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Abstract

In this thesis we approach different aspects of the all-pervasive correspondence prob-
lem in Computer Vision. Our main results take advantage of recent developments in the
emerging field of game-theoretic methods for Machine Learning and Pattern Recognition,
which we adapt and shape into a general framework that is flexible enough to accom-
modate rather specific and commonly encountered correspondence problems within the
areas of 3D reconstruction and shape analysis. We apply said framework to a variety of
matching scenarios and test its effectiveness over a wide selection of applicative domains,
demonstrating and motivating its capability to deliver sparse, yet very robust solutions to
domain-specific instances of the matching problem. Finally, we provide some theoretical
insights that both confirm the validity of the method in a rigorous manner and foster new
interesting directions of research.






Sommario

In questa tesi affrontiamo diversi aspetti del dilagante problema della corrispondenza
nella Visione Artificiale. I nostri risultati principali traggono vantaggio da sviluppi re-
centi nel campo emergente dei metodi basati sulla Teoria dei Giochi in Machine Learning
e Pattern Recognition, che adattiamo in un framework piu generale. Tale framework ¢
sufficientemente flessibile da gestire problemi di corrispondenza piuttosto specifici che
comunemente si incontrano nelle aree della ricostruzione tridimensionale e di shape anal-
ysis. Il nostro metodo viene applicato a diversi scenari e altrettanti domini applicativi,
dimostrando e motivandone I’efficacia nel fornire soluzioni sparse, ma al contempo molto
robuste, a istanze specifiche del problema della corrispondenza. Diamo infine alcuni el-
ementi teorici che non solo confermano in maniera rigorosa la validita del metodo, ma
aprono anche nuove e interessanti direzioni di ricerca.






Contents

Preface il
Published Papers
Introduction 5
Related Work

2.1 Camera Model and Epipolar Geometry . . . . . . . ... ... ... ... Ol
2.1.1 Camera Calibration . . . . . . . . ... ... ........... [l
2.2 Structured Light . . . . . . ... ... ... .
2.3 Structure fromMotion . . ... ...
2.3.1 Features Extraction and Matching . . . . ... ... .. ..... [16]
2.3.2 Parameters Estimation . . . . ... ... ... ... ... ...
2.4 Fine and Coarse Registration Techniques . . . . . . ... ... ... ...

2.4.1 Feature Detectionon 3D Objects . . . . . .. ... ... ..... 20)
2.5 ObjectRecognition . . . . . . . ... ... ... ... 211
2.6 Game Theory in Computer Vision . . . . . . .. ... .. ... .....
2.6.1 Non-cooperative Games . . . . . . . . .. .. ... ....... 23]
2.6.2 Evolutionary Dynamics . . . . .. ... ... .. .. ...... 26|
2,63 MatchingGame . . . . . . ... ... ... ... ... ... 28]
The Reconstruction Process 31
3.1 Robust Camera Calibration using Inaccurate Targets . . . . . . . .. ... 31l
3.1.1 Camera calibration with inaccurate targets . . . . . .. ... ... B2l
3.1.2 Experimentalresults . . . .. ... .. ... ... ... ...
3.1.3 Conclusions . . . . . . ... L 39
3.2 Fast Reconstruction by Unambiguous Compound Phase Coding . . . . . 40]
3.2.1 Multi-Period Phase Coding . . . . . . ... ... ... ......
3.2.2 Compound Phase Coding . . . . .. ... ... ... .......
3.2.3 Experimentalresults . . . ... ... ... ............ 44
324 Conclusions . . . . .. ... S0)
Features Selection 1]
4.1 Figure Extraction from Textured Backgrounds . . . . . . ... ... ...
4.1.1 Filtering a Textured Background . . . . . ... ... ....... 52
4.1.2 Matching ModelandData . . . . . ... ... .......... 53]
4.1.3 Experimental Evaluation . . . . . ... ... ... ........

4.1.4 Interest Points Detection . . . . . . . . . . . . . ... ... ... 55|



i Contents
415 Conclusions . . . . . ... ... 57
4.2 Sampling Relevant Points for Surface Registration . . . . . . . ... ... 57
4.2.1 Relevance-based Sampling . . . . . ... ... ... ....... 60
4.2.2 Experimental Evaluation . . . . . ... ... ...........

423 Conclusions . . . . . . . . . ... 65

5 Correspondence Selection in Structure from Motion
5.1 Introduction . . . . . .. . .. ... 67}
5.2 Non-Cooperative Games for Inlier Selection . . . . . . . ... ... ... 68
5.2.1 Refinement by Epipolar Constraint Enforcement . . . . . . . .. (74
5.3 Experimental Results . . . . . ... ... ... .. ... .........
5.3.1 General Setup and Datasets . . . . ... ............. [7d

5.3.2 Influence of Parameters . . . . . . . .. ... ... ... .....

5.3.3 Comparisons between Approaches . . . . . ... ... ... ... 82]
5.3.4 Complexity and Running Time . . . . . ... .. ... ...... i
54 Conclusions . . . . . . . ... e 87
6 Surface Registration and Multiview Error Diffusion 89|
6.1 Surface Alignment Through an Isometry-Enforcing Game . . ... . ..
6.1.1 Matches as Strategies . . . . . . . . .. ...
6.1.2 SurfaceHashes . . . . . ... ... ... ... ... ... ...
6.2 Isometry-Enforcing Payoff . . . . . ... ... ... .. ... ......
6.3 Experimental Results . . . . ... ... ... ... ... ... ... 96
6.3.1 Sensitivity Analysis of the Descriptor . . . . . . ... ... ... 98
6.3.2  Sensitivity to Parameters of the Matcher . . . . . . .. ... ... 9]
6.3.3 Comparison with Full Pipelines . . . . ... ... ........ 100!
6.3.4 Influence of different Feature Descriptors . . . . . . .. ... ..
6.3.5 Quality of Fine Registration . . . . . ... ... ... ...... 103]
6.3.6 Some Qualitative Results . . . . . . . ... ... ... ...... 104
6.3.7 Memory and Execution Time . . . ... ... ... ....... 105l
6.4 Multiview Registration via Graph Diffusion of Dual Quaternions . . . . . 106
6.4.1 Introduction. . . .. .. ... .. ... ... ... ... ...,
6.4.2 Dual Quaternions and 3D Transformations . . . . ... .. ... 109]
6.4.3 View-Graph Diffusion . . ... ... ... ... ......... 11l
6.4.4 Experimental Evaluation . . . . .. ... ... .......... 113
6.5 Conclusions . . . . . . . .. .. 18]
7 A Scale Independent Game for 3D Object Recognition 121
7.1 Introduction . . . . . . . . . ... 1211
7.2 Feature Detection and Description . . . . . . . ... ... ... ..... 122
7.3 Sparse MatchingGame . . . ... ... ... ............... [123]
7.4 Scale-Invariant Matching . . . . . . ... ... ... ... ........ 1271
7.5 Experimental Results . . . . . . ... ... ... ... .......... [131]



Contents iii
7.5.1 Comparison with the State-of-the-Art . . . . .. ... ... ... 132
7.52 ResiliencetoNoise . . . . . . ... ... 133

7.5.3 Scalelnvariance . . ... ... .. ... ... ... ... 133]

7.5.4 Performance Considerations . . . . . ... ... ......... 136
7.6 Conclusions . . . . . . . . . . ... e 137

8 Non-rigid Shape Matching 139!
8.1 Introduction . . . . . . . . . ... 139
8.2 INntrinsic GEOMELTIES . . . . . . v v v e i e [M41]

8.3 Intrinsic shape correspondence . . . . . .. .. ... ... ... .. ... 142
8.3.1 Multi-scale distortion . . . . . . . .. ... ... ... ..., 144l
8.3.2 Discretization . . . . . . . .. ... 144

8.4 Game-theoretic matching . . . . . .. ... ... ... ... .. ... 1451
8.4.1 Merging correspondences . . . . . .. ... ... 146}
8.5 Experimentalresults . . . . ... ... ... ... ... .. .. ..., 148
8.5.1 Comparisons . . . . . . . ... [148]

8.5.2 Sensitivity analysis . . . . . . ... Lo 1501
8.6 ConClusions . . . . . . . . . ... [131]

9 Conclusions 153
Bibliography 159



iv

Contents




2.1

2.2

23
24

3.1

3.2

3.3

3.4

3.5

3.6

3.7

List of Figures

[lustration scheme of the pinhole camera model (a) and of the epipolar
geometry (b). See text fordetails. . . . . ... ... ... ... [l

A simplified schema that captures the general steps found in many SfM
approaches. The main loop is usually based on an iterative refinement of
the candidate scene points based of their geometric consistency with re-
spect to the estimated motion. Circles between steps represent the applied
outlier filtering strategies. . . . . . . . . . . . ... ... oL [13]

Example of SIFT features extracted and matched using the VLFeat package.

A typical 3D object recognition scenario. Clutter of the scene and occlu-
sion due to the geometry of the ranging sensor seriously hinder the ability
of both global and feature-based techniques to spot the model. . . . . . . 22

The strongly polarized distribution of the reprojection error with respect
to target points obtained in our calibration experiments (left figure) sug-
gests that the measurements on images were not subject to zero-mean
error. On the other hand, the distribution of the error on the image plane
(right figure) is isotropic, assessing the good compensation of radial and
tangential distortions and the reliability of the corner detector. This sup-
ports our hypothesis that the discrepancies are due to systematic printing
errors (errors magnified by a factor of 100). . . . . . ... ... ... .. 32

Reprojection errors superimposed over the corresponding image point ob-
tained with a direct application of the calibration procedure with the the-
oretical checkerboard (left figure) and with the more accurate estimated

model (right figure). . . . . . . . ... ... .. 33
The simple, yet effective, algorithm proposed to iteratively estimate the
intrinsic camera calibration and the real target geometry. . . . . . . . .. B4

Convergence of both internal and distortion parameters with respect to
subsequent iterations of our method. . . . . . . ... ... ... ... .. 36l

Convergence of reprojection error (left) and distance of the estimated cali-
bration object with respect to the theoretical checkerboard (right) for sub-
sequent iterations of the proposed method. . . . . . . .. ... ... ...

Reprojection error (magnified by a factor 100) with respect to the model
points (first graph) and the sensor plane (second graph) after our method
COMES {0 CONVEIZENCE. . . . v v v v v e e e e et e e e e e e e e e 38

Verification of the calibration quality by means of a stereo measuring
check (see text fordetails). . . . . . . . . ... ... ... .. ... ... 39



Vi

List of Figures

3.8

3.9

3.10
3.11

3.12

3.13

3.14

4.1
4.2
4.3
4.4
4.5

The composition of k fringe patterns, plus one unknown shift signal will
produce a total of 2(k + 1) image patterns that will be projected onto the
surface to be reconstructed. The shift pattern (projector scaling) accounts
for the unknown value of the albedo of the surface. . ... ... ... ..

A total of 2K+2 images of illuminated objects are captured and single
phase values are calculated for each composed fringe signal. Those val-
ues are subsequently used to get an unambiguous coding. Note that the
intensity profile of each projected pattern is not sinusoidal. . . . . . . . .

The general purpose structured light scannerused. . . . . . . .. ... ..

Accuracy comparison between the Compound Phase Coding method and
the Multi-Period Phase Shift technique. In figure we used periods
of 7, 11 and 13 pixels (30 patterns for Multi-Period Phase Shift), and in
figure [3.11(b) we used periods of length 9, 11 and 13 (34 patterns for
Multi-Period Phase Shift). Note that the Multi-Period technique appears
as a flat continuous red line and its standard deviation as dashed red lines.
Vertical bars are standard deviations in the measurement of the error for
the compound technique. . . . . . . . ... ... ... ... ...

Comparison between reconstructions obtained with the Multi-Period Phase
Shift and the Compound Phase Coding on several test objects. Compound
Phase Coding has been tested using both 8 and 16 samples. Multi-Period
Phase Shift has been tested with 34 samples in order to obtain the best
quality. Distances are in microns and objects are 5 to 10 cm wide.

A surface reconstruction example complete with deviation assessment. In
the first colum, the object as viewed by the left and right camera. In the
second column, the deviance maps of Multi-Period Phase Shift (top) and
Compound Phase Coding (bottom). In the last colums, two respective
close-ups of the reconstructed surfaces. . . .. ... ... ... .....

A comparison of the coding and of the phase values extracted by our
technique and by Multi-Period phase shift. In the first colum we show
the final codings and their difference. In the other columns we display the
respective phase images for two reconstructed signals. The two magnified
plots in the last row correspond to the small red segment. Note that the
obtained phases are very similar even in the proximity of critical areas. . .

Examples of the two evolutionary matching games proposed. . . . . . . .
Background filtering and feature matching (best viewed in color).

Comparison with RANSAC and effect of image noise. . . . .. ... ..
Example of the interest points detection process. . . . . . . . .. ... ..

The two regions compete for the samples, resulting in a larger number of
samples on the large low curvature area than on the smaller part. This
results in a bias in the distance measure. . . . . . . . ... ... ... ..

4]



List of Figures vii

4.6 Theregion A, grows in all directions in a “flat” part of the surface, in only
one direction along edges and boundaries and does not grow much at all

ON VETTICES. . .« . v v v v v e e et e e e e e e e e e e 59|
4.7 Examples of the different sampling approaches. . . . . . ... ... ... 61]
4.8 Closeup of the samples. Relevance-based sampling concentrates samples

along the surfaces’ fine structures. . . . . . .. . ... ... ... .... 62}
4.9 Slices of the surfaces aligned with the three sampling strategies. . . . . . 63|
4.10 Effects of parameters on rotational and translational error. . . . . . . . . . [64]

4.11 Comparison of rotational and translational error obtained with the three
sampling Strategies. . . . . . . . . .. ..o e e 63}

5.1 The payoff between two matching strategies is inversely proportional to
the maximum reprojection error obtained by applying the affine transfor-
mation estimated by a match totheother. . . . . .. ... ... ... .. 69|

5.2 An example of the affine-based evolutionary process. Four feature points
are extracted from two images and a total of six matching strategies are
selected as initial hypotheses. The matrix II shows the compatibilities be-
tween pairs of matching strategies according to a one-to-one similarity-
enforcing payoff function. Each matching strategy got zero payoff with
itself and with strategies that share the same source or destination point
(i.e., I1((b1, ba), (c1,b2)) = 0). Strategies that are coherent with respect to
the same similarity transformation exhibit high payoff values (i.e., I1((a1, as), (b1, b2)) =
1 and II((ay, az), (di, d2)) = 0.9)), while less compatible pairs get lower
scores (i.e., [I((ay, as), (¢1,¢2)) = 0.1). Initially (at T=0) the population
is set to the barycenter of the simplex and slightly perturbed. After just
one iteration, (¢, be) and (c1, c2) have lost a significant amount of sup-
port, while (dy, cy) and (dy,ds) are still played by a sizable amount of
population. After ten iterations (T=10) (dy, d2) has finally prevailed over
(dy,c2) (note that the two are mutually exclusive). Note that in the fi-
nal population ((aq, as), (b1, b)) have a higher support than (d;, ds) since
they are a little more coherent with respect to similarity. . . . . . . . . ..

5.3 In the presence of strong parallax, locally uniform 3D motion does not
result in a locally uniform 2D motion. From left to right: 3D scene, left
and right views, and motion estimation (from right to left). . . . . . . ..

5.4 Scale and orientation offer depth information and a second virtual point.
the conservation of the distances in green enforce consistency with a 3D
rigid transformation. . . . . . . . . .. .. ... 73



viii

List of Figures

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

6.1

An example of the selection of groups of features that agree with respect
to a common epipolar geometry. Six matching groups are selected by
the affine matching step (labelled from a to f in figure). Each pair of
feature sets is modeled as a matching strategy and the payoff among them
is reported in matrix II. Note that groups b,c and d are correctly matched
and thus exhibit an high mutual payoff. By contrast, group a (which is
consistent both in term of photometric and affine properties), e and f
are clearly mismatched with respect to the overall scene geometry, which
in turn leads to an high error on the epipolar check and thus to a low
score in the payoff matrix. At the start of the evolutionary process each
strategy obtains a fair amount of players (T=0). As expected, after just
one iteration of the replicator dynamics the more consistent staregies (b,c
and d) obtain a clear advantage. Finally, after ten iterations (T=10) the
other groups have no more support in te population and only the correct
matches survived. . . . . ... L L Lo
Analysis of the performance of the Affine Game-Theoretic approach with
respect to variation of the parameters of the algorithm. . . . . .. .. ..
Analysis of the performance of the Calibrated and Uncalibrated Projective
Game-Theoretic approaches with respect to variation of the parameters of
the algorithm. . . . . . . . .. ... ..o
Performance analysis of the virtual points approach with respect to varia-
tion of its parameters. . . . . . . . ... ..o
Results obtained with two multiple view data sets (image best viewed in
color). . . . .. e e e
Results obtained with two multiple view data sets (image best viewed in
color). . . . .. e e e
Results obtained with two stereo view data sets (image best viewed in
color). . . . .. e

Results obtained with two stereo view data sets (image best viewed in

Distribution of the reprojection error on one multiple view (top) and one
stereo pair (bottom) example. . . . . . . ..o Lo oL
Results obtained with the virtual points approach on the Dino and Temple
datasets. . . . . . ...
Comparisons of the point clouds produced by PMVS using the motion es-
timated using different matching methods. Respectively the Bundler de-
fault keymatcher (BKM), the affine game-theoretic technique (AGT) and
the calibrated and uncalibrated projective techniques (CPGT and UPGT).
Plot of the convergence time of the replicator dynamics with respect to
the number of matching strategies. . . . . . . . . ... ... ... ....

Example of three matching strategies. . . . . .. .. .. ... ... ...



List of Figures ix

6.2 An example of the evolutionary process. Four points are sampled from
the two surfaces and a total of six mating strategies are selected as initial
hypotheses. Matrix II shows the compatibilities between pairs of mating
strategies according to a one-to-one rigidity-enforcing payoff function.
Each mating strategy got zero payoff with itself and with strategies that
share the same source or destination point (e.g., 7((by, by), (¢1,b2)) = 0).
Strategies that are coherent with respect to a rigid transformation exhibit
high payoff values (e.g., 7((a1, az), (b1, b2)) = Land w((aq, az), (di,ds)) =
0.9)), while less compatible pairs get lower scores (e.g., m((a1, az), (¢1,c2)) = 0.1).
Initially (at T=0) the population is set to the barycenter of the simplex and
slightly perturbed (3-5%). After just one iteration, (c;,by) and (cq, ¢2)
have lost a significant amount of support, while (d;, c5) and (dy, dy) are
still played by a sizable amount of population. After ten iterations (T=10),
(dy, ds) has finally prevailed over (dy, c2) (note that the two are mutually
exclusive). Note that in the final population (ay, as), (b1, b2) have a larger
support than (d;, dy) since they are a little more coherent with respect to

rigidity. . . ..o 1]
6.3 Example of the two basic Surface Hashes. . . . . . . ... ... ... ..
6.4 Example of a 3-dimensional Normal Hash. . . . . . . ... ... ... .. 93]
6.5 Example of a rigidity enforcing payoff and of the evolution of the match-

INZ PIOCESS. . v v v v v e e e e e e e e e e e e e e e 94
6.6 Comparison of different descriptors using real and synthetic objects. . . .
6.7 Effect of scale on the matching accuracy. . . . . . .. ... ... ..... 98

6.8 Analysis of the sensitivity of the Game-Theoretic Matcher with respect to
the parameters of the algorithm. . . . . . ... ... . ... ... .... 100!

6.9 Comparisons between our Game-Theoretic Registration technique and
other widely used surface registration pipelines. . . . . . ... ... ...

6.10 Performance of the Game-Theoretic Registration method using feature
descriptors different than Surface Hashes. . . . . . . ... ... ... .. [102I

6.11 Comparison of fine registration accuracies (the green dashed line repre-

SENES YIX). & v v v e e e e e e e e e e 103

6.12 Examples of surface registration obtained respectively with Spin Images
(first column), MeshDOG (second column), 4PCS (third column) and our
Game-Theoretic Registration technique (last column). . . . . . . . . . .. 104

6.13 Comparison of surface reconstruction using different descriptors before
(first row) and after (second row) ICP enhancement of the coarse reg-
istration obtained respectively using Spin Images (first column), SHOT
(second column) and Surface Hashes (third column). . . . .. . ... .. 105l



List of Figures

6.14

6.15

6.16

6.17

6.18

6.19
6.20

6.21
6.22

7.1
7.2

7.3

Fully automatic registration of 12 views of the t-rex model from [99]] us-
ing the GTR pipeline with Surface Hashes. A set of range images (first
column) with unknown initial positions is given; coarse alignment is then
performed with our technique and refined with a few steps of ICP (sec-
ond and third column). The last column shows the final model obtained

by Poisson reconstruction [81]. . . . . . . ... o oo 106
Execution time of the game-theoretic registration method with respect to
the number of initial strategies. . . . . . . . . . ... ... ... ... .. 107
Comparison of the different methods in the synthetic experiments at var-
iouslevelsofnoise. . . . . . .. . ... 112
Comparison of the different methods in the synthetic experiments with
different numbers of outliers. . . . . . . . ... ... ... ... ... .. INE!
Comparison of the different methods in the synthetic experiments at var-
ious connectivity levels. . . . . . . . .. ... ...
Computation times versus noise and connectivity levels.. . . . . . . . .. 16l
Comparison of the different methods in the experiments with motion re-
fined by ICP at various levels of noise. . . . . . ... .. ......... 17
Global registration and closeup of slices of Pulli’s method and our approach.[117]

Alignments obtained with the trailing and alternating approaches, and re-
Spective timings. . . . . . . . ... e e e e e 118]
An overview of the object recognition pipeline presented. . . . . . . . . . 122

In order to avoid mismatches and reduce the convergence time it is impor-
tant to use only relevant points. Model vertices selected with a o respec-
tively equal to 8, 5 and 2 times the median model edge are shown from
lefttoright. . . . . . . . .. .. ... [123]
An example of the evolutionary process (with real data). Here we use
exponential replicator dynamics for faster convergence [108]. A set of
8 matching candidates is chosen (upper left), a payoff matrix is built to
enforce their respective Euclidean constraints (upper right, note that cells
associated to many-to-many matches are set to 0) and the replicator dy-
namics are executed (bottom graph). At the start of the process the pop-
ulation is set around the barycenter (at 0 iterations). This means that
initially the vector x represents a quasi-uniform probability distribution.
After a few evolutionary iterations the matching candidate B2 (cyan) is
extinct. This is to be expected since it is a clearly wrong correspondence
and its payoff with respect to the other strategies is very low (see the pay-
off matrix). After a few more iterations, strategy Al vanishes as well. It
should be noted that strategies D4/D5 and E6/E7 are mutually exclusive,
since they share the same scene vertex. In fact, after an initial plateau, the
demise of Al breaks the tie and finally E6 prevails over E7 and D4 over
DS5. After just 30 iterations the process stabilizes and only 4 strategies
(corresponding to the correct matches) survive. . . . . .. ... .. ... 124



List of Figures

Xi

7.4

1.5

7.6

7.7

7.8

7.9

7.11

Definition of a binary descriptor between mesh points a; and as for scale-
invariant recognition. The n equally-spaced samples along the (dotted)
segment separating the two points can be projected onto the mesh along a
specific direction, such as the normal vector at a; (a); a minimum-distance
projection can instead be computed so as to avoid the choice of a possibly
unstable direction and for increased accuracy (b); efficiency can be at-
tained by approximating minimum projections with closest points, which
is appropriate in the majority of real cases where sampling density is con-
sistent between model and scene (c); in order to be robust to occlusions,
only the first m < n/2 samples are considered (d). . . .. ... ... ..

Example of two (correct) matching distance sequences as extracted by
the scale-independent selection process. The path (red segment in the
images on the right) joins the neck of the chef to the hat and has been
sampled at a resolution of n = 100 and m = 15 samples are considered
from each endpoint, allowing to mitigate the influence of clutter on the
match. The two graphs plot model and scene descriptors originating at
the neck and hat endpoints respectively (corresponding to the blue paths
in the images). The scene (last image) is rescaled to the same scale of the
model for visualization purposes. . . . . . . . ... ...

Two mismatches generated with the method by Mian et al (first row) and
the method by Bariya and Nishino (second row), which are corrected by
our technique. The first column shows the range image of the scene, onto
which the matched models are successively registered (second column).
The chicken and chef models have been missed respectively in the first
and second scene, while our method is able to extract correct matches in
both cases (third column). The figure is best viewed in color. . . . . . . .

In the top row the recognition rate of our pipeline is compared with state-
of-the-art techniques, which are outperformed with respect to both occlu-
sion and clutter. In the bottom row the contribution of each part of the
overall approach is tested separately (see text for details). . . . . . . . ..

Evaluation of the robustness of the proposed pipeline with respect to in-
creasing positional noise applied to the scene. . . . . . . . .. ... ...

Examples of scale-invariant object retrieval from cluttered scenes. The
foot of t-rex in the top-right image demonstrates the capability of the
method to deal with strong occlusions. . . . . . .. .. ... ...

Recognition rate of the scale-invariant matching game against occlusion
and clutter. The two curves correspond to different ways of determining
the descriptor size. . . . . . . . . . ...

Time versus the number of strategies in the scale-invariant setting.



Xii List of Figures

8.1 Examples of correspondences obtained with our method. The game-

theoretic approach produces a sparse (around 1% of the shape is matched),

yet very accurate correspondence which can be used as a robust initializa-

tion for subsequent refinement (first two images). The last image presents

a case of partial matching, where the second shape additionally underwent

a local scale deformation. In this case we applied the merging approach

on 5 groups, resulting in 51 matches with an average ground-truth error

of 2.57 (see Section[8.4.1). . . . . . .. ... o 1401
8.2 Anexample of the merging process (with real data) between two isometric

shapes. After obtaining 30 correspondences, we compute the spectrum

of matrix S (top left). The dominant eigenvector allows to retrieve the

most consistent cluster of correspondences, matching the right paw of

the cat (in green) (a); the next eigenvalue is only separated by a very

small spectral gap, and the corresponding matches associate the right paw

again with a symmetric patch (b); finally, the maximum gap eigenvector

represents a reflected correspondence (in orange) with larger error (c).

Figure best viewed incolor. . . . . . . . . . . ... ... ......... 147
8.3 Evaluation of the results obtained under different initial samplings of the

transformed mesh, averaged over all deformations of every shape. The

initial number of samples has a direct and consistent influence on the final

size of the correspondence (noted above each bar), whereas its quality

does not appear to be affected at all deformation strengths. . . . . . . .. 1501
8.4  Sensitivity of our method to payoff coefficient « (first column) and the se-

lection threshold used on the final population (second column). Increas-

ing the o parameter reduces the average match distortion at the cost of a

smaller correspondence. On the other hand, the population threshold has a

more definite effect on size rather than quality of the final correspondence.

In particular, while most transformations behave similarly, the “isometry”

and “holes” classes appear to be more sensitive to this parameter. . . . . . 151



Preface

This thesis covers the work carried out during my post-graduate studies at the Department
of Environmental Sciences, Informatics and Statistics of Ca’ Foscari University of Venice,
Italy. I worked in a small, yet tight-knit and enthusiast group comprising technically pre-
pared, astonishingly creative, but above all very motivated young men who never feared
undertaking research projects of any nature and proportion. While these three years as a
PhD student undoubtedly proved to be essential for the shaping of both my technical and
personal skills, it is with no second thoughts that I can safely confirm that passing this
period in such a fervent environment contributed in fostering in me what I believe to be
the most crucial of all achievements: the passion to do research.

Starting from a technology transfer project - the design and development of a full-
fledged structured light 3D scanner for the eyewear industry - the main focus of my re-
search became more and more apparent as I could discern a common denominator under-
lying the problems we encountered along the path. This cardinal point is the Matching
Problem. While a major part of this thesis is dedicated to the question of correspondence,
here, instead of providing an overview of the present treatise (which can indeed be found
in the introductory chapters), I would like to start, perhaps provocatively, with a quote.

With the first sentence, “Granted: I’m an inmate in a mental institution...”, the barriers
fell, language surged forward, memory, imagination, the pleasure of invention, and
an obsession with detail all flowed freely, chapter after chapter arose, history offered
local examples, I took on a rapidly proliferating family, and contended with Oskar
Matzerath and those around him over the simultaneity of events and the absurd con-
straints of chronology, over Oskar’s right to speak in the first or third person, over his
true transgressions and his feigned guilt.

Giinter Grass, 2009.
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Introduction

This thesis is dedicated, for the most part, to the matching problem. Nevertheless, in an
attempt to reflect the path followed by our research during these years, we devote the
first part of this treatment to the general problem of 3D reconstruction, and present the
research we carried out on the topic in two comprehensive chapters. However, it is in
this first segment of our study that we will introduce our take on the matching problem.
Making use of some notions from the mathematical field of Game Theory (Chapter [2)),
we will provide a first, if direct application of our matching framework to the widespread
problem of feature detection (Chapter[4)), and move on to the heart of our research starting
from Chapter [5]

Surface Reconstruction

Surface reconstruction is the process by which the three-dimensional physical appearance
of an object is captured and given a compact representation. Given the wide range of
practical applications that could take advantage of a 3D reconstruction, it is not surprising
that it has been a very active research topic during the last decades. In fact, many dif-
ferent approaches have been proposed in literature: some are aimed at solving the most
general scenarios, others specialize to sub-domains, both in terms of the number of free
parameters allowed and in terms of assumptions about some characteristic of the scene
to be inferred. Here we will concentrate on two common and widespread (families of)
methods, namely structured light scanning and Structure from Motion.

The main idea behind structured light reconstruction is that of assigning unique codes
to surface points, according to a modulated intensity pattern which is projected over the
object. Assuming the relative geometry between camera and light source is known, this
projected information can be mapped to depth estimates for each point. Of course, there
are many ways to design such a code, and all the methods come with their advantages
and disadvantages depending on the specific task to solve. In case a two-camera setup is
employed, reconstruction can be performed via triangulation of the (coded) image points
depicted on the two cameras (here we are not interested in the technical details, for which
we refer to the following chapters).

While structured light 3D reconstruction allows to obtain very accurate results and
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finds large application in many precision measurement tasks, there are also many scenar-
ios in which it cannot be applied, say for the impossibility of controlling the scanning
conditions, the lack of technological resources, or the physical characteristics of the ob-
ject itself (e.g., translucent, transparent or simply huge objects such as entire buildings).
In these cases, alternative scanning solutions have to be considered. Among these, the
most widely utilized and studied, perhaps especially in these later years, are the so-called
Structure from Motion (SfM) techniques. The common goal of SfM methods is to infer
as many 3D clues as possible by analyzing a set of 2D images. In general, the 3D knowl-
edge that can be obtained by such methods can be classified into two different (but related)
classes: scene and camera information. Scene information is referred to the actual shape
of the objects that are viewed in the images. This often boils down to assigning a plausi-
ble location in space to some significant subset of the acquired 2D points. These newly
reconstructed 3D points are the “structure” part of SfM. By contrast, camera information
includes all the parameters that characterize the abstract model of the image acquisition
process. These can in turn be classified in intrinsic and extrinsic parameters. Intrinsic
parameters are related to the physical characteristics of the camera itself, such as its focal
length and principal point, while the extrinsic parameters define the camera pose, that is
its position and rotation with respect to a conventional origin of the 3D space. Unlike the
structure part, which is bound by physics of the object to a particular 3D position, the
intrinsic and extrinsic parameter can vary in each shot; for this reason they are usually
referred to as “motion”.

Regardless of the technique adopted to obtain the reconstruction, there may be cases in
which a single view of the object is not sufficient for the task. For instance, a single facade
of a building might be enough for a photo insertion application, while objects should be
scanned in their entirety in an archaelogical fragment reassembly scenario. Recomposing
the partial views of an object together is a research topic in its own right, and we will
return to this in the following section. Let us assume, for now, that we are given a method
(for example a human) which, given a pair of surfaces representing different parts of the
same object, aligns them with some residual error. Here by “alignment” we mean that
the method gives an estimate of the rigid transformation linking the two partial views,
and applies this relative motion to one of the surfaces. We can, in principle, achieve a
global alignment of all the views by repeatedly invoking the motion oracle, and applying
the transformation to a new view and the union resulting from the previous iterate. Nev-
ertheless, this procedure is bound to induce an error accumulation, arising from both a
not good enough pairwise alignment, and from surface noise that inevitably plagues the
scanning process. First, we note that the initial approximate alignment can be refined
by minimizing the overlap error between each pair of surfaces. This is usually done by
means of some iterative technique bringing the two surfaces closer to one another at each
successive step. This iterative procedure tends to be very susceptible to local minima; in
our study, we isolated one of the major causes of this sensitivity in the specific choice of
the surface samples used in the minimization process (typically, in order to reduce the size
of the problem, not all the surface points are used). In Section 4.2} we propose a surface
sampling technique that specifically tackles the point selection problem for rigid motion



refinement in reconstruction pipelines. Even after applying the best possible refinement,
error accumulation might still represent a problem, e.g. in measurement tasks. In litera-
ture there exist methods that try to alleviate this problem by moving the surfaces in such a
way that the global overlap error is diffused evenly among all the views; however, all these
methods act directly on the surface data and, for this reason, their performance both in
terms of effectiveness and efficiency strongly depends on the specific choice of the surface
samples on which they operate. Such methods have been in use for many years and are
taken as the gold standard approach to surface alignment in most reconstruction pipelines.
We offer a new solution to this problem, by introducing in Section a novel multiview
registration algorithm where the poses are estimated through a diffusion process on the
view-adjacency graph. The diffusion process is over dual quaternions, a mathematical
structure that is related to the group of 3D rigid transformations, leading to an approach
that is both orders of magnitude faster than the state of the art, and much more robust to
extreme positional noise and outliers.

The Matching Problem

We will start with a problem that we left open, specifically how to devise a method that
computes the rigid transformation linking two 3D views of an object. Instead of explicitly
looking for the best possible motion in the space of rigid transformations, we can translate
this problem to a simpler one where we seek a group of corresponding points between the
two shapes: given at least three such matches, it is in fact possible to estimate the rigid
motion bringing one point set over the other. The search for such a correspondence con-
stitutes an instance of the matching problem. Clearly, this kind of problem is extensively
analyzed in literature, with methods taking a pointwise matching approach as above, and
other approaches that rather explore the space of feasible motions in a RANSAC fash-
ion (see Section 2.4] for a more detailed overview). All these methods share a common
drawback: they attempt to obtain globally optimal solutions by taking local decisions,
and only validate their matching hypotheses a posteriori. In our work, we take a totally
different view and cast the matching problem in a novel framework (based on results
from evolutionary game theory, Section [2.6), where the search for the best correspon-
dence is regarded as an inlier selection problem; in this setting, the “strongest” possible
group of matches that respect a measure of rigid compatibility is explicitly sought, and
all incompatible matches are filtered out. The selection process operates in a globally
aware manner, by making use of local information coming from pairs of points on the
two surfaces. A thorough presentation of how we achieve this will be given in Chapter [6]

What we wrote above clearly represents only a particular instance of the matching
problem, and more or less faithfully reflects the path of study we followed during our
exploration of the somewhat more applicative reconstruction problem. We follow in fact
a similar approach to the rigid registration case in a 2D matching setting for SfM appli-
cations (Chapter [3)). In this case the matching problem bears similar characteristics to the
3D case, since it can be modelled again according to the same inlier selection principles:
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one can define a measure of compatibility between pairs of image points, according to
which the most coherent group of matches is extracted by means of some selection pro-
cess operating over them. Clearly, in this case we need a different notion of compatibility,
which also depends on the specific assumptions underlying the reconstruction task; to this
end, we will rely on the common expectation (in SfM scenarios) that the two images are
in fact separated by a small baseline, which in turn allows us to define a similarity mea-
sure between image patches in terms of some local affine transformation approximating
the rigid motion in 3D space.

This second application of our matching framework allows us to inspect the general
problem with more care, providing some interesting insights on its mathematical founda-
tion and convergence properties. In the course of this thesis, we will investigate the possi-
bilities of the framework in different areas, with applications to feature detection (Chapter
M), object-in-clutter recognition (Chapter [7) and deformable shape matching (Chapter [8).
We will try to reconsider the matching problem under different points of view (Section
8.3), underlining the often overlooked fact that for many optimization problems there
usually exist different, but equivalent mathematical formulations, which stress different
structural characteristics of the problem, leading to different solution approaches. We will
also try to establish a link between some of these formulations, although this remains an
open direction of research that we are willing to explore.



Related Work

With this chapter we attempt to provide a comprehensive review of the existing litera-
ture, covering most of the topics approached in our work. What follows is by no means
intended to be an exhaustive survey of existing techniques and state-of-the-art solutions,
for which we refer to more thorough and rigorous treatments, such as [24} 117, 121} (120,
119]. We wish, instead, to give an untechnical (as possible), yet scientific and complete
overview of recent research, considering both what is deemed to be seminal work and
the current state of things. In doing so, we will also introduce much of the mathematical
preliminaries that are required to go through the successive chapters, deferring the details
and the specific techniques to appropriate sections, and referring to them directly when
opportune.

We start off, maybe unsurprisingly, with an overview of the pinhole camera model
(Section and the epipolar geometry; this being a work focused for the major part on
3D reconstruction and the problems that frequently arise in this field, we soon shift our
attention to camera calibration methods (Section [2.1.1) and structured light techniques
(Section [2.2), to move rather directly to the Structure from Motion problem (Section
[2.3). After introducing the all pervasive correspondence problem in computer vision,
we move to the 3D surface domain by presenting the most common techniques for rigid
surface alignment (Section [2.4)), feature detection (Section [2.4.1)) and object recognition
(Section [2.5]). We conclude with a section dedicated to Game Theory and its applications
to computer vision (Section [2.6), the body of which is frequently referred in our work.

2.1 Camera Model and Epipolar Geometry

A camera is a mapping between the 3D world (object space) and a 2D image; while many
different modelizations for this mapping have been proposed during the years in scientific
literature, in this work we are primarily concerned with the simplest and most common
camera model used in reconstruction frameworks, the pinhole camera (Figure 2.1p). Its
wide adoption is due to its ability to approximate well the behaviour of many real cam-
eras. In practical scenarios, radial and tangential lens distortions are the main sources of
divergence from the pinole model, however it is easy to fit polynomial models to them and
compensate for their effect [148) [156]. The most important parameters of this model are
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the pose of the camera with respect to the world (represented by a rotation matrix R and a
translation vector 7°), the distance of the projection center from the image plane (the focal
length f in Figure[2.1)), and the coordinates on the image plane of the intersection between
the optical axis and the plane itself (the principal point ¢ = (c,,¢,)” in Figure . The
projection of a world point m on the image plane happens in two steps. The first step is
arigid body transformation from the world coordinate system to the camera system. This
can be easily espressed (using homogeneous coordinate) as:

X. X
Y, R T] |Y
Z, N{o 1} Z

1

The second step is the projection of the point in camera coordiantes on the image planes
that happens by applying a camera calibration matrix K that contains the intrinsic param-
eters of the model. The most general version of calibration matrix allows for a different
vertical (f,) and horizontal (f,) focal length to accomodate for non-square pixels, and for
a skewness factor (s) to account for non-rectangular pixels:

fe s ¢
K=|0 f, ¢
0 0 1

In practice, for most real cameras, pixels can be approximated by perfect squares, thus we
can resort to the basic model of Figure and assume s = 0 and f, = f, = f. Usually
the camera pose and calibration matrices are combined in a single 3 x 4 projection matrix
P = K|R T]. This projection matrix can be directly applied to a point in (homogeneous)
world coordinate to obtain its corresponding 2D point in the image plane:

m' = Pm=KRTm.

