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Graph theory has long been studied in mathematics and probability as a tool for describing
dependence between nodes. However, only recently it has been implemented on data, givin
birth to the statistical analysis of real networks.

The topology of economic and financial networks is remarkably complex: it is generally
unobserved, thus requiring adequate inferential procedures for it estimation, moreover not
only the nodes, but the structure of dependence itself evolves over time. Statistical and
econometric tools for modelling the dynamics of change of the network structure are lacking,
despite their increasing requirement in several fields of research. At the same time, with the
beginning of the era of “Big data” the size of available datasets is becoming increasingly
high and their internal structure is growing in complexity, hampering traditional inferential
processes in multiple cases.

This thesis aims at contributing to this newborn field of literature which joins probability,
economics, physics and sociology by proposing novel statistical and econometric method-
ologies for the study of the temporal evolution of network structures of medium-high di-
mension.
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by Matteo IACOPINI

La théorie des graphes a longtemps été étudiée en mathématiques et en probabilité en tant
qu’outil pour décrire la dépendance entre les nœuds. Cependant, ce n’est que récemment
qu’elle a été mise en œuvre sur des données, donnant naissance à l’analyse statistique des
réseaux réels.

La topologie des réseaux économiques et financiers est remarquablement complexe: elle
n’est généralement pas observée, et elle nécessite ainsi des procédures inférentielles adéquates
pour son estimation, d’ailleurs non seulement les nœuds, mais la structure de la dépendance
elle-même évolue dans le temps. Des outils statistiques et économétriques pour modéliser la
dynamique de changement de la structure du réseau font défaut, malgré leurs besoins crois-
sants dans plusieurs domaines de recherche. En même temps, avec le début de l’ère des
“Big data”, la taille des ensembles de données disponibles devient de plus en plus élevée et
leur structure interne devient de plus en plus complexe, entravant les processus inférentiels
traditionnels dans plusieurs cas.

Cette thèse a pour but de contribuer à ce nouveau champ littéraire qui associe proba-
bilités, économie, physique et sociologie en proposant de nouvelles méthodologies statis-
tiques et économétriques pour l’étude de l’évolution temporelle des structures en réseau de
moyenne et haute dimension.
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C.14 ACF of Frobenious norm of the difference between the true tensor G∗l and the
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Chapter 1

Introduction

The secret of getting ahead is getting started.

MARK TWAIN

Statistics is the grammar of science.

KARL PEARSON

Mathematicians do not study objects, but relations
between objects.

HENRI POINCARÉ

1.1 Preliminaries

This section is devoted to the introduction and description of some classes of complex or
structured datasets, whose relevance to the econometric and statistical research has greatly
increased in the last years. “Structured” data are those possessing an intrinsic or natu-
ral structure, which is reflected, for instance, in the way the data is collected (e.g., panel
data) or in the type of object under study (e.g., images, input-output tables, or even three-
dimensional objects). The term “complex” instead refers to the situation in which the data
cannot be easily visualized, treated and interpreted by means of standard multivariate statis-
tics tools.

1.1.1 Networks

Historically, the study of networks has been mainly the domain of a branch of discrete math-
ematics known as graph theory (see Bollobás (2012), Bollobás (2013) in mathematics, Lau-
ritzen (1996), Whittaker (2009) in statistics, Jackson (2010) in economics and Diebold and Yil-
maz (2015) in finance). In addition to the developments in mathematical graph theory, the
research on networks has seen important achievements in some specialized contexts such as,
economics, finance and social sciences, just to mention a few. The interconnections among
economic agents have different interpretation according to the specific application, which
ranges from trade between firms or countries, to personal relations among individuals, as
well as to bilateral exposures among financial institutions.

The last decade has witnessed the birth of a new movement of interest and research in the
study of complex networks (i.e. networks whose structure is irregular, complex and dynam-
ically evolving in time), with the main focus moving from the analysis of small graphs to that
of systems with thousands of nodes, and with a renewed attention on the properties of dy-
namic networks. The seminal papers of Watts and Strogatz (1998) and Barabási and Albert
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(1999) have triggered this flurry of activity within the physics’ community at the beginning
of the 2000s, however it is right after the outbreak of the 2007 financial crisis that network
analysis has attracted significant interest from several other areas of research, such as eco-
nomics, econometrics, statistics and finance. In fact, the global financial crisis has shown that
liquidity and valuation shocks may quickly propagate across the economic system through
the linkages among the financial institutions operating in different markets, thus causing
widespread losses with sizeable cascade effects. Consequently, understanding the dynam-
ics of the linkages between institutions has become of paramount importance especially for
policy-makers, both aiming at preventing an increase of the systemic risk and at improving
the effectivness of forecasting tools about contagion and spillover effects (see Forbes and
Rigobon (2001) and Forbes and Rigobon (2002) for a definition of financial contagion and
brief review).

Many authors have found the complex interconnections between financial institutions
or economic sectors to be the vulnerabilities responsible for the amplification of shocks, for
instance, see Acemoglu et al. (2012), Gabaix (2011), Gai et al. (2011), Billio et al. (2012), Ace-
moglu et al. (2016), Billio et al. (2015b)). All these approaches exploit the notion of graphical
structure, or network1, to represent the interdependencies between financial or economic
institutions. The need for understanding and mastering this class of objects is becoming
crucial in economics and finance, as well as in many other fields, such as image and signal
processing, biology and sociology.

The main motivation for the use of networks is that many real-world systems are too
complex and intricate for humans to learn from, thus a compact yet flexible tool is needed
for the identification of the main characteristics of such systems. The principal scope of net-
works is to provide a suitable framework for representing the relationships between a set
of variables (or agents) in a complex system. Thanks to suitable visualization tools, graph-
ics are able to provide an intuitive interpretation of these interactions by shading light on
the direct and indirect connections among the agents. The knowledge of linkages is fun-
damental since they represent the channel through which phenomena hitting a single node
subsequently propagate to the others, over space and time. Moreover, the knowledge of
the network topology permits to precisely identify the role of the key linkages (and nodes)
in this transmission process, as opposed to standard multivariate econometric tools. Con-
sidered together, these features represent the main drivers of the success of networks and
graphical models especially in analysing contagion and systemic risk, and, more generally,
in the description of complex dependence structures between economic variables.

Recently, network analysis has been further supported by a series of papers that have
shown its in- and out-of-sample superior performance over traditional, correlation-based
approaches (see Forbes and Rigobon (2001), Forbes and Rigobon (2002), Billio et al. (2012)
and Diebold and Yilmaz (2014) among others). The analysis and modelling of economic
and financial networks is currently a challenging area of research (e.g., see Schweitzer et al.
(2009) and Diebold and Yilmaz (2015)). In economics, the seminal works by Acemoglu et al.
(2012) and Gabaix (2011) have shed light on the role of sectoral interconnections in spread-
ing the idiosyncratic shocks and, consequently, in generating significant fluctuations at the
macro level. Network analysis has also proven to be a powerful tool for understanding the
systemic vulnerabilities of the economic and financial systems. Acemoglu et al. (2015), Ace-
moglu et al. (2016) and Battiston et al. (2012) studied the role of the network topology in
negative shock transmission (or contagion) and its contribution to the determination of sys-
temic risk. Other authors have used graphical models for highlighting the structure of in-
terconnections among financial markets and the fundamental macroeconomic sectors (e.g.,
see Kali and Reyes (2010)) and for explaining the relations among financial asset returns
and volatilities (Diebold and Yilmaz (2014)). Several other networks have been analysed in

1The terms “graph” and “network” will be used interchangeably in the rest of the thesis, despite they pertain to differ-
ent fields of study. Mathematics and probability use the word graph to refer to an abstract entity, whereas physics, applied
statistics and social sciences adopt the term network and refer to a precise observed object, either directly observed or
inferred from available data.
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recent years: Battiston et al. (2007) studied the structure of the international financial net-
work given by direct investments; Vitali et al. (2011) performed a micro-level analysis by
exploiting data on corporate controls; networks with bipartite structure of the edges have
been studied by Tumminello et al. (2011), whereas Bonanno et al. (2004) discussed the char-
acteristics of a financial network inferred from equity data, rather than returns.

As many economic and financial networks are not observed, often the latent structure
must be inferred from data. Early studies in econometrics thus focused on the definition of
algorithms for the estimation of the graphical structure from financial from time series, by
means of Granger non-causality or other suitable conditional independence testing proce-
dures (e.g., see Billio et al. (2012), Barigozzi and Brownlees (2016)). Gaussian graphical mod-
els have been widely used in statistics as an instrument for both estimating and modelling
a latent network. Thanks to the properties of the normal distribution, all the dependence
between the random variables is encoded in the covariance matrix, thus reducing the pro-
cess of network extraction to the estimation of the covariance (or the precision) matrix of the
joint distribution. Several approaches have been proposed in the literature to solve this task,
both in the frequentist and in the Bayesian framework (e.g., see Yuan and Lin (2007), Ra-
jaratnam et al. (2008), Wang and West (2009), Carvalho and West (2007), Giudici and Spelta
(2016), Jones and West (2005), Scott and Carvalho (2008), Cerchiello and Giudici (2016), Wang
et al. (2011), Yoshida and West (2010)). With the aim of scaling with high-dimensional
datasets, Friedman et al. (2008) and Meinshausen and Bühlmann (2006) proposed a graphi-
cal lasso estimator for inferring large but sparse covariance matrices (see Wang (2012) for a
Bayesian approach), whereas Brownlees et al. (2017) developed a similar regularized estima-
tion procedure for the realized precision matrix estimated from high-frequency data. On the
other side, Carvalho et al. (2007) and Dellaportas et al. (2003) proposed two Bayesian esti-
mation procedures applicable, respectively, under the assumption that the underlying graph
is decomposable or not. The introduction of observed or inferred graphical structures has
greatly improved the performance of financial econometric models both in terms of fitting
and forecasting and has favoured thorough studies on financial contagion and systemic risk
(e.g., see Carvalho and West (2007), Ahelegbey et al. (2016a), Ahelegbey et al. (2016b), Corsi
et al. (2015), Hautsch et al. (2014), Billio et al. (2015b), Caporin et al. (2017)). Under simi-
lar assumptions structural instabilities in graphical models have been considered in Bianchi
et al. (2018).

The range of empirical findings from this stream of literature is huge and varies accord-
ing to the specific application under study. Nonetheless, several authors (e.g., see Fagiolo
et al. (2010), Billio et al. (2012), Chinazzi et al. (2013), Billio et al. (2015a)) have found a char-
acteristic that is common to many economic and financial networks: the temporal change
of their topological structure. The implications of this stylized fact are remarkable. As the
graph represents the set of dependence relations between the variables of interest, its change
signals the variation of the interconnections and, consequently, of the financial and economic
implications that it carries on. For instance, as shown in Acemoglu et al. (2015), the systemic
risk varies according to the topology of the underlying network, thus a structural change of
system of interconnections represented by the graph may imply a significant change of the
systemic risk.

These findings have stressed the need for a set of suitable statistical frameworks able
to describe its most relevant characteristics and their economic and financial externalities.
There exist several approaches for network modelling in social sciences, starting from the
Bernoulli random graph of Erdös and Rényi (1959) and including exponential random graph
models, or ERGMs (Frank and Strauss (1986), Holland and Leinhardt (1981), Robins et al.
(2007), Caimo and Friel (2011), Thiemichen et al. (2016)), latent space models (Handcock
et al. (2007), Hoff et al. (2002), Rastelli et al. (2016), Friel et al. (2016)), stochastic block models
(Nowicki and Snijders (2001), Wang and Wong (1987)) and their extension to mixed member-
ship models (Airoldi et al. (2008)). The class exponential random graph models is concerned
with the specification of a generative model for random graphs which is able to replicate a
set of network characteristics as reported by user-defined statistics. Instead, stochastic block
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and mixed membership models focus on the identification of clusters of nodes, that is blocks
of nodes which are characterized by high degree of intra-component connectivity and low
inter-component connections. Finally, latent space approaches aim to embed network infor-
mation into some (usually low dimensional) latent space, which is sometimes interpreted as
the space of individual node’s unobserved features. The low dimensionality of this space
is exploited to perform the statistical network analysis before projecting the results back
into the original space. A compelling review of statistical models for social networks can
be found in Kolaczyk (2009), Goldenberg et al. (2010) and Jackson (2010), whereas de Paula
(2017) presents a summary of the major models of network formation used in economics.

In a fundamental recent work, Caron and Fox (2017) defined a new model for sparse
undirected random graphs, building on the notions of random measures used in Bayesian
nonparametrics and on edge exchangeability (see also Veitch and Roy (2015), Borgs et al.
(2016) and Cai et al. (2016) for other works founded on edge exchangeability). This remark-
able contribution bridges in fact the gap between existing random graph models, which
were suited for the generation and representation of dense graphs, and many real world
networks which have been found to be sparse (see Caron and Fox (2017) for some exam-
ples). Subsequent extensions of this baseline model were aimed at introducing further struc-
ture in the generating mechanism, thus allowing the resulting graph to reproduce the main
features of real world networks. Williamson (2016) extended the original model of Caron
and Fox (2017) for allowing clustering of the edges, with the aim of improving forecasting
performance, then she applied the method on the Enron e-mail dataset. The contempora-
neous work by Todeschini and Caron (2016), instead, proposes a framework where nodes
(i.e. airports) group together forming communities2 (i.e. hubs). Finally, Palla et al. (2016)
introduced temporal dependence in discrete time between two realizations of the random
graph process, then applied the method for the study of three high-dimensional single-layer
temporal networks.

The statistical approaches mentioned above provide effective methods for studying some
specific network characteristics, but all of them share a common feature: they are designed
for the study of static networks. They are useful in the analysis of a single, or an independent
sequence of graphs, and do not give any tool for capturing the dynamic features of the
underlying structure.

1.1.2 Temporal and multi-layer networks

A step forward in this direction has been done by a second generation of statistical network
models, explicitly designed to account for the time varying topology (e.g., see Wehmuth
et al. (2015) and Holme and Saramäki (2013) for a compelling review and Fig. 1.1 for a visual
example). This stream of literature has originated in physics and focuses on the definition
of network statistics able to describe the features of the graph which stem from its dynam-
ical nature. The main interest here is the identification of the most important features of a
temporally evolving graph, with the aim of proposing a generative random graph model
able to reproduce synthetic characteristics of observed networks. Having this goal, many
works such as Holme (2005) and Holme and Saramäki (2012) do not properly investigate
the dynamics of the network, but consider the temporal dimension as an additional source
of information to be exploited for defining more accurate network statistics.

In parallel, the economic community has started to study dynamic graphs from a dif-
ferent perspective, which is closer to the point of view of this thesis. Recent studies such
as Zhou et al. (2010) and König et al. (2017) proposed a framework for inferring a time
varying network structure from the data. This field of literature is mainly concerned with
the estimation of a temporally evolving adjacency matrix that encodes the network struc-
ture (for example, Nakajima and West (2015), Bräuning and Koopman (2016), Giraitis et al.
(2016), Kolar et al. (2010)). Building on the work of Frank and Strauss (1986), Robins and

2Their identification relies on external additional information.
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FIGURE 1.1: Temporal snapshots of a time varying single-layer network, starting
from t = 1 (top left) to t = 10 (bottom right). Directed edges are clockwise ori-
ented and coloured according to the corresponding weight (red for positive, blue

for negative.

Pattison (2001) proposed a version of the p∗ model for temporal random graphs, by using
the network structure in one period as predictor for the next period’s. Some authors have
adopted a different perspective and have extended the class of exponential random graph
models to encompass also temporal information though the definition of the family of tem-
poral exponential random graph models, or TERGMs (e.g., see Hanneke et al. (2010), Kriv-
itsky and Handcock (2014)). Another path has been followed by Sewell and Chen (2015),
who generalized latent space models by allowing the nodes projected into the latent space
to follow a temporal trajectory.

Recently, Mazzarisi et al. (2017) proposed a model which combines the intuitions of latent
variables and autoregressive dynamics, by assuming a dynamic model of network formation
where the edge’s probability depends both on its existence during the previous period and
on the unobserved nodes’ features. Conversely, Betancourt et al. (2017) specified a model for
the joint probability of couples of edges of a dynamic binary network in terms of individual
edges’ propensity to form a link.

The concept of network presented up to this point pertains a structure with a single
layer (or stratum). However, in the real world there are situations where the same agents or
entities are repeatedly observed according to a different criteria. For example, the friendship
relations among the same collection of individuals may be traced on several on-line social
networks, each one representing a specific layer. By collecting together all the layers (or
strata) a multi-layer (or multiplex) network3 is obtained (see Boccaletti et al. (2014), Kivelä
et al. (2014) and Dickison et al. (2016) for a review). The degree of complexity of these
structures can be significantly higher than the single-layer counterpart, due to the possible
interconnections that may exist between the nodes or the edges belonging to different layers.
For the same reason, however, multi-layer graphs are a very flexible tool apt for modelling
complex real world phenomena in several, and apparently unrelated, disciplines.

Multiplex networks have been introduced in applied studies only in the last decade,
nonetheless their usefulness as a statistical tool in modelling has fostered their rapid growth
in popularity and currently multi-layer graphs are among the main instruments for repre-
senting and studying the behaviour of complex systems. One of the most important domain
of application pertains the assessment of systemic risk (e.g., Montagna and Kok (2016), Al-
dasoro and Alves (2016) and Poledna et al. (2015)) and the identification of contagion chan-
nels (e.g., Mistrulli (2011)) in the interbank network, where the different layers represent
several types of bilateral exposures. A different research question that has been addressed
pertains the identification of hidden communities (e.g., Barigozzi et al. (2011), Gurtner et al.

3In the particular case where the subjects are the same over all layers, the multi-layer network is said to be node-aligned.
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(2014), Bazzi et al. (2016)). Instead, Bargigli et al. (2015) and Cozzo et al. (2016) focused
on the definition of suitable metrics and network statistics able to provide a synthetic de-
scription of the main features of multi-layer graphs and found that, in general, even the
standard measures used in single-layer network analysis may yield significantly different
results when applied in this context.

The introduction of several layers allows to answer many interesting research ques-
tions in other, related fields. A line of research which joins applied probability, finance
and epidemiology is concerned with the study of diffusion (or spreading) processes along
the paths identified by the links of a network. From this perspective, Kivelä et al. (2012)
and De Domenico et al. (2016) studied the characteristics of a spreading process which per-
colates across the layers of a multiplex network and revealed some channels of contagion
which single-layer graphs failed to detect.

Other scientific domains where the introduction of multiplex networks has represented a
turning point of the research include neuroimaging and medicine. Here, multiplex networks
provided a better description of human brain (e.g., see Battiston et al. (2017), Beckmann and
Smith (2005), Estienne et al. (2001), Miwakeichi et al. (2004), Davidson et al. (2013), Damoi-
seaux et al. (2006), Rubinov and Sporns (2010)), transportation (Gallotti and Barthelemy
(2015)) and social network analysis (e.g., Acar et al. (2006), Acar et al. (2005), Kolda et al.
(2005), Murase et al. (2014)).

As for economic and financial networks, also their temporal and multi-layer counter-
parts are generally not observed, thus calling for statistical procedures for extracting net-
works from data. However, the additional features embedded by these two classes, namely
time variations and multiple layers, call for different estimation techniques. In this con-
text few results are available in the literature: Hanneke et al. (2010) and Pensky (2016) de-
signed a procedure valid only for temporal exponential random graphs and graphons, re-
spectively, whereas Oselio et al. (2014) and Stanley et al. (2016) considered multi-layer and
multiplex stochastic block models, respectively. The two approaches which can have wider
range of applicability have been suggested in the recent papers of Nakajima and West (2015)
and Bianchi et al. (2018).

1.1.3 Multi-dimensional datasets

Most statistical methods are used to analyse the scores of objects (for example subjects,
groups, countries) on a number of features, or variables, and the resulting data can be ar-
ranged in a 2-order array, or matrix. However, nowadays data are often far more complex.
For example, the data may have been collected under a number of conditions and at several
time stamps. When another profile or dimension is considered in addition to the previ-
ous two (i.e. subject and features), then the data become 3-order arrays, or more generally,
multi-way arrays4 (see Fig. 1.2). In such a case, there is a matrix for each condition, thus the
data can be naturally arranged by stacking one matrix behind the other in to form an hyper-
rectangle, or 3-order tensor (see Appendix A.1 for a formal definition). As more dimensions
are added to the data, it is possible to iterate the same procedure and obtain higher-order
tensors or multi-way arrays (see Fig. 1.3 for an example). The collection of mathematical
and statistical techniques designed to deal with and analyze multi-way data are referred to
as tensor calculus (see Hackbusch (2012)) and multi-way methods (see Smilde et al. (2005)),
respectively. We refer to Appendix A.1 for further details.

As opposed to tensor analysis (see Appendix A.1 for an introduction on tensor operators
and decompositions), which deals directly with array-valued data without need of trans-
forming them, both multivariate or matrix models require to firstly vectorize or matricize
the array of data. In both cases the idea is to reshape the data into a long vector or a matrix,
respectively, thus eliminating all the remaining dimensions. This has two main implications:
first, it precludes the exploitation of any information naturally embedded in the structure of

4In this thesis we use the terms “tensor” and “array” interchangeably. The origins of the first term are related to
mathematics and physics, while the latter is more commonly used in computer science.
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FIGURE 1.2: Example of 2-order (i.e. matrix or two-way) and 3-order (i.e. tensor
or three-way) arrays.

FIGURE 1.3: Example of tensor, from 1-order (top left) to 6-order (bottom-right).

the raw data; second, the transformed variables may still be too big for standard methods to
apply.

Multi-country panels. Many economic data have been collected for years in the shape of
long vectors or matrices. One of the most well-known example of matrix-variate dataset re-
gards country-level sectoral input-output tables, which report the bilateral inflow and out-
flow of goods and services between any sector of a national economy. Recently, the higher
computational capacity, the bigger storage capacities and the creation of the European Eco-
nomic Union5 have greatly fostered the development of this kind of data. The harmoniza-
tion of the standards has permitted to merge together the information from several countries
and to build world or multi-country input-output tables (see Timmer et al. (2015) for an intro-
duction), which consist of a time series of sectoral input-output tables, for different coun-
tries. The nature of these datasets is clearly high-dimensional: the cross-sectional country
level is divided according to the sectors of the economy and observed over time. Therefore,
it seems evident that for effectively exploit the entire potential of these data it is first of all
necessary to represent, store and manage these complex and high-dimensional objects in a
proper way. Early studies using multi-country input-output tables (e.g., see Dietzenbacher
et al. (2013), Lenzen et al. (2010), Lenzen et al. (2004), Wixted et al. (2006), Sanz Díaz et al.
(2015)) have tried to exploit matrix tools for performing statistical analysis, but novel and
more accurate and results are expected from the introduction and exploitation of appropri-
ate structures for the variables.

The last decade has also been characterized by the increasingly availability of data on in-
ternational trade (for example, from UN COMTRADE6), which collect bilateral import/export
relations divided by commodity and over time, and international capital flows (for exam-
ple, form the Bank of International Settlements7), that report bilateral inflows/outflows of
financial capital divided by type and over time. These data have the intrinsic structure of a

5Nonetheless, analogous datasets are currently available for many countries worldwide (e.g. see
http://www.oecd.org/sti/ind/inter-country-input-output-tables.htm).

6https://comtrade.un.org
7https://www.bis.org/index.htm

http://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
https://comtrade.un.org
https://www.bis.org/index.htm
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4-dimensional array (for example, a typical entry of the international trade dataset is repre-
sented by the tuple country, country, commodity, time). This is the main reason why models
based on vectors and matrices are unable to provide an accurate representation, thus requir-
ing the introduction of novel constructions for performing meaningful statistical analyses.
During the last decade, these datasets have been subject to a thorough study aimed at uncov-
ering its topological characteristics and their temporal change, at identifying hidden com-
munities of countries and at defining new significative measure of synthesis of the network
structure (for instance, see the papers by Barigozzi et al. (2011), Zhu et al. (2014), Fagiolo
(2010), Schiavo et al. (2010), Fagiolo et al. (2008), Fagiolo et al. (2009), Hidalgo and Haus-
mann (2009) and Squartini et al. (2011)). The COMTRADE dataset has also been utilized for
studying the resilience of the international trade network to external shocks and the tempo-
ral change of its topology (e.g., see Chinazzi et al. (2013), Fagiolo et al. (2010), Kharrazi et al.
(2017) and Meyfroidt et al. (2010)).

Another relevant field of research in economics hinges on multi-country datasets for un-
dertaking macroeconomic analysis and supporting policy-makers in forecasting. The class
of multi-country panel vector autoregressive (VAR) models, introduced by Canova and Ci-
ccarelli (2004), have become increasingly popular during the last decade and are currently
one of the most relevant tools for macro-econometric studies (e.g., see Love and Zicchino
(2006), Canova and Ciccarelli (2009), Canova et al. (2007), Canova et al. (2012), Canova
and Ciccarelli (2013), Grossmann et al. (2014), Koop and Korobilis (2016), Lof and Mali-
nen (2014), Billio et al. (2016)). Other researchers used multi-country panel data mainly
for the sake of forecasting and time series analysis (e.g., see Korobilis (2016), Chudik et al.
(2016), Sarantis and Stewart (2001), Weber and Matthews (2007)). All the mentioned mod-
els are able to exploit only a fraction of the available information, since they are essentially
multivariate dynamic models, and are unable to cope with the high-dimensionality of the
dataset. Furthermore, the process of vectorization of array-valued data implies that all in-
fomation naturally embedded in its structure is lost, thus empowering the efficiency of the
statistical analysis. The state-of-the-art on macroeconometric models consists in VAR mod-
els with deterministic (i.e. panel VAR) or stochastic (i.e. compressed VAR, see Koop et al.
(2018), graphical VAR, see Ahelegbey et al. (2016a), stochastic search for VAR restrictions,
see George et al. (2008)) restrictions aimed at reducing the dimension of the parameter space.
Neither approach is fully satisfactory, since all are currently unable to fully exploit the orig-
inal structure of the data.

Volatility surface. In the field of financial econometrics, the study of the implied volatility
surface has attracted particular attention in the recent years (see Gatheral (2011) for a re-
view). Implied volatility differs from historical (or realized) volatility. The latter is a direct
measure of the movement of the corresponding underling’s price over recent history; by
contrast, implied volatility is determined by the market price of a derivative contract and
not the underlying (thus there exists several implied volatilities for the same underlying).
The implied volatility surface is the implied volatility of European options on a particular
asset viewed as a function of strike price and time to maturity (Gatheral (2011)). Several
parametric and semi-parametric methods have been proposed for estimating this bivariate
function (see Homescu (2011) and Fengler (2012) for a review), alternatively nonparametric
estimation via spline interpolation proved to be a valid alternative (Bliss and Panigirtzoglou
(2002), Casarin et al. (2015)). In the following example, without loss of generality consider
the latter approach (a similar reasoning holds also in the other cases). In all cases, the raw
datasets consists of a discrete grid where each point is a tuple of implied volatility corre-
sponding to a strike price at a given time to maturity. From this it is evident that the data
is a three-dimensional object with a precise structure encoded by the definition of implied
volatility surface.

In addition, the level of implied volatilities has been found to change over time (e.g.,
see Skiadopoulos et al. (2000)), thus continuously deforming the volatility surface. Nonethe-
less, recent studies (e.g., Cont and Da Fonseca (2002), Daglish et al. (2007), Fengler et al.
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(2007), Vergote and Gutiérrez (2012), Casarin et al. (2015)) have ignored the natural tuple-
structure of the volatility surface focusing only on the modelling in one or two dimensions
the volatility.

Social networks. Complex data structures also arise in extracting relationships in social
networks (see Scott (2017), Wasserman and Faust (1994), Jackson (2010)). The main pur-
pose of this analysis is to discover and characterize the hidden structures in social networks
(Borgatti et al. (2009)): for instance, extracting communication patterns among people or
within organizations. Despite the different purpose and the fact that, in general, social net-
works are directly observed (or at least data on them can be collected more accurately then
in finance), they share some similarities with the economic and financial counterparts pre-
viously presented. Most important of all, the fact that the raw data are collected in the same
shape, that is of matrices or higher-order arrays. For example, Acar et al. (2005) and Acar
et al. (2006) studied a chat room communication dataset, where each datum corresponds to
the tuple users, keywords and time samples, thus representing a 3-order tensor as a whole.
Similarly, Kolda et al. (2005) in studying web links has dealt with a three-dimensional array,
with dimensions corresponding to web pages, web pages and anchor text, respectively.

The study of social networks has remarkable implications in several related fields of
study, such as economics (e.g., Calvo-Armengol and Jackson (2004), Jackson (2010)) and
medicine (e.g., Christakis and Fowler (2008)). Several studies have been proposed to un-
cover the mechanisms of link formation and the dynamics of the network in general (e.g.,
see Jackson and Watts (2002), Jackson and Wolinsky (1996)), mostly by modelling the be-
haviour of the single agents (i.e. the nodes of the network) and their relationships with each
other (i.e. the edges). It is worthy to stress that social network data is generally richer than
its financial counterpart, partially thanks to the observability of social relationships and in-
dividual features. This fact puts more in evidence the structured nature of social network
data and, consequently, the increasing need for suitable objects able to couple with it.

Neuroimaging. Complex and structured data are often encountered also in neuroimaging
and, more generally, in image processing. It has been shown in numerous studies in neuro-
science that information contained in the data may not be accurately captured or uniquely
identified by classical matrix analysis methods (e.g., see Estienne et al. (2001), Beckmann and
Smith (2005), Damoiseaux et al. (2006), Davidson et al. (2013), Miwakeichi et al. (2004)). In
particular, datasets composed by electroencephalogram (EEG) and functional magnetic res-
onance imaging (fMRI) can consist of a sequence of 2-dimensional (2D) images of slices of
the brain, or in the whole 3-dimensional (3D) brain volume. The temporal resolution of the
data depends on the time between acquisitions of each individual volume: typically, brain
volumes of dimensions 64× 64× 30 are collected at several hundreds of time stamps. More-
over, the experiment is often repeated for many subjects. It is clear that fMRI data analysis
is a time series analysis problem of massive proportions.

Each data point is characterized by a physical location in a 3-dimensional space and
by the value of the response to the stimulus, thus yielding a tuple of four elements where
each entry has a specific meaning which is not interchangeable. This is a key information
that should always be taken into account. By contrast, the standard approach towards the
statistical analysis of 3D images consists in limiting the study to a sub-sample consisting
of a sequence of 2D slices (Lindquist (2008)). Therefore, it appears that this methodology
is inefficient, due to the inability to effectively exploit all the available information. Recent
developments (e.g., Beckmann and Smith (2005), Damoiseaux et al. (2006), Davidson et al.
(2013), Miwakeichi et al. (2004)) in this field have proposed to tackle this issue by using high-
dimensional tensors, which represent the natural shape of the raw data, for exploiting the
available information, obtaining significantly better results.

A bridge between neuroimaging and economics has been provided by the recently born
field of neuroeconomics (e.g., see Camerer et al. (2005) and Bossaerts and Murawski (2015)).
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The key goals of the discipline are the determination of how choices were implemented
biologically and the identification of the involved neural circuitry. Given that the reaction
of human brain to stimuli is the core of the analysis, the main data sources used in this field
consist of EEG and fMRI, the previous observations about the structure of the data still hold.

Finally, another stream of research where high-dimensional structured data are becoming
increasingly popular is marketing. For example, Naik et al. (2008) analyzed an array made
of 4-dimensional data arrays including variables, alternatives, subjects and time. The press-
ing need for models dealing with at least 3-dimensional data arrays has been pointed out by
managers8 as the very next future of marketing for the definition of adequate customer pro-
files. Similarly, Dessart et al. (2016) used a high-dimensional dataset for studying consumer
engagement, whereas Balabanis and Diamantopoulos (2004) exploited a 4-dimensional ar-
ray of consumer-level data for examining the preference patterns of U.K. consumers for
domestic products and those originating from specific foreign countries for eight product
categories. Overall, Erevelles et al. (2016) explicitly considers the adoption of novel variable
formats able to accurately contain the data as one of the challenges that the era of “Big Data”
is posing to marketing.

1.2 Motivation

This thesis is centred on the development of novel statistical and econometric frameworks
for the analysis of time-varying networks, with a focus on medium-high dimensional cases9.
This Section provides a brief overview of the main research questions which motivate the
work of this thesis.

Overall, the state-of-the-art on statistical network modelling is at stack. Several empir-
ical studies have proved that the topology of economic and financial networks is subject
to non-negligible changes over time. Nonetheless, few attempts have been made for pro-
viding economically interpretable and computationally tractable statistical frameworks for
explicitly modelling the time-varying nature of network processes.

Despite the main interest of this thesis resides in the study of the dynamics of networks,
the techniques and models proposed have direct applicability also in other domains. The
pouring of large and structured datasets in many fields (e.g., economics, biology and so-
ciology) is calling for novel suitable statistical tools able to fully exploit the information
embedded in the data.

1.2.1 Dynamic networks

During the last decade, the scientific community in econometrics, economics and finance
has uncovered the role of networks in accounting for shock transmissions and in encoding
the dependence structure of relevant variables. Nonetheless, this field of research is still
at its infancy. Current widespread modelling efforts focus on the estimation of the latent
topological structure of the network from time series data or on the inclusion of a graph
in an econometric model for improving its performance. However, in most of these cases
the network structure is inherently static, despite several studies have revealed the change
of economic and financial networks over time (e.g., see Fagiolo et al. (2010), Billio et al.
(2012), Chinazzi et al. (2013), Billio et al. (2015a)).

The bulk of current studies on dynamic graphs stems from physics and is devoted to the
definition of novel measures and synthetic indicators which are able to describe the time
varying features of the network (e.g., see Casteigts et al. (2012)). Another part of the liter-
ature concerns the development of random graph models able to replicate these temporal

8https://marketing.cioreview.com/cxoinsight/the-future-of-marketing-creating-3dimensional-customer-profiles-in-
an-iot-frenzied-world-nid-24374-cid-51.html

9Citing Korobilis (2016): “if a VAR for a single country has G = 10 variables, then this would be of medium size. Once we
consider only, say, N = 5 such countries then the PVAR has 50 variables in total and can be considered large dimensional.”

https://marketing.cioreview.com/cxoinsight/the-future-of-marketing-creating-3dimensional-customer-profiles-in-an-iot-frenzied-world-nid-24374-cid-51.html
https://marketing.cioreview.com/cxoinsight/the-future-of-marketing-creating-3dimensional-customer-profiles-in-an-iot-frenzied-world-nid-24374-cid-51.html
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regularities (e.g., see Zhang et al. (2017)). In all these cases, the effects of the temporal evo-
lution of the network are analysed by means of sufficient statistics and indicators, but the
intrinsic dynamical process driving the change of the graphical structure is not studied.

Only few attempts have been made in very recent years to explicitly and directly model
the process of temporal change of a network. There is an increasing interest in pushing
forward the frontier of the research by providing suitable statistical models able to provide
a meaningful description of the dynamics of the network structure. These models might
have many interesting applications as complex networks are fundamental in several disci-
plines also outside economics, ranging from medicine to signal processing, from sociology
to statistics. Nonetheless, both the statistical and econometric literature on time series anal-
ysis are still lacking of suitable tools for performing this kind of analysis. The current state
of the research appears to be stuck: the scientific community is well aware of the dynamical
properties of real world networks, but it is still looking for effective approaches to model
these phenomena.

1.2.2 High-dimensionality

The last decade has been characterized by the exponential growth in the quantity and size of
data, such that it is possible to call the current state of the world the era of “Big Data”. This
era has brought plenty of new challenges to the scientific community, ranging from statis-
tics to computer science. High-dimensionality of data is one of the most important issues
to be addressed, due to its direct implications in theoretical statistics, from the theoretical
perspective, as well as in almost all the scientific domains, from an applied point of view. In
this thesis the term high-dimensionality is used to refer to two different cases: large datasets,
consisting of hundreds of variables observed in big sample sizes, and big data structures, to
be intended as the case in which the variables of interest have an intrinsic complex structure
(for example, they are naturally collected in the form of arrays).

The main challenge brought by high-dimensionality hinges on three strictly related is-
sues. First, it hampers data analysis since standard statistical models are most often unable
to deal with high-dimensional variables. Multivariate models, which represent the back-
bone of theoretical and applied statistics, as well as econometrics and machine learning, are
not sufficiently flexible to cope with array-valued data or even unable to deal with them.
This has fostered the use of dimensionality reduction techniques (see Fodor (2002), Camas-
tra (2003) and Sorzano et al. (2014) for a review) aimed either at selecting the subset of most
significant variables or at reshaping them into lower-dimensional objects. However, tech-
niques such as principal component analysis (PCA), factor models and matrix decomposi-
tions, which are the building blocks of this stream of literature, may be inapt to deal with
structured data. This has motivated a generalization of this methods to high-dimensional
variables. Lastly, both large datasets and complex structured variables require significant
computational effort even for performing simple analyses. Theoretical models must be
coupled with efficient computational algorithms in order to provide an effective answer
to the research question at hand. In many cases this may imply the infeasibility of current
widespread practices, such as standard multivariate models, thus requiring the develop-
ment of novel approaches.

Some remarks are in order. The first and most widespread attempts to model big data in a
multivariate framework has relied upon penalized estimation encouraging sparsity. Though
effective in cases where the number of variables to be accounted for is high as compared
to the sample size, they fail to model even structured data. Conversely, models of data
compression can achieve significant dimension reduction, but in general at the price of lack
of interpretability of the output.

This provides the motivation for the adoption of a different approach, through the use of
high-dimensional arrays, also called tensors. They generalize matrices to multi-dimensional
cases, thus providing a suitable way to store and represent several types of structured data,
such as multi-layer networks, multi-country panels, input-output and trade tables, but also
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functional MRI and EEG data. More than that, tensors have a significantly richer structure
than matrices (which are 2-dimensional tensors) and plenty of operations and decomposi-
tions have been defined on them, extending and going beyond well-known matrix algebra
tools. By means of these operators it is possible to define flexible tensor-valued processes
that extend and generalize multivariate econometric models, whereas tensor decomposi-
tions allow for significant dimensionality reduction without big losses of information.

Building on these instruments recently introduced in the statistical literature, this thesis
aims also at providing econometric models for high-dimensional, structured time series,
represented by networks.

1.3 Contribution

The contributions of the thesis can be summarized as follows:

• definition of econometric models for real-valued tensor-variate time series processes. A
new framework is presented for describing the autoregressive features of high-dimensional
arrays. This encompasses real-valued networks as a special case of particular interest,
but can be applied also to other frameworks where the object of interest is bi- or higher-
dimensional.

• definition of econometric models for dynamic binary arrays. The probability of each
entry is allowed to depend on a specific set of covariates, moreover both sparsity and
temporal clustering of the entries are explicitly modelled. This framework permits to
study the dynamics of edge formation and disruption in multi-layer binary networks
with a big number of nodes. Moreover, the model is extended to jointly model a mul-
tivariate series of relevant variables.

• proposal of computationally efficient algorithms for Bayesian estimation of the pro-
posed models, which scale well up to medium-high sizes. Even though MCMC algo-
rithms are not parallelizable, it is possible to exploit tensor decompositions in order to
parallelize computations inside each iteration, thus providing a remarkable speed-up.
In addition, several simulation studies are performed to demonstrate the scalability
and accuracy of the proposed methods.

• definition of a statistical framework for time-varying probability density functions. By
applying the methodology to copulas, it is possible to flexibly describe the dynamics
of the dependence structure between variables. Moreover, since density functions are
a particular class of constrained functions, the method can be extended also to other
cases.

• applications of the proposed models to time-varying economic and financial networks.
Datasets on networks of different size and nature are analysed from a temporal point
of view, with the aim of uncovering the determinants of their evolution as well as for
forecasting and impulse-response analysis.

1.4 Outline of the thesis

The structure of the thesis is as follows. In Section 1.1 we present the state of the art of the
literature on temporal network, with a focus on statistical and econometric modelling.

Chapter 2 presents a novel Bayesian econometric model that extends current widespread
multivariate models used in time series analysis. It is introduced the use of tensors
in an econometric model as a way for coupling with both the structure and the high-
dimensionality of the data. The general framework is first presented, then applied for
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studying the autoregressive nature of the topological structure of a real-valued net-
work. Extensive simulations are carried to prove the accuracy and computation effi-
ciency of the sampler in high-dimensional settings. The main contribution is the defi-
nition of a model able to capture the dynamics of matrix-valued time series processes,
of which real networks are a particular case, while retaining computational efficiency
and economic interpretability.

Chapter 3 describes a non-linear dynamical model for time-varying binary, directed net-
works. This framework allows for temporal clustering of the network structure, ac-
cording to a hidden Markov chain process, which drives both the observed sparsity
patterns and the individual edges’ probabilities. The main contribution is the defi-
nition of a model capable of describing the temporal evolution of the structure of a
network both globally, in terms of its sparsity, and individually, explicitly modelling
the dynamics of each edge’s probability. Moreover, the use of tensors together with a
Bayesian approach for the inference allow to couple with high-dimensional networks
with more than one hundred of nodes.

Chapter 4 presents a statistical framework for the nonparametric prediction of bivariate
probability density functions, focusing in particular on bivariate copulas. We follow
the frequentist approach for inference. The main contribution is the definition of a
process able to flexibly describe the temporal evolution of the dependence structure,
thus of the link in an undirected graph. Following the literature on vine copulas, it
is possible to interpret a set of random variables as nodes of a network, where each
edge is described by a specific bivariate copula function. From this perspective, the
proposed methodology can be used for modelling the temporal evolution of linkages
of an undirected network.
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Chapter 2

Bayesian Dynamic Tensor Regression

The art of doing mathematics consists in finding that
special case which contains all the germs of
generality.

DAVID HILBERT

Everything should be made as simple as possible, but
not simpler.

ALBERT EINSTEIN

2.1 Introduction

The increasing availability of large sets of time series data with complex structure, such as
EEG (e.g., Li and Zhang (2017)), neuroimaging (e.g., Zhou et al. (2013)), two or multidi-
mensional tables (e.g., ,Balazsi et al. (2015), Carvalho and West (2007)), multilayer networks
(e.g., Aldasoro and Alves (2016), Poledna et al. (2015)) has put forward some limitations
of the existing multivariate econometric models. In the era of “Big Data”, mathematical
representations of information in terms of vectors and matrices have some non-negligible
drawbacks, the most remarkable being the difficulty of accounting for the structure of the
data, their nature and the way they are collected (e.g., contiguous pixels in an image, cells
of matrix representing a geographical map). As such, if this information is neglected in the
modelling the econometric analysis might provide misleading results.

When the data are gathered in the form of matrices (i.e. 2-dimensional arrays), or more
generally as tensors, that is multi-dimensional arrays, a statistical modelling approach can
rely on vectorizing the object of interest by stacking all its elements in a column vector, then
resorting to standard multivariate analysis techniques. The vectorization of an array does
not preserve the structural information encrypted in its original format. In other words,
the physical characteristics of the data (e.g, the number of dimensions and the length of
each of them) matter, since a cell is highly likely to depend on a subset of its contiguous
cells. Collapsing the data into a 1-dimensional array does not allow to preserve this kind
of information, thus making this statistical approach unsuited for modelling tensors. The
development of novel methods capable to deal with 2- or multi-dimensional arrays avoiding
their vectorization is still an open challenging question in statistics and econometrics.

Many results for 1-dimensional random variables in the exponential families have been
extended to the 2-dimensional case (i.e. matrix-variate, see Gupta and Nagar (1999) for a
compelling review). Conversely, tensors have been recently introduced in statistics (see Hack-
busch (2012), Kroonenberg (2008), Cichocki et al. (2009)), providing the background for more
efficient algorithms in high dimensions especially in handling Big Data (e.g. Cichocki (2014)).
However, a compelling statistical approach to multi-dimensional random objects is lacking
and constitutes a promising field of research.
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Recently, the availability of 3-dimensional datasets (e.g., medical data) has fostered the
use of tensors in many different fields of theoretical and applied statistics. The main purpose
of this article is to contribute to this growing literature by proposing an extension of standard
multivariate econometric models to tensor-variate response and covariates.

Matrix models in econometrics have been employed over the past decade, especially in
time series analysis where they have been widely used for providing a state space represen-
tation (see Harrison and West (1999)). However, only recently the attention of the academic
community has moved towards the study of this class of models. Within the time series
analysis literature, matrix-variate models have been used for defining dynamic linear mod-
els (e.g., Carvalho and West (2007) and Wang and West (2009)), whereas Carvalho et al.
(2007) exploited Gaussian graphical models for studying matrix-variate time series. In a dif-
ferent context, matrix models have also been used for classification of longitudinal datasets
in Viroli (2011) and Viroli and Anderlucci (2013).

Viroli (2012) the author presented a first generalization of the multivariate regression
by introducing a matrix-variate regression where both response and covariate are matrices.
Ding and Cook (2016) propose a bilinear multiplicative matrix regression model whose vec-
torised form is a VAR(1) with restrictions on the covariance matrix. The main shortcoming
in using bilinear models (either in the additive or multiplicative form) is the difficulty in
introducing sparsity constrains. Imposing a zero restriction on a subset of the reduced form
coefficients implies a zero restriction on the structural coefficients1. Ding and Cook (2016)
proposed a generalization of the envelope method of Cook et al. (2010) for achieving spar-
sity and increasing efficiency of the regression. Further studies which have used matrices
as either the response or a covariate include Durante and Dunson (2014b), who considered
tensors and Bayesian nonparametric frameworks and Hung and Wang (2013), who defined
a logistic regression model with a matrix-valued covariate.

Following the model specification strategy available in the existing literature, there are
two main research streams. In the first one, Zhou et al. (2013), Zhang et al. (2014) and Xu
et al. (2013) propose a linear regression models with a real-valued N-order tensor X of data
to explain a one-dimensional response, by means of the scalar product with a tensor of
coefficients B of the same size. More in detail, Zhang et al. (2014) propose a multivariate
model with tensor covariate for longitudinal data analysis; whereas Zhou et al. (2013) uses
a generalized linear model with exponential link and tensor covariate for analysing image
data. Finally, the approach of Xu et al. (2013) exploits a logistic link function with a tensor
covariate to predict a binary scalar response.

In the second and more general stream of the literature (e.g., Hoff (2015) and Li and
Zhang (2017)) both response and covariate of a regression model are tensor-valued. From
a modelling point of view, there are different strategies. Hoff (2015) regresses a N-order
array on an array of the same order but with smaller dimensions by exploiting the Tucker
product, and follows the Bayesian approach for the estimation. Furthermore, Bayesian non-
parametric approaches for models with a tensor covariate have been formulated by Zhao
et al. (2013), Zhao et al. (2014) and Imaizumi and Hayashi (2016). They exploited Gaussian
processes with a suitable covariance kernel for regressing a scalar on a multidimensional
data array. Conversely, Li and Zhang (2017) defines a model where response and covariates
are multidimensional arrays of possibly different order, and subsequently uses the envelope
method coupled with an iterative maximum likelihood method for inference.

We propose a new dynamic linear regression modelling framework for tensor-valued
response and covariates. We show that our framework admits as special cases Bayesian
VAR models (Sims and Zha (1998)), Bayesian panel VAR models (proposed by Canova and
Ciccarelli (2004), see Canova and Ciccarelli (2013) for a review) and Multivariate Autoregres-
sive models (i.e. MAR, see Carriero et al. (2016)), as well as univariate and matrix regression
models. Furthermore, we exploit the PARAFAC decomposition for reducing the number of
parameters to estimate, thus making inference on network models feasible.

