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Abstract

AnBx is an extension of the Alice & Bob notation for protocol narrations to serve as a
specification language for a purely declarative modelling of distributed protocols. AnBx is
built around a set of communication and data abstractions which provide primitive support
for the high-level security guarantees, and help shield from the details of the underlying
cryptographic infrastructure.

Being implemented on top of the OFMC verification tool, AnBx serves not only for spec-
ification and design, but also for security analysis of distributed protocols. Moreover the
framework, keeping apart the protocol logic from the application logic, allow for automatic
generation of Java source code of protocols specified in AnBx .

We demonstrate the practical effectiveness of our approach with the specification and
analysis of two real-life e-payment protocols, obtaining stronger and more scalable security
guarantees than those offered by the original ones.

In the second part of the thesis we formally analyze the Secure Vehicle Communication sys-
tem (SeVeCom), using the AIF framework which is based on a novel set-abstraction technique.
We report on two new attacks found and verify that under some reasonable assumptions, the
system is secure.
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Introduction

An increasing number of cyber attacks is targeting software at the application layer. According
to the “IBM X-Force Trend and Risk Report 2009” [46] a large majority of attacks (at least 75
percent) affects the application layer where customer information, credit card numbers and
other valuable data resides.

Most attacks are exploiting software vulnerabilities which are well known. Experts from
more than 30 security organizations jointly issued a list of the top 25 most dangerous pro-
gramming errors [35]. Such errors can lead to severe software vulnerabilities which are often
relatively easy to find, and easy to exploit. The list can help programmers to identify and
avoid common mistakes that may occur before software is even released. In fact the same
report includes a list of “Monster Mitigations” suggesting practices and techniques considered
effective in eliminating or reducing the severity of the impact of the programming faults.

This is aimed to show the way of making software more secure. However many software
developers are not educated in secure programming techniques. Moreover some of the recom-
mendations are more related with the process of software development than with the specific
technical issues.

Therefore there is a strong need to find solutions to proactively identify security weaknesses
in the early phases of the software development life cycle. Reviewing and fixing the source
code once in production becomes increasingly complex and time consuming.

From the point of view of the software developer, designing distributed protocols is chal-
lenging, as it requires actions at very different levels: from the choice of network-level mech-
anisms to protect the exchange of sensitive data, to the definition of structured interaction
patterns to convey application-specific guarantees. These complex requirements may lead to a
strong intertwining between the intended logic of the protocol and the low-level cryptographic
mechanisms which are necessary to enforce the desired security properties, thus cluttering the
design and undermining the scalability and robustness of the resulting protocol.

To counter these problems, in the first part of the thesis (Chapters 1–4), we propose an
extension of the Alice & Bob notation for protocol narrations (AnBx ) to serve as a speci-
fication language for a purely declarative modelling of distributed protocols. AnBx is built
around a set of communication and data abstractions which provide primitive support for
the high-level security guarantees required in the design of distributed protocols, and help
shield the specification from the details of the underlying cryptographic infrastructure. AnBx
is implemented on top of the OFMC [11] verification tool, by means of a translation to the
AnB language [59] supported by OFMC. As a result, AnBx serves not only for specification
and design, but also as a powerful tool for the security analysis of distributed protocols.

In chapters 3 and 4 we present a tool for the automatic generation of the Java source code of
security protocols specified in AnBx . Extending a previous work of Briais and Nestmann [25],
we generate an optimized executable narration (Chapter 3), which includes the checks on
reception derivable from the static information. Our optimization improves the protocol
execution speed, for example avoiding repeating the same cryptographic operations on the
same data.
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The generation of the source code (Chapter 4) is designed keeping apart the protocol logic
from the application logic. This makes the proposed strategy suitable not only for Java but
also for other object-oriented or procedural languages. A new Java security library (Section
4.2), shielding the communication and cryptographic details, provides run time support to
the generated application.

We demonstrate the practical effectiveness of our approach with the specification and
analysis of two real-life e-payment protocols: iKP and SET (Chapter 2). The declarative
nature of the AnBx abstractions pays off, and results in protocol specifications with stronger,
and more scalable security guarantees than those offered by the original protocols.

In the second part of the thesis (Chapter 5) we focus only on protocol verification. We
formally analyze the Secure Vehicle Communication system developed by the EU-project
SeVeCom, using the AIF framework [60] which is based on a novel set-abstraction technique.
The model involves the hardware security modules (HSMs) of a number of cars, a certification
authority, and the protocols executed between them. Each participant stores a database of
keys that can be added or deleted depending on the different operations. The AIF-framework
allows us to model and automatically analyze such databases without bounding the num-
ber of steps that the system can make and, in contrast to previous approaches in protocol
abstraction, can handle databases that do not monotonically grow (and thus allow for revo-
cation of keys). We report on two new attacks found and verify that under some reasonable
assumptions, the system is secure in a black-box cryptography model.

Some portions of the thesis include material previously published and they are here revised
and extended. In particular, chapters 1 and 2 extend [29], a joint work with Michele Bugliesi
presented at ARSPA-WITS 2010 with the additional contribution of Stefano Calzavara and
Sebastian Mödersheim. A journal version will be soon submitted [27]. Chapter 5 extends a
paper [61] with Sebastian Mödersheim presented at IWCMC 2011.

In details, my original contribution to Chapter 1 includes the definition of AnBx as an
extension of the existing AnB language, the introduction of the notion of forwarding chan-
nels, the first translations from AnBx to AnB as they were outlined in [29]. Additionally, I
fully developed the AnBx compiler and analyzed the case studies in Chapter 2. Chapters 3
and 4 include previously unpublished material describing the code generator tool I designed
and implemented (excluding of course the credited ideas and components borrowed from the
existing tools that were integrated in the AnBx compiler). Finally, in Chapter 5 my contri-
bution consists in building the comprehensive models of the SeVeCom architecture, carrying
out the related experiments, as well as proposing a new way to integrate the life-cycle of keys
into an approach that actually abstracts from time. Lastly, I designed and implemented some
new features of the AIF framework aimed to make easier modeling complex protocols such as
SeVeCom.
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1
The AnBx language

1.1 Introduction

Providing security for distributed applications is challenging, as it requires careful design
decisions and subtle implementation choices, at all level of the deployment stack: from the
definition of structured, application-specific measures to enforce the high-level invariants of the
application, to the choice of appropriate network-level primitives to support those invariants
by protecting the exchange of sensitive data.

In the literature on security protocols, the Alice & Bob notation, also known as protocol
narrations, has long been a popular device for the specification of distributed interactions (see
e.g., [53]) and has enabled the development of a number of frameworks for formal analysis
[37, 47, 52]. In such frameworks, the semantics of the specification languages are defined by
translation into lower level formats amenable to model checking and automated verification.
Besides making formal verification possible, these translation semantics provide for a clean
separation between the abstract specification of the protocol structure, and the details of
its implementation, which may be generated directly from the specification [30, 48, 58, 73].
Indeed, this separation has beneficial impact on both specification and implementation: on
the one side, it helps focusing on the design of the application-level properties, staying away
from unnecessary low-level details; on the other, it contributes to improve the implementation
and to ensure the protocol end-to-end security, by delegating to the compiler the selection of
the most adequate, core implementation components.

Traditionally, protocol narrations have been employed for relatively small systems, such as
key-exchange or authentication protocols, for which the abstractions provided by narrations
allow the designer to focus on the flow and structure of the messages to be exchanged, leaving
it to the implementer to make decisions on subtle details as key-length, nonce generation,
choice of time-stamp windows, data redundancy for decryption, and so on. More powerful
mechanisms, based on high-level channel abstractions have been advocated by many authors
for a principled specification and design of complex protocols such as those required to support
modern web services, payment systems and authorization platforms.

The idea behind the notion of channel abstractions is to provide a means to design and
describe the application oblivious to the underlying cryptography by relying on the concept of
channel as a communication medium protected against certain attacks (e.g., on confidential-
ity). How these properties are actually ensured is a different step of the design (and might not
be a concern of the application designer at all). Several papers in the literature have taken this
approach, and developed it along different directions. First, there are papers that discuss the
definition and implementation of different channel types, based on cryptographic realizations
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and interaction patterns [2, 5, 17, 33, 39]. Other papers opt for a more abstract characteriza-
tion by defining the ideal behavior of a channel [7, 28, 50, 63], and devising frameworks for
analysis directly in terms of that characterization. [76] considers a refinement approach where
protocols are specified by means of abstract channels that are later replaced with concrete
cryptographic mechanisms. [55] takes a very different perspective on the concept of channels,
by means of a calculus to describe what new channels can be obtained from currently available
channels, keys, and trust assumptions. This has inspired the work in [63] on compositional
reasoning for channels, and its integration into the language AnB with the bullet-notation
distinctive of [55]. The idea of protocol implementation stack has similarly been studied in [43]
and a related compositionality result is found in [31].

Following this line of research, in the present chapter we develop the notion of channel
one step further, and generalize it to capture forwarding channels: the corresponding, new
communication primitive applies to any kind of forwarding of messages, where all or some of
the properties of the original transmission are preserved. We develop the novel abstractions
as part of AnBx , a specification language that we introduce in this chapter by extending the
AnB language from [59].

We develop the semantics of AnBx by conservatively integrating the generalized notion
of channel into the existing semantic characterization for AnB . In this characterization, we
provide both an abstract interpretation of channels, in terms of their ideal behavior, and
a concrete interpretation that, in turn, yields a simple, yet analysis-effective cryptographic
implementation. Both interpretations are based on a translation to the AVISPA Intermedi-
ate Format, which makes AnBx amenable for verification within the AVISPA model-checking
platform based on OFMC [11, 62]. In addition to the IF translation, we also define alterna-
tive cryptographic implementations, to be employed for practical deployment of AnBx as a
protocol development tool (Chapters 3 and 4).

AnBx constitutes a powerful specification language for distributed applications, which
generalizes its predecessors in the literature. We demonstrate the practical effectiveness of
our approach by carrying out as case studies two real-life e-payment protocols: the iKP e-
payment protocol family (internet keyed payment protocol [15, 16]), and the SET purchase
protocol (Secure Electronic Transaction [12–14]). Although we can directly formulate them in
all their complexity in AnBx , our concept of channels with forwarding allows for factoring out
the cryptographic aspects almost entirely. The resulting protocols are more concise, easier to
understand and, interestingly, more efficient to verify than the original versions. In addition,
the AnBx formulation changes the protocols slightly, giving them a more systematic structure
and actually improving them. Indeed, our AnBx versions of the protocols outperform the
original protocols, in that they satisfy stronger security goals and properties. This is largely
a consequence of the declarative nature of the specification style supported by AnBx : being
defined as channel-level abstractions, the AnBx primitives convey protection on all message
components, not just on some components as in the original specifications, yielding stronger
encapsulation mechanisms, and, consequently, stronger and more scalable security guarantees.
As a byproduct of our comparative analysis, we also found a (to the best of our knowledge) new
flaw in the original specification of {2,3}KP, and propose an amended version that rectifies
the problem.

Plan of the chapter Section 1.2 introduces AnBx , outlining its main features and its
relationships with previous specification languages. Section 1.3 focuses on the semantics
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Protocol : Diffie-Hellman

Types :

Agent A,B ;

Number g ,X ,Y ,Msg ;

Function exp;

Knowledge :

A : A,B , g , exp;

B : A,B , g , exp;

Actions :

A → B : (A |B | −) : exp(g ,X )

B → A : (B |A | −) : exp(g ,Y )

A → B : (− |− |−) : {|A,Msg |}exp(exp(g,Y ),X )

Goals :

B authenticates A on Msg

Msg secret between A,B

Figure 1.1: Diffie-Hellman specification in AnBx.

characterization, which we give in terms of two translations to the AVISPA Intermediate
Format, to serve as the basis for the implementation of the AnBx analytical tool. Section
1.4 outlines an alternative cryptographic translation based on a public-key infrastructure and
aimed to protocol synthesis. Sections 2.1 to Section 2.3 report the results of our case studies
on the iKP and SET protocols. A separate Appendix collects the AnBx scripts employed in
the case studies. The AnBx implementation, together with the analytical tool employed in the
case studies, is available at the following URL: http://www.dsi.unive.it/~modesti/anbx/.

1.2 AnBx Protocol Specifications

AnBx is a formalism for protocol narrations which extends the familiar Alice & Bob nota-
tion with new support for various mechanisms for securing remote communications, based on
channel abstractions to be employed for a purely declarative modelling of distributed proto-
cols. Below, we outline the main features of the formalism, which we have implemented as
an extension of the AnB language [59] developed within the AVISPA project [6].

1.2.1 Protocol Types and Agent Knowledge

Protocol narrations in AnBx are built around an underlying signature of typed identifiers
that include protocol variables, constants and function symbols. Variables are noted with
upper-case initials and represent values that are dynamically determined at run time, for
each protocol execution. Constants, in turn, are noted by lower-case identifiers and represent
values and functions that are invariant across different protocol executions. Variables of type
Agent are roles: in the protocol specification above, we have the roles A and B, which get
instantiated to arbitrary concrete agents when executing the protocol. The numbers g, X
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and Y , in turn, are the (constant) group generator and the (variable) random exponents of
the Diffie-Hellman key exchange.

All symbols may either be public, in which case all agents may use them to construct
terms, or private to some specific role. Each role is associated with an initial knowledge that
defines the set of terms and function symbols known to that role. The initial knowledge,
together with the terms that each role acquires along the protocol steps, determines the set
of legal messages each agent may send and receive. Variables that do not occur in the initial
knowledge of any role represent values that are freshly created by the agent who first uses
them. In the example, X and Msg are created by A, while Y is created by B.

1.2.2 Protocol Actions

The core of an AnBx specification is the protocol narration, which describes the sequence of
actions composing an ideal, unattacked run of the protocol. Every action has either of these
two forms:

A→ B, η :M or A
@
→ B, η :M

noting standard and fresh exchanges, respectively. In both cases, an agent playing role A
communicates message M to the agent playing role B, along a communication channel that
conveys the security guarantees specified by mode η. The mode η is defined as a triple of the
following form:

η ::= (〈Auth〉 | 〈Verifiers〉 | 〈Conf〉) (1.1)

Each field may be set to an agent name (a list of names, for the Verifiers field), or unset,
in which case it is filled with the distinguished symbol “−”. The triple qualifies the security
guarantees conveyed by the exchange involved in the action. When the Auth field is set,
the action identifies an authentic exchange, which guarantees that the message exchanged
originates from the agent named in the Auth field. When the Conf field is set, the action
represents a confidential exchange, which guarantees that only the agent named in the Conf
field is exposed to the message. As to the Verifiers field, it includes the list of agents entitled
to verify an authentic exchange. Namely, the sender may express the intention to authenticate
with many different principals, but note that this is not a list of mandatory recipients, i.e.,
it does not involve any form of cooperation among different agents. Authentic exchanges
may further specify that the message being exchanged is freshly communicated by the agent

referenced in the Auth field: the notation A
@
→ B, η :M serves that purpose.

The aim of the protocol modes is to abstract away from the details of how the standard
security guarantees of authenticity and confidentiality may be enforced in a remote exchange.
Notice, however, that AnBx is a conservative extension of the familiar AnB notation, in which
abstract exchanges and cryptographic terms may freely be intermixed. Specifically, the first
two actions in the Diffie-Hellman specifications employ the abstract modes to express the
authentic exchanges of the two half keys, while the third describes the exchange of message
Msg encrypted under the generated key.

The idea to structure protocol specifications around abstract mechanisms for secure com-
munications and message exchanges is certainly not new. Among the various approaches in
the literature, the closest to ours is the“bullet”notation supported by AnB• [63], which AnBx
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conservatively extends, as detailed by the correspondence below.

AnB• AnBx

Plain A → B : M A → B : (− |− |−) : M
Authentic A •→ B : M A → B : (A |B | −) : M
Confidential A →• B : M A → B : (− |− |B) : M
Secure A •→• B : M A → B : (A |B |B) : M

In addition to the AnB• exchanges exhibited above, the AnBx modes allow additional gener-
ality. Specifically, AnBx provides primitive support for message forwarding, a feature which is
not supported by existing proposals, and that instead constitutes a recurrent communication
pattern in practical applications. We will provide examples of concrete uses of forwarding
in existing protocols; for the moment, we just illustrate this functionality with some simple
examples.

The first example shows how authenticity guarantees can be preserved upon forwarding:

A → B , (A |B,C | −) : M
B → C , (A |B,C | −) : M

Here, the first action denotes an authentic exchange that originates from A and is meant to
be delivered to both B and C. Upon receiving M , agent B forwards it to C in the second
action, preserving the authenticity guarantees by A. Notice that the mode (A |B,C | −) in
the second exchange still mentions A as the source of the communication, even though the
message is sent by B. This pattern cannot be encoded in the AnB• notation, since authentic
messages are always assumed to be originated by the agent specified on the tail of the arrow.

Forwarding modes can be used also to implement a form of “blind” delivery, arising when
an agent relays a message that is intended to remain confidential for a third party:

A → B , (− |− |C) : M
B → C , (− |− |C) : M

Here, A confidentially sends M to C, relying on B to deliver the message. Also this protocol
cannot be expressed in the AnB• notation, as secret messages are always intended to be
disclosed to the agent specified on the head of the arrow.

Message forwarding is also available for fresh exchanges, in various combinations. Assume
the message M is sent freshly from A to B:

A
@
→ B , (A |B,C | −) : M

Then both the following actions:

B → C, (A |B,C | −) :M and B
@
→ C, (A |B,C | −) :M

are legal. With the action on the left, M is forwarded to C without any freshness guarantee,
whereas the action on the right allows C to verify the freshness of the transmission.

1.2.3 Protocol Goals

AnBx protocol specifications are analyzed and validated against a set of goals, that specify
the expected properties for the protocol. Like its predecessors AnB and AnB•, our language
AnBx supports three standard kinds of security goals:
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 Weak Authentication goals have the form B weakly authenticates A on M and are
defined in terms of non-injective agreement [51] on the runs of the protocol. Namely, this
kind of guarantee does not take into account replay attacks on the protocol exchanges;

 Authentication goals have the form B authenticates A onM and are defined in terms
of injective agreement [51], assessing the freshness of the exchange.

 Secrecy goals have the form M secret between A1, . . . , Ak and are intended to specify
which agents are entitled to learn message M at the end of the protocol run;

Additionally we introduce a new goal – A confidentially sends M to B – to model a con-
fidential transmission from one principal to another one in which the payload is not leaked by
the intruder. It is worth noting that satisfying this goal, equivalent to the AnB goal A→•B :
M , is a necessary but not sufficient condition to meet the goal M secret between A,B.

1.3 Abstract and Cryptographic Semantics of AnBx

Like existing protocol narration languages, AnBx specifications are best characterized, seman-
tically, in terms of the execution traces of the processes that run the specification on behalf of
the protocol roles: such traces encode the sequences of messages that each process sends and
receives during a computation that involves the honest participants and an intruder. Both
the honest agents and the intruder can impersonate any role of the protocol across different
runs.

Following previous work by Mödersheim and Viganò [63], we formalize the semantics of
AnBx as a translation to the AVISPA Intermediate Format IF [10], a more low-level language
to describe state transition systems with a precise semantics. In this translation, the execution
state of a protocol is formed as the disjoint union of the sets of terms (the knowledge) that
each of the honest agents, as well as the intruder, accumulates along a protocol run. Each
action in the protocol is interpreted as a state transformer that updates the current state
by upgrading the agent’s knowledge with the terms extracted from the message the agent
receives during that action. The transformation also updates the intruder’s knowledge as a
result of the message emitted in the protocol step.

As in [63], we define the translation in more steps, exploiting the existing AnB2IF compiler.
The outline of the translation is as follows. Given an AnBx specification, we translate it into
a corresponding AnB specification in which the AnBx modes are expressed as tags included in
the messages exchanged. It is worth noting that the resulting AnB specification is not intended
to be directly model-checked by OFMC, but it is fed to the AnB2IF compiler, which extracts
from the narration the actions associated with each protocol agent, and translates them as
IF rewriting rules. At this stage, the resulting IF specification rules still include the tags
from the annotated AnB narration: a further transformation step completes the translation,
producing the abstract IF specification (absIF ) and the cryptographic IF implementation
(cryptIF ), which can be model checked by OFMC. The details of the overall translation are
reported in this section.

1.3.1 From AnBx to AnB

The first step of the translation transforms each action in the AnBx narration into a cor-
responding AnB action, bearing additional annotations. These annotations will drive the
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subsequent stages of the translation involving the Intermediate Format.

The translation is conceptually simple, though the introduction of the forward modes,
and their combination with the fresh modes, leads to some complications. For example, for
the fresh modes, we rely on a mechanism that is unrealistic in practice, but straightforward
to handle in formal verification: namely, we assume that the sender freshly generates a new
nonce, and the recipient caches every nonce it receives, telling apart fresh messages from
replicas by checking whether the received nonce is in the cache1. Correspondingly, in case
of a forward exchange, we reuse the same nonce generated at the step which introduced
the message being forwarded. In order to identify the nonce to be reused, we need some
housekeeping along the translation. Specifically, we make the translation dependent on a
store ξ, keeping track of all the introduced nonces, along with additional information which
is necessary to perform the translation.

We proceed as follows:

 At each fresh exchange which is not a forward, we first scan ξ to find out an unused
nonce identifier and then we store in ξ a 4-tuple that associates the new nonce with
additional information, which allows its reuse in any possible forwarding of the message
exchanged. The tuple has the form (A, Ṽ ,M,N) and includes the name A of the source
agent, the tuple Ṽ of the intended verifiers, the message M exchanged and the nonce
N generated;

 At each authentic forward action, we lookup the store in search of a tuple whose first
three components match the Auth and the Verifiers components of the mode and the
message being forwarded; if the tuple exists, we are forwarding the result of a fresh
exchange and we include the nonce generated at that exchange among the components
of the forwarded message, irrespective of whether the forward is fresh or not (this choice
is technically convenient in the definition of the translation). Instead, if the tuple does
not exist, then the source action must be non-fresh, thus no nonce is included in the
forward of the generated message. The translation is undefined when a fresh forward is
performed, but no matching tuple was found in the store.

In addition to this issue, we must take into account another complication related to blind
forwarding operations. In general the recipient A of a messageM may differ from the intended
receiver B, so the message M should not always be exposed upon reception. We address this
point by wrapping M inside the constructor blindB, to denote that it should be readable only
by B.

The translation clauses are listed below: if none of the clauses applies, the translation is
undefined and an error is reported. The absence of errors at this level does not imply that
the protocol is runnable, as we discuss below. When more than one entry in ξ matches the
required side-conditions, we always assume to consider the most recent one for performing
the translation.

1This simple mechanism is only dictated by practical motivations, namely contributing to keep model
checking time and space complexity under control. Other, more realistic, implementations based on challenge
response are of course possible, as we discuss in Section 1.4. On the other hand, we remark that concrete
implementations may involve a combination of a nonce and a timestamp, so that the recipient would have to
store the nonce only for the validity period of the timestamp.
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JA→ B, (− |− |−) :MKξ = A→ B : plain,M

JA→ B, (− |− | B̂) :MKξ = A→ B : ctag, blindB̂(M)

JA→ B, (Â | Ṽ | −) :MKξ = A→ B : atag, Â, Ṽ ,M,N if Â 6= A and (Â, Ṽ ,M,N) ∈ ξ

= A→ B : atag, Â, Ṽ ,M otherwise

JA→ B, (Â | Ṽ | B̂) :MKξ = A→ B : stag, Â, Ṽ , M̂ ,N if Â 6= A and (Â, Ṽ ,M,N) ∈ ξ

= A→ B : stag, Â, Ṽ , M̂ otherwise

where M̂ = blindB̂(M)

JA
@
→ B, (Â | Ṽ | −) :MKξ = A→ B : fresh :: atag, Â, Ṽ ,M,N if Â = A and N fresh in ξ

or Â 6= A and (Â, Ṽ ,M,N) ∈ ξ

JA
@
→ B, (Â | Ṽ | B̂) :MKξ = A→ B : fresh :: stag, Â, Ṽ , M̂ ,N if Â = A and N fresh in ξ

or Â 6= A and (Â, Ṽ ,M,N) ∈ ξ,

where M̂ = blindB̂(M)

Tags are public constants in the target AnB specification, while blindX constructors are public
function symbols, so all this information is available to every agent, including the intruder. In
addition, the specification is extended with private function symbols, unblindX , parameterized
over the agents identity, which are used to extract the confidential messages. We return on
this later in this section, where we outline the workings of the IF intermediate format.

Below, we report the AnB actions resulting from the translation of the AnBx specification
of the Diffie-Hellman protocol in Figure 1.1.

A → B : atag, A,B, exp(g,X)
B → A : atag, B,A, exp(g, Y )
A → B : plain, {|Msg |}exp(exp(g,Y ),X)

Some applications of forward modes are shown in the following examples taken from the
e-payments protocols employed as case studies. At the current stage we focus on the commu-
nication patterns, therefore we abstract from the informative content of the payload Msg .

Example 1 (Blind forward - Revised 1KP, steps 3a,3b) The customer C generates a
message intended to be disclosed only to the acquirer A. The message is delivered to the final
recipient by relying on the merchant M , who cannot check anything on the incoming message
and chiefly forwards it upon reception.

C → M, (− |− |A) : Msg
M → A, (− |− |A) : Msg

C → M : ctag, blindA(Msg)
M → A : ctag, blindA(Msg)

Example 2 (Fresh forward - Revised SET, steps 5,6) The acquirer A generates a mes-
sage, which should be authenticated by both the merchantM and the customer C. The message
should also be a shared secret among the three parties. Freshness is preserved upon relaying



1.3. Abstract and Cryptographic Semantics of AnBx 11

by M , while confidentiality guarantees are specified according to the receiver of the specific
exchange.

A
@
→ M, (A |M,C |M) : Msg

M
@
→ C, (A |M,C |C) : Msg

A → M : fresh :: stag, A, (M,C), blindM (Msg), N
M → C : fresh :: stag, A, (M,C), blindC(Msg), N

Example 3 (Fresh exchange followed by a non fresh one - Revised 2KP, steps 5,6)
The acquirer A generates a message, which should be authenticated by both the merchant M
and the customer C. Freshness is lost upon relaying, as every confidentiality guarantee.

A
@
→ M, (A |M,C |M) : Msg

M → C, (A |M,C | −) : Msg

A → M : fresh :: stag, A, (M,C), blindM (Msg), N
M → C : fresh :: atag, A, (M,C),Msg , N

One of the purposes of the translational semantics we are defining is to isolate and filter out
inconsistent specifications. The sources of inconsistency are of different nature, and they are
captured at various steps of the translation. As we mentioned, the step we just described fails
under certain conditions: indeed, these are special cases of inconsistent narrations, like the
following sequence of AnBx actions:

A → B , (A |B,C | −) : M

B
@
→ C , (A |B,C | −) : M

Indeed, the two steps are inconsistent, as B is forwarding M to C as a fresh authentic
message from A, whereas the first exchange does not convey any freshness guarantee. The
inconsistency is detected by the translation of the forward action, as in the store there is no
match for the tuple (A, (B,C),M) needed to retrieve the nonce that would be required at
this stage.

Further inconsistencies are captured by the AnB2IF translation, which is the step at which
the actions required by the protocol agents to compose, decompose and check messages are
made explicit, whenever possible, in the IF representation of the protocol. For instance, the
following sequence of AnBx actions can be translated according to the previous rules, but the
translation leads to an non-executable protocol, since B is exposed only to blindC(M) and
not to M .

A → B , (− |− |C) : M
B → C , (− |− |−) : M

While we rely on the AnB2IF compiler to accomplish this translation phase, and use it as a
black box transformer, in the next section we give a brief overview of IF and of the AnB2IF
translation, as they are useful to understand the details of the last step of our translation.

1.3.2 The Intermediate Format IF

The AVISPA Intermediate Format IF [10] is a low-level language for specifying transition
systems in a way that is fit for protocol analysis tools. An IF specification consists of an initial
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state that collects the initial knowledge of each of the protocol agents, a set of transition rules
over states for the protocol participants and the intruder, and a set of attack rules that specify
which states count as attack states. A protocol is safe when no attack state is reachable using
the transition relation induced by transition and attack rules.

An IF state is a set of facts, separated by dots (’.’), which encode the knowledge of
the protocol agents. We distinguish two kind of facts: iknows(m1, . . . ,mk), which expresses
that the intruder knows terms m1, . . . ,mk, and stateA(A,m

′
1, . . . ,m

′
n) which characterizes the

local state of an honest agent during the protocol execution by the terms A,m′1, . . . ,m
′
n. The

constant A identifies the role of the agent, and, by convention, the first message A is the
name of that agent2. We will later introduce further kinds of facts. The transitions of an IF
specification are of the form:

L | Cond =[X ]⇒ R

where L and R are states, Cond a set of conditions on the terms of L, X a set of variables
fresh in L and Cond, and R only contains variables from L or X . The semantics of this rule
is defined by the state transitions it allows: from a state S the rule enables a transition to a
state S′ iff there is a substitution σ of all rule variables such that Lσ ⊆ S, S′ = (S \Lσ)∪Rσ,
Xσ are fresh constants (that do not appear in S) and all conditions in Cond are satisfied
under the substitution σ. These transitions may be employed to give semantics to the honest
protocol participants as well as to the intruder.