When a point is observed by two cameras its projections on the respective image planes
are not independent. In fact, given the projection m; of point m in the first camera, its
projection m4 on the second image plane must lie on the projection /5 of the line that con-
nects my to m (see Figure[2.1p). This line is called the epipolar line and can be found for
each point m; in the first image plane by intersecting the plane defined by 04,00 and m,
(the epipolar plane) with the second image plane. The epipolar constraint can be enforced
exactly only if the position of m; and m, and the camera parameters are known without
error. In practice, however, there will always be some distance between a projected point
and the epipolar line it should belong to. This discrepancy is a useful measure for verifi-
cation tasks such as the detection of outliers among alleged matching image points, or the
evaluation of the quality of estimated camera parameters. The epipolar constraint can be
expressed algebraically in a straightforward manner. If we know the rotation matrix and
translation vector that move one camera reference system to the other (Figure 2.1b) we
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Figure 2.1: Illustration scheme of the pinhole camera model (a) and of the epipolar ge-
ometry (b). See text for details.

have that:
0 —t.
XrII‘EXQ = er t, 0 —t,| Rxo =0,
—~t, t. O

where the essential matrix E is the product between the cross product matrix of the trans-
lation vector T and the rotation matrix R, and z; and x, are points expressed in the refer-
ence systems of the first and second camera respectively, belonging to the same epipolar
plane. If the calibration matrices of both cameras are known this constraint can also be
expressed in terms of image points by applying the inverse of the two calibration matrices
to the image points:

(Klflml)TE(K2*1m2T) = mlT(KlflTEKzfl)m2 = 0,

Where F = K, ""EK, ! is called the fundamental matrix. It is clear that if intrin-
sic camera parameters are known the epipolar constraint can be verified on image points
by using just the essential matrix, which has only five degrees of freedom; otherwise, it
is necessary to resort to the use of the fundamental matrix, which has seven degrees of
freedom. Many algorithms are known to estimate both E or F from image point corre-
spondences [71, 164, 144].

2.1.1 Camera Calibration

Accurate intrinsic camera calibration is essential to any computer vision task that involves
image based measurements. Given its crucial role with respect to precision, a large num-
ber of approaches have been proposed over the last decades. Despite this rich literature,
steady advancements in imaging hardware regularly push forward the need for even more
accurate techniques. Some authors suggest generalizations of the camera model itself,
others propose novel designs for calibration targets or different optimization schemas.
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The growing availability of cheap and accurate digital imaging devices has led to the
wide adoption of computer vision based methods in measurement applications. Typical
scenarios range from the use of a single camera for quality check on planar profiles to the
adoption of complex camera networks and structured light for precise 3D reconstructions.
Crucial to these applications is the ability to know in a very accurate fashion the relation
between physical points in the observed scene and the associated image points captured
by the camera itself. This knowledge is usually attained by defining a parametric function
from R3 to R? and by supplying a technique for finding the most suitable set of parameters
for a given camera. The function responsible for the transformation between world and
image coordinates is usually (as anticipated) referred to as the (direct) camera model. The
procedure used to search for the correct model parameters (with respect to some observa-
tions) is the calibration method. Obviously, camera models and calibration methods are
strongly related: basic models require less parameters that can be estimated with fewer
observations and simpler optimization procedures; by contrast, more sophisticated mod-
els describe more accurately the optical behaviour of real cameras and lenses, and thus
are preferred when higher precision is required.

In this work we will focus on camera models based on perspective projection as they
allow for a complete Euclidean scene reconstruction. The most basic model assumes an
ideal pinhole camera characterized by a focal length f (the distance between the projec-
tive center and the image plane) and a principal point ¢ (the intersection of the optical
axis and the image plane). Often, the focal length is separated into a horizontal (fz) and
vertical (fy) component in order to correct any possible non-squareness of the sensor el-
ements. In real scenarios this simple model fails to deal properly with additional factors
that contribute to the imaging process, such as distortions introduced by lenses or mis-
alignment of the optical axis. In 1971 Brown [37/]] proposed a more sophisticated model
that accounts for three radial and two decentering distortion coefficients (respectively k1,
k2, k3, t1 and t2). While more complex models exist (accounting for affine and shear
transformations of the image plane), the distortion coefficients introduced by Brown have
shown to be adequate even for accurate metrology applications. Most calibration meth-
ods exploit the correspondences between 3D points of known geometry and 2D points on
the image plane. Specifically, they seek a set of model parameters (intrinsic calibration)
and camera orientation with respect to the world coordinate system (extrinsic calibration)
that minimizes the distance from the measured 2D points and their respective projections
obtained by applying the calibrated camera model to the 3D points (reprojection error). If
the distortion parameters are not sought, it is possible to solve the calibration problem by
using simple linear techniques, such as those suggested by Hall [69] and Faugeras [57]].
Differently, it is necessary to introduce more complex approaches that usually alternate a
linear technique to optimize a subset of the parameters and an iterative refinement step.
One of the first calibration methods accounting for one radial distortion coefficient was
proposed by Tsai [149]. Later approaches by Zhang [162] and Heikkila [72] are able to
deal respectively with two and three radial distortion coefficients; additionally, the latter
technique also estimates two coefficients of tangential distortion. We refer to [[119] for a
comparative review of the most adopted calibration methods.
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All the cited calibration methods rely both on the precise knowledge of the calibration
object and on the accurate detection of its feature points on the image plane. The choice of
an appropriate calibration object is often a compromise between the calibration accuracy
required and the manufacturing complexity of the target itself. In general, 3D calibration
objects (i.e., targets that are not composed of coplanar reference features) grant a more
stable and precise calibration. This is mainly due to the lack of coupling between intrin-
sic and extrinsic parameters with respect to the minimization of the reprojection error.
In addition, the presence of distinct depth information in the target limits the interplay
between the estimation of the focal length and the lens distortion. Unfortunately, accurate
3D targets are very difficult to build, require an expensive tooling and need a remark-
able amount of effort for maintenance and verification. While it is possible to use even
one-dimensional objects [163]], planar calibration targets are by far the most used both in
experimental and industrial setups in virtue of their ease of construction. In principle, a
single view of a planar target is not enough to determine all the calibration parameters at
once [[133]]. Nevertheless, by exploiting a well planned network of independent views it
is still possible to constrain the whole set of parameters and obtain an accurate estimation
of the camera model [[113]].

Regardless of the target geometry chosen, it is equally important to select an appro-
priate feature pattern for the detection of the reference points. Zhang proposed to use a
black square on a white background [162]]; while this is an easily detectable pattern, it is
biased by systematic localization errors caused by the inherent asimmetry of the marker
(for instance, directional bleeding due to illumination). To reduce those biases, a better
choice is to adopt symmetric markers such as circular points [[72] or checkerboards [91].
Both these marker types have shown to be detectable with high subpixel accuracy, but
the checkerboard schema deals better with the misplacement error introduced by radial
distortion [92]].

2.2 Structured Light

Assuming one or more calibrated cameras are available, it becomes possible to undertake
a reconstruction process that allows to obtain a 3D point cloud (and eventually a con-
nected surface) of the captured scene via triangulation [24]. The main challenge for any
triangulation-based surface reconstruction technique is the assignment of reliable corre-
spondences between features observed by two or more different points of view. Given the
central role of this problem, many and diverse strategies have been proposed in literature
over the past few decades [123]. When a sparse surface reconstruction is adequate, cor-
respondences can be searched and tracked among repeatable features readily present in
the scene, such as corners or edges. Unfortunately, in general it is not possible to guar-
antee that the same features are extracted from each image, or that the feature density is
sufficient. Hence, complementary techniques, usually based on photometric correlation,
are used to obtain an approximate reconstruction of the scene depth map. Structured light
systems overcome these limitations as they do not rely on natural features, but instead use
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projected patterns of light in order to find correspondences that are usually as dense as the
pixels of each image [24]. Among these, time-multiplexing strategies such as n-ary and
Gray codes, as well as hybrid approaches, are by far the most utilized [[121].

Simple binary coding assigns to every pixel a codeword retrieved from the digitized
sequence over time of projected black and white stripes; binary coding methods require
logs(t) pattern images to generate ¢ code strings. Robustness of binary codes is improved
by using Gray codes, where adjacent codes differ only in one bit. Both the techniques
generate unique codes along each scanline, but at the same time are limited by their low
resolution due to the inherently discrete nature of the coding. Also, the large number
of projected patterns does not result in an increased accuracy. Generally, this class of
measurements proves to be ineffective with objects having different reflective properties
(such as slick metal parts or low reflective regions), thus they must rely on the assumption
of uniform albedo [[121]].

Phase shifting methods, on the other hand, yield higher resolutions since they are
based on the projection of periodic patterns with a given spatial period. Each projected
pattern is obtained by spatially shifting the preceding one of a fraction of the period,
and then captured by one or more cameras. The images are then elaborated and the
phase information at each pixel determined by means of M-step relationships [138]]. Since
the phase is distributed continuously within its period, phase shifting techniques provide
subpixel accuracy and achieve high measurement spatial resolution. Furthermore, the
intensity change at each pixel for subsequent patterns is relative to the underlying color
and reflectance, which makes phase shift locally insensitive to texture variance to a certain
degree. A major drawback is that, in it basic formulation, phase shifted structured light
renders only relative phase values and thus it is ambiguous. However, when both an
extended measuring range and a high resolution are required, a combined approach proves
to be very powerful. The integration of Gray code and phase shift brings together the
advantages of both, providing disambiguation and high resolution, but the number of
patterns to be projected increases considerably, and each strategy introduces a source of
error [87].

Other high resolution shape measurement systems include optical profilometers. Non-
contact phase profilometry techniques relate each surface point to three coordinates in a
frame having the z axis orthogonal to a reference plane, which then represents the refer-
ence for the measured height [131, [158]. In classical phase measurement profilometry,
gratings or sinusoidal patterns are projected and shifted first onto the plane and then over
the object to be measured. Phase information from the deformed fringe pattern is then
extracted by means of various techniques. Other, more effective profilometry techniques
include the well-known Fourier Transform method [139]] and other interesting derivatives
[159,167]. Fourier-based profilometry can require as few as one or two frames for depth
estimation, which makes real-time reconstruction possible. Nevertheless, in profilometric
methods phase variation caused by height modulation must be limited: ambiguity of the
phase limits the measurement range, allowing for gauging of smooth-shaped objects only.
Moreover, noise from camera, distortion of lens, difficulties of calibration, aliasing and
imperfectness of the projecting unit influence the precision of most of these techniques
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Image based local steps Structure and motion based global steps
feature feature structure and bundle post
detection matching adjustment processing

motion guess [

Figure 2.2: A simplified schema that captures the general steps found in many SfM ap-
proaches. The main loop is usually based on an iterative refinement of the candidate scene
points based of their geometric consistency with respect to the estimated motion. Circles
between steps represent the applied outlier filtering strategies.

[43,135].

2.3 Structure from Motion

While the most relevant SfM approaches will be discussed with more detail in Sec-
tion in this section we will resort to the simplified general workflow presented in
Figure [2.2]in order to introduce the key ideas and contributions of the proposed approach.
To this end, the typical pipeline can be roughly split in two subsequent macro steps (re-
spectively dubbed as Image based and Structure and Motion based in Figure [2.2)). The
first step deals with the localization on the source 2D images of salient feature points that
are both distinctive and repeatable. Such points are meant to be tracked between different
images, thus creating multiple sets of correspondences that will be used in the scene re-
construction step. The use of a reduced set of relevant points is crucial as their repeatable
characterization allows us to minimize the chance of including wrong correspondences.
Typically, filters are applied to the selection and matching phase in an attempt to make this
phase more robust. In Figure [2.2] the extracted features are further culled by using filter
f1, which eliminates point that exhibit very common descriptors or that are not distinctive
or stable enough. A second refinement can be achieved after the matching: most imple-
mentations of filter f2 remove correspondences that are not reliable enough, that is pairs
where the second best match has a very similar score to the first one or that involve too
different descriptors. Once a suitable set of point pairs has been found among all the im-
ages, the second macro step of the pipeline uses them to perform the actual structure and
motion estimation. This happens by building a reasonable guess for both spatial locations
of the found correspondences and the camera parameters and then, almost invariably, by
adopting a bundle adjustment optimization to refine them. Also, at this stage, filtering
techniques can be adopted in order to remove outliers from the initial set of matches.
Specifically, a filter that removes pair that do not agree with the estimated epipolar con-
straints can be applied after combining some or all of the images into the initial guesses
(f3), or after the bundle adjustment optimized the structure and motion estimates (f4).
Depending on the result of the filtering a new initial estimation can be triggered, taking
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advantage of the (hopefully) more accurate selection of corresponding features. This kind
of process leads to an iterative refinement that usually stops when the inlier set does not
change or becomes stable enough. While this approach works well in many scenarios,
it inherently contains a limitation that might drive it to poor results or even prevent it to
converge at all: The main criterion for the elimination of erroneous matches is to exclude
points that exhibit a large reprojection error or adhere poorly to the epipolar constraint
after a first round of scene and pose estimation. Unfortunately this afterthought is based
upon an error evaluation that depends on the point pairs chosen beforehand; this leads
to a quandary that can only be solved by avoiding wrong matches from the start. This
is indeed a difficult goal, mainly because the macro step from which the initial matches
are generated is only able to exploit strictly local information, such as the appearance of
a point or of its immediate surroundings. By contrast the following step would be able
to take advantage of global knowledge, but this cannot be trusted enough to perform an
extremely selective trimming and thus most methods settle with rather loose thresholds.
In order to alleviate this limitation, in this work we introduce a robust matching technique
that allows to operate a very accurate inlier selection at an early stage of the process and
without any need to rely on preliminary structure and motion estimations. In the following
we are going through a brief review of the most significant related contributions available
in literature, and introduce some basic notions about the geometrical aspects of the SfM
process.

2.3.1 Features Extraction and Matching

The selection of 2D point correspondences is arguably the most critical step in image
based multi-view reconstruction and, unlike with techniques augmented by structured
light or known markers, there is no guarantee that two pixel patches that exhibit strong
photo-consinstecy are actually located on the projection of the same physical point. Fur-
ther, even when correspondences are correctly assigned, the interest point detectors them-
selves introduce displacement errors that can be as large as several pixels. Such errors can
easily lead to sub-optimal parameter estimation or, in the worst cases, to the inability of
the optimization algorithm to obtain a feasible solution. For this reasons, reconstruction
approaches adopt several specially crafted expedients to avoid the inclusion of outliers as
much as possible. In the first place correspondences are not searched throughout all the
image plane, but only points that are both repeatable and well characterized are consid-
ered. This selection is carried out by means of interest point detectors and feature de-
scriptors. Salient points are localized with sub-pixel accuracy by general detectors, such
as Harris Operator [[/0] and Difference of Gaussians [93]], or by using techniques that
are able to locate affine invariant regions, such as Maximally Stable Extremal Regions
(MSER) [95] and Hessian-Affine [[101]. This latter affine invariance property is desirable
since the change in appearance of a scene region after a small camera motion can be lo-
cally approximated with an affine transformation. In Chapter 4] we will also introduce an
outlier pruning technique that aims at isolating uncommon features, which are then treated
as points of interest. Once interesting points are found, they must be matched to form the
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Figure 2.3: Example of SIFT features extracted and matched using the VLFeat package.

candidate pairs to be fed to the subsequent parameter optimization steps. Most of the
currently used techniques for point matching are based on the computation of some affine
invariant feature descriptor. Specifically, to each point is assigned a feature vector with
tens to hundreds of dimensions, and a scale and a rotation value. Among the most used
feature descriptor algorithms are the Scale-Invariant Feature Transform (SIFT) [90, 89]],
the Speeded Up Robust Features (SURF) [23]], the Gradient Location and Orientation
Histogram (GLOH) and more recently the Local Energy based Shape Histogram
(LESH) [122], the SIFT algorithm being the first of the lot and arguably the most widely
adopted. For this reason several enhancements and specialization were introduced since
the original paper by Lowe; for intance, PCA-SIFT [82] applies PCA to the normalized
gradient patch to gain more distinctiveness, PHOW [31]] makes the descriptor denser and
allows to use color information, ASIFT extends the method to cover the tilt of the
camera in addition to scale, skew and rotation.

In all of these techniques, the descriptor vector is robust with respect to affine trasfor-
mations: i.e., similar image regions exhibit descriptor vectors with small mutual Eu-
clidean distance. This property is used to match each point with the candidate with the
nearest descriptor vector. However, if the descriptor is not distinctive enough this ap-
proach is prone to select many outliers. A common optimization involves the definition
of a maximum threshold over the distance ratio between the first and the second nearest
neighbors. In addition, points that are matched multiple times are deemed as ambiguous
and discarded (i.e., one-to-one matching is enforced). Despite any effort made in this
direction, any filter that operates at a local level is fated to fail when the matched regions
are very similar or identical, a situation that is not uncommon as it happens every time an
object is repeated multiple times in the scene or there is a repeated texture. In Figure 2.3]
we show two examples of SIFT features extracted and matched by using the VLFeat
Matlab toolkit. In the first example almost all the correspondences are correct, still some
clear mismatches are visible both between the plates of the saurus (which are similar in
shape) and on the black background (which indeed contains some amount of noise). In
the second example several instances of the same screw are matched and, as expected,
features coming from different objects are confused and almost all the correspondences
are wrong. It should be noted that such mismatches are not a fault of the descriptor itself
as it performs exactly its duty by assigning similar description vectors to features that are
almost identical from a photometric standpoint. In fact, this particular example is spe-
cially crafted to hinder traditional matchers that relies on local properties. In Chapter [5]
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we will show how introducing some level of global awareness in the process allows to
deal well also with this cases that are indeed very common in the highly repetitive world
of human-made objects and urban environments.

2.3.2 Parameters Estimation

The distinctive traits of every Structure from Motion technique proposed in literature are
usually to be found in the approach used for the initial estimate and in the refinement
technique adopted. In general this refinement happens by iteratively applying a bundle
adjustment algorithm [147] to an initial set of correspondences, 3D points and motion
hypoteses. This optimization is almost invariantly carried out by means of the Levenberg-
Marquardt algorithm [86], which is very sensitive to the presence of outliers in the input
data. For this reason any possible care should be taken in order to supply the optimizer
with good hypoteses or at least a minimal number of outliers. When a reasonable subset
of all the points is visible in all the images global methods can be used to obtain such
initial hypothesis. This approach, commonly called factorization, was initially proposed
only for simplified camera models that are not able to fully capture the pihole projec-
tion [142, [155]. More recently, similar approaches have been presented also for per-
spective cameras [[134, [73]]; however, their need to have each point visible in each camera
severely reduces their usability in practical scenarios where occlusion is usually abundant.
For this reason, incremental methods which allow to add one or a few images at a time
are by far more popular in SfM applications. Usually, such methods start from a reliable
image pair (for instance the pair with the higher number of good correspondeces), build
an initial reconstruction by triangulation and thus extend it sequentially. The extension
can happen by virtue of common 2D point between a new camera and one or more images
already in the batch. If internal camera parameters are known (at least roughly), rotation
and translation direction can be extracted from the essential matrix and translation mag-
nitude can be found using the projection in the new image of an already reconstructed 3D
point. In the more general case intrinsic parameters are not known and the new camera
can be added exploiting the correspondences between its 2D features and previuosly tri-
angulated 3D points to estimate the projection matrix [26,|110]. Finally, it is also possible
to merge partial reconstructions by using corresponding 3D points [S9]. Many modern
SfM approaches iterate this process by including and excluding point correspondences
or entire images by validating them with respect to the currently estimated structure and
camera poses (38,152, |130]].

2.4 Fine and Coarse Registration Techniques

Once a collection of 3D surfaces is obtained by means of some reconstruction technique,
dependently from the specific computer vision task it might be necessary to reassemble
these surfaces together so as to compose the original object they represent. In a typical
3D object scanning setting, for instance, it is fairly common that the object be captured by
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different points of view and then these view-dependent scannings rigidly aligned together
in a semi-supervised post-processing step. Note, however, that this is not always the case:
a single 3D view might be sufficient in simple object recognition scenarios (e.g., in in-
dustrial inspection applications), or the scanning device might be equipped with a special
optical apparatus that allows to capture more surface area than traditional pinhole models.
Further, the last few months have seen the germination of depth-enabled motion sensing
devices (especially for gaming purposes) capturing video data in 3D as time-sequenced
depth maps. Nevertheless, alignment methods are not useful only for the assemblage of
partial 3D scans. In fact, they find useful applications as tools for in-line quality con-
trol [104]], 3D object recognition [99], advanced human interfaces [[18]], and SLAM [30],
just to name a few. For this reason, surface registration is one of the most studied topics
in the field of 3D data acquisition and processing. In this thesis we try to introduce a fresh
view on the problem by proposing a novel approach that is very robust to noise and allows
to attain a very accurate registration without needing an initial motion estimation.

The distinction between fine and coarse surface registration methods is mainly related
to the different strategies adopted to find pairs of mating points to be used for the esti-
mation of the rigid transformation. Almost invariably, fine registration algorithms exploit
an initial guess in order to constrain the search area for compatible mates and minimize
the risk of selecting outliers. On the other hand, coarse techniques, which cannot rely
on any motion estimation, must adopt a mating strategy based on the similarity between
surface-point descriptors or resort to random selection schemes. The tension between the
precision required for fine alignment versus the recall needed for an initial motion estima-
tion stands as the main hurdle to the unification of such approaches. The large majority of
currently used fine alignment methods are modifications to the original ICP proposed by
Zhang [161] and Besl and McKay [29]. These variants generally differ in the strategies
used to sample points from the surfaces, reject incompatible pairs, or measure error. In
general, the precision and convergence speed of these techniques is highly data-dependent
and sensitive to the fine-tuning of the model parameters. Several approaches that combine
these variants have been proposed in the literature in order to overcome these limitations
(see [117] for a comparative review). No matter what variant is used, ICP, being an it-
erative algorithm based on local, step-by-step decisions, is susceptible to the presence of
local minima. Some recent variants mitigate this problem by avoiding hard culling as-
signing a probability to each candidate pair by means of evolutionary techniques [88]] or
Expectation Maximization [66]. Other, non ICP-based, fine registration methods include
the well-known method by Chen [44] and signed distance fields matching [94]].

Coarse registration techniques can be roughly organized into three main classes: global
methods, feature-based methods and technique based on RANSAC [58]] or PROSAC [46]]
schemes. Global methods, such as PCA [47] or Algebraic Surface Model [140] exploit
some global property of the surface and thus are very sensitive to occlusion. Feature-based
approaches aim at the localization and matching of interesting points on the surfaces.
They are more precise and can align surfaces that exhibit only partial overlap. Neverthe-
less, the unavoidable localization error of the feature points prevents them from obtaining
accuracies on par with fine registration methods. A completely different coarse registra-
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tion approach is the one taken by RANSAC-based techniques. DARCES [41] is based on
the random extraction of sets of mates from the surfaces and their validation based on the
accuracy of the estimated transformation. The more recent Four Points Congruent Sets
method [19] follows a similar route, but filters the data to reduce noise and performs early
check in order to reduce the number of trials. A recent and extensive review of many
different methods can be found in [[120]].

Regardless of the criteria used to obtain pairs of mating points, the subsequent step
in surface registration is to search for the rigid transformation that minimizes the squared
distance between them. Many mature techniques are available to do this (see for instance
[74]).

2.4.1 Feature Detection on 3D Objects

Feature detection and characterization is a key step in many tasks involving the recogni-
tion, registration or database search of 2D and 3D data. Specifically, when suitable interest
points are available, all these problems can be tackled by working with the set of extracted
features rather than dealing with the information carried by the whole data, which is less
stable and noisier. For an interest point to be reliable it must exhibit two properties: re-
peatability and distinctiveness. A feature is highly repeatable if it can be detected with
good positional accuracy over a wide range of noise levels and sampling conditions as
well as different scales and transformations of the data itself. Further, description vec-
tors calculated over interesting points are said to be distinctive if the descriptors related
to different features lie far apart in feature space, while descriptor associated to multiple
instances of the same point have lie within a small distance from one another. These
properties are somewhat difficult to attain since they are subject to antithetical goals: In
fact, to achieve good repeatability despite of noise, larger patches of data must be con-
sidered, which unfortunately leads to a lower positional precision and a less sharp culling
of uninteresting points. Moreover, for descriptor vectors to be distinctive among different
features, they need to adopt a large enough basis, which, owing to the well known “curse
of dimensionality,” also affects their coherence over perturbed versions of the same fea-
ture. In the last two decades these quandaries have been addressed with great success in
the domain of 2D images, where salient points can be localized with sub-pixel accuracy
using detectors exploiting strong local variation in intensity, such as Harris Operator [/0]
and Difference of Gaussians [93]], or using techniques that are able to locate affine invari-
ant regions, such as Maximally Stable Extremal Regions (MSER) [95] and Hessian-Affine
[101]. Among the most used descriptors are the Scale-invariant feature transform (SIFT)
[89], the Speeded Up Robust Features (SURF) [25] and Gradient Location and Orien-
tation Histogram (GLOH) [102]. While these approaches work well with 2D intensity
images, they cannot be easily extended to handle 3D surfaces since no intensity infor-
mation is directly available. On the other hand, there has been huge effort to use other
local measures, such as curvature or normals. One of the first descriptors to capture the
structural neighborhood of a surface point was described by Chua and Jarvis, who with
their Point Signatures [45] suggest both a rotation and translation invariant descriptor and
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a matching technique. Later on, Johnson and Hebert introduced Spin Images [/6], a rich
characterization obtained by binning the radial and planar distances of the surface sam-
ples respectively from the feature point and from the tangent plane. Given their ability
to perform well with both surface registration and object recognition, Spin Images have
become one of the most used 3D descriptors. More recently, Pottmann et al. proposed
the use of Integral Invariants [111]], stable multi-scale geometric measures related to the
curvature of the surface and the properties of its intersection with spheres centered on
the feature point. Zaharescu et al. [[160] presented a comprehensive approach for inter-
est point detection (MeshDOG) and description (MeshHOG), based on the value of any
scalar function defined over the surface (i.e. curvature or texture, if available). MeshDOG
localizes feature points by searching for scale-space extrema over progressive Gaussian
convolutions of the scalar function and thus by applying proper thresholding and corner
detection. MeshHOG calculates a histogram descriptor by binning gradient vectors with
respect to a rotationally invariant local coordinate system. Finally, the recent SHOT de-
scriptor [143], introduced by Tombari et al. exploits a novel 3D reference frame to offer
enhanced descriptive power and robustness.

In the following chapters we introduce a novel pipeline that can be used to obtain an
accurate surface registration without requiring an initial motion estimation. We propose
very simple descriptors, named Surface Hashes, that span only 3 to 5 dimensions. As
their name suggests, we expect Surface Hashes to be repeatable through the same feature
point, yet to suffer from a high level of clashing due to their limited distinctiveness. In
order to overcome this liability we also adopt a robust inlier selection approach which
exploits rigidity constraints among surfaces to guarantee a global geometric consistency.
The combination of these loosely distinctive features and our robust matcher leads to an
effective and robust surface alignment approach.

2.5 Object Recognition

In the recent past, the acquisition of 3D data was only viable for research labs or profes-
sionals that could afford to invest in expensive and difficult to handle high-end hardware.
However, due to both technological advances and increased market demand, this sce-
nario has been altered significantly: Semi-professional range scanners can be found at
the same price level of a standard workstation, widely available software stacks can be
used to obtain reasonable results even with cheap webcams, and, finally, range imaging
capabilities have been introduced even in very low-end devices such as game controllers.
Given this trend, it is safe to forecast that range scans will be so easy to acquire that they
will complement or even replace traditional intensity-based imaging in many computer
vision applications. The added benefit of depth information can indeed enhance the re-
liability of most inspection and recognition tasks, as well as providing robust cues for
scene understanding or pose estimation. Many of these activities include fitting a known
model to a scene as a fundamental step. For instance, a setup for in-line quality control
within a production line, could need to locate the manufactured objects that are meant to
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Figure 2.4: A typical 3D object recognition scenario. Clutter of the scene and occlusion
due to the geometry of the ranging sensor seriously hinder the ability of both global and
feature-based techniques to spot the model.

be measured [104]. Moreover, a range-based SLAM system can exploit the position of
known 3D reference objects to achieve a more precise and robust robot localization [30]].
Finally, non-rigid fitting could be used to recognize hand or whole-body gestures in next
generation interactive games or novel man-machine interfaces [18]].

The matching problem in 3D scenes shares many aspects with object recognition and
location in 2D images: The common goal is to find the relation between a model and its
transformed instance (if any) in the scene. In both cases, transformations may include
uniform and non-uniform scaling, differences in pose or partial modification of the shape.
In the 3D case, scenes can undergo a variety of non-rigid deformations such as topolog-
ical noise (inherent in some measure to the very nature of the acquisition process), local
scale variations and even global affine deformations or warping effects due, for instance,
to miscalibration of the scanning device or to the action of natural forces on the objects
in rather specific scenarios [64]. While in general severe deformations of the scene are
unlikely to occur, they are commonly present in a measure and should be accounted for
in matching applications. Other common hurdles, both in 2D and 3D, comprise measure-
ment errors on intensities or point positions and indirect changes in the appearance due to
occlusion or the simultaneous presence in the scene of extraneous objects that can act as
distractions.

A similar problem to object recognition in the 3D domain is surface registration, which
we briefly introduced in the previous sections. In this case, two surfaces representing dif-
ferent point of views (with unknown positions) of the same object are to be rigidly aligned
one to another. While there may be apparently many aspects in common with this class
of problems, adopting the same techniques to solve both can be far from beneficial. Most
surface alignment methods like RANSAC-based DARCES [41]] or 4-points Congruent
Sets [19] (currently at the state-of-the-art for surface registration) first generate pseudo-
random, not necessarily point-based matching hypotheses and then validate the match in
an attempt to maximize the overall surface overlap. It is clear that in an object recogni-
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tion scenario, where occlusion and clutter are present, and where the object itself cannot
even be assumed to be in the scene, such approaches can give completely wrong results,
fooled by the structured noise offered by the clutter. Thus, even though in a technical
sense similar methods can be adopted for both surface registration and object recognition,
the assumptions underlying the two problems, as well as the expected results, are very
different.

Among the basic approaches to object recognition are feature-based techniques, which
adopt descriptors that are associated to single points respectively on the image (in the 2D
case) or on the object surface. In principle, each feature can be matched individually by
comparing the descriptors, which of course decouples the effect of partial occlusion. In
the 2D domain, intensity based descriptors such as SIFT [90] or affine-invariant alter-
natives such as MSER [95] have proven to be very distinctive and capable to perform
very well even with naive matching methods that do not include any global information
[89]. However, the problem of balancing local and global robustness is more binding
with 3D scenes than with images, as no natural scalar field is available on surfaces and
thus feature descriptors tend to be less distinctive. In practice, global or semi-global inlier
selection techniques are often used to avoid wrong correspondences. This, while making
the whole process more robust to a moderate number of outliers, can introduce additional
weaknesses. As already said, for instance, if a RANSAC-like inlier selection is applied,
occlusion coupled with the presence of clutter (i.e., unrelated objects in the scene) can
easily lower the probability for the process to find the correct match. The limited distinc-
tiveness of surface features can be tackled by introducing scalar quantities computed over
the local surface area. This is the case, for instance, with values such as mean curvature,
Gaussian curvature or shape index and curvedness, which can be constructed in order to
classify surface patches into types such as pits, peaks or saddles [20]. Unfortunately, this
kind of characterization has proven to be not very selective for matching purposes, since
it is frequent to obtain similar values in many different locations.

Another approach is to augment the point data with additional scalar values that can be
obtained during the acquisition process. To this extent, the use of natural textures coming
from the scanned object have shown to allow good performance since they show high
variability, and can be used to compute descriptors similar to those usually adopted in the
2D domain. Examples of these augmented descriptors include Textured Spin Images [S0],
MeshDOG [160], which indeed can benefit from any scalar field defined over the surface,
and more recently Color Cubic Higher-order Local Auto-Correlation Features [77], which
measure the autocorrelation function of color 3D voxel data at specific points, so as to
guarantee resilience to various forms of noise. However, not all the surface digitizing
techniques allow to acquire texture information, and even when available, the usability
of textures for descriptor extraction strongly depends on the appearance of the scanned
object. To overcome the limitations of scalar descriptors, methods that gather information
from the whole neighborhood of each point to characterize have been introduced. Such
methods can be roughly classified in approaches that define a full reference frame for
each point (for instance, by using PCA) and techniques that only need a reference axis
(usually some kind of normal direction for the point). When a full reference frame is
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available it is possible to build very discriminative descriptors [45, [137]. Unfortunately,
noise and differences in the mesh could lead to instabilities in the reference frame, and
thus to a brittle descriptor. By converse, methods that just require a reference axis (and
are thus invariant to the rotation of the frame) trade some descriptiveness to gain greater
robustness. These latter techniques almost invariably build histograms based on some
properties of points falling in a cylindrical volume centered and aligned to the reference
axis. The most popular histogram-based approach is certainly Spin Images [[76], but many
others have been proposed in literature [42, 60, [111].

Lately, an approach that aims to retain the advantages of both full reference frames
and histograms has been introduced in [[143]]. In their work, the authors introduce a robust
method for the estimation of highly repeatable local reference frames, together with a
novel representation that is designed to be efficient to compute, descriptive and robust
to noise and clutter. The authors take the hint from SIFT descriptors in the 2D domain,
to build a 3D descriptor that encodes histograms of basic differential entities which are
further enhanced by introducing geometric information of the points within the given
support. The set of local histograms is first computed over the 3D volumes defined by
a spherical grid superimposed on the support; these local histograms are then grouped
together to form the actual descriptor. Laying at the intersection between histograms and
signatures, the descriptor is dubbed Signature of Histograms of Orientations (SHOT).

Any of the interest point descriptors above can be used to find correspondences be-
tween a model and a 3D scene that can contain it. Most of the cited papers, in addition
to introducing the descriptor itself, propose some matching technique. These span from
very direct approaches, such as associating each point in the model with the point in
the scene having the most similar descriptor, to more advanced techniques such as cus-
tomized flavors of PROSAC [46] and specialized keypoint matchers that exploit locally
fitted surfaces for computing depth values to use as feature components [100].

Recent contributions providing both a descriptor and a matching technique for the
specific problem of object recognition in clutter, include the works by [23] and [106].
The authors represent object and scene with a set of scale-dependent corners and associ-
ated scale-invariant descriptors. Recognition is performed via an interpretation tree whose
nodes represent correspondences between a model feature and scene feature, with each
branch representing a hypothesis about the possible presence (and pose) of that model in
the scene. In the matching step, hypotheses are effectively culled from the tree by exploit-
ing the intrinsic scale of each scale-dependent corner, whose possible correspondences are
restricted to corners detected at the same intrinsic scale. In [23]] the authors also claim to
introduce the first method to attack scale-invariant recognition in cluttered scenarios. In
[99], the authors presented an object recognition and segmentation algorithm based on
a tensorial representation for descriptors. Pairs of vertices are randomly selected from
the model to construct a tensor, then matched with the tensors of the scene by casting
votes using a 4D hash table. Tuples receiving too few votes are discarded and a similarity
measure is calculated between the scene tensor and the tensors of the remaining tuples.
Hypotheses having highest similarities are verified by transforming the 3D model to the
scene, and evaluating the surface overlap.
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All the methods presented above share a common burden: given the highly dimen-
sional space of matching hypotheses, they try to reduce the exploration set by adopting
different kinds of heuristics and by validating their choices a posteriori. Further, there
is almost invariably a random component underlying the search method, which renders
these approaches non-deterministic by nature. While performance of these methods is
generally more than acceptable, still, somehow surprisingly they seem to fail at appar-
ently simple scenarios or, by converse, succeed in objectively more challenging cases.
This behavior can be symptomatic of a number of reasons, among which we identify as
a possible cause the fact that such approaches try to generate globally optimal solutions
by operating exclusively at a local level, utilizing global information in ex-post validation
steps only; this makes for a method that is not globally aware, and as such is bound to
give unexpected results as the objects to be matched are incomplete, noisy or not even
present in the scene.

2.6 Game Theory in Computer Vision

In this section we introduce some principles of Game Theory together with the mathe-
matical preliminaries that will be used throughout the following chapters. This makes
this last section rather technical, although we will limit ourselves to the general results
and refer instead to the rest of the thesis for a more insightful treatment.

Originated in the early 40’s, Game Theory was an attempt to formalize a system char-
acterized by the actions of entities with competing objectives, which is thus hard to char-
acterize with a single objective function [[154]. According to this view, the emphasis shifts
from the search of a local optimum to the definition of equilibria between opposing forces,
providing an abstract theoretically-founded framework to model complex interactions. In
this setting, multiple players have at their disposal a set of strategies and their goal is to
maximize a payoff that depends also on the strategies adopted by other players. Here we
will concentrate on symmetric two-player games, i.e., games between two players that
have the same set of available strategies and that receive the same payoff when playing
against the same strategy.

2.6.1 Non-cooperative Games

In [21] Albarelli et al. introduced an approach based on principles of Game Theory in
an attempt to tackle the all-pervasive correspondence problems encountered in Computer
Vision. Deriving their formulation from a clustering method [[146], the authors made
for a rather general approach which can be applied to many different settings, as long
as an objective function and feasible set can be defined in terms of unary and pairwise
interactions between players of some matching game.

More formally, let O = {1,--- ,n} be the set of available strategies (pure strategies
in the language of game theory), and II = (7;;) be a matrix specifying the payoffs that
an individual playing strategy ¢ receives against someone playing strategy j. A mixed
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strategy x is a randomization of the available strategies, i.e., a probability distribution
x = (z1,...,7,)T over the set O. As such, mixed strategies are constrained to lie in the
n-dimensional standard simplex

A”:{XEIR” cx; >0forallz € 1...n, inzl}.
i=1

The support of a mixed strategy x € A", denoted by o(x), is defined as the set of ele-
ments chosen with non-zero probability: o(x) = {i € O | x; > 0}. The expected payoff
received by a player choosing element ¢ when playing against a player adopting a mixed
strategy x is (IIx); = ), mi;x;, hence the expected payoff received by adopting the
mixed strategy y against x is y? IIx. The best replies against mixed strategy x is the set
of mixed strategies maximizing the expected payoff against x.

B(x) = {y € A" | y'TIx = max(z"TIx)} .

The best reply is not necessarily unique. Indeed, except in the extreme case in which there
is a unique best reply that is a pure strategy, the number of best replies is always infinite.