1The phenomenon is worse in the bilinear multiplicative model, given that each reduced form coefficient is given by
the product of those in the structural equation.
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We also contribute to the empirical analysis of tensor data in two ways. First, we pro-
vide an original study of time-varying economic and financial networks and show that our
model can be successfully used to carry out forecast and impulse response analysis in this
high-dimensional setting. Few attempts have been made to model time-evolving networks
(for example, Holme and Saramäki (2012), Kostakos (2009), Barrat et al. (2013), Anacleto
and Queen (2017) and references in Holme and Saramäki (2013)), and this field of research,
which stems from physics, has focused on providing a representation and a description of
temporally evolving graphs. Second, we show how tensor regression con be applied to
macroeconomic panel data, where standard vectorized models cannot be used.

The structure of the chapter is as follows. Section 2.2 is devoted to a brief introduction
to tensor calculus and to the presentation of the new modelling framework. The details of
the estimation procedure are given in Section 2.3. In Section 2.4 we test proposed model on
simulated datasets and in Section 2.5 we present some empirical applications.

2.2 A Tensor Regression Model

We introduce multi-dimensional arrays (i.e. tensors) and some basic notions of tensor al-
gebra which will be used in this paper. Moreover, we present a general tensor regression
model and discuss some special cases.

2.2.1 Tensor Calculus and Decompositions

The use of tensors is well established in physics and mechanics (see Synge and Schild
(1969), Adler et al. (1975), Malvern (1986), Lovelock and Rund (1989), Aris (2012) and Abra-
ham et al. (2012)), but very few references can be found in the literature outside these dis-
ciplines. For a general introduction to the algebraic properties of tensor spaces we refer
to Hackbusch (2012). A noteworthy introduction to tensors and corresponding operations
is in Lee and Cichocki (2016), while we make reference to Kolda and Bader (2009) and Ci-
chocki et al. (2009) for a review on tensor decompositions. In the rest of the paper we will
use the terms tensor decomposition and tensor representation interchangeably, even though
the latter one is more suited to our approach.

A N-order tensor is a N-dimensional array (whose dimensions are also called modes).
The number of dimensions is the order of the tensor. Vectors and matrices are examples
of first- and second-order tensors, respectively, while one may think about a third order
tensor as a series of matrices of the same size put one in front of the other one, forming a
parallelepiped. In the rest of the paper we will use lower-case letters for scalars, lower-case
bold letters for vectors, capital letters for matrices and calligraphic capital letters for tensors.
When dealing with matrices, in order to select a column (or row) we adopt the symbol “:”.
The same convention is used for tensors when considering all elements of a given mode.
For example, let A ∈ Rm×n be a matrix and B ∈ RI1×...×IN an array of order N, then Ai,j and
Bi1,...,iN indicate the (i, j)-th and (i1, . . . , iN)-th element of A and B, respectively, and:

(i) A(i,:) is the i-th row of A, ∀i ∈ {1, . . . , m};

(ii) A(:,j) is the j-th column of A, ∀j ∈ {1, . . . , n};

(iii) B(i1,...,ik−1,:,ik+1,...,iN) is the mode-k fiber of B, ∀k ∈ {1, . . . , N}

(iv) B(i1,...,ik−1,:,:,ik+2,...,iN) is the mode-k, k + 1 slice of B, ∀k ∈ {1, . . . , N − 1}

The mode-k fiber is the equivalent of rows and columns in a matrix, more precisely it is
the vector obtained by fixing all but the k-th index of the tensor. Instead, slices (i.e. bi-
dimensional fibers of matrices) or generalizations of them, by keeping fixed all but two or
more dimensions (or modes) of the tensor.
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The mode-n matricization (or unfolding), denoted by X(n), is the operation of transforming
a N-dimensional array X into a matrix. It consists in re-arranging the mode-n fibers of the
tensor to be the columns of the matrix X(n), which has size In × Ī(−n) with Ī(−n) = ∏i 6=n Ii.
The mode-n matricization of X maps the (i1, . . . , iN) element of X to the (in, j) element of
X(n), where:

j = 1 + ∑
m 6=n

(im − 1)
m−1

∏
p 6=n

Ip (2.1)

For some numerical examples, see Kolda and Bader (2009) and Appendix A.1. The mode-1
unfolding is of interest for providing a visual representation of a tensor: for example, when
X be a third-order tensor, its mode-1 unfolding X(1) is a matrix of size I1 × I2 I3 obtained by
horizontally stacking the frontal slices of the tensor. The vectorization operator stacks all the
elements in direct lexicographic order, forming a vector of length Ī = ∏i Ii. However, notice
that other orderings are possible (as for the vectorisation of matrices), since the ordering of
the elements is not important as long as it is consistent across the calculations. The mode-n
matricization can also be used to vectorize a tensor X , by exploiting this relationship:

vec (X ) = vec
(

X(1)

)
, (2.2)

where vec
(

X(1)

)
stacks vertically into a vector the columns of the matrix X(1). Many prod-

uct operations have been defined for tensors (e.g., see Lee and Cichocki (2016)), but here we
constrain ourselves to the operators used in this work. Concerning the basic product op-
erations, the scalar product between two tensors X ,Y of equal order and same dimensions,
I1, . . . , IN, is defined as:

〈X ,Y〉 =
I1

∑
i1=1

. . .
IN

∑
iN=1
Xi1,...,iNYi1,...,iN = ∑

i1,...,iN

Xi1,...,iNYi1,...,iN . (2.3)

For the ease of notation, we will use the multiple-index summation for indicating the sum
over all the corresponding indices.

The mode-M contracted product of two tensors X ∈ RI1×...×IM and Y ∈ RJ1×...×JN with
IM = JM, denoted X ×M Y , yields a tensor Z ∈ RI1×...×IM−1×J1×...×JN−1 of order M + N − 2,
with entries:

Zi1,...,iM−1,j1,...,jN−1 = (X ×M Y)i1,...,iM−1,j1,...,jN−1 =
IM

∑
iM=1
Xi1,...,iMYj1,...,iM,...,jN . (2.4)

Therefore, it is a generalization of the matrix product. The notation ×1...M is used to denote
a sequence of mode-m contracted products, with m = 1, . . . , M.

The mode-n product between a tensor X ∈ RI1×...×IN and a matrix A ∈ RJ×In , 1 ≤ n ≤ N,
is denoted by X ×̄n A and yields a tensor Y ∈ RI1×...,In−i,J,In+1,...×IN of the same order of X ,
with the n-th mode’s length changed. Each mode-n fiber of the tensor is multiplied by the
matrix A, which yields element-wise:

Yi1,...,in−1,j,in+1,...,iN = (X ×̄nA)i1,...,in−1,j,in+1,...,iN
=

In

∑
in=1
Xi1,...,iN Aj,in . (2.5)

Analogously, the mode-n product between a tensor and a vector, i.e. between X and v ∈ RIn ,
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yields a lower order tensor, since the n-th mode is suppressed as a consequence of the prod-
uct. It is given, element-wise, by:

Yi1,...,in−1,in+1,...,iN = (X ×n v)i1,...,in−1,in+1,...,iN
=

In

∑
in=1
Xi1,...,in,...,iN vin , (2.6)

with Y ∈ RI1×...,In−i,In+1,...×IN . It is clear that, as for the matrix dot product, the order of the
elements in the multiplication matters and both products are not commutative.

The Hadamard product� is defined in the same usual way as for matrices, i.e. the element-
wise multiplication. Formally, for X ∈ RI1×...×IN , Y ∈ RI1×...×IN and Z ∈ RI×1 ...×IN it holds:

Zi1,...,iN = (X �Y)i1,...,iN = Xi1,...,iNYi1,...,iN . (2.7)

Finally, let X ∈ RI1×...×IM and Y ∈ RJ1×...×JN . The outer product ◦ of two tensors is the tensor
Z ∈ RI1×...×IM×J1×...×JN whose entries are:

Zi1,...,iM,j1,...,jN = (X ◦ Y)i1,...,iM,j1,...,jN = Xi1,...,iMYj1,...,jN . (2.8)

For example, the outer product of two vectors is a matrix, while the outer product of two
matrices is a fourth order tensor.

Tensor decompositions represent the core of current statistical models dealing with mul-
tidimensional variables since many of them allow to represent a tensor as a function of
lower dimensional variables, such as matrices of vectors, linked by suitable multidimen-
sional operations. We now define two tensor decompositions, the Tucker and the parallel
factor (PARAFAC), which are useful in our applications because the elements of the decom-
position are generally low dimensional and easier to handle than the original tensor. Let R
be the rank of the tensor X , that is minimum number of rank-1 tensors whose linear combi-
nation yields X . A N-order tensor is of rank 1 when it is the outer product of N vectors.

The Tucker decomposition is a higher-order generalization of the Principal Component
Analysis (PCA): a tensor B ∈ RI1×...×IN is decomposed into the product (along the corre-
sponding modes) of a “core” tensor G ∈ Rg1×...×gN and N factor matrices A(m) ∈ RIm×Jm ,
m = 1, . . . , N:

B = G ×1 A(1)×2 A(2)×3 . . .×N A(N) =
g1

∑
i1=1

g2

∑
i2=1

. . .
gN

∑
iN=1
Gi1,i2,...,iN a(1)i1

◦ a(2)i2
◦ . . . ◦ a(N)

iN
, (2.9)

where a(m)
il
∈ Rgm is the m-th column of the matrix A(m). As a result, each entry of the tensor

is obtained as:

Bj1,...,jN =
g1

∑
i1=1

g2

∑
i2=1

. . .
gN

∑
iN=1
Gi1,i2,...,iN ·A

(1)
i1,j1
· · ·A(N)

iN ,jN
jm = 1, . . . , Im, m = 1, . . . , N . (2.10)

A special case of the Tucker decomposition, called PARAFAC(R)2, is obtained when the core
tensor is the identity tensor and the factor matrices have all the same number of columns,
R. A graphical representation of this decomposition for a third-order tensor is shown in
Fig. (2.1). More precisely, the PARAFAC(R) is a low rank decomposition which represents a
tensor B ∈ RI1×...×IN as a finite sum of R rank-1 tensors obtained as the outer products of N

2See Harshman (1970). Some authors (e.g. Carroll and Chang (1970) and Kiers (2000)) use the term CODECOMP or CP
instead of PARAFAC.
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FIGURE 2.1: PARAFAC decomposition of X ∈ RI1×I2×I3 , with ar ∈ RI1 , br ∈ RI2 and
cr ∈ RI3 , r = 1, . . . , R. Figure from Kolda and Bader (2009).

vectors, also called PARAFAC marginals3 β
(r)
j ∈ RIj , j = 1, . . . , N:

B =
R

∑
r=1
Br =

R

∑
r=1

β
(r)
1 ◦ . . . ◦ β

(r)
N . (2.11)

Remark 2.2.1
There exists a one-to-one relation between the mode-n product between a tensor and a vector and
the vectorisation and matricization operators. Consider a N-order tensor B ∈ RI1×...×IN for which
is specified a PARAFAC(R) decomposition, a (N − 1)-order tensor Y ∈ RI1×...×IN−1 and a vector
x ∈ RIN . Then:

Y = B ×N x ⇐⇒ vec (Y) = B′(N)x ⇐⇒ vec (Y)′ = x′B(N) (2.12)

and, denoting β
(r)
j , for j = 1, . . . , N and r = 1, . . . , R, the marginals of the PARAFAC(R) decompo-

sition of B we have:

B(N) =
R

∑
r=1

β
(r)
N vec

(
β
(r)
1 ◦ . . . ◦ β

(r)
N−1

)′
. (2.13)

These relations allows to establish a link between operators defined on tensors and oper-
ators defined on matrices, for which plenty of properties are known from linear algebra.

Remark 2.2.2
For two vectors u ∈ Rn and v ∈ Rm the following relations hold between the outer product, the
Kronecker product ⊗ and the vectorisation operator:

u⊗ v′ = u ◦ v = uv′ (2.14)
u⊗ v = vec (v ◦ u) . (2.15)

2.2.2 A General Dynamic Model

The new model we propose, in its most general formulation is:

Yt = A0 +
p

∑
j=1
Aj ×N+1 vec

(
Yt−j

)
+ B ×N+1 vec (Xt) + C ×N+1 zt +D ×n Wt + Et, (2.16)

Et
iid∼NI1,...,IN(0, Σ1, . . . , ΣN) ,

3An alternative representation may be used, if all the vectors βr
j are normalized to have unitary length. In this case the

weight of each component r is captured by the r-th component of the vector λ ∈ RR:

B =
R

∑
r=1

λr

(
β
(r)
1 ◦ . . . ◦ β

(r)
N

)
.
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where the tensor response and noise Yt, Et are N-order tensors of sizes I1 × . . .× IN, while
the covariates include a M-order tensor Xt of sizes J1 × . . .× JM, a matrix Wt with dimen-
sions In × K and a vector zt of length Q.

The coefficients are all tensors of suitable order and sizes: Aj have dimensions I1 × . . .×
IN × I∗, with I∗ = ∏i Ii, B has dimensions I1 × . . . × IN × J∗, with J∗ = ∏j Jj, C has di-
mensions I1 × . . .× IN × Q and D has sizes I1 × . . .× In−1 × K× In+1 . . .× IN. The symbol
×n stands for the mode-n product between a tensor and a vector defined in eq. (A.4). The
reason for the use of tensors coefficients, as opposed to scalars and vectors, is twofold: first,
this permits each entry of each covariate to exert a different effect on each entry of the re-
sponse variable; second, the adoption of tensors allows to exploit the various decomposi-
tions, which are fundamental for providing a parsimonious and flexible parametrization of
the statistical model.

The noise is assumed to follow a tensor normal distribution (see Ohlson et al. (2013), Manceur
and Dutilleul (2013), Arashi (2017)), a generalization of the multivariate normal distribu-
tion. Let X and M be two N-order tensors of dimensions I1, . . . , IN. Define I∗ = ∏N

j=1 Ij,
I∗−i = ∏j 6=i Ij and let ×1...N be a sequence of mode-j contracted products, j = 1, . . . , N,
between the (K + N)-order tensor X and the (N + M)-order tensor Y of conformable di-
mensions, defined as follows:(

X ×1...N Y
)

j1,...,jK ,h1,...,hM
=

I1

∑
i1=1

. . .
IN

∑
iN=1
Xj1,...,jK ,i1,...,iNYiN ,...,i1,h1,...,hM . (2.17)

Finally, let Uj ∈ RIj×Ij , j ∈ {1, . . . , N} be positive definite matrices. The probability density
function of a N-order tensor normal distribution with mean arrayM and positive definite
covariance matrices U1, . . . , UN, is given by:

fX (X ) = (2π)−
d∗
2

N

∏
j=1

∣∣∣Uj

∣∣∣− I∗−j
2 exp

{
−1

2
(X −M)×1...N

(
◦N

j=1U−1
j

)
×1...N (X −M)

}
.

(2.18)
The tensor normal distribution can be rewritten as a multivariate normal distribution with
separable covariance matrix for the vectorized tensor, more precisely it holds (see Ohlson
et al. (2013)) X ∼ NI1,...,IN(M, U1, . . . , UN) ⇐⇒ vec (X ) ∼ NI1···IN(vec (M) , UN ⊗ . . .⊗
U1). The restriction imposed by the separability assumption allows to reduce the number
of parameters to estimate with respect to the unrestricted vectorized from, while allowing
both within and between mode dependence.

The unrestricted model in eq. (2.16) cannot be estimated, as the number of parameters
greatly outmatches the available data. We address this issue by assuming a PARAFAC(R)
decomposition for the tensor coefficients, which makes the estimation feasible by reducing
the dimension of the parameter space. For example, let B be a N-order tensor of sizes I1 ×
. . .× IN and rank R, then the number of parameters to estimate in the unrestricted case is
given by ∏N

i=1 Ii while in the PARAFAC(R) restricted model is R ∑N
i=1 Ii.

Example 2.2.1
For the sake of exposition, consider the model in eq. (2.16) where the response is a third-order tensor
Yt ∈ Rk×k×k2

and the covariates include only a constant term, that is a coefficient tensor A0 of the
same size. Define by kE the number of parameters of the noise distribution. As a result, the total
number of parameters to estimate in the unrestricted case is given by:

3

∏
i=1

Ii + kE = O(k4) , (2.19)
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FIGURE 2.2: Number of parameters (vertical axis) as function of the response dimension
(horizontal axis) for unconstrained (solid) and PARAFAC(R) with R = 10 (dashed) and

R = 5 (dotted).

while assuming a PARAFAC(R) decomposition on A0 it reduces to:

R

∑
r=1

3

∑
i=1

Ii + kE = O(k2) . (2.20)

The magnitude of this reduction is illustrated in Fig. (2.2), for two different values of the rank.

A well-known issue is that a low rank decomposition is not unique. In a statistical model
this translates into an identification problem for the PARAFAC marginals β

(r)
j arising from

three sources:

(i) scale identification, because replacing β
(r)
j with λjrβ

(r)
j for ∏N

j=1 λjr = 1 does not alter
the outer product;

(ii) permutation identification, since for any permutation of the indices {1, . . . , R} the outer
product of the original vectors is equal to that of the permuted ones;

(iii) orthogonal transformation identification, due to the fact that multiplying two marginals
by an orthonormal matrix Q leaves unchanged the outcome β

(r)
j Q ◦ β

(r)
k Q = β

(r)
j ◦ β

(r)
k .

In our framework these issues do not hamper the inference as our interest is only in the
coefficient tensor, which is exactly identified. In fact, we use the PARAFAC decomposition
as a practical modelling tool without attaching any interpretation to its marginals.

2.2.3 Important special cases

The model in eq. (2.16) is a generalization of several well-known econometric models, as
shown in the following remarks.

Remark 2.2.3 (Univariate)
If we set Ij = 1 for j = 1, . . . , N, then the model in eq. (2.16) reduces to a univariate regression:

yt = A+ B′ vec (Xt) + C ′zt + εt, εt
iid∼N (0, σ2), (2.21)

where the coefficients reduce to A = ᾱ ∈ R, B = β ∈ RQ and C = γ ∈ RJ . See Appendix B.1 for
further details.
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Remark 2.2.4 (SUR)
If we set Ij = 1 for j = 2, . . . , N and define the unit vector ι ∈ RI1 , then the model in eq. (2.16) re-
duces to a multivariate regression which is interpretable as a Seemingly Unrelated Regression (SUR)
model (Zellner (1962)):

yt = A+ B ×2 zt + C ×2 vec (Xt) +D ×1 vec (Wt) + εt εt
iid∼Nm (0, Σ) , (2.22)

where the tensors of coefficients can be expressed as: A = α ∈ Rm, B = B̄ ∈ Rm×J , C = C ∈ Rm×Q

and D = d ∈ Rm. See Appendix B.1 for further details.

Remark 2.2.5 (VARX and Panel VAR)
Consider the setup of the previous Remark 2.2.4. If we choose zt = yt−1 we end up with an (un-
restriced) VARX(1) model. Notice that another vector of regressors wt = vec (Wt) ∈ Rq may
enter the regression (2.22) pre-multiplied (along mode-3) by a tensor D ∈ Rm×n×q. Since we are
not putting any kind of restrictions on the covariance matrix Σ in (2.22), the general model (2.16)
encompasses as a particular case also the panel VAR models of Canova and Ciccarelli (2004), Canova
et al. (2007), Canova and Ciccarelli (2009) and Canova et al. (2012).

Remark 2.2.6 (VECM)
It is possible to interpret the model in eq. (2.16) as a generalisation of the Vector Error Correction
Model (VECM) widely used in multivariate time series analysis (see Engle and Granger (1987), Schot-
man and Van Dijk (1991)). A standard K-dimensional VAR(1) model reads:

yt = Πyt−1 + εt εt ∼ Nm(0, Σ) . (2.23)

Defining ∆yt = yt − yt−1 and Π = αβ′, where α and β are K × R matrices of rank R < K, we
obtain the VECM used for studying the cointegration relations between the components of yt:

∆yt = αβ′yt−1 + εt . (2.24)

Since Π = αβ′ = ∑R
r=1 α:,rβ′:,r = ∑R

r=1 β̃
(r)
1 ◦ β̃

(r)
2 , we can interpret the VECM model in the

previous equation as a particular case of the model in eq. (2.16) where the coefficient B is the matrix
Π = αβ′. Furthermore by writing Π = ∑R

r=1 β̃
(r)
1 ◦ β̃

(r)
2 we can interpret this relation as a rank-R

PARAFAC decomposition of Π. Thus we can interpret the rank of the PARAFAC decomposition for
the matrix of coefficients as the cointegration rank and, in presence of cointegrating relations, the
vectors β̃

(r)
1 are the mean-reverting coefficients and β̃

(r)
2 = (β̃

(r)
2,1, . . . , β̃

(r)
2,K) are the cointegrating

vectors. In fact, the PARAFAC(R) decomposition for matrices corresponds to a low rank (R) matrix
approximation (see Eckart and Young (1936)). We make reference to Appendix B.1 for further details.

Remark 2.2.7 (Tensor AR)
By removing all the covariates from eq. (2.16) except the lags of the dependent variable, we obtain a
tensor autoregressive model:

Yt = A0 +
p

∑
j=1
Aj ×D+1 Yt−j + Et Et

iid∼NI1,...,IN(0, Σ1, . . . , ΣN) . (2.25)

2.3 Bayesian Inference

In this section, without loss of generality, we present the inference procedure for a special
case of the model in eq. (2.16), given by:

Yt = B ×3 vec (Xt) + Et, Et
iid∼NI1,I2(0, Σ1, Σ2) , (2.26)
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which can also be rewritten in vectorized form as:

vec (Yt) = B′(3) vec (Xt) + vec (Et) , vec (Et)
iid∼NI1 I2(0, Σ2 ⊗ Σ1) . (2.27)

Here Yt ∈ RI1×I2 is a matrix response, Xt ∈ RI1×I2 is a covariate matrix of the same size
of Yt and B ∈ RI1×I2×I1 I2 is a coefficient tensor. The noise term Et ∈ RI1×I2 is distributed
according to a matrix variate normal distribution, with zero mean and covariance matrices
Σ1 ∈ RI1×I1 and Σ2 ∈ RI2×I2 accounting for the covariance between the columns and the
rows, respectively. This distribution is a particular case of the tensor Gaussian introduced in
eq. (2.18) whose probability density function is given by:

fX(X) = (2π)−
I1 I2

2 |U2|−
I1
2 |U1|−

I2
2 exp

{
−1

2
U−1

2 (X−M)′U−1
1 (X−M)

}
(2.28)

where X ∈ RI1×I2 , M ∈ RI1×I2 is the mean matrix and the covariance matrices are Uj ∈
RIj×Ij , j = 1, 2, where index 1 represents the rows and index 2 stands for the columns of the
variable X.

The choice the Bayesian approach for inference is motivated by the fact that the large
number of parameters may lead to an over-fitting problem, especially when the samples size
is rather small. This issue can be addressed by the indirect inclusion of parameter restric-
tions through a suitable specification of the corresponding prior distribution. Considering
the unrestricted model in eq. (2.26), it would be necessary to define a prior distribution on
the three-dimensional array B. The literature on this topic is scarce: though Ohlson et al.
(2013) and Manceur and Dutilleul (2013) presented the family of elliptical array-valued dis-
tributions, which include the tensor normal and tensor t, the latter are rather inflexible as
imposing some structure on a subset of the entries of the array is very complicated.

We assume a PARAFAC(R) decomposition on the coefficient tensor for achieving two
goals: first, by reducing the parameter space this assumption makes estimation feasible;
second, the decomposition transforms a multidimensional array into the outer product of
vectors, we are left we the choice of a prior distribution on vectors, for which many con-
structions are available. In particular, we can incorporate sparsity beliefs by specifying a
suitable shrinkage prior directly on the marginals of the PARAFAC. Indirectly, this intro-
duces a priori sparsity on the coefficient tensor.

2.3.1 Prior Specification

The choice of the prior distribution on the PARAFAC marginals is crucial for recovering
the sparsity pattern of the coefficient tensor and for the efficiency of the inference. In the
Bayesian literature the global-local class of prior distributions represent a popular and suc-
cessful structure for providing shrinkage and regularization in a wide range of models and
applications. These priors are based on scale mixtures of normal distributions, where the
different components of the covariance matrix produce desirable shrinkage properties of
the parameter. By construction, global-local priors are not suited for recovering an exact
zero (differently from spike-and-slab priors, see Mitchell and Beauchamp (1988a), George
and McCulloch (1997), Ishwaran and Rao (2005)), instead they can be recovered via post-
estimation thresholding (see Park and Casella (2008)). However, spike-and-slab priors be-
come intractable as the dimensionality of the parameter grows. By contrast, the global-
local shrinkage priors have greater scalability and thus represent a desirable choice in high-
dimensional models, such as our framework. Motivated by these arguments, we adopt the
hierarchical specification forwarded by Guhaniyogi et al. (2017) in order to define adequate
global-local shrinkage priors for the marginals4.

4This class of shrinkage priors has been firstly proposed by Bhattacharya et al. (2015) and Zhou et al. (2015).
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The global-local shrinkage prior for each PARAFAC marginal β
(r)
j of the coefficient tensor

B is defined as a scale mixture of normals centred in zero, with three components for the
covariance. The global component τ is drawn from a gamma distribution5. The vector
of component-level (shared by all marginals in the r-th component of the decomposition)
variances φ is sampled from a R-dimensional Dirichlet distribution with parameter α = αιR,
where ιR is the vector of ones of length R. Finally, the local component of the variance
is a diagonal matrix Wj,r = diag(wj,r) whose entries are exponentially distributed with
hyper-parameter λj,r. The latter is a key parameter for driving the shrinkage to zero of
the marginals and is drawn from a gamma distribution. Summarizing, for p = 1, . . . , Ij,
j = 1, . . . , 3 and r = 1, . . . , R we have the following hierarchical prior structure for each
vector of the PARAFAC(R) decomposition in eq. (A.14):

π(φ) ∼ Dir(αιR) (2.29a)
π(τ) ∼ Ga(aτ, bτ) (2.29b)

π(λj,r) ∼ Ga(aλ, bλ) (2.29c)

π(wj,r,p|λj,r) ∼ Exp(λ2
j,r/2) (2.29d)

π

(
β
(r)
j

∣∣∣∣Wj,r, φ, τ

)
∼ NIj(0, τφrWj,r) . (2.29e)

Several shrinking prior distributions have been proposed in the literature for dealing with
large dimensional models (e.g., SUR and VAR models), among the most frequently used
in econometrics we mention the stochastic search variable selection (SSVS) introduced by
George and McCulloch (1993). It relies on a spike and slab prior distribution (see Mitchell
and Beauchamp (1988b), George and McCulloch (1997)) and has been extended in various
ways. See Dellaportas et al. (2002) for a review and George et al. (2008), Jochmann et al.
(2010) and Wang (2010) for applications in econometrics and time series analysis. Other
classes of priors are the Bayesian lasso of Park and Casella (2008) and the Bayesian elastic-
net (e.g., see Gefang (2014), Korobilis (2013a), Korobilis (2013b)).

By definition, hierarchical priors based on spike and slab mixtures are able to recover
exact zeros of the parameters thanks to the Dirac mass at zero (the “spike” of the mixture),
whereas global-local priors based on scale mixtures of Normals are only capable of shrinking
the parameter towards zero. They cannot recover exact zeros, unless a particular choice of
the scale distributions assigning positive mass at zero is made. However, when a global-
local prior is chosen, exact zero values for the estimated coefficients can be obtained by
post-estimation thresholding, following Park and Casella (2008).

The main reason motivating our choice in favour of a global-local shrinkage prior is the
computational gain it allows as compared to the other hierarchical priors: the former avoids
the need to introduce latent allocation variables for each coefficient, thus resulting in a lower
dimensional parameter space and higher mixing of the chain as compared to spike and slab
shrinkage priors. Recently Ročková and George (2014) proposed a feasible implementation
of the SSVS in high dimensions based on the expectation maximization (EM) algorithm.

Concerning the covariance matrices for the noise term in eq. (2.16), the Kronecker struc-
ture does not allow to separately identify the scale of the covariance matrices Un, thus requir-
ing the specification of further restrictions. Wang and West (2009) and Dobra (2015) adopt
independent hyper-inverse Wishart prior distributions (Dawid and Lauritzen (1993)) for
each Un, then impose the identification restriction Un,11 = 1 for n = 2, . . . , N. Instead, Hoff
(2011) suggests to introduce dependence between the Inverse Wishart prior distribution

5We use the shape-rate formulation for the gamma distribution:

x ∼ Ga(a, b) ⇐⇒ f (x|a, b) =
ba

Γ(a)
xa−1e−bx a > 0, b > 0

.
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FIGURE 2.3: Hierarchical shrinkage prior for the PARAFAC marginals. White circles
with continuous border represent the parameters, white circles with dashed border rep-

resent fixed hyper-parameters.

IW(νn, γΨn) of each Un, n = 1, . . . , N, via a hyper-parameter γ ∼ Ga(a, b) affecting the
scale of each location matrix parameter. Finally, the hard constraint Σn = IIn (where Ik is
the identity matrix of size k), for all but one n, implicitly imposes that the dependence struc-
ture within different modes is the same, but there is no dependence between modes. To
account for marginal dependence, it is possible to add a level of hierarchy by introducing a
hyper-parameter in the spirit of Hoff (2011). Following Hoff (2011), we assume condition-
ally independent inverse Wishart prior distributions for the covariance matrices of the error
term Et and add a level of hierarchy via the hyper-parameter γ which governs the scale of
the covariance matrices:

π(γ) ∼ Ga(aγ, bγ) (2.30a)
π(Σ1|γ) ∼ IW I1(ν1, γΨ1) (2.30b)
π(Σ2|γ) ∼ IW I2(ν2, γΨ2) . (2.30c)

Defining the vector of all parameters as θ = {α, φ, τ, Λ, W,B, Σ1, Σ2}, with Λ = {λj,r : j =
1, . . . , 3, r = 1, . . . , R} and W = {Wj,r : j = 1, . . . , 3, r = 1, . . . , R}, the joint prior distribution
is given by:

π(θ) = π(B|W, φ, τ)π(W|Λ)π(φ)π(τ)π(Λ)π(Σ1|γ)π(Σ2|γ)π(γ). (2.31)

The directed acyclic graphs (DAG) of the hierarchical shrinkage prior on the PARAFAC
marginals β

(r)
j and the overall prior structure are given in Figs. 2.3-2.4, respectively.

2.3.2 Posterior Computation

The likelihood function of the model in eq. (2.26) is given by:

L
(
Y1, . . . , YT|θ

)
=

T

∏
t=1

(2π)−
I1 I2

2 |Σ2|−
I1
2 |Σ1|−

I2
2 exp

{
−1

2
Σ−1

2 (Yt −B ×3 xt)
′Σ−1

1 (Yt −B ×3 xt)

}
,

(2.32)
where xt = vec (Xt). Since the posterior distribution is not tractable in closed form, we adopt
an MCMC procedure based on Gibbs sampling. The computations and technical details of
the derivation of the posterior distributions are given in Appendix B.3. As a consequence of
the hierarchical structure of the prior, we can articulate the sampler in three main blocks:
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FIGURE 2.4: Overall prior structure. Gray circles represent observable variables, white
circles with continuous border represent the parameters, white circles with dashed bor-

der represent fixed hyper-parameters.

I) sample the hyper-parameters of the global and component-level variance for the marginals,
according to:

p(φ, τ|B, W) = p(φ, τ|B, W) (2.33)

(i) sample independently the auxiliary variable ψr, for r = 1, . . . , R, from:

p(ψr|B, W) ∝ GiG
(

α− I0

2
, 2bτ, 2Cr

)
(2.34)

then, for r = 1, . . . , R:

φr =
ψr

∑R
l=1 ψl

. (2.35)

(ii) finally, sample τ from:

p(τ|B, W, φ) ∝ GiG

(
aτ −

RI0

2
, 2bτ, 2

R

∑
r=1

Cr

φr

)
. (2.36)

II) define Y = {Yt}T
t=1, then sample from the posterior of the hyper-parameters of the local

component of the variance of the marginals and the marginals themselves, as follows:

p

(
β
(r)
j , Wj,r, λj,r

∣∣∣∣φ, τ, Y, Σ1, Σ2

)
= p

(
λj,r|β

(r)
j , φr, τ

)
p
(

wj,r,p|λj,r, φr, τ, β
(r)
j

)
· p
(

β
(r)
j |β

(r)
−j ,B−r, φr, τ, Y, Σ1, Σ2

)
(2.37)

(i) for j = 1, 2, 3 and r = 1, . . . , R sample independently:

p
(

λj,r|β
(r)
j , φr, τ

)
∝ Ga

aλ + Ij, bλ +

∥∥∥β
(r)
j

∥∥∥
1√

τφr

 . (2.38)
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(ii) for p = 1, . . . , Ij, j = 1, 2, 3 and r = 1, . . . , R sample:

p
(

wj,r,p|λj,r, φr, τ, β
(r)
j

)
∝ GiG

1
2

, λ2
j,r,

β
(r)2

j,k

τφr

 (2.39)

(iii) define β
(r)
−j =

{
β
(r)
i : i 6= j

}
and B−r = {Bi : i 6= r}, where Br = β

(r)
1 ◦ . . . ◦ β

(r)
N .

For r = 1, . . . , R sample the PARAFAC marginals from:

p
(

β
(r)
1 |β

(r)
−1,B−r, φr, τ, Y, Σ1, Σ2

)
∝ NI1(µ̄β1

, Σ̄β1
) (2.40)

p
(

β
(r)
2 |β

(r)
−2,B−r, φr, τ, Y, Σ1, Σ2

)
∝ NI2(µ̄β2

, Σ̄β2
) (2.41)

p
(

β
(r)
3 |β

(r)
−3,B−r, φr, τ, Y, Σ1, Σ2

)
∝ NI3(µ̄β3

, Σ̄β3
) . (2.42)

III) sample the covariance matrices from their posterior:

p(Σ1, Σ2, γ|B, Y) = p(Σ1|B, Y, Σ2, γ)p(Σ2|B, Y, Σ1, γ)p(γ|Σ1, Σ2) (2.43)

(i) sample the row covariance matrix:

p(Σ1|B, Y, Σ2, γ) ∝ IW I1(ν1 + I1, γΨ1 + S1) (2.44)

(ii) sample the column covariance matrix:

p(Σ2|B, Y, Σ1, γ) ∝ IW I2(ν2 + I2, γΨ2 + S2) . (2.45)

(iii) sample the scale hyper-parameter:

p(γ|Σ1, Σ2) ∝ Ga
(

ν1 I1 + ν2 I2, tr
(

Ψ1Σ−1
1 + Ψ2Σ−1

2

))
. (2.46)

For improving the mixing of the algorithm, it is possible to substitute the draw from the full
conditional distribution of the global variance parameter τ or of the PARAFAC marginals
with a Hamiltonian Monte Carlo (HMC) step (see Neal (2011)).

2.4 Simulation Results

We report the results of a simulation study where we have tested the performance of the
proposed sampler on synthetic datasets of matrix-valued sequences {Yt, Xt}T

t=1, where Yt, Xt
have different size across simulations. The methods described in this paper can be rather
computationally intensive, nevertheless thanks to the tensor decomposition we used allows
the estimation to be carried out on a laptop. All the simulations were run on an Apple
MacBookPro with a 3.1GHz Intel Core i7 processor, RAM 16GB, using MATLAB r2017b
with the aid of the Tensor Toolbox v.2.66, taking about 30h for a short run of the highest-
dimensional case (i.e. I1 = I2 = 50).

For different sizes (I1 = I2) of the response and covariate matrices, we generated a
matrix-variate time series {Yt, Xt}T

t=1 by simulating each entry of Xt from:

xij,t − µ = αij(xij,t−1 − µ) + ηij,t , ηij,t ∼ N (0, 1) (2.47)

6Available at: http://www.sandia.gov/ tgkolda/TensorToolbox/index-2.6.html

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html


2.4. Simulation Results 29

and a matrix-variate time series {Yt}t according to:

Yt = B ×3 vec (Xt) + Et , Et ∼ NI1,I2(0, Σ1, II2) . (2.48)

where E[ηij,tηkl,v] = 0, E[ηij,tEv] = 0, ∀ (i, j) 6= (k, l), ∀ t 6= v, and αij ∼ U (−1, 1). We
randomly draw B by using the PARAFAC representation in eq. (A.14), with rank R = 5 and
marginals sampled from the prior distribution in eq. (2.29e).

The response and covariate matrices in the simulated datasets have the following sizes:

(I) I1 = I2 = I = 10, for T = 60;

(II) I1 = I2 = I = 20, for T = 60;

(III) I1 = I2 = I = 30, for T = 60;

(IV) I1 = I2 = I = 40, for T = 60;

(V) I1 = I2 = I = 50, for T = 60.

We initialized the Gibbs sampler by setting the PARAFAC marginals β
(r)
1 , β

(r)
2 , β

(r)
3 , r =

1, . . . , R (with R = 5), with the output of a simulated annealing algorithm (see Appendix B.2)
and run the algorithm for N = 10000 iterations. We present the results for the case Σ2 = II2 .
Since they are similar, we omit the results for unconstrained Σ2, estimated with the Gibbs in
Section 2.3.

Also, we provide a deeper study of the properties of the proposed sampler by presenting
in Appendix B.7 the details of the convergence properties of the algorithm in the cases (I)-
(II)-(III).
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FIGURE 2.5: Logarithm of the absolute value of the coefficient tensors: true B (left)
and estimated B̂ (right).
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FIGURE 2.6: MCMC output (left), autocorrelation function for the entire sample
(middle plot) and after burn-in (right plot) of the Frobenious norm of the difference

between the true and the estimated covariance matrix Σ1.

The results are reported in Figs. 2.5-2.6, for the different simulated datasets. Fig. 2.5
shows the good accuracy of the sampler in estimating the coefficient tensor, whose number
of entries ranges from 104 in the first to 504 in the last simulation setting. The estimation er-
ror is mainly due to the over-shrinking to zero of large signals. This well-known drawback
of global-local hierarchical prior distributions (e.g., see Carvalho et al. (2010)) is related to
its sensitivity to the hyper-parameters setting. Fig. 2.6 plots the MCMC output of the Frobe-
nious norm (i.e. the L2 norm) of the covariance matrix of the error term. After a graphical
inspection of the trace plots (first column) we chose a burn-in period of 2000 iterations. Due
to autocorrelation in the sample (second column plots) we applied thinning and selected
every 10th iteration. In most of the cases, after removing burn-in iterations and performing
thinning, the autocorrelation wipes out.
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We refer the reader to Appendix B.5 for additional details on the simulation experiments,
such as trace plots and autocorrelation functions for tensor entries and individual hyper-
parameters.

2.5 Application

As put forward by Schweitzer et al. (2009), the analysis of economic networks is one of
the most recent and complex challenges that the econometric community is facing nowa-
days. We contribute to the econometric literature about complex networks by applying the
methodology proposed in Section 2.3 to the study of the temporal evolution of the inter-
national trade network (ITN). This economic network has been previously studied by sev-
eral authors (e.g., see Hidalgo and Hausmann (2009), Fagiolo et al. (2009), Kharrazi et al.
(2017), Meyfroidt et al. (2010), Zhu et al. (2014), Squartini et al. (2011)), who have analysed
its topological properties and identified its main communities. However, to the best of our
knowledge, this is the first attempt to model the temporal evolution of the network as a
whole.

The raw trade data come from the United Nations COMTRADE database, a publicly
available resource7. The particular dataset we use is a subset of the whole COMTRADE
database and consists of yearly observations from 1998 to 2016 of total imports and exports
between I1 = I2 = I = 10 countries. In order to remove possible sources of non-linearities
in the data, we use a logarithmic transform of the variables of interest. We thus consider
the international trade network at each time stamp as one observation from a real-valued
matrix-variate stochastic process. Fig. 2.7 shows the whole network sequence in our dataset.

We estimate the model in eq. (2.26) setting Xt = Yt−1, thus obtaining a matrix-variate
autoregressive model. Each matrix Yt is the I × I real-valued weighted adjacency matrix of
the corresponding international trade network in year t, whose entry (i, j) contains the total
exports of country i vis-à-vis country j, in year t. The series {Yt}t, t = 1, . . . , T, has been
standardized (over the temporal dimension). We run the Gibbs sampler for N = 10, 000
iterations. The output is reported below.

The mod-3 matricization of the estimated coefficient tensor is shown in the left panel of
Fig. 2.8, each column corresponds to the effects of a lag one edge (horizontal axis) on all the
contemporaneous edges (vertical axis). Positive effects in red and negative effects in blue.
Fig. 2.9 shows the estimated covariance matrices of the noise term, that is Σ̂1, Σ̂2. As regards
the estimated coefficient tensor, we find that a significant degree of heterogeneity in the esti-
mated coefficients which points against parameter pooling assumptions. Furthermore, there
are patterns showing that groups of edges (i.e. bilateral trade flows) with mainly positive
(red) or negative (blue) effect on all the other edges: this may suggest that there are some
countries playing a key role (either as exporters of as importers) for them.

The distribution of the entries of the estimated coefficient tensor (middle panel) confirms
the evidence of heterogeneity. The distribution is right-skewed and leptokurtic with mode
at zero, which is a consequence of the shrinkage of the estimated coefficient.

Moreover, in order to assess the stationarity of the model, we computed the eigenvalues
of the mode-3 matricization of the estimated coefficient tensor and the right panel of Fig. 2.8
plots the logarithm of their modulus. All the estimated eigenvalues are strictly lower than
one in modulus, thus indicating that the process describing the evolution of the trade net-
work is stationary.

Concerning the estimated covariance matrices of the noise term (Fig. 2.9), we find that
in both cases (i.e. Σ̂1, Σ̂2) the highest estimated values correspond to individual variances,
while the estimated covariances are lower in magnitude and heterogeneous. In addition,
there is evidence of heterogeneity in the dependence structure, since Σ̂1, which captures
the covariance between exporting countries (i.e., rows of the matrix Yt), differs from Σ̂2,

7https://comtrade.un.org

https://comtrade.un.org
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FIGURE 2.7: Commercial trade network evolving over time from 1998 (top left) to
2016 (bottom right). Nodes represent countries, red and blue colored edges stand
for exports and imports between two countries, respectively. Edge thickness rep-

resents the magnitude of the flow.

which describes the covariance between importing countries (i.e., columns of Yt) and the
dependence between exporting countries is higher, on average, than that between importing
countries.

For assessing the convergence of the MCMC chain, Fig. 2.9 shows the trace plot and au-
tocorrelation functions (without thinning) of the Frobenious norm of each estimated matrix.
Both sets of plots show a good mixing of the chain.
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2.5.1 Impulse response analysis

For understanding the role exerted by the various links of the network, Fig. 2.10 shows
the sum of the entries of the corresponding positive and negative entries of the estimated
coefficient tensor in red and blue, respectively.

We find that edges’ impact tend to cluster, that is, those with high positive cumulated
effects have very low negative cumulated effects and vice-versa. Thus, the bottom panel of
Fig. 2.10 shows the sum of the absolute values of all corresponding entries of the estimated
coefficient tensor, which can be interpreted as a measure of the importance of the edge in
the network. Based on this statistic, we plot the position of the 10 most and least relevant
edges in the network (in red and blue, respectively) in Fig 2.11. The picture has a hetero-
geneous structure: first, no single country seems to exert a key role, neither as exporter nor
as importer; second, the most and least relevant edges are evenly distributed between the
exporting and the importing side.

We study the effects of the propagation of a shock on a single and a group of edges in the
network by means of the impulse response function obtained as follows. Define the reverse
of the vectorization operator vec (·) by vecr (·) and let Ẽ be a binary matrix of shocks such
that each non zero entry (i, j) of Ẽ corresponds to a unitary shock on the edge (i, j). Then the
matrix-valued impulse response function is obtained from the recursion:

Y1 = B ×3 vec
(

Ẽ
)
= vecr

(
B′(3) · vec

(
Ẽ
))

(2.49)
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Y2 = B ×3 vec

(
vecr

(
B′(3) · vec

(
Ẽ
)))

= vecr
(

B′(3) · B
′
(3) · vec

(
Ẽ
))

(2.50)

= vecr
(
[B′(3)]

2 · vec
(

Ẽ
))

, (2.51)

which, for the horizon h > 0, generalizes to:

Yh = vecr
(
[B′(3)]

h · vec
(

Ẽ
))

. (2.52)

This equation shows that it is possible to study the joint effect that a contemporaneous shock
on a subset of the edges of the network has on the whole network over time.

We define the most relevant edges in the network as those which exert impact on the oth-
ers and Fig 2.11 shows the locations of the 10 most relevant edges in the network according
to different criteria: highest total positive effects, highest total negative effects and highest
total net effects.

Fig. 2.12 and 2.13, respectively, plot the impulse response function of a unitary shock on
the 10 most relevant and the 10 least relevant edges (determined by ranking according to the
sum of the absolute values of the entries of the estimated coefficient tensor), for h = 1, . . . , 14
periods. Figs. 2.14-2.15 show the effects of a unitary shock to the most and least influential
edges, respectively.

We find that the effects are remarkably different: both the magnitude and the persistence
of the impact of a shock to the most relevant edges is significantly greater than that obtained
by hitting the least relevant edges.

Moreover, a shock to the most relevant edge is more persistent than a shock on the least
relevant and the magnitude of the effects is significantly higher. However, compared to
the effects of a shock on 10 edges, both persistence and magnitude are remarkably lower.
Furthermore, a shock to a single edge affects almost all the others because of the high degree
of interconnection of the network, which is responsible for the propagation both in the space
(i.e., cross-section) and over time.

The joint analysis of the impulse response functions and the distribution of the most
and least influential links in Fig. 2.11 points out the key role of the network structure in the
propagation of shocks.

We refer to Appendix B.6 for additional plots of the estimation.

FIGURE 2.10: Sum of positive entries (red,top), negative entries (blue,top) and of
absolute values of all entries (dark green,bottom) of the estimated coefficient tensor

(y-axis), per each edge (x-axis).



36 Chapter 2. Bayesian Dynamic Tensor Regression

AU CH DE DK FR GB IE JP SE US

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

FIGURE 2.11: Position in the network of the 10 most relevant (red) and least rel-
evant (blue) edges, according to the sum of the absolute values. Countries’ labels

on both axes.
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FIGURE 2.12: Impulse response for h = 1, . . . , 14 periods. Unitary shock on the 10
most relevant edges (sum of absolute values of all coefficients). Countries’ labels

on both axes.

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US
-0.5

-0.4

-0.3

-0.2

-0.1

0

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

AUCHDEDKFRGB IE JP SEUS

AU

CH

DE

DK

FR

GB

IE

JP

SE

US

FIGURE 2.13: Impulse response for h = 1, . . . , 14 periods. Unitary shock on the 10
least relevant edges (sum of absolute values of all coefficients). Countries’ labels

on both axes.
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FIGURE 2.14: Impulse response for h = 1, . . . , 14 periods. Unitary shock on the
most relevant edge (sum of absolute values of all coefficients). Countries’ labels

on both axes.
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FIGURE 2.15: Impulse response for h = 1, . . . , 14 periods. Unitary shock on the
least relevant edge (sum of absolute values of all coefficients). Countries’ labels on

both axes.

2.6 Conclusions

We defined a new statistical framework for dynamic tensor regression. It is a generalisation
of many models frequently used in time series analysis, such as VAR, panel VAR, SUR and
matrix regression models. The PARAFAC decomposition of the tensor of regression coef-
ficients allows to reduce the dimension of the parameter space but also permits to choose
flexible multivariate prior distributions, instead of multidimensional ones. Overall, this al-
lows to encompass sparsity beliefs and to design efficient algorithm for posterior inference.

We tested the Gibbs sampler algorithm on synthetic matrix-variate datasets with matrices
of different sizes, obtaining good results in terms of both the estimation of the true value of
the parameter and the efficiency.

The proposed methodology has been applied to the analysis of temporal evolution of a
subset of the international trade networks. We found evidence of (i) wide heterogeneity in
the sign and magnitude of the estimated coefficients; (ii) stationarity of the network process.
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Chapter 3

Bayesian Markov Switching Tensor
Regression for Time-varying Networks

In mathematics the art of proposing a question must
be held of higher value than solving it.

