sure downtrend (i.e., µy < 0) and the utility function in (11) simplifies as

EU(Πm)µy<0 =
(
qπ− + (1 − q)π+) − λ (

q
(
π− − E(Πm)

)2
+ (1 − q)

(
π+ − E(Πm)

)2
)
/2 . (21)

Then,
∂EU(Πm)µy<0

∂m
=

(
π−

∂q
∂m
− π+ ∂q

∂m

)
+
∂q
∂m

λ

2

(
Φ2

+ − Φ2
−

)
,

where Φ2
+ :=

(
π+ −

∂q
∂m (π− − π+)

)2
and Φ2

− :=
(
π− − ∂q

∂m (π− − π+)
)2

. After some rearrangements,

∂EU(Πm)µy<0

∂m
= q

(
∂q
∂m

) (
π− − π+) < 0 , (22)

which is negative since ∂q
∂m > 0 and π− − π+ < 0. Then we conclude that, for p = 1, EU(Πm) is a decreasing

function of m.

Summarizing, cases (1) and (2) lead to the following result µy < 0⇒ ∂EU(Πm)
∂m < 0

µy > 0⇒ ∂EU(Πm)
∂m > 0

∴ if

 p = 0, V
(
E(Π), σ2(Π)

)
mmax

> V
(
E(Π), σ2(Π)

)
mmin
⇐⇒ mmax � mmin

p = 1, V
(
E(Π), σ2(Π)

)
mmin

> V
(
E(Π), σ2(Π)

)
mmax

⇐⇒ mmin � mmax

where mmax (mmin) are respectively the max (min) attainable diversification strategies and � stands for preference
over strategies with x � y is read “x i preferred to y”. �

PROOF OF COROLLARY 2. The Corollary 2 shows that in the case the downtrend and uptrend events are both
likely to occurs with certain probability, there might exists an optimal level of diversification m∗ which maximizes
the expected utility function EU(Πm) in (11). To prove it, let’s decompose (11) as follow

EU(Πm)µy>0 = (1 − p)
[(

gπ− + (1 − g)π+) − λ
2

(
g
(
π− − E(Πm)

)2
+ (1 − g)

(
π+ − E(Πm)

)2
)]

(23a)

EU(Πm)µy<0 = p
[(

qπ− + (1 − q)π+) − λ
2

(
q
(
π− − E(Πm)

)2
+ (1 − q)

(
π+ − E(Πm)

)2
)]
. (23b)
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Notice that (23a) and (23b) are respectively (19) and (21) used in Corollary 1 to which a probability p and 1− p to
occur, has been assigned. In other terms, (11) can be interpreted as a linear combination of (19) and (21). Now, let
observe that (23a) is increasing in m, while (23b) is decreasing in m

∂EU(Πm)µy>0

∂m
= (1 − p)g

(
∂g
∂m

) (
π− − π+) > 0 (24a)

∂EU(Πm)µy<0

∂m
= pq

(
∂q
∂m

) (
π− − π+) < 0 (24b)

When the partial derivatives in (24a) and (24b) are equal to each other, the EU(Πm) is maximized w.r.t. m. The
condition to be verified is to find the probability p∗ that makes the two equations to be equivalent

FOC: (1 − p)g
(
∂g
∂m

) (
π− − π+) = pq

(
∂q
∂m

) (
π− − π+) .

Discarding the trivial solution µy = 0, the condition is satisfied for all

p∗ = 1/
(
1 +

q
g

(
∂q
∂g

))
∈ ΩP∗ ⊂ ΩP := [0, 1] (25)

with q = q(m∗), g = g(m∗). Then, in a more general form, (25) can be written as p∗ = f [g(m∗); q(m∗)]. Since g, q
and f are all one-to-one, for the Inversion Function Theorem are invertible functions. Hence, for a fixed value of
p∗, must exists an m∗ such that

m∗ =
[
(g−1; q−1) ◦ f −1

]
(p∗)⇒ ∃ EU(Πm∗ ) ≥ EU(Πm) ∀m ≷ m∗.

�

PROOF OF COROLLARY 3. From Assumption 6.1, the total loss accounted by the policy maker in downtrend
periods is an increasing function of the expected number k of bank crashes given a collapse of at least one bank
and the magnitude of the loss i.e., kπ−. Then, the expected utility of the regulator EUR(Πm) is differently expressed
w.r.t. the utility from the bank point of view EU(Πm) i.e., EUR(Πm) , EUR(Πm). In particular, the changes involve
(12) and (13) which are reformulated as follow

ER(Πm) = p
[
qkπ− + (1 − q)π+] + (1 − p)

[
gπ− + (1 − g)π+]

σ2
R(Πm) = p

[
q
(
kπ− − E(Πm)

)2
+ (1 − q)

(
π+ − E(Πm)

)2
]

+ (1 − p)
[
g
(
π− − E(Πm)

)2
+ (1 − g)

(
π+ − E(Πm)

)2
]
.

Let follow the same reasoning used in Corollary 2 and decompose EUR(Πm) as follow

EUR(Πm)µy>0 = (1 − p)
[(

gπ− + (1 − g)π+) − λ
2

(
g
(
π− − E(Πm)

)2
+ (1 − g)

(
π+ − E(Πm)

)2
)]

(26a)

EUR(Πm)µy<0 = p
[(

qkπ− + (1 − q)π+) − λ
2

(
q
(
kπ− − E(Πm)

)2
+ (1 − q)

(
π+ − E(Πm)

)2
)]
. (26b)

Let observe that the partial derivative w.r.t. m of (26b) is steeper then the partial derivative w.r.t. m in (24b). In
particular,

∂EUR(Πm)µy<0

∂m
= pq

(
∂q
∂m

) (
kπ− − π+) < ∂EU(Πm)µy<0

∂m
= pq

(
∂q
∂m

) (
π− − π+) < 0
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While
∂EUR(Πm)µy>0

∂m
≡
∂EU(Πm)µy>0

∂m
= (1 − p)g

(
∂g
∂m

) (
π− − π+)

since (26a) is not affected by Proposition 5.1 and remains equivalent to (23a). The condition to be verified is to
find the probability pR that makes the two equations to be equivalent

FOC: (1 − p)g
(
∂g
∂m

) (
π− − π+) = pq

(
∂q
∂m

) (
kπ− − π+) .

Discarding the trivial solution µy = 0, the condition is satisfied for all

pR = 1/
(
1 +

q
g

(
∂q
∂g

)
υ

)
∈ ΩPR ⊂ ΩP := [0, 1] (27)

with q = q(mR), g = g(mR) and υ = (kπ− − π+)/(π− − π+). In a more general form, (27) can be written as
pR = f (υ[g(m∗); q(m∗)]). Since g, q, υ and f are all one-to-one and hence invertible functions, for a fixed value of
pR, must exists an mR such that mR =

[
(g−1; q−1) ◦ υ− ◦ f −1

]
(pR). Eq.(27) is a decreasing function w.r.t. υ which is

a constant function bigger than one as k > 1. Then, pR < p∗. This implies that the diversification level mR which is
optimal from the policy maker point of view is lower than the level m∗ desirable by the banking system

mR =
[
(g−1; q−1) ◦ υ−1 ◦ f −1

]
(pR) < m∗ =

[
(g−1; q−1) ◦ f −1

]
(p∗)

�

B Tables

B.1 Expected Profit from Banking Diversification

Expected profit from banking diversification in the real-sector
External-assets trend p E(Πm) lim

m→+∞
E(Πm)

Case 1 up 0 gπ− + (1 − g)π+ π+

Case 2 stable 0.5 (q+g)π−+(2−q−g)π+

2
π++π−

2
Case 3 down 1 qπ− + (1 − q)π+ π−

Table 1: Expected profit from banking diversification in case of up stable and down trend of non-financial assets.
First, let remind (from Proposition 3), the asymptotic behavior of P(y = a′) for negative and positive values of µy

which gives lim
m→+∞

q = 1 and lim
m→+∞

g = 0. In Case 1, the expected profit of the banking system increases with di-
versification because lim

m→+∞
g = 0. In Case 2, we implicitly assume that µy ∼ N(0, 1) since P(µy ≤ 0) = F(0) = 0.5.

The expected profit asymptotically, for m → +∞, converges to (π+ + π−)/2. While for m → 1, both q and g
converge to one and the expected profit become E(π) = π− + π+. In Case 3, the expected profit decreases with
banking diversification because lim

m→+∞
q = 1.
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B.2 Range of values for Parameters

Parameter Set of Values
m {m ∈ N : m ≥ 1}
σ {σ ∈ R : 0 < σ < 1}
β {β ∈ R : 0 < β < 1}
r f {r f ∈ R : 0 < r f < 1}
µy {µy ∈ R : −1 ≤ µy ≤ 1}
ρ̄ {ρ̄ ∈ R : 0 ≤ ρ̄ ≤ 1}
b′ {b ∈ R : b′ > 0}
a′ {a ∈ R : 0 < a′ < b}

Table 2: Range of values for each expl. variable.