A central notion of game theory is that of a Nash equilibrium. A strategy x is said to
be a Nash equilibrium if it is a best reply to itself, i.e., Vy € A", x'TIx > y'TIx. This
implies that Vi € o(x) we have (IIx); = x*TIx; that is, the payoff of every strategy in the
support of x is constant, while strategies outside the support of x earn a smaller or equal
payoff. The idea underpinning the concept of Nash equilibrium is that a rational player
will consider a strategy viable only if no player has an incentive to deviate from it.

2.6.2 Evolutionary Dynamics

We undertake an evolutionary approach to the computation of Nash equilibria. Evolu-
tionary Game Theory originated in the early 70’s as an attempt to apply the principles and
tools of game theory to biological contexts. It considers an idealized scenario where pairs
of individuals are repeatedly drawn at random from a large population to perform a two-
player game. In contrast to traditional game-theoretic models, players are not supposed
to behave rationally, but rather act according to a pre-programmed behavior, or mixed
strategy. Further, it is supposed that some selection process operates over time on the
distribution of behaviors favoring players that receive higher payoffs.

In this dynamic setting, the concept of stability, or resistance to invasion by new strate-
gies, becomes central. A strategy x is said to be an evolutionary stable strategy (ESS) if
it is a Nash equilibrium and

Vy € A" x'TIx = y'lIx = x Ty > y' 1y . (2.1)

This condition guarantees that any deviation from the stable strategies does not pay.
Interestingly, in the special case in which payoff matrix II is symmetric, there is rela-

tionship with optimization theory [154]: Stable states correspond to the strict local max-

imizers of the average payoff 7(x|x) = x'TIx over A", whereas all critical points are
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related to Nash equilibria. Assuming a mechanism to reach a stable state is available, this
interesting property provides us with a rather flexible and general tool that we can adapt
and employ for our purposes.

The search for a stable state is performed by simulating the evolution of a natural se-
lection process. A common way to characterize this process is via the replicator dynamics

equation:

it + 1) :xi(t)%

for i = 1...n. It can be easily seen that the equation above guarantees x(t) € A" for
all t > 0. Under this dynamics, the average payoff of the population is also guaranteed
to (strictly) increase (provided that II is nonnegative and symmetric), that is for all ¢ > 0
we have 7(x(t + 1)) > m(x(t¢)) and the equality holds only when x is a stationary point
for the dynamics, i.e., x(¢ + 1) = x(f). According to equation (2.2), the fraction of indi-
viduals adopting strategy ¢ will grow over time whenever their expected payoff exceeds
the population average, decreasing otherwise. In addition, any such sequence will always
converge to a unique solution (a Nash equilibrium).

The equation above can be conveniently interpreted as follows. It is supposed that,
during a (non-cooperative) game, it is in each player’s interest to pick strategies that are
compatible with those the other players are likely to choose. In general, as the game is
repeated, players will adapt their behavior to prefer strategies that yield larger payoffs,
driving all inconsistent hypotheses to extinction, and settling for an equilibrium where
the pool of strategies from which the players are still actively selecting their associations
forms a cohesive set with high mutual support. In a sense, this iterative process can be
seen as a contextual voting system, where each time the game is repeated the previous
selections of the other players affect the future vote of each player in an attempt to reach
consensus. This way, the evolving context brings global information into the selection
process.

Unfortunately, replicator dynamics can be very inefficient for large problems, each
iteration having O(n?) complexity. Faster alternatives have been introduced in literature
[108]; in the following we focus on a new class of dynamics called infection and immu-
nization, bringing per-iteration complexity to O(n), recently introduced by Rota Bulo et
al. [115]. For a more rigorous treatment we refer to the original paper.

Letx € A" be an incumbent population state, and consider a mutant populationy € A"
invading x. Let z = (1 — £)x + €y be the population state obtained after injecting a ¢
share of y-strategists into x. We define the invasion barrier of x against mutant y as

(2.2)

bx(y) = inf({e € (0,1) : hx(y,e) > 0} U{1}), (2.3)
where hy(y, €) is a score function of y versus x, defined as
ha(y2) = ly — x|2). 2.4)

The barrier defines the largest population share of y-strategists such that, for all smaller
shares, x earns a greater or equal payoff than y in z. Population x is said to be immune to
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y if bx(y) > 0, which happens whenever either 7(y — x|x) < 0, or 7(y — x|x) = 0 and
7(y — x) < 0. Otherwise, y is infective for x, which in turn implies that bx(y) = 0. As
long as the score of y versus x is positive, by allowing a small share of y-strategists to
invade x, we are left with a share J,(x) of mutants in z, where

5y (x) = inf({e € (0,1) : hy(y,e) < 0} U {1}). (2.5)

Then if y is infective for x, dy(x) > 0 and in case x is immune to y we have Jy(x) = 0.
In [115] the authors prove that x € A" is a Nash equilibrium if and only if there are no
infective strategies for x. Therefore, as long as we can find an infective strategy y for
x we can go on updating the population state and obtain a new population z such that y
is not among its infective strategies. Reiterating the process until no infective strategy is
found allows us to reach an equilibrium. This is formalized by the equation

X(t 4+ 1) = ds(x(ey) (x(1))[S(x(t)) — x(2)] + x(¢), (2.6)

where S : A" — A" is a strategy selection function, returning an infective strategy for
x if it exists and x otherwise. The equation above guarantees that x(¢ + 1) does not
include S(x(t)) among its infecting strategies. With this formulation, x is a fixed point
under dynamics (2.6)) if and only if it represents a population state that cannot be infected
by other strategies. Additionally, for any choice of selection function, 7(x|x) is strictly
increasing and always converges [[115]. The specific choice of a selection function has an
effect on efficiency of the dynamics. In [115] the authors introduce a selection function
that seeks for an infective strategy among the set O of pure strategies. This restricts the
search from A" to a finite set, thus rendering (per-iteration) complexity linear while still
retaining the guarantee of reaching a local optimum.

2.6.3 Matching Game

Central to our game-theoretic framework is the definition of a matching game, or, specif-
ically, the definition of the strategies available to the players and of the payoffs related to
these strategies. In the following we will refer to the Game-Theoretic Matching method
as GTM.

Given a set of “model” points M and a set of “data” points D, we call a matching
strategy any pair (a1, as) with a; € M and ay € D. We call the set of all the matching
strategies S C M x D. The total number of matching strategies in S can, in theory, be as
large as the Cartesian product of the sets of features selected in the model and data objects
(which may be images in the 2D case or triangulated meshes in the 3D case). This would,
of course, lead to a very large sized problem even in the most simple cases, rendering the
search for a local optimum unfeasible for the majority of real world scenarios. To this
end, we can exploit unary (pointwise) information to reduce the feasible set of strategies
by selecting, for instance, only pairs of points bearing similar descriptors or local image
patches having good photo-consinstency, depending on the problem at hand.
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Let us consider for a moment a 2D matching scenario. In this setting, we can generate
for each source point £ matching strategies that connect it to the k closest target features
in the descriptor (e.g. SIFT) space. Since our game-theoretic approach operates an inlier
selection regardless of the descriptor, we do not need to set any threshold with respect
to the absolute descriptor distance or the distinctiveness between the first and the second
nearest point [90]. In this sense, the only constraint that we need to impose over k is that
it should be large enough that we can expect the correct correspondence to be among the
candidates for a significant proportion of the source features. In the following chapters we
will separately analyze the influence of paramater k over the quality of the final matches;
yet, we anticipate that in common scenarios a very small amount of candidates (typically
3 or 4) are enough to guarantee a satisfactory performance, even though in the presence
of highly repeating patterns, a larger value might be needed. Limiting the number of
correspondences per source feature to a constant value, we limit the growth of number of
strategies to be linear with the number of (source) features to be matched.

After defining a feasible set of strategies, we need to construct a proper payoff matrix
specifying the reward that each strategy obtains when playing against all the others. Since
the set of strategies S is built by proposing several attainable matches for each considered
model point it is obvious that the number of outliers in S will be far superior to the number
of correct correspondences. In fact, in the majority of cases we will expect the correspon-
dences to be one-to-one, thus at most one match for each set of strategies that involve the
same model or data point can be correct; this is a safe assumption for a wide range of
matching scenarios, although we emphasize that imposing bijectivity is not a requirement
of our method. In order to extract this minority of correct matches “buried” into .S, the
GTM framework must exploit the consistency of any pair of those strategies with respect
to some property. By contrast, all the other wrong and thus randomly paired matches
should not exhibit a wide agreement of the same property. This degree of compatibility
is usually expressed through a (symmetric) real valued function 7 : S x S — R* which
can be (and usually is) materialized in a symmetric payoff matrix II. Mapping constraints
can be imposed directly on II, e.g. by setting to O pairs of strategies not respecting the
one-to-one condition.

This concept is somewhat similar to the basic idea that drives RANSAC; however,
by casting the search in an evolutionary process, we are not relying on a one-shot vote
counting validation, but rather we are using self-validation to drive to a consensus what
can be seen as an iterated voting process. The very nature of the property to which pairs
of correct matches must adhere depends on the exact scenario to which GTM is applied.
For instance, in [21] adjacency relations of graphs built on segments extracted from the
images are used; in Chapter [5] the payoff between pairs of potential matches is boosted
by the compatibility of the locally affine transformation assigned to points by the SIFT
descriptor. In Chapter [ the payoff is used to cluster groups of non-distinctive features,
while in Chapter [6]it is utilized to match the remaining ones.

Finally, the goal of the selection process is to evolve an initial mixed strategy x to a
stable state from which the non-extinct matches will be extracted. Since x is associated to
strategies in S, it can be seen as a point in Al (each coordinate of such a point expresses
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the proportion of population playing a strategy, and for this reason we refer to x as a
population vector). At the beginning of the process, x is initialized near the barycenter of
AlSI, In practice this means that to each element of x is assigned the amount of population
ﬁ and then x is slightly perturbed. The perturbation serves two goals: First, to introduce
some randomness in the process (which can be useful if different alternative configura-
tions are sought); second, to avoid some rare stall conditions in evolutionary dynamics
that could occur with some highly symmetric payoff configurations.

This initial population is evolved by means of equations [2.2] or 2.6 until convergence.
In order to assess when this happens, a threshold on the speed of x in Al or a maximum
number of iterations can be set. After a stable state has been reached, all the matching
strategies that thrive under the dynamics should be retained. Since no strategy will be
completely extinct (as the dynamics do not allow to reach the faces of the simplex) an-
other threshold is needed to select the strategies that succeeded; note that this not happens
when using infection and immunization dynamics with pure selection: in this case, the
equilibrium is guaranteed to be reached in finite time [115]. Strategy selection is not car-
ried out via an absolute threshold, but rather by fixing a ratio over the maximum value
in the population vector. In the following chapters we will show that the value of this
threshold has little influence over the quality of the registration obtained. Further, we can
weight the contribution of the surviving matches according to the corresponding value in
x. This has the consequence of reducing the impact of relatively low-quality points and
was shown to allow a slight enhancement in the quality of the final solution [21]. For
instance, in a rigid alignment setting, these population coefficients can be employed to
compute the rigid motion between corresponding point sets in a weighted fashion (Chap-
ter [6)).

Being a rather general framework, the game-theoretic scheme we presented above will
be frequently employed in the remainder of this thesis. While the basic formulation is the
same for all considered scenarios, the specific definitions making up all its parts will be
quite different, and will provide interesting insights emphasizing its flexibility in a variety
of cases. In particular, in Chapter [§| we will establish a link with optimization theory, and
point out some interesting analogies with more classical formulations of the matching
problem.



The Reconstruction Process

Three-dimensional scanning is a wide and diverse research field that finds applications in
many different areas ranging from measurement tasks, such as industrial monitoring, to
artistically motivated reproductions, such as those that can be found in virtual museums.
As such, scanning processes come in many variations reflecting both the motivations and
the technical contexts in which they originated. Among the existing techniques, struc-
tured light scanning is to be regarded, without any doubt, as one of the most accurate
measurement tools currently available, but is by no means to be considered the definitive
instrument for 3D reconstruction suitable for all scenarios. Nevertheless, due to the de-
grees of accuracy it can attain, it is certainly a very useful research instrument and has
been frequently adopted to produce real-life datasets under controlled conditions. In this
Chapter we focus on a typical acquisition process composed of two fundamental steps, for
which we provide effective contributions: camera calibration and projected light coding.
Here, cameras are modeled according to the traditional pinhole model, and the correspon-
dence problem is tackled via projection of phase-shift coded light. This research was
motivated by the need to acquire complete, water-tight, yet very accurate 3D models for
the manufacturing industry with low cost hardware requirements.

3.1 Robust Camera Calibration using Inaccurate Targets

Camera calibration consists in estimating the intrinsic parameters of a camera with accept-
able accuracy, together with the distortion coefficients that characterize the lens distortion
model when needed. To this end, many techniques have been proposed in literature (see
Chapter 2| for a review on existing methods). Most, if not all, existing approaches work
by taking several shots of some calibration pattern, setting up a 3D-to-2D reprojection
system and then solving for the camera parameters, relying on the strong assumption that
the calibration pattern be constructed with high accuracy. This might not be the case in a
wide range of scenarios, where the calibration pattern is built using consumer technology
that certainly cannot guarantee the high precision levels required by demanding computer
vision tasks. In this work we take a completely different route from these techniques, by
directly addressing one of the most overlooked problems in practical calibration scenar-
i0s. Specifically, we drop the assumption that the target is known with enough precision
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Figure 3.1: The strongly polarized distribution of the reprojection error with respect to
target points obtained in our calibration experiments (left figure) suggests that the mea-
surements on images were not subject to zero-mean error. On the other hand, the dis-
tribution of the error on the image plane (right figure) is isotropic, assessing the good
compensation of radial and tangential distortions and the reliability of the corner detector.
This supports our hypothesis that the discrepancies are due to systematic printing errors
(errors magnified by a factor of 100).

and we adjust it in an iterative way as part of the whole process. This is in fact the case
with the typical target used in most of the calibration literature, which is usually printed
on paper and stitched on a flat surface. In the experimental section we show that even with
such a cheaply crafted target it is possible to obtain a very accurate camera calibration that
outperforms those obtained with well-known standard techniques.

3.1.1 Camera calibration with inaccurate targets

Throughout the literature the calibration quality obtained by different authors, even when
using comparable techniques, is somewhat fluctuating. Given the complex nature of the
image acquisition process and the uncertainties of the target manufacturing, it is often
difficult to identify the exact sources of error and how they combine. The quality mea-
sure itself, which is usually the reprojection error, is not always a correct indicator (in
section [3.1.2] we will show that it is possible to obtain a low reprojection error and still
get a bad calibration). In [53] Douxchamps suggests that a higher accuracy could be at-
tained by increasing the total interface length of the markers themselves and thus enhance
their localization. A very in-depth theoretical analysis is validated by a large amount of
experiments with synthetic images; however, real-world tests exhibit errors about an or-
der of magnitude larger, which the author explains in part with the non-planarity of the
target and in part with optical artifacts not corrected by the calibration model. Similar
differences between results obtained with synthetic and real images have been previously
observed by Heikkild in [72]. While we agree that this discrepancy can be attributed to
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Figure 3.2: Reprojection errors superimposed over the corresponding image point ob-
tained with a direct application of the calibration procedure with the theoretical checker-
board (left figure) and with the more accurate estimated model (right figure).

imperfection of the target manufacturing, we argue that the non-planarity is not the main
error source. Specifically, we built a planar target by stitching a checkerboard printed on
inextensible plotter paper onto a 6mm thick highly planar float glass. Using this target we
intrinsically calibrated a test camera with the Zhang method and, beside studying the re-
projection error with respect to image points, we also plotted the same oriented error bars
applied to the theoretical model of the checkerboard. The results of this experiment are
shown in Figure [3.1] It is immediate to observe that the measurements are not subject to
an uniformly distributed error. From a general point of view this means that the optimiza-
tion was not able to fit the theoretical checkerboard model with a zero-mean Gaussian
error, which in turn highlights the presence of some systematic error source. Basically,
this source can be correlated with three causes: a localization bias introduced by the sub-
pixel corner detector, the inability of the adopted camera model to fully capture the real
image formation model (namely lens distortions), or some unknown discrepancy between
the theorical checkerboard model and the printed one. We are not inclined to think that the
bias in corner detection is significant since, if this was the case, we should spot a higher
coherence in error orientations as all the corner features present roughly the same orien-
tation, scale and illumination conditions (see Figure [3.2). To rule out the deficiency of
the camera model we plotted the same error measurements on the image plane space (i.e.,
the camera CCD sensor). By observing the right part of Figure [3.1]it is quite evident that
the error distribution is isotropic and this is a strong indication that no systematic error
is amendable by using a more sophisticated camera model. Those considerations suggest
that the printing process itself could be inaccurate enough to represent a significant source
of systematic error in the calibration process. For this reason, we decided to investigate
the nature of such printing errors and to tailor a calibration procedure able to correct them.
It should be noted that the influence of printing error was already observed in literature.
Recently Strobl [132] described a similar scenario, albeit he suggested that the printing
procedure introduces just two types of systematic biases: an error in the global scale of
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Algorithm 3.1.1: CALIBRATE CAMERA-TARGET(target,images, minError, maxIter)

originalTarget < target

reprojection Error < 400

currentlteration <— 0

while reprojection Error > minError and currentlteration < maxlIter
cameraParameters < calibrateCamera(target,images)

reprojection Error < bundle Adjust(target, cameraParameters, images)
target < hornAdjust(target, originalTarget)

currentlteration + +

return (cameraParameters)

do

Figure 3.3: The simple, yet effective, algorithm proposed to iteratively estimate the
intrinsic camera calibration and the real target geometry.

the checkerboard and a non predictable aspect ratio. While this simple formulation al-
lows for an elegant calibration procedure that introduces just two additional parameters,
we think that it is not general enough. In fact, the distribution of the error shown in Fig-
ure [3.T]can not be justified by scale and aspect ratio transformations. In order to deal with
the most general scenario we propose to lift any direct constraint on the target geometry
and iteratively run a three-step procedure (see Figure [3.3). In the first step we assume
to know precisely the calibration target and we perform a standard calibration procedure
with the currently trustable target model. Once plausible camera parameters are obtained,
we assume them to be correct and we evaluate a more accurate target geometry by using a
bundle adjustment technique to estimate only camera poses and scene (i.e., target). At this
point a further step is needed, specifically we need to rescale the newly created target to
fit the original one. This is necessary since the bundle adjustment step does not guarantee
scale invariance. This adjustment step is performed by using the robust closed form point
set alignment technique by Horn [74]. The procedure is stopped when the reprojection
error falls below a fixed threshold or a maximum number of iterations is reached. Note
that since the estimated target is scaled towards the theoretical one at each step, the final
camera calibration could be subject to an absolute scaling error that is not avoidable as
the real measures of the target are not known. Still, this error is averaged over the printing
error of each corner and in practice this has shown to be very small (see Section [3.1.2).

3.1.2 Experimental results

We performed all of our experiments using a pair of Basler Scout scA1300-32gc Gigabit
Ethernet monochrome cameras with a resolution of 1280 x 960 pixels. We printed our
checkerboard pattern with one laser and two different inkjet printers. Some rudimentary
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dimensional controls, made with a millimeter accurate ruler, showed that the laser printer
is surprisingly inaccurate as it produces prints that suffer from a global error (measured
between the first and last check of the A4 page) from one to three millimeters. This error
was also very variable between subsequent prints and also the aspect ratio was not repeat-
able (as previously observed by Strobl [132]). The inkjet printers were more accurate,
showing printing errors greatly below the measurement threshold of the ruler (i.e. sub-
millimeter) both with respect to the global checkerboard size and its aspect ratio. Thus,
we decided to build our test target by printing a large checkerboard on an inextensible A3
plotter sheet with the inkjet printer we felt to be more precise, and to stitch it on a thick
planar glass with all the needed care to guarantee the best possible adhesion. The camera
calibration step was performed by using the OpenCV [32]] library, which implements the
Zhang [162] method and allows to estimate, by non-linear optimization, three radial and
two tangential distortion parameters. In our experiments we estimated only two radial
distortion parameters since the used lens set was not wide-angle and a preliminary set of
experiments showed that the third parameter was both irrelevant and unstable. Further, we
fixed the camera aspect ratio to 1 (i.e. fx=fy), as guaranteed by the manufacturer. To per-
form the bundle adjustment a suitable sparse implementation of the Levenberg-Marquardt
optimization algorithm was used. For each camera we took a set of 200 shots of the target:
100 shots were taken with small angles between the target and the optical axis (from 0
to 15 degrees), while the others exhibit a larger range of orientations (up to 30 degrees).
These two sets have been used to study the influence of the target orientation in both the
quality of the calibration and the reprojection error measure (see Section [3.1.2)). Finally,
the two cameras were mounted on a rigid support to form a stereo pair which was used
to shot another set of 100 images of the same checkerboard, and thus perform a stereo
calibration and target reconstruction as an additional validation step.

Effects of target estimation on camera calibration

In our first set of experiments we analyzed the convergence behaviour of the proposed
algorithm. This was done by applying the calibration technique to the full set of shots
taken by the first camera. By observing the plots presented in Figure [3.4] we can see that
the position of the principal point (plots a and b) changes significantly during the first 8
iterations. In particular, its horizontal location moves by almost 1 pixel. In general, with
a good quality calibration setup, this value is expected to be recovered with at most some
fraction of pixel of estimation error.

We observe a similar behaviour for the focal length (plot ¢), which moves away from
the initial approximation by more than 1 pixel. In the last three graphs of Figure we
see the distortion parameters variation. Again, the distances from the first rough estimate
are similar in percentage to those observed for the internal parameters.

To give an idea of how these variations relate with the reprojection error, in Figure
we reported the RMS between observed and reprojected points for the same iterations
shown in part (a) of Figure It is interesting to note that the reprojection error dramat-
ically decreases after just one iteration, then it becomes quite stable and after as few as 4
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Figure 3.4: Convergence of both internal and distortion parameters with respect to subse-
quent iterations of our method.
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iterations it seems to have reached convergence. Indeed, this does not correspond to the
behaviour observed for the camera parameters, which continues to move after 4 iterations.
We think that this is due both to the misleading nature of the reprojection error (which
we discuss in Section [3.1.2)) and to the fact that most of such initial large error is to be
attributed to the very rough first approximation of the checkerboard model.

To better explain the interplay between the estimation of the “true” calibration target
and the associated error reduction, we plotted (in part (b) of Figure [3.4) the RMS error
between the corresponding points of the theoretical and estimated target. We can see that
the target estimation process requires a few more steps to stabilize, albeit the most signif-
icant variation happens during the first few bundle adjustments. The final distance from
the theoretical model settles around one-tenth of a millimeter, which is compatible with
the qualitative observation obtained by using a physical ruler. While this error magni-
tude can be considered small for a normal printing operation, it can be cumbersome when
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Figure 3.5: Convergence of reprojection error (left) and distance of the estimated calibra-
tion object with respect to the theoretical checkerboard (right) for subsequent iterations
of the proposed method.

seeking for an accurate calibration, especially considering that high-quality specifically
crafted industrial calibration targets guarantee a location error below one-hundredth or
one-thousandth of a millimeter.

In Figure we finally show the distribution of the reprojection error with respect to
the target points (first image), and the image plane after the application of the proposed
calibration method (second image). This figure is meant to be directly compared with
Figure Regarding the measured error applied to the target points, the large reduction
in magnitude is very noticeable. In addition, the error sticks appear to exhibit an isotropic
distribution. This suggests that most of the systematic error has been eliminated and only
Gaussian noise (due to image noise and corner detection) is measured.

Validation of the calibration by stereo triangulation

The reprojection error obtained in Section [3.1.2]is below one-tenth of pixel. While this
is not a bad result overall, it is a bit large with respect to common values declared in
literature by recent methods, which usually reach a reprojection error as low as 0.05 pixels
even using self-printed targets. To better understand the relation between the reprojection
error and the calibration accuracy we performed and independent check based on stereo
reconstruction. We calibrated a pair of cameras with the described technique and then we
fixed them to arigid bar and calibrated the stereo rig using a new set of stereo shots and the
target geometry previously learnt. Since the correct geometry was assumed to be known,
this latter step was performed simply by using the appropriate stereo calibration function
of the OpenCV library. The stereo calibration was then used to recover, in the 3D space
and for each stereo shot, the position of two checkerboard corners that are 10 cm apart.
Our idea is that by analyzing the measured distance between the reference points under
different conditions, we should be able to assess the overall quality of the two camera
calibrations and of the target estimation (as the “learnt” target is used to perform the stereo
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Figure 3.6: Reprojection error (magnified by a factor 100) with respect to the model points
(first graph) and the sensor plane (second graph) after our method comes to convergence.

step). Specifically, we tested three calibration setups: the first is meant to be a comparison
with standard calibration techniques and thus uses only the theoretical checkerboard, the
second uses the estimated target and all the images, finally the last setup uses only a
reduced set of images that feature angles with the optical axis lower than 15 degrees.
In Figure we present a scatter plot of the different measures obtained with the three
setups described. Since the target is moved among the stereo shots, we reconstructed the
pair of control points in different positions in space. Of course, the better the calibration
1s the more consistent is the measure between different shots, since if the calibration were
perfect, the only measure error would be due to the subpixel corner localization. We can
observe that by using our method with all the shots (thus with angles up to 30 degrees) we
obtain the most reliable results: the measure has the lowest variance and it is quite uniform
throughout the depth of the view field. By contrast, using the reduced set of images (those
that are more fronto-parallel) not only leads to a larger variance, but in addition a clear
gradient appears in the scatter plot; that is, the measure tends to decrease as the target
gets far from the stereo pair. This effect is probably due to the fact that images with
weak angulation are not able to fully constrain all the calibration parameters, especially
the extrinsic ones (i.e. camera poses). As expected, when not estimating the target model
we obtain a larger variance, albeit we do not get any gradient along the z coordinate as
we use the full set of images. Note that the average in not exactly 10 cm even for the
best technique: this is to be expected, as the real distance is not known and we just know
that the two reference points are separated by 10 squares allegedly long 1 cm in the print.
In table (b) of Figure we show the different reprojection errors attained by the three
setups. We can see that, notwithstanding the large average measurement error, the setup
that uses the fronto-parallel images obtains a very low reprojection error. This apparent
nonsense is indeed due to the lower error introduced by the corner detector as, when the
model is correctly estimated, this zero-mean Gaussian error does not hinder a correct
camera calibration, yet it contributes to the magnitude of the reprojection RMS error. On
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Figure 3.7: Verification of the calibration quality by means of a stereo measuring check
(see text for details).

the other hand, the use of weakly angulated images poses less constraints to parameters
and thus leads to both a less accurate mono calibration and stereo reconstruction. In this
sense, the reprojection error is not always a good indicator since, when the calibration
setup is good, it tends to be dominated by localization errors.

3.1.3 Conclusions

In this Section we introduced a very simple but effective method to precisely calibrate a
camera with a cheap self-built target. While this approach is not meant to substitute the
use of professional-made calibration objects, it is very useful since printed targets are still
widely used both by researchers and practitioners. The effects of an accurate learning
of the real target geometry are shown with a set of experiments that explore both the
convergence behavior of the algorithm and the quality of the obtained calibration.

In a typical stereo reconstruction setting, once a calibration is provided for the two
cameras, and given that point-to-point matches are established between the two images,
it is possible to triangulate object points in the 3D space; doing this for all the corre-
spondences, one obtains the surface reconstruction of the captured object from that single
point of view. In the next Section we will assume that a more or less accurate camera cali-
bration is provided, and shift our focus to the correspondence problem itself. Specifically,
we introduce a novel technique for phase coded light that aims at improving efficiency of
the acquisition process by retaining a good level of accuracy.



40 3. The Reconstruction Process

3.2 Fast Reconstruction by Unambiguous Compound Phase
Coding

The most common approach to structured light scanning is undoubtedly represented by
binary Gray coding (Section [2.2)). The method is of easy implementation and accurate
enough for many applications, but is severely limited in resolution and is highly depen-
dent on the albedo of the underlying surface. By contrast, phase shift methods have
proven to be very robust and accurate for photometric 3D reconstruction. One problem of
these approaches is the existence of ambiguities arising from the periodicity of the fringe
patterns. While several techniques for disambiguation exist, all of them require the pro-
jection of a significant number of additional patterns. For instance, a global Gray coding
sequence or several supplemental sinusoidal patterns of different periods are commonly
used to complement the basic phase shift technique.

In this work we propose a new pattern strategy to reduce the total number of patterns
projected by encoding multiple phases into a single sequence. This is obtained by mix-
ing multiple equal-amplitude sinusoidal signals, which can be efficiently computed using
inverse Fourier transformation. The initial phase for each fringe is then recovered inde-
pendently through Fourier analysis and the unique projected coordinate is computed from
the phase vectors using the disambiguation approach based on multiple periods fringes
proposed by Lilienblum and Michaelis [87]. With respect to competing approaches, our
method is simpler and requires fewer structured light patterns, thus reducing the measure-
ment time, while retaining high level of accuracy.

3.2.1 Multi-Period Phase Coding

Recently, methods based on number theory have been proposed for disambiguation [165,
87]. In [87] the authors relate absolute, unambiguous phase values to projector coordi-
nates £ € R, and define £(u, v) to be the projector coordinate at pixel (u, v). Then several
phase shift sequences, each with a different local period );, are projected onto the object
to be measured. A phase image is obtained for each sequence through the computation
of periodic phase values ¢;(£) € [0, 1) at every pixel. In addition, the fringes of a pattern
are assigned sequential natural numbers 7;(£) € N, which represent a simple counting of
the fringes from left to right. A projector coordinate can then be directly obtained, for all
1 =1,2,...,n, from a fringe number and a phase value:

§= (&) + gi(§)) i (3.1)

Since the only available values during measurement are A and ¢, it is clear that the system
of equations becomes ambiguous as the same value of £ can be obtained for different
values of 7;. This happens when two different projector coordinates yield the same phase
values for all 7. Therefore, the authors follow a number-theoretic approach and identify a
general condition for generating unambiguous pattern sequences, by defining a maximum
projector coordinate &,,,, up to which ambiguity can be excluded. Such a coordinate



3.2. Fast Reconstruction by Unambiguous Compound Phase Coding 41

is defined as the least common multiple of relatively prime periods \;, and clearly for
practical advantage it must entirely cover the projector range. An efficient method is given
to calculate the fringe numbers from the ambiguous phase values at each pixel, given the
local period lengths. This method takes advantage of a simple relationship between phase
values and fringe numbers. Given any pair of pattern sequences, the following equivalence
holds for each image pixel:

Xigi(u, v) — Njpj(u,v) = A\jn;(u, v) — N (u, v) . (3.2)

This makes it possible to construct a theoretical phase difference vector beforehand, and
then use it to retrieve the fringe numbers when real phase measurements become available.
In addition to providing an efficient way to obtain the fringe numbers, this method allows
to assign each point a reliability value related to the deviation between measured and
expected values. The use of theoretical phase difference vectors makes for a powerful test,
which allows to identify erroneous or weak measurements (such as mixed phase values)
caused, for instance, by sharp edges, involuntary object movements and light reflections.
Once the unknown fringe numbers are calculated, projector coordinates can be easily
retrieved for each pattern sequence with equation [3.1] The independent measurements
can then be averaged to obtain a unique and absolute phase value at every pixel in an
efficient way, leading to an increase in accuracy of the measurements.

The big advantages of the multi-period method is its relative simplicity and high effi-
ciency. The phase-coded images can be directly employed in general stereo reconstruction
systems, ensuring high quality and density of the code. Specifically, the lack of surface
points is mainly due to occlusions and camera disparity, and measurement errors are very
low thanks to the averaging and validation procedures implicit to the approach, that ex-
clude a large percentage of errors and outliers before the actual surface reconstruction
takes place. The main drawback lies in the fact that, typically, three or more pattern se-
quences are needed to entirely cover the projector range (typical values are 800 or 1024
projector pixels). This requires the projection of as many as three times more patterns
than required with classical phase shifting.

In the next section we introduce a novel coding strategy that retains the big advan-
tages offered by the multi-period method, but requires a significantly lower number of
structured light patterns while achieving comparable levels of accuracy.

3.2.2 Compound Phase Coding

The main idea behind the Compound Phase Coding strategy is to project several fringe
patterns in a single spatio-temporal pattern. This is obtained by encoding the phases of the
fringe vector as phases of a Fourier term at different frequencies. Each fringe is character-
ized by a different period and all of them are relatively prime. This way, once recovered
the single initial phase shift for each fringe, we are able to build an unambiguous code
with a numerical technique similar to the one suggested in [87].

Let A\i,..., A\t be k periods and let £ be the projector coordinate at some pixel. If
the periods are coprime and the projector coordinates do not exceed Hle Aj, then we
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Figure 3.8: The composition of k£ fringe patterns, plus one unknown shift signal will
produce a total of 2(k + 1) image patterns that will be projected onto the surface to be
reconstructed. The shift pattern (projector scaling) accounts for the unknown value of the
albedo of the surface.

have a unique phase code for £ [87]. Namely, this code is given by the vector ¢ =
(¢1 .. Qbk) € [0, 1)k, where qu = (f mod )\J)/AJ

Our aim is to map ¢ into a signal sequence of gray-scale values that can then be
measured by the cameras to obtain the unique code of each fringe. We take the hint from
phase shift methods that phase encodings are more robust than amplitude codings, but
extend multi-period coding by decoupling the phase used to encode the message from
the frequency of the sinusoidal signal used to transport it. This is done by projecting the
sum of equal-amplitude sinusoidal signals at frequencies k+r1, k%l, ceey ﬁ, where £ is
the number of periods necessary to encode the coordinate x;, and by encoding the phase
parameters as the phases of the corresponding sinusoidal signal.

Given a phase code ¢ € [0,1)%, we create a (k + 1)-dimensional complex vector
x € CF!, where

0, if7=0,
Ti= .
! e 20 if1<j<k.
Here, 7 = v/—1. Note that given x; for any 1 < j < k, we can compute the phase ¢; as
1
¢; = frac(1 + 7 arg(S(z;), R(z,))) (3.3)

for any value of s, where frac(-) is the fractional part of the argument, and (z), R(z) are
the imaginary and real parts of z € C, respectively.

Each complex number z; represents the amplitude and phase of a sinusoidal com-
ponent with frequency k%rl cycles per sample. Hence we can reconstruct the intensity
sequence of that coordinate by computing the Inverse Discrete Fourier Transform of x,
obtaining the vector y € C*™!, where

k

1 2mi—d—n
n — e R ) :O,...,k’.
Y k+1zjzo$fe "
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Figure 3.9: A total of 2K+2 images of illuminated objects are captured and single phase
values are calculated for each composed fringe signal. Those values are subsequently used
to get an unambiguous coding. Note that the intensity profile of each projected pattern is
not sinusoidal.

We can then project separately the real and imaginary part of this vector as two time
sequences obtaining a single set of 2(k + 1) patterns to be projected to uniquely encode
the x; projector coordinate (see Figure [3.8)).

Hence, given y € CF*', we transform it into a real vector z € R2**1 where
z05-1 = RN(y;) and 295 = F(y;) for 1 < 57 < k + 1. Afterwards we scale and shift
each component of z in order to bound them within [0, 255], obtaining the sequence of
gray-scale values to project in correspondence to £&. Note that by applying a shift we af-
fect the information at frequency 0, while by scaling, we modify the amplitudes of all
frequencies, without influencing the phase values.

The acquisition process introduces an additional linear deformation on z, which de-
pends on the physical properties of the object being scanned. Again this does not affect
the phases.

Let z € R2*+1) be the acquired gray-scale values and let ¥ € C**! be its representa-
tion into a complex vector. Then, the net effect of the projector scaling and the change in
the reflectivity properties of the surface is a translation and scale of the observations, i.e.
the relation beween the intended signal y and the observed signal y is

y:3+§y

for some real values ¢ and 5. The phase code is finally recovered from y by computing
the Discrete Fourier Transform, namely

— _E :— —2mi=j
27]' - yne k+l )

and by applying (3.3) to the result X € C**!, obtaining ¢ (see Figure 3.9).

This process allows to recover the phase code for each projector coordinate by tak-
ing only 2(k + 1) measurements, where k is the number of signal periods. Nevertheless,
one can also force a larger number of samples in order to increase accuracy, by append-
ing null components to x. More precisely, by appending M null components, we need
2(M + k + 1) measurements in order to recall the phase code ¢.
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Figure 3.10: The general purpose structured light scanner used.

It should be noted that a drawback of this approach is that encoding multiple signals
in a single pattern reduces the effective projector intensity range available to encode each
phase, increasing the effects of the discretization error. However, experiments show that
the error introduced by this is limited.

3.2.3 Experimental results

In order to validate the proposed technique we compare its accuracy to the results obtained
with a state of the art phase shift technique. To this extent we choose to compare our
measurements with those given by the Multi-Period Phase Shift proposed in [87]. The
reasons for this choice are two-fold: Multi-Period Phase Shift is very accurate, as it uses
information for each fringe projected in order to reduce the average error; in addition, once
the phase vector from the composite signal is obtained, measurement quality is directly
comparable as both techniques share the same numerical disambiguation step. In the
following sections we will show both quantitative results, by evaluating the measurement
error over a planar target, and qualitative results, by showing relative average distances
between the measurements obtained by the two techniques with generic objects and by
comparing the corresponding estimated quality.

Experimental setup

All the following experiments have been run on a test rig for structured light techniques
that has been internally developed in our lab (figure [3.10). The rig is made up of a mo-
torized plate for object positioning, four cameras and an illumination source mounted
on a motorized liftable platform. Specifically the cameras are equipped with a 1/2 inch
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Figure 3.11: Accuracy comparison between the Compound Phase Coding method and the
Multi-Period Phase Shift technique. In figure we used periods of 7, 11 and 13
pixels (30 patterns for Multi-Period Phase Shift), and in figure we used periods
of length 9, 11 and 13 (34 patterns for Multi-Period Phase Shift). Note that the Multi-
Period technique appears as a flat continuous red line and its standard deviation as dashed
red lines. Vertical bars are standard deviations in the measurement of the error for the
compound technique.

CMOS sensor which offers a full 1280x1024 resolution. The cameras are monochrome,
thus no Bayer filters are placed over the sensor. While four cameras are available, in this
experiment set we use only one pair of cameras to reconstruct the surfaces. Thus the sys-
tem falls into the category of two calibrated cameras and one uncalibrated light source.
The illumination source is a 800x600 color DLP projector which we use to project the
monochromatic patterns. The system is controlled by a standard PC housed into the base
of the rig. This PC is a 2.8 GHz AMD quad core system with 2 Gigabytes of ram.

Intrinsic and extrinsic parameters of the cameras have been obtained through a stan-
dard calibration procedure using a planar checkerboard and OpenCV [32] calibration soft-
ware. It must be noted that our system is not a full fledged production scanner, thus it does
not guarantees extreme accuracy or resolution: in fact we estimate its precision in about
30pm. This level of accuracy is adequate with respect to our experiments, as we are not
interested in showing the absolute precision of our setup, but rather the relative perfor-
mance of the coding schemes, showing that the proposed approach can be used as an
effective replacement for slower approaches without suffering from a significant loss in
accuracy.