Intruder Transitions The intruder transitions are defined by a set of rules like the follow-
ing ones:

iknows(M).iknows(K) ⇒ iknows({M}K)

iknows({M}K).iknows(inv(K)) ⇒ iknows(M)

For instance, the first rule above describes both asymmetric encryption and signing, while
the second one expresses that the payload of a ciphertext can be obtained by knowledge of
the decryption key. Additional rules may be included to represent the intruder’s capability
to compose and decompose messages. Specifically, the intruder may use all public function
symbols to form new messages, according to the following rule (where f is one such function
symbol):

iknows(M1) . . . iknows(Mn)⇒ iknows(f(M1, . . . ,Mn))

We assume iknows(·) facts to be persistent, so as to model that the intruder knowledge
increases monotonically, without having to repeat the left-hand side occurrences of iknows(·)
to the right for every possible transition.

Agent Transitions The transition rules for the honest protocol participants are generated
from a narration by projecting the narration actions onto each protocol role so as to construct

2In contrast to the convention used in the AnBx specification, IF makes a clear distinction between role
names, noted by calligraphic letters such as A, and agent names, noted with capital letters A.
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role strands [45] of the following form, for each role R in the protocol:

→ R : i1
R → : o1

...
→ R : il

R → : ol

If R is the sender of the first message of the protocol, then we simply take i1 to be a dummy
message, and similarly for ol, if R is the receiver of the last message. Each pair of input-output
actions in this strand is associated with an IF transition, which accounts for the state updates
resulting from the reception of the input message and the transmission of output.

The precise definition of the transition rules is given in [59]. Here we provide some example
that is sufficient to get the intuition and understand the rest of the presentation.

Having projected the source AnB narration onto each role, the core of the AnB2IF translation
is in the generation of the condition set Cond, as these conditions formalize the precise details
of how agents decompose, check and compose messages based on their current local knowledge
(cf. [59]). To illustrate, below we give the IF transitions for roles A and B from the AnB
translation of the protocol in Figure 1.1.

stateA(A,B, g).iknows(·)

=[X]⇒ stateA(A,B, g,X).iknows(atag, A,B, exp(g,X))

stateA(A,B, g,X).iknows(atag, B,A,GY )

=[Msg ]⇒ stateA(A,B, g,X,GY,Msg).iknows({|A,Msg |}exp(GY,X))

stateB(B,A, g).iknows(atag, A,B,GX)

=[Y ]⇒ stateB(B,A, g,GX, Y ).iknows(atag, B,A, exp(g, Y ))

stateB(B,A, g,GX, Y ).iknows(plain, Z) | π1({|Z|}exp(GX,Y )) ≈ A

⇒ stateB(B,A, g,GX, Y, Z,Msg).iknows(·)

In the last rule, the freshly received message payload corresponds to the second component
of Z, but B can realistically perform pattern matching only on the first component, as high-
lighted by the formalization. Indeed, the actual transitions are more verbose: first, we should
explicitly introduce tags into the knowledge of honest agents. Moreover, and more impor-
tantly, the incoming messages are actually encoded with variables, which are then decomposed
to access the message components with the help of the side conditions. To illustrate, the sec-
ond transition for role A is indeed as follows:

stateA(A,B, g,X).iknows(W ) | atag ≈ π1(W ), B ≈ π2(W ), A ≈ π3(W )
=[Msg ]⇒ stateA(A,B, g,X,W,Msg).iknows({|Msg |}exp(π4(W ),X))

We will disregard these subtleties in the rest of the presentation, and just use terms whenever
there is no risk of confusion.

Attack Transitions The attack states are described by rules of the form

L | Cond ⇒ L.attack
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for a special fact symbol attack. These rules describe a set of states for which the attack rule
applies, adding an attack fact: we may thus define attack states just as the states that contain
an attack fact. The transitions corresponding to attacks naturally arise by the security goals
described in Section 1.2.3, full details are reported in [59].

1.3.3 IF Semantics for AnBx

Given the output of the AnB2IF transformation, a further step is needed to produce an
executable (and model-checkable) specification of the source AnBx code. As anticipated, we
give two alternative characterizations of this transformation, yielding a cryptographic and an
abstract semantics respectively. These transformations correspond to different views of the
communication modes – either in terms of cryptographic primitives, or by means of abstract,
idealized channel constructions – and provide corresponding transition rules that describe the
behavior of the intruder.

Cryptographic Intermediate Format

The cryptographic semantics simply results from implementing authentic and confidential
exchanges by means of digital signatures and public-key encryption, respectively.

Honest Agents For the honest agents, the translation is based on the mapping defined be-
low. Tags are removed in the cryptographic translation, since their adoption would impose
tight restrictions on the communication patterns we could express through forwarding. For
instance, we could not cope with tags whenever a secure message is downgraded to authentic
upon relaying.

IF cryptIF

iknows(plain,M) iknows(M)

iknows(ctag, blindB(M)) iknows({M}pk(B))

iknows(atag, A, Ṽ ,M) iknows({Ṽ ,M}inv(sk(A)))

iknows(stag, A, Ṽ , blindB(M)) iknows({{Ṽ ,M}inv(sk(A))}pk(B))

iknows(fresh :: atag, A, Ṽ ,M,N) iknows({Ṽ ,M,N}inv(sk(A)))

iknows(fresh :: stag, A, Ṽ , blindB(M), N) iknows({{Ṽ ,M,N}inv(sk(A))}pk(B))

The translation of the honest agents relies on the assumption that every agent A acting as the
source of an authentic message or as the target of a confidential exchange initially knows two
asymmetric key-pairs (pk(A), inv(pk(A))) for encryption, and (sk(A), inv(sk(A))) for signing.
In this case we say that an agent is certified.

Given the correspondences established by the table, the translation is conceptually straight-
forward, as it amounts to rewriting all occurrences of facts on the left column with the cor-
responding facts of the right column for all the transition rules generated by the AnB2IF
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compiler. In our running example, the translation produces the following set of transitions:

stateA(A,B, g).iknows(·)

=[X]⇒ stateA(A,B, g,X).iknows({B, exp(g,X)}inv(sk(A)))

stateA(A,B, g,X).iknows({A,GY }inv(sk(B)))

=[Msg ]⇒ stateA(A,B, g,X,GY,Msg).iknows({|A,Msg |}exp(GY,X)))

stateB(A,B, g).iknows({B,GX}inv(sk(A)))

=[Y ]⇒ stateB(A,B, g,GX, Y ).iknows({A, exp(g, Y )}inv(sk(B)))

stateB(A,B, g,GX, Y ).iknows(plain, Z) | π1({|Z|}exp(GX,Y )) ≈ A

⇒ stateB(A,B, g,GX, Y, Z).iknows(·)

In practice, the rewriting step is more complex, because, as we have noted, the terms listed
as arguments of the iknows(·) facts may indeed occur in the side conditions that decompose
and check the incoming messages in the transitions of the IF code: though lengthy to explain,
the details of how that can be accomplished arise as expected.

Example 4 (Blind forward) Let us consider the following protocol

C → M, (− |− |A) : token
M → A, (− |− |A) : token

Let us assume that “token” is known by both M and A. Interestingly, as we were informally
discussing before, the relaying by M is performed irrespectively of the actual content of the
message, since M is not able to perform any check on a confidential message for A, even if M
already knows the payload of the message. This is shown by the IF transition rules produced
by the translation of that exchange.

stateC(C,M,A, token).iknows(·)

⇒ stateC(C,M,A, token).iknows({token}pk(A))

stateM(M,A,C, token).iknows(Z)

⇒ stateM(C,M,A, token, Z)

stateA(A,C,M, token).iknows(Z) | {Z}inv(pk(A)) ≈ token

⇒ stateA(A,C,M, token, Z)

In the second transition rule, M accepts every variable Z provided by the intruder. Note that
the iknows(Z) fact is not reported explicitly on the right-hand side of the arrow, since those
facts are permanent. In the last transition, instead, A can perform pattern matching on the
received encrypted message.

An additional measure is needed for translating to cryptIF the transitions expecting a
fresh message on input. These transitions are easily identified in the annotated AnB code, as
they have an occurrence of the fresh tag on their incoming message. For any such transition,
let B be the receiver, and N the nonce associated with the fresh message: then we include
the boolean formula not(seen(B,N)) as a side condition to the rule, and we introduce the fact
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seen(B,N) in the right-hand side upon reception. This implements a simple mechanism of
replay protection.

For instance, for the sender of the message A
@
→ B, (A |B | −) : Msg we have an IF rule

that freshly creates a nonce for the transmission

. . . =[N ]⇒ iknows({B,Msg , N}inv(pk(A))) . . .

and on the receiver side, we have accordingly

. . . .iknows({B,Msg , N}inv(pk(A))).N /∈ seen(B)⇒ N ∈ seen(B). . . .

i.e., the message M is received only if the nonce N was never seen before by the receiver. If
this is the case and the message is accepted, the receiver updates the entries in its database
by adding N .

Intruder rules The symbols sk and pk introduced before are public functions, hence every
agent, including the intruder, can obtain the public keys of every other agent as soon as their
name is known. Instead, the function inv(·), providing the ability to construct signing and
decryption keys is non-public. Making the functions sk and pk public provides the intruder
with full capabilities to construct all messages prescribed by the Dolev-Yao intruder model.
In addition, we assume a fact dishonest(A) to denote that A is a dishonest agent; while many
tools assume that there is only a single dishonest agent i (the “intruder”), our model can
support any number of collaborating dishonest agents – one may still think of one intruder
who has compromised several agents and can now use their identities. Consequently, the
intruder knows all private keys of dishonest agents.

Abstract Intermediate Format

The abstract semantics provides for a direct representation of the communication modes in
terms of corresponding state facts that encode the types of channel where the exchanges
take place. In particular, the abstract semantics draws on the following channel constructors
athCh, cnfCh and secCh, around which we define persistent state facts that track the protocol
exchanges (like the intruder knowledge facts of the form iknows).

Honest agents For honest agents, the Abstract Intermediate Format arises as the result of
replacing the iknows(·) facts that represent the input and output of messages in the IF rules
generated by the AnB2IF transformation with corresponding channel facts according to the
following table.

IF absIF

iknows(plain,M) iknows(M)

iknows(ctag, blindB(M)) cnfCh(B;M)

iknows(atag, A, Ṽ ,M) athCh(A; Ṽ ;M)

iknows(stag, A, Ṽ , blindB(M)) secCh(A; Ṽ ;B;M)

iknows(fresh :: atag, A, Ṽ ,M,N) athCh(A; Ṽ ;M,N)

iknows(fresh :: stag, A, Ṽ , blindB(M), N) secCh(A; Ṽ ;B;M,N)
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Two comments are in order. First, nonces are implicitly included in the payload of the message
when freshness is lost upon forwarding: this choice reflects the corresponding behavior in
cryptIF, where nonces cannot be realistically removed from signed packets. Secondly, given
that the state channel facts employed in absIF are persistent, we need additional measures
to protect against replicas in all transitions expecting a fresh message on input. Indeed, we
may rely on the very same mechanism described earlier for the cryptographic transformation,
based on the seen(·, ·) facts.

Intruder Rules The intruder rules constitute the key component of the abstract semantics,
as it is by way of these rules that we define the actual interpretation of the channel facts
composing the specification. An intruder can forge a message over an authentic channel only
if the associated sender identity is compromised, while he can learn every message sent over an
authentic channel. Dually, an intruder can send over a confidential channel every message he
can compose, but he can learn a message sent over a confidential channel only if the associated
receiver identity is compromised.

Secure channels combine the guarantees of authentic and confidential channels, and may
be downgraded to authentic channels by dishonest agents. This reflects the very same behavior
in cryptIF, where an intruder may remove an encryption layer to get a signed message from
an encoding of a secure channel.

iknows(Ṽ ).iknows(M).dishonest(A)⇒ athCh(A; Ṽ ;M)

athCh(A; Ṽ ;M)⇒ iknows(M).iknows(Ṽ )

iknows(B).iknows(M)⇒ cnfCh(B;M)

cnfCh(B;M).dishonest(B)⇒ iknows(M)

iknows(Ṽ ).iknows(B).iknows(M).dishonest(A)⇒ secCh(A; Ṽ ;B;M)

secCh(A; Ṽ ;B;M).dishonest(B)⇒ iknows(M).iknows(Ṽ )

secCh(A; Ṽ ;B;M).dishonest(B)⇒ athCh(A; Ṽ ;M)

Correspondence between cryptIF and absIF

There exists a bijective mapping between the cryptIF and absIF specifications of any given
protocol. Formally, we can define a correspondence relation ∼ between cryptIF and absIF,
according to the translation rules from annotated AnB to these two interpretations. Intu-
itively, two states are related by ∼ if they differ only for the channel encodings according to
the correspondence depicted below: this implies that the knowledge of the honest agents and
the intruder is the same for the two states.

cryptIF absIF

iknows(M) iknows(M)

iknows({M}pk(B)) cnfCh(B;M)

iknows({Ṽ ,M}inv(sk(A))) athCh(A; Ṽ ;M)

iknows({{Ṽ ,M}inv(sk(A))}pk(B)) secCh(A; Ṽ ;B;M)

The formal definition is more complicated, due to, e.g., the knowledge of additional cryp-
tographic material in cryptIF specifications. Complete details for a similar framework can be
found in [63].
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Given a cryptIF specification and the corresponding absIF specification we can formulate
these hypothesis:

 For each reachable state S1 of the absIF specification there exists a reachable state S2
of the cryptIF specification such that S1 ∼ S2;

 For each reachable attack state S1 of the cryptIF specification there exists a reachable
attack state S2 of the absIF specification such that S1 ∼ S2.

1.4 Cryptographic Channel API

The previous sections have used channels as a method to abstract from implementation de-
tails. This is the view of a protocol designer thinking about an application and not about
cryptography. Thus, one can use the channel notation to design the application based on as-
sumptions about the communication paths and ignore how to realize these assumptions. Note
that this leaves room even for non-cryptographic implementations of channels (as sometimes
used in device-pairing protocols for instance).

We now change to a slightly different view, namely that we do not want to entirely
abstract from the realization of the channels, but only to separate the aspect of a high-level
application protocol from the low-level mechanisms used to implement the assumed channels.
In the spirit of abstraction, in the previous section the cryptIF was defined as the simple-most
way to achieve channel properties from the point of view of formal verification tools – and that
should be fine for any modeler who does not care about the concrete realization of channels.
Now, in contrast, we will look at other possible realizations with a focus on the constraints
of the practical implementation, available key infrastructure and so on.

The goal of this section is thus to still allow treating both the cryptographic primitives
and the channel notation as a black box in the protocol description, but also – separately
– to describe the implementation of these black boxes. So, basically, the channels and the
cryptographic primitives become a high-level security API for protocol designers.

1.4.1 Cryptographic Toolbox

Our notation for symmetric and asymmetric cryptography, i.e., {|M |}K and {M}K , consists
of function symbols that abstractly represent combinations of more low-level cryptographic
mechanisms. For instance, the term {|M |}K represents more than applying a symmetric
encryption algorithm like AES that only protects confidentiality, but it also includes a MAC
(message authentication code) to protect against manipulation of the encrypted message.
Moreover, the message M may first be split into fixed-sized blocks and then be encrypted
using, for instance, a chaining block cipher.

Similarly, for {M}K , where K is a public key, we do not directly mean the application of
an asymmetric cipher like RSA. Rather, we assume an hybrid scheme where a fresh symmetric
key K ′ is created, only this key is asymmetrically encrypted using K, and the actual message
M is symmetrically encrypted using K ′; then the asymmetrically encrypted key is sent along
with the symmetrically encrypted message.

A similar reasoning holds also for signatures, i.e., the notation {M}K (whereK is a private
key) does not denote that the entire messageM is signed using, for instance, RSA, but rather
than just a hash of M is signed and M is transmitted along with it as a plaintext (so that
everybody can read it, even not knowing the corresponding public key).
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We allow in AnBx to integrate this concrete cryptographic implementation into the trans-
lation process, reading {|M |}K and {M}K as the following abbreviations:

{|M |}K = (sencK(M), hmacK(M))

{M}K =

{

(aencK(K ′), {|M |}K′) if K is a public key [K ′ fresh symmetric key]

(sigK(hash(M)),M) if K is a private key

where senc, aenc, hash, hmac, and sig represent standard cryptographic primitives, as they
are found in typical crypto-libraries.

Another important aspect of our abstractions is the choice of the message formats. A
message may be a name m, a tuple of messages (M̃), or a message digest [M]. Indeed,
no explicit cryptographic operator is necessary for message formation, given our channel
abstractions. The only operation on data needed in most e-commerce protocols, as we show
in our case studies, turns out to be the creation of digests [M] to prove the knowledge of M
without leaking it. We may need also digests which are resistant to chosen-plaintext attacks,
hence presuppose an implementation based on a hashing scheme that packages M together
with a randomized quantity known to the principals that possess M , and is never leaked to
any principal that do not have knowledge of M . We thus allow digests to be tagged with an
annotation that specifies the intended verifier, as in [M:A].

[M] = hash(M)

[M:A] = (aencpk(A)(K
′), hmacK′(M)) [K ′ fresh symmetric key]

In any case, AnBx is designed as to be very flexible with respect to cryptographic primitives,
since its terms are defined over an arbitrary set of function symbols with their specific algebraic
properties. Thus, a designer may choose to work with a lower level of cryptographic primitives,
i.e., using function symbols representing basic algorithms like AES and RSA, rather than our
higher-level symbols {|M |}K and {M}K .

1.4.2 Alternative Cryptographic Channel Models

We now consider a few alternatives for the implementation of channels in the cryptIF.

Challenge-Response for Freshness So far we have introduced a sender-generated unique
number in fresh-authentic and fresh-secure transmissions to allow the receiver to check this
number against a database of previously received numbers and filter out replicas. An alter-
native to this is using a challenge-response mechanism, where the nonce is generated by the
receiver and no database is needed.

The transmission A
@
→ B, (A | Ṽ | −) :M may be translated into:

A→ B, (− |− |−) : A,B
B → A, (− |− |−) : NB

A→ B, (A | Ṽ | −) : M
A→ B, (A |B | −) : NB, hash(M)

Note that the last two message are only separated since we use the notation for authentic
channels and we want to specify different modes for these components.
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In the implementation we have separated the authentication and the freshness part to allow
B to easily forward just the non-fresh authentic component. One may alternatively choose
to implement this slightly differently to include also the fresh nonce in non-fresh forwards,
similarly to what we did in the cryptIF above for simplicity: in this case, the nonce does not
play any specific role for the destination of a forwarding operation. Obviously, we can rely on
a similar construction to implement fresh-secure channels.

Diffie-Hellman for Freshness Another alternative to implement freshness is to use a
Diffie-Hellman scheme. For instance, a possible implementation could look like this:

A→ B, (− |− |−) : A,B
B → A, (− |− |−) : exp(g, Y )

A→ B, (A | Ṽ | −) : M
A→ B, (A |B | −) : exp(g,X), {|hash(M)|}exp(exp(g,X),Y )

whereX and Y are exponents freshly created by A and B, respectively. Here, only the half-key
exp(g,X) from A is authenticated, but B can be sure about the freshness of the transmission
thanks to his freshly generated secret Y . Again, freshness is decoupled from authenticity in
our implementation and we use two different messages by A to convey distinct guarantees.

Forward Modes The implementation of most forwarding modes is straightforward: a for-
warder simply receives a message from the network and then sends it to the next receiver.
There are only three cases that deserve special attention and a further explanation:

 Dropping freshness: we already mentioned that A can send a fresh-authentic message
to B, and B can forward this to C preserving the authenticity from A, but downgrading
any freshness guarantee. With the previous implementations, B can simply drop upon
forwarding the freshness certificate received as the fourth message in the narration;

 Decryption/Re-encryption: forwarding a message may involve a decryption / an en-
cryption when confidentiality guarantees are changed upon relaying;

 Fresh-forward: here, the implementation with challenge-response is a bit more compli-
cated, as also the receiver of the forward must supply a nonce. The following exchange

A
@
→ B, (A |C,B | −) : M

B
@
→ C, (A |C,B | −) : M

is then implemented as follows:

A
@
→ B, (A |C,B | −) :M

B → C, (A |C,B | −) :M
C → A, (− |− |−) : NC

A→ C, (A |C | −) : NC , hash(M)

This applies the freshness mechanism to another challenge response.
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AnBx Case Studies

2.1 Case Study: e-Commerce Protocols

We want to demonstrate that AnBx can be employed as a specification language for a purely
declarative modelling of distributed protocols. To this end, we show that the AnBx channels
modes result successful as a set of communication abstractions, which provide primitive sup-
port for the expected high-level security guarantees of a wide and interesting class of protocols,
namely e-payment protocols.

Introducing the Case Studies In general, the design and specification of e-payment
systems are complex, and their analysis is challenging. Despite of this complexity, abstracting
from cryptographic details, we can isolate a common communication pattern among most of
these protocols (e.g., iKP [15, 16], SET [12–14] and 3-D Secure [80]) and outline a general
e-payment scheme which captures the essential ingredients of them. Such scheme can help
the designer focusing on the business logic of the protocol, specifying a template in which the
different security properties enforced at every exchange are parameterized by AnBx modes:
the instantiation of these parameters gives rise to different concrete protocols.

Although iKP and SET are no longer in use we still found interesting to focus on them
because, beyond the specific reasons outlined below, they represent a significant benchmark
for their complexity.

The first case study we propose is the aforementioned iKP family of e-payment protocols.
We show in particular that one of the key features of iKP - the increasing levels of security
according to the number of certified principals, - can be achieved in a very elegant and effective
way through its AnBx specification. As a byproduct of this case study, we find a new flaw in
the original iKP specification and propose a fix.

The second case study illustrates a revised version of SET, a protocol that for its com-
plexity is considered a benchmark for protocol analysis. Here, we shift our attention to some
known security flaws of the protocol and show that our revised version is immune to such
defects.

The SET case study employs the fresh forward mode introduced in Section 1.2 to propose
a solution to an issue outlined in [79]: even a successful and completed SET protocol run
does not give the parties enough evidence to provide certain important transaction features.
Namely, the customer is not able to have evidence that the payment has indeed been autho-
rized by the acquirer; by means of the fresh forward mode, we can instead achieve such a
goal.

Interestingly, in both case studies, our version of the protocols outperforms in term of
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security guarantees the original one, giving evidence that using adequate abstractions results
not only in simpler design, but also in a more robust implementation. This is largely a
consequence of the declarative nature of the specification style supported by AnBx .

We verified the AnBx specifications of iKP and SET by compiling them into cryptIF, using
our tool, and running OFMC on the generated transitions against the expected security goals,
discussed below. We tested all the different possible implementations outlined in Chapter 1.
We also encoded and verified the original versions of iKP and SET, and compared the results
against those of the revised versions. In the following we report on the results of such tests.
For all the tests we ran OFMC in classic mode with one and two sessions, using both the
typed and the untyped mode: with two sessions we were sometimes unable to complete the
verification due to search space explosion. We also ran intensive tests limiting the depth of
the search space to remain within the available memory space.

In the following we assume that certified principals own dual key pairs, for encryption and
digital signatures which are valid within a Public Key Infrastructure and were issued by a
trusted third party (Certification Authority).

2.1.1 A General e-Payment Scheme

We now outline the general communication pattern considered in the case studies, which
constitutes a bare-bone specification of an e-payment protocol. This abstraction allows us to
introduce here most of the concepts which are common to both the examples we consider.

In our model each principal starts with an initial knowledge shared with other participants.
Indeed, since most e-commerce protocols describe only the payment transaction and do not
consider any preliminary phase, we assume that Customer and Merchant have already agreed
on the details of the transaction. These details constitute a contract that includes an order
description (desc) and a price. We also assume that payments are based on existing credit-
card systems operated by an Acquirer, who shares with the Customer a customer’s account
number (can) comprising the credit card number and the associated PIN.

The initial knowledge of the three parties can thus be summarized as follows:

 Customer C: price, desc, can;

 Merchant M: price, desc;

 Acquirer A: can.

The transaction can be decomposed into the following steps:

1. C →M : Initiate

2. C ←M : Invoice

(In steps 1 and 2 the Customer and the Merchant exchange all the information which
is necessary to compose the next payment messages.)

3. C →M : Payment Request
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4. M → A : Authorization Request

(In steps 3 and 4 the Customer sends a payment request to the Merchant. The Merchant
uses this information to compose an authorization request for the Acquirer and try to
collect the payment.)

5. M ← A : Authorization Response

6. C ←M : Confirm

(In steps 5 and 6 the Acquirer processes the transaction information, and then relays
the purchase data directly to the issuing bank, which actually authorizes the sale in
accordance with the Customer’s account. This interaction is not part of the narra-
tion. The Acquirer returns a response to the Merchant, indicating success or failure of
the transaction. The Merchant then informs the Customer about the outcome of the
process.)

Beside some elements of the initial knowledge, other information needs to be exchanged in the
previous process. First, to make transactions univocally identifiable, the Merchant generates
a fresh transaction ID (tid) for each different transaction. Second, the Merchant associates to
the transaction also a date or any appropriate time information. Both pieces of information
must be communicated to the other parties. The core information describing a transaction
is then identified by the tuple (price, tid, date, can, desc), which also constitutes the payment
order information. This tuple plays the role of the contract among the three parties: if
Customer and Merchant reach an agreement on it, and they can prove this to the Acquirer,
then the transaction can be completed successfully. The transaction authorization result auth
is then returned by the Acquirer, and communicated to the two other participants.

We note that two main confidentiality concerns arise in the previous process: on the one
hand, the Customer typically wishes to avoid leaking credit-card information to the Merchant;
on the other hand, the Customer and the Merchant would not let the Acquirer know the
details of the order or the services involved in the transaction. Both these requirements can
be enforced by protecting the exchange of can and desc with the digests we introduced in
Section 1.4.1.

In the end, the structure of the payment protocol template can be specified by means of
the AnBx messaging primitives as follows:

1. C →M,η1 : [can:A], [desc:M]

2. C ←M,η2 : price, tid, date, [contract]

3. C →M,η3 : price, tid, can, [can:A], [contract]

4. M → A (decomposed in two steps to specify different communication modes, if neces-
sary)

(a) M → A, η4a : price, tid, can, [can:A], [contract]

(b) M → A, η4b : price, tid, date, [desc:M], [contract]

5. M ← A, η5 : auth, tid, [contract]

6. C ←M,η6 : auth, tid, [contract]
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The digests [can:A] and [desc:M] are annotated with their intended verifiers (if M is not certi-
fied, the second digest deserves some more care, as we will discuss shortly). Correspondingly,
[contract] is actually the digest of a tuple (price, tid, date, [can:A], [desc:M]), where all the
sensitive data is protected against chosen plaintext attacks by the usage of the nested digests.
By instantiating the exchange modes ηi in the previous scheme, one may generate different
versions of the scheme, achieving different security guarantees: this is exactly what we do in
our case studies.

Protocol Goals A first goal we would like to achieve for an e-payment system is that all
the involved parties agree on the contract they sign, and are able to verify this. In terms of
OFMC goals, this corresponds to requiring that each participant can authenticate the other
two parties on [contract]. Moreover, the Acquirer should be able to prove that the payment
has indeed been authorized and the associated transaction performed: in OFMC this can be
represented by requiring that M and C can authenticate A on the authorization Auth. In
summary, the authentication goals we would like to achieve are the following:

1. M authenticates C on [contract], to give evidence to M that C has authorized the
payment to her;

2. C authenticates M on [contract], to give evidence to C on the terms of the purchase
that M has settled with her;

3. A authenticates C on [contract], to give evidence to A that C authorized her to transfer
the money from her account to M ;

4. A authenticates M on [contract], to give evidence to A that M has requested the transfer
of the money to her account;

5. C authenticates A on [contract],Auth, to give evidence to C that A authorized the
payment and performed the transaction;

6. M authenticates A on [contract],Auth, to give evidence to M that A authorized the
payment and performed the transaction.

Since authentication is realized by means of the digital signature, it follows that, if a principal
is not certified, it cannot provide the required evidence.

Finally, we are also interested in some secrecy goals, like verifying that the Customer’s
credit card information can is kept confidential, and transmitted only to the Acquirer. In
general, we would like to keep the information exchanged by the principals secret among the
expected parties.

All validated protocol goals are reported in the discussion about the case studies.

Non repudiation analysis A stronger variant of the authentication goals described above
requires that, after completion of a transaction, each participant is able to provide a non-
repudiable proof of the effective agreement by the other two parties on the terms of the
transaction. In principle, each principal may wish to have sufficient proofs to convince an
external verifier that the transaction was actually carried out as she claims. The lack of some
of these provable authorizations does not necessarily make the protocol insecure, but it makes
disputes between the parties more difficult to settle, requiring to rely on evidence provided by
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other parties or to collect off-line information. We discuss this issue more in detail in Section
2.3.

2.2 The iKP Protocol Family

The iKP protocol family (i ∈ {1, 2, 3}) was developed at IBM Research [15,16,65] to support
credit card-based transactions between customers and merchants (under the assumption that
payment clearing and authorization may be handled securely off-line). All protocols in the
family are based on public-key cryptography, and vary in the number of parties that own
individual public key-pairs to generate digital signatures: this is reflected by the name of the
different protocols – 1KP, 2KP, 3KP – which offer increasing levels of security. We model
this feature by a corresponding variation of the number of certified principals.

In Table 2.1 we instantiate the communication modes of the general e-payment scheme
to define the AnBx counterpart of the iKP protocol family on the basis of the number of
participants having public key-pairs at their disposal. The different instantiations elegantly
capture the possibility of the protocol to scale upon the maturity of the underlying public key
infrastructure, an important design feature of iKP. Here, to make the table more compact,
we prefix the communication mode with @ to denote a fresh exchange.