C Figures
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Figure 1: (Up): Default prob. P(y = a′) and Exp. Utility EU(Πm) of the banking system for different degrees m
of diversification. (a) P(y = a′) is decreasing in m when µy > 0 (lower curves). P(y = a′) is increasing in m when
µy < 0 (upper curves). (b) EU(Πm) is decreasing in m when µy < 0 (lower curves). EU(Πm) is increasing in m
when µy < 0 (upper curves). Parameters: σ2 = 0.35, r f = 0.03, π− = π+ = 1, ρ̄ = 0.1, m ∈ [0, 200],
|µy| = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03. (Down): Optimal utility of the banking system vs. Optimal utility of
the regulator for different degrees m of diversification and intermediate probability p. (c) Exp. Utility of the bank-
ing system EU(Πm). (d) Exp. Utility of the regulator EUR(Πm). Parameters: σ2 = 0.35,r f = 0.03, ρ̄ = 0.1,p = 0.4,
π− = π+ = 1, k = 2, m ∈ [0, 200], |µy| = 0.005, 0.01, 0.015, 0.02, 0.025, 0.03.
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The Knife-Edge of Procyclical Capital Requirements

Paolo Tasca, Stefano Battiston

Abstract

We introduce a simplified economy of interconnected banks whose assets include claims against
other banks and securities external to the network. In response to asset price movements, banks
actively manage their balance sheets in line with the risk management practice to adjust the Value-at-
Risk to a target level. The contractions and expansions of the balance sheets cause further asset price
movements. In this setting of leverage-asset price cycle, banks’ incentive to reduce exogenous id-
iosyncratic shocks through asset diversification reveals to be a double-edge sword strategy. Whereas
it mitigates the default risk in presence of positive asset price shocks, it increases the default risk
in case of negative shocks. Our findings have significant implications to strengthen countercyclical
regulatory instruments.

JEL Code: G01, G11, G18, G2, G32, G33
Keywords: Systemic Risk, Financial Crisis, Leverage, Diversification, Default Probability.

1 Introduction

In a financial system in which balance sheets are continuously marked-to-market, asset price movements
have an instantaneous impact on the net worth of the market participants. Since many financial insti-
tutions use borrowing to leverage their exposure to risky assets, the impact on their balance sheet is
amplified by their degree of leverage.1 In this context, it has been pointed out that leverage can be pro-
cyclical (Adrian and Shin, 2010; Shin and Adrian, 2008). Indeed, sensible price movements – e.g., a
devaluation – of an asset class, can trigger the necessity of institutions to reduce their exposure to that
asset class, by selling a certain amount. If the contraction of the demand is big enough, it will move
prices further down, in a spiral of devaluation. This effect is due to the positive feedback loop between
prices and leverage in presence of an active balance sheet management.

The central question addressed in this paper is how systemic risk (i.e. the probability of default of a large
part of the financial system) depends on the level of asset diversification when risk management practices
are influenced by procyclical capital requirements. To this end, by building on Tasca and Battiston (2011),
we introduce a simplified economy of interconnected risk-averse financial institutions that hold claims
of each other. Moreover, institutions invest also in a number of risky assets linked to activities exogenous
to the financial system (hereafter, “external assets”). In line with the risk management rule to adjust the
Value-at-Risk (VaR) to a given target level, institutions actively manage their balance sheet in response

1Levered market participants include (i) Individual investors who buy stocks or other assets on a margin; (ii) Banks whose
capital equity requirements are set by regulatory authorities under the Basel III framework.
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to external assets price movements. Our aim is to outline the aggregate consequences of procyclical
leverage, by modeling how the practice to expand and contract the balance sheets impact on asset prices
and vice-versa.

The main contribution of the paper is to build a model that allows to measure quantitatively systemic risk
in a fully dynamic setting where leverage and asset prices are interlinked by a positive feedback loop. We
find that such a feedback loop amplifies the knife-edge property of the financial system Haldane (2009),
i.e., the fact that even when the system appears robust it may be susceptible to sharp disruption once
certain critical conditions are reached.

In addition, the paper offers a first attempt to microfound in a dynamic setting the procyclicality of lever-
age which empirical evidence has been documented so far mainly by Adrian and Shin (2008a,b, 2010,
2011, 2008d); Shin (2008); Shin and Adrian (2008).2 In this respect, we model the macro-consequences
of procyclical leverage and we analyse the mutual influence between contraction-expansion of the ag-
gregate balance sheet and asset pricing of external assets.

This paper is related to several strains of literature. Besides the seminal paper by Allen and Gale (2001),
several works have investigated financial contagion on the interbank market (see e.g., Boss et al., 2004;
Elsinger et al., 2006; Freixas et al., 2000; Furfine, 2003; Iori et al., 2006). Other works have investigated
contagion effects mediated by some common asset (see e.g., Kiyotaki and Moore, 1997, 2002). Moreover,
the paper is in line with a body of works that, after the recent financial crisis 2007/8, have investigated the
relation between diversification and the systemic financial stability, (Battiston et al., 2009; Brock et al.,
2009; Ibragimov and Walden, 2007; Stiglitz, 2010; Tasca and Battiston, 2011; Wagner, 2010). Since the
balance sheet approach is central to our paper, the results are also related to the vast literature on the
amplification of financial shocks. The literature has distinguished two distinct channels. The first is the
increased credit that operates through the borrower’s balance sheet, where a greater credit worthiness
of the borrower leads to increasing lending (see e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore,
1997, 2005). The second channel operates through the banks’ balance sheets, either through the liquidity
structure (see e.g., Bernanke and Blinder, 1988; Kashyap and Stein, 2000), or the cushioning effect of
the banks equity capital, e.g. Van den Heuvel (2002). Our analysis is closer to the second group of works
since we also focus on the bank’s balance sheet dynamics. Finally, the possibility that a market populated
with VaR constrained traders may have more pronounced fluctuations has been examined by Danıelsson
et al. (2002). Mark-to-market accounting may at first appear to be an esoteric question on measurement,
but we have seen that it has potentially important implications for financial cycles. Plantin et al. (2008)
present a microeconomic model that compares the performance of marking to market and historical cost
accounting systems.

To conclude, our findings contributes to a better understanding of the relation between leverage, financial
market liquidity and asset pricing (see e.g., Acharya and Pedersen, 2005; Acharya et al., 2011, 2007;

2 Moreover, Adrian and Shin (2011) offers a two-stage principal-agent model to study the relation between balance sheet
leverage and the riskiness of the bank’s assets.
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Adrian and Shin, 2010; Allen and Gale, 2004; Brunnermeier and Pederson, 2009; Brunnermeier and
Pedersen, 2005; Gromb and Vayanos, 2002; Morris and Shin, 2004). The mean field analysis of the
model shows that the rate of change of the aggregate balance sheets of the financial system is a proxy for
understanding the liquidity and the asset price trend in the market. When external asset prices increase,
banks hold “capital surplus” that is utilized by expanding the balance sheets. On the liability side, banks
take on more debts, while on the asset side they increase the demand of external assets for a given
price (i.e., upward shift of the demand curve).3 This process increases the liquidity in the market of
risky external activities. Conversely, when a shock hits the external assets, the “capital deficit” entails
a liquidity shortage in that market. As exemplified during the 2007 sub-prime mortgage crises in the
United States, when balance sheets are expanding fast enough, even borrowers that do not have the means
to repay are granted credit. However, as soon as a shock hits the market, the balance sheet adjustments
produce a downturn in the credit cycle.

The paper is organized as follows. In Section 2 we introduce the model. In Section 3 we analyze the
knife-edge property of the procyclical (“leverage-cycle”) market comparing the results with a standard
(“plain-vanilla”) market. Section 4 concludes and consider some extensions.

2 Model

In the following, to keep notations simple, whenever it is unambiguous from the context that a parameter
is time-dependent, we will omit the index t.

Let time be indexed as t ∈ [0,T ] and consider a financial sector composed by a set Ωn := {1, ..., n}
of risk-averse financial institutions (hereafter, “banks”). In analogy to Tasca and Battiston (2011), the
balance-sheet identity of the bank i ∈ Ωn is given by

ai = hi + ei , (1)

where a ∈ Rn is the column vector of the banks’ assets market value; h ∈ Rn is the column vector of
the book values of banks’ obligations (e.g., zero-coupon bonds);4 e ∈ Rn is the column vector of equity
values. It is assumed that, each bank invests in two asset classes composed by: (i) n− 1 obligations, each
issued by one of the other banks in the system, and (ii) m exogenous investment opportunities non related
to the financial sector which belong to the set Ωm := {1, ...,m} of external assets. Then, the asset-side in

3 The perverse nature of the demand and supply curves are even stronger when the leverage of the bank is procyclical, i.e.,
when leverage is high during booms and low during busts.

4 In particular, hi is the value of the payment at maturity that each obligor i has promised to the lenders. The equation
implicitly assumes that, for all the banks in the system, there is only one type of debt with the same maturity date t and same
seniority.
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(1) reads as

ai :=
∑

l

Qil pl +
∑

j

Wi jh̃ j , (2)

where, Q := [Qil]n×m is the n × m weighting matrix of external investments where each entry Qil is the
quantity of external asset l held by bank i; pl is the price of the external assets l; W := [Wi j]n×n is the
n × n adjacency matrix where each entry Wi j is the quantity of the debt issued by the obligor j held by
bank i; 5 h̃ j is the market value of debt issued by bank j, defined as the discounted value of future payoffs
h̃ j := h j

[
1 + r j

]−t
. We assume that external asset prices follow the processes6

dpl

pl
= µldt + σldBl , ∀l ∈ Ωm . (3)

2.1 Leverage

From (1) and (2), the ith bank’s leverage is defined as its debt-asset ratio

φi := hi/ai (4a)

= hi/

∑
l

Qil pl +
∑

j

Wi jh̃ j

 (4b)

= hi/

∑
l

Qil pl +
∑

j

Wi jh j
[
1 + r j

]−t

 ∈ (0, 1]. (4c)

As in Tasca and Battiston (2011), we assume that the rate of return on claims depends upon the obligor’s
credit-worthiness (measured by its leverage) so that, for each obligor j the following relation holds true7

r j := r f + βφ j , (5)

where r f is the risk free rate. Substituting (5) into (4c) we obtain a system of coupled equations where
the bank i’s leverage is a positive function of the leverage of all the other js banks interacting with i:

φi = hi/

∑
l

Qil pl +
∑

j

Wi jh j
[
1 + r f + βφ j

]−t

 , ∀i, j = 1, ..., n. (6)

5 Borrowing from the graph theory terminology, the interbank market can be described as a network with a set of vertices
(i.e., nodes) composed of banks and a set of edges given by the mutual interchanged borrowing-lending positions.