Planar target measurements

In this first set of experiments we measured the surface of a 200 by 200 mm squared piece
of float glass which we previously sprayed with a very thin layer of acrylic paint. We
made several sets of measurements with both the Compound Phase Coding technique and
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the Multi-Period Phase Shift technique. Since the exact pose of the test object is unknown
and the surface cannot be perfectly flat, we approximated the ground truth with the best
fitting plane (in the least squares sense) with respect to the measured points of the object.
This way we estimate the expected measurement error of each technique as the average
of the absolute value of the distance from the fitting plane of each measured point. We
had a wide range of choices regarding the number of different signals to project and their
periods. We chose to execute the test with two configurations: 3 signals of periods re-
spectively 7, 11 and 13 pixels and other 3 signals of periods 9, 11 and 13 pixels. Since
our projector has an horizontal resolution of 800 pixels both configurations allow to ob-
tain a globally unambiguous coding of the object. Given those signal configurations, we
projected respectively 30 and 34 patterns for testing the Multi-Period Phase Shift tech-
nique. Since we always used 3 signals, the Compound Phase Shift technique strictly
requires only 8 patterns to be projected: nevertheless we repeated the measurement with
a growing number of additional patterns in order to study the effect of the supplemen-
tary information on the final accuracy. Finally, each experimental measure was repeated
for a total of 10 times. In figure|3.11| we compare the performance of the proposed ap-
proach against the baseline multi-period approach. Accuracy of the multi-phase approach
is slightly better in [3.11(b) probably due to the higher number of patterns projected (34
instead of 30). The blue line shows the trend of the average error of the proposed Com-
pound Phase Coding technique as the number of projected pattern is increased. It should
be noted that even with the minimal number of projected patterns the accuracy is quite
good: in fact, on average our distances from the fitting plane are only about three mi-
crometers higher than those obtained using the Multi-Period technique, which requires
almost four times as many patterns. Moreover, by projecting additional patterns, the qual-
ity of the measurements can be further enhanced: for instance, by doubling the number of
projected patterns the distance from the Multi-Period approach is approximately halved.
Finally, as we expected, using the same number of patterns projected by the Multi-Period
technique, the two approaches yield equivalent performances. Of course, the whole point
of the proposed technique is to reduce the number of projected patterns. In this sense, our
approach allows to control the time/precision trade-off, obtaining good reconstructions
even with just 8 patterns.

Generic objects measurements

In this set of experiments we measured the surface of several generic scenes built with
simple wooden objects in a volume of about 200 mm of diameter in each direction. The
set of objects was selected to maximize the range of surface orientations and conditions.
Again we compared our results with those obtained by the Multi-Period approach: in
this case we take the Multi-Period results as a direct comparison, as no ground-truth or
knowledge of the surface of the objects (which are hand-made) is available. Compound
Phase Coding was tested both with 8 and 16 projected patterns. Since we projected signals
with periods of respectively 9, 11 and 13 pixels Multi-Period Phase Shift was tested with
34 samples. For each experiment we evaluated three quantities, namely:
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Cube and Disc Toy House
Technique Multi Comp8 Comp 16 Multi Comp8 Comp 16
Points 109347 108306 109034 46749 46263 46505
Avg deviation 0.025  0.089 0.063 0.030 0.085 0.067
Avg distance - 32.00 25.09 - 21.15 16.19

Figure 3.12: Comparison between reconstructions obtained with the Multi-Period Phase
Shift and the Compound Phase Coding on several test objects. Compound Phase Coding
has been tested using both 8 and 16 samples. Multi-Period Phase Shift has been tested
with 34 samples in order to obtain the best quality. Distances are in microns and objects
are 5 to 10 cm wide.

e The number of points acquired. That is the number of surface points that pass
both the consistency and the quality check. The first verifies that the phase vector
is consistent with the code assigned to the point, the latter ensures that the phase
difference vector contains only integer values (as expected with respect to constraint
3.2). Specifically, for these experiments we rejected points associated to phase
difference vectors where at least one entry deviates from the nearest integer by
more than 0.2;

e The average deviation. That is the average distance from each entry in the phase
difference vector and the nearest integer. Since each element of the phase difference
vector should be integer a lower value suggests a higher quality in the measurement
obtained. This parameter has been calculated over all the points obtained, even
those filtered by the consistency and quality checks;

e The average distance. That is the average of the absolute distances between points
obtained by the Multi-Period and Compound techniques. Note that this measure
is possible because we implemented both algorithms in a way that allowed us to
produce depth maps that are exactly overlapped along the x and y axis and differ
only for the depth values assigned along the z axis.

In Figure we report the values of those three quantities in different scenes. In gen-
eral, the number of points acquired by the Compound Phase Coding with only 8 patterns
is slightly smaller than the number of valid points given by the Multi-Period technique.
This distance, while small, is almost completely eliminated when using 16 patterns. The
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Figure 3.13: A surface reconstruction example complete with deviation assessment. In the
first colum, the object as viewed by the left and right camera. In the second column, the
deviance maps of Multi-Period Phase Shift (top) and Compound Phase Coding (bottom).
In the last colums, two respective close-ups of the reconstructed surfaces.

average deviation resulting by applying our technique is always slightly higher, neverthe-
less it should be remarked that those values are all quite small: in fact, for any practical
purpose a deviation smaller than 0.1 can always be associated with a valid measured point.
Finally, the average distances between the two techniques also assess the suitability of our
technique as a fast replacement for traditional Multi-Period: in fact, the results obtained
are generally compatible with the measurement error estimated in the experiments done
in section [3.2.3] a result that should be expected since both techniques are subject to mea-
surement errors. It should also be noted that the higher average distance obtained with the
scene “Cube and Disc” is probably due to the presence of sharp edges and of two large
surfaces at a grazing angle with both the cameras and the light source. Conversely, the
higher smoothness offered by the scene “Cone and Spheres” allows for a more precise
reconstruction.

In Figure we show a more qualitative example of the difference in accuracy
of reconstruction between our method and a complete Multi-Period phase shift. In this
experiment we used the less accurate instance of Compound Phase Coding, thus only 8
patterns were projected. In the first column we reproduced the scene viewed from the left
and right camera. In the second column we calculated a map of the maximum deviation
from integer values of the phase difference vectors of the Multi-period method (top) and
the Compound method (bottom). In these maps we used the standard Matlab color scale,
thus a full blue pixel indicates a low deviation and a bright red pixel a maximum deviation
(in this case 0.5). Uncoded pixels are represented in dark red. Both techniques exhibit a
fairly low deviation, with high values mainly on the borders, which is due to the camera
integration of the projected signal and the background on boundary pixels. The other high
deviation area on the side of the cube is probably due to inter-reflection between the two
objects.

The last two columns show a close-up of the surfaces reconstructed with both meth-
ods. In general the surface reconstructed with the Compound technique is a bit more
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Figure 3.14: A comparison of the coding and of the phase values extracted by our tech-
nique and by Multi-Period phase shift. In the first colum we show the final codings and
their difference. In the other columns we display the respective phase images for two
reconstructed signals. The two magnified plots in the last row correspond to the small red
segment. Note that the obtained phases are very similar even in the proximity of critical
areas.

noisy, but the overall level of detail is maintained, even with details at a relatively high
frequency being clearly visible on both reconstructions: for instance, in the close-up of
the disc object (third column) a very small bulge is visible in both the reconstructions in
proximity of the lower rim of the hemisphere.

Finally, in Figure we compare the reconstructed phases obtained after the appli-
cation of the Discrete Fourier Transform to the captured structured light images before
and after the coding step. As in the previous experiments we choose periods of 9, 10
and 13 pixels and we projected 34 patterns for the Multi-Period method and 8 pattern
for our approach. In the first column we show respectively the complete coding for the
Multi-Period (top) and for the Compound (middle) methods. In order to highlight the dif-
ferences between the two codings, we show in the third line of this column the difference
image between them: as expected they are almost identical and the only slight differences
are found in boundary regions, where the measurements are less precise.

In the other two columns we show the phase related to two different signals calculated
by the two techniques (we show only two signals for space reasons). For the purpose of a
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simple comparison between them, we plotted a magnified graph of the small red lines in
the phase images. In those graphs the red line represents the phase extracted by the Multi-
Period method and the blue line the phase extracted by our technique. It can be seen that
the values obtained are very similar, and that they diverge by a very small amount only in
proximity of critical areas such as the interface between the disc and the hemisphere.

3.2.4 Conclusions

We have proposed a novel compound phase coding technique that is able to perform
a complete and accurate surface reconstruction requiring the projection of as few as 8
patterns. This is obtained by encoding multiple phase information in a single pattern
sequence as phases of sinusoidal signals at integer frequencies, thus encoding and decod-
ing the compound signal using standard Fourier analysis. The comparison with another
well known technique assesses the ability of the approach to obtain accurate reconstruc-
tion even with very few patterns. In addition, the time/quality trade-off can be easily
controlled by adding more patterns. In fact, we show that measurement error decreases
consistently by adding more information, to the point that our method reaches the per-
formance of other state-of-the-art approaches when feeded with a comparable quantity of
data.



Features Selection

Feature detection is a pervasive problem in computer vision; as such, a large number of
specialized techniques have been proposed during the years. An overview of the most
common methods is given in Chapter [2, Unfortunately, the very concept of feature has
a different meaning that depends not only on the domain of application (e.g. 2D vs 3D,
points vs lines, et cetera), but also in regards to the specific task that is being tackled within
a given problem. In the majority of cases, a feature is what can be considered an “inter-
esting trait” of a given object; as such, distinctiveness comes as a natural requirement,
whereas a feature can hardly be considered to be “interesting” when its characteristics
are commonly encountered across the object [63]]. Yet, this view of what constitutes a
feature based on some notion of frequency of appearance is arguable, and does not take
into account neither the transformations the object can undergo (e.g. additive noise), nor
the problem at hand (as an example, this measure is highly sensitive to partiality or view
transformations of the object). Another common desideratum is that the feature be ro-
bust to a variety of transformations, such as (in the 3D case) additive noise, local scale
changes and topological deformations. Or again, repeatability under different instances
of the same object might be preferable over robustness in a number of cases.

Given this somewhat vague and task-specific definition of the problem, it comes with
no surprise that research dedicated to this topic has been carried out with constant vigor
during the years in many different fields. In this Chapter we present some results that
span three different areas within the Image Processing and Computer Vision fields: In
Section {.1], we introduce a method based on results from game theory (see Section [2.6))
that tackles a 2D object recognition problem in highly noisy scenarios; then, Section
introduces the problem of interest point detection in a 3D setting, where features
are extracted according to an outlier filtering principle similar to the one followed in the
2D case; finally, in Section {.2] we present a sampling technique that attacks the specific
problem of fine surface alignment in 3D reconstruction scenarios.

4.1 Figure Extraction from Textured Backgrounds

Feature-based image matching relies on the assumption that the features contained in the
model are distinctive enough. When both model and data present a sizeable amount of
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Figure 4.1: Examples of the two evolutionary matching games proposed.

clutter, the signal-to-noise ratio falls and the detection becomes more challenging. If such
clutter exhibits a coherent structure, as it is the case for textured background, matching
becomes even harder. In fact, the large amount of repeatable features extracted from
the texture dims the strength of the relatively few interesting points of the object itself.
It’s exactly this property that we exploit in order to distinguish foreground features from
background ones. In addition, the same technique can be used to deal with the object
matching itself. The whole procedure is validated by applying it to a practical scenario
and by comparing it with a standard point-pattern matching technique.

Several existing feature-based approaches operate by extracting attributed feature points
from the images using detectors [126] [128 [114]] and descriptors [89} 25] that are locally
invariant to illumination, scale and rotation. Usually, the model features are matched with
those obtained from the target image by means of some RANSAC-based approach that
can exploit the prior given by the descriptors [46]. Critical to the success of this kind of
techniques is of course the distinctiveness of the extracted features. Unfortunately, when
dealing with textured clutter, this distinctiveness comes short and the number of very re-
peatable but irrelevant features overshadows those coming from the foreground object.
To avoid false matches it is mandatory to recognize and ignore the background. In this
work we cope with both the filtering of the background features and the recognition task
by tailoring the matching framework introduced in the previous chapters to this specific
context. Specifically, we model the filtering step as a self-matching game, where features
that show high mutual similarity in the same image are deemed not distinctive enough and
thus screened away. By converse, the recognition step is performed as a matching game
between the model and a data image, where a set of highly coherent pairs of corresponding
features is sought.

4.1.1 Filtering a Textured Background

When dealing with textures, we can expect a large number of features that exhibit very
similar descriptors. This is a very unfortunate condition for matching: in fact, this high
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Figure 4.2: Background filtering and feature matching (best viewed in color).

level of congruence can easily distract any matcher from the foreground object. Paradox-
ically we use this property to screen out background features. Following Section [2.6] we
model each feature as a strategy in a matching game where the payoff matrix is defined
by:

C(i,j) = e~oldi=dil 4.1)

where d; and d; are the descriptor vectors associated to features ¢ and j, and « is a pa-
rameter that controls the level of selectivity. Clearly, features that are similar will get a
large mutual payoff and thus are more likely to be selected by the evolutive process. A
simplified (but numerically correct) example of such evolution is shown in the first row
of Figure 4.1} Here, six descriptors of dimensionality 2 are labeled from a to f. Vectors
b,c and d get high values in the payoff matrix since they are close in the descriptor space.
Other descriptors get lower mutual payoffs, according to their respective distances. We
start the replicator dynamics (7" = 0) near the barycenter of A®, which is sligthly per-
turbed to help avoiding local minima. After just one iteration (7' = 1), strategies b,c and
d get a significant evolutionary boost over the others, and after ten iterations (7' = 10)
they are the only strategies left in the support. We can then classify those features as
background and filter them out.

4.1.2 Matching Model and Data

In order to match model and data points we need to define a slightly different matching
game. We proceed again as in Section [2.6] by modelling strategies as pairs of features
on model and data. We define a payoff measure among strategies proportional to the
compatibility of the affine transformation estimated by the descriptor used. Since the
main objective of this Chapter is to give a way to filter out “not interesting” features in
an object recognition scenario, we restrict ourselves to a brief presentation and refer to
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Chapter [3] for a more complete and rigorous treatment of the matching step. Thus, we
are able to associate to each strategy (aj, as) an affine transformation 7'(aq, az). When
applied to a;, the transformation produces the point a,, but when it is applied to the
model point b it will give a point b, that is near by if T'(a1, as) is similar to T'(by, by).
Given two strategies (a1, a2) and (by, by) and their associated transformations 7'(a1, as)
and 7'(by, ba) we calculate their reciprocal reprojected virtual points as: a), = T'(by, be)ay
and by, = T'(ay,a2)b;. Given virtual points @, and b}, we are finally able to define the
payoff between (aq, as) and (by, bs) as:

C((a1,a2), (b, by)) = e~ PMaX{azailb2=tD (4.2)

where (3 is a selectivity parameter that allows to operate a more or less selective matching
game. Large groups of point pairs that are coherent with respect to an affine transforma-
tion will receive a large payoff and thus an evolutive advantage. In the second row of
Figure we show an example of this matching game (with real data). Here, coherent
strategies exhibit high payoff values (i.e., C'((a1, az2), (b1,b2)) = 1), while less compati-
ble pairs get lower scores (i.e., C((aq, as), (¢1,¢2)) = 0.1). Note that strategies that share
the same model or data point get payoff 0 to avoid one-to-many matching. Initially, the
population is set to a slightly perturbed barycenter of AS. After one iteration, (cy,by)
and (¢, co) have lost a significant amount of support, while (d;, ¢o) and (dy, ds) are still
played by a sizeable amount of population, despite being mutually exclusive. After ten
iterations, (d, dy) has finally prevailed over (d;, ¢;) and the final support has emerged.

4.1.3 Experimental Evaluation

The texture filtering method was tested by applying it to the detection of hand-written
markers placed on textured fabric. This is a typical scenario for batch tracking in the
textile industry, where barcodes or RFID tags are not viable solutions due to the harsh
cloth processing conditions that would destroy them. The first three frames of Figure 4.2]
show the background filtering performance of our method. The first frame contains all
the original SIFT features extracted, the second one shows those survived after applying
our filter with selectivity parameter o = 10~%. By using o = 10~ all the background is
screened in the third frame. We observed that a larger value of o does not affect much
the result, as foreground features are quite disjointed. Matching performance was eval-
uated by comparing its precision-recall curve with those obtained by using an optimized
RANSAC-based technique. Specifically, we implemented a PROSAC [46] variant by us-
ing descriptor vectors as hints for the selection of transformation candidates in an affine
point-pattern matching. In order to assess the effect of the background elimination step,
we applied this RANSAC schema to both filtered and unfiltered frames.

The trade-off between precision and recall was adjusted respectively by means of pa-
rameter J and by using different thresholds for the consensus. Tests were performed with
20 markers and 15 different fabric patterns. The markers were present in 59 frames of
a 30,000 frames long video sequence. Given the constant presence of a textured back-
ground, the poor results obtained with RANSAC and the unfiltered video were expected.
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Figure 4.3: Comparison with RANSAC and effect of image noise.

Indeed, we were unable to reach a full recall without a complete loss of precision, and
even when accepting a low recall most of the detected frames were false positives due to
background matching. RANSAC performance increases dramatically after application of
the filter. Nevertheless, it is not possible to obtain a high level of recall without losing
precision. This is due to the presence of features that do not belong to the foreground
marker and neither are part of a texture. This happens, for instance, with sewings, seams
or dirt present in the fabric. In the right half of Figure #.2] we show an instance where
our method obtains the correct match, while RANSAC is distracted by a junction in the
fabric. The game-theoretic matcher (applied over filtered frames) obtains by far the best
results. In fact, a perfect recall is obtained with a precision value above 0.8 (3 = 1073)
and, by using a more selective parameter (3 = 1072) all the false positives are avoided
while still obtaining a recall just slightly below 0.7. In some practical applications it is
more important to guarantee a recall of 1 since a moderate number of false positives can
be tolerated (and filtered bottomward in the pipeline), while a miss in the detection is not
allowed. To measure the loss in precision with respect to noise, we corrupted both data
and model with additive Gaussian noise. At each noise level (expressed with the standard
deviation in Figure we tuned 3 to maintain a recall of 1 and measured the precision.
While it was always possible to obtain a complete recall, we observed a linear decay of
the precision. This is not a failure of the matcher itself, but an impaired effectiveness of
the background filter due to the reduced similarity among the extracted descriptors. It
should be noted, however, that in this experimental setup a precision of 0.3 with a recall
of 1 corresponds to a fall-out of 0.006 (about 180 false positives over 30.000 tests).

Next, we are going to present a similar filtering method in a 3D setting, where common
features are treated as structured outliers and filtered out in an iterative manner, much like
we did in the previous sections for simple images.

4.1.4 Interest Points Detection

Given the large number of points contained in typical 3D objects, it is not practical for any
matching algorithm to deal with all of them. In addition, the isolation of a relatively small
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(a) First pass (b) Second pass (¢) Third pass

Figure 4.4: Example of the interest points detection process.

number of interest points can enhance dramatically the ability of, for instance, a matching
technique to avoid false correspondences, usually due to a large number of features with
very common characterizations. This is particularly true when using loosely distinctive
features. As in the previous section, we use exactly this property to screen out features
exhibiting descriptors that are too common over the surface. The concept is similar to
what Gelfand et al. proposed in [63]: feature points should come from regions with rare
descriptor values. Again, this happens by defining a matching game where the strategy
set S corresponds to the set of all the surface points and the payoff matrix is defined by:

T = e_aldi_djl 5 (43)

where d; and d; are the descriptor vectors associated to surface point ¢ and j, and « is
a parameter that controls the level of selectivity. Clearly, features that are close in the
descriptor space will get a large mutual payoff and thus are more likely to be selected by
the evolutive process. In this sense, our goal is to let the population evolve to an ESS and
then remove from the set of interest points the features that survived the evolutive process.
At the beginning we can initialize the set of retained features to the whole surface and run
a sequence of matching games until the desired number of points are left. At this point, the
remaining features are those characterized by less-common descriptors which are more
likely to represent good cues for the matching. It should be noted that by choosing large
values for « the payoff function decreases more rapidly with the growth of the distance
between the descriptors, thus the matching game becomes more selective and less points
survive after reaching an ESS. In the end this results in a blander decimation and thus
in a larger ratio of retained interest points. By converse, a small value for o leads to a
more greedy filtering and thus to a more selective interest point detector. In Figure {4.4]
(from (a) to (c)) we show three steps of the evolutive interest point selection (with respect
to a 3-dimensional Normal Hash, presented in Chapter [6] and shown in Figure [6.4). In
Figure we see that after a single pass of the matching game most of the surface
points are still considered interesting, while after respectively two and three passes only
very distinctive points (belonging to areas with less common curvature profile) are left.



4.2. Sampling Relevant Points for Surface Registration 57

4.1.5 Conclusions

The game-theoretic approach allows to perform a robust feature-based matching even
when the foreground is absorbed in a highly textured background, or generally “plunged”
among very common descriptors. This is done by playing two different non-cooperative
games: a filtering game, that separates foreground from background (unstructured from
structured features), and a matching game, that performs the actual point-pattern match-
ing. The experimental validation shows that both the steps concur to the improvement
of the whole matching task and the obtained results outperform in terms of precision and
recall an optimized RANSAC-based approach. For a more thorough investigation of the
3D selection process, we refer to Chapter [6] where a complete 3D matching pipeline is
also presented.

4.2 Sampling Relevant Points for Surface Registration

In this Section we attack a slightly different feature selection problem, which is commonly
encountered in surface-based 3D reconstruction pipelines. Specifically, we focus on the
alignment step, where after an approximate alignment of two 3D surfaces is obtained, this
is subsequently refined by solving an error minimization problem on a subset of “relevant”
points on the two shapes.

Surface registration is a fundamental step in the reconstruction of three-dimensional
objects using range scanners since, due to occlusions and the limited field of view of
the scanners, more range images are necessary to fully cover the object. Registration
is typically a two-step process where an initial coarse motion estimation is followed by
a refinement step on pairs of range images. Pairwise refinements are almost invariably
performed using a variant of the Iterative Closest Point (ICP) algorithm [44, 29] that
iteratively minimizes a distance function measured between pairs of selected neighboring
points. The performance of ICP depends on several parameters such as the choice of the
distance metric, the selection of points on one surface and the selection of mating points
in the other. These parameters affect the amount of local minima in the error landscape,
the speed of convergence and in general the precision of the resulting alignment in the
presence of “complex” geometry. See [[117] for a review of some of the variants of ICP.

In this Section we concentrate on the sampling process used to select points on one
surface, with a view of correctly aligning “hard” surfaces that offer very few points that
constrain the motion and large areas where the surface can slide. For this reason in all
the experiments we will use the point-to-plane distance and the closest point will be used
as mate, since these approaches, while not offering the fastest convergence, have been
shown to be the most robust combination for “difficult” geometries .

The selection of relevant points on one surface to match against points on the other
surface is an important issue in any efficient implementation of ICP with strong implica-
tions both on the convergence speed and on the quality of the final alignment. This is due
to the fact that typically on a surface there are a lot of low-curvature points that scarcely
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Figure 4.5: The two regions compete for the samples, resulting in a larger number of
samples on the large low curvature area than on the smaller part. This results in a bias in
the distance measure.

constrain the rigid transformation and an order of magnitude less descriptive points that
are more relevant for finding the correct alignment. See Figure.5|for an illustration of the
problem. There we can see a section of a surface composed of two parts with circular pro-
file which in isolation allow the surfaces to slide. The transformation is fully constrained
only if enough points are selected from both parts. However, since there is a large size dif-
ference between the two parts, uniform sampling will take proportionally more samples
from the larger area than from the smaller one. The difference in sampling biases the er-
ror term towards fitting the larger region better than the smaller one, but since the region
does not constrain the transformation fully, any sliding that would better fit local noise
would be preferred to the correct alignment, resulting in a tendency to‘“‘overfit” noise on
low-curvature areas. In order to better constrain the set of transformations Rusinkiewicz
and Levoy [117] propose a normal space sampling approach that attempts to sample uni-
formly on the sphere of normal directions rather than on the surface. This, however, only
partially solves the problem; to show why we refer again to Figure [4.5] There the thicker
arcs on the surface section refer to points that fall in the same normal bin. Since points in
the same bin are sampled uniformly, the points on the smaller arc must compete with the
points on the larger arc resulting in the same, albeit a bit reduced, tendency of overfitting
noise on the larger region that plagues uniform sampling. In effect, we would like to sam-
ple points from the two arcs with the same probability. Further, normal space sampling
fully constrains only translational error, but in general cannot limit rotational sliding, and
the binning interacts poorly with noise in the normal estimation.

An interesting approach to better constrain the transformation is to select points that
best equalize the error covariance matrix. To this effect Guehring [68] proposes to weigh
the samples based on their contribution to the covariance matrix, but since the analysis
is performed after the sampling, the approach cannot constrain the transformation if too
few samples were chosen in a relevant region. On the other extreme, Gelfand et al. [62]
propose an approach that selects the points that constrain the transformation the most.
However, the approach is deterministic and has a tendency of sampling very regularly on
isolated regions. Since in general the range surfaces overlap only partially, the optimal
constraining property only holds if the sampling is performed only on the overlapping
part, which means that the analysis and the sampling cannot be performed only once for
each surface, but has to be redone for each pair of surfaces. Further, high levels of noise
can make some areas artificially strongly constraining, and for that reason the approach
needs the surfaces to be smoothed before the points can be selected.
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o —_

Figure 4.6: The region A, grows in all directions in a “flat” part of the surface, in only
one direction along edges and boundaries and does not grow much at all on vertices.

We propose a different approach to ensure that the rigid transformation is fully con-
strained, based on the relevance, or local distinctiveness, of points. The idea of point
distinctiveness has been extensively used in image processing to develop interest point
detectors such as the Harris Operator [70] and Difference of Gaussians [93]]. While these
approaches work well with 2D intensity images, they cannot be easily extended to handle
3D surfaces since no intensity information is directly available. Several efforts have been
made to use other local measures, such as curvature or normals to find relevant points
on a surface, but mostly with the end of finding repeatable associations for coarse reg-
istration or 3D object recognition. One of the first descriptors to capture the structural
neighborhood of a surface point was described by Chua and Jarvis, who with their Point
Signatures [45] suggest both a rotation and translation invariant descriptor and a matching
technique. Later, Johnson and Hebert introduced Spin Images [76], a rich characterization
obtained by a binning of the radial and planar distances of the surface samples respectively
from the feature point and from the plane fitting its neighborhood. Given their ability to
perform well with both surface registration and object recognition, Spin Images have be-
come one of the most used 3D descriptors. More recently, Pottmann et al. proposed the
use of Integral Invariants [[111], stable multi-scale geometric measures related to the cur-
vature of the surface and the properties of its intersection with spheres centered on the
feature point. Finally, Zaharescu et al. [160] presented a comprehensive approach for in-
terest point detection (MeshDOG) and description (MeshHOG), based on the value of any
scalar function defined over the surface (i.e., curvature or texture, if available). MeshDOG
localizes feature points by searching for scale-space extrema over progressive Gaussian
convolutions of the scalar function and thus by applying proper thresholding and corner
detection. MeshHOG calculates a histogram descriptor by binning gradient vectors with
respect to a rotational invariant local coordinate system.

Here we propose a local distinctiveness measure that is associated with the average
local radius of curvature, and a sampling strategy that samples points according with their
distinctiveness. The distinctiveness is computed through an integral measure, and thus is
robust with respect to noise.



60 4. Features Selection

4.2.1 Relevance-based Sampling

The relevance of a point p is related to how similar points around p are to it. The larger
the number of similar points, the less distinctive, and thus the less relevant, p is. For this
reason we formalize the idea of distinctiveness of point p in terms of the area of a surface
patch around p where points are similar. More specifically, let p be a point of the surface
S, we associate to it a connected region A, such that

A,={qe SINJN,>Tandp ~ ¢} (4.4)

where IV, and N, are the normals of the surface S at points p and ¢, while p ~ ¢ means
that there is a path in A, connecting p to ¢, and the dot threshold 7" is a parameter of the
approach. For small values of 7" the area of A, is related to the average absolute radius of

curvature
1A, ~ 7 = ral + Jra| |1/k71|+|1/k’2|7 4.5)
2 2

where || A,|| denotes the area of region A, k; and k, are the principal curvatures of S in
pand ry = 1/k; and 7o = 1/k5 are the radii linked with the principal curvatures. Points
within A, have all the orientations similar to that of p and if the surface orientation varies
quickly in one direction the growth of the region in that direction will be limited, thus the
size of A, is linked with the distinctiveness of p. The area will be inversely proportional
to the curvature, along edges will extend only in one dimension attaining a size one order
of magnitude smaller, and will be almost point-like on vertices, where the transformation
is locally completely constrained with the exception of rotations along the point normal
(see Figure 4.6). Hence, the area is inversely proportional to how much the surface is
constraining the transformation locally.

With the patches A, to hand, we can assign to each point p the measure of distinctive-
ness

flp) = [14]7" (4.6)

where k is an equalization parameter, changing the relative weight of “common” and
“distinctive” point. In particular, the larger the value of k, the more the distinctiveness of
points forming a small patch A, is emphasized.

Moreover, since the region A, is defined in terms of an angular threshold, ||A,|| is
invariant with respect to resampling, up to the precision imposed by the new sampling
resolution. Further, any scale change varies the areas proportionally, so the ratio between
patch areas is scale-invariant.

Finally, the area of A, is an integral measure, thus being less sensitive to noise, and
varies continuously along the surface, with 7" being a smoothing factor.

When the surface is discretized into points and edges, A, can be easily computed with
a region growing approach starting from each point p. If the regions are big, one could
use the continuity and locality of A, to update the region from neighboring points, but in
practice, we add a size threshold D limiting the growth of A, to points whose distance
from p is less than D. This way we limit the complexity of the region growing process to
O(D?) for each point and we avoid the uncontrolled expansion of A, on flat surfaces.
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Figure 4.7: Examples of the different sampling approaches.

Once the areas A, have been computed, we can assign to each point p the measure of
distinctiveness

fp) =4, 4.7)

where | 4, | is the number of points in A,,. This approximation works under the assumption
that the edge length is uniform through the discretization of surface S.

Once we have computed the distinctiveness of all points in the surface S, we can
proceed to sample points from it with a density proportional to f . To do this we select

any order py, .. ., p, of the points in S and compute the cumulative distribution
F(p)=>_ 1), (4.8)
j=1

then we sample a number z uniformly in [0, F(pn)] and find the smallest index 7 such
that F'(p;) > x. To perform the search efficiently, we use interpolation search [109], a

variant of binary search that instead of splitting the interval [i, ;] in half at each iteration, it
a—F (pi)

splits it at point ¢ + FonFo)

. It is a well known result that interpolation search finds an
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Normal space sampling Relevance-based sampling

Figure 4.8: Closeup of the samples. Relevance-based sampling concentrates samples
along the surfaces’ fine structures.

element in a sorted array in O(loglogn) on average for near-uniformly distributed data,
compared to the O(logn) complexity of binary search. Further, the search is faster the
higher the entropy of f is. This results in an expected O(m loglogn) complexity when
sampling m points from a surface containing n points.

4.2.2 Experimental Evaluation

To evaluate the performance of the sampling approach we created several range images
with known ground-truth transformations. To this end we took the 3D models of the
Bunny, the Armadillo, the Dragon, and the Buddha from the Stanford 3D scanning reposi-
tory and range scans extracted from six sets of glasses scanned using a home-brew scanner
built in our lab. The glasses were selected because they are a particularly hard real-world
object since it is dominated by large perfectly spherical lenses, while the sliding is con-
strained only by a very thin rim around them. In the experiments we used 18 scans for each
model. For the glasses we used directly the range images provided by the scanner, while
for the models taken from the Stanford repository the range images were created by pro-
jecting the models onto virtual orthographic cameras placed on a ring around them. Once
the range images were to hand, additive Gaussian noise was added along the z dimension
to simulate measurement error. In order to avoid having perfect point correspondences,
the virtual shots, and thus the points in the various range images, were obtained by pro-
jecting equally spaced points on the view-plane of the virtual cameras, and the depths
were computed by finding the first intersection of the rays with the model.

All the measures of quality of the alignments are based on the ground-truth alignment,
and not the usual Root Mean Square Error (RMSE) because the value of the RMSE de-
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Figure 4.9: Slices of the surfaces aligned with the three sampling strategies.

pends heavily on the sampling strategy and it is completely blind with respect to the noise
overfitting problem.

The proposed Relevance-based sampling (RBS) approach was compared against uni-
form sampling and normal space sampling (NSS).

Figure[4.7)shows an example of sampling range scans from the three models using the
three sampling strategies. Uniform sampling does exactly what we expect, with the prob-
lems we have discussed. Normal space sampling is more selective of the points, but it still
wastes quite a few samples on large low curvature areas like the back of the armadillo,
the back and the chest of the bunny and the lenses of the spectacles. Relevance-based
sampling, on the other hand, concentrates the samples along edges and feature disconti-
nuities, which do a better job at locking the alignment. This difference in behavior can be
seen clearly on the closeups in Figure 4.8] Here normal space sampling samples equally
the three main faces of the spectacles, while Relevance-based sampling concentrates the
samples along the fine structure details that limit the sliding along the surfaces.

Figure [4.9] Shows examples of the alignments obtained using the three sampling ap-
proaches. To better see the difference in alignment we only show a slice of the aligned
surfaces cut approximately orthogonally to the surfaces. From the examples we can
clearly see that the use of uniform sampling results on the surfaces sliding along large
low-curvature areas. This is particularly evident on the surfaces taken from the specta-
cles, but it is also evident on the armadillo model. The bunny model is relatively simple
and results in good alignments with all the methods, even though uniform sampling has
a slightly worse performance here as well. Normal space sampling fares much better, but
there is still some residual misalignment, especially on the spectacles model. Relevance-
based sampling, on the other hand, results in an optimal alignment in all cases.
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Figure 4.10: Effects of parameters on rotational and translational error.

The first set of quantitative experiments was a sensitivity analysis trying to assess
the role of the dot threshold T" and of the equalization parameter k. Figure 4.10| shows
the angular error (in degrees) and the translation error (in centimeters) as a function of
the two parameters. In all the cases the pairs of range images were selected randomly
at a distance along the view-circle of at most 3 positions (90 degrees distance in view
direction) and were perturbed with additive Gaussian noise along the z dimension with
standard deviation equal to 0.4 times the average edge length. We can clearly see that
there is an optimal value for the dot threshold at around 10 degrees, and it appears that
the optimal value for the equalization parameter £ is just slightly below 1. This is due to
the fact that noise affects the size of small regions more than larger ones, keeping them
smaller, resulting in over-inflated relevance values. A value of k£ smaller than 1 balances
this effect by reducing the relative weight of the smaller regions with respect to larger
ones.

Finally, Figure {.TT| plots the resulting rotation and translation error of the alignments
obtained with the three sampling strategies as a function of the level of noise added to the
range images. Here the range images were selected using the same strategy adopted for
the previous set of experiments, allowing variations in the viewing directions of up to 90
degrees. We can see that the relevance-based sampling consistently outperforms uniform
sampling by a large margin in both rotational and translational error. Normal space sam-
pling, on the other hand, has the same performance as uniform sampling for rotational
errors, while it exhibits the same low translational error obtained by the relevance-based
sampling for noise levels smaller than 0.4 times the average edge length. This is consistent
with the fact that normal space sampling constrains only the translational sliding. Note
however, that with larger noise levels the translational error of normal space sampling
breaks down to uniform sampling levels. This is probably due to the interaction between
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Figure 4.11: Comparison of rotational and translational error obtained with the three
sampling strategies.

bin-size and noise, with high noise spreading neighboring points onto several bins.

4.2.3 Conclusions

We have presented a novel sampling strategy for ICP, based on the local distinctiveness of
each point. The distinctiveness is gauged through an integral measure that is robust with
respect to noise, and the points are then sampled with a density proportional to their dis-
tinctiveness. The sampling approach concentrates samples along the surfaces’ fine struc-
tures, allowing to limit any sliding away from the ideal alignment. Experiments on range
images with known ground-truth alignment show that the approach clearly outperforms
the most commonly used sampling strategies.
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Correspondence Selection in
Structure from Motion

Our first detailed attempt at analyzing the effectiveness and robustness of the game-
theoretic framework follows rather directly from [21]]. In their paper, the authors tackle
two different problems. The first considers a 2D object recognition scenario in which
two images are first segmented and then a many-to-many correspondence is sought be-
tween the different segments; the method turns out to be fairly robust in case of relatively
unstable segmentations, further confirming its effectiveness under generally not bijective
mapping constratints. The second application is point-pattern matching, which considers
a scenario in which one of the two images undergoes an affine transformation; here the
method proves to be especially effective, allowing to perform very accurate parameter
estimation and significantly outperforming other algorithms at the state of the art. In what
follows, we introduce a correspondence selection scheme that attacks the specific problem
of (2D) point-to-point matching in Structure from Motion scenarios.

5.1 Introduction

Similarly to [21], our method seeks to enforce geometric constraints that do not depend
on the full knowledge motion parameters, but rather on some semi-local property that can
be estimated from the local appearance of the image features. In this setting, most existing
pipelines operate through the iterative refinement of an initial batch of feature correspon-
dences. Typically this is performed by selecting a set of match candidates based on their
photometric similarity; an initial estimate of camera intrinsic and extrinsic parameters is
then computed by minimizing the reprojection error. Finally, outliers in the initial cor-
respondences are filtered out by enforcing some global geometric property such as the
epipolar constraint. In literature many different approaches have been proposed to deal
with each of these three steps, but almost invariably they separate the first inlier selection
step, which is based only on local image properties, from the enforcement of global geo-
metric consistency. Unfortunately, these two steps are not independent since outliers can
lead to inaccurate parameter estimation or even prevent convergence, leading to the well
known sensitivity of all filtering approaches with respect to the number of outliers, espe-



68 5. Correspondence Selection in Structure from Motion

cially in the presence of structured noise, as one would expect when the images present
several repeated patterns. Conversely, our approach relies on a natural selection procedure
where incompatible matches are filtered out during the matching process itself, thus re-
moving completely the need for an ex-post verification of the matching consistency. The
method operates by enforcing properties that are inferable on image regions at a local or
semi-local scale and then extending their validation to a global scale. This is done by cast-
ing the selection process into a game-theoretic setting, where feature-correspondences are
allowed to compete with one another, receiving support from correspondences that sat-
isfy the same semi-local constraint, and competitive pressure from the rest. The surviving
correspondences form a small cohesive set of mutually compatible correspondences, thus
satisfying globally the semi-local constraint. In principle, our assumption is not that dif-
ferent from the one subtending to the very popular RANSAC inlier selection method,
which assumes that a subset of large consensus exists in correspondence with the correct
solution. However, the loose connection with RANSAC breaks as we analyze the selec-
tion process itself. Specifically, in our case there is no majority validation for a random
subset; rather, the selection happens by letting the strategies compete in a non-cooperative
game. The game starts with an initial population where each strategy is played by an equal
percentage of players. Such population is then evolved through the action of discrete time
dynamics until it reaches some stable state from which a (conceivably) correct matching
set can be extracted. In order to assess the advantage provided by our approach, in the
experimental section we compare our technique with a reference implementation of the
structure-from-motion system presented in [[129] and [130].