The (common) narration of the three resulting protocols is the following:

 Step 1 and 2: Customer and Merchant exchange data that let them build independently
the contract. They must tell their “own version of the story” to the acquirer. C declares
[can:A], the credit card that will be used in contract, sending the protected digest of
can to M. The Customer also informs (and agrees with) the Merchant on the digest of
desc they will use to define the contract. M generates a (fresh) transaction ID (tid)
and the date of transaction (C and M already had agreed on price and desc, being part
of their initial knowledge). M can verify the integrity of [desc:M], form the contract,
and then compute its digest. The tuple (price, tid, date, [contract]) is sent to C which,
upon receiving it, can compute [contract] and verify that it matches the digest provided
by M. If the match succeeds, the protocol execution continues, otherwise it stops.

 Step 3: the Customer prepares a secret message for the Acquirer containing the infor-
mation necessary to complete the transaction: [contract], credit card number – can –,
amount of the transaction – price – and transaction ID – tid. However this message is
sent to the Merchant and not to the Acquirer, because often, as in SET and iKP, an e-
commerce protocol does not allow direct interaction between Customers and Acquirers,
but only through Merchant mediation. We assume that M is cooperating in delivering
messages. Hence M receives an opaque message, and the only thing he can do is to
blindly forward the bitstream to A (step 4a).

 Step 4: the Merchant sends the tuple (price, tid, date, [desc:M], [contract]) to the Ac-
quirer (step 4b). This information is necessary to complete the payment. In particular
date and [desc:M] are required by A to compute independently the digest of contract.
Upon reception of the two versions of [contract] originating from the two other principals,
A can also compute the same value autonomously. If all three match, the transaction can
be authorized, since this is the proof of the complete agreement between the customer
and the merchant.
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mode/step → 1KP 2KP 3KP

η1 C →M (− |− |−) (− |− |M) @(C |M |M)

η2 C ←M (− |− |−) @(M |C | −) @(M |C |C)

η3 C →M (− |− |A) (− |− |A) (C |A |A)

η4a M → A (− |− |A) (− |− |A) (C |A |A)

η4b M → A (− |− |A) @(M |A |A) @(M |A |A)

η5 M ← A @(A |C,M | −) @(A |C,M |M) @(A |C,M |M)

η6 C ←M (A |C,M | −) (A |C,M | −) (A |C,M |C)

certified
agents

A M,A C,M,A

Table 2.1: Exchange modes for the revisited iKP e-commerce protocol

 Step 5: the Acquirer sends the authorization response to the Merchant, within a fresh
authentic message, containing also tid and [contract]. This is done in order to bind all
the information, and produce a proof that the payment has been authorized for that
specific transaction and that specific contract.

 Step 6: the Merchant forwards the message received from the Acquirer to the Customer
This is a notification of the result of the transaction. In this way C receives, via M, a
proof of payment from A. Since the message is signed by A, M cannot alter the message
without being discovered.

2.2.1 Security Analysis

We verified the AnBx protocols described above and carried out a corresponding analysis
of the original specifications of {1,2,3}KP, as amended in [64] with respect to the very first
description in [15]. Below we refer to this amended version as the “original” iKP, to be
contrasted with the “revised” AnBx version discussed above. In both cases we ran our tests
assuming that the Acquirer is trusted (technically, modeled as a constant in the OFMC
specification). This appears reasonable in an e-commerce application, since the Acquirer
should act as a trusted third party. For 3KP, the AnBx code for the revised and the original
version of the protocol is shown in the Appendix (Tables A.2 and A.1).

As we mentioned earlier, the AnBx specification are not just more scalable: they provide
stronger security guarantees, which are detailed in Table 2.2 and commented further below.
In general, our implementation of the iKP protocols outperforms the original version, i.e., it
satisfies more and stronger security goals, for all i ’s. This is largely due to the declarative
nature of the AnBx messaging primitives, which, being defined as channel abstractions, pro-
vide strong encapsulation mechanisms on the messages they exchange. The price to pay with
respect to the original iKP is that we need to split step 4 in two substeps, plus one additional
step to return the initiative to the merchant after step 4a.

More in detail, during the analysis of the original 2KP and 3KP we found a (to the best
of our knowledge) new flaw. It is related with the authenticity of the Authorization response
auth that is generated by the acquirer and then sent to the other principals at step 5 and
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certified agents A M,A C,M,A

1KP 2KP 3KP
Goal O R O R O R

can secret between C,A - - - - + +

C confidentially sends can to A + + + + + +

A weakly authenticates C on can - - - - - +

desc secret between C,M + + + + + +

auth secret between C,M,A - - - - - +

tid secret between C,M,A - - - - - +

price secret between C,M,A - - - - - +

[contract ] secret between C,M,A - - - - - +

M authenticates A on auth - + +* + +* +

C authenticates A on auth - + +* + +* +

A authenticates C on [contract ] - - - - + +

M authenticates C on [contract ] - - - - + +

A authenticates M on [contract ] - - w + w +

C authenticates M on [contract ] - - + + + +

C authenticates A on [contract ],auth - + + + + +

M authenticates A on [contract ],auth - + + + + +

* goal satisfied only fixing the definition of SigA

w = only weak authentication

Table 2.2: Security goals satisfied by Original and Revised iKP

6. In particular, the starred goals in Table 2.2 are met only after changing the protocol
by adding the identities of merchant and customer inside the signature SigA in the original
specification (in 2KP, since the customer is not certified, this can be done with an ephemeral
identity derived from the credit card number). Namely, in the original specification [15],
SigA , {hash((Auth, hash(Common))}inv(sk(A)) should be replaced by

SigA , {hash(C,M,Auth, hash(Common))}inv(sk(A))

Besides the previous discussion, it is interesting to point out that our revisited 2KP be-
haves almost as good as the original 3KP from a security point of view. A goal that is not
satisfied by the former is “can secret between C,A”, but this does not mean that the credit
card is leaked, but only that it is not strongly authenticated by the acquirer, and indeed the
weaker goal C confidentially sends can to A succeeds. As to authentication, in 3KP the
credit card number can be signed by C, whereas this is not possible in 2KP and 1KP (neither
in the original, nor in the revised versions). In these protocols, the acquirer weakly authen-
ticates the Customer by means of the credit card number, which is a shared secret between
the two parties. Moreover, the fact the C is not certified prevents in 2KP the possibility to
authenticate this principal on [contract].
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Finally, it is worth to point out that, after the completion of our version of 3KP pay-
ment protocol, each party has evidence of transaction authorization by the other two parties.
Therefore our version achieves all the goals that can ideally be requested, according to the
number of certified principals. On the contrary even the original 3KP, the strongest original
version, fails in one goal: A can only weakly authenticate M on [contract].

2.3 SET Purchase Protocol

Secure Electronic Transaction (SET ) is a family of protocols for securing credit card trans-
actions over insecure networks. This standard was proposed by a consortium of credit card
companies and software corporations led by Visa and MasterCard and involving companies
like IBM, Microsoft, Netscape, RSA and Verisign. The main aim of SET was to enable cus-
tomers to make purchases, having guarantees of authenticity of the transaction while keeping
the customer’s account details secret from the Merchant and his choice of goods secret from
the Acquirer (payment gateway). Despite being backed by the major players of the IT and
financial industry, SET failed to become the standard “de facto” for electronic payments.
Reasons for its lack of adoption include the fact that the infrastructure required by SET is
complex and requires cooperation of many parties to be established. Moreover, as we will see,
SET fails to meet some of the desired protocol goals.

Nevertheless SET is still an interesting case study, as its complex structure makes it a
benchmark for security protocols design and verification. It is a real-world protocol, arising
from the industry, and its documentation comprises more than 1000 pages. Such a large
protocol needs tool support to be verified effectively. Bella et al. [12–14] made a major
endeavor analyzing and abstracting the SET protocol and we take their work as a reference
for the protocol specification.

In the present case study we consider the SET purchase protocol as outlined in [14].
SET uses many optional data and, depending on which are taken into account, we may
obtain different alternative versions of the purchase phase. The most difficult task is to find
a version that is both simple and relatively close to reality. Following a common idea in
literature [14,26,45,49,54,56,79], we consider a single transaction involving no optional data.
We assume that the Merchant registration and the optional cardholder registration have been
successfully completed. In AnBx this can be represented by the fact that agents C and M
are certified. The certification of C is optional, in analogy to 2KP, where only the Customer
and the Acquirer are certified. This variant of the protocol is called the unsigned version of
SET, in contrast with the signed version, where all principals are certified.

Introduction to SET To ease the comparison with other works on SET, in this presen-
tation the information exchanged is denoted with the names commonly used in the SET
specification. Now we introduce some basic concepts of the protocol and provide a mapping
of the data to the general e-commerce template presented in Section 2.1.

As it is common in e-payment protocol specifications, we assume that Customer and
Merchant have already completed the initial shopping agreement, and they have agreed on
the order description – OrderDesc – and purchase amount – PurchAmt. This is not part of
the SET specification and it can be done by any mean, even out of band, as long as the
secrecy of OrderDesc and PurchAmt is guaranteed. The primary account number – pan(C)
– is an abstraction of the credit card number belonging to the Customer. If the cardholder
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registration (a subprotocol of SET ) is completed, pan(C) is a public-key certificate that
includes the hash of the credit card number and an optional PIN (PanSecret). Otherwise
pan(C) could be the credit card number itself. In any case the Acquirer should be able to
verify the validity of the payment information presented by the Customer. In the case of the
unsigned version, the payment information may also be employed as a weak proof of identity
of C, since C cannot digitally sign. he initial knowledge of each participant, similarly to iKP,
is the following:

 Customer C: PurchAmt,OrderDesc,pan(C);

 Merchant M: PurchAmt,OrderDesc;

 Acquirer A: pan(C).

During the protocol run the principals generate some identifiers: LIDM is a local transaction
identifier that the Customer sends to the Merchant in order to identify the transaction, while
the Merchant generates XID, which is used in the rest of the protocol as a transaction ID.
However there is debate on whether XID can be considered globally unique or not [26]; we will
return later to this issue. In analogy with the SET specification we use some abbreviations,
but compared with the original presentation (see [14,26] and Table A.3 in appendix) they are
just a few:

 TID: LIDM,XID ;

 OIdata: OrderDesc;

 PIdata: pan(C);

 HOD: [OIdata:M ],[PIdata:A].

HOD contains the evidence (digest) of the credit card the Customer intends to use, and
the evidence of the order description that will later forward to the Acquirer. Being part of
an authentic message, HOD binds its components similarly to what happens with the dual
signature. The Merchant can verify the digest [OIdata:M] generated by the Customer, while
TID contains information he already knows and that can be checked.

Dual Signature A key idea introduced in SET is the dual signature. Its purpose is to
let several parties agree on a transaction without giving any of them full view of the details.
The Merchant does not need the customer’s credit card number to process an order, but he
only needs to know that the payment has been approved by the Acquirer. Conversely, the
Acquirer does not need to be aware of the details of the Customer’s order, but he just needs
evidence that a particular payment has been required for a specific order.

As showed in [14], a fragment of an e-commerce protocol using the dual signature, as SET
does in steps 3–4, may be the following:

1. C →M : {OIdata, hash(PIdata)}pk(M), signC(M,A, hash(OIdata), hash(PIdata)), {PIdata}pk(A)

2. M → A : {hash(OIdata)}pk(A), signC(M,A, hash(OIdata), hash(PIdata)), {PIdata}pk(A)

where signC(m) = {hash(m)}inv(sk(C)). The Customer computes the digital signature of the
concatenation of the two digests – of OIdata and PIdata – obtaining what is called dual
signature:
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signC(M,A, hash(OIdata), hash(PIdata))

However, in contrast to the example given in [14], we include the identities of the intended
verifiers (M,A) to comply with the Abadi and Needham’s [4] explicitness principle.

The Customer sends the dual signature to the Merchant along with two other compo-
nents: the first is {OIdata, hash(PIdata)}pk(M) – secret for the Merchant – while the second
is {PIdata}pk(A) – secret for the Acquirer. The first component allows the Merchant to have
evidence of the digest of PIdata without seeing PIdata itself (the payment information). Sim-
ilarly in the second step the Merchant secretly sends the digest of OIdata to the Acquirer
– {hash(OIdata)}pk(A), along with {PIdata}pk(A) and the dual signature, received from the
customer.

Thus Merchant and Acquirer can independently verify that the content of the dual signa-
ture equals to hash(hash(OIdata), hash(PIdata)), a value they can compute from their current
knowledge. Clearly this mechanism works only if Merchant and Acquirer do not cooperate
to cheat the Customer, exchanging their information. Here we assume that the Acquirer,
typically a financial institution, is trusted and respects the privacy of the Customers.

While this communication pattern can be applied with the signed version of SET it is unfit
with the unsigned version since the Customer is unable to sign. In this case the dual signature
is replaced by the term hash(hash(OIdata), hash(PIdata)), which binds the two hashes, but
is built using a hash function rather than a digital signature. This implies that the intruder
could attempt a chosen plaintext attack to forge the hashes, making the OIdata secrecy more
vulnerable.

To counter this problem we propose to use the AnBx protected digests (Section 1.4),
which have the nice property to be verifiable only by a predefined principal and therefore are
immune from chosen plaintext attacks (the encryption key acts as a confounder). Instead of
the dual signature, the Customer can build the pair ([OIdata:A], [PIdata:M]), in which the
two components are verifiable by the A and M respectively. The two components are bound
together by the secret message that C sends to M as in the following code:

C →M, (− |− |M) : [OIdata:M], [PIdata:A], OIdata
C →M, (− |− |A) : [OIdata:M], [PIdata:A], P Idata
M → A, (− |− |A) : [OIdata:M], [PIdata:A], P Idata
M → A, (M |A |A) : [OIdata:M], [PIdata:A]

achieving the same purpose of the dual signature even if the Customer is not certified (as in
the unsigned SET ). With some slight adaptation this fragment of protocol will be the central
part (steps 3–4) of the revised version of SET we are going to present. For scalability, this
solution can also be applied in the signed version just tuning the exchange modes according
to the Customer ability to digitally sign, i.e., setting the mode (C |M |M) in the first step
and (C |A |A) in the second and third steps.

Revisiting SET Although many papers on SET [14,26,79] focused their attention mostly
on the signed version of SET we analyzed both versions. Table 2.3 shows the communication
modes to instantiate the following protocol template for the unsigned and signed versions of
SET:

1. C →M,η1 : LIDM

2. M → C, η2 : XID
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mode/step → unsigned SET signed SET

η1 C →M (− |− |M) @(C |M |M)

η2 C ←M @(M |C | −) @(M |C |C)

η3a C →M (− |− |M) @(C |M |M)

η3b C →M (− |− |A) (C |A |A)

η4a M → A (− |− |A) (C |A |A)

η4b M → A @(M |A |A) @(M |A |A)

η5 M ← A @(A |C,M |M) @(A |C,M |M)

η6 C ←M @(A |C,M | −) @(A |C,M |C)

certified
agents

M,A C,M,A

Table 2.3: Exchange modes for the revisited SET e-commerce protocol

3. # Payment Request

(a) C →M,η3a : TID,HOD

(b) C →M,η3b : TID,PurchAmt,HOD,PIdata

4. # Authorization Request

(a) M → A, η4a : TID,PurchAmt,HOD,PIData

(b) M → A, η4b : TID,PurchAmt,HOD

5. A→M,η5 : TID,HOD,AuthCode

6. M → C, η6 : TID,HOD,AuthCode

Step by step the narration of the signed version of the protocol is:

 Step 1 and 2 - Purchase Initialization Request/Response: the Customer sends the local
transaction identifier LIDM, then the Merchant replies with the transaction identifier
XID. These steps have the sole aim to let C and M exchange data that is needed to
build the messages exchanged in the following steps. In these steps the exchanges are
secret, authentic and fresh.

 Step 3 - Payment Request :

– (a) the Customer prepares a fresh authentic message secret for the Merchant con-
taining TID and HOD. TID includes information to identify the transaction, while
HOD contains the evidence (digest) of the credit card the Customer intends to use,
and the evidence of the order description that will later forward to the Acquirer.
Being part of an authentic message, HOD binds its components similarly to what
happens with the dual signature. The Merchant can verify the digest [OIdata:M]
generated by the Customer, while TID contains information he already knows and
that can be checked. If the verification fails the protocol can stop since there is
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no possibility of authorizing a payment if Customer and Merchant disagree on
OrderDesc or TID or PurchAmt (see also step 5)

– (c) the Customer composes a fresh authentic and secret message for the Acquirer.
Beside the information provided in step 3.a, the message includes the payments
information – PIdata – which will be processed by the Acquirer in order to authorize
the payment. The message is delivered to the Merchant, since the protocol does
not allow direct interaction between customers and acquirers. Note that, being
included in a secret message, the payment information is not captured by the
Merchant.

 Step 4 - Authorization Request :

– (a) the message received at 3.(a) by the Merchant is blindly forwarded to the
Acquirer. The Merchant is not exposed to its content.

– (c) the Merchant sends an authentic and secret message to the Acquirer containing
(TID, PurchAmt, HOD), telling in this way “his own version of the story”

– the Acquirer checks if the two versions of (TID, PurchAmt, HOD), provided in-
dependently by the Customer and the Merchant, are the same. If this is the case
the Acquirer can be sure that the two principals have agreed on the terms of the
transaction and then can verify the payment information – PIdata – originated by
the customer. If the verification succeeds the payment can be authorized and the
authorization code – AuthCode – is generated, otherwise the request is rejected
AuthCode will include an error message explaining the reason of failure).

 Step 5 - Authorization Response: the Acquirer sends, in an authentic and secret message
to the Merchant, the authorization code along with TID which identifies the transaction.
The identity of the Customer is included among the verifiers to allow the forwarding of
the message at step 6, maintaining the authenticity guarantee.

 Step 6 - Purchase Response: the Merchant forwards the message received from the
Acquirer to the Customer. This is the notification of the result of the transaction. In
this way C receives, via the Merchant, a proof of payment from the Acquirer. Since
the message is signed by the Acquirer, the Merchant cannot alter the message without
being detected. The structure of this message is quite different from the original SET.
HOD is included to bind the digest of the order description and the digest of the credit
card number, with the authorization code and the transaction ID.

2.3.1 Main Results of SET Security Verification

We verified the AnBx specifications of signed and unsigned SET purchase protocol and carried
out a corresponding analysis of the original specifications, as reported in [14]. As for iKP we
ran our tests assuming that the Acquirer is trusted. Indeed, though SET does not rely on
such assumption, each customer can stop the protocol if she does not want to proceed with
an Acquirer she does not trust. Therefore we can assume that, if the run of the protocol is
completed, the customer decided to trust the Acquirer. For the signed version of the SET
purchase protocol, the AnBx code of the revised and the original versions is shown in the
Appendix (Tables A.4 and A.3).
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certified agents M,A C,M,A

unsigned SET signed SET
Goal O R O R

pan(C) secret between C,A - - + +

C confidentially sends pan(C) to A + + + +

A weakly authenticates C on pan(C) - - + +

OrderDesc secret between C,M + + + +

PurchAmt secret between C,M,A - - + +

AuthCode secret between C,M,A - - - +

TID secret between C,M,A - - - +

HOD secret between C,M,A - - - +

M authenticates A on AuthCode + + + +

C authenticates A on AuthCode - + - +

C authenticates M on AuthCode +* - +* -

A authenticates C on contract - - w +

M authenticates C on contract - - + +

A authenticates M on contract w + w +

C authenticates M on contract + + + +

C authenticates A on contract,AuthCode - + - +

M authenticates A on contract,AuthCode + + + +

* goal satisfied only fixing step 5 as in [14]

w = only weak authentication

revised SET ⇒ contract = PriceAmt,LIDM,XID,[PIData:A], [OIData:M]

original SET ⇒ contract = PriceAmt,LIDM,XID,hash(PIData),hash(OIData)

Table 2.4: Security goals satisfied by Original and Revised SET purchase protocol

In general, the security guarantees of our version of the SET purchase protocols outper-
form those of the original one both for the signed and the unsigned versions, as reported in
Table 2.4. Similarly to what was already mentioned for iKP (Section 2.2) we benefit of the
declarative nature of AnBx message primitives, which are defined as channel abstractions and
offer stronger encapsulation mechanisms on the messages they exchange. It is worth noting
that two known flaws affecting the SET original specification do not compromise our revised
version.

The first flaw [14] involves the fifth step of the protocol: often in SET the signed messages
lack of explicitness and therefore in step 5 it is not possible to link univocally the identity of
the Acquirer and the Merchant with the particular transaction and authentication code. The
original instruction

A→M : {{LIDM,XID,PurchAmt,AuthCode}inv(pk(A))}pk(M)

should then be amended to

A→M : {{M,LIDM,XID,PurchAmt,AuthCode}inv(pk(A))}pk(M)
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otherwise the goal C authenticates M on AuthCode cannot be satisfied.

In our version the message at step 5 include both the identity of the Merchant and of the
Customer. This happens because the payload is automatically compiled to a message that
includes the following component:

A→M : {{M,C,LIDM,XID,PurchAmt,AuthCode}inv(pk(A))}pk(M)

Interestingly the same implementation also prevents the second flaw presented in [26]. In
this thesis the specification of the protocol is more detailed than in [14] as it introduces an
additional field AuthRRTags, which includes the identity of the Merchant. The attack is
against the purchase phase and exploits a lack of verification in the payment authorization
process. It may allow a dishonest Customer to cheat on the Merchant. This flaw is subtle:
unlike the attack in [14], requiring the existence of a corrupted Acquirer, this attack requires
only a collusion between a dishonest Merchant and a Customer. The attack is based on the fact
that neither LIDM nor XID can be considered unique and they cannot be used to identify the
Merchant. Therefore the customer can start a parallel purchase with an accomplice (playing
the role of another merchant) . Both merchants generate their authorization requests and send
them to the Acquirer, but the intruder intercepts the good merchant’s request and destroys
it. The Acquirer proceeds with the intruder’s message where in the field AuthRRTags the
intruder has changed its identity with the identity of the good merchant.

Due to a faulty verification process (as specified by the SET documentation, and reported
in [26]), the Acquirer does not compare the identity in AuthRRTags with the other identities
present in the message. The authorization message sent to the intruder at step 5 has the same
structure of the message that the good merchant expects, so the Merchant can be convinced
that he has been paid. Therefore the Merchant can then deliver the goods to the dishonest
customer. The result is that the Acquirer has authorized the payment in favor of the intruder
playing the role of a dishonest merchant. Full details about this attack can be found in [26].
As the authors suggest, the fix is to bind under the Acquirer signature the merchant’s and
the client’s identities, and this is what our version does in step 5 and 6.

To check this solution, we tested the versions of SET presented in [26] and [14] with
OFMC; we also verified that they also need to be fixed in the sixth (and final) step as already
outlined in [79]. The identity of the Customer must be included in the message, otherwise the
Customer cannot authenticate the Merchant on AuthCode. This issue also leads us to more
interesting considerations on how to prove the authorization of the transaction.

Proving Authorization of the Transaction

Our general e-payment protocol (Section 2.1) defines contract = price, tid, date, [can:A], [desc:M]
as the terms of the transaction on which all participants should ideally agree. In the revised
SET the equivalent term is

PriceAmt,TID,[OIData:M ],[PIData:A]

which lacks only of the complementary information date. Expanding the definitions of TID,OIdata
and PIdata we obtain

contract = PriceAmt,LIDM,XID,[OrderDesc:M ],[pan(C):A].

Analogously, in the original SET we can define

contract = PriceAmt,LIDM,XID,hash(PIData), hash(OIData)

Our analysis showed that some of the desired six authentication goals are not met by
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the original signed SET (Table 2.4). A similar result, using a different analysis technique,
was already described in [79], but we can show that amending our revised version of SET,
it is possible to achieve all the six goals. The original problem arises from the fact that
the Customer does not have an evidence of the origin of AuthCode by the Acquirer and she
rather relies only on information provided by the Merchant. For example giving to C a
proof that A authorized the payment requires substantial modification of the sixth step of the
protocol. In fact, instead of letting the Merchant signing a message for C we exploit the AnBx
forward mode to bring to the customer the authorization of the payment signed directly by
the Acquirer. It is interesting to note that, employing the fresh forward mode in the sixth
step, we can achieve the strong authenticity goal on contract, AuthCode, even though the
transaction identifier is not unique (as in the second flaw [26]).

The resulting protocol is very similar to the general e-payment protocol, introduced in
Section 2.1, and it confirms the results outlined in [79] showing that, while iKP meets all the
non-repudiation of origin goals, the original specification of SET does not. It is important
to notice that to achieve non-repudiation, each participant must have sufficient proofs to
convince an external verifier that the transaction was actually carried out as she claims.
A way to obtain this is to assume that the authentication is obtained by means of digital
signatures computed with keys which are valid within a Public Key Infrastructure and are
issued by a trusted third party (Certification Authority). In fact, such signatures can be
verified not only by the intended recipient, but also by every other agent. Although this
limits the way authentic channels in AnBx could be implemented, in practice it does not
represent a significant restriction since, in the considered protocols, digital signature is the
standard way meant to achieve authentication.

In summary we showed that revisiting SET in AnBx not only offers a simpler and clearer
design, but also, compared to the original specification, stronger guarantees. The most in-
teresting points are a new design of SET by means of AnBx primitives, produces a protocol
that is immune to the known flaws which are present in the original SET and it is possible
to fully prove authorization of transaction.
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3
From AnBx to Executable Narrations

Narrations are a popular way to describe security protocols as a sequence of message exchanges
among different principals. Despite being intuitive, this specification technique is semi-formal
because it contains a lot of implicit concepts, leaving various aspects of the protocol vague or
undefined. Moreover it just describes the ideal execution of a protocol, without saying what
to do when something goes wrong. These facts cannot be simply ignored, in particular when
translating narrations to real-world programming languages, because otherwise it would be
difficult to program a computer to run such protocol.

For this purpose, a precise specification and a concrete semantics defining the translation
from the source to the target language is necessary. Overcoming the limits of narrations
requires both making assumptions, to explain some implicit facts, and adding further infor-
mation to remove ambiguities. These aspects were already pointed out by Abadi [1], who
identified four aspects that should be taken into account:

1. The knowledge of the principals before the protocol run should be stated explicitly.
Additionally it is necessary to specify which values (and by whom) are freshly generated
during the protocol execution. This is usually done adding a declarative preamble before
the sequence of message exchanges.

2. The checks carried out by principals on reception of messages, should also be explicit.
Usually an exchange like A → B : M is performed over an asynchronous insecure
channel, which can be under control of an intruder [40]. Messages can be stopped,
resent in a different order, or even forged by an attacker. Therefore agent B has to
perform some informative checks on the received messages, with the aim to verify their
consistency with respect to his current knowledge and the expected status of execution
of the protocol.

3. Concurrency : despite the sequential idealized execution of the protocol, the principals
behave in a concurrent way. This means that messages can be exchanged in a different
order, due to the network conditions or depending on the behavior of the intruder.

4. Several sessions of the protocol can run in parallel, but narrations does not consider
this fact, since a narration tells the story of a single session.

In this work we mainly focus on the first two issues, describing the translation from the
abstract language AnBx (Chapter 1), to a concrete real-world programming language, namely
Java. In fact, to generate and correctly run a Java program, any potential ambiguity must
be removed. For this purpose, some additional information or assumption is needed. Beside
the issues related with the modelling of the knowledge and the checks on reception, we should
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consider, for instance, that Alice & Bob narrations are in general written in an untyped
language, while Java is statically typed.

The automatic Java code generation of security protocols specified in AnBx is a process
comprising several phases. A pictorial view of the whole process is shown in Figure 3.1 and
3.2. The work done by our tool can be summarized as follows:

1. AnBx → AnB → (verification): the AnBx protocol is compiled to AnB and then
verified (model-checked) with OFMC [11].

2. AnB→ SpyerPN→ Execnarr→ Opt-Execnarr: if the protocol is deemed safe, the AnB
protocol is compiled to SpyerPN 1, a protocol narration language introduced in [25],
and then to two subsequent intermediate formats: executable narration (Execnarr) and
optimized executable narration (Opt-Execnarr). As a by-product, inherited from the
spyer tool [25], an output to Spi Calculus is also available.

3. Opt-Execnarr → (protocol logic) + (application logic) → Java: the final outcome is
the generation of the Java source code from the optimized executable narration. The
process keeps apart the protocol logic from the application logic until code is actually
generated.

We focused on the first phase of the process in chapters 1–2. The core of the second phase,
described in the current chapter, is the generation of the informative checks, by means of an
extension of the spyer tool which automatically generates the checks derivable from the static
information of protocol narrations.

The underlying theory is a formal operational semantics for protocol narrations, proposed
by Briais and Nestmann [25], that gives an interpretation on how the protocol participants are
supposed to execute the protocol. The resulting processed narrations are called executable.
The checks are expressed by means of consistency formulas and given the high number of
generated formulas, the tool applies some simplification strategies, providing good results in
practice. By contrast, although the AnB semantics [59] includes the notion of consistency
checks, it does not provide an algorithm to compute in practice a finite sufficient set of checks.
In fact, it could lead to an infinite set of checks, and “it is not clear if such a finite sufficient
set exists in general” [59]. Although finding the solution to this problem can be interesting
and useful, it is out of the scope of this work.

For these reasons, in the first part of this work (section 3.1), we decided to adopt the
solution proposed by Briais and Nestmann making some extensions to address the following
issues:

 Although the SpyerPN language shares many concepts with AnB , it exhibits some
significant differences that require the implementation of a translator from AnB to
SpyerPN (Section 3.1.2).