6Where Bl is a standard Brownian motion defined on a complete filtered probability space (Ω;F ; {Ft};P), withFt = σl{B(s) :
s ≤ t}, µl is the instantaneous risk-adjusted expected growth rate, σl > 0 is the volatility of the growth rate and d(Bl, Bk) = ρlk.

7The parameter β ∈ [0, 1] can be understood as the responsiveness of the rate of return to the firm financial condition.
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2.2 Target Leverage. An Example.

In this section, we will focus on a single bank and we will thus suppress the index referring to the ith
bank.

The role of VaR in explaining banks’ dynamic balance sheet decisions with target leverage is discussed
in Adrian and Shin (2008a,b, 2010); Shin (2008); Shin and Adrian (2008). The concept of VaR8 has
been widely adopted among financial institutions in their risk management practices.9 Since the risk
management of a bank is intimately tied to its leverage, we assume that the bank adjusts its balance sheet
so that the market equity e is set equal to its VaR. In other words, the VaR is the equity capital that a bank
must hold in order to stay solvent with probability c. 10

In the following we link the balance sheet management of the bank to the balance sheet adjustments the
bank makes in order to stay close to a target value of the ratio VaR to equity capital. We denote by V the
VaR per dollar of assets held by a bank. If the bank maintains equity capital e to meet total VaR, then we
have e = V × a ⇒ a − h = V × a ⇒ h = a × (1 − V). This implies that the bank has a target level of
leverage φ∗ = h/a = (1 − V).

In a falling market, decreasing external asset prices increase the leverage (i.e., φ > φ∗). In this case,
the bank desires to shrink its balance sheet by selling (a portion of) the external assets and pay back (a
portion of) its debts with the proceeds.11 In contrast, in a raising market, external asset prices increase
and leverage decrease (i.e., φ < φ∗). In this case, the bank desires to expand its balance sheet by taking
on more debts and to invest the new funds in external activities.

In this section, we illustrate with a (discrete-time) numerical example the mechanisms behind the be-
havior of a bank that manages its balance sheet so to maintain a constant leverage ratio φ∗. In the next

8The VaR at confidence level c relative to some reference value ā (e.g., the face value of assets), is defined as the smallest
non-negative number VaR such that

P(a < ā − VaR) ≤ 1 − c ≡ P(ā − a > VaR) ≤ 1 − c ≡ P(loss > VaR) ≤ 1 − c ,

where a is the marked-to-market asset value of the bank as defined in (2) at some give time horizon. In words, the VaR can be
seen as the “approximately worst case” loss that the bank may suffer, so that anything worse than this “approximately worst
case” has a probability of occurrence less than some benchmark 1 − c. Notice that, the confidence level c is set high enough to
target a given credit rating.

9Moreover, it has been enshrined in the regulatory framework for capital since the 1996 Market Risk Amendment of the
Basel Accord, and in the Basel II-III Regulations.

10The term “economic capital” is sometimes used interchangeably with the bank’s value at risk. The most common way to
quantify economic capital is by Value-at-Risk. For example, the Basel II Accord specifies that, for credit portfolio risk, the
economic capital is equal to VaR0.9998 − E[`] where VaR0.9998 is computed within the so-called “internal ratings” framework.
The rationale for reducing VaR0.9998 by the amount of expected losses is that E[`] is typically charged to the client, along with
management fees and the like.

11The “debt overhang” problem noted by Myers (1977) makes it difficult or impossible to raise new equity when a bank is
in trouble. Thus the usual strategy to satisfy capital requirements is to sell assets. This forced selling can generate the positive
feedback loop (leverage-asset price) discussed further below.
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section, we generalize the example to model an accounting rule. Let the balance sheet be structured as
follows (see Table 1 in Appendix Section A). The asset side is composed of h̃ claims against other banks
plus a bundle Q of external assets with market price p. The liability side is given by the book value of
debts h and the equity e. The time is indexes as t = 0, 1, 2. At time t=0, assume the bank holds 80 units
of external asset with price p(0) = 1$ and 20$ of claims. The liability side is split between debts for 60$
(i.e., h(0) = 60$) and equity for 40$ (i.e., e(0) = 40$). Therefore, the leverage ratio φ is equal to 0.6
(i.e., debts/tot. assets = 60$/100$). Let the target leverage φ∗ coincide with φ at time t=0 (i.e., φ = φ∗).
From (4b), to φ∗ it corresponds an equilibrium price p∗ which keeps the leverage equal to the target level
p∗ =

h−h̃φ∗

φ∗Q(0) . At time t=0, since φ = φ∗, also p(0) is exactly equal to p∗. Namely, p(0) = 60$−20$×0.6
0.6×80 = 1$.

We now assume there is a negative shock on price so that p(1) < p(0). As an example, suppose p de-
creases by 25% so that p(1) = 0.75$. Therefore, the new market value of external assets is 60$ (i.e.,
80 × 0.75$ = 60$). As a consequence, the balance sheet changes as follows. At time t=1, the asset side
comprises 60$ of external assets and 20$ of claims against other banks. On the liability side, since the
value of debt stays constant at 60$, equity reduces to 20$. Then, the leverage φ increases to 0.75, (i.e.,
60$/80$) which is greater than the target one (φ = 0.75 > 0.6 = φ∗). Under the assumption that the bank
adopts a dynamic balance sheet approach, the leverage ratio has to be adjusted back to the target value
φ∗. In order to do so, it is assumed that the bank sells part of its external assets in the market and with
the proceeds pays back part of its debts. As a result, at time t=2 the asset side is composed of 30$ of
external assets and 20$ of claims. While, the debts decrease to 30$ and the equities remain at 20$ such
that leverage goes back again to 0.6 (i.e., φ = 30$/50$ = 0.6 = φ∗). This accounting technique indicates
to sell 40 units of external assets at p(1) = 0.75$ so that at time t=2, their amount in the balance sheet
reduces to 30$ = 40 × 0.75$. With the proceeds of 30$ (i.e., 60$ − 30$), the bank partially pays back its
debts that diminish to 30$. Thus, a decrease in the price of external assets leads to a decreased holding
worth 30$. After the sales, the leverage is back down to the target level of 0.6.

Vice-versa, the mechanism works in the opposite direction when the shock on prices is positive, p(1) >
p(0). (The corresponding numerical example is given in Appendix Section B). Notice that forced sale
can also be generated by trading strategies. For example, Gennotte and Leland (1990) show that portfolio
insurance hedging strategies, with “synthetic derivatives”, require to sell a stock as its market value falls.
(An example is sketched in the Appendix Section B).

2.3 Target Leverage. An Accounting Rule

The fact that the bank has a target level of leverage implies that facing a movement in asset prices it has
either to expand or to shrink both assets and liabilities by a given amount. As explained in the previous
section, we assume that a reduction in liabilities is carried out by paying back part of the debt with the
proceedings obtained from selling part of the asset that was shocked negatively. Similarly, facing an
increase of the asset price the bank takes on more debt and invests the funds in the same asset that was
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positively shocked. The balance sheet identity (1) imposes that variations on the asset side must equal
those on the liability side.

All together these conditions imply (the derivation is reported in Appendix Section C) that the bank has
to resize its balance sheet entries by a factor, smaller or larger than one. For a generic bank i, the rate of
change of the debt side and of the quantity of external asset is governed by the following equations

dhi

hi
=

(
εi

φi

) (
φ∗i − φi

1 − φ∗i

)
, (7)

dQil

Qil
=

(
εi

αil

) (
φ∗i − φi

1 − φ∗i

)
. (8)

The parameter εi ∈ [0, 1] measures the reactivity of the ith bank in pursuing the target level of leverage
φ∗i ; αil ∈ [0, 1] is the fraction of the external asset l over the total asset value. Accounting constrains:
Qi =

∑
l Qil; dQi ≥ −Qi; dhi ≥ −hi.

2.4 Leverage-Cycle

Motivated by the literature on the leverage-asset price cycle described (also empirically) in Adrian and
Shin (2008a, 2010, 2008d), we now model how the accounting rule described by Equation (8) impact on
the price of the external asset. We assume a simple relation between the price of external assets in (3) and
the aggregated demand for those assets. More precisely, the expected price return is assumed to change
linearly with the rate of change of the demand for the asset,

E

(
dpl

pl

)
= γ

(
dQl

Ql

)
, (9)

where the parameter γ ≥ 0 captures the responsiveness of the price to changes in quantity; Ql =
∑

i Qil.
Equation (9) implies that we can rewrite the price dynamics as follows

dpl

pl
= γ

(
dQl

Ql

)
dt + σldBl , ∀l ∈ Ωm . (10)

Indeed, a sensible deviation of the price pl from p∗l entails a change in the relationship between price
and quantity of external assets. This corresponds to a shift in the demand curve, due to an income effect,
because when ei > e∗i (ei < e∗i ) the bank has greater (smaller) amount of funds to allocate to external
assets (See Table 3 in Appendix Section A and also Appendix Section D).