GEORG CANTOR

It is far better to foresee even without certainty than
not to foresee at all.

HENRI POINCARÉ

3.1 Introduction

The analysis of large sets of binary data is a central issue in many applied fields such
as biostatistics (e.g. Schildcrout and Heagerty (2005), Wilbur et al. (2002)), image process-
ing (e.g. Yue et al. (2012)), machine learning (e.g. Banerjee et al. (2008), Koh et al. (2007)),
medicine (e.g. Christakis and Fowler (2008)), text analysis (e.g. Taddy (2013), Turney (2002))
and theoretical and applied statistics (e.g. Ravikumar et al. (2010), Sherman et al. (2006), Visaya
et al. (2015)). Without loss of generality, in this paper we focus on binary series representing
time-evolving networks.

From the outbreak of the financial crisis of 2007 there has been an increasing interest in
financial network analysis. The fundamental questions on the role of agents’ connections,
the dynamic process of link formation and destruction, the diffusion process within the
economic and/or financial system of external and internal shocks have attracted an increas-
ing interest from the scientific community (e.g., Billio et al. (2012) and Diebold and Yilmaz
(2014)).

Despite the wide economic and financial literature exploiting networks in theoretical
models (e.g. Acemoglu et al. (2012), Di Giovanni et al. (2014), Chaney (2014), Mele (2017), Gra-
ham (2017)), the econometric analysis of networks and of their dynamical properties is at its
infancy and many research questions are still striving for an answer. This paper contributes
at filling this gap addressing some important questions in building statistical models for
network data.

The first issue concerns measuring the impact of a given set of covariates on the dynamic
process of link formation. We propose a parsimonious model that can be successfully used
to this aim, building on a novel research domain on tensor calculus in statistics. This new lit-
erature (see, e.g. Kolda and Bader (2009), Cichocki et al. (2015) and Cichocki et al. (2016) for
a review) proposes a generalisation of matrix calculus to higher dimensional arrays, called
tensors. The main advantage in using tensors is the possibility of dealing with the complex-
ity of novel data structures which are becoming increasingly available, such as networks,
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multi-layer networks, three-way tables, spatial panels with multiple series observed for each
unit (e.g., municipalities, regions, countries). The use of tensors prevents the reshaping and
manipulation of the data, thus allowing to preserve the intrinsic structure. Another ad-
vantage of tensors stems from their numerous decompositions and approximations, which
provide a representation of the model in a lower-dimensional space (see (Hackbusch, 2012,
ch.7-8)). In this paper we exploit the PARAFAC decomposition for reducing the number of
parameters to estimate, thus making inference on network models feasible.

Another issue regards the time stability of the dependence structure between variables.
For example, Billio et al. (2012), Billio et al. (2015a), Ahelegbey et al. (2016a), Ahelegbey
et al. (2016b) and Bianchi et al. (2018) showed empirically that the network structure of the
financial system has experienced a rather long period of stability in the early 2000s and a
significantly increasing connectivity before the outbreak of the financial crisis. Starting from
these stylized facts, we provide a new Markov switching model for structural changes of
the network topology. After the seminal paper of Hamilton (1989), the existing Markov
switching models at the core of the Bayesian econometrics literature consider VAR models
(e.g., Sims and Zha (2006), Sims et al. (2008)), factor models (e.g., Kaufmann (2000), Kim
and Nelson (1998)) or dynamic panels (e.g., Kaufmann (2015), Kaufmann (2010)) and have
been extended allowing for stochastic volatility (Smith (2002), Chib et al. (2002)), ARCH and
GARCH effects (e.g., see Hamilton and Susmel (1994), Haas et al. (2004), Klaassen (2002)
and Dueker (1997), among the others) and stochastic correlation (Casarin et al. (2018)). We
contribute to this literature by applying Markov switching dynamics to tensor-valued data.

Motivated by the observation that financial networks are generally sparse, with sudden
abrupt changes in the level of sparsity across time, we define a framework which allows us to
tackle the issue of time-varying sparsity. To accomplish this task, we compose the proposed
Markov switching dynamics with a zero-inflated logit model. In this sense, we contribute to
the network literature on modelling edges’ probabilities (e.g., Durante and Dunson (2014a)
and Wang et al. (2017)), by considering a time series of networks with multiple layers and
varying sparsity patterns.

Finally, another relevant question concerns the study of the joint evolution of a network
and a set of economic variables of interest. To the best of our knowledge, there is no pre-
vious work providing a satisfactory econometric framework to solve this problem. Within
the literature on joint modelling discrete and continuous variables Dueker (2005) used the
latent variable interpretation of the binary regression and built a VAR model for unobserved
continuous-valued variables and quantitative observables. Instead, Taddy (2010) assumes
the continuous variable follows a dynamic linear model and the discrete outcome follows
a Poisson process with intensity driven by the continuous one. Our contribution to this
literature consists in a new joint model for binary tensors and real-valued vectors.

The model we propose is presented in Section 3.2. We go through the details of the
Bayesian inferential procedure in Sections 3.3-3.4 while in Section 3.5 we study the perfor-
mance of the MCMC procedure on synthetic datasets. Finally, we apply the methodology to
a real dataset and discuss the results in Section 3.6 and draw the conclusions in Section 3.7.

3.2 A Markov switching model for networks

A relevant object in our modelling framework is a a D-order tensor, that is a D-dimensional
array, element of the tensor product of D vector spaces, each one endowed with a coordinate
system. See (Hackbusch, 2012, ch.3) for an introduction to algebraic tensor spaces. A tensor
can be thought of as the multidimensional extension of a matrix (which is a 2-order tensor),
where each dimension is called mode. Other objects of interest are the slice of a tensor, that
is a matrix obtained by fixing all but two of the indices of the multidimensional array, and
the tube, or fiber, that is a vector resulting from keeping fixed all indices but one. Matrix
operations and results from linear algebra can be generalized to tensors (see Hackbusch
(2012) or Kroonenberg (2008)). Here we define only the mode-n product between a tensor
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and a vector and refer the reader to Appendix A.1 for further details. For a D-order tensor
X ∈ Rd1×...×dD and a vector v ∈ Rdn , the mode-n product between them is a (D− 1)-order
tensor Y ∈ Rd1×...×dn−1×dn+1×...×dD whose entries are defined by:

Y(i1,...,in−1,in+1,...,iD) = (X ×n v)(i1,...,in−1,in+1,...,iD)
=

dn

∑
in=1
Xi1,...,in,...,iD vin . (3.1)

Let {Xt}T
t=1 and {X ∗t }T

t=1 be two sequences of binary and real 3-order tensors of size
I × J× K, respectively. In our multilayer network application, Xt is an adjacency tensor and
each of its frontal slices, Xk,t, represents the adjacency matrix of k-th layer. See Boccaletti et al.
(2014) and Kivelä et al. (2014) for an introduction to multilayer networks. Let {yt}T

t=1 be a
sequence of real-valued vectors yt = (yt,1, . . . , yt,M)′ representing a set of relevant economic
or financial indicators. Our model consists of two systems of equations whose parameters
switch over time according to a hidden Markov chain process.

The first set of equations pertains the model for the temporal network. One of the most
recurrent features of observed networks is edge sparsity, which in random graph theory is
defined to be the case in which the number of edges of a graph grows about linearly with the
number of nodes (see (Diestel, 2012, ch.7)). For a finite graph size, we consider a network
to be sparse when the fraction of edges over the square of nodes, or total degree density, is
below 10%. Moreover, the sparsity pattern of many real networks is not time homogeneous.
To describe its dynamics we assume that the probability of observing an edge in each layer
of the network is a mixture of a Dirac mass at 0 and a Bernoulli distribution, where both
the mixing probability and the probability of success are time-varying. Consequently, each
entry xijk,t of the tensor Xt (that is, each edge of the corresponding network) is distributed
as a zero-inflated logit:

xijk,t|ρ(t), gijk(t) ∼ ρ(t)δ{0}(xijk,t) + (1− ρ(t))Bern

xijk,t

∣∣∣∣∣∣
exp{z′ijk,tgijk(t)}

1 + exp{z′ijk,tgijk(t)}

 . (3.2)

Notice that this model admits an alternative representation as:

xijk,t|ρ(t), gijk(t) ∼ ρ(t)δ{0}(xijk,t) + (1− ρ(t))δ{dijk,t}(xijk,t) (3.3)

dijk,t = 1R+(x∗ijk,t) (3.4)

x∗ijk,t = z′ijk,tgijk(t) + εijk,t εijk,t
iid∼ Logistic(0, 1) . (3.5)

where zijk,t ∈ RQ is a vector of edge-specific covariates and gijk(t) ∈ RQ is a time-varying
edge-specific vector of parameters. This specification allows to classify the zeros (i.e. ab-
sence of edge) into “structural” and “random”, conditionally on arising from the atomic
mass, or due to the randomness described in eqs. (3.4)-(3.5), respectively. The parameter ρ(t)
is thus the time-varying probability of observing a structural zero. In the following, without
loss of generality, we focus on the case of common set of covariates, that is zijk,t = zt, for
t = 1, . . . , T.

The second set of equations regards the vector of economic variables and is given by:

ym,t = µm,t + vm,t vm,t ∼ N (0, σ2
m,t) , (3.6)

for m = 1, . . . , M and t = 1, . . . , T. In vector form, we denote the mean vector and the
covariance matrix by µ(t) and Σ(t), respectively.

The specification of the model is completed with the assumption that the time variation
of the parameters µ(t), Σ(t), ρ(t), gijk(t) are driven by a hidden homogeneous Markov chain
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. . . . . .st−1 st st+1

Xt−1 Xt Xt+1

yt−1 yt yt+1

FIGURE 3.1: Directed acyclic graph (DAG) of the model in eq. (3.8a)-(3.8c). Gray
circles represent observable variables and white circles latent variables. Directed

arrows indicate the direction of causality.

{st}T
t=1 with discrete, finite state space {1, . . . , L}, that is µ(t) = µst

, Σ(t) = Σst , ρ(t) = ρst

and gijk(t) = gijk,st . The transition matrix of the chain {st}t is assumed to be time-invariant
and denoted by Ξ = (ξ1, . . . , ξL)

′, where each ξl = (ξl,1, . . . , ξl,L)
′ is a probability vector and

the transition probability from state i to state j is P({st = j}|{st−1 = i}) = ξi,j, i, j = 1, . . . , L.
The causal structure of the model is given in Fig. 3.1, whereas the description of the

systems follows.
In order to give a compact representation of the general model, define Xd = {X ∈

Ri1×...×id} the set of real-valued d-order tensors of size (i1× . . .× id) and Xd
0,1 = {X ∈Ri1×...×id :

Xi1,...,id ∈ {0, 1}} ⊂ Xd the set of adjacency tensors of size (i1 × . . .× id). Define a linear op-
erator between these two sets by Ψ : Xd → Xd

0,1 such that X ∗ 7→ Ψ(X ∗) ∈ {0, 1}i1×...×id .
Denote the indicator function for the set A by 1A(x), which takes value 1 if x ∈ A and 0 oth-
erwise, and let R+ be the positive real half-line. For a matrix X∗k,t ∈ X I,J it is possible to write
the first equation of the model in matrix form by Ψ(X∗k,t) = (1R+(x∗ijk,t))i,j, for each slice k of
X ∗t . Eq. (3.5) postulates that each edge xijk admits an individual set of coefficients gijk(t). By
collecting all these vectors along the indices i, j, k, we can rewrite eq. (3.5) in compact form
by means of a fourth-order tensor G(t) ∈ RI×J×K×Q, thus obtaining:

X ∗t = G(t)×4 zt + Et , (3.7)

where Et ∈ RI×J×K is a third-order tensor with entries εijk,t ∼ Logistic(0, 1) and ×n stands
for the mode-n product between a tensor and a vector previously introduced.

The statistical framework we propose for a time series {Xt, yt}T
t=1 is given by the follow-

ing system of equations:
Xt = B(t)�Ψ(X ∗t ) bijk(t)

iid∼ Bern(1− ρ(t)) (3.8a)
X ∗t = G(t)×4 zt + Et (3.8b)

yt = µ(t) + vt vt
iid∼NM(0, Σ(t)) (3.8c)

where B(t) is a tensor of the same size of Xt whose entries are independent and identi-
cally distributed (iid) Bernoulli random variables with probability of success 1− ρ(t) and �
stands for the element-by-element Hadamard product (see (Magnus and Neudecker, 1999,
ch.3)).

This model can be represented as a SUR (see Zellner (1962)) and also admits an interpre-
tation as a factor model. To this aim, let ⊗ denote the Kronecker product (see (Magnus and
Neudecker, 1999, ch.3)) and define zt = (1, z̃t)′, where z̃t denotes the covariates and Σ1/2 is
a matrix satisfying Σ1/2Σ1/2 = Σ. In addition, let {ũt}t be a martingale difference process
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and ξt = (1{1}(st), . . . ,1{L}(st))′. Then we obtain:

Xt = B(t)�Ψ(X ∗t ) bijk(t)
iid∼ Bern(1− ρ(t))

X ∗t = G ×4 (ξt ⊗ zt)′ + Et = G ×4 (ξt, ξt ⊗ z̃t)′ + Et εijk,t
iid∼ Logistic(0, 1)

yt = (ξt ⊗ µ) + (ξt ⊗ Σ1/2)v∗t v∗t
iid∼NM(0M, IM)

ξt+1 = Ξξt + ũt E[ũt|ũt−1] = 0

(3.9)

3.3 Bayesian Inference

To derive the likelihood function of the model in eqs. (3.8a) to (3.8c) and develop an efficient
inferential process, it is useful to start from eq. (3.2), which describes the statistical model
for the likelihood of each edge as a zero-inflated logit model. Starting from the seminal
work of Lambert (1992), who proposed a modelling framework for count data with a great
proportion of zeros, zero-inflated models have been applied to settings where the response
variable is not integer-valued. Binary responses have been considered by Harris and Zhao
(2007), who dealt with an ordered probit model. This is the closest approach to ours, though
the specification in eq. (3.2) substantially differs in two aspects. First, we use of a logistic link
function, which is known to have slightly fatter tails than the cumulative normal distribution
used in probit models. Second, differently from the majority of the literature which assumes
a constant mixing probability, the parameter ρ(t) is evolving according to a latent process.

From eq. (3.2) we derive the probability of observing or not an edge, respectively, as:

P(xijk,t = 1|ρ(t), gijk(t)) = (1− ρ(t))
exp{z′tgijk(t)}

1 + exp{z′tgijk(t)}
(3.10a)

P(xijk,t = 0|ρ(t), gijk(t)) = ρ(t) + (1− ρ(t))

(
1−

exp{z′tgijk(t)}
1 + exp{z′tgijk(t)}

)
. (3.10b)

This allows us to exploit different types of tensor representations (see Kolda and Bader
(2009) for a review), in particular for the sake of parsimony, we assume a PARAFAC decom-
position with rank R (assumed fixed and known) for the tensor G(t):

G(t) =
R

∑
r=1

γ
(r)
1 (t) ◦ γ

(r)
2 (t) ◦ γ

(r)
3 (t) ◦ γ

(r)
4 (t) , (3.11)

where for each value of the state st the vectors γ
(r)
h (t) = γ

(r)
h,st

, h ∈ {1, 2, 3, 4}, r = 1, . . . , R, are
the marginals of the PARAFAC decomposition and have length I, J, K and Q, respectively.
By the same argument, we denote G(t) = Gst and gijk(t) = gijk,st . This specification permits
us to achieve two distinct but fundamental goals: (i) parsimony of the model, since for
each value of the state st the dimension of the parametric space is reduced from I JKQ to
R(I + J + K + Q) parameters; (ii) sparsity of the tensor coefficient, through a suitable choice
of the prior distribution for the marginals.

We are given a sample {Xt, yt}T
t=1 and adopt the notation: X = {Xt}T

t=1, y = {yt}T
t=1,

s = {st}T
t=0, D = {Dt}T

t=1 and Ω = {Ωt}T
t=1. Define Tl = {t : st = l} and Tl = #Tl, for

each regime l = 1, 2. Then, in order to write down the analytic form of the complete data
likelihood, we introduce the latent variables {st}T

t=1, taking values st = l, l ∈ {1, 2} and
evolving according to a discrete Markov chain with transition matrix Ξ ∈ RL×L. Finally,
denote the whole set of parameters by θ.

The inference is carried out following the Bayesian paradigm and exploiting a data aug-
mentation strategy (Tanner and Wong (1987)). The Pólya-Gamma scheme for models with
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binomial likelihood proposed by Polson et al. (2013) has been proven to outperform exist-
ing schemes for Bayesian inference in logistic regression models in terms of computational
speed and higher effective sample size. Furthermore, given a normal prior of the vector of
parameters, a Pólya-Gamma prior on latent variables leads to a conjugate posteriors: the
full conditional for the parameter vector is normal while that of the latent variable follows
a Pólya-Gamma. This allows to use a Gibbs sampler instead of a Metropolis-Hastings al-
gorithm, thus avoiding the need to choose and adequately tune the proposal distribution.
Among recent uses of this data augmentation scheme, Wang et al. (2017) used it in a similar
framework for network-response regression model, while Holsclaw et al. (2017) exploited it
in a time-inhomogeneous hidden Markov model.

The likelihood function is:

L(X , y|θ) = ∑
s1,...,sT

T

∏
t=1

p(Xt, yt|st, θ)p(st|st−1) , (3.12)

where the index l ∈ {1, . . . , L} represents the regime. Through the introduction of a latent
variables s = {st}T

t=0, we obtain the data augmented likelihood:

L(X , y, s|θ) =
T

∏
t=1

L

∏
l=1

L

∏
h=1

[
p(Xt, yt|st = l, θ)p(st = l|st−1 = h, Ξ)

]1(st=l)1(st−1=h) . (3.13)

The conditional distribution of the observation given the latent variable and marginal dis-
tribution of st are given by, respectively:

p(Xt, yt|st = l, θ) = fl(Xt, yt|θl) (3.14)
p(st = l|st−1 = h, Ξ) = ph . (3.15)

Considering the observation model in eq. (3.2) and defining Tl = {t : st = l} for each
l = 1, . . . , L, we can rewrite eq. (C.2) as:

L(X , y, s|θ) =
T

∏
t=1

L

∏
l=1

[
p(Xt|st = l, θ)p(yt|st = l, θ)

]1(st=l)
L

∏
h=1

[
p(st = l|st−1 = h, Ξ)

]1(st=l)1(st−1=h)

=
L

∏
l=1

∏
t∈Tl

I

∏
i=1

J

∏
j=1

K

∏
k=1

[
(1− ρl)

exp{z′tgijk,l}
1 + exp{z′tgijk,l}

]xijk,t
[

ρl + (1− ρl)
1

1 + exp{z′tgijk,l}

]1−xijk,t

·
L

∏
l=1

∏
t∈Tl

(2π)−m/2 |Σl|−1/2 exp
{
−1

2
(yt − µl)

′Σ−1
l (yt − µl)

}

·
T

∏
t=1

L

∏
l=1

L

∏
h=1

p1(st=l)1(st−1=h)
h . (3.16)

Since the function cannot be expressed as a series of products due to the sum in the rightmost
term, we choose to further augment the data via the through the introduction of latent allo-
cation variablesD = {Dl}L

l=1, withDl = (dijk,l) for i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . , K.
Finally, we perform another augmentation as in Polson et al. (2013), for dealing with the
logistic part of the model. When the hidden chain is assumed to be first order Markov, with
two possible states, that is L = 2, the complete data likelihood is given by:

L(X , y,D, Ω, s|θ) = p(X ,D, Ω|s, θ)p(y|s, θ)p(s|θ)

=
T

∏
t=1

p(Xt,Dt, Ωt|st, θ)p(yt|st, θ)p(st|θ) (3.17a)
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=

 L

∏
l=1

∏
t∈Tl

I

∏
i=1

J

∏
j=i

K

∏
k=1

p(xijk,t, dijk,t, ωijk,t|st = l, ρl,Gl)︸ ︷︷ ︸
I

 (3.17b)

·

 L

∏
l=1

∏
t∈Tl

p(yt|st = l, µl, Σl)︸ ︷︷ ︸
I I

 ·
p(s|Ξ)︸ ︷︷ ︸

I I I

 (3.17c)

where we have exploited the conditional independence of X and y given the hidden chain
s. We augment the model by introducing the latent allocation dijk,l ∈ {0, 1} for l = 1, . . . , L.
Secondly, we use a further data augmentation step via the introduction of the latent variables
ωijk,t following Polson et al. (2013), for dealing with the logistic part of the mixture.

The complete data likelihood for X is given by:

L(X , y,D, Ω, s|θ) =

=
L

∏
l=1

∏
t∈Tl

I

∏
i=1

J

∏
j=1

K

∏
k=1

ρ
dijk,t
l · δ{0}(xijk,t)

dijk,t ·
(

1− ρl
2

)1−dijk,t

· exp
{
−

ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z′tgijk,l)

}

·
L

∏
l=1

∏
t∈Tl

(2π)−m/2 |Σl|−1/2 exp
{
−1

2
(yt − µl)

′Σ−1
l (yt − µl)

}

·

 T

∏
t=1

I

∏
i=1

J

∏
j=1

K

∏
k=1

p(ωijk,t)

 ·
 L

∏
g=1

L

∏
l=1

ξ
Ngl(s)
g,l

 · p(s0|Ξ) , (3.18)

where dij,t is a latent allocation variable and ωij,t is a Pólya-Gamma latent variable. See
Appendix C.2 for the details of the data augmentation strategy and the derivation of the
complete data likelihood.

A well-known identification issue for mixture models is the label switching problem (see,
for example, Celeux (1998)), which stems from the fact that the likelihood function is invari-
ant to relabeling of the mixture components. This may represent a problem for Bayesian
inference, especially when the unobserved components are not well separated, since the as-
sociated labels may wrongly change across iterations. Several proposals have been made for
solving this identification issue (see Frühwirth-Schnatter (2006) for a review). The permuta-
tion sampler proposed by Frühwirth-Schnatter (2001) can be applied under the assumption
of exchangeability of the posterior distribution, which is satisfied when the prior distribu-
tion for the transition probabilities of the hidden Markov chain is symmetric. Alternatively,
there are situations when the particular application provides meaningful restrictions on the
value of some parameters. These restrictions generally stem from theoretical results, or
interpretation of the different regimes, which is the reason why they are widely used in
macroeconomics and finance.

Following this second approach, we can use as identification constraint for the regimes
the mixing probability of the zero-inflated logit in eq. (3.3). This can be interpreted as the
likelihood of a “structural” absent edge, therefore by sorting the regimes in decreasing order,
from “sparse” to “dense”, we impose: ρ1 > ρ2 > . . . > ρL.

As regards the prior distributions for the parameters of interest, we choose the following
specifications. Denote ιn the n-dimensional vector of ones. We assume an independent prior
on γ

(r)
h,l for each regime l = 1, . . . , L, thus representing the a priori ignorance of the different

value of these parameters for varying l. In particular, for each r = 1, . . . , R, each h = 1, . . . , 4
and each l = 1, . . . , L we specify the global-local shrinkage prior:

π(γ
(r)
h,l |ζ

r
h,l, τ, φr, wh,r,l) ∼ Nnh(ζ

r
h,l, τφrwh,r,lInh) (3.19)
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where n = (I, J, Q)′ is a vector containing the length of each vector γ
(r)
h,l and the prior mean

is set to ζ
r
h,l = 0 for each h = 1, . . . , 4, l = 1, . . . , L, r = 1, . . . , R. The parameter τ repre-

sents the global component of the variance, common to all marginals, φr is level component
(specific for each r = 1, . . . , R) and wh,r is the local component. The choice of a global-local
shrinkage prior, as opposed to a spike-and-slab distribution, is motivated by the reduced
computational complexity and the capacity to handle high-dimensional settings.

In addition, for allowing greater flexibility, we assume the following hyper-priors for the
variance components1:

π(τ) ∼ Ga(aτ, b
τ
) (3.20)

π(φ) ∼ Dir(α) α = αιR (3.21)

π(wh,r,l|λl) ∼ Exp(λ2
l /2) ∀ h, r, l (3.22)

π(λl) ∼ Ga(aλ
l , b

λ
l ) ∀ l . (3.23)

The further level of hierarchy for the local components wh,r,l is added with the aim of
favouring information sharing across local components of the variance (indices h, r) within
a given regime l. This hierarchical prior induces the following marginal prior on the vector
wl = (w1,1,l, . . . , w4,R,l)

′:

π(wl) =
∫

R+

R

∏
r=1

4

∏
h=1

π(wh,r,l|λl)π(λl) dλl

=
∫

R+

(b
λ
l )

aλ
l

2Γ(aλ
l )

λ
aλ

l +8R−1
l exp

−b
λ
l λl −

(
R

∑
r=1

4

∑
h=1

wh,r,l

)
λ2

l
2

 dλl . (3.24)

The marginal prior for a generic entry wh,r,l is a compound gamma distribution2, that is

p(wh,r,l) ∼ CoGa(1, aλ
l , 1, b

λ
l ), with aλ

l > −1. In the univariate case (i.e H = 1, R = 1 and
L = 1), we obtain a generalized Pareto distribution3 π(w) = gP(0, aλ, bλ/aλ).

The specification of an exponential distribution for the local component of the variance of

1We use the shape-rate formulation for the gamma distribution, that is for α > 0, β > 0:

x ∼ Ga(α, β) ⇐⇒ f (x) =
βα

Γ(α)
xα−1e−βx x ∈ (0,+∞) .

2Alternatively, following (Johnson et al., 1995, p.248), this is called generalized beta prime distribution or generalized
beta distribution of the second kind Be2(α, β, p, q), whose probability density function (with B(α, β) being the usual beta
function) is given by:

p(x|α, β, p, q) =
1

qB(α, β)
p

(
x
q

)αp−1
1 +

(
x
q

)p
−(α+β)

x ∈ R+, α, β, p, q ∈ R+ . (3.25)

In our case, the probability density function is defined by a mixture of two gamma distributions (see also Dubey (1970)):

p(x|α, β, 1, q) =
∫ ∞

0
Ga(x|α, p)Ga(p|β, q) dp =

qβxα−1(q + x)α+β

B(α, β)
x ∈ R+, α, β, q ∈ R+ . (3.26)

In our case, the parametrisation is (1, aλ, 1, bλ). This special case is also called a Lomax(a, b) distribution with parameters
(aλ, bλ).

3The probability density function of the generalized Pareto distribution is:

p(x|µ, ξ, σ) =
1
σ

(
1 +

(x− µ)

ξσ

)−(ξ+1)

x ∈ R+, µ, ξ ∈ R, σ ∈ R+ . (3.27)
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FIGURE 3.2: DAG of the model in eq. (3.8a)-(3.8c) and prior structure in eq. (3.19)-
(3.31). Gray circles denote observable variables, white circles with continuous bor-
der indicate parameters, white circles with dashed border indicate fixed hyper-

parameters.

the γ
(r)
h,l yields a Laplace distribution for each component of the vectors once the wh,r,l is in-

tegrated out, that is γ
(r)
h,l,i|λl, τ, φr ∼ Laplace(0, λl/

√
τφr) for all i = 1, . . . , nh. The marginal

distribution of each entry, integrating all remaining random components, is instead a gener-
alized Pareto distribution.

In probit and logit models it is not possible to identify the coefficients of the latent re-
gression equation as well as the variance of the noise (e.g., see Wooldridge (2010)). As a
consequence, we make the usual identifying restriction by imposing unitary variance for
each εijk,t.

The mixing probability of the observation model is assumed beta distributed:

π(ρl) ∼ Be(aρ
l , b

ρ
l ) ∀ l = 1, . . . , L . (3.28)

Concerning the parameters of the second equation (vector yt ∈ Rm), we assume the priors:

π(µl) ∼ NM(µl, Υl) ∀ l = 1, . . . , L (3.29)

π(Σl) ∼ IWM(νl, Ψl) ∀ l = 1, . . . , L . (3.30)

Finally, each row of the transition matrix of the Markov chain process st is assumed to be a
priori distributed according to a Dirichlet distribution:

π(ξl,:) ∼ Dir(cl,:) ∀ l = 1, . . . , L . (3.31)

The overall structure of the hierarchical prior distribution is represented graphically by
means of the directed acyclic graph (DAG) in Fig. 3.2.

3.4 Posterior Approximation

For explanatory purposes, in this section we focus on single layer graphs (i.e. k = 1), which
is a special case of the model in eqs. (3.8a)-(3.8c). In Appendix C.3 we present the computa-
tional details for the general case with multi-layer network observations (i.e. K > 1).

For reducing the burden of the notation, we define G = {Gl}L
l=1, µ = {µl}L

l=1, Σ =

{Σl}L
l=1 and ρ = {ρl}L

l=1. Moreover, denote by W ∈ R3×R×L the matrix whose elements
(wh,rl

)h,r,l are the components of the marginal-specific variance. Combining the complete
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data likelihood with the prior distributions yields a posterior sampling scheme consisting
of four blocks (see Appendix C.3 for the derivation of the posterior full conditional distribu-
tions).

In the first block (I) the sampler draws the latent variables from the full conditional dis-
tribution:

p(s,D, Ω|X , y,G, µ, Σ, Ξ, ρ) = p(s|X , y,G, µ, Σ, Ξ, ρ) (3.32)

·∏
ijt

p(ωij,t|xij,t, st,Gst)p(dij,t|xij,t, st,Gst , ρst) . (3.33)

Samples of s are obtained via the multi-move Forward-Filtering-Backward-Sampler (see Frühwirth-
Schnatter (2006)). The latent variables ωij,t are sampled independently for each i = 1, . . . , I,
j = 1, . . . , J and t = 1, . . . , T from:

p(ωij,t|xij,t, st,Gst) ∝ PG(1, z′tgijk,st) , (3.34)

The latent variables ωij,t are sampled in block for each t. This is done by sampling ut =
vec (Ωt) from the vectorised version of the PG random number generator, then reshaping
Ωt = vecr(ut). The latent variables dij,t are sampled independently for each i = 1, . . . , I,
j = 1, . . . , J and t = 1, . . . , T from:

p(dij,t = 1|xij,t, st,Gst , ρst) ∝ ρst δ{0}(xij,t) (3.35a)

p(dij,t = 0|xij,t, st,Gst , ρst) ∝ (1− ρst)
exp{(z′tgijk,st)xij,t}
1 + exp{z′tgijk,st}

. (3.35b)

Block (II) regards the hyper-parameters which control the variance of the PARAFAC
marginals, and have full conditional distribution:

p(τ, φ, W|{γ(r)
h,l }h,l,r) = p(φ|{γ(r)

h,l }h,l,r, W)p(τ|{γ(r)
h,l }h,l,r, W, φ)p(W|{γ(r)

h,l }h,l,r, φ, τ) .
(3.36)

The auxiliary variables ψr are sampled independently for r = 1, . . . , R from:

p(ψr|{γ(r)
h,1}h,l, wr) ∝ GiG

2b
τ
,

3

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r
, α− n

 (3.37)

then, for each r = 1, . . . , R define:

φr =
ψr

∑R
v=1 ψv

. (3.38)

The parameters φ are sampled in a separate block since they all enter the full conditionals
of wh,r,l and γ

(r)
h,l . The global variance parameter τ is drawn from:

p(τ|{γ(r)
h,l }h,l,r, W, φ) ∝ GiG

2b
τ
,

R

∑
r=1

3

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r
, (α− n)R

 . (3.39)

The local variance parameters wh,r,l are independently drawn for each h = 1, 2, 3, r =
1, . . . , R and l = 1, . . . , L from:

p(wh,r,l|γ
(r)
h,l , φr, τ, λl) ∝ GiG

λ2
l ,

γ
(r)′

h,l γ
(r)
h,l

τφr
, 1− nh

2

 . (3.40)



3.5. Simulation Results 49

Finally, denoting wl the collection of all wh,r,l for a given l, the parameters λl are indepen-
dently drawn for each l = 1, . . . , L from:

p(λl|wl) ∝ λ
aλ

l +6R−1
l · exp

{
−λlb

λ
l

}
·
{
−

λ2
l

2

R

∑
r=1

3

∑
h=1

wh,r,l

}
. (3.41)

The third block (III) concerns the marginals of the PARAFAC decomposition for the ten-
sors Gl for every l = 1, . . . , L. The vectors γ

(r)
h,l are sampled independently for all h = 1, 2, 3

and every r = 1, . . . , R from:

p(γ(r)
h,l |X , W, φ, τ, s,D, Ω) ∝ Nnh

(
ζ̃

r
h,l, Λ̃

r
h,l

)
. (3.42)

Finally, in block (IV) are drawn the mixing probability, the transition matrix and the main
parameters of the second equation. The mixing probability is sampled for every l = 1, . . . , L
from:

p(ρl|D, s) ∝ Be(ãl, b̃l) . (3.43)

Each row of the transition matrix is independently drawn for every l = 1, . . . , L from:

p(ξl,:) ∝ Dir(c̃) . (3.44)

The mean and covariance matrix of the second equation are sampled independently for
every l = 1, . . . , L, respectively from:

p(µl|y, s, Σl) ∝ NM(µ̃l, Υ̃l) (3.45)

and:
p(Σl|y, s, µl) ∝ IWM(ν̃l, Ψ̃l) . (3.46)

Blocks (I) and (II) are Rao-Blackwellized Gibbs steps: in block (I) we have marginalised
over both (D, Ω) in the full joint conditional distribution of the state s and D (together with
ρ) in the full conditional of Ω, while in (II) we have integrated out τ from the full conditional
of φ (see sec. C.3.2). Blocks (III) and (IV) are standard Gibbs steps, concerned with sampling
from the full conditional (eventually exploiting conditional independence relations).

3.5 Simulation Results

We consider three simulation settings for the model in eqs. (3.8a)-(3.8c) corresponding to
different sizes I and J, with I = J, of the adjacency matrix Xt. The other parameters indicated
below are kept fixed across settings. The three synthetic datasets used to check the efficiency
of the proposed Gibbs sampler share the same hyper-parameters’ values, but differ in the
size of the adjacency matrices. We consider:

(I) I = J = 100, with Q = 3 common covariates and M = 2 exogenous variables;

(II) I = J = 150, with Q = 3 common covariates and M = 2 exogenous variables;

(III) I = J = 200, with Q = 3 common covariates and M = 2 exogenous variables.

We generated a sample of size T = 60 and at each time step we simulate a square matrix
Xt, a vector yt of length m = 2 and a set of Q = 3 covariates zt. The covariates have been
generated from a stationary Gaussian VAR(1) process with entries of the coefficient matrix
i.i.d. from a truncated standard normal distribution. We considered two regimes (i.e. L = 2)
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and generated the trajectory of the Markov chain {st}T
t=1 setting:

Ξ =

[
0.8 0.2
0.3 0.7

]
p(s0) =

[
0.7
0.3

]
. (3.47)

For each regime l = 1, 2, we generated the marginals of the PARAFAC decomposition (rank
R = 5) of the tensor Gl, the mixing probability in the first equation and the mean and covari-
ance in the second equation of the model according to:

ρ1 = 0.8 ρ2 = 0.2

γ
(r)
h,1

iid∼Nnh(0nh , Inh) ∀ h, r γ
(r)
h,2

iid∼Nnh(ιnh , Inh) ∀ h, r

µ1 = [2, 2]′ µ2 = [−2,−2]′

Σ1 =

[
2 0.5

0.5 2

]
Σ2 =

[
4 1
1 4

] (3.48)

We initialised the marginals of the PARAFAC decomposition of the tensor of coefficients Gl
at the output of the Simulated Annealing algorithm (see (Robert and Casella, 2004, pp. 163-
173)) and we kept the same value for each l = 1, . . . , L. The other parameters (ρ, W, φ, τ, Ξ, µ, Σ)
have been initialised by sampling from their prior. Finally, we have chosen the following
values for the hyper-parameters:

α = 0.5 bτ = 2 λ = 4 ζr
h,l = 0nh ∀ h, l, r

a1 = 5 b1 = 2 a2 = 2 b2 = 5

µ1 = 0m µ2 = 0m Υ1 = Im Υ2 = Im

ν1 = m ν2 = m Ψ1 = Im Ψ2 = Im

c1 = [8, 4] c2 = [4, 8]

(3.49)

For each simulation setting, we evaluate the mean square error of the estimated coeffi-
cient tensor:

MSE =
1
2
(MSE1 + MSE2) =

1
2I JK

(∥∥∥G∗1 − Ĝ1

∥∥∥2

2
+
∥∥∥G∗2 − Ĝ2

∥∥∥2

2

)
, (3.50)

where ‖·‖2 is the Frobenious norm for tensors, i.e.:

∥∥∥G∗` − Ĝ`∥∥∥2

2
=

I

∑
i=1

J

∑
j=1

K

∑
k=1

(g∗ijk,` − ĝijk,`)
2 . (3.51)

All simulations have been performed using MATLAB r2016b with the aid of the Tensor
Toolbox v.2.64.

Figs. 3.3(a)-3.3(c)-3.3(e) report the trace plots of the error, for each of the three simulations,
respectively, while Figs. 3.3(b)-3.3(d)-3.3(f) plot the corresponding autocorrelation functions.
All these graphs show that the estimated total error series rapidly stabilises around a small
value, meaning that the sampler is able to recover the true value of the tensor parameter.
Furthermore, from the analysis of Figs. 3.3(b)-3.3(d)-3.3(f) we can say that the autocorrela-
tion of the posterior draws of the total error vanishes after three lags, thus representing a
first indicator of the efficiency of the sampler. We remind to Appendix C.5 for further details
and plots about the performance of the sampler in each simulated example.

4Available at: http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
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(a) Simulation (I): trace plot.
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(b) Simulation (I): ACF.
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(c) Simulation (II): trace plot.
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(d) Simulation (II): ACF.
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(e) Simulation (III): trace plot.
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(f) Simulation (III): ACF.

FIGURE 3.3: Left: Trace plots (blue line) with superimposed progressive mean (or-
ange line) of the total error in estimating the tensor of regression coefficients, for
each simulation. Right: corresponding autocorrelation function, for each simula-

tion.

Table (3.1) reports the effective sample size (ESS) in the formulation provided by Gelman
et al. (2014):

ESS =
N

1 + 2 ∑∞
l=1 $̂l

, (3.52)

where $̂l is the sample autocorrelation function at lag l and N is the sample size (i.e., the
length of the simulation). For computational reasons, the infinite sum is truncated at L =
min{l : $̂l < 10−4}. The ESS is interpreted as an efficiency index: it represents the number
of simulated draws that can be interpreted as iid draws from the posterior distribution (in
fact, in presence of exact iid sampling schemes we have ESS = N). The results in Tab. (3.1)
show that in all three simulation settings the effective sample size is about half of the length
of the simulation.
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Simulation ESS ACF(1) ACF(5)

I
II 245
III

TABLE 3.1: Convergence diagnostic statistics for the total error, for each simulated
case. ESS is rounded to the smallest integer.

3.6 Applications

3.6.1 Data description

We apply the proposed methodology to the well-known dataset of financial networks of Bil-
lio et al. (2012), Ahelegbey et al. (2016b), Ahelegbey et al. (2016b), Bianchi et al. (2018). The
dataset consists of T = 110 monthly binary, directed networks estimated via the Granger
causality approach, where the nodes are European financial institutions. Other methods
for extracting the network structure from data can be used, as this is not relevant for our
econometric framework, which applies to any sequence of binary tensors.

The original dataset is composed by the daily closing price series at a daily frequency
from 29th December 1995 to 16th January 2013 of all the European financial institutions
active and dead in order to cope with survivorship bias. It covers a total of 770 European
financial firms which are traded in 10 European financial markets (core and peripheral).
The pairwise Granger causalities are estimated on daily returns using a rolling window
approach with a length for each window of 252 observations (approximately 1 year). We
obtain a total of 4197 adjacency matrices during the period from 8th January 1997 to 16th
January 2013.

Then, we define a binary adjacency matrix for each month by setting an entry to 1 only if
the corresponding Granger-causality link existed for the whole month (i.e. for each trading
day of the corresponding month), and setting the entry to 0 otherwise. Since the panel is
unbalanced due to entry and exit of financial institutions from the sample over time, we
consider a subsample of length T = 110 months (from December 2003 to January 2013)
made of 61 financial institutions.

We can visualize a sequence of adjacency matrices representing a time series of networks
in several ways. Fig. 3.4(a) shows a stacked representation of a subsample composed by
six adjacency matrices, while Fig. 3.4(b) plots a 3-dimensional array representation of the
same data. In the first case, all matrices are stacked horizontally. Instead, the 3-dimensional
representation plots each matrix in front of the other, as frontal slices of an array. It is possible
to interpret the two plots as equivalent representations of a third-order tensor: in this case,
Fig. 3.4(a) shows the matricised form (along mode 1) of the tensor, while Fig. 3.4(b) plots its
frontal slices. Finally, Fig. 3.5 plots the graph associated to two of these adjacency matrices.
Though this representation allows for visualising the topology of a network, it is impractical
for giving a compact representation of the whole time series of networks. Thus, we provide
in Fig. 3.6 the stacked representation of the whole network sequence. Each row plots twelve
time-consecutive adjacency matrices, starting from the top-left corner.

The most striking features emerging from Fig. 3.6 are the time-varying degree distribu-
tion and the temporal clustering of sparse and dense networks.
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FIGURE 3.4: Stacked (a) and 3-dimensional (b) representations of a subsample of
adjacency matrices (months t = 65, 69, 73, 77, 81, 85). Blue dots are existing edges,
white dots are absent edges. A red line is used to separate each matrix (or tensor

slice).
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FIGURE 3.5: Graphical representation of networks at time t = 69 (dense case) and
t = 77 (sparse case), respectively. The size of the each node is proportional to its

total degree. Edges are clockwise directed.
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FIGURE 3.6: Full network dataset, with I = J = 61 nodes and sample size of
T = 110 months. In each red box there is an adjacency matrix, starting from top-
left at time t = 1, the first row contains matrices from time t = 1 to t = 11, the
second row from t = 12 to t = 22 and so on. Blue dots are existing edges, white
dots are absent edges. Red lines are used to delimit the matrices. Labels on the

horizontal and vertical axes stand for the corresponding node of the network.

The set of covariates zt used to explain each edge’s probability includes a constant term
and:

• the network total degree (dtd), defined as the total number of edges in the network at
time t = 1, . . . , T;

• the monthly change of the VSTOXX index (DVX), which is the volatility index for the
STOXX50 (and may considered the counterpart of the VIX for Europe);

• the monthly log-returns on the STOXX50 index (STX), taken as a European equivalent
to the US S&P500 index;

• the credit spread (crs), defined as the difference between BAA and AAA indices pro-
vided by Moody’s;

• the term spread (trs), defined as the difference between the 10-year returns of reference
Government bonds and the 6-months EURIBOR;

• the momentum factor (mom), obtained from Kenneth French’s website5, provides a
measure of th tendency for rising asset prices to rise further and falling prices to keep
falling.

All covariates have been standardised and included with one lag of delay, except DVX which
is contemporaneous to the response, following the standard practice in volatility modelling
(e.g., see, Corsi et al. (2013), Delpini and Bormetti (2015) Majewski et al. (2015)).

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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3.6.2 Results

We estimated a stripped-down version of the general model presented in Section (3.2) con-
sisting only of eq. (3.8a). We run the Gibbs sampler for N = 10000 iterations, after having
initialised the latent state variables {st}t according to suitable network statistics and the
marginals of the tensor decomposition in both regimes (see Supplementary material for fur-
ther details). We estimate the model with tensor rank R = 5 and discuss the main empirical
findings (the analysis has been performed also for R = 8, obtaining similar results).

FIGURE 3.7: Total degree of the observed network time series (blue) against the
estimated hidden Markov chain (red).
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FIGURE 3.8: Posterior mean of tensor of coefficients, in matricised form, in the first
(top) and second (bottom) state of the Markov switching process. For all the slices
of each tensor we used the same color scale. Red, blue and white colors indicates

positive, negative and zero values of the coefficients, respectively.

FIGURE 3.9: Posterior distribution (left plot) and MCMC output (right plots) of
the quadratic norm of the tensor of coefficients, in regime 1 (blue) and regime 2

(orange).
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FIGURE 3.10: Scatter plots of total node degree averaged over networks within
regime (x-axis) versus the sum of positive (y-axis, red) and the sum of negative (y-
axis, blue) entries of each slice of the coefficient tensor, in regime 1 (top) and regime

2 (bottom). Coefficients corresponding to incoming edges’ probability.

FIGURE 3.11: Scatter plots of total node degree averaged over networks within
regime (x-axis) versus the sum of positive (y-axis, magenta) and the sum of negative
(y-axis, black) entries of each slice of the coefficient tensor, in regime 1 (top) and

regime 2 (bottom). Coefficients corresponding to outgoing edges’ probability.
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FIGURE 3.12: Distribution of the entries of each slice (different plots) of the esti-
mated coefficient tensor, in regime 1 (blue) and regime 2 (orange).

FIGURE 3.13: Posterior distribution (left plot), MCMC output (middle plots) and
autocorrelation functions (right plots) of the mixing coefficient ρl in the two
regimes. Regime 1 in blue and in top panels, regime 2 in orange and in bottom

panels.

The estimated hidden Markov chain is plotted in Fig. 3.7 together with the total degree
of the observed network time series, using label 1 for the sparse regime and label 2 for the
dense regime. The algorithm associates to the dense state in periods when the total degree
of the network is remarkably above the average.

There is substantial heterogeneity in the effect of covariates across edges, within the same
regime, as reported in Fig. 3.8. Here, the estimated tensor is plotted in matricized form
along mode 1 (using two different color scales in the two figures): on the vertical axis we
have 61 nodes, while on the horizontal there are 61 · 7 nodes (the number of covariates
including the constant), corresponding to 7 matrices, one for each covariate, horizontally
stacked. The entry (i, j) of matrix in position k reports the coefficient of the k-th covariate
on the probability of observing the edge (i, j). Thus, within the same regime we observe a
significant variation of both the sign and the magnitude of the effect of a covariate on the
probability of observing an edge. In words, there is not a single covariate able to explain
(and predict) an edge’s probability by itself, but several indicators are required. Moreover,
a model with pooled time series fails to capture such heterogeneity. The posterior mean is
1.56 in regime 1 and 4.63 in regime 2, but in both cases it is not significantly different from
zero, that is, it lies inside a 95% credible interval around zero (see Fig. C.31 in Appendix C.6).
This is in contrast with our model, where the fraction of tensor entries statistically different
from zero is 12% and 36% in regime 1 and 2, respectively. Thus, we conclude that a pooled
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model is not suited for describing the heterogeneous effects of the various covariates on the
different edges, whereas our model is able to capture them.

We find substantial evidence in favour of major changes of the effects that the covariates
exert on the edges’ probability in the two regimes. By comparing the two matricized tensors
in Fig. 3.8 we note that both the sign and the magnitude of the coefficients differ in the two
states. The interpretation is that, according to the regime, the probability of observing a link
between two nodes is driven by a different set of variables but also the qualitative influence
(i.e. the sign of the coefficient) of the same regressor varies. For example, on average, the
credit spread seems to exert a positive effect on the probability of observing an edge in the
sparse regime, while its effect in the dense regime has higher magnitude and acts in the
opposite direction.

Fig. 3.10 reports, for each regime and covariate, the scatter plot of the total degree of
each node (horizontal axis), averaged within regime, against the sum of all negative and
positive coefficients’ values for the probability of observing an incoming edge. Similarly,
Fig. 3.11 shows the same plot considering the effects on the probability of observing an out-
going edge. Together, these plots allow to detect the existence of a relation between the
overall positive and negative magnitude of the effects of the covariates on the probability
of observing an edge, conditionally on the total degree of the node to which the link is at-
tached. The results show that for several covariates such an association exists: on average,
more central nodes (i.e. those with higher total degree) tend to have higher probability of
establishing an edge, either incoming or outgoing. This is due to the upward sloping shape
of the scatter plot. It is remarkable to notice that for different covariates, such as the mo-
mentum factor, there is a different relation for negative and positive effects: for increasingly
central nodes, both sums tend to more extreme values. Moreover, by comparing the results
in Figs. 3.10-3.11 we see that the results are similar if we look either at incoming or outgoing
edges. Finally, between regimes there seems to be no change except for the strength of the
relation, which appears stronger in the second one (corresponding to the dense state of the
network).

