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Abstract

In recent years we have faced a multitude of security flaws posing a serious threat to the
whole society, ranging from individuals to national critical infrastructures. For this reason, it
is of crucial importance to effectively enforce security on real systems, by identifying flaws
and putting in place novel security mechanisms and techniques. Along this path, we provide
practical contributions on Web security and cryptographic APIs.

We first review the field of Web session security by surveying the most common attacks
against web sessions. Existing security solutions are evaluated along four different axes:
protection, usability, compatibility and ease of deployment. We also identify a few guidelines
that can be helpful for the development of innovative solutions approaching web security in
a more systematic and comprehensive way. Additionally, we propose a new browser-side
security enforcement technique for Web protocols. The core idea is to extend the browser
with a monitor which, given the protocol specification, enforces the required confidentiality
and integrity properties, as well as the intended protocol flow.

For what concerns the security of cryptographic APIs, we investigate an effective method
to monitor existing cryptographic systems in order to detect, and possibly prevent, the leak-
age of sensitive cryptographic keys. Key security is stated formally and it is proved that the
method is sound, complete and efficient under the assumption that a key fingerprint is given
for each sensitive key. We also provide a thoughtful analysis of Java keystores, storage facili-
ties to manage and securely store keys in Java applications. We devise a precise threat model
and distill a set of security properties. We report on unpublished attacks and weaknesses in
implementations that do not adhere to state-of-the-art cryptographic standards and discuss
the fixes on popular Java libraries released after our responsible disclosure.
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Introduction

In recent years we have faced a multitude of security flaws posing a serious threat to the whole
society, ranging from individuals to national critical infrastructures. In this scenario, the Web
plays a pivotal role since it is the primary access point to on-line data and applications.
It is extremely complex and variegate, as it integrates a multitude of dynamic contents by
different parties to deliver the greatest possible user experience. This heterogeneity paired
with a endless quest for usability and backward compatibility makes it very hard to effectively
enforce security. As a consequence, the large majority of defensive mechanisms only address
very specific problems because developers and researchers have been cautious at not breaking
the functionalities of existing websites. Due to this situation, it is extremely difficult to
understand the benefits and drawbacks of each single proposal without a full picture of the
literature.

In this thesis we provide a systematization of knowledge in the context of the security
of Web sessions by assessing a large class of common attacks and existing defenses. We
evaluate each security solutions and mechanisms with respect to the security guarantees it
provides, its impact on both compatibility and usability, as well as its ease of deployment.
We also synthesize some guidelines that we believe can be helpful for the development of
innovative solutions approaching web security in a more systematic and comprehensive way.

Furthermore, we propose an innovative approach to strengthen the security guarantees
of Web protocols in general, without focusing on a single vulnerability. The key idea is to
extend browsers with a security monitor that is able to enforce the compliance of browser
behaviours with respect to an ideal Web protocol specification. We carefully designed the
security monitor to interact gracefully with existing websites, so that the website functionality
is preserved unless it critically deviates from the intended protocol specification.

Another fundamental technology for IT security is Cryptography. Even if there are well
established standards for cryptographic operations, cryptography is complex and variegate
and typically requires to combine in non trivial ways different algorithms and mechanisms.
Moreover, cryptography is intrinsically related to the secure management of cryptographic
keys which need to be protected and securely stored by applications. Leaking cryptographic
keys, in fact, vanishes any advantage of cryptography, allowing attackers to break message
confidentiality and integrity, to authenticate as legitimate users or impersonate legitimate
services.

In this thesis we address the problem of leaking cryptographic keys in two different con-
texts. First, we report on the problem of run-time detection of cryptographic API attacks
aimed at leaking sensitive keys. We propose an effective method to monitor existing cryp-
tographic systems in order to detect and prevent the leakage of sensitive cryptographic keys.
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Key security is stated formally and it is proved that the method is sound, complete and ef-
ficient. We also present a proof-of-concept tool for PKCS#11 that is able to detect, on a
significant fragment of the API, all key management attacks from the literature. Secondly,
we provide a thoughtful analysis of Java keystores, storage facilities to manage and securely
store keys in Java applications. We devise a precise threat model and distill a set of security
properties. We report on unpublished attacks and weaknesses in implementations that do
not adhere to state-of-the-art cryptographic standards and discuss the fixes on popular Java
libraries released after our responsible disclosure.

Structure of the Thesis

Due to the diversity of the contributions discussed, the thesis is divided into two distinct parts
to gather together the works in the fields of Web security and cryptographic API, respectively.
The following is an overview of the contents of each chapter.

• Chapter 1 surveys the most common attacks and security mechanisms on web ses-
sions. Existing security solutions which prevent or mitigate the different attacks are
evaluated along four different axes: protection, usability, compatibility and ease of
deployment. Additionally, several defensive solutions which aim at providing robust
safeguards against multiple attacks are assessed. Five guidelines for the design of se-
curity solutions are then distilled from the reviewed existing mechanisms;

• Chapter 2 introduces a novel browser-side security enforcement technique for web
protocols. We first devise the challenges for the security of web protocols and then we
illustrate the core idea of our approach on OAuth 2.0, the de-facto standard for cross-
site authorization in the Web. The analysis is based both on a review of well-known
attacks reported in the literature and an extensive experimental evaluation in the wild;

• Chapter 3 proposes an effective method to monitor existing cryptographic systems in
order to detect, and possibly prevent, the leakage of sensitive cryptographic keys. Key
security is formally defined and proofs that the method is sound, complete and efficient
are provided. We discuss practical implementations and report on a proof-of-concept
log analysis tool for PKCS#11 we developed;

• Chapter 4 examines Java keystores, the standard storage facilities to securely store
cryptographic keys in Java applications. We consider seven keystore implementations
from Oracle JDK and Bouncy Castle, a widespread cryptographic library. We describe,
in detail, how the various keystores enforce confidentiality and integrity of the stored
keys through password-based cryptography and we report on several attacks on imple-
mentations that do not adhere to state-of-the-art cryptographic standards.
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Summary of Contributions

For what concerns the field of Web security, we contribute in Chapter 1 by performing a
systematic overview of a large class of common attacks targeting Web sessions and the cor-
responding security solutions. We also believe that the five guidelines can be helpful for
the development of innovative solutions approaching Web security in a more systematic and
comprehensive way. In Chapter 2 we identify the fundamental challenges for the security
of web protocols in terms of enforcing confidentiality and integrity of message components,
as well as the intended protocol flow. We discuss concrete examples of their security im-
port in the context of OAuth 2.0. We propose the Web Protocol Security Enforcer (WPSE
for short), a browser-side security monitor designed to tackle the challenges we identified.
We formalize the behaviour of WPSE in terms of a finite state automaton and we develop a
prototype implementation of the security monitor as a Google Chrome extension, which we
make publicly available. We rigorously analyse the design of WPSE against OAuth 2.0 by
discussing how the security monitor prevents a number of attacks previously reported in the
literature [160, 13, 68]. We prove that browser-side security monitoring of web protocols is
both useful and feasible by experimentally assessing the effectiveness of WPSE against 90
websites using OAuth 2.0 to implement single sign-on at major identity providers.

In the context of cryptographic APIs and applications, Chapter 3 contributes by modeling
the problem of run-time detection of cryptographic API attacks, also in a distributed setting.
We provide a sound and complete characterization of attacks based on the monitoring of a
subset of API calls and we we prove that the problem of finding attacks cannot be decided
without a key fingerprinting abstract mechanism. We show that key fingerprinting enables a
sound, complete and efficient run-time analysis. We discuss practical implementations and
we develop a proof-of-concept log analysis tool for PKCS#11, the RSA standard interface
for cryptographic tokens [139, 144], that is able to detect all the key-management attacks
reported in [60, 71]. In Chapter 4 we define a general threat model for password-protected
keystores and we distill a set of significant security properties and consequent rules that any
secure keystore should adhere to. We perform a thoughtful analysis of seven keystores and
report undocumented details about their cryptographic implementations. We show critical
unpublished attacks and weaknesses in the analyzed keystores. We empirically estimate the
speed-up due to bad cryptographic implementations with respect to the most resistant key-
store and to NIST recommendations.
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Part I

Web Security
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Chapter 1

Surviving the Web: A Journey into
Web Session Security
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1.1 Introduction

The Web is the primary access point to on-line data and applications. It is extremely complex
and variegate, as it integrates a multitude of dynamic contents by different parties to deliver
the greatest possible user experience. This heterogeneity makes it very hard to effectively
enforce security, since putting in place novel security mechanisms typically prevents existing
websites from working correctly or negatively affects the user experience, which is generally
regarded as unacceptable, given the massive user base of the Web. However, this continuous
quest for usability and backward compatibility had a subtle effect on web security research:
designers of new defensive mechanisms have been extremely cautious and the large majority
of their proposals consists of very local patches against very specific attacks. This piecemeal
evolution hindered a deep understanding of many subtle vulnerabilities and problems, as
testified by the proliferation of different threat models against which different proposals have
been evaluated, occasionally with quite diverse underlying assumptions. It is easy to get lost
among the multitude of proposed solutions and almost impossible to understand the relative
benefits and drawbacks of each single proposal without a full picture of the existing literature.

In this chapter we take the delicate task of performing a systematic overview of a large
class of common attacks targeting the current Web and the corresponding security solutions
proposed so far. We focus on attacks against web sessions, i.e., attacks which target hon-
est web browser users establishing an authenticated session with a trusted web application.
This kind of attacks exploits the intrinsic complexity of the Web by tampering, e.g., with
dynamic contents, client-side storage or cross-domain links, so as to corrupt the browser ac-
tivity and/or network communication. Our choice is motivated by the fact that attacks against
web sessions cover a very relevant subset of serious web security incidents [134] and many
different defenses, operating at different levels, have been proposed to prevent these attacks.

We consider typical attacks against web sessions and we systematise them based on:
(i) their attacker model and (ii) the security properties they break. This first classification
is useful to understand precisely which intended security properties of a web session can
be violated by a certain attack and how. We then survey existing security solutions and
mechanisms that prevent or mitigate the different attacks and we evaluate each proposal
with respect to the security guarantees it provides. When security is guaranteed only under
certain assumptions, we make these assumptions explicit. For each security solution, we also
evaluate its impact on both compatibility and usability, as well as its ease of deployment.
These are important criteria to judge the practicality of a certain solution and they are useful
to understand to which extent each solution, in its current state, may be amenable for a large-
scale adoption on the Web. Since there are several proposals in the literature which aim at
providing robust safeguards against multiple attacks, we also provide an overview of them
in a separate section. For each of these proposals, we discuss which attacks it prevents with
respect to the attacker model considered in its original design and we assess its adequacy
according to the criteria described above.

Finally, we synthesize from our survey a list of five guidelines that, to different extents,
have been taken into account by the designers of the different solutions. We observe that
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none of the existing proposals follows all the guidelines and we argue that this is due to
the high complexity of the Web and the intrinsic difficulty in securing it. We believe that
these guidelines can be helpful for the development of innovative solutions approaching web
security in a more systematic and comprehensive way.

1.1.1 Scope of the Work

Web security is complex and web sessions can be attacked at many different layers. To clarify
the scope of the present work, it is thus important to discuss some assumptions we make and
their import on security:

1. perfect cryptography: at the network layer, web sessions can be harmed by network
sniffing or man-in-the-middle attacks. Web traffic can be protected using the HTTPS
protocol, which wraps the traffic within a SSL/TLS encrypted channel. We do not
consider attacks to cryptographic protocols. In particular, we assume that the attacker
cannot break cryptography to disclose, modify or inject the contents sent to a trusted
web application over an encrypted channel. However, we do not assume that HTTPS
is always configured correctly by web developers, since this is quite a delicate task,
which deserves to be discussed in the present survey;

2. the web browser is not compromised by the attacker: web applications often rely on
the available protection mechanisms offered by standard web browsers, like the same-
origin policy or the HttpOnly cookie attribute. We assume that all these defenses
behave as intended and the attacker does not make advantage of browser exploits,
otherwise even secure web applications would fail to be protected;

3. trusted web applications may be affected by content injection vulnerabilities: this is a
conservative assumption, since history teaches us that it is almost impossible to guaran-
tee that a web application does not suffer from this kind of threats. We focus on content
injection vulnerabilities which ultimately target the web browser, like cross-site script-
ing attacks (XSS). Content injections affecting the backend of the web application, like
SQL injections, are not covered.

1.1.2 Structure of the Chapter

Section 1.2 provides some background on the main building blocks of the Web. Section 1.3
presents the attacks. Section 1.4 classifies attack-specific solutions with respect to their se-
curity guarantees, their level of usability, compatibility and ease of deployment. Section 1.5
carries out a similar analysis for defenses against multiple attacks. Section 1.6 presents five
guidelines for future web security solutions. Section 1.7 concludes.

1.2 Background

We provide a brief overview of the basic building blocks of the web ecosystem and their
corresponding security cornerstones.
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1.2.1 Languages for the Web

Documents on the Web are provided as web pages, hypertext files connected to other doc-
uments via hyperlinks. Web pages embody several languages affecting different aspects of
the documents. The Hyper Text Markup Language (HTML) [177] or a comparable markup
language (e.g., XHTML) defines the structure of the page and the elements it includes, while
Cascading Style Sheets (CSS) [170] are used to add style information to web pages (e.g.,
fonts, colors, position of elements).

JavaScript [65] is a programming language which allows the development of rich, in-
teractive web applications. JavaScript programs are included either directly in the web page
(inline scripts) or as external resources, and can dynamically update the contents in the user
browser by altering the Document Object Model (DOM) [174, 175, 176], a tree-like rep-
resentation of the web page. Page updates are typically driven by user interaction or by
asynchronous communications with a remote web server based on Ajax requests (via the
XMLHttpRequest API).

1.2.2 Locating Web Resources

Web pages and the contents included therein are hosted on web servers and identified by
a Uniform Resource Locator (URL). A URL specifies both the location of a resource and
a mechanism for retrieving it. A typical URL includes: (1) a protocol, defining how the
resource should be accessed; (2) a host, identifying the web server hosting the resource; and
(3) a path, localizing the resource at the web server.

Hosts belong to domains, identifying an administrative realm on the Web, typically con-
trolled by a specific company or organization. Domain names are organised hierarchically:
sub-domain names can be defined from a domain name by prepending it a string, separated by
a period. For example, the host www.google.com belongs to the domain google.com
which is a sub-domain of the top-level domain com.

1.2.3 Hyper Text Transfer Protocol (HTTP)

Web contents are requested and served using the Hyper Text Transfer Protocol (HTTP), a
text-based request-response protocol based on the client-server paradigm. The client (browser)
initiates the communication by sending an HTTP request for a resource hosted on the server;
the server, in turn, provides an HTTP response containing the completion status information
of the request and its result. HTTP defines methods to indicate the action to be performed on
the identified resource, the most important ones being GET and POST. GET requests should
only retrieve data and have no other import, while server-side side-effects should only be
triggered by POST requests, though web developers do not always comply with this conven-
tion. Both GET and POST requests may include custom parameters, which can be processed
by the web server.

HTTP is a stateless protocol, i.e., it treats each request as independent from all the other
ones. Some applications, however, need to remember information about previous requests,
for instance to track whether a user has already authenticated and grant her access to her
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personal page. HTTP cookies are the most widespread mechanism employed on the Web
to maintain state information about the requesting clients [18]. Roughly, a cookie is a key-
value pair, which is set by the server into the client and automatically attached by it to all
subsequent requests to the server. Cookies can be set via the Set-Cookie header of HTTP
or by using JavaScript. Cookies may also have attributes which restrict the way the browser
handles them (see Section 1.2.4).

1.2.4 Security Cornerstones and Subtleties

HTTPS

Since all the HTTP traffic flows in the clear, the HTTP protocol does not guarantee several
desirable security properties, such as the confidentiality and the integrity of the communica-
tion, and the authenticity of the involved parties. To protect the exchanged data, the HTTP

Secure (HTTPS) protocol [141] wraps plain HTTP traffic within a SSL/TLS encrypted chan-
nel. A web server may authenticate itself at the client by using public key certificates; when
the client is unable to verify the authenticity of a certificate, a warning message is displayed
and the user can decide whether to proceed with the communication or not.

Mixed Content Websites

A mixed content page is a web page that is received over HTTPS, but loads some of its
contents over HTTP. The browser distinguishes two types of contents depending on their
capabilities on the including page: passive contents like images, audio tracks or videos cannot
modify other portions of the page, while active contents like scripts, frames or stylesheets
have access to (parts of) the DOM and may be exploited to alter the page. While the inclusion
of passive contents delivered over HTTP into HTTPS pages is allowed by the browser, active
mixed contents are blocked by default [178].

Same-Origin Policy

The same-origin policy (SOP) [124] is a standard security policy implemented by all major
web browsers: it enforces a strict separation between contents provided by unrelated sites,
which is crucial to ensure their confidentiality and integrity. SOP allows scripts running in a
first web page to access data in a second web page only if the two pages have the same origin.
An origin is defined as the combination of a protocol, a host and a port number [19]. SOP
applies to many operations in the browser, most notably DOM manipulations and cookie
accesses. However, some operations are not subject to same-origin checks, e.g., cross-site
inclusion of scripts and submission of forms are allowed, thus leaving space to potential
attacks.

Cookies

Cookies use a separate definition of origin, since cookies set for a given domain are normally
shared across all the ports and protocols on that domain. By default, cookies set by a page
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are only attached by the browser to requests sent to the same domain of the page. However,
a page may also set cookies for a parent domain by specifying it using the Domain cookie
attribute, as long as the parent domain does not occur in a list of public suffixes1: these
cookies are shared between the parent domain and all its sub-domains, and we refer to them
as domain cookies.

Cookies come with two security mechanisms: the Secure attribute identifies cook-
ies which must only be sent over HTTPS, while the HttpOnly attribute marks cookies
which cannot be accessed via non-HTTP APIs, e.g., via JavaScript. Perhaps surprisingly, the
Secure attribute does not provide integrity guarantees, since secure cookies can be over-
written over HTTP [18].

1.3 Attacking Web Sessions

A web session is a semi-permanent information exchange between a browser and a web
server, involving multiple requests and responses. As anticipated, stateful sessions on the
Web are typically bound to a cookie stored in the user browser. When the user authenticates
to a website by providing some valid credentials, e.g., a username-password pair, a fresh
cookie is generated by the server and sent back to the browser. Further requests originating
from the browser automatically include the cookie as a proof of being part of the session
established upon password-based authentication. This common authentication scheme is
depicted in Figure 1.1.

FIGURE 1.1: Cookie-based User Authentication.

Since the cookie essentially plays the role of the password in all the subsequent requests
to the web server, it is enough to discover its value to hijack the session and fully impersonate
the user, with no need to compromise the low level network connection or the server. We call
authentication cookie any cookie which identifies a web session.

1https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_
policy

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
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1.3.1 Security Properties

We consider two standard security properties formulated in the setting of web sessions. They
represent typical targets of web session attacks:

• Confidentiality: data transmitted inside a session should not be disclosed to unautho-
rized users;

• Integrity: data transmitted inside a session should not be modified or forged by unau-
thorized users.

Interestingly, the above properties are not independent and a violation of one might lead to
the violation of the other. For example, compromising session confidentiality might reveal
authentication cookies, which would allow the attacker to perform arbitrary actions on behalf
of the user, thus breaking session integrity. Integrity violations, instead, might cause the
disclosure of confidential information, e.g., when sensitive data is leaked via a malicious
script injected in a web page by an attacker.

1.3.2 Threat Model

We focus on two main families of attackers: web attackers and network attackers. A web
attacker controls at least one web server that responds to any HTTP(S) requests sent to it
with arbitrary malicious contents chosen by the attacker. We assume that a web attacker
can obtain trusted HTTPS certificates for all the web servers under his control and is able
to exploit content injection vulnerabilities on trusted websites. A slightly more powerful
variation of the web attacker, known as the related-domain attacker, can also host malicious
web pages on a domain sharing a “sufficiently long” suffix with the domain of the target
website [36]. This means in particular that the attacker can set (domain) cookies for the
target website [18]. These cookies are indistinguishable from other cookies set by the target
website and are automatically sent to the latter by the browser. Hereafter, we explicitly
distinguish a related-domain attacker from a standard web attacker only when the specific
setting is relevant to carry out an attack.

Network attackers extend the capabilities of traditional web attackers with the ability
of inspecting, forging and corrupting all the HTTP traffic sent on the network, as well as
the HTTPS traffic which does not make use of certificates signed by a trusted certification
authority. It is common practice in web security to distinguish between passive and active

network attackers, with the first ones lacking the ability of forging or corrupting the unpro-
tected network traffic. From now on, when generically speaking about network attackers, we
implicitly refer to active network attackers.

1.3.3 Web Attacks

Content Injection

This wide class of attacks allows a web attacker to inject harmful contents into trusted web
applications. Content injections can be mounted in many different ways, but they are always



16 Chapter 1. Surviving the Web: A Journey into Web Session Security

enabled by an improper or missing sanitization of some attacker-controlled input in the web
application, either at the client side or at the server side. These attacks are traditionally assim-
ilated to Cross-Site Scripting (XSS), i.e., injections of malicious JavaScript code; however,
the lack of a proper sanitization may also affect HTML contents (markup injection) or even
CSS rules [190, 87].

To exemplify how an XSS works, consider a website vuln.com hosting a simple search
engine. Queries are performed via a GET request including a search parameter which is
displayed in the result page headline “Search results for foo:”, where foo is the
value of the search parameter. An attacker can then attempt to inject contents into vuln.com
just by providing to the user a link including a script as the search term. If the search page
does not properly sanitize such an input, the script will be included in the headline of the
results page and it will run on behalf of vuln.com, thus allowing the attacker to sidestep
SOP: for instance, the injected script will be entitled to read the authentication cookies set by
vuln.com.

XSS attacks are usually classified as either reflected or stored, depending on the persis-
tence of the threat. Reflected XSS attacks correspond to cases like the one above, where part
of the input supplied by the request is “reflected” into the response without proper sanitiza-
tion. Stored XSS attacks, instead, are those where the injected script is permanently saved
on the target server, e.g., in a message appearing on a discussion board. The malicious script
is then automatically executed by any browser which visits the attacked page.

Security properties: since content injections allow an attacker to sidestep SOP, which
is the baseline security policy of standard web browsers, they can have catastrophic conse-
quences on both the confidentiality and the integrity of a web session. Specifically, they can
be used to steal sensitive data from trusted websites, such as authentication cookies and user
credentials, and to actively corrupt the page contents, so as to undermine the integrity of a
web session.

Cross-Site Request Forgery (CSRF)

A CSRF is an instance of the “confused deputy” problem [84] in the context of web browsing.
In a CSRF, the attacker forces the user browser into sending HTTP(S) requests to a website
where the user has already established an authenticated session: it is enough for the attacker
to include HTML elements pointing to the vulnerable website in his own web pages. When
rendering or accessing these HTML elements, the browser will send HTTP(S) requests to the
target website and these requests will automatically include the authentication cookies of the
user. From the target website perspective, these forged requests are indistinguishable from
legitimate ones and thus they can be abused to trigger a dangerous side-effect, e.g., to force
a bank transfer from the user account to the attacker account. Notably, the attacker can forge
these malicious requests without any user intervention, e.g., by including in a page under his
control some <img> tags or a hidden HTML form submitted via JavaScript.

Security properties: a CSRF attack allows the attacker to inject an authenticated message
into a session with a trusted website, hence it constitutes a threat to session integrity. It is less



1.3. Attacking Web Sessions 17

known that CSRFs may also be employed to break confidentiality by sending cross-site re-
quests that return sensitive user data bound to the user session. Normally, SOP (Section 1.2.4)
prevents a website from reading responses returned by a different site, but websites may
explicitly allow cross-site accesses using the Cross-Origin Request Sharing (CORS) stan-
dard [173] or mechanisms like JSON with Padding (JSONP) [89] which can be abused to
break session confidentiality. For instance, a CSRF attack leaking the stored files has been
reported on the cloud service SpiderOak [14].

Login CSRF

A peculiar instance of CSRF, known as login CSRF, is a subtle attack first described by
Barth et al., where the victim is forced to interact with the target website within the attacker
session [20]. Specifically, the attacker uses his own credentials to silently log in the user
browser at the target website, for instance by forcing it into submitting an invisible login
form. The outcome of the attack is that the user browser is forced into an attacker session: if
the user is not careful, she might be tricked into storing sensitive information, like her credit
card number, into the attacker account.

Security properties: though this attack does not compromise existing sessions, it fools
the browser into establishing a new attacker-controlled (low integrity) session with a trusted
website. Login CSRFs may enable confidentiality violations in specific application scenarios,
like in the credit card example given above.

Cookie Forcing

A web attacker exploiting a code injection vulnerability may directly impose his own authen-
tication cookies in the victim browser, thus forcing it into the attacker session and achieving
the same results of a successful login CSRF, though exploiting a different attack vector.
Related-domain attackers are in a privileged position for these attacks, since they can set
cookies for the target website from a related-domain host.

Security properties: see login CSRF (Section 1.3.3).

Session Fixation

A session fixation attack allows an attacker to impersonate a user by imposing in the user
browser a known session identifier, which is not refreshed upon successful authentication
with the vulnerable website. Typically, the attacker first contacts the target site and gets a
valid cookie which is then set (e.g., via an XSS attack on the site) into the user browser
before the initial password-based authentication step is performed. If the website does not
generate a fresh cookie upon authentication, the user session will be identified by a cookie
known to the attacker. Related-domain attackers have easy access to these attacks, since they
can set cookies on behalf of the victim website.

Security properties: by letting the attacker fully impersonate the user at the target website,
session fixation harms both the confidentiality and the integrity of the user session, just as if
the authentication cookies were disclosed to the attacker.
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1.3.4 Network Attacks

Though network attacks are arguably more difficult to carry out on the Web than standard web
attacks, they typically have a tremendous impact on both the confidentiality and the integrity
of the user session. Since the HTTP traffic is transmitted in clear, a network attacker, either
passive or active, can eavesdrop sensitive information and compromise the confidentiality of
HTTP sessions. Websites which are served on HTTP or on a mixture of HTTPS and HTTP
are prone to expose non-secure cookies or user credentials to a network attacker: in these
cases, the attacker will be able to fully impersonate the victim at the target website. An active
network attacker can also mount man-in-the-middle attacks via e.g., ARP spoofing, DNS
cache poisoning or by setting up a fake wi-fi access point. By interposing himself between
the victim and the server, this attacker can arbitrarily modify HTTP requests and responses
exchanged by the involved parties, thus breaking the confidentiality and the integrity of the
session. Also, active network attackers can compromise the integrity of cookies [18].

A notable example of network attack is SSL stripping [118], which is aimed at preventing
web applications from switching from HTTP to HTTPS. The attack exploits the fact that the
initial connection to a website is typically initiated over HTTP and the protocol upgrade is
done through HTTP redirect messages, links or HTML forms targets. By corrupting the
first server response, an active attacker can force the session in clear by replacing all the
HTTPS references with their HTTP version and then forward the traffic received by the user
to the real web server, possibly over HTTPS. The same operation will then be performed for
each request/response in the session, hence the web application will work seamlessly, but the
communication will be entirely under the control of the attacker. This attack is particularly
subtle, since the user might fail to notice the missing usage of HTTPS, which is only notified
by some components of the browser user interface (e.g., a padlock icon).

1.4 Protecting Web Sessions

1.4.1 Evaluation Criteria

We evaluate existing defenses along four different axes:

1. protection: we assess the effectiveness of the proposed defense against the conven-
tional threat model of the attack, e.g., the web attacker for CSRF. If the proposal does
not prevent the attack in the most general case, we discuss under which assumptions it
may still be effective;

2. usability: we evaluate whether the proposed mechanism affects the end-user experi-
ence, for instance by impacting on the perceived performances of the browser or by
involving the user into security decisions;

3. compatibility: we discuss how well the defense integrates into the web ecosystem
with respect to the current standards, the expected functionalities of websites, and the
performances provided by modern network infrastructures. For example, solutions that
prevent some websites from working correctly are not compatible with the existing
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Web. On the other hand, a minor extension to a standard protocol which does not
break backward compatibility, such as the addition of new HTTP headers that can be
ignored by recipients not supporting them, is acceptable;

4. ease of deployment: we consider how practical would be a large-scale deployment of
the defensive solution by evaluating the overall effort required by web developers and
system administrators for its adoption. If they have to pay an unacceptably high cost,
the solution will likely never be deployed on a large scale.

We deem a negative impact on server-side performances as a compatibility problem rather
than a usability problem when the overall response time can be kept constant by increasing
the computational resources of the server, thus keeping the user experience unaffected. To
provide a concise yet meaningful evaluation of the different proposals, usability, compatibil-
ity and ease of deployment are assigned a score from a three-levels scale: Low, Medium and
High. Table 1.1 provides the intuition underlying these scores.

Usability Compatibility Ease of Deployment

Low Users must take several
security decisions

The correct functioning
of some websites is pre-
cluded

Applications need to be heav-
ily rewritten, complex security
policies must be deployed

Medium
Perceivable slowdown
of performances that
affects the client

Moderate increase of the
server workload

Moderate server-side modifi-
cations, small declarative poli-
cies have to be written

High The user experience is
not affected in any way

The defense fits the web
ecosystem, no impact on
server workload

The protection can be en-
abled just by installing an ad-
ditional component or by min-
imal server-side modifications

TABLE 1.1: Evaluation Criteria

We exclude from our survey several solutions which would require major changes to the
current Web, such as new communication protocols or authentication mechanisms replacing
cookies and passwords [98, 82, 155, 59].

1.4.2 Content Injection: Mitigation Techniques

Given the critical impact of content injection attacks, there exist many proposals which focus
on them. In this section we discuss those solutions which do not necessarily prevent a content
injection, but rather mitigate its malicious effects, e.g., by thwarting the leakage of sensitive
data.

HttpOnly Cookies

HttpOnly cookies have been introduced in 2002 with the release of Internet Explorer 6 SP1
to prevent the theft of authentication cookies via content injection attacks. Available on all
major browsers, this simple yet effective mechanism limits the scope of cookies to HTTP(S)
requests, making them unavailable to malicious JavaScript injected in a trusted page.
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The protection offered by the HttpOnly attribute is only limited to the theft of authenti-
cation cookies. The presence of the attribute is transparent to users, hence it has no usability
import. Also, the attribute perfectly fits the web ecosystem in terms of compatibility with
legacy web browsers, since unknown cookie attributes are ignored. Finally, the solution is
easy to deploy, assuming there is no need of accessing authentication cookies via JavaScript
for generic reasons [194].

SessionShield and Zan

SessionShield [128] is a client-side proxy preventing the leakage of authentication cookies
via XSS attacks. It operates by automatically identifying these cookies in incoming response
headers, stripping them from the responses, and storing them in a private database inacces-
sible to scripts. SessionShield then reattaches the previously stripped cookies to outgoing
requests originating from the client to preserve the session. A similar idea is implemented
in Zan [161], a browser-based defense which (among other things) automatically applies the
HttpOnly attribute to the authentication cookies detected through the usage of a heuristic.
As previously discussed, HttpOnly cookies cannot be accessed by JavaScript and will only
be attached to outgoing HTTP(S) requests.

The protection offered by SessionShield and Zan is limited to the improper exfiltration
of authentication cookies. These defenses do not prompt the user with security decisions,
neither slow down perceivably the processing of web pages, hence they are fine from a us-
ability point of view. However, the underlying heuristic for detecting authentication cookies
poses some compatibility concerns, since it may break websites when a cookie is incorrectly
identified as an authentication cookie and made unavailable to legitimate scripts that need to
access it. Both SessionShield and Zan are very easy to deploy, given their purely client-side
nature.

Request Filtering Approaches

Noxes is one of the first developed client-side defenses against XSS attacks [105]. It is imple-
mented as a web proxy installed on the user machine, aimed at preserving the confidentiality
of sensitive data in web pages, such as authentication cookies and session IDs. Instead of
blocking malicious script execution, Noxes analyzes the pages fetched by the user in order
to allow or deny outgoing connections on a whitelist basis: only local references and static
links embedded into a page are automatically considered safe with respect to XSS attacks.
For all the other links, Noxes resorts to user interaction to take security decisions which can
be saved either temporarily or permanently. Inspired by Noxes, Vogt et al. introduce a mod-
ified version of Firefox [168] where they combine dynamic taint tracking and lightweight
static analysis techniques to track the flow of a set of sensitive data sources (e.g., cookies,
document URLs) within the scripts included in a page. When the value of a tainted vari-
able is about to be sent to a third-party domain, the user is required to authorize or deny the
communication.
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The protection offered by these approaches is not limited to authentication cookies, but
it prevents the exfiltration of arbitrary sensitive data manipulated by web pages. According
to the authors, the solutions are not affected by performance problems, however Noxes still
suffers from usability issues, as it requires too much user interaction given the high number of
dynamic links in modern web pages [128]. The modified Firefox in [168] attempts to lower
the number of security questions with respect to Noxes, but still many third-party domains
such as .google-analytics.com should be manually whitelisted to avoid recurring
alert prompts. On the other hand, due to the fine-grained control over the filtering rules,
both mechanisms are deemed compatible, assuming that the user takes the correct security
decisions. Both solutions are easy to deploy, since no server-side modification is required
and users simply need to install an application on their machines.