More precisely, when prices rise, the upward adjustment of leverage entails purchase of risky assets. The
greater demand for risky assets tends to put upward pressure on the prices and the equilibrium moves
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from the original level A to A′ ( See Figure 4 in Appendix Section D). The mechanism works exactly in
reverse in downtrend.12

Then, in summary, the dynamics of the financial market is described by the following 3 × n + m dimen-
sional system of equations 

dQil
Qil

=
(
εi
αil

) (φ∗i −φi

1−φ∗i

)
dt

dhi
hi

=
(
εi
φi

) (φ∗i −φi

1−φ∗i

)
dt

dpl
pl

= γ
(

dQl
Ql

)
dt + σldBl

φi = hi/
(∑

l Qil pl +
∑

j Wi j
h j

(1+r f +βφ j)t

) (11)

2.5 Plain-Vanilla Vs. Leverage-Cycle Market

In our model (11), the accounting rule based on the target leverage generates changes in the demand
which are transmitted to asset prices and back to the leverage. The intensity of the feedback loop be-
tween leverage and asset prices depends on two factors. First, the elasticity, ε, by which banks adjust
their leverage to the target one, as described in sub-Section 2.3 and Appendix Section C. Second, the
responsiveness, γ, of asset prices to shifts in the aggregate demand which depends on the number (n)
of banks targeting their leverage according to the asset price variations (i.e., synchronization effect) as
discussed in Appendix Section D. 13

Based on those mechanisms, we distinguish between a standard economy and a leverage-cycle economy
as follows.

Definition 2.1 (Plain-Vanilla Market). In a standard plain-vanilla market banks invest in external
assets but do not apply target leverage accounting rules at any time along their business activity, i.e.,
φ(t) 9 φ∗ for all t > 0 and ε → 0. Their strategies are not synchronized, i.e., n → 1. Therefore, it is a
market where a cycle between leverage and asset prices is absent, i.e., γ → 0.

Definition 2.2 (Leverage-Cycle Market). In a leverage-cycle market, banks apply stringent target lever-
age accounting rules in order to continuously target their leverage to the reference level. Their strategies
are synchronized. This market entails a cycle between leverage and asset prices. Banks very promptly

12When assets prices decline, the downward adjustment of leverage to the target level, entails (forced) sale of risky assets.
The lower demand for risky assets put downward pressure on their prices and the equilibrium moves from A to A′′. In practice,
while most market participants base their trading on their view of asset fundamentals relative to price, an important subset of
investors must sell even if they believe market fundamentals don’t warrant selling. In our model, such forced selling is related
to general declines in asset prices and thus correlated across banks. This type of forced selling can lead to price declines which
in turn force further selling and further price declines, a positive feedback situation that can lead to extreme market volatility
and “crashes”.

13The synchronization effect means that the change of individual demands to any asset price shock assumes the same
sign/direction.
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apply the accounting rule, i.e., ε→ 1. Any exogenous price shock triggers a synchronized response, i.e.,
n >> 1 and γ >> 1.14

Since there is no closed form solution for the system (11), in the next sections we study its properties by
means of numerical analyses.

3 Analysis

The objective function of risk-averse banks, is to increase the asset value per unit of risk. This business
goal is achieved through diversification among the investment opportunities offered by the non-financial
sector represented by the matrix Q. More precisely, the diversification strategy is defined as follows.

Definition 3.1 (1/m Diversification Strategy). The 1/m heuristic involves the composition of an equally
weighted portfolio composed of m external risky assets available for investment.

According to the diversification strategy defined above, each bank i ∈ Ωn manages a portfolio of external
assets pi(t) =

∑
l Qil(t)pl(t) s.t., Q̃il(t) := Qil(t)pl(t)∑

j Qil(t)pl(t)
≈ 1/m for all l ∈ Ωm, and for all t ≥ 0. To keep the

proportion 1/m unchanged over time, it is assumed that the bank adopts a “balanced” portfolio so that the
quantities of external assets Qi1, ...,Qim are functions depending on time and the asset prices p1, ..., pm.
For the sake of simplicity, let σl = σ for all l ∈ Ωm. Then, pi(t) follows the dynamics15

dpi

pi
= µ̄dt + σ̄dB(t) , ∀i ∈ Ωn (12)

3.1 Leverage

To analyze the equilibrium property of Equation (6), we carry out a mean-field analysis as in Tasca and
Battiston (2011). The idea is to study the behavior of the system (11) around the state of “homogeneity”
where the economic meaning still holds valid. We make the following assumptions. The book value of
promised payments at maturity is assumed to be equal for every bank. Namely, hi = h for all i ∈ Ωn.
Under the condition that the individual bank is’ leverage does not deviate too much from the average one,
we replace the leverage of the individual bank with the mean leverage of the system, φi ≈

1
n
∑n

j φ j := φ

for all i ∈ Ωn. Agents have similar market power, i.e., their portfolio of external assets have similar
size pi :=

∑
l Qil pl ≈

1
n
∑

j p j := p. Agents have similar nominal exposure to each other, i.e., h̃i :=

14Notice that the mechanisms of the leverage-cycle market highlight an homogeneity of banks business and risk management
strategies.

15With µ̄ = 1
m

∑
l µl, σ̄ :=

√
σ2

m + m−1
m ρ̄σ2 where ρ̄ =

∑
l
∑

k,l
ρlk

m(m−1) and dB ∼ N(0, dt).
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∑
j Wi jh̃ j ≈

1
n
∑

i h̃i := h̃. Then, Equation 6 simplifies as φ = h/(p + h
1+r f +βφ

).16 Solving for φ, we get

φ
(
p + r f p + βφp + h

)
= h(1 + r f + βφ) which after some passages becomes φ2βp + φ (pR + h(1 − β)) −

hR = 0, where R = 1 + r f . Then, φ is the positive root of a quadratic expression17

φ =
1

2βp

[
h(β − 1) − p +

(
4βhp + (h(1 − β) + p)2

)1/2
]
, (13)

where, without loss of generality, the risk free rate is set equal to zero (i.e., r f = 0). In a context of
dynamic balance sheet management with banks targeting their leverage φ to a reference value φ∗, a
precise relation between φ, p and h emerge. Starting from an accounting approach, the next sections
model such interdependence.

3.2 Leverage, Diversification and Default Risk

Similar to Merton (1974), a bank enters into a default regime whenever the market value of its assets
falls below the book value of its debt.

Definition 3.2 (Default Event). The event that at any time t ≥ 0, the leverage φ is equal or bigger than
one is classified as “default event”. Namely,

Default Event⇔ φ(t) ≥ 1⇔ h(t) ≥ a(t), ∀t ≥ 0. (14)

In particular, the expected default time (τ̄) defined in Appendix E, is a positive real function of φ. There-
fore, according to the 1/m diversification strategy in (3.1), the bank optimization problem is the following
one.

Definition 3.3 (Bank’s optimization problem). Find the optimal number m ∈ Ωm of external assets to
compose an 1/m diversification strategy in order to maximize the expected default time (τ̄)

m∗ = arg max
m

(τ̄(m)).

The previous sub-Section 2.5 distinguishes between two types of financial markets. Namely, the stan-
dard plain-vanilla market and leverage-cycle market. Considered that banks try to maximize τ̄ w.r.t. to
the number of external assets in portfolio, the key question is the following: “Is diversification always
desirable in terms of default risk mitigation?” Moreover, “Does diversification produce the same risk-
reduction effects in both markets?” In the remainder, we try to answer those question by maximizing τ̄
w.r.t. the control variables reported in Table 4 in Appendix Section A

τ̄ = τ̄(m, n, φ, φ∗, σ, ε, γ, p∗, pi(0)) .

16Since, h̃ in its interval of existence, is a monotonic decreasing function in t, without loss of generality, we consider the time
interval in eq. (6) to be t = 1.

17 The fragility φ takes values in the set Ωφ = (0, 1] only under a precise constraint. In particular φ is always greater to 0
since debts are supposed to be held in positive amount. While, φ is lower or equal to 1 under the condition that h ∈ (0, p).
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3.3 Comparative Statics of Expected time to Default

In equilibrium, banks’ leverage φ equals the target level φ∗ and external assets price p equal p∗ :=
h∗ ×

(
1
φ∗ −

1
1+βφ∗

)
.18 Any exogenous shock that deviates the asset price from p∗, moves the economy

out of the equilibrium. In the following, we denote by pk the new price after the shock and we say that
the economy is in a “good” (“bad”) state if pk is grater (lower) than p∗. Otherwise, the market is in a
“normal” state. A numerical analysis (the procedure is described in Appendix Section F and the set of
parameters is reported in Table 5 in Appendix Section A) is carried out both for the plain-vanilla and the
leverage-cycle market. We test the effect of both positive and negative price shocks (as summarized in
Table 6 in Appendix Section A).

The goal is to study how the expected time to default changes with the diversification level in external
assets in presence of an initial price shock.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Diversification  (m)

E
[τ

]

Plain−Vanilla Market

 

 

p
k
=0.7

p
k
=0.65

p
k
=0.625

p
k
=0.6

p
k
=0.575

p
k
=0.55

p
k
=0.5

Figure 1: Variation of the expected time to default w.r.t the number of external assets in balance sheet.

Plain-Vanilla Market This market benefits from diversification. The expected default time τ̄ gradually
increases with m both in good and bad states. We recall that a plain-vanilla market, by definition, is free of
procyclical accounting rules and free of any kind of loop between leverage and asset prices. 19 Therefore,

18The equilibrium p∗ is derived from (13).
19The external shocks on banks’ assets are not amplified by some managerial practices.
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this market resembles one where the expected return on external assets fluctuate around zero. As already
shown in Tasca and Battiston (2011), for these kind of markets, diversification plays its traditional role
of risk mitigation tool. It reduces the variance of the assets in the balance-sheet. In doing so, it reduces
the amplitudes of the shocks on the leverage φ and eventually lengthens τ̄, (see Figure 1).