 The SpyerPN language is less expressive than AnB . For example, it does not support
HMACs, Diffie-Hellmann key agreements, tuples and functions. Therefore we extended
its semantics to support these primitives. In this way it is possible to model a wider
and more realistic class of protocols.

1We refer to the language in which the protocol narrations are written in [25], with the name SpyerPN.
This is the input language of the tool spyer.
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Figure 3.1: From AnBx to optimized executable narrations

 The executable narration code is not optimized, hence its translation to a real program
would not be efficient. For example, the same cryptographic operations, e.g. encryp-
tion and decryption, could be performed, on the same data, many times during the
protocol run. We identified the set of cryptographic operations, which in general are
computationally expensive, and optimized the code to reduce the overall execution time,
introducing variables storing partial results, and making some reordering with the pur-
pose of minimizing the number of cryptographic operation performed. Moreover we
delayed the generation of fresh values until they are really used, while in the executable
narrations they are all created at the beginning. Our experimental results show that
these optimizations (Section 3.2) reduce the execution time by 30-40% for the revised
versions of the e-commerce protocols belonging to the iKP family (see Chapter 2).

To help the reader to get the whole picture we anticipate here that in chapter 4 we are going to
describe the third and final phase, the generation of the Java source code from the optimized
executable narrations (Figure 3.2). The solution we propose goes beyond the specific issues of
Java, devising a strategy that we think can also be applied, with a reasonable effort, to other
object oriented and procedural programming languages. The code generation, comprising
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Figure 3.2: Code generation

several steps, required to address some interesting issues:

1. The definition of a code generation strategy. First of all, we make a distinction between
the protocol logic and the application logic. The latter is implemented by means of a
parametrized application template written in the target language (Section 4.1.3) which
is instantiated with the information – the protocol logic – derived from the optimized
executable narration. We model the protocol logic by means of a format called JProtocol
(Section 4.1.1) which is still independent from the target language. It is important to
underline that the application template is generic, i.e. independent from the specific
protocol. This allows the tool to work as a one-click code generator because it can
directly produce a runnable application from the AnBx specification.

2. The definition of a typed abstract representation of the security related portion of a
generic procedural language. This also required the design of a type system (Section
4.1.2) to infer the type of expressions and variables. The correct implementation of the
type system is necessary to avoid compile time errors in the generated code. Another
issue to consider was the fact that the set of types in the AnBx is too limited to be
directly and efficiently translated into a real programming language.

3. The design of an API for security (Section 4.2) exposing some of the cryptographic oper-
ations offered by the Java Cryptographic Architecture (JCA) [44,71]. The library wraps
the JCA interface and implements the custom classes necessary to code the generated
programs in Java. The library offers an high degree of generality and customization,
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since the API does not commit to any specific cryptographic solution (algorithms, li-
braries, providers). Moreover the library provides the communication primitives used
to exchange messages in the target network environment, the TCP/IP standard in our
case.

4. The generation of the Java source code (Section 4.1.4) is performed instantiating the
protocol template, i.e. the skeleton of the application, with the information derived
from the protocol logic. It is worth noting that only at this stage, when the code is
generated, the language specific features and their API calls are actually bound to the
protocol logic.

Due to the complexity of the target language, we do not claim the formal correctness of the
last part of the translation chain, from the executable narration to Java. However we think
that this experimental work offers some interesting insights in the topic of security protocol
design and automatic generation of implementations.

First of all, we show the effectiveness of AnBx as a language not only for abstract pro-
tocol prototyping but also for the generation of concrete implementations. With respect to
some existing tools [58,73] we produce Java code which automatically generate the checks on
reception. Moreover in contrast to other tools [72,78], using the Spi Calculus as specification
formalism, we use a higher-level and more intuitive language, making our compiler more ap-
pealing to a wider spectrum of potential users. Additionally we propose a Java library for
security which can be used not only with the code generated from AnBx , but also to code
standard Java programs, even by programmers with a limited background in security. We
discuss these issues and the related works in the final section (4.3) of chapter 4.

3.1 Compiling AnB/AnBx into Formalized Executable Nar-
rations

In this section we show how protocols in AnB and AnBx can be compiled into executable
narrations following the ideas presented in [24, 25]. First of all we explain how the agent
knowledge is modeled in these languages (3.1.1) and how protocols can then be translated to
SpyerPN (3.1.2). Next we recall the procedure proposed in [25] to compute the informative
checks on reception of messages (3.1.4) showing how to extend it in order to include all
AnB/AnBx language features which are not handled by spyer. In the next section, we
propose some optimizations (3.2) that are useful for the translation to a real programming
languages.

3.1.1 Modeling the Knowledge of the Agents

Before we proceed, it is useful to remind that a protocol specification in AnB and AnBx
comprises four mandatory sections:

 Types: describes the entities (agents/principals) involved in the protocol, along with
the protocol data and the operators on them, including the cryptographic functions;

 Knowledge: specifies the initial knowledge of each principal;

 Actions: specifies the sequence of statements that constitute the ideal, unattacked run
of the protocol;
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Protocol: Fresh_From_A

Types:

Agent A,B;

Certified A;

Number Msg

Knowledge:

A: A,B;

B: A,B

Actions:

A -> B,@(A|B|-):Msg

Goals:

B authenticates A on Msg

Figure 3.3: AnBx specification of an authentic (fresh) exchange

Protocol: Fresh_From_A

Types:

Agent A,B;

Number Msg ,N1;

Function pk ,sk,hash

Knowledge:

A: A,B,pk,sk,inv(pk(A)),inv(sk(A));

B: A,B,pk,sk

Actions:

A -> B: A

B -> A: {N1,B}pk(A)

A -> B: {N1,hash({B,Msg}inv(sk(A)))}pk(B),{B,Msg}inv(sk(A))

Goals:

B authenticates A on Msg

Figure 3.4: A challenge-response implementation in AnB of the protocol of Figure 3.3

 Goals: specifies the goals that the protocol is meant to convey.

An example of a simple AnBx protocol and its translation in AnB is given in Figures 3.3 and
3.4. The full syntax of these languages is shown in Tables 4.7 and 4.8.

In Chapter 1 we already explained the main enhancements of AnBx with respect to AnB .
Here we detail on some syntactic features introduced in AnBx in the sections Types and
Knowledge.

Types In this section of an AnB protocol, the involved agents (type Agent) and the func-
tions used (type Function) are specified. Moreover the type Number identifies constants and
values which are freshly generated. The distinction between constants and fresh values is done
by means of the first letter of the identifier (lowercase and uppercase respectively). Types
PublicKey and Symmetric_key designate variables of the eponymous type.

In AnBx we introduced two additional types:

1. SeqNumber identifies the fresh values which are expected to be received by an agent no
more than once during the protocol execution. An example is the transaction identifier
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in an e-commerce protocol.

2. Certified denotes the agents possessing the public/private key pairs for encryption
and signature. This is a syntactic sugar that simplifies the notation, making redundant
writing in the knowledge section the keys possessed by those agents. Such information is
added by the AnBx compiler to the agent’s knowledge, along with some cryptographic
functions which are used during the protocol execution (compare Figures 3.3 and 3.4).
Moreover the notion of certified agent becomes handy in the translation process to real-
world programming languages, where we deal with cryptographic objects like certificates
and keys (see Section 4.1).

We should observe that in AnB the notion of which agent generates the fresh values is implicit.
In the Type section the fresh values are simply listed without any reference to the agent who
is generating them (for example variables N1 and Msg in Figure 3.4). Here the underlying
assumption is that these values are freshly generated by the agent that uses them first. This
is coherent with the semantics of OFMC [11], i.e. the translation from AnB to IF [10]. In
fact in IF the freshly generated values are added to the current knowledge of the agent who
introduces the variable in the protocol.

Knowledge This section is used to specify the initial knowledge of each principal. The
original specification of AnB permits to include in the initial knowledge, agents names, con-
stants, functions, and their combination. Freshly generated values are not allowed since they
must be actually generated during the protocol execution. Although this is fully reasonable, it
could be a problem in protocols where the initial knowledge should include some non constant
pre-shared values.

For example, in e-commerce protocols like iKP [15, 16] and SET [13], the description of
the payment process, assumes that the price and the order details are agreed between the
customer C and the merchant M before the protocol execution.

This schema is supported by AnBx by means of a new construct in section Knowledge

allowing the specification of values shared among a set of agents as in the statement C,M

share Price,Desc, which models the aforementioned scenario.

3.1.2 From AnB to SpyerPN

Now we show how to translate an AnB protocol to a narration in SpyerPN (the syntax is
shown in Table 3.1).

A protocol in SpyerPN is composed by two sections. The first one, named declaration, is
a header of the actual narration and includes the initial knowledge of each agent, the names
generated by them and the names that are assumed to be initially known only by a subset of
agents. The latter is similar to the share construct we introduced in AnBx , and it is useful
to simulate a first pass where shared values are securely distributed among some agents.

The agents are taken from set of agent names A and the messages are built upon set of
names N. It is assumed that A

⋂

N = ⊘.

To handle asymmetric cryptography, the inverse key inv(M) of a message M is defined
as follows:
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messagesM
M,N ::= a name

| A agent name
| hash(M) hashing
| pub(M) public key
| priv(M) private key
| (M.N) pair
| enc(M,N) encryption
| hmac(M,N) hmac ∗

| kap(M,N) key agreement half key ∗

| kas(M,N) key agreement full key ∗

| M(N) function ∗

exchanges
T ::= A→ B : M exchanges

narrations
L ::= ǫ empty narration

| T ;L non empty narration
declarations

D ::= A knowsM initial knowledge
| A generates n fresh name generation
| private k private name

protocol narrations
P ::= D;P sequence of declarations

| L narration

Table 3.1: Syntax of SpyerPN protocol narrations (plus extensions ∗)

inv(M) =











pub(M ′) if M = priv(M ′)

priv(M ′) if M = pub(M ′)

⊥ otherwise

The agents can verify if two messages M1 and M2 are inverse keys one of each other,
trying to decrypt with M2 a message encrypted with M1 and conversely.

The statement private k means that k is a name which is initially only available for the
agents involved in the protocol. For instance, this is useful to simulate that an agent A and
a server S initially share a secret key kAS:

private kAS

A knows kAS

S knows kAS

A knows m denotes that, initially, the agent A knows the message m. The statement
A generates n implies that the agent A generates a fresh name n (a nonce or a freshly
generated key). All fresh names must be declared explicitly.

The meaning of actions in section narration is intuitive. A → B : M denotes that the
agent A sends a messageM to the agent B. Messages are built according to the syntactic rules
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shown in Table 3.1. With respect to the original SpyerPN syntax, we introduced the support
of operators like hmac, kap, kas and generic functions. kap and kas are used to model the
basic operations on keys which are available in key agreement protocols like Diffie-Hellman.
These functions are borrowed from [36]:

 kap(g, x) is the half key computed from secret x

 kas(k, y) is the full key computed from an half-key k and a secret y

They satisfy the algebraic property kas(kap(g, x), y) ≈ kas(kap(g, y), x), given the pre-shared
parameter g.

Agent and Name conventions As a convention, the syntax of SpyerPN distinguishes
elements of A and N, by means of the first letter of the identifier, upper and lowercase
respectively. This contrasts with the syntactic rules of AnB . We handle such differences and
later, when generating the Java code, we restore the original case of the identifiers.

Public Keys conventions SpyerPN offers two operators for modeling public and private
keys, pub and priv respectively. For instance (pub(A), priv(B)) denotes the public/private
key pair of agent A. However since in a Public Key Infrastructure (PKI) it is customary to
use one key pair for signing and another distinct key pair for encryption. AnBx supports
this schema by means of the pk and sk functions (Figure 3.4). Key pairs are translated to
SpyerPN as (pub(pkA), priv(pkA) and (pub(skA), priv(skA) respectively.

3.1.3 Protocol Translation

The first step is to define a function τ : MAnB → M, the translation of AnB messages
to their equivalent in SpyerPN , where MAnB and M are the sets of messages in the two
languages (Table 3.2). To compute τ , we also need the type information available from the
protocol header. For this purpose, it is necessary to denote, beside the set of identifiers
Ident, the subsets of identifiers of a given type: Agent, Number, SeqNumber, Function,
PubkicKey and Symmetric key.

AnB messages of type Ident are translated to the equivalent identifiers in SpyerPN ,
adjusting the names and agent according to the name conventions mentioned before. The
other messages are translated following the rules shown in Table 3.2. Again, here public and
private keys are mapped according to the key name convention seen earlier. Finally tuples in
AnB are mapped to nested ordered pairs in SpyerPN because the target language does not
support tuples, but just pairs.

Declarations - Share statements As we have seen in 3.1.1, that statements like

A,B share Msg

can be used in section Knowledge of AnBx protocols, to model pre-shared information
among agents. In general an AnBx knowledge statement A1, .., An share M , where Ai are
the agent names and M is a message, will be equivalent to the SpyerPN declarations (we do
not show here the intermediate statements in AnB):

private τ (M)

A1 knows τ (M)
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τ (·) : MAnB → {⊥} ∪M

τ (a) := toUpper (a) if a ∈ Agent
τ (a) := toLower (a) if a ∈ Ident ∧ a /∈ Agent

τ ({|m|}k) := enc (τ (m) , τ (k))
τ ({m}k) := enc (τ (m) , τ (k))
τ (op (a)) := pub (op+ τ (a)) if a ∈ Agent ∧ op ∈ Function

∧ op ∈ {pk, sk}
τ (inv (op (a))) := priv (op+ τ (a)) if a ∈ Agent ∧ op ∈ Function

∧ op ∈ {pk, sk}
τ (exp (g, x)) := kap (τ (g) , τ (x)) if g, x ∈ Number

τ (exp (exp(g, x) , y) := kas (kap (τ (g) , τ (x)) , τ (y)) if g, x, y ∈ Number
τ (hmack (m)) := hmac (τ (m) , τ (k)) if k ∈ Symmetric key
τ (hash (m)) := hash (τ (m))

τ (f (x)) := F (τ (x)) if τ (f) = F ∈M ∧ f ∈ Function
τ (E) := ⊥ otherwise

Table 3.2: Translation of AnB messages to SpyerPN (+ is the concatenation of names)

...

An knows τ (M)

The first statement is generated only if M is an identifier, but not an agent name. Recall
that SpyerPN allows declaring private only the names, but not any other kind of message.

Declarations - Types Identifiers of type Number, SeqNumber, Symmetric_key and Pub-

licKey in AnB are taken into account to generate declarations in SpyerPN . First of all, it
should be noted that the AnB Types declaration does not contain an explicit information to
identify the agent who generates or knows the declared variable or constant. Therefore, first
we have to analyze the actions of the protocols to discover the name of the agent who uses
the identifier first. Second, we must detect if an identifier represents a value which is a freshly
generated during the protocol execution or not. This is done checking if an identifier is a
variable or not, with the exception of pre-shared private names. If the answer is affirmative,
we add a generate fact, otherwise we add a knows fact. For example, the code fragment

Types

Number K1,M,z

will be translated to

Ai generates k1

Aj knows m

Ak knows z

where Ai, Aj , Ak are the first agents to use each identifier2. We assume here that m is a
pre-shared value and therefore a knows fact is generated.

2
k1 and m are now lowercase according to the syntactical conventions of SpyerPN .



3.1. Compiling AnB/AnBx into Formalized Executable Narrations 47

Declarations - Knowledge The mapping of the knowledge is rather straightforward. We
analyze the protocol section Knowledge and for every agent Ai we create a fact Ai knows m
for each message m included in the agent knowledge. Messages are translated by means of
the function τ . Some attention is required to map the public/private keys possessed by each
agent. Since in AnBx we have the notion of certified agents, we assume that their names and
public keys are available to all agents. Moreover we make the reasonable assumption that a
certified agent knows his own private key.

For example, this fragment of AnB code

Knowledge

A: A,B,hash,pk,pk(A),inv(pk(A)),pk(B)

is translated to SpyerPN as follows

A knows A
A knows B
A knows hash
A knows pk
A knows pub(pkA)
A knows priv(pkA)
A knows pub(pkB)

Narrations Each AnB action on a plain channel A → B : M is simply translated to an
equivalent action A→ B : τ (M). Actions on other channel types are not translated and an
error is raised. This is not a limitation since it is always possible to use the AnBx channels
which are compiled in AnB in actions over a plain channel.

3.1.4 Compiling Protocol Narrations

Having translated the protocol from AnB to SpyerPN , it is now possible to compute the
checks on reception applying the ideas proposed by Briais and Nestmann [25]. In this section
we summarize their approach giving an overview of the issues related to the translation process
from SpyerPN to executable narrations (Table 3.3). This representation will also be used as
the input format for the next step in code generation.

Exchanges in the executable narrations (set X, in Table 3.3) are decomposed making more
explicit the behavior of every single agent. Atomic exchanges of the form A → B : M can
hence be compiled to four more specific basic actions (non-terminal I in Table 3.3):

1. emission A : B!E of a message expression E (evaluating to M);

2. reception B :?x of a message and its binding to a variable x;

3. check B : φ for the validity of the formula φ from the point of view of agent B;

4. scoping νk, represents the creation and scope of private names. Scoping is decoupled
from agent identities, allowing to use a single construct for names that are private and
generated according to the declarations in SpyerPN .

When an agent receives a message, he binds that message to a fresh variable for reference in
subsequent processing. For this purpose, a set x, y, z, ... of variables V is introduced. Such
set is assumed to be disjoint from N ∪A.
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expressionsE
E,F ::= a name

| A agent name
| x variable
| hash(E) hashing
| pub(E) public key
| priv(E) private key
| (E.F ) pair
| π1(E) first projection
| π2(E) second projection
| enc(E,F ) encryption
| dec(E,F ) decryption
| hmac(E,F ) hmac ∗

| kap(E,F ) key agreement half key ∗

| kas(E,F ) key agreement full key ∗

| E(F ) function ∗

formulae F
φ, ψ ::= [E = F ] matching

| [E : M] well − formedness test
| inv(E,F ) inverse key test

φ ∧ φ conjunction
tt always true

simple actions I
I ::= νk fresh name generation

| A : B!E message emission
| A :?x message reception

A : φ checks
executable narrationsX

X ::= ǫ empty narration
| I;X non empty narration

Table 3.3: Syntax of executable narrations (plus extensions ∗)

Since an agent does not only handle messages but also variables, the notion of message
expressions (E) is introduced, along with the operations to construct and deconstruct mes-
sages. Messages received during the protocol execution, and stored in variables x, are closely
related to the statically intended messages M described in the narration. For this reason,
bindings (M,x) ∈M×E are used.

The process of finding out whether some expression represents a particular message, is
formalized by means of an evaluation function which is shown in Table 3.4. Note that if an
expression contains variables the evaluation fails.

Formulas φ on received messages are described by a conjunctions of three kinds of checks:

 equality tests [E = F ] on expressions denoting the comparison of two bit-streams of E
and F ;

 well-formedness tests [E : M] denoting the verification of whether the projections and
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J·K : E {⊥} ∪M

JEK := E if E ∈ N ∪A
J(E.F )K := (JEK.JF K)
Jπ1(E)K := M if JEK = (M.N) ∈M
Jπ2(E)K := N if JEK = (M.N) ∈M

Jenc(E,F )K := enc(JEK, JF K)
Jdec(E,F )K := M if JEK = enc(M,N) ∈M ∧ JF K = N ∈M

Jop(E)K := op(JEK) if op ∈ {pub, priv, hash}
Jop(E,F )K := op(JEK, JF K) if op ∈ {hmac, kas, kap}

JE(F )K := M(JF K) if JEK =M ∈M
JEK := ⊥ otherwise

J·K : F {true, false}

JttK := true
Jφ ∧ ψK := true if JφK = JψK = true

J[E = F ]K := true if JEK = JF K =M ∈M
J[E : M]K := true if JEK =M ∈M

Jinv(E,F )K := true if JEK =M ∈M ∧ JF K = inv(N) ∈M
JφK := false otherwise

Table 3.4: Definition of the evaluation of expressions and formulas

decryption contained in E are likely to succeed;

! inversion tests inv(E,F ) denoting the verification that E and F evaluate to inverse
messages.

The evaluation function is extended to formulas; it can be seen that, [E : M] is just a macro for
[E = E] . Similarly, inv(E,F ) can be encoded (for example) as [dec(enc((E.F ), E), F ) : M].

Since consistency checks will have to operate on (message,expression) pairs, the represen-
tation of the agent knowledge must be generalized to finite subsets of M×E. The underlying
idea is that a pair (M,E) denotes that an expression E is equivalent to the message M .

For this reason is it necessary to introduce the notion of knowledge sets, and two operations
on them:

! synthesis reflecting the closure of knowledge sets using message constructors;

! analysis reflecting the exhaustive recursive decomposition of knowledge pairs on as
enabled by the currently available knowledge.

Formally these sets and operations are defined as follows:

Definition 1 (Knowledge)

! Knowledge sets K ∈ K are finite subsets of M×E.

! The synthesis S(K) of K is the smallest subset of M× E containing K and satisfying
the syn-rules in Table 3.5.
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SYN−OP1
(M,E) ∈ S(K)

(op(M), op(E))∈S(K)
op ∈ {pub, priv, hash}

SYN−OP2
(M,E) ∈ S(K) (N,F ) ∈ S(K)

(op(M,N), op(E,F ))∈S(K)
op ∈ {enc, hmac, kas, kap}

SYN−PAIR
(M,E) ∈ S(K) (N,F ) ∈ S(K)

((M.N), (E.F ))∈S(K)

SYN−FUN
(M,E) ∈ S(K) (M,F ) ∈ S(K) M ∈ N

(M(N), (E(F ))∈S(K)

SYN−KAP
(M,E) ∈ S(K) (N,F ) ∈ S(K) M ∈ N

(kap(M,N), kap(E,F ))∈S(K)

SYN−KA−EQ
(kas(kap(M,N), O), kas(kap(E,F ), G) ∈ S(K) M ∈ N

(kas(kap(M,O), N), kas(kap(E,G), F ) ∈ S(K)

Table 3.5: Synthesis syn-rules

 The analysis A(K) of K is
⋃

n∈N

An(K) where the sets Ai(K) are the smallest sets satis-

fying the ana-rules in Table 3.6.

With respect to the original work [25] we added the syn-rules syn-op2, syn-fun, syn-

kap, syn-ka-eq and the ana-rules ana-op2, ana-fun. These new rules are necessary
to generalize the notion of synthesis and analysis with functions and operators defined in
AnB/AnBx , and previously unavailable in SpyerPN . It is worth noting that the syn-ka-eq

rule is necessary to model the algebraic equivalence (kas(kap(g, x), y) ≈ (kas(kap(g, y), x).

The above knowledge representation allows generating the checks required on message
reception. Assuming that agents have some initial knowledge (usually of the form (M,M)
where M are the messages corresponding to the known facts as stated in the declaration
section) the knowledge set is extended during the protocol execution, according to the infor-
mation collected during the reception actions: the expected message and the corresponding
expression. The checks must verify:

1. if the expectation of the recipient on the received message (as expressed statically in
the narration) is matched by the recipient’s current knowledge;

2. if the knowledge increase obtained receiving the message is consistent with the previously
acquired knowledge.

Some checks depend on the structure of messages: for instance, if an agent receives an en-
crypted message he should be able to decrypt the corresponding expression if he knows the
correct key.

Other checks result instead from the fact that a message M may occur more than once in
a protocol narration. In this case the same message M could be associated to two different
expressions E1 and E2. Since the term M is used in the protocol specification to refer to the
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ANA−INI
(M,E) ∈ K

(M,E)∈A0(K)

ANA−OP1
(op(M), E) ∈ An(K)

(op(M), E)∈An+1(K)
op ∈ {pub, priv, hash}

ANA−OP2
(op(M,N), E) ∈ An(K)

(op(M,N), E)∈An+1(K)
op ∈ {hmac, kap, kas}

ANA−FUN
(M(N)), E) ∈ An(K)

((M(N)), E)∈An+1(K)

ANA−FST
((M.N), E) ∈ An(K)

((M,π1(E))∈An+1(K)

ANA−SND
((M.N), E) ∈ An(K)

((N, π2(E))∈An+1(K)

ANA−DEC
(enc(M,N), E) ∈ An(K) (inv(N), F ) ∈ S(An(K))

(M,dec(E,F )∈An+1(K)

ANA−DEC−REC
(enc(M,N), E) ∈ An(K) (inv(N), F ) /∈ S(An(K))

(enc(M,N), E)∈An+1(K)

ANA−NAM−REC
(M,E) ∈ An(K) M ∈ N ∪A

(M,E) ∈ An+1(K)

Table 3.6: Analysis ana-rules

very same message, the current knowledge set can be considered consistent only if the two
expressions evaluate to the same message. In case of asymmetric keys, it can also happen that,
in some knowledge set, there is a combination of (M1, E1) and (M2, E2) whereM1 = inv(M2).
In this case, inv(E1, E2) should also be satisfied.

These requirements are formalized in the definition of consistency formula:

Definition 2 (Consistency Checks) Let K be a knowledge set. Its consistency formula
Φ(K) is defined as follows:

Φ(K) :=
∧

(M,E)∈K [E : M]

∧
∧

(M,Ei)∈K∧(M,Ej)∈S(K)∧Ei 6=Ej
[Ei = Ej ]

∧
∧

(M,Ei)∈K∧(inv(M),Ej)∈S(K) inv (Ei, Ej)

The first conjunction clause checks that all expressions can be evaluated, the second checks
that if there are several ways to build a message M , then all the corresponding expressions
must evaluate to the same value. The third conjunction clause checks that if it was possible
to generate a message M and its inverse inv(M), then the corresponding expressions must
also be mutually inverse.

The generation of the consistency formulas, implies comparing pairs taken from K with
pairs taken from S(K). It can be shown that comparing pairs only in K is not sufficient. On
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the other hand, comparing any possible combination of pairs taken from S(K), would lead
to an infinite formula. For this reason, knowledge sets can often be simplified without loss
of information, i.e. without undermining the computation of the consistency formula (for the
details refer to [25]).

Compilation The above notions are the elements required to compile a SpyerPN narration
into an executable protocol narration. The translation function keeps track of the global
information on the used variables and hidden names, as well as the agent local information,
about their knowledge on generated names.

In detail, statements like private k and A generates n check both that the local (or gen-
erated) name is fresh, but they are handled differently: whereas the construction A generates
n increases the knowledge of A, the name k of private k is not added to any knowledge; this
task is deferred to the explicit A knows k clauses for the intended A.

The compilation of A → B : M checks that M can be synthesized by A, instantiate a
new variable x and adds the pair (M,x) to the knowledge of B.

The consistency formula Φ(A(K ′
B)) of the analysis of the updated knowledge K ′

B defines
the checks φ to be performed by B at run-time.

The compilation process is formalized in [25]. The same paper contains various extended
examples to illustrate the concepts behind this translation.

3.2 Executable Narrations Optimization

The code generated in the previous steps describes precisely the actions and the checks to be
performed by every agent. While the executable narration is fine for defining the semantics
of the protocols, it is far from being efficient when applied in practice. We address here some
issues that can improve the performance of the protocol execution or can make the generated
code, in the target language, more compact and readable.

Additionally, in the final output that we call optimized executable narration (Opt-Execnarr),
we include, along with the mapping of the actions, the declaration section available for the
SpyerPN format. This is useful because the declarations model the knowledge of the agents,
as such information will be analyzed generating of the code. It worth noting that in the decla-
rations only names or ground expressions are present. The syntax of the optimized executable
narration is shown in Table 3.7.

Since the meaning of these optimizations is rather intuitive, we present them informally
with the support of an example. Let’s consider the first AnBx step of the revised 2KP
protocol. Agent C sends to agent M a message composed by two verifiable digests:

C->M,(-|-|M):[can(C):A],[Desc:M]

The statement is translated to AnB as follows:

C->M:{{ hmac(can(C),HA},{HA}pk(A),hmac(Desc ,HM),{HM}pk(M)}pk(M)

which is further translated to executable narration, in an emit and a receive action

C: M!enc(<hmac(can(C),ha),<enc(ha,pub(pkA)),

<hmac(desc ,hm),enc(hm,pub(pkM))>>>,pub(pkM)

M ?0

where 0 is the variable representing the message received by M . On reception the agent
M has to perform several checks. One of the equality checks is
π1(π2(π2(dec(0, priv(pkM))))) = hmac(desc, dec(π2(π2(π2(dec(0, priv(pkM))))), priv(pkM)))
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expressions
E, F ::= [...] same as Execnarr

| (E1, ..., En) tuple
| πi(E) i− th projection

formulae
φ, ψ ::= [...] same as Execnarr

simple actions
I ::= A : new k fresh name generation

| A : send(B,E) message emission
| A : receive(x) message reception
| A : x := E assignment

narrations
L ::= ǫ empty narration

| T ;L non empty narration
declarations

D ::= A knowsM initial knowledge
(M is a ground expression)

| A generates n fresh name generation
| private k private name

protocol narrations
P ::= D;P sequence of declarations

| L narration

Table 3.7: Syntax of the optimized executable narrations

Pair ⇒ Tuples As we have seen (3.1.3), SpyerPN allows composing messages using pairs
but not tuples. This is a design choice of the authors of [25] and we maintained the compat-
ibility with their tool. One good practical reason is the possibility to convert the protocol to
Spi Calculus (see the intermediate output formats paragraph below). However, if we look at
the above example we understand at first sight that the presence of many nested projections
makes the code is not well readable. For this reason we transformed the pairs in tuples. The
projection operator πi [·] is commonly available in many programming languages, for example
the retrieval of the i-th element of an array. The above check becomes:

π3[dec(0, priv(pkM))] = hmac(desc, dec(π4[dec(0, priv(pkM))], priv(pkM)))

Variable Generation and Reordering From the previous example we observe that in
the equality checks, the decryption of the variable 0 – dec(0, priv(pkM)) – is performed twice.
In general, during the protocol execution, operations like encryption, decryption, hashing can
be repeated on the same data several times.