Critical Evaluation

The exfiltration of sensitive data is a typical goal of content injection attacks. Preventing
authentication cookie stealing is simple nowadays, given that the HttpOnly attribute is
well supported by all modern browsers, and several languages and web frameworks allow
the automatic enabling of the attribute for all the authentication cookies [133]. Conversely,
solutions aimed at providing wider coverage against general data leakage attacks never gained
popularity, mainly due to their impact on the user experience.

1.4.3 Content Injection: Prevention Techniques

While the proposals discussed in the previous section are designed to block leakages of sensi-
tive data, the defenses presented in this section attempt to prevent the execution of malicious
contents injected into web pages.

Client-side Filtering

XSS filters like IE XSS Filter [143] and WebKit XSSAuditor [21] are useful to prevent re-
flected XSS attacks. Before interpreting the JavaScript code in a received page, these client-
side filters check whether potentially dangerous payloads, like <script> tags, included in
the HTTP request are also found within the response body: if a match is detected, the pay-
load is typically stripped from the rendered page without asking for user intervention. The
NoScript extension for Firefox [117] applies an even stricter policy, since it directly prevents
script execution, thus blocking both stored and reflected XSS attacks. This policy can be
relaxed on selected domains, where only XSS filtering mechanisms are applied.

XSS filtering proved to be quite effective in practice, despite not being always able to
prevent all the attacks. A typical example is a web application which takes a base64 en-
coded string via a GET variable and includes the decoded result in the generated page: an
attacker may easily bypass the XSS filter by supplying the base64 encoding of a malicious
JavaScript which will, in turn, be decoded by the server and included in the response body.
Additionally, XSS filters have also been exploited to introduce new flaws in otherwise secure
websites, e.g., by disabling legitimate scripts found in the original pages [126, 96].
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The filtering approach against reflected XSS attacks showed no negative impact on the
user experience and a good compatibility with modern web applications. Indeed, IE XSS
Filter and WebKit XSSAuditor have been included in major browsers. The additional security
features offered by NoScript however come at a cost on usability, since the user is involved
in the process of dynamically populating the whitelist of the extension whenever a blocked
script is required to preserve the functionality of the website. Nevertheless, it is possible to
relax the behaviour of NoScript to improve the user experience, by configuring the extension
so that it only applies filtering against reflected XSS attacks.

Server-side Filtering

An alternative to the in-browser filtering approach is to perform attack detection on the server-
side. Xu et al. present a method based on fine-grained taint tracking analysis [185] which
improves an earlier solution named CSSE [138]. This approach is designed to prevent a
variety of attacks including content injections. The idea is to apply a source-to-source trans-
formation of server-side C programs to track the flow of potentially malicious input data
and enforce taint-enhanced security policies. By marking every byte of the user input as
tainted, reflected XSS attacks can be prevented by policies that forbid the presence of tainted
dangerous HTML tag patterns inside the web application output.

The protection offered by this approach and its ease of deployment crucially depend
on the enforced security policy. A simple policy preventing user-provided <script> tags
from appearing in the web page is trivial to write, but ineffective against more sophisticated
attacks. However, writing a more comprehensive set of rules while maintaining the full
functionalities of websites is considered a challenging task [112]. The existence of ready-to-
use policies would make it easier to apply the security mechanism. Still, server modifications
are required to enable support for the protection mechanism on the script language engine,
which brings a significant performance overhead on CPU intensive applications, reported to
be between 50% and 100%. This partially hinders both compatibility and ease of deployment.

XSS-Guard

The idea of server-side source-to-source program transformation is also employed in XSS-
Guard [30], a solution for Java applications aimed at distinguishing malicious scripts reflected
into web pages from legitimate ones. For each incoming request, the rewritten application
generates two pages: the first includes the original user input, while the second is produced
using input strings not including harmful characters (e.g., sequences of A’s). The application
checks the equivalence of the scripts contained in the two pages by string matching or, in
case of failure, by comparing their syntactic structure. Additional or modified scripts found
within the real page are considered malicious and stripped from the page returned to the user.

The protection offered by XSS-Guard is good, but limited to reflected XSS attacks. More-
over, since the script detection procedure is borrowed from the Firefox browser, some quirks
specific to other browsers may allow to escape the mechanism. However, XSS-Guard is
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usable, since the browsing experience is not affected by its server-side adoption. The per-
formance overhead caused by the double page generation ranges from 5% to 24%, thus in-
creasing the server workload: this gives rise to some concerns about compatibility. On the
other hand, enabling the solution on existing Java programs is simple, since no manual code
changes are required and web developers only need to automatically translate their applica-
tions.

BEEP

Browser-Enforced Embedded Policies (BEEP) [95] is a hybrid client-server approach which
hinges on the assumption that web developers have a precise understanding of which scripts
should be trusted for execution. Websites provide a filtering policy to the browser in order
to allow the execution of trusted scripts only, thus blocking any malicious scripts injected in
the page. The policy is embedded in web pages through a specific JavaScript function which
is invoked by a specially-modified browser every time a script is found during the parsing
phase. This function accepts as parameters the code and the DOM element of the script and
returns a boolean value which determines whether the execution is allowed or not.

The proposed mechanism exhibits some security defects, as shown in [12]. For instance,
an attacker may reuse whitelisted scripts in an unanticipated way to alter the behaviour of
the application. Regarding usability, the adoption of this solution may cause some slow-
downs at the client-side when accessing websites which heavily rely on inline JavaScript
contents. Compatibility however is preserved, since browsers not compliant with BEEP will
still render pages correctly without the additional protection. The deployment of BEEP is not
straightforward, since the effort required to modify existing web applications to implement
the security mechanism depends on the complexity of the desired policy.

Blueprint

Blueprint [112] tackles the problem of denying malicious script execution by relieving the
browser from parsing untrusted contents: indeed, the authors argue that relying on the HTML
parsers of different browsers is inherently unsafe, due to the presence of numerous browser
quirks. In this approach, web developers annotate the parts of the web application code
which include a block of user-provided content in the page. For each block, the server builds
a parse tree of the user input, stripped of all the dynamic contents (e.g., JavaScript, Flash).
This sanitized tree is encoded as a base64 string and included in the page within an invisible
<code> block. This base64 data is then processed by a client-side JavaScript which is in
charge of reconstructing the DOM of the corresponding portion of the page.

Despite providing strong protection against stored and reflected XSS attacks, Blueprint
suffers from performance issues which impact on both usability and compatibility [182].
Specifically, the server workload is increased by a 35%-55% due to the parse tree generation,
while the page rendering time is significantly affected by the amount of user contents to be
dynamically processed by the browser. Also, Blueprint requires a considerable deployment
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effort, since the web developer must manually identify and update all the code portions of
web applications that write out the user input.

Noncespaces

Along the same line of research, Noncespaces [80] is a hybrid approach that allows web
clients to distinguish between trusted and untrusted contents to prevent content injection
attacks. This solution provides a policy mechanism which enables web developers to de-
clare granular constraints on elements and attributes according to their trust class. All the
(X)HTML tags and attributes are associated to a specific trust class by automatically en-
riching their names with a random string, generated by the web application, that is un-
known to the attacker. In case of XHTML documents, the random string is applied as a
namespace prefix (<r617:h1 r617:id=“Title”> Title </r617:h1>), while in
the HTML counterpart the prefix is simply concatenated (<r617h1 r617id=“Title”>

Title </r617h1>). The server sends the URL of the policy and the mapping between
trust classes and random strings via custom HTTP headers. A proxy installed on the user
machine validates the page according to the policy and returns an empty page to the browser
in case of violations, i.e., if the page contains a tag or attribute with a random string which is
invalid or bound to an incorrect trust class.

The solution is an improvement over BEEP in preventing stored and reflected XSS. Since
random prefixes are not disclosed to the attacker, Noncespaces is not affected by the exploits
introduced in [12]. Additionally, the mechanism allows web developers to permit the inclu-
sion of user-provided HTML code in a controlled way, thus offering protection also against
markup injections. Although the impact on server-side performance is negligible, the policy
validation phase performed by the proxy on the client-side introduces a noticeable overhead
which may range from 32% to 80%, thus potentially affecting usability. Furthermore, though
Noncespaces can be safely adopted on XHTML websites, it is affected by compatibility
problems on HTML pages, due to the labelling process which disrupts the names of tags and
attributes, and thus the page rendering, on unmodified browsers. Web developers are required
to write security policies and revise web applications to support Noncespace, hence the ease
of deployment depends on the granularity of the enforced policy.

DSI

In parallel with the development of Noncespaces, Nadji et al. proposed a similar solution
based on the concept of document structure integrity (DSI) [125]. The approach relies on
server-side taint-tracking to mark nodes generated by user-inserted data, so that the client
is able to recognize and isolate them during the parsing phase to prevent unintended mod-
ifications to the document structure. Untrusted data is delimited by special markers, i.e.,
sequences of randomly chosen Unicode whitespace characters. These markers are shipped to
the browser in the <head> section of the requested page along with a simple policy which
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specifies the allowed HTML tags within untrusted blocks. The policy enforcement is per-
formed by a modified browser supporting the security mechanism which is also able to track
dynamic updates to the document structure.

This solution shares with Noncespaces a similar degree of protection. Nevertheless, from
a performance standpoint, the defense introduces only a limited overhead on the client-side,
since the policies are simpler with respect to Noncespaces and the enforcement mechanism
is integrated in the browser instead of relying on an external proxy. As a result, the user ex-
perience is not affected. Compatibility is preserved, given that the labelling mechanism does
not prevent unmodified browsers from rendering correctly DSI-enabled web applications.
Finally, even the deployment is simplified, since no changes to the applications are required
and the policy language is more coarse grained than the one proposed in Noncespaces.

Content Security Policy

The aforementioned proposals share the idea of defining a client-side security policy [182].
The same principle is embraced by the Content Security Policy (CSP) [171], a web security
policy standardized by the W3C and adopted by all major browsers. CSP is deployed via
an additional HTTP response header and allows the specification of the trusted origins from
which the browser is permitted to fetch the resources included in the page. The control mech-
anism is fairly granular, allowing one to distinguish between different types of resources,
such as JavaScript, CSS and XHR targets. By default, CSP does not allow inline scripts and
CSS directives (which can be used for data exfiltration) and the usage of particularly harm-
ful JavaScript functions (e.g., eval). However, these constraints can be disabled by using
the ’unsafe-inline’ and the ’unsafe-eval’ rules. With the introduction of CSP
Level 2 [172], it is now possible to selectively white-list inline resources without allowing
indiscriminate content execution. Permitted resources can be identified in the policy either
by their hashes or by random nonces included in the web page as attributes of their enclosing
tags.

When properly configured, CSP provides an effective defense against XSS attacks. Still,
general content injection attacks, such as markup code injections, are not prevented. CSP
policies are written by web developers and transparent to users, so their design supports us-
ability. Compatibility and deployment cost are better evaluated together for CSP. On the one
hand, it is easy to write a very lax policy which allows the execution of inline scripts and pre-
serves the functionality of web applications by putting only mild restrictions on cross-origin
communication: this ensures compatibility. On the other hand, an effective policy for legacy
applications can be difficult to deploy, since inline scripts and styles should be removed or
manually white-listed, and trusted origins for content inclusion should be carefully identi-
fied [182]. As of now, the deployment of CSP is not particularly significant or effective [184,
41]. That said, the standardization of CSP by the W3C suggests that the defense mechanism
is not too hard to deploy on many websites, at least to get some limited protection.
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Critical Evaluation

Content injection is one of the most widespread threats to the security of web sessions [134].
Indeed, modern web applications include contents from a variety of sources, burdening the
task of identifying malicious contents. Few proposals attempt to provide a comprehensive
defense against content injection and the majority of the most popular solutions are only
effective against reflected XSS or have very limited scope. Indeed, among the surveyed
solutions, client-side XSS filters and HttpOnly cookies are by far the most widespread
protection mechanisms, implemented by the majority of the web browsers. Under the current
state of the art, achieving protection against stored injections while preserving the application
functionality requires the intervention of web developers.

Although several of the discussed approaches were only proposed in research papers and
never embraced by the industry, some of them contributed to the development of existing
web standards. For instance, the hash-based whitelisting approach of inline scripts supported
by CSP has been originally proposed as an example policy in the BEEP paper [95]. More
research is needed to provide more general defenses against a complex problem like content
injection.

1.4.4 Cross-Site Request Forgery and Login CSRF

We now discuss security solutions which are designed to protect against CSRF and login
CSRF. We treat these two attacks together, since security solutions which are designed to
protect against one of the attacks are typically also effective against the other. In fact, both
CSRF and login CSRF exploit cross-site requests which trigger dangerous side-effects on a
trusted web application.

Purely Client-side Solutions

Several browser extensions and client-side proxies have been proposed to counter CSRF
attacks, including RequestRodeo [97], CsFire [148, 147] and BEAP [116]. All of these so-
lutions share the same idea of stripping authentication cookies from potentially malicious
cross-site requests sent by the browser. The main difference between these proposals con-
cerns the way cross-site requests are deemed malicious: different, more or less accurate
heuristics have been put forward for the task.

These solutions are designed to protect against web attackers who host on their web
servers pages that include links to a victim website, in the attempt of fooling the browser
into sending malicious authenticated requests towards the victim website. Unfortunately,
this protection becomes ineffective if a web attacker is able to exploit a content injection
vulnerability on the target website, since it may force the browser into sending authenticated
requests originating from a same-site position.

A very nice advantage of these client-side defenses is their usability and ease of deploy-
ment: the user can just install the extension/proxy on her machine and she will be automati-
cally protected from CSRF attacks. On the other hand, compatibility may be at harm, since
any heuristic for determining whenever a cross-site request should be considered malicious
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is bound to (at least occasionally) produce some false positives. To the best of our knowl-
edge, the most sophisticated heuristic is implemented in the latest release of CsFire [147],
but a large-scale evaluation on the real Web has unveiled that even this approach may some-
times break useful functionalities of standard web browsing: for instance, it breaks legitimate
accesses to Flickr or Yahoo via the OpenID single sign-on protocol [58].

Allowed Referrer Lists (ARLs)

ARLs have been proposed as a client/server solution against CSRF attacks [58]. Roughly, an
ARL is just a whitelist that specifies which origins are entitled to send authenticated requests
to a given website. The whitelist is compiled by web developers willing to secure their
websites, while the policy enforcement is done by the browser. If no ARL is specified for a
website, the browser behaviour is unchanged when accessing it, i.e., any origin is authorized
to send authenticated requests to the website.

ARLs are effective against web attackers, provided that no content injection vulnerability
affects any of the whitelisted pages. Their design supports usability, since their enforcement
is lightweight and transparent to browser users. Moreover, compatibility is ensured by the
enforcement of security restrictions only on websites which explicitly opt-in to the protection
mechanism. The ease of deployment of ARLs is acceptable in most cases. Users must adopt
a security-enhanced web browser, but ARLs do not require major changes to the existing
ones: the authors implemented ARLs in Firefox with around 700 lines of C++ code. Web
developers, instead, must write down their own whitelists. We believe that for many websites
this process requires only limited efforts: for instance, e-commerce websites may include in
their ARL only the desired e-payment provider, e.g., Paypal. However, notice that a correct
ARL for Paypal may be large and rather dynamic, since it should enlist all the websites
relying on Paypal for payment facilities.

Tokenization

Tokenization is a popular server-side countermeasure against CSRF attacks [20]. The idea
is that all the requests that might change the state of the web application should include a
secret token randomly generated by the server for each session and, possibly, each request:
incoming requests that do not include the correct token are rejected. The inclusion of the
token is transparently done by the browser during the legitimate use of the website, e.g.,
every security-sensitive HTML form in the web application is extended to provide the token
as a hidden parameter. It is crucial that tokens are bound to a specific session. Otherwise, an
attacker could legitimately acquire a valid token for his own session and transplant it into the
user browser, to fool the web application into accepting malicious authenticated requests as
part of the user session.

Tokenization is robust against web attackers only if we assume they cannot perform con-
tent injection attacks. In fact, a content injection vulnerability might give access to all the
secret tokens, given that they are included in the DOM of the web page. The usage of secret
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tokens is completely transparent to the end-user, so there are no usability concerns. How-
ever, tokenization may be hard to deploy for web developers. The manual insertion of secret
tokens is tedious and typically hard to get right. Some web development frameworks offer
automatic support for tokenization, but this is not always comprehensive and may leave room
for attacks. These frameworks are language-dependent and may not be powerful enough for
sophisticated web applications developed using many different languages [58].

NoForge

NoForge [100] is a server-side proxy sitting between the web server and the web applications
to protect. It implements the tokenization approach against CSRF on all requests, without
requiring any change to the web application code. NoForge parses the HTTP(S) responses
sent by the web server and automatically extends each hyperlink and form contained in them
with a secret token bound to the user session; incoming requests are then delivered to the web
server only if they contain a valid token.

The protection and the usability offered by NoForge are equivalent to what can be achieved
by implementing tokenization at the server side. The adoption of a proxy for the tokenization
task significantly simplifies the deployment of the defensive solution, but it has a negative
impact on compatibility, since HTML links and forms which are dynamically generated at
the client side will not be rewritten to include the secret token. As a result, any request sent
by clicking on these links or by submitting these forms will be rejected by NoForge, thus
breaking the web application. The authors of NoForge are aware of this problem and state
that it can be solved by manually writing scripts which extend links and forms generated at
the client side with the appropriate token [100]. However, if this need is pervasive, the ben-
efits on deployment offered by NoForge can be easily voided. For this reason we argue that
the design of NoForge is not compatible with the modern Web.

Origin Checking

Origin checking is a popular alternative to tokenization [20]. Modern web browsers imple-
ment the Origin header, identifying the security context (origin) that caused the browser
to send an HTTP(S) request. For instance, if a link to http://b.com is clicked on
a page downloaded from http://a.com, the corresponding HTTP request will include
http://a.com in the Origin header. Web developers may inspect this header to detect
whether a potentially dangerous cross-site request has been generated by a trusted domain or
not.

Origin checking is robust against web attackers without scripting capabilities in any of
the domains trusted by the target website. Server-side origin checking is entirely transpar-
ent to the end-user and has no impact on the navigation experience, so it may not hinder
usability. This solution is simpler to deploy than tokenization, since it can be implemented
by using a web application firewall like ModSecurity2. Unfortunately, the Origin header
is not attached to all the cross-origin requests: for instance, the initial proposal of the header

2https://www.modsecurity.org/
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was limited to POST requests [20] and current web browser implementations still do not en-
sure that the header is always populated [19]. Web developers should be fully aware of this
limitation and ensure that all the state-changing operations in their applications are triggered
by requests bearing the Origin header. In practice, this may be hard to ensure for legacy
web applications [58].

Critical Evaluation

Effectively preventing CSRFs and login CSRFs is surprisingly hard. Even though the root
cause of the security problem is well-understood for these attacks, it is challenging to come up
with a solution which is at the same time usable, compatible and easy to deploy. At the time
of writing, Allowed Referrer Lists (ARLs) represent the most promising defensive solution
against CSRFs and login CSRFs. They are transparent to end-users, respectful towards legacy
technology and do not require changes to web application code. Unfortunately, ARLs are not
implemented in major web browsers, so in practice tokenization and origin checking are the
most widespread solutions nowadays. These approaches however may be hard to deploy on
legacy web applications.

1.4.5 Cookie Forcing and Session Fixation

We collect together the defenses proposed against cookie forcing and session fixation. In fact,
both the attacks rely on the attacker capability to corrupt the integrity of the authentication
cookies set by a trusted website.

Serene

The Serene browser extension offers automatic protection against session fixation attacks [149].
It inspects each outgoing request sent by the browser and applies a heuristic to identify cook-
ies which are likely used for authentication purposes: if any of these cookies was not set via
HTTP(S) headers, it is stripped from the outgoing request, hence cookies which have been
fixated or forced by a malicious script cannot be used to authenticate the client. The key
observation behind this design is that existing websites set their authentication cookies using
HTTP(S) headers in the very large majority of cases.

The solution is designed to be robust against web attackers, since they can only set a
cookie for the website by exploiting a markup/script injection vulnerability. Conversely,
Serene is not effective against related-domain attackers who might use their sites to legit-
imately set cookies for the whole domain using HTTP headers. The main advantages of
Serene are its usability and ease of deployment: users only need to install Serene in their
browser and it will provide automatic protection against session fixation for any website,
though the false negatives produced by the heuristic for authentication cookies detection may
still leave room for attacks. The compatibility of Serene crucially depends on its heuris-
tic: false positives may negatively affect the functionality of websites, since some cookies
which should be accessed by the web server are never sent to it. In practice, it is impossible
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to be fully accurate in the authentication cookie detection process, even using sophisticated
techniques [43].

Origin Cookies

Origin cookies have been proposed to fix some known integrity issues affecting cookies [36].
We have already discussed that standard HTTP cookies do not provide strong integrity guar-
antees against related-domain attackers and active network attackers. The observation here
is that these attackers exploit the relaxation of the same-origin policy applied to cookies (see
Section 1.2.4). Origin cookies, instead, are bound to an exact web origin. For instance, an
origin cookie set by https://example.com can only be overwritten by an HTTPS re-
sponse from example.com and will only be sent to example.com over HTTPS. Origin
cookies can be set by websites simply by adding the Origin attribute to standard cookies.
Origin cookies are sent by the browser inside a new custom header Origin-Cookie, thus
letting websites distinguish origin cookies from normal ones.

Since origin cookies are isolated between origins, the additional powers of related-domain
attackers and active network attackers in setting or overwriting cookies are no longer a prob-
lem. The use of origin cookies is transparent to users and their design supports backward
compatibility, since origin cookies are treated as standard cookies by legacy browsers (un-
known cookie attributes are ignored). Origin cookies are easy to deploy on websites entirely
hosted on a single domain and only served over a single protocol: for such a website, it
would be enough to add the Origin attribute to all its cookies. On the other hand, if a web
application needs to share cookies between different protocols or related domains, then the
web developer is forced to implement a protocol to link together different sessions built on
distinct origin cookies. This may be a non-trivial task to carry out for existing websites.

Authentication Cookies Renewal

The simplest and most effective defense against session fixation is implemented at the server
side, by ensuring that the authentication cookies identifying the user session are refreshed
when the level of privilege changes, i.e., when the user provides her password to the web
server and performs a login [99]. If this is done, no cookie fixed by an attacker before the first
authentication step may be used to identify the user session. Notice that this countermeasure
does not prevent cookie forcing, since the attacker can first authenticate at the website using
a standard web browser and then directly force his own cookies into the user browser.

Renewing authentication cookies upon password-based authentication is a recommended
security practice and it is straightforward to implement for new web applications. However,
retrofitting a legacy web application may require some effort, since the authentication-related
parts of session management must be clearly identified and corrected. It may actually be more
viable to keep the application code unchanged and operate at the framework level or via a
server-side proxy, to enforce the renewal of the authentication cookies whenever an incoming
HTTP(S) request is identified as a login attempt [99]. Clearly, these server-side solutions
must ensure that login attempts are accurately detected to preserve compatibility: this is the
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case, for instance, when the name of the POST parameter bound to the user password is
known.

Critical Evaluation

Session fixation is a dangerous attack, but it is relatively easy to prevent. Renewing the au-
thentication cookies upon user authentication is the most popular, effective and widespread
solution against these attacks. The only potential issue with this approach is implementing a
comprehensive protection for legacy web applications [99]. Cookie forcing, instead, is much
harder to defend against. The integrity problems of cookies are well-known to security ex-
perts, but no real countermeasure against them has been implemented in major web browsers
for the sake of backward compatibility. A recent interesting paper by Zheng et al. discusses
this problem in more detail [192].

1.4.6 Network Attacks

HTTPS with Secure Cookies

Though it is obvious that websites concerned about network attackers should make use of
HTTPS, there are some points worth discussing. For instance, while it is well-understood
that passwords should only be sent over HTTPS, web developers often underestimate the
risk of leaking authentication cookies in clear, thus undermining session confidentiality and
integrity. As a matter of fact, many websites are still only partially deployed over HTTPS,
either to increase performances or because only a part of their contents needs to be secured.
However, cookies set by a website are by default attached to all the requests sent to it, ir-
respectively of the communication protocol. If a web developer wants to deliver a non-
sensitive portion of her website over HTTP, it is still possible to protect the confidentiality
of the authentication cookies by setting the Secure attribute, which instructs the browser
to send these cookies only over HTTPS connections. Even if a website is fully deployed
over HTTPS, the Secure attribute should be set on its authentication cookies, otherwise a
network attacker could still force their leakage in clear by injecting non-existing HTTP links
to the website in unrelated web pages [90].

Activating HTTPS support on a server requires little technical efforts, but needs a signed
public key certificate: while the majority of HTTPS-enabled websites employ certificates
signed by recognized certification authorities, a non-negligible percentage uses certificates
that are self-signed or signed by CAs whose root certificate is not included in major web
browsers [67]. Unless explicitly included in the OS or in the browser keychain, these certifi-
cates trigger a warning when the browser attempts to validate them, similarly to what happens
when a network attacker acts as a man-in-the-middle and provides a fake certificate: in such
a case, a user that proceeds ignoring the warning may be exposed to the active attacker, as
if the communication was performed over an insecure channel. The adoption of Secure
cookies is straightforward whenever the entire website is deployed over HTTPS, since it is
enough to add the Secure attribute to all the cookies set by the website. For mixed contents
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websites, Secure cookies cannot be used to authenticate the user on the HTTP portion of
the site, hence they may be hard to deploy, requiring a change to the cookie scheme.

HProxy

HProxy is a client-side solution which protects against SSL stripping by analyzing the brows-
ing history in order to produce a profile for each website visited by the user [127]. HProxy
inspects all the responses received by the user browser and compares them against the corre-
sponding profiles: divergences from the expected behaviour are evaluated through a strict set
of rules to decide whether the response should be accepted or rejected.

HProxy is effective only on already-visited websites and the offered protection crucially
depends on the completeness of the detection ruleset. From a usability perspective, the
browsing experience may be affected by the adoption of the proposed defense mechanism,
as it introduces an average overhead of 50% on the overall page load time. The main con-
cern however is about compatibility, since it depends on the ability of HProxy to tell apart
legitimate modifications in the web page across consecutive loads from malicious changes
performed by the attacker. False positives in this process may break the functionality of be-
nign websites. HProxy is easy to deploy, since the user only needs to install the software on
her machine and configure the browser proxy settings to use it.

HTTP Strict Transport Security

HSTS is a security policy implemented in all modern web browsers, which allows a web
server to force a client to subsequently communicate only over a secure channel [88]. The
policy can be delivered solely over HTTPS using a custom header, where it is possible to
specify whether the policy should be enforced also for requests sent to sub-domains (e.g.,
to protect cookies shared with them) and its lifetime. When the browser performs a request
to a HSTS host, its behaviour is modified so that every HTTP reference is upgraded to the
HTTPS protocol before being accessed; TLS errors (e.g., self-signed certificates) terminate
the communication session and the embedding of mixed contents (see Section 1.2.4) is for-
bidden.

Similarly to the previous solution, HSTS is not able to provide any protection against
active network attackers whenever the initial request to a website is carried out over an inse-
cure channel: to address this issue, browsers vendors include a list of known HSTS hosts, but
clearly the approach cannot cover the entire Web. Additionally, a recently introduced attack
against HSTS [154] exploits a Network Time Protocol weakness found on major operating
systems that allows to modify the current time via a man-in-the-middle attack, thus making
HSTS policies expire. Usability and compatibility are both high, since users are not involved
in security decisions and the HTTP(S) header for HSTS is ignored by browsers not support-
ing the mechanism. The ease of deployment is high, given that web developers can enable
the additional HTTP(S) header with little effort by modifying the web server configuration.
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HTTPS Everywhere

This extension for Firefox, Chrome and Opera [66] performs URL rewriting to force access
to the HTTPS version of a website whenever available, according to a set of hard-coded rules
supplied with the extension. Essentially, HTTPS Everywhere applies the same idea of HSTS,
with the difference that no instruction from the website is needed: the hard-coded ruleset is
populated by security experts and volunteers.

HTTPS Everywhere is able to protect only sites included in the ruleset: even if the ap-
plication allows the insertion of custom rules, this requires technical skills that a typical user
does not have. In case of partial lack of HTTPS support, the solution may break websites and
user intervention is required to switch to the usual browser behaviour; these problems can be
rectified by refining the ruleset. The solution is very easy to deploy: the user is only required
to install the extension to enforce the usage of HTTPS on supported websites.

Critical Evaluation

HTTPS is pivotal in defending against network attacks: all the assessed solutions try to pro-
mote insecure connections to encrypted ones or force web developers to deploy the whole ap-
plication on HTTPS. Mechanisms exposing compatibility problems are unlikely to be widely
adopted, as in the case of HProxy due to its heuristic approach. All the other defenses, in-
stead, are popular standards or enjoy a large user base. Academic solutions proved to be cru-
cial for the development of web standards: HSTS is a revised version of ForceHTTPS [90]
in which a custom cookie was used in place of an HTTP header to enable the protection
mechanism.

Summary

We summarize in Table 1.2 all the defenses discussed so far. We denote with H those so-
lutions whose ease of deployment depends on the policy complexity. When the adoption
of a security mechanism is much harder on legacy web applications with respect to newly
developed or modern ones, we annotate the score with =.

1.5 Defenses Against Multiple Attacks

All the web security mechanisms described so far have been designed to prevent or mitigate
very specific attacks against web sessions. In the literature we also find proposals providing
a more comprehensive solution to a range of different threats. These proposals are signifi-
cantly more complex than those in the previous section, hence it is much harder to provide a
schematic overview of their merits and current limitations.

Origin-Bound Certificates

Origin-Bound Certificates (OBC) [62] have been proposed as an extension to the TLS proto-
col that binds authentication tokens to trusted encrypted channels. The idea is to generate, on
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Defense Type Usability Compatibility
Ease of
Deploy-

ment

Content
injection

mitigation

HttpOnly cookies hybrid H H H
SessionShield/Zan client H L H
Requests filtering client L H H

Content
injection

prevention

Client-side XSS filters client H H H
Server-side filtering server H M L/MH

XSS-Guard server H M H
BEEP hybrid M H L/MH

Blueprint hybrid M M L
Noncespaces hybrid M L L/MH

DSI hybrid H H M
CSP hybrid H H L/MH

CSRF
Login CSRF

Client-side defenses client H L H
Allowed referrer lists hybrid H H L/MH

Tokenization server H H L/H=

NoForge server H L H
Origin checking server H H L/H=

Cookie
forcing
Session
fixation

Serene client H L H
Origin cookies hybrid H H M/H=

Session
fixation

Auth. cookies renewal server H H M/H=

Network
attacks

HTTPS w. secure cookies hybrid H H M/H=

HProxy client M L H
HSTS hybrid H H H
HTTPS Everywhere client M H H

TABLE 1.2: Analysis of Proposed Defenses

the client side, a different certificate for every web origin upon connection. This certificate
is sent to the server and used to cryptographically bind authentication cookies to the channel
established between the browser and that specific origin. The browser relies on the same
certificate when arranging a TLS connection with a previously visited origin. The protec-
tion mechanism implemented by OBC is effective at preventing the usage of authentication
cookies outside of the intended channel: for instance, a cookie leaked via a content injection
vulnerability cannot be reused by an attacker to identify himself as the victim on the vulner-
able website, since the victim certificate is not disclosed. Similarly, session fixation attacks
are defeated by OBC, given that the cookie value associated to the attacker channel cannot
be used within the victim TLS connection.

The presence of OBC is completely transparent to the user and the impact on perfor-
mances is negligible after certificate generation, so the usability of the solution is high. Com-
patibility is not at harm, since the browser and the server must explicitly agree on the use
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of OBC during the TLS handshake. One problem is represented by domain cookies, i.e.,
cookies accessed by multiple origins: to overcome this issue, the authors suggested a legacy

mode of OBC in which the client generates certificates bound to the whole domain instead
of a single origin. Being an extension to the TLS protocol, OBC requires changes to both
parties involved in the encrypted channel initiation. The authors successfully implemented
the described mechanism on the open-source browser Chromium and on OpenSSL by alter-
ing approximately 1900 and 320 lines of code, respectively. However, web developers are
not required to adapt their applications to use OBC, which has a beneficial impact on ease of
deployment.