Leverage-Cycle Market This market exhibits two opposite reactions with respect to the 1/m heuristic.
The expected default time τ̄ increases with m in the good states. In contrast, τ̄ decreases with m in the
bad states. The accounting rule and the positive feedback loop leverage-assets price, are the two “gears”
which allow to understand the reaction of the system to external shocks. In the first place, the accounting
rule amplifies the exogenous shocks on the banks’ assets. Then, the positive feedback loop transfers
the shocks into a price trend. 20 Under this market structure, diversification is just the lubricant for the
gears. More precisely, diversification polarizes the effect of positive/negative shocks, (See Figure 2).
As in Tasca and Battiston (2011), the polarization is a clear symptom that the market exhibits a knife-
edge dynamics. When a positive shock moves the prices up such that pk > p∗, leverage is below the
target level (i.e., φ < φ∗). In this case, diversification is desirable. It engenders financial robustness.
Ultimately, τ̄ increases, (black lines in Figure 2). When a negative shock moves the prices down such
that pk < p∗, leverage is below the target level (i.e., φ > φ∗). In this case, diversification is undesirable
because engenders financial fragility. Ultimately, τ̄ decreased, (grey lines in Figure 2). There is a simple
intuition for this effect in terms of the widely used Sharpe ratio. When assets have positive expected cash-
flows the Sharpe ratio is positive as well. Then, it is desirable to combine the assets in a well diversified
portfolio since diversification lowers portfolio’s volatility and in doing so, increases the Sharpe ratio as
well. In contrast, when assets have negative expected cash-flows, the Sharpe ratio is negative. Then, a
well diversified portfolio is no longer desirable.

Coherently with the results obtained so far, we now offer a formal definition and a quantitative dimension
of the knife-edge dynamics.

Definition 3.4 (Knife-edge dynamics). A system exhibits a knife-edge dynamics if under different eco-
nomic states (i.e., good vs. bad) it displays a dichotomy (i.e., bipolarization) of the mean default time (or
default probability).

The knife-edge in numbers Let τ̄G := [τ̄G(1), ..., τ̄G(m)] and τ̄B := [τ̄B(1), ..., τ̄B(m)] be the m-
dimensional vectors of expected default times in the good and bad states, respectively. Then, we call

20Indeed, the accounting rule (described in sub-Sections 2.2, 2.3), prescribes to increase (decrease) those assets in portfolio
(with an elasticity coefficient ε) the value of which has been positively (negatively) shocked. The effects of these managerial
practice are then transmitted to asset prices through an upward (downward) shift of the demand curve for those assets. In
particular, γ is the transmission coefficient which depends on the number n of banks targeting the leverage according to the
asset price variations (synchronization effect). As result, prices are shot up (down).
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Figure 2: Variation of the expected time to default w.r.t the number of external assets in balance sheet.

knife-edge (κ) the element-wise ratio between the two vector τ̄G and τ̄B

κ = τ̄G./τ̄B, (15)

with κ ∈ Rm. For a sufficiently large set Ωm,21 we say that the market exhibits a knife-edge dynamics if
the following condition is verified

κ(m) − κ(1)
m − 1

> 0 + ξ , (16)

where ξ is some constant in R+. If the condition is verified, we say that the market has a knife-edge
property which is stressed with increasing levels of risk-diversification. In this respect, the plain-vanilla
market does not exhibit the knife-edge property (black lines in Figure 3). While, the leverage-cycle market
obeys to the condition posed in (16) and the knife-edge is amplified with the number m of external risky
assets (gray lines in Figure 3).

21 The set Ωm of natural numbers is called relatively large if the number of elements of Ωm is greater than the least element
of Ωm.
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Figure 3: Log-scale of κ. Detection of the knife-edge property. Since κ is almost invariant in m, the
plain-vanilla market, does not present the knife-edge property (black lines). While, the leveraged-cycle
market exhibits a strong knife-edge property (gray lines). The value of κ is increasing in m.

4 Concluding Remarks

The paper sheds light on the knife-edge effects of the procyclical capital adequacy regulation. In an
abstract model, we combine a balance sheet approach with a stochastic setting in order to investigate the
emergence of systemic risk in the presence of a positive feedback mechanism between banking leverage
and asset prices.

Our model is in line with the work of Tasca and Battiston (2011) which analyzes the double-edge-sword
nature of banking diversification in external assets when their value moves up or down with a certain
probability. We build on the same balance-sheet approach by introducing two novel key ingredients. The
first is the accounting rule, which translates shocks to asset prices into changes in demand. The strictness
with which the rule is applied is controlled by the parameter ε, measuring the reactivity of the banks.
The second element, is the impact of changes in demand onto changes in asset prices. This transmission
mechanisms is controlled by the parameter γ which measures the responsiveness of prices to changes
in demand. Together, these two elements generate a positive feedback loop that can amplify an initial
change in price into a spiral of devaluation or over valuation. When both the reactivity of the banks and
the responsiveness of the prices are high (i.e., ε→ 1 and γ > 1), we are in a leverage-cycle market. In this
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setting, we show the emergence of a tension between (1) the individual incentive to target a ratio of VaR
to economic capital and reduce the idiosyncratic risks through asset diversification and, (2) a resulting
homogenized banking system where banks adopt the same business and risk management tools.22

From an individual firm perspective the application of the accounting rule and asset diversification looks
sensible strategies. Crucially, every bank is acting perfectly rationally from its own individual point of
view. Rather, from a systemic point of view, these strategies generate an undesired result.23 When banks
start moving in a synchronized way, they can potentially amplify the effects of exogenous asset price
shocks. Diversification reduces the fluctuations and thus enhances the gap between good and bad states.

The problem of procyclical effects of capital adequacy regulation is a classical conflict between the
micro- and macro-perspective on financial stability. It has extensively been discussed in the case of
capital adequacy regulation. From the early days of the Basel accord concerns about these procyclical
effects of capital adequacy regulation have been raised and the issue has been widely discussed. See
Blum and Hellwig (1995). In this paper, we contribute to this literature by showing that a procyclical
market displays a knife-edge property in terms of polarization of default risk at increasing levels of asset
diversification. This analysis is based on the assumption that banks can not easily issue new equity.24

Diversification reveals its double face of good or bad strategy which can, at the same time, contains or
propagates the default risk. The tipping point that separates benefits from losses, is the market clearing
price p∗ which is the price ensuring the equivalence between φ and φ∗. If an exogenous shock positively
(negatively) impacts the asset price with respect to the equilibrium level p∗, the default risk (measured
by the expected time to failure) is mitigated (exacerbated) for increasing number m of external assets in
portfolio. From our analysis we draw the conclusion that the major problem of an individual institution
perspective is a potentially misleading risk assessment for the financial system as a whole. Even though it
is uneasy to put in practice a system perspective, regulators need to adopt more system-oriented supervi-
sory risk assessment policies. Moreover they also need to face the challenge to design new approaches in
order to strengthen countercyclical regulatory instruments that work as cushions in booms and as buffers
when times deteriorate.

22These features are in line with those outlined by several authors, e.g., Haldane (2009) to describe the lack of diversity
emerged in the financial system during the recent years.

23In our model, γ is high when the number of banks, applying the same accounting rule - or in other terms, “mimicking” the
same risk management strategy, increases.

24The effect of capital scarcity leading to a “credit crunch” has been observed and investigated in the literature by Bernanke
et al. (1991), Calomiris and Wilson (1998) among others.
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A Tables

Bank balance-sheet
Time Total Assets Liabilities Leverage
t=0 h̃ = 20$ h(0) = 60$ φ = 0.6

Q(0)p(0) = 80 × 1$ = 80$ e(0) = 40$
t=1 h̃ = 20$ h(1) = 60$ φ = 0.75

Q(0)p(1) = 80 × 0.75$ = 60$ e(1) = 20$
t=2 h̃ = 20$ h(2) = 30$ φ = 0.6

Q(2)p(1) = 40 × 0.75$ = 30$ e(1) = 20$

Table 1: Contraction of the balance sheet due to a negative asset price shock.

Bank balance-sheet
Time Total Assets Liabilities Leverage
t=0 h̃ = 20$ h(0) = 60$ φ = 0.6

Q(0)p(0) = 80 × 1$ = 80$ e(0) = 40$
t=1 h̃ = 20$ h(1) = 60$ φ = 0.5

Q(0)p(1) = 80 × 1.25$ = 100$ e(1) = 60$
t=2 h̃ = 20$ h(2) = 90$ φ = 0.6

Q(2)p(1) = 104 × 1.25$ = 130$ e(1) = 60$

Table 2: Expansion of the balance sheet due to a positive asset price shock.

Impact of exogenous price shocks on the bank demand curve

Positive shock: pl > p∗l =⇒

φi < φ
∗
i

ei > e∗i
=⇒ Upward shift of demand curve

Negative shock: pl < p∗l =⇒

φi > φ
∗
i

ei < e∗i
=⇒ Downward shift of demand curve

Table 3: Variation of the demand curve of risky external assets as the income and leverage deviate from
the target levels.
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Parameter Description Set of Values
m Number of external assets hold in portfolio {m ∈ N : m ≥ 1}
n Number of banks investing in the same portfolio of external assets {n ∈ N : m ≥ 1}
φ Leverage measured by the debt/asset ratio {φ ∈ R : 0 ≤ φ ≤ 1}
φ∗ Target leverage which is assume to be fixed over time {φ∗ ∈ R : 0 < φ∗ < 1}
σ Common variance of external assets {σ ∈ R : 0 < σ < 1}
ε Elasticity to which banks adjust their leverage to the target one {ε ∈ R : 0 ≤ ε ≤ 1}
γ Asset price response to a shift in the aggregate demand curve {γ ∈ R : γ > 0}
ρ̄ Mean-pairwise correlation between external assets {ρ̄ ∈ R : 0 ≤ ρ̄ ≤ 1}
p∗ Equilibrium market price which equals the leverage to the target level p∗ = h∗

(
1
φ∗
− 1

1+βφ∗

)
α Fraction of external risky assets over the total amount of assets {α ∈ R : 0 ≤ α ≤ 1}
pk Asset price level after an exogenous shock {pk ∈ R : pk > 0}
r f Risk-free rate 0
ad Intercept of the linear individual demand function {ad ∈ R : ad > 0}

bd, bs Slope of the demand/supply function {bd, bs ∈ R : bd, bs > 0}
as Intercept of the supply function < ad

Table 4: Range of values for each expl. variable. Notice that p∗ is derived from the more general form
of φ given in (13).