In Fig. 3.12 we plot the distribution of the entries of each slice (over the edges), for every
regime, for a more qualitative analysis of the change of the coefficients’ values between
regimes. There is a different dispersion in the cross-sectional distribution of the coefficients’
estimates. In particular, all distributions appear more concentrated around zero in the sparse
state, while in the dense regime the mean value is different (and varies according to the
covariate) and all distributions show fatter tails than in sparse state.

As a summary statistic, Fig. 3.9 reports the distribution and the trace plots of the quadratic
norm of the tensor coefficients in each regime. The two distributions are well separated, with
the norm in the first regimes concentrated around smaller values than in the second regime.
This implies that, on average, in the sparse state there is a higher probability that the ze-
ros (i.e. absence of edges) are due to the structural component (that is, the Dirac mass in
eq. (3.3)), moreover the probability of success of the Bernoulli distribution is smaller than in
the dense regime.

Finally, Fig. 3.13 shows the posterior distributions of the regime-dependent probabilities
of observing a structural zero, in the two regimes. The distributions are well separated, with
posterior means around 0.85 and 0.71 in the sparse and dense state, respectively.

Additional plots regarding the hyper-parameters of the model are shown in Appendix C.6.

3.7 Conclusions

We presented an econometric framework for modelling of a time series of binary tensors,
which we interpret as representing multi-layer networks. We proposed a parsimonious
parametrization based on the PARAFAC decomposition of the parameter tensor. Moreover,
the parameters of the model can switch between multiple regimes, thus allowing to cap-
ture the time-varying topology of financial networks and economic indicators. We specified
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a zero-inflated logit model for the probability of each entry of the observed tensor, which
permits to capture the varying sparsity patterns of the observed time series. The proposed
framework is also able to jointly model a temporal sequence of binary arrays and a vector
of economic variables.

We followed the Bayesian paradigm in the inferential process and developed a Gibbs
sampler via multiple data augmentation steps for estimating the parameters of interest. The
performance of the algorithm has been tested on simulated datasets with networks of dif-
ferent sizes, ranging from medium (i.e. 100 nodes) to big (i.e. 200 nodes). The results of the
estimation procedure are encouraging in all simulations.

Finally, we estimated a stripped-down version the model on a real dataset of networks
between European financial institutions. The results suggest the existence of two different
regimes associated to the degree density of the network. Moreover, in each regime the most
degree central nodes tend to be more sensitive to the effect of covariates (either positive or
negative) on their probability to link to other nodes. Overall, the probability of forming an
edge is not depending on a single covariate, but a combination of several financial indicators
is needed to explain and predict it. Finally, nature of the absent edges is estimated to be
different, with the sparse regime having a high probability of structural zeros, as compared
to the dense regime.
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Chapter 4

Nonparametric forecasting of multivariate
probability density functions

The infinite! No other question has ever moved so
profoundly the spirit of man.

DAVID HILBERT

Divide each difficulty into as many parts as is
feasible and necessary to resolve it.

RENÉ DESCARTES

4.1 Introduction

One of the most relevant research fields in theoretical and applied statistics is devoted to
the study of the dependence between random variables. In finance, the analysis of the
dependence patterns is a challenging problem and its understanding serves several pur-
poses: control of risk clustering, credit, market and systemic risk measurement, pricing and
hedging of credit sensitive instruments (such as collateralized debt obligations or CDOs)
and credit portfolio management. The analysis of the relationships between economic and
financial variables is crucial for the identification of causality relations (e.g., see Granger
(1988), White and Lu (2010)). From a statistical perspective, the main purpose is the de-
velopment of models able to describe and forecast the joint dynamic behaviour of financial
variables. Moreover, these models may provide an effective support for the financial regu-
lator (for example, in predicting and counteracting an increase of the systemic risk).

Firstly developed by Sklar (1959), copula functions have attracted significant attention
over the last decade, particularly within the financial and econometric communities, as a
flexible instrument for modelling the joint distribution of random variables (see Joe (1997), Nelsen
(2013) and Durante and Sempi (2015) for an introduction and a compelling review). Let
(X1, . . . , Xd) be a random vector with continuous marginal cumulative distribution func-
tions (cdf) Fi(·) and probability density function (pdf) fi(·). The random vector (U1, . . . , Ud) =
(F1(X1), . . . , Fd(Xd)), obtained by application of the probability integral transform, has uni-
form marginals. The copula of (X1, . . . , Xd) is defined as the joint cumulative distribution
function C : [0, 1]d → [0, 1] of (U1, . . . , Ud), that is C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud).
Moreover, denoting F(·) the joint cumulative distribution of (X1, . . . , Xd) and by f (·) its
probability density function, Sklar’s theorem (Sklar (1959)) states that there exists a unique
copula C(·) with probability density function c : [0, 1]d → R+ such that F(x1, . . . , xd) =

C(F1(x1), . . . , Fd(xd)) and f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))∏d
i=1 fi(xi).

The use of a copulas permits to separately deal with the marginal distributions and the
dependence structure among a set of random variables, thus providing a high degree of
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Copula family Upper λU Lower λL

Gaussian(ρ) 1 if ρ = 1 1 if ρ = 1
t-student(ν, ρ) λ > 0 if ρ > 1 λ > 0 if ρ > 1
Gumbel(θ) 2− 21/θ 0
Clayton(θ) 0 2−1/θ

Frank(θ) 0 0
Fréchet(p, q) q q

TABLE 4.1: Upper and lower tail dependence for some copula families. In brackets
the parameters of the copula family.

flexibility in modelling the corresponding joint distribution. The literature on quantitative
finance and financial econometrics has widely recognized the importance of this instrument,
as documented by the review of Patton (2012) and the textbooks by Cherubini et al. (2004)
and Cherubini et al. (2011).

A standard practice in financial econometrics, motivated by the fact that multivariate
data (e.g., returns of a portfolio of assets) have non-Gaussian marginal distributon, consists
in assuming a heavy-tailed distribution for the marginals (or to estimate them nonpara-
metrically) and to join them with a parametric copula function, which fully describes the
dependence structure (Deheuvels (1978), Deheuvels (1979)) through its parameters. This
approach allows a parsimonious description of the dependence between two variables by
means of the few parameters of a copula function.

This method has some undesirable shortcomings. First, each parametric copula family is
designed to describe only a specific dependence pattern (for example, see Table 4.1), which
makes the selection of the family a crucial aspect of every modelling strategy. To this aim,
we recall the definition of upper (lower) tail dependence from Cherubini et al. (2004). This
concept is used to describe situations where high (low) values of a variables are likely to be
observed together with high (low) values of the other. In terms of the copula pdf, this means
that the probability is concentrated to the top-right (bottom-left) corner. Formally, given two
random variables X ∼ GX and Y ∼ GY with bivariate copula C(·), the upper and lower tail
dependence coefficients (upper TDC and lower TDC, respectively) are given by:

λU = lim
u→1−

P(GX(X) > u|GY(Y) > u) = lim
u→1−

1− 2u + C(u, u)
1− u

, (4.1)

λL = lim
u→0+

P(GX(X) < u|GY(Y) < u) = lim
u→0+

C(u, u)
u

, (4.2)

which are asymptotically equivalent to:

λU = 2− lim
u→1−

log(C(u, u))
log(u)

, λL = 2− lim
u→0+

log(1− 2u + C(u, u))
log(1− u)

. (4.3)

The copula C(·) is said to have upper (lower) tail dependence when λU 6= 0 (λL 6= 0).
Table 4.1 reports the tail dependence coefficients for some commonly used copula families
(see Cherubini et al. (2004)). Only some of them (e.g., Gaussian, t-student and Fréchet, for
some values of their parameters) have simultaneously upper and lower tail dependence:
this happens only for some values of the parameter of the copula and, in any case, the tail
dependence coefficients are equal, thus implying that the tail dependence is symmetric.

Second, when the copula parameter is assumed to be fixed, these constructions are able
to identify only the overall, static relations and fail to account for any kind of spatial or
temporal change. This constraint is particularly restrictive in time series analysis of finan-
cial data, as pointed out by Fermanian and Scaillet (2004). In fact, very often the relations
between financial variables are non linear and change over time.
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To address this shortcoming, Patton (2006a) and Patton (2006b) introduced dynamic cop-
ula models by assuming that the parameters of the copula function are driven by an au-
toregressive process. Instead, Fermanian and Wegkamp (2012) allowed the parameters to
depend on past realizations of the observables. These seminal works, have opened a new
avenue to research (see Manner and Reznikova (2012) for a review) and has brought out-
standing improvements to the econometrician’s toolbox. For example, So and Yeung (2014)
and Jondeau and Rockinger (2006) incorporate dynamics into a copula-GARCH model im-
proving its forecasting performance, Dias and Embrechts (2004) and Van Den Goorbergh
et al. (2005) exploited dynamic copulas in modelling high-frequency data and option pric-
ing, respectively, whereas Oh and Patton (2017) has recently applied this methodology to
the study of systemic risk. Other relevant empirical contributions exploiting this construc-
tion include Almeida et al. (2016), Bartram et al. (2007), Weiß and Supper (2013), Hu (2010),
Hafner and Reznikova (2010), Hafner and Manner (2012), Guidolin and Timmermann (2006).

Despite the greater flexibility, dynamic copulas may fail to account for the characteris-
tics of the dependence structure among financial data. Since each copula family is con-
structed for describing a specific dependence pattern, the change of its parameters may not
be enough to capture other types of dependence.

The recent paper by Guégan and Zhang (2010) found empirical evidence supporting this
theory. They developed a strategy for testing the null of a static copula against a dynamic
copula, then upon rejection they tested for the change of the copula family over different
temporal windows. The main results is that the dependence structure between the S&P500
and NASDAQ indices experienced a great variability over time, thus stressing the need for
a dynamic model; nonetheless the null hypothesis of equal copula function family was re-
jected for several windows. This suggests that, in this dataset, the evolution of the dynamic
copula parameter is insufficient to account for the variation of the dependence structure and
different copula families should be used for different temporal windows.

To overcome these limitations, we propose a methodology that has the whole function
as the object of interest, instead of a finite-dimensional parameter vector. We do this by
exploiting some results developed in the literature on functional data analysis, which we
briefly introduce in the following.

Starting from the seminal work of Bosq (2000), functional data analysis (see Ramsay
and Silverman (2005) and Ferraty and Vieu (2006) for a thorough treatment) has found ap-
plications also in finance and financial econometrics (see Hörmann and Kokoszka (2012),
Kokoszka (2012) and Kidziński (2015) for an introduction to the topic). Different models
have been proposed for time series of functional data: for example, Sen and Klüppelberg
(2015) assumed stationarity and estimated a VARMA functional process for electricity spot
prices, conversely Liebl (2010) used the same data but proposed a method for dealing with
non-stationary data and applied it in Liebl (2013) for forecasting. Within the same stream of
research, Horváth et al. (2010) and Horváth et al. (2014) designed a testing procedure for de-
tecting non-stationarity. Aue et al. (2015) and Kargin and Onatski (2008), instead, used time
series functional for improving on the forecasting performance of multivariate on forecast-
ing. More recently, Kidziński et al. (2016) and Klepsch et al. (2017) extended the theory of
univariate ARMA models to the functional framework, by introducing also seasonal effects.
Finally, Petris (2013) and Canale and Ruggiero (2016) developed an inferential procedure
following the Bayesian paradigm, following a parametric and non-parametric approach, re-
spectively.

The literature on functional time series modelling can be partitioned into two main classes,
according to the methodology developed. The parametric framework, firstly introduced
by Bosq (2000), hinges on the linear functional autoregressive model (FAR) which can be
considered an infinite-dimensional analogue of vector autoregressive (VAR) processes, widely
used in times series analysis. By contrast, the non-parametric approach (see Ferraty and
Vieu (2006) and Ramsay and Silverman (2005) for an overview) relies on functional princi-
pal component analysis (fPCA). See Appendix D.1 for a short introduction.
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Unfortunately, none of the previously mentioned approaches is suited for dealing with
constrained functions, such as probability density functions (pdfs), which must be positive
(on their support) and have unit integral. A statistical model for the analysis of a time series
of pdfs should include a mechanism for dealing with these constraints. In the literature,
three main approaches have been proposed to address this issue. One possibility consists
in ignoring the constraints and treating the pdfs as an unrestricted functions, then after the
estimation and forecasting steps, the output is re-normalized in order to get a probability
density function. Sen and Ma (2015) adopted this approach for studying a time series of
pdfs of financial data from the S&P500 and the Bombay Stock Exchange.

More appealing alternatives do not need to post-process the output and allow to perform
the analysis taking into account the constraints. The seminal works by Egozcue et al. (2006),
van der Boogaart et al. (2010), van der Boogaart et al. (2014) and Egozcue and Pawlowsky-
Glahn (2015) introduced the notion of Bayes space, that is a Hilbert space of probability den-
sity functions. They borrowed from compositional data analysis and Aitchison’s geometry
(see Aitchison (1986)) and interpreted probability density functions as infinite-dimensional
compositional vectors. They replaced the pointwise sum and multiplication by the opera-
tions of perturbation and powering which, for f (·), g(·) ∈ D(I), I ⊂ Rn, and α ∈ R, are
defined by:

f (x)⊕ g(x) =
f (x)g(x)∫

I f (x)g(x) µ(dx)
, α� f (x) =

f (x)α∫
I f (x)α µ(dx)

. (4.4)

Instead, the analogue of subtraction is given by f (·) 	 g(·) = f (·) ⊕ [−1 � g(·)]. They
showed that the tuple (D(I),⊕,�) is a space and that the subset D∗(I) ⊂ D(I) of proba-
bility density functions whose logarithm is square integrable is a Hilbert space. These re-
markable results permit to conduct the analysis directly in D∗(I), provided that it is possible
to re-define the necessary statistical models by means of the new operations ⊕,�. van der
Boogaart et al. (2014) proved that D∗(I) is isomorphic to the space L∗2(I) of functions on I
with square integrable logarithm (written D∗(I) ∼=clr L∗2(I)) via the centred log-ratio isom-
etry defined as follows (see Section 4.2.1 for the notation).

Definition 4.1.1 (Centred log-ratio)
Let ν be a measure on Rn and f : I → R+ be a probability density function supported on a set I ⊂ Rn

of finite ν-measure, that is ν(I) < ∞ and ν(I) 6= 0. The centred log-ratio (clr) transformation is an
invertible map is defined as:

clr( f )(x) = g(x) = log( f )(x)− 1
ν(I)

∫
I
log( f )(y) ν(dy) , (4.5)

with inverse given by:

clr−1(g)(x) = f (x) =
exp(g)(x)∫

I exp(g)(y) ν(dy)
. (4.6)

Consequently, by definition 4.1.1 it follows that the clr transform of a pdf supported on I
has to satisfy the following constraint (which we will call zero integral constraint in the rest
of this paper):∫

I
clr( f )(x) µ(dx) =

∫
I
log( f )(x) µ(dx)−

∫
I

1
µ(I)

[∫
I
log( f )(y) µ(dy)

]
µ(dx) = 0 . (4.7)

The spaces D(I), D∗(I),L1(I),L2(I),L∗2(I) are defined with respect to a reference measure
ν and contain equivalence classes of functions which are proportional each other, that is
we implicitly defined D(I) = Dν(I), D∗(I) = D∗ν(I), L1,ν(I) = L1,ν(I), L2(I) = L2,ν(I),
L∗2(I) = L∗2,ν(I). In this paper we consider to be the Lebesgue reference measure, i.e. ν = µ.
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In order to single out a specific element it is necessary to normalize the reference measure.
This can be easily done if the set I is ν-finite, whereas if ν(I) = ∞, normalization can be done
using the centring procedure (see van der Boogaart et al. (2014)). Moreover, the following
relations hold: D∗(I) ⊂ D(I) ⊂ L1(I) and D∗(I) ∼=clr L∗2(I) ⊂ L2(I) ⊂ L1(I).

It is possible to use the clr transform to project a pdf into the Hilbert space L∗2(I) (pro-
vided that its logarithm is square integrable), which is a space embedded with the opera-
tions of pointwise addition and multiplication. We can perform the statistical analysis in
this space and then project the output back into D∗(I) by the inverse map clr−1(·). This
strategy via the centred log-ratio map has been proposed by Hron et al. (2016) for perform-
ing fPCA on univariate pdfs with compact support. Canale and Vantini (2016) developed a
different isometric, bijective function which maps constrained functions into a pre-Hilbert
space, then estimated a FAR model on this space and transformed back the result into the
original space. Though general, this framework is not explicitly designed for dealing with
pdfs, but only bounded and monotonic functions, thus preventing from its use in the current
setting. The same idea of transforming pdfs into L2(I) via an invertible map has been fol-
lowed by Petersen and Müller (2016), who defined two different transformations satisfying
this property: the log hazard and the log quantile density transformations, respectively. De-
spite their strong theoretical properties, both maps have the shortcoming of not having an
equivalent transformation applicable in the multivariate case, which makes them unsuited
for the analysis of multivariate probability density functions.

The empirical finding by Guégan and Zhang (2010) represents the key stylized fact moti-
vating our work. Given that a dynamic copula model may not be sufficiently flexible to de-
scribe the time varying dependence between financial variables, we contribute to this active
field of research by proposing a different statistical framework for forecasting multivariate
probability density functions. To address the issues related with modelling pdfs, we extend
the procedure of Hron et al. (2016) who build on the previous work by van der Boogaart
et al. (2010, 2014). The idea is to map the space of probability density functions to the space
of integrable functions through an isometry, perform the analysis in this space (which has
nicer properties), then use the inverse mapping to get the solution in the original space. Our
contribution is also related to the studies of Liebl (2013) and Hays et al. (2012), who devel-
oped dynamic models for forecasting functional time series of electricity prices on the basis
of fPCA. However, our focus is on the modelling of probability density functions, which
call for the adoption of more complex tools than that of unrestricted functions. Finally, we
contribute to the literature on dynamic dependence modelling in finance by providing a tool
able to forecast the temporal evolution of the dependence pattern between the S&P500 and
NASDAQ indices.

We propose a nonparametric framework for forecasting multivariate probability density
functions by extending existing models for the analysis of cross sectional, univariate proba-
bility density functions with compact support. We focus on bivariate copula pdfs because of
their great importance in finance, however the proposed methodology is flexible and gen-
eral, thus permitting to deal with the prediction of general pdfs with bounded or, under
some conditions, unbounded support. Thanks to the fact that a copula pdf encompasses
all information on the dependence structure, we can interpret our approach as a general
framework for modelling the (temporally evolving) dependence patterns between random
variables.

The reminder of the chapter is as follows. In Section 4.2 we introduce the notation as well
as the fundamental concepts that will be used throughout the paper. Section 4.3 presents
the details of the proposed baseline methodology, whereas Section 4.4 provides insights on
potential issues and extensions. Section 4.5 provides an overview of the financial dataset
used and presents the results of the empirical analysis. Finally, Section 4.6 concludes and
describes some extensions of the current work and lines of future research.
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4.2 Preliminaries

In this section we describe the proposed methodology after having introduced the main
notation that will be used throughout the rest of the paper.

4.2.1 Notation

Throughout the paper, if not differently specified, greek letters denote unknown quantities
to be estimated, whereas latin letters any other variable. We denote scalars with lower-
case letters, vectors with boldface lower-case letters and matrices with boldface upper-case
letters. We use the shorthand f (·) for denoting a function, regardless of the number of argu-
ments it takes, moreover we denote the composition of functions by (g ◦ f )(·) = g( f (·)) =
g( f )(·). The inner product between two functions f (·), g(·) supported on I ⊆ Rn is de-
fined in the standard way by 〈 f (·), g(·)〉 =

∫
I f (x)g(x) dx. The integer part of the scalar x is

denoted bxc.
We use the notation A = [A1, . . . , AT] to denote a collection of T matrices At of equal

size N × M. The symbol Ik is used for the identity matrix of size k × k, whereas 0k for the
k× 1 column vector of zeros. Moreover, empty spaces in the matrices stand for zero entries.
Let LN be the matrix representation of the first difference operator L, that is the N× (N + 1)
matrix which post-multiplied by a (N + 1)-dimensional vector a yields a vector of size N,
La, whose entries are the first differences of the elements of a. The Moore-Penrose pseudo-
inverse of the N ×M matrix A is denoted by A†. If A is positive definite, we define by A1/2

its (unique) principal square root.

In Section 4.3 we will refer to the spaces of functions described as follows. We define
F+(I) to be the space of non-negative, integrable functions on I ⊆ Rn, whose general el-
ement is the function f : I → R+, and we let F0(I) be the space of functions on I with
zero integral. D(I) denotes the set of probability density functions with support I and we
define D∗(I) to be the space of probability density functions with support I whose loga-
rithm is square integrable. We denote by µ(·) the Lebesgue measure on Rn, for n ≥ 1.
In the case n = 1 we also use the shorthand notation dx = µ(dx), whereas for n > 1
we define dx = µ(dx). Consequently, if I = [a, b] then µ(I) = b − a. All integrability
definitions are made using the Lebesgue measure as reference measure, if not differently
specified. Let Lp(I) be the space of p-integrable functions supported on I and let L∗p(I)
be the space of functions on I whose logarithm is p-integrable. The n-dimensional unit
simplex is defined as Sn = {x ∈ Rn : xi > 0, i = 1, . . . , n, and ∑n

i=1 xi = 1}, whereas
S0 = {x ∈ Rn : ∑n

i=1 xi = 0} is the subspace of n-dimensional vectors whose elements have
zero sum. We define {e1, . . . , eN} be the canonical basis of the space of N × N matrices. For
two spaces X, Y we use the notation X ∼= f Y to indicate that they are isomorphic through
the isometric isomorphism f : X → Y.

Let x = (x1, . . . , xn)′ be a vector of observations. In Section 4.3.1 we denote the empirical
(marginal) cumulative distribution function of x by Fn(x) = (Fn(x1), . . . , Fn(xn))′. More-
over, define the rank transformation of x to be the function that maps each element xi of x
to:

Ri =
n

∑
j=1

1(xj ≤ xi) . (4.8)

Denote with u = (u1, . . . , un)′ with ui ∈ [0, 1], i = 1, . . . , n, the vector of pseudo-observations
associated to the observations x, used for the estimation of the empirical copula in Sec-
tion 4.3.1. Each pseudo-observation is defined as:

ui =
1
n

Ri . (4.9)
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In Section 4.3.2 and Appendix D.1, we will use the following notation in performing
functional principal component analysis (fPCA). We define a sample of observed functions
by f(·) = ( f1(·), . . . , fT(·))′, with ft : I → R, for some domain I ⊆ Rn. Moreover, we
let f̆(·) = ( f̆1(·), . . . , f̆T(·))′ denote the approximation of the observed functions obtained
as an outcome of the fPCA. The principal component functions are denoted by ξ(·) =
(ξ1(·), . . . , ξ J(·))′ and the scores associated to the function f̆t(·) are βt = (βt,1, . . . , βt,J)

′,
moreover let B = (β1, . . . , βT). The corresponding estimated quantities are denoted by ξ̂(·),
β̂t and B̂.

In Section 4.3.2 we also use spline functions, for which we adopt the following notation.
We denote by In a n-dimensional index set whose elements are the n-tuple (i1, . . . , in) with
entries ij ∈ [1, Ij], where Ij is a positive integer for each j = 1, . . . , n. We denote with λ the
vector with entries λ0 < . . . < λg+1 representing the points of the knot sequence used for
the spline functions. For a m-order spline, define the extended knot sequence as the vector
λ̄ of length 2m + g + 2 whose entries satisfy the relations:

λ−m = . . . = λ−1︸ ︷︷ ︸
m

= λ0 < . . . < λg+1︸ ︷︷ ︸
g+2

= λg+1+1 = . . . = λg+m+1︸ ︷︷ ︸
m

.

An extended knot sequence for a bivariate spline is defined by λ̄
x,y

= λ̄
x ⊗ λ̄

y, where λ̄
x, λ̄

y

are the extended knot sequences along each axis and the generic entry is the couple λ̄
x,y
i,j =

(λ̄x
i , λ̄

y
j ). Bk

i (x) denotes the univariate (basis) B-spline function of degree m− 1, with knot

sequence indexed by i and D`
x[ f ](x), ` ≤ m− 1, is the partial derivative operator of order `,

applied to the function f with respect to the variable x. For univariate splines of degree m,
let b = (b−m, . . . , bg)′ be the (g + m + 1) coefficient vector, whereas for bivariate splines of
the same degree we define the (m + g + 1)× (m + g + 1) coefficient matrix by B̄. Moreover,
let Cm+1(xn) be the n× (g + m + 1) collocation matrix of B-spline functions evaluated at the
observation points xn = (x1, . . . , xn)′:

Cm+1(xn) =


Bm+1
−m (x1) . . . Bm+1

g (x1)
... . . . ...

Bm+1
−m (xn) . . . Bm+1

g (xn)

 (4.10)

Following (De Boor, 2001, ch.10), a univariate spline function of degree k and the corre-
sponding partial derivative of order ` are given by:

sm(x) =
g

∑
i=−m

biBm+1
i (x) , (4.11)

D`
x[sm](x) = s(`)m (x) =

g

∑
i=−m

b`i Bm
i (x) , (4.12)

Given an extended knot sequence λ̄ and evaluation points xn = (x1, . . . , xn)′, are given by:

sk(xn) =
g

∑
i=−k

biBk+1
i (xn) = Ck+1(xn)b , (4.13)

D`
x[sm](xn) = s(`)k (xn) = Cm+1−`(xn)b(`) = Cm+1−`(xn)S`b , (4.14)

where Cm+1(x) is a matrix of B-splines evaluated at the points x, b is the coefficient vector
and S` is a matrix transforming the coefficient vectors of splines of degrees m to those of
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their derivatives of degree `. The direct link between the coefficients of a spline and its
derivative are due to the property that the derivative of a spline is another spline of lower
degree (see De Boor (2001)), that is:

sm+1(x) =
∫

sm(x) dx . (4.15)

Similarly, we define the d-dimensional tensor product spline function by the tensor product
between univariate splines (see Schumaker (2007)):

sm(x1, . . . , xd) = ∑
i1

· · ·∑
id

bi1,...,id Bm
i1 (x1) · · · Bm

id (xd) = ∑
i1,...,id

bi1,...,id Bm
i1 (x1) · · · Bm

id (xd) , (4.16)

with bi1,...,id ∈ R for (i1, . . . , id) ∈ Id. Notice that the coefficients bi1,...,id , with (i1, . . . , id) ∈
Id, can be represented as a vector of length ∏d

j=1 Ij or, equivalently, as a d-order array (or
tensor) with dimensions I1 × . . . × Id. The partial derivatives of the multivariate spline in
eq. (4.16) are given by Schumaker (2007) (and can be easily computed via Algorithm 5.11
in Schumaker (2007)):

D`1
x1 · · ·D

`d
xd [sk](x1, . . . , xd) = ∑

i1,...,id

b`1,...,`d
i1,...,id

Bm−`1
i1

(x1) · · · Bm−`d
id

(xd) . (4.17)

Finally, in Section 4.3.3 we use the notation B̃ = (β̃
′
T+1, . . . , β̃T+H)

′, where β̃T+h is the
forecast for the vector β̂T at horizon h = 1, . . . , H. The corresponding forecast for the
fPCA approximate functions are denoted by f̃T+H(·) = ( f̃T+1(·), . . . , f̃T+H(·))′ whereas
c̃T+H(·) = (c̃T+1(·), . . . , c̃T+H(·))′ denotes the forecast of the copula probability density
functions.

4.2.2 Related literature

Given an observed bivariate time series of relevant economic or financial variables (x, y) =
{xt,i, yt,i)}ti, with i = 1, . . . , N for each t = 1, . . . , T, with unknown time varying copula
probability density function ct(·), the purpose of this methodology is to obtain a h-step
ahead forecast the copula pdf c̃T+h(·), h = 1, . . . , H. In order to achieve this result, we
will borrow some concepts from various streams of literature. The core of the methodol-
ogy is grounded on functional data analysis (FDA), in particular the technique of functional
principal component analysis (fPCA), and on the centred log-ratio isometry between D∗(I)
and L∗2(I). Furthermore, we exploit several concepts from the literature on nonparametric
estimation of copula functions and, finally, we use standard techniques for multivariate time
series analysis.

The use of functional autoregressive processes (FAR) proposed by Bosq (2000) is pre-
vented by the constraints holding on pdfs and the fact that D(I) is not closed under point-
wise addition and multiplication. In situations like this, post-processing techniques are nec-
essary for mapping the output of a given procedure into the desired space. However, this
procedure is suboptimal as there are guarantees that all the information is preserved by
this mapping. By contrast, an efficient forecasting model for probability density functions
should yield a consistent output, that is the predicted function must be pdfs.

In second instance, as functions are infinite-dimensional objects, the original forecast-
ing problem would require to work with infinite-dimensional spaces. Though natural, this
brings in a significant degree of complexities that a similar problem in finite-dimensional
spaces (i.e., Euclidean spaces). Clearly, a direct matching between an infinite-dimensional
problem and a finite-dimensional one, does not exist. Moreover, naïve techniques for mov-
ing from an infinite-dimensional problem into one a finite one via discretization of the
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functions could be too rough and lose too much information. Nonetheless, under suitable
assumptions it is possible to approximate the infinite-dimensional functional forecasting
problem by a simpler one in which the parameters of interest are finite-dimensional vectors.
Moreover, under certain conditions this approximation is optimal (according to a weighted
least squares criterion).

In order to avoid post-processing and rough approximations, in Section 4.3.2 we exploit
the centred log-ratio isometry between the spaces D∗(I), L∗2(I) and define a factor model
for approximating the clr-transformed densities (that is, clr(ct)(·) ≈ f̆t(·)):

f̆t(·) = β′tξ(·) =
J

∑
j=1

βt,jξ j(·) , (4.18)

where ξ j(·) are the principal component functions (or factors) and the coefficients βt,j ∈ R

are the principal component scores, both estimated by means of the functional principal
component analysis. The factor model defines an approximation of the functions clr(ct)(·)
by means of a finite linear combination of common, time-invariant factors with compo-
nent specific time-varying scores. The optimality criterion given by the quadratic distance
||clr(ct)(·) − f̆t(·)||2 is minimized by the choice of the principal component functions that
maximize the explained variability of the series clr(ct)(·), t = 1, . . . , T (see Ramsay and
Silverman (2005)).

Functional data analysis is a growing field of research and the existing results dealing
with probability density functions are scarce. A possible interpretation of fPCA, in analogy
with multivariate PCA, identifies the principal component functions with the eigenfunctions
of their covariance operator of the observed functions. Following this interpretation, Hör-
mann et al. (2015) provided a remarkable extension of fPCA to time series functional data.
They worked on the frequency domain using the techniques of Brillinger (2001) for esti-
mating the dynamic principal component functions, which account for the temporal depen-
dence among functional observations. Unfortunately, their results are not straightforwardly
extendible to pdfs.

In fact, when dealing with pdfs, the estimation of the principal component functions
ξ(·) poses some issues which call for the development of specific procedures. Egozcue
et al. (2006) has proved the analogy between probability density functions and composi-
tional vectors, which are vectors belonging to the n-dimensional unit simplex Sn represent-
ing fractions or proportions and constitute the cornerstone of compositional data analysis
(see Aitchison (1986)). Egozcue et al. (2006) interpreted pdfs as infinite-dimensional com-
positional vectors and translated into the functional domain the main results of composi-
tional data analysis: this includes the definition of the operations of perturbation and pow-
ering (analogue of addition and scalar multiplication),⊕,�, that make (D(I),⊕,�) a space.
van der Boogaart et al. (2010) and van der Boogaart et al. (2014) proved that (D(I),⊕,�)
is indeed a Hilbert space and showed that the centred log-ratio widely used in compo-
sitional data analysis is an isometry (i.e. an isometric isomorphism) between the spaces
D∗(I),L∗2(I).

These results opened new possibilities to the functional analysis of pdfs. While it is pos-
sible to exploit the operations ⊕,� for performing statistical analyses directly on D(I), the
need for re-definition of standard techniques by ⊕,� has lead the researchers to prefer the
use of isometries. For the sake of working out fPCA of (transformed) univariate pdfs in
L2(I), Petersen and Müller (2016) proposed two isometries (the log-hazard and the log-
quantile transforms) between D(K) and D(K), for K a compact subset of R, whereas Hron
et al. (2016) exploited the clr map. Other contributions in this area include Salazar et al.
(2015), who proposed a forecasting model for univariate pdfs, and Menafoglio et al. (2014),
who studied the problem of interpolation via the kriging method for probability density
functions. The common strategy consists in three steps: the transformation of the pdfs into
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a suitable Hilbert subspace of L2(I), where the statistical model is defined and the analysis
is undertaken. Finally, the use of the inverse of the isometry for mapping the result back
into D(I). Finally, the contribution of Machalovà et al. (2016) (see also Machalovà (2002a),
Machalovà (2002b)) is based on the interpretation of fPCA as an eigenproblem, which the
authors solved proposing a solution within the class of spline functions (see Appendix D.1
for more details on fPCA and related solution methods). This allowed for the inclusion of
the zero integral constraint as a constraint on the coefficients of the basis spline functions.

In this paper we follow van der Boogaart et al. (2014) and use the centred log-ratio trans-
form to map pdfs into the Hilbert space L∗2(I). Then, we extend to the multivariate frame-
work the strategy developed by Machalovà et al. (2016) for dealing with the integral con-
straint for univariate pdfs with compact support, thus obtaining a way to account for the
constraint eq. (4.7) in the estimation of the principal component factors and scores.

The most appealing feature of the factor model in eq. (4.18) we specify is that all the
information about the temporal dependence between the functions is carried by the scores,
which form a vector-valued time series. Therefore, a forecast for the approximated function
f̃T+h(·) at horizon h ≥ 1, can be obtained by plugging-in a forecast for the scores, computed
by well-known methods (e.g., VAR models). Then we get a forecast for the pdf, c̃T+h(·), by
simply applying the inverse centred log-ratio map in eq. (4.6).

Our strategy shares some similarities with Liebl (2013) and Hron et al. (2016), but the
methodologies differ in some key aspects. First and most important, we are interested in
forecasting pdfs, which complicates the analysis with respect to the unrestricted case of
Liebl (2013). Moreover, we extend the analysis of Hron et al. (2016) to the bivariate case
(though the methodology generalizes easily to multidimensionality). Finally, we provide
some remarks about how to deal with the case of densities with unbounded support.

4.3 Methodology

We propose a strategy for estimating the factor model in eq. (4.18), then forecasting the
clr-transformed functions f̃T+h(·) and the corresponding pdfs c̃T+h(·), h = 1, . . . , H. The
methodology focuses on the forecast of bivariate copula probability density functions, how-
ever, the method is general and can be applied without structural changes to general multi-
variate pdfs with bounded support as well as to pdfs with unbounded support that satisfy
an additional constraint (see Section 4.4). The modelling framework can be summarized as
follows:

• in Section 4.3.1 we partition the raw dataset in sub-samples corresponding to different
periods t, then for each of them we estimate the copula probability density function
(or, in the generally case, the multivariate pdf).
When dealing with copula pdfs, we use the nonparametric density estimator proposed
by Chen (1999) for avoiding the boundary bias (for general multivariate pdfs we sug-
gest standard product kernel estimators).

• next, in Section 4.3.2 we estimate the factor model in eq. (4.18) by a modified version
of the functional principal component analysis. In this section we combine the centred
log-ratio transform and spline functions for estimating the principal component func-
tions and the scores (ξ̂(·) and B̂, respectively) such that the resulting functions f̆t(·)
(approximating clr(ct)(·)) satisfy the restrictions of probability density functions.
We generalize the strategy proposed by Machalovà et al. (2016) and its application in
Hron et al. (2016) to the multivariate (and potentially unbounded) case.

• finally, in Section 4.3.3 we estimate a VAR(p) process for the time series of scores pre-
viously estimated and forecast the scores h steps ahead, h = 1, . . . , H. Then, we get
the forecast of the approximated function f̆T+h(·) and by applying the inverse centred
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log-ratio transform we obtain a predicted copula probability density function (or the
multivariate pdf) c̃T+h(·).
The forecasting strategy extends Liebl (2013) from univariate unconstrained functions
to multivariate pdfs.

Algorithm 1 synthetically represents the proposed strategy. Each block is described in
detail in the following subsections.

Algorithm 1 Methodology

1: function COPULAESTIM(x, y)
2: a) split data {xt′ , yt′}TN

t′=1 into T sub-samples {xt,i, yt,i}N
i=1 . data for 2-steps

3: for t = 1, . . . , T do
4: b) compute pseudo-obs {ut,i, vt,i}N

i=1 from {xt,i, yt,i}N
i=1

5: c) estimate copula ĉt(u, v) . Beta kernel
6: d) compute clr transform of copula values clr(ĉt)(ut,i, vt,i) . clr
7: end for
8: return (U, V, C) = {ut,i, vt,i, clr(ĉt)(ut,i, vt,i)}t,i
9: end function

10: function MOD_FPCA(U, V, C, λ̄
u,v)

11: for t = 1, . . . , T do
12: a) (dt, φ)← solve constrained optimal smoothing problem (U, V, C, λ̄

x,y
)

13: end for
14: b) (ξ̂, B̂)← solve eigenproblem (D, φ)

15: return B̂ = (β̂1, . . . , β̂T)
16: end function

17: function PREDICTION(B̂)
18: a) estimate VAR(p) for {β̂t}t

19: b) forecast scores B̃ = (β̃T+1, . . . , β̃T+H)

20: c) forecast transformed pdfs f̃T+H(·) = ( f̃T+1(·), . . . , f̃T+H(·))′
21: d) forecast pdfs c̃T+H(·) = (c̃T+1(·), . . . , c̃T+H(·))′ . inverse clr
22: return c̃T+H(·)
23: end function

4.3.1 Step 1 - Copula estimation

After the introduction of the empirical copula (Deheuvels (1978), Deheuvels (1979)), which
is a nonparametric estimator for the copula cumulative distribution function, several non-
paramteric techniques for the estimation of a copula pdf and cdf have been proposed. We
follow Chen (1999) and Charpentier et al. (2007) and estimate the copula pdfs from raw
data via a product Beta kernel estimator. Among the main advantages of this approach
we remark the greater flexibility with respect to parametric methods, the smoothness of the
estimated function (as opposed to the empirical copula) and the absence of boundary bias.

Consider a sample of observations {xt′ , yt′}t′ of size T′ (for instance, with daily fre-
quency). First of all, we fix the reference period t (i.e., year, quarter) and split the raw sample
accordingly into T sub-samples of size N (to be interpreted, for instance, as T years of N
daily observations), {xt,i, yt,i}i,t of size N, for t = 1, . . . , T. The reference period coincides
with the frequency of the functional time series we want to analyse, whereas the intra-period
observations are interpreted as noisy measurements of the discretized continuous function
of interest ct(·). Consequently, we are going to use the N data points in each period t to
estimate the function ct(·), then we use the resulting functional time series for performing
forecasts of the probability density through a modified fPCA algorithm.
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We exploit the intra-period information (i.e. N observations, for fixed period t) for es-
timating a copula pdf for each period, ĉt(·). Recall that a copula probability density has
uniformly distributed marginals representing the marginal cumulative distributions. As the
latter are unknown, it is necessary to estimate them as first step. In practice, we compute the
pseudo-observations (see Nelsen (2013), Cherubini et al. (2004)) defined as follows:

(ut,i, vt,i) =
(

FN
x (xt,i), FN

y (yt,i)
)

. (4.19)

The pseudo-observations can be obtained in two ways. One methods consists in estimat-
ing the marginals FN

x (xt,i), FN
y (yt,i) via the empirical cumulative distribution function, then

evaluating them at (xt,i, yt,i). Alternatively, the pseudo-observations can be obtained directly
through the rank transformed data.

We choose the second method, as it is computationally faster and provides distributions
closer to the uniform. The rank transformation generates pseudo-observations according to
(similarly for y):

Rx
t,i =

N

∑
j=1

1(xt,j ≤ xt,i) , ut,i =
1
N

Rx
t,i . (4.20)

Given the pseudo observations, we estimate the copula probability density function by us-
ing a nonparametric kernel density estimator obtained as the product of univariate Beta ker-
nels. Given a sample {xt}T

t=1, the Beta kernel density estimator (Chen (1999), Charpentier
et al. (2007)) is defined as:

f̂m(x) =
1
T

T

∑
t=1
Kβ

(
xt; 1 +

x
m

, 1 +
1− x

m

)
, (4.21)

where Kβ(·; a, b) is the pdf of a Beta distribution with parameters (a, b) and m is the band-
width. Alternative nonparametric methods for the estimation of a probability density func-
tion, such as the kernel estimator of Fermanian and Scaillet (2003), do not fit well the current
framework because of the inadequateness of the methods to deal with the compact support.
This causes a boundary bias problem if an unbounded kernel (such as the Gaussian) is used
or a lack of smoothness, if the derivatives of the empirical copula distribution are chosen.
Both shortcomings are instead solved by the product Beta kernel estimator. The price to
pay is the lack of adequate rules of thumb for the specification of the bandwidth, which
must be tuned case-by-case. The estimated smooth functions (ĉ1(·), . . . , ĉT(·)) are used to
compute the values of the copula function at specific couples of pseudo-observations, that
is ĉt(ut,i, vt,j), for i, j = 1, . . . , N, t = 1, . . . , T. Finally, we apply the clr transform in eq. (4.5)
to obtain Ct = (clr(ĉt)(ut,i, vt,j))ij, for i, j = 1, . . . , N and t = 1, . . . , T. In compact nota-
tion, denote the matrices of pseudo-observations U = (u1, . . . , uT), V = (v1, . . . , vT) and
the associated collection of matrices of clr-transformed copula pdf values C = [C1, . . . , CT].
The series of matrices C is required for estimating the constrained spline functions in Sec-
tion 4.3.2.

In the general case, when the interest lies on multivariate pdfs with unbounded support,
we propose to estimate the density via product kernel estimators, with standard choices of
the univariate kernels such as Gaussian or Epanechnikov.

Concerning the interpretation of the method, we make the following remarks:

• functions are infinite-dimensional objects, thus from a computational perspective it is
impossible to deal with them directly, but a discretization step is in order. Functional
data in a strict sense do no exist, instead available data can be defined as noisy observa-
tions of discretized functions. Each discretized functional data point, broadly speaking,
consists of a pair of location and value of the function at location (where location has
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no particular meaning). For instance, for univariate functions the location is the point
on the x-axis, whereas the value at the location is the corresponding value of the func-
tion (on the y-axis). Therefore, in the current framework, we may think of the N rank
transformed observations {ut,i, vt,i}i, for a given t, as a set of location points whereas
ĉt(ut,i, vt,i) represents the value of the copula function at those locations (i.e., a dis-
cretized version of the underlying smooth function). We remark that this is a standard
interpretation in functional data analysis (e.g., see Ramsay and Silverman (2005)) and
is unrelated to the procedure developed here.

• From a financial point of view, the copula pdfs are a flexible instrument providing all
the information about the dependence between the marginal series xt = {xt,i}i and
yt = {yt,i}i at time t. They are remarkably richer than a single scalar parameter: in ad-
dition to the extreme cases of independence (corresponding to a product copula) and
perfect dependence (diagonal copula), they permit to study several particular forms of
dependence, such as tail dependence (i.e. the probability of comovements of the vari-
ables in the upper/lower tail of the distribution, see Joe (1997), Nelsen (2013)).
From this perspective, the availability of a (estimated) time series of copula pdfs per-
mits to have information on different forms of dependence across several periods. In-
stead of limiting to a descriptive analysis on the variation of (finite-dimensional) syn-
thetic statistics built from each function ct(·), we aim at characterizing how the whole
dependence pattern evolves over time.

4.3.2 Step 2 - Modified fPCA

Starting from C, the time series of clr-transformed pdfs values estimated in Section 4.3.1,
our goal in this section is to estimate the factor model in eq. (4.18) using the tools from func-
tional principal component analysis (fPCA). In words, we estimate the function f̆t(·) that
approximates the centred log-ratio transform of the pdf ct(·), for t = 1, . . . , T. In this section
we are considering bivariate copula pdf, whose support is compact [0, 1]d, with d = 2. See
Section 4.4 for a discussion about the general frameworks when the pdfs have unbounded
support or are multivariate with d > 2. The strategy does not impose any assumption ex-
cept that the decay of the pdf at infinity must be such that its logarithm is square integrable.
Moreover, given that probability density functions represent a special case of constrained
functions, the proposed methodology can be applied as well for forecasting multivariate
square integrable functions.

The outcome of this step is a vector of (time invariant) estimated factors ξ̂(·) and a vector-
valued time series of scores B̂ = (β̂1, . . . , β̂T) which will be used in Section 4.3.3 for building
a forecast of the pdf c̃T+h(·), with h = 1, . . . , H. Appendix D.1 provides a summary of the
results from functional data analysis used in this paper, we refer to Ramsay and Silverman
(2005), Ferraty and Vieu (2006) for a more detailed presentation.

We present the outline of the strategy and the results, referring to Appendix D.2 for de-
tailed computations. Ordinary fCPA is designed for the analysis of unconstrained functions,
however in our framework the object of interest are pdfs, that is functions constrained to be
positive on their support and to have unit integral. This calls for a modification of standard
fPCA in order to account for the constraints without the need to post-process the output. We
propose a strategy for addressing this issue consisting in the exploitation of the centred log-
ratio transform and spline functions. The clr transform allows the analysis to be carried out
in the space L∗2(I), which is preferred over D∗(I) due to its nicer properties that make easier
ordinary calculus. Then, we are left with the estimation of the factor model in eq. (4.18),
which we interpret as an eigenproblem. A first approach consists in the discretization of
the functions involved and the solution of the resulting multivariate problem: despite being
intuitive, this approach easily breaks down as the dimension increases because of the num-
ber of points necessary for providing a good discrete grid. Instead, we choose to express
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both the target function to be approximated by the factors and the factors themselves by a
finite linear combination of pre-specified basis functions. This implicitly reduces the infinite-
dimensional problem to an eigenproblem for the vector coefficients of the basis expansion.
Following Machalovà et al. (2016), we choose a B-spline basis as it allows to analytically
solve the resulting eigenproblem taking into account the integral constraint in eq. (4.7).

More formally, we propose to estimate the factor model in eq. (4.18) by interpreting the
functions ξ(·) as the eigenfunctions of the covariance operator of the functions f̆(·), denoted
G. For each period t = 1, . . . , T and k = 1, 2, . . ., this yields the eigenproblem:

∫
G(x, y)ξk(x) dx = βt,kξk(y) (4.22a)∫
ξk(x)ξk(x) dx = 1 (4.22b)

subject to the additional constraints 〈ξk, ξ j〉 = 0, for k 6= j and
∫

ξ j µ(dx) = 0 for j = 1, 2, . . ..
Then, we look for a solution within the class of tensor product, bivariate spline functions
(see (Ramsay and Silverman, 2005, ch.8) for a review of alternative solution methods), which
allows to include the zero integral constraint as a linear constraint on the coefficients of the
basis spline functions, thanks to the relation between splines with their derivatives.