Browser-based Information Flow Control

Browser-based information flow control is a promising approach to uniformly prevent a wide
class of attacks against web sessions. FlowFox [76] was the first web browser implementing
a full-fledged information flow control framework for confidentiality policies on JavaScript
code. Later work on the same research line includes JSFlow [86], COWL [158] and an exten-
sion of Chromium with information flow control [22], which we refer to as ChromiumIFC.
These solutions explore different points of the design space:

• FlowFox is based on secure multi-execution, a dynamic approach performing multiple
runs of a given program (script) under a special policy for input/output operations
ensuring non-interference [61]. To exemplify, assume the existence of two security
levels Public and Secret, then the program is executed twice (once per level) under the
following regime: (1) outputs marked Public/Secret are only done in the execution at
level Public/Secret; and (2) inputs at level Public are fed to both the executions, while
inputs at level Secret are only fed to the execution at level Secret (a default value for
the input is provided to the Public execution). This ensures by construction that Private
inputs do not affect Public outputs;

• JSFlow is based on a dynamic type system for JavaScript. JavaScript values are ex-
tended with a security label representing their confidentiality level and labels are up-
dated to reflect the computational effects of the monitored scripts. Labels are then
dynamically checked to ensure that computations preserve non-interference;

• COWL performs a compartmentalization of scripts and assigns security labels at the
granularity of compartments encapsulating contents from a single origin. It enforces
coarse-grained policies on communication across compartments and towards remote
origins via label checking;

• ChromiumIFC implements a lightweight dynamic taint tracking technique to constrain
information flows within the browser and prevent the leakage of secret information. In
contrast to previous proposals, this solution is not limited to JavaScript, but it spans all
the most relevant browser components.

The different design choices taken by the reviewed solutions have a clear import on our
evaluation factors. In terms of protection, enforcing information flow control on scripts is
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already enough to prevent many web threats. For instance, assuming an appropriate security
policy, web attackers cannot leak authentication cookies using XSS [76] or run CSRF attacks
based on JavaScript [104]. This is true also in presence of stored XSS attacks, provided
that information flow control is performed on the injected scripts. However, there are attack
vectors which go beyond scripts, e.g., a web attacker can carry out a CSRF by injecting
markup elements. Preventing these attacks requires a more extensive monitoring of the web
browser, as the one proposed by ChromiumIFC.

To the best of our knowledge, there has been no thorough usability study for any of
the cited solutions. It is thus unclear if and to which extent users need to be involved in
security decisions upon normal browsing. However, degradation of performances caused by
information flow tracking may hinder the user experience and negatively affect usability. For
instance, the performances of FlowFox are estimated to be around 20% worse than those of
a standard web browser, even assuming only policies with two security levels [76]. Better
performances can be achieved by using simpler enforcement mechanisms and by lowering the
granularity of enforcement, for instance the authors of COWL performed a very promising
performance evaluation of their proposal [158];

Compatibility and ease of deployment are better evaluated together, since there is a deli-
cate balance between the two in this area, due to the flexibility of information flow policies.
On the one hand, inaccurate information flow policies can break existing websites upon secu-
rity enforcement, thus affecting compatibility. On the other hand, accurate information flow
policies may be large and hard to get right, thus hindering deployment. We think that a set
of default information flow policies may already be enough to stop or mitigate a wide class
of attacks against web sessions launched by malicious scripts: for instance, cookies could be
automatically marked as private for the domain which set them. Indeed, a preliminary exper-
iment with FlowFox on the top 500 sites of Alexa shows that compatibility is preserved for
a very simple policy which marks as sensitive any access to the cookie jar [76]. Reaping the
biggest benefits out of information flow control, however, necessarily requires some efforts
by web developers.

Security Policies for JavaScript

Besides information flow control, in the literature there are several frameworks for enforcing
general security policies on untrusted JavaScript code [119, 189, 113, 137, 165]. We just
provide a brief overview on them here and we refer the interested reader to a recent survey
by Bielova [28] for additional details. The core idea behind all these proposals is to imple-
ment a runtime monitor that intercepts the API calls made by JavaScript programs and checks
whether the sequence of such calls complies with an underlying security policy. This kind
of policies has proved helpful for protecting access to authentication cookies, thus limiting
the dangers posed by XSS, and for restricting cross-domain communication attempts by un-
trusted code, which helps at preventing CSRF attacks. We believe that other useful policies
for protecting web sessions can be encoded in these rather general frameworks, though the
authors of the original papers do not discuss them in detail. Since all these proposals assume
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that JavaScript code is untrusted, they are effective even in presence of stored XSS attacks,
provided that the injected scripts are subject to policy enforcement.

As expected, security policies for JavaScript share many of the strengths and weaknesses
of browser-based information flow control in terms of protection, usability and compatibil-
ity. Ease of deployment, instead, deserves a more careful discussion, since it fundamentally
depends on the complexity of the underlying policy language. For instance, in [119] security
policies are expressed in terms of JavaScript code, while the framework in [189] is based
on edit automata, a particular kind of state machine with a formal semantics. Choosing the
right policy language may significantly improve the ease of deployment, though we believe
that meaningful security policies require some efforts by web developers. There is some
preliminary evidence that useful policies can be automatically synthesized by static analy-
sis or runtime training: the idea is to monitor normal JavaScript behaviour and to deem as
suspicious all the unexpected script behaviours [119]. However, we believe more research is
needed to draw a fair conclusion on how difficult it is to deploy these mechanisms in practice.

Ajax Intrusion Detection System

Guha et al. proposed an Ajax intrusion detection system based on the combination of a static
analysis for JavaScript and a server-side proxy [79]. The static analysis is employed by web
developers to construct the control flow graph of the Ajax application to protect, while the
proxy dynamically monitors browser requests to prevent violations to the expected control
flow of the web application. The solution also implements defenses against mimicry attacks,
in which the attacker complies with legitimate access patterns in his malicious attempts. This
is done by making each session (and thus each graph) slightly different than the other ones by
placing unpredictable, dummy requests in selected points of the control flow. The JavaScript
code of the web application is then automatically modified to trigger these requests, which
instead cannot be predicted by the attacker.

The approach is deemed useful to mitigate the threats posed by content injection and
to prevent CSRF, provided that these attacks are launched via Ajax. Since the syntax of
the control flow graph explicitly tracks session identifiers, session fixation attacks can be
prevented: indeed, in these attacks there is a mismatch between the cookie set in the first
response sent by the web server and the cookie which is included by the browser in the
login request, hence a violation to the intended control flow will be detected. The approach
is effective even against stored XSS attacks exploiting Ajax requests, whenever they are
mounted after the construction of the control flow graph.

The solution offers high usability, since it is transparent to users and the runtime overhead
introduced by the proxy is minimal. According to the authors, the adoption of a context-
sensitive static analysis for JavaScript makes the construction of the control flow graph very
precise, which is crucial to preserve the functionality of the web application and ensure com-
patibility. The authors claim that the solution is easy to deploy, since the construction of the
control flow graph is totally automatic and the adoption of a proxy does not require changes
to the web application code.
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Escudo

Escudo [92] is an alternative protection model for web browsers, extending the standard
same-origin policy to rectify several of its known shortcomings. By noticing a strong sim-
ilarity between the browser and an operating system, the authors of Escudo argue for the
adoption of a protection mechanism based on hierarchical rings, whereby different elements
of the DOM are placed in rings with decreasing privileges; the definition of the number of
rings and the ring assignment for the DOM elements is done by web developers. Developers
can also assign protection rings to their cookies, while the internal browser state containing,
e.g., the history, is set by default in ring 0. Access to objects in a given ring is only allowed
to subjects being in the same or lower rings.

Escudo is designed to prevent XSS and CSRF attacks. Untrusted web contents should
be assigned to the least privileged ring, so that scripts crafted by exploiting a reflected XSS
vulnerability would do no harm. Similarly, requests from untrusted web pages should be put
in a low privilege ring without access to authentication credentials, thus preventing CSRF
attacks. Notice, however, that stored XSS vulnerabilities may be exploited to inject code
running with high privileges in trusted web applications and attack them. The authors of
Escudo do not discuss network attacks.

Escudo does not require user interventions for security enforcement and it only leads to a
slight overhead on page rendering (around 5%). This makes the solution potentially usable.
However, deploying ring assignments for Escudo looks challenging. The authors evaluated
this aspect by retrofitting two existing opensource applications: both experiments required
around one day of work, which looks reasonable. On the other hand, many web developers
are not security experts and the fine-grained policies advocated by Escudo may be too much
of a burden for them: without tool support for annotating the DOM elements, the deployment
of Escudo may be complicated, especially if a comprehensive protection is desired. Escudo is
designed to be backward compatible: Escudo-based web browsers are compatible with non-
Escudo applications and vice-versa; if an appropriate policy is put in place, no compatibility
issue will arise.

CookiExt

CookiExt [38] is a Google Chrome extension protecting the confidentiality of authentication
cookies against both web and network attacks. The extension adopts a heuristic to detect
authentication cookies in incoming responses: if a response is sent over HTTP, all the iden-
tified authentication cookies are marked as HttpOnly; if a response is sent over HTTPS,
these cookies are also marked as Secure. In the latter case, to preserve the session, Cook-
iExt forces an automatic redirection over HTTPS for all the subsequent HTTP requests to
the website, since these requests would not include the cookies which have been extended
with the Secure attribute. In order to preserve compatibility, the extension implements a
fallback mechanism which removes the Secure attribute automatically assigned to authen-
tication cookies in case the server does not support HTTPS for some of the web pages. The
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design of CookiExt has been formally validated by proving that a browser with CookiExt sat-
isfies non-interference with respect to the value of the authentication cookies. In particular, it
is shown that what an attacker can observe of the CookiExt browser behaviour is unaffected
by the value of authentication cookies. CookiExt does not protect against CSRF and session
fixation: it just ensures the confidentiality of the authentication cookies.

CookiExt does not require any user interaction and features a lightweight implementa-
tion, which guarantees a high level of usability. Preliminary experiments performed by the
authors show good compatibility results on existing websites from Alexa, since only minor
annoyances due to the security enforcement have been found; however, a large-scale evalua-
tion of the extension is still missing. Being implemented as a browser extension, CookiExt
is very easy to deploy.

SessInt

SessInt [39] is an extension for Google Chrome providing a purely client-side countermea-
sure against the most common attacks targeting web sessions. The extension prevents the
abuse of authenticated requests and protects authentication credentials. It enforces web ses-
sion integrity by combining access control and taint tracking mechanisms in the browser. The
security policy applied by SessInt has been verified against a formal threat model including
both web and network attackers. As a distinguishing feature with respect to other client-side
solutions, SessInt is able to stop CSRF attacks even when they are launched by exploiting
reflected XSS vulnerabilities. On the other hand, no protection is given against stored XSS.

The protection provided by SessInt is fully automatic: its security policy is uniformly
applied to every website and no interaction with the web server or the end-user is required.
Also, the performance overhead introduced by the security checks of SessInt is negligible
and no user interaction is needed. However, the protection offered by SessInt comes at a cost
on compatibility: the current prototype of the extension breaks several useful web scenarios,
including single sign-on protocols and e-payment systems. The implementation as a browser
extension makes SessInt very easy to deploy.

Same Origin Mutual Approval

SOMA [130] is a research proposal describing a simple yet powerful policy for content in-
clusion and remote communication on the Web. SOMA enforces that a web page from a
domain d1 can include contents from an origin o hosted on domain d2 only if both the fol-
lowing checks succeed: (1) d1 has listed o as an allowed source of remote contents and (2)
d2 has listed d1 as an allowed destination for content inclusion. SOMA is designed to of-
fer protection against web attackers: web developers can effectively prevent CSRF attacks
and mitigate the threats posed by content injection vulnerabilities, including stored XSS, by
preventing the injected contents from communicating with attacker-controlled web pages.

The protection offered by SOMA does not involve user intervention and the performances
of the solution look satisfactory, especially on cached page loads, where only an extra 5% of
network latency is introduced. This ensures that SOMA can be a usable solution. Moreover,
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if a SOMA policy correctly includes all the references to the necessary web resources, no
compatibility issues will occur. Writing correct policies looks feasible in practice, since
similar specifications are also used by popular web standards like CSP. The deployment of
SOMA would not be trivial, but acceptable: browsers must be patched to support the mutual
approval policy described above, while web developers should identify appropriate policies
for their websites. These policies are declarative in nature and expected be relatively small
in practice; most importantly, no change to the web application code is required.

App Isolation

App Isolation [47] is a defense mechanism aimed at offering, within a single browser, the
protection granted by the usage of different browsers for navigating websites at separate
levels of trust. If one “sensitive” browser is only used to navigate trusted websites, while an-
other “non-sensitive” browser is only used to access potentially malicious web pages, many
of the threats posed by the latter are voided by the absence of shared state between the two
browsers. For instance, CSRF attacks would fail, since they would be launched from an
attacker-controlled web page in the non-sensitive browser, but the authentication cookies for
all trusted web applications would only be available in the sensitive browser. Enforcing this
kind of guarantees within a single browser requires two ingredients: (1) a strong state iso-

lation among web applications and (2) an entry point restriction, preventing the access to
sensitive web applications from maliciously crafted URLs. Indeed, in the example above,
protection would be voided if the link mounting the CSRF attack was opened in the sensi-
tive browser. This design is effective at preventing reflected XSS attacks, session fixation
and CSRF. However, stored XSS attacks against trusted websites will bypass the protection
offered by App Isolation, since the injected code would be directly delivered from a trusted
position.

The usability of App Isolation looks promising, since the protection is applied automati-
cally and the only downside is a slight increase in the loading time of the websites, due to the
additional round-trip needed to fetch the list of allowed entry points. The compatibility of
the solution is ensured by the fact that supporting browsers only enforce protection when ex-
plicitly requested by the web application. Web developers, however, should compile a list of
entry points defining the allowed landing pages of their web applications. This is feasible and
easy to do only for non-social websites, e.g., online banks, which are typically accessed only
from their homepage, but it is prohibitively hard for social networks or content-oriented sites,
e.g., newspapers websites, where users may want to jump directly to any URL featuring an
article. The ease of deployment thus crucially depends on the nature of the web application
to protect.

Summary

We summarize our observations about the described solutions in Table 1.3. Again, we denote
with H the solutions where the ease of deployment is affected by the policy complexity.
Additionally, we use a dash symbol whenever we do not have any definite evidence about a
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specific aspect of our investigation based on the existing literature. Most notably, we leave
empty the Usability and Compatibility entries for browser-based information flow control
and JavaScript security policies, since they depend too much on the specific implementation
choices and the policies to enforce. More research is needed to understand these important
aspects.
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Browser IFC hybrid 3 3 3 7 - - L/MH

JS Policies hybrid 3 3 3 7 - - L/MH

Ajax IDS server 3 3 3 7 H H H
Escudo hybrid 3 3 - 7 H H L/MH

CookiExt client 3 7 7 3 H M H
SessInt client 3 3 3 3 H L H
SOMA hybrid 3 3 7 7 H H M
App Isolation hybrid 3 3 3 7 H H L/MH

TABLE 1.3: Defenses Against Multiple Attacks

1.6 Perspective

Having examined different proposals, we now identify five guidelines for the designers of
novel web security mechanisms. This is a synthesis of sound principles and insights which
have, to different extents, been taken into account by all the designers of the proposals we
surveyed.

1.6.1 Transparency

We call transparency the combination of high usability and full compatibility: we think
this is the most important ingredient to ensure a large scale deployment of any defensive
solution for the Web, given its massive user base and its heterogeneity. It is well-known
that security often comes at the cost of usability and that usability defects ultimately weaken
security, since users resort to deactivating or otherwise sidestepping the available protection
mechanisms [162]. The Web is extremely variegate and surprisingly fragile even to small
changes: web developers who do not desire to adopt new defensive technologies should be
able to do so, without any observable change to the semantics of their web applications when
these are accessed by security-enhanced web browsers; dually, users who are not willing to
update their web browsers should be able to seamlessly navigate websites which implement
cutting-edge security mechanisms not supported by their browsers.
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All the security decisions must be ultimately taken by web developers. On the one hand,
users are not willing or do not have the expertise to be involved in security decisions. On the
other hand, it is extremely difficult for browser vendors to come up with “one size fits all”
solutions which do not break any website. Motivated web developers, instead, can be fully
aware of their web application semantics, thoroughly test new proposals and configure them
to support compatibility.

Examples: Hybrid client/server solutions like ARLs (Section 1.4.4), CSP (Section 1.4.3)
and SOMA (Section 1.5) are prime examples of proposals which ensure transparency, since
they do not change the semantics of web applications not adopting them. Conversely, purely
client-side defenses like Serene (Section 1.4.5) and SessInt (Section 1.5) typically present
some compatibility issues, since they lack enough contextual information to be always pre-
cise in their security decisions: this makes them less amenable for a large-scale deployment.

1.6.2 Security by Design

Supporting the current Web and legacy web applications is essential, but developers of new
websites should be provided with tools which allow them to realize applications which are
secure by design. Our feeling is that striving for backward compatibility often hinders the
creation of tools which could actually improve the development process of new web appli-
cations. Indeed, backward compatibility is often identified with problem-specific patches to
known issues, which developers of existing websites can easily plug into their implemen-
tation to retrofit it. The result is that developing secure web applications using the current
technologies is a painstaking task, which involves actions at too many different levels. De-
velopers should be provided with tools and methodologies which allow them to take security
into account from the first phases of the development process. This necessarily means deviat-
ing from the low-level solutions advocated by many current technologies, to rather focus on
more high-level security aspects of the web application, including the definition of principals
and their trust relations, the identification of sensitive information, etc.

Examples: Proposals which are secure by design include the non-interference policies
advocated by FlowFox (Section 1.5) and several frameworks for enforcing arbitrary security
policies on untrusted JavaScript code (Section 1.5). Popular examples of solutions which are
not secure by design include the usage of secret tokens against CSRF attacks (Section 1.4.4):
indeed, not every token generation scheme is robust [20] and ensuring the confidentiality of
the tokens may be hard, even though this is crucial for the effectiveness of the solution.

1.6.3 Ease of Adoption

Server-side solutions should require a limited effort to be understood and adopted by web
developers. For instance, the usage of frameworks which automatically implement recom-
mended security practices, often neglected by web developers, can significantly simplify the
development of new secure applications. For client-side solutions, it is important that they
work out of the box when they are installed in the user browser: proposals which are not fully
automatic are going to be ignored or misused. Any defensive solution which involves both
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the client and the server is subject to both the previous observations. Since it is unrealistic
that a single protection mechanism is able to accommodate all the security needs, it is crucial
to design the defensive solution so that it gracefully interacts with existing proposals which
address orthogonal issues and which may already be adopted by web developers.

Examples: Many client-side defenses are easy to adopt, since they are deployed as
browser extensions which automatically provide additional protection: this is the case of
tools like CsFire (Section 1.4.4) and CookiExt (Section 1.5). Server-side or hybrid clien-
t/server solutions are often harder to adopt, for different reasons: some proposals like Escudo
(Section 1.5) are too fine-grained and thus require a huge configuration effort, while others
like FlowFox (Section 1.5) may be hard for web developers to understand. Good examples
of hybrid client/server solutions which promise an easy adoption, since they speak the same
language of web developers, include SOMA (Section 1.5) and HSTS (Section 1.4.6). Origin
checking is often straightforward to implement as a server-side defense against CSRF attacks
(Section 1.4.4).

1.6.4 Declarative Nature

To support a large-scale deployment, new defensive solutions should be declarative in nature:
web developers should be given access to an appropriate policy specification language, but
the enforcement of the policy should not be their concern. Security checks should not be
intermingled with the web application logic: ideally, no code change should be implemented
in the web application to make it more secure and a thorough understanding of the web
application code should not be necessary to come up with reasonable security policies. This
is dictated by very practical needs: existing web applications are huge and complex, are often
written in different programming languages and web developers may not have full control
over them.

Examples: Whitelist-based defenses like ARLs (Section 1.4.4) and SOMA (Section 1.5)
are declarative in nature, while the tokenization (Section 1.4.4) is not declarative at all, since
it is a low-level solution and it may be hard to adopt on legacy web applications.

1.6.5 Formal Specification and Verification

Formal models and tools have been recently applied to the specification and the verification
of new proposals for web session security [32, 5, 69, 39]. While a formal specification may
be of no use for web developers, it assists security researchers in understanding the details
of the proposed solution. Starting from a formal specification, web security designers can be
driven by the enforcement of a clear semantic security property, e.g., non-interference [76] or
session integrity [39], rather than by the desire of providing ad-hoc solutions to the plethora
of low-level attacks which currently target the Web.

This is not merely a theoretical exercise, but it has clear practical benefits. First, it allows
a comprehensive identification of all the attack vectors which may be used to violate the
intended security property, thus making it harder that subtle attacks are left undetected during
the design process. Second, it forces security experts to focus on a rigorous threat model
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and to precisely state all the assumptions underlying their proposals: this helps making a
critical comparison of different solutions and simplifies their possible integration. Third,
more speculatively, targeting a property rather than a mechanism allows to get a much better
understanding of the security problem, thus fostering the deployment of security mechanisms
which are both more complete and easier to use for web developers.

Examples: To the best of our knowledge, only very few of the proposals we surveyed
are backed up by a solid formal verification. Some notable examples include CookiExt (Sec-
tion 1.5), SessInt (Section 1.5), FlowFox (Section 1.5) and CsFire (Section 1.4.4).

1.6.6 Discussion

Retrospectively looking at the solutions we reviewed, we identify a number of carefully
crafted proposals which comply with several of the guidelines we presented. Perhaps sur-
prisingly, however, we also observe that none of the proposals complies with all the guide-
lines. We argue that this is not inherent to the nature of the guidelines, but rather the simple
consequence of web security being hard: indeed, many different problems at very different
levels must be taken into account when targeting the largest distributed system in the world.

The Challenges of the Web Platform

Nowadays, there is a huge number of different web standards and technologies, and most of
them are scattered across different RFCs. This makes it hard to get a comprehensive picture
of the web platform and, conversely, makes it extremely easy to underestimate the impact
of novel defense mechanisms on the web ecosystem. Moreover, the sheer size of the Web
makes it difficult to assume typical use case scenarios, since large-scale evaluations often
reveal surprises and contest largely accepted assumptions [142, 129, 43].

Particular care is needed when designing web security solutions, given the massive user
base of the Web, whose popularity heavily affects what security researchers and engineers
may actually propose to improve its security. Indeed, one may argue that the compatibility
and the usability of a web defense mechanism may even be more important than the pro-
tection it offers. This may be hard to accept, since it partially limits the design space for
well-thought solutions tackling the root cause of a security issue. However, the quest for
usability and compatibility is inherently part of the web security problem and it should never
be underestimated.

The Architecture of an Effective Solution

Purely client-side solutions are likely to break compatibility, since the security policy they
apply should be acceptable for every website, but “one size fits all” solutions do not work
in a heterogeneous environment like the Web. The best way to ensure that a client-side
defense preserves compatibility is to adopt a whitelist-based approach, so as to avoid that the
defensive mechanism is forced to guess the right security decision. However, the protection
offered by a whitelist is inherently limited to a known set of websites.
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Similarly, purely server-side approaches have their limitations. Most of the server-side
solutions we surveyed are hard to adopt and not declarative at all. When this is not the
case, like in NoForge (Section 1.4.4), compatibility is at risk. Indeed, just as client-side
solutions are not aware of the web application semantics, server-side approaches have very
little knowledge of the client-side code running in the browser.

Based on our survey and analysis, we confirm that hybrid client/server designs hold great
promise in being the most effective solution for future proposals [182]. We observe that it
is relatively easy to come up with hybrid solutions which are compliant with the first four
guidelines: SOMA (Section 1.5), HSTS (Section 1.4.6) and ARLs (Section 1.4.4) are good
examples.

A Note on Formal Verification

It may be tempting to think that proposals which comply with the first four guidelines are
already good enough, since their formal verification can be performed a posteriori. However,
this is not entirely true: solutions which are not designed with formal verification in mind are
often over-engineered and very difficult to prove correct, since it is not obvious what they are
actually trying to enforce. For many solutions, we just know that they prevent some attacks,
but it is unclear whether other attacks are feasible under the same threat model and there is
no assurance that a sufficiently strong security property can be actually proved for them.

We thus recommend to take formal verification into account from the first phases of the
design process. A very recent survey discusses why and how formal methods can be fruitfully
applied to web security and highlights open research directions [37].

Open Problems and New Research Directions

We have observed that, at the moment, there exist no solution complying with the five guide-
lines above and that solutions complying with the first four guidelines still miss a formal
treatment. One interesting line of research would be to try to formally state the security prop-
erties provided by those solutions under various threat models. As we discussed, proving
formal properties of existing mechanisms is not trivial (and sometimes not even feasible) and
requires, in the first place, to come up with a precise statement of the security goals. SOMA
(Section 1.5), HSTS (Section 1.4.6) and ARLs (Section 1.4.4) are certainly good candidates
for this formal analysis.

However, having a single solution covering the five guidelines would be far from provid-
ing a universal solution for web session security. We have seen that most of the proposals
target specific problems and attacks. The definition of a general framework for studying,
comparing, and composing web security mechanisms might help understanding in which
extent different solutions compose and what would be the resulting security guarantee. Mod-
ular reasoning looks particularly important in this respect, since the web platform includes
many different components and end-to-end security guarantees require all of them to behave
correctly. This would go in the direction of securing web sessions in general, instead of just
preventing classes of attacks.
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For what concerns new solutions, we believe that they should be supported by a formal
specification and a clear statement of the security goals and of the threat model. The de-
velopment of new, well-founded solutions would certainly benefit from the investigation and
formal analysis of existing, practical solutions. However, new solutions should try to tackle
web session security at a higher level of abstraction, independently of the specific attacks.
They should be designed with all of the above guidelines in mind which, in turns, suggests a
hybrid approach. The formal model would clarify what are the critical components to con-
trol and what (declarative) server side information is necessary to implement a transparent,
secure by design and easy to adopt solution.

1.7 Conclusion

We took a retrospective look at different attacks against web sessions and we surveyed the
most popular solutions against them. For each solution, we discussed its security guarantees
against different attacker models, its impact on usability and compatibility, and its ease of
deployment. We then synthesized five guidelines for the development of new web security
solutions, based on the lesson learned from previous experiences. We believe that these
guidelines can help web security experts in proposing novel solutions which are both more
effective and amenable for a large-scale adoption.



47

Chapter 2

WPSE: Fortifying Web Protocols via
Browser-Side Security Monitoring



48 Chapter 2. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

2.1 Introduction

Web protocols are security protocols deployed on top of HTTP and HTTPS, most notably
to implement authentication and authorization at remote servers. Popular examples of web
protocols include OAuth 2.01, OpenID Connect2 and Shibboleth3, which are routinely used
by millions of users to access security-sensitive functionalities on their personal accounts.

Unfortunately, designing and implementing web protocols is a particular error-prone task
even for security experts, as witnessed by the large number of vulnerabilities recently pre-
sented in the literature [160, 13, 14, 193, 108, 109, 186, 179]. The main reason for this is
that web protocols involve communication with a web browser, which does not strictly fol-
low the protocol specification, but reacts asynchronously to any input it receives, producing
messages which may have an import on protocol security. Reactiveness is particularly dan-
gerous because the browser is agnostic to the web protocol semantics: it does not know when
a protocol starts, nor when it ends, and is unaware of the order in which messages should be
processed as well as the confidentiality and integrity guarantees desired for a protocol run.
For example, in the context of OAuth 2.0, Bansal et al. [13] discussed token redirection at-

tacks enabled by the presence of open redirectors, while Fett et al. [68] presented state leak

attacks enabled by the communication of the Referer header; these attacks are not apparent
from the protocol specification alone, but come from the subtleties of the browser behaviour.

Major service providers try to aid software developers to correctly integrate web proto-
cols in their websites by means of JavaScript APIs; however, web developers are not forced
to use them, can still use them incorrectly [180], and the APIs themselves do not necessarily
implement the best security practices [160]. This unfortunate situation led to the proliferation
of attacks against web protocols even at popular services.

In this chapter, we propose a fundamental paradigm shift to strengthen the security guar-
antees of web protocols. The key idea we put forward is to extend browsers with a security
monitor which is able to enforce the compliance of browser behaviours with respect to an
ideal web protocol specification. This approach brings two main practical benefits:

1. protocol specifications can be written and verified once, possibly as a community ef-
fort, and then uniformly enforced at a number of different websites by the browser;

2. the security import of incorrect server-side web protocol implementations is signif-
icantly mitigated, since the browser is aware of the intended protocol flow and any
deviation from it is detected at runtime.

Remarkably, though changing the behaviour of web browsers is always delicate for back-
ward compatibility, the security monitor we propose is carefully designed to interact grace-
fully with existing websites, so that the website functionality is preserved unless it criti-
cally deviates from the intended protocol specification. Moreover, a large set of the monitor
functionalities can be implemented as a browser extension and deployed without requiring

1https://oauth.net/2/
2http://openid.net/connect/
3https://shibboleth.net/
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changes to web browsers, thereby offering immediate protection to Internet users and promis-
ing a significant practical impact.

2.1.1 Contributions

In this chapter, we make the following contributions:

1. we identify three fundamental challenges for the security of web protocols, that is,
enforcing confidentiality and integrity of message components, as well as the intended
protocol flow. We discuss concrete examples of their security import in the context of
the popular authorization protocol OAuth 2.0;

2. we propose the Web Protocol Security Enforcer (WPSE for short), a browser-side se-
curity monitor designed to tackle the challenges we identified. We formalize the be-
haviour of WPSE in terms of a finite state automaton and we develop a prototype im-
plementation of the security monitor as a Google Chrome extension, which we make
publicly available;

3. we rigorously analyse the design of WPSE against OAuth 2.0 by discussing how the
security monitor prevents a number of attacks previously reported in the literature [160,
13, 68];

4. we experimentally assess the effectiveness of WPSE by testing it against 90 websites
using OAuth 2.0 to implement single sign-on at major identity providers. In our anal-
ysis, we identified security flaws in 55 websites (61.1%), including new critical vul-
nerabilities caused by tracking libraries such as Facebook Pixel and Google AdSense,
all of which fixable by WPSE and we discovered that WPSE works flawlessly on 83
websites (92.2%), with the remaining ones deviating from the protocol specification
(and at least one of them introducing a critical vulnerability because of that), which
proves that the browser-side security monitoring of web protocols is both useful and
feasible.

2.2 Security Challenges in Web Protocols

Web protocols come with various security challenges which can often be attributed to the
presence of the web browser that acts as a non-standard protocol participant. In the fol-
lowing, we discuss the different security challenges for web protocols using the OAuth 2.0
authorization protocol as case study.

2.2.1 Background: OAuth 2.0

We will illustrate our approach on OAuth 2.0, the de-facto standard web authorization proto-
col, which we briefly overview below. OAuth 2.0 [83] is a web protocol that enables resource
owners to grant third parties controlled access to resources hosted at remote servers. In prac-
tice, the OAuth 2.0 protocol is also used for authenticating the resource owner to third parties
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by giving them access to the resource owner’s identity stored at an identity provider. This
functionality is also known as single sign-on (SSO). Using standard terminology, we refer
to the third-party application as relying party or RP for short, and to the website storing the
resources (including the identity) as identity provider or IdP for short4.

OAuth 2.0 comes with four different flows (also called grant types): authorization code

mode, implicit mode, resource owner password credentials mode and client side credentials

mode. In the following, we will focus on the authorization code mode and the implicit mode,
as they are the commonly used by websites in practice.

The high-level structure of OAuth 2.0 under these two flows is similar:

1. the user U sends RP a request which requires to access a remote resource at IdP;

2. RP sends IdP an authorization request, asking a number of permissions;

3. U authenticates at IdP and grants the requested permissions (if she did not already);

4. IdP provides an authorization credential to RP;

5. RP uses the authorization credential to obtain access to the user’s resource at the IdP.

We now summarize how the two flows work. For a more detailed protocol description, we
refer the reader to [68].

Authorization Code Mode

The authorization code mode is intended for RPs whose main functionality is carried out
at the server-side. The high-level protocol flow is depicted in Figure 2.1 and described in
the following. For the sake of readability we introduce a simplified version of the protocol
omitting implementation details. We give a more detailed version of parts of the protocol in
Section 2.4.

1© U sends a request to RP for accessing a remote resource. The request specifies the IdP
that holds the resource. In the case of SSO, this step determines which IdP should be
used.