This phenomenon affects both actions and checks. For example, in sequence of actions,
it may be required to resend pieces of data received earlier. They may be the result of some
complex expressions involving nested encryption and decryption operations. Similarly in an
equality checks we have to take into account all the different ways to compute the values
that are compared. This implies that on the two sides of different equality checks, the same
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expression or common sub-expression can appear repeatedly.
Since it is well known [41, 57, 74] that cryptographic operations are computationally ex-

pensive, it is convenient to store the results of common sub-expressions in variables that can
be later retrieved when they need to be employed in the remaining part of the protocol exe-
cution. We make here the reasonable assumption that reading from and writing to the RAM
is less expensive in time and space than performing additional cryptographic operations on
the same data.

Thus, the above example can be amended

C: VAR_C_MCANCH2A :=hmac(can(C),ha)

C: VAR_C_MDESCH2M :=hmac(desc ,hm)

C: M!enc(<VAR_C_MCANCH2A ,enc(ha ,pub(pkA)),

VAR_C_MDESCH2M ,enc(hm,pub(pkM))>,pub(pkM))

M: ?VAR_M_0

M: VAR_M_DJI4DM0VPMVPM :=dec(proj [4][ dec(VAR_M_0 ,priv(pkM))],priv(

pkM))

Variables, with prefix VAR_X_ where X is the agent name, are created and expressions are
assigned to them. In general, in order to decide if an expression is worth to be stored in a
variable it is necessary to check all the following statements of the protocol.

Our tool performs this in two passes. During the first pass (discovery phase) the state-
ments of the protocol are analyzed and the candidate expressions are found. Candidate
expressions must include at least one of the following CPU intensive operations: encryption,
decryption, hashing, hmac, functions and operations on keys like those performed during key
agreements. It is clear that at this level of abstraction, is it impossible to assess the computa-
tional complexity of symbolic non cryptographic functions, but we preferred to include them,
considering their presence in the abstract model, as an index of their relevance.

If, during the protocol execution, the candidate expression is computed by an agent more
than once, a new variable is created and the expression is assigned to it. The expression is
then replaced by the variable in all its occurrences. The mapping of variables and expression
is stored.

In the second and final pass (reordering phase), the variable assignments are analyzed and
reordered to further decrease the number of cryptographic operations avoiding recomputing
more than once the same values. This pass is needed because during the first pass the state-
ments are analyzed in the sequential order, therefore a second pass may discover dependencies
among variables, and thus anticipate the assignment of variables which are sub-expression of
other variables. For example, this sequence of statements

C: VAR_C_1 := dec(proj[i:4][ dec(VAR_C_0 ,priv(pkC))],priv(pkC))

C: VAR_C_2 := dec(VAR_C_0 ,priv(pkC))

can be reordered as follows, saving one decryption operation

C: VAR_C_2 := dec(VAR_C_0 ,priv(pkC))

C: VAR_C_1 := dec(proj[i:4][ VAR_C_2],priv(pkC))

Deferred Generation of Fresh Values In an executable narration, the actions associated
with the generation of fresh values, if present, are placed by spyer at the beginning of the
protocol, regardless the actual step in which they are used. It is hence useful to rearrange the
order of actions to defer the creation of fresh values until it is really necessary. In practice
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Protocol Avg exec time (ms) Exec time reduction

1KP (opt) 1681 -39%

1KP 2768

2KP (opt) 2320 -29%

2KP 3257

3KP (opt) 2775 -36%

3KP 4076

Table 3.8: Experimental results of the optimization

the effect is to place each new action just above the action employing for the first time the
fresh value. This could reduce to load of the processor, for example when a protocol session
is aborted, due to a check failure.

Experimental Results In order to verify the benefit of the optimization we generated the
Java code of the three variants of iKP (1KP,2KP and 3KP). For each protocol we considered
two different settings: one with the optimization and the other without. In both cases, pairs
were already converted to tuples, so this aspect is not taken into account in the experimental
results. Within the Eclipse 3.7 IDE, we run five times each protocol on a computer with
these features: CPU AMD Athlon 64 X2 (dual-core) 3.0 GHz, RAM 4 GB, operating system
Windows 7 64-bit SP1. The three instances (one for each role) were running in parallel
on the same machine. The experimental data (Table 3.8) show that the optimization pays
off reducing the execution time between 30% and 40% for the three versions of iKP. The
translation from AnBx to AnB we used here was the“lightest”, doing the minimum number of
exchanges and cryptographic operations, with respect to more realistic setting (for example,
those using challenge-response to achieve the freshness). We think that in these cases the
benefit of the optimization will be even greater.

Intermediate Output Formats In this section we have illustrated the steps to translate
an AnBx /AnB protocol to an optimized executable narration. As we have seen this process
comprises these several phases, as showed in Figure 3.1, and summarized here:

AnBx→ AnB→ SpyerPN→ Execnarr→ Opt-Execnarr

Our tool provides an output for each of these intermediate formats. This can be useful
not only for making easier the debugging, but also for allowing interoperability with other
tools including spyer itself. Moreover, as a by-product inherited from the spyer tool, we can
also output to a sub-calculus of the Spi Calculus [3], that can then be used with the Symbolic
Bisimulator Checker (SBC) [22].
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4
Automatic Java Code Generation of

Security Protocols

4.1 From Executable Narrations to Java Code

As we have seen in the previous chapter we began from a specification of a security protocol in
AnBx and through a series of translations we obtained a more detailed, but still abstract, rep-
resentation of the protocol, called optimized executable narration. This intermediate protocol
scheme, that formalizes and refines the original specification, is an important step because
it makes explicit the actions and the checks upon reception that each agent has to perform
during the protocol execution. The way such actions and checks are written is suitable to be
translated in an imperative programming language because they can be expressed by means
of constructs that are generally available in such languages: variable assignments, functions
and procedure calls, logical conditions such as equalities.

It should be clear that before to automatically generate the source code of an application,
we need to fill several implementation details that are not caught by the formal model. If
we consider the optimized executable narration as a complete, language independent, abstract
representation of the protocol, we can devise a design approach that keeps apart the protocol
logic from the application logic.

Informally we can say that, given a target programming language, the application logic is
the part of code which is added to the protocol logic to generate the concrete and complete
application. Separating the two logics (Figure 3.2) has the advantage to allow the potential
generation of source code in different programming languages. Although here we are focusing
on Java we think that, applying the same strategy, generating code in other object-oriented or
procedural typed languages might be done with a limited effort. The main idea is to plug the
protocol logic in the application skeleton/template which is independent from the protocol
itself.

To implement such approach, from the practical point of view, we need at least the
following ingredients:

 a parametrized application template – the application logic

 the information derived from the protocol – the protocol logic – employed in the prepa-
ration of the code generation. We denote such intermediate format as JProtocol .

 a software library accessible through an application programming interface
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Parametrized Application Template - Application Logic This component, written
in the target language, is the skeleton of the application. The functions implemented by this
template can include, for example, the parsing of command line arguments, the initialization
of the agents, the configuration of the communication channels and the software components
offering access to the cryptographic resources. These functionalities are typically used by
every security application regardless the concrete protocol and hence they are suitable to
be included in the application template. Clearly the concrete code must be parametrized
according to the protocol specification, hence the protocol steps and relative actions will
depend on the specific protocol. Additionally we can consider the fact that every agent must
open at least a communication channel, but the exact number of channels depends on the
protocol logic.

JProtocol - Protocol Logic From the optimized protocol narration we must derive the
information that will be used to instantiate the application template, and hence a translation
process must be defined. We found useful to introduce here another intermediate step because
it makes simpler to extract from the protocol narration the information, i.e. the parameters,
that will be used to instantiate the application template during the code generation. This
format is still independent from the target language, and this comes out to be handy for the
generation of the code in the target language.

The information extracted includes the parameters needed to instantiate each agent: the
channels used, the local variables and the local procedures. It is worth noting that almost
all the information can be directly derived from the optimized protocol narration, but, in a
few cases, it might be necessary, or just more convenient, to retrieve the information from the
AnB specification.

Since it reasonable to assume that the target language must be a typed language, we need
to infer the type of variables and expressions. In general the AnB types are too vague to be
used in a effective way in a real programming language. Therefore, in addition to the type
system (4.1.2), we will need some convention on the variable names.

The intermediate protocol format, that we call JProtocol , it is a 7-tuple including the
following elements:

(name, roles, steps, channels, fields,methods, actions)

1. The protocol name. It is used thoroughly in the code generation. First of all it gives the
name to the application. It is retrieved from the AnB specification, since the SpyerPN
and the executable narration do not carry this data.

2. The roles (agents) running the application. The role names are used by the agents to
refer to their peers in the narration. They will also be bound to the concrete agent
names/aliases by means of a mapping defined in the application configuration file (see
4.1.3). Since the set of roles is built analyzing the actions, agent names included in the
agent knowledge, but not involved in the protocol, are ignored.

3. The protocol steps. To improve the readability of the generated code, instead of writing
the actions performed by each agent as sequence of statements, it is more convenient to
group corresponding consecutive instructions according to the protocol steps in which
they are executed. Each step includes only one send or one receive action, and zero or
more actions of type assignment or check. The idea is to have a main procedure calling to
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a subroutine parametrized on the protocol step. This allows generating more meaningful
logs and make easier the debugging the code. The steps are retrieved analyzing the
protocol actions.

4. The communication channels employed during the protocol execution. Each pair of
communicating agents needs a channel. It will be, in a standard network environment,
a TCP/IP socket where one agent will act as client and the other as server. As a design
choice, the one who starts the communication will be the client, the other the server.
If an agent is exchanging messages with more than one agent, he will open a different
channel with each peer. Again, the channel parameters are inferred from the protocol
actions.

5. For each role, the local variables, procedures and functions. In an object oriented
terminology, the class fields and methods that are declared by each role class. These
element will be used in statements that will implement the protocol actions in the target
language.

6. The actions performed by each agent during the protocol run. There are two issues to
consider in the translation from the optimized executable narrations to the intermediate
format: the translation of actions, and the translation of expressions used in such
actions.

How local methods and field are retrieved and how actions are translated is explained in the
next section.

Software Library and its Application Programming Interface Instead of fully gen-
erating the source code of every function used by the application, it is convenient to isolate a
set of software components which can be reused among different applications. This approach
is feasible because the class of programs we are considering performs actions that can share
a common set of standard functions. Think about sending and receiving messages, encrypt-
ing and decrypting data, and so on. Therefore it is advantageous to group and standardize
these common functions and data structures, in what is usually called a software library. The
access to the resources of the library is, as customary, defined by means of an application
programming interface (API) defining how the software components can communicate among
them. This design strategy has several clear advantages:

 it relieves the application from dealing with a lot of implementation details;

 it makes considerably simpler the specification of the application templates;

 it makes more modular and cleaner the shape to the application;

 the maintenance of the code is simpler and more efficient: every program can benefit
from the improvements and bug fixes in the library;

 it gives the chance to use alternative implementations of the library, provided the same
standard API.
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4.1.1 From Optimized Executable Narration to JProtocol

As we have seen, the intermediate representation of the protocol is a 7-tuple:

(name, roles, steps, channels, fields,methods, actions)

In the previous section we shortly explained how the first four components are retrieved
from the optimized executable narration. The procedure is simple and does not deserve any
further explanation. Instead the last components require some care:

Local Procedures/Methods The set of local (private to each role) methods is built ana-
lyzing the declarations of the optimized protocol narration. If a function is part of the agent
knowledge, excluding functions belonging to the library, such function must be available to
the agent. In practice, in an object oriented language, a private method must be implemented
in the role class. However, since in the protocol narrations the functions are abstract, only
the skeleton of the method can be generated and a dummy value is returned. In this way, the
generated code can be compiled and the application will be runnable, but the duty of filling
the skeleton with a concrete implementation of the function is left to the user. This is the
only “unfinished” portion of code produced by the code generator.

Local Variables/Fields The definition of the local variables, or class fields, is obtained by
two components:

1. The first one derives from the declarations, and includes, for each agent, the known and
the generated names. For each name a variable is declared, excluding the role names
and the function names. For example, given this portion of the knowledge of agent A:

M knows hash

M knows hmac

M knows C

M knows price

M generates tid

the translation will include the declaration of two variables price and tid. The re-
maining names are ignored because they are either role names (C) or functions included
in the library (hash and hmac). Along with the variable identifier, the type, as inferred
by the type system (see 4.1.2), is stored.

2. The second component is built gathering information from the action list. For each
assignment or reception action a variable will be declared. For example, these statements

M: ?VAR_M_0

M: VAR_M_1 := dec(VAR_M_0 ,priv(pkM))

will imply two variables declarations: VAR_M_0 and VAR_M_1. They will, respectively,
store the value received by agent M and the result on an expression, namely the compu-
tation of the decryption of the first variable with the private key of agent M. Again, the
type of the variable is evaluated by the type system.
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E,F ::= encrypt(E,F ) encryption
| decrypt(E,F ) decryption
| sign(E,F ) signature
| verify(E,F ) verify
| hmac(E,F ) hmac
| hash(E) hash
| DHPubKey(E,F ) DH public key
| DHSecKey(E,F ) DH secret key
| (E1, ..En) tuple
| πi(E) projection
| f(E) function
| var(x,E) variable binding
| id identifier

Table 4.1: Syntax of jexpressions

Mapping of Expressions The last component of JProtocol , the mapping of the actions,
requires the translation of expressions (Table 3.7) to a format that we call jexpressions (Table
4.1). In many cases the translation is straightforward, but when the expression includes
functions like encryption and decryption some care is needed. The operators enc and dec are
commonly used to model the symmetric and asymmetric encryption. Moreover in the latter,
we distinguish, as it happens in practice, between the digital signature operation and the
standard encryption applied to achieve secrecy. The discrimination is done by means of the
public keys conventions (see 3.1.2): key identifier = prefix sk + agent name, for the signature
and key identifier = prefix pk + agent name, for the encryption. Key patterns not falling
in these two classes are treated as a symmetric encryption. The type checker is in charge of
verifying if the key type is coherent with the structure of the expression.

Here some examples showing how expressions are translated to jexpressions:

dec(X,priv(pkM)) => dec(X,priv(pk(M))

dec(X,pub(skM)) => verify(X,pub(sk(M))

enc(X,pub(pkM)) => enc(X,pub(sk(M))

enc(X,priv(skM)) => sign(X,priv(sk(M))

dec(X,K) => dec(X,K)

enc(X,K) => enc(X,K)

The translation of identifiers (names) and agent names maps each identifier to a pair
(identifier, type). Since SpyerPN and the subsequent narrations are untyped, we rely on the
declarations statements included in the AnBx specification. No ambiguity arises for types
Agent, Certified, and SeqNumber. Identifiers of type PublicKey are conventionally mapped
to public keys for encryption. Instead types like Number and Symmetric_key are too generic
to be employed directly. For example, nonces and key agreement parameters including half-
keys are all declared in AnBx as Number but in the target language they have, in general, a
different type.

To overcome any possible ambiguity, the type is inferred by means of a naming convention
(see Table 4.2), provided that these identifiers where declared as Number or Symmetric_key.
The same name convention is used to denote identifier added in the compilation from AnBx
to AnB , hence the original type is preserved.
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prefix type

Nx nonce
Kx symmetric key
Xx,Yx Diffie-Hellman parameters and half keys
Hx hmac keys
SQNx sequence number

Table 4.2: Naming convention for identifiers of type Number and Symmetric_key

I ::= A, i : new k : T fresh name generation
| A, i : send(B, ch,E) message emission
| A, i : receive(B, ch, x : T ) message reception
| A, : x : T := E assignment

where A,B agents, x:T variable of type T, E expression, ch channel, i step

Table 4.3: Syntax of jaction

Identifiers are also changed restoring their original case as declared in AnBx . Recall that
SpyerPN introduces some convention on identifiers and agent names (see 3.1.2).

Mapping of Actions Having translated the expressions is now possible to translate the
actions to the format we call jaction (Table 4.3). First of all, every action is labeled with the
protocol step. As we mentioned earlier each step includes one send or one receive action, and
zero or more actions of type assignment or check. Therefore the protocol step number is not
unique but it is used to group consecutive actions in the generated code. Moreover emission
and reception actions are enriched with the reference to the communication channel used by
them. This is necessary because in the concrete code the communications actions must be
bound to a specific communication channel. The steps and the channels lists are available
from the previous steps. Finally, the type of the variables created in actions – reception,
assignment and fresh name generation – is inferred by the type system and stored along with
the variable identifier.

4.1.2 The Type System

AnB is a typed language, but its set of types it is too poor compared with the needs typical
in coding a security protocol. Although the variety of types depends on the specific language,
in general any real typed programming languages has a range of types richer an abstract
language like AnB . Although in some cases, it could be possible to have a minimal set of
types in the target language, this does not bring any benefit. On the contrary, it is well
known that types help to code better programs [70].

Considering the application field of AnB , the verification of security protocols, types like
Number and Symmetric_key are sufficient to represent the terms used in protocols. However
terms belonging to the same type in AnB , as we have seen, might be translated differently in
target language. For instance, while Number is used in AnB to model both nonces and key
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agreement half-keys, in Java nonces may be instances of the class ByteArray, while public
half keys may be instances of the class PublicKey.

The naming convention we devised (Table 4.2) helps to discriminate identifiers of different
type to some extent, but in general it is not sufficient for handling complex terms. Let’s look
at the encryption and decryption operations. Agents should be able to encrypt terms of any
type1; in turn, decryption should output a term of the original type, the type of the data
before the encryption. For example, in Java we could have a cryptographic engine exposing
the following methods for symmetric encryption and decryption:

public SealedObject encrypt(Object obj , Key symmetricKey) {...}

public Object decrypt(SealedObject so, Key symmetricKey) {...}

The first methods encrypts any Object with an appropriate Key and outputs an encrypted
object of type SealedObject. A snippet of code using such methods is:

private SealedObject SO = null;

private String Msg = new String ("msg");

private Key myKey = ... // the key is retrieved from the key store

SO = encrypt(Msg , myKey);

ch.send(SO); // the data is send to the network

It should be noted that the call to encrypt() does not require an explicit cast of Msg.
In fact String, as any other type in Java, is a subtype of Object. On the contrary, the
decrypt() method outputs a value of type Object. Therefore in order to assign that value
to a variable of type String an explicit cast is required. Otherwise the program will not
compile.

private SealedObject SO = null;

SO = ch.receive (); // a SealedObject is received from the network

private String Msg;

private Key myKey = ... // the key is retrieved from the key store

Msg = (String) decrypt(SO, myKey);

However this does not guarantee the absence from run-time errors. For example, in the
above code, we could have a run-time error (and the raise of cast exception) if the decrypted
object is not of the expected type (String) or a subtype of it.

What we need, in general, is the ability to infer the type of terms. This is used to declare
new variables or to compute the appropriate cast in assignments or within expressions. Such
task can be accomplished by the type system and its type inference algorithm. As a first
step we must to declare the types we want to include in the type system. Types in Table
4.4 are those typically used in a wide range of security applications. It is worth noting that
these types are still abstract, in the sense that their mapping to concrete types in the target
language is postponed until the actual code is generated. We employ here an object oriented
terminology because Java is our main target language but this type system could be employed
also with other typed procedural languages like C or Pascal.

Some types (Agent,Certified,SeqNumber,SymmetricKey) simply map theAnBx types. Pub-
licKey and PrivateKey are parametric types where the parameter is used to distinguish keys
with different purpose (signing and encryption). Three more parametric types are used for
encrypted (sealed) and signed objects. In this case the parameter is needed to keep track
the type of the original object before the cryptographic operation. The parameter is then

1Some restriction my apply but it’s not relevant at this context
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T ::= Agent agent
| Certified certified agent
| Nonce nonce
| SeqNumber sequence number
| SymmeticKey symmetic encryption key
| PublicKey 〈S〉 public key of type S
| PrivateKey 〈S〉 private key of type S
| SealedObject 〈T 〉 sealed object of type T
| SealedPair 〈T 〉 sealed object of type T + key
| SignedObject 〈T 〉 signed object of type T
| Hash hash
| HmacKey hmac encryption key
| HmacPair hmac + key
| DHBase DH parameter spec
| DHKeyPair DH key pair
| DHPubKey DH public key
| DHSecKey DH secret key

|
{

Ti
i∈{1..n}

}

tuple
| T → T function
| String base type
| Object base type

S ::= PK key pair type for encryption
| SK key pair type for signing

Table 4.4: Type system - Types

employed when the inverse operation is performed. In details, SealedObject is an encrypted
object, SealedPair is used when a key is encrypted along with data as in the hybrid cryp-
tography, SignedObject is a digitally signed object. Hash and HmacPair are used to model
digests supported by AnBx . HmacPair has the option of storing an optional key for verifiable
digests. Keys used to compute the HMACs should have type HmacKey. A set of DH-types
is used for values employed in key agreements. Tuples and functions are standard features
of the language and they have their type counterparts here. Finally Object and String are
the base types. Object can be thought as the default type, while String is a type commonly
available in many programming languages, and it is useful in the generated code to produce
human readable output.

The type inference algorithm is based on the typing rules shown in Table 4.5.

The t-hash and t-hmac rules model the creation of digests. The original type is ob-
fuscated and cannot be retrieved since hashing and macs are not invertible. t-fun models
functions, t-cat the concatenation and t-proj the projection. t-enc-* rules model encryp-
tion. It should be noted that we impose some constraints on the type of the key, depending on
whether asymmetric or symmetric encryption is used. The resulting type is parametrized on
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T−HASH
t : T

hash(t) : Hash

T−HMAC
t1 : T1 t2 : HmacKey

hmac(t1, t2) : HmacPair

T−FUN
f : T1 → T2 t : T1

f(t) : T2

T−CAT
for each i ti : Ti i ∈ {1..n}

{

ti i∈{1..n}
}

:
{

Ti i∈{1..n}
}

T−PROJ
t1 :

{

Ti
i∈{1..n}

}

t1.j : Tj

T−ENC−ASYM
t1 : T1 t2 : PublicKey 〈PK〉

enc(t1, t2) : SealedPair 〈T1〉

T−ENC−SYM
t1 : T1 t2 : T2

enc(t1, t2) : SealedObject 〈T1〉
T2 ∈ {SymmetricKey,DHSecKey}

T−DEC−ASYM
t1 : SealedPair 〈T1〉 t2 : PrivateKey 〈PK〉

dec(t1, t2) : T1

T−DEC−SYM
t1 : SealedObject 〈T1〉 t2 : T2

dec(t1, t2) : T1
T2 ∈ {SymmetricKey,DHSecKey}

T−SIGN
t1 : T1 t2 : PrivateKey 〈SK〉

sign(t1, t2) : SignedObject 〈T1〉

T−VERIFY
t1 : SignedObject 〈T1〉 t2 : PublicKey 〈SK〉

verify(t1, t2) : T1

T−KAP
t1 : DHBase t2 : DHKeyPair

kap(t1, t2) : DHPubKey

T−KAS−1
t1 : DHPubKey t2 : DHKeyPair

kas(t1, t2) : DHSecKey

T−KAS−2
t1 : DHKeyPair t2 : DHPubKey

kas(t1, t2) : DHSecKey

Table 4.5: Type system - Typing rules
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T1, the type of the original object before encryption. Symmetrically the t-dec-* rules model
the decryption. Here the parameter is used to determine the type of the object after the
decryption. Similarly, some checks are done on the type of the keys employed for decryption.

t-sign and t-verify behave like t-enc-* and t-dec-*, but they are used to model the
digital signature and its verification. The last three rules t-kap, t-kas-1 and t-kas-2 are
used to set the typing rules of the operations performed during the key agreements. Two
t-kas-* rules are provided because they model two ways the agents have to compute the
shared secret keys, at the end of the key agreement protocol.

For the practical implementation of the type system we found useful to take inspiration
from the examples included in ”Types and Programming Languages” (TAPL) by Benjamin
C. Pierce [70]. In particular we adapted some portion of the Haskell port of the origi-
nal OCaml implementations. The port is done by Ryan W. Porter, and it is available at
http://code.google.com/p/tapl-haskell/

4.1.3 Application Template

The last component of our toolbox is the application template. This set of files represents
the skeleton of the Java application, and we refer to it as the application logic. The template
is filled with the protocol logic, the data synthesized from the specification of the executable
narration, and stored in the JProtocol data structure. The template files must be written in
the target language, Java in our case.

As a running example, we show portions of code taken from the revised 2KP (protocol
name: Rev_2KP). Additionally, to help orienting the reader, the UML class diagram of the
resulting application is shown in Figure 4.1.

In general, assuming that the protocol name is ProtName, the full application is composed
by the following Java file (classes):

ProtName.java

The main file of the application defines the ProtName class, which implements only the method
main(). This method is invoked when the application is started: the level of debugging
messages is set and the command line parameters are passed, by means of the Parse()

method, to the final class ProtName_CommandLine_Parser. The command line parameters
args must include, along with other settings, the agent role that this instance of ProtName
is playing during the protocol execution. For each agent an instance of ProtName must be
created.

public class Rev_2KP {

public static void main(String [] args) {

AnBx_Debug.setAPPLICATION(true);

AnBx_Debug.setPROTOCOL(true);

Rev_2KP_CommandLine_Parser.Parse(args ,Rev_2KP.class.toString ());

}

}
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Figure 4.1: UML class diagram of revised 2KP in Java
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ProtName_CommandLine_Parser.java

The purpose of the ProtName_CommandLine_Parser class is to initialize the application. The
invocation of method Parse() causes the processing of the configuration file (details about
its content are given below). The command line arguments are used to set up the parameters
of the application. In detail, the main actions performed by this class are:

1. the mapping between the roles in the protocol and the identities of principals playing
those roles. This is done by the initRole method

Channel_SSLChannelType ct = Channel_SSLChannelType.SSL_PLAIN;

Map <String , Channel_Settings > cs = new HashMap <String ,

Channel_Settings >();

Map <String , String > aliases = new HashMap <String ,String >();

Rev_2KP_Principal Rev_2KP_pr = null;

initRole(ct , role , cs , aliases);

Here ct is SSL/TLS channel type we are running the application on top of it . The
default value is the plain channel.

2. reading the configuration file

private static void initRole(Channel_SSLChannelType ct,

Revised_2KP_Roles role , Map <String , Channel_Settings > cs, Map <

String , String > aliases) {

[...]

Properties configFile = new Properties ();

try {

AnBx_Debug.out(layer , "Reading config file: " + configFileName.

toString ());

configFile.load(Rev_2KP_CommandLine_Parser.class.

getResourceAsStream(configFileName));

} catch (IOException e1) {

AnBx_Debug.out(layer , "Error reading config file: " +

configFileName.toString ());

e1.printStackTrace ();

}

}

3. reading, from the configuration file, the key path of the keystore, where keys and cer-
tificates can be retrieved. Additionally the alias of the agent is set; this is necessary for
self identification, for example for the retrieval of the private keys

private static void initRole(Channel_SSLChannelType ct,

Revised_2KP_Roles role , Map <String , Channel_Settings > cs, Map <

String , String > aliases) {

[...]

myAlias = configFile.getProperty(role.toString ());

keypath = configFile.getProperty("keypath");

[...]

}

4. the creation and the initialization of the communication channels. Parameters like the
hostname, the port, and the role played in the channel (client or server) are retrieved.
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private static void initRole(Channel_SSLChannelType ct,

Revised_2KP_Roles role , Map <String , Channel_Settings > cs, Map <

String , String > aliases) {

[...]

for (Rev_2KP_Roles peer : Rev_2KP_Roles.values ()) {

if (configFile.getProperty(peer.toString ()) != null) {

aliases.put(peer.toString (), configFile.getProperty(peer.

toString ()));

}

if (!peer.equals(role)) {

ch = channelName(role ,peer);

String host = configFile.getProperty(ch + "_host");

if (host != null) {

Integer port = Integer.parseInt(configFile.getProperty(ch +

"_port"));

if (configFile.getProperty(ch + "_role").equalsIgnoreCase("

Client")) {

cs.put(peer.toString (),new Channel_Settings(ct,

Channel_Roles.CLIENT , host , port));

} else {

cs.put(peer.toString (),new Channel_Settings(ct,

Channel_Roles.SERVER , host , port));

}

}

}

}

5. the creation of an object of class ProtName_Principal, according to the role the agent
is playing, and the invocation of its method run().