Parameters Values and Market Characteristics
m φ∗ σ ρ̄ p∗ pk β α N dt T ε γ

1-100 0.5 0.5 0.3 0.6 0.6 0.1 ≈ 1 2000 0.01 50000 0.1 1 Plain-Vanilla Market
1 10 Leverage-Cycle Market

Table 5: Range of values used in the simulations.

Scenarios Description Level of price shock
Good State (1) Strong positive price shock pk = 0.7 > p∗ (+16.67%)
Good State (2) Normal positive price shock pk = 0.65 > p∗ (+8.33%)
Good State (3) Weak positive price shock pk = 0.625 > p∗ (+4.17%)
Normal State No-price shock pk = 0.6 ≡ p∗ (±0%)
Bad State (1) Strong negative price shock pk = 0.575 < p∗ (−16.67%)
Bad State (2) Normal negative price shock pk = 0.55 < p∗ (−8.33%)
Bad State (3) Weak negative price shock pk = 0.5 < p∗ (−4.17%)

Table 6: Scenarios of possible price shocks. (Equilibrium price p∗ = 0.6).
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Delta Hedging of a long stock position
Replication Strategy

Short sales of stock Investment in the risk-free bond
T − t S P ∆(put) Change in ∆(put) N × (∆′(put)S

′ − ∆(put)S ) N × (P′ − P + ∆(put)S − ∆′(put)S
′)

(1) (2) (3) (4) (5) (6)
12 50 7.2054 -0.326355 – -16317 23523
11 51 6.69078 -0.318389 +0.00796603 +80 -594
10 52 6.15795 -0.309693 +0.00869578 +213 -667
9 53 5.60473 -0.300000 +0.00965049 +122 -755
8 54 5.02884 -0.289126 +0.0109163 +289 -865
7 55 4.42764 -0.276500 +0.0126274 +405 -1007
6 54 4.35517 -0.296022 -0.0195229 -778 +705
5 53 4.25611 -0.318816 -0.0227937 -912 +813
4 52 4.11900 -0.346173 -0.0273579 -1104 +967
3 51 3.92395 -0.380484 -0.0343103 -1404 +1208
2 50 3.63121 -0.427120 -0.046636 -1951 +1658
1 49 3.13802 -0.504015 -0.0768953 -3341 +2848

Table 7: Portfolio Insurance: Synthetic Protective Put.

B Two examples of the procyclicality

Target Leverage of dynamic balance sheet management Let’s suppose at time t=0, the bank targets the
leverage φ to φ∗ = 0.6. The balance sheet is outlined in Table 2 in Appendix Section A. Then, due to an exogenous
shock, let p to raise by 25% such that p(1) = 1.25$. Then, the total assets increase to 100$ (80 × 1.25$ = 100$).
On the liability side, the equities adjust to 60$, while debts stay constant at 60$. So, the new leverage φ becomes
0.5 (i.e., 60$/120$) which is lower than the target one. In order to re-adjust up its leverage to the target level, the
bank desires to increase its debts and invest the funding in external assets.25 The bank takes 30$ of additional debts
to finance 24 units of external assets at p(1) = 1.25$ such that at time t=2, the external assets amount to 130$.
Namely, (80+24)×1.25$ = 130$. The new balance sheet is the followings. Assets comprises 20$ of claims against
other banks and 130$ of external assets. While, the liability side is given by 90$ of debts (i.e., 60$ + 30$) and 60$
of equities which value remains unchanged. After the purchase of new assets, leverage φ goes back to the target
level of 0.6 (i.e., 90$/150$ = 06). (See Table 2 in Appendix Section A).

Prociclycality of dynamic portfolio strategies A part from the situation of target leverage sketched in
Section 2, the analysis of derivatives allows us to extend the range of those cases when the procyclical balance
sheet management is at work. For example, we can think at a bank which holds a portfolio composed by a relatively

25As alternative solution, a bank could decrease its equity value for example by buying back its on equities from the market.
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large number of shares invested in equities x at price S , issued by a firm X with a performance over the market
average. Once X is unexpectedly hit by an important shock, and this information is disclosed, it is more likely that
the market reacts positioning itself on the sell side of the book. The final effect will be a downturn of x. Since X
performed well till the negative event, it is likely that (i) the market does not react immediately to the news and (ii)
x will rise after X will recover from the negative shock. In this context, the bank is likely to keep holding its long
position on x, but in the same time it will try to lookout for hedge strategies which effectively insure the portfolio
value i.e. keep it from dropping below a certain acceptable level. One type of hedge that can be used to protect
stock holdings is the “insurance hedge”. An insured hedge only attempts to protect an investor against the effects of
a ruinous decline in the value of the portfolio being hedged, while enabling to participate in upside appreciation. In
effect, the insured hedge attempts to prevent the value of a portfolio from falling below some floor value, without
materially inhibiting its upside performance. The classic portfolio insurance strategy is the so called “protective
put”. This strategy simply requires the hedger to purchase a sufficient number of put options to fully cover the
number of shares held long, with the strike price of the option set equal to the floor value below which the hedger
does not want the value of the price per share to fall. In practice, if the floor is set equal to the current stock price,
the strategy is implemented as follows. The hedger buy an at-the-money put options on stock x at price P with
strike price K = S . The option gives the right to sell at26 a certain future time, the external assets at the price of K
(i.e., the floor). In this way, the bank locks in the gains and have the "right to sell the stock" for K. And like any
type of insurance, the bank have to pay a premium, (the cost P of the option).

The value of a put option for a non-paying dividend underlying stock derives from Black and Scholes (1973);
Merton (1973)

P = Φ(−d2)Ke−rs − Φ(−d1)S (17)

where Φ(x) = 1
√

2π

∫ x
−∞

e−
y2

2 dy = 1 − 1
√

2π

∫ ∞
−x e−

y2

2 dy is the cumulative probability distribution function for a stan-

dardized normal distribution; d1 =
ln(S/K)+(r f +0.5σ2)(T−t)

σ
√

(T−t)
; d2 =

ln(S/K)+(r f−0.5σ2)(T−t)
σ
√

(T−t)
= d1 − σ

√
τ; S is current stock

price; K is the strike price; σ is the stock volatility; T − t is the time to maturity and r f is the risk-free interest rate.

Some portfolio insurance strategies have been created that do not require the purchase of put options. Instead,
a “synthetic put”, whose payoff pattern behaves like a put with a given strike price, is created. Combining this
synthetic put with a long position in the stock being hedged will produce a synthetic protective put strategy. It is
possible to synthesize a protective put strategy without using any options at all via “dynamic hedging”. For a single
stock portfolio, this involves taking position in the underlying stock such that the delta of the position is maintained
equal to the delta of the required option. In order to synthetically engineer the payoff of an European put option
on a single underlying risky asset, the bank must ensure at any given point of time t, a proportion ∆(put) of the
underlying stock in the portfolio has been sold and the proceeds invested in cash (earning the risk-free rate).27

Precisely, if the relation option/stock is 1:1 (e.g. one put option per one share), the canonical payoff replication
strategy consists in short-selling N × ∆(put) shares of stock and buy the riskless bond B. The total value of such a

26“At” is replaced by “within” for American options.
27If there is more than one underlying asset, the option-based portfolio insurance can be extended using the same basic

principle. The payoff from the multi-asset option may be synthetically replicated by a portfolio consisting of positions in all the
underlying stocks together with a riskless bond. The technicality associated with this approach imply to uniquely determine the
proportions to be invested into each of the underlying stocks and cash. Thus, one must know the deltas of the multi-asset option
i.e., the partial derivatives of the option price with respect to each of the underlying assets.
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trade, corresponds to the value of N puts

N × P = B − N × ∆(put)S (18)

where
∆(put) = −Φ(−d1) = Φ(d1) − 1 < 0 . (19)

As a result, this trade is procyclical. For any dS > 0, the bank should buy N∆(put) of stocks and sell risk-free asset.28

The dynamic hedging is a “momentum” strategy. This trade just increases or decreases the risky asset price and the
related volatility. Hence, if more then one bank adopts the same strategy, the final result consist on feedback loop
on S with an increment of the credit spread in a downturn market.29 See Table 7 in Appendix Section A. Dynamic
hedging is based on the principle that when a stock gets close to its floor price, the investor moves out of the stock
and into cash. As the price moves away from the floor, the investor moves into the stock and out of cash. 30 By
doing this, the hedger reduces the probability that the portfolio will fall below the floor (because, at the floor, the
portfolio will be all cash); yet as the value of the portfolio rises above the floor, she becomes more fully invested
in stocks so that she can fully participate in the upside potential.31