Since a spline function can be expressed as a linear combination of known basis B-splines
(see Section 4.2.1 for the notation), we need to solve a finite dimensional optimization prob-
lem for the coefficient vector of the spline. The constrained optimal smoothing problem, for
each period t = 1, . . . , T, is:

min
sm

∫ b1

a1

∫ b2

a2

[
s(`1,`2)

m (u, v)
]2

dv du + α

 N

∑
i=1

N

∑
j=1

wi,j

(
clr(ĉt)(ut,i, vt,j)− sm(ut,i, vt,j)

)2


s.t.

∫ b1

a1

∫ b2

a2

sm(u, v) dv du = 0

(4.23)

where sm(·, ·) is a spline of degree m, `1, `2 are the degree of the partial derivatives with
respect to u, v, respectively, {ut,i, vt,j}ij with i, j = 1, . . . , N , are the evaluation points and
{clr(ĉt)(ut,i, vt,j)}ij is the corresponding value of the clr-transformed pdf. Notice that N
is number of observations allocated to each period t = 1, . . . , T. {wi,j}ij is a sequence of
point-specific weights, whereas α is the global weight of the least squares component in the
smoothing problem. Finally, the interval (a1, b1)× (a2, b2) is support of the original function
and of the spline. In the following we assume: a1 = a2 = 0, b1 = b2 = 1, `1 = `2 =
2, meaning that we look for a solution in the class of cubic splines on the interval [0, 1]2.
Moreover, we consider an extended knot sequence given by the regular grid λ̄

u,v
= λ̄

u⊗ λ̄
v,

with:

λ̄
u
= (λu

−m, λu
−m+1, . . . , λu

g+m+1)
′ , (4.24a)

λ̄
v
= (λv

−m, λv
−m+1, . . . , λv

g+m+1)
′ (4.24b)

with:

λu
−m = . . . = λu

0 < . . . < λu
g+1 = . . . = λu

g+m+1 (4.25a)

λv
−m = . . . = λv

0 < . . . < λv
g+1 = . . . = λv

g+m+1 . (4.25b)

This is a square grid with the same knots along both directions (that is, the x-axis and the
y-axis, respectively), however we may choose a different number of interpolation knots for
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each dimension. We have decided to use the same number of knots and the same location
because we are interpolating a copula probability density function with support [0, 1]2.

Lemma 4.3.0.1
Define φm+1

k (·), k = 1, . . . , K the B-spline basis functions of order m. The optimal spline function
solving the problem in eq. (4.23) is given by:

sm(u, v) = Cm+1(u, v)d =
K

∑
k=1

dkψm+1
k (u, v) . (4.26)

See Appendix D.2.1 for the detailed computations.

The spline functions in eq. (4.26) represent an interpolated multivariate probability den-
sity function, with evaluation points (ut,i, vt,i)i and values clr(ĉt)(ut,i, vt,i), for i = 1, . . . , N.
By repeating this procedure for each sub-sample (ut, vt)t, with t = 1, . . . , T, we end up with
a series of T multivariate spline functions satisfying the zero integral constraint. With a
slight abuse of notation, define f̆t(·) = sm(·) the spline in eq. (4.26) estimated using the sub-
sample (ut, vt)t, for each period t = 1, . . . , T. Therefore, we can write in compact notation:

f̆t(·) =
K

∑
k=1

dt,kψm+1
k (·) = d′tψ(·) , (4.27)

where dt = (dt,1, . . . , dt,K)
′ and ψ(·) = (ψm+1

1 (·), . . . , ψm+1
K (·))′. It is now possible to solve

the eigenproblem in eq. (4.22a) using the same B-spline functions ψ(·) as a basis for the
principal component functions ξ j(·), j = 1, 2, . . .:

ξ j(·) =
K

∑
k=1

aj,kψm+1
k (·) = a′jψ(·) , (4.28)

where aj = (aj,1, . . . , aj,K)
′. From this basis expansion, the infinite-dimensional eigenprob-

lem in eq. (4.22a) reduces to a finite-dimensional optimization problem for the coefficient
vectors aj, for j = 1, . . . , J. For selecting the number of principal components J, we sort the
estimated eigenvalues in decreasing order and compute the proportion of total variability
explained by vj = ρj/ ∑k ρk, for j = 1, 2, . . .. Then, we retain the first J factors accounting
for a given share d̄ of the total variability, that is J = arg minj{∑j vj ≥ d̄}. The solution
of this multivariate eigenproblem is obtained by first finding the optimal uj satisfying (see
Appendix D.2.2 for detailed computations):

T−1M1/2D′DM1/2uj = ρjuj , (4.29)

then transforming âj = M1/2ûj, for j = 1, 2, . . .. The solution of eq. (4.29) yields an estimate
of the principal component functions by plugging âj in eq. (4.28):

ξ̂ j(·) = â′jψ(·) . (4.30)

Since the eigenvectors are not uniquely identified, we follow Liebl (2013) and transform
them by applying the VARIMAX orthonormal rotation (see Kaiser (1958), Abdi (2003)). The
eigenvalues provide an estimate for the scores β̂t = (β̂t,1, . . . , β̂t,J)

′, for each period t =
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1, . . . , T. This coincide with (see Ramsay and Silverman (2005)):

β̂t =

〈ξ̂1, ξ̂1〉 . . . 〈ξ̂1, ξ̂ J〉
... . . . ...

〈ξ̂ J , ξ̂1〉 . . . 〈ξ̂ J , ξ̂ J〉


−1 〈 f̆t, ξ̂1〉

...
〈 f̆t, ξ̂ J〉

 . (4.31)

As final output of this step we obtain the estimated time series of scores B̂ = (β̂1, . . . , β̂T).

Each estimated eigenfunction can be seen as a continuous function of the clr-transformed
functions, that is ξ̂ j(·) = g( f̆1(·), . . . , f̆T(·)). Hence, by the continuous mapping theorem,
the estimator of the eigenfunction is consistent provided that the estimators for the clr-
transformed functions are consistent too. Recall that each f̆t corresponds to the centred
log-ratio (continuous and smooth) transformation of a copula pdf, and it is estimated via a
spline. It is known (see Schumaker (2007)) that splines approximate arbitrarily well contin-
uous smooth functions on a bounded interval.

Consequently, from the consistency of splines in approximating a smooth function (as is
f̆t(·), t = 1, . . . , T in our case) it descends the consistency of the estimator for each eigenfunc-
tion ξ̂ j(·) and, by another application of the continuous mapping theorem, the consistency
of the estimator of the associated scores β̂t.

4.3.3 Step 3 - Prediction

In this last step, we aim at obtaining a H steps ahead forecast c̃T+H(·) of the pdf ct(·). The
task is accomplished in three steps: first, we estimate a VAR(p) process on the time series
of estimated principal component scores from Section 4.3.2, {β̂t}T

t=1, then we use the fitted
values for obtaining a forecast of the scores β̃T+h, h = 1, . . . , H. Next, for h = 1, . . . , H we
derive a forecast for the approximated function f̃T+h(·) by plugging-in eq. (4.18) and finally
we get the forecast of the pdf c̃T+h(·) by applying the inverse clr transform to f̃T+h(·).

The estimated scores from the Section 4.3.2 for a vector-valued time series, where each
vector has length J. We propose to model the time series through a VAR(p), as follows:

β̂t = φconst + φtrendt +
p

∑
l=1

Φl β̂t−l + εt , εt
iid∼N (0, σ2IJ) . (4.32)

Denoting the estimated coefficients by (φ̂const, φ̂trend, Φ̂1, . . . , Φ̂p), we perform forecasts for
each h = 1, . . . , H steps ahead in the usual way:

β̃T+h = φ̂const + φ̂trend(T + h) +
p

∑
l=1

Φ̂l β̂T−l . (4.33)

Then, we obtain the predicted clr-transformed function f̃T+h(·) ∈ L∗2(I) by substituting
β̃T+h and the estimated principal components ξ̂(·) into eq. (4.18), thus obtaining for h =
1, . . . , H:

f̃T+h(·) = β̃
′
T+hξ̂(·) =

J

∑
j=1

β̃T+h,jξ̂ j(·) . (4.34)
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Finally, in order to compute the predicted probability density function c̃T+h(·) ∈ D∗(I) we
apply the inverse centred log-ratio transformation, for h = 1, . . . , H:

c̃T+h(·) = clr−1( f̃T+h)(·) =
exp

{
f̃T+h(·)

}
∫

exp
{

f̃T+1(·)
} . (4.35)

The final outcome of the whole procedure is the set of forecasts of the multivariate pdf
c̃T+H(·) = (c̃T+1(·), . . . , c̃T+H(·))′.

The size of the VAR process in eq. (4.32) corresponds to the number of principal com-
ponents selected in the fPCA, J and is generally small. Therefore, the dimensionality of the
VAR does not hamper the estimation procedure even though the length T of the time se-
ries is not really long. This is a consequence of the dimensionality reduction brought by the
fPCA, interpreted as a factor model here.

Nonetheless, in higher-dimensional settings it may be still possible to estimate the coeffi-
cient matrix in eq. (4.32) by adding a regularization term. The recent contributions, Nichol-
son et al. (2016) and Nicholson et al. (2017) designed and implemented1 several types of
penalized regression for large VARX models (including the LASSO case) allowing up to
d = 130 marginal series.

As regards the numerical implementation of the procedure, the core of the proposed
methodology relies on standard linear algebra operations, for which computationally effi-
cient algorithms are available. Moreover, the dimensionality reduction brought by the fPCA
has the additional advantage of reducing the size of the coefficient matrix of the VAR pro-
cess do be estimated. Overall, the entire procedure represented in Algorithm 1 is quite fast
(see the details for the application in Section 4.5).

4.4 Extensions

Here we briefly discuss some possible extensions of the methodology discussed in Sec-
tion 4.3.

4.4.1 Unbounded support

The results in van der Boogaart et al. (2010), van der Boogaart et al. (2014) hold also for pdfs
with unbounded support, provided that they are absolutely continuous with respect to a
measure with finite total mass. This requirement is a direct consequence of the formula for
the centred log-ratio in eq. (4.5), which involves at the denominator the total mass of the
support. In fact, the problem when dealing with pdfs defined on an unbounded region is
that the Lebesgue measure of the whole domain is not finite, hence it would be necessary
to choose a different, finite the reference measure of the spaces D(I), D∗(I),L2(I),L∗2(I). If
the new reference measure ν is absolutely continuous with respect to the Lebesgue measure,
i.e. dν = g(·) dµ, then for h(·) ∈ Dν(I) it holds f (·) = h(·)g(·) ∈ Dµ(I). Therefore in
the particular case ν � µ performing the analysis of the original pdf series ht(·) under the
reference measure ν is equivalent to perform the analysis of the modified series ht(·)g(·)
under the Lebesgue measure.

Example 4.4.1 (Alternative reference measure)
Let I = Rn and let g = dPN/dµ to be the Radon-Nikodym derivative of the finite standard Gaus-
sian measure PN with respect to the n-dimensional Lebesgue measure on Rn (thus, g is the pdf of a

1Estimation can be carried out using the R (https://cran.r-project.org) package “BigVAR” (https://cran.r-
project.org/web/packages/BigVAR/index.html), see Nicholson et al. (2017).

https://cran.r-project.org
https://cran.r-project.org/web/packages/BigVAR/index.html
https://cran.r-project.org/web/packages/BigVAR/index.html
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standard normal distribution), the change of measure yields:∫
Rn

f (x) dµ =
∫

Rn
f (x)

dµ

dPN
dPN =

∫
Rn

f (x)
g(x)

dPN =
∫

Rn
h(x) dPN .

If log(h)(x) is square integrable, then all the previous results can be applied, since PN (R
n) = 1. If

instead I = R+ one may use the measure ω induced by a Gamma distribution, since ω(R+) = 1.

Lemma 4.4.0.1 (seevan der Boogaart et al. (2014))
Let η ∈ D∗(I) be a probability measure with unbounded support I and density f (·) = dη

dν (·) with
respect to the reference measure ν, with ν(I) = ∞. If ∃ µ measure such that:

(i) µ� ν and ν� µ, with density g(·) = dµ
dν (·);

(ii) µ(I) < ∞;

(iii) log( f /g)(·) is µ-integrable;

then:

• @ clrν(η);

• clrµ(η) exists and is equal to

clrµ(η)(·) = log

(
dη

dµ

)
(·)− 1

µ(I)

∫
I
log

(
dη

dµ

)
(y) µ(dy)

= log

(
dη

dν

dν

dµ

)
(·)− 1

µ(I)

∫
I
log

(
dη

dν

dν

dµ

)
(y) µ(dy)

= log( f /g)(·)− 1
µ(I)

∫
I
log( f /g)(y) µ(dy) . (4.36)

Example 4.4.2 (Clr with unbounded support)
Let p0 = dPN/dµ be the density of the standard Gaussian measure with respect to the Lebesgue
measure on R. Let ν be a measure and pν = dν/dµ be its density with respect to the Lebesgue
measure. Let g = dν/dPN be the density of ν with respect to the Gaussian measure. Since µ(R) =
∞, the centred log-ratio for g is not defined. However, by changing measure from µ to PN we obtain:

clr(g)(·) = log
(

dν

dPN

)
(·)− 1

PN (R)

∫
R

log
(

dν

dPN

)
(u) dPN (u)

= log

(
dν

dµ

dµ

dPN

)
(·)−

∫
I
log

(
dν

dµ

dµ

dPN

)
(u)

dPN
dµ

dµ(u)

= log

(
pν

p0

)
(·)−

∫
I
log

(
pν

p0

)
(u) p0(u) dµ(u) . (4.37)

Notice that the integral on the last line is an expectation with respect to the probability measure P,
also Monte Carlo methods for numerical integration can be applied if the density p0 can be easily
sampled from, as is, for example, when p0 is the pdf of a normal distribution.

Once a new reference measure has been chosen and the clr transform has been applied
accordingly, the unbounded support is no more of concern for the methodology. In fact,
the B-spline basis functions are defined also on unbounded regions and are computed for
a given, finite knot sequence. The location of the knots would depend on the fatness of the
tails of the densities, since fatter tails would require the knot sequence to be more scattered
for having the resulting spline interpolating well the pdf. For example, a standard normal



4.5. Application 79

random variable has unbounded support, but almost the 95% of the mass in the interval
[−2, 2].

Consequently, the unboundedness of the support of the pdfs affect the spaces D∗ν(I),L∗2,ν(I)
to which the functions belong, but does not require a modification of the other parts of the
procedure, since the basic constructions behind the result in eq. (4.26) are left unchanged.

4.4.2 Multivariate case: d > 2

The proposed methodology can be easily extended to deal with d-dimensional (d > 2) prob-
ability density functions. The change would be involve the size of the sparse block diagonal
matrices described in Appendix D.2.

The only concern that arises when d > 2 is the curse of dimensionality, as is typical in
nonparametric statistics. In the proposed model this occurs through the need for an increas-
ingly high number of observations {x1,t,n, . . . , xd,t,n}n for each period t in order to provide
a good kernel estimation of the copula probability density function. In addition, if the high
dimension is associated to a high degree of complexity of the dependence structure, it may
be necessary also to increase the number of principal components to keep, J. This in turn
results in a higher dimensionality of the VAR model for the scores in Section 4.3.3. However,
we do not expect this to be a significant obstacle, as compared to the previous issue which
represents the true bottleneck to high-dimensional applications.

4.5 Application

The dataset is composed by daily observations of S&P500 and NASDAQ indices from 1st
January 1980 to 31st December 2017, for a total of 10, 032 observations over 38 years. We
make the following assumptions. We start by taking first differences of the two series in
order to remove non-stationarity, then for each period t = 1, . . . , T we assume to observe
a sample {xt,i, yt,i}N

i=1, with N = 247, of intra-period observations (xt,i, yt,i) ∈ I = [0, 1]2.
We compute the copula pseudo-observations (ut,i, vt,i) = (FN

x (xt,i), FN
y (yt,i)), i = 1, . . . , N,

for each t = 1, . . . , T via the rank of the observations. Then, the empirical copula probabil-
ity density function is estimated non-parametrically with the Beta kernel density estimator
(Charpentier et al. (2007), Chen (1999)), using a diagonal bandwidth. The choice of the band-
width for Beta kernel estimators is tricky since no rules of thumb are available for its optimal
choice. We choose m = 0.0251, which is the mean of the optimal bandwidths (one for each
period t = 1, . . . , T) obtained by minimizing the least squares cross validation criterion (see
Silverman (1986), Wand and Jones (1994)) in each period t = 1, . . . , T. See Appendix D.4 for
the results using different values of m.

The choice of this splitting of the sample into T = 38 years allows us to estimate the
function ct(·), for each t, using up to N = 248 data points, while keeping a time series of
estimated functions of length T = 38, thus providing a good balance of the data between
the intra-period and the temporal dimensions. We used the augmented Dickey-Fuller test
for testing the null hypothesis of the presence of a unit root in each of the series, resulting in
the non rejection of the null both when the whole sample is considered, and with reference
to each period t. Therefore, we take first differences of the raw data (see Appendix D.3 for
additional plots), thus reducing the size of each sub-sample to N = 247.

In the following we assume the stationarity of the estimated copula pdfs. We are not
aware of statistical procedures for testing the stationarity of multivariate functional time
series. The closest approach by Horváth et al. (2014) proposes a test for univariate functional
time series. We leave as future work the testing of the assumption of stationarity for the time
series of multivariate functions, eventually by extending the results put forward by Horváth
et al. (2014).
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Lags Model A Model B Model C Model D

1 1823.5 1799.6 1821.5 1797.8
2 1831.7 1804.0 1827.0 1799.3
3 1834.2 1813.6 1826.3 1804.4
4 1820.7 1804.2 1801.2 1769.1

TABLE 4.2: BIC for different VAR specifications of the VAR(p) model in eq. (4.32).
Model A: no constant, no trend; model B: constant, no trend; model C: trend, no
constant; model D: constant and trend. The best model according to BIC is in bold.

We choose the following values of the parameters:

T = 38 N = 247 H = 10 m = 0.0251 d̄ = 0.92
g = 4 m = 3 ` = 2 α = 0.8 W = IN2

(4.38)

After having estimated the copula pdfs ĉ1(·), . . . , ĉ38(·), we de-meaned them using the per-
turbation and powering operations defined in Section 4.2, obtaining ̂̂ct(·) = ĉt(·) 	 c̄(·),
where c̄(·) = 1/T �⊕T

t=1 ĉt(·), which has been used as input for the step 2 of Algorithm 1.
The number of eigenfunctions to take has been estimated as described in Section 4.3.2, by

J = arg minj{∑j ρ̂j ≥ d̄}, yielding J = 4. Values of α lower (greater) than unity imply higher
(lower) relative weight of the smoothing component with respect to the least squares in the
constrained optimal smoothing problem in eq. (4.23). We found that α = 0.8 provides a good
balance between the two. As robustness check, we performed the analysis with different
values of d̄ (thus implying different number of eigenfunctions J) without significant changes.
We run Algorithm 1 on an Apple MacBookPro with a 3.1GHz Intel Core i7 processor, RAM
16GB, using MATLAB r2017b without exploiting parallel calculus. This required around ten
minutes of computation, with step 1 being the most computational intensive part.

The value of the BIC for several specifications of the VAR(p) model in eq. (4.32) for the
time series of scores are reported in Table 4.2 and suggest to choose a VAR(4) model includ-
ing a constant and a time trend. All the estimated VAR models are stationary.

For comparing the results, the estimated copula pdfs ĉt(·), t = 1, . . . , T (respectively,
the forecasted copula pdfs c̃T+h(·), h = 1, . . . , H) have been computed by applying the in-
verse clr map to the functions f̆t(·) ( f̃T+h(·)) estimated (forecasted) from the factor model in
eq. (4.18), using J eigenfunctions. Fig. 4.1 shows the contour plot of the time series of the
estimated bivariate copula pdfs ĉt(·), t = 1, . . . , T, whereas Fig. 4.2 reports the contour and
3D density plots of the forecasted pdfs c̃T+h(·), h = 1, . . . , H. We found that:

• there is evidence of significant temporal changes of the estimated pdfs ĉt(·). Periods
(i.e. years) where the joint probability is concentrated around the bottom-left corner,
meaning stronger lower tail dependence, alternate with periods where also upper tail
dependence appears. There are two main implications of this stylized fact:

– it signals that none of the copula families considered in Table 4.1, which are the
most commonly used in econometrics, is able to account for the varying depen-
dence over the whole time span of the sample, not even by letting the copula pa-
rameter vary over time. The reason is that all of them have either only one type
of tail dependence (upper or lower), or both but in symmetric way. Moreover, the
same conclusion holds even if a dynamic copula model is specified by allowing
the copula parameter to change over time.

– it is consistent with the results of Guégan and Zhang (2010) discussed in Sec-
tion 4.1, who found that a dynamic copula model for the whole sample is not
satisfactory and that different parametric copula families should be used for mod-
elling different temporal windows.
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• Fig. D.2 in Appendix D.3 shows the time series of the fPCA scores along with their fore-
casts (with 95% confidence intervals). For all series we do not reject the null hypothesis
of stationarity (using the ADF test). Moreover, by comparing Fig. 4.1 with Fig. D.2 we
find that smooth evolutions of the fPCA scores of the clr-transformed pdfs are able to
generate significant changes of the pdf.

• the forecasts of the bivariate copula pdf in Fig. 4.2 are smoothly varying over the fore-
casting horizon. The forecasts seem to be able to generate heterogeneous tail depen-
dence patterns, as is the case for the observed data. Consequently, we find that the
proposed methodology is able to provide non-flat forecasts which can capture and de-
scribe the temporal evolution of the bivariate time series.

FIGURE 4.2: Contour plots (first and third row) and the corresponding 3D density plot (second
and fourth row) of the forecasted bivariate copula pdfs, approximated via fPCA, for each horizon
h = 1, . . . , 5 (first and second rows) and h = 6, . . . , 10 (third and fourth rows), starting from the

top-left panel.

Several parametric and nonparametric estimators for the TDC λU, λL defined in eq. (4.1)-
(4.3) have been proposed in the literature. Here we use the non-parametric estimator ob-
tained from eq. (4.3). Let u ∈ [0, 1] be an arbitrarily small threshold and let ĈN(·) be the em-
pirical copula cumulative probability function, then the estimator is defined by (see Frahm
et al. (2005)):

λ̂U = 2− log(ĈN(1− u, 1− u))
log(1− u)

, λ̂L = 2− log(1− 2u + ĈN(u, u))
log(1− u)

. (4.39)

Fig. 4.3 shows the estimated tail dependence coefficients for the sample observations, for
each period t = 1, . . . , 38, using a grid of 20 equally spaced threshold values between 0.01
and 0.20. Instead, Fig. 4.4 plots only the case for the median value of the threshold values,
i.e. u = 0.10. We find significant variation of both the upper and lower tail dependence
coefficients over time, which are always different from zero. In addition, the values of the
upper TDC differ from those of the lower TDC, thus highlighting an asymmetric tail depen-
dence. The threshold parameter seems to exert a minor role, as almost all the trajectories
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FIGURE 4.3: Upper (left) and lower (right) tail dependence coefficients of the bi-
variate time series (xt, yt), for t = 1, . . . , 38 (x-axis). Each curve corresponds to a

different threshold u = 0.01, 0.02, . . . , 0.20.

FIGURE 4.4: Upper (left) and lower (right) tail dependence coefficients of the bi-
variate time series (xt, yt), for t = 1, . . . , 38 (x-axis), threshold u = 0.10.

FIGURE 4.5: Upper (left) and lower (right) tail dependence coefficients of the fore-
casted bivariate copula pdf cT+h(·), for h = 1, . . . , 10 (x-axis), threshold u = 0.10.

of both λ̂U, λ̂L remain quite close to each other, except for few values of u, thus indicating
robustness of the results (with respect to u). Moreover, the range of variation of the lower
TDC is slightly higher than that of the upper TDC, in line with the previous findings in the
financial econometrics literature (see Cherubini et al. (2004)).

Fig. 4.5 shows the estimated tail coefficients for the forecasted copula pdfs, for each hori-
zon h = 1, . . . , 10, using the threshold value u = 0.10. The results are in line with the findings
of the sample data: both estimated coefficients are different from zero (however, we did not
obtain the standard errors necessary for testing this hypothesis) and asymmetric between
the upper and lower case, furthermore they change over time. Considered together, the
findings in and out of sample estimated TDC points towards the rejection the use of copula
families has either only one type of tail dependence or symmetric tail dependence, as show
in Table 4.1.

Remark 4.5.1 (Interpretation)
The proposed methodology, as opposed to standard (semi)parametric dynamic copula models allows
to visualize and quantify the temporal evolution of both the upper and lower tail dependence between
bivariate time series, as well as to estimate the associated TDC. These findings suggest that the use of
this methodology can improve the state-of-the-art on risk modelling due to its flexibility in modelling
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the dynamics of the dependence between random variables, which is the cornerstone for definition of
adequate risk measures.

4.6 Conclusions

The time varying nature of the dependence pattern between financial variables is a chal-
lenging issue in statistics and econometrics. Common methods based on the specification of
a dynamic copula model are not enough flexible to describe the temporal change, because
each copula family has only a specific kind of tail dependence.

We contribute to this literature by proposing a nonparametric model for forecasting mul-
tivariate probability density functions with bounded or unbounded support. The method-
ology is used for studying the temporal evolution of the copula probability density function
encrypting the dependence structure between the S&P500 and the NASDAQ indices. We
found evidence of time varying tail dependence which cannot be captured by commonly
used econometric models based on dynamic copulas, whereas the model we propose is able
to account for these changes. The forecasts highlight smooth but significant variation of the
bivariate copula pdf.

The proposed methodology is quite general and can be applied also to other domains.
An appealing framework deserving further research concerns the definition of time vary-
ing graphical models through dynamic vine copulas (Bedford and Cooke (2002), Joe and
Kurowicka (2011)), which combine a tree-like graphical structure, for representing the con-
ditional independence relationships among a set of variables, with bivariate copulas, which
describe the pairwise conditional dependence. Here, the method can be used for (sepa-
rately) modelling the temporal evolution of each bivariate copula characterizing the edges
of the network. Our methodology can be parallelized over the edges, for coupling with the
issue of dimensionality.

Another stream of research worth further investigation regards the empirical analysis of
multivariate (with dimension d > 2) pdfs with unbounded support, such as multivariate
normal distributions, which are the building block of many well-known econometric mod-
els.
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Chapter 5

Conclusions

We can only see a short distance ahead, but we can
see plenty there that needs to be done.

ALAN TURING

The mistakes and unresolved difficulties of the past
in mathematics have always been the opportunities of
its future.

ERIC TEMPLE BELL

The development of suitable models for studying high-dimensional, complex datasets is
one of the main challenges that statistics and econometrics are currently facing. The liter-
ature on these topics is still at its infancy and represents a promising field of study. This
thesis contributes to this growing stream of literature by proposing different statistical ap-
proaches for modelling the temporal dependence between complex data structures. Though
the empirical studied have focused on dynamic networks, the applicability of the methods
to extends to several other contexts.

In the following we summarise the main findings of the thesis and suggest some fields
where the proposed methodologies can be applied.

Chapter 2 presents a Bayesian econometric model for real-valued tensor-variate data. The
model allows to preserve and exploit the information about the complex structure of
the data, as opposed to mainstream vector-variate models. One of the main advantages
of the method is its ability to recover the significant heterogeneity of the coefficients.
This suggests that complex data structures are also characterised by an intricate, het-
erogeneous system of interconnections which needs to be accounted for in empirical
analyses. Therefore models based on pooling coefficients may have substantial limita-
tions in these cases.
When applied to the study of time series of network data, the methodology admits an
interpretation as a reduced-form network autoregressive model, for which tools used
in VAR models, such as impulse response functions, are available.
Finally, the computational efficiency of the procedure has been tested, finding good
performance even in estimation problems with high-dimensional parameter spaces
with several hundreds of parameters.

Chapter 3 describes a Markov switching model for time-varying binary arrays. With re-
spect to the previous model, this framework allows to capture an additional layer of
complexity, by allowing both cross-sectional and temporal heterogeneity of the coeffi-
cients driving the probability of an occurrence in the array. In particular, it is able to
recover the temporal clustering of the coefficients as well as to estimate the different
impact that a set of covariates has on each entry of the response.



86 Chapter 5. Conclusions

The main results in financial networks analysis pertain the ability of capturing the tem-
poral evolution of the topology of the network, both in terms of time varying sparsity
of the whole structure and in terms of the dynamics of each edge’s probability.
From a computational perspective, the model scales well and it permits to estimate
the heterogeneity in individual entry’s probability even with data arrays containing
thousands of entries.

Chapter 4 proposes a nonparametric model for forecasting multivariate probability density
functions. The method treats the constraints imposed by probability density functions
directly, without the need for post-processing the output. It is highly flexible and re-
quires minimal stationarity assumptions on the underlying time series.
The main advantage of the model is the ability to provide forecast of the whole function
of interest without any parametric assumption on the function itself. Moreover, the
forecasts made by this method are able to account for significant changes over time of
the functions.
The empirical analysis on bivariate copula probability density functions has highlighted
the limitations of parametric and semi-parametric models, and shown the advantages
of the nonparametric approach in providing accounting for remarkably different pat-
terns of tail dependence over time.

All the methodologies we have developed in this thesis are quite general may be ap-
plied also for studying phenomena outside the domain of temporal networks. In particular,
dynamic tensor regressions developed in Chapter 2 can be used as a model for general real-
values matrix- and tensor-variate time series, which are becoming popular in the literature
thanks to the spreading of complex data.

A complementary framework is provided in Chapter 3, where a time series of binary
arrays is of interest. This is an extension of multivariate binary regression models which can
account for complex cross-sectional structures as well as temporal dynamics. Alternative
applications may include the analysis of micro-level panel data on employment relations
between firms and individuals, the illness status of workers in different industries and the
existence of certain financial relations between banks and households or industries.

The techniques proposed in Chapter 4 are promising for studying time series or cross-
sectional data of multivariate probability density functions. This is a rather recent field of re-
search, whose potential is still largely unexplored. The availability of great amount of data at
high frequencies, especially in finance, suggests that point forecasts based on vector-valued
series may be improved by forecasting the entire function representing the behaviour of the
series in a suitable time interval. The generality of the methodology proposed in Chapter 4
makes it appealing for this kind of applications, including, for example, forecasting of the
volatility surface, or of high-frequency financial data.
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Appendix A

A.1 Background material on tensor calculus

In this section we introduce some operators for multilinear arrays (i.e. tensors): in particular,
we consider operations acting on tensors and between tensors and lower-dimensional ob-
jects (such as matrices and vectors) as well as some representation (decomposition/approximation)
results for tensors. A noteworthy introduction to tensors and corresponding operations is
in Lee and Cichocki (2016), while a remarkable reference for tensor decomposition methods
is Kolda and Bader (2009). We use the following notation: matrices are represented by bold-
face upper-case letters, vectors by boldface lower-case letters, scalars by lower-case letters
and, finally, calligraphic letters denote tensors, if not differently specified.

A N-order tensor is an element of the tensor product of N vector spaces. Since there
exists a isomorphism between two vector spaces of dimensions N and M < N, it is possible
to define a one-to-one map between their elements, that is, between a N-order tensor and a
M-order tensor. We call this tensor reshaping and give its formal definition below.

Definition A.1.1 (Tensor reshaping)
Let V1, . . . , VN and U1, . . . , UM be vector subspaces Vn, Um ⊆ R and X ∈ RI1×...×IN = V1 ⊗
. . .⊗VN be a N-order real tensor of dimensions I1, . . . , IN. Let (v1, . . . , vN) be a canonical basis of
RI1×...×IN and let ΠS be the projection defined as:

ΠS :V1 ⊗ . . .⊗VN → Vs1 ⊗ . . .⊗Vsk

v1 ⊗ . . .⊗ vN 7→ vs1 ⊗ . . .⊗ vsk ,

with S = {s1, . . . , sk} ⊂ {1, . . . , N}. Let (S1, . . . , SM) be a partition of {1, . . . , N}. The (S1, . . . , SM)
tensor reshaping of X is defined as:

X(S1,...,SM) = (ΠS1X )⊗ . . .⊗ (ΠSMX )

∈

⊗
s∈S1

Vs

⊗ . . .⊗

⊗
s∈SM

Vs


= U1 ⊗ . . .⊗UM .

It can be proved that the mapping is an isomorphism between V1 ⊗ . . .⊗VN and U1 ⊗ . . .⊗UM.

The operation of converting a tensor into a matrix can be seen as a particular case of
tensor reshaping, where a N-order tensor is mapped to a 2-order tensor. In practice, it con-
sists in choosing the modes of the array to map with the rows and columns of the resulting
matrix, then permuting the tensor and reshaping it, accordingly. The formal follows.

Definition A.1.2
Let X be a N order tensor with dimensions I1, . . . , IN. Let the ordered sets R = {r1, . . . , rL} and
C = {c1, . . . , cM} be a partition of N = {1, . . . , N} and let IN = {I1, . . . , IN}. The matricized
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tensor is specified by:

X(R×C :IN) ∈ RJ×K J = ∏
n∈R

In K = ∏
n∈C

In . (A.1)

Indices of R, C are mapped to the rows and the columns, respectively. More precisely:(
X(R×C :IN)

)
j,k

= Xi1,i2,...,iN (A.2)

with:

j = 1 +
L

∑
l=1

[
(irl − 1)

l−1

∏
l′=1

Ir′l

]
k = 1 +

M

∑
m=1

[
(icm − 1)

m−1

∏
m′=1

Ic′m

]
(A.3)

Many product operations have been defined for tensors, but here we constrain ourselves
to the operator used in this work and we point to Lee and Cichocki (2016) for a summary
of other operators. The mode−n product between a tensor X and a vector v ∈ Rdn can be
interpreted as the standard Euclidean inner product between the vector and each mode-n
fiber of the tensor. Consequently, this operator suppresses one dimension of the tensor and
results in a lower order tensor. It is defined, element-wise, by:

Y(i1,...,in−1,in+1,...,iD) = (X ×n v)(i1,...,in−1,in+1,...,iD)
=

dn

∑
in

Xi1,...,iD vin , (A.4)

with Y ∈ Rd1×...,dn−i,dn+1,...×dD . Notice that this product is not commutative, since the order
of the elements in the multiplication is relevant.

Finally, let Y ∈ RdY
1×...×dY

M and X ∈ RdX
1 ×...×dX

N . The outer product ◦ of two tensors1 is the
tensor Z ∈ RdY

1×...×dY
M×dX

1 ×...×dX
N whose entries are:

Zi1,...,iM,j1,...,jN = (Y ◦ X )i1,...,iM,j1,...,jN = Yi1,...,iMXj1,...,jN . (A.5)

For example, the outer product of two vectors is a matrix, while the outer product of two
matrices is a tensor of order 4. As a special case, the outer product of two column vectors a,
b can be equivalently represented by means of the Kronecker product ⊗:

a ◦ b = b⊗ a = a · b′ . (A.6)

In the following, we introduce two multilinear operators acting on tensors, see Kolda
(2006) for more details.

Definition A.1.3 (Tucker operator)
Let Y ∈ RJ1×...×JN and N = {1, . . . , N}. Let {An}n be a collection of N matrices such that
An ∈ RIn×Jn for n ∈ N. The Tucker operator is defined as:

JY ; A1, . . . , ANK = Y ×1 A1 ×2 A2 . . .×N AN , (A.7)

and the resulting tensor has size I1 × . . .× IN.

Definition A.1.4 (Kruskal operator)
Let N = {1, . . . , N} and {An}n be a collection of N matrices such that An ∈ RIn×R for n ∈ N. Let
I be the identity tensor of size R× . . .× R, i.e. a tensor having ones along the superdiagonal and
zeros elsewhere. The Kruskal operator is defined as:

X = JA1, . . . , ANK = JI ; A1, . . . , ANK , (A.8)

1This operator still applies to vectors and matrices, as they are special cases of tensors of order 1 and 2, respectively.
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with X a tensor of size I1 × . . .× IN. An alternative representation is obtained by defining a(r)n the
r-th column of the matrix An and using the outer product:

X = JA1, . . . , ANK =
R

∑
r=1

a(r)1 ◦ . . . ◦ a(r)N . (A.9)

By exploiting the Khatri-Rao product � (i.e. the column-wise Kronecker product for A ∈ RI×K,
B ∈ RJ×K defined as A � B = [a:,1 ⊗ b:,1, . . . , a:,K ⊗ b:,K]) in combination with the mode-n
matricization and the vectorization operators, we get the following additional representations of
X = JA1, . . . , ANK:

X(n) = An (AN � . . .�An+1 �An−1 � . . .�A1)
′ (A.10)

vec (X ) = (AN � . . .�A1) 1R , (A.11)

where 1R is a vector of ones of length R.

We now define two tensor representations, or decompositions, which are useful in two
respects: (i) the algebraic objects that form the decomposition are generally low dimensional
and more easily tractable than the tensor; (ii) they can be used to provide a good approxima-
tion of the original array. Also, let us denote with R∗ be the rank of tensor X , the abstraction
of the notion of matrix rank.

The Tucker decomposition can be thought of as a higher-order generalization of Principal
Component Analysis (PCA): a tensor X ∈ Rd1×...×dD is decomposed into (more precisely, it
is approximated by) the product (along the corresponding mode) of a “core” tensor Y ∈
Ry1×...×yD and D factor matrices A(l) ∈ Rdl×yl , 1 ≤ l ≤ D. Following the notation in Kolda
and Bader (2009):

X = Y ×1 A(1) ×2 A(2) ×3 . . .×D A(D) =
y1

∑
i1=1

y2

∑
i2=1

. . .
yD

∑
iD=1

yi1,i2,...,iD a(1)i1
◦ a(2)i2

◦ . . . ◦ a(D)
iD

.

(A.12)
Here a(l)il

∈ Rgl×1 is the l-th column of the matrix A(l). As a result, each entry of the tensor
is obtained as:

Xj1,...,jD =
y1

∑
i1=1

y2

∑
i2=1

. . .
yD

∑
iD=1

yi1,i2,...,iD a(1)i1,j1
a(2)i2,j2

. . . a(D)
iD,jD

1 ≤ jl ≤ dl, 1 ≤ l ≤ D. (A.13)

A special case of the Tucker decomposition is obtained when the core tensor collapses
to a scalar and the factor matrices reduce to a single column vector each one is called
PARAFAC(R)2. More precisely, the PARAFAC(R) decomposition allows to represent a D-
order tensor X ∈ Rd1×...×dD as the sum of R rank one tensors, that is, of outer products
(denoted by ◦) of vectors (also called marginals in this case)3:

X =
R

∑
r=1
Xr =

R

∑
r=1

x(r)1 ◦ . . . ◦ x(r)D , (A.14)

2See Harshman (1970). Some authors (e.g., Carroll and Chang (1970) and Kiers (2000)) use the term CODECOMP or
CP instead of PARAFAC.

3An alternative representation may be used, if all the vectors xr
j are normalized to have unitary length. In this case the

weight of each component r is captured by the r− th component of the vector λ ∈ RR:

X =
R

∑
r=1

λr

(
x(r)1 ◦ . . . ◦ x(r)D

)
.
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FIGURE A.1: PARAFAC decomposition of X ∈ Rd1×d2×d3 , with ar ∈ Rd! , br ∈ Rd2

and cr ∈ Rd3 , 1 ≤ r ≤ R. Figure from Kolda and Bader (2009).

with x(r)j ∈ Rdj ∀j = 1, . . . , D. For a tensor of arbitrary order, the determination of the rank
is a NP−hard problem (Kolda and Bader (2009)), as a consequence, in applied works, one
generally fixes R, uses a PARAFAC(R) approximation, and then run a sensitivity analysis
of the results with respect to R. The higher the value of R, the better is the approximation.
Alternatively, whenever it is possible to define a measure for the approximation accuracy
one may define a grid of values {Ri}R̄

i=1 at which evaluate the accuracy, then choose the
value of the grid which yields the best approximation.

The rest of the section contains some results relating the operators we have just defined.

Proposition A.1.0.1 (4.3 in Kolda (2006))
Let Y ∈ RJ1×...×JN and N = {1, . . . , N} and let A ∈ RIn×Jn for all n ∈ N. If R = {r1, . . . , rL}
and C = {c1, . . . , cM} partition N, then:

X = JY ; A1, . . . , ANK ⇐⇒ X(R×C :JN) =
(

A(rL) ⊗ . . .⊗A(r1)
)

Y(R×C :JN)

(
A(cM) ⊗ . . .⊗A(c1)

)′
(A.15)

where X = JY ; A1, . . . , ANK = Y ×1 A1 ×2 A2 . . . ×n AN denotes the Tucker product between
the tensor Y and the collection of matrices {An}N

n=1. The Kruskal operator is a special case of the
Tucker operator, obtained when the tensor Y = I is an identity tensor of dimensions R× . . .× R
and the matrices {An}N

n=1 have dimension An ∈ RIn×R. Therefore, we can represent the product
using the outer product representation, as follows. Consider the collection of vectors {a(n)}N

n=1, of
length a(n) ∈ RIn , formed by the columns of the matrices An. Then:

X = JI ; A1, . . . , ANK = ◦N
n=1a(n) ⇐⇒

X(R×C :JN) =
(

a(rL) ⊗ . . .⊗ a(r1)
)

I(R×C :JN)

(
a(cM) ⊗ . . .⊗ a(c1)

)′
. (A.16)

Remark A.1.1 (Contracted product – vectorization)
Let X ∈ RI1×...×IN and Y ∈ RJ1×...×JN×JN+1×...×JN+P . Let (S1, S2), with S1 = {1, . . . , N},
S2 = {N + 1, . . . , N + P}, be a partition of {1, . . . , N + P}. The following results hold:

a) if P = 0 and In = Jn for n = 1, . . . , N, then:

X ×1...N Y = 〈X ,Y〉 = vec (X )′ · vec (Y) ∈ R . (A.17)

b) if P > 0 and In = Jn for n = 1, . . . , N, then:

X ×1...N Y = vec (X )×1 Y(S1,S2) ∈ Rj1×...×jP (A.18)

Y ×1...N X = Y(S1,S2) ×
1 vec (X ) ∈ Rj1×...×jP . (A.19)

c) if P = N and In = Jn = JN+n, n = 1, . . . , N, then:

X ×1...N Y ×1...N X = vec (X )′ · Y(R×C ) · vec (X ) ∈ R . (A.20)



A.1. Background material on tensor calculus 91

Proof. Case a). By definition of contracted product and tensor scalar product:

X ×1...N Y =
I1

∑
i1=1

. . .
IN

∑
iN=1
Xi1,...,iN · Yi1,...,iN

= ∑
i1,...,iN

Xi1,...,iN · Yi1,...,iN = 〈X ,Y〉 = vec (X)′ · vec (Y) .

Case b). Define I∗ = ∏N
n=1 In and k = 1 + ∑N

j=1(ij − 1)∏
j−1
m=1 Im. By definition of con-

tracted product and tensor scalar product:

X ×1...N Y =
I1

∑
i1=1

. . .
IN

∑
iN=1
Xi1,...,iN · Yi1,...,iN ,jN+1,...,jN+P

=
I∗

∑
k=1
Xk · Yk,jN+1,...,jN+P .

Notice that the one-to-one correspondence established by the mapping between k and (i1, . . . , iN)
corresponds to that of the vectorization of a tensor of size N and dimensions I1, . . . , IN.
Moreover, it also corresponds to the mapping established by the tensor reshaping of a tensor
of order N + P with dimensions I1, . . . , IN, JN+1, . . . , JN+P into another tensor of order 1 + P
and dimensions I∗, JN+1, . . . , JN+P. Define S = {1, . . . , N}, such that (S, N + 1, . . . , N + P) is
a partition of {1, . . . , N + P}. Then:

X ×1...N Y = vec (X)×1 Y(S,N+1,...,N+P) .

Similarly, defining S = {P + 1, . . . , N + P} yields the second part of the result.
Case c). We follow the same strategy adopted in case b). Define S1 = {1, . . . , N} and

S2 = {N + 1, . . . , N + P}, such that (S− 1, S2) is a partition of {1, . . . , N + P}. Let k, k′ be
defined as in case b). Then:

X ×1...N Y ×1...N X =
I1

∑
i1=1

. . .
IN

∑
iN=1

I1

∑
i′1=1

. . .
IN

∑
i′N=1
Xi1,...,iN · Yi1,...,iN ,i′1,...,i′N

· Xi′1,...,i′N

=
I∗

∑
k=1

I1

∑
i′1=1

. . .
IN

∑
i′N=1
Xk · Yk,i′1,...,i′N

· Xi′1,...,i′N

=
I∗

∑
k=1

I∗

∑
k′=1
Xk · Yk,k′ · Xk′

= vec (X )′ · Y(S1,S2) · vec (X ) .

In the following we define a relation between the matricization of a tensor resulting from
the outer product of matrices and the Kronecker product.

Remark A.1.2 (Kronecker - matricization)
Let X1, . . . , XN be square matrices of size In × In, n = 1, . . . , N and let X = X1 ◦ . . . ◦ XN denote
the N-order tensor with dimensions (J1, . . . J2N) = (I1, . . . , IN, I1, . . . , IN) obtained as the outer
product of the matrices {Un}. Let (S1, S2), with S1 = {1, . . . , N} and S2 = {N + 1, . . . , N}, be
a partition of IN = {1, . . . , 2N}. Then:

X(S1,S2) = X(R×C :IN) = (XN ⊗ . . .⊗ X1) . (A.21)
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Proof. Use the pair of indices (in, i′n) for the entries of the matrix Xn, n = 1, . . . , N. By defini-
tion of outer product:

(X1 ◦ . . . ◦ XN)i1,i2,...,iN ,i′1,i′2,...,i′N
= (X1)i1,i′1

· (X2)i2,i′2
· · · (XN)iN ,i′N

.

From the definition of matricization, X(S1,S2) = X(R×C :IN). Moreover:(
X(S1,S2)

)
h,k

= Xi1,...,i2N

with:

h =
N

∑
p=1

(iS1,p − 1)
p−1

∏
q=1

JS1,p k =
N

∑
p=1

(iS2,p − 1)
p−1

∏
q=1

JS2,p .

By definition of the Kronecker product we have: that the entry (h′, k′) of (XN ⊗ . . .⊗ X1) is
given by:

(XN ⊗ . . .⊗ X1)h′,k′ = (XN)i′N ,i′N
· · · (X1)i1,i′1

where:

h′ =
N

∑
p=1

(iS1,p − 1)
p−1

∏
q=1

JS1,p k′ =
N

∑
p=1

(iS2,p − 1)
p−1

∏
q=1

JS2,p .

Since h = h′ and k = k′ and the associated elements of X(S1,S2) and (XN ⊗ . . .⊗ X1) are the
same, the result follows.

Remark A.1.3
Let X be a N-order tensor of dimensions I1 × . . . × IN and let I∗ = ∏N

i=1 Ii. Then there exists a
vec-permutation (or commutation) matrix K1→n of size I∗ × I∗ such that:

K1→n vec (X ) = K1→n vec
(

X(1)

)
= vec

(
X(n)

)
. (A.22)

Moreover, it holds:
vec

(
X(n)

)
= vec

(
XTσ

(1)

)
= vec

(
X Tσ

)
, (A.23)

where
XTσ

(1) =
(
X Tσ

)
(1)

= X(n) , (A.24)

is the mode-1 matricization of the transposed tensor X Tσ according to the permutation σ which
exchanges modes 1 and n, leaving the others unchanged. That is, for ij ∈ {1, . . . , Ij} and j =
1, . . . , N:

σ(ij) =


1 j = n
n j = 1
ij j 6= 1, n .