Rev_2KP_Principal Rev_2KP_pr = null;

Properties configFile = new Properties ();

initRole(ct , role , cs , configFile , aliases);

if (myAlias != null && keypath != null) {

Rev_2KP_pr = new Rev_2KP_Principal(myAlias , keypath , cs, aliases

);

switch (role) {

case ROLE_C:

Rev_2KP_pr.run(new Rev_2KP_ROLE_C(role , protname));

break;

case ROLE_M:

Rev_2KP_pr.run(new Rev_2KP_ROLE_M(role , protname));

break;

case ROLE_a:

Rev_2KP_pr.run(new Rev_2KP_ROLE_a(role , protname));

break;

}

} else {

AnBx_Debug.out(layer , "Unable to initialize

Rev_2KP Principal");

}

}
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ProtName_Principal.java

This class extends the library class AnB_Principal and holds the agent knowledge about
channels and cryptographic material (keys, certificates, aliases). Once the principal is initial-
ized a call to the superclass method run() executes in sequence the steps the protocol, that
the agent has to perform .

class Rev_2KP_Principal extends AnB_Principal {

public Rev_2KP_Principal(String myAlias , String path , Map <String ,

Channel_Settings > cs, Map <String , String > aliases) {

super(myAlias , path , cs, aliases);

}

}

ProtName_Role_<X>.java

This class extending the library class AnB_Protocol (Figure 4.7) is the core of the application.
A different file, where X is replaced with the role name, is generated for each role. The method
run() initialize the communication channels and executes the steps of the protocol. The two
parameters of run() are the mapping of the communication channels and the mapping of
role/aliases. Here we are showing portions of code of the agent playing the Merchant role
(ROLE_M) who directly communicate with two other agents, the customer (ROLE_C) and the
acquirer (ROLE_a), and therefore he needs to open two channels.

public void run(Map <String , AnB_Session > lbs , Map <String , String >

aliases) {

this.aliases = aliases;

AnB_Session ROLE_M_channel_ROLE_C = lbs.get("ROLE_C");

AnB_Session ROLE_M_channel_ROLE_a = lbs.get("ROLE_a");

try {

init();

ROLE_M_channel_ROLE_C.Open();

ROLE_M_channel_ROLE_a.Open();

do {

executeStep(ROLE_M_channel_ROLE_C , Revised_2KP_Steps.STEP_0);

[...]

executeStep(ROLE_M_channel_ROLE_C , Revised_2KP_Steps.STEP_7);

} while (loop);

ROLE_M_channel_ROLE_C.Close();

ROLE_M_channel_ROLE_a.Close();

} catch (Exception e) {

[...]

}

}

The method executeStep() executes the actions specified by each steps (sending, receiving,
variable assignments, checks on reception). The two parameters are the session s and the pro-
tocol step to be executed. The AnB_Session (Figure 4.6) is a library class giving access both
to the communication channel and to the cryptographic functions. Several communication
and cryptographic operations are performed in these two protocol steps.

private void executeStep(AnB_Session s, Rev_2KP_Steps step) {

status(step);
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switch (step) {

case STEP_0:

// C -> M,(-|-|M): [can(C):a],[Desc:M]

// C -> M: {hmac(can(C),H3a) ,{H3a}pk(a),hmac(Desc ,H3M),{H3M}pk(M)}pk

(M)

VAR_M_0 = (Crypto_SealedPair) s.Receive ();

VAR_M_DM0VPM = (AnBx_Params) s.decrypt(VAR_M_0);

VAR_M_DJI4DM0VPMVPM = (SecretKey) s.decrypt (( Crypto_SealedPair)

VAR_M_DM0VPM.getValue (3));

VAR_M_MDESCDJI4DM0VPMVPM = s.makeHmac(Desc ,VAR_M_DJI4DM0VPMVPM);

eqCheck (( Crypto_HmacPair) VAR_M_DM0VPM.getValue (2),

VAR_M_MDESCDJI4DM0VPMVPM);

break;

case STEP_1:

// M -> C,(@M|C|-): TID ,[Price ,TID ,[Desc:M],[can(C):a]]

// M -> C: {C,SQN4 ,TID ,hash(Price ,TID ,hmac(Desc ,H3M),hmac(can(C),

H3a))}inv(sk(M))

TID = s.getSeqNumber ();

SQN4 = s.getSeqNumber ();

s.Send(s.sign(new AnBx_Params(aliases.get("ROLE_C"),SQN4 ,TID ,s.

makeDigest(new AnBx_Params(Price ,TID ,VAR_M_MDESCDJI4DM0VPMVPM ,(

Crypto_HmacPair) VAR_M_DM0VPM.getValue (0))))));

break;

case STEP_2:

[...]

}

status(step);

}

ProtName_Roles.java

This enumeration class contains the list of roles (agents) participating in the protocol.

public enum Revised_2KP_Roles {

ROLE_C , ROLE_M , ROLE_a

}

ProtName_Steps.java

This enumeration class contains the list of steps of the protocols.

public enum Rev_2KP_Steps {

STEP_0 , STEP_1 , STEP_2 , STEP_3 , STEP_4 , STEP_5 , STEP_6 , STEP_7

}

Configuration File

The last generated file is the configuration file which contains a set parameters that, along
with the command line arguments, are used to initialize the application. This file can be
easily modified by the end user without need to re-generate the code of the application. An
example of configuration file is shown in Figure 4.2. The parameters include the path where
the keystore is located in the file system. The keystore contains the keys and certificates of
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# Protocol: Rev_2KP

# Java Config File: "C:/ genAnBx/src/Rev_2KP/Rev_2KP.properties"

# Roles/Aliases

ROLE_C = alice

ROLE_M = bob

ROLE_a = charlie

# Channels

ROLE_C_channel_ROLE_M_role = Client

ROLE_C_channel_ROLE_M_host = 127.0.0.1

ROLE_C_channel_ROLE_M_port = 6666

ROLE_M_channel_ROLE_C_role = Server

ROLE_M_channel_ROLE_C_host = 127.0.0.1

ROLE_M_channel_ROLE_C_port = 6666

ROLE_M_channel_ROLE_a_role = Client

ROLE_M_channel_ROLE_a_host = 127.0.0.1

ROLE_M_channel_ROLE_a_port = 6669

ROLE_a_channel_ROLE_M_role = Server

ROLE_a_channel_ROLE_M_host = 127.0.0.1

ROLE_a_channel_ROLE_M_port = 6669

# Paths

keypath = C:/ JavaProjects/demos/src/demos/keygen_dual/

Figure 4.2: Protocol.Properties configuration file

known agent. Moreover the configuration file includes the mapping between protocol roles
and agent aliases and the setting of the communication channels.

The path of the keystore, is used by the application to retrieve the key material which is
used during the execution. It is assumed that the format of the key store is compatible with
the cryptographic settings of the application. In general the application is designed to use
the appropriate cryptographic algorithms based on the keys type available in the keystore.
In this database, keys and certificates are associated to an alias which is used as an index
to access to that cryptographic objects. It is hence necessary to provide an explicit mapping
between protocol roles and the alias of the agent who is actually playing that specific role.

Channel parameters are used to initialize the TCP/IP sockets and they include the network
role (client or server), the port and the hostname. Note that the hostname is used only for
the client channels, because servers listen on a port in their own system, and they do not need
that parameter to setup the socket. The default value for the hostname is the localhost IP
address (127.0.0.1) but it can be changed freely if the user wants to run processes on different
machines. In this case each every machine running the protocol must have its own copy of
the configuration file. For security reasons it is not advisable to share the same file among
different agents. Moreover the client port and server port must match in order to establish a
communication.

4.1.4 Code Generation

The last phase in the process is the code generation. As we have seen, we do not only produce
the security related code (the protocol logic) but also a complete application combining the
information derived from the optimized executable narration, with the application template
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abstract API call AnBxJ/Java API calls abstract Type AnBxJ/Java Types

APISend Send SealedPair Crypto_SealedPair

APIReceive Receive SealedObject SealedObject

APIEncrypt encrypt SignedObject SignedObject

APIDecrypt decrypt HmacPair Crypto_HmacPair

APISign sign JHash Crypto_ByteArray

APIVerify verify AnBx Params AnBx_Params

APIHash makeDigest JString String

APIHmac makeHmac JObject Object

APISQN getSeqNumber JHmacKey SecretKey

APINonce getNonce JSymmetricKey SecretKey

APISymKey getSymmetricKey JNonce Crypto_ByteArray

APIHmacKey getHmacKey JSeqNumber Crypto_ByteArray

APIDHPubKey getKeyEx_PublicKey JDHBase DHParameterSpec

APIDHKeyPair getKeyEx_KeyPair JDHPubKey PublicKey

APIDHSecKey getKeyEx_SecretKey JDHKeyPair KeyPair

APIEqCheck eqCheck JDHSecKey SecretKey

JVarArgs Object ...

Table 4.6: API and type bindings

(the application logic).

As a first step we must reconcile the two logics. Concretely this is done binding the
abstract view of the types and the API calls with a concrete one. The binding depends on
the target programming language and on the support library. In our case the bindings are
defined by the maps shown in Table 4.6. The abstract API calls are mapped to the concrete
Java calls implemented by our AnBxJ library (section 4.2); the abstract Types are mapped
to the concrete Java and library types.

Next, we use the JProtocol data and the bindings to generate syntactically correct Java
statements (or portions of them) to be injected in the application template. This task is
performed with the support of the HStringTemplate [32] library.

This library, written by Sterling Clover, is the Haskell port of the StringTemplate Java
library by Terrence Parr [67, 68]. StringTemplate is a template engine (with ports also to
C#, Python, Ruby, and Scala) for generating source code, web pages, emails, or any other
formatted text output. It has been successfully used for multi-targeted code generators,
multiple site skins, and internationalization/localization [69].

Figure 4.4 shows the template file (ROLE_x.st) for the ROLE x class. Terms between the
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$ delimiters are the templates which are instantiated during the protocol generation. The
task performed by StringTemplate is to replace these templates with the actual code. For
example

$fields :{n|private $n.typeof$ $n.name$ = null;

}$

is a template used to declare the private fields of the ROLE x class. It is filled with the type
and the name of the each element taken from the fields component of JProtocol .

The resulting code for role Merchant in the revised 2KP protocol is the following:

private String Price = null;

private String Desc = null;

private Crypto_ByteArray TID = null;

private Crypto_ByteArray SQN4 = null;

private Crypto_ByteArray SQN8 = null;

private Crypto_SealedPair VAR_M_0 = null;

private AnBx_Params VAR_M_DM0VPM = null;

private SecretKey VAR_M_DJI4DM0VPMVPM = null;

private Crypto_HmacPair VAR_M_MDESCDJI4DM0VPMVPM = null;

private Crypto_SealedPair VAR_M_2 = null;

private String VAR_M_4 = null;

private Crypto_SealedPair VAR_M_6 = null;

private SignedObject VAR_M_DM6VPM = null;

private AnBx_Params VAR_M_DDM6VPMUSA = null;

This example shows that StringTemplate does not provide just a simple string substitu-
tion but makes also possible to use more complex patterns like attributes with properties
($n.name$). Moreover it allows applying an anonymous template ({n|private $n.typeof$

$n.name$ = null;}) to each element of an attribute ($fields:<anonymoustemplate>$).
Following the same approach it possible to generate even more structured code. This is

how the method executeStep() is specified in the same template file ROLE_X.st

protected void executeStep(AnB_Session $sessname$ , $prot$_Steps step)

{

status(step);

switch (step) {

$stepactions :{n|

case $n.astep$:

$n.action$

break;

}$

}

status(step);

}

In this case, along with simple substitutions of the session name ($sessnane$) and of the
protocol name ($prot$), we can use an anonymous template - {n|...} - to generate the
cases of a switch statement, namely the actions ($n.action$) to be performed in each step
($n.astep$). Here we found more productive, to generate sequence of actions directly as
a string in Haskell and pass it to the template property $n.action$ rather than managing
templates for all the kind of possible actions.

Finally the generated configuration and application files are written to disk. As an example
of this, we show the names of files (left side the template name, right side the application
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name) for the revised 2KP protocol (roles are: A acquirer, M merchant, C customer):

 CommandLine_Parser.st -> Rev_2KP_CommandLine_Parser.java

 Principal.st -> Rev_2KP_Principal.java

 ROLE_x.st -> Rev_2KP_ROLE_A.java, Rev_2KP_ROLE_M.java, Rev_2KP_ROLE_C.java

 Roles.st -> Rev_2KP_Roles.java

 Steps.st -> Rev_2KP_Steps.java

 main.st -> Rev_2KP.java

 [] -> Rev_2KP.properties

All the Java files must belong to the same package, rev_2kp in this example.

In conclusion, one of the advantages of this way of generating the source code is that
it is possible to make modification to the application template without making changes to
the tool, as long as the template interface (parameters) are maintained. We think it is an
advantage for the user, the possibility to work on the application template editing directly
in the target language. The only exception are, of course, the template parameters, which
require the StringTemplate syntax.

One the other hand, the option of generating code in another procedural typed language
would require a reasonable extra effort and will consist of the following tasks:

 writing new templates files

 defining the syntax of statements like variable declaration, variables initialization (con-
structors), imperative actions

 setting the binding between the abstract types and the API calls and the concrete one.

The most delicate issue is the availability of a security and communication library as the one
we designed. Since all the modern programming languages offer these features, the work will
consist of building a wrapper library, around the existing language features, replicating the
interface of ours (Figures 4.5 and 4.6)

4.2 API - Java Security Library (AnBxJ)

We developed a Java library to experiment with our approach and validate its practical effec-
tiveness. The package provides an application programming interface (API) that implements
the primitives discussed in the previous sections.

To support an high degree of flexibility, the API does not commit to any specific cryp-
tographic solution (algorithms, libraries, providers). Instead it is structured as a modular,
easily configurable framework that leaves the developer free (at compile, deployment or even
at run-time) to decide which cryptographic scheme to use, depending on the requirements
of security, robustness and performance the application must satisfy. By default, the system
uses the algorithms and the key lengths specified in the digital certificates of the public keys
used for encryption and signature. This simplifies a lot the standard usage of the library.
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Figure 4.3: AnBxJ Java Library Architecture

Several encryption and digital signature algorithms, hash and digest functions, and dif-
ferent key sizes are made available to the application by means of a standard interface. This
is done by interacting with the cryptographic libraries, almost transparently, using the stan-
dard interface specified by the Java Cryptographic Architecture [44, 71]. Changing the cryp-
tographic protocols and settings is easy, because it does not modify the source code of the
application, but only the configuration of the encryption engine in use. The framework is
extensible making possible to add new cryptographic libraries, or replacing faulty implemen-
tation, or compromised algorithms.

This approach leads to a clear design of the application, focusing on the application logic,
abstracting the programmer from the complexity of the underlying network protocols and
infrastructure.

The API is structured in the layered architecture described in Figure 4.3, whose main
components are described as follows:

 The transport layer provides all the networking functionality necessary to transport
messages over the network, using both plain and secure sockets (SSL/TLS [38]). Al-
though the enforcement of the security properties is often delegated to the cryptographic
layer, is it also possible to run applications over a secured channel rather than over a
plain one.

 The cryptographic layer essentially provides procedures to encrypt and decrypt, sign
and verify, digest messages using the facilities included in libraries like java.security
and javax.crypto. The public key infrastructure (PKI) binds public keys with their
respective user identities by means of a certificate authority (CA). Trusted certificates
are stored in keystores, and identities are defined associating aliases with a pair of
public keys (one for encryption and one for digital signature).

 The session layer offers to the programmer the functions send() and receive(), which
map, respectively, the output and the input primitives. Any serializable object can be
a message exchanged by means of these primitives, thus it is possible to transmit a
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wide range of object classes across a network connection link. Primitives to open() and
close() sessions are also provided. Moreover, shielding the details of the cryptographic
layer, the AnB_session class (Figure 4.6) offers methods for calling, in a simplified man-
ner, the primitives of the cryptographic layer extending the class AnB_Crypto_Wrapper
(Figure 4.5). Although in the generated code the messages are composed in the AnB
style (with calls to the crypto API - Figure 4.5), another class could be implemented to
provide direct support for the communication modes and digests which are available in
AnBx , hiding the calls to the cryptographic methods).

 The protocol layer gives an abstract description of the protocol: data flow and control
flow, steps and principal roles, check on reception. The main class is the abstract generic
class AnB_protocol (Figure 4.7) which must be extended by the each role class.

4.3 Related Work and Conclusions

Other Java code generators for security protocols has been proposed in the past. An early
project [58] allows automatic generation of Java code from the specification of a protocol
written in CASPL [37] or in its intermediate language CIL. Although standard Java crypto-
graphic providers are used, this tool has some noticeable limitations. Since at that time a
RSA implementation was not publicly available in Java, the tool does not handle public-key
encryption.

A couple of tools, both called Spi2Java [72, 78] generate Java code from Spi Calculus
specifications.

Spi2Java (Pozza et al.) [72], is a framework to semi-automatically generate Java security
protocol implementations from verified Spi Calculus formal specifications of such protocols.
The aim of the framework is to provide high correctness confidence on the generated code,
thus making a step towards bridging the gap between the verified abstract formal models, and
their concrete implementations. JavaSPI [9] is an evolution of Spi2Java. The main novelty of
this approach stands in the use of Java as both a modeling language and an implementation
language.

Spi2Java (Tobler et al.) [78] is implemented in Prolog. It can input a formal security
protocol specification in a variation of the Spi Calculus, and generate a Java code implemen-
tation of that protocol. By defining a Security Protocol Implementation API that abstracts
cryptographic and network communication functionality the authors show that the protocol
logic code can be separated from the underlying cryptographic algorithm and network stack
implementation concerns. Our work shares the same idea although our implementation is
different.

Protocol Implementation Generation (PiG) [73] is another tool using a process calculus -
LySa [20] - as input language. The framework enables the sharing, verification, and transla-
tion of communication protocols. With it, partners can suggest a new protocol by sending its
specification. After formally verifying the specification, each partner generates an implemen-
tation, which can then be used for establishing communication. The target language can be
to C or Java.

In summary, in the present work we described a tool for the automatic generation of
the Java code of security protocols specified in AnBx , an enhanced version of the popular
Alice & Bob language for narrations. AnBx protocols can be model-checked with OFMC in
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order to verify their safety. Extending the work of Briais and Nestmann [25], we generate
an optimized executable narration, which includes the checks on reception derivable from the
static information. Our optimization, as the experimental results has confirmed, improves the
protocol execution speed, avoiding repeating the same cryptographic operations on the same
data. The generation of the source code keeps apart the protocol logic from the application
logic, making possible to extend this work, with a reasonable effort, to other object-oriented or
procedural languages. Our experiments showed that our framework can be applied effectively
to real-world industrial protocols, like the e-payments applications.

Although, due to the complexity of the target language, we cannot prove the formal
correctness of the last phase of the translation (from the executable narration to Java), we
think that this experimental work offers some interesting insights in the topic of protocol
design and automatic application generation. First of all, we showed the effectiveness of
AnBx as a language not just for abstract protocol prototyping but also for the generation
of concrete implementations. With respect to some of the mentioned tools [58, 73], we take
benefit of check generation algorithm presented in [25], to produce Java code which includes
checks on reception, which are missing on the other tools. Moreover the same tools do not
include a type system to handle complex messages as the one we implemented.

Moreover in contrast to other tools [72,73,78] which are using a process calculus as input
language, we propose a higher-level and more intuitive language, making our tool suitable for
a larger audience. Additionally we designed a Java library for security which can be used not
only in conjunction with AnBx , but also, in a broader context, even by programmers without
a deep knowledge of the security foundations. Last but not least, having an high degree
of automation, the tool is suitable for agile prototyping and rapid development of security
protocols.

Future work could take several directions. One the one hand it would be important to
formally prove the correctness of the generated Java source code with respect to the original
specification, or at least extend the formal reasoning to cover all the intermediate formats.
On the other hand it would be possible to work on a better engineering of the tool, with the
aim to improve its modularity. For example, adding support for more target languages and
offering more customization options to the user. A further opportunity will be to plug the
tool into an existing Integrated Development Environment, such as Eclipse [42] for example,
making the tool suitable to be used in a professional environment.
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Alpha ::= [′A′..′Z ′] ∪ [′a′..′z′] alpha chars
Alpha ⊂ String

Ident ::= Alpha+ String identifier
Agent ::= Ident agent′s name

IdentList ::= Ident list of identifiers
| Ident, IdentList

Opererator ::= inv inverse function
| exp exponential function
| crypt asymmetric encryption
| scrypt symmetric encryption
| cat concatenation
| xor xor
| apply function application

Msg ::= Ident identifier
| Operator MsgList operator on msg list

MsgList ::= Msg list of messages
| Msg, MsgList

Type ::= Agent base types
| Number
| Function
| PublicKey
| Symmetic key

TypeList ::= Type IdentList list of types
| Type IdentList; TypeList

Types ::= Types : TypeList types
KnowItem ::= Agent : Msg
KnowList ::= KnowItem list of agents′ know.

KnowItem; KnowList
Knowledge ::= Knowledge :KnowList knowledge

Action ::= Agent ChType Agent :Msg action
ActionList ::= Action list of actions

| Action; ActionList
Actions ::= Actions :ActionsList actions
ChType ::= → | • → plain | authentic

| → • | • → • secret | secure
| •։ fresh authentic
| •։ • fresh secure

Goal ::= Agent ChMode Agent :Msg channel goal
| Agentweakly authenticatesAgent onMsg weak authentication goal
| Agent authenticatesAgent onMsg authentication goal
| Msg secret betweenAgentList secrecy goal

Goals ::= Goal goals
Goal;Goals

Protocol ::= Protocol Ident protocol definition
Types Knowledge Actions Goals

Table 4.7: Syntax of AnB
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Alpha ::= [. . .] alpha chars
Ident ::= [. . .] identifier

IdentList ::= [. . .] list of identifiers
Opererator ::= [. . .] operators

Agent ::= Ident agent′s name
| ′−′ null agent

AgentList ::= Agent list of agents
| Agent, AgentList

Type ::= [. . .] base types
| Certified certified agent

Def ::= Ident (IdentList) : Msg definition w pars
Ident : Msg definition w/o pars

DefList ::= Def list of definitions
Def ; DefList

Defs ::= ǫ empty definitions
| Definitions :DefList non empty definitions

Digest ::= [MsgList] standard digest
| [MsgList : Agent] verifiable digest

Msg ::= Ident identifier
| Operator MsgList operator on msg list
| Digest digest
| PPar Ident MsgList definition w pars in msg
| PParId Ident definition w/o pars in msg

KnowItem ::= Agent : Msg agent′s knowledge
| IdentList shareMsgList

KnowList ::= KnowItem list of agent′s knowledge
| KnowItem; KnowList

Knowledge ::= Knowledge :KnowList knowledge
Action ::= Agent ChType Agent :Msg AnB action

| Agent→ Agent, ChMode :Msg AnBx action
ActionList ::= Action list of actions

| Action; ActionList
Actions ::= Actions :ActionsList actions
fresh ::= ǫ |@ emtpy | fresh

forward ::= ǫ | ↑ empty | forward (opt.)
V ers ::= AgentList verifiers

ChMode ::= forward fresh(Agent, V ers,Agent) AnBx channel modes
ChType ::= [. . .] AnB channel types

Goal ::= [. . .] goal
| Agent confidentially sendsMsg toAgent confidential exchange

Goals ::= [. . .] goals
Protocol ::= Protocol Ident protocol definition

Defs Types Knowledge Actions Goals

Table 4.8: Syntax of AnBx defined as an extension to the standard syntax of AnB ([. . .])
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Reserved identifiers ::= pk public key function for encryption
| sk public key function for encryption
| hash hash function
| hmac hmac function
| g DH base
| empty sync message

Table 4.9: Syntax of AnBx - Reserved identifiers
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public final class $prot$_$role$ extends AnB_Protocol <$prot$_Steps ,

$prot$_Roles > {

private static boolean loop = false;

// local vars & knowledge

$fields :{n|private $n.typeof$ $n.name$ = null;

}$

public $prot$_$role$($prot$_Roles role , String name) {

super();

this.role = role;

this.name = name;

}

protected void init() {

// init local vars

$fieldsinit :{n| $n.name$ = new $n.typeof$($n.pars$);

}$

};

public void run(Map <String , AnB_Session > lbs , Map <String , String >

aliases) {

this.aliases = aliases;

$channelroles :{n|AnB_Session $n.chname$ = lbs.get(\"$n.chrole$ \");

}$

try {

init();

$channels :{n|$n$.Open();

}$

do {

$channelsteps :{n|executeStep($n.channel$ , $prot$_Steps.$n.

step$);

}$

} while (loop);

$channels :{n|$n$.Close();

}$

} catch (Exception e) {

e.printStackTrace ();

return;

}

};

protected void executeStep(AnB_Session $sessname$ , $prot$_Steps step

) {

status(step);

switch (step) {

$stepactions :{n|

case $n.astep$:

$n.action$

break;

}$

}

status(step);

}

$rolemethods :{n|private $n.rettype$ $n.mname$($n.mpars$) {

// TODO Auto -generated method stub

return ($n.rettype$) $n.retvalue$;

\}}$

}

Figure 4.4: Role_X.st file template
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public class AnB_Crypto_Wrapper {

// implements a class supporting cryptographic operations

// a wrapper for the encryption engine

protected Crypto_EncryptionEngine ee;

protected AnBx_Agent me;

private final static AnBx_Layers layer = AnBx_Layers.LANGUAGE;

public AnB_Crypto_Wrapper(Crypto_EncryptionEngine ee)

public AnB_Crypto_Wrapper(Crypto_KeyStoreSettings_Dual kssd)

public Crypto_KeyStoreSettings_Dual getKeyStoreSettings_Dual ()

public void Setup(Crypto_KeyStoreSettings_Dual kssd)

// ------------------------ cert/identities -----------------------

protected Certificate getRemoteCertificate_enc(String alias)

protected Certificate getRemoteCertificate_sig(String alias)

protected AnBx_Agent getMyIdentity ()

protected void setMyIdentity ()

// ------------------------ send/receive -----------------------

protected void Send_Id(AnBx_Agent id, Channel_Abstraction c)

protected void Send(Object obj , AnBx_Agent id, Channel_Abstraction c)

protected Object Receive(AnBx_Agent id, Channel_Abstraction c)

protected AnBx_Agent Receive_RemoteId(Channel_Abstraction c)

// ------------------------ encrypt/decrypt -----------------------

public Object decrypt(Crypto_SealedPair sc)

public Crypto_SealedPair encrypt(Object object , String alias)

public Object decrypt(SealedObject so, Key symmetricKey)

public SealedObject encrypt(Object object , Key symmetricKey)

// ------------------------ sign/verify -----------------------

public SignedObject sign(Object object)

public Object verify(SignedObject so, String alias)

// ------------------------ nonces , keys , seqnumbers

-------------------

public Crypto_ByteArray getNonce ()

public Crypto_ByteArray getSeqNumber ()

public SecretKey getSymmetricKey ()

public SecretKey getHmacKey ()

// ------------------------ key exchange

-------------------------------

public KeyPair getKeyEx_KeyPair ()

public PublicKey getKeyEx_PublicKey(KeyPair keyPair)

public SecretKey getKeyEx_SecretKey(KeyPair keyPair , PublicKey

publicKey)

public SecretKey getKeyEx_SecretKey(PublicKey publicKey , KeyPair

keyPair)

// ------------------------ digest hash/hmac

-----------------------------

public Crypto_ByteArray makeDigest(Object obj)

public Crypto_ByteArray makeDigest(Object obj , String str)

public Crypto_HmacPair makeHmac(Object obj , SecretKey sk)

public boolean checkHmacPair(Object obj , Crypto_HmacPair hmac ,

SecretKey sk)

}

Figure 4.5: AnBxJ : Crypto API (AnB_Crypto_Wrapper class)
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public class AnB_Session extends AnB_Crypto_Wrapper {

// implements a session supporting cryptographic operations

private final static AnBx_Layers layer = AnBx_Layers.SESSION;

private Channel_Abstraction c;

private AnBx_Agent id_Remote = null;

private Boolean exchange_id = false;

// allow agents to exchange their aliases

public AnB_Session(Crypto_KeyStoreSettings_Dual kssd , Channel_Settings

cs, boolean exchange_id)

public AnB_Session(Crypto_KeyStoreSettings_Dual kssd , Channel_Settings

cs, AnBx_Agent id_Remote)

public AnB_Session(Crypto_KeyStoreSettings_Dual kssd , Channel_Settings

cs, String id_Remote_alias)

// ------------------------ open/close ----------------------

public void Open()

public void Close()

// ------------------------- send/receive ---------------------

public Object Receive ()

public void Send(Object obj)

public AnBx_Agent Receive_RemoteId ()

public void Send_Id ()

// ------------------------ setters/getters ----------------------

public Channel_Abstraction getC()

public AnBx_Agent getId_Remote ()

public void setC(Channel_Abstraction c)

public void setId_Remote(AnBx_Agent id_Remote)

}

Figure 4.6: AnBxJ : Communication API (AnB_Session class)
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public abstract class AnB_Protocol <S, R> {

private final static AnBx_Layers layer = AnBx_Layers.PROTOCOL;

protected String name = null;

protected R role;

protected Map <String , String > aliases;

private boolean abortOnFail = false;

abstract public void run(Map <String , AnB_Session > lbs , Map <String ,

String > aliases);

abstract protected void executeStep(AnB_Session lbs , S step);

abstract protected void init();

protected void abort(String msg)

protected void eqCheck(Object obj1 , Object obj2)

protected void status(S step)

}

Figure 4.7: AnBxJ : AnB_Protocol class
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II
Sevecom





5
Verifying Sevecom using Set-based

Abstraction

5.1 Introduction

The EU-project SeVeCom [66,75] proposes a modern system for secure vehicle communication
that shall satisfy two seemingly conflicting goals, namely on the one hand authentication
and accountability for vehicle communication and protecting the privacy on the other hand.
To that end, each car contains a tamper-proof hardware security module (HSM) that holds
all private keys of the car and that performs all encryption, decryption, and verification
operations. For ordinary communication, this includes a number of short-term key-pairs
that are registered with, and certified by, a trusted certification authority (CA). While the
CA is thus able to link all communication back to a particular car (e.g. in case of police
investigation), the other participants cannot see this relation, but only link actions that are
performed using the same pseudonym (i.e. short-term key).