In the following, we give a numerical example of a dynamic hedging strategy for a single-stock portfolio. Let’s
assume that the bank holds N = 1000 shares of not-paying dividend stocks x at current price S = 50$ and want
to protect itself against market downturns in the next twelve months by locking the price to 50$. To immunize the
portfolio, the bank decides to set up a synthetic put strategy. Let the time to maturity of the “imaginary put” be
T − t = 1 (i.e., 12 months to expiration), r f = 0.1, σ = 0.5, the strike price K = 50$. Then applying (17)and (19)
we get ∆(put) = −0.326355 and P = 7, 20524$, respectively. From (18), the bank short-sell N ×∆(put) shares of x at
50$ and invests B = N × P + N × ∆(put) × S = 1000 × 7, 20524& = B − 1000 × (−0.326355) × 50$ in the riskless
bond s.t. B = 23.523$. Let’s assume the bank rebalance its delta-hedging every month.32 At T − t = 0.916667 (i.e.,
11 months to maturity), let the new stock price S ′ be 51$. From (17) and (19), the new put price is P′ = 6.69078,
and the new delta is ∆′(put) = −0.318389. To adjust the hedge, the bank as to buy N × (∆′(put)S

′ − ∆(put)S ) = 80$

28The opposite trade is done in a falling market.
29This exactly simplifies what happened in the financial crash of October 19, 1987 (when the market fell more than 20% in

one day) as explained by the Brady Report (1988). There were no significant news events of sufficient importance to explain
the magnitude of the price fall. The Brady Report therefore focused on internal market causes rather than external events. In
particular, the Brady Report centered attention on a number of large institutions following “price insensitive strategies” such as
portfolio insurance. It describes enormous waves of portfolio insurance selling driving down prices. This led to a vicious circle,
as the selling engendered further price declines which in turn led to further portfolio insurance selling, etc. A small initial price
decline snowballed into a substantial meltdown.

30As the value of the original portfolio declines, the delta of the put becomes more and more negative meaning that a
higher and higher proportionate allocation must be made to the risk-free asset. Conversely, as the value of the original portfolio
increases, the delta of the put option becomes less and less negative implying that funds must be withdrawn from the risk-free
asset and used to buy more of the underlying stock.

31In our case, the floor is fixed at K (i.e., the strike price of the “imaginary put”). As the value of the portfolio rises above K,
the bank increases exposure to x. As the value of the portfolio falls toward K, it reduces exposure to x.

32It is likely to be given that in most practical settings the presence of transaction costs rule out frequent rebalancing of the
replicating portfolio.
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shares of x. On the same time the bank must sell

N ×
[
(P′ − P) + (∆(put) × S ) − (∆′(put) × S ′)

]
= 1000 ×

[
(6.69078 − 7.20524) + (−0.326355 × 50$) − (−0.318389 × 51$)

]
= −594$

of riskless bonds. Now, let assume that at time T − t = 05 (i.e., 6 months to maturity), S declines from 55$ to 54$.
From (17) and (19), the new put price is P′ = 4.35517, and the new delta is ∆′(put) = −0.296020. To adjust the
hedge, the bank as to sell N × (∆′(put)S

′ − ∆(put)S ) = 778$ shares of x. On the same time the bank must buy

N ×
[
(P′ − P) + (∆(put) × S ) − (∆′(put) × S ′)

]
= 1000 ×

[
(4.35517 − 4.42764) + (−0.296022 × 54$) − (−0.2765 × 55$)

]
= 705$.

of riskless bonds. This is a procyclical trade. For example at time T − t = 11, to hedge the position, when S rises
from 50$ to 51$, the bank has to buy assets for 80$ (see column 5 in Table 7 in Appendix Section A) and sell
bonds for 594$ (see column 6 in Table 7 in Appendix Section A). While, when at time T − t = 6, S drops from
55$ to 54$, to hedge the position the bank has to sell assets for 778$ (see column 5 in Table 7 in Appendix Section
A) and buy bonds for 705$ (see column 6 in Table 7 in Appendix Section A).

C An Accounting Rule Based on Target Leverage

In this section we derive the accounting rules (7)-(8). As in the example of sub-Section 2.2, the underly-
ing assumption is that banks adjust their balance sheets only acting on the quantity of external assets, while
the amount of claims against other banks is unaffected by the accounting rule. In formulas:

∑
j Wi j(0)h̃ j(0) =∑

j Wi jh̃ j for all t ≥ 0 and all i, j ∈ Ωn. The bank i starts at time t=0 its activity with a target leverage,
φi(0) = hi(0)/

[∑
l Qil(0)pl(0) +

∑
j Wi jh̃ j

]
≡ φ∗i . At time t=1, one external asset is shocked. The new price

pl(1) entails a leverage deviation from the target level. Namely, φi(1) = hi(0)/
[∑

l Qil(0)pl(1) +
∑

j Wi jh̃
]
, φ∗i .

While the quantities hi, h̃ j, Qil remain unchanged as they are at time t=0. After the price shock, the bank ad-
justs its balance sheet and at time t=2 the leverage is back to the target level. The bank achieves the goal by
changing the quantity of external investments in the asset side, i.e.,

∑
l Qil(0) →

∑
l Qil(2), and debts in the

liability side, i.e., hi(0) → hi(2) so that the new leverage at time t=2 is equal to the target level. Namely,
φi(2) = hi(2)/

[∑
l Qil(2)pl(1) +

∑
j Wi jh̃ j

]
≡ hi(0)/

[∑
l Qil(0)pl(0) +

∑
j Wi jh̃ j

]
≡ φ∗i . Rewriting the equation of φ

at time t=1 we have
∑

j Wi jh̃ j +
∑

l Qil(0)pl(1) = hi(0)/φi(1)⇒
∑

j Wi jh̃ j = hi(0)/φi(1)−
∑

l Qil(0)pl(1) that we sub-
stitute into the equation of φ at time t=2 as follows φi(2) = hi(2)/

[∑
l Qil(2)pl(1) + hi(0)/φi(1) −

∑
l Qil(0)pl(1)

]
=

hi(2)/
[
hi(0)/φi(1) + ∆Qil(2)pl(1)

]
≡ φ∗i . In the last expression ∆Qil indicates the change in quantity of asset l on

the balance sheet of bank i. We can then write

hi(0)
φi(0)

+ ∆Qil(2)pl(1) =
hi(2)
φ∗i

. (20)
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Since positive (negative) variations of external asset amounts are used to decrease (increase) the value of debts on
the liability side, there exists the following relation between change in debt value and change in asset value

hi(2) = hi(0) + ∆Qil(2)pl(1) . (21)

Then, replacing (21) into (20) yields hi(0)
φi(0) + ∆Qi(2)pl(1) =

hi(0)
φ∗i

+
∆Qil(2)pl(1)

φ∗i
, from which, with little arrangements

we obtain

∆Qil(2)pl(1) =
hi(0)
φi(0)

(
φ∗i − φi(0)

1 − φ∗i

)
. (22)

In the case the bank is modifying the quantity of more than one asset at the same time, the equation simply becomes

∑
l∈S

∆Qil(2)pl(1) =
hi(0)
φi(0)

(
φ∗i − φi(0)

1 − φ∗i

)
, (23)

where S is the set of assets the quantity of which are modified. The rate of change of the demand is∑
l∈S ∆Qil(2)pl(1)∑
l∈S Qil(0)pl(1)

=
ai(0)∑

l∈S Qil(0)pl(1)

(
φ∗i − φi(0)

1 − φ∗i

)
, (24)

and depends on ratio between the assets affected by the accounting rule and the total assets of the bank (all the
external assets plus the claims on the other banks). The equation above specifies only a condition for the changes
in quantity across the assets in the set S . There maybe several allocations of the various ∆Qil(2) with l ∈ S that
satisfy the condition. Thus, the allocation chosen by the bank needs to be further specified. In our analysis of the
model, we have focused on the case in which assets can be treated as a single one for what concerns the accounting
rule. This is justified in the hypothesis that they belong to the same homogeneous asset class.

In the case a single asset is affected, the rate of change of the demand becomes

∆Qil(2)
Qil(0)

=
1
αil

(
φ∗i − φi(0)

1 − φ∗i

)
(25)

where αil = Qil(0)pl(1)/ai(0) is a fraction measuring relative value of the external asset l w.r.t. the total assets
held by the bank. Because the proceedings/cost from the variation in quantity of external assets are used to ex-
pand/decrease the liabilities, a variation ∆Qil(2) is followed by a variation ∆hi(2). The relative change in debts is
easily obtained from Equation 21,

∆hi(2)
hi(0)

=
1

φi(0)

(
φ∗i − φi(0)

1 − φ∗i

)
(26)

In presence of market frictions,33 we assume that the bank reacts with a certain (in)elasticity εi ∈ (0, 1] to deviations
in leverage φi from the target level. Heuristically, in continuous time the accounting rule implies the following (rates
of) change, respectively, for the demand for external assets and the amount of nominal debts

dQil

Qil
=

(
εi

αil

) (
φ∗i − φi

1 − φ∗i

)
dt (27)

dhi

hi
=

(
εi

φi

) (
φ∗i − φi

1 − φ∗i

)
dt . (28)

where αi =
∑

l αil. The boundary conditions are: (i) dQi
Qi

=
∑

l

(
dQil
Qil

)
s.t. dQil

Qil
= 0 for some l ∈ Ωm; (ii) dQil ≥ −Qil

for all l ∈ Ωm and i ∈ Ωn, and (iii) dhi ≥ −hi for all i ∈ Ωn.

33I.e., market and (or) firm structures that prevent banks to adjust instantly their balance sheets with the accounting rule.
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D The Cycle between Leverage and External Assets Prices

To avoid redundancy of notation, in this section we suppress the subindex referring to the ith bank and the index
referring to the lth external asset.