2© RP redirects U to the login endpoint of IdP. This request contains the RP’s identity
at IdP, the URI that IdP should redirect to after successful login and an optional state
parameter for CSRF protection that should be bound to U’s state;

3© IdP answers to the authorization request with a login form and the user provides her
credentials for IdP;

4© IdP redirects to the URI of RP specified at step 2©, including the previously received
state parameter and an authorization code;

4The OAuth 2.0 specification distinguishes between resource servers and authorization servers instead of
considering one identity provider that stores the user’s identity as well as its resources [83], but it is common
practice to unify resource and authorization servers as one party [68], [160], [109].
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5© RP makes a request to IdP with the authorization code, including its identity, the redi-
rect URI and optionally a shared secret with the IdP;

6© IdP answers with an access token to RP;

7© RP makes a request for the user’s resource to IdP, including the access token;

8© IdP answers RP with the user’s resource at IdP.

U RP IdP

RP(redirect URI)

1© IdP

2© RP ID,redirect URI,state

3© Login form

User credentials

4© authorization code, state

5© authorization code,RP ID,redirect URI

6© access token

7© access token

8© resource

FIGURE 2.1: OAuth 2.0 (authorization code mode)

Implicit Mode

The implicit mode is intended for browser-side RP applications. Instead of first granting an
authorization code to RP, the access token is directly provided by IdP in a fashion that allows
the browser-side RP application to access it.

Steps 1©- 3© and 7©- 8© are the same as for the authorization code mode. Steps 4©- 6© are
replaced by the following:

4© IdP redirects to the URI of RP specified at step 2©, including the previously received
state parameter and an access token in the fragment identifier;

5© RP answers with a script which extracts the state parameter and the access token from
the fragment;

6© the script sends a request to RP including the extracted information.

2.2.2 Challenge #1: Protocol Flow

Protocols are specified in terms of a number of sequential message exchanges which honest
participants are expected to follow, but the browser is not forced to comply with the intended
protocol flow.
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Example in OAuth 2.0

The use of the state parameter is recommended to prevent attacks leveraging this idiosyn-
crasy. If RP does not provide the state parameter in its authorization request to IdP at step

2©, then an attack is possible that logs in an honest user with an attacker’s account (in the
case of OAuth 2.0 being used for SSO). This attack is also known as session swapping [160].

We give a short overview on this attack in the authorization code mode: an attacker A
initiates social login at RP with an identity provider IdP and performs steps 1© to 3© of the
protocol. In step 4©, A learns an authorization code and creates an exploit page that embeds
the authorization code in a way that it is sent to RP upon viewing the page. When an honest
user browses this page, the RP completes the login, establishing a session with the attacker
in the user’s browser. A similar attack works in the implicit mode.

2.2.3 Challenge #2: Secrecy of Messages

The security of protocols typically relies on the confidentiality of cryptographic keys and
credentials, but the browser is not aware of which data must be kept secret for protocol
security.

Example in OAuth 2.0

In the case of OAuth 2.0, the secrecy of the authorization credentials (namely the authoriza-
tion codes and the access tokens) is crucial for meeting the protocol’s security requirements,
as the knowledge of those credentials allows an attacker to access the user’s resources. The
secrecy of the state parameter is also important to ensure session integrity.

An example of an unintended leakage of these secrets is the so called state leak attack

described in [68]. In this attack, an honest user agent U is expected to complete steps 1© to

4© of the authorization code mode with IdP at RP. If the page loaded at the redirect URI in
step 3© contains a link to a malicious website, clicking this link causes the state parameter
and the authorization code (that are part of the currently loaded page’s URL) to be leaked in
the Referer header of the outgoing request.

The learned authorization code can potentially be used to obtain a valid access token
for U at IdP. In addition, the leaked state parameter enables the session swapping attack
previously described.

2.2.4 Challenge #3: Integrity of Messages

Protocol participants are typically expected to perform a number of runtime checks to prove
the integrity of the messages they receive and ensure the integrity of the messages they
send, but the browser cannot perform these checks unless they are explicitly carried out in a
JavaScript implementation of the web protocol.
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Example in OAuth 2.0

An example attack that exploits this weakness is the naïve RP session integrity attack pre-
sented in [68]. This attack relies on the assumption that RP supports SSO with different
identity providers and, in order to distinguish which identity provider was used, relies on
different redirect URIs for each of them. In this case, an attacker can confuse the RP about
which identity provider is currently used and login the attacker at an honest user’s browser. To
this end, the attacker starts a social login session at RP with an honest identity provider HIdP
to obtain an authorization code for her account at HIdP – steps 1© to 4©. If an honest user
starts a social login session at RP with a malicious identity provider AIdP, then in step 4©,
AIdP is expected to redirect the user to AIdPs redirect URI at RP. If instead AIdP redirects
to the redirect URI of HIdP, but includes the authorization code from the attacker session,
then RP mistakenly assumes that the user intended to login with HIdP. Consequently, RP
completes the social login – steps 5© to 8© – with HIdP providing the attacker’s authorization
code to it which will make HIdP authenticate the user as the attacker.

2.3 WPSE: Design and Implementation

The Web Protocol Enforcer (WPSE) is the first browser-side security monitor designed to
address the security challenges of web protocols. We discuss its design and semantics and
present a proof-of-concept implementation.

2.3.1 Protocol Specification

For the sake of simplicity, we illustrate WPSE on a toy example involving a simple login
protocol. More realistic and interesting examples are discussed in the next sections.

Protocol Flow

The login protocol involves three participants: the browser B, an authentication service A
hosted at accounts.example.com and a website E hosted at www.example.com.
The protocol works as follows: first, B sends a POST request to A submitting the user’s cre-
dentials in the form of username and password. If the credentials are valid, the corresponding
response from A sets a Secure cookie s containing a session identifier and redirects B to
the successful login page at E. This page sets a cookie p containing the user’s preferences for
the website and redirects B to the user’s profile at E, which is dynamically generated based
on the session information bound to s. When the credentials are wrong, instead, no cookie
is set and B is redirected to an error page at A, from where the user can try to login again. A
protocol run which successfully authenticates the user is shown in Figure 2.2.

WPSE describes web protocols in terms of the HTTP(S) exchanges observed by the web
browser, following the so-called browser relayed messages methodology first introduced by
Wang et al. [179]. The specification of the protocol flow defines the syntactic structure and
the expected order of the HTTP(S) messages, supporting the possibility of selecting different
execution branches when a particular protocol message is sent or received by the browser.
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E B A

POST /login.php user=mike,pwd=4627 //

Set-Cookie:s=SID;Secure, Location:E/success.phpoo

GET /success.php Cookie:s=SIDoo

Set-Cookie:p=prefs, Location:E/profile.php//

FIGURE 2.2: Basic login protocol (successful login) involving a website (E),
a browser (B) and an authentication service (A)

WPSE takes as input a protocol specification that allows to express this structure. For
the sake of presentation, we give the protocol specification in terms of a finite state automa-
ton depicted in Figure 2.3. Intuitively, each state in the automaton represents one stage of
the protocol execution in the browser. By receiving an HTTP(S) response or submitting an
HTTP(S) request that is expected by the protocol in the current stage, the automaton steps
to the next state until reaching a final state (states auth and fail in the example) indicating
that the protocol run was completed. The branching of the protocol is expressed by adding
non-determinism to the automaton as done in state auth that allows for receiving a success
and a failure response to the user’s login trial.

In order to specify the protocol messages expected in each stage, the outgoing edges of
the automaton’s corresponding state are labeled by message patterns describing the shape
of valid messages at this point of execution. Message patterns can either be of the form
Req (m) indicating that the browser sends out a request with a message of shape m or of
the form Resp (m) indicating that a response of shape m is received. In both cases, m is
a regular expression defining the shape of the message. Note that we represent HTTP(S)
requests simplified as e〈a〉 where e is the recipient endpoint and a is the comma separated list
of arguments. Accordingly, we use the notation e(h) for HTTP(S) responses with e being the
sender’s endpoint and h being the list of headers. The message patterns should be considered
as guards of the transition that evaluate to true for such requests and responses that match
the pattern including the regular expression. Guards can be composed using standard logical
connectives.

In addition to providing the outgoing edges for progressing in the protocol execution,
each state of the automaton also allows for pausing the protocol execution in the presence of
requests and responses that are unrelated to the protocol. Messages are considered unrelated
to the protocol, if they are not of the shape of any valid message in the protocol execution. In
the automaton, this is expressed by introducing a self-loop for each state with the disjunction
of all negated patterns for valid protocol messages as a guard. We consider the negation of a
pattern just to invert the pattern’s semantics.

Note that the automata constructed for protocols expose a tree structure. In particular, this
structure induces a partial ordering on automaton states. In the following, we additionally
assume a fixed total ordering on automaton states that respects the partial ordering induced
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by the tree structure.

initstart auth

yes

no

succ end

f ail

φ1

¬(∨i φi) φ2

φ5

¬(∨i φi)

φ3

∧ s1==s2

¬(∨i φi)

φ6

¬(∨i φi)

φ4

¬(∨i φi)

φ1 =Req (https://A/login.php<user:*,pwd:*>)
φ2 =Resp (https://A/login.php(Set-Cookie:s=s1{S}:=(.*),

Location:https://E/success.php))
φ3 =Req (https://E/success.php<Cookie: s=s2:=(.*?)>)

φ4 =Resp (https://E/success.php(Set-Cookie:p=.*,
Location:https://E/profile.php))

φ5 =Resp (https://A/login.php(Location:https://A/fail.php))
φ6 =Req (https://A/fail.php<>)
S =https://www.example.com, https://accounts.example.com

FIGURE 2.3: Finite state automaton for the basic login protocol

Binders

In order to incorporate integrity and secrecy policies into the syntax of the automaton, we
allow for binding parts of message patterns in the guards of the automaton to identifiers. To
this end, the syntax x:=(exp) is used for binding identifier x to the (part of the) message
matching the regular subexpression exp. This binding notation can be arbitrarily inserted
inside the regular expressions of the message patterns. In order to clarify the scope of the
binder, the subsequent subexpression exp is expected to be enclosed in a capturing group5

(denoted by parentheses). In each state, all identifiers that were introduced in patterns of
non self-loop edges on a path to a preceding state, can be considered to be bound to a value,
where the notion of a preceding state is well defined by the partial order on the automaton
states.

5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/RegExp

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
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For instance, the binder in message pattern Φ3 of the automaton in Figure 2.3 binds
identifier s2 to the value of the cookie s sent in the request to the successful login page at
E in state succ. This binding remains in place for all successor states of succ. Notice that
binders occurring in negated patterns are not considered. Otherwise, identifiers introduced in
self-loops could not be ensured to be bound in a later state as the automaton does not enforce
that a self-loop edge is taken.

Secrecy Policy

The secrecy policy defines which parts of the HTTP(S) responses included in the protocol
specification must be kept confidential among a set of web origins. These message compo-
nents must be isolated from browser accesses, e.g., computations performed by JavaScript,
and only be attached to HTTP(S) requests sent to the web origins which are intended to learn
them.

In the case of the basic login protocol, the session cookie s should only be disclosed
to A and E to prevent session hijacking by an attacker learning the cookie value. We ex-
press secrecy policies in the automaton representation by extending the notation of binders
by an optional secrecy set. The secrecy set specifies the origins that the bound value is al-
lowed to be shared with. In Figure 2.3, the binder in pattern Φ2 binds the value of cookie
s (that is set by the response from A) to identifier, noted s1{S}:=, and defines the secrecy
set S of the cookie value to only contain https://www.example.com and https:

//accounts.example.com. Note that previously introduced identifiers can occur in
the definition of the secrecy set

Integrity Policy

The integrity policy defines runtime checks over the HTTP(S) messages. These checks allow
for the comparison of incoming messages with the messages received during the preceding
protocol execution. If any of the integrity check fails, the corresponding message is not
processed and the protocol run is aborted.

In the case of the basic login protocol, we would like to ensure that the session cookie
s received after submitting the authentication credentials is the same cookie which is sent
to the successful login page. This is useful to prevent session hijacking attacks, where the
attacker forces the user’s browser into a malicious session.

To express integrity constraints in the automaton, we enrich the guards of the edges to
include comparisons ranging over the identifiers introduced by preceding messages. The
integrity constraint of the basic login protocol is consequently described by adding the com-
parison s1 == s2 to the guard Φ3. This additional guard requires that the value bound
to s1 in pattern Φ2 equals the value that will be bound to s2 in pattern Φ3 when a request
matching Φ3 is received in state yes.

https://www.example.com
https://accounts.example.com
https://accounts.example.com
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2.3.2 Security Enforcement

Given a protocol specification, WPSE generates a security monitor which ensures compliance
with respect to the intended protocol flow, while enforcing the desired secrecy and integrity
policies. We discuss next the details of the construction.

Protocol Flow

Given a protocol specification, WPSE generates a finite state automaton as previously dis-
cussed including one state for each HTTP(S) request and response in the protocol, plus one
initial state. The set of the final states of the automaton includes all the states corresponding
to the last HTTP(S) request or response of one of the protocol branches.

Due to the self loops at all but the final states, protocol-unrelated messages are always
allowed by WPSE. This is important for website functionality, because the input/output be-
havior of browsers on realistic websites is complex and hard to fully determine when writing
a protocol specification. Also, the same protocol may be run on different websites, which
need to fetch very different resources as part of their protocol-unrelated functionalities, and
we would like to ensure that the same protocol specification can be enforced uniformly on all
these websites.

We achieve determinism on the finite state automaton by forcing the choice of the transi-
tion to the next automaton state according to the total ordering when more than one transition
is enabled.

Monitor Semantics

If we assume that no secrecy or integrity policy is put in place, the semantics of the monitor
is straightforward. In this case, the guards of all edges only consist of (potentially logically
composed) message patterns. We say that an HTTP(S) request satisfies a pattern Req (e〈a〉)
when it is directed at e and satisfies all the syntactic constraints of a; an analogous notion
holds for HTTP(S) responses and patterns of the form Resp (e(h)). The monitor just listens
for all the HTTP(S) requests and responses passing through the browser, trying to walk the
automaton from the initial state to a final state by checking them against the patterns of the
outgoing transitions of the current state. If an HTTP(S) request or response does not satisfy
any of the patterns of the outgoing transitions of the current state, it is blocked and the monitor
is reset to the initial state, so that the protocol run is aborted.

We complete the description of the monitor semantics by extending it to the security
policy components. We first discuss the secrecy policy: confidential message components
are stripped from HTTP(S) responses and substituted by random placeholders. If the monitor
encounters an HTTP(S) response including a binder with a secrecy set, the value bound to
the capturing box subsequent to the binder is stripped off. When the monitor detects an
HTTP(S) request including an identifier, it replaces the latter with the corresponding original
value, but only if the HTTP(S) request is directed to one of the web origins which is entitled
to learn it (as specified in the secrecy set of the corresponding binder). A similar idea has been
explored by Stock and Johns to strengthen the security of password managers [159]. Since the
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substitution of confidential message components with placeholders changes the content of the
messages, thus introducing potential deviations with respect to the labels of the constructed
automaton, the monitor processes HTTP(S) responses before stripping confidential values
and HTTP(S) requests after replacing the placeholders with the original values. This way,
the input/output behavior exposed by the monitor is the same as the one of the ideal protocol
specification.

As to the integrity policy, the desired integrity checks are directly encoded in the syntax of
the guards of the automaton, so that a transition is only enabled when it satisfies the expected
integrity checks. Since these checks may depend on previously received messages, like in
the example of Figure 2.3, the monitor keeps track of the values bound to the identifiers
introduced in the protocol specification when walking the automaton.

Multiple Protocols

There are a couple of delicate points to address when multiple protocol specifications P1, . . . , Pn

must be honored by WPSE at the same time:

1. if two different protocols Pi and Pj share messages with the same structure, there might
be situations where the monitor does not know which of the two protocols is being run,
yet a message may be allowed by Pi and disallowed by Pj or vice-versa;

2. if the monitor is trying to enforce a given protocol Pi, it must not allow for a message
which may be part of another protocol Pj, otherwise it would be trivial to sidestep the
security policy of Pi by first making the browser process the first message of Pj.

Both problems are solved by replacing the protocol specifications P1, . . . , Pn with a single
specification P with n branches, one for each Pi. Using this construction, any ambiguity on
which protocol specification should be enforced is solved by the determinism of the finite
state automaton. Moreover, the self loops of the automaton will only match the messages
which are not part of any of the n protocol specifications, thereby preventing unintended
protocol interleavings. Notice that the semantics of the security monitor depends on the order
of the automaton’s states, due to the way we enforce determinism: if Pi starts with a request
to u including two parameters a and b, while Pj starts with a request to u including only the
parameter a, then Pi’ first (distinct) state should be positioned before Pj’s first (distinct) state
in the ordering. Otherwise, Pi would never be executed as the initial message for Pi will be
matched by the pattern for Pj’s initial message and as a consequence the monitor will always
enforce Pj.

2.3.3 Implementation

We have developed a proof-of-concept implementation of WPSE as an extension for Google
Chrome6. The automaton defining the protocol is for this purpose expressed as an XML
specification.

6Available at https://sites.google.com/site/wpseproject/

https://sites.google.com/site/wpseproject/
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The extension intercepts all the HTTP(S) messages that are sent or received by the
browser using the webRequest API and processes them as discussed above. Our prototype
implements a single security monitor which is shared among all the tabs in the browser. As a
consequence, only one web protocol at a time can be run simultaneously by the open pages.
Since web protocols typically require some user intervention to be initiated and they last
only for a few HTTP(S) exchanges, we do not expect this choice to significantly affect the
browsing experience of the typical user.

2.4 Fortifying OAuth 2.0 with WPSE

OAuth 2.0 is a popular real-world protocol whose security has been studied in depth [13, 68,
160] and is thus an excellent benchmark for WPSE. We show how the protocol and a possible
security policy are encoded in our tool and we discuss which attacks from the literature are
prevented.

2.4.1 Protocol Specification

Table 2.4 presents the automaton specification of one of the OAuth 2.0 implementations avail-
able at Google. Specifically, it models the authorization code mode of the protocol without
the state parameter, which is recommended but optional at Google. The automaton models
the message exchanges: the first request to Google starts the protocol run, by specifying that
the authorization code mode is desired and by sending the redirect URI of the relying party.
The corresponding response redirects the browser using a Location header. The last message
in the specification is the request triggered by the redirect, which must include the authoriza-
tion code provided by Google. The regular expression on the code parameter ensures that the
security monitor is only activated when the value of the parameter is at least 40 characters
long, which we observed to be true for Google. This makes the security enforcement more
precise and it is helpful because the structure of the last message of the protocol needs to
satisfy only weak syntactic constraints.

The binders introduced in the patterns of the protocol messages and responses are used
to refer to relevant message components. By the appropriate embedding into the regular
expressions, the binders identify the redirect URI (r_uri1 for the one specified by the
first request and r_uri2 for the one finally used for redirection), the origin of the relying
party (r_orig, extracted from the redirect URI) and the authorization code (c1 for the
code received in the response and c2 for the one sent in the request to IdP) respectively.
The secrecy policy requires that the authorization code is kept secret between Google and
the relying party, while the integrity policy ensures that the last message of the protocol
is directed at the redirect URI specified in the first message of the protocol. Despite its
simplicity, this policy is strong enough to stop a number of dangerous attacks. In order to
illustrate how the protocol is specified in the extension, in Table 2.1 we also provide the XML
specification corresponding to the automaton.



60 Chapter 2. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

initstart auth access end
φ1

¬(∨i φi)

φ2

¬(∨i φi) φ3

∧ r_uri1==r_uri2

∧ c1==c2

¬(∨i φi)

φ1 = Req (https://accounts.google.com/oauth2/(?:.*?/)?auth
<response_type:code,
redirect_uri:^r_uri1:=(r_orig:=(https?://.*?/).*?)(?:\?|$)>)

φ2 = Resp (https://accounts.google.com/oauth2/(?:.*?/)?auth
(Location:[?&amp;]code=c1{S}:=(.*?)(?:&amp;|$) )

φ3 = Req (r_uri2:=(*)<code:c2:=([^\s]{40,}>))
S = https://accounts.google.com, r_orig

FIGURE 2.4: Finite state automaton for the OAuth 2.0 protocol

2.4.2 Prevented Attacks

We reviewed attacks on OAuth 2.0 presented in the literature, analysing whether or not they
are prevented by our extension. We focus on the attacks presented in [13], [68] and [160] and
picked those that apply to the OAuth 2.0 flows presented in this work.

Table 2.2 gives an overview on the attacks from the literature that WPSE is able to pre-
vent. We group them into three categories according to the type of violation of the browser-
side protocol and security property specification that they expose.

Protocol Flow Deviations

This category covers attacks that involve the user’s browser only in some parts of the protocol
flow. Some attacks, e.g., some versions of CSRF and session swapping rely on completing
a social login in the user’s browser that was not initiated before. As this is a clear deviation
from a protocol flow, WPSE stops these attacks right away. We explain the way WPSE works
in these cases by taking the example of session swapping. As discussed in Section 2.2.2, in
the session swapping attack, the attacker tricks the user into sending a request containing the
attacker’s authorization credential (e.g., the authorization code) to RP (step 4© of the protocol
flow). As the state parameter is not present, RP cannot check that this request was not
preceded by a corresponding social login request by the user. The monitor will directly stop
this attack as its initial state expects the authorization request to IdP (step 2© of the protocol)
to be carried out by the browser, as specified in the guard Φ1 of the automaton in Figure 2.4.
As the attack’s initial request principally matches the shape of a valid request of the OAuth 2.0
protocol (namely the request specified in pattern Φ3), the automaton underlying the monitor
does not provide an outgoing edge for the request initiated by the attacker. Consequently the
monitor blocks the request and thereby stops the attack.



2.4. Fortifying OAuth 2.0 with WPSE 61

Secrecy Violations

This category covers attacks where sensitive information is unintentionally leaked to uneli-
gible parties via browser requests. Sources of these attacks can either be open redirectors at
RP endpoints or leakage via the Referer header or by redirection.

The attacks in this category (summarized in Table 2.2) have in common that requests
with sensitive information are sent by the browser to parties that are not trusted to obtain this
information. Either these parties are untrusted third parties that should not be involved in
the protocol flow at all (as it is the case for the State Leak Attack and Unauthorized Login
by Authentication Code Redirection) or protocol parties that are not trusted with a specific
secret (as in the 307 Redirect Attack).

WPSE can prevent this class of attacks as the secrecy policy allows one to specify for
each secret the origins it is allowed to be shared with. We illustrate how the monitor would
prevent these attacks using the example of the State Leak Attack discussed in [68].

As described in section 2.2.3, in the State Leak Attack, the state parameter and the autho-
rization code are leaked to the attacker in the Referer of a request to a malicious page which
is initiated after the IdP redirection to the RP (step 4© of the protocol).

The secrecy policy for the authorization code is specified by giving the secrecy set for
the binder of c1 in pattern Φ2. It requires the authorization code (c1) that is received in step

2© of the OAuth 2.0 protocol only to be shared between Google and the RP (whose origin
is bound to r_orig). The monitor consequently strips off the value of the authorization
code before passing the request to the browser. When, after step 4© of the protocol, a request
is sent out to the attacker, the monitor first checks whether to replace the placeholder of
the authorization code (that is part of the outgoing request’s Referer header) with the original
value. As the request is directed to an attacker origin (which should be different from the ones
specified in the secrecy set), the placeholder is not replaced. Still, the request (containing a
random value instead of the state parameter) is sent out to the attacker because it does not
match any of the requests defined in the protocol specification and is therefore irrelevant to
protocol flow checks.

Integrity Violations

This category contains attacks that maintain the general protocol flow (from the browser’s
perspective), but involve server-side parties that are not those requested by the user. Examples
for these attacks are given in Table 2.2. In all listed cases, RP confuses the IdP issued by
the user for social login with another party. As the information that identifies the correct
IdP (e.g., the redirect URI) goes through the browser, it is possible to prevent the browser
actions that confuse the RP by performing browser-side integrity checks. One example is the
enforcement of the usage of the correct redirect URI by the IdP that prevents the Naïve RP
Session Integrity Attack presented in Section 2.2.4. We use this example to illustrate how
WPSE prevents the attack by enforcing browser-side integrity checks.

The guard on the edge between the states access and end carries the integrity constraint
that is violated by the attack. In step 2© of the OAuth 2.0 protocol, the redirect URI is received
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as parameter. This request corresponds to the one specified in pattern Φ1 of the automation
and consequently the redirect URI will be bound to the identifier r_uri1. In the case of the
Naïve RP Session Integrity Attack, this redirect URI will be the one that RP associates with
the malicious AIdP. As in the attack, in protocol step 4©, the browser gets redirected to the
redirect URI of the honest HIdP (edge between access and end), r_uri2 is bound to the
redirect URI for HIdP.

The monitor will stop the protocol execution when encountering this request to the wrong
URI given that it does not pass the integrity check, despite of matching the shape of a valid
request in the protocol flow. Consequently, the corresponding state in the automaton does not
provide a matching outgoing edge and the monitor is reset.

2.4.3 Out-of-Scope Attacks

Even though WPSE is able to prevent a wide range of attacks, it needs to be emphasized that
some attack classes are out of scope for browser-side security monitoring. Table 2.3 gives an
overview of known attacks on OAuth 2.0 that cannot be stopped by WPSE.

Cross-Site Request Forgery

CSRF attacks can only be prevented if they cause a deviation from the protocol flow observ-
able on the browser-side. CSRF attacks that e.g., exploit vulnerabilities at the RPs login page
or are for other reasons able to forge the initial social login request, cannot be stopped as the
browser-side protocol flow stays unchanged. An example for this is the Social Login CSRF
through IdP Login CSRF attack [13]. In this attack, the attacker exploits a CSRF vulnerabil-
ity on IdPs login form. When the user browses a malicious website, the attacker redirects the
user to the IdPs login page with the attacker’s credentials and silently logs in the attacker in
the user’s browser. When later on a social login at RP with IdP is performed, the user will be
logged in as the attacker at RP as well. This attack can not be prevented by WPSE as from
the browser’s perspective, the protocol flow is not disrupted. From the browser side, it can
not distinguished whether the initial login request was performed intentionally or not.

Network Attacks

Another class of attacks that can not be prevented are network attacks as the plain version
of the IdP-Mix-Up attack [68]. In this case, the attack is caused by a network attacker that
manipulates HTTP requests and responses. As this happens after the requests left the browser
and before the responses enter the browser, no violation of any policy can be observed on the
browser side. In the IdP Mix-Up attack, the user’s SSO credential for an honest IdP is leaked
to a malicious IdP by RP. The attack works in the authorization code mode and in the
implicit mode and assumes the presence of a network attacker and that RP saves the user’s
choice about which IdP to use for login in a session after protocol step 1©. Additionally, it
is assumed that RP gives the same redirect URI to all IdPs it is registered with. The attack
proceeds as follows: when U initiates social login at RP with HIdP (step 1© of the OAuth 2.0
protocol), the outgoing request is manipulated to contain a malicious identity provider AIdP.
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As a consequence, RP redirects to AIdP. The network attacker manipulates this response
again to redirect to HIdP instead (step 2©). The user registers with HIdP and finally gets
redirected to RP with the state parameter and the authorization code in step 4©. But as RP
saved the user’s intention to identify with AIdP after step 1©, it requests AIdP for an access
token in step 5© and thereby leaks the state parameter and authorization code to malicious
AIdP. As these secrets are leaked by a request originating from RP no browser-side secrecy
policy can prevent this leakage. In addition, on the browser side no protocol deviation can be
observed as the requests are manipulated after passing the browser and the responses before
entering the browser, respectively.

Server-Side Attacks

Also attacks caused by missing server-side checks or a poor quality of the involved creden-
tials cannot be caught by WPSE. Exemplary for these issues, we present an instance of the
Impersonation Attack described in [160]. This attack applies to the implicit mode of OAuth
2.0 and assumes that the RP uses public or guessable information retrieved from the IdP,
such as the public id of the user on the IdP, to perform authentication. In addition, it is
assumed that RP does not check whether the authorization request (step 2© of the protocol)
and the request containing the authentication credential (step 6©) originated from the same
browser. In this case, it is possible that the attacker uses her own browser to send a forged
credential for the user to the RP and like this logs in as the user. Since this attack is cause by
a flawed server-side logic and is carried out without the user’s browser, there is no way for a
browser-side monitor to prevent it.

2.5 Discussion

A number of points of the design and the implementation of WPSE are worth discussing
more in detail.

2.5.1 Protocol Flow

WPSE provides a significant improvement in security over standard web browsers, but the
protection it offers is not for free, because it requires the specification of both a protocol flow
and a security policy. We think that it is possible to develop automated techniques to recon-
struct the intended protocol flow from observable browser behaviours, while synthesizing the
security policy looks more difficult. Manually finding the best security policy for a protocol
may require significant expertise, but even simple policies can be useful to prevent a number
of dangerous attacks, as demonstrated in Section 2.4.

The specification style of the protocol flow supported by WPSE is simple, because it
only allows sequential composition of messages and branching. As a result, our finite state
automata are significantly simpler than the request graphs proposed by Guha et al. [79] to
represent legitimate browser behaviors (from the server perspective). For instance, our finite
state automata do not include loops and interleaving of messages, because it seems that these
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features are not extensively used in web protocols. Like standard security protocols, web
protocols are typically specified in terms of a fixed number of sequential messages, which
are appropriately supported by the specification language we chose.

2.5.2 Secrecy Enforcement

The implementation of the secrecy policies of WPSE is secure, but restrictive. Since WPSE
substitutes confidential values with random placeholders, only the latter are exposed to browser-
side scripts. Shielding secret values from script accesses is crucial to prevent confidentiality
breaches via untrusted scripts or XSS, but it might also break the website functionality if a
trusted script needs to compute over a secret value exchanged in the protocol. The current de-
sign of WPSE only supports a limited use of secrets by browser-side scripts, i.e., scripts can
only forward secrets unchanged to the web origins entitled to learn them. We have shown that
this is enough to support existing protocols like OAuth 2.0, but other protocols may require
more flexibility.

Dynamic information flow control deals with the problem of letting programs compute
over secret values while avoiding confidentiality breaches and it has been applied in the
context of web browsers [76, 85, 27, 140, 22]. We believe that dynamic information flow
control can be fruitfully combined with WPSE to support more flexible secrecy policies.
This integration can also be useful to provide confidentiality guarantees for values which are
generated at the browser-side and sent in HTTP(S) requests, rather than received in HTTP(S)
responses. We leave the study of the integration of dynamic information flow control into
WPSE to future work.

2.5.3 Extension APIs

The current prototype of WPSE suffers from some limitations due to the Google Chrome
extension APIs. In particular, the body of HTTP messages cannot be modified by extensions,
hence the secrecy policy cannot be implemented correctly when secret values are embed-
ded in the page contents or the corresponding placeholders are sent as POST parameters.
Currently, we only protect secret values contained in the HTTP headers of a response (e.g.,
cookies or parameters included in the URL of a Location header) and we only substitute the
corresponding placeholders when they are communicated via HTTP headers or as URL pa-
rameters. Of course, this is not a limitation of our general approach, but rather one of the
extension APIs, which can be solved by implementing the security monitor directly in the
browser. Despite these limitations, we were able to test the current prototype of WPSE on a
number of real-world websites with very promising results, as described in Section 2.6.

2.6 Experimental Evaluation

Our technique aims to provide a practical benefit to the security of websites in a real-world
setting. To this end, we experimentally assessed the effectiveness of WPSE by testing it
against websites using OAuth 2.0 to implement SSO at high-profile IdPs.
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2.6.1 Experimental Setup

We developed a crawler to automatically identify existing OAuth 2.0 implementations in the
wild. Our analysis is not meant to provide a comprehensive coverage of the deployment of
OAuth 2.0 on the Web, but just to identify a few popular identity providers and their relying
parties to carry out a first experimental evaluation of WPSE.

We first started from a comprehensive list of OAuth 2.0 identity providers7 and we col-
lected for each of them the list of the HTTP(S) endpoints used in their implementation of
the protocol. Inspired by [3], our crawler looks for login pages on websites to find syntactic
occurrences of these endpoints: after accessing a homepage, the crawler finds a list of (at
most) 10 links which may point to a login page, using a simple heuristic. It also retrieves,
using the Bing search engine, the 5 most popular pages of the website. For all these pages,
the crawler checks for the presence of the OAuth 2.0 endpoints in the HTML code and in the
5 topmost scripts included by them. By running our crawler on the Alexa 100k top websites,
we found that Facebook (1,666 websites), Google (1,071 websites) and VK (403 websites)
are the most popular identity providers in the wild.