There is a growing number of automated tools for protocol verification that represent the
cryptographic messages by abstract terms (and thereby ignore cryptographic attacks). Many
such tools like Scyther [34] are restricted to “simple” protocols that consist only of a message
exchange and therefore cannot analyze a system like SeVeCom that requires the participants
to maintain databases of keys. Other tools like AVISPA [6] allow for modelling databases but
require restricting the number of steps that honest agents can execute, and do not scale well
with this number. There are several abstraction-based approaches [18, 21, 23], most notably
the tool ProVerif [19], which completely avoid this problem and allow for verification with an
unbounded number of steps. These techniques however have a kind of monotonicity built-in:
what is true at some point cannot become false later, forbidding to model revocation for
instance and are thus not suitable for analyzing SeVeCom.

The AIF framework [60] is an extension of the abstraction approach that allows for mod-
eling databases (or sets) of messages that do not necessarily monotonically grow (allowing for
revocation) and that inherits the benefits from the classical abstraction approaches, namely
verification without bounding the number of steps that honest and dishonest participants can
make.

We show that AIF is indeed well-suited for modelling and verifying the SeVeCom system.
We consider several models of the system for different intruder models: one model considers
the revocation-update protocols of the CA’s root keys in the presence of an intruder with
direct access to the HSMs. The second, comprehensive model of all the protocols needs to
consider an intruder who is either outside a particular car or at least does not have access to
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Figure 5.1: A Vehicular Communication System

the signing function of the HSM (which would lead to trivial attacks).
In our models we assume the hardware and software components to be reliable, and the

cryptographic functions secure. Therefore we do not consider events like communication er-
rors or attacks that can be performed exploiting weaknesses of the cryptographic algorithms.
We present two novel attacks that were found by our analysis in the root key update protocol,
and discuss some reasonable assumptions to prevent them. We verify the security properties
of the system under these assumptions. Beyond the verification of the concrete system SeVe-
Com, this work demonstrates how the relevant aspects of time can be modeled in verification
approaches that actually abstract from time.

5.2 Secure Vehicle Communication

A vehicular communication (VC) system (Figure 5.1)1 comprises several network nodes: ve-
hicles and road-side infrastructure units (RSU) which are equipped with on-board sensory,
processors, and wireless communication modules. It is customary to distinguish between ve-
hicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. The Certification
Authorities (CA) are trusted entities responsible for the issuance and management of identi-
ties and credentials for parties involved in the vehicular network operation. In general, the
authorities can be multiple and distinct in their roles and jurisdiction over a subset of network.

The OnBoard Units (OBU) are the computing devices which are placed on-board of ve-
hicles. In SeVeCom public key operations are performed by the OBU, but all private key
operations are performed by the HSM, the Hardware Security Module which is the trusted
computing base of SeVeCom security architecture. The HSM stores the private cryptographic
key material and provides cryptographic functions employed by other modules.

The HSM has a CPU, a memory module, and some non-volatile storage. In addition, in
order to ensure the freshness of the encrypted or signed messages, the HSM must also include
a real-time clock, and consequently, a battery module that ensures the clock can operate
independently from the rest of the system. The HSM has also a hardware random number
generator that is used for key generation purpose. The HSM is physically separated from
the OBU, and it has some tamper-resistant properties in order to protect the private key

1Figures 5.1, 5.3, 5.4 are borrowed from [66]
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Figure 5.2: Crypto Support Module

material against physical attacks. The Crypto Support Module [75, §7] (Figure 5.2)2 provides
the implementation of the cryptographic operations needed by the applications running on
the OBU. These applications can call the cryptographic operations through an APIs offered
by the components of the Crypto Support Module.

The SeVeCom architecture (Figure 5.3) addresses the following fundamental issues:

 Identity, credential, and key management : each node is registered with only one CA,
and has a unique long-term identity and a pair of private and public cryptographic
keys, and it is equipped with a long-term certificate. A list of node attributes and a
lifetime are included in the certificate that the CA issues upon node registration and
upon certificate expiration. The CA is also responsible for the eviction of nodes or the
withdrawal of compromised cryptographic keys via the revocation of the corresponding
certificates.

 Secure communication (Figure 5.4): digital signatures are the basic tools to secure com-
munications and are used for all messages. To satisfy both the security and anonymity
requirements, SeVeCom relies on a pseudonymous authentication approach. Rather
than using the same long-term public and private keys for securing communications,
each vehicle employs multiple short-term private-public key pairs and certificates. A
mapping between the short-term credentials and the long-term identity of each node is
maintained by the pseudonym provider (PP), which is a particular instance of a Certi-
fication Authority within the PKI. On the contrary, since privacy is not an issue in this
case, RSUs always use the long-term keys.

5.3 AIF

The AIF framework consists of the AIF specification language and a translator from AIF
to first-order Horn clauses that incorporates the set-abstraction technique; it is connected to

2Figure 5.2 is borrowed from [75]
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Figure 5.3: SeVeCom Architecture

Figure 5.4: Secure V2V Communication
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the SPASS theorem prover [81] and the protocol verifier ProVerif [19] to check the generated
Horn clauses. These automated tools do not always terminate, but when they do, this gives
us either an attack or a proof of security. We give a brief introduction to the AIF language;
a formal definition is found in [60].

State Transition Systems An AIF specification describes a state-transition system. A
state is a set of facts that are true in that state, for instance the state

{ik(crypt(k,m)), ik(inv(k)), ik(sign(inv(k′),m))}

may intuitively say that in this state, the intruder knows a public-key encrypted message
crypt(k,m), the corresponding private key inv(k) and a signature sign(inv(k′),m). None of
the symbols here has a predefined meaning. Their meaning is rather defined through the
transition rules that we define on states. For instance we may define rules that reflect the
ability of the intruder to encrypt and decrypt messages with known keys:

ik(K).ik(M)⇒ ik(crypt(K,M));

ik(crypt(K,M)).ik(inv(K))⇒ ik(M);

ik(inv(K)).ik(M)⇒ ik(sign(inv(K),M));

ik(sign(inv(K),M)).ik(K)⇒ ik(h(M));

Observe that in specifying such rules, we use variables, denoted by identifiers that start
with an uppercase letter, in contrast to constants which start with a lowercase letter. Such a
rule can be applied to any state that contains facts that match the left-hand side; this yields
a new state that is obtained from the old one by adding the facts of the right-hand side under
the given match.

We can specify transitions in which new values are freshly created, e.g., we can specify
that at any time the intruder can generate himself a new key pair as follows:

=[K]⇒ ik(K).ik(inv(K)); (5.1)

Taking this transition, the variable K is bound to a new value (that did not occur so far),
representing in this case a public key. Since the left-hand side is empty, the rule can be taken
without any precondition.

Sets The rules as presented up to here represent what is standard in abstraction approaches,
and in particular observe the states can only monotonically grow during such transitions. This
does not allow for example the modeling of a transition where a key is revoked, because the
fact that the key is valid would need to be somehow “retracted”. Exactly for such cases, the
AIF has a way to express transitions in which the state does not monotonically grow, namely
using sets. An AIF specification can contain an arbitrary but fixed number of sets.

For instance, our SeVeCom model will include several sets of public-keys that the HSMs
of the cars maintain, e.g. db(hsm1 , ltsig , uptodate) denotes the set of all up-to-date long-term
signing keys stored in machine hsm1 . We can conveniently describe an enumeration of such
sets using variables that range over enumeration types, for instance in this case we have a
family of 28 sets db(HSM ,KeyType,Updating) where

HSM : {hsm1 , hsm2};
KeyType : {root1 , root2 , ltsig , ltdec, stsig , stdec, ppsig};
Updating : {updating , uptodate};
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In detail the HSM maintains five types of keys:

 two long-term root public keys that are used to verify the authenticity of commands
(e.g., revocation of the HSM) sent by the authorities to the HSM;

 a long-term signature generation key that is used to authenticate the real identity of
the vehicle;

 a long-term decryption key that is used to decrypt encrypted messages intended to the
vehicle itself;

 short-term signature generation keys that are typically used to authenticate the short-
term pseudonyms used by applications running on the vehicle;

 short-term decryption keys that are used to decrypt encrypted messages intended to the
applications running on the vehicle.

Thus, keys are organized by type: the above five types plus the signing and decryption keys
of the Pseudonym Provider PP (details on these keys are given in Section 5.5.4). Moreover
the keys could be “under update” or not: this is shown by the Updating status.

The database shows explicitly only the public-keys. For keys of type {lt, st}sig and{lt, st}dec
the corresponding private keys are actually stored on the device, but this is implicit in our
model.

To build a comprehensive model we also need to define some centralized databases of keys
which are maintained by the Certification Authorities:

 dbr(Root), the centralized database of root keys, where Root : {root1, root2};

 dbca(HSM,LongTerm), the centralized database of the long term keys, where LongTerm :
{ltsig, ltdec};

 dbps(HSM,ShortTerm), the centralized database of pseudonyms, where ShortTerm :
{stsig, stdec};

Transitions Using Sets A set-membership fact is a fact of the form m ∈ S where m is
an element and S is a set. As an example, there are two public keys of the certification
authority, called root keys, stored into every HSM at manufacturing time (more on their role
in the system later). We can model this initialization of an HSM by a transition rule that
simply creates new root keys:

λHSM . =[K1,K2]⇒ ik(K1).ik(K2).
K1 ∈ db(HSM , root1, uptodate).
K2 ∈ db(HSM , root2, uptodate);

(5.2)

Here, λHSM . says that this rule holds for any value in the domain of variableHSM ({hsm1 , hsm2}
here) to avoid long enumerations. This rule is an over-approximation of reality, because it can
be applied at any time and any number of times, while in the real system, there can only be
one pair of root keys installed at manufacturing time. Formulating it in this way is necessary
in the abstraction approaches as we explain below. We can now model that an HSM, when
receiving a correctly formed revocation message, marks the respective key as being “under
update” in its database:
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λHSM ,Root .ik(sign(inv(K ), [K ,T ])).
K ∈ db(HSM ,Root , uptodate)
⇒ K ∈ db(HSM ,Root , updating);

(5.3)

Here, Root ranges over {root1 , root2}. Moreover, sign(inv(K), [K,T ]) is the format of a
revocation command for a root key: it needs to be signed by the private key inv(K) that
belongs to the root key K. For simplicity, we will often say private root key for the private
key that belongs to a public root key. The message also includes a timestamp T that we
discuss later.

We model here an HSM that is directly under the control of an intruder who can send
arbitrary commands to it. This is expressed by the ik -fact on the left-hand side of the rule:
the HSM accepts any command of the revoke-key format that the intruder can craft (as long
as the respective key K is indeed in db(HSM ,Root , uptodate)).

Similarly, for other operations where there is an answer by the HSM, we will have this
answer contained in an ik fact on the right-hand side of the rule to model that the intruder
directly obtains this answer, can analyze it, and use it for further actions like crafting another
command.

Also observe that the set-membership facts on the left-hand and right-hand side differ by
their update-status. While for all other facts, the state monotonically grows over transitions,
set-membership facts behave differently: left-hand side facts that do not appear on the right-
hand side get removed by the transition. Thus, the matched key K in this example is moved
from the uptodate to the updating set (of the respective machine and key kind). In fact, the
other transitions ensure that only signatures with up-to-date keys are considered as valid.
On the left-hand side of rules, we may also specify that a rule is only applicable to states in
which a certain set-membership fact does not hold. For instance if we declare a family of sets
used(HSM ), we can model a simple replay-prevention:

λHSM ,Root .ik(sign(inv(K ), [K ,T ])).
T /∈ used(HSM ).K ∈ db(HSM ,Root , uptodate)
⇒ T ∈ used(HSM ).K ∈ db(HSM ,Root , updating);

(5.4)

This transition can only be taken for a timestamp T that the HSM has never seen before
and that is afterwards stored as used. Here we do not model any properties of time (like
freshness); we come back to timestamps later.

Goals and Reachability AIF has only one built-in fact symbol: attack. We use rules that
have this fact on their right-hand side to specify attack states. For instance we can specify
that it is an attack if the intruder finds out the private key of a valid root key:

λHSM , Root, Updating.K ∈ db(HSM , Root, Updating).
ik(inv(K))⇒ attack;

The initial state is the empty set of facts. We say that an AIF specification is secure, if we
can reach no attack state from the initial state by using the transition rules.

Abstraction Ideally, when writing a model, one does not need to think about the tech-
niques that are used to analyze it, but unfortunately the complexity of the problems, and
the side conditions that several techniques have, usually require a certain level of technical
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knowledge. The AIF framework is based on abstraction techniques and the AIF language is
designed so that all requirements for the soundness of the abstraction are satisfied by con-
struction. Soundness here means: if the abstraction of an AIF specification is secure, then so
is the concrete AIF specification. The other direction does not hold in general, because the
abstraction over-approximates the behavior of the concrete system and can thereby introduce
attacks that have no counter-part in the concrete model. We call such attacks false positives.

The main point of set-based abstraction is that we consider the equivalence classes induced
by the set-membership of values; in our example, the abstract model identifies all public-keys
that belong to the same subset of all the databases. For this to be sound, it is crucial that the
specification cannot distinguish several values that have the same membership status, so we
cannot write conditions like X 6= Y , not even indirectly. That implies that we cannot control
the cardinality of sets (that they contain a particular number of elements). More generally,
we can say that what is true for one value is also true for any number of values in some
reachable state.

There are two main consequences for our model of SeV eCom. First, we need to allow
that all sets of keys can hold any number of keys; this is of course sound in the sense that
it over-approximates the real behavior where number is fixed. It turns out that this over-
approximation does not introduce any false attacks. Second, we cannot directly talk about
time (and timestamps) because the abstract model eliminates every notion of transitions and
the timely order of events. We must therefore use sets to model crucial properties of time
when they are needed. For instance in the example rule (5.4), we have only modeled the
aspect of replay checking, but not recentness; we do the latter not before Section 5.5 where
it becomes unavoidable.

5.4 Root Key Update

We first consider a model that focuses on the root keys and their update (and ignores all
other kinds of keys and protocols). We use from the previous section the initialization
rule (5.2) and the revocation rule (5.3) (without replay check). The next corresponding
operation that we model is the update operation which is triggered by a command of the
form sign(inv(K), [K ′, T ]) where K is a root key in uptodate status, and a new root key
K ′ that is to replace the other root key (which must be in updating status). The rationale
behind the format of the update and revoke command is that, if one of the root private keys
is compromised, it can only be used to revoke itself, but cannot be used to update either key
(which requires the knowledge of both root private keys). The intention is that the system
should be secure as long as at most one of the two keys is compromised. The update for key
root1 is formalized as follows (root2 analogously):

λHSM .ik(sign(inv(K2 ), [K ,T ])).
K2 ∈ db(HSM , root2 , uptodate).
K1 ∈ db(HSM , root1 , updating)
⇒ K2 ∈ db(HSM , root2 , uptodate).
K ∈ db(HSM , root1 , uptodate).K1 ∈ revoked(HSM );

Here, we again ignore the timestamp T at first. We also use a new family of sets here:
revoked(HSM ). They contain all the public root keys that have ever been discarded from an
HSM and are used later to formulate the goals.
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5.4.1 Modeling the Authority

The revocation and update messages should be (at least in normal protocol runs) be generated
by the certificate authority (CA), the (supposed) owner of the root keys. This will happen
whenever a root key is suspected to be compromised, or maybe even on a regular basis. In
a first model, we consider a CA that can at any point revoke either root key. Let us first
consider a model where the authority can generate a pair of revoke and update commands
at any time non-deterministically. Because we cannot be sure a priori that the update is
correctly communicated, we must model the CAs database of root keys independent of the
HSMs databases. To that end we use the two sets dbr(Root) (recall Root : {root1 , root2}).
The revoke and update request is produced in one transition; we give the one for revoking
and updating root1 :

K1 ∈ dbr(root1 ).K2 ∈ dbr(root2 ).
=[K]⇒ K ∈ dbr(root1 ).K2 ∈ dbr(root2 ).
ik(sign(inv(K1 ), [K1 ,T ])).ik(sign(inv(K2 ), [K ,T ]));

5.4.2 Goals

We consider three goals:

Secrecy The intruder never knows the private key of a valid (or under update) public root
key:

λHSM , Root, Updating.
K ∈ db(HSM , Root, Updating).ik(inv(K));
⇒ attack;

Authentication The intruder shall not be able to produce a confusion among the parties
about who generated which keys and for which purpose. For the root key update, the only po-
tential confusion is that the intruder manages to make the HSM accept an intruder-generated
key as a root key. This would mean a violation of the secrecy goal already (because the
intruder knows the private key of a self-generated public key pair). For the comprehensive
model in Section 5.5, however, there are more interesting authentication properties.

Freshness The intruder shall not be able to introduce old keys into the HSM, even if they
were once created by the correct party and the intruder does not know the private key. We
want this property to prevent that older messages using these keys could be accepted again
by anybody. To that end, we use the set revoked(HSM ) that we introduced before to hold
all revoked keys:

λHSM , Root, Updating.K ∈ revoked(HSM ).
K ∈ db(HSM , Root, Updating)⇒ attack;

Observe that these goals have similarity with classic goals of secure communication, but
adapted to the specific problem at hand.

5.4.3 An Attack

We first get a violation of the freshness goal and one that even works if the timestamps are
checked for recentness. The attack uses the fact that the CA can generate revoke-update
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commands arbitrarily for the existing keys and the intruder does not even need to know any
private root keys for the attack to work. Suppose we initially have two root keys installed
on the HSM, called k0 and k1. Suppose further, the authority revoke-updates the key k1
to k2 and then from k2 to k3 and so on. This will produce update messages of the form
sign(inv(k0), [kn, T ]) (for some timestamp T ). At any such update, the intruder can block
the current update message and replay an old message in order to install an older key ki.

This attack is limited (but not prevented) by the use of timestamps: this works only if
several updates are performed within a too short time, i.e. with overlapping validity periods
of the timestamps. Since it is reasonable to assume that root-key updates are performed
rather infrequently, this attack is not of such a practical relevance, but it suggests actually
several additional security measures that are at least not explicitly mentioned in [75].

First, revoke-updates should be performed only with non-overlapping validity periods of
the timestamps. Second, the HSMs should store all timestamped messages for the time they
are valid and compare every further incoming message with them to prevent replay. Third, it
may be a good idea to include into the update message also the public key that is supposed
to be revoked and updated. Each of these suggestions can prevent the attack and each seems
reasonable and good practice. An easy way to model the replay-prevention in the HSM is
shown by rule (5.4), requiring a novel timestamp in every message. We can do the same for the
update command of the HSM, but need to ensure that the revoke and update command are
generated with different timestamps. This rule does not really model recentness of timestamps
(so the intruder may arbitrarily delay the delivery of a message to the HSM in this model);
we consider another time model in Section 5.5.

5.4.4 Revoking the wrong key

We now check what happens if the intruder is given one of the two root keys. The following
rule gives the intruder all the private root keys stored as root1 on the HSM.

λHSM .K ∈ db(HSM , root1 , uptodate).
⇒ K ∈ db(HSM , root1 , uptodate).ik(inv(K ));

Consequently, we restrict the secrecy goal to private keys of root2 . But also this has an attack
namely if the CA happens to revoke the wrong key, i.e., if the CA wrongly thinks that root2
is compromised, and issues a revoke-command for a root2 key, i.e. sign(inv(k2), [k2, T ]) (for
some root2 -key k2 and timestamp T ). Since we have given the intruder a root1 -key k1, he
can now issue the update command for k2, namely sign(inv(k1), [k3, T ]) for some intruder-
generated key k3. It is indeed unclear, even assuming that the intruder can only know one of
the root keys, how the CA can be sure which one it is.

While the protocol suggests a complete symmetry between the keys, one may think of
using the keys in distinct ways. Suppose the root1 is used for the daily business, while the
private root2 is kept reserved for emergencies, maybe under additional physical protection.
Then it makes sense to assume that the intruder can only find out root1 and if there is any
suspicion of compromise (or also at regular time intervals), we use root2 to update it, and we
never update root2 itself.

Restricting our model to only updates of root1 keys, we have verified the secrecy goal.
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5.5 Comprehensive Model

We now extend our previous model considering also the long-term and the short-term keys
and the related update protocols. We first show how to integrate the notion of time into our
model and discuss the modelling of the intruder.

5.5.1 A Timed Model

Time plays an important role in the SeVeCom protocols, namely for the validity of key
certificates and timestamps to prevent replay. Each HSM (and the CA) has its own clock.
These clocks may differ by a certain margin δ; as long as δ is much smaller than the validity
period of long-term keys, this may in the worst case disrupt communication for time δ at the
end of a key’s validity period, but not endanger any security properties. We therefore simply
assume synchronized clocks.

The abstractions of the AIF framework do not provide any notion of time and so we
cannot directly talk about the order in which events occur. Despite this fact, we can model
some properties of time using the sets. The idea is to divide the timeline into several epochs.
For SeVeCom, we find a split into three epochs suitable: old , expsoon and new . We want
that the abstraction of keys depends (besides the databases that we already have) also on the
epoch that they belong to. We thus define a family of sets timer(Time) where Time ranges
over {old , expsoon,new}.

These epochs are used to model the life-cycle of the key as follows. A key is first freshly
created by an HSM and is in epoch new ; the key cannot be used yet, the HSM first needs to
run a key registration protocol with the CA. After registration, the key becomes valid and
moves from status new to status expsoon. This means that the HSM can now use the key for
encryption or signing and a process to generate and register a new key can be started. After
some time, the key finally moves from expsoon to old and can no longer be used; the HSM
will delete the old key (but an intruder can still try to use/re-introduce it). Let us look at
these steps of the key life cycle in more detail. When the HSM has a key K that is currently
in use, i.e., in epoch expsoon, it can generate a new key NK which is initially in epoch new .
This rule has the form:

K ∈ timer(expsoon).K ∈ db(·) . . .
=[NK ]⇒ K ∈ timer(expsoon).NK ∈ timer(new).
K ∈ db(·).ik(·);

where ik(·) abbreviates an outgoing certificate request message for the new key NK (to the
CA) and . . . represents some other facts.

The second step models the actual progress of time:

K ∈ timer(expsoon)⇒ K ∈ timer(old);

i.e. a key K can change its status from expsoon to old—and this can happen “at any time”
so to speak: the “world” that we model here can just choose to do such a transition for any
expsoon key. Observe that this progress of time is independent of what the parties are doing
at this time.

The third step is now expressing that, if an HSM has key K currently in use and a fresh
key NK has successfully been registered with the CA, then as soon as K has turned old (with
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the previous rule), we can discard K and start using NK as the current key:

K ∈ timer(old).NK ∈ timer(new).K ∈ db(·).NK ∈ db(·)
⇒ K ∈ timer(old).NK ∈ timer(expsoon).NK ∈ db(·).
K ∈ revoked(HSM ) . . . ;

Thus NK ’s transition from new to expsoon happens exactly when the HSM starts using it.

5.5.2 Modelling the intruder and the API

The API of the HSM offers the interface through which applications running on the car
can invoke the functionality provided by the HSM. In particular, besides keys and device
management, decryption and digital signing are the two main functions offered by the API.
They can be employed with the long-term and short-term keys. Recall that the corresponding
private keys are stored in the HSM memory and never released outside. As an example, for
long-term decryption keys (that have the attribute ltdec), we model the decrypt function as
follows in AIF:

λHSM ,Updating .ik(crypt(K ,M )).
K ∈ db(HSM , ltdec,Updating)
⇒ ik(M ).K ∈ db(HSM , ltdec,Updating);

Note that Updating is a variable in order to model the ability to employ the keys regardless
their status. Similarly we have a rule for signing:

λHSM ,Updating .ik(M ).K ∈ db(HSM , ltsig ,Updating)
⇒ ik(sign(inv(K ),M )).K ∈ db(HSM , ltsig ,Updating);

Observe that this allows the intruder to get a signature with any valid signing key in the
HSM on any message he can construct (and similarly he can decrypt any message that is
encrypted with an HSM-stored decryption key). To put it another way: if the intruder has
direct access to an HSM, then there is not much difference from the intruder knowing the
respective private keys himself—only he cannot get self-generated keys into the HSM. With
this, of course, the intruder can trivially break several goals of the key update protocols; the
only exception is the root-key update which is secure (under the given assumptions) even for
an intruder with direct access to HSMs.

It is reasonable to assume that the intruder has only direct access to the HSM(s) in his
own car(s). For other cars, he can only observe the communication with their environment
(inter-car, road signs, and CA).

In the following we thus consider an attack model where the intruder has limited access
to the HSMs; experimenting with different settings we can verify all our goals if the intruder
cannot access the signature function for long-term keys, while we may still give him access to
all other functions without breaking the security.

5.5.3 Long-Term Key Update Protocol

The long-term signature generation key of the HSM is used to authenticate messages with
the real identity of the HSM. The long-term decryption key of the HSM is used to de-
crypt encrypted messages that are intended for the vehicle. These keys are generated by
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the HSM typically at manufacturing time, and the CA creates the certificates for such keys
(LongTerm : {ltsig , ltdec}):

λHSM ,Root ,LongTerm.RK ∈ dbr(Root)
=[K ]⇒ K ∈ db(HSM ,LongTerm, uptodate).
K ∈ dbca(HSM ,LongTerm).RK ∈ dbr(Root).ik(K ).
ik(cert [HSM ,K ,RK ]).K ∈ timer(expsoon);

Here, cert [HSM ,K ,RK ] denotes a certificate by the CA that K is a key of HSM (signed with
the private root key inv(RK)). K ∈ timer(expsoon) ensures that K is directly usable (as
the certification is already finished) and at any time we can start the update for a new key.
As explained before, the key update happens in several phases. First, the HSM generates
new long-term key pairs and produces a certificate request message for the CA and waits
for receiving a corresponding certificate. The second phase begins when the current keys
expires, and only now the HSM starts to use the newly generated key. The goals for the long-
term keys are similar to those for the root keys, only here we have a relevant authentication
goal. We formalize that whenever the CA has recorded the key K as a valid long-term key
(for signing or decryption) of a particular HSM, then this machine also has K stored in the
database (either in status uptodate or updating). It would thus count as an attack, if the
intruder manages to confuse the CA about the long-term keys of an HSM. This is formulated
as follows in AIF:

λHSM ,LongTerm.K ∈ dbca(HSM ,LongTerm).
K /∈ db(HSM ,LongTerm, updating).
K /∈ db(HSM ,LongTerm, uptodate)⇒ attack;

This goal is particularly important for accountability, because it ensures that the CA does
never attribute keys to a wrong HSM. We verified that our model is safe under the assumption
that the intruder does not have full access to the long-term signature function.

5.5.4 Short-Term Key Update Protocol

The short-term keys are used to sign or decrypt the periodic beacon messages broadcasted
or received by the vehicle. For privacy reasons, the public keys that correspond to these
short-term private keys may be certified in an anonymous manner by a trusted third party,
called the pseudonym provider (PP), which is a particular instance of CAs within the PKI.
An anonymous certificate contains only the public key, the validity period of the certificate,
the identifier of the issuer, and the digital signature of the issuer. In particular, it does not
contain the identifier of the vehicle to which it has been issued.

However the HSM does not store the certificates but only supports the pseudonym manage-
ment by generating short-term key pairs, storing the private keys, and computing signatures.
The HSM can be instructed (through its API) to generate a new short-term signature key
pair. When the HSM generates a new key pair, it creates a new entry in the internal key
database and it stores the private key together with the corresponding context information
and outputs the public key. It is the responsibility of applications running on the car to obtain
a certificate for it. The certificate request is passed back to the HSM for being signed with
the long-term signature key of the HSM.

Also for short-term keys we check the above mentioned goals of secrecy, authentication
and freshness. The SeVeCom specification [75, §4.2.4] assumes an authentic and confidential
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communication channel between the HSM and the PP. We made experiments both with
realizing the channels with the long-term keys of the HSM, and by using an ideal channel
model that abstracts from the implementation [63]. In both cases, we can verify that the
system is safe, even allowing the intruder to have access to the short-term signature function.



Conclusions

We presented AnBx , the currently most expressive Alice and Bob style language. The distin-
guishing key-features of the language is a powerful concept of channels that includes forward-
ing. We analyzed both the formal details related to the definition of the language and the
practical issues about a realistic cryptographic implementation of the introduced high-level
security abstractions. We showed the amenability of the language for the analysis of real-life
protocols from the e-payment area, namely iKP and SET, and we argue that the abstraction
from low-level security mechanisms turns out to be helpful also for protocols designers. Our
compiler from AnBx to IF is available online3 along with the related documentation and the
source code of both our case studies.

In chapters 3 and 4 we described a tool for the automatic generation of the Java code of
security protocols specified in AnBx . Extending the work of Briais and Nestmann [25], we
generate an optimized executable narration, which includes the checks on reception derivable
from the static information. Our optimization, as the experimental results has confirmed,
improves the protocol execution speed, avoiding repeating the same cryptographic operations
on the same data. The generation of the source code keeps apart the protocol logic from
the application logic, making possible to extend this work, with a reasonable effort, to other
object-oriented or procedural languages. Our experiments showed that our framework can be
applied effectively to real-world industrial protocols, like the e-payments applications.

Although, due to the complexity of the target language, we cannot prove the formal
correctness of the last phase of the translation (from the executable narration to Java), we
think that this experimental work offers some interesting insights in the topic of protocol
design and automatic application generation. First of all, we showed the effectiveness of
AnBx as a language not just for abstract protocol prototyping but also for the generation
of concrete implementations. With respect to [58, 73], we take benefit of check generation
algorithm presented in [25], to produce Java code which includes checks on reception, which
are missing on the other tools. Moreover the same tools do not include a type system to
handle complex messages as the one we implemented.