5.2 Non-Cooperative Games for Inlier Selection

The selection of matching points typically adopted in literature is based on local informa-
tion provided by pointwise feature descriptors. This approach is limited in that it conflicts
with the richness of information that is embedded in the scene structure. For instance,
under the assumption of rigidity and small camera motion, intuition suggests that features
that are close in one view cannot be too far apart in the other one. Further, if a pair of
features exhibit a certain difference of angles or ratio of scales, this relation should be
maintained among their respective matches. Following Section [2.6| we model the match-
ing process in a (two-player) game-theoretic framework, where the two players select a
pair of matching points from two images. Each player then receives a payoff proportional
to how compatible his match is with respect to the other player’s choice. We formalize
this intuitive notion of consistency between pairs of feature matches into a real-valued
compatibility function, and seek for a large set of matches that express a high level of
mutual compatibility. Of course, the ability to define a meaningful pairwise compati-
bility function and a reliable technique for finding a consistent set is at the basis of the
effectiveness of the approach.

In this work we will introduce two different payoff functions to address our multi-view
point matching problem. In this section we will define a compatibility among pairs of
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Figure 5.1: The payoff between two matching strategies is inversely proportional to the
maximum reprojection error obtained by applying the affine transformation estimated by
a match to the other.

correspondences that is proportional to the similarity of the affine transformation inferred
from each match; this is done to exploit the expected local spatial and scale coherence
among image patches. In Section [5.2.1] we will propose a refinement step that filters out
groups of matches by letting them play an evolutionary game where the payoff is bound
to their mutual ability to comply with the epipolar constraint.

After defining a set of candidate matches S (Section [2.6)), our goal becomes to extract
from it a large subset of correspondences that includes only correctly matched features:
that is, strategies that associate a physical point in the source image with the same physical
point (if visible) in the destination image. To this end, it is necessary to define a payoff
function IT : S x S — R™ that exploits some pairwise information available at this early
stage (i.e., before estimating camera and scene parameters) and that can be used to impose
consistency globally.

We propose two different ways to attain this. Since location, scale, and rotation are
associated to each feature, we can associate to each correspondence (a, b) between feature
a in the source image and feature b in the target image a similarity transformation 7'(a, b)
that maps the neighborhood of a into the neighborhood of b, transforming the location,
orientation and scale measured in the source image into the location, orientation, and
scale observed in the target image. Under small motion assumptions, we can expect these
similarity transformations to be very similar locally. Thus, imposing the conservation of
the similarity transformation, we aim to extract clusters of feature matches that belong to
the same region of the object and that tend to lie in the same level of depth. While this
could seem to be an unsound assumption for general camera motion, in the experimental
section we will show that it holds well with the typical disparity found in standard multiple
view and stereo data sets. Further, it should be noted that with large camera motion, most,
if not all, commonly used feature detectors fail, thus any inlier selection attempt becomes
meaningless. We name this approach affinity preserving game.
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The second approach enforces that all pairs of correspondences between 2D views
be consistent with a common 3D rigid transformation. Here we assume that we have
reasonable guesses for the intrinsic camera parameters and reduce the problem space to
the search of a 3D rigid transformation from one image space to the other. This con-
dition is in general underspecified, as a whole manifold of pairs of correspondences are
consistent with a rigid 3D transformation. However, by accumulating mutual support
through a large set of mutually compatible correspondences, one can expect to reduce
the ambiguity to a single 3D rigid transformation. In the proposed approach, high or-
der consistency constraints are reduced to a second order compatibility where sets of 2D
point correspondences that can be interpreted as projections of rigidly-transformed 3D
points all have high mutual support. The reduction is obtained by making use of the scale
and orientation information linked with each feature point in the SIFT descriptor [89]
and a further reprojection that can be considered a continuous form of hypergraph clique
expansion [166]. In the following, we refer to this approach as virtual point game.

Affinity Preserving Game

In order to define the payoff function II we need a way to measure the distance between
similarity transformations. In order to avoid the problem of mixing incommensurable
quantities, we compute the distance in terms of the reprojection error expressed in pix-
els. Specifically, given two matching strategies (a1, as) and (by, bs) and their respective
associated similarities 7'(ay, as) and T'(b1, by), we calculate tranformed points af, and b,
by applying the other strategy’s transformation to the source features a; and b; (see Fig-
ure [5.1)). More formally,

ay = T(b1,by)a;

b/2 = T(CLl, a2)1)1 s

Given transformed points a5, and bf,, we can measure the similarity between (ay, a2) and
(b1, o) as:
sim((ay, az), (b1,b9)) = e~ Amaz(jaz—as|,|b2=b3]) (5.1

where A is a selectivity parameter: If \ is small, then the similarity function (and thus
the matching) is more tolerant with respect to deviation in the similarity transformations,
becoming more selective as A grows. Since each source feature can correspond with at
most one destination point, it is desirable to avoid any kind of multiple match. It is easy
to show that a pair of strategies with zero mutual payoff cannot belong to the support of
an ESS (see [21]]), thus any payoff function II can be easily adapted to enforce one-to-one
matching by defining:

sim((al,ag), (bl,b2>> ifCLl 7& bl
(a1, az), (by,be)) = and as # by 5.2)
0 otherwise

We define payoff (5.2) a similarity enforcing payoff function and we call an affine match-
ing game any symmetric two player game that involves a matching strategies set .S and a
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Figure 5.2: An example of the affine-based evolutionary process. Four feature points are
extracted from two images and a total of six matching strategies are selected as initial
hypotheses. The matrix II shows the compatibilities between pairs of matching strate-
gies according to a one-to-one similarity-enforcing payoff function. Each matching strat-
egy got zero payoff with itself and with strategies that share the same source or destina-
tion point (i.e., I1((by, b2), (c1,b2)) = 0). Strategies that are coherent with respect to the
same similarity transformation exhibit high payoff values (i.e., I1((ay, az), (b1,b2)) = 1
and I1((a1,az),(d1,ds)) = 0.9)), while less compatible pairs get lower scores (i.e.,
II((ay,asz), (c1,c2)) = 0.1). Initially (at T=0) the population is set to the barycenter of the
simplex and slightly perturbed. After just one iteration, (c;, bs) and (c1, ¢2) have lost a sig-
nificant amount of support, while (dy, ¢2) and (dy, d2) are still played by a sizable amount
of population. After ten iterations (T=10) (di, d2) has finally prevailed over (d;, c2) (note
that the two are mutually exclusive). Note that in the final population ((aq, as), (b1, b2))
have a higher support than (d;, dy) since they are a little more coherent with respect to
similarity.

similarity enforcing payoff function II.

The main idea of the proposed approach is that by playing a matching game driven
by a similarity enforcing payoff function such as (5.2), the strategies (i.e. correspondence
candidates) that share a similar locally affine transformation are advantaged from an evo-
lutionary point of view and shall emerge in the surving population. In Figure [5.2] we
illustrate a simplified example of this process. Once the population has reached a local
maximum, all the non-extinct mating strategies can be considered valid (even though tech-
nically strategies become truly extinct only after an infinite number of iterations). Since
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Figure 5.3: In the presence of strong parallax, locally uniform 3D motion does not result
in a locally uniform 2D motion. From left to right: 3D scene, left and right views, and
motion estimation (from right to left).

we halt the evolution when the population ceases to change significantly, it is necessary
to introduce some criteria to distinguish correct from non-correct matches. To avoid a
hard threshold we chose to keep as valid all the strategies played whose population size
exceeds a percentage of the most popular strategy. We call this percentage quality thresh-
old (q). This criterion further limits the number of selected strategies, but increases their
consistency, since the population proportion is linked witht the coherence of the strategy
with the other surviving strategies. Each evolution process selects only a single group of
matching strategies that are mutually coherent with respect to a local similarity transfor-
mation. This means that if we want to cover a large portion of the image we need to iterate
the process many times, pruning the previously selected matches at each new iteration.

Virtual Point Game

There are two fundamental hypotheses underlying the reduction to second order of a
higher-order 3D geometric consistency. First, we assume that the views have the same
set of camera parameters, that we have reasonable guesses for the intrinsic parameters,
and we can ignore lens distortion. Thus, the geometric consistency is reduced to the
compatibility of the projected points with a single 3D rigid transformation related to the
relative positions of the cameras. Second, we assume that the feature descriptor provides
scale and orientation information and that this is related to actual local information in the
3D objects present in the scene. The effect of the first assumption is that the geometric
consistency is reduced to a rigidity constraint that can be cast as a conservation along
views of the distances between the unknown 3D position of the feature points, while the
effect of the second assumption is that we can recover the missing depth information as a
variation in scale between two views of the same point and that this variation is inversely
proportional to variation in projected size of the local patch around the 3D point and, thus,
to the projected size of the feature descriptor.

More formally, assume that we have two points p; and p,, which in one view have co-
ordinates (u{,v;y) and (uj, vy) respectively, while in a second image they have coordinates
(u?,v?) and (u3,v3). These points, in the coordinate system of the first camera, have 3D
coordinates z{(ul,vl, f) and 23 (ud,vl, f) respectively, while in the reference frame of
the second camera they have coordinates z7(u?, v?, f) and 23(u2,v3, f). Up to a change
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Figure 5.4: Scale and orientation offer depth information and a second virtual point. the
conservation of the distances in green enforce consistency with a 3D rigid transformation.

1n units, these coordinates can be re-written as
2 2

1
Uu u Uu u
1 h 1@ 2 2 1 2 2 @ 5
=73\ U sy Po=—=| V2 |, P1= 35| U y Pa= =3 | V2 |

where f is the focal lenght and a is the ratio between the actual scales of the local 3D
patches around points p; and p,, whose projections on the two views give the perceived
scales s and s? for point p; and s} and s3 for point p,.

The assumption that both scale and orientation are linked with actual properties of
the local patch around each 3D point is equivalent to having 2 points for each feature
correspondence: the actual location of the feature, plus a virtual point located along the
axis of orientation of the feature at a distance proportional to the actual scale of the patch.
These pairs of 3D points must move rigidly going from the coordinate system of one
camera to the other, so that given any two sets of correspondences with 3D points p; and
p2 and their corresponding virtual points ¢; and ¢, the distances between these four points
must be preserved in the reference frames of every view (see Figure [5.4)).

Under a frontal-planar assumption for each local patch, or, less stringently, under
small variation in viewpoints, we can assign 3D coordinates to the virtual points in the
reference frames of the two images:

cos 0} cos 03
g =pi+ | sinfp | g=pytal sinf,
0 0
cos 02 cos 03
¢ =pi+ | sin6; @G=pi+tal| sinb; |,
0 0

where 0{ is the perceived orientation of feature 7 in image j. At this point, given two sets of
correspondences between points in two images, namely the correspondence m; between a
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feature point in the first image with coordinates, scale and orientation (u}, vy, s1, 6]) with
the feature point in the second image (u?, v?, s, 07), and the correspondence m; between
the points (ul, v, s}, 61) and (u2,v3, s2,63) in the first and second image respectively, we
can compute a distance from the manifold of feature descriptors compatible with a single
3D rigid transformation as

d(mi,ma,a) = (|lp1 — p3|I> = |lp; — p311°)* + (|Ip1 — &l ” = |IpT — 631°)*+
(lar = p3ll* = llai = o3117)* + (lar — &ll* = llai — & 117)*.

From this we define the compatibility between correspondences as

C(my, my) = max e 74mim2a) (5.3)

where a is maximized over a reasonable range of ratio of scales of local 3D patches. In
our experiments a was optimized in the interval [0.5; 2].

Each matching process selects a group of matching strategies that are coherent with
respect to a local similarity transformation. This means that if we want to cover a large
portion of the subject we need to iterate many times and prune the previously selected
matches at each new start. Obviously, after all the depth levels have been swept, small
and not significative residual groups start to emerge from the evolution. To avoid the
selection of this spurious matches we fixed a minimum cardinality for each valid group.

5.2.1 Refinement by Epipolar Constraint Enforcement

The game formulations we just introduced shift the matching problem to a more global
scope by producing a set of correspondences between groups of features. While the affine
camera model extract very coherent groups, making such macro features more robust and
descriptive than single points, in principle there is nothing that prevents the system to
still produce wrong or weak matches. To reduce this chance we propose a different game
setup that allows for a further refinement. In this game the strategies set .S corresponds to
the set of paired features groups extracted from the affine matching game and the payoff
between them is related to the features’ agreement to a common epipolar geometry. More
specifically, given two pairs of matching groups a C M x D and b C M x D, each one
made up of model and data features, we estimate the epipolar geometry from a U b and
define the payoff among them as:

H(CL, b) = €_>\ Z(S,t)Ean d(t,l(s)) (5'4)

Where [(p) is a function that gives the epipolar line in the data image from the feature
point p in the model image, according to the estimated epipolar geometry, and d(p, [) cal-
culates the distance between point p and the epipolar line /. It is clear that this distance is
low (and thus the payoff high) if the two groups share a common projective interpretation
and high otherwise. Of course, different pairs of groups can agree on different epipo-
lar geometry, but the transitive closure induced by the selection process ensures that the
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Figure 5.5: An example of the selection of groups of features that agree with respect to
a common epipolar geometry. Six matching groups are selected by the affine matching
step (labelled from a to f in figure). Each pair of feature sets is modeled as a matching
strategy and the payoff among them is reported in matrix II. Note that groups b,c and
d are correctly matched and thus exhibit an high mutual payoff. By contrast, group a
(which is consistent both in term of photometric and affine properties), e and f are clearly
mismatched with respect to the overall scene geometry, which in turn leads to an high
error on the epipolar check and thus to a low score in the payoff matrix. At the start of the
evolutionary process each strategy obtains a fair amount of players (T=0). As expected,
after just one iteration of the replicator dynamics the more consistent staregies (b,c and
d) obtain a clear advantage. Finally, after ten iterations (T=10) the other groups have no
more support in te population and only the correct matches survived.

strategies in the surviving population will agree on the same (or very similar) projective
transformation (see Figure [5.5] for a complete example of this process). Regarding the
estimation of the epipolar geometry this can be done in two different ways: if we know
at least the intrinsic calibration of the camera we can estimate the essential matrix, by
contrast, if we do not have any hint about the camera geometry, we must resort to a more
relaxed set of constraints and use the fundamental matrix instead. In the experimental
section we will test both scenarios.

5.3 Experimental Results

We performed an extensive set of tests in order to validate the proposed techniques and
to explore their limits. Both quantitative and qualitative results are shown and the perfor-
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Figure 5.6: Analysis of the performance of the Affine Game-Theoretic approach with
respect to variation of the parameters of the algorithm.

mances are compared with those achieved by a standard baseline method, i.e., the default
feature matcher in the Bundler suite [130].

5.3.1 General Setup and Data sets

All the following experiments have been made by applying a common basic pattern: first
a set of features is extracted from the images by using the SIFT keypoint detector made
freely available in [89], then these interest points are paired using the matcher we want
to test, finally scene and camera parameters are estimated by using the final portion of
Bundler [130] pipeline (i.e. the part of the suite that applies Levenberg-Marquardt opti-
mization to a set of proposed matches). Here we evalute three game-theoretic approaches:
The first, referred to as Affine Game-Theoretic approach (AGT), uses the affine matching
game without the further refinement provided by the enforcement of the epipolar geom-
etry. In this case the iterative extraction and elimination of the groups is image-based,
1.e., after a group of matches is selected, all matches that have souces or targets close to
the source and target points of the extraced correspondences are eliminated, and then the
evolutionary process is reiterated on the reduced set of strategies. The process is stopped
when an extracted group is smaller than a given threshold or has average payoff smaller
than a given threshold. The second and third approaches, referred to as Calibrated Pro-
jective Game-Theoretic approach (CPGT) and Uncalibrated Projective Game-Theoretic
approach (UPGT) respectively, make use of the epipolar refinement. CPGT assumes that
the camera intrinsic parameters are (approximately) known and estimate the epipolar ge-
ometry through the essential matrix, while UPGT uses the fundamental matrix. In both
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Figure 5.7: Analysis of the performance of the Calibrated and Uncalibrated Projective
Game-Theoretic approaches with respect to variation of the parameters of the algorithm.

these appraoches the iterative extraction and elimination of the groups is strategy-based,
1.e., after a group of matches is selected only those matches are eliminated from the strat-
egy set, thus allowing for the same features to appear in several groups, while the stopping
criterion here is the same as that of AGT. In our experiments the intrinsic parameters for
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Figure 5.8: Performance analysis of the virtual points approach with respect to variation
of its parameters.

CPGT have been estimated from the images’ EXIF information. The three approaches
are compared against the default feature matcher in the Bundler suite (BKM). This is a
reasonable choice for several reasons: BKM is optimized to work with SIFT descriptors
and, obviously, with the Bundler suite; in addition it is very popular in literature since
Bundler itself has been used as the default matcher in many of the recent papers about
SfM and dense stereo reconstruction. For each test we evaluated two quality measures:
the average reprojection error (expressed in pixels) and the differences in radians between
the ground-truth and the estimated rotation angle (Ac«/). The first measure aims to capture
the cumulative error made in the reconstruction of the structure and the estimation of the
motion, while the second measure aims to decouple the error on the camera orientation
from the one related to the scene reconstruction. This is possible since we used images
pairs coming from a calibrated camera head or image sets with an available ground-truth.
Specifically we used a pair of cameras previously calibrated through a standard procedure
and took stereo pictures of 20 different, isolated objects; in addition we also included in
the data set the shots coming from the "DinoRing” and “TempleRing” sequences from
the Middlebury Multi-View Stereo dataset [[124]. We conducted two main sets of experi-
ments. The goal of the first set is to analyze the impact of the parameters, namely A and
quality threshold (q), over the accuracy of the results. Since AGT and CPGT/UPGT have
different payoff functions and the selectivity A is not directly comparable we investigate
its influence separately. In addition, all the experiment regarding the refinement methods
are made using very relaxed parameters for the AGT step. This is due to the fact that we
are willing to accept a slightly higher number of outlier in the first step in exchange for
an higher number of candidate groups in the hope that the refinement process is able to
eliminate the spurious groups, but still resulting in a larger number of good correspon-
dences from which to perform parameter estimation. In the second batch of experiments
we compare our techniques with the default Bundler matcher. In these experiments the
parameters are set to the optimal values estimated previously. We provide both quantita-
tive and qualitative results from these comparisons: the quantitative analysis is based on
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> 5pix 20.21 45.1401 14.6214 13.4314
Avg. 2.3086 4.5255 2.3577 2.3732
Aa  Avg. 0.005751 0.005561 0.010514 0.009376
S.dev. 0.003242 0.003184 0.005282 0.004646
Max 0.012057 0.011475 0.021527 0.017016
Avg. levels 8.42 - 9.27 -

Figure 5.9: Results obtained with two multiple view data sets (image best viewed in
color).

the errors in reprojection and motion estimation, while the qualitative results are based
on a dense reconstruction obtained using the recovered parameters as input to the PMVS
dense multiview suite [61]].

5.3.2 Influence of Parameters

The AGT method depends on two explicit parameters: the sensitivity parameter A, which
modulates the steepness of the payoff function [5.2] and ¢, i.e. the percentage of the
population density with respect to the most represented strategy that one match must
obtain to be deemed not extinct. As stated in Section A controls the selectivity of
teh selection process, while ¢ allows to further filter the extracted group based on its
cohesiveness. Higher values will lead to a more selective culling, while lower values
will allow more strategies to pass the screening. Figure [5.6| reports the results of these
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Dino sequence Temple sequence
CPGT UPGT CPGT UPGT
Matches 15018 15231 28106 28407
€ <l1pix 32.1731 20.0126 25.7232 18.3715
<Spix 61.4826 75.4671 64.5294 78.5347
> 5Spix 6.3518 4.5203 0.7474 3.0938
Avg. 1.7051 2.9841 2.1642 3.6713
Aa  Avg. 0.004823 0.006437 0.009411 0.01328
S.dev. 0.003671 0.004514 0.005143 0.006545
Max 0.013147 0.017421 0.019725 0.027832
Avg. levels 17.21 18.34 20.13 22.05

Figure 5.10: Results obtained with two multiple view data sets (image best viewed in
color).

experiments averaged over the full set of 20 stereo pairs taken with a previously calibrated
camera pair. The first row shows the effect of the selectivity parameter \. This is evaluated
for three different ¢ levels, from 0.3 to 0.7. As expected, both low and high values lead to
higher errors, mainly with respect to the estimation of the angle between the two cameras.
This is probably due to a too tight and a too relaxed enforcement of local coherence
respectively. It could be argued that the estimation of the optimal A can be tricky in
practical situations; however, we must note that, whith a reasonable high ¢, it takes a
very large sensitivity parameter to obtain a performance worst than that obtained with
the default Bundler matcher. Regarding the quality threshold, we can see in the second
row of Figure [5.6] that the best results are achieved by setting an high level of quality:
this is clearly due to the fact that, in practice, the replicator dynamics have converged to
a stable ESS and thus most of the non-zero strategies are indeed inliers and are mostly
subject only to the (small) feature localization error, thus exhibiting all an equally high
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Ganesha stereo Screws stereo
AGT BKM AGT BKM
Matches 280 200 211 46
e <l1pix 98.2824 20 0 0
<5Spix 1.7175 80 34.7716 6.75676
>5pix 0O 0 65.2284 93.2432
Avg. 0.321248 1.67583 5.86237 10.2208
Aa 0.001014 0.007424 0.020822 0.030995
Levels 14 - 12 -

Figure 5.11: Results obtained with two stereo view data sets (image best viewed in color).

density. In Figure [5.7] we show the result obtained by trying different parameters with
CPGT and UPGT. As previously stated these experiments were made by performing an
affine matching step with relaxed parameters: namely a value of A of 0.09 and a ¢ of 0.6.
The overall behaviour with respects to parameters is similar to what observed for AGT:
very low and very high values for )\ lead to less satisfactory results (whereas in general
better than those obtained with the Bundler key matcher) and high ¢ seems to guarantee
good estimates. Overall it seems that CPGT always gives better results than UPGT. We
will analyze this behaviour with more detail in the next section.

Finally, we also analyzed the impact of parameters of the virtual points algorithm over
the quality of the final results. To this end we investigated three parameters: the similarity
decay ), the number k& of candidate mates per features, and the quality threshold, that is
the minimum support for a correspondence to be considered non-extinct, divided by the
maximum support in the population. Figure [5.§] reports the results of these experiments.
Overall, these experiments suggest that those parameters have little influence over the
quality of the result. However the game-theoretic approach achieves better average results
and smaller standard deviations for almost all reasonable values of the parameters.
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Ganesha stereo Screws stereo
CPGT UPGT CPGT UPGT
Matches 315 282 72 108
e <lpix 99.0017 83.4812 2.1637 0
<5Spix 0.9983 16.5188 37.5721 26.3417
>5pix 0O 0 60.2642 73.6583
Avg. 0.300272 1.2311 3.92133 4.6379
Aa 0.001623 0.00466 0.025341 0.03945
Levels 15 13 8 9

Figure 5.12: Results obtained with two stereo view data sets (image best viewed in color).

5.3.3 Comparisons between Approaches

To further explore the differences among the proposed techniques and the Bundler matcher,
we executed two sets of experiments. The first set applies the approaches to unordered im-
ages coming from the DinoRing and TempleRing sequences from the Middlebury Multi-
View Stereo dataset [[124]; for these models, the camera extrinsic parameters are provided
and used as a ground-truth. The rationale for using these sets (in opposite to simple stereo
pairs) is to allow Bundler to optimize the parameters and correspondences over the com-
plete sequence. The second set is composed of two calibrated stereo scenes selected from
the previously acquired collection of 20 items, specifically a statue of Ganesha and a
handful of screws placed on a table. For all the sets of experiments we evaluated both the
rotation error of all the cameras and the reprojection error of the detected feature points.
In the Middlebury sets the results are presented as averages. The Dino model is a difficult
case in general, as it provides very few distinctive features; Figure [5.9] shows the corre-
spondences produced by AGT (left column) in comparison with BKM (right column).
The parameters where set to the optimal values estimated in the previous experiments
(A = 0.06 and g = 0.8). This resulted in the detection of many correct matches organized
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Figure 5.13: Distribution of the reprojection error on one multiple view (top) and one
stereo pair (bottom) example.

in groups, each corresponding to a different depth level, and visualized with a unique
color in the figure. As can be seen, the different depth levels are properly estimated;
this is particularly evident throughout the arched back going from the tail (in foreground)
to the head of the model (in background), where clustered sets of feature points follow
one after the other. Furthermore, these sets of interest points maintain the right corre-
spondences within the pair of images. The Bundler matcher on the other hand, while
still achieving good results in the whole process, also outputs erroneous correspondences
(marked in the figure). In Figure [5S.10| we can see the results obtained with CPGT and
UPGT with A = 0.3 and ¢ = 0.7 after an affine matching step performed with A\ = 0.09
and ¢ = 0.9. We can observe that CPGT gives a significant boost to all the statistics. By
contrast UPGT performed worse than AGT (albeit still better than BKM). This is proba-
bly due to the higher number of degrees of freedom in the estimation of the fundamental
matrix and, thus, to the reduced ability to discriminate incompatible groups. In fact, we
can see that the size of the groups obtained with AGT is generally rather small (from 4 to
about 10 points), and it is easy to justify such a small number of correspondences under
a common fundamental matrix. The quality of reconstruction following the application
of all methods can be compared visually by looking at the distribution of the reprojection
error in the top row of Figure While most reprojections fall within 1-3 pixels for the
Game-Theoretic approaches, the Bundler matcher exhibits a long-tailed trend, with repro-
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Game-Theoretic (VP) Bundler matcher Game-Theoretic (VP) Bundler matcher

Dino sequence Temple sequence
Dino sequence Temple sequence
Game-Theoretic (VP) Bundler matcher Game-Theoretic (VP) Bundler matcher
Matches 262.5 + 61.4 172.4 +£79.5 535.7 + 38.7 349.3 + 36.2
Aa 0.0668 £ 0.0777 0.0767 £0.1172  0.1326 £ 0.0399 0.1414 £ 0.0215
A~y 0.4393 + 0.4963 0.6912 +£0.8793 0.0809 £+ 0.0144 0.0850 +£ 0.0065

Figure 5.14: Results obtained with the virtual points approach on the Dino and Temple
data sets.

jection errors reaching 20 pixels. Unlike the Dino model, the Temple model is quite rich
of features: for visualization purposes we only show a subset of the detected matches for
all the techniques. While the effectiveness of our approaches is not negatively impacted
by the model characteristics, several mismatches are extracted by BKM. In particular, the
symmetric parts of the object (mainly the pillars) result in very similar features and this
causes the matcher to establish one-to-many correspondences over them. In the calibrated
stereo scenario, the Ganesha images are rich of distinctive features and pose no particu-
lar difficulty to any of the methods. The Bundler matcher provides very good results,
with only one evident false match out of a total of 200 matches (see Figure [5.11)). The
resulting bundle adjustment is quite accurate, giving very small rotation errors and repro-
jection distances. Nevertheless, our methods performs considerably better: reprojection
errors dramatically decrease, with around 98 percent of the feature points falling below
one pixel of reprojection error for AGT and 99 percent for CPGT (Figure [5.12). Unfor-
tunately UPGT is still unable to refine the results obtained with AGT, but still achieves
smaller errors than BKM. The second calibrated stereo scene, “Screws stereo”, is an em-
blematic case and provides some meaningful insight. The images depict a dozen of screws
standing on a table, placed by hand at different depth levels. This configuration, together
with the abundance of features, should provide enough information for the algorithms to
extract significant matches. However, the scene is a difficult one due to the very nature
of the objects depicted, which are all identical and highly symmetric, resulting in several
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Figure 5.15: Comparisons of the point clouds produced by PMVS using the motion es-
timated using different matching methods. Respectively the Bundler default keymatcher
(BKM), the affine game-theoretic technique (AGT) and the calibrated and uncalibrated
projective techniques (CPGT and UPGT).

features with very similar descriptors and a difficulty in extracting good matches based
only on photometric information. Indeed, several false matches are established by the
Bundler matcher (see the last column of Figure [5.1T)). Still, BKM results in a reasonable
estimation of the rigid transformation linking the two cameras, as erroneous pairings are
removed a posteriori during the subsequent phases of bundle adjustment. By contrast, the
AGT approach outputs large and accurate sets of matches, roughly one per object, and
even difficult cases, such as the left-right parallactic swaps taking place at the borders are
correctly dealt with. It is interesting to note that in this case the boost given by CPGT is
even more significant than in the previous experiments, with a lower average reprojection
error and an overall better error distribution. Unlike with the previous cases, this happens
by reducing the number of total matches rather than increasing it, as the refinement pro-



86 5. Correspondence Selection in Structure from Motion

Convergence time [sec]
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Figure 5.16: Plot of the convergence time of the replicator dynamics with respect to the
number of matching strategies.

cess eliminates correspondences that are not globally consistent. In addition this time even
the UPGT gives better results than AGT: a histogram of the reprojection errors for this
object is shown in Figure[5.13] Finally, a qualitative analysis of the different approaches
is shown in Figure [5.15] where the estimated parameters and correspondences are fed
to the PMVS [l61]] dense multiview stereo reconstruction tool. The first and the second
rows show the Ganesha and screws scenes from a frontal view, while the other two show
a top view of the same scenes. AGT and CPGT give the best results for Ganesha with
CPGT providing a denser reconstruction with a more circular halo over the head. With
the screws scene CPGT allows by far the more consistent reconstruction, while BKM is
substantially unable to offer to PMVS a satisfactory pose estimation.

The final set of experiments analyzes the relative performance of the virtual points
approach in relation to the Bundler baseline. In particular we analuzyed the differences
in radians between the (calibrated) ground-truth and respectively the estimated rotation
angle (A«) and rotation axis (A+y). Figure[5.14] shows the correspondences produced by
our method (left column) in comparison with the other matcher (right column). Again,
the “Temple” model is richer in features and for visualization purposes we only show
a subset of the detected matches for both techniques. Our method, by enforcing global
3D consistency, can effectively disambiguate the matches. Looking at the results we can
see that our approach extracts around 50% more correspondences than BKM, providing
a slight increase in precision and reduction in variance of the estimates. Note that the
selected measures evaluate the quality of the underlying least square estimates of the
motion parameters after a reprojection step, thus small variations are expected.
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5.3.4 Complexity and Running Time

With respect to the complexity all the game-theoretic approaches are dominated by the
steps of the replicator dynamics. Each step is quadratic in the number of strategies, but
there is no guarantee about the total number of step that are needed to reach an ESS.
We chose to stop the iterations when the variation of the population was below a mini-
mum threshold. Execution times for the matching steps of our technique are plotted in
Figure the scatter plot shows a weak quadratic growth of convergence time as the
number of matching strategies increases with a very small constant in the quadratic term,
resulting in computation times below half a second even with a large number of strategies.

5.4 Conclusions

We introduced a game-theoretic technique that performs an accurate feature matching as
a preliminary step for multi-view 3D reconstruction using Structure from Motion tech-
niques. Unlike other approaches, we do not rely on a first estimation of scene and camera
parameters in order to obtain a robust inlier selection, but rather, we enforce geometric
constraints based only on semi-local properties that can be estimated from the images.
In particular, we define two selection games and one consolidation game that filters out
groups of matches by considering their compliance with the epipolar constraint. The
first matching game selects local groups of compatible correspondences enforcing a weak
affine camera model, whereas the second game projects what is left of a high-order com-
patibility problem into a pairwise compatibility measure, by enforcing the conservation
of distances between the unknown 3D positions of the points. Experimental comparisons
with a widely used technique show the ability of our approach to obtain a tighter inlier
selection and thus a more accurate estimation of the scene parameters.
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Surface Registration and Multiview
Error Diffusion

Surface alignment (also commonly found as surface registration in literature) is a fun-
damental step in many 3D computer vision tasks such as 3D reconstruction and shape
analysis, and is generally approached with two-step techniques that first aim at obtaining
an approximate (“coarse”) alignment of the surfaces, then refine the relative motion via
error-minimizing procedures. Since most reconstruction pipelines operate in a pairwise
manner, in this Section we will first concentrate on the problem of (rigidly) aligning two
surfaces with one another. Then, in Section we will give a method to compose these
pairwise registrations together in an attempt to globally optimize on the registration error
of all the views simultaneously.

Most coarse registration algorithms exploit local point descriptors that are intrinsic to
the shape and do not depend on the relative position of the surfaces. On the other hand,
refinement techniques iteratively minimize a distance function measured between pairs of
selected neighboring points and are thus strongly dependent on initial alignment. In this
work we propose a novel technique that allows to obtain an accurate surface registration
in a single step, without the need for an initial motion estimation. Following the previous
chapters, we cast the selection of correspondences between points on the surfaces in a
game-theoretic framework, where a natural selection process allows mating points that
satisfy a mutual rigidity constraint to thrive, eliminating all the other correspondences.
This process yields a very robust inlier selection scheme that does not depend on any
particular technique for selecting the initial strategies as it relies only on the global ge-
ometric compatibility between correspondences. The practical effectiveness of the pro-
posed approach is confirmed by an extensive set of experiments and comparisons with
state-of-the-art techniques.

6.1 Surface Alignment Through an Isometry-Enforcing
Game

We follow a similar approach to the one presented in Chapter 5} specifically, after defin-
ing an appropriate set of strategies (candidate matches), we let them compete with one
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Figure 6.1: Example of three matching strategies.

another, each obtaining support from compatible associations and competitive pressure
from all the others. At the equilibrium, only pairings that are mutually compatible should
survive and are then taken to be inliers. In practice, the full process happens through
the following steps: First, we extract a set of candidate matches; then, we define a pay-
off function between such candidates; finally, we use evolutionary dynamics to evolve
towards an equilibrium state. These steps will be detailed in the following sections.

6.1.1 Matches as Strategies

Since we will deal with the registration of two different surfaces we will refer to the
points belonging to the first surface with the term model points, while we will use the
term data points with respect to the second surface. This distinction is captious since
there is no actual difference in role between the two surfaces, however it is consistent
with the current registration literature and helps in defining an order within matches.
Here we follow the same notation of Section 2.6] and define M to be set of model
points, D the set of data points, and S the set of available matching strategies. Our goal is
of course to extract from .S the subset of correct matches, that is, strategies that associate
a point in the model surface with the same point in the data surface. Since in this context
we are dealing with rigid alignment of surfaces, it is quite natural to exploit the rigidity
constraint to measure the feasibility of a pair of matches. In fact (Section [6.2)), we relax
the rigidity assumption to an isometry assumption, assigning a high payoff to pairs of
matching strategies that preserve the Euclidean distance between the corresponding points
on model and data (see Figure [6.2)). Also, we will assign a payoff equal to zero to pairs
that share the same source or destination point, so as to enforce a one-to-one matching.
In order to reduce the number of the initial candidates, we subsample model points
by keeping only points that are deemed to be interesting, and we use a semi-local surface
descriptor (Section [6.1.2) to assign to each of them a small set of feasible matches. This
is done simply by choosing the mates with the nearest descriptor in the Euclidean sense.
The amount of model subsampling, the level of distinctiveness required, and the number
of matching candidates to select for each model point are parameters of the method and
can be modulated to balance speed and accuracy. Of course, the distinctiveness of the
descriptor used to characterize the data points has a big influence in fixing a reasonable
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Figure 6.2: An example of the evolutionary process. Four points are sampled from
the two surfaces and a total of six mating strategies are selected as initial hypothe-
ses. Matrix II shows the compatibilities between pairs of mating strategies according
to a one-to-one rigidity-enforcing payoff function. Each mating strategy got zero pay-
off with itself and with strategies that share the same source or destination point (e.g.,
7((b1, b2), (c1,b2)) = 0). Strategies that are coherent with respect to a rigid transformation
exhibit high payoff values (e.g., 7((a1, as), (b1, b2)) = 1 and 7((a1, as), (di,d2)) = 0.9)),
while less compatible pairs get lower scores (e.g., m((a1, as), (¢1,¢2)) = 0.1). Initially (at
T=0) the population is set to the barycenter of the simplex and slightly perturbed (3-5%).
After just one iteration, (cp,by) and (cq, c2) have lost a significant amount of support,
while (dy, co) and (dy, dy) are still played by a sizable amount of population. After ten it-
erations (T=10), (d;, dy) has finally prevailed over (d;, c2) (note that the two are mutually
exclusive). Note that in the final population (ay, az), (b1, by) have a larger support than
(dy, dy) since they are a little more coherent with respect to rigidity.

number of candidates for each match. This observation, in turn, raises the quandary
between the repeatability and the distinctiveness of feature descriptors. In fact, while
a high distinctiveness is always desirable, this often comes at the price of much more
instability with respect to noise and thus can lead to a poor repeatability. Nevertheless,
with our approach, the descriptor itself is only used to construct the set S and has no role in
the evolutionary selection, which is purely driven by the payoff function. For this reason,
we find it reasonable to resort to a feature characterization that is scarcely distinctive and
to allow for several candidate matches, letting the game-theoretic selection process to
operate a severe culling. The loose descriptor that we are introducing has many other
advantages, such as being easy to implement and fast to compute, and it will be described
in full depth in Section

In Figure [6.2] we show a complete example of the matching process. We refer to
Section [2.6] for details. While the example is kept simple on purpose and the data does
not come from real surfaces the illustrated evolution is computed exactly with the payoff
matrix I using equation

6.1.2 Surface Hashes

Since the proposed framework relies on geometric consistency, we choose to adopt a very
loose feature descriptor that enhances the probability for a feature point to be repeatable,
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(a) Normal Hash (b) Integral Hash

Figure 6.3: Example of the two basic Surface Hashes.

albeit allowing a much higher number of outliers to get into the set of initially proposed
matches. In this context, in order to avoid feature points that carry little useful information
for registration purposes (such as flat areas or regions of constant curvature), a minimal
matching game as the one described in Chapter {4 is also carried out among the features
associated to the model points.

Intuitively, a Surface Hash is a concise point feature descriptor that exhibits the prop-
erty of being highly repeatable at the cost of a relatively high probability of clashing. In
practice this happens with any low-dimensional descriptor, such as the Gaussian or Mean
Curvature (1 dimension), the first two Principal Components of a patch (2 dimensions), or
the normal vector associated to a point (2 dimensions). While those descriptors could be
used with our registration pipeline, we prefer to introduce two multiscale Surface Hashes
based respectively on the dot product between normals and a local surface integral. Each
of our descriptors corresponds to a vector of scalar measures evaluated at different scales.
By increasing or reducing the number of scales, we are able to obtain vectors of dif-
ferent length, thus being more or less distinctive. The Normal Hash (Figure is
obtained by setting as a reference the average surface normal over a patch that extends to
the largest scale (red arrow in figure) and then, for each smaller scale, calculate the dot
product between the reference and the average normal over the reduced patches (blue ar-
rows in figure). This measure finds its rationale in the observation that at the largest scale
the average normal is more stable with respect to noise and that the dot product offers a
concise representation of the relation between the vectors obtained at various scales. The
Integral Hash is similar in spirit to the Normal Hash (see Figure [6.3(b)). In this case,
we search for the best fitting plane (in the least squares sense) with respect to the surface
patch associated to the largest scale. Then we calculate the volume enclosed between the
surface and such a plane. In practice, it is not necessary to evaluate this volume accu-
rately: even naive approximations, such as the sum of the distances of the surface points
from the plane, have shown to provide a reasonable approximation in all the empirical
tests. Note that Normal Hashes evaluated over n scales yield descriptor vectors of length
n — 1 (since the larger scale is used only to calculate the reference normal), while Inte-
gral Hashes provide n-dimensional vectors. In Figure [6.4)a Normal Hash of dimension 3
(respectively from (a) to (c¢)) evaluated over 4 scales is shown. Note that the descriptor is
not defined on the points for which the larger support is not fully contained in the surface,
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(a) First dimension (b) Second dimension (c) Third dimension

Figure 6.4: Example of a 3-dimensional Normal Hash.