Remark A.1.4
LetX be a N-order random tensor with dimensions I1, . . . , IN and let N = {1, . . . , N} be partitioned
by the index sets R = {r1, . . . , rm} ⊂ D and C = {c1, . . . , cp} ⊂ N, i.e. N = R ∪C , R ∩C = ∅
and N = m + p. Then:

X ∼ NI1,...,IN(M, U1, . . . , UN) ⇐⇒ X(R×C ) ∼ Nm,p(M(R×C ), Σ1, Σ2) , (A.25)

with:
Σ1 = Urm ⊗ . . .⊗Ur1 Σ2 = Ucp ⊗ . . .⊗Uc1 . (A.26)
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Proof. We demonstrate the statement for R = {n}, n ∈ N, however the results follows
from the same steps also in the general case #R > 1. The strategy it to demonstrate that
the probability density functions of the two distributions coincide. To this aim consider
separately the exponent and the normalizing constant. Define I−j = ∏N

i=1, n 6=j Ii and IN =

{I1, . . . , IN}, then for the normalizing constant we have:

(2π)−
∏i Ii

2 |U1|−
I−1

2 · · · |Un|−
I−n

2 · · · |UN |−
I−N

2 = (A.27)

= (2π)−
∏i Ii

2 |U1|−
I−1

2 · · · |Un−1|−
I−(n−1)

2 · |Un+1|−
I−(n+1)

2 · · · |UN|−
I−N

2 · |Un|−
I−n

2

= (2π)−
∏i Ii

2 |UN ⊗ . . .⊗Un−1 ⊗Un+1 ⊗ . . .⊗UN |−
n
2 · |Un|−

I−n
2 . (A.28)

Concerning the exponent, let i = (i1, . . . , iN) and, for ease of notation, define Y = X −M
and U = (U−1

N ◦ . . . ◦U−1
1 ). By the definition of contracted product it holds:

Y ×1...N U ×1...N Y = (A.29)

= ∑
i1,...,iN

∑
i′1,...,i′N

yi1,...,in,...,iN · u
−1
i1,i′1
· · · u−1

in,i′n
· · · u−1

iN ,i′N
· yi′1,...,in,...,i′N

.

Define j = σ(i), where σ is the permutation defined above exchanging i1 with in, n ∈
{2, . . . , N}. Then the previous equation can be rewritten as:

= ∑
j1,...,jN

∑
j′1,...,j′N

yjn,...,j1,...,iN · u
−1
jn,j′n
· · · u−1

j1,j′1
· · · u−1

iN ,i′N
· yj′n,...,j′1,...,i′N

= Yσ ×1...N
(

U−1
1 ◦ . . . ◦U−1

N

)σ
×1...N Yσ ,

where Yσ is the transpose tensor of Y (see Pan (2014)) obtained by permuting the first and
the n-th modes and similarly for the 6-order tensor (U−1

1 ◦ . . . ◦ U−1
N )σ. Let (S1, S2), with

S1 = {1, . . . , N} and S2 = {N + 1, . . . , 2N}, be a partition of {1, . . . , 2N}. By vectorizing
eq. (A.29) and exploiting the results in A.1.1 and A.1.2, we have:

Y ×1...N U ×1...N Y = vec (Y)′ · U(S1,S2) · vec (Y) (A.30)

= vec (Y)′ ·
(

U−1
N ⊗ . . .⊗U−1

n ⊗ . . .⊗U−1
1

)
· vec (Y)

= vec
(
Yσ
)′ · (U−1

N ⊗ . . .⊗U−1
1 ⊗U−1

n

)
· vec

(
Yσ
)

= vec
(

Y(n)

)′
·
(

U−1
N ⊗ . . .⊗U−1

1 ⊗U−1
n

)
· vec

(
Y(n)

)
= vec

(
Y(n)

)′
· vec

(
U−1

n · Y(n) ·
[
U−1

N ⊗ . . .⊗U−1
1

])
= tr

(
Y′(n) ·U

−1
n · Y(n) ·

[
U−1

N ⊗ . . .⊗U−1
1

])
= tr

([
U−1

N ⊗ . . .⊗U−1
1

] [
X(n) −M(n)

]′
·U−1

n ·
[
X(n) −M(n)

])
.

(A.31)

Since the term in (A.27) and (A.30) are the normalizing constant and the exponent of the
tensor normal distribution, whereas (A.28) and (A.31) are the corresponding expressions for
the desired matrix normal distribution, the result is proved for the case #R = 1. In the
general case #R = r > 1 the proof follows from the same reasoning, by substituting the
permutation σ with another permutation σ′ which exchanges the modes of the tensor such
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that the first r modes of the transpose tensor Yσ′ correspond to the elements of R.
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Appendix B

B.1 Proofs of the results in Section 2.2

Proof of result in Remark 2.2.3. By assuming Ij = 1, for j = 1, . . . , N, in mode (2.16), then:

Yt,A, Et ∈ RI1×...×IN → R (B.1)

B ∈ RI1×...×IN×J → RJ (B.2)

C ∈ RI1×...×IN×Q → RQ (B.3)

where the matrix Wt has been removed as covariate. In order to keep it, it would be neces-
sary either to vectorize it (then D would follow the same change as B) or to assume an inner
product (here D would reduce to a matrix of the same dimension of Wt). Notice that a N-
order tensor whose modes have all unitary length is essentially a scalar. As a consequence,
the error term distribution reduces to a univariate Gaussian, with 0 mean and variance σ2.
Finally, also the mode-3 product reduces to the standard inner product between vectors.

The PARAFAC(R) decomposition still holds in this case. Consider only A and B, as the
other tensors behave in the same manner. For ease of notation we drop the index t, since it
does not affect the result:

A =
R

∑
r=1

α
(r)
1 ◦ . . . ◦ α

(r)
N =

R

∑
r=1

α
(r)
1 · . . . · α(r)N =

R

∑
r=1

α̃r = ᾱ ∈ R. (B.4)

Here, α̃r = ∏N
j=1 α

(r)
j . Since each mode of A has unitary length, each of the marginals of the

PARAFAC(R) decomposition is a scalar, therefore the outer product reduces to the ordinary
product and the outcome is a scalar too (obtained by R sums of D products). Concerning
B, we apply the same way of reasoning, with the only exception that in this case one of
the modes (the last, in the formulation of eq. (2.16)) has length J > 1, implying that the
corresponding marginal is a vector of the same length. The result is a vector, as stated:

B =
R

∑
r=1

β
(r)
1 ◦ . . . ◦ β

(r)
N ◦ β

(r)
D+1 =

R

∑
r=1

β
(r)
1 · . . . · β(r)

N · β
(r)
N+1 (B.5)

=
R

∑
r=1

β̃rβ
(r)
N+1 = β ∈ RQ , (B.6)

where β̃r = ∏N
j=1 β

(r)
j . By an analogous proof, one gets:

C = γ ∈ RJ . (B.7)

which completes the proof.
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Proof of result in Remark 2.2.5. Without loss of generality, let Jj = 1, for j = 2, . . . , N in model (2.16),
then:

Yt,A, Et ∈ RI1×...×IN → Rm (B.8)

B ∈ RI1×...×IN×J → Rm×J (B.9)

C ∈ RI1×...×IN×Q → Rm×Q (B.10)

D ∈ RI1×...×In−1×K×In+1...×IN → Rm×K , (B.11)

where it is necessary to assume that Wt ∈ Rm×K. The two mode-N + 1 products be-
come mode-2 products and the distribution of the error term reduces to the multivariate
(n-dimensional) Gaussian, with a unique covariance matrix (m×m).

As the PARAFAC(R) approximation is concerned, the result for A follows from the sec-
ond part of the previous proof and yields A = α ∈ Rm. For the remaining tensors, it holds
(dropping the index for notational ease):

B =
R

∑
r=1

β
(r)
1 ◦ β

(r)
2 ◦ . . . ◦ β

(r)
N =

R

∑
r=1

β
(r)
1 ◦

(
β
(r)
2 · . . . · β(r)

N

)
◦ β

(r)
N+1 (B.12)

=
R

∑
r=1

β
(r)
1 ◦ β

(r)
N+1 · β̃r =

R

∑
r=1

β
(r)′
1 β

(r)
N+1 · β̃r (B.13)

=
R

∑
r=1

B(r) · β̃r = B̄ ∈ Rm×J (B.14)

where β̃r = ∏N
j=2 β

(r)
j . The same result holds for the tensor C, which is equal to C ∈ Rm×Q,

with the last mode’s length changed from J to Q. Finally, concerning D:

D =
R

∑
r=1

δ
(r)
1 ◦ . . . ◦ δ

(r)
n−1 ◦ δ

(r)
n ◦ δ

(r)
n+1 ◦ . . . ◦ δ

(r)
N =

R

∑
r=1

(
δ
(r)
1 · . . . · δ(r)n−1

)
· δ(r)

n ·
(

δ
(r)
n+1 · . . . · δ(r)N

)
(B.15)

=
R

∑
r=1

δ
(r)
n ·

(
δ
(r)
1 · . . . · δ(r)n−1

)
·
(

δ
(r)
n+1 · . . . · δ(r)N

)
=

R

∑
r=1

δ
(r)
n · δ̃r = d ∈ Rm , (B.16)

with δ̃r = ∏N
j 6=n δ

(r)
j . Notice that the resulting mode-n product reduces to an ordinary dot

product between the matrix W and the vector d̄.
It remains to prove that the structure imposed by standard VARX and Panel VAR models

holds also in the model of eq. (2.16). Notice that the latter does not impose any restriction
on the coefficients, other than the PARAFAC(R) decomposition. It must be stressed that it
is not possible to achieve the desired structure of the coefficients, in terms of the location of
the zeros, by means of an accurate choice of the marginals. In fact, the decomposition we
are assuming does not allow to create a particular structure on the resulting tensor.

Nonetheless, it is still possible to achieve the desired result by a slight modification of the
model in eq. (2.16). For example, consider the coefficient tensor B, then to create a tensor
whose entries are non-zero only in some pre-specified (hence a-priori known) cells, it suffices
to multiply B by a binary tensor (i.e. one where all entries are either 0 or 1) via the Hadamard
product. In formulas, let H ∈ {0, 1}I1×...×IN×J , such that it has 0 only in those cells which
are known to be null. Then:

B̄ = H�B
will have the desired structure. The same way of reasoning holds for any coefficient tensor
as well as for the covariance matrices.
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To conclude, in Panel VAR models one generally has as regressors in each equation a
function of the endogenous variables (for example their average). Since this does not affect
the coefficients of the model, it is possible to re-create it in our framework by simply rear-
ranging the regressors in eq. (2.16) accordingly. In terms of the model, none of the issues
described invalidates the formulation of eq. (2.16), which is able to encompass all of them
by suitable rearrangements of the covariates and/or the coefficients, which are consistent
with the general model.

Remark B.1.1 (follows from 2.2.6)
From the VECM in eq. (2.24) and denoting yt−1 = vec (Yt−1) we can obtain an explicit form for
the long run equilibrium (or cointegrating) relations, as follows:

αβ′yt−1 =

(
R

∑
r=1

β̃
(r)
1 ◦ β̃

(r)
2 ◦ β̃

(r)
3

)
×3 yt−1 (B.17a)

=
R

∑
r=1

(
β̃
(r)
1 ◦ β̃

(r)
2

)
· 〈β̃(r)

3 , yt−1〉 (B.17b)

=
R

∑
r=1

B̃(r)
12 · 〈β̃

(r)
3 , yt−1〉 , (B.17c)

with B̃(r)
12 = β̃

(r)
1 ◦ β̃

(r)
2 being a K × K matrix of loadings for each r = 1, . . . , R, while the inner

product 〈β̃(r)
3 , yt−1〉 defines the cointegrating relations. Notice that for a generic entry yij,t, the

previous long run relation is defined in terms of all the entries of the lagged matrix Yt−1, each one
having a long run coefficient (in the r-th relation) β̃

(r)
3,k, where k can be obtained from (i, j) via a

one-to-one mapping corresponding to the reshaping of the K× K matrix Yt−1 into the K2 × 1 vector
yt−1.

Finally, as the cointegrating relations are not unique, that is β in eq. (2.24) is not identified, the
same is true for the tensor model, as noted in Section 2.2.

B.2 Initialisation details

It is well known that the Gibbs sampler algorithm is highly sensitive to the choice of the
initial value. From this point of view, the most difficult parameters initialise in the proposed
model are the margins of the tensor of coefficients, that is the set of vectors: {β(r)

1 , β
(r)
2 , β

(r)
3 }R

r=1.
Due to the high complexity of the parameter space, we have chosen to perform an initiali-
sation scheme which is based on the Simulated Annealing (SA) algorithm (see Robert and
Casella (2004) and Press et al. (2007) for a thorough discussion). This algorithm is similar
to the Metropolis-Hastings one, and the idea behind it is to perform a stochastic optimisa-
tion by proposing random moves from the current state which are always accepted when
improving the optimum and have positive probability of acceptance even when they are
not improving. This is used in order to allow the algorithm to escape from local optima.
Denoting the objective function to be minimised by f (θ), the Simulated Annealing method
accepts a move from the current state θ(i) to the proposed one θnew with probability given
by the Bolzmann-like distribution:

p(∆ f , T) = exp
{
−∆ f

T

}
. (B.18)

Here ∆ f = f (θnew) − f (θ(i)) and T is a parameter called temperature. The key of the SA
method is in the cooling scheme, which describes the deterministic, decreasing evolution
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of the temperature over the iterations of the algorithm: it has been proved that under suffi-
ciently slow decreasing schemes, the SA yields a global optimum.

We propose to use the SA algorithm for minimising the objective function:

f ({β(r)
1 , β

(r)
2 , β

(r)
3 }

R
r=1) = κNψN + κ3ψ3 , (B.19)

where κN is an overall penalty given by the Frobenius norm of the tensor constructed from
simulated margins, while κ3 is the penalty of the sum (over r) of the norms of the marginals
β
(r)
3 . In formulas:

ψN =
∥∥∥BSA

∥∥∥
2

ψ3 =
R

∑
r=1

∥∥∥β
(r)
3

∥∥∥
2

. (B.20)

The proposal distribution for each margin is a normal NIj(0, σI), independent from the cur-
rent state of the algorithm. Finally, we have chosen a logarithmic cooling scheme which
updates the temperature at each iteration of the SA:

Ti =
k

1 + log(i)
i = 1, . . . , I , (B.21)

where k > 0 is a tuning parameter, which can be interpreted as the initial value of the
temperature. In order to perform the initialisation of the margins, we run the SA algorithm
for I = 1000 iterations, then we took the vectors which gave the best fit in terms of minimum
value of the objective function.

In the tensor case, the initialization of the PARAFAC marginals {β(r)
1 , β

(r)
2 , β

(r)
3 , β

(r)
4 }R

r=1
follows the same line, with ψ3 in eq. (B.20) replaced by:

ψ4 =
R

∑
r=1

∥∥∥β
(r)
4

∥∥∥
2

. (B.22)

B.3 Computational details - matrix case

In this section we will follow the convention of denoting the prior distributions with π(·). In
addition, let W = {Wj,r}j,r be the collection of all (local variance) matrices Wj,r, for j = 1, 2, 3
and r = 1, . . . , R; I0 = ∑3

j=1 Ij the sum of the length of each mode of the tensor B and
Y = {Yt, Xt}t the collection of observed variables.

B.3.1 Full conditional distribution of φ

In order to derive this posterior distribution, we make use of Lemma 7.9 in Guhaniyogi
et al. (2017). Recall that: aτ = αR, bτ = α(R)1/N and I0 = ∑N

j=1 Ij. The prior for φ is
π(φ) ∼ Dir(α).

p(φ|B, W) ∝ π(φ)p(B|W, φ) = π(φ)
∫ +∞

0
p(B|W, φ, τ)π(τ)dτ . (B.23)

By plugging in the prior distributions for τ, φ, β
(r)
j we obtain1:

p(φ|B, W) ∝
R

∏
r=1

φα−1
r

∫ +∞

0

 R

∏
r=1

N

∏
j=1

(τφr)
−Ij/2

∣∣∣Wj,r

∣∣∣−1/2
exp

{
− 1

2τφr
β
(r)′
j W−1

j,r β
(r)
j

}
1We have used the property of the determinant: det(kA) = kn det(A), for A square matrix of size n and k scalar.
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· τaτ−1 exp {−bττ}dτ

∝
R

∏
r=1

φα−1
r

∫ +∞

0

 R

∏
r=1

(τφr)
−I0/2 exp

− 1
2τφr

N

∑
j=1

β
(r)′
j W−1

j,r β
(r)
j




· τaτ−1 exp {−bττ}dτ . (B.24)

Define Cr =
1
2 ∑N

j=1 β
(r)′
j W−1

j,r β
(r)
j , then group together the powers of τ and φr as follows:

p(φ|B, W) ∝
R

∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1− RI0

2 exp {−bττ}

 R

∏
r=1

exp

{
− 1

2τφr
Cr

}dτ

=
R

∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1− RI0

2 exp

{
−bττ −

R

∑
r=1

Cr

2τφr

}
dτ . (B.25)

Recall that the probability density function of a Generalized Inverse Gaussian in the parametriza-
tion with three parameters (a > 0, b > 0, p ∈ R), with x ∈ (0,+∞), is given by:

x ∼ GiG(a, b, p) ⇒ p(x|a, b, p) =

(
a
b

) p
2

2Kp(
√

ab)
xp−1 exp

{
−1

2

(
ax +

b
x

)}
, (B.26)

with Kp(·) a modified Bessel function of the second type. Our goal is to reconcile eq. (B.73)
to the kernel of this distribution. Since by definition ∑R

r=1 φr = 1, it holds that ∑R
r=1(bττφr) =

(bττ)∑R
r=1 φr = bττ. This allows to rewrite the exponential as:

p(φ|B, W) ∝
R

∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τ

(
aτ−

RI0
2

)
−1 exp

− R

∑
r=1

(
Cr

2τφr
+ bττφr

)dτ

=
∫ +∞

0

(
R

∏
r=1

φ
α− I0

2 −1
r

)
τ

(
αR− RI0

2

)
−1 exp

− R

∑
r=1

(
Cr

2τφr
+ bττφr

)dτ , (B.27)

where we expressed aτ = αR. According to the results in Appendix A and Lemma 7.9
of Guhaniyogi et al. (2017), the function in the previous equation is the kernel of a general-
ized inverse Gaussian for ψr = τφr, which yields the distribution of φr after normalization.
Hence, for r = 1, . . . , R, we first sample :

p(ψr|B, W, τ, α) ∼ GiG
(

α− I0

2
, 2bτ, 2Cr

)
(B.28)

then, renormalizing, we obtain:

φr =
ψr

∑R
l=1 ψl

. (B.29)

B.3.2 Full conditional distribution of τ

The posterior distribution of the global variance parameter, τ, is derived by simple applica-
tion of Bayes’ Theorem:

p(τ|B, W, φ) ∝ π(τ)p(B|W, φ, τ)
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∝ τaτ−1 exp {−bττ}

 R

∏
r=1

(τφr)
− I0

2 exp

− 1
2τφr

N

∑
j=1

β
(r)′
j (Wj,r)

−1β
(r)
j




∝ τaτ−
RI0

2 −1 exp

−bττ −
(

R

∑
r=1

Cr

φr

1
τ

) . (B.30)

This is the kernel of a generalized inverse Gaussian:

p(τ|B, W, φ) ∼ GiG

(
aτ −

RI0

2
, 2bτ, 2

R

∑
r=1

Cr

φr

)
. (B.31)

B.3.3 Full conditional distribution of λj,r

Start by observing that, for j = 1, 2, 3 and r = 1, . . . , R, the prior distribution on the vector
β
(r)
j defined in eq. (2.29e) implies that each component follows a double exponential distri-

bution:

β
(r)
j,p ∼ DE

(
0,

λj,r√
τφr

)
(B.32)

with probability density function, for j = 1, 2, 3:

π(β
(r)
j,p |λj,r, φr, τ) =

λj,r

2
√

τφr
exp

−
∣∣∣β(r)

j,p

∣∣∣
(λj,r/

√
τφr)−1

 . (B.33)

Then, exploiting the prior distribution π(λj,r) ∼ Ga(aλ, bλ) and eq. (B.33):

p
(

λj,r|β
(r)
j , φr, τ

)
∝ π(λj,r)p

(
β
(r)
j |λj,r, φr, τ

)
∝ λ

aλ−1
j,r exp

{
−bλλj,r

} Ij

∏
p=1

λj,r

2
√

τφr
exp

−
∣∣∣β(r)

j,p

∣∣∣
(λj,r/

√
τφr)−1


= λ

aλ−1
j,r

(
λj,r

2
√

τφr

)Ij

exp
{
−bλλj,r

}
exp

−
∑

Ij
p=1

∣∣∣β(r)
j,p

∣∣∣
√

τφr/λj,r


∝ λ

(aλ+Ij)−1
j,r exp

−
bλ +

∥∥∥β
(r)
j

∥∥∥
1√

τφr

 λj,r

 . (B.34)

This is the kernel of a gamma distribution, hence for j = 1, 2, 3, r = 1, . . . , R:

p(λj,r|B, φr, τ) ∼ Ga

aλ + Ij, bλ +

∥∥∥β
(r)
j

∥∥∥
1√

τφr

 . (B.35)
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B.3.4 Full conditional distribution of wj,r,p

We sample independently each component wj,r,p of the matrix Wj,r = diag(wj,r), for p =
1, . . . , Ij, j = 1, 2, 3 and r = . . . , R, from the full conditional distribution:

p
(

wj,r,p|β
(r)
j , λj,r, φr, τ

)
∝ p

(
β
(r)
j,p |wj,r,p, φr, τ

)
π(wj,r,p|λj,r)

= (τφr)
− 1

2 w−
1
2

j,r,p exp

{
− 1

2τφr
β
(r)2

j,p w−1
j,r,p

}
λ2

j,r

2
exp

−λ2
j,r

2
wj,r,p


∝ w−

1
2

j,r,p exp

−
λ2

j,r

2
wj,r,p −

β
(r)2

j,p

2τφr
w−1

j,r,p

 , (B.36)

where the second row comes from the fact that wj,r,p influences only the p-th component of

the vector β
(r)
j . For p = 1, . . . , Ij, j = 1, 2, 3 and r = 1, . . . , R we get:

p
(

wj,r,p|β
(r)
j , λj,r, φr, τ

)
∼

1
2

, λ2
j,r,

β
(r)2

j,p

τφr

 . (B.37)

B.3.5 Full conditional distribution of the PARAFAC marginals β
(r)
j , for j = 1, 2, 3

For r = 1, . . . , R we sample the PARAFAC marginals (β
(r)
1 , β

(r)
2 , β

(r)
3 ) fro their full conditional

distribution, since their joint distribution is not available in closed form. First, it is necessary
to rewrite the likelihood function in a suitable way. To this aim, for j = 1, 2, 3 and r = 1, . . . , R
define β

(r)
−j =

{
β
(r)
i : i 6= j

}
, Br = β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3 and B−r = {Bi : i 6= r}. By properties of

the mode-n product:

B×3 xt =

(
R

∑
r=1

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
×3 xt =

 R

∑
s=1
s 6=r

β
(s)
1 ◦ β

(s)
2 ◦ β

(s)
3

×3 xt +
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
×3 xt .

(B.38)
Since our interest is in β

(r)
j for j = 1, 2, 3, we focus on the second term of eq. (B.38):

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
×3 xt =

I3

∑
i3=1

(
β
(r)
1 ◦ β

(r)
2

)
· β(r)

3,i3
xt,i3 =

(
β
(r)
1 ◦ β

(r)
2

)
· 〈β(r)

3 , xt〉 . (B.39)

The equality comes from the definition of mode-n product given in eq. (A.4). It holds:(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
×3 xt =

(
β
(r)
1 ◦ β

(r)
2

)
· 〈β(r)

3 , xt〉 = β
(r)
1 ◦

(
β
(r)
2 · 〈β

(r)
3 , xt〉

)
(B.40)

=
(

β
(r)
1 · 〈β

(r)
3 , xt〉

)
◦ β

(r)
2 . (B.41)

We exploited the fact that the outcome of the inner product is a scalar, then the result follows
by linearity of the outer product.
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Given a sample of length T and assuming that the distribution at time t = 0 is known (as
standard practice in time series analysis), the likelihood function is given by:

L
(
Y|B, Σ1, Σ2

)
=

T

∏
t=1

[
(2π)−

k2
2 |Σ2|−

k
2 |Σ1|−

k
2 exp

{
−1

2
tr
(

Σ−1
2 (Yt −B ×3 xt)

′
Σ−1

1 (Yt −B ×3 xt)
)}]

∝ exp

{
−1

2

T

∑
t=1

tr
(

Σ−1
2 Ẽ′tΣ

−1
1 Ẽt

)}
, (B.42)

with:

Ẽt =

(
Yt −B−r ×3 xt −

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 , xt〉
)

. (B.43)

Now, we can focus on a specific r and j = 1, 2, 3 and derive the full conditionals of each
marginal vector of the tensor B. To make computations clear:

L
(
Y|B, Σ1, Σ2

)
∝ exp

{
−1

2

T

∑
t=1

tr (a1t + a2t + b1t + b2t + ct)

}
, (B.44)

where:

a1t = −Σ−1
2 Y′tΣ

−1
1

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 , xt〉 (B.45a)

a2t = −Σ−1
2

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 , xt〉Σ−1
1 Yt (B.45b)

b1t = Σ−1
2 (B−r ×3 xt)

′
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 , xt〉 (B.45c)

b2t = Σ−1
2

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 , xt〉Σ−1
1 (B−r ×3 xt) (B.45d)

ct = Σ−1
2

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 , xt〉Σ−1
1

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 , xt〉 . (B.45e)

Exploiting linearity of the trace operator and the property tr
(

A′
)
= tr (A), one gets:

p
(
Y|B, Σ1, Σ2

)
∝ exp

{
−1

2

T

∑
t=1

(
tr (a1t) + tr (a2t) + tr (b1t) + tr (b2t) + tr (ct)

)}

∝ exp

{
−1

2

T

∑
t=1

(
2 tr (a1t) + 2 tr (b1t) + tr (ct)

)}
. (B.46)

Consider now each term in the sum at the exponent, and exploit the property tr (ABC) =
tr (CAB) = tr (BCA):

T

∑
t=1

2 tr
(
−Σ−1

2 Y′tΣ
−1
1

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 , xt〉
)
+ 2 tr

(
Σ−1

2 (B−r ×3 xt)
′
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 , xt〉
)

+ tr
(

Σ−1
2

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 , xt〉Σ−1
1

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 , xt〉
)

= 2 tr

−Σ−1
2

(
T

∑
t=1

Y′t〈β
(r)
3 , xt〉

)
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
+ 2 tr

Σ−1
2

(
T

∑
t=1

(B−r ×3 xt)
′ 〈β(r)

3 , xt〉
)

Σ−1
1

(
β
(r)
1 ◦ β

(r)
2

)
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+ tr

Σ−1
2

(
β
(r)
1 ◦ β

(r)
2

)′
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)( T

∑
t=1
〈β(r)

3 , xt〉2
)

= 2 tr

−Σ−1
2

(
T

∑
t=1

Y′t〈β
(r)
3 , xt〉

)
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
+ 2 tr

Σ−1
2

(
T

∑
t=1

(B−r ×3 xt)
′ 〈β(r)

3 , xt〉
)

Σ−1
1

(
β
(r)
1 ◦ β

(r)
2

)
+ tr

(
Σ−1

2

(
β
(r)
1 ◦ β

(r)
2

)′
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
β
(r)′
3 VV′β(r)

3

)
, (B.47)

where V = [x1, x2, . . . , xT] ∈ Rk2×T. Hence the likelihood function is proportional to:

L
(
Y|B, Σ1, Σ2

)
∝ exp

−1
2

2 tr

−Σ−1
2

(
T

∑
t=1

Y′t〈β
(r)
3 , xt〉

)
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
+ 2 tr

Σ−1
2

(
T

∑
t=1

(B−r ×3 xt)
′ 〈β3,(r) xt〉

)
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
+ tr

(
Σ−1

2

(
β
(r)
1 ◦ β

(r)
2

)′
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
β
(r)′
3 VV′β(r)

3

) . (B.48)

It is now possible to proceed and derive the full conditional distributions of the PARAFAC
marginals β

(r)
1 , β

(r)
2 , β

(r)
3 , for fixed r.

Full conditional distribution of β
(r)
1

From eq. (B.48):

L(Y|B, Σ1, Σ2) ∝ exp

−1
2

−2 tr

Σ−1
2

(
T

∑
t=1

Y′t〈β
(r)
3 , xt〉

)
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
+ 2 tr

Σ−1
2

(
T

∑
t=1

(B−r ×3 xt)
′ 〈β(r)

3 , xt〉
)

Σ−1
1

(
β
(r)
1 ◦ β

(r)
2

)
+ tr

(
Σ−1

2

(
β
(r)
1 ◦ β

(r)
2

)′
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
β
(r)′
3 VV′β(r)

3

)]
= exp

−1
2

[
β
(r)′
3 VV′β(r)

3 tr
(

Σ−1
2

(
β
(r)
1 ◦ β

(r)
2

)′
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

))

−2 tr

(
Σ−1

1

(
β
(r)
1 ◦ β

(r)
2

)
Σ−1

2

T

∑
t=1

(
Y′t − (B−r ×3 xt)

′
)
〈β(r)

3 , xt〉
) . (B.49)
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For the posterior of β
(r)
1 as well as for that of β

(r)
2 , define:

ã = β
(r)′
3 VV′β(r)

3

Ẽ =
T

∑
t=1

(
Y′t − (B−r ×3 xt)

′
)
〈β(r)

3 , xt〉 .

In addition, exploit the fact that β
(r)
1 ◦ β

(r)
2 = β

(r)
1 β

(r)′
2 . As a result, eq. (B.49) becomes:

L(Y|B, Σ1, Σ2) ∝ exp

{
−1

2

[
ã tr
(

Σ−1
1 β

(r)
1 β

(r)′
2 Σ−1

2 β
(r)
2 β

(r)′
1

)
− 2 tr

(
Σ−1

1 β
(r)
1 β

(r)′
2 Σ−1

2 Ẽ
)]}

∝ exp

{
−1

2

[
ã
(

β
(r)′
1 Σ−1

1 β
(r)
1

) (
β
(r)′
2 Σ−1

2 β
(r)
2

)
− 2β

(r)′
2 Σ−1

2 ẼΣ−1
1 β

(r)
1

]}
,

(B.50)

where the last equality comes from the use of the previously mentioned properties of the
trace as well as by recognizing that the trace of a scalar is the scalar itself (all the terms in
brackets in the last expression are scalars).

Equation (B.50) serves as a basis for the derivation of both the posterior of β
(r)
1 and β

(r)
2 .

With reference to the first one, the likelihood function in eq. (B.50) can be rearranged as to
form the kernel of a Gaussian. For ease of notation define ã1 = ã

(
β
(r)′
2 Σ−1

2 β
(r)
2

)
, then from

eq. (B.50) it holds:

L(Y|B, Σ1, Σ2) ∝ exp

−1
2

[
β
(r)′
1

(
Σ1

ã1

)−1

β
(r)
1 − 2β

(r)′
2 Σ−1

2 ẼΣ−1
1 β

(r)
1

] . (B.51)

By Bayes’ Theorem we obtain:

p
(

β
(r)
1 |β

(r)
−1,B−r, W1,r, φr, τ, Y, Σ1, Σ2

)
∝ π

(
β
(r)
1 |Wj,r, φr, τ

)
L
(
Y|B, Σ1, Σ2

)
∝ exp

{
−1

2
β
(r)′
1

(
W1,rφrτ

)−1
β
(r)
1

}
exp

−1
2

[
β
(r)′
1

(
Σ1

ã1

)−1

β
(r)
1 − 2β

(r)′
2 Σ−1

2 ẼΣ−1
1 β

(r)
1

]
∝ exp

−1
2

β
(r)′
1

((
W1,rφrτ

)−1
+

(
Σ1

ã1

)−1
)

β
(r)
1 − 2β

(r)′
2 Σ−1

2 ẼΣ−1
1 β

(r)
1

 . (B.52)

This is the kernel of a normal distribution, therefore for r = 1, . . . , R:

p
(

β
(r)
1 |β

(r)
−1,B−r, W1,r, φr, τ, Σ1, Σ2, Y

)
∼ NI1

(
µ̄β1

, Σ̄β1

)
, (B.53)

where:

Σ̄β1
=
[(

W1,rφrτ
)−1

+ ã1Σ−1
1

]−1

µ̄β1
= Σ̄β1

Σ−1
1 Ẽ′Σ−1

2 β
(r)
2 .
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Full conditional distribution of β
(r)
2

Consider the likelihood function in eq. (B.50) and define ã2 = ã
(

β
(r)′
1 Σ−1

1 β
(r)
1

)
. By algebraic

manipulation we obtain the proportionality relation:

L(Y|B, Σ1, Σ2) ∝ exp

−1
2

[
β
(r)′
2

(
Σ2

ã2

)−1

β
(r)
2 − 2β

(r)′
2 Σ−1

2 ẼΣ−1
1 β

(r)
1

] . (B.54)

Then, Bayes’ theorem yields:

p
(

β
(r)
2 |β

(r)
−2,B−r, W2,r, φr, τ, Y, Σ1, Σ2

)
∝ π

(
β
(r)
1 |Wj,r, φr, τ

)
L
(
Y|B, Σ1, Σ2

)
∝ exp

{
−1

2
β
(r)′
2
(
W2,rφrτ

)−1
β
(r)
2

}
exp

−1
2

[
β
(r)′
2

(
Σ2

ã2

)−1

β
(r)
2 − 2β

(r)′
2 Σ−1

2 ẼΣ−1
1 β

(r)
1

]
∝ exp

−1
2

β
(r)′
2

((
W2,rφrτ

)−1
+

(
Σ2

ã2

)−1
)

β
(r)
2 − 2β

(r)′
2 Σ−1

2 ẼΣ−1
1 β

(r)
1

 . (B.55)

Which, for r = 1, . . . , R, is the kernel of a normal distribution:

p
(

β
(r)
2 |β

(r)
−2,B−r, W2,r, φr, τ, Σ1, Σ2, Y

)
∼ NI2

(
µ̄β2

, Σ̄β2

)
, (B.56)

where:

Σ̄β2
=
[(

W2,rφrτ
)−1

+ ã2Σ−1
2

]−1

µ̄β2
= Σ̄β2

Σ−1
2 ẼΣ−1

1 β
(r)
1 .

Full conditional distribution of β
(r)
3

For ease of notation, define:

A = Σ−1
1

(
β
(r)
1 ◦ β

(r)
2

)
Σ−1

2

Ã = A
(

β
(r)
1 ◦ β

(r)
2

)′
.

Define Ṽ = V · (tr(Ã))
1
2 , then eq. (B.48) becomes:

L(Y|B, Σ1, Σ2) ∝

∝ exp

−1
2

−2 tr

(
A

T

∑
t=1

Y′t〈β
(r)
3 , xt〉

)
+ 2 tr

(
A

T

∑
t=1

(B−r ×3 xt)
′ 〈β(r)

3 , xt〉
)
+ β

(r)′
3 VV′β(r)

3 tr
(

Ã
)

∝ exp

−1
2

−2 tr

(
A

T

∑
t=1

Y′t〈β
(r)
3 , xt〉

)
+ 2 tr

(
A

T

∑
t=1

(B−r ×3 xt)
′ 〈β(r)

3 , xt〉
)
+ β

(r)′
3 ṼṼ′β(r)

3


∝ exp

−1
2

β
(r)′
3 ṼṼ′β(r)

3 − 2 tr

(
A

T

∑
t=1

Y′t〈β
(r)
3 , xt〉 − A

T

∑
t=1

(B−r ×3 xt)
′ 〈β(r)

3 , xt〉
) .

(B.57)
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Then, focus on the second term in square brackets:

tr

(
A

T

∑
t=1

Y′t〈β
(r)
3 , xt〉 − A

T

∑
t=1

(B−r ×3 xt)
′ 〈β(r)

3 , xt〉
)

= tr

A

(
T

∑
t=1

Y′t〈β
(r)
3 , xt〉 − (B−r ×3 xt)

′ 〈β(r)
3 , xt〉

) = tr

(
A

T

∑
t=1

(
Y′t − (B−r ×3 xt)

′
)
〈β(r)

3 , xt〉
)

.

(B.58)

For ease of notation, define ˜̃Yt = Y′t − (B−r ×3 xt)
′, then by linearity of the trace operator:

= tr

(
A

T

∑
t=1

˜̃Y′t 〈β
(r)
3 , xt〉

)
= tr

(
T

∑
t=1

(
A ˜̃Y′t

) (
β
(r)′
3 xt

))
=

T

∑
t=1

tr
(

A ˜̃Yt

) (
β
(r)′
3 xt

)
=

T

∑
t=1

ỹt

(
β
(r)′
3 xt

)
= ỹ′V′β(r)

3 , (B.59)

where we defined ỹt = tr(A ˜̃Yt). As a consequence, rewrite eq. (B.57) as:

L(Y|B, Σ1, Σ2) ∝ exp
{
−1

2

[
β
(r)′
3 (ṼṼ′)β

(r)
3 − 2ỹ′V′β(r)

3

]}
. (B.60)

We can now recover the full conditional posterior distribution of β
(r)
3 by applying Bayes’

Theorem:

p
(

β
(r)
3 |β

(r)
−3,B−r, W3,r, φr, τ, Y, Σ1, Σ2

)
∝ π

(
β
(r)
3 |W3,r, φr, τ

)
L
(
Y|B, Σ1, Σ2

)
∝ exp

{
−1

2
β
(r)′
3
(
W3,rφrτ

)−1
β
(r)
3

}
exp

{
−1

2

[
β
(r)′
3 (ṼṼ′)β

(r)
3 − 2ỹ′V′β(r)

3

]}
∝ exp

{
−1

2

[
β
(r)′
3

((
W3,rφrτ

)−1
+ ṼṼ′

)
β
(r)
3 − 2ỹ′V′β(r)

3

]}
, (B.61)

which is the kernel of a normal distribution. As a consequence, defining:

Σ̄β3
=
[(

W3,rφrτ
)−1

+ ṼṼ′
]−1

µ̄β3
= Σ̄β3

Vỹ ,

we get, for r = 1, . . . , R:

p
(

β
(r)
3 |β

(r)
−3,B−r, Wj,r, φr, τ, Σ1, Σ2, Y

)
∼ NI1·I2

(
µ̄β3

, Σ̄β3

)
. (B.62)

B.3.6 Full conditional distribution of Σ1

Given a inverse Wishart prior, the posterior full conditional distribution for Σ1 is conjugate:

p(Σ1|B, Y, Σ2, γ) ∝ L(Y|B, Σ2, Σ1)π(Σ1)

∝ |Σ1|−
TI2

2 exp

{
−1

2

T

∑
t=1

tr
(

Σ−1
2 (Yt −B ×3 xt)

′
Σ−1

1 (Yt −B ×3 xt)
)}
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· |Σ1|−
ν1+I1+1

2 exp
{
−1

2
tr
(

γΨ1Σ−1
1

)}

∝ |Σ1|−
ν1+I1+TI2+1

2 exp

−1
2

tr
(

γΨ1Σ−1
1

)
+ tr

(
T

∑
t=1

(
(Yt −B ×3 xt)Σ−1

2 (Yt −B ×3 xt)
′
)

Σ−1
1

) .

(B.63)

The last row comes from exploiting two ties the linearity of the trace operator. For ease of
notation, define S1 = ∑T

t=1 (Yt −B ×3 xt)Σ−1
2 (Yt −B ×3 xt)

′, obtaining:

p(Σ1|B, Y, Σ2, γ) ∝ |Σ1|−
ν1+I1+TI2+1

2 exp

{
−1

2

[
tr
(

γΨ1Σ−1
1

)
+ tr

(
S1Σ−1

1

)]}

∝ |Σ1|−
(ν1+TI2)+I1+1

2 exp
{
−1

2
tr
(
(γΨ1 + S1)Σ−1

1

)}
, (B.64)

where we have used again the linearity of the trace operator. As a consequence:

p(Σ1|B, Y, Σ2, γ) ∼ IW I1 (ν1 + TI2, γΨ1 + S1) . (B.65)

B.3.7 Full conditional distribution of Σ2

By the same reasoning of Σ1, the posterior full conditional distribution of Σ2 is conjugate
and follows from:

p(Σ2|B, Y, Σ1, γ) ∝ L(Y|B, Σ1, Σ2)π(Σ2|γ)

∝ |Σ2|−
TI1

2 exp
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2

T
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2
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2
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2

)
+ tr

(
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(
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) .

(B.66)

The last row comes from exploiting two ties the linearity of the trace operator. For ease of
notation, define S2 = ∑T

t=1 (Yt −B ×3 xt)
′
Σ−1

1 (Yt −B ×3 xt), obtaining:

p(Σ2|B, Y, Σ1, γ) ∝ |Σ2|−
ν2+I2+I1k+1

2 exp

{
−1

2

[
tr
(

γΨ2Σ−1
2

)
+ tr

(
S2Σ−1

2

)]}

∝ |Σ2|−
(ν2+TI1)+I2+1

2 exp
{
−1

2
tr
(
(γΨ2 + S2)Σ−1

2

)}
, (B.67)

where we have used again the linearity of the trace operator. As a consequence:

p(Σ2|B, Y, Σ1) ∼ IW I2 (ν2 + TI1, γΨ2 + S2) . (B.68)

B.3.8 Full conditional distribution of γ

Using a gamma prior distribution we have:

p(γ|Σ1, Σ2) ∝ p(Σ1, Σ2|γ)π(γ)
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∝ |γΨ1|−
ν1
2 |γΨ2|−

ν2
2 exp

{
−1

2
tr
(

γΨ1Σ−1
1

)}
exp

{
−1

2
tr
(

γΨ2Σ−1
2

)}
γaγ−1 exp{−bγγ}

∝ γ−
ν1 I1+ν2 I2

2 exp
{
−1

2
γ tr

(
Ψ1Σ−1

1 + Ψ2Σ−1
2

)
− bγγ

}
γaγ−1

∝ γaγ−
ν1 I1+ν2 I2

2 −1 exp
{
−1

2
tr
(

Ψ1Σ−1
1 + Ψ2Σ−1

2

)
− bγγ

}
, (B.69)

thus:

p(γ|Σ1, Σ2) ∼ Ga
(

aγ +
1
2
(ν1 I1 + ν2 I2), bγ +

1
2

tr
(

Ψ1Σ−1
1 + Ψ2Σ−1

2

))
. (B.70)

B.4 Computational details - tensor case

In this section we will follow the convention of denoting the prior distributions with π(·).
In addition, let W = {Wj,r}j,r be the collection of all (local variance) matrices Wj,r, for j =
1, 2, 3, 4 and r = 1, . . . , R; I0 = ∑4

j=1 Ij the sum of the length of each mode of the tensor B and
Y = {Yt,Xt}t the collection of observed variables.