We then developed a faithful XML representation of the OAuth 2.0 implementations
available at the selected identity providers. There is obviously a large overlap between these
specifications, though slight differences are present in practice. For instance, the use of the
response_type parameter is mandatory at Google, but can be omitted at Facebook and
VK to default to the authorization code mode. For the sake of simplicity, we decided to model
the most common use case, i.e., we assume that the user has an ongoing session with the
identity provider and that authorization to access the user’s resources on the provider has been
previously granted to the relying party. For each identity provider we devised a specification
that supports the OAuth 2.0 authorization code and implicit modes, with and without the
optional state parameter, leading to 4 possible execution paths. Finally, we created a dataset
of 90 websites by sampling 30 relying parties for each identity provider, covering both the
authorization code mode and the implicit mode of OAuth 2.0. In the following we report
on the results of testing our extension against these websites from both a security and a
compatibility point of view.

2.6.2 Security Analysis

We devised an automated technique to check whether WPSE can stop real-world attacks.
Since we did not want to attack the websites, we focused on two classes of vulnerabilities
which are easy to detect just by navigating the websites when using WPSE. The first class
of vulnerabilities enables confidentiality violations: it is found when one of the placeholders
generated by WPSE to enforce its secrecy policies is sent to an unintended web origin. The
second class of vulnerabilities, instead, is related to the use of the state parameter: if the
state parameter is unused or set to a predictable static value, then a session swapping attack
becomes possible (see Section 2.2.2). We can detect these cases by checking which protocol
specification is enforced by WPSE and by making the state parameter secret, so that all the

7https://en.wikipedia.org/wiki/List_of_OAuth_providers

https://en.wikipedia.org/wiki/List_of_OAuth_providers
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values bound to it are collected when they are substituted by the placeholders to enforce the
secrecy policy.

We observed that our extension prevented the leakage of sensitive data on 4 different
relying parties. Interestingly, we found that the security violation exposed by the tool are in
all cases due to the presence of tracking or advertisements libraries such as Facebook Pixel8,
Google AdSense,9 Heap,10 and others.

This has been observed, for instance, on ticktick.com, a website offering collaborative
task management tools. The leakage is enabled on two conditions: i) the website allows its
users to perform a login via Google using the implicit mode; and ii) the Facebook tracking
library is embedded in the page which serves as redirect URI. Under these settings, right after
step 4© of the protocol (see Section 2.2.1), the tracking library sends a request to https:
//www.facebook.com/tr/ with the full URL of the current page, which includes the
access token issued by Google. We argue that this is a critical vulnerability, given that leaking
the access token to an unauthorized party allows unintended access to sensitive data owned
by the users of the affected website. We promptly reported the issue to Facebook, which
acknowledged it, but did not comment on eventual fixes. We are in the process of disclosing
the vulnerabilities with the other affected websites and major tracking library vendors.

For what concerns the second class of vulnerabilities, 55 out of 90 websites have been
found affected by the lack or misuse of the state parameter. More in detail, we manually
classified 41 websites that do not support it, while the remaining 14 websites miss the secu-
rity benefit of the state parameter by using a predictable or constant string as a value. We
claim that such disheartening situation is mainly caused by the identity providers not setting
this important parameter as mandatory. In fact, the state parameter is listed as recommended
by Google and optional by VK. On the other hand, Facebook sets the state parameter as
mandatory, but our experiments showed that it fails to fulfill the requirement in practice. Ad-
ditionally, it would be advisable to clearly point out in the OAuth 2.0 documentation of each
provider the security implications of the parameter. For instance, according to the Google
documentation11, the state parameter can be used “for several purposes, such as directing
the user to the correct resource in your application, sending nonces, and mitigating cross-
site request forgery”: we believe that this description is too vague and opens the door to
misunderstandings.

2.6.3 Compatibility Analysis

To detect whether WPSE negatively affects the web browser functionality, we performed a
basic navigation session on the websites in our dataset. This interaction includes an access to
their homepage, the identification of the SSO page, the execution of the OAuth 2.0 protocol,
and a brief navigation of the private area of the website. We were able to navigate 81 websites

8https://www.facebook.com/business/a/facebook-pixel
9https://www.google.com/adsense

10https://heapanalytics.com/
11https://developers.google.com/identity/protocols/OAuth2WebServer

https://www.facebook.com/tr/
https://www.facebook.com/tr/
https://www.facebook.com/business/a/facebook-pixel
https://www.google.com/adsense
https://heapanalytics.com/
https://developers.google.com/identity/protocols/OAuth2WebServer
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flawlessly, but we also found 9 websites where we did not manage to successfully complete
the protocol run.

In all the cases, the reason for the compatibility issues was the same, i.e., the presence
of an HTTP(S) request with a parameter called code after the execution of the protocol run.
This message has the same syntactic structure as the last request sent as part of the authoriza-
tion code mode of OAuth 2.0 and is detected as an attack when our security monitor moves
back to its initial state at the end of the protocol run, because the message is indistinguish-
able from a session swapping attempt (see Section 2.2.2). We manually investigated all these
cases: 2 of them were related to the use of the Gigya social login provider, which offers a
unified access interface to many identity providers including Facebook and Google; the other
7, instead, were due to a second exchange of the authorization code at the end of the pro-
tocol run. We were able to solve the first issue by writing an XML specification for Gigya
(limited to Facebook and Google), while the other cases openly deviate from the OAuth 2.0
specification, where the authorization code is only supposed to be sent to the redirect URI
and delivered to the relying party from there. These custom practices are hard to explain
and to support and, unsurprisingly, may introduce security flaws. In fact, one of the websites
deviating from the OAuth 2.0 specification suffers from a serious security issue, because the
authorization code is first communicated to the website over HTTP before being sent over
HTTPS, thus becoming exposed to network attackers. We responsibly disclosed this security
issue to the website owners.

In the end, all the compatibility issues we found boil down to the fact that a web protocol
message has an extremely weak syntactic structure, which may end up matching a custom
message used by websites as part of their functionality. We think that most of these issues can
be robustly solved by using more explicit message formats for standardized web protocols
like OAuth 2.0: explicitness is indeed a prudent engineering practice for traditional security
protocols [2]. Having structured message formats could be extremely helpful for a precise
browser-side fortification of web protocols which minimizes compatibility issues.

2.7 Related Work

Web Protocol Analysis

Though traditional protocol verification tools cannot readily produce reliable security proofs
for web protocols because they do not fully cover browser behaviours, they have been suc-
cessfully applied to attack finding. For instance, Armando et al. analyzed both the SAML
protocol and a variant of the protocol implemented by Google using the SATMC model-
checker [11]. Their analysis exposed an attack against the authentication goals of the Google
implementation. Follow-up work by the same group used a more accurate model to find an
authentication flaw also in the original SAML specification [10].

The first paper to highlight the differences between web protocols and traditional crypto-
graphic protocols in terms of security analysis is due to Gross et al. [77]. The paper presented
a model of web browsers based on a formalism reminiscent of input/output automata, which
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supports a simple graphical representation similar to UML state diagrams. The paper ap-
plied the browser model to analyze the security of password-based authentication, a central
ingredient of most browser-based protocols. The model was later used to formally assess the
security of the WSFPI protocol [78]. More recently, other formal models have been proposed
to analyze web protocols. Akhawe et al. used the Alloy framework to develop a core model
of the web infrastructure, geared towards attack finding [5]. The paper studied the security of
the WebAuth authentication protocol among other case studies, finding a login CSRF attack
against it. The WebSpi library for ProVerif by Bansal et al. has been successfully applied
to find attacks against existing web protocols, including OAuth 2.0 [13] and cloud storage
protocols [14]. Fett, Kuesters and Schmitz developed the most comprehensive model of the
web infrastructure available to date and fruitfully applied it to the analysis of a number of
web protocols, including BrowserID [69], SPRESSO [70] and OAuth 2.0 [68].

It is worth noticing that protocol analysis techniques are useful to verify the security of
protocol specifications, but they assume websites are correctly implemented and do not depart
from the protocol specification. This sets this research line apart from run-time enforcement
techniques like the one introduced in the present chapter.

Web Protocol Implementations

Many security researchers performed empirical security assessments of existing web protocol
implementations, finding dangerous attacks in the wild. Protocols which deserved attention
by the research community include SAML [156], OAuth 2.0 [160, 109] and OpenID Con-
nect [108].

Given the prevalence and significance of attacks against real-world websites, many au-
tomated tools for vulnerability finding in web protocol implementations have also been pro-
posed by security researchers [179, 193, 186, 115]. None of these works, however, presented
a technique to protect users confronted with vulnerable websites in their browsers.

Security Automata

The use of finite state automata for security enforcement is certainly not new. The pioneering
work in the area is due to Schneider [152], which first introduced a formalization of security
automata and studied their expressive power in terms of a class of enforceable policies. Se-
curity automata can only stop a program execution when a policy violation is detected; later
work by Ligatti et al. extended the class of security automata to also include edit automata,
which can suppress and insert individual program actions [111]. Edit automata have been
applied to the web security setting by Yu et al., who used them to express security policies
for JavaScript code [189]. The focus of their paper, however, is not on web protocols and is
only limited to JavaScript, because input/output operations which are not JavaScript-initiated
are not exposed to their security monitor.

Guha et al. also used finite state automata to encode web security policies [79]. Their
approach is based on three steps: first, they apply a static analysis for JavaScript to construct
the control flow graph of an Ajax application to protect and then they use it to synthesize
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a request graph, which summarizes the expected input/output behavior of the application.
Finally, they use the request graph to instruct a server-side proxy, which performs a dynamic
monitoring of browser requests to prevent observable violations to the expected control flow.
The security enforcement can thus be seen as the computation of a finite state automaton built
from the request graph. Their technique, however, is only limited to Ajax applications and
operates at the server side, rather than at the browser side.

Browser-Side Defenses

The present work positions itself in the popular research line of extending web browsers with
stronger security policies. To the best of our knowledge, this is the first work which ex-
plicitly focuses on web protocols, but a number of other proposals on browser-side security
are worth mentioning. Enforcing information flow policies in web browsers is a hot topic
nowadays and a few fairly sophisticated proposals have been published as of now [76, 85,
27, 140, 22]. Information flow control can be used to provide confidentiality and integrity
guarantees for browser-controlled data, but it cannot be directly used to detect deviations
from expected web protocol executions, which instead are naturally captured by security au-
tomata. Combining our approach with browser-based information flow control can improve
its practicality, because a more precise information flow tracking would certainly help a more
permissive security enforcement.

A number of browser changes and extensions have been proposed to improve web ses-
sion security, both from the industry and the academia. Widely deployed industrial proposals
include Content Security Policy (CSP) and HTTP Strict Transport Security (HSTS). No-
table proposals from the academia include Allowed Referrer Lists [58], SessionShield [128],
Zan [161], CSFire [147], Serene [149], CookiExt [38], SessInt [39] and Michrome [42].
Moreover, JavaScript security policies are a very popular research line in their own right: we
refer to the survey by Bielova [28] for a good overview of existing techniques. None of these
works, however, tackles web protocols.

2.8 Conclusion

We presented WPSE, the first browser-side security monitor designed to address the security
challenges of web protocols, and we showed that the security policies enforceable by WPSE
are expressive enough to prevent a number of real-world attacks against the OAuth 2.0 au-
thorization protocol. Our analysis is based both on a review of well-known attacks reported
in the literature and an extensive experimental analysis in the wild, which exposed several
undocumented security vulnerabilities fixable by WPSE in existing OAuth 2.0 implementa-
tions. We also showed that WPSE works flawlessly on the large majority of the websites
we tested, so we conclude that the browser-side security monitoring of web protocols is both
useful for security and feasible in practice.

There are many avenues for future work. First, we would like to enrich our analysis of
the OAuth 2.0 protocol to identify sufficient conditions to establish a formal security proof
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for the protocol even if best security practices are not properly implemented by web develop-
ers, but the protocol is run in a web browser extended with WPSE; this would integrate our
present investigation into the rich research line on web protocol analysis [5, 13, 68]. Then,
we observe that our current assessment of WPSE in the wild only covers two specific classes
of vulnerabilities, which can be discovered just by navigating the tested websites: extending
the analysis to cover active attacks (in an ethical manner) is an interesting direction to get a
better picture of the current state of the OAuth 2.0 deployment. Finally, we plan to identify
automated techniques to synthesize protocol specifications for WPSE starting from observ-
able browser behaviours in order to make it easier to adopt our security monitor in additional
real-world web protocols like OpenID Connect and Shibboleth.
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1 <Specification name="google-explicit-nostate">
2 <Protocol>
3 <Request method="GET" desc="req_init">
4 <Endpoint>
5 <Regexp>
6 https://accounts\.google\.com/o/oauth2/(?:.*?/)?auth
7 </Regexp>
8 </Endpoint>
9 <Parameter name="response_type"> code </Parameter>

10 <Parameter name="redirect_uri" id="req_init_redirect_uri" />
11 </Request>
12 <Response desc="resp_init">
13 <Endpoint>
14 <Regexp>
15 https://accounts\.google\.com/o/oauth2/(?:.*?/)?auth
16 </Regexp>
17 </Endpoint>
18 <Header name="Location" id="resp_init_location" />
19 </Response>
20 <Request method="GET" desc="req_code">
21 <Endpoint id="req_code_endpoint"/>
22 <Parameter name="code" id="req_code_code">
23 <Regexp> [^\s]{40,} </Regexp>
24 </Parameter>
25 </Request>
26 </Protocol>
27 <Identifiers>
28 <Definition id="redirect_uri">
29 <Source> ${req_init_redirect_uri} </Source>
30 <Regexp> ^(https?://.*?)(?:\?|$) </Regexp>
31 </Definition>
32 <Definition id="client_origin">
33 <Source> ${req_init_redirect_uri} </Source>
34 <Regexp> ^(https?://.*?/).* </Regexp>
35 </Definition>
36 <Definition id="resp_init_location_code">
37 <Source> ${resp_init_location} </Source>
38 <Regexp> [?&amp;]code=(.*?)(?:&amp;|$) </Regexp>
39 </Definition>
40 </Identifiers>
41 <Policy>
42 <Secrecy>
43 <!-- the auth code contained in the Location header must be kept
44 secret -->
45 <Target> ${resp_init_location_code} </Target>
46 <Origin> ${client_origin} </Origin>
47 <Origin> https://accounts.google.com/ </Origin>
48 </Secrecy>
49 <Integrity>
50 <!-- the last message must be sent to the redirect URI initially
51 specified -->
52 <Target> ${req_code_endpoint} </Target>
53 <Matches> ${redirect_uri} </Matches>
54 </Integrity>
55 </Policy>
56 </Specification>

TABLE 2.1: XML specification for the Google implementation of OAuth 2.0
(no state parameter)
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Protocol Flow Deviations Secrecy Violations Integrity Violations

• Session swapping [160],
Social Login CSRF on stateless
clients [13]*

• Force-Login Attack [160],
Automation Login Attack [13]

• Unauthorized Login by
Authentication Code Redirec-
tion [13]

• Resource Theft by Access To-
ken Redirection [13]

• IdP Mix-Up Attack (web at-
tacker version) [68]

• Cross Social Network Request
Forgery
(web attacker version) [13]

• 307 Redirect Attack [68]

• State Leak Attack [68]

• Unauthorized Login by
Authentication Code Redirec-
tion [13]

• Resource Theft by Access To-
ken Redirection [13]

• Naïve Session In-
tegrity Attack [68]

* the attack can be prevented only if the authorization request is forged

TABLE 2.2: Attacks from the literature prevented by WPSE

CSRF Attacks Network Attacks Others

• Force-Login Attack [160],
Automation Login Attack [13]

• Social Login CSRF through
IdP Login CSRF [13]

• IdP Mix-Up Attack (stan-
dard) [68]

• Cross Social Network Request
Forgery
(standard) [13]

• Impersonation [160]

TABLE 2.3: Attacks from the literature not prevented by WPSE



73

Part II

Cryptographic APIs





75

Chapter 3

Run-time Attack Detection in
Cryptographic APIs



76 Chapter 3. Run-time Attack Detection in Cryptographic APIs

3.1 Introduction

Cryptography is one of the dominant technologies to provide security in various settings and
cryptographic hardware and services are becoming more and more pervasive in everyday
applications. The interfaces to cryptographic devices and services are implemented as Secu-

rity APIs that allow untrusted code to access resources in a secure way. These APIs provide
various functionalities such as: the creation or deletion of keys; the encryption, decryption,
signing and verification of data under some key; the import and export of sensitive keys,
i.e., keys that should never be revealed as plaintext outside smartcards and hardware security
modules [139, 144].

Cryptographic APIs have been found vulnerable to many attacks that compromise sen-
sitive cryptographic keys (see, e.g., [6, 33, 35, 48]). Some attacks are related to the key
wrapping operation: for example, attacks on the IBM CCA interface are due to the improper
way of binding a cryptographic key to its usage rules through the XOR function [33], and
attacks on security tokens can be mounted by assigning particular sets of attributes to the
keys, and by performing particular sequences of (legal) API calls [35]. Other attacks, e.g.,
the ones on PIN processing APIs, are based on formats used for message encryption [50], or
on the lack of integrity of user data [46].

In the literature we find many proposals for preventing or mitigating such attacks, but
they typically require to modify the API or to configure it in a way that might break existing
applications (see, e.g. [35, 45, 53, 60, 73, 107]). This makes it hard to adopt such proposals,
especially because security APIs are often used in highly sensitive settings, such as financial
and critical infrastructures, where systems are rarely modified and legacy applications are
very common. Notice that, in these settings, the leakage of a cryptographic key might have
very serious consequences such as decrypting confidential data, breaking integrity or forging
digitally signed documents and transactions. It is thus of ultimate importance to introduce
mechanisms that can detect or prevent attacks and that can be also deployed in practice.

In this chapter we explore a different approach. Instead of trying to fix the API or devel-
oping a new secure one, we propose an effective method that can be used to monitor existing
systems in order to detect, and possibly prevent, the leakage of sensitive cryptographic keys.
The method collects logs for various devices and is able to detect, offline, any leakage of
sensitive keys. For example, by tracking keys we may discover that a sensitive key is being
wrapped under an untrusted one, that might be known to the attacker; whenever a sensitive
key is leaked in the clear, as in the so-called wrap/decrypt attack [49], we are able to iden-
tify the problem through a special key fingerprinting functionality, that allows for an efficient
offline log analysis without affecting in any way the cryptographic application.

3.1.1 Challenges

Devising a run-time analysis of cryptographic APIs presents many challenges. First of all,
it needs to track the usage of any sensitive key, without exposing its value. Cryptographic
APIs store cryptographic keys securely and give access to them through handles so that it is
not necessary to know key values to perform operations. Monitoring keys that are referred
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through handles can be tricky. In particular, when a key is leaked it is not possible to discover
this immediately, since the key value is not available.

The analysis must be very accurate: false positives might result in unnecessary key up-
dates of all keys that are believed to be leaked, while false negatives would miss actual key
leakages, with possible serious consequences. In this respect, it is of ultimate importance
that any proposed monitoring method is supported by a formal proof of soundness and com-
pleteness with respect to a class of attacks.

The analysis should work on distributed executions across many devices or applications.
Cryptographic keys are often shared among devices and services and API level attacks can
thus be effectively run in a distributed fashion, with the aim of bypassing any local monitor-
ing. Thus, it is important that the analysis is able to collect logs from various sources and
check them consistently, in order to find attacks that might leak a key of one cryptographic
service through another one, in a different physical location.

Finally, the analysis should be efficient and should be able to scale on fairly big logs.
Ideally, the monitor should continuously collect distributed logs and perform the analysis in
real-time. Once the analysis has been proved accurate and suitably tested, the monitor might
run “in the middle” of the API calls, and could be able to spot attacks on the fly and prevent
them, by blocking the call right before the key is leaked.

3.1.2 Contributions

We contribute to the state of the art in various respects: (i) we model the problem of run-time
detection of cryptographic API attacks. Our model captures distributed attacks, i.e., attacks
performed by executing API calls on different devices and services; (ii) we provide a sound
and complete characterization of attacks based on the monitoring of a subset of API calls;
(iii) we prove that the problem of finding attacks cannot be decided in general because, in-
tuitively, it is not possible to distinguish sensitive keys from non-sensitive ones just by their
values; (iv) we propose a key fingerprinting abstract mechanism and a run-time analysis
that is sound, complete and efficient; key fingerprinting is only used for logging purposes
in order to make the analysis feasible and accurate and it does not affect the cryptographic
applications invoking the API; (v) we discuss practical implementations and we develop
a proof-of-concept log analysis tool for PKCS#11, the RSA standard interface for crypto-
graphic tokens [139]. The tool is able to detect, on a significant fragment of the API, all
key-management attacks reported in [60, 71].

3.1.3 Related Work

The first paper that has applied general analysis tools to the analysis of security APIs is [188],
but no formal statement of the security guarantees provided by the analysis was done. The
first automated analysis of PKCS#11 with a formal statement of the underlying assumptions
has been presented in [60]. In [35], the model of [60] has been generalized and provided
with a reverse-engineering tool that automatically refines the model depending on the actual
behavior of the device. When new attacks were found, they were tested directly on the device
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to get rid of possible spurious attacks determined by the model abstraction. The automated
tool of [35] has successfully found attacks that leak the value of sensitive keys on real de-
vices. In [4, 45], type-based techniques have been used to statically analyze the security of
cryptographic API specification. Computational security guarantees of cryptographic APIs
have been studied in [106, 107, 151].

All of above works aim at analyzing a given API specification or configuration, looking
for attack sequences or proving the absence of attacks. None of them perform a run-time
analysis of API invocation sequences.

Caml Crush [24] is a PKCS#11 Filtering Proxy that can be configured to prevent dan-
gerous PKCS#11 commands and mechanisms. Caml Crush performs a run-time analysis,
but there are important differences with respect to our proposal: (i) Caml Crush modifies
the API behavior by imposing restrictions that prevent attacks. For example it prevents keys
to be assigned conflicting roles so that attacks such as Clulow’s wrap/decrypt are prevented.
Our approach is different: we do not impose any restriction on how keys are configured and
used, and in fact we do not even consider key attributes, since our method is independent of
the specific API. We just monitor the API calls that can be responsible of leaking a sensitive
key. While Caml Crush can break applications that do not adhere to the imposed policy, even
when no key leakage happens, our approach is more accurate and only stops the calls that are
responsible of key leakages greatly reducing the number of false positives; (ii) Caml Crush
does not track keys on multiple devices and is thus unable to prevent the distributed attacks
we discuss in Section 3.3, unless the wrapping API is modified. More precisely, in Caml
Crush it is possible to enable an ad hoc modification of the wrapping API that tracks key
attributes but makes the API incompatible with the standard PKCS#11 one: keys wrapped
under Caml Crush modified wrapping API cannot be unwrapped on standard devices; (iii)
our method can work offline by simply analyzing logs, while Caml Crush requires an online
component to actively monitor API calls. Together with (i), we believe that this is a funda-
mental feature that might facilitate the adoption of the method, since it would never interfere
with (and possibly break) applications, a crucial requirement in critical settings (e.g., banks);
(iv) Camel Crush is tailored to PKCS#11 while our approach is more general in principle.
Indeed, the method we propose does not rely on any specific feature of PKCS#11 such as key
attributes. It only requires the specification of which keys are sensitive (i.e., not accessible
in the clear), a basic security property useful in any key management API (e.g., Microsoft
CAPI and CNG, Java JCA).

The model presented in this work is based on the one in [60] but there are important
differences: we remove from the model any detail that is specific of PKCS#11, in order
to model generic cryptographic APIs. We define a notion of local and distributed secure
execution that formalizes when a specific execution is secure with respect to a set of sensitive
keys. In particular, our executions are not regulated by any key policy or attributes as in [60].
Finally, the focus of [60] is the discovery of sequences of API calls that might leak a key.
Here, instead, we study how to detect attacks on given (distributed) sequences of API calls
by log inspection, i.e., without knowledge of the actual key values.
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3.1.4 Structure of the Chapter

In Section 3.2 we present the core formal model, which is based on [60]; Section 3.3 intro-
duces our notion of secure distributed execution that we characterize in terms of the analysis
of a subset of the API calls; Section 3.4 presents our method for the run-time analysis based
on key fingerprinting and we prove that it has linear complexity with respect to the length of
logs and the number of sensitive keys; in Section 3.5 we report on a prototype implementa-
tion in PKCS#11, where we implement key fingerprinting through standard API calls. We
show that the tool can effectively detect and prevent known attacks on a significant fragment
of PKCS#11 key management; Section 3.6 draws some concluding remarks.

3.2 Core Model

The core of our model is a variation of the one introduced by Delaune, Kremer and Steel
(DKS) [60], in which anything specific to PKCS#11 has been removed, and with labels
referring to API calls on the transitions. The latter will be required to formalize secure
executions in Section 3.3.

The attacker is assumed to be able to call commands of the API in any order providing any
known value. Data and keys are modeled as terms and the rules of the API and the abilities
of an attacker are written as rules that, given some terms, produce new ones. Cryptography
is modeled symbolically: the intruder is assumed not to be able to break cryptography by
brute-force or cryptanalysis, i.e., (s)he can only read an encrypted message if (s)he knows
the correct key, along the standard Dolev-Yao approach [64]. Since the attacker is at the API
level, we do not distinguish between malicious or legitimate users.

3.2.1 Syntax

As in DKS, we assume a given signature Σ, i.e., a finite set of function symbols, with an
arity function ar : Σ → N, a (possibly infinite) set of names N and a (possibly infinite) set
of variables X . Names represent keys, data values, nonces, etc. Function symbols model
cryptographic primitives. We also denote with Σapi the set of API function symbols and
extend the arity function to this set in the expected way. The set of plain termsPT (Σ,N ,X )

is defined by the following grammar

t := x x ∈ X
| n n ∈ N
| f(t1, . . . , tj) f ∈ Σ and ar(f) = j

The set PT (Σ,N , ∅), also referred to as PT (Σ,N ), is called the set of ground terms. We
use vars(t) and names(t) for the set of variables and names that occur in the term t and
extend the notations to set of terms.

We simplify the DKS model by removing the set of literals from each rule. As a result,
user’s capabilities are not restricted by the attributes assigned to key handles. Additionally,
we make explicit the API function call used to fire a rule by including the function as a label.
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KeyGen−−−−→
new n, k

h(n, k)
KeyPairGen−−−−−−→
new n, s

h(n, priv(s)), pub(s)

h(x1, y1), h(x2, y2)
Wrapss−−−→ senc(y2, y1)

h(x1, priv(z)), h(x2, y2)
Wrapsa−−−→ aenc(y2, pub(z))

h(x1, y1), h(x2, priv(z))
Wrapas−−−→ senc(priv(z), y1)

h(x, y2), senc(y1, y2)
Unwrapss−−−−→
new n1

h(n1, y1)

h(x, priv(z)), aenc(y1, pub(z))
Unwrapsa−−−−−→
new n1

h(n1, y1)

h(x, y2), senc(priv(z), y2)
Unwrapas−−−−−→
new n1

h(n1, priv(z))

h(x1, y1), y2
Encrypts−−−−→ senc(y2, y1)

h(x1, y1), senc(y2, y1)
Decrypts−−−−→ y2

h(x1, priv(z)), y1
Encrypta−−−−→ aenc(y1, pub(z))

h(x1, priv(z)), aenc(y2, pub(z))
Decrypta−−−−→ y2

TABLE 3.1: API rules

The description of the system is given as a finite set of rulesR of the form

T f−−−→
new ñ

T′

where T, T′ ⊆ PT are sets of plain terms, ñ ⊆ N is a set of names and f ∈ Σapi is an API
function symbol. When ñ = ∅, we omit new ñ from the rule.

Intuitively, the rule can be fired when all the terms in T are in the user knowledge and
the API function f is invoked. The effect of the rule is that the user knowledge is augmented
with terms in T′. The new ñ means that all the names in ñ need to be replaced by fresh names
in T′. This models nonce or key generation: if the rule is executed several times, the effects
are different as different names will be used each time.

We consider the signature Σ = {senc, aenc, pub, priv, h}, as in DKS. The function sym-
bols senc and aenc of arity 2 represent symmetric and asymmetric encryption, whereas pub
and priv of arity 1 are constructors to obtain public and private keys, respectively. The symbol
h allows to model key handles.

Example 1 (Ciphertext, Keys and Handles). We show a few examples of ciphertext, key

and handle terms. Term senc(k2, k1) represents key k2 encrypted under symmetric key k1.

Private key priv(s) and public key pub(s) represent a keypair generated from a common seed

s. Finally h(n, k) is a handle referring to key k. Nonce n is used to make it possible to have
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multiple handles, e.g., h(n, k) and h(n′, k), for the same key k. Notice that from a handle it

is not possible to recover the value of the key.

We consider the following set of API functions

Σapi = {KeyGen,KeyPairGen,

Wrapss,Wrapsa,Wrapas,

Unwrapss,Unwrapsa,Unwrapas,

Encrypts,Encrypta,

Decrypts,Decrypta}

Intuitively, KeyGen, KeyPairGen are nullary functions for generating symmetric keys and key
pairs, respectively; Wrapss,Wrapsa,Wrapas and Unwrapss,Unwrapsa,Unwrapas are used to
respectively wrap and unwrap keys under other keys. We model the common cases of wrap-
ping a symmetric key under a symmetric and an asymmetric one plus the case of wrapping an
asymmetric key under a symmetric one. Wrap operations take two key handles as arguments
while unwrap operations take a handle and a ciphertext and generate a new handle in the
device, pointing to the unwrapped key. Finally, Encrypts,Encrypta and Decrypts,Decrypta
perform symmetric and asymmetric encryption and decryption. They respectively take as
arguments a plaintext/ciphertext and the handle of the encryption/decryption key. The set of
rules of our model are listed in Table 3.1.

Example 2 (Wrap API). As an example, consider the rule

h(x1, y1), h(x2, y2)
Wrapss−−−→ senc(y2, y1)

used to wrap a symmetric key with another symmetric key. We have that h(x1, y1) and

h(x2, y2) are handles for keys y1 and y2, respectively, while senc(y2, y1) is the symmet-

ric encryption of y2 under y1. The rule states that the key y2 can be wrapped, i.e., encrypted,

with y1 when the API function Wrapss is fired and both handles for keys y1, y2 are known.

The wrapped key is then added to the set of known terms.

3.2.2 Semantics

We enrich the semantics of DKS with labels, as they will be required for the run-time analysis.
The semantics is thus defined in terms of a labeled transition system (Q, A,−→→, q0). Q
defines the set of possible states, where each state q ⊆ PT (Σ,N ) is the set of ground terms
in the user’s knowledge. A is the set of actions such as

A = {f(t1, . . . , tn) | f ∈ Σapi, n = ar(f),

∀ i ∈ [1, n] : ti ∈ PT (Σ,N )}

Given a rule a ∈ A, we write args(a) ⊆ PT (Σ,N ) for the set {t1, . . . , tn} of arguments
of a. The initial state q0 ∈ Q represents the initial knowledge of the user. The transition
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y1, y2
DY−−→ senc(y2, y1)

senc(y2, y1), y1
DY−−→ y2

senc(y2, yi)
DY−−→ y2

y1, y2
DY−−→ aenc(y2, y1)

aenc(y2, pub(z)), priv(z) DY−−→ y2

aenc(y2, pub(zi))
DY−−→ y2

TABLE 3.2: Dolev-Yao SK-rules, with insecure keys ki, priv(si) 6∈ SK
ranged over by yi, priv(zi)

relation −→→ ⊆ Q× A×Q is defined as follows. We have that q a−→→ q′ if

R := T f−→ T′

is a fresh renaming w.r.t. names(q) of a rule in R and there exists a grounding substitution
θ for R such that Tθ ⊆ q and given a = f ′(t1, . . . , tn) we have that f ′ = f, ar(f) = n and
args(a) = Tθ. Then q′ = q ∪ T′θ.

Given a LTS P = (Q, A,−→→, q0), an execution is a sequence of transitions

q0
a1−→→ q1

a2−→→ . . . an−→→ qn

that we abbreviate as q0
α−→→∗ qn, with α = a1, a2, . . . , an.

Example 3 (Wrap and Decrypt Attack). Consider, for example, the execution representing a

wrap/decrypt attack in which the value of a key k2 is exposed by wrapping k2 with k1 and then

by decrypting the wrapped data with k1. Given an initial state q0 = {h(n1, k1), h(n2, k2)},
we have that

q0
Wrapss(h(n1, k1), h(n2, k2))−−−−−−−−−−−−−−→→ q1 q1 = q0 ∪ {senc(k2, k1)}

q1
Decrypts(h(n1, k1), senc(k2, k1))−−−−−−−−−−−−−−−−→→ q2 q2 = q1 ∪ {k2}

That we write q0
α−→→∗ q2, with

α = Wrapss(h(n1, k1), h(n2, k2)),

Decrypts(h(n1, k1), senc(k2, k1))

α defines the sequence of actions performed by the attacker to access the value of k2 by

reaching the state q2.
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3.3 Secure Executions

Our notion of secure execution is parametric with respect to a set of secure key, which might
be different for different executions. Intuitively, we want to let each administrator to specify,
locally, the set of sensitive keys that need to be monitored. Thus, what is sensitive is not
established globally but we need to be able to compose local executions and recover a partial
view of what is sensitive, so to capture distributed attacks, i.e., attacks in which one key
might be leaked on a different device in order to bypass local monitoring.