1.e., points close to the surface boundary.

6.2 Isometry-Enforcing Payoff

As already stated, for this particular application of the GTM framework we decided to as-
sign to each pair of matching strategies a payoff that is inversely proportional to a measure
of violation of the surface rigidity constraint. This violation can be expressed in several
ways, but since all the rigid transformations preserve Euclidean distances, we choose this
property to express the coherence between matching strategies. Clearly this isometry
constraint is looser than the rigidity constraint as it cannot prevent specular flips of the
surfaces, but the global consistency provided by the game-theoretic framework ensures
that only rigid alignments will prevail.

Definition 1. Given a function 7 : S x S — R™, we call it an isometry-enforcing payoff
function if for any ((ay, as), (b1, b2)) and ((cy, c2), (d1,ds)) € S x S we have that ||a; —
b1| — ’CLQ — bQH > HCl — d1| — ’02 — d2|| implies 7r((a1, ag), (bl, bz)) < ’N((Cl, 02), (dl, dg))
In addition, if m((aq,as), (by,b2)) = 7((b1, be), (a1, as)), 7 is said to be symmetric.

An isometry-enforcing payoff function is a function that is monotonically decreasing
with the absolute difference of the Euclidean distances between respectively the model
and data points of the matching strategies compared. In other words, given two matching
strategies, their payoff should be high if the distance between the model points is equal
to the distance between the data points and it should decrease as the difference between
such distances increases. In the example of Figure matching strategies (a1, as) and
(b1, by) are coherent with respect to the rigidity constraint, whereas (b1, b2) and (cq, ¢2)
are not, thus it is expected that 7((ay, as), (b1, b2)) > m((by,b2), (¢1, ¢2)).

Further, if we want mating to be one-to-one, we must put an additional constraint on
the payoffs, namely that mates sharing a point are incompatible.

Definition 2. An isometry-enforcing payoff function 7 is said to be one-to-one if a; = b,
or ag = by implies w((a1, az), (b1, b)) = 0.
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(e) Matches in 1 round (f) Matches in 100 rounds

(g) Payoff matrix (h) Population in 1 round (i) Population in 100 rounds

Figure 6.5: Example of a rigidity enforcing payoff and of the evolution of the matching
process.

Given a set of matching strategies .S and an enumeration O = {1,...,|S|} over it, a
matching game is a non-cooperative game where the population is defined as a vector
x € Al and the payoff matrix I1 = (m;;) is defined as 7;; = 7(s;, s;), where s;,8; € S
are enumerated by O and 7 is a symmetric one-to-one isometry-enforcing payoff function.
Intuitively, x; accounts for the percentage of the population that plays the i-th matching
strategy. By using a symmetric one-to-one payoff function in a matching game we are
guaranteed that ESS’s will not include mates sharing either model or data nodes. In
fact, given a non-negative payoff function, a stable state cannot have in its support pairs
of strategies with payoff 0 [21]. Moreover, a matching game exhibits some additional
interesting properties.

Theorem 1. Given a set of model points M, a set of data points D = T'M that are exact
rigid transformations of the points in M, a set of matching strategies S C M x D with
(m,Tm) € S forall m € M, and a matching game over them with a payoff function ,
the vector i € Al defined as

1/|M| if s = (m,Tm) for some m € M ;

0 otherwise,

is an ESS and obtains the global maximum average payolff.
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Proof. Let S C S be the set of mates that match a point to its copy, clearly for all
s,q € S,s # qwehave 7(s,q) = 1, while for s € Sand ¢ € S\ S, we have 7(s,q) < 1.

Forall s € S we have that m(z,z) = %\Zl while, since 7 is one-to-one, for any g € S'\ S
there must be at least one s, € S with 7(g, s,) = 0, thus 7(q, %) < %\‘4_'1, thus 7 is a

Nash equilibrium. Further, since the inequality is strict, it is an ESS. Finally, % is a global
maximizer of 7 since “\‘4]\'4_'1 is the maximum value that a one-to-one normalized payoff

function over | M | points can attain. O

This theorem states that when matching a surface with a rigidly transformed copy of
itself the optimal solution (i.e., the population configuration that selects all the matching
strategies assigning each point to its copy) is the stable state of maximum payoff. Since
well established algorithms to evolve a population to such a state exist, this provides us
with an effective mating approach. Clearly, aligning a surface to an identical copy is not
very useful in practical scenarios, where occlusion and measurement noise come into play.
While the quality of the solution in presence of noise will be assessed experimentally, we
can give some theoretical results regarding occlusions.

Theorem 2. Let M be a set of points with M, C M and D = T' M, a rigid transformation
of My, C M such that |M,NM,| > 3, and S C M, x D be a set of matching strategies over
M, and D with (m,Tm) € S for all m € M, N M,. Further, assume that the points that
are not in the overlap, that is the points in E, = M,\ (M,NM,) and E, = M\ (M,NM,),
are sufficiently far away such that for every s € S, s = (m,T'm) with m € M, N M, and
every q € S,q = (mg, T'my) withm, € E, and my, € E,, we have 7(q, s) < [ManMp| -1

[MaNM,|
then, the vector & € Al°l defined as

. {1/|M\ if s; = (m,Tm) for some m € M, N M, ;
Tr; =

0 otherwise,

is an ESS.

Proof. We have m(2,2) = MaDMI=l "y 6t g € S be a strategy not in the support of

[ Mo M|
Z, then, either it maps a point in M, or M,, thus receiving payoff 7(q,z) < %

because of the one-to-one condition, or it maps a point in £, to a point in £}, receiving,

by hypothesis, a payoff 7(q, T) < % Hence, 7 is an ESS. O

The result of theorem [2]is slightly weaker than theorem [I} as the face of the simplex
corresponding to the “correct” overlap, while being an evolutionary stable state, is not
guaranteed to obtain the overall highest average payoff. This is not a limitation of the
framework as this weakening is actually due to the very nature of the alignment problem
itself. The inability to guarantee the maximality of the average payoff is due to the fact
that the original object (M) could contain large areas outside the overlapping subset that
are perfectly identical. Further, objects that are able to slide (for instance a plane or a
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sphere) could allow to move between different mixed strategies without penalty. These
situations cannot be addressed by any algorithm without relying on supplementary infor-
mation. However, in practice, they are quite unlikely, exceptional cases. In the experi-
mental section we will show that our approach can effectively register a wide range of
surface types.

In theory, any rigidity-enforcing payoff function can be used to perform surface reg-
istration. Throughout the experimental section we adopted:

min(|a; — asl, [b1 _b2|)>A (6.1)

maz(|la; — as|, |by — ba|)

7((ar,b1), (az,82)) = (

where a1, as, by and b, are respectively the two model (source) and data (destination)
points in the compared matching strategies. Parameter A\ allows to make the enforcement
of the Euclidean distance more or less strict.

In Figure [6.5| we show a complete example of the evolutionary matching process. In
order to make the example easy to understand we restricted our focus to a detail of a range
scan of the Stanford dragon [S1]. In this example (and throughout all the experimental
section) S is built by including all the strategy pairs composed by a feature point in the
model and the 5 nearest feature points in the data in terms of Surface Hash (in this example
we used an Integral Hash with 3 scales). In Figure[6.5(g)|we show, on a colored scale from
0 to 1, the payoff matrix of the rigidity enforcing function[6.1] Note that in the diagonal
area of the matrix blocks of five strategies with reciprocal 0 payoff can be found: this is
related to the way we built S. In fact we chose to include for each model point 5 candidates
in the data which are mutually non compatible as they share the same source point and we
are looking for a one-to-one match. In the first and second row of Figure[6.5(d)| we can see
respectively model and data feature points at the beginning of the matching process. After
just one round of replicator dynamics we see that many outliers have been eliminated from
the initial set .S, but still some wrong matches are present. After 100 iterations only a few
matches are retained, but it is easy to see that they are extremely coherent. Finally, in
Figure [6.5(h)| and Figure we show the (sorted) population histogram respectively
after 1 and 100 iterations. The first histogram shows that all the strategies are still played
by a sizeable amount of the population, while after 100 iterations most of the consensus
is held by the few surviving matches.

6.3 Experimental Results

We introduced a Game-Theoretic Registration approach (GTR) that is based both on a
feature detector/descriptor and on a matching technique. To better explore the role of
both, we designed a wide range of experimental validations. First, we analyzed the sen-
sitivity of the descriptor to several sources of noise and the influence of the number of
scales (and thus of the size of the descriptor vector). Further, we studied the sensitiv-
ity of the matching algorithm to its parameters, with the goal of identifying an optimal
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Figure 6.6: Comparison of different descriptors using real and synthetic objects.

parameterization (if any) and assess the stability of the method. Also a number of com-
parative tests were made. Specifically, we analyzed the performance obtained by using
our matcher with different feature detectors and the overall comparison with respect to
other well-know registration pipelines.

All the experiments were performed on a modern personal computer equipped with
a Core 17 Intel processor and 8 GB of memory. The dataset used, where not differently
stated, was built upon publicly available models; specifically the Bunny [150], the Ar-
madillo [84] and the Dragon [51] from the Stanford 3D scanning repository. To further
assess the shortcomings of the various approaches, we used two synthetic surfaces repre-
sentative of as many difficult classes of objects: a wave surface and a fractal landscape
(see Figure[6.6). Since a ground truth was needed for an accurate quantitative comparison,
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Figure 6.7: Effect of scale on the matching accuracy.

1

we generated virtual range images from the models and then applied additive Gaussian
noise to them. All the registration experiments adopted the payoff function [6.1] with the
additional one-to-one constraint. The descriptor used is a mixed Surface Hash with 3
scales.

6.3.1 Sensitivity Analysis of the Descriptor

The performance of different descriptors was tested for various levels of noise and occlu-
sion applied to two surfaces obtained from real range scans (“‘armadillo” and “dragon”
from Stanford) and two synthetic surfaces designed to be challenging for coarse and fine
registration techniques (“fractal” and “wave”). The noise is a positional Gaussian pertur-
bation on the point coordinates with its level (o) expressed in terms of the percentage of
the average edge length, while occlusion denotes the percentage of data and model sur-
faces removed. The RMS Ratio in the charts is the ratio of the root mean square error
(RMS) obtained after registration and the RMS of ground truth alignment. The Normal
and Integral Hashes were calculated over 3 levels of scale and the “Mixed” Hash is simply
the juxtaposition of the previous two.

In Figure 6.6 we see that all the descriptors obtain good results with real range images
and the registration “breaks” only with very high levels of noise (on the same order of
magnitude of the edge length). It is interesting to observe that the Mixed Hash always
obtains the best performance, even with high level of noise: This higher robustness is
probably due to the orthogonality between the Normal and Integral Hashes. The behavior
with the “fractal” synthetic surface is quite similar, by contrast all the descriptors seem to
perform less well with the “wave” surface. This is due to the lack of distinctive features
on the model itself, which indeed represents a challenge for any feature based registration
technique [[117]. The performance obtained with respect to occlusion is similar: all the
descriptors achieve fairly good results and are resilient to high levels of occlusion (note
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that 40 percent occlusion is applied both to data and model). Overall the Mixed Hash
appears to be consistently more robust. Since we found that the descriptors calculated
over 3 levels of scale break at a certain level of noise, we were interested in evaluating if
their performance can be improved by increasing their dimension.

In Figure we present the results obtained with different levels of scale for the
Mixed Hash. The graphs show the average over all the surfaces and the associated RMS.
It is interesting to observe that by reducing the scale level the technique becomes less ro-
bust, whereas its performance increases dramatically when the number of scales increases.
With a scale level of 5 our approach can deal even with surfaces subject to Gaussian po-
sitional noise of o greater than the edge length. Unfortunately, this enhanced reliability
comes with a drawback: by using larger levels of scale the portion of boundary that can-
not be characterized grows. In the right half of Figure the shrinking effect is shown
for scale levels from 2 to 5.

6.3.2 Sensitivity to Parameters of the Matcher

The game-theoretic matching technique presented basically depends on four parameters:

e The number of points sampled from the model object;
e The number of neighbors considered when building the initial set of candidates;
e The selectivity A for the rigidity-enforcing payoff

e The quality threshold used to deem a strategy as non-extincted upon convergence.

The first two parameters are related to the building of the set of strategies S. From a
performance point of view, adopting a strong subsampling will produce a smaller set of
strategies and a smaller payoff matrix, thus each recurrence of the evolutionary dynamics
will be faster. However, a too sparse sampling can lead to groups of mutually compati-
ble matches that are too small and are unable to thrive during the evolutionary process.
In a similar manner, a small number of neighbors will reduce the number of strategies.
However, this will give fewer chances of capturing the correct pairings since such tight-
ening would require the descriptor to always give a high rank to the correct pairing. In
Figure[6.8]it can be seen that optimal results can be achieved with less than 1000 samples
and that there is virtually no gain in using more than 6 neighbors. Later in this chapter we
will show that on the test system used these conditions allow to perform an alignment in
less than one second.

The third parameter () is related to the level of strictness with respect to the enforce-
ment of the rigidity constraint: Higher values for A will make the payoff function more
steep, thus making the selection process more picky. By contrast, lowering A will yield a
payoff matrix with smaller variance, up to the limit value of 0, when the matrix assumes
value 1.0 for all the strategies pairs that do not break the one-to-one constraint and O oth-
erwise. As expected, our experiments show that very low or very high values for A deliver
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Figure 6.8: Analysis of the sensitivity of the Game-Theoretic Matcher with respect to the
parameters of the algorithm.

poor results and, while there is clearly a larger variance than what has been captured by
the experiments, the optimal value seems to be around 1.

Finally, the fourth parameter sets the ratio (with respect to the most successful match)
used to classify a strategy as surviving or extinct. The last experiment of Figure [6.8|shows
that all the tested values below 0.8 give similarly good results. This simply means that
there is good separability between extinct and non-extinct strategies, the former being
very close to 0.

Overall, we can assess that the matching method has a very limited dependency on its
parameters, which can be easily fixed at values that are both safe and efficient. The most
influent parameter is probably )\, however a value of 1.0 (that indeed simplifies equation
[6.1]to a simple ratio) appears to be optimal for our test set.

6.3.3 Comparison with Full Pipelines

The whole registration algorithm we introduced can be classified as a coarse method, since
it does not require initialization. For this reason we compared it with several other coarse
techniques. Specifically, we implemented the whole Spin Images pipeline [76]] and used
the implementation supplied by the authors respectively for the MeshHOG/MeshDOG
[160] and the Four Points Congruent Sets [19] methods. The latter method was initialized
both with the parameters suggested by the authors and also with values for ¢ and s that we
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Figure 6.9: Comparisons between our Game-Theoretic Registration technique and other
widely used surface registration pipelines.

manually optimized to get the best possible results from our dataset.

In the first row of Figure [6.9] we present the results of this comparison. In these
experiments the occlusion is measured with respect to each range image and is applied in
opposite directions of the overlapped area. That means that with an occlusion of 10% the
actual ovelap is reduced by 20%. The noise is an additive Gaussian noise with a standard
error expressed as a percentage over the average edge length. The occlusion test has been
made with noise at level 10% and the noise test was performed with no occlusion. From
the tests our method exhibits better results in both scenarios and breaks only with high
levels of occlusion and noise. Note that the 4PCS method with parameterst = 0.9 and s =
500 does not always give a feasible solution with any occlusion greater than 10%. With
extreme levels of noise the 4PCS seems to get better and obtains lower RMS ratios than
our method. The reduction in performance of our method is related to the breaking of the
descriptors, that at such high levels of noise do not carry sufficient information any more.
A clarification should finally be made about the apparent improvement that 4PCS seems to
exhibit as noise increases. In fact, at high noise levels the RMS associated to ground-truth
motion is also high. In such conditions the additional error due to misalignment becomes
less relevant in terms of contribution to the overall RMS ratio, which is dominated by
random noise. Since 4PCS explores thoroughly the set of feasible motions until a solution
with RMS low enough is found (depending on the stop criteria), it is expected to test more
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Figure 6.10: Performance of the Game-Theoretic Registration method using feature de-
scriptors different than Surface Hashes.

alignments when surfaces are noisier and thus yield lower RMS ratio values. However, it
is easy to build simple examples where a solution can obtain a low RMS ratio (even lower
than one) and still being far from the correct alignment.

These results only indicate that GTR gives a better coarse registration, however to seek
a perfectly fair comparison it is also needed to measure how much enhancement can be
obtained by performing a fine registration step starting from the obtained coarse initializa-
tion. To this end we applied the ICP algorithm starting from the initial motion estimated
with the different methods with no occlusion and random noise values below 60%. The
results are shown in the bottom row of Figure |6.9| with histograms obtained by binning the
distance between model points and data surface along the normal vector. Normals that do
not intersect the data surface are discarded. The size of the bins grows exponentially. The
first histogram shows the distribution obtained from the coarse registration and the second
reports the enhancement obtained by applying ICP. Again, the results are favorable to our
method, with very few points exhibiting large errors after refinement.

6.3.4 Influence of different Feature Descriptors

In principle, there is nothing that binds the proposed method to the Surface Hashes de-
scriptors. Actually, the game-theoretic step does not use the descriptor at all and any other
interest point characterization could be used as a drop-in replacement in order to build the
initial matching strategies. To show the generality of the technique and to investigate the
robustness of GTR we swapped the Surface Hashes descriptor with a dense variation of
Spin Images [40] and the more recent SHOT 3D feature [[143]].

In Figure[6.10]the results obtained performing the same experiments designed to com-
pare different methods are shown. It is apparent that Spin Images do not work very well
with our method. By contrast, the SHOT descriptor behaves well with respect to high
noise levels and is even a little more tolerant to occlusion than Surface Hashes. This is
mainly due to the large support needed by the latter. On the other hand, Surface Hashes
offer better alignment under noise, and are also much faster to compute.
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6.3.5 Quality of Fine Registration

In addition to the full pipeline comparisons we also investigated how reliable the proposed
approach would be if directly used as a fine registration technique. The goal of this test is
two-fold: we want to evaluate our quality as a complete alignment tool and, at the same
time, find the breaking point of traditional fine registration techniques.

The method we used for comparison is a best-of-breed ICP variant, similar to the
one proposed in [150]. Point selection is based on Normal Space Sampling [117], and
point-surface normal shooting is adopted for finding correspondences; distant mates or
candidates with back-facing normals are rejected. To minimize the influence of incorrect
normal estimates, matings established on the boundary of the mesh are also removed. The
resulting pairings are weighted with a coefficient based on compatibility of normals, and
finally a 5%-trimming is used. Each test was performed by applying a random rotation and
translation to different range images selected from the Stanford 3D scanning repository.
Additionally, each range image was perturbed with a constant level of Gaussian noise
with standard deviation equal to 12% of the average edge length. We completed 100
independent tests and for each of them we measured the initial RMS error between the
ground-truth corresponding points and the resulting error after performing a full round of
ICP (ICP) and a single run of our registration method (GTR). In addition, we applied a
step of ICP to the registration obtained with our method (GTR + ICP) in order to assess
how much the solution extracted using our approach was further refinable.

A scatter plot of the obtained errors before and after registration is shown in Fig-
ure The final error i on a log scale, so the dotted curve represent the points with
identical initial and final error. We observe that ICP reaches its breaking point quite early;
in fact with an initial error above the threshold of about 20mm it is unable to find a cor-
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Figure 6.11: Comparison of fine registration accuracies (the green dashed line represents
y=X).
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Figure 6.12: Examples of surface registration obtained respectively with Spin Im-
ages (first column), MeshDOG (second column), 4PCS (third column) and our Game-
Theoretic Registration technique (last column).

rect registration. By contrast, GTR is able to obtain excellent alignment regardless of the
initial motion perturbation. Finally, applying ICP to GTR decreases the RMS only by a
very small amount.

6.3.6 Some Qualitative Results

In addition to the quantitative experiments presented, we also performed some qualitative
tests. While these tests do not offer a measurable comparison between the results obtained
by different methods, it certainly helps in putting the number presented so far in perspec-
tive. It is in fact sometimes harder to tell how much the RMS ratio affects the registration
than judging some anecdotal alignment.

In Figure[6.12) we show some coarse alignments obtained with the four methods under
comparison. In this particular example we can see that Spin Images fails on the Dragon,
MeshDOG does not performs very well with any of the meshes, while the Four Points
Congruent Sets method obtains good results with all the three meshes. On the other hand,
GTR exhibits by far the best alignment in every example.
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Figure 6.13: Comparison of surface reconstruction using different descriptors before (first
row) and after (second row) ICP enhancement of the coarse registration obtained respec-
tively using Spin Images (first column), SHOT (second column) and Surface Hashes (third
column).

Figure [6.13] illustrates qualitative differences with the registration obtained by using
different descriptors with and without ICP refinement. Since it is very difficult to spot de-
fects on registration after the refinement we decided to perform a full registration of ranges
acquired from a laser scanner contained in a publicly available database [99] and to build
a closed surface using the Poisson Surface Reconstruction technique [81]]. It is easy to
note that for the same detail Surface Hashes and SHOT allow to build a smoother surface
with no artifacts even before applying the refinement step. However a small defect can be
spotted on the third finger on the foot reconstructed using SHOT without refinement. By
contrast, Spin Images cannot be used to obtain reliable alignment even after applying ICP
(the big artifacts that can be observed are mainly due to a few grossly misaligned ranges).

Finally, in Figure [6.14] we show the result obtained using the GTR pipeline as a fully
automatic tool for aligning 12 range images acquired by a laser scanner.

6.3.7 Memory and Execution Time

Finally, we analyze the memory and cpu time requirements for our method.

The memory needed depends on the number of strategies in the initial set S. Since the
payoff matrix sets a compatibility between each pair of strategies, the memory required
is quadratic with |S|. To give a rough figure, with 1000 points sampled from the model
and 6 neighbors for the initial matches, a single-precision matrix would require a little
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Figure 6.14: Fully automatic registration of 12 views of the t-rex model from using
the GTR pipeline with Surface Hashes. A set of range images (first column) with un-
known initial positions is given; coarse alignment is then performed with our technique
and refined with a few steps of ICP (second and third column). The last column shows
the final model obtained by Poisson reconstruction [81]].

more than 64MB. Of course, it is not really needed to materialize the payoff matrix. In
fact, if the payoff function is simple enough, it could be advantageous to compute it on
the fly during the iteration of the replicator dynamics. Actually, given that memory access
is often the bottleneck on modern architectures, this could even speed-up computation
(especially for GPU-based implementations of the replicator dynamics).

Regarding the execution time, each iteration of the replicator dynamics is quadratic
with |S|. However, it is not easy to state how many iterations are required to converge
as it depends on many factors and parameters. In Figure [6.15] we plotted a point cloud
that relates the number of strategies with the convergence time (on our setup) for a large
number of trials generated with the database of meshes adopted in the previous exper-
iments. When dealing with some thousands of strategies (which is the common case)
the evolution happens in about one second, which is reasonable for most non-real time
applications.

6.4 Multiview Registration via Graph Diffusion of Dual
Quaternions

While there are several fast and reliable methods to align two surfaces, the tools avail-
able to align multiple surfaces are relatively limited. In this Section we propose a novel
multiview registration algorithm that projects several pairwise alignments onto a common
reference frame. The projection is performed by representing the motions as dual quater-
nions, an algebraic structure that is related to the group of 3D rigid transformations, and
by performing a diffusion along the graph of adjacent (i.e., pairwise alignable) views.
The approach allows for a completely generic topology with which the pairwise motions
are diffused. An extensive set of experiments shows that the proposed approach is both
orders of magnitude faster than the state of the art, and more robust to extreme positional
noise and outliers. The dramatic speedup of the approach allows it to be alternated with



6.4. Multiview Registration via Graph Diffusion of Dual Quaternions 107

*
45 f 1
4

*
35 F

25 X"f

Time (s)

15

l !
05 /
g
0 /
2000 4000 6000 8000 10000 12000 14000 16000
Strategies

Figure 6.15: Execution time of the game-theoretic registration method with respect to the
number of initial strategies.

pairwise alignment resulting in a smoother energy profile, reducing the risk of getting
stuck at local minima.

6.4.1 Introduction

Full-object surface registration is typically a two step process where all the views are
first registered against each other, and then all the pairwise transformations are lowered
to a common coordinate frame through a process commonly referred to as multiview
registration.

The literature on pairwise registration is quite ample, with modifications to the orig-
inal ICP proposed by Zhang [161] and Besl and McKay [29] taking the lion’s share. A
more comprehensive review was given in the previous sections. ICP-based methods start
from an initial pose estimate and iteratively refine it by minimizing a distance function
measured between pairs of selected neighboring points. The variants generally differ in
the strategies used to sample points from the surfaces, reject incompatible pairs, or mea-
sure error. In general, the precision and convergence speed of these techniques is highly
data-dependent and very sensitive to the fine-tuning of the model parameters. Several
approaches that combine these variants have been proposed in the literature in order to
overcome these limitations (see [117] for a comparative review). Some recent variants
avoid hard culling by assigning a probability to each candidate pair by means of evolu-
tionary techniques [88|] or Expectation Maximization [66]. ICP variants, being iterative
algorithms based on local, step-by-step decisions, are very susceptible to the presence
of local minima. Other fine registration methods include the well-known approach by
Chen [44] and signed distance fields matching [94].

By contrast, the literature of multiview registration is more diverse. In [44] Chen and
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Medioni propose to iteratively merge new views into a single metaview: The registra-
tion of a new view against the metaview is obtained with a common pairwise registration
technique, such as ICP, and then the points of the new registered view are merged to the
metaview; the approach is iterated until all the range images are merged. This metaview
approach has problems since registration errors are accumulated rather than mediated.
To solve this problem Bergevin et al. [28] match points in every view with all the views
overlapping with it, and calculate a transformation that registers the first view using all
the mating points. This process is iterated to convergence, thus diffusing the errors among
all views. This is implicitly a diffusion process where the random walk in the transfor-
mation space is governed by the constraints offered by nearby views in the view-graph;
however, convergence toward the steady-state is extremely slow and computationally de-
manding. Eggert et al. [S3] constrain the pairings so that the points of each scan map
with exactly one other point and then minimize the total distance between the paired
points. This speeds up convergence, but can prevent the algorithm from converging to
a correct solution as the views may cluster into groups that are well registered, without
improving inter-group registration. With these iterative algorithms based on global point
correspondences, how and when to apply the transformation remains an open issue: For
example, Bergevin et al. [28] calculate a transformation for each view separately and
then apply them simultaneously before the next round of matchings, while Benjemaa and
Schmitt [27/] apply the new transformations independently as soon as they are calculated,
and Eggert et al. [55]] solve for the update by simulating a spring model. An alternative
was explored in [75] where an approximate surface model is created and the view are
registered against the model. The surface model is then iteratively refined using the new
registrations.

In [112] Pulli takes a simplifying view that pairwise registrations are “as good as it
gets” and that the role of multiview registration is only to project the transformation into a
common reference frame in such a way as to limit the accumulation of registration errors.
To this end, he proposes a greedy approach that tries to limit the difference between
the position of point sets as positioned in two frames and transformed by the pairwise
registration of the two frames. More formally, he tries to keep the distortion D(SS) of the
points from a set .S within a given tolerance €, where

DS)=>" > |IP(s) — Ty (Pi(s)).

Here P; is the transformation that maps a point into the coordinate system of view i,
T;; 1s the transformation that maps the coordinate frame j into the coordinate frame ¢
obtained through pairwise registration, and V is the set of pairs of neighboring views for
which pairwise registration is performed. Pulli suggests to sample the set of fiduciary
points S from the surface of the object. Interestingly, by working only on the space of
transformations, this approach limits the memory requirements since it does not need to
keep all the points from all the views in memory at once. Note, however, that the approach
cannot guarantee that an optimal solution will be found, nor that any solution within the
given tolerance will be found.
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More recently, Williams and Bennamoun [157] adopted a similar view, posing the
problem as the minimization of the distortion on a set of fiduciary points and computing
the minimization by an iterative approach optimizing each rotation via singular value
decomposition.

In this work we propose a novel multiview registration algorithm where the poses are
estimated through a diffusion process on the view-adjacency graph. The diffusion process
is over dual quaternions [48], a non-commutative and non-associative algebraic structure
that is related to the group S F(3) of 3D rigid transformations, leading to an approach that
is both orders of magnitude faster than the state of the art, and more robust to extreme
positional noise and outliers.

6.4.2 Dual Quaternions and 3D Transformations

Quaternions have been a popular geometrical tool for more than 20 years as they represent
3D rotations in a way that is arguably more efficient and robust than 3 x 3 rotation matri-
ces [127]. Quaternions are an algebraic extension of complex numbers with 3 imaginary
bases ¢, j, and k, thus a quaternion is a number of the form

qg=a+1ix+ jy + kz. (6.2)

The multiplication of two quaternions is defined through the following multiplication
rules for the three imaginary bases:

= =k*=—1 (6.3)
ij =k=—ji (6.4)
jk=1i=—kj (6.5)
ki =j = —ik. (6.6)

The conjugate of a quaternion ¢ = a+iz+jy+kz is the quaternion ¢* = a — 1z — jy — kz,
while the norm of a quaternion is the quantity

lall = Vag* = V@t q = va* + a2 + 2 + 22. (6.7)

Quaternions with unitary norm are called unit quaternions. In the following we will
use the vectorial representation of quaternions: Let i = (4,7, k) be the row-vector of
the imaginary bases, we can write the quaternion ¢ as a + iv, where v = (z,y, 2)"
is a 3D vector. A right-handed 3D rotation of angle ¢ around the axis of unit vector
v is in relation with the unit quaternion ¢ = cos(#/2) + sin(6/2)iv. In fact, let p =
(pas Pys p=)* be a 3D point and p, its rotation, we have ip, = ¢(ip)¢*. The ring of
quaternions, however, is a dual cover of the group SO(3) of 3D rotations, as ¢ and —q
represent the same rotation. Quaternions are particularly interesting since they allow
for optimal interpolation between rotations. The famous Spherical Linear Interpolation
(SLERP) algorithm [[127] interpolates quaternions on the unit hypersphere and exhibits
the following useful properties:
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Table 6.1: Multiplicative table of dual quaternions.

J k € €l €j | €k
1 |1 1 J k € €l €j | €k
1 1 k| —) |e | —e | €k | —¢j
7 1J 1 =k ] -1 1 €] | —ek | —e | e
k| k
€ | €

¥ —i | —1 | ek | € | —e1 | —e€
€l ej | ek | 0 0 0

0 0 0
€j | €| —€k| —e | e |0 0 0
' ’ 0 0 0

e Shortest path: the motion between the initial rotation R, and the final rotation R
is a rotation about a fixed axis with the smallest angle.

e Constant speed: the angle of the interpolated rotation varies linearly with respect
to parameter t.

e Coordinate system invariance: the interpolation path does not change if we change
the coordinate system.

On the other hand, linear interpolation followed by reprojection onto the unit hypersphere
guarantees the first and third properties, but exhibits changes in speed, in particular it
accelerates around the middle of the interpolation. This implies that a linear averaging
of quaternions does not minimize the squared geodesic distance in the unit quaternion
manifold in the same way that the mean of a set of points minimizes the squared Euclidean
distances to the points. Unfortunately, SLERP does not generalize to the blending of
several rotations. Buss and Fillmore [39] provide an iterative algorithm to find the proper
(weighted) mean in the unit-quaternion manifold, while Kavan and Zara [80] show that
the difference between spherical and linear interpolation is always less than 0.071 radians.

Dual quaternions are less known than quaternions, but their ability to efficiently rep-
resent rigid transformations has been successfully adopted in 3D animation and skin-
ning [/8], robot control and registration [17,52], and have been used in theoretical kine-
matics for a long time [96]. Dual quaternions are an algebraic extension of quaternions
much like complex numbers are an extension of the reals. They are defined in terms
of a dual basis e that commutes with the imaginary bases; thus, a dual quaternion is a
number of the form ¢ + er, where ¢ and r are quaternions, and the product follows the
multiplicative rule €2 = 0, yielding

(q+er)(s+et)=qs+e(gt+rs).

This results in the multiplicative table shown in Table Dual quaternions have three
different conjugates:

(g+er) =¢ +e* (g+er)=¢ —er* (q+er)T =q—er
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The norm of a dual quaternion dgq is ||dq|| = /dq*dq = /dqdg* = ||dg*|| and the
inverse of a dual quaternion dq is dqg~! = HZZHQ. The rigid transformation obtained by
a rotation defined by the unit quaternion r and then a translation by t = (¢,,¢,,t.)7, is

represented by the dual quaternion

dg=r+ %eit r.
In fact, if we represent a 3D point p as 1 + €ip, the following holds:

(r + Leitrt) (1 + eip)(r + Leitr)l =
(r + seitr + erip) (r* — Se(itr)*) =
(r + Seitr + erip) (r* + Ler*it) = 1 + e(ripr* + it) .

Thus, 1 + €ip, i.e., the dual quaternion representation of the point p, gets mapped into
the dual quaternion 1 + e(ripr* + it), which is the representation of p after the rotation
and translation have been applied. In fact, ripr* represents the rotation by r with the
usual quaternion notation, while the addition of it takes care of the subsequent transla-
tion. Further, any dual quaternion ¢ + er with ||g|| = 1 and ¢ - r = 0 represents a rigid
transformation. Here - represents the standard dot product in the quaternion viewed as a
four-dimensional vector space over R. However, the dual quaternion representation is not
unique since, as with the normal quaternions, dg and —dq represent the same transforma-
tion.

In [[79, (78] the authors present SCLERP, a generalization of the SLERP interpolation
algorithm for dual quaternions. Let «(t), a(t), §(t), and d(¢) be respectively the rotation
angle and axis, and the translation magnitude and direction, then SCLERP was shown to
have the following properties: a) a(t), and d(t) are constant and «(t) € [—; 7] (shortest
path); b) £a(t) = 0 and £5(t) = 0 (constant speed). Further, it is invariant to changes
in the coordinate system. In [79] was presented an iterative algorithm called Dual quater-
nion Iterative Blending (DIB) for averaging dual quaternions in a way that minimizes the
(weighted) squared geodesic distances between the target mean and the input quaternions
in the Riemannian manifold of unit dual quaternions, and it was shown that the variation
between the proper geodesic average and a linear blending followed by a reprojection
has an upper bound of 0.143 radians in rotation and a relative variation of 15% in trans-
lation, while in general the differences remain much smaller. In particular, if the set of
dual quaternions we want to blend has small variance, the linear average and the geodesic
average converge rapidly, since the difference between the geodesic and Euclidean dis-
tance is O(6) where 0 is the angle of rotation. In the following we will use the notation
ScAVG(qy, - . ., qn) to refer to geodesic mean of the quaternions (g, . . ., ¢,) as obtained
by applying DIB with uniform weights.

6.4.3 View-Graph Diffusion

We cast the multiview registration problem into a diffusion of rigid transformations over
the view-graph, i.e., a graph in which nodes correspond to the range images and the edges
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Figure 6.16: Comparison of the different methods in the synthetic experiments at various
levels of noise.

reflect the adjacency relation between views, or, equivalently, the existence of an overlap
between the scans. Let V; be a transformation taking the coordinate frame of view i
into a global coordinate frame, and 7;; the result of the pairwise registration taking the
coordinate frame of view j into the frame of view 7. Then, if the pairwise registration was
noise-free, we would have T}, x V; = V; for all adjacent views 7 and j. In this setting the
problem of multiview registration is that of finding a set of rigid motions from each view
to a common frame of reference, say that of view 0, such that a measure of distortion
between the position V; of view i and the position 7;;V; obtained from the composition of
position V; and the pairwise registration 7;; is mlmmlzed, i.e., we seek to minimize the

functional
D=Y" > d

i JEN(3)

T:;Vi, Vi)

vy

for an appropriate distortion function d. Here N () is the set of neighbors of view . This
is in spirit similar to the approach taken by Pulli [[112], where the distortion function is the
(squared) Euclidean distance between the final position of a set of points S transformed
with motions V; and 7;;V:

Dp=>_ > Y IIT;Vip - Vipl*
i jEN(i) pES

We adopt a different measure of distortion that derives from the fact that any rigid trans-
formation is in fact a screw motion, i.e., a rotation around an axis placed anywhere in
the 3D space, and a translation along the direction of the axis. We define the screw dis-
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tance dsc(qi, g2, p) as the length of the screw path of the point p along the transformation

q= q;qu, 1.e.,
dSC(qia q2, p) = \/ t2 + Ck27’.}% ) (68)

where ¢t is the length of the translation along the axis of ¢, « is the rotation angle, and ry,
is the distance of p from the rotation axis. The screw distortion is then defined as

Dsc = Z Z stc (T3;V;, Vi, p)* .

i jeEN(i) pES

A direct consequence of the fact that SCLERP interpolation is both shortest path and
constant speed is that, given a set of dual quaternions () = ¢;, . . . , ¢, their screw average
¢ = ScAVG(q, . .., q,) minimizes the sum of squared screw distances ), dsc(gi, ¢, P)
for any point p € R? [145]. That is, by measuring along the curved screw path, the
transformation that minimizes the distortion does not depend on the points selected, which
was arguably the most problematic aspect with the Euclidean distortion adopted by Pulli.
Further, when the variation in orientation among the dual quaternions g¢;, . .., g, is very
small, we have that dsc(T;;V;, Vi, p) =~ ||T;;V;p — Vip|| for any point p € IR?. In fact,

we have dgc(T;;V;, Vi, p)* = dﬂ; + 511%2/2 dﬂ where 0 is the rotation angle, and d'JE and
d are respectively the components of the Euclidean distance parallel and orthogonal to
the axis.

The optimal multiview alignment is thus obtained by computing the steady-state of

the following process

VIt = ScAVG (T, Vt)
JEN(7)

where the sign uncertainty is a consequence of the sign uncertainty in the dual quaternion
representation, and is chosen so that 75; V;t V! > 0. Further, since for small and mod-
erate rotational variability in the vectors the linear average approximates well the screw
average, while being much faster, in all our experiments we are using linear averages.

Finally, the proposed approach is a refinement method that requires initial motion
estimates, but these can be computed by simple composition of the transformations along
adjacent views with a breadth-first visit starting from the view 0.

6.4.4 Experimental Evaluation

Multiview registration techniques have both a sparse and diverse coverage in literature,
and as such they suffer from the lack of a robust and fair methodology for performance
assessment and comparison. Specifically, in real scenarios, where ground-truth data is not
available, it can be very hard to evaluate and quantify the results of a global alignment
and settle for a solution, without resorting to a thorough and time-consuming analysis of
the registered views.
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Figure 6.17: Comparison of the different methods in the synthetic experiments with dif-
ferent numbers of outliers.