B.4.1 Full conditional distribution of φ

In order to derive this posterior distribution, we make use of Lemma 7.9 in Guhaniyogi
et al. (2017). Recall that: aτ = αR, bτ = α(R)1/N and I0 = ∑N

j=1 Ij. The prior for φ is
π(φ) ∼ Dir(α).

p(φ|B, W) ∝ π(φ)p(B|W, φ) = π(φ)
∫ +∞

0
p(B|W, φ, τ)π(τ)dτ . (B.71)

By plugging in the prior distributions for τ, φ, β
(r)
j we obtain2:

p(φ|B, W) ∝
R

∏
r=1

φα−1
r

∫ +∞

0

 R

∏
r=1

N

∏
j=1

(τφr)
−Ij/2

∣∣∣Wj,r

∣∣∣−1/2
exp

{
− 1

2τφr
β
(r)′
j W−1

j,r β
(r)
j

}
· τaτ−1 exp {−bττ}dτ

∝
R

∏
r=1

φα−1
r

∫ +∞

0

 R

∏
r=1

(τφr)
−I0/2 exp

− 1
2τφr

N

∑
j=1

β
(r)′
j W−1

j,r β
(r)
j




· τaτ−1 exp {−bττ}dτ . (B.72)

Define Cr = ∑N
j=1 β

(r)′
j W−1

j,r β
(r)
j , then group together the powers of τ and φr as follows:

p(φ|B, W) ∝
R

∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1− RI0

2 exp {−bττ}

 R

∏
r=1

exp

{
− 1

2τφr
Cr

}dτ

=
R

∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1− Rd0

2 exp

{
−bττ −

R

∑
r=1

Cr

2τφr

}
dτ . (B.73)

2We have used the property of the determinant: det(kA) = kn det(A), for A square matrix of size n and k scalar.
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Recall that the probability density function of a Generalized Inverse Gaussian in the parametriza-
tion with three parameters (a > 0, b > 0, p ∈ R), with x ∈ (0,+∞), is given by:

x ∼ GiG(a, b, p) ⇒ p(x|a, b, p) =

(
a
b

) p
2

2Kp(
√

ab)
xp−1 exp

{
−1

2

(
ax +

b
x

)}
, (B.74)

with Kp(·) a modified Bessel function of the second type. Our goal is to reconcile eq. (B.73)
to the kernel of this distribution. Since by definition ∑R

r=1 φr = 1, it holds that ∑R
r=1(bττφr) =

(bττ)∑R
r=1 φr = bττ. This allows to rewrite the exponential as:

p(φ|B, W) ∝
R

∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τ

(
aτ−

RI0
2

)
−1 exp

− R

∑
r=1

(
Cr

2τφr
+ bττφr

)dτ

=
∫ +∞

0

(
R

∏
r=1

φ
α− I0

2 −1
r

)
τ

(
αR− RI0

2

)
−1 exp

− R

∑
r=1

(
Cr

2τφr
+ bττφr

)dτ , (B.75)

where we expressed aτ = αR. According to the results in Appendix A and Guhaniyogi et al.
(2017), the function in the previous equation is the kernel of a generalized inverse Gaussian
for ψr = τφr, which yields the distribution of φr after normalization. Hence, for r = 1, . . . , R,
we first sample :

p(ψr|B, W, τ, α) ∼ GiG
(

α− I0

2
, 2bτ, 2Cr

)
(B.76)

then, renormalizing, we obtain (see Kruijer et al. (2010)):

φr =
ψr

∑R
l=1 ψl

. (B.77)

B.4.2 Full conditional distribution of τ

The posterior distribution of the global variance parameter, τ, is derived by simple applica-
tion of Bayes’ Theorem:

p(τ|B, W, φ) ∝ π(τ)p(B|W, φ, τ)

∝ τaτ−1 exp {−bττ}

 R

∏
r=1

(τφr)
− I0

2 exp

− 1
2τφr

4

∑
j=1

β
(r)′
j (Wj,r)

−1β
(r)
j




∝ τaτ−
RI0

2 −1 exp

−bττ −
(

R

∑
r=1

Cr

φr

1
τ

) . (B.78)

This is the kernel of a generalized inverse Gaussian:

p(τ|B, W, φ) ∼ GiG

(
aτ −

RI0

2
, 2bτ, 2

R

∑
r=1

Cr

φr

)
. (B.79)
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B.4.3 Full conditional distribution of λj,r

Start by observing that, for j = 1, 2, 3, 4 and r = 1, . . . , R, the prior distribution on the vector
β
(r)
j defined in eq. (2.29e) implies that each component follows a double exponential distri-

bution:

β
(r)
j,p ∼ DE

(
0,

λj,r√
τφr

)
(B.80)

with probability density function, for j = 1, 2, 3, 4 and r = 1, . . . , R, given by:

π(β
(r)
j,p |λj,r, φr, τ) =

λj,r

2
√

τφr
exp

−
∣∣∣β(r)

j,p

∣∣∣
(λj,r/

√
τφr)−1

 . (B.81)

Then, exploiting the prior π(λj,r) ∼ Ga(aλ, bλ) and eq. (B.81):

p
(

λj,r|β
(r)
j , φr, τ

)
∝ π(λj,r)p

(
β
(r)
j |λj,r, φr, τ

)
∝ λ

aλ−1
j,r exp

{
−bλλj,r

} Ij

∏
p=1

λj,r

2
√

τφr
exp

−
∣∣∣β(r)

j,p

∣∣∣
(λj,r/

√
τφr)−1


= λ

aλ−1
j,r

(
λj,r

2
√

τφr

)Ij

exp
{
−bλλj,r

}
exp

−
∑

Ij
p=1

∣∣∣β(r)
j,p

∣∣∣
√

τφr/λj,r


∝ λ

(aλ+Ij)−1
j,r exp

−
bλ +

∥∥∥β
(r)
j

∥∥∥
1√

τφr

 λj,r

 . (B.82)

Thus, for j = 1, 2, 3, 4, r = 1, . . . , R, the full conditional distribution of λj,r is given by:

p(λj,r|B, φr, τ) ∼ Ga

aλ + Ij, bλ +

∥∥∥β
(r)
j

∥∥∥
1√

τφr

 . (B.83)

B.4.4 Full conditional distribution of wj,r,p

We sample independently each component wj,r,p of the matrix Wj,r = diag(wj,r), for p =
1, . . . , Ij, j = 1, 2, 3, 4 and r = . . . , R, from the full conditional distribution:

p
(

wj,r,p|β
(r)
j , λj,r, φr, τ

)
∝ p

(
β
(r)
j,p |wj,r,p, φr, τ

)
π(wj,r,p|λj,r)

= (τφr)
− 1

2 w−
1
2

j,r,p exp

{
− 1

2τφr
β
(r)2

j,p w−1
j,r,p

}
λ2

j,r

2
exp

−λ2
j,r

2
wj,r,p


∝ w−

1
2

j,r,p exp

−
λ2

j,r

2
wj,r,p −

β
(r)2

j,p

2τφr
w−1

j,r,p

 , (B.84)
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where the second row comes from the fact that wj,r,p influences only the p-th component of

the vector β
(r)
j . For p = 1, . . . , Ij, j = 1, 2, 3, 4 and r = 1, . . . , R we get:

p
(

wj,r,p|β
(r)
j , λj,r, φr, τ

)
∼

1
2

, λ2
j,r,

β
(r)2

j,p

τφr

 . (B.85)

B.4.5 Full conditional distributions of PARAFAC marginals β
(r)
j , for j = 1, 2, 3, 4

Define α1 ∈ RI , α2 ∈ RJ and α3 ∈ RK and let A = vec (α1 ◦ α2 ◦ α3). Then it holds:

vec (A) = vec (α1 ◦ α2 ◦ α3) = α3 ⊗ vec
(
α1α′2

)
= α3 ⊗ (α2 ⊗ II) vec (α1) = (α3 ⊗ α2 ⊗ II) α1 (B.86)

= α3 ⊗
[(

IJ ⊗ α1
)

vec
(
α′2
)]

=
(
α3 ⊗ IJ ⊗ α1

)
α2 (B.87)

= vec
(

vec
(
α1α′2

)
α′3

)
=
(

IK ⊗ vec
(
α1α′2

))
vec

(
α′3
)

=
(

IK ⊗ vec
(
α1α′2

))
α3 = (IK ⊗ α2 ⊗ α1) α3 . (B.88)

Consider the model in eq. (2.26), it holds:

Yt = B ×4 xt + Et

vec (Yt) = vec (B ×4 xt + Et)

= vec (B−r ×4 xt) + vec (Br ×4 xt) + vec (Et)

∝ vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· x′tβ

(r)
4 . (B.89)

It is then possible to make explicit the dependence on each PARAFAC marginal by exploiting
the results in eq. (B.86)-(B.88), as follows:

vec (Yt) ∝ vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· x′tβ

(r)
4 = b4β

(r)
4 (B.90)

∝ 〈β(r)
4 , xt〉

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II

)
β
(r)
1 = b1β

(r)
1 (B.91)

∝ 〈β(r)
4 , xt〉

(
β
(r)
3 ⊗ IJ ⊗ β

(r)
1

)
β
(r)
2 = b2β

(r)
2 (B.92)

∝ 〈β(r)
4 , xt〉

(
IK ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3 = b3β

(r)
3 . (B.93)

Given a sample of length T and assuming that the distribution at time t = 0 is known (as
standard practice in time series analysis), the likelihood function is given by:

L
(
Y|B, Σ1, Σ2, Σ3

)
=

T

∏
t=1

(2π)−
k2q

2 |Σ3|−
k2
2 |Σ2|−

kq
2 |Σ1|−

kq
2

· exp
{
−1

2
(Yt −B ×4 xt)×1...3

(
◦3

j=1Σ−1
j

)
×1...3 (Yt −B ×4 xt)

}
(B.94)

∝ exp

{
−1

2

T

∑
t=1

Ẽt ×1...3 (Σ−1
1 ◦ Σ−1

2 ◦ Σ−1
3 )×1...3 Ẽt

}
, (B.95)
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with:

Ẽt =

(
Yt −B−r ×4 xt −

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)

. (B.96)

Alternatively, by exploiting the relation between the tensor normal distribution and the
multivariate normal distribution, we have:

L
(
Y|B, Σ1, Σ2, Σ3

)
=

T

∏
t=1

(2π)−
k2q

2 |Σ3 ⊗ Σ2 ⊗ Σ1|−
1
2

· exp
{
−1

2
vec (Yt −B ×4 xt)

′
(

Σ−1
3 ⊗ Σ−1

2 ⊗ Σ−1
1

)
vec (Yt −B ×4 xt)

}
∝ exp

{
−1

2

T

∑
t=1

vec
(

Ẽt

)′ (
Σ−1

3 ⊗ Σ−1
2 ⊗ Σ−1

1

)
vec

(
Ẽt

)}
, (B.97)

where: with:

vec
(

Ẽt

)
= vec

(
Yt −B−r ×4 xt −

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)

= vec (Yt)− vec (B−r ×4 xt)− vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉

∝ vec (Yt)− vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉 . (B.98)

Thus, defining yt = vec (Yt) and Σ−1 = Σ−1
3 ⊗ Σ−1

2 ⊗ Σ−1
1 , one gets:

L
(
Y|B, Σ1, Σ2, Σ3

)
∝ exp

{
−1

2

T

∑
t=1

vec
(

Ẽt

)′ (
Σ−1

3 ⊗ Σ−1
2 ⊗ Σ−1

1

)
vec

(
Ẽt

)}

∝ exp

−1
2

T

∑
t=1

vec (Yt)− vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉

′Σ−1

·

vec (Yt)− vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉


= exp

−1
2

T

∑
t=1

y′tΣ
−1yt − y′tΣ

−1 vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉

− vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
〈β(r)

4 , xt〉Σ−1yt

+ vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
〈β(r)

4 , xt〉Σ−1 vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉


∝ exp

−1
2

T

∑
t=1
−2y′tΣ

−1 vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉

+ vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
〈β(r)

4 , xt〉Σ−1 vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉

 .

(B.99)

Now, we focus on a specific j = 1, 2, 3, 4 and derive proportionality results which will be
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necessary to obtain the posterior full conditional distributions of the PARAFAC marginals
of the tensor B. Consider the case j = 1. By exploiting eq. (B.91) we get:

L
(
Y|B, Σ1, Σ2, Σ3

)
∝ exp

−1
2

T

∑
t=1
−2y′tΣ

−1 vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+

(
vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)′

Σ−1
(

vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)

= exp

−1
2

T

∑
t=1
−2y′tΣ

−1〈β(r)
4 , xt〉

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

+

[
〈β(r)

4 , xt〉
(

β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

]′
Σ−1

[
〈β(r)

4 , xt〉
(

β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

]
= exp

−1
2

T

∑
t=1

β
(r)′
1 〈β

(r)
4 , xt〉2

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)′
Σ−1

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

− 2y′tΣ
−1〈β(r)

4 , xt〉
(

β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)β
(r)
1

= exp

{
−1

2

T

∑
t=1

β
(r)′
1 SL

1 (t)β
(r)
1 − 2mL

1 (t)β
(r)
1

}
, (B.100)

with:

SL
1 (t) = 〈β

(r)
4 , xt〉2

(
β
(r)′
3 ⊗ β

(r)′
2 ⊗ II1

)
Σ−1

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
(B.101)

mL
1 (t) = y′tΣ

−1〈β(r)
4 , xt〉

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
. (B.102)

Consider the case j = 2. From eq. (B.92) we get:

L
(
Y|B, Σ1, Σ2, Σ3

)
∝ exp

−1
2

T

∑
t=1
−2y′tΣ

−1 vec
(

β
(r)
1 ⊗ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+

(
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(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)′

Σ−1
(
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(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)

= exp

−1
2

T

∑
t=1
−2y′tΣ

−1〈β(r)
4 , xt〉

(
β
(r)
3 ⊗ II2 ◦ β

(r)
1

)
β
(r)
2

+

[
〈β(r)

4 , xt〉
(

β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β
(r)
2

]′
Σ−1

[
〈β(r)

4 , xt〉
(

β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β
(r)
2

]
= exp

−1
2

T

∑
t=1

β
(r)′
2 〈β

(r)
4 , xt〉2

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
Σ−1

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β
(r)
2
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− 2y′tΣ
−1〈β(r)

4 , xt〉
(

β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)β
(r)
2

= exp

{
−1

2

T

∑
t=1

β
(r)′
2 SL

2 (t)β
(r)
2 − 2mL

2 (t)β
(r)
2

}
, (B.103)

with:

SL
2 (t) = 〈β

(r)
4 , xt〉2

(
β
(r)′
3 ⊗ II2 ⊗ β

(r)′
1

)
Σ−1

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
(B.104)

mL
2 (t) = y′tΣ

−1〈β(r)
4 , xt〉

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
. (B.105)

Consider the case j = 3, by exploiting eq. (B.93) we get:

L
(
Y|B, Σ1, Σ2, Σ3

)
∝ exp

−1
2

T
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−2y′tΣ
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2 ◦ β
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3
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x′tβ

(r)
4

+

(
vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)′

Σ−1
(

vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 , xt〉
)

= exp

−1
2

T

∑
t=1
−2y′tΣ

−1〈β(r)
4 , xt〉

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3

+

[
〈β(r)

4 , xt〉
(

II3 ⊗ β
(r)
2 ⊗ β

(r)
1

)
β
(r)
3

]′
Σ−1

[
〈β(r)

4 , xt〉
(

II3 ⊗ β
(r)
2 ⊗ β

(r)
1

)
β
(r)
3

]
= exp

−1
2

T

∑
t=1

β
(r)′
3 〈β

(r)
4 , xt〉2

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
Σ−1

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3

− 2y′tΣ
−1〈β(r)

4 , xt〉
(

II3 ⊗ β
(r)
2 ⊗ β

(r)
1

)β
(r)
3

= exp

{
−1

2

T

∑
t=1

β
(r)′
3 SL

3 (t)β
(r)
3 − 2mL

3 (t)β
(r)
3

}
, (B.106)

with:

SL
3 (t) = 〈β

(r)
4 , xt〉2

(
II3 ⊗ β

(r)′
2 ⊗ β

(r)′
1

)
Σ−1

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
(B.107)

mL
3 (t) = y′tΣ

−1〈β(r)
4 , xt〉

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
. (B.108)

Finally, in the case j = 4. From eq. (B.99) we get:

L
(
Y|B, Σ1, Σ2, Σ3

)
∝ exp

−1
2

T

∑
t=1
−2y′tΣ

−1 vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+ β
(r)′
4 xt vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
Σ−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4


(B.109)
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= exp

{
−1

2

T

∑
t=1

β
(r)′
4 SL

4 (t)β
(r)
4 − 2mL

4 (t)β
(r)
4

}
, (B.110)

with:

SL
4 (t) = xt vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
Σ−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′t (B.111)

mL
4 (t) = y′tΣ

−1 vec
(

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′t . (B.112)

It is now possible to derive the full conditional distributions for the PARAFAC marginals
β
(r)
1 , β

(r)
2 , β

(r)
3 , β

(r)
4 , for r = 1, . . . , R, as shown in the following.

Full conditional distribution of β
(r)
1

The posterior full conditional distribution of β
(r)
1 is obtained by combining the prior distri-

bution in eq. (2.29e) and the likelihood in eq. (B.100) as follows:

p(β
(r)
1 |β

(r)
−1,B−r, W1,r, φr, τ, Σ1, Σ2, Σ3, Y) ∝ L(Y|B, Σ1, Σ2, Σ3)π(β

(r)
1 |W1,r, φr, τ)

∝ exp

{
−1

2

T

∑
t=1

β
(r)′
1 SL

1 (t)β
(r)
1 − 2mL

1 (t)β
(r)
1

}
· exp

{
−1

2
β
(r)′
1 (W1,rφrτ)−1β

(r)
1

}

= exp

−1
2

[
T

∑
t=1

β
(r)′
1 SL

1 (t)β
(r)
1 − 2mL

1 (t)β
(r)
1 + β

(r)′
1 (W1,rφrτ)−1β

(r)
1

]
= exp

−1
2

β
(r)′
1

(
T

∑
t=1

SL
1 (t) + (W1,rφrτ)−1

)
β
(r)
1 − 2

(
T

∑
t=1

mL
1 (t)

)
β
(r)
1


= exp

{
−1

2

[
β
(r)′
1 Σ̄

−1
βr

1
β
(r)
1 − 2µ̄βr

1
β
(r)
1

]}
,

where:

Σ̄βr
1
=

[
(W1,rφrτ)−1 +

T

∑
t=1

SL
1 (t)

]−1

µ̄βr
1
= Σ̄βr

1

[
T

∑
t=1

mL
1 (t)

]′
.

Thus the posterior full conditional distribution of β
(r)
1 , for r = 1, . . . , R, is given by:

p(β
(r)
1 |β

(r)
−1,B−r, W1,r, φr, τ, Σ1, Σ2, Σ3, Y) ∼ NI1(µ̄βr

1
, Σ̄βr

1
) . (B.113)

Full conditional distribution of β
(r)
2

The posterior full conditional distribution of β
(r)
2 is obtained by combining the prior distri-

bution in eq. (2.29e) and the likelihood in eq. (B.103) as follows:

p(β
(r)
2 |β

(r)
−2,B−r, W2,r, φr, τ, Σ1, Σ2, Σ3, Y) ∝ L(Y|B, Σ1, Σ2, Σ3)π(β

(r)
2 |W2,r, φr, τ)
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∝ exp

{
−1

2

T

∑
t=1

β
(r)′
2 SL

2 (t)β
(r)
2 − 2mL

2 (t)β
(r)
2

}
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{
−1

2
β
(r)′
2 (W2,rφrτ)−1β

(r)
2

}
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2

[
T

∑
t=1

β
(r)′
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2 (t)β
(r)
2 − 2mL

2 (t)β
(r)
2 + β

(r)′
2 (W2,rφrτ)−1β

(r)
2

]
= exp

−1
2

β
(r)′
2

(
T

∑
t=1

SL
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)
β
(r)
2 − 2

(
T

∑
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2 (t)

)
β
(r)
2
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{
−1

2

[
β
(r)′
2 Σ̄

−1
βr

2
β
(r)
2 − 2µ̄βr

2
β
(r)
2

]}
,

where:

Σ̄βr
2
=

[
(W2,rφrτ)−1 +

T

∑
t=1

SL
2 (t)

]−1

µ̄βr
2
= Σ̄βr

2

[
T

∑
t=1

mL
2 (t)

]′
.

Thus the posterior full conditional distribution of β
(r)
2 , for r = 1, . . . , R, is given by:

p(β
(r)
2 |β

(r)
−2,B−r, W2,r, φr, τ, Σ1, Σ2, Σ3, Y) ∼ NI2(µ̄βr

2
, Σ̄βr

2
) . (B.114)

Full conditional distribution of β
(r)
3

The posterior full conditional distribution of β
(r)
3 is obtained by combining the prior distri-

bution in eq. (2.29e) and the likelihood in eq. (B.106) as follows:

p(β
(r)
3 |β

(r)
−3,B−r, W3,r, φr, τ, Σ1, Σ2, Σ3, Y) ∝ L(Y|B, Σ1, Σ2, Σ3)π(β

(r)
3 |W3,r, φr, τ)

∝ exp

{
−1

2

T

∑
t=1

β
(r)′
3 SL

3 (t)β
(r)
3 − 2mL

3 (t)β
(r)
3

}
· exp
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(r)′
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}
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2
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3 SL

3 (t)β
(r)
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3 (t)β
(r)
3 + β

(r)′
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]
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2
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(r)′
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)
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(r)
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(
T

∑
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3 (t)

)
β
(r)
3
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{
−1

2

[
β
(r)′
3 Σ̄

−1
βr

3
β
(r)
3 − 2µ̄βr

3
β
(r)
3

]}
,

where:

Σ̄βr
3
=

[
(W3,rφrτ)−1 +

T

∑
t=1

SL
3 (t)

]−1

µ̄βr
3
= Σ̄βr

3

[
T

∑
t=1

mL
3 (t)

]′
.
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Thus the posterior full conditional distribution of β
(r)
3 , for r = 1, . . . , R, is given by:

p(β
(r)
3 |β

(r)
−3,B−r, W3,r, φr, τ, Σ1, Σ2, Σ3, Y) ∼ NI3(µ̄βr

3
, Σ̄βr

3
) . (B.115)

Full conditional distribution of β
(r)
4

The posterior full conditional distribution of β
(r)
4 is obtained by combining the prior distri-

bution in eq. (2.29e) and the likelihood in eq. (B.110) as follows:

p(β
(r)
4 |β

(r)
−4,B−r, W4,r, φr, τ, Σ1, Σ2, Σ3, Y) ∝ L(Y|B, Σ1, Σ2, Σ3)π(β

(r)
4 |W4,r, φr, τ)

∝ exp
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2

T
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β
(r)′
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4 (t)β
(r)
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4 (t)β
(r)
4

}
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(r)′
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}
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2

[
T

∑
t=1

β
(r)′
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)
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(
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4 (t)

)
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4
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{
−1

2

[
β
(r)′
4 Σ̄

−1
βr

4
β
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4 − 2µ̄βr

4
β
(r)
4

]}
,

where:

Σ̄βr
4
=

[
(W4,rφrτ)−1 +

T

∑
t=1

SL
4 (t)

]−1

µ̄βr
4
= Σ̄βr

4

[
T

∑
t=1

mL
4 (t)

]′
.

Thus the posterior full conditional distribution of β
(r)
4 , for r = 1, . . . , R, is given by:

p(β
(r)
4 |β

(r)
−4,B−r, W4,r, φr, τ, Σ1, Σ2, Σ3, Y) ∼ NI1 I2 I3(µ̄βr

4
, Σ̄βr

4
) . (B.116)

B.4.6 Full conditional distribution of Σ1

Given a inverse Wishart prior, the posterior full conditional distribution for Σ1 is conjugate.
For ease of notation, define Ẽt = Yt − B ×4 xt, Ẽ(1),t the mode-1 matricization of Ẽt and
Z1 = Σ−1

3 ⊗ Σ−1
2 . By exploiting the relation between the tensor normal distribution and the

multivariate normal distribution and the properties of the vectorization and trace operators,
we obtain:

p(Σ1|B, Y, Σ2, Σ3, γ) ∝ L(Y|B, Σ1, Σ2, Σ3)π(Σ1|γ)

∝ |Σ1|−
TI2 I3

2 exp

{
−1

2

T

∑
t=1

vec (Yt −B ×4 xt)
′ (Σ−1

3 ⊗ Σ−1
2 ⊗ Σ−1

1 ) vec (Yt −B ×4 xt)

}

· |Σ1|−
ν1+I1+1

2 exp
{
−1

2
tr
(

γΨ1Σ−1
1

)}
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∝ |Σ1|−
ν1+I1+TI2 I3+1
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2

[
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1

)
+
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Ẽt

)′
(Z1 ⊗ Σ−1
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(

Ẽt

)]
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2

[
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1

)
+

T

∑
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(
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)]
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2 exp

−1
2

[
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(

γΨ1Σ−1
1

)
+

T

∑
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(
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(
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(
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))]
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[
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)
+

T
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(
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2

[
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)
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For ease of notation, define S1 = ∑T
t=1 Ẽ(1),tZ1Ẽ′(1),t. Then:

p(Σ1|B, Y, Σ2, Σ3) ∝ |Σ1|−
ν1+I1+TI2 I3+1

2 exp

{
−1

2

[
tr
(

γΨ1Σ−1
1

)
+ tr

(
S1Σ−1

1

)]}

∝ |Σ1|−
(ν1+TI2 I3)+I1+1

2 exp
{
−1

2
tr
(
(γΨ1 + S1)Σ−1

1

)}
, (B.118)

Therefore, the posterior full conditional distribution of Σ1 is given by:

p(Σ1|B, Y, Σ2, Σ3, γ) ∼ IW I1 (ν1 + TI2 I3, γΨ1 + S1) . (B.119)

B.4.7 Full conditional distribution of Σ2

Given a inverse Wishart prior, the posterior full conditional distribution for Σ2 is conjugate.
For ease of notation, define Ẽt = Yt − B ×4 xt and Ẽ(2),t the mode-2 matricization of Ẽt.
By exploiting the relation between the tensor normal distribution and the matrix normal
distribution and the properties of the Kronecker product and of the vectorization and trace
operators we obtain:

p(Σ2|B, Y, Σ1, Σ3, γ) ∝ L(Y|B, Σ1, Σ2, Σ3)π(Σ2|γ)

∝ |Σ2|−
TI1 I3

2 exp
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2

T
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2
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2

)}
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2

[
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(
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2

)
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]
∝ |Σ2|−

ν2+I2+TI1 I3+1
2 exp

−1
2

[
tr
(

γΨ2Σ−1
2

)
+

T

∑
t=1

tr
(
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∝ |Σ2|−
ν2+I2+TI1 I3+1

2 exp

−1
2

tr
(

γΨ2Σ−1
2

)
+ tr

(
T

∑
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{
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2
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(

γΨ2Σ−1
2 + S2Σ−1

2
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,

where for ease of notation we defined S2 = ∑T
t=1 Ẽ(2),t(Σ

−1
3 ⊗ Σ−1

1 )Ẽ′(2),t. Therefore, the
posterior full conditional distribution of Σ2 is given by:

p(Σ2|B, Y, Σ1, Σ3) ∼ IW I2 (ν2 + TI1 I3, γΨ2 + S2) . (B.120)

B.4.8 Full conditional distribution of Σ3

Given a inverse Wishart prior, the posterior full conditional distribution for Σ3 is conjugate.
For ease of notation, define Ẽt = Yt − B ×4 xt, Ẽ(1),t the mode-1 matricization of Ẽt and
Z3 = Σ−1

2 ⊗ Σ−1
1 . By exploiting the relation between the tensor normal distribution and the

multivariate normal distribution and the properties of the vectorization and trace operators,
we obtain:

p(Σ3|B, Y, Σ1, Σ2, γ) ∝ L(Y|B, Σ1, Σ2, Σ3)π(Σ3|γ)

∝ |Σ3|−
TI1 I2
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2

[
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)] . (B.121)

For ease of notation, define S3 = ∑T
t=1 Ẽ(1),tZ3Ẽ′(1),t. Then:

p(Σ3|B, Y, Σ1, Σ2) ∝ |Σ3|−
ν3+I3+TI1 I2+1

2 exp

{
−1

2

[
tr
(

γΨ3Σ−1
3

)
+ tr

(
S3Σ−1

3

)]}

∝ |Σ3|−
(ν3+TI1 I2)+I3+1

2 exp
{
−1

2
tr
(
(γΨ3 + S3)Σ−1

3

)}
, (B.122)

Therefore, the posterior full conditional distribution of Σ3 is given by:

p(Σ3|B, Y, Σ1, Σ2) ∼ IW I3 (ν3 + TI1 I2, γΨ3 + S3) . (B.123)
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B.4.9 Full conditional distribution of γ

Using a gamma prior distribution we have:

p(γ|Σ1, Σ2, Σ3) ∝ p(Σ1, Σ2, Σ3|γ)π(γ)

∝
3

∏
i=1
|γΨi|−

νi
2 exp

{
−1

2
tr
(

γΨiΣ
−1
i

)}
γaγ−1 exp{−bγγ}

∝ γaγ−
∑3

i=1 νi Ii
2 −1 exp

−1
2

tr

(
3

∑
i=1

ΨiΣ
−1
i

)
− bγγ

 , (B.124)

thus:

p(γ|Σ1, Σ2, Σ3) ∼ Ga

aγ +
1
2

3

∑
i=1

νi Ii, bγ +
1
2

tr

(
3

∑
i=1

ΨiΣ
−1
i

) . (B.125)

B.5 Additional simulations’ output

B.5.1 Simulation 10x10

FIGURE B.1: Posterior distribution (first, fourth columns), MCMC output (second,
fifth columns) and autocorrelation function (third, sixth columns) of some entries

of the estimated covariance matrix Σ1.
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B.5.2 Simulation 20x20

FIGURE B.2: Posterior distribution (first, fourth columns), MCMC output (second,
fifth columns) and autocorrelation function (third, sixth columns) of some entries

of the estimated covariance matrix Σ1.

B.6 Additional application’s output

FIGURE B.3: Posterior distribution (first, fourth columns), MCMC output (second,
fifth columns) and autocorrelation function (third, sixth columns) of some entries

of the estimated coefficient tensor.
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FIGURE B.4: Posterior distribution (first, fourth columns), MCMC output (second,
fifth columns) and autocorrelation function (third, sixth columns) of some entries

of the estimated error covariance matrix Σ1.

FIGURE B.5: Posterior distribution (first, fourth columns), MCMC output (second,
fifth columns) and autocorrelation function (third, sixth columns) of some entries

of the estimated error covariance matrix Σ2.

B.7 Convergence diagnostics

The inefficiency factor (INEF) is given by the ratio of the variance of the mean of MCMC
draws over the variance of the mean of sample of the same size, under the assumption of
independent sampling. Since MCMC draws are dependent by construction, we have that
INF ≥ 1, with values close to 1 meaning lower dependence between the elements of the
chain (as measured by the autocorrelation). Let ρj be the autocorrelation at lag j ≥ 1 of the
MCMC draws of a given parameter θ and let N be the number of MCMC iterations. Then
the INEF is given by:

INEF = 1 + 2
∞

∑
j=1

ρj . (B.126)
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The effective sample size (ESS) applies a correction to the number of MCMC draws by ac-
counting for the autocorrelation between them. It provides an estimates of the number of
posterior draws which can be considered independent. Clearly, ESS ≤ N, with higher val-
ues implying better mixing of the chain. It is strictly related to the INEF and is defined
as:

ESS =
N

1 + 2 ∑∞
j=1 ρj

=
N

INEF
. (B.127)

The Geweke test statistic (Geweke (1991)) compares the location of the sampled parameter
on two different intervals of the chain. If the mean values of the parameter in the two
intervals are statistically equal, then one concludes that the two samples come from the same
distribution. Let A = {n : 1 ≤ n ≤ NA} and B = {n : N − NB ≤ n ≤ N} be the initial and
terminal intervals of a chain of length N, with NA < N, NB < N and (NA + NB)/N < 1. Let
θA, θB be the mean values of the parameter θ computed in the intervals A and B, respectively.
Let SA(0), SB(0) be the associated standard deviations estimated via the spectral densities at
frequency zero. It is defined by:

ZN =
θA − θB√

N−1
A SA(0) + N−1

B SB(0)

L−−−→
N→∞

N (0, 1) . (B.128)

The Gelman and Rubin test statistic (Gelman and Rubin (1992)) is based on multiple
chains run in parallel, with different starting values (possibly over-dispersed relative to the
posterior distribution). The idea to test whether the chains have forgotten their initial val-
ues such that the output from all chains is indistinguishable. The test statistic is based a
comparison of within-chain and between-chain variances, as follows:

G =

√
(d + 3)V
(d + 1)W

, (B.129)

where W is the mean of the empirical variance within each chain, V is the sample mean of
all chains combined and d = 2V2/Var(V) are the degrees of freedom. Values substantially
above 1 indicate lack of convergence.

B.7.1 Simulation I1 = I2 = 10

In the following we report the convergence diagnostic criteria previously described, for the
model with I1 = I2 = 10. We run 30 parallel chains, using the same dataset and hyper-
parameter set-up, with different starting points for the Gibbs sampler. The analysis has
been performed using R3 and the CODA package4. For the statistics based on a single chain,
we report the mean and standard deviation over all the 30 parallel chains.

We assess the convergence of the chain by testing four different statistics:

• Vnorm, is the sum of quadratic distances (posterior mean minus true value) of the vari-
ance hyper-parameters for all the PARAFAC marginals:

Lnorm = (R(I + J + I J) + R + 1)−1

 R

∑
r=1

3

∑
j=1

∥∥∥w∗j,rφ∗r τ − ŵj,rφ̂rτ̂
∥∥∥

2

 . (B.130)

3https://cran.r-project.org
4https://cran.r-project.org/web/packages/coda/index.html

https://cran.r-project.org
https://cran.r-project.org/web/packages/coda/index.html
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• Lnorm, is the sum of quadratic distances (posterior mean minus true value) of each
entry of the hyper-parameter λ:

Lnorm = (3R)−1
R

∑
r=1

3

∑
j=1

∥∥∥λ∗j,r − λ̂j,r

∥∥∥
2

. (B.131)

• Snorm, is the sum of the quadratic distances (posterior mean minus true value) of each
noise covariance matrix:

Snorm = (I J)−2
[∥∥∥Σ∗1 − Σ̂1

∥∥∥
2
+
∥∥∥Σ∗2 − Σ̂2

∥∥∥
2

]
. (B.132)

• distT, is the quadratic distance (posterior mean minus true value) of the coefficient
tensor:

distT = (I J)−2
∥∥∥B∗ − B̂∥∥∥

2
. (B.133)

Table B.1 reports the mean and standard deviations (over 30 chains) of the ESS, INEF
and Geweke tests as well as the Gelman-Rubin test (based on 30 chains) for each of the four
statistics.

The first row of Figs. B.6-B.9 shows the trace plot (together with 90% credible intervals)
and autocorrelation function of the mean (over 30 chains) of each statistic, using all MCMC
iterations. By contrast, the second row of Figs. B.6-B.9 reports the same plots, after having
removed the burn-in iterations and having performed thinning.

Statistic ESS INEF Gwk Gel-Rub
mean std mean std mean std

Vnorm 242.41 65.97 111.95 34.29 -0.61 1.51 1.02
Lnorm 224.01 110.04 334.06 483.34 -0.48 1.11 1.03
Snorm 920.60 98.27 27.46 2.99 -0.53 1.31 1.00
distT 177.54 97.58 3517.60 6779.69 0.92 4.46 1.00

TABLE B.1: Convergence diagnostics, for the case I1 = I2 = 10. For ESS (effec-
tive sample size), INEF (inefficiency factor) and Gwk (Geweke statistic) we report
means and standard deviations over 30 chains run in parallel, with same setting
and different starting points, whereas Gel-Rub is the Gelman-Rubin statistic con-

sidering all chains.
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FIGURE B.6: Trace plots (mean in blue, 90% credible intervals in red) and auto-
correlation functions of the sum of quadratic norms of the differences w∗i,rφ∗r τ∗ −
ŵi,rφ̂r τ̂, for i = 1, 2, 3 and r = 1, . . . , R. First row: all MCMC iterations. Second row:

MCMC iterations after burn-in (12000) and thinning by 15.

FIGURE B.7: Trace plots (mean in blue, 90% credible intervals in red) and auto-
correlation functions of the quadratic norm of the difference λ∗ − λ̂. First row: all
MCMC iterations. Second row: MCMC iterations after burn-in (15000) and thinning

by 18.
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FIGURE B.8: Trace plots (mean in blue, 90% credible intervals in red) and autocor-
relation functions of the sum of quadratic norms of the differences Σ∗1 − Σ̂1 and
Σ∗2 − Σ̂2. First row: all MCMC iterations. Second row: MCMC iterations after burn-

in (2000) and thinning by 13.

FIGURE B.9: Trace plots (mean in blue, 90% credible intervals in red) and autocor-
relation functions of quadratic norm of the difference B∗− B̂. First row: all MCMC
iterations. Second row: MCMC iterations after burn-in (20000) and thinning by 2.

B.7.2 Simulation I1 = I2 = 20

In the following we report the convergence diagnostic criteria previously described, for the
model with I1 = I2 = 20. We run 30 parallel chains, using the same dataset and hyper-
parameter set-up, with different starting points for the Gibbs sampler. For the statistics
based on a single chain, we report the mean and standard deviation over all the 30 parallel
chains.
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Table B.2 reports the mean and standard deviations (over 30 chains) of the ESS, INEF
and Geweke tests as well as the Gelman-Rubin test (based on 30 chains) for each of the four
statistics.

The first row of Figs. B.10-B.13 shows the trace plot (together with 90% credible intervals)
and autocorrelation function of the mean (over 30 chains) of each statistic, using all MCMC
iterations. By contrast, the second row of Figs. B.10-B.13 reports the same plots, after having
removed the burn-in iterations and having performed thinning.

Statistic ESS INEF Gwk Gel-Rub
mean std mean std mean std

Vnorm 195.79 128.48 827.98 1894.26 1.58 2.63 2.45
Lnorm 728.95 486.87 88.35 111.57 3.48 4.48 3.52
Snorm 403.29 152.58 204.25 482.37 0.46 4.66 1.17
distT 166.03 184.72 505.61 678.13 0.57 2.57 6.05

TABLE B.2: Convergence diagnostics, for the case I1 = I2 = 20. For ESS (effec-
tive sample size), INEF (inefficiency factor) and Gwk (Geweke statistic) we report
means and standard deviations over 30 chains run in parallel, with same setting
and different starting points, whereas Gel-Rub is the Gelman-Rubin statistic con-

sidering all chains.

FIGURE B.10: Trace plots (mean in blue, 90% credible intervals in red) and auto-
correlation functions of the sum of quadratic norms of the differences w∗i,rφ∗r τ∗ −
ŵi,rφ̂r τ̂, for i = 1, 2, 3 and r = 1, . . . , R. First row: all MCMC iterations. Second row:

MCMC iterations after burn-in (15000) and thinning by 16.
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FIGURE B.11: Trace plots (mean in blue, 90% credible intervals in red) and auto-
correlation functions of the quadratic norm of the difference λ∗ − λ̂. First row: all
MCMC iterations. Second row: MCMC iterations after burn-in (2000) and thinning

by 12.

FIGURE B.12: Trace plots (mean in blue, 90% credible intervals in red) and au-
tocorrelation functions of the sum of quadratic norms of the differences Σ∗1 − Σ̂1

and Σ∗2 − Σ̂2. First row: all MCMC iterations. Second row: MCMC iterations after
burn-in (2000) and thinning by 16.
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FIGURE B.13: Trace plots (mean in blue, 90% credible intervals in red) and autocor-
relation functions of quadratic norm of the difference B∗− B̂. First row: all MCMC
iterations. Second row: MCMC iterations after burn-in (14000) and thinning by 6.

B.7.3 Simulation I1 = I2 = 30

In the following we report the convergence diagnostic criteria previously described, for the
model with I1 = I2 = 30. We run 30 parallel chains, using the same dataset and hyper-
parameter set-up, with different starting points for the Gibbs sampler. For the statistics
based on a single chain, we report the mean and standard deviation over all the 30 parallel
chains.

Table B.3 reports the mean and standard deviations (over 30 chains) of the ESS, INEF
and Geweke tests as well as the Gelman-Rubin test (based on 30 chains) for each of the four
statistics.

The first row of Figs. B.14-B.17 shows the trace plot (together with 90% credible intervals)
and autocorrelation function of the mean (over 30 chains) of each statistic, using all MCMC
iterations. By contrast, the second row of Figs. B.14-B.17 reports the same plots, after having
removed the burn-in iterations and having performed thinning.

Statistic ESS INEF Gwk Gel-Rub
mean std mean std mean std

Vnorm 20.40 27.80 4856.39 3280.00 8.18 5.38 9.03
Lnorm 297.99 283.79 279.79 223.58 1.17 4.24 1.35
Snorm 2074.57 2054.96 23.36 20.46 0.05 2.92 1.29
distT 81.62 90.23 2234.62 3627.81 2.55 5.84 6.57

TABLE B.3: Convergence diagnostics, for the case I1 = I2 = 30. For ESS (effec-
tive sample size), INEF (inefficiency factor) and Gwk (Geweke statistic) we report
means and standard deviations over 30 chains run in parallel, with same setting
and different starting points, whereas Gel-Rub is the Gelman-Rubin statistic con-

sidering all chains.
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FIGURE B.14: Trace plots (mean in blue, 90% credible intervals in red) and auto-
correlation functions of the sum of quadratic norms of the differences w∗i,rφ∗r τ∗ −
ŵi,rφ̂r τ̂, for i = 1, 2, 3 and r = 1, . . . , R. First row: all MCMC iterations. Second row:

MCMC iterations after burn-in (4000) and thinning by 18.

FIGURE B.15: Trace plots (mean in blue, 90% credible intervals in red) and auto-
correlation functions of the quadratic norm of the difference λ∗ − λ̂. First row: all
MCMC iterations. Second row: MCMC iterations after burn-in (11000) and thinning

by 18.
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FIGURE B.16: Trace plots (mean in blue, 90% credible intervals in red) and au-
tocorrelation functions of the sum of quadratic norms of the differences Σ∗1 − Σ̂1

and Σ∗2 − Σ̂2. First row: all MCMC iterations. Second row: MCMC iterations after
burn-in (2000) and thinning by 2.

FIGURE B.17: Trace plots (mean in blue, 90% credible intervals in red) and autocor-
relation functions of quadratic norm of the difference B∗− B̂. First row: all MCMC
iterations. Second row: MCMC iterations after burn-in (21000) and thinning by 16.

B.7.4 Model selection for model I1 = J2 = 10

The choice of the tensor rank parameter R in the PARAFAC(R) decomposition can be in-
terpreted as a model selection problem. LetMj denote the statistical model where R = j,
that is, the case where a PARAFAC(j) decomposition is assumed for the coefficient tensor B.
Several methods exists in the Bayesian literature for model comparison and selection. The
most commonly used is based on posterior model probabilities, computed through Bayes
factors (e.g., see Kass and Raftery (1995), Lopes (2014)). The posterior odds of model Mj
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over model Mj0 is defined as the product of the prior odds p(Mj/p(Mj0) and the Bayes
factor (BF):

BF(j0; j) =
p(Y|Mj)

p(Y|Mj0)
·

p(Mj)

p(Mj0)
=

p(Mj|Y)
p(Mj0 |Y)

, (B.134)

where p(Y|Mj) =
∫

Θ p(Y|θ,Mj)p(θ|Mj) dθ is the marginal likelihood for the modelMj.
The computation of the marginal likelihood (for each model) is the most relevant issue

in Bayesian model comparison based on Bayes factors, since no simple method is currently
available for numerically evaluating the multi-dimensional integral. The standard Monte
Carlo estimator based on drawing samples from the prior distribution has very large vari-
ance, which hampers its use in practice. One of the most widespread approaches uses the
harmonic mean estimator (Kass and Raftery (1995)) for estimating the marginal likelihood.
This estimator admits an interpretation as an importance sampling estimator, when the pos-
terior distribution of the parameters is used as importance distribution. The estimator is
defined as:

p̂(Y|Mj) =

[
1
N

N

∑
n=1

(
p(Y|θ(n),Mj)

)−1
]−1

, (B.135)

where θ(n) represents the value of the parameters at the n-th iteration of the chain and N
is the total number of MCMC iterations. However, as documented in the literature (e.g.,
see Neal (1994), Robert and Wraith (2009)), this estimator may suffer from infinite variance
as a consequence of light tails of the likelihood function. This is indeed the case when the
likelihood is Normal, as in the proposed model. Analytically integrating out one of the co-
variance matrices of the noise term, i.e. Σ1, Σ2, yields a matrix-t distribution and results in a
Rao-Blackwellized estimator, but does not lead to substantial improvement in approximat-
ing the marginal likelihood.

Recently Walker (2014) proposed a method for estimating the marginal likelihood through
data augmentation procedure. In practice the procedure requires to update multiple chains
at each iteration of the MCMC algorithm and necessitates of a proposal distribution for
starting a new chain from the existing ones. Despite the promising results in simple cases,
the computational complexity of this method in high dimensional frameworks prevents its
application to the model we are considering.

Therefore, we have chosen to perform model comparison on the basis of the Bayesian
(or Schwartz) information criterion (BIC), which has an interpretation as the Bayes factor
for a particular choice of the prior distribution for the parameters (referred to as the unit
information prior, see Bollen et al. (2012)). For a sample of size T, the BIC of modelMj is
defined as:

BICj = BIC(Mj) = log
(

L(Y|θj,Mj)
)
−

dj

2
log(T) ., (B.136)

with dj representing the total number of parameters of modelMj. An advantage of the BIC
over the Bayes factor previously defined, is that the former is invariant to the choice of the
prior distribution of the parameters, while the latter is highly sensitive to it. Fig. B.18 shows
the results for the comparison of 8 models, defined by varying R = j, with j = 2, . . . , 9, in
the matrix regression case with I1 = I2 = 10. The two graphs represent the BIC and the
root mean squared error (RMSE), respectively. Both are in favour of the model with R = 6,
which is close to the true tensor rank chosen in this simulation, that is 5.
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FIGURE B.18: Bayesian (or Schwartz) information criterion (left) and root mean
squared error (right) for each model Mj, with j = 2, . . . , 9. Each model index
corresponds to a value of tensor rank R, i.e. modelM2 corresponds to the model

with R = 2.
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C.1 Prior distribution on tensor entries

The assumed hierarchical prior distribution on the marginals of the PARAFAC(R) decom-
position assumed for the tensor of coefficients in each regime induces a prior distribution
on each single entry of the tensor which is not normal. Fig. C.1-C.3 show the empirical
distribution of two randomly chosen entries of a tensor Y ∈ R100×100×3 whose PARAFAC
decomposition is assumed with R = 5 and R = 10, respectively. Compared to the standard
normal distribution and the standard Laplace distribution1 the prior distribution induced
on the single entries of the tensor is still symmetric, but has heavier tails.

FIGURE C.1: Monte Carlo approximation of prior distribution (with R = 5) of an
element of the tensor (histogram and dark blue line) against the standard Normal

distribution (black) and the standard Laplace distribution (magenta).

1The probability density function of the Laplace distribution with mean µ and variance 2b2 is given by:

f (x|µ, b) =
1
2b

exp

{
−
∣∣x− µ

∣∣
2b

}
x ∈ R, µ ∈ R, b > 0

and has kurtosis equal to 6.
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FIGURE C.2: Monte Carlo approximation of the right tail of the prior distribution
(with R = 5) of an element of the tensor (histogram and dark blue line) against
the standard Normal distribution (black) and the standard Laplace distribution

(magenta).

FIGURE C.3: Monte Carlo approximation of prior distribution (with R = 10) of an
element of the tensor (histogram and dark blue line) against the standard Normal

distribution (black) and the standard Laplace distribution (magenta).
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FIGURE C.4: Monte Carlo approximation of the right tail of the prior distribution
(with R = 10) of an element of the tensor (histogram and dark blue line) against
the standard Normal distribution (black) and the standard Laplace distribution

(magenta).

The analytical formula for the prior distribution of the generic entry gijkp,l of the fourth-
order tensor Gl ∈ RI×J×K×P can be obtained from the PARAFAC(R) decomposition in
eq. (A.14) and the hierarchical prior on the marginals in eq. (3.19), (3.20), (3.21), (3.22):

π(gijkp,l) =
∫

R+

∫
SR

∫
(R+×R+)4R

π(gijkp,l|τ, φ, w)π(τ)π(φ)π(w) dτ dφ dw , (C.1)

where SR is the standard R-simplex. The entry gijkp,l can be expressed in terms of the tensor

marginals {γ(r)
h,l }hrl as follows:

gijkp,l =
R

∑
r=1

γ
(r)
1,i,l · γ

(r)
2,j,l · γ

(r)
3,k,l · γ

(r)
4,p,l . (C.2)

By exploiting the conditional independence relations in the hierarchical prior of the marginals
in eq. (3.19), we can thus rewrite the conditional distribution π(gijkp,l|τ, φ, w) in eq. (C.1) as:

π(gijkp,l|τ, φ, w) = P

(
R

∑
r=1

γ
(r)
1,i,l · γ

(r)
2,j,l · γ

(r)
3,k,l · γ

(r)
4,p,l

)
, (C.3)

which is the distribution of a finite sum of independent, univariate normal distributions,
centred in zero, but with individual-specific variance. The distribution of each of these prod-
ucts has been characterised by Springer and Thompson (1970), who proved the following
theorem.

Theorem C.1.1 (4 in Springer and Thompson (1970))
The probability density function of the product z = ∏J

j=1 xj of J independent Normal random vari-
ables xj ∼ N (0, σ2

j ), j = 1, . . . , J, is a Meijer G-function multiplied by a normalising constant
H:

p(z|{σ2
j }

J
j=1) = H · G J,0

J,0

z2 ·
J

∏
j=1

1
2σj

∣∣∣∣0
 , (C.4)

where

H =

(2π)J/2 ·
J

∏
j=1

σj

−1

(C.5)
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and Gm,n
p,q (·|·) is a Meijer G-function (with c ∈ R and s ∈ C):

Gm,n
p,q

(
z
∣∣∣∣a1, . . . , ap
b1, . . . , bq

)
=

1
2πi

∫ c+i∞

c−i∞
z−s ∏m

j=1 Γ(s + bj) ·∏n
j=1 Γ(1− aj − s)

∏
p
j=n+1 Γ(s + aj) ·∏

q
j=m+1 Γ(1− bj − s)

ds . (C.6)

The integral is taken over a vertical line in the complex plane. Notice that in the special
case J = 2 we have z ∼ c1P1 − c2P2, with P1, P2 ∼ χ2

1 and c1 = V(x1 + x2)/4, c2 = V(x1 −
x2)/4.

C.2 Data augmentation

The likelihood function is:

L(X , y|θ) = ∑
s1,...,sT

T

∏
t=1

p(Xt, yt|st, θ)p(st|st−1) , (C.1)

where the index l ∈ {1, . . . , L} represents the regime. Through the introduction of a latent
variables s = {st}T

t=0, we obtain the data augmented likelihood:

L(X , y, s|θ) =
T

∏
t=1

L

∏
l=1

L

∏
h=1

[
p(Xt, yt|st = l, θ)p(st = l|st−1 = h, Ξ)

]1(st=l)1(st−1=h) . (C.2)

The conditional distribution of the observation given the latent variable and marginal dis-
tribution of st are given by, respectively:

p(Xt, yt|st = l, θ) = fl(Xt, yt|θl) (C.3)
p(st = l|st−1 = h, Ξ) = ph . (C.4)

Considering the observation model in eq. (3.2) and defining Tl = {t : st = l} for each
l = 1, . . . , L, we can rewrite eq. (C.2) as:

L(X , y, s|θ) =
T

∏
t=1

L

∏
l=1

[
p(Xt|st = l, θ)p(yt|st = l, θ)

]1(st=l)
L

∏
h=1

[
p(st = l|st−1 = h, Ξ)

]1(st=l)1(st−1=h)

=
L

∏
l=1

∏
t∈Tl

I

∏
i=1

J

∏
j=1

K

∏
k=1

[
(1− ρl)

exp{z′tgijk,l}
1 + exp{z′tgijk,l}

]xijk,t
[

ρl + (1− ρl)
1

1 + exp{z′tgijk,l}

]1−xijk,t

·
L

∏
l=1

∏
t∈Tl

(2π)−m/2 |Σl|−1/2 exp
{
−1

2
(yt − µl)

′Σ−1
l (yt − µl)

}

·
T

∏
t=1

L

∏
l=1

L

∏
h=1

p1(st=l)1(st−1=h)
h . (C.5)

Since the function cannot be expressed as a series of products due to the sum in the
rightmost term, we choose to further augment the data via the through the introduction of
latent allocation variables D = {Dl}L

l=1, with Dl = (dijk,l) for i = 1, . . . , I, j = 1, . . . , J and
k = 1, . . . , K. Finally, we perform another augmentation as in Polson et al. (2013), for dealing
with the logistic part of the model. When the hidden chain is assumed to be first order
Markov, with two possible states, that is L = 2, the complete data likelihood is given by:

L(X , y,D, Ω, s|θ) = p(X ,D, Ω|s, θ)p(y|s, θ)p(s|θ)
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=
T

∏
t=1

p(Xt,Dt, Ωt|st, θ)p(yt|st, θ)p(st|θ) (C.6a)

=

 L

∏
l=1

∏
t∈Tl

I

∏
i=1

J

∏
j=i

K

∏
k=1

p(xijk,t, dijk,t, ωijk,t|st = l, ρl,Gl)︸ ︷︷ ︸
I

 (C.6b)

·

 L

∏
l=1

∏
t∈Tl

p(yt|st = l, µl, Σl)︸ ︷︷ ︸
I I

 ·
p(s|Ξ)︸ ︷︷ ︸

I I I

 (C.6c)

where we have exploited the conditional independence of X and y given the hidden chain
s. We start by analysing in detail the first term (I). The joint distribution of the observation
xijk,t and the latent variables (dijk,t, ωijk,t) is obtained from the marginal distribution of the
observation in two steps. First, we augment the model by introducing the latent allocation
dijk,l ∈ {0, 1} for l = 1, . . . , L. Via this data augmentation step we are able to factorise the
summation in eq. (3.2) for each regime l = 1, . . . , L. In words, the allocation latent variable is
used to identify the component of the mixture in eq. (3.2) from which the observation xijk,t is
drawn. Secondly, we use a further data augmentation step via the introduction of the latent
variables ωijk,t following Polson et al. (2013), for dealing with the logistic part of the mixture.