3.3.1 Secure Local Executions

We let SK denote a set of sensitive keys that we want to monitor in a certain local execution.
Secure keys are either symmetric keys k or private asymmetric keys priv(s). In the following
we let K range over k and priv(s). We only consider executions starting from a state q0 in
which all of the secure keys are safely stored in the device. They should not be publicly
known or encrypted under an insecure key. Formally:

Definition 1 (SK-Secure Initial State). Let SK be a set of sensitive keys. An initial state

q0 is secure if any secure key K does not appear in q0 in the forms k, senc(k, ki) and

aenc(k, pub(si)), with ki, priv(si) 6∈ SK.

From now on we will only consider executions with secure initial states.
We consider a Dolev-Yao attacker parametrized by SK that can perform encryption and

decryption operations using known keys (as usual) plus any insecure key ki, priv(si) 6∈ SK,
ranged over by yi, priv(zi). Attacker is formalized by the rules in Table 3.2. From now on we
assume that executions can include attacker’s actions.

An execution is secure if and only if it does not leak any of its secure key:

Definition 2 (SK-Secure Execution). Let σ = q0
α−→→∗ qn be an execution. Then, σ is SK-

secure if and only if SK ∩ qn = ∅.

Notice that freshly generated keys may or may not be included in SK. There might be
cases in which an administrator wants to monitor new keys, and other situations in which
new keys are just session keys that are destroyed when the session is closed, and does not
need to be monitored. Both these situations can be modeled by including or not new keys in
the set SK.

A SK-secure execution is also secure with respect to any subset of SK, i.e., with respect
to strictly less sensitive keys. This is proved formally in the following lemma:

Lemma 1. Let σ be SK-secure. Then σ is SK′-secure for each SK′ ⊆ SK.

Proof. Trivial since SK′ ∩ qn ⊆ SK ∩ qn = ∅.

We now prove that in any insecure execution there is at least either a wrap operation of
a secure key under an insecure one, or a decrypt operation of a secure key encrypted under
another secure key.
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Proposition 1. Let σ = q0
α−→→∗ qn be an execution. Then, σ is SK-secure if and only if none

of the following is in σ:

1. Wrapss(h(ni, ki), h(ns, ks));

2. Wrapsa(h(ni, priv(si)), h(ns, ks));

3. Wrapas(h(ni, ki), h(ns, priv(ss)));

4. Decrypts(h(ns, ks), senc(k′s, ks));

5. Decrypta(h(ns, priv(ss)), aenc(ks, pub(ss)));

6. Decrypts(h(ns, ks), senc(priv(ss), ks)).

where ki, priv(si) 6∈ SK and ks, k′s, priv(ss) ∈ SK.

Proof. (⇒) We have to prove that if σ is SK-secure then none of the above API calls happens
in σ. We in fact prove that if one of the calls is in σ then σ is not SK-secure. It is enough
to observe that wrapping a secure key under an insecure one allows the attacker to decrypt it
(cf. Table 3.2), and decrypting a secure key clearly reveals it as plaintext. In both cases σ is
not SK-secure, from which the thesis follows.

(⇐) We have to prove that if none of the above API calls happens in σ then σ is SK-
secure. We proceed by contradiction: assume that σ = q0

α−→→∗ qn is not SK-secure. Then,
by Definition 2, SK ∩ qn 6= ∅. We let {K1, . . . ,Km} = SK ∩ qn. By Definition 1 we know
that {K1, . . . ,Km} ∩ q0 = ∅. We thus consider the shortest prefix of σ: q0

α−→→∗ qk−1
ak−→→ qk

such that {K1, . . . ,Km} ∩ qk−1 = ∅ and ∃i ∈ 1, . . . , m . Ki ∈ qk. Intuitively, qk is the first
state that contains a sensitive key in the clear. Recall that Ki is either k or priv(k). We now
consider all the possible API calls that might have returned Ki in the clear.

From Table 3.1 we only have Decrypts and Decrypta. Consider Decrypts: it requires:
h(n′, k′), senc(Ki, k′) ∈ qk−1. Now if k′ ∈ SK we are in case 4 or 6, while if k′ 6∈ SK
there must have been a previous API call corresponding to case 1 or 3. In fact, since the term
senc(Ki, k′) cannot be in q0 (cf. Definition 1) and cannot come from a previous application
of DY rules (cf. Table 3.2) because we have assumed that Ki is being leaked now, the only
other way to obtain it is by invocation of the Wrap∗ API. A similar reasoning applies to
Decrypta for cases 5 and 2. We thus get a contradiction.

From Table 3.2 the key can only come from the decryption of either senc(Ki, k′) or
aenc(Ki, pub(s)). Consider senc(Ki, k′): since it cannot be k′ ∈ SK (because k′ would be
known by the attacker contradicting the fact that no sensitive key is in qk−1) we necessar-
ily have that k′ 6∈ SK. As before we have that there must have been a previous API call
corresponding to case 1 or 3. Following a similar reasoning, for aenc(Ki, pub(s)) we can
conclude that there must have been a previous API call corresponding to case 2, which gives
a contradiction.

The above proposition gives a precise characterization of insecure executions and has
important implications: first of all, it is enough to monitor wrap and decrypt API calls and
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rise an alert any time one of the above cases occur. When one of the above cases occur we
are guaranteed that it is going to be an attack. Moreover, no attack will be missed since any
attack requires one of the above API calls. Finally, the proposition shows that the complexity
of Dolev-Yao reasoning disappears since it is enough to just focus on single API calls. This
is very convenient in order to apply the theory to the analysis of real logs.

3.3.2 Secure Distributed Executions

Even if an execution is secure locally, with respect to its set SK of sensitive keys, it might be
the case that the execution is leaking keys coming from other devices, that are not monitored
in SK. It could also be possible that keys in SK are sent to other devices and are leaked
remotely. In order to find these distributed attacks we define a notion of security with respect
to a set of executions, each with a set of local sensitive keys. Intuitively, we require that each
execution is secure with respect to the union of the set of sensitive keys.

Since executions might contain freshly generated keys, from now on we will always
consider appropriate alpha-conversion of executions so that freshly generated keys never
collide. So, if a freshly generated key is in a local SK it won’t appear in any other local
SK from a different execution.

Definition 3 (Secure Distributed Executions). Let S be a set of distinct executions start-

ing from their own initial states with their respective sets of sensitive keys {(SK1, σ1), . . . ,
(SKn, σn)}. Let SK =

⋃
i=1,...,n SKi. We say that S is secure iff σ1, . . . , σn are SK-secure.

It is quite immediate to see that if a set of executions is secure, then each execution is
locally secure. In fact, secure distributed executions require security with respect to a bigger
set of keys. Interestingly, the other implication does not hold: it might be the case that secure,
local executions become insecure when taken together. This confirms the intuition that there
exist distributed attacks that cannot be detected locally. Thus, collecting local executions
from different devices might reveal attacks that cannot be detected locally. We illustrate
through a simple example.

Example 4 (Distributed Wrap-and-Decrypt Attack). Consider the following two executions

σ and σ′:

σ = q0
Wrapss(h(n1, k1), h(n2, k2))−−−−−−−−−−−−−−→→ q0 ∪ {senc(k2, k1)}

σ′ = q′0
Decrypts(h(n1, k1), senc(k2, k1))−−−−−−−−−−−−−−−−→→ q′0 ∪ {k2}

Intuitively, σ and σ′ represent two executions on different devices. In σ a sensitive key k2 is

wrapped under another sensitive key k1, which is the standard key for security exporting a

sensitive key. We have, in particular, that σ is {k1, k2}-secure. In σ′ we suppose to have a

device with just k1 key, meaning that the administrator is only monitoring that single sensitive

key.

An attacker might decrypt the ciphertext obtained from σ on the first device using the

second device. This is what happens in σ′: senc(k2, k1) is decrypted under k1. The local



86 Chapter 3. Run-time Attack Detection in Cryptographic APIs

administrator cannot notice the leakage of k2 if such a key is unknown locally. In particular,

we have that σ′ is {k1}-secure.

In summary, we have two executions that are secure with respect to the local knowl-

edge of sensitive keys. However, it is clear that the two executions represent a distributed

wrap-and-decrypt attack in which a sensitive key from the first device (k2) is leaked on

the second device. This attack is captured by putting together the two executions: we let

S = {({k1, k2}, σ), ({k1}, σ′)} and we obtain that S is not secure since σ′ is not secure with

respect to {k1, k2}. This can be seen by observing that {k1, k2} ∩ (q′0 ∪ {k2}) ⊇ {k2} 6= ∅.

The relation between local and distributed security is proved formally in the following
proposition:

Proposition 2. Let S = {(SK1, σ1), . . . , (SKn, σn)}. Then:

• S secure⇒ σi SKi-secure for each i = 1, . . . , n;

• S secure 6⇐ σi SKi-secure for each i = 1, . . . , n.

Proof. (⇒) By definition, S secure means that the distinct executions σ1, . . . , σn are SK-
secure, with SK =

⋃
i=1,...,n SKi. Since SKi ⊆ SK, by Lemma 1 we directly obtain that σi is

SKi-secure for each i = 1, . . . , n.
( 6⇐) The implication does not hold because of the existence of distributed attacks coming

from locally secure executions, as shown in Example 4.

3.4 Analysis

We present a way to analyze executions offline. This allows for monitoring devices without
necessarily being online, i.e., in between the application and the security hardware. We
believe this is important to make the proposal realistic. In fact, in our experience, it would be
hard to add an online element in the chain of a critical application based on secure hardware.
The offline analysis can detect leakage of keys so that administrators can take suitable actions.
Of course, if the solution works offline it is also possible to place it actively in the middle of
the API calls, taking decision in real time, and preventing key leakage.

Logs can be taken locally and analyzed directly but, as we have shown in Example 4,
attacks might happen across multiple devices, so it is crucial to consider the possibility of
collecting local logs to look for distributed attacks.

It is important to notice that in order to monitor the above calls we need a way to dis-
tinguish secure keys from insecure ones and we need to track wrapped secure keys. We will
discuss how this can be achieved in the next section. There are two important aspects to con-
sider, in order to make the analysis effective and implementable: (i) the information that is
tracked in the logs should not be too complex and should not grow too much, in order for the
analysis to scale in space and time; (ii) the analysis should not require the whole execution
logs in order to detect attacks, i.e., it should detect attacks even when logs represent partial
executions.
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It is important to point out that our model of distributed execution already detects at-
tacks even when relevant API calls are missing, i.e., even when logs are partial. Thus, the
requirement (ii) is implicit in the model we consider. As a consequence, any log analysis
will necessarily have to fulfill (ii) in order to detect all the attacks. We illustrate this crucial
point through an example:

Example 5 (Partial Executions). Consider a variant of Example 4 in which σ does not con-

tain the wrap operation used by the attacker to mount the distributed wrap-and-decrypt at-

tack. Execution σ could contain other API calls but, for simplicity, we just take it empty:

σ = q0

σ′ = q′0
Decrypts(h(n1, k1), senc(k2, k1))−−−−−−−−−−−−−−−−→→ q′1 q′1 = q′0 ∪ {k2}

The point here is that σ′ is an attack to k2 but there is no information in the logs about

ciphertext senc(k2, k1).
The attack is nevertheless captured by the model. As before, in the first device we as-

sume to have two sensitive keys, and we trivially have that σ is {k1, k2}-secure. However,

{({k1, k2}, σ), ({k1}, σ′)} is not secure since σ′ is not secure with respect to {k1, k2}. In-

tuitively, since the set of sensitive keys is composed of all the sensitive keys from the various

devices, attacks on a remote device will be naturally captured by the model that simply checks

for the leakage of sensitive (possible remote) keys.

3.4.1 The Log Analysis Problem

We now state precisely the problem of log analysis. It is important to observe that, for obvious
reasons, we cannot log the actual values of sensitive keys. The obvious replacement for key
values are handles but this will introduce a major challenge: how to detect the leakage of a
key value without knowing it.

Definition 4 (Log Analysis Problem). Let S be the distributed execution {(SK1, σ1), . . . ,
(SKn, σn)}. Log analysis is the problem of deciding whether or not S is secure given the

following inputs:

• The executions σ̄ = σ1, . . . , σn, that we call logs;

• The handles H referring to sensitive keys occurring in σ1, . . . , σn that belongs to SK =⋃
i=1,...,n SKi, i.e.,

H = {h(n, k) | h(n, k) occurs in σ̄ and k ∈ SK}

and under the following assumptions:

1. terms can only be compared by syntactic equality;

2. offline encryption and decryption operations are possible only when the corresponding

key is known (in a standard Dolev-Yao fashion).
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We now show that the log analysis problem is not solvable in general, because of the
impossibility of linking a key value to its handle(s). Notice that this result holds because of
the assumption that log analysis is done offline. If we have the possibility of interacting with
the devices then keys could be distinguished by performing operations with them.

Proposition 3 (Unsolvability of Log Analysis Problem). The log analysis problem cannot

be solved for all possible S’s.

Proof. We consider an instance of Example 5 in which q0 = {h(n1, k1), h(n2, k2)} and
q′0 = {h(n′1, k1), senc(k2, k1)}. Intuitively, the initial states q0 and q′0 only contain the key
handles and q′0 additionally contains the ciphertext that will be decrypted to leak k2. The
input to the log analysis problem is thus σ, σ′ and H = {h(n1, k1), h(n2, k2), h(n′1, k1)}.
The final state q′1 additionally contains the key value k2. Now, there is clearly no way to link
k2 to the key handles in H, since we have assumed that terms can only be compared when
they are identical (up to standard Dolev-Yao operations). Key k2 could be used to encrypt
other terms but since there is no ciphertext encrypted under k2 the produced terms would
never match any existing term. Intuitively, k2 is leaked but it is not possible to detect offline
whether or not it is a sensitive key pointed by one of the handles in H.

Algorithm 1 Log Analysis using Key Fingerprinting.

1: procedure LOGANALYSIS(σ̄, H)
2: FSK = [ ] . Initialize the list of fingerprints of sensitive keys as empty
3: for (a, ret) ∈ σ̄ do . Collect all the fingerprints of sensitive keys
4: if a == KeyFprint(h) and h ∈ H then . If the API call is KeyFprint in

sensitive handle
5: FSK← FSK + [ret] . The actual fingerprint ret is added to FSK
6: end if
7: end for
8: for (a, ret) ∈ σ̄ do . Search for insecure wrap and decrypt
9: if a == Wrap∗(h1, h2) and h1 6∈ H and h2 ∈ H then . Insecure wrap of

sensitive key
10: return a . The insecure wrap is returned: S is insecure
11: end if
12: if a == Decrypt∗(h, t) and h ∈ H and kf(ret) ∈ FSK then . Decrypt of a

sensitive key
13: return a . The insecure decrypt is returned: S is insecure
14: end if
15: end for
16: return None . No attack found: S is secure
17: end procedure

3.4.2 Log Analysis with Key Fingerprinting

In order to be able to solve the log analysis problem we need to log additional information
that can be used offline to track keys. We consider an abstract key fingerprinting function
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whose value will be logged together with handles and that will allow to link a key value to a
handle.

Definition 5 (Key Fingerprinting). A key fingerprinting is a deterministic one-way function.

Formally, we note it as a special term kf(k) and we assume that kf(k) can be computed by

anyone who knows k, while k cannot be computed from kf(k).

We add a corresponding API call that allows for obtaining key fingerprints from their
handles, and a corresponding Dolev-Yao rule for offline computation:

h(x, y)
KeyFprint−−−−−→ kf(y)

y
DY−→ kf(y)

We can prove that key fingerprinting does not introduce new attacks. In particular, by adding
the above rules we obtain the same characterization of Proposition 1.

Proposition 4. Let σ = q0
α−→→∗ qn be an execution possibly containing key fingerprint API

calls and direct (Dolev-Yao) fingerprinting computations. Then, Proposition 1 holds.

Proof. Proof is the same as the one of Proposition 1. In fact, fingerprinting does not add
any new way of leaking a key in the clear, nor it can produce cryptographic terms. As a
consequence, adding fingerprinting does not add any new case to the proof of Proposition 1.

Notice that the above proposition holds in our symbolic model because there is no notion
of cost for the attack and, in general, we do not take into account cryptanalytic issues. It is
important to observe that just using a standard one-way cryptographic hash to implement kf
would provide the attacker a faster way to bruteforce cryptographic keys since hash functions
are usually much faster than encryption algorithms. We will discuss possible implementa-
tions later on.

With key fingerprinting we can solve the log analysis problem efficiently. It is enough
to assume that each sensitive key is fingerprinted in each local log. Intuitively, whenever we
have a decrypt operation we test the leaked key against all the available fingerprints.

Our solution is coded as Algorithm 1: the algorithm first computes the set of fingerprints
for sensitive keys (FSK) by looking for the actual calls to KeyFprint(h) where h ∈ H is a
handle to sensitive keys.1 This is done by the for loop from line 3 to line 7. The notation
(a, ret) ∈ σ̄ means that we loop over all possible API calls and a ranges over the actual call
while ret ranges over the returned value. In fact, when we find a handle that belongs to H we
add the returned value, i.e., the fingerprint, to the set FSK.

Then, the algorithm looks for attacks, in terms of the characterization of Proposition 4.
In particular it searches for any Wrap∗(h1, h2) API call in which a sensitive key referred by
h2 is wrapped under a non-sensitive key referred by h1. When this happens, the algorithm
terminates and returns the call responsible for the attack. Similarly the algorithm looks for

1Notice that, for the sake of readability, we abbreviate handles as h.
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any Decrypt∗(h, t) call that returns a key ret whose fingerprint kf(ret) belongs to the ones
computed in the first phase (FSK). Again, when this situation is spotted, the responsible call
is returned as a witness of the attack. If none of the above is found in all the executions
the algorithm returns “None” to indicate that no attack has been found and that S is in fact
secure.

Theorem 1 (Log Analysis through Key Fingerprinting). Let S = {(SK1, σ1), . . . , (SKn, σn)}
and SK =

⋃
i=1,...,n SKi, such that for each K ∈ SK we have that kf(K) occurs in σ̄. Then,

the log analysis problem can be solved in O(|σ̄|+ |H|) steps.

Proof. The algorithm correctly computes the set FSK of all fingerprints of sensitive keys
because of the assumption that those fingerprints are all in the logs. Then, the correctness of
solving log analysis directly derives from the characterization of Proposition 4. Both loops
take, in the worst case, |σ̄| iterations while lookup in sets H and FSK can be done in constant
time building appropriate hashtables, from which we get linear complexity.

Notice that, since Algorithm 1 only inspects a subset of the API calls, it is enough to just
log those calls. This would greatly reduce the size of |σ̄| and, consequently, the execution
time of the analysis.

3.4.3 Practical Considerations

Our approach requires the specification of which keys are considered sensitive. This decision
must be definitely taken by the administrator, who is supposed to know what are the important
cryptographic keys. It is worth noticing that key management APIs usually have a way to
specify what keys should be regarded as sensitive, i.e., not accessible in the clear, so it is
reasonable to assume that this property is going to be specified in some way.

Theorem 1 proves that log analysis can be solved efficiently when fingerprints for sen-
sitive keys are available. Thus, in order to implement the proposed analysis, it is necessary
that the relative fingerprint API calls are performed, in each local log. For long-term keys,
it is reasonable to assume that key fingerprints will stabilize over time and could be reliably
shared after an initial startup phase. For new keys that are freshly generated during the execu-
tion we can imagine that the logging system is instrumented so to ask for the key fingerprint
of each new key, i.e., every time a KeyGen or KeyPairGen is invoked. We believe this is a
mild, realistic assumption that does not significantly impact on the applicability of the meth-
ods. In fact, recall that without fingerprinting we know that log analysis is not even solvable
(cf. Proposition 3). Additionally, a practical way to prevent that logs grow indefinitely is to
delete part of them when there is a consensus that the knowledge on sensitive keys is syn-
chronized, i.e., that no key occurring in the deleted logs will be discovered to be sensitive in
the future.

Another consideration regards fingerprints. One problem with fingerprints that is not
captured by our symbolic model is the possible exploitation of fingerprints in cryptanalytic
attacks. Using cryptographic hash functions, for example, would speed up key bruteforcing.
Moreover, using a fixed function for all devices allows for precomputing fingerprints which,
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FIGURE 3.1: Diagram of our log analysis system for PKCS#11

in turns, would reduce the key space to bruteforce. A reasonable alternative would be to
digitally sign the fingerprint using a dedicated private key, different for each device. This
would (i) slow down bruteforcing and (ii) prevent fingerprint precomputation. It is out of
the scope of this work to prove the security of practical implementations of key fingerprint
and we leave this as a future work.

3.5 Prototype Implementation

To show the feasibility of our approach we discuss the implementation of a proof-of-concept
log analysis tool for PKCS#11. The tool2 is able to identify all the key-management at-
tacks found in [60, 71] involving symmetric encryption operations. We plan to support the
detection of attacks using asymmetric keys on PKCS#11 as a future work.

Our solution consists of three components, as outlined in Figure 3.1: (i) a software layer
that wraps the existing PKCS#11 library interface. The wrapper allows the instrumentation
of selected API calls to record the operations executed by the underlying library. It also
computes key fingerprints to solve the log analysis problem; (ii) a logging facility to store the
logs of each session in a central repository; (iii) the analyzer that parses the logs generated
by the first two components and applies Algorithm 1 to discover attacks aimed at leaking the
value of secure keys.

3.5.1 Fingerprint Computation

Before giving full details of the system, we introduce our fingerprint approach for PKCS#11.
Fingerprint computation is indeed a challenging problem, given that it is not possible to
access the value of a sensitive key directly. Additionally, since our solution does not extend
the existing API with an ad-hoc fingerprint function, the fingerprint must be produced by the
device reusing existing PKCS#11 functions.

Of course, a simple way to perform fingerprint computation would be to use the
C_DigestKey API call. Given a key handle, this function returns a digest of the key value

2https://github.com/secgroup/p11d

https://github.com/secgroup/p11d
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using a cryptographic hash function. According to the considerations made in Section 3.4,
the use of a hash function would weaken the security of the system by decreasing the cost of
a bruteforce attack to recover the key value. For this reason, we devised a different approach
that allows to compute key fingerprints using keys as intended.

The functions allowed to be executed under a key are determined by the set of its at-
tributes. For instance, a key with the CKA_ENCRYPT attribute enabled is allowed to perform
encryption calls via C_Encrypt. Given a key k, we exploit the capabilities of each key to
compute multiple fingerprints depending on the allowed operations. We devise three possible
fingerprints for key k:

• if CKA_ENCRYPT is enabled, we pick a random value r and we encrypt it with k. We
say that the encryption fingerprint of k, denoted by kf(k)E, is the pair (r, enc_data)
where enc_data denotes r encrypted under k using the C_Encrypt function with a
compatible mechanism;

• similarly, if CKA_DECRYPT is enabled, we let dec_data be a random value r decrypted
with k using the C_Decrypt function with a compatible mechanism. The decryption

fingerprint of k, denoted by kf(k)D, is the pair (r, dec_data);

• if k is a wrapping key, i.e., the CKA_WRAP attribute is enabled, we state that the wrap

fingerprint of k, denoted by kf(k)W , is wrap_data, where wrap_data is the result of
wrapping the key with itself via a call to C_WrapKey.

If all the operations required to produce a fingerprint are forbidden, i.e., the attributes are
disabled, we temporarily alter the C_Encrypt attribute to generate a valid encryption fin-
gerprint.

The proposed fingerprint approach for PKCS#11 allows to precisely identify a key by
performing an offline computation of the fingerprint, once the plain text value of the key is
known. Moreover, the results of the operations are unique for each key, in practice, since the
probability of obtaining the same result given two different keys is negligible. With respect
to the practical considerations mentioned in the previous section regarding fingerprints, we
claim that this solution does not speed up key bruteforcing and thus it does not decrease
the security of fingerprinted keys. If one of the functions used to compute the fingerprint is
allowed for a given key, then guessing the key from the encryption (decryption) of a random
value would not be faster than doing the same with a value chosen by the attacker for which
(s)he might have precomputed offline encryptions (decryptions) with a large number of keys.

3.5.2 Working Principles

We implement a wrapper of the full PKCS#11 API. However, it follows from Proposi-
tion 1 and Proposition 4 that monitoring only a small subset of PKCS#11 functions, i.e.,
C_WrapKey and C_Decrypt, is enough to detect all possible attacks. We also instru-
ment the C_GetAttributeValue function that allows to directly read the value of a
non-sensitive key. We do not assume the set of secure keys SK to be static during each exe-
cution, thus we need to track functions that allow the creation of new sensitive objects such
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as C_GenerateKey. For convenience, we also instrument C_Login to list long-term keys
stored in the device and we initialize SK with sensitive keys found among them, even if in
general we want to let each administrator to specify, locally, the set of sensitive keys that
need to be monitored. For all the remaining functions, the wrapper transparently performs
the corresponding call.

For each new key found during a C_Login call at the start of each session, or gen-
erated using C_GenerateKey, the wrapper computes the fingerprints and sends them to
the logging facility along with the list of publicly-readable attributes and the object handle
assigned to the key. Recall that handles are not guaranteed to be fixed for the lifetime of
an object, still they allow to access the same object for the entire session duration [139].
The C_WrapKey function is instrumented to track the handles of the wrapping key and the
wrapped key. C_Decrypt tracks the handle of the decryption key and the value of the de-
crypted data. Similarly, the C_GetAttributeValue tracks the handle of the actual key
and the accessed value.

The logging component allows multiple sessions to be tracked in a centralized repository
at the same time. Each log file produced during this step represents a single execution within
a session. Since the C_Login function is called every time a new session is initialized
by PKCS#11 applications, the first entry of every log file contains the list of long-term keys
found in the device. As an example, Table 3.3 provides the textual representation of a possible
log entry produced by a call to the login function. In this case only one key is found in the
device. The listed key is sensitive and the handle that points to it in this session has value
0x00. The key has the encrypt and decrypt attributes enabled, thus fingerprints are computed
by encrypting and decrypting random values according to the method described before.

["C_Login", [
{"extractable": 0x00, "decrypt": 0x01,
"sensitive": 0x01, "encrypt": 0x01,
"wrap": 0x00, "unwrap": 0x00,
"label": 0x4d7950726563696f7573,
"keytype": 0x1300000000000000,
"handle": 0x01,
"fingerprint": {

"decrypt": [
0x96ccb41274a8adbf, 0x0c2e551a66cb4d86

],
"encrypt": [

0xd387b0b818a52d2a, 0xea1b3c934ed860f5
]

}
]]

TABLE 3.3: Log entry for the C_Login call

The analyzer then parses the collected logs and applies Algorithm 1. For each sensi-
tive key found in the logs as a result of either a C_Login or C_GenerateKey, the com-
ponent updates the set H with its handle paired with the identifier of the current session.
In parallel, the analyzer stores the fingerprints of this key in FSK. When the set H and
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FSK are initialized, the program iterates over all the logged C_WrapKey, C_Decrypt and
C_GetAttributeValue calls looking for attacks: i) insecure wraps of secure keys are
easily detected by checking if the pairs in the form (session, h) of the wrapping key and
wrapped key handles belong to H. If a secure key is wrapped under an insecure one, the
operation is marked as an attack and the analysis terminates; ii) decryptions of secure keys
are identified in two steps. The analyzer first checks if the handle used in the decryption
operation points to a secure key. In this case, it tests the decrypted data ret found in the log
entry of C_Decrypt against all the fingerprints in FSK, by simulating calls to C_Decrypt
and C_Encrypt. To perform the comparison with a wrap fingerprint, the application en-
crypts ret under itself and checks if the result matches the wrapped data in the fingerprint.
Otherwise, if the fingerprint is in the form (r, data), depending on the type of the finger-
print, the tool executes an encryption or a decryption of the random value r under the key
ret and compares the result with data. If no match is found after iterating the process over
all the fingerprints in FKS, the operation is considered safe, otherwise it is marked as an
attack and the analysis stops; iii) direct accesses to the value of a non-sensitive key via a
C_GetAttributeValue are threat of practical importance if the attacker manages some-
how to alter the CKA_SENSITIVE attribute of a secure key. These attacks are easily de-
tected by the analyzer by testing the value returned by the API call against all the fingerprints
in FSK, as in the previous case.

3.5.3 Experimental Tests

We now show how our solution is effective against a range of key-management attacks, also
in a distributed setting. All the attacks reported in this section, as well as others from the
literature, can be simulated using our tool and a software token provided by openCryptoki3.
Unless stated otherwise, in the following examples we denote by hi the handle pointing to a
key ki.

Example 6 (Wrap and Decrypt Attack). We discuss how the wrap/decrypt attack outlined in

Example 3 is detected. In this simulation, the attacker calls C_GenerateKey to generate

a non-sensitive key k2 with the CKA_WRAP and CKA_DECRYPT attributes enabled. Using

this key, (s)he leaks the value of the long-term sensitive key k1 by wrapping k1 under k2 and

decrypting the result again with k2. As pointed out in Table 3.4, the attack is detected by our

tool on the C_WrapKey operation since the attacker is wrapping a secure key pointed by h1

with an insecure one pointed by h2.

Example 7 (Re-import Attack). In our implementation of the re-import attack, the attacker

executes C_GenerateKey to generate a key k2 with the CKA_UNWRAP attribute set. (S)he

then unwraps a random value r with this key to create a new key k3 in the device with the

CKA_WRAP attribute set. Notice that k3 is the decryption of r under k2. The value r is

unwrapped again using k2 to re-import k3, this time with the CKA_DECRYPT attribute set.

We let h3 and h4 be the handles returned by the first and the second unwrap, respectively.

Now, to leak the sensitive key k1, the attacker wraps k1 under k3 pointed by h3 and decrypts

3https://github.com/opencryptoki/opencryptoki

https://github.com/opencryptoki/opencryptoki
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$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 1 key(s)
[A] Wrap-Decrypt attempt
[*] Generate a key k2 for wrapping and

decrypting
[*] Wrap the sensitive key k1 with the key k2
[*] Decrypt the wrapped key k1 with the key k2
[*] Recovering k1 value: "0102030405060708"

$ ./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-1000.log

The sensitive key h1 has been wrapped with
the insecure key h2

TABLE 3.4: Wrap/Decrypt attack detection

the wrapped key with k3 pointed by h4. As shown in Table 3.5, our tool detects the attack on

the C_WrapKey operation since h1 points to a secure key, while h3 does not.

$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 1 key(s)
[A] Re-import attempt
[*] Generate a key k2 for unwrapping
[*] Unwrap a random bytestream with k2 to

import a new key k3 pointed by h3 that
can wrap

[*] Unwrap a random bytestream with k2 to
import a new key k3 pointed by h4 that
can decrypt

[*] Wrap the sensitive key k1 with h3
[*] Decrypt the wrapped key k1 with h4
[*] Recovering k1 value: "0102030405060708"

$ ./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-2000.log

The sensitive key h1 has been wrapped with
the insecure key h3

TABLE 3.5: Re-import attack detection

Example 8 (Wrap and Unwrap Attack). We assume the existence of a long-term sensitive

key k1 in the device. The key has the attributes CKA_WRAP and CKA_UNWRAP enabled.

The attack consists in wrapping k1 with itself and reimporting the key as a non-sensitive one

under a new handle h2. Then, by using the C_GetAttributeValue on h2, the attacker

can directly read the value of k1. Our tool is able to detect the attack by testing the plain

value of k1 against the fingerprints in FSK. The attack trace and the log analysis performed

by the tool are provided in Table 3.6.
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$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 1 key(s)
[A] Wrap-Unwrap attempt
[*] Wrap k1 with k1
[*] Re-import k1 as non-sensitive
[*] Recovering k1 value: "a1a2a3a4a5a6a7a8"

$ ./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-3000.log

The plaintext value of a sensitive key
has been directly read

TABLE 3.6: Wrap/Unwrap attack detection

Example 9 (Distributed Wrap and Decrypt Attack). The last attack we discuss is wrap/de-

crypt in the distributed setting, as presented in Example 4. We assume two long-term sensitive

keys k1 and k2 in the first device. We also assume k2 to be found in a second device. The

key k2 has, at least, the attribute CKA_WRAP enabled in the first device and the attribute

CKA_DECRYPT enabled in the second one. The attacker connects to the first device and

wraps k1 under k2 and (s)he saves the wrapped data. Then, (s)he connects to the second

device and decrypts the wrapped data with k2 to access the value of k1. When both k1 and k2

are secure keys, the C_WrapKey operation is not detected by our tool as an attack since we

are wrapping a secure key with another secure key. Nevertheless, the C_Decrypt call re-

turns the value of the secure key k1 and thus allows our tool to match k1 against fingerprints

in FSK, revealing that an attack occurred. See Table 3.7 for the detailed execution and the

attack detection analysis.