To this end, we performed a wide range of experiments with both synthetic and real-
world data. For each complete 3D model (from Georgia Tech’s large geometric models
archiveﬂ), a total of 36 orthographic snapshots were taken, each at a different angle of
view; these, together with the ground-truth rigid motions used to produce the range im-
ages, constitute the dataset over which synthetic experiments were performed. In all the
experiments we compare our method against Pulli’s algorithm (as implemented by the au-
thor in the Scanalyz software package), currently the method of choice in many applica-
tions. We evaluated the performance of the two algorithms, together with the initialization
results obtained through a breadth-first coverage of the view graph (indicated as Spanning
Tree), under different noise conditions and connectivity levels. For all the experiments we
show the relative displacement with respect to ground-truth motion (with AR being the
angle between the two unit quaternions, and AT’ the translation error expressed in median
edge length), the RMS error among all the ranges and range 0 (point pairs were obtained
through normal-shooting in both directions), and the Euclidean distortion metric adopted
by Pulli (indicated as Distortion).

In Figure [6.16) we show the results at different levels of initial displacement, where
every view in the graph is connected with the next two in a ring topology. Noise level
refers to a quantity which is proportional to the amount of Gaussian noise applied to the
ground-truth pairwise motions, and ranges from a few units of edges and radians to tens of
units; for each noise level, 10 independent runs of each method were performed. Both the

1http://www.cc.gatech.edu/projects/largemodels

2http://www.graphics.stanford.edu/software/scanalyze
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Figure 6.18: Comparison of the different methods in the synthetic experiments at various
connectivity levels.

Diffusion and Pulli methods compensate well rotational errors and are comparably good
at low levels of noise, whereas the latter is outperformed when positional noise increases,
both in terms of translation error and Euclidean distortion. It is worth noting that when
we perturbed either the rotational or translational part of the rigid motion, keeping the
other fixed, Spanning Tree and Pulli’s methods performed a joint optimization modifying
both components, while our method never changes the already optimal part of the motion,
yielding better results at all levels of noise.

In Figure we assess the resilience of the tested methods to the presence of out-
liers: starting from a close-to-optimal initialization, we introduced strong pairwise mis-
alignments so as to simulate a realistic scenario in which pairwise registrations get stuck
at local minima. Connectivity is the same as in the previous experiments. In these graphs,
the x-axis grows with the number of such mis-registrations; here, 20 runs were performed
at each level, and for each run random pairs were picked from a uniform distribution
and perturbed strongly. It can be seen that all the methods handle well rotational errors,
with the Diffusion method giving particularly good performance constantly, even when
the number of outlying pairs becomes large. Figure [6.17b) and Figure [6.17d) interest-
ingly show the inability of Pulli’s method to deliver good results in such situations: this
is an inherent weakness of the method, since it acts in such a way to minimize all motion,
relying on the assumption that pairwise alignments are nearly perfect.

The next set of experiments (Figure[6.18) is aimed at studying the effect of view-graph
connectivity on the registration results. In these figures, Connectivity level refers to the
number of links per view. As it can be readily seen, performance tends to increase with
the number of edges in the view graph, as all three methods greatly benefit from more
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Figure 6.19: Computation times versus noise and connectivity levels.

structure being brought in. It must be noted, however, that connectivity augmentation
dramatically increases the time requirements of Pulli’s method, bringing up convergence
times by orders of magnitude (see Figure [6.19).

Figure [6.19] compares the average convergence time of the proposed approach with
the time required by Pulli’s method. The times are shown as a function of noise level and
connectivity. We can see that, with the exception of extreme values, the times required
by Pulli’s approach are independent from the level of noise, but grow linearly with the
connectivity level and are in almost all tested situations in the order of 10 to 100 sec-
onds. The proposed approach exhibits the same independence with respect to noise and
linear growth with respect to connectivity level, but it is always around 2 to 3 orders of
magnitude faster.

In order to simulate a more realistic type of noise, we also tested the following setup:
we perturbed the initial pairwise motion as for the first set of experiments, and then ap-
plied ICP to refine the alignment. This setup simulates a normal registration process with
increasingly bad coarse registration, with the possibility that ICP gets stuck on local min-
ima providing more structured outliers than the previous experiments. The results of this
set of experiments can be seen in Figure[6.20] Note that our approach and Pulli’s method
yield very similar results in all the metrics except for AT'. This can be justified by the fact
that, when caught in local minima, ICP slides the surface one over the other, resulting in
strong translational outliers which Pulli’s method cannot deal with. The very low RMSE
derives from the fact that sliding along the surface each point still finds close-by mates
on the other mesh. The proposed method, on the other hand, manages to smooth all the
outliers effectively, yielding low errors in all the metrics.

Figure shows an example of a real set of range images acquired with a scan-
ner and aligned using Pulli’s method and the proposed approach. While at a large scale
the overall alignment appears similar, by examining closeups of various sections of the
glasses we see that Pulli’s method provides a slightly worse motion estimate, resulting in
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Figure 6.20: Comparison of the different methods in the experiments with motion refined
by ICP at various levels of noise.

Pulli’s method

Dual quaternion diffusion

Figure 6.21: Global registration and closeup of slices of Pulli’s method and our approach.

a wider stratification of the meshes.

It is worth noting that the orders of magnitude speedup provided by our approach
makes it possible to run it several times combining it with pairwise registration. The idea
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Figure 6.22: Alignments obtained with the trailing and alternating approaches, and re-
spective timings.

is to alternate a few steps of ICP performed on all adjacent views with the diffusion. This
way the diffusion process can be seen as a projection operator taking the incremental pair-
wise motion onto a set of consistent motion estimates. The advantage of this projection
is that the constrained motion space smooths the energy profile of the resulting “global”
ICP, reducing the risk of getting stuck in local minima. Figure [6.22] shows two examples
of alignments obtained by performing ICP from bad initial motion estimates and then
performing diffusion at the end (Trailing diffusion) and alternating between 10 steps of
ICP and a diffusion process until convergence (Alternating diffusion). Clearly alternating
pairwise registration allows to avoid local minima in these examples without incurring in
any noticeable penalty in running times.

6.5 Conclusions

In this Chapter we adopted the game-theoretic framework introduced in the previous chap-
ters to tackle the commonly encountered matching problem of 3D surface registration. We
tried to attack both the coarse and fine registration problems at once. Our approach has
several advantages over the state-of-the-art: it does not require any kind of initial mo-
tion estimation, as it does not rely on spatial relationships between model and data points,
and, unlike most inlier selection techniques, it is not affected by a large number of outliers
since it operates an explicit selection of good inliers rather than using random selection or
vote counting for validation. The approach has also shown to be general enough to accept
different feature descriptors. From a theoretical point of view, a sound correspondence
between optimal alignments and evolutionary equilibria has been presented and a wide
range of experiments validated both the robustness of the approach with respect to noise
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and its performance in comparison with other well-known techniques.

Having approached the registration problem in a pairwise setting, we successively
shifted our efforts towards the “derivative” problem of recomposing the pairwise motions
together, in an attempt to minimize the global registration error over the view topology.
To do this, we proposed a novel multiview registration algorithm that projects several
pairwise alignments onto a common reference frame. The projection is performed by
representing the motions as dual quaternions which are then diffused along the graph
of adjacent (i.e., pairwise alignable) views. The approach is general allowing for any
topology of the view-adjacency graph. An extensive set of experiments has shown that
the proposed approach is both orders of magnitude faster than the state of the art, and
more robust to extreme positional noise and outliers. Finally, the dramatic speedup of
the approach allows it to be alternated with the pairwise alignment process resulting in a
“global” ICP that exhibits a smoother energy profile, reducing the risk of getting stuck at
local minima.
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A Scale Independent Game for 3D
Object Recognition

During the last few years, a wide range of algorithms and devices have been made avail-
able to easily acquire range images. To this extent, the increasing abundance of depth data
boosts the need for reliable and unsupervised analysis techniques, spanning from part reg-
istration to automated segmentation. In this context, we focus on the recognition of known
objects in cluttered and incomplete 3D scans. Locating and fitting a model to a scene are
very important tasks in many scenarios such as industrial inspection, scene understand-
ing, medical imaging and even gaming. For this reason, this problem has been addressed
extensively in the literature. Nevertheless, while many descriptor-based approaches have
been proposed, a number of hurdles still hinder the use of global techniques. In this work
we offer a different perspective on the topic. Specifically, we adopt an evolutionary se-
lection algorithm that seeks to attain a global pairwise agreement among surface points,
while operating at a local level. The approach effectively extends the scope of local de-
scriptors by actively selecting correspondences that satisfy global geometric consistency
constraints, allowing us to attack a more challenging scenario where model and scene
have different, unknown scales. This leads to a novel and very effective pipeline for 3D
object recognition, which is validated with an extensive set of experiments and compar-
isons with recent techniques at the state of the art.

7.1 Introduction

In this Chapter we propose a feature-based 3D object recognition pipeline that deals in
a robust manner with strong occlusion and clutter. This happens by adopting a recent
local surface descriptor to find a set of matching candidates among a selection of relevant
points on model and scene. Acting as distinctive priors, the introduced descriptors allow
to reduce the problem size and to gain in robustness. These candidates are then let to
compete in a non-cooperative game, where payoff values are proportional to the degree
of Euclidean compatibility between them. The competition induces a selection process
in which incompatible matches are driven to extinction whereas a set of sparse, yet very
reliable correspondences survive. To attain scale invariance, we devise another game
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Figure 7.1: An overview of the object recognition pipeline presented.

where the change in scale is accounted for by considering geometric information along
the paths connecting pairs of points. Specific scale-invariant descriptors are not needed for
this game. Rather, we take a different approach by computing scale-dependent descriptors
at different scales and then let the selection process extract the correct matches from the
generated multi-scale pool of hypotheses. This new pipeline is tested in a wide range of
experiments and is shown to outperform the state-of-the-art for 3D object recognition in
clutter.

7.2 Feature Detection and Description

Much of this section follows rather directly from the formulation given in Chapter [6]
For both efficiency and robustness reasons, our matching technique works on a subset of
model and scene vertices. Interest point selection is performed by computing for each
point a single-component Integral Hash (Section[6.1.2)) at a given support scale o, and re-
taining only those samples that obtain a negative value. Note that in this case, for the sake
of efficiency, we don’t carry out any feature clustering for the feature detection step. Be-
ing designed as a simple approximation to the integral invariant [[111], calculation of the
Integral Hash is very fast and the selection step is roughly equivalent to extracting points
that belong to concave surface areas, where the measure of concavity is proportional to
the absolute value of the Integral Hash at that point. Keeping only negative values means,
in practice, that we are avoiding flat and convex areas which, empirically, we have seen
to be less distinctive in a large variety of cases. By modulating the value of o, a more or
less inclusive sample selection can be carried out (see Figure[7.2). All the relevant points
extracted from the model surface are kept. By contrast, uniform subsampling is option-
ally performed on the set of relevant points in the scene. Although more sophisticated
detection algorithms could be used for this step (see [[100], or [118] for a recent survey),
we favored efficiency over repeatability since the game-theoretic selection mechanism is
very effective at eliminating wrong guesses. Finally, a descriptor vector is computed for
each vertex. To this extent, any of the descriptors discussed in Chapters [2] and [6] may
be used; however, after an initial round of experiments, the SHOT descriptor [143] was
chosen as it obtains the best performance overall.

Again, these steps are not strictly necessary, but introducing such priors proves to be
beneficial both for reducing the problem size (which is proportional to the cardinality of
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Figure 7.2: In order to avoid mismatches and reduce the convergence time it is important
to use only relevant points. Model vertices selected with a o respectively equal to 8, 5 and
2 times the median model edge are shown from left to right.

the set of matching strategies) and in terms of inlier ratio, which increases with rejection
of unlikely hypotheses. In this regard, we remind that our method acts as an inlier selector
whereas no ex-post verification is performed to validate the matches, and that this inlier
selection behavior is put under considerable strain in the specific case of object-in-clutter
scenarios, where strong groups of structured outliers can divert the selection process to-
wards the wrong solution. We also note that existing techniques usually tend to forge
ad-hoc matching methods for the specific descriptors they propose [76, 99, 23],
while our method is general in this respect. In the experimental section we investigate
both the influence of the relevant point selection and of the descriptor adopted.

7.3 Sparse Matching Game

We derive our matching approach directly from the technique we introduced in Chapter
[6l The complete pipeline we are proposing is made up of a preprocessing step and two
non-cooperative games (see Figure [7.I). The preprocessing is performed both on the
model and on the scene. This step involves an initial selection of relevant points on the
respective surfaces. The relevance criteria are explained in the next section, however, in
this context the general meaning of this culling step is to avoid surface patches that are not
significant for matching, such as flat areas. All the interest points on the model are kept,
while those on the scene are uniformly subsampled. This makes sense for many reasons.
In many applications the set of models does not change in time, and thus descriptors must
be computed just once. In addition, as explained in the following sections, the direction
of the matching is from the scene to the model and having less source than target points
allows the game to proceed faster without compromising accuracy. Finally, the model
tends to be measured with greater accuracy (either because more time can be spent on it
or because it comes from a CAD model). A descriptor is computed for all the retained
points, and these are used to build the initial candidates that, in turn, are fed to a matching
game.

The remainder of this section details the (sparse) matching game that we adopt for the
3D object recognition scenario. We assume that relevant points were previously extracted
from model and scene, and that every point of interest has a descriptor vector associated
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Figure 7.3: An example of the evolutionary process (with real data). Here we use expo-
nential replicator dynamics for faster convergence [[108]. A set of 8 matching candidates
is chosen (upper left), a payoff matrix is built to enforce their respective Euclidean con-
straints (upper right, note that cells associated to many-to-many matches are set to 0) and
the replicator dynamics are executed (bottom graph). At the start of the process the pop-
ulation is set around the barycenter (at O iterations). This means that initially the vector
X represents a quasi-uniform probability distribution. After a few evolutionary iterations
the matching candidate B2 (cyan) is extinct. This is to be expected since it is a clearly
wrong correspondence and its payoff with respect to the other strategies is very low (see
the payoff matrix). After a few more iterations, strategy A1 vanishes as well. It should be
noted that strategies D4/DS and E6/E7 are mutually exclusive, since they share the same
scene vertex. In fact, after an initial plateau, the demise of A1 breaks the tie and finally
E6 prevails over E7 and D4 over D5. After just 30 iterations the process stabilizes and
only 4 strategies (corresponding to the correct matches) survive.

to it. We take a correspondence-based approach in that a match, if present, is established
by means of point-wise correspondences between the two surfaces. Again, this matching
process is similar to the surface registration technique presented in Chapter [0l However,
both the scope of the methods and their underlying assumptions are quite different; in
fact, preliminary experiments demonstrated the inability of the “pure” surface registra-
tion algorithm to deal with the strong structured outliers due to clutter, strong occlusions
and possible absence of the object from the scene, which are characteristic of the object
recognition scenario.

We start by defining the initial set of strategies S, where each reference point in the
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scene is associated with the k-nearest model points in the descriptor space:
S ={(a,b) € D x M|b € dny(a)}, (7.1)

where dny(a) is the set of model vertices associated to the k-neighbors of the descriptor
of a. This means that each (relevant) sample in the scene is considered to be a possible
match with samples in the model that exhibit similar surface characteristics, and we limit
the number of “attempts” to k. If the closest model descriptor is deemed too far apart
from the data query, the corresponding scene point can be excluded altogether from the
matching, so as to operate a form of clutter pre-filtering (although in our experiments we
did not perform any filtering of this kind). If the chosen descriptor allows it, using fast
search structures such as kd-tree can be beneficial for this step. Note that the direction
of the matching is from scene to model; this is motivated by the fact that the scene likely
contains only a partial view of the model object, and that originating candidate matches
from the scene helps to reduce the false positive rate for equal number of strategies.

Next we define a pairwise compatibility function among the strategies. Since we are
interested in finding a correspondence between the model and part of the surface in the
scene, we are looking for a subset of candidates that enforce an isometric transformation
among the two sets of vertices. Even though we discard connectivity information at this
point, we argue that strategies enforcing this isometry constraint are likely to lay on the
same surface both in the scene and in the model, and thus to be a viable solution. We
define the payoff function 6 : S x S — [0,1] as

min(|lay — aql|, [[b1 — b2]|)

I((arbr), (az,b2)) = (7.2)

maz(|lar — az|, [[br — bol|)
This function takes pairs of strategies (ay, 1), (az,b2) € D x M and gives a reward (a
value close to 1) if the corresponding source and destination points are separated by the
same Euclidean distance up to positional noise. By contrast, the value of ¢ will be small
when the two strategies exhibit very different distances. This kind of check will succeed
with correct pairs and will give false positives only for a small amount of cases, those
preserving the isometry constraint by chance. However, since our game is seeking a large
group of candidates with large mutual payoff, such outliers will be filtered out with high
probability by the other strategies that participate to the Nash equilibrium. This makes for
a semi-local approach that guarantees a robust global agreement among mating strategies,
while operating at a local level.

Again, equation does not guarantee injectivity of the solution; to avoid possible
many-to-many matches, we impose a hard constraint by setting to 0 the compatibility
between candidates that share the same source or destination vertex. Additionally, we
require that the variation in orientation between each pair of data points be maintained on
the model. In order to obtain a higher stability in the measurement, we characterize the
variation in orientation as the angle between the principal axes of the descriptor frames
rather than between the normal vectors computed from the mesh. Thus, the final payoff
for the sparse matching game that we are defining is
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Figure 7.4: Definition of a binary descriptor between mesh points a; and as for scale-
invariant recognition. The n equally-spaced samples along the (dotted) segment separat-
ing the two points can be projected onto the mesh along a specific direction, such as the
normal vector at a; (a); a minimum-distance projection can instead be computed so as
to avoid the choice of a possibly unstable direction and for increased accuracy (b); effi-
ciency can be attained by approximating minimum projections with closest points, which
is appropriate in the majority of real cases where sampling density is consistent between
model and scene (c); in order to be robust to occlusions, only the first m < n/2 samples
are considered (d).

II =

{5((a1,b1), (QQabZ)) if a; # a and by # by (7.3)

0 otherwise.

Once the candidate set and the payoff matrix are built, the game is started from the
barycenter of the simplex. When a stable state is reached, all the strategies supported by
a large percentage of the population are considered non-extinct and retained as correct
matches (see Figure [7.3). Since convergence is only reached in infinite time, we cannot
expect the weakest strategies to be completely extinct at the equilibrium. We address the
resulting thresholding problem by selecting only strategies whose population is within a
fixed proportion of that of the best strategy. Then, if the total number of surviving matches
is more than a fixed minimum (set to 8 in our experiments), the object is recognized
and, optionally, its pose computed. Note that, unlike other approaches, we do not run
any costly hypothesis verification step by making considerations on the resulting surface
overlap. Finally, similarly to Section [6.2] we note that equation admits symmetric
groups of matches and that reflections are not accounted for a posteriori in the pipeline.
Nevertheless, probably due to the strong inlier selection nature of the method and to the
lack of perfectly symmetric shapes in the dataset, we never observed mismatches of this
sort in all of our experiments. However, in Chapter we will introduce a method that tries
to tackle this problem.
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Figure 7.5: Example of two (correct) matching distance sequences as extracted by the
scale-independent selection process. The path (red segment in the images on the right)
joins the neck of the chef to the hat and has been sampled at a resolution of n = 100 and
m = 15 samples are considered from each endpoint, allowing to mitigate the influence of
clutter on the match. The two graphs plot model and scene descriptors originating at the
neck and hat endpoints respectively (corresponding to the blue paths in the images). The
scene (last image) is rescaled to the same scale of the model for visualization purposes.

7.4 Scale-Invariant Matching

The matching scheme presented in section [7.3]assumes a scenario where model and scene
have the same scale (although sampling may be different). This allowed us to devise
a game that explicitly enforces pairwise isometries between the two surfaces. In this
section we tackle a more general setting by allowing the model object and the scene to
have different scales.

It is clear that in an object-in-clutter setting there is no simple way to give a model-
data relative scale estimate. For example, considerations on the bounding boxes of the two
surfaces have little significance. In fact, basic assumptions on the location and possible
presence of the object in the scene involve solving the recognition problem itself. In
principle, the game-theoretic framework can be adapted so as to consider triplets rather
than pairs of points from model and scene. The change in scale can then be accounted
for by introducing triangular distance ratios in the formulation of the payoff function.
Using ratios in place of plain distances would eliminate the effect of the scale and then
allow to extract isometric-compatible groups in a similar way to the previous game. The
resulting 3-way payoff tensor can in fact be used in a higher-order selection process via
generalization of the replicator dynamics [[116]. Similar techniques have been applied in
hypergraph and probabilistic clustering [125]. A major problem with this approach is in
its computational complexity, which grows with the third power of the total number of
strategies, rendering the game infeasible for medium to large-scale problems; looking at
memory usage, an unrealistically simple example with 50 points on both model and scene
would produce a 58.2 GB single-precision payoff tensor.

Instead, we wish to fit the scale-invariance property within the current scheme. Our in-
sight is to consider the straight line connecting points in each pair (from the same mesh)
and then segment this line into a predetermined number of parts. Being in a rigid set-
ting (up to scale), taking a Euclidean path is appropriate. Then, we construct a pairwise
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descriptor by enriching each pair of points with geometric information at fixed, equally-
spaced steps along the line; since the number of segments into which lines are divided
is the same for both model and scene, this effectively removes dependence from scale.
There are many ways to characterize the surface along the edge, but thanks to the strongly
selective behavior of our framework, we can restrict ourselves to simple measures, with-
out taking into account any additional information that may increase distinctiveness at a
computational cost. In Figure we illustrate three possible choices. Given n ordered
line samples s,—;__,,, we take their projection over the mesh H (Figure[7.4p) and build the
sequence of minimum (normalized) distances

D, = (dy,ds,...,d,), (7.4)
di = |Is? —sill/lls1 —sall, i=1...n, (7.5)

where z!! is the minimum-distance projection of point x onto surface H and the denom-
inator acts as a scale normalization term. For efficiency reasons we avoid computing the
actual projection and approximate it by taking the nearest mesh point to the given line
sample (Figure ). We can then associate a descriptor vector F,;, € IR} to each pair of
points a,b € H, representing the corresponding distance sequence of length n between
them. To be robust against clutter and deal with boundary conditions, we only consider
the first m < n/2 samples from each endpoint (Figure ). The set of strategies S’
can be built in a similar way to the isometry-enforcing game, although in this case can-
didate matches cannot be directly constructed as per equation [/.1} since the descriptors
we use are not invariant to scale. To this end, instead of introducing new descriptors, we
prefer to rely on gameplay and compute, for each (relevant) point, fixed-scale descriptors
at multiple scales; when the game is run, the selection process will operate on the pool
of multiple scales and hopefully extract the most (scale-)compatible pairs of strategies.
Thus, similarly to equation we define the set of strategies as

S"={(a,b) € D x M|a € dn(b)}. (7.6)

Here, descriptors at many different scales are associated with each a € D and the set of
matching strategies will thus include mixed-scale associations between model and scene.
We remind that the size of S’ depends on parameter k£ and thus the problem does not
necessarily grow in size with respect to the first game; in fact, in Section we will use
the same k in both games, making the matching step equally efficient in both cases. Next,
we define the new payoff function to be

(a0, (az)) = 5 + A5
pPlla1,b1), (az,b2)) = = Al AN D
2 2|AflliBll

A - Pa1a2 - palag 9 (7'7)

B:Pb1b2_Pb1b27
where X denotes the sample mean of X. Although we don’t repeat them here, the same

hard constraints from the previous game are also applied in this case. Again, the pay-
off function takes pairs in S’ x S’ and gives values in [0, 1]; the payoff in this case is a
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5

Figure 7.6: Two mismatches generated with the method by Mian et al (first row) and the
method by Bariya and Nishino (second row), which are corrected by our technique. The
first column shows the range image of the scene, onto which the matched models are
successively registered (second column). The chicken and chef models have been missed
respectively in the first and second scene, while our method is able to extract correct
matches in both cases (third column). The figure is best viewed in color.

normalized inner product reflecting the degree of similarity of the distance sequence for
a pair in the model with one in the scene. This new formulation is quite different from
equation [7.2] in that we choose to avoid enforcing isometries explicitly, and use instead
information coming from the pairwise descriptors alone. Of course, there are other ways
in which this information can be used in the definition of a payoff function. In the ex-
perimental section we present three alternatives and compare the results obtained with
each of them. Figure[7.5]shows an example of two correctly matched strategies and the
corresponding distance descriptors.

The scale-invariant game we have just defined favors pairs of matches having compat-
ible distance sequences on each surface, and similar descriptors between the two. While
this works well in practice, it can be easily improved by imposing the additional require-
ment that consistent matches should also give similar estimates of the relative scale be-
tween model and scene. We do this by multiplying the payoff function by an additional
term favoring pairs with similar scale ratio, expressed as the ratio of the descriptors sup-
port radii:

o(ay) _0(a2)‘

P ((a1,b1), (az,b2)) = p((al,m),(ag,bz))e_A“’“’l) sG] (7.8)

with o(x) indicating the support radius of the descriptor at point x, and \ is a parameter
regulating the tolerance level for different scale estimates (a small value for A indicates
high tolerance to different scales). This definition enforces the final group of matches to
map the model to the scene at consistent scale. In the experimental section we give a
quantitative evaluation of what can be obtained with and without the newly introduced
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Figure 7.7: In the top row the recognition rate of our pipeline is compared with state-of-
the-art techniques, which are outperformed with respect to both occlusion and clutter. In
the bottom row the contribution of each part of the overall approach is tested separately
(see text for details).

unary term.

Finally, while in our experiments we found that the resolution of the pairwise descrip-
tors (proportional to the number of line samples n) has no significant influence on the
matching results, the actual number of samples (from each endpoint) m that take part
to the game has a more direct impact. This value can be set to a fixed percentage of
n, but this would bring to an imbalance between strategies where spatially close groups
of matches become favored. While this could be desirable in certain applications, we
aim at a sparse match covering the target object as much as possible. To do this, we
first note that, in general, it is not required that P, has the same number of components
for every pair x,y € H. The number of samples m may be different among pairs of
points as long as it is the same on model and scene for each pair of strategies. That is,
when calculating the payoff between two pure strategies (aq, b1), (az, be) € S’, it must be
Pyyasy Poyy, € R*™, but any such pair may have a different value for m. We determine
this value dynamically for each pair of strategies as the number of steps required to reach
a fixed distance d (equal for all pairs) on the model mesh, that is, m = [d/(||b; — bs|/n)]
with by, by € M. This allows to obtain spatially sparse correspondences more easily, and
thus increase robustness in presence of occlusions and a more stable pose estimate after
a solution is found. Quantitative results comparing the adoption of fixed versus adaptive
sampling are presented in the experimental section.

After the payoff matrix is constructed, the game is started from the barycenter as in
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section and the final group of matches, if any, is extracted. Each of these correspon-
dences has associated a value representing its relative degree of participation to the final
equilibrium, and can be used to compute the similarity transformation linking model and
scene in a weighted fashion [74].

7.5 Experimental Results

In order to evaluate the performance of the proposed pipeline we performed a wide range
of tests and comparisons with recent techniques. To offer a fair comparison we used
the model/scene dataset adopted in [23]] and [99, [100]. This dataset is composed of five
high resolution models scanned from real objects (chef, dinol, dino2, chicken and rhino),
plus 50 range scans of these objects under various conditions of occlusion (due to the
overlap of objects and limits on the field of view of the sensor) and clutter (due to the
presence of many objects in the scene). The minimum number of matches to assume the
model as recognized in the scene was set to 8 for both (fixed scale and scale-invariant)
matching games. This value is rather conservative as in general it is very unlikely that
outliers form consistent groups of more than a few elements. Also, in both games a
value of descriptor neighbors of £ = 5 was used to build the strategy set; relevant points
were detected via Integral Hashes with a scale of o = 8 edges and then uniformly sub-
sampled to 3000 points in the data surfaces, while retaining all relevant points in the
model surfaces; 10-bins SHOT descriptors were computed at each relevant point (0 = 8
edges); the angle separating reference axes at scene points was considered maintained in
the model with up to 15 degrees of difference; the final solution at the equilibrium was
obtained by thresholding the population vector at 50% with respect to the most played
strategy. Again, this is very conservative as in theory all the matches having a population
share as low as 5% can contribute to the final solution.
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Figure 7.8: Evaluation of the robustness of the proposed pipeline with respect to increas-
ing positional noise applied to the scene.
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7.5.1 Comparison with the State-of-the-Art

In Figure[/.7/|we compare our results with recent state-of-the-art algorithms (respectively
[23] and [99, 100]) and with the well-known 3D Spin Image matching technique [76],
which is often used as a baseline in literature. Looking at the recognition rate (defined
as the ratio of models correctly labeled as matched/absent over the total number of match
scenes) with respect to model occlusion, the proposed pipeline outperforms even the most
recent techniques. Regarding the evaluation of the effects of clutter we were only able to
compare our algorithm with [23], since an implementation for the other approaches and
the data they used were not available. Still, it is apparent that the game-theoretic approach
obtains good recognition with uniform performance.

Some examples of critical scenes where the proposed technique fixes matches missed
by the other methods are shown in Figure The behavior with respect to false positives
has not been plotted since the proposed pipeline does not get any in the whole dataset.

In the second row of Figure several combinations of components of the pipeline
are evaluated one at a time in order to highlight their respective contributions. Note that
the plots in these experiments are more dense than before as we have full control over all
the algorithms. Specifically, we show the results obtained using the same descriptor [143]
with the classical matcher proposed in [89] (Lowe-SHOT), the game-theoretic matcher
without operating the initial relevance-based sampling (GT-Uniform), the descriptors and
matching presented in Chapter [6] (Integral-Hashes) and finally the full proposed pipeline
(GT-Relevant). It is apparent that the proposed pipeline gives its best with all the compo-
nents in place. This experiment gives us further insight on the specific setting of object
recognition as opposed to other matching scenarios, and confirms some expectations an-
ticipated in the previous sections. First, it is clear that descriptors alone, as robust and
descriptive as they may be, are hardly sufficient to guarantee correct matches at moderate
levels of occlusion and clutter; they are, in fact, surprisingly good at some challenging
scenes while they can fail at very simple ones. This can be caused, for instance, by the
presence of repeated structure or featureless objects. The matching process presented in
the previous chapters proves to be very effective in a wide range of scenes, but its per-
formance worsens rapidly with increasing levels of clutter. This is symptomatic of the
different problem scope of the method, which is tailored to a rigid alignment scenario
with symmetric assumptions on the roles of model and data meshes. Skipping only the
relevant point selection step yields very high performance, on par with the state of the
art (compare with the top row). Nevertheless, at severe levels of occlusion and clutter
uniform sampling ceases to be effective as it blindly gives equal importance to all surface
regions; this has the effect of drastically reducing the inlier ratio in the construction of
hypotheses S, which in turn leads to equilibria where wrong correspondences form larger
and stronger groups than the (few) correct ones. Applying relevant sampling to the scene
is a simple and fast step, and allows us to obtain excellent results without resorting to
more sophisticated interest point detection techniques.
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Figure 7.9: Examples of scale-invariant object retrieval from cluttered scenes. The foot of
t-rex in the top-right image demonstrates the capability of the method to deal with strong
occlusions.

7.5.2 Resilience to Noise

The dataset used in our experiments is made of dense models (300-400k triangles) and
slightly less dense scenes produced with a range scanner. Although there is not an ex-
act correspondence between models and scenes, they are rather similar by construction.
With the next set of experiments we tried to characterize the performance of the proposed
method in presence of positional noise. To do so, we added Gaussian displacement of
varying intensity to each vertex in the scenes, and ran the recognition experiments again
with the same framework parameters used in the previous evaluations. In order to assess
the relative contribution given by descriptors under noisy conditions, we performed this
test with two different SHOT parameterizations (the number of bins has a direct effect on
resilience to noise, see for details). Figure [7.8|reports the results of this test. As ex-
pected, performance gets lower as the noise level increases; still, reasonable recognition
rates are maintained also with a moderate amount of noise (with standard deviation equal
to 30% the median edge length). Further, the descriptors do not seem to have a significant
impact over the results obtained with additional noise, thus suggesting that robustness to
noise is for the major part a result of the inlier selection method itself, rather than the
specific descriptors used.

7.5.3 Scale Invariance

In this section we evaluate the effectiveness of the scale-invariant scheme using differ-
ent definitions for the payoff function and under different parameterizations of the pair-
wise descriptor. We used the same dataset from the previous experiments, where each
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Dot product  L1-norm L2-norm

None 88.73% 83.10% 84.51%
Exp 92.96% 89.75% 90.14%
Cut-off 97.18% 87.32% 91.55%

Table 7.1: Scale-invariant recognition rates under different combinations of payoff func-
tions with a scale term.

scene was randomly scaled from 0.5 to 2.5 times the original scale, and model descrip-
tors spanned over 20 different support radii at each relevant point. All the parameters in
common with the isometry-enforcing game are kept at the same values.

The first set of experiments is aimed at determining the best choice for a payoff func-
tion. First, we introduce two alternative definitions to p (equation [7.7)), giving again a
similarity measure based solely on pairwise distance descriptors:

Pl2<(a17b1), (a2,b2)) — @_’8||Pa1a2_Pb1b2 Hz (7_9)
pll((al,bl)a (a27b2)) = G_FYHPalaQ_Pbl@ “1 y (710)
where || - || denotes the standard Euclidean norm, || - ||; is the L1-norm and parameters /3

and y make the functions more or less selective. In our experiments we set § = 1000 and
v = 1, values that where empirically seen to yield good results. Note that, after building
the strategies set, we do not take into account descriptor information at points aq, by,
asg, by in the definition of the payoff function, although it is certainly possible to introduce
another term accounting for their similarity. As in equation(/.8, we wish instead to enforce
a common scale mapping by multiplying each payoff function p, by a compatibility term
1 based on the local scale of the descriptors:

o(ay) o(az)
A _
/1‘<(a17b1)7 (aQ»bQ)) =€ ‘U(bl) o(b2) .

(7.11)

Introduction of this term helps the selection process by giving small payoff to unlikely
hypotheses and thus bring more stable matches in difficult scenarios, as well as increased
efficiency. In the experiments we evaluated all possible combinations of the payoff func-
tions with three variations on the usage of y. First, we consider no scale enforcement
at all (A = 0). Then, we increase its steepness (A = 30) so as to make u very selective
and give high values to similar relative scales and very small payoffs to different scales.
Finally, we use 4 as a cut-off function by putting a hard threshold on the value obtained
with A = 30; in this case, pairs of strategies receiving u < 0.8 have the corresponding
value of the payoff function set to 0. Table[7.1|reports the recognition rates obtained with
these different combinations on a reduced dataset spanning many levels of occlusion and
clutter. We evaluate payoff functions p (Dot product), p;; (L1-norm) and p;o (L2-norm)
with no scale consistency (None), large A (Exp) and hard thresholding (Cut-off). The best
results by far are obtained by cutting-off dissimilar relative scales and weighting the result
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Dot product  Ll-norm  L2-norm

None 31.70 42.08 43.41
Exp 19.11 12.45 13.54
Cut-off 23.21 12.93 14.10

Table 7.2: Average number of matches obtained with different payoff functions, using the
same parameters as in Table

with the inner product of the pairwise descriptors. Scale enforcement is beneficial in all
the cases, while L1-norm always gives the worst results. Figure[7.9|shows some examples
of matches obtained with the Dot-Cutoff combination. It should be noted, however, that
all the reported recognition rates are rather good considering the scale-invariant setting.
In fact, we could gain robustness to mesh sampling and thus achieve better results, on
average, by computing the pairwise descriptors F,, more accurately and not using the
closest mesh point in place of projections, as described in Section The average num-
ber of matches for each payoff function on the same dataset are reported in Table
Looking at the reported values, it is apparent that the increased selectivity brought by the
additional scale constraints (second and third rows) has a direct influence on the size of
the solution at the equilibrium.

The second set of experiments analyzes sensitivity to parameters of the pairwise de-
scriptor, namely its resolution (expressed as the total number of line samples n) and the
actual number of samples used in the descriptor (2m). For these experiments we used the
best payoff function as evaluated in Table (p' with cut-off). We observed that, while
in principle a higher resolution should give better results, in practice the recognition rate
is not affected by this parameter: using a small or large value for n (from 10 to 2000
samples) gives the same results on the whole dataset. This is probably due to the fact
that, after removing the effect of scale, the game operates a very robust inlier selection in
a rigid setting, where a few good hints are sufficient for extracting a consistent group of
matches. As a reference, we used n = 100 in the following experiments. As described in
Section [7.4) we analyzed two different approaches to determine a value for m, and thus
the size of the descriptor. In Figure we plot their recognition rate against clutter and
occlusion on the full dataset. The first approach (Fixed) takes a fixed number of sam-
ples for all the pairs, set in our experiments to the first 7% samples from each end. As a
result, any F;, on model and scene has only 14 components; this value was determined
empirically as the smallest number for which performance does not start to decrease. The
second approach (Adaptive) is dynamic and each pair of strategies has the value of m set
to the number of steps required on the model mesh to reach a (Euclidean) distance of 8
times the model resolution (calculated as its median edge length). Both methods exhibit
remarkable performance at high levels of scene noise, with adaptive sampling giving bet-
ter results on average. Comparing the results with those in Figure we observe that
performance of the scale-invariant pipeline is at least as good as the state of the art for
fixed-scale recognition on the same dataset.
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Figure 7.10: Recognition rate of the scale-invariant matching game against occlusion and
clutter. The two curves correspond to different ways of determining the descriptor size.

7.5.4 Performance Considerations

In this section we carry out a performance evaluation of the proposed pipeline. We remind
that in a typical matching scenario, only a subset of interesting points from model and
scene take part to the matching game (see Section [/.3)).

Given a payoff matrix and an initial set of candidate correspondences, the selection
process is executed by means of evolutionary dynamics. This evolutionary process is iter-
ative in nature and, as such, it is difficult to give an upper bound for its convergence time.
In the case of standard, first-order replicator dynamics (as per equation[2.2), the computa-
tional complexity of each step is O(N?), with N being the total number of strategies (i.e.,
the candidate correspondences). For this reason replicator dynamics are rarely used in
practice, even more so for large-scale problems, where the cardinality of the set of strate-
gies can be in the order of thousands even after strong candidate rejection via descriptor
priors. A simple alternative to the standard replicator equations is the adaptive exponential
replicator model [108], which can be employed in order to drastically reduce the number
of iterations for converging to a solution, but still suffers from a per-step quadratic com-
plexity. An even faster alternative is provided by the infection-immunization dynamics
[115] (equation , which has an O(V) complexity for each step; under this model, the
time per iteration is only quadratic with respect to the number of mesh points, allowing
to reach convergence in 4-5 seconds (around 15,000 iterations) with tens of thousands of
strategies. Figure reports computational times of the pipeline for the scale-invariant
game, using infection-immunization to compute the equilibria. The computation is dom-
inated by the construction of the payoff matrix II, while the matching step takes only a
small fraction of time. It can be seen that the selection process attains an equilibrium
within seconds even with thousands of strategies. The experiments were written in C++
and run on a Core 17 machine with 12 GB of memory. Again, we would like to stress
that the choice of specific dynamics is driven by efficiency considerations only, and that
in general different evolutionary dynamics should converge to similar solutions.
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Figure 7.11: Time versus the number of strategies in the scale-invariant setting.