Moreover in contrast with [72,73,78] which are using a process calculus as input language,
we propose a higher-level and more intuitive language, making our tool suitable for a larger
audience. Additionally we designed a Java library for security which can be used not only
in conjunction with AnBx , but also, in a broader context, even by programmers without
a deep knowledge of the security foundations. Last but not least, having an high degree
of automation, the tool is suitable for agile prototyping and rapid development of security
protocols.

In the second part of the thesis (Chapter 5) we formally analyzed the Secure Vehicle
Communication system developed by the EU-project SeVeCom, using the AIF framework [60]
which is based on a novel set-abstraction technique. Our analysis of the SeVeCom root
key update protocol has revealed two potential weaknesses. Under reasonable assumptions
though, we can exclude the attacks and verify the root key update. The detection of the

3http://www.dais.unive.it/~modesti/anbx/
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attacks and the verification of the fixed system take a few minutes each. We have also
considered a comprehensive model of the system including all communication protocols and
have verified all goals under the assumption that the intruder does not have access to the
signing functionality of all HSMs. The verification of this more complex task takes less than
2 hours. The specifications are available at [60].

Our work was inspired by a similar work of Steel [77], who modeled parts of the SeVeCom-
system using SATMC [8]. Here, the number of steps had to be bounded. Since he did not
model the certification authority, he could not find the problems in root key update.

Our work shows that even complex systems (that require features like the revocation of
keys) can be efficiently verified without bounding the number of steps that agents can perform.
More generally, it shows that even the relevant aspects of time can be integrated into a model
that abstracts from the traces and transitions (and thereby any notion of time): using sets
for different time periods, we can integrate the time information into the abstraction.
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A.1 AnBx Case Studies Source Code

Protocol: Orig_3KP

Types:

Agent C,M,a;

Certified C,M,a;

Number TID ,Auth ,empty ,Desc ,Price ,ID,SALTM ,V,VC,NONCE;

Symmetric_key RC, SALTC;

Function pk,sk,hash ,hmac ,can

Definitions:

IDC: hmac(can(C),RC);

Common: Price ,ID,TID ,NONCE ,hmac(can(C),RC),hmac(Desc ,SALTC),hash(V),hash(VC);

Clear: ID,TID ,NONCE ,hash(Common),hash(V),hash(VC);

Slip: Price ,hash(Common),can(C),RC,SALTM;

EncSlip :{Slip}pk(a);

SigM: {hash(Common )}inv(sk(M));

# Modification in "Formal Analysis of iKP" - Ogata -Futatsugi

SigM2: {hash(Common),EncSlip}inv(sk(M));

SigC: {hash(EncSlip ,hash(Common ))}inv(pk(C));

# SigA: {hash(Auth ,hash(Common ))}inv(sk(a))

# Proposed modification of iKP

SigA: {C,M,hash(Auth ,hash(Common ))}inv(sk(a))

Knowledge:

C: C,M,a,can(C);

M: C,M,a;

a: C,M,a;

C,M share Price ,Desc

Actions:

# 1. Initiate

C -> M: SALTC ,IDC

# 2. Invoice

M -> C: Clear ,SigM

# 3. Payment

C -> M: EncSlip ,SigC

# 4. Auth -Request

M -> a: Clear ,hmac(SALTC ,Desc),EncSlip ,SigM2 ,SigC

# 5. Auth -Response

a -> M: Auth , SigA

# 6. Confirm

M -> C: Auth ,SigA ,V,VC

Goals:

[...]

Table A.1: Portion of the AnBx specification of the original 3KP
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Protocol: Revised_3KP

Types:

Agent C,M,a;

Certified C,M,a;

Number TID ,Desc ,Price;

SeqNumber Auth;

Function can

Definitions:

Contract: Price ,TID ,[can(C):a],[Desc:M]

Knowledge:

C: C,M,a,can(C);

M: C,M,a;

a: C,M,a

C,M share Price ,Desc

Actions:

C -> M,@(C|M|M): [can(C):a],[Desc:M]

M -> C,@(M|C|C): TID ,[ Contract]

C -> M,(C|a|a): Price ,TID ,can(C),[can(C):a],[Contract]

M -> a,(C|a|a): Price ,TID ,can(C),[can(C):a],[Contract]

a -> M: empty

M -> a,@(M|a|a): Price ,TID ,[Desc:M],[Contract]

a -> M,@(a|M,C|M): Auth ,TID ,[ Contract]

M -> C,(a|M,C|C): Auth ,TID ,[ Contract]

Goals:

# credit card secrecy and authorization

can(C) secret between C,a

C confidentially sends can(C) to a

a weakly authenticates C on can(C)

# included in a stronger goal [Contract],Auth

M authenticates a on Auth

C authenticates a on Auth

# global agreement

C authenticates M on [Contract]

a authenticates M on [Contract]

M authenticates a on [Contract],Auth

C authenticates a on [Contract],Auth

a authenticates C on [Contract]

M authenticates C on [Contract]

# secrets

Desc secret between C,M

Auth secret between C,M,a

TID secret between C,M,a

Price secret between C,M,a

# contract

[Contract] secret between C,M,a

Table A.2: AnBx specification of the revised 3KP
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Protocol: SET_Original

# Signed Purchase Request

# G.Bella , F.Massacci and L.C.Paulson "Verifying the SET Purchase Protocols"

Types:

Agent C,M,a;

Certified C,M,a;

Number PurchAmt ,XID ,OrderDesc ,LIDM ,ChallC ,ChallM ,AuthCode;

Function pan

# pan(C) abstract CardSecret ,PAN ,PANSecret see AVISPA SM (AI)

Definitions:

HOD: hash(OrderDesc ,PurchAmt );

PIHead: LIDM ,XID ,HOD ,PurchAmt ,M,hash(XID ,pan(C));

OIData: LIDM ,XID ,ChallC ,HOD ,ChallM;

PANData: pan(C);

PIData: PIHead ,PANData;

PIDualSign: {hash(PIData),hash(OIData )}inv(sk(C)),{PIHead ,hash(OIData),PANData}pk(a);

OIDualSign: OIData ,hash(PIData)

# CompCode: PurchAmt ,AuthCode ,Status

Knowledge:

C: C,M,a,pan(C);

M: C,M,a;

a: C,M,a;

C,M share PurchAmt ,OrderDesc

Actions:

# 1. Purchase Initialization Request

# The Cardholder sends the Merchant a freshness challenge (ChallC)

# and a local transaction identifier (LIDM).

C -> M : LIDM ,ChallC

# 2. Purchase Initialization Response

# The Merchant replies with a signed message that includes a freshness

# challenge (ChallM) and generates a nonce that serves as the globally

# unique transaction identifier XID

M -> C : {LIDM ,XID ,ChallC ,ChallM}inv(sk(M))

# 3. Purchase Request

# Payment Instructions PIData and the Order Information OIData

C -> M : PIDualSign ,OIDualSign

# 4. Authorization Request

M -> a : {{LIDM ,XID ,hash(OIData),HOD ,PIDualSign}inv(sk(M))}pk(a)

# 5. Authorization Response

a -> M : {{M,LIDM ,XID ,PurchAmt ,AuthCode}inv(sk(a))}pk(M)

# 6. Purchase Response

M -> C : {LIDM ,XID ,ChallC ,hash(PurchAmt),AuthCode}inv(sk(M))

Goals:

[..]

Table A.3: Portion of the AnBx specification of the original SET
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Protocol: SET_Revised

# Signed Purchase Request

Types:

Agent C,M,a;

Certified C,M,a;

Number LIDM ,XID ,PurchAmt ,OrderDesc;

SeqNumber AuthCode;

Function pan

Definitions:

TID: LIDM ,XID;

OIdata: OrderDesc;

PIdata: pan(C);

HOD: [OIdata:M],[PIdata:a]

Knowledge:

C: C,M,a,pan(C);

M: C,M,a;

a: C,M,a;

C,M share PurchAmt ,OrderDesc

Actions:

# 1. Purchase Initialization Request

C -> M,@(C|M|M): LIDM

# 2. Purchase Initialization Response

M -> C,@(M|C|C): XID

# 3. Purchase Request

C -> M,@(C|M|M): TID ,HOD

M -> C: empty

C -> M,(C|a|a): TID ,PurchAmt ,PIdata ,HOD

# 4. Authorization Request

M -> a,(C|a|a): TID ,PurchAmt ,PIdata ,HOD

a -> M: empty

M-> a,@(M|a|a): TID ,PurchAmt ,HOD

# 5. Authorization Response

a -> M,@(a|M,C|M): TID ,HOD ,AuthCode

# 6. Purchase Response

M -> C,@(a|M,C|C): TID ,HOD ,AuthCode

Goals:

# credit card secrecy and authorization

pan(C) secret between C,a

C confidentially sends pan(C) to a

a weakly authenticates C on pan(C)

# included in a stronger goal TID ,HOD ,AuthCode

M authenticates a on AuthCode

C authenticates a on AuthCode

# extra goal forwarded auth

C authenticates M on AuthCode

# global agreement

a authenticates M on TID ,HOD

a authenticates C on TID ,HOD

C authenticates a on TID ,HOD ,AuthCode

C authenticates M on TID ,HOD

M authenticates C on TID ,HOD

M authenticates a on TID ,HOD ,AuthCode

# secrets

TID secret between C,M,a

HOD secret between C,M,a

OrderDesc secret between C,M

PurchAmt secret between C,M,a

AuthCode secret between C,M,a

Table A.4: AnBx specification of the revised SET
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A.2 SeVeCom Case Studies Source Code

Listing A.1: SeVeCom RootKey Update Protocol
Problem: SEVECOM_RootKey;

%% Version of Sevecom where the intruder knows no root key ,

%% Either key can be revoked non -deterministically.

%% ATTACK: re-introduce old keys

%% Proverif times out

Types:

A : {hsm1 ,hsm2 ,auth ,pp,i}; % agents

HSM : {hsm1 ,hsm2}; % Honest HSMs

CA : {auth}; % Certification Authority

PP : {pp}; % Pseudonymous providers // same as CA

KeyType : {root1 ,root2};

Root : {root1 ,root2};

Updating : {updating ,uptodate };

RootSts : {one_root_key ,two_root_keys }; % status of the HSM

Dummy : {i};

K,K1,K2,RK,NK,PK,N,INFO : value; % RK=RootKey NK=NewKey PK=PP Key N=Nonce

M,M1,M2,M3,M4,M5,M6 : untyped;

Sets:

db(HSM ,KeyType ,Updating), % HSM ’s own db

% the flag "is_removable" is omitted because can be inferred by the KeyType

% is_removable = shortterm keys , otherwise not is_removable

dbr(Root), % centralized db for root keys

dishonest(Dummy), % intruder generated keys

revoked(HSM); % all the revoked keys

Functions:

public sign/2, crypt/2, pair/2, h/1;

private inv/1;

Facts:

iknows/1, attack/0, candidate/2, secureCh /3;

Rules:

% Intruder deduction:

\A. => iknows(A);

iknows(sign(M1,M2)) => iknows(h(M2));

iknows(M1).iknows(M2) => iknows(sign(M1,M2));

iknows(crypt(M1,M2)).iknows(inv(M1)) => iknows(M2);

iknows(M1).iknows(M2) => iknows(crypt(M1,M2));

% pair

iknows(pair(M1,M2)) => iknows(M1).iknows(M2);

iknows(M1).iknows(M2) => iknows(pair(M1,M2));

% hash

iknows(M) => iknows(h(M));

=[K]=> iknows(K).iknows(inv(K)).K in dishonest(i);

% ---------------------------- ROOT KEYS ---------------------------

% hsm root keys UPDATE

% API: initDevice

% root keys

\HSM. =[K1,K2]=> iknows(K1).iknows(K2).

K1 in dbr(root1).K2 in dbr(root2).
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K1 in db(HSM ,root1 ,uptodate).K2 in db(HSM ,root2 ,uptodate);

%% Pseudonymous provider key generation

%% we assume that the Cars know the PP public key

%\HSM. =[K]=> K in db(HSM ,ppsig ,uptodate).iknows(K);

% Revoke root keys

% API: revokeRootKey

\HSM ,Root.iknows(sign(inv(K),K)).K in db(HSM ,Root ,uptodate)

=>

iknows(K).K in db(HSM ,Root ,updating);

% Update a root key1

% API: setRootKey

\HSM.iknows(sign(inv(K2),K)).

K2 in db(HSM ,root2 ,uptodate).

K1 in db(HSM ,root1 ,updating).

=>

K2 in db(HSM ,root2 ,uptodate).

K in db(HSM ,root1 ,uptodate).

K1 in revoked(HSM);

% K is now valid , K1 is no longer in db

% Update a root key2

\HSM.iknows(sign(inv(K1),K)).

K1 in db(HSM ,root1 ,uptodate).

K2 in db(HSM ,root2 ,updating).

=>

K1 in db(HSM ,root1 ,uptodate).

K in db(HSM ,root2 ,uptodate).

K2 in revoked(HSM);

% K is now valid , K2 is no longer in db

%%% CA revokes root1 -key

\HSM.K1 in dbr(root1).

K2 in dbr(root2).

iknows(K1).iknows(K2)

=[K]=>

K1 in dbr(root1).

K in dbr(root2).

iknows(sign(inv(K1),K1)).

iknows(sign(inv(K2),K));

%%% CA revokes root2 -key

\HSM.K1 in dbr(root1).

K2 in dbr(root2).

iknows(K1).iknows(K2)

=[K]=>

K in dbr(root1).

K2 in dbr(root2).

iknows(sign(inv(K2),K2)).

iknows(sign(inv(K1),K));

% ------------------------- Attacks on Root keys ------------------------

%%%% Attacks on Root keys

% The intruder gets hold of a private key

\HSM ,Root ,Updating.

K in db(HSM ,Root ,Updating).

iknows(inv(K))

=>

attack;
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% The intruder has inserted one of his keys:

\HSM ,Root ,Updating.

K in db(HSM ,Root ,Updating).

K in dishonest(i).

=>

attack;

% The intruder can make the TRD accept an old key:

\HSM ,Root ,Updating.

K in revoked(HSM).

K in db(HSM ,Root ,Updating).

=>

attack;

% -----------------------------------------------------------------------------

Listing A.2: SeVeCom Comprehensive Timed Model
Problem: SEVECOM;

% SeVeCom comprehensive model - with Timing and abstract channel for short -term key

update

% RESULT goal unreachable: attack: (SAFE)

% This variant models the root , long and short term keys with several vehicles

Types:

A : {hsm1 ,hsm2 ,auth ,pp,i}; % agents

HSM : {hsm1 ,hsm2}; % Honest HSMs

CA : {auth}; % Certification Authority

PP : {pp}; % Pseudonymous providers

% can be the same as CA if PP:{auth}

KeyType : {root1 ,root2 ,ltsig ,ltdec ,stsig ,stdec ,ppsig}; % root ,longterm ,shortterm ,ps.

prov

Root : {root1 ,root2};

LongTerm : {ltsig ,ltdec};

ShortTerm : {stsig ,stdec};

Updating : {updating ,uptodate };

RootSts : {one_root_key ,two_root_keys }; % status of the HSM

NoncesSts : {challenged ,responded };

Dummy : {i};

Time : {old ,expsoon ,new};

K,K1,K2,RK,NK,PK,N,INFO : value; % RK=RootKey NK=NewKey PK=PP Key N=Nonce

M,M1,M2,M3,M4,M5,M6 : untyped;

Sets:

db(HSM ,KeyType ,Updating), % HSM ’s own db

% the flag "is_removable" is omitted because can be inferred by the KeyType

% is_removable = shortterm keys , otherwise not is_removable

dbr(Root), % centralized db for root keys

dbca(HSM ,LongTerm), % centralized db for all CAs ,

dbps(HSM ,ShortTerm), % centralized db for pseudos

dishonest(Dummy), % intruder generated keys

revoked(HSM), % all the revoked keys

nonces(PP,HSM ,NoncesSts), % nonces exchanged during psudonymous update

inonces(CA,HSM), % INFO nonces exchanged during longterm update

timer(Time); % timer for time progress

Functions:

public sign/2, crypt/2, pair/2, h/1;

private inv/1;

Facts:

iknows/1, attack/0, candidate/2, secureCh /3;
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Definitions:

% Used for LongTerm key update and certificates

trip[x1,x2,x3] : pair([x1],pair([x2],[x3]));

quad[x1,x2,x3,x4] : pair([x1],trip([x2],[x3],[x4]));

sig[sk,x,pkx ,t]: sign(inv([sk]),trip([x],[pkx],[t])); % pkx public key of the

HSM , x its identity , inv[sk] the private key of the TTP , t is the TTP identity

cert[x,pkx ,sk,t]: sig([sk],[x],[pkx],[t]); % certificate created by TTP t

crdata[x,npkx ,t,info]: quad([x],[t],[npkx],[info]); % npkx is the new vehicle

public key

cr[x,npkx ,skx ,t,info]: sign(inv([skx]),crdata ([x],[npkx],[t],[info])); % inv[skx] old

private key of the vehicle

cack[x,skx ,t,info]: sign(inv([skx]),trip([t],[x],[info])) % acknoledge (longterm)

Rules:

% Intruder deduction:

\A. => iknows(A);

iknows(sign(M1,M2)) => iknows(h(M2));

iknows(M1).iknows(M2) => iknows(sign(M1,M2));

iknows(crypt(M1,M2)).iknows(inv(M1)) => iknows(M2);

iknows(M1).iknows(M2) => iknows(crypt(M1,M2));

% pair

iknows(pair(M1,M2)) => iknows(M1).iknows(M2);

iknows(M1).iknows(M2) => iknows(pair(M1,M2));

% hash

iknows(M) => iknows(h(M));

% the intruder can generate arbitrary key -pairs (that are not

% part of the database --- unless he manages to insert them).

=[K]=> iknows(K).iknows(inv(K)).K in dishonest(i);

% Decrypt with API

\HSM ,Updating. iknows(crypt(K,M)).K in db(HSM ,ltdec ,Updating) => iknows(M).K in db(HSM

,ltdec ,Updating);

\HSM ,Updating. iknows(crypt(K,M)).K in db(HSM ,stdec ,Updating) => iknows(M).K in db(HSM

,stdec ,Updating);

% Sign with API

% long -term signature function is disable for the intruder

%\HSM ,Updating.iknows(M).K in db(HSM ,ltsig ,Updating) => iknows(sign(inv(K),M)).K in db

(HSM ,ltsig ,Updating);

\HSM ,Updating.iknows(M).K in db(HSM ,stsig ,Updating) => iknows(sign(inv(K),M)).K in db(

HSM ,stsig ,Updating);

% Initialization: initial keys; our model allows an arbitrary number

% of them , and obviously an implementation that limits this number is

% a special case.

% ---------------------------- ROOT KEYS ---------------------------

% hsm root keys UPDATE

% API: initDevice

% root keys

\HSM. =[K1,K2]=> iknows(K1).iknows(K2).

K1 in dbr(root1).K2 in dbr(root2).

K1 in db(HSM ,root1 ,uptodate).K2 in db(HSM ,root2 ,uptodate);

% Revoke root keys

% API: revokeRootKey

\HSM ,Root.iknows(sign(inv(K),K)).K in db(HSM ,Root ,uptodate)

=>
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iknows(K).K in db(HSM ,Root ,updating);

% Update a root key1

% API: setRootKey

\HSM.iknows(sign(inv(K2),K)).

K2 in db(HSM ,root2 ,uptodate).

K1 in db(HSM ,root1 ,updating).

=>

K2 in db(HSM ,root2 ,uptodate).

K in db(HSM ,root1 ,uptodate).

K1 in revoked(HSM);

% K is now valid , K1 is no longer in db

% Update a root key2

\HSM.iknows(sign(inv(K1),K)).

K1 in db(HSM ,root1 ,uptodate).

K2 in db(HSM ,root2 ,updating).

=>

K1 in db(HSM ,root1 ,uptodate).

K in db(HSM ,root2 ,uptodate).

K2 in revoked(HSM);

% K is now valid , K2 is no longer in db

\HSM.K1 in dbr(root1).K2 in dbr(root2).

iknows(K1).iknows(K2)

=[K]=>

K1 in dbr(root1).

K in dbr(root2).

iknows(sign(inv(K1),K1)).

iknows(sign(inv(K2),K));

\HSM.K1 in dbr(root1).K2 in dbr(root2).

iknows(K1).iknows(K2)

=[K]=>

K in dbr(root1).

K2 in dbr(root2).

iknows(sign(inv(K1),K1)).

iknows(sign(inv(K2),K));

% ------------------------- Attacks on Root keys ------------------------

% The intruder gets hold of a private key

\HSM ,Root ,Updating.

K in db(HSM ,Root ,Updating).

iknows(inv(K))

=>

attack;

% The intruder has inserted one of his keys:

\HSM ,Root ,Updating.

K in db(HSM ,Root ,Updating).

K in dishonest(i).

=>

attack;

% The intruder can make the TRD accept an old key:

\HSM ,Root ,Updating.

K in revoked(HSM).

K in db(HSM ,Root ,Updating).

=>

attack;

% -----------------------------------------------------------------------

% ---------------------------- LONG TERM KEYS ---------------------------
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% time progress

=[K]=> K in timer(new);

K in timer(expsoon) => K in timer(old);

% Initialization:

% The TTP CA creates the certificates

% we assume that the rootkeys (RK) are known to the car ’s HSM and that they can be

used by CA to sign messages

% this is also the way longterm keys are initialized

% we assume a trustworthy communication link

\HSM ,CA,Root ,LongTerm. RK in dbr(Root)

=[K]=>

K in db(HSM ,LongTerm ,uptodate).K in dbca(HSM ,LongTerm).RK in dbr(Root).iknows(K).

iknows(cert[HSM ,K,RK,CA]).K in timer(expsoon);

% update of the longterm keys

% see 3.3.4

% V(x) -> T

% the vehicle requests a new certificate and provide a new key NK in a self signed

message

% API: initLongTermKeyUpdate

\HSM ,CA,LongTerm. K in timer(expsoon). K in db(HSM ,LongTerm ,uptodate)

=[ NK,INFO ]=>

K in timer(expsoon).NK in timer(new).iknows(cr[HSM ,NK,K,CA,INFO]).K in db(HSM ,LongTerm

,updating).iknows(NK).NK in db(HSM ,LongTerm ,updating);

% CA returns the new certificate

% we assume that the new certificate is valid instantaneously

% in reality it has a validity period (as the old one)

% "The presence of the HSM ensures that the vehicle will not utilize the newly

acquired

% certificate and the corresponding private key during the validity period E of its

current

% key and certificate"

% CA receives a request

\CA,HSM ,Root ,LongTerm. iknows(cr[HSM ,NK,K,CA,INFO]).K in dbca(HSM ,LongTerm).RK in dbr(

Root).INFO notin inonces(CA,HSM).K in timer(expsoon).NK in timer(new)

=>

% and issue the certificate

% API: finalizeLongTermKeyUpdate

iknows(cert[HSM ,NK,RK,CA]).K in dbca(HSM ,LongTerm).RK in dbr(Root).INFO in inonces(CA,

HSM).K in timer(expsoon).NK in timer(new);

% HSM receives the certificate set new LongTermKey NK and revokes K

% and Notification

% V(x)->T

\CA,HSM ,Root ,LongTerm. iknows(cert[HSM ,NK,RK,CA]).iknows(cr[HSM ,NK,K,CA,INFO]).RK in

db(HSM ,Root ,uptodate).K in db(HSM ,LongTerm ,updating).NK in db(HSM ,LongTerm ,

updating)

=>

NK in db(HSM ,LongTerm ,uptodate).RK in db(HSM ,Root ,uptodate).iknows(cack[HSM ,NK,CA,INFO

]).K in db(HSM ,LongTerm ,updating);

% CA receives the notification and puts NK in dbca

\HSM ,CA,LongTerm. iknows(cack[HSM ,NK,CA,INFO]). iknows(cr[HSM ,NK,K,CA,INFO]).iknows(

cert[HSM ,NK,RK,CA]).K in dbca(HSM ,LongTerm).K in timer(expsoon).NK in timer(new).

INFO in inonces(CA,HSM)

=>

K in dbca(HSM ,LongTerm).NK in dbca(HSM ,LongTerm).K in timer(expsoon).NK in timer(new).

INFO in inonces(CA,HSM);
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% revocation of K

\CA,HSM ,Root ,LongTerm.RK in db(HSM ,Root ,uptodate).

K in dbca(HSM ,LongTerm).K in db(HSM ,LongTerm ,updating).

K in timer(old).NK in timer(new).INFO in inonces(CA,HSM).

NK in dbca(HSM ,LongTerm). NK in db(HSM ,LongTerm ,uptodate). iknows(cack[HSM ,NK,CA,INFO

]). iknows(cr[HSM ,NK,K,CA,INFO]). iknows(cert[HSM ,NK,RK,CA])

=>

% K is then REVOKED

K in revoked(HSM).K in timer(old).NK in timer(expsoon).NK in dbca(HSM ,LongTerm). NK in

db(HSM ,LongTerm ,uptodate).RK in db(HSM ,Root ,uptodate).INFO in inonces(CA,HSM);

% ----------------- Attacks on Long Term Keys -----------------------------

% The intruder has inserted one of his "longterm" keys:

\HSM ,LongTerm ,Updating.K in db(HSM ,LongTerm ,Updating).K in dishonest(i) => attack;

\HSM ,LongTerm ,Updating.K in dbca(HSM ,LongTerm).K in dishonest(i) => attack;

% The intruder can make the TRD accept an old longterm key:

% in order to avoid attacks the constrain on time must be set on the rules

% .K in timer(expsoon).NK in timer(new) in LS and RS of the rule

\HSM ,LongTerm.K in revoked(HSM).K in dbca(HSM ,LongTerm) => attack;

\HSM ,LongTerm ,Updating.K in revoked(HSM).K in db(HSM ,LongTerm ,Updating) => attack;

\HSM ,LongTerm ,Updating.K in timer(old).K in revoked(HSM).K in dbca(HSM ,LongTerm).K in

db(HSM ,LongTerm ,Updating) => attack;

% The intruder knows any private longterm K

\HSM ,LongTerm ,Updating.K in db(HSM ,LongTerm ,Updating).iknows(inv(K)) => attack;

\HSM ,LongTerm.K in dbca(HSM ,LongTerm).iknows(inv(K)) => attack;

% Authentication Goal - the CA does not consider valid a key which is not in the HSM

db

\HSM ,LongTerm.K notin dbca(HSM ,LongTerm).K in db(HSM ,LongTerm ,uptodate).K in timer(

expsoon) => attack;

\HSM ,LongTerm.K in dbca(HSM ,LongTerm). forall Updating. K notin db(HSM ,LongTerm ,

Updating) => attack;

% ------------------------------------------------------------------------------------

% ---------------------------- SHORT TERM KEYS - PSEUDONYMS --------------------------

% see 4.2.4

% short term keys init and generation

% API: initDevice

% API: generateKeyPair

% ShortTerm keys are generated and processed in a batch ,

% here we generate and process one by one

% The communication with the PP has to be done via an authenticated and confidential

communication link

% secureCh /3;

% Pseudonym provider key generation

% we assume that the Cars know the PP public key

\HSM. =[K]=> K in db(HSM ,ppsig ,uptodate).iknows(K);

% X-> PP: PSNYM -PKX

\HSM ,PP,ShortTerm. =[K]=> K in db(HSM ,ShortTerm ,updating).secureCh(HSM ,PP ,K);

% PP->X: N

\PP,HSM.secureCh(HSM ,PP,K) =[N]=> N in nonces(PP,HSM ,challenged).secureCh(PP,HSM ,N);

\HSM ,PP,ShortTerm. K in db(HSM ,ShortTerm ,updating).secureCh(PP ,HSM ,N)

=>

secureCh(HSM ,PP,sign(inv(K),N)).K in db(HSM ,ShortTerm ,updating);
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% PP->X: cert(X)

\HSM ,PP,ShortTerm.secureCh(HSM ,PP,sign(inv(K),N)).N in nonces(PP,HSM ,challenged).PK in

db(HSM ,ppsig ,uptodate)

=>

secureCh(PP,HSM ,cert[HSM ,K,PK,PP]).K in dbps(HSM ,ShortTerm).N in nonces(PP,HSM ,

responded).PK in db(HSM ,ppsig ,uptodate);

\HSM ,PP,ShortTerm.secureCh(PP,HSM ,cert[HSM ,K,PK,PP]).K in db(HSM ,ShortTerm ,updating)

=>

% at the end of the subprotocol the intruder knows the certificate)

K in db(HSM ,ShortTerm ,uptodate).iknows(cert[HSM ,K,PK,PP]);

% ------------------- ShortTerm Key Attacks ----------------------------------

% The intruder knows any private shortterm K

\HSM ,ShortTerm ,Updating.K in db(HSM ,ShortTerm ,Updating).iknows(inv(K)) => attack;

\HSM ,ShortTerm.K in dbps(HSM ,ShortTerm).iknows(inv(K)) => attack;

% The intruder has inserted one of his "pseudonyms ":

\HSM ,ShortTerm ,Updating.K in db(HSM ,ShortTerm ,Updating).K in dishonest(i) => attack;

% Safe

\HSM ,ShortTerm ,PP.K in dbps(HSM ,ShortTerm).iknows(cert[HSM ,K,PK,PP]).iknows(inv(K)) =>

attack;

\HSM ,ShortTerm ,Updating ,PP.K in db(HSM ,ShortTerm ,Updating).iknows(cert[HSM ,K,PK ,PP]).

iknows(inv(K)) => attack;
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