3.6 Conclusion

Attacks on cryptographic APIs are notoriously hard to detect and fix. Even simple key man-
agement operations may be subject to API level vulnerabilities that leak cryptographic keys
in the clear. For example, an attacker can wrap a secure key under another secure key and
then ask the device to decrypt the ciphertext, obtaining the former key in the clear. In the
literature we find many proposals for preventing or mitigating this kind of attacks but they
typically require to modify the API or to configure it in a way that might break existing
applications. This makes it very hard to adopt these proposals for critical applications and
infrastructures, where systems are rarely modified and legacy applications are very common.
At the same time, in these critical settings, the leakage of a cryptographic key can cause
serious consequences.

In this work we have investigated a new method to analyze cryptographic API logs. Log
analysis is interesting because it has a very low impact on existing systems and is frequently
used in industrial systems, financial applications and critical infrastructures. Log analysis of
cryptographic APIs is challenging since keys are never supposed to be leaked in the clear,
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$ LD_PRELOAD=./p11d.so ./attack 0 12345
[I] Found 2 key(s)
[A] Distributed Wrap-Decrypt attempt (1)
[*] Wrap the sensitive key k1 with the

sensitive key k2
[*] Wrapped data: "d6c22bb28cd93ec0"

$ LD_PRELOAD=./p11d.so ./attack 1 12345
[I] Found 1 key(s)
[A] Distributed Wrap-Decrypt attempt (2)
[*] Decrypt wrapped data "d6c22bb28cd93ec0"

with the key k2
[*] Recovering k1 value: "0102030405060708"

$ ./analyzer.py
[*] Computing H and FSK
[*] Searching for insecure Wrap and Decrypt

operations
[!] Attack detected in session-4001.log

The plaintext value of a sensitive key
has been leaked after decryption with
key h1

TABLE 3.7: Distributed Wrap/Decrypt attack detection

meaning that tracking different keys might become hard, especially if we want to analyze
logs offline without interacting with the cryptographic devices.

More specifically, we have extended an existing model for security API analysis in order
to model API logs. We have given a formal definition of secure execution that scales to a
distribute setting, in which logs from services and devices that are placed in different physi-
cal locations, can be collected and searched for distributed attack sequences. We have shown
examples of distributed attacks that cannot be detected locally and we have proved that the
problem of detecting these attacks offline is unsolvable, because of the impossibility of track-
ing keys. We have shown that by adding a simple API for key fingerprinting, log analysis
becomes feasible and efficient. We actually proved that security can be characterized in term
of absence of particular combination of parameters in a subset of the API calls, i.e., Wrap
and Decrypt.

Finally, we have implemented a tool for PKCS#11 APIs that simulates key fingerprinting
through the available cryptographic operations for a given key, and can detect all documented
attacks on PKCS#11 that directly leak a key in the clear. The tool constitutes a proof-of-
concept that the method is effective and that can be implemented even without a dedicated
key fingerprinting API. It is worth noticing, that adding a key fingerprinting API for logging
purposes would not affect existing applications. Compared to previous works, our approach
does not require existing API functions to be modified, therefore legacy applications do not
need to be updated. Instead, we propose to add a new fingerprinting function that is solely
used by the monitoring solution to provide more informative logs. In this respect, extend-
ing existing devices with this new mechanism seems a realistic possibility and we would
encourage producer to consider this idea for next generation devices.
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As a future work, we intend to extend our tool to cover a more extensive fragment of
PKCS#11 and we want to experiment with candidate key fingerprinting APIs on software
emulators of PKCS#11. We also intend to characterize other cryptographic APIs by studying
formally which rules are considered problematic and should be tracked in the logs. Intu-
itively, the problematic rules are the ones that either directly leak a key in the clear, or gener-
ate a term containing a sensitive key that can be deconstructed by the DY attacker, as when
wrapping a sensitive key under a nonsensitive one. Lastly, we plan to cover cryptanalytic
attacks related to weak cryptographic mechanisms and side channels.
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4.1 Introduction

Cryptography is a fundamental technology for IT security. Even if there are well established
standards for cryptographic operations, cryptography is complex and variegated, typically
requiring a non-trivial combination of different algorithms and mechanisms. Moreover, cryp-
tography is intrinsically related to the secure management of cryptographic keys which need
to be protected and securely stored by applications. Leaking cryptographic keys, in fact, di-
minishes any advantage of cryptography, allowing attackers to break message confidentiality
and integrity, to authenticate as legitimate users or impersonate legitimate services. Quoting
[153], “key management is the hardest part of cryptography and often the Achilles’ heel of
an otherwise secure system”.

In the recent years we have faced a multitude of flaws related to cryptography (e.g., [25,
15, 57, 56]). Some of these are due to the intrinsic complexity of cryptography, that makes
it hard to design applications that adopt secure combinations of mechanisms and algorithms.
For example, in padding oracle attacks, the usage of some (standard) padding for the plaintext
combined with a specific algorithm or mechanism makes it possible for an attacker to break
a ciphertext in a matter of minutes or hours [167, 31, 15]. Most of the time this is not
a developer fault as, unfortunately, there are well-known flawed mechanisms that are still
enabled in cryptographic libraries. In other cases, the attacks are due to flaws in protocols or
applications. The infamous Heartbleed bug allowed an attacker to get access to server private
keys through a simple over-read vulnerability. Once the private key was leaked, the attacker
could decrypt encrypted traffic or directly impersonate the attacked server [57].

Thus, breaking cryptography is not merely a matter of breaking a cryptographic algo-
rithm: the attack surface is quite large and the complexity of low-level details requires ab-
stractions. Crypto APIs offer a form of abstraction to developers that allows to make use of
cryptography in a modular and implementation-independent way. The Java platform, for ex-
ample, provides a very elegant abstraction of cryptographic operations that makes it possible,
in many cases, to replace a cryptographic mechanism or its implementation with a different
one without modifying the application code.

Crypto APIs, however, do not usually provide security independently of the low-level
implementation: default mechanisms are often the weakest ones, thus developers have to
face the delicate task of choosing the best mechanism available for their needs. For example,
in the Java Cryptography Architecture (JCA), ECB is the default mode of operation for block
ciphers [91] and PKCS#1 v1.5 is the default padding scheme for RSA [93], which is well
know to be subject to padding oracle attacks [31]. Additionally, crypto APIs that promise to
provide security for cryptographic keys have often failed to do so: in PKCS#11, the standard
API to cryptographic tokens, it is possible to wrap a sensitive key under another key and then
just ask the device to decrypt it, obtaining the value of the sensitive key in the clear [49], and
violating the requirement that “sensitive keys cannot be revealed in plaintext off the token”
[144].

In this thesis we analyze in detail the security of key management in the Java ecosystem
and, in particular, of Java keystores. Password-protected keystores are, in fact, the standard
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way to securely manage and store cryptographic keys in Java: once the user (or the appli-
cation) provides the correct password, the keys in the keystore become available and can
be used to perform cryptographic operations, such as encryption and digital signature. The
KeyStore Java class abstracts away from the actual keystore implementation, which can be
either in the form of an encrypted file or based on secure hardware. As discussed above, this
abstraction is very important for writing code that is independent of the implementation but
developers are still required to select among the various keystore types offered by Java. Un-
fortunately, the information in the keystore documentation is not enough to make a reasoned
and informed choice among the many alternatives. More specifically, given that the Java
Keystore API does not provide control over the cryptographic mechanisms and parameters
employed by each keystore, it is crucial to assess the security provided by the different im-
plementations, which motivated us to perform the detailed analysis reported in this chapter.
In fact, our work is the first one studying the security of keystores for general purpose Java
applications.

We have estimated the adoption rate and analyzed the implementation details of seven dif-
ferent Java keystores offered by the Oracle JDK and by Bouncy Castle, a widespread crypto-
graphic library. Keystores are used by hundreds of commercial applications and open-source
projects, as assessed by scraping the GitHub code hosting service including leading web ap-
plications servers and frameworks, e.g., Tomcat [8], Spring [157], Oracle Weblogic [181].
Additionally, keystores have been found to be widespread among security-critical custom
Java software for large finance, government and healthcare companies audited by the au-
thors.

The security of keystores is achieved by performing a cryptographic operation C under
a key which is derived from a password through a function F called Key Derivation Func-
tion (KDF). The aim of the cryptographic operation C is to guarantee confidentiality and/or
integrity of the stored keys. For example, a Password-Based Encryption (PBE) scheme is
used to protect key confidentiality: in this case C is typically a symmetric cipher, so that keys
are encrypted using the provided password before being stored in the keystore. In order to
retrieve and use that key, the keystore implementation will perform the following steps: (a)
obtain the password from the user; (b) derive the encryption key from the password using F;
(c) decrypt the particular keystore entry through C, and retrieve the actual key material. No-
tice that different passwords can be used to protect different keys and/or to achieve integrity.
To prevent attacks, it is highly recommended that C and F are implemented using standard,
state-of-the-art cryptographic techniques [122, 146].

Interestingly, we have found that the analyzed keystores use very diverse implementations
for C and F and in several cases they do not adhere to standards or use obsolete and ad-hoc
mechanisms. We show that, most of the time, keystores using weak or custom implemen-
tations for the key derivation function F open the way to password brute-forcing. We have
empirically measured the speed-up that the attacker achieves when these flawed keystores are
used and we show that, in some cases, brute-forcing is three orders of magnitude faster with
respect to the keystores based on standard mechanisms. We even found keystores using the
deprecated cipher RC2 that enables an attacker to brute-force the 40-bit long cryptographic
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key in a matter of hours using a standard desktop computer.
Our analysis has also pointed out problems related to availability and malicious code

execution, which are caused by type-flaws in the keystore, i.e., bugs in which an object of a
certain type is interpreted as one of a different type. In particular, by directly tampering with
the keystore file, an attacker could trigger denial of service (DoS) attacks or even arbitrary
code execution. Interestingly, we also found that the use of standard key derivation functions
can sometimes enable DoS attacks. These functions are parametrized by the number of
internal iterations, used to slow down brute-forcing, which is stored in the keystore file. If
the number of iterations is set to a very big integer, the key derivation function will hang,
blocking the whole application.

Unless stated otherwise, our findings refer to Oracle JDK 8u144 and Bouncy Castle 1.57,
the two latest releases at the time of the first submission of this work in August 2017.

4.1.1 Contributions

Our contributions can be summarized as follows:

(i) we define a general threat model for password-protected keystores and we distill a set
of significant security properties and consequent rules that any secure keystore should
adhere to;

(ii) we perform a thoughtful analysis of seven keystores, we report undocumented details
about their cryptographic implementations and we classify keystores based on our pro-
posed properties and rules;

(iii) we report on unpublished attacks and weaknesses in the analyzed keystores. For each
attack we point out the corresponding violations of our proposed properties and rules
and we provide a precise attacker model;

(iv) we empirically estimate the speed-up due to bad cryptographic implementations and
we show that, in some cases, this allows to decrease the guessing time of three orders
of magnitude with respect to the most resistant keystore, and four orders of magnitude
with respect to NIST recommendations; interestingly, the attack on Oracle JKS key-
store that we present in this chapter, and we previously mentioned in a blog post [55],
has been recently integrated into the Hashcat password recovery tool;

(v) we discuss the advancements on the security of Oracle and Bouncy Castle keystore
implementations following our responsible disclosure. The Oracle Security Team ac-
knowledged the reported issues by assigning two CVE IDs [120, 121] and released
partial fixes in the October 2017 Critical Patch Update [54]. Other fixes are expected
to be released in January 2018 [132]. Bouncy Castle developers patched some of the
reported vulnerabilities in version 1.58. As of November 2017, remaining issues are
being addressed in the development repository.
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4.1.2 Structure of the Chapter

We discuss related work in Section 4.2; in Section 4.3 we define the security properties of
interest, the rules for the design of secure keystores and the threat model; in Section 4.4
we report on our analysis of seven Java keystores; in Section 4.5 we describe unpublished
attacks on the analyzed keystores; in Section 4.6 we make an empirical comparison of the
password cracking speed among the keystores; in Section 4.7 we discuss the improvements
implemented by Oracle and Bouncy Castle following our responsible disclosure; finally, in
Section 4.8 we draw some concluding remarks.

4.2 Related Work

Cooijmans et al. [51] have studied various key storage solutions in Android, either provided
as an operating system service or through the Bouncy Castle cryptographic library. The
threat model is very much tailored to the Android operating system and radically different
from the one we consider in this chapter. Offline brute-forcing, for example, is only discussed
marginally in the paper. Interestingly, authors show that under a root attacker (i.e., an attacker
with root access to the device), the Bouncy Castle software implementation is, in some re-
spect, more secure than the Android OS service using TrustZone’s capabilities, because of
the possibility to protect the keystore with a user-supplied password. Differently from our
work, the focus of the paper is not on the keystore design and the adopted cryptographic
mechanisms.

Sabt et al. [150] have recently found a forgery attack in the Android KeyStore service, an
Android process that offers a keystore service to applications and is out of the scope of our
work. However, similarly to our results, the adopted encryption scheme is shown to be weak
and not compliant to the recommended standards, enabling a forgery attack that make apps
use insecure cryptographic keys, voiding any benefit of cryptography.

Li et al. [110] have analyzed the security of web password managers. Even if the setting
is different, there are some interesting similarities with keystores. In both settings a password
is used to protect sensitive credentials, passwords in one case and keys in the other. So the
underlying cryptographic techniques are similar. However the kind of vulnerabilities found
in the paper are not related to cryptographic issues. Gasti et al. [74] have studied the format
of password manager databases. There is some similarity with our work for what concerns
the threat model, e.g., by considering an attacker that can tamper with the password database.
However, the setting is different and the paper does not account for cryptographic weaknesses
and brute-forcing attacks.

Many papers have studied password resistance to guessing, e.g., [102, 40, 183, 191].
While this is certainly a very important subject, our work takes a complementary perspec-
tive: we analyze whether Java keystores provide a sufficient resistance to brute-forcing, com-
pared to existing standards and recommendations. Of course, using a tremendously weak
password would make it possible for the attacker to guess it, independently of the keystore
implementation. Similarly, if the password is very long and with high entropy, the guess
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would be infeasible anyway. However, when a password is reasonably strong, the actual im-
plementation makes a difference: brute-force is prevented only when key derivation is done
accordingly to recommendations.

Kelsey et al. introduced the notion of key stretching, a mechanism to increase the time of
brute-forcing for low entropy keys [103]. The basic idea is that key derivation should iterate
the core derivation function l times so to multiply the computational cost of brute-forcing
by l and make it equivalent to the cost of brute-forcing a password with additional log2l
bits. Intuitively, through this strategy, brute-forcing each password requires the same time as
brute-forcing l passwords. Combined with standard random salting (to prevent precomputa-
tion of keys), key stretching effectively slows down brute-forcing, and prevents guessing the
password even when its complexity is not very high. This idea is at the base of modern, state-
of-the-art key derivation functions. In [1, 187, 23], this mechanism has been formalized and
analyzed, providing formal evidence of its correctness. Standard key derivation functions are
all based on key stretching and salting to slow down brute-forcing [122, 146]. In our work
we advocate the use of these standard mechanisms for keystores security.

4.3 Security Properties and Threat Model

In this section, we identify a set of fundamental security properties that should be guaranteed
by any keystore (Section 4.3.1). We then distill rules that should be followed when designing
a keystore in order to achieve the desired security properties (Section 4.3.2). Finally, we
introduce the threat model covering a set of diverse attacker capabilities that enable realistic
attack scenarios (Section 4.3.3).

4.3.1 Security Properties

We consider standard security properties such as confidentiality and integrity of keys and
keystore entries. Breaking confidentiality of sensitive keys allows an attacker to intercept
all the encrypted traffic or to impersonate the user. Breaking integrity has similar severe
consequences as it might allow an attacker to import fake CA certificates and old expired
keys. Additionally, since the access to a keystore is mediated by a software library or an
application, we also consider the effect that a keystore has on the execution environment.
Thus, we require the following properties:

P1 Confidentiality of encrypted entries

P2 Integrity of keystore entries

P3 System integrity

Property P1 states that the value of an encrypted entry should be revealed only to authorized
users, who know the correct decryption password. According to P2, keystore entries should
be modified, created or removed only by authorized users, who know the correct integrity
password, usually called store password. Property P3 demands that the usage of a keystore
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should always be tolerated by the environment, i.e., interacting with a keystore, even when
provided by an untrusted party, should not pose a threat to the system, cause misbehaviours
or hang the application due to an unsustainable performance hit.

A keystore file should be secured similarly to a password file: the sensitive content should
not be disclosed even when the file is leaked to an attacker. In fact, it is often the case that
keystores are shared in order to provide the necessary key material to various corporate ser-
vices and applications. Thus, in our threat model we will always assume that the attacker has
read access to the keystore file (cf. Section 4.3.3). For this reason we require that the above
properties hold even in the presence of offline attacks. The attacker might, in fact, brute-force
the passwords that are used to enforce confidentiality and integrity and, consequently, break
the respective properties.

4.3.2 Design Rules

We now identify a set of core rules that should be embraced by the keystore design in order
to provide the security guarantees of Section 4.3.1:

R1 Use standard, state-of-the-art cryptography

R2 Choose strong, future-proof cryptographic parameters, while maintaining acceptable
performance

R3 Enforce a typed keystore format

Rule R1 dictates the use of modern and verified algorithms to achieve the desired keystore
properties. It is well-known that the design of custom cryptography is a complex task even
for experts, whereas standard algorithms have been carefully analyzed and withstood years
of cracking attempts by the cryptographic community [16]. In this context, the National In-
stitute of Standards and Technology (NIST) plays a prominent role in the standardization of
cryptographic algorithms and their intended usage [17], engaging the cryptographic commu-
nity to update standards according to cryptographic advances. For instance, NIST declared
SHA1 unacceptable to use for digital signatures beginning in 2014, and more recently, urged
all users of Triple-DES to migrate to AES for encryption as soon as possible [164] after the
findings published in [26]. The KDF function recommended by NIST [163] is PBKDF2, as
defined in the PKCS#115 standard, which supersedes the legacy PBKDF1. Another standard
KDF function is defined in PKCS#1112, although it has been deprecated for confidentiality
purposes in favour of PBKDF2.

Key derivation functions combine the password with a randomly generated salt and itera-
tively apply a pseudorandom function (e.g., a hash function) to produce a cryptographic key.
The salt allows the generation of a large set of keys corresponding to each password [187],
while the high number of iterations is introduced to hinder brute-force attacks by significantly
increasing computational times. Rule R2 reflects the need of choosing parameters to keep
pace with the state-of-the-art in cryptographic research and the advances in computational
capabilities. The latest NIST draft on Digital Identity Guidelines [75] sets the minimum
KDF iteration count to 10,000 and the salt size to 32 bits. However, such lower bounds on
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the KDF should be significantly raised for critical keys according to [163] which suggests to
set the number of iterations as high as can be tolerated by the environment, while maintaining
acceptable performance. For instance, Apple iOS derives the decryption key for the device
from the user password using a KDF with an iteration count calculated by taking into account
the computational capabilities of the hardware and the impact on the user experience [9].

Finally, rule R3 states that the keystore format must provide strong typing for keystore
content, such that cryptographic objects are stored and read unambiguously. Despite some
criticism over the years [81], the PKCS#1112 standard embraces this principle providing pre-
cise types for storing many cryptography objects. Additionally, given that keystore files are
supposed to be accessed and modified by different parties, applications parsing the keystore
format must be designed to be robust against malicious crafted content.

Interestingly, not following even one of the aforementioned rules may lead to a violation
of confidentiality and integrity of the keystore entries. For instance, initializing a secure KDF
with a constant or empty salt, which violates only R2, would allow an attacker to precompute
the set of possible derived keys and take advantage of rainbow tables [131] to speed up the
brute-force of the password. On the other hand, a KDF with strong parameters is useless
once paired with a weak cipher, since it is easier to retrieve the encryption key rather than
brute-forcing the password. In this case only R1 is violated.

Additionally, disrespecting Rule R3 may have serious consequences on system integrity
(breaking property P3), which range from applications crashing due to parsing errors while
loading a malicious keystore to more severe scenarios where the host is compromised. An
attacker exploiting type-flaw bugs could indirectly gain access to the protected entries of
a keystore violating the confidentiality and integrity guarantees. System integrity can ad-
ditionally be infringed by violating Rule R2 with an inadequate parameter choice, e.g., an
unreasonably high iteration count value might hang the application, slow down the system
or prevent the access to cryptographic objects stored in a keystore file due to an excessive
computational load. In Section 4.5 we show how noncompliance to these rules translate into
concrete attacks.

4.3.3 Threat Model

In our standard attacker model we always assume that the attacker has read access to the
keystore file, either authorized or by means of a data leakage. We also assume that the
attacker is able to perform offline brute-force attacks using a powerful system of her choice.

We now present a list of interesting attacker settings, that are relevant with respect to the
security properties defined in Section 4.3.1:

S1 Write access to the keystore

S2 Integrity password is known

S3 Confidentiality password of an entry is known

S4 Access to previous legitimate versions of the keystore file
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Setting S1 may occur when the file is shared over a network filesystem, e.g., in banks
and large organizations. Since keystores include mechanisms for password-based integrity
checks, it might be the case that they are shared with both read and write permissions, to
enable application that possess the appropriate credentials (i.e., the integrity password) to
modify them. We also consider the case S2 in which the attacker possesses the integrity
password. The password might have been leaked or discovered through a successful brute-
force attack. The attacker might also know the password as an insider, i.e., when she belongs
to the organization who owns the keystore. Setting S3 refers to a scenario in which the at-
tacker knows the password used to encrypt a sensitive object. Similarly to the previous case,
the password might have been accessed either in a malicious or in honest way. For example,
the password of the key used to sign the apk of an Android application [7] could be shared
among the developers of the team.

In our experience, there exists a strong correlation between S2 and S3. Indeed, several
products and frameworks use the same password both for confidentiality and for integrity,
e.g., Apache Tomcat for TLS keys and IBM WebSphere for LTPA authentication. Addition-
ally, the standard utility for Java keystores management (keytool) supports this practice
when creating a key: the tool invites the user to just press the RETURN key to reuse the store
password for encrypting the entry.

To summarize, our standard attacker model combined with S1-S3 covers both reading
and writing capabilities of the attacker on the keystore files together with the possibility of
passwords leakage. On top of these settings, we consider the peculiar case S4 that may occur
when the attacker has access to backup copies of the keystore or when the file is shared over
platforms supporting version control such as Dropbox, ownCloud or Seafile.

4.4 Analysis of Java Keystores

The Java platform exposes a comprehensive API for cryptography through a provider-based
framework called Java Cryptography Architecture (JCA). A provider consists of a set of
classes that implement cryptographic services and algorithms, including keystores. In this
section, we analyze the most common Java software keystores implemented in the Ora-
cle JDK and in a widespread cryptographic library called Bouncy Castle that ships with a
provider compatible with the JCA. In particular, since the documentation was not sufficient
to assess the design and cryptographic strength of the keystores, we performed a compre-
hensive review of the source code exposing, for the first time, implementation details such
as on-disk file structure and encoding, standard and proprietary cryptographic mechanisms,
default and hard-coded parameters.

For reader convenience, we provide a brief summary of the cryptographic mechanisms
and acronyms used in this section: Password-Based Encryption (PBE) is an encryption
scheme in which the cryptographic key is derived from a password through a Key Derivation
Function (KDF); a Message Authentication Code (MAC) authenticates data through a secret
key and HMAC is a standard construction for MAC which is based on cryptographic hash
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FIGURE 4.1: Decryption in the custom stream cipher used by JKS.

functions; Cipher Block Chaining (CBC) and Counter with CBC-MAC (CCM) are two stan-
dard modes of operation for block ciphers, the latter is designed to provide both authenticity
and confidentiality.

4.4.1 Oracle Keystores

The Oracle JDK offers three keystore implementations, namely JKS, JCEKS and PKCS12,
which are respectively made available through the providers SUN, SunJCE and SunJSSE
[52]. While JKS and JCEKS rely on proprietary algorithms to enforce both the confidentiality
and the integrity of the saved entries, PKCS12 relies on open standard format and algorithms
as defined in [145].

JKS

Java KeyStore (JKS) is the first official implementation of a keystore that appeared in Java
since the release of JDK 1.2. To the time, it is still the default keystore in Java 8 when no
explicit choice is made. It supports encrypted private key entries and public key certificates
stored in the clear. The file format consists of a header containing the magic file number, the
keystore version and the number of entries, which is followed by the list of entries. The last
part of the file is a digest used to check the integrity of the keystore. Each entry contains the
type of the object (key or certificate) and the label, followed by the cryptographic data.

Private keys are encrypted using a custom stream cipher designed by Sun, as reported in
the OpenJDK source code. In order to encrypt data, a keystream W is generated in 20-bytes
blocks with W0 being a random salt and Wi = SHA1(password||Wi−1). The encrypted
key E is computed as the XOR of the private key K with the keystream W, hence K and
E share the same length. The ciphertext is then prepended with the salt and appended with
the checksum CK = SHA1(password||K). The block diagram for decryption is shown in
Figure 4.1.

The integrity of the keystore is achieved through a custom hash-based mechanism: JKS
computes the SHA1 hash of the integrity password, concatenated with the constant string
“Mighty Aphrodite” and the keystore content. The result is then checked against the
20 bytes digest at the end of the keystore file.
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JCEKS

Java Cryptography Extension KeyStore (JCEKS) has been introduced after the release of
JDK 1.2 in the external Java Cryptography Extension (JCE) package and merged later into
the standard JDK distribution from version 1.4. According to the Java documentation, it
is an alternate proprietary keystore format to JKS “that uses much stronger encryption in
the form of Password-Based Encryption with Triple-DES” [91]. Besides the improved PBE
mechanism, it allows for storing also symmetric keys.

The file format is almost the same of JKS with a different magic number in the file header
and support for the symmetric key type. The integrity mechanism is also borrowed from JKS.

JCEKS stores certificates as plaintext, while the PBE used to encrypt private keys, in-
spired by PBES1 [122], is based on 20 MD5 iterations and a 64 bits salt. Given that Triple-
DES is used to perform the encryption step, the key derivation process must be adapted to
produce cipher parameters of the adequate size. In particular, JCEKS splits the salt in two
halves and applies the key derivation process for each of them. The first 192 bits of the
combined 256 bits result are used as the Triple-DES key, while the remaining 64 bits are the
initialization vector.

PKCS12

The PKCS12 keystore supports both private keys and certificates, with support for secret
keys added in Java 8. Starting from Java 9, Oracle replaced JKS with PKCS12 as the default
keystore type [94].

The keystore file is encoded as an ASN.1 structure according to the specification given
in [145]. It contains the version number of the keystore, the list of keys and the certificates.
The last part of the keystore contains an HMAC (together with the parameters for its compu-
tation) used to check the integrity of the entire keystore by means of a password.

The key derivation process, used for both confidentiality and integrity, is implemented as
described in the PKCS#1112 standard [145] using SHA1 as hashing function, 1024 iterations
and a 160 bit salt. Private keys and secret keys (when supported) are encrypted using Triple-
DES in CBC mode. Certificates are encrypted as well in a single encrypted blob, using the
RC2 cipher in CBC mode with a 40-bit key. While each key can be encrypted with a different
password, all the certificates are encrypted reusing the store password.

4.4.2 Bouncy Castle Keystores

Bouncy Castle is a widely used open-source crypto API. As of 2014, it provides the base
implementation for the crypto library used in the Android operating system [51]. It sup-
ports four different keystore types via the BC provider: BKS, UBER, BCPKCS12 and the
new FIPS-compliant BCFKS. Similarly to the Oracle keystores, all the BC keystores rely on
passwords to enforce confidentiality over the entries and to verify the integrity of the keystore
file.
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BKS

The Bouncy Castle Keystore (BKS) allows to store public/private keys, symmetric keys and
certificates. The BKS keystore relies on a custom file structure to store the entries. The file
contains the version number of the BKS keystore, the list of stored cryptographic entries and
an HMAC, along with its parameters, computed over the entries as integrity check.

Only symmetric and private keys can be encrypted in BKS, with Triple-DES in CBC
mode. The key derivation schema is taken from PKCS#1112 v1.0, using SHA1 as hashing
function, a random number of iterations between 1024 and 2047 which is stored for each
entry and a 160 bit salt.

The integrity of the keystore is provided by an HMAC using the same key derivation
scheme used for encryption and applied to the integrity password. For backward compati-
bility, the current version of BKS still allows to load objects encrypted under a buggy PBE
mechanism used in previous versions of the keystore1. If the key is recovered using an old
mechanisms, it is immediately re-encrypted with the newer PBE scheme.

UBER

UBER shares most of its codebase with BKS, thus it supports the same types of entries and
PBE. Additionally, it provides an extra layer of encryption for the entire keystore file, which
means that all metadata around the keys and certificates are encrypted as well. The PBE
mechanism used for encrypting the file is Twofish in CBC mode with a key size of 256 bits.
The KDF is PKCS#1112 v1.0 with SHA1 using a 160 bits salt and a random number of
iterations in the range 1024 and 2047.

The integrity of the keystore is checked after successful decryption using the store pass-
word. The plaintext consists of the keystore entries followed by their SHA1 checksum.
UBER recomputes the hash of the keystore and compares it with the stored digest.

BCFKS

BCFKS is a new FIPS-compliant [166] keystore introduced in the version 1.56 of Bouncy
Castle2 offering similar features to UBER. This keystore provides support for secret keys in
addition to asymmetric keys and certificates.

The entire keystore contents is encrypted using AES in CCM mode with a 256 bits key,
so to provide protection against introspection. After the encrypted blob, the file contains a
block with a HMAC-SHA512 computed over the encrypted contents to ensure the keystore
integrity. The store password is used to derive the two keys for encryption and integrity.

All key derivation operations use PBKDF2 with HMAC-SHA512 as pseudorandom func-
tion, 512 bits of salt and 1024 iterations. Each key entry is separately encrypted with a differ-
ent password using the same algorithm for the keystore confidentiality, while this possibility
is not offered for certificates.

1https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/
bouncycastle/jce/provider/BrokenPBE.java

2https://github.com/bcgit/bc-java/commit/80fd6825

https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/bouncycastle/jce/provider/BrokenPBE.java
https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/bouncycastle/jce/provider/BrokenPBE.java
https://github.com/bcgit/bc-java/commit/80fd6825
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BCPKCS12

The BCPKCS12 keystore aims to provide a PKCS#1112-compatible implementation. It
shares the same algorithms and default parameters for key derivation, cryptographic schemes
and file structure of the Oracle JDK version detailed in Section 4.4.1. Compared to Oracle,
the Bouncy Castle implementation lacks support for symmetric keys and the possibility to
protect keys with different passwords, since all the entries and certificates are encrypted un-
der the store password. The BC provider also offers a variant of the PKCS#1112 keystore
that allows to encrypt certificates using the same PBE of private keys, that is Triple-DES in
CBC mode.

4.4.3 Keystores Adoption

We have analyzed 300 Java projects supporting keystores that are hosted on Github to es-
timate the usage of the implementations examined in this work. Applications range from
amateur software to well-established libraries developed by Google, Apache and Eclipse.

We searched for occurrences of known patterns used to instantiate keystores in the code
of each project. We have found that JKS is the most widespread keystore with over 70% of
the applications supporting it. PKCS12 is used in 32% of the analyzed repositories, while
JCEKS adoption is close to 10%. The Bouncy Castle keystores UBER and BCPKCS12 are
used only in 3% of the projects, while BKS can be found in about 6% of the examined
software. Finally, since BCFKS is a recent addition to the Bouncy Castle library, none of the
repositories is supporting it.

4.4.4 Summary

In Tables 4.1 and 4.2 we summarize the features and the algorithms (rows) offered by the
keystore implementations (columns) analyzed in this section. Table 4.1 does not contain
the row “Store Encryption” since none of the JDK keystores provides protection against
introspection.

To exemplify, by reading Table 4.1 we understand that the JCEKS keystore of the SunJCE
provider relies on a custom PBE mechanism based on MD5 using only 20 iterations to derive
the Triple-DES key for the encryption of keys. The mark shows that the keystore supports
secret keys, while denotes that certificates cannot be encrypted.