7.6 Conclusions

We presented a novel pipeline for model-based 3D object recognition in cluttered scenes
obtained with a range scanner. The pipeline starts with the detection of distinctive key-
points in the scene, which in turn is composed of a relevance filter, a subsampling step
and the calculation of a descriptor for each sample kept. These relevant points are then
matched pairwise with all the model keypoints and a set of candidate pairings is obtained.
Finally, a non-cooperative, isometry-enforcing game is played. The gameplay performs
the actual recognition step and returns a sparse set of reliable matches. An additional
game is then introduced to tackle the more challenging recognition problem where model
and scene are allowed to take different scales. To this end, a novel pairwise strategy de-
scriptor utilizing geometric information along the Euclidean path linking surface points
is adopted. The scale mapping is further enforced by computing local descriptors at dif-
ferent scales and putting them in the pool of candidate matches, thus letting the selection
process extract the most compatible group of correspondences. The two matching ap-
proaches fit within the same general framework, and are extensively evaluated through a
wide range of experiments under different conditions. The results demonstrate that the
proposed pipeline outperforms the most recent state-of-the-art techniques on the same
dataset.
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Non-rigid Shape Matching

In this Chapter we consider the problem of minimum distortion intrinsic correspondence
between deformable shapes, many useful formulations of which give rise to the NP-hard
quadratic assignment problem (QAP). Previous attempts to use the spectral relaxation
have had limited success due to the lack of sparsity of the obtained “fuzzy” solution.
Following the previous chapters, we adopt the game-theoretic framework but take a dif-
ferent point of view in which we regard it as a L' relaxation of the QAP. We relate it to
the Gromov and Lipschitz metrics between metric spaces and demonstrate on state-of-
the-art benchmarks that the proposed approach is capable of finding very accurate sparse
correspondences between deformable shapes.

8.1 Introduction

A particularly challenging family of matching problems is deformable shape correspon-
dence, in which shapes may undergo non-rigid deformations under which the correspon-
dence has to be invariant. In the past decade, significant attention has been devoted to
problems related to deformable shape correspondence. A large corpus of research makes
use of the notion of intrinsic geometry — an umbrella term referring to geometric struc-
tures that remain invariant under non-rigid bendings and other types of transformations.
In 56} 98, 134, 197, 141] and followup studies, it was proposed to use the distortion of
intrinsic metrics as a measure of the correspondence quality. Finding a minimum dis-
tortion correspondence can be rigorously formulated in geometric terms and cast as an
optimization problem. Several particularly useful instances of minimum distortion corre-
spondence problems can be reduced to quadratic assignment problems (QAP). However,
the combinatorial nature of QAPs makes them challenging computationally.

Different relaxations of the NP-hard QAP have been explored in the computer vi-
sion literature. In their seminal work, Gold and Rangarajan [65] relax the assignment
and solve the optimization problem through a gradient method over the set of bistochas-
tic matrices. In [[85]], a spectral approach to correspondence finding was presented. The
authors regard pointwise assignments as nodes of an undirected graph, whose edges rep-
resent the agreement between pairs of such potential matches and cast the correspondence
problem into an eigenvector problem over the (weighted) adjacency matrix. Since the cor-
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Figure 8.1: Examples of correspondences obtained with our method. The game-theoretic
approach produces a sparse (around 1% of the shape is matched), yet very accurate cor-
respondence which can be used as a robust initialization for subsequent refinement (first
two images). The last image presents a case of partial matching, where the second shape
additionally underwent a local scale deformation. In this case we applied the merging
approach on 5 groups, resulting in 51 matches with an average ground-truth error of 2.57

(see Section [8.4.1).

rect correspondences are likely to form a strongly connected cluster, the authors build a
symmetric weighted adjacency matrix A of the graph and try to solve for the set of as-
signments (represented by an indicator vector u) maximizing the quadratic inter-cluster
score uT Au. Optimization is performed by relaxing the binary constraint u € {0,1}"
and allowing u to take continuous values; then, by Rayleigh’s quotient theorem, the solu-
tion u* is the principal eigenvector of A and has unit L? norm. Mapping constraints are
finally met by iteratively removing inconsistent or weak assignments until an optimum
binarized solution is found. The procedure has been successfully applied to 2D matching
and recognition, and subsequently extended to other contexts such as isometry-enforcing
3D nonrigid matching [[107]; more recently, the technique has been generalized to higher
order hypergraph matching [54].

In Chapters [5] [6] and [7] we have been considering a similar setup, with a cardinal dif-
ference of replacing the L? constraint uTu = 1 by u'1l = 1, u > 0. This modification
makes the assignment problem more combinatorial in nature, and, like most types of L!
constraints, promotes sparsity of the solution. In what follows, we show an interpretation
of the QAPs commonly used in shape matching from the point of view of Gromov and
Lipschitz distances between metric spaces. Then, we adapt the game-theoretic frame-
work to efficiently solve the resulting optimization problems, and again show the relation
between different heuristics used by this framework to distances between metric spaces.
Finally, we propose a method to aggregate multiple sparse solutions obtained using the
game-theoretic solver into a denser correspondence. Though the proposed approaches are
general and work with any intrinsic distances, in this study we focus on the family of dif-
fusion distances that has a natural scale-space interpretation, and show how to aggregate
information from different scales into a single distortion functional.
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8.2 Intrinsic geometries

We model shapes as compact smooth Riemannian manifolds equipped with an intrinsic
metric d and the standard measure induced by the volume form. By the term intrinsic
metric we refer to a distance function on the manifold that depends only on the Rieman-
nian structure and is independent of the way it is embedded in the ambient space. One
of the straightforward constructions of an intrinsic metric is the geodesic metric measur-
ing the length of the shortest path (minimal geodesic) connecting a pair of points on the
surface. Such a metric is invariant to inelastic bendings, that is, such deformations that
do not stretch or tear the shape. A serious disadvantage of the geodesic geometry is its
extreme sensitivity to topological noise. In fact, even a point topological change has a
great influence on the length of the shortest path. Generally, this influence does not decay
as one goes away from the affected point, limiting the practical applicability of geodesic
distances.

A partial remedy to this problem has been found in another family of intrinsic ge-
ometries introduced by Coifman and Lafon [49] under the name of diffusion geometry.
Diffusion geometry is an umbrella term referring to intrinsic distances and other geomet-
ric quantities based on the properties of diffusion processes on the surface. Diffusion
processes are described by the heat equation

Af(z,t)+ 2 f(z,t) = 0, 8.1)

with f(x,t) denoting the distribution of heat on the surface at point x at time ¢, and A
being the Laplace-Beltrami operator. The equation has the initial condition f(x,t = 0)
describing the initial heat distribution; boundary conditions apply in case the manifold
has a boundary.

The solution of the heat equation at point x at time ¢ initialized with a point distribution
at ' is called the heat kernel and is denoted by h(x, z"). The heat kernel describes the
proximity of two points z and z’ at different scales ¢. This notion of proximity can be
used to define a family of intrinsic metrics

B(r,a!) = /X (he(,y) — ha(e' )y 8.2)

called the diffusion metrics. The family is parameterized by the scale parameter ¢ and
naturally forms a scale space: diffusion metric with small ¢ are sensitive to small features
while being rather indiscriminative at larger scale; on the contrary, d; with large values of
t is insensitive to small features, yet captures the global geometry of the shape.

In order to make diffusion distances commensurable and comparable across different
scales, they are often normalized by the trace of the heat kernel (the heat trace),

1

HXﬂg = \T(X)/Xht(x,x)dm, (83)
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where Vol(X) stands for the total area of X. This results in the family of normalized
metrics,
2 !
Bofwat) = Do) (8.4)
’ Hy 4

The framework of diffusion geometry also allows to define intrinsic point-wise feature
descriptors (or signatures) on the surface. In [136]], it was shown that under mild technical
assumptions, the diagonal {;(z, z) };~¢ of the heat kernel contains full information about
the shape’s intrinsic geometry (i.e., fully describes the underlying Riemannian structure).
The authors proposed to associate each point of the surface with a vector-valued descriptor
h(z) = (hy(z,2),...,h, (z,2)), dubbed as the heat kernel signature (HKS). A scale-
invariant version of the HKS (SIHKS) was consequently introduced in [36]. In [22], the
authors proposed to study the solutions of the Schrodinger equation in lieu of the heat
equation arriving at the wave kernel signature (WKS) claiming better feature localiza-
tion. Since the Laplace-Beltrami operator is an intrinsic property of the shape, quantities
associated with it such as the heat kernel and descriptors based on it are also intrinsic.
Being constructed from the same geometric quantities, both diffusion metrics and corre-
sponding signatures are related in that nearly isometric shapes in the sense of the diffusion
metrics will also be described by similar HKS and vice versa.

In what follows, we are going to use diffusion geometric quantities to formalize the
notion of correspondence between shapes. Most of the presented discussion is however
valid for any type of intrinsic metrics.

8.3 Intrinsic shape correspondence

We define a correspondence between two shapes X and Y as the subset U C X x Y
satisfying: 1) for every = € X, there exists (at least one) y € Y such that (z,y) € U;
and, vice versa, 2) for every y € Y/, there exists z € X such that (z,y) € U. This relation
can be thought of as a generalization of the notion of a function, and can be alternatively
formulated as the binary function u : X x Y — {0, 1} satisfying for every z € X and
yey,
r@rllg;u(x, y) = max u(z,y) = L (8.5)
Suppose two pairs of points (z,y) and (2,y’) are in correspondence. Then, we can
quantify the quality of the correspondence by measuring to which extent the distance be-
tween x and 2’ measured on X using dx matches the distance between the corresponding
points y and ¢y’ measured on Y using dy,

ez, y, 2’ y) = |dx(z,2") = dy(y,9)|. (8.6)
The worst-case distortion of the metric caused by the correspondence U is given by

lellLe@wxey = sup  e(z,y,2",y"). (8.7)
(z,y),(2',y")EU
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Minimizing the distortion over all possible correspondences between X and Y yields a
distance

1.
D(X,Y) = EHI}fHEHL‘X’(UXU) (88)

between X and Y called the Gromov-Hausdorff distance. If the infimum is realized by
some U*, the latter is called a minimum distortion correspondence (note that more than
one minimum distortion correspondence might exist if the shape possesses intrinsic sym-
metries). By using intrinsic metrics dx and dy, the obtained correspondence is also in-
trinsic. In particular, this implies invariance to inelastic bending of the shapes.

It is worthwhile noting that taking the logarithm of the metrics dx, dy, one can replace
the absolute distortion (8.6)) with a relative counterpart

e(z,y,2',y) = |logdx(z,2") —logdy(y,y")| (8.9)

_ log max { dX('Ia Zlﬁ'/) dY(ya y/> } '
dy (y,y') " dx(z,z’)

The resulting distance is called the Lipschitz distance. Note that e(z,y,2', ') = oo
whenever x = 2/ or y = ¥/, requiring the correspondence u to be bijective. For this
reason, the Lipschitz distance is only applicable to topologically equivalent shapes.

Both the Gromov-Hausdorff and the Lipschitz distances constitute a metric on the
space of all (homeomorphic in case of the Lipschitz metric) shapes modulo their d-
isometries. They naturally express the similarity relation of two shapes being “approxi-
mately isometric”, and can be consistently discretized [34]. However, the L°° formulation
makes the Gromov-Hausdorff and the Lipschitz distances of little practical use due to their
sensitivity to noise and outliers.

While an L? relaxation of the distortion (8.7)) would theoretically yield a more robust
distance, its direct introduction into (8.8) results in a distance inconsistent to sampling.
A way to overcome this difficulty was proposed by [97]. We first relax the binary notion
of correspondence into a fuzzy notion allowing the function u to assume a continuum of
values between 0 and 1, u : X x Y — [0, 1]. Condition is relaxed by demanding for
every measurable subsets A C X and BCY,

//u(x,y)dydm = /dx;

Ady A

//u(:c,y)dxdy = /dy. (8.10)
BJx B

In other words, u(x, y)dzdy defines a weighted product measure on X xY” whose marginals
are the measures dz and dy on X and Y, respectively. The quantity u(x,y)dz can be
thought of as the infinitesimal amount of mass transported from point x on X to point y
on Y, while €’ quantifies the cost of the transport.

Using this relaxed notion of correspondence, a new family of distances can be defined

as

1.
D(X,Y) = 51%f“6”[1p(u><u), (8.11)
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where 1 < p < oo, and
||e|]’2p(uxu) = (8.12)

/( . e (z,y, 2,y )u(z,y)u(z',y ) dedydx'dy’ .
XxY

D(X,Y) constitute metrics on the space of equivalence classes of shapes under the iso-
morphism relation of metric-measure spaces (i.e., measure-preserving isometries). In
literature, this class of metrics is usually referred to as Wasserstein or earth mover’s dis-
tances. Here, following [97] we will refer to them as the Gromov-Wasserstein metrics
to emphasize the relation to the Gromov-Hausdorff distances. We note, however, that
the two metrics are not equivalent, for the very same reasons the Hausdorff and the earth
mover’s metrics are not equivalent.

8.3.1 Multi-scale distortion

In the particular case where diffusion metrics are used to measure distances on X and Y,
the selection of the scale parameter is crucial. Small scales alone give excellent feature
localization (and hence accurate correspondence), but are not robust globally; on the other
hand, large scales alone do not give accurate correspondences, while stabilize the global
matching problem. Here, instead of selecting a single scale, we propose to combine
several scales into a single distortion criterion,

Ty

~ A p
aty) = [ (deaea) — dvoa))) (813

T

where 7 and 75 are parameters determining the range of scales, and d x,¢ are the scale-
normalized diffusion distances. Aggregation of multiple scales of spectral distances has
been previously successfully used in shape retrieval applications [97, 35].

8.3.2 Discretization

In the discrete setting, let us assume the shapes X and Y to be represented by m and
n points, respectively, with the vectors p and v discretizing the corresponding area ele-
ments. The Gromov-Wasserstein metric assumes the form

L.
D(X.Y) = 5 min > iV v (8.14)

R
Z?J7l ’J

Absorbing the area elements into the cost term and using matrix notation, we arrive at the
following quadratic program

Ul=1

U1 - 1 (8.15)

- T
min vec{U} Bvec{U} s.t {
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where vec{U} stands for the mn-dimensional column-stack vector representation of the
m X n correspondence matrix U, 1 is a vector of ones of appropriate dimensions, and B
is the mn x mn cost matrix containing the elements ¢/ it iV itV

Since our final goal lies in finding the minimum-distortion correspondence rather than
computing the Gromov-Wasserstein metric, we are interested in a minimizer rather than a
minimum of the above problem. We observe that while the L*-type constraints are known
to favor a sparse solution (i.e., U will have few strong non-zero elements), it is still a
fuzzy correspondence matrix. This may be disadvantageous in matching applications,
where usually bijectivity is required. In order to impose bijectivity of the solution, we
modify the cost function by setting €;;;» = oo for every i = i’ or j = j', exactly as we
did in the case of the Lipschitz metric. We denote the modified cost matrix by B.

Finally, observe that the constraints on row and column sums of U in (8.15) require
it to be a full correspondence (i.e., each point in X corresponds to a point in Y). This
is rather a restrictive setting for many applications where a partial rather than full corre-
spondence is sought. In order to allow for some points on X to have no corresponding
points on Y and vice versa, one has to allow some of the rows or columns of U to sum to
zero. We propose to replace problem by an under-constrained counterpart

%1;{)1 vec{U} " Bvec{U} st 1TU1=1. (8.16)

Note that the obtained partial correspondence is bijective by virtue of the modified cost
matrix B. In what follows, we show how to efficiently solve the above optimization
problem using tools from game theory.

8.4 Game-theoretic matching

Following the previous chapters, we cast the optimization problem in an evolutionary
game-theoretic framework. We start by modeling strategies as candidate assignments
(xz,y) € X x Y based on some measure of pointwise similarity among the surface points.
Here we use SIHKS [36] descriptors with the standard Euclidean distance since they
demonstrate good resilience to a variety of deformations. We emphasize though that
the descriptor need not be extremely robust given the strongly selective behavior of the
method, and that this step has the intended effect of reducing the size of the problem and
increase the inlier ratio.
We simplify the notation and formulate program (8.16) as a maximization problem

max ulAu st ueA (8.17)

where u = vec{U} is the correspondence vector, constrained to lie in the standard mn-
simplex
A={ucR™ : u'l=1andu >0}

and A is amn x mn matrix whose elements represent the similarity between correspond-
ing pairs of correspondences. Such a quantity is inversely related to distortion and can



146 8. Non-rigid Shape Matching

be defined in a variety of ways. In this work we follow [65] and adopt a softmax ansatz
to the (relaxed) QAP, which is known to improve the convergence properties of gradient
methods. Choosing p = 2 in the distortion term, we set a (i) = exp(—aefji, j,), which
incidentally gives a;;)(jry = 0 whenever either i = i’ or j = j'. While here we are using a
Gromov-Wasserstein metric, it is worth noting that in Chapter[6|the rigid correspondence
problem was solved using the equivalent of a Lipschitz metric.

We remind from the previous chapters that the bijectivity constraints imposed on A
are guaranteed since a stable state cannot have in its support pairs of strategies with zero
payoff. Thus, the matching game can be initialized by putting u(0) on the barycenter of
A, and then iteratively updated via evolutionary dynamics until convergence. The final
iterate u(¢*) at the equilibrium constitutes a L' solution to . We note that the final
values u; = u(z, y) can be interpreted as the relative contribution of each strategy to the
global coherence of the correspondence, in terms of the distortion measure €2,

The correspondence function u can then be binarized by keeping only the fittest strate-
gies, e.g. by setting u(z,y) = 1 for the top 80% strategies (with respect to the maximum
u;), and putting the others to zero. In the experimental section, a specific set of ex-
periments analyzing the influence of this parameter on the quality of the final match is
presented.

8.4.1 Merging correspondences

The final correspondence resulting from the local maximization of is characterized
by a very strong internal coherence, and typically includes only a small percent (around 5-
10%) of matches selected from the initial set of candidates. There exist effective methods
to render correspondences denser [153]]. Here we repeat application of the game-theoretic
scheme in an attempt to “densify” the initial correspondence. This iterative approach is
justified by the fact that the extinct strategies of a single game (those not supported by
u*) do not necessarily have a smaller payoff than the extracted (local) maximum, thus
motivating the interest to explore the solution space further. A similar approach was
followed in Chapter [ for iteratively removing clusters of similar features in an attempt to
select interesting points on a shape.

After an initial solution is obtained, we proceed by invalidating the selected strategies
from the set of candidates and play a new (smaller) game with the remaining matches.
Once several sets of correspondences are extracted, we need a way to merge correspon-
dences in a manner coherent with the possible intrinsic symmetries. We take the hint
from spectral clustering [105]] and blended intrinsic maps [83], and formalize this notion
of coherence by defining a pairwise measure of distortion between groups of matches, and
successively operate on the resulting affinity matrix. Let G and H be two correspondence
groups (gi, 9;) € G and (hy, h;) € H. We define distortion ¢ as:

1 / /
((G,H) = o ngig;whjhg(dx(gu h;) — dy(gi, 1}))?, (8.18)

1,J
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Figure 8.2: An example of the merging process (with real data) between two isometric
shapes. After obtaining 30 correspondences, we compute the spectrum of matrix S (top
left). The dominant eigenvector allows to retrieve the most consistent cluster of corre-
spondences, matching the right paw of the cat (in green) (a); the next eigenvalue is only
separated by a very small spectral gap, and the corresponding matches associate the right
paw again with a symmetric patch (b); finally, the maximum gap eigenvector represents a
reflected correspondence (in orange) with larger error (c). Figure best viewed in color.

where the w,, are proper weights proportional to the point-to-point matching confidence
between x € X and y € Y (for instance, w,, = u(z,y) before binarization). From this
we define the corresponding similarity I'(G, H) = exp (—y((G, H)), where 7 is a scale
parameter.

If we play the game £ times, we get to the definition of a (non-negative) similarity
matrix S € RF**. The best group separation can then be represented by a selection vector
y, which (similarly to [85] [83]]) we relax to take continuous values and constrain to have
unitary L2-norm. We get to the quadratic program

max y'Sy st |yl[}. =1, (8.19)

which is maximized by the leading eigenvector of S. In presence of intrinsic symme-
tries, program (8.19) will yield a large energy value for more than one choice of y, cor-
responding to different groups of coherent matches separated by a small spectral gap
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Transform. | 1 <2 <3 <4 <5 |

Isometry | 147 173 683 1.7 0.68
Topology | 245 1.05 329 1470 11.64

Holes 393 387 388 744 22.69
Micro holes | 1.09 259 370 234 287
Scale 4.01 0.81 2.11 9.54 4799

Local scale | 2.64 9.12 850 8.15 857
Sampling 1.19 256 11.84 872 20.25
Noise 3774 434 8.63 1072 12.22
Shot noise 146 1.06 1.09 2.06 1443
Average 244 301 554 727 15.70

Table 8.1: Performance of the game-theoretic method using SIHKS and the diffusion
metric. Average number of corresponding points is 10.

ly"Sy — yS¥| (see Figure|8.2). This provides us with a robust means to separate sym-
metric solutions into distinct consistent sets, while at the same time helps to filter out
distorted matches that might occur as the game is repeated.

8.5 Experimental results

We performed a wide range of experiments on the SHREC’ 10 correspondence dataset [33],
for which ground-truth assignments were made available by the authors. The dataset
consists of 3 high-resolution (10K-50K vertices) shape classes (human, dog, horse) with
simulated transformations, which are split into 9 classes: isometry, topology, small and
big holes, global and local scaling, noise, shot noise, sampling. Each transformation
class appears in five different strength levels, making for a total of 45 transformations per
shape class. When we compute the ground-truth error of correspondence U, we take into
consideration reflection intrinsic symmetries by evaluating both the direct and symmetric
errors [33]:

U] U]
1 .
D(U,Ug):—’U’mm E dX(zl?k,éfﬁg);E dx (g, 2%) 7
k=1 k=1

where dy is a geodesic metric on X and zj,x} € U, are, respectively, the direct and
symmetric ground-truth positions of point z;, € U.

8.5.1 Comparisons

We evaluate the performance of the game-theoretic method in relation to existing tech-
niques. Table [8.1] reports per-deformation results at all strengths, which can be directly
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] Transform. 1 <2 <3 <4 <5 ‘

Isometry 982 1597 328 752 3.6
Topology | 3.44 380 3.03 881 4.73

Holes 31.80 18.13 13.49 8.07 49.88
Micro holes | 8.61 490 344 698 3.38
Scale 11.76 6.53 875 870 3.17

Local scale | 6.89 15.11 13.00 58.76 50.50
Sampling 6.93 2655 40.81 13.20 16.06
Noise 646 781 947 11.06 18.34
Shot noise 6.77 13.82 1028 6.06 15.03
Average 10.28 12.51 11.73 14.35 18.26

Table 8.2: Results obtained after merging the correspondences gathered from 25 games.
Average number of corresponding points is 50.

compared with state-of-the-art methods in [33]]. Here we used the best parameters de-
termined through the sensitivity analysis that will be presented in the section. The ta-
ble shows that the proposed approach provides better accuracy than all of the sparse ap-
proaches reported in [33]], regardless of transformation class. Further, we achieve near-
ideal performance in a number of cases. An interesting instance of surprisingly good
behavior is represented by the local scale class, which seems to perform equally well
at increasing intensities. This is due to the selective nature of the evolutionary process,
which explicitly seeks for the most compatible group of matches in terms of preserva-
tion of the metric; in this case, the parts of shape that undergo a local change in scale
are filtered out by the selection process, naturally favoring those portions of surface that
are mostly left untouched by the transformation. By contrast, due to the multi-scale ap-
proach followed by our method, global rescaling of the shapes can easily pose problems
(compare also with the “scale” curve in Figure[3.4).

The only approach that provides better accuracy in some instances is the spectral
matching algorithm, which also provides a dense correspondence. Note, however, that
this approach completely breaks for all topology-modifying transformation classes, i.e.,
topology, holes, and sampling. On the other hand, our performance is close to that of
the spectral matching algorithm for the topology-preserving transformation classes, but is
also robust with respect to topology-modifying classes.

We also investigated the effectiveness of the correspondence merging approach pre-
sented in section [8.4.1] For this test, we iteratively generated 25 groups of matches (for
each pair of shapes), built the similarity matrix with v = 10® and kept the principal eigen-
vector by thresholding it at 60% of its maximum value. Again, the experiments were
carried out on the whole dataset and can be compared with the results published in [33]]
(a direct comparison can be made with GMDS since it gives the same average number of
matches).
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Figure 8.3: Evaluation of the results obtained under different initial samplings of the
transformed mesh, averaged over all deformations of every shape. The initial number of
samples has a direct and consistent influence on the final size of the correspondence (noted
above each bar), whereas its quality does not appear to be affected at all deformation
strengths.

8.5.2 Sensitivity analysis

The next set of experiments is aimed at analyzing performance of the game-theoretic
method under different parameterizations. Similarly to Chapters [6] and [7] in order to
limit the size of the problem, we only consider a subset of points from the deformed
mesh X. Feature points are detected by computing for all x € X the HKS function
hi(z,z) for 3 values of ¢, and keeping points that are 2-ring local maxima across all
time scales [136]. The set of strategies is finally built by generating 5 candidate matches
per feature point, based on the vicinity of the associated descriptors with points from the
model mesh. Finally, diffusion distances in equation (8.13) were calculated at time scales

(27,28, ..., 216).

Figure [8.4] shows the results obtained by our method with different choices of payoff
coefficient o and of the selection threshold used to determine the final set of matches. We
used a threshold of 0.8 for the former experiment, and o = 102 for the latter. The value of
« in these graphs ranges over 50 equally spaced values from 10% to 36 x 103. Next, since
both the size and quality of the correspondence also depend on the specific set of strategies
used, we performed some additional tests with a progressively less aggressive feature
detection on the data meshes (Figure [8.3). The outcome of this experiment suggests
that increasing the number of initial samples can be beneficial to the matching process;
indeed, settling for a selectivity level in the feature detection step is more a matter of
memory consumption, while the algorithm is able to extract correspondences in 0.5-4
seconds even with large games with tens of thousands of strategies.
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Figure 8.4: Sensitivity of our method to payoff coefficient « (first column) and the selec-
tion threshold used on the final population (second column). Increasing the o parameter
reduces the average match distortion at the cost of a smaller correspondence. On the
other hand, the population threshold has a more definite effect on size rather than quality
of the final correspondence. In particular, while most transformations behave similarly,
the “isometry” and “holes” classes appear to be more sensitive to this parameter.

8.6 Conclusions

We showed an application of the game-theoretic approach presented in the first chapters
to the solution of intrinsic correspondence problems arising in deformable shape analy-
sis. Through the use of multi-scale diffusion metrics, we showed how to fuse information
from different scales into a single distortion criterion minimized in search of a minimum
distortion correspondence. Evaluation on the SHREC’ 10 non-rigid shape correspondence
benchmark demonstrated that the proposed approach is capable of recovering accurate
sparse correspondences between shapes and is robust under a variety of strong defor-
mations. Although these are mostly preliminary results, the game-theoretic framework
seems to provide a good basis for attacking problems in non-rigid settings.
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Conclusions

In this thesis we approached different aspects of the all-pervasive correspondence prob-
lem in Computer Vision. Our main results took advantage of recent developments in the
emerging field of game-theoretic methods for Machine Learning and Pattern Recognition,
which we adapted and shaped into a general framework that is flexible enough to accom-
modate rather specific and commonly encountered correspondence problems within the
areas of 3D reconstruction and shape analysis. We were able to apply said framework to
a variety of matching scenarios and tested its effectiveness over a wide selection of ap-
plicative domains. To this end, we proposed domain-specific instances of the framework
and provided some theoretical insights that confirm the validity of the method and foster
new interesting directions of research.

Contributions and novelty of the work

We started our presentation with an overview of the existing literature, and gave some
mathematical preliminaries covering most of the topics successively explored throughout
our study. Specifically, the final part of this preliminary section was dedicated to introduc-
ing the matching framework in its main components: we defined the concept of matching
game, and elaborated on the notion of payoff and matching strategy, which constitute the
principal material of our formulation for the matching problem. We showed how to im-
pose mapping constraints, and how to evolve an initial state to a stable solution through
the use of evolutionary dynamics.

In Chapter [3] we concentrated briefly on the reconstruction problem, specifically an-
alyzing two fundamental components of a typical pipeline: camera calibration (Section
and coded light projection (Section [3.2). In the first case, we pointed out the fre-
quently overlooked necessity of utilizing accurate calibration patterns, and proposed a
method that allows to obtain an accurate calibration in a robust manner even with non-
professionally crafted targets. This happens by modelling the calibration process as an
iterative procedure in which the pattern structure is allowed to change so as to reflect
the actual geometry of the calibration object, in what can be regarded as a way of “re-
calibrating” the calibration item itself. The approach is novel to our knowledge, and
allows to attain very accurate calibrations even under severe distortions of the model.
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The second contribution regards the projection of intensity patterns in a structured light
scanning scenario. While research in this field is rather active and spans many different
communities (Optical Engineering and Photogrammetry among the others), relatively lit-
tle interest is dedicated to the design of efficient scanning procedures, whereas many of
the current solutions avoid the problem by exploiting technological advancement. Here
we presented a modification to a state-of-the-art phase shift technique that allows to re-
duce the number of projected patterns to the theoretical minimum, while maintaining
comparable levels of accuracy.

Chapter[d]introduced the general issue of feature detection in computer vision applica-
tions, and offered three different pictures of the problem. In the specific, in Section . I|we
modelled the detection problem as an outlier selection task in which features that do not
occur frequently are treated as interesting points, while common descriptors are regarded
as structured noise and filtered out as such. The filtering step is performed in an iterative
manner by casting the selection process into the game-theoretic framework introduced in
Section This first application of the framework proves to be extremely effective and
is applied to both 2D and 3D settings. Section tackles a different feature detection
scenario which is specific to the surface registration problem: given two surfaces in ap-
proximate alignment, the problem is to select a limited number of relevant points such that
the application of a motion refinement algorithm over these points gives the best possible
results. To do this, we proposed an approach defining a local distinctiveness measure to
each point that is associated with the average local radius of curvature, and a sampling
strategy that samples points according with their distinctiveness. Experiments on range
images with known ground-truth alignment showed the effectiveness of the approach.

Even if the game-theoretic framework was introduced in this chapter as a practical
tool for clustering (not differently from its first use in the original paper), it is in Chapter
[5]that it finds its first application in a matching scenario. We considered the Structure from
Motion problem, an image-based reconstruction setup where typical assumptions such as
a controlled environment and calibrated cameras do not always hold. Feature matching is
an essential step in this context, and can be rendered particularly difficult by a variety of
factors (changing illumination, reflections and moving objects are just a few). To tackle
the matching problem, we decided to rely on a simple, yet very common assumption:
the different views are linked by (sufficiently) small motions, in such a way that the 3D
rigid motions connecting the single shots can be locally approximated by affine transfor-
mations on the image plane. Assuming this assumption holds, we devised a matching
game in which pairs of candidate matches (generated by taking directly into account the
descriptor distance of extracted features from the two images) receive a payoff that is
proportional to the mutual fitness to a common similarity transformation, which can be
calculated from the scale and orientation estimates given by the associated 2D descrip-
tors. After computing this payoff value for all possible pairs of candidate matchings, we
were able to extract the (globally) most consistent group of pairings with respect to the
affinity/similarity constraint enforced by the proposed payoff function. Correspondences
were densified with repeated applications of this matching scheme; the procedure em-
phasized the selective behavior of the game-theoretic approach, exhibiting an interesting
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effect of separating the “parallax groups” present in the scene according to their average
(similarity) distortion. Application of this method to a standard dataset demonstrated its
superior performance in relation to another state-of-the-art technique.

In subsequent chapters we proposed several other applications to a variety of match-
ing problems. Chapter [6|tackles the surface registration problem frequently encountered
in 3D reconstruction pipelines, where a collection of rangemaps, e.g. produced by a depth
scanner, are to be rigidly aligned to one another so as to obtain an accurate as possible
reconstruction of the scanned object. This problem has been frequently tackled in litera-
ture, with existing methods separating the matching process into a first (even supervised)
approximate alignment of the surfaces, to which an automatic refinement (usually through
variations of the ICP algorithm) follows. We took a different view of the problem by cast-
ing it into a correspondence search problem, which is solved via the game-theoretic inlier
selection framework. Similarly to the SfM case, we modelled matching strategies as can-
didate matches and defined the payoff to be a measure of consistency between matches
respecting the same rigid transformation. For increased efficiency, we relaxed rigidity
to an isometry constraint and proposed a compatibility measure that reflects the extent
to which the Euclidean distance among strategies is maintained by the correspondence
map. The method exhibited excellent performance with both real-world and synthetic
data, and demonstrated its ability to attack the surface registration problem efficiently and
in a rigorous manner without the need of ex-post validation of the generated transforma-
tions. Additionally, a specific set of experiments showed an outstanding capability of the
method to provide really accurate alignments in one shot, without the need of further re-
finement. To our knowledge, this is the first completely automatic method that attempts
to solve the coarse and fine registration problems in a single step.

We followed a similar approach in Chapter[7}, where we concentrated on the apparently
similar, yet much more challenging scenario of 3D object recognition in cluttered scenes.
While the general problem is treated similarly to what we did in the surface alignment
case, by enforcing an isometry constraint on the generated set of matching hypotheses, in
this chapter we also attacked the more general case in which model and scene may have
a different scale. This adds a degree of freedom to the parameter estimation problem,
and would in principle require a higher order approach in order to estimate the similarity
(view) transformation connecting the two surfaces. Instead of resorting to high order
dynamics, we decided to stick to a pairwise setting; our insight here is that the paths
connecting pairs of points on the respective surfaces contain all the necessary information
to obtain invariance to global changes in scale. We proposed many different ways to
exploit this information, by defining a pairwise descriptor and different variations of the
payoff function taking into account both unary and binary information of the matching
strategies. We performed a wide range of experiments evaluating different combinations
of the method, and compared the results with state-of-the-art techniques, demonstrating
far superior performance on a standard dataset. We also presented, for the first time to
our knowledge, a thorough quantitative analysis of scale-invariant object recognition in
cluttered scenes. The research carried out in this chapter confirmed the effectiveness of
the method to deal with generally complex scenarios (differently from the simple surface
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alignment case, here the data surface may undergo rigid, clutter, topological, partiality and
noise transformations as well as total absence from the scene), emphasizing its strongly
selective behavior as an inlier selection method. Further, it demonstrated the flexibility of
the game-theoretic framework as a general tool to model a variety situations that might
arise in common computer vision tasks, provided that they can be formulated in terms of
some pairwise notion of compatibility among the available hypotheses.

The final Chapter considered the problem of deformable shape matching. Again, we
tried to formulate the search for a correspondence in game-theoretic terms, but in doing
this we offered a different perspective to the problem. Specifically, we established a clear
link with optimization theory and Gromov-Lipschitz metrics, and regarded the selection
process as a local maximizer of a (relaxed) quadratic assignment problem. Additionally,
we proposed a way to integrate intrinsic information at different time scales in an attempt
to gain in robustness under global scale transformations. The method was tested against a
standard dataset for minimum distortion correspondence problems, placing our approach
among the state-of-the-art for all considered deformations. Finally, we introduced a spec-
tral technique that tries to take benefit from the repeated application of the game-theoretic
method in order to merge together compatible groups of nonrigid matches. This way, one
can obtain a denser correspondence by simply repeating the matching steps many times,
producing strong clusters of matches that are separated by an intrinsic measure of consis-
tency in a robust and coherent manner. Again, the method was tested against a standard
dataset obtaining results on par with the state of the art.

Future directions

Of course, the game-theoretic method we presented doesn’t come without drawbacks,
the first and most obvious of which is the fact that it is not able to model all the matching
problems. Indeed, with the current formulation we are only able to attack problems where
a global property is verifiable over a subset of two or more matching hypotheses. While
this does not represent the entire set of scenarios, it is nevertheless the case for most pa-
rameter estimation problems, as well as structural constrained problems. Throughout our
treatment we successfully adapted the framework to a variety of scenarios, demonstrating
its effectiveness in delivering robust and sparse solutions to the modelled problems. Yet,
as we proceeded with our research, we gained some interesting insights that we intend to
explore in subsequent studies. Chapter [8] in particular, represents preliminary research
on a wide and complex topic. While we could observe good performance of the game-
theoretic method as is in a nonrigid matching scenario, we feel that the approach needs
a more rigorous treatment, especially in relation to the mathematical structures partak-
ing in the selection process. This particular application leads us to reconsider the whole
framework in mathematical optimization terms, whereas the correspondence problem can
be formulated in other interesting ways, and the game-theoretic tools regarded as a ro-
bust means to seek for critical points over different relaxations of the assignment problem
under sparse constraints. In particular, our ongoing research is directed towards three
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main topics. First, the population vector we introduced in the presentation of the game-
theoretic framework finds a natural interpretation in the matching problem: since each
strategy represents a putative assignment, the vector can be regarded (and reshaped) as
a correspondence matrix where each element represents some confidence measure of the
match among the two shape points. With this view, we can reconsider the L1 constraint
on the matrix by requiring, instead, that some measure associated to each point be main-
tained by the mapping over the second shape; this way, the feasible set of solutions is
included in the space of doubly stochastic matrices and the assignment problem finds a
better interpretation in optimal transport theory. Of course, in doing this we assume that
the two shapes have the same number of points; this suggests a second direction of re-
search where the correspondence matrix is relaxed to take values under sub-bistochastic
constraints. In these two cases, another major drawback of the game-theoretic method
becomes more obvious: while we already emphasized in a number of experiments that
the obtained solutions, although very robust, are also rather sparse, this does not neces-
sarily imply that the obtained correspondence be “uniformly spread” across the shapes.
This calls for a third direction of analysis, namely the introduction of some regularization
term over the map of correspondences, which has the specific aim of localizing within
connected patches corresponding shape regions. With these tools at disposal, we could be
able to attack other complex scenarios (such as articulated matching) in a robust manner.
A final point we would like to discuss regards the computational and spatial complexity
of the framework. Since each match candidate is modeled as a strategy, the size of the
payoff matrix between strategies grows with the square of the candidates. This can be
a problem in many cases since it is not infrequent that matching candidates are in the
order of thousands, leading to data chunks in the order of several millions of values. The
problem is further exacerbated when dealing with higher order problems, rendering them
practically unfeasible even in the most simple cases. We plan to tackle this drawback
by taking benefit from recent technological advances through the use of general purpose
GPU programming. While this could be seen as a mere technical issue, a fast implemen-
tation of the method would make huge or high order problems practicable, especially in
those cases where the payoff matrix is not materialized, but rather its values computed on
the fly during the evolutionary process itself.
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