For simplicity, let the external asset market equilibrium price p∗ and the quantity Q∗, be expressed as the result of
the canonical model of linear demand-supply curvesp = (bdQ + ad) (individual demand curve)

p = bsQ + as (supply curve)

where bd < 0; bs > 0; ad > 0 and as < 0.

Figure 4: Variation of the demand curve of risky external assets as the income and leverage deviate
from the target levels.

Individual demands are assumed to be equal for all market participants and for convenience of tractability, let
|ad | = |as|, which impose |bs| > |bd | since prices cannot be negative. We know that in the market there are n
banks investing in external assets with aggregate price p. The aggregated market demand is therefore the sum of
individual demands p/n = (bdQ + ad). Given these conditions, and solving for Q and p, the equilibrium quantity
and the corresponding market clearing price are Q∗ = (as − nad)/(−bs + nbd) and p∗ = n(adbs − asbd)/(bs − nbd),
respectively. Now, let assume a variation of the quantity demanded for external assets occurs, i.e., a variation
of the “y”-intercept of the demand curve from ad to a′d. Ceteris paribus, if a′d > ad (a′d < ad), the demand
curve is upward (downward) shifted to p/n = (bdQ + a′d), see Figure 4.34 The new equilibrium quantity becomes
Q∗

′

= (as − na′d)/(−bs + nbd) and the market clearing price is p∗
′

= n(a′dbs − asbd)/(bs − nbd). The rates of change

34While as, bs and bd remain unchanged.
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of the equilibrium quantity and the market clearing price, between pre and post demand shift, are

δQ∗ :=
Q∗

′

− Q∗

Q∗
= (asbd(−1 + n) + a′d(−bs + bd)n + ad(bs − nbd))/((as − ad)(bs − nbd))

δp∗ :=
p∗
′

− p∗

p∗
= −((bs(asbd(−1 + n) + a′d(−bs + bd)n + ad(bs − nbd)))/((adbs − asbd)(bs − nbd))) .

The rate of change of the aggregated quantity can also be written in terms of the rate of change of the individual
demand

δQ∗ = ηδq

where δq := (ad − a′d)/(as − ad) is the change in the demand induced by a single individual agent, while η :=
(asbd(−1 + n) + a′d(−bs + bd)n + ad(bs − nbd))/((ad − a′d) ∗ (bs − nbd)) is a parameter linking the aggregate rate of
change of the demand to the market size n. Namely, ∂η/∂n > 0. Equivalently, the rate of change of the equilibrium
price can be written as

δp∗ = ηδp

where δp := −((bs(ad(bs − bd) + a′d(−bs + bd)))/((bs − bd)(adbd − asbs))) represents the change in the equilibrium
price in response to an individual demand variation. Since δp = ζδq where ζ = ((as − ad)bs)/((−ad)bs + asbd) is a
parameter always bigger than one,

δp∗ = ηζδq = γδq , γ := ηζ.

Now, if we assume that the shift of the demand curve is due to an income effect (See Table 3 in Appendix Section
A) which imposes a bank to apply the accounting rule (8), then in equilibrium δq :=

(
ε
α

) (
φ∗−φ
1−φ∗

)
and

δp∗ = γ
(
ε

α

) (
φ∗ − φ

1 − φ∗

)
.

Let the deterministic, predictable part of dp/p in (12) be expressed by the rate of change of the market clearing
price δp∗. Then, dp

p = γδqdt + σdB which is equivalent to

dp
p

= γ
(
ε

α

) (
φ∗ − φ

1 − φ∗

)
dt + σdB .

The expression encompasses the leverage-asset price cycle. The drift can be written also as γε
(

∆φ

1−φ∗

)
where ∆φ :=

φ∗ − φ. Its partial derivative w.r.t. ∆φ is positive, which is consistent with the example in the Section 2.2. When
∆φ > 0, the current leverage is lower than the target one, since the price of risky assets have been positively shocked
up. If banks follow the accounting rule (8), the demand curve upward shifts and the price level increases. When
∆φ < 0, the current leverage is higher than the target level. This happens because the price of risky assets have
been negatively shocked down. Again, if banks follow the accounting rule (8), the demand curve shifts downward
and the prices level decreases. The feedback loop leverage-asset prices is strengthen with the number of banks.35

In other terms, the reaction δp∗ to δq is amplified if the number n of banks investing in the same bundle of external
assets increases.36

35The partial derivative (∂η)/(∂n) is always positive for any value of bs, bd, ad and as reported in Table 4 in Appendix Section
A.

36The effect is even stronger, if the demand-supply curves are described by non-linear functions.
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E Expected time to Default

Leverage in (13) takes values between zero and one. When leverage is closed to the upper default barrier at one,
the bank is fragile and the default probability is closed to one. On the contrary, when the leverage approach the
lower barrier at zero, the bank is robust and the probability of a default closed to zero. Therefore, the default risk
of a bank depends on the probability that, her initial leverage touches its upper default bound fixed at one. More
formally the default probability P(1, t | φ0, 0) is defined as the probability that the process {φ}t≥0, initially starting
at an arbitrary level φ0 ∈ (0, 1) exits through the default barrier 1 at any time t ≥ 0. In a stochastic setting, it is
common to relate the default probability to the first time to default (τ).

Definition E.1 (Expected Time to Default). The first time to default (τ), is defined as the first time the process
{φ}t≥0 touches the upper bound of the set Ωφ := (0, 1]. Namely, τ = inf{t ≥ 0 : φ(t) ≥ 1} with inf{∅} = ∞ if one is
never reached. The full characterization of τ is its transition probability density function fφ(1, t | φ0, 0).37 Then,
the expected time to default is

τ̄ :=
∫ ∞

0
t fφ(1, t | φ0, 0)dt (29)

which is the expected first hitting time for {φ}t≥0 to reach the absorbing default barrier.

F Numerical Analysis

In this section, we show how to obtain the expected exit time from the system (11), via a simulation of the SDEs.
The first step is to simulate the standard Brownian motion. Then we look at stochastic differential equations, after
which we will look at the expected exit time.

Simulation of Brownian Motion We start considering a discretized version of Brownian motion. 38 We set
the step-size ∆t and let W` denote W(t`) with t` = `∆t. According to the properties of the Brownian motion, we
find

W` = W`−1 + dW j ` = 1, ..., L. (30)

Here L denotes the number of steps that we take with t0, t1, ..., tL being a discretization of the interval [0,T ], and
dW` is a normally distributed random variable with zero mean and variance ∆t. Expression (30) can be seen as a
numerical recipe to simulate Brownian motion.

37A standard approach to derive fφ(1, t | φ0, 0) is to inverse its Laplace transform E[e−λτ], where λ < 0.
38We recall that a stochastic process {W(t, ω)t ∈ R+, ω ∈ Ω} is called (standard) Wiener process if: (i) W(0) = 0, (ii) it has

stationary, independent increments. Namely, for all 0 < t0 < t1 < ... < tk, the increments W(tk) −W(tk−1), ...,W(t1) −W(t0) are
independent; (iii) for all t > s the increment W(t) −W(s) has the normal distribution with expectation 0 and variance t − s, i.e.,

P(W(t)−W(s) ∈ Γ) = 1
√

2π(t−s)

∫
Γ

exp
−y2

2(t−s) hy, Γ ∈ R. The Wiener process is said to be adapted to filtration F = (F )t∈[0,T ], if ω(t)
is a random variable F-measurable for all t ≥ 0.
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Simulation of the SDEs We use the Euler-Maruyama method. First, we discretize the dynamics of the two
process {p}t≥0 and {h}t≥0. Then, we substitute the value of p and h in the discrete time version of (13) which read
as39

φ` =
1

2βp`

[
h`(β − 1) − p` +

(
4βh`p` + (h`(1 − β) + p`)2

)1/2
]
. (31)

The dynamics of debts and price have the general forms,

dp
p

= µ̄(φ, p, φ∗, γ, ε)dt + σ̄dW(t) , p(0) = p0 , (32)

dh
h

= µ(φ, h, φ∗, ε)dt , h(0) = h0 , (33)

which are discretized as follows

p` = p`−1 + µ̄(φ`−1, p`−1, φ
∗, γ, ε)∆t + σ̄(p`−1)dW` ,

h` = h`−1 + µh(φ`−1, h`−1, φ
∗, ε)∆t .

Here φ`, p` and h` are the approximation to φ(`∆t), p(`∆t) and h(`∆t). While, ∆t is the step size, dW` = W` −W`−1

and L is the number of steps we take.

Estimation of expected time to default The expected exit time can be approximated in the following man-
ner. We start by simulating a sample path of {p}t≥0, {h}t≥0 and {φ}t≥0. While simulating the sample path of {φ}t≥0,
we observe whether it crosses the default boundary fixed at one. Since the boundary is absorbing, the sample path
can no longer exits through one. This gives us an approximation to the exit time of the current sample path. By
using a Monte Carlo method, we estimate the expected exit time of the system. We simulate a total of N sample
paths within [0,T ]. The time interval is set sufficiently large so that all the trajectories of {φ}t≥0 exit through 1.
Then, we take the sample average of the time taken by those N trajectories to touch the upper bound. Let, the rth
realization of the path of {φ}t≥0 be denoted as {φr}t≥0 with r = 1, ...,N. For each of these paths the random variable
τ exits through the default boundary is defined as τr = inf{t ≥ 0 : φrt ≥ 1} with r = 1, ...,N. The expected default
time τ̄ is approximated as the total sum of exit times divided by the number N of paths

τ̄ =
1
N

N∑
r

τr(11φrt=1) ≈
∫ ∞

0
t fφ(1, t | φ0, 0)dt . (34)
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