4.5 Attacks

In the previous section, we have shown that the analyzed keystores use very diverse key
derivation functions and cryptographic mechanisms and, in several cases, they do not adhere
to standards or use obsolete and ad-hoc mechanisms. We now discuss how this weakens the
overall security of the keystore and enables or facilitates attacks. In particular, we show that
keystores using weak or ad-hoc implementations for password-based encryption or integrity
checks open the way to password brute-forcing. During the in-depth analysis of keystores,
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Algorithm 2 JKS 1-block Crack
1: procedure JKS_1BLOCKCRACK(Salt, E1..n, CK)
2: known_plaintext← 0x30 ‖ length(E)
3: test_bytes← known_plaintext⊕ E1
4: for password in passwords do
5: W1 ← SHA1(password ‖ Salt)
6: if W1 = test_bytes then
7: K ← DECRYPT(Salt, E, password)
8: checksum← SHA1(password ‖K)
9: if CK = checksum then

10: return password
11: end if
12: end if
13: end for
14: end procedure

we have also found security flaws that can be exploited in practice to mount denial of service
and code execution attacks.

Attacks in this section are organized according to the security properties violated, as
defined in Section 4.3.1. For each attack we provide a detailed description discussing the
attacker settings and the rules that are not followed by the keystore implementation (cf. Sec-
tion 4.3.2). We conclude with some general security considerations that are not specific to
any particular attack.

Table 4.3 provides a high-level overview of the properties which are guaranteed by the
analyzed keystores with respect to the attacks presented in this section. We consider versions
of Oracle JDK and Bouncy Castle before and after disclosing our findings to the developers.
Specifically, we refer to JDK 8u144 and 8u152 for Oracle, while version 1.57 of Bouncy
Castle is compared against the development repository as of November 28, 2017.3 We use
the symbol Ý to point out improvements in newer versions. Details of the changes are
listed in Section 4.7. The symbol denotes that a property is satisfied by the keystore
under any attacker setting and the implementation adhere to the relevant design rules listed
in Section 4.3.2. We use when no clear attack can be mounted but design rules are not
completely satisfied, e.g. a legacy cipher like Triple-DES is used. The symbol indicates
that the property is broken under the standard attacker model. When a property is broken
only under a specific setting Sx, we report it in the table as Sx. If a more powerful attack is
enabled by additional settings, we clarify in the footnotes.

As an example, consider the system integrity property (P3) in the JCEKS keystore: up
to JDK 8u144 included, write capabilities (S1) allow to DoS the application loading the key-
store; when integrity and key confidentiality passwords are known (S2 and S3), the attacker
can also achieve arbitrary code execution on the system (cf. note 3 in the table). The right-
most side of the arrow indicates that JDK 8u152 does not include mitigations against the
code execution attack.

3https://github.com/bcgit/bc-java/tree/8ed589d

https://github.com/bcgit/bc-java/tree/8ed589d
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4.5.1 Attacks on Entries Confidentiality (P1)

JKS Password Cracking

The custom PBE mechanism described in Section 4.4.1 for the encryption of private keys
is extremely weak. The scheme requires only one SHA1 hash and a single XOR operation
to decrypt each block of the encrypted entry resulting in a clear violation of rule R1. Since
there is no mechanism to increase the amount of computation needed to derive the key from
the password, also rule R2 is neglected.

Despite the poor cryptographic scheme, each attempt of a brute-force password recov-
ery attack would require to apply SHA1 several times to derive the whole keystream used
to decrypt the private key. As outlined in Figure 4.1, a successful decryption is verified by
matching the last block (CK) of the protected entry with the hash of the password concate-
nated with the decrypted key. For instance, a single password attempt to decrypt a 2048 bit
RSA private key entry requires over 60 SHA1 operations.

We found that such password recovery attack can be greatly improved by exploiting the
partial knowledge over the plaintext of the key. Indeed, the ASN.1 structure of a key entry
enables to efficiently test each password with a single SHA1 operation. In JKS, private keys
are serialized as DER-encoded ASN.1 objects, along the PKCS#111 standard [123]. For
instance, an encoded RSA key is stored as a sequence of bytes starting with byte 0x30which
represent the ASN.1 type SEQUENCE and a number of bytes representing the length of the
encoded key. Since the size of the encrypted key is the same as the size of the plaintext, these
bytes are known to the attacker. On average, given n bytes of the plaintext it is necessary to
continue decryption beyond the first block only for one password every 256n attempts.

The pseudocode of the attack is provided in Algorithm 2, using the same notation intro-
duced in Section 4.4.1. We assume that the algorithm is initialized with the salt, all the blocks
of the encrypted key and the checksum. The XOR operation between the known plaintext
and the first encrypted block (line 3) is performed only once for all the possible passwords.
As a halt condition, the result is then compared against the digest of the salt concatenated to
the tested password (lines 5-6). To further verify the correctness of the password, a standard
decrypt is performed.

A comparison between the standard cracking attack and our improved version is depicted
in Figure 4.2. From the chart it is possible to see that the cost of the single block attack
(referred to as 1-block) is independent from the size of the encrypted entry, while the number
of operations required to carry out the standard attack is bound to the size of the DER-
encoded key. As an example, for a 4096 bit private RSA key, the 1-block approach is two
orders of magnitude faster than the standard one.

Based on our findings, that we previously mentioned in a blog post [55], this attack has
been recently integrated into Hashcat 3.6.04 achieving a speed of 8 billion password tries/sec
with a single NVIDIA GTX 1080 GPU.

4https://hashcat.net/forum/thread-6630.html
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FIGURE 4.2: Performance comparison of password cracking for private
RSA keys on JKS and JCEKS using both the standard and the improved

1-block method on a Intel Core i7 6700 CPU.

JCEKS Password Cracking

The PBE mechanism discussed in Section 4.4.1 uses a custom KDF that performs 20 MD5
iterations to derive the encryption key used in the Triple-DES cipher. This value is three
orders of magnitude lower than the iteration count suggested in [75], thus violating both
rules R1 and R2. Given that keys are DER-encoded as well, it is possible to speed up a
brute-force attack using a technique similar to the one discussed for JKS. Figure 4.2 relates
the standard cracking speed to the single block version. Notice that the cost of a password-
recovery attack is one order of magnitude higher than JKS in both variants due to the MD5
iterations required by the custom KDF of JCEKS.

PKCS#1112 Certificate Key Cracking

Oracle PKCS12 and BCPKCS12 keystores allow for the encryption of certificates. The PBE
is based on the KDF defined in the PKCS#1112 standard paired with the legacy RC2 cipher
in CBC mode with a 40 bit key, resulting in a clear violation of rule R1. Due to the reduced
key space, the protection offered by the KDF against offline attacks can be voided by directly
brute-forcing the cryptographic key. Our serialized tests, performed using only one core of
an Intel Core i7 6700 CPU, show that the brute-force performance is 8,300 passwords/s for
password testing (consisting of a KDF and decryption run), while the key cracking speed is
1,400,000 keys/s. The worst-case scenario that requires the whole 40-bits key space to be
exhausted, requires about 9 days of computation on our system. This time can be reduced to
about 1 day by using all eight cores of our processor. We estimate that a modern high-end
GPU should be able to perform this task in less than one hour.

Notice, however, that although finding the key so easily makes the encryption of certifi-
cates pointless, an attacker cannot use the key value to reduce the complexity of cracking the
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integrity password since the random salt used by the KDF makes it infeasible to precompute
the mapping from passwords to keys.

4.5.2 Attacks on Keystore Integrity (P2)

JKS/JCEKS Integrity Password Cracking

The store integrity mechanism used by both JKS and JCEKS (cf. Section 4.4.1) only relies
on the SHA1 hash digest of the integrity password, concatenated with the constant string
“Mighty Aphrodite” and with the keystore data. In contrast with rule R1, this technique
based on a single application of SHA1 enables to efficiently perform brute-force attacks
against the integrity password. Section 4.6 reports on the computational effort required to
attack the integrity mechanism for different sizes of the keystore file.

Additionally, since SHA1 is based on the Merkle-Damgård construction, this custom
approach is potentially vulnerable to extension attacks [63]. For instance, it may be possible
for an attacker with write access to the keystore (S1) to remove the original digest at the
end of the file, extend the keystore content with a forged entry and recompute a valid hash
without knowing the keystore password. Fortunately, this specific attack is prevented in JKS
and JCEKS since the file format stores the number of entries in the keystore header.

JKS/JCEKS Integrity Digest Precomputation

The aforementioned construction to ensure the integrity of the keystore suffers from an addi-
tional problem. Assume the attacker has access to an empty keystore, for example when an
old copy of the keystore file is available under a file versioning storage (S4). Alternatively, as
special case of S1, the attacker may be able to read the file, but the interaction with the key-
store is mediated by an application that allows to remove entries without disclosing the store
password. This file consists only of a fixed header followed by the SHA1 digest computed
using the password, the string “Mighty Aphrodite” and the header itself. Given that
there is no random salting in the digest computation, it would be possible to mount a very
efficient attack to recover the integrity password by exploiting precomputed hash chains, as
done in rainbow tables [131].

4.5.3 Attacks on System Integrity (P3)

JCEKS Code Execution

A secret key entry is stored in a JCEKS keystore as a Java object having type SecretKey.
First, the key object is serialized and wrapped into a SealedObject instance in an en-
crypted form; next, this object is serialized again and saved into the keystore.

When the keystore is loaded, all the serialized Java objects stored as secret key entries
are evaluated. An attacker with write capabilities (S1) may construct a malicious entry con-
taining a Java object that, when deserialized, allows her to execute arbitrary code in the
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application context. Interestingly, the attack is not prevented by the integrity check since
keystore integrity is verified only after parsing all the entries.

The vulnerable code can be found in the engineLoadmethod of the class JceKeyStore
implemented by the SunJCE provider.5 In particular, the deserialization is performed on lines
837-838 as follows:

// read the sealed key

try {

ois = new ObjectInputStream(dis);

entry.sealedKey =

(SealedObject) ois.readObject();

...

Notice that the cast does not prevent the attack since it is performed after the object evalua-
tion.

To stress the impact of this vulnerability, we provide three different attack scenarios: i)
the keystore is accessed by multiple users over a shared storage. An attacker can replace
or add a single entry of the keystore embedding the malicious payload, possibly gaining
control of multiple hosts; ii) a remote application could allow its users to upload keystores
for cryptographic purposes, such as importing certificates or configuring SSL/TLS. A crafted
keystore loaded by the attacker may compromise the remote system; iii) an attacker may even
forge a malicious keystore and massively spread it like a malware using email attachments or
instant messaging platforms. Users with a default application associated to the keystore file
extension (e.g., keystore inspection utilities such as KSE 6) have a high probability of being
infected just by double clicking on the received keystore. Interestingly, all the malicious
keystores generated during our tests did not raise any alert on antivirus tools completing a
successful scan by virustotal.com.

We checked the presence of the vulnerability from Java 6 onwards. We were able to
achieve arbitrary command execution on the host with JDK ≤ 7u21 and JDK ≤ 8u20 by
forging a payload with the tool ysoserial.7 Newer versions are still affected by the vul-
nerability, but the JDK classes exploited to achieve code execution have been patched. Since
the deserialization occurs within a Java core class, the classpath is restricted to bootstrap and
standard library classes. However, by embedding a recursive object graph in a JCEKS entry,
an attacker can still hang the deserialization routine consuming CPU indefinitely and thus
causing a DoS in the target machine. We were able to mount this attack on any version of the
Oracle JDK ≤ 8u144.

The implementation choice for storing secret keys in JCEKS is a clear violation of
Rule R3, since these entities are essentially stored as Java code. The correct approach is
to adopt standard formats and encodings, such as the PKCS#118 format used in the PKCS12
keystore.

5http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/
classes/com/sun/crypto/provider/JceKeyStore.java

6http://keystore-explorer.org
7https://github.com/frohoff/ysoserial

http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/com/sun/crypto/provider/JceKeyStore.java
http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/com/sun/crypto/provider/JceKeyStore.java
http://keystore-explorer.org
https://github.com/frohoff/ysoserial
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JCEKS Code Execution After Decryption

When the attacker knows the integrity password and the confidentiality password of a secret
key entry (S2, S3) in addition to S1, the previous attack can be further improved to achieve
arbitrary command execution even on the latest, at the time of writing, Java 8 release (8u152).
This variant of the attack assumes that the application loading the JCEKS keystore makes
use of one of the widespread third-party libraries supported by ysoserial, such as Apache

Commons Collections or the Spring framework: such libraries have been found [169] to
contain vulnerable gadget chains that can be exploited by the malicious payload.

When a SealedObjectwrapping a secret key is successfully loaded and decrypted, an
additional deserialization call is performed over the decrypted content. The SealedObject
class extends the classpath to allow the deserialization of any class available in the applica-
tion scope, including third-party libraries. By exploiting this second deserialization step, an
attacker may construct more powerful payloads to achieve command execution.

The exploitation scenarios are similar to the ones already discussed in the previous variant
of the attack. Additionally, we point out that even an antivirus trained to detect deserialization
signatures would not be able to identify the malicious content since the payload is stored in
encrypted form in the keystore.

DoS by Integrity Parameters Abuse

Many keystores rely on a keyed MAC function to ensure the integrity of their contents. The
parameters of the KDF used to derive the key from the store password are saved inside the
file. Thus, an attacker with write capabilities (S1) may tamper with the KDF parameters to
affect the key derivation phase that is performed before assessing the integrity of the keystore
file. In particular, the attacker may set the iteration count to an unreasonably high value in
order to perform a DoS attack on applications loading the keystore.

We found that Oracle PKCS12, BKS and BCPKCS12 implementations are affected by
this problem. Starting from valid keystore files, we managed to set the iteration count value
to 231 − 1. Loading such keystores required around 15 minutes at full CPU usage on a
modern computer. According to [163] the iteration count should not impact too heavily on
the user-perceived performance, thus we argue that this is a violation of Rule R2.

4.5.4 Bad Design Practices

During our analysis we found that some of the keystores suffered from bad design decisions
and implementation issues that, despite not leading to proper attacks, could lead to serious
security consequences.

Our review of the Oracle PKCS12 keystore code showed that the KDF parameters are
not treated uniformly among MAC, keys and certificates. During a store operation, the Or-
acle implementation does not preserve the original iteration count and salt size for MAC
and certificates that has been found at load time in the input keystore file. Indeed, iteration
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count and salt size are silently set to the hard-coded values of 1024 and 20 byte, respec-
tively. Since this keystore format is meant to be interoperable, this practice could have secu-
rity consequences when dealing with keystores generated by third-party tools. For instance,
PKCS12-compatible keystores generated by OpenSSL default to 2048 iterations: writing out
such keystore with the Oracle JDK results in halving the cost of a password recovery attack.

The Bouncy Castle BCPKCS12 implementation suffers a similar problem: in addition
to MAC and certificate parameters, also the iteration count and the salt size used for private
keys are reverted to default values when the keystore is saved to disk. Following our report to
the Bouncy Castle developers, this behaviour is currently being addressed in the next release
by preserving the original parameters whenever possible.8

Lastly, the construction of the integrity mechanism for the UBER keystore could cause
an information leakage under specific circumstances. After a successful decryption using the
store password, UBER recomputes the hash of the keystore and compares it with the stored
digest. This MAC-then-encrypt approach is generally considered a bad idea, since it can lead
to attacks if, for example, there is a perceptible difference in behavior (an error message, or
execution time) between a decryption that fails because the padding is invalid, or a decryption
that fails because the hash is invalid (a so-called padding oracle attack [167]).

4.5.5 Security Considerations

We now provide general considerations on the security of Java keystores. The first one is
about using the same password for different purposes. If the integrity password is also used
to ensure the confidentiality of encrypted entries, then the complexity of breaking either the
integrity or the confidentiality of stored entries turns out to be the one of attacking the weakest
mechanism. For instance, we consider a keystore where cracking the integrity password
is more efficient than recovering the password used to protect sensitive entries: as shown
in Section 4.6, this is the case of PKCS12 and BCPKCS12 keystores. Under this setting,
sensitive keys can be leaked more easily by brute-forcing the integrity password.

Although this is considered a bad practice in general [110], all the keystores analyzed
permit the use of the same password to protect sensitive entries and to verify the integrity of
the keystore. This practice is indeed widespread [74] and, as already stated in Section 4.3.3,
prompted by keytool itself. Furthermore, our analysis found that the BCPKCS12 key-
store forcibly encrypts keys and certificates with the store password. For these reasons, we
argue that using the same password for integrity and confidentiality is not a direct threat
to the security of stored keys when both mechanisms are resistant to offline attacks and a
strong password is used. Still the security implications of this practice should be seriously
considered.

The second consideration regards how the integrity of a keystore is assessed. Indeed,
a poorly designed application may bypass the integrity check on keystores by providing a
null or empty password to the Java load() function. All the Oracle keystores analyzed
in the previous section and BouncyCastle BKS are affected by this problem. On the other

8https://github.com/bcgit/bc-java/commit/ebe1b25a

https://github.com/bcgit/bc-java/commit/ebe1b25a
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hand, keystores providing protection to entries inspection, such as UBER and BCFKS, cannot
be loaded with an empty password since the decryption step would fail. Lastly, BCPKCS12
throws an exception if an attempt of loading a file with an empty password is made. Clearly, if
the integrity check is omitted, an attacker can trivially violate Property P2 by altering, adding
or removing any entry saved in the clear. Conversely, the integrity of encrypted sensitive keys
is still provided by the decryption mechanism that checks for the correct padding sequence
at the end of the plaintext. Since the entries are typically encoded (e.g., in ASN.1), a failure
in the parse routine could also indicate a tampered ciphertext.

We also emphasize that the 1-block cracking optimization introduced in 4.5.1 is not lim-
ited to JKS and JCEKS. Indeed, by leveraging the structure of saved entries, all the analyzed
keystores enable to reduce the cost of the decrypt operation to check the correctness of a
password. However, excluding JKS and JCEKS, this technique only provides a negligible
speed-up on the remaining keystores given that the KDF is orders of magnitude slower than
the decrypt operation.

Finally, we point out that the current design of password-based keystores cannot provide
a proper key-revocation mechanism without a trusted third-party component. For instance,
it may be the case that a key has been leaked in the clear and subsequently substituted with
a fresh one in newer versions of a keystore file. Under settings S1 and S4, an attacker may
replace the current version of a keystore with a previously intercepted valid version, thus
restoring the exposed key. The integrity mechanism is indeed not sufficient to distinguish
among different versions of a keystore protected with the same store password. For this
reason, the store password must be updated to a fresh one every time a rollback of the keystore
file is not acceptable by the user, which is typically the case of a keystore containing a revoked
key.

4.6 Estimating Brute-Force Speed-Up

We have discussed how weak PBEs and integrity checks in keystores can expose passwords
to brute-forcing. In this section we make an empirical comparison of the cracking speed to
bruteforce both the confidentiality and integrity mechanisms in the analyzed keystores. We
also compute the speed-up with respect to BCFKS, as it is the only keystore using a standard
and modern KDF, i.e., PBKDF2, which provides the best brute-forcing resistance. Notice,
however, that the latest NIST draft on Digital Identity Guidelines [75] sets the minimum KDF
iteration count to 10,000 which is one order of magnitude more than what is used in BCFKS
(cf. Table 4.2). Thus all the speed-up values should be roughly multiplied by 10 if compared
with a baseline implementation using PBKDF2 with 10,000 iterations.

It is out of the scope of this work to investigate brute-forcing strategies. Our tests only
aim at comparing, among the different keystores, the actual time to perform the key deriva-
tion step and the subsequent cryptographic operations, including the check to assess key
correctness. Our study is independent of the actual password guessing strategy adopted by
the attacker.
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Algorithm 3 Confidentiality password cracking benchmark
1: procedure BENCHCONFIDENTIALITY(test_duration)
2: encrypted_entry← (B1, ..., B2000)
3: passwords← (pw1, ..., pwn) . all 10-bytes passwords
4: salt← constant
5: counter ← 0
6: while ELAPSEDTIME < test_duration do
7: password← next(passwords)
8: key← KDFkey(password, salt)
9: iv← KDFiv(password, salt) . not in JKS, BCFKS

10: plaintext← DECRYPTBLOCK(encrypted_entry, key, iv)
11: VERIFYKEY(plaintext)
12: counter ← counter + 1
13: end while
14: return counter
15: end procedure

Algorithm 4 Integrity password cracking benchmark
1: procedure BENCHINTEGRITY(test_duration)
2: keystore_contentsmall ← (B1, ..., B2048)
3: keystore_contentmedium ← (B1, ..., B8192)
4: keystore_contentlarge ← (B1, ..., B16384)
5: passwords← (pw1, ..., pwn) . all 10-bytes passwords
6: salt← constant
7: counter(small,medium,large) ← 0
8: for all keystore_content, counter do
9: while ELAPSEDTIME < test_duration do

10: password← next(passwords)
11: key← KDFmac(password, salt) . not in JKS, JCEKS
12: mac← MAC(keystore_content, key)
13: VERIFYMAC(mac)
14: counter ← counter + 1
15: end while
16: end for
17: return counter(small,medium,large)
18: end procedure

4.6.1 Test Methodology

We developed a compatible C implementation of the key decryption and the integrity check
for each keystore type. Each implementation is limited to the minimum steps required to
check the correctness of a test password. This procedure is then executed in a timed loop to
evaluate the cracking speed. Algorithms 3 and 4 show the pseudocode of our implementa-
tions. Note that, in both algorithms, we set the password length to 10 bytes because it is an
intermediate value between trivial and infeasible. Similarly, since the iteration count in BKS
and UBER is chosen randomly in the range 1024 and 2047, we set it to the intermediate value
1536.

Confidentiality

The confidentiality password brute-forcing loop (Algorithm 3) is divided into three steps:
key derivation, decryption and a password correctness check. The last step is included in
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(A) Speed comparison of password recovery at-
tack for key encryption (confidentiality).

(B) Speed comparison of password recovery at-
tack for keystore integrity, considering different

keystore sizes.

FIGURE 4.3: Comparison of keystores password cracking speed. Bar labels
indicate the speed-up to the strongest BCFKS baseline.

the loop only to account for its computational cost in the results. Both PBES1 (PKCS#115)
and PKCS#1112 password-based encryption schemes, used in all keystores but BCFKS, re-
quire to run the KDF twice to derive the decryption key and the IV. On the other hand, in
BCFKS the initialization vector is not derived from the password but simply stored with the
ciphertext. During our tests we set encrypted_entry to a fixed size to resemble an on-disk
entry containing a 2048 bits RSA key. However, in Section 4.5.1 we have shown how the
partial knowledge of the plaintext structure of a JKS key entry can be leveraged to speed-up
brute-forcing. This shortcut can be applied to all the analyzed keystores in order to decrypt
only the first block of encrypted_entry. For this reason, the key size becomes irrelevant while
testing for a decryption password.

Integrity

Similarly, the integrity password cracking code (Algorithm 4) is divided into three steps: key
derivation, a hash/MAC computation and the password correctness check. The key derivation
step is run once to derive the MAC key in all keystores, with the exception of JKS and JCEKS
where the password is fed directly to the hash function (cf. Section 4.4.1). As described later
in this section, the speed of KDF plus MAC calculation can be highly influenced by the
keystore size, thus we performed our tests using a keystore_content of three different sizes:
2048, 8192 and 16384 bytes.

Test configuration

We relied on standard implementations of the cryptographic algorithms to produce compa-
rable results: the OpenSSL library (version 1.0.2g) provides all the needed hash functions,
ciphers and KDFs, with the exception of Twofish where we used an implementation from the
author of the cipher.9 All the tests were performed on a desktop computer running Ubuntu
16.04 and equipped with an Intel Core i7 6700 CPU; source code of our implementations has

9https://www.schneier.com/academic/twofish/download.html

https://www.schneier.com/academic/twofish/download.html
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been compiled with GCC 5.4 using -O3 -march=native optimizations. We run each
benchmark on a single CPU core because the numeric results can be easily scaled to a highly
parallel systems. To collect solid and repeatable results each benchmark has been run for 60
seconds.

4.6.2 Results

The charts in Figure 4.3 show our benchmarks on the cracking speed for confidentiality (Fig-
ure 4.3a) and integrity (Figure 4.3b). On the x-axis there are the 7 keystore types: we group
together different keystores when the specific mechanism is shared among the implemen-
tations, i.e., PKCS12/BCPKCS12 for both confidentiality and integrity and JKS/JCEKS for
integrity. On the y-axis we report the number of tested passwords per second doing a serial
computation on a single CPU core: note that the scale of this axis is logarithmic. We stress
that our results are meant to provide a relative, inter-keystore comparison rather than an abso-
lute performance index. To this end, a label on top of each bar indicates the speed-up relative
to the strongest BCFKS baseline. Absolute performance can be greatly improved using both
optimized parallel code and more powerful hardware which ranges from dozens of CPU cores
or GPUs to programmable devices such as FPGA or custom-designed ASICs [101, 48, 114].

Confidentiality

From the attack described in Section 4.5.1, it follows that cracking the password of an en-
crypted key contained in JKS - the default Java keystore - is at least three orders of mag-
nitude faster than in BCFKS. Even without a specific attack, recovering the same password
from JCEKS is over one hundred times faster due to its low (20) iteration count. By contrast,
the higher value (1024 or 1024-2047) used in PKCS12, BKS and UBER translates into a far
better offline resistance as outlined in the chart.

Integrity

Similar considerations can be done for the integrity password resistance. Finding this pass-
word in all keystores but JKS is equivalent, or even faster than breaking the confidentiality
password. Moreover, the performance of these keystores is influenced by the size of the
file due to the particular construction of the MAC function (cf. Section 4.4.1). The speed
gain (w.r.t. confidentiality) visible in PKCS12, BKS and UBER is caused by the missing
IV derivation step which, basically, halves the number or KDF iterations. Interestingly, in
BCFKS there is no difference between the two scores: since the whole keystore file is en-
crypted, we can reduce the integrity check to a successful decryption, avoiding the computa-
tion overhead of the HMAC on the entire file.

4.7 Disclosure and Security Updates

We have timely disclosed our findings to Oracle and Bouncy Castle developers in May 2017.
The Oracle Security Team has acknowledged the reported issues with CVE IDs [120, 121]
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and has released most of the fixes in the October 2017 Critical Patch Update (CPU) [54]. In
the following list, we summarize the changes already published by Oracle:

• keytool suggests to switch to PKCS12 when JKS or JCEKS keystores are used;

• improved KDF strength of the PBE in JCEKS by raising the iteration count to 200,000.
Added a ceiling value of 5 millions to prevent parameter abuse;

• in PKCS12 the iteration count has been increased to 50,000 for confidentiality and
100,000 for integrity. The same upper bound as in JCEKS is introduced;

• fixed the first JCEKS deserialization vulnerability described in Section 4.5.3 by check-
ing that the object being deserialized is of the correct type, i.e.,
SealedObjectForKeyProtector, and by imposing a recursion limit to prevent
infinite loops.

Additionally, Oracle informed us that a fix for the second JCEKS deserialization vulnerability
is planned for release in the January 2018 CPU [132].

In version 1.58 of the library, Bouncy Castle developers fixed the parameter abuse vul-
nerability of BCPKCS12 by adding an optional Java system property that imposes an upper
bound for the KDF iteration count. Moreover, they have committed in the development
repository the following changes that will appear in version 1.59:

• in BCFKS, the iteration count is raised to 51,200 for both confidentiality and integrity;

• in BCPKCS12, the iteration count is increased to 51,200 and 102,400 for confidential-
ity and integrity, respectively.

Table 4.3 outlines the improved security guarantess offered by keystore implemenations fol-
lowing the fixes released by Oracle and Bouncy Castle. Additionally, in Figure 4.4 we show
the updated results of the brute-force resistance benchmarks to reflect the improved KDF
parameters. JCEKS and BCFKS now offer the best resistance to offline brute-force attacks
of the confidentiality password. However, JCEKS still provides the weakest integrity mech-
anism. Thus, if the same password is used both for key encryption and for keystore integrity,
then the increased protection level can easily be voided by attacking the latter mechanism.
On the other hand, both the confidentiality and the integrity mechanisms have been updated
in PKCS12. This keystore, which is now the default in Java 9, offers a much higher security
level with respect to the previous release.

4.8 Conclusion

Keystores are the standard way to store and manage cryptographic keys and certificates in
Java applications. In the literature there is no in-depth analysis of keystore implementations
and the documentation does not provide enough information to evaluate the security level
offered by each keystore. Thus, developers cannot make a reasoned and informed choice
among the available alternatives.
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(A) Speed comparison of password recovery at-
tack for key encryption (confidentiality).

(B) Speed comparison of password recovery at-
tack for keystore integrity, considering different

keystore sizes.

FIGURE 4.4: Revised password cracking benchmarks after library updates.

In this chapter we have thoroughly analyzed seven keystore implementations from the
Oracle JDK and the Bouncy Castle library. We have described all the cryptographic mecha-
nisms used to guarantee standard security properties on keystores, including offline attacks.
We have pointed out that several implementations adopt non-standard mechanisms and we
have shown how this can drastically speed-up the brute-forcing of the keystore passwords.
Additionally, we reported new and unpublished attacks and defined a precise threat model
under which they may occur. These attacks range from breaking the confidentiality of stored
keys to arbitrary code execution on remote systems and denial of service. We also showed
how a keystore can be potentially weaponized by an attacker to spread malware.

We have reported the security flaws to Oracle and Bouncy Castle. Most of the issues in
the Oracle JDK have been fixed in the October 2017 Critical Patch Update [54] following
CVE IDs [120, 121]. Similarly, Bouncy Castle developers committed changes to address
several problems discussed in this work.

Following our analysis and succeeding fixes, it appears evident that the security offered
by JKS, the default keystore in Java 8 and previous releases, is totally inadequate. Its im-
proved version JCEKS still uses a broken integrity mechanism. For these reasons, we favor-
ably welcome the decision of Oracle to switch to PKCS12 as the default keystore type in the
recent Java 9 release. After the previously discussed updates this keystore results quite solid,
although certificate protection is bogus and key encryption relies on legacy cryptography.

Alternatives provided by Bouncy Castle have been found to be less susceptible to at-
tacks. Among the analyzed keystores, the updated BCFKS version clearly sets the stan-
dard from a security standpoint. Indeed, this keystore relies on modern algorithms, uses
adequate cryptographic parameters and provides protection against introspection of keystore
contents. Moreover, the development version of Bouncy Castle includes preliminary support
for scrypt [135, 136] in BCFKS, a memory-hard function that requires significant amount of
RAM. Considering the steady nature of keystore files, we argue that in addition to approved
standard functions, it would be advisable to consider future-proof cryptographic primitives
so to be more resistant against parallelized attacks [29, 34].
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Conclusion

In this thesis we took a retrospective look at different attacks against web sessions and we
surveyed the most popular solutions against them. For each solution, we discussed its secu-
rity guarantees against different attacker models, its impact on usability and compatibility,
and its ease of deployment. We then synthesized five guidelines for the development of
new web security solutions, based on the lesson learned from previous experiences. Then
we presented WPSE, the first browser-side security monitor designed to address the security
challenges of web protocols, and we showed that the security policies enforceable by WPSE
are expressive enough to prevent a number of real-world attacks against the OAuth 2.0 au-
thorization protocol. Our analysis is based both on a review of well-known attacks reported
in the literature and an extensive experimental analysis in the wild, which exposed several
undocumented security vulnerabilities fixable by WPSE in existing OAuth 2.0 implementa-
tions. We also showed that WPSE works flawlessly on the large majority of the websites we
tested, concluding that the browser-side security monitoring of web protocols is both useful
for security and feasible in practice.

For what concerns cryptographic applications, we presented two contributions aimed at
preventing the leakage of sensitive keys. The first one solves the problem of leaking a key in
the clear by exploiting particular sequences of legal cryptographic API calls. The approach
presented is based on the analysis of cryptographic API logs. Log analysis is interesting
because it has a very low impact on existing systems and thus it could be deployed on top
of industrial systems, financial applications and critical infrastructures without major issues.
Additionally, we have thoroughly analyzed seven keystore implementations, cryptographic
storage facilities from the Oracle JDK and the Bouncy Castle library. We have assessed all
the cryptographic mechanisms used to guarantee standard security properties on keystores
and reported on new and unpublished critical attacks. These attacks range from breaking
the confidentiality of stored keys to arbitrary code execution on remote systems and denial
of service. We also showed how a keystore can be potentially weaponized by an attacker
to spread malware. Finally, we discussed the advancements on the security of Oracle and
Bouncy Castle keystore implementations following our responsible disclosure.
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