By introducing the allocation variable dijk,t in eq. (3.2), for each i = 1, . . . , I, j = 1, . . . , J,
k = 1, . . . , K and t = 1, . . . , T, we obtain:

p(xijk,t|dijk,t, st = l, ρl,Gl)

=
[
δ{0}

]1{dijk,t=1}
·
[
Bern(xijk,t|ηijk,t)

]1{dijk,t=0}

=
[
δ{0}(xijk,t)

]dijk,t ·

( exp{z′tgijk,l}
1 + exp{z′tgijk,l}

)xijk,t
(

1−
exp{z′tgijk,l}

1 + exp{z′tgijk,l}

)1−xijk,t
1−dijk,t

=
[
δ{0}(xijk,t)

]dijk,t ·

(
exp{z′tgijk,l}

)xijk,t(1−dijk,t)

(
1 + exp{z′tgijk,l}

)(1−dijk,t)
. (C.7)

p(xijk,t, dijk,t|st = l, ρl,Gl)

= ρ
1{dijk,t=1}
l ·

[
δ{0}(xijk,t)

]1{dijk,t=1}
· (1− ρl)

1{dijk,t=0} ·
[
Bern(xijk,t|ηijk,t)

]1{dijk,t=0}

= ρ
dijk,t
l ·

[
δ{0}(xijk,t)

]dijk,t · (1− ρl)
1−dijk,t ·

(
exp{z′tgijk,l}

)xijk,t(1−dijk,t)

(
1 + exp{z′tgijk,l}

)(1−dijk,t)
. (C.8)

The marginal distribution of the allocation variable is:

p(dijk,t|st) = Bern(ρst) , (C.9)

for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K and t = 1, . . . , T.
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By Theorem 1 in Polson et al. (2013), it is possible to decompose the ratio in the right
hand side of eq. (C.8) as follows:(

exp{z′tgijk,l}
)xijk,t(1−dijk,t)

(
1 + exp{z′tgijk,l}

)(1−dijk,t)
= 2−(1−dijk,t)

∫ ∞

0
exp

{
−

ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z′tgijk,l)

}
p(ωijk,t)dωijk,t ,

(C.10)
where for every l = 1, . . . , L, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K and t = 1, . . . , T:

κijk,t = xijk,t(1− dijk,t)−
1− dijk,t

2
= (1− dijk,t)

(
xijk,t −

1
2

)
. (C.11)

Therefore we get the following conditional and joint distributions, respectively:

p(xijk,t, dijk,t|ωijk,t, st = l, ρl,Gl) =

= ρ
dijk,t
l ·

(
0xijk,t11−xijk,t

)dij,t ·
(

1− ρl
2

)1−dijk,t

· exp
{
−

ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z′tgijk,l)

}
.

(C.12)

p(xijk,t, dijk,t, ωijk,t|st = l, ρl,Gl) =

= ρ
dijk,t
l ·

(
0xijk,t11−xijk,t

)dijk,t ·
(

1− ρl
2

)1−dijk,t

· exp
{
−

ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z′tgijk,l)

}
p(ωijk,t) .

(C.13)

Finally, the marginal distribution of each latent variable ωijk,t from the data augmentation
scheme follows a Pólya-Gamma distribution:

ωijk,t ∼ PG(1, 0) . (C.14)

A continuous random variable x ∈ [0,+∞) has a Pólya-Gamma distribution with param-

eters b > 0, c ∈ R if the following stochastic representation holds (where D
= stands for

equality in distribution):

x ∼ PG(b, c) ⇐⇒ x D
=

1
2π2

∞

∑
k=1

gk
(k− 1/2)2 + c2/(4π2)

(C.15)

where gk ∼ Ga(b, 1) are i.i.d. random variables. See Polson et al. (2013) for further details.
The part (II) of eq. (C.6c) is the likelihood of a multivariate normal mean regression, hence:

p(yt|st = l, θ) = (2π)−m/2 |Σl|−1/2 exp
{
−1

2
(yt − µl)

′Σ−1
l (yt − µl)

}
. (C.16)

The last term in eq. (C.6c), according to the assumption of first order time homogeneous
Markov chain, factors as2:

p(st|θ) = p(s0|Ξ)
t

∏
v=1

p(sv|sv−1, Ξ) = p(s0|Ξ)
t

∏
v=1

ξsv−1,sv = p(s0|Ξ)
L

∏
g=1

L

∏
l=1

ξ
Ngl(st)

g,l (C.17)

where st = (s0, . . . , st)′ and Ngl(st) is a function counting the number of transitions from

2See (Frühwirth-Schnatter, 2006, ch.11) for more details.
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state g to state l in the vector st, that is (symbol # denotes the cardinality of a set): Ngl(st) =
#{st−1 = g, st = l}, ∀ g, l = 1, . . . , L. The complete data likelihood for X is thus obtained by
plugging, for each l = 1, . . . , L, eq. (C.13), eq. (C.16) and eq. (C.17) in eq. (C.6c):

L(X , y,D, Ω, s|θ) =

=

 L

∏
l=1

∏
t∈Tl

I

∏
i=1

J

∏
j=1

K

∏
k=1

ρ
dijk,t
l · δ{0}(xijk,t)

dij,t ·
(

1− ρl
2

)1−dijk,t

· exp
{
−

ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z′tgijk,l)

}
·

 L

∏
l=1

∏
t∈Tl

(2π)−m/2 |Σl|−1/2 exp
{
−1

2
(yt − µl)

′Σ−1
l (yt − µl)

}
·

 T

∏
t=1

I

∏
i=1

J

∏
j=1

K

∏
k=1

p(ωijk,t)

 ·
 L

∏
g=1

L

∏
l=1

ξ
Ngl(s)
g,l

 · p(s0|Ξ) . (C.18)

C.3 Computational Details

C.3.1 Gibbs sampler

The structure of the partially collapsed Gibbs sampler (Van Dyk and Park (2008)) is as fol-
lows:

p(s|X ,G, ρ, Ξ)

p(D|s,G, ρ)

p(Ω|X , s,G)
p(ψ|G, W)

p(τ|G, W, φ)

p(wh,r,l|γ
(r)
h,l , λl, φ, τ)

p(λl|w1,1,l, . . . , w4,R,l)

p(γ(r)
1,l |γ

(r)
−1,l,G−r,l, φ, τ, W,X , s)

p(γ(r)
2,l |γ

(r)
−2,l,G−r,l, φ, τ, W,X , s)

p(γ(r)
3,l |γ

(r)
−3,l,G−r,l, φ, τ, W,X , s)

p(γ(r)
4,l |γ

(r)
−4,l,G−r,l, φ, τ, W,X , s)

p(ρ|s, D)

p(Ξ|s)
p(µl|y, s, Σl) ∼ NM(µ̃l, Υ̃l)

p(Σl|y, s, µl) ∼ IWM(ν̃l, Ψ̃l) .

Step 1. sample latent variables from

p(s, D, Ω|X ,G, ρ, Ξ) = p(s|X ,G, ρ, Ξ) · p(D|s,G, ρ) · p(Ω|X , s,G)

– p(s|X ,G, ρ, Ξ) via FFBS (Frühwirth-Schnatter (2006))
– p(dijk,t|st,Gt, ρt) ∼ Bern( p̃dijk,t

)

– p(ωijkv,t|xijk,t, st,Gt) ∼ PG(1, z′tgijk,st)



142 Appendix C. Appendix C

Step 2. sample variance hyper-parameters from

p(φ, τ, W|G) = p(φ|G, W)︸ ︷︷ ︸
collapse τ

·p(τ|G, φ, W) · p(W|G, λ, φ, τ)p(λ|W)

– p(ψr|G(r), wr) ∼ GiG

2b
τ
,

4

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r
, α− n

 then φr = ψr/ ∑i ψi

– p(τ|G, W, φ) ∼ GiG

2b
τ
,

R

∑
r=1

4

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r
, (α− n)R


– p(wh,r,l|γ

(r)
h,l , φr, τ, λl) ∼ GiG

λ2
l ,

γ
(r)′

h,l γ
(r)
h,l

τφr
, 1− nh

2


– p(λl|wl) ∝ λ

aλ
l +8R−1

l exp
{
−λlb

λ
l

}
· exp

{
−

λ2
l

2

R

∑
r=1

4

∑
h=1

wh,r,l

}

Step 3. sample tensor marginals from

p
(
G|X , s, φ, τ, W

)
=

L

∏
l=1

p
(
{γ(r)

1,l , γ
(r)
2,l , γ

(r)
3,l , γ

(r)
4,l }

R
r=1

∣∣∣X , s, φ, τ, W
)

– p(γ(r)
1,l |γ

(r)
−1,l,G−r,l, φ, τ, W,X , s) ∼ Nd1(µγ1,l

, Σγ1,l)

– p(γ(r)
2,l |γ

(r)
−2,l,G−r,l, φ, τ, W,X , s) ∼ Nd2(µγ2,l

, Σγ2,l)

– p(γ(r)
3,l |γ

(r)
−3,l,G−r,l, φ, τ, W,X , s) ∼ Nd3(µγ3,l

, Σγ3,l)

– p(γ(r)
4,l |γ

(r)
−4,l,G−r,l, φ, τ, W,X , s) ∼ Nd4(µγ4,l

, Σγ4,l)

Step 4. sample switching parameters and transition matrix from

p(ρl, ξl,l|s, D) = p(ρl|s, D) · p(ξl,l|s)

– p(ρl|s, D) ∼ Be(ãl, b̃l)

– p(ξl,:|s) ∼ Dir(c̃)

Step 5. sample the parameters of the second equation from

p(µl, Σl|y, s) = p(µl|y, s, Σl)p(Σl|y, s, µl)

– p(µl|y, s, Σl) ∼ NM(µ̃l, Υ̃l)

– p(Σl|y, s, µl) ∼ IWM(ν̃l, Ψ̃l)

The derivation of the full conditional distribution is illustrated in the following subsec-
tions.
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C.3.2 Full conditional distribution of φr

The full conditional of the common (over r) component of the variance of the marginals from
the PARAFAC, for each r = 1, . . . , R, can be obtained in closed form collapsing τ. This can
be done by exploiting a result in Guhaniyogi et al. (2017), which states that the posterior
full conditional of each φr can be obtained by normalising Generalised Inverse Gaussian
distributed random variables ψr, where ψr = τφr:

p(φr|G(r), wr) =
ψr

∑R
i=1 ψi

∀ r (C.1)

where for every r = 1, . . . , R:

ψr ∼ GiG

2b
τ
,

4

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r,l
, α− n

 . (C.2)

In the previous notation, GiG(·) stands for the Generalized Inverse Gaussian distribution.
The Generalized Inverse Gaussian probability density function with three parameters a > 0,
b > 0, p ∈ R, for the random variable x ∈ (0,+∞), is given by:

x ∼ GiG(a, b, p) ⇒ p(x|a, b, p) =
(a/b)p/2

2Kp(
√

ab)
xp−1 exp

{
−1

2

(
ax +

b
x

)}
(C.3)

with Kp(·) a modified Bessel function of the second type.
The computation necessary for obtaining this result are as follows:

p(φ|G, W) ∝ p(φ)
∫ ∞

0
p(G|W, φ, τ)p(τ) dτ (C.4a)

∝
R

∏
r=1

φα−1
r

∫ ∞

0

R

∏
r=1

4

∏
h=1

L

∏
l=1

(τφrwh,r,lInh)
−1/2 exp

{
−1

2
γ
(r)′

h,l (τφrwh,r,lInh)
−1γ

(r)
h,l

}
· τaτ−1 exp

{
−b

τ
τ
}

dτ (C.4b)

=
∫ ∞

0

R

∏
r=1

φα−1
r

4

∏
h=1

(τφrwh,r,lInh)
−1 exp

{
−1

2

L

∑
l=1

(τφrwh,r,l)
−1γ

(r)′

h,l γ
(r)
h,l

}
· τaτ−1 exp

{
−b

τ
τ
}

dτ . (C.4c)

We define n = n1 + n2 + n3 + n4 = I + J + K + Q and exploit the property det(kA) =
kn det(A), for a square matrix A of size n and a scalar k. Finally, we assume:

aτ = αR (C.5)

which is allowed since the hyper-parameter aτ must be positive. We can thus obtain:

∝
∫ ∞

0

R

∏
r=1

φα−1
r

4

∏
h=1

(τφrwh,r,lInh)
−1 exp

{
−1

2

L

∑
l=1

(τφrwh,r,l)
−1γ

(r)′

h,l γ
(r)
h,l

}
· τaτ−1 exp

{
−b

τ
τ
}

dτ (C.6a)

∝
∫ ∞

0

R

∏
r=1

(τφr)
α−1(τφr)

−n exp

−1
2

[
2b

τ
τ +

4

∑
h=1

L

∑
l=1

(τφrwh,r,l)
−1γ

(r)′

h,l γ
(r)
h,l

] dτ (C.6b)
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=
∫ ∞

0

(
R

∏
r=1

(τφr)
α−n−1

)
exp

−1
2

R

∑
r=1

2b
τ
τφr +

1
τφr

4

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r,l

 dτ (C.6c)

where in the last line we used ∑R
r=1 φr = 1. It can be seen that the integrand is the kernel of

a GiG with respect to the random variable ψr = τφr. Following Guhaniyogi et al. (2017), it
is possible to sample from the posterior of φr, for each r = 1, . . . , R by first sampling ψr from
a GiG with kernel given in eq. (C.6c), then normalising over r, as reported in eq. (C.2)-(C.1),
respectively.

As an alternative, it is possible to sample from eq. (C.2) using a Hamiltonian Monte Carlo
step (Neal (2011)).

C.3.3 Full conditional distribution of τ

The full conditional of the global component of the variance of the PARAFAC marginals is:

p(τ|G, W, φ) ∼ GiG

2b
τ
,

R

∑
r=1

4

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r,l
, (α− n)R

 , (C.7)

The posterior full conditional distribution is derived from:

p(τ|G, W, φ) ∝ π(τ)p(G|W, φ, τ)

∝ τaτ−1 exp
{
−b

τ
τ
} R

∏
r=1

4

∏
h=1

L

∏
l=1

∣∣τφrwh,r,lInh

∣∣−1/2 exp
{
−1

2
γ
(r)′

h,l (τφrwh,r,lInh)
−1γ

(r)
h,l

}
(C.8a)

∝ τaτ−nR−1 exp

−1
2

2b
τ
τ +

1
τ

R

∑
r=1

4

∑
h=1

L

∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r,l

 , (C.8b)

which is the kernel of the GiG in eq. (C.7), once the constraint in eq. (C.5) has been taken
into account.

It is possible to sample from eq. (C.7) using a Hamiltonian Monte Carlo step (Neal (2011)).

C.3.4 Full conditional distribution of wh,r,l

The full conditional distribution of the local component of the variance of each PARAFAC
marginal, for h = 1, . . . , 4, r = 1, . . . , R and l = 1, . . . , L, is given by:

p(wh,r,l|γ
(r)
h,l , φr, τ, λl) ∼ GiG

λ2
l ,

γ
(r)′

h,l γ
(r)
h,l

τφr
, 1− nh

2

 , (C.9)

which follows from:

p(wh,r,l|γ
(r)
h,l , φr, τ, λl) ∝ π(wh,r,l|λl)p(γ(r)

h,l |wh,r,l, φr, τ) (C.10a)

∝ exp

{
−

λ2
l

2
wh,r,l

} ∣∣τφrwh,r,lInh

∣∣−1/2 exp
{
−1

2
γ
(r)′

h,l (τφrwh,r,lInh)
−1γ

(r)
h,l

}
(C.10b)
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∝ exp

{
−

λ2
l

2
wh,r,l

}
w−nh/2

h,r,l exp

−1
2

γ
(r)′

h,l γ
(r)
h,l

τφrwh,r,l

 (C.10c)

= w−nh/2
h,r,l exp

−1
2

λ2
l wh,r,l +

1
wh,r,l

γ
(r)′

h,l γ
(r)
h,l

τφr

 . (C.10d)

It is possible to sample from eq. (C.9) using a Hamiltonian Monte Carlo step (Neal (2011)).

C.3.5 Full conditional distribution of λl

The full conditional distribution of λl, for l = 1, . . . , L, is given by:

p(λl|wl) ∝ λ
aλ

l +8R−1
l exp

{
−λlb

λ
l

}
· exp

{
−

λ2
l

2

R

∑
r=1

4

∑
h=1

wh,r,l

}
. (C.11)

It is obtained from:

p(λl|wl) ∝ π(λl)p(wl|λl) (C.12a)

∝ λ
al

λ−1
l exp

{
−bl

λλl

} R

∏
r=1

4

∏
h=1

λ2
l

2
exp

{
−

λ2
l

2
wh,r,l

}
(C.12b)

∝ λaλ
l +8R−1 exp

{
−λlb

λ
l

}
· exp

{
−

λ2
l

2

R

∑
r=1

4

∑
h=1

wh,r,l

}
. (C.12c)

Since the second exponential is always smaller than one due to the positiveness of all the
parameters λl, wh,r,l, we can sample from this distribution by means of an accept/reject al-
gorithm using as proposal density a Gamma distribution Ga(ã, b̃) with parameters:

ã = aλ
l + 8R b̃ = b

λ
l . (C.13)

Since this sampling scheme has very low acceptance rate, it is possible to sample from
eq. (C.11) using a Hamiltonian Monte Carlo step (Neal (2011)).

C.3.6 Full conditional distribution of γ
(r)
h,l

For deriving the full conditional distribution of each PARAFAC marginal, γ
(r)
h,l , of the tensor

Gl, l = 1, . . . , L, we start by manipulating the complete data likelihood in eq. (3.18) with
the aim of singling out γ

(r)
h,l . From eq. (C.13), considering all the entries of Xt at a given t ∈

{1, . . . , T} and denoting with π(Gl) the prior distribution induced on Gl by the hierarchical
prior on the PARAFAC marginals in eq. (3.19), the following proportionality relation holds:

p(Gl|Xt,Dt, Ωt, st = l, ρl) ∝
I

∏
i=1

J

∏
j=1

K

∏
k=1

exp
{
−

ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z′tgijk,l)

}
p(ωijk,t)π(Gl)

=
I

∏
i=1

J

∏
j=1

K

∏
k=1

exp

− 1
2ω−1

ijk,t

[
(z′tgijk,l)

2 − 2
κijk,t

ωijk,t
(z′tgijk,l)

] p(ωijk,t)π(Gl)
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=
I

∏
i=1

J

∏
j=1

K

∏
k=1

exp

− 1
2ω−1

ijk,t

(
z′tgijk,l −

κijk,t

ωijk,t

)2
 p(ωijk,t)π(Gl).

(C.14)

Define uijk,t = κijk,t/ωijk,t, then we rewrite eq. (C.14) in more compact form as:

p(Gl|Xt,Dt, Ωt, st = l, ρl) ∝

∝ exp

−1
2

I

∑
i=1

J

∑
j=1

K

∑
k=1

1
ω−1

ijk,t

(
z′tgijk,l − uijk,t

)2

 · I

∏
i=1

J

∏
j=1

K

∏
k=1

p(ωijk,t) · π(Gl)

= exp

{
−1

2

I

∑
i=1

(Gl ×4 zt −Ut)
′
i diag

(
ωi:,t

)
(Gl ×4 zt −Ut)i

}
·

I

∏
i=1

J

∏
j=1

K

∏
k=1

p(ωijk,t) · π(Gl)

= exp
{
−1

2
(
vec (Gl ×4 zt)− vec (Ut)

)′ diag
(
vec (Ωt)

) (
vec (Gl ×4 zt)− vec (Ut)

)}
·

I

∏
i=1

J

∏
j=1

K

∏
k=1

p(ωijk,t) · π(Gl)

= f (Gl, zt,Ut, Ωt) ·
I

∏
i=1

J

∏
j=1

K

∏
k=1

p(ωijk,t) · π(Gl) , (C.15)

where f (·) is a function which contains the kernel of a multivariate normal distribution with
respect to the variable vec (Gl ×4 zt).

Given the proportionality relation conditional on the latent variable st, the last step in the
manipulation of the likelihood function consists in rewriting the complete data likelihood.
Thus, considering eq. (3.18) and (C.15) we obtain the proportionality relation:

L(X ,D, Ω, s|θ) =
L

∏
l=1

∏
t∈Tl

p(Xt,Dt, Ωt, st|θ) ∝
L

∏
l=1

∏
t∈Tl

f
(
Gst , zt,Ut, Ωt

)
. (C.16)

We are now ready to compute the full conditional distributions of each vector γ
(r)
h,l , h =

1, . . . , 4, l = 1, . . . , L and r = 1, . . . , R. To this aim, notice that:

Gl =
R

∑
r=1

γ
(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l ◦ γ

(r)
4,l = G(r)l + G(−r)

l , (C.17)

where we have defined:

G(r)l = γ
(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l ◦ γ

(r)
4,l (C.18a)

G(−r)
l =

R

∑
v=1
v 6=r

G(v)l . (C.18b)

By exploiting the definitions of mode-n product and PARAFAC decomposition, we obtain:

Gl,t = Gl ×4 zt =
R

∑
r=1

(
γ
(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
〈γ(r)

4,l , zt〉 =
R

∑
r=1
G(r)l,t . (C.19)
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Here 〈·, ·〉 denotes the standard inner product in the Euclidean space Rn. Since the latter is
a scalar, we have that:

gl,t = vec
(
Gl,t
)
= vec (Gl ×4 zt) =

R

∑
r=1

vec
(
G(r)l,t

)
=

R

∑
r=1

g(r)
l,t . (C.20)

The vectorisation of a tensor can be expressed in the following way, which is a generalisation
of a well known property holding for matrices: it consists in stacking in a column vector all
the vectorised slices of the tensor. For the sake of clarity, let α1 ∈ RI , α2 ∈ RJ and α3 ∈ RK

and let the tensor A = α1 ◦ α2 ◦ α3. Denote A::k ∈ RI×J the k-th frontal slice of the tensor A.
Then, by applying the properties of Kronecker product,⊗, and of the vectorization operator,
vec, we obtain3:

vec (A) = vec (α1 ◦ α2 ◦ α3) =
[
vec (A::1)

′ , . . . , vec (A::K)
′
]′

=
[
vec (α1 ◦ α2)

′ α3,1, . . . , vec (α1 ◦ α2)
′ α3,K

]′
= α3 ⊗ vec (α1 ◦ α2) = α3 ⊗ vec

(
α1α′2

)
. (C.21)

The use of the same property allows to rewrite eq. (C.21) in three equivalent ways, each
one written as a product of a matrix and one of the vectors α1, α2, α3, respectively. In fact, we
have:

vec (A) = α3 ⊗ vec
(
α1α′2

)
= α3 ⊗ (α2 ⊗ II) vec (α1) = (α3 ⊗ α2 ⊗ II) α1 (C.22)

vec (A) = α3 ⊗ vec
(
α1α′2

)
= α3 ⊗

[(
IJ ⊗ α1

)
vec

(
α′2
)]

=
(
α3 ⊗ IJ ⊗ α1

)
α2 (C.23)

vec (A) = α3 ⊗ vec
(
α1α′2

)
= vec

(
vec

(
α1α′2

)
α′3

)
=
(

IK ⊗ vec
(
α1α′2

))
vec

(
α′3
)

=
(

IK ⊗ vec
(
α1α′2

))
α3 = (IK ⊗ α2 ⊗ α1) α3 . (C.24)

The first line represents a product between the matrix α3 ⊗ α2 ⊗ II ∈ RI JK×I and the vector
α1, the second is a product between the matrix α3 ⊗ IJ ⊗ α1 ∈ RI JK×J and the vector α2.
Finally, the last row is a product between the matrix IK ⊗ α2 ⊗ α1 ∈ RI JK×K and the vector
α3.

Starting from eq. (C.20), we can apply for γ
(r)
1,l , . . . , γ

(r)
3,l the same argument as for α1, . . . , α3,

with the aim of manipulating the likelihood function and obtain three different expressions

3The outer product and Kronecker products are two operators acting on:

◦ : Rn1 × . . .×RnK → Rn1×...×nK

⊗ : Rn1×m1 ×Rn2×m2 → Rn1n2×m1m2 .

Notice that the Kronecker product is defined on the space of matrices (and vectors, as a particular case), while the outer
product is defined on arrays of possible different number of dimensions (e.g. it is defined between two vectors, and returns
a matrix, as well as between a vector and a matrix, yielding a third order tensor). In practice, in the particular case arising
when dealing with two vectors u ∈ Rn and v ∈ Rm, their outer product and Kronecker product are related and given by,
respectively:

u ◦ v = uv′ ∈ Rn×m

u⊗ v = vec
(

vu′
)
= vec (v ◦ u) ∈ Rnm .

For two matrices A ∈ Rm×n and B ∈ Rn×k it holds:

vec (AB) = (Ik ⊗A) vec (B) = (B′ ⊗ Im) vec (A) ∈ Rmk×1 .

Moreover, if n = 1 then B is a row vector of length k, as a consequence B′ = vec (B) ∈ Rk×1. See (Cichocki et al., 2009,
p.31).
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where the dependence on γ
(r)
1,l , γ

(r)
2,l , γ

(r)
3,l , respectively, is made explicit. This will then be used

later on for deriving the posterior full conditional distributions of the PARAFAC marginals.
Thus, from eq. (C.20) we have:

g(r)
l,t = vec

(
G(r)l,t

)
= 〈γ(r)

4,l , zt〉 vec
(

γ
(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
= vec

(
γ
(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
z′tγ

(r)
4,l = A4γ

(r)
4,l ,

(C.25)
where:

A4 = vec
(

γ
(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
z′t . (C.26)

Exploiting eq. (C.22) we have:

g(r)
l,t = vec

(
G(r)l,t

)
= 〈γ(r)

4,l , zt〉
(

γ
(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ
(r)
1,l = A1γ

(r)
1,l , (C.27)

with:
A1 = 〈γ(r)

4,l , zt〉
(

γ
(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
. (C.28)

Exploiting eq. (C.23) we have:

g(r)
l,t = vec

(
G(r)l,t

)
= 〈γ(r)

4,l , zt〉
(

γ
(r)
3,l ⊗ IJ ⊗ γ

(r)
1,l

)
γ
(r)
2,l = A2γ

(r)
2,l , (C.29)

with:
A2 = 〈γ(r)

4,l , zt〉
(

γ
(r)
3,l ⊗ IJ ⊗ γ

(r)
1,l

)
. (C.30)

Finally, using eq. (C.24) we obtain:

g(r)
l,t = vec

(
G(r)l,t

)
= 〈γ(r)

4,l , zt〉
(

IK ⊗ γ
(r)
2,l ⊗ γ

(r)
1,l

)
γ
(r)
3,l = A3γ

(r)
3,l , (C.31)

with:
A3 = 〈γ(r)

4,l , zt〉
(

IK ⊗ γ
(r)
2,l ⊗ γ

(r)
1,l

)
. (C.32)

By using the definition of f (Gl, zt,U (l)
t , Ωt), eq. (C.20) and the notation of eq. (C.17) we

can thus write:

vec (Gl ×4 zt) = g(r)
l,t +

R

∑
v=1
v 6=r

g(v)
l,t = g(r)

l,t + g(−r)
l,t . (C.33)

From eq. (C.16), by focusing on regime l ∈ {1, . . . , L}, we get:

L(X ,D, Ω, s|θ) ∝

∝ exp
{
−1

2
(
vec (Gl ×4 zt)− vec (Ut)

)′ diag
(
vec (Ωt)

) (
vec (Gl ×4 zt)− vec (Ut)

)}
= exp

{
−1

2

(
g(r)

l,t + g(−r)
l,t − ut

)′
Ωt

(
g(r)

l,t + g(−r)
l,t − ut

)}
(C.34)

where, for reducing the burden of notation, we have defined:

ut = vec (Ut) (C.35)

Ωt = diag
(
vec (Ωt)

)
. (C.36)

We can now single out a specific component G(r)l of the PARAFAC decomposition of the

tensor G, which is incorporated in g(r)
l,t . In fact, we can manipulate the function in eq. (C.34)
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with the aim of finding a proportionality relation, as follows:

L(X ,D, Ω, s|θ) ∝ ∏
t∈Tl

exp

−1
2

g(r)′

l,t Ωtg
(r)
l,t + g(r)′

l,t Ωt(g
(−r)
l,t − ut)

+ (g(−r)
l,t − ut)

′Ωtg
(r)
l,t + (g(−r)

l,t − ut)
′Ωt(g

(−r)
l,t − ut)


∝ ∏

t∈Tl

exp
{
−1

2

[
g(r)′

l,t Ωtg
(r)
l,t − 2(ut − g(−r)

l,t )′Ωtg
(r)
l,t

]}
. (C.37)

Full conditional distribution of γ
(r)
1,l

The full conditional distribution of γ
(r)
1,l is given by:

p(γ(r)
1,l |X ,D, Ω, s, γ

(r)
2,l , γ

(r)
3,l , γ

(r)
4,l ,G(−r)

l , w1,r, φr, τ) ∼ NI(ζ̃
r
1,l, Λ̃

r
1,l) (C.38)

where:

Λ̃
r
1,l =

(τφrw1,rII
)−1

+ ∑
t∈Tl

(
Σ
(r)
1,l,t

)−1
−1

(C.39a)

ζ̃
r
1,l = Λ̃

r′
1,l

ζ
r′

1,l
(
τφrw1,rII

)−1
+ ∑

t∈Tl

µ
(r)′

1,l,t

(
Σ
(r)
1,l,t

)−1
′ . (C.39b)

By exploiting the rightmost term in the equality chain in eq. (C.27), we can simplify the
two addenda in eq. (C.37) as:

g(r)′

l,t Ωtg
(r)
l,t =

(
A1γ

(r)
1,l

)′
Ωt

(
A1γ

(r)
1,l

)
= 〈γ(r)

4,l , zt〉γ(r)′

1,l

(
γ
(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)′
Ωt

(
γ
(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ
(r)
1,l 〈γ

(r)
4,l , zt〉

= γ
(r)′

1,l

[(
γ
(r)′

3,l ⊗ γ
(r)′

2,l ⊗ I′I
)

Ωt

(
γ
(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
(〈γ(r)

4,l , zt〉)2
]

γ
(r)
1,l

= γ
(r)′

1,l

(
Σ
(r)
1,l,t

)−1

γ
(r)
1,l . (C.40)

and

−2(ut − g(−r)
l,t )′Ωtg

(r)
l,t = −2(ut − g(−r)

l,t )′Ωt

(
γ
(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ
(r)
1,l 〈γ

(r)
4,l , zt〉

= −2〈γ(r)
4,l , zt〉(ut − g(−r)

l,t )′Ωt

(
γ
(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ
(r)
1,l

= −2µ
(r)′

1,l,t

(
Σ
(r)
1,l,t

)−1

γ
(r)
1,l . (C.41)

Now, by applying Bayes’ rule and plugging eq. (C.40) and eq. (C.41) into eq. (C.37) we get:

p(γ(r)
1,l |−) ∝ L(X ,D, Ω, s|θ)π(γ

(r)
1,l |w1,:, φ, τ)
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∝ ∏
t∈Tl

exp

−1
2

[
γ
(r)′

1,l

(
Σ
(r)
1,l,t

)−1

γ
(r)
1,l − 2µ

(r)′

1,l,t

(
Σ
(r)
1,l,t

)−1

γ
(r)
1,l

]
· exp

{
−1

2

[
γ
(r)′

1,l

(
Λ

r
1,l

)−1
γ
(r)
1,l − 2ζ

r′

1,l

(
Λ

r
1,l

)−1
γ
(r)
1,l

]}

= exp

{
−1

2

[
∑

t∈Tl

(
γ
(r)′

1,l

(
Σ
(r)
1,l,t

)−1

γ
(r)
1,l − 2µ

(r)′

1,l,t

(
Σ
(r)
1,l,t

)−1

γ
(r)
1,l

)

+

(
γ
(r)′

1,l

(
Λ

r
1,l

)−1
γ
(r)
1,l − 2ζ

r′

1,l

(
Λ

r
1,l

)−1
γ
(r)
1,l

)]}

= exp

−1
2

γ
(r)′

1,l

∑
t∈Tl

(
Σ
(r)
1,l,t

)−1
 γ

(r)
1,l − 2

∑
t∈Tl

µ
(r)′

1,l,t

(
Σ
(r)
1,l,t

)−1
 γ

(r)
1,l

+ γ
(r)′

1,l

(
Λ

r
1,l

)−1
γ
(r)
1,l − 2ζ

r′

1,l

(
Λ

r
1,l

)−1
γ
(r)
1,l


= exp

−1
2

γ
(r)′

1,l

(Λ
r
1,l

)−1
+ ∑

t∈Tl

(
Σ
(r)
1,l,t

)−1
 γ

(r)
1,l

− 2

ζ
r′

1,l

(
Λ

r
1,l

)−1
+ ∑

t∈Tl

µ
(r)′

1,l,t

(
Σ
(r)
1,l,t

)−1
 γ

(r)
1,l

 . (C.42)

This is the kernel of a multivariate normal distribution with parameters:

Λ̃
r
1,l =

(τφrw1,rII
)−1

+ ∑
t∈Tl

(
Σ
(r)
1,l,t

)−1
−1

(C.43a)

ζ̃
r
1,l = Λ̃

r′
1,l

ζ
r′

1,l
(
τφrw1,rII

)−1
+ ∑

t∈Tl

µ
(r)′

1,l,t

(
Σ
(r)
1,l,t

)−1
′ . (C.43b)

Full conditional distribution of γ
(r)
2,l

The full conditional distribution of γ
(r)
2,l is given by:

p(γ(r)
2,l |X ,D, Ω, s, γ

(r)
1,l , γ

(r)
3,l , γ

(r)
4,l ,G(−r)

l , w2,r, φr, τ) ∼ NJ(ζ̃
r
2,l, Λ̃

r
2,l) (C.44)

where:

Λ̃
r
2,l =

(τφrw2,rIJ
)−1

+ ∑
t∈Tl

(
Σ
(r)
2,l,t

)−1
−1

(C.45a)

ζ̃
r
2,l = Λ̃

r′
2,l

ζ
r′

2,l
(
τφrw2,rIJ

)−1
+ ∑

t∈Tl

µ
(r)′

2,l,t

(
Σ
(r)
2,l,t

)−1
′ . (C.45b)
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By exploiting the central term in the equality chain in eq. (C.29), we can simplify the two
addenda in eq. (C.37) as:

g(r)′

l,t Ωtg
(r)
l,t =

(
A2γ

(r)
2,l

)′
Ωt

(
A2γ

(r)
2,l

)
= 〈γ(r)

4,l , zt〉γ(r)′

2,l

(
γ
(r)
3,l ⊗ IJ ⊗ γ

(r)
1,l

)′
Ωt

(
γ
(r)
3,l ⊗ IJ ⊗ γ

(r)
1,l

)
γ
(r)
2,l 〈γ

(r)
4,l , zt〉

= γ
(r)′

2,l

[(
γ
(r)′

3,l ⊗ I′J ⊗ γ
(r)′

1,l

)
Ωt

(
γ
(r)
3,l ⊗ IJ ⊗ γ

(r)
1,l

)
(〈γ(r)

4,l , zt〉)2
]

γ
(r)
2,l

= γ
(r)′

2,l

(
Σ
(r)
2,l,t

)−1

γ
(r)
2,l . (C.46)

and

−2(ut − g(−r)
l,t )′Ωtg

(r)
l,t = −2(ut − g(−r)

l,t )′Ωt〈γ(r)
4,l , zt〉

(
γ
(r)
3,l ⊗ IJ ⊗ γ

(r)
1,l

)
γ
(r)
2,l

= −2〈γ(r)
4,l , zt〉(ut − g(−r)

l,t )′Ωt

(
γ
(r)
3,l ⊗ IJ ⊗ γ

(r)
1,l

)
γ
(r)
2,l

= −2µ
(r)′

2,l,t

(
Σ
(r)
2,l,t

)−1

γ
(r)
2,l . (C.47)

Now, by applying Bayes’ rule and plugging eq. (C.46) and eq. (C.47) into eq. (C.37) we get:

p(γ(r)
2,l |−) ∝ L(X ,D, Ω, s|θ)π(γ

(r)
2,l |w2,:, φ, τ)

∝ ∏
t∈Tl

exp

−1
2

[
γ
(r)′

2,l

(
Σ
(r)
2,l,t

)−1

γ
(r)
2,l − 2µ

(r)′

2,l,t

(
Σ
(r)
2,l,t

)−1

γ
(r)
2,l

]
· exp

{
−1

2

[
γ
(r)′

2,l

(
Λ

r
2,l

)−1
γ
(r)
2,l − 2ζ

r′

2,l

(
Λ

r
2,l

)−1
γ
(r)
2,l

]}

= exp

{
−1

2

[
∑

t∈Tl

(
γ
(r)′

2,l

(
Σ
(r)
2,l,t

)−1

γ
(r)
2,l − 2µ

(r)′

2,l,t

(
Σ
(r)
2,l,t

)−1

γ
(r)
2,l

)

+

(
γ
(r)′

2,l

(
Λ

r
2,l

)−1
γ
(r)
2,l − 2ζ

r′

2,l

(
Λ

r
2,l

)−1
γ
(r)
2,l

)]}

= exp

−1
2

γ
(r)′

2,l

∑
t∈Tl

(
Σ
(r)
2,l,t

)−1
 γ

(r)
2,l − 2

∑
t∈Tl

µ
(r)′

2,l,t

(
Σ
(r)
2,l,t

)−1
 γ

(r)
2,l

+ γ
(r)′

2,l

(
Λ

r
2,l

)−1
γ
(r)
2,l − 2ζ

r′

2,l

(
Λ

r
2,l

)−1
γ
(r)
2,l


= exp

−1
2

γ
(r)′

2,l

(Λ
r
2,l

)−1
+ ∑

t∈Tl

(
Σ
(r)
2,l,t

)−1
 γ

(r)
2,l

− 2

ζ
r′

2,l

(
Λ

r
2,l

)−1
+ ∑

t∈Tl

µ
(r)′

2,l,t

(
Σ
(r)
2,l,t

)−1
 γ

(r)
2,l

 . (C.48)
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This is the kernel of a multivariate normal distribution with parameters:

Λ̃
r
2,l =

(τφrw2,rIJ
)−1

+ ∑
t∈Tl

(
Σ
(r)
2,l,t

)−1
−1

(C.49a)

ζ̃
r
2,l = Λ̃

r′
2,l

ζ
r′

2,l
(
τφrw2,rIJ

)−1
+ ∑

t∈Tl

µ
(r)′

2,l,t

(
Σ
(r)
2,l,t

)−1
′ . (C.49b)

Full conditional distribution of γ
(r)
3,l

The full conditional distribution of γ
(r)
3,l is given by:

p(γ(r)
3,l |X ,D, Ω, s, γ

(r)
1,l , γ

(r)
2,l , γ

(r)
4,l ,G(−r)

l , w3,r, φr, τ) ∼ NK(ζ̃
r
3,l, Λ̃

r
3,l) (C.50)

where:

Λ̃
r
3,l =

(τφrw3,rIK
)−1

+ ∑
t∈Tl

(
Σ
(r)
3,l,t

)−1
−1

(C.51a)

ζ̃
r
3,l = Λ̃

r′
3,l

ζ
r′

3,l
(
τφrw3,rIK

)−1
+ ∑

t∈Tl

µ
(r)′

3,l,t

(
Σ
(r)
3,l,t

)−1
′ . (C.51b)

By exploiting the rightmost term in the equality chain in eq. (C.31), we can simplify the
two addenda in eq. (C.37) as:

g(r)′

l,t Ωtg
(r)
l,t =

(
A3γ

(r)
3,l

)′
Ωt

(
A3γ

(r)
3,l

)
= 〈γ(r)

4,l , zt〉γ(r)′

3,l

(
IK ⊗ γ

(r)
2,l ⊗ γ

(r)
1,l

)′
Ωt

(
IK ⊗ γ

(r)
2,l ⊗ γ

(r)
1,l

)
γ
(r)
3,l 〈γ

(r)
4,l , zt〉

= γ
(r)′

3,l

[(
I′K ⊗ γ

(r)′

2,l ⊗ γ
(r)′

1,l

)
Ωt

(
IK ⊗ γ

(r)
2,l ⊗ γ

(r)
1,l

)
(〈γ(r)

4,l , zt〉)2
]

γ
(r)
3,l

= γ
(r)′

3,l

(
Σ
(r)
3,l,t

)−1

γ
(r)
3,l . (C.52)

and

−2(ut − g(−r)
l,t )′Ωtg

(r)
l,t = −2(ut − g(−r)

l,t )′Ωt

(
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)
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l,t )′Ωt

(
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2,l ⊗ γ
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)
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(r)′
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(
Σ
(r)
3,l,t
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γ
(r)
3,l . (C.53)

Now, by applying Bayes’ rule and plugging eq. (C.52) and eq. (C.53) into eq. (C.37) we get:

p(γ(r)
3,l |−) ∝ L(X ,D, Ω, s|θ)π(γ

(r)
3,l |w3,:, φ, τ)
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]
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 . (C.54)

This is the kernel of a multivariate normal distribution with parameters:

Λ̃
r
3,l =

(τφrw3,rIK
)−1

+ ∑
t∈Tl

(
Σ
(r)
3,l,t

)−1
−1

(C.55a)

ζ̃
r
3,l = Λ̃

r′
3,l

ζ
r′

3,l
(
τφrw3,rIK

)−1
+ ∑

t∈Tl

µ
(r)′

3,l,t

(
Σ
(r)
3,l,t

)−1
′ . (C.55b)

Full conditional distribution of γ
(r)
4,l

The full conditional distribution of γ
(r)
4,l is given by:

p(γ(r)
4,l |X ,D, Ω, s, γ

(r)
1,l , γ

(r)
2,l , γ

(r)
3,l ,G(−r)
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r
4,l) (C.56)

where:
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r
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(C.57a)
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τφrw4,rIQ

)−1
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µ
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′ . (C.57b)

By exploiting the central term in the equality chain in eq. (C.25), we can simplify the two
addenda in eq. (C.37) as:

g(r)′

l,t Ωtg
(r)
l,t =

(
A4γ

(r)
4,l

)′
Ωt

(
A4γ

(r)
4,l

)
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and
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Now, by applying Bayes’ rule and plugging eq. (C.58) and eq. (C.59) into eq. (C.37) we get:
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 . (C.60)

This is the kernel of a multivariate normal distribution with parameters:

Λ̃
r
4,l =

(τφrw4,rIQ
)−1

+ ∑
t∈Tl

(
Σ
(r)
4,l,t

)−1
−1

(C.61a)
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C.3.7 Full conditional distribution of ωijk,t

The full conditional distribution for the latent variable ωijk,t for every i = 1, . . . , I, j =
1, . . . , J, k = 1, . . . , K and t = 1, . . . , T:

p(ωijk,t|xijk,t, st,Gst) ∼ PG(1, z′tgijk,st) . (C.62)

To shorten the notation, define ψijk,t = z′tgijk,st . The full conditional is derived by integrating
out the latent allocation variable dijk,t, as follows:

p(ωijk,t|xijk,t, st,Gst)

=
∫

D

∫
ρ

p(ωijk,t, dijk,t|xijk,t, st,Gst , ρst)p(ρst) dρstddijk,t

=
∫

D

∫
ρ

p(xijk,t, dij,t|ωijk,t, st,Gst , ρst)p(ωijk,t)p(ρst)∫
Ω p(xijk,t, ωijk,t, dijk,t|st,Gst , ρst) dωijk,t

dρstddijk,t

=
∫

D

∫
ρ

p(xijk,t, ωijk,t, dijk,t|st,Gst , ρst)

p(xijk,t, dijk,t|st,Gst , ρst)
p(ρst) dρstddijk,t

=
∫

D

∫
ρ

(
ρst δ{0}(xijk,t)

)dijk,t
(

1−ρst
2

)dijk,t
exp

{
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2 ψ2
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}
p(ωijk,t)p(ρst)(
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(
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2
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(exp{ψijk,txijk,t}/(1 + exp{ψijk,t}))1−dijk,t
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=
∫

D

∫
ρ

exp{κ(st)
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exp{ψijk,txijk,t(1− dijk,t)}
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exp
{
−
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2
ψ2
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}
p(ωijk,t)p(ρst) dρstddijk,t

=
∫

D

∫
ρ

[
1 + exp{ψijk,t}
exp{ψijk,txijk,t}

·
exp{ψijk,txijk,t}
exp{ψijk,t/2}

]1−dijk,t [
exp{−ψ2

ijk,tωijk,t/2}p(ωijk,t)
]
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=

(
1 +

1 + exp{ψijk,t}
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) [
exp{−ψ2
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]

∝ exp{−ψ2
ijk,tωijk,t/2}p(ωijk,t) . (C.63)

Since p(ωijk,t) ∼ PG(1, 0), by Theorem 1 in Polson et al. (2013) the result follows.

C.3.8 Full conditional distribution of dijk,t

The full conditional posterior probabilities for the latent allocation variables dijk,t, which
select the component of the mixture in eq. (3.3), for each t = 1, . . . , T and for every i =
1, . . . , I, j = 1, . . . , J and k = 1, . . . , K, are given by:

p(dijk,t = 1|X , s,Gst , ρst
) =

p̃(dijk,t = 1|X , s,Gst , ρst
)

p̃(dijk,t = 1|X , s,Gst , ρst
) + p̃(dijk,t = 0|X , s,Gst , ρst

)
(C.64a)

p(dij,t = 0|X , s,Gst , ρst
) =

p̃(dijk,t = 0|X , s,Gst , ρst
)

p̃(dijk,t = 1|X , s,Gst , ρst
) + p̃(dijk,t = 0|X , s,Gst , ρst

)
. (C.64b)

The un-normalised posterior probabilities are given by:

p̃(dijk,t = 1|X , s,Gst , ρst
) = ρst δ{0}(xijk,t) (C.65a)

p̃(dijk,t = 0|X , s,Gst , ρst
) = (1− ρst)

exp
{
(z′tgijk,st)xijk,t

}
1 + exp{z′tgijk,st}

. (C.65b)
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We have obtained the result starting from eq. (3.18) after having integrated out the latent
variables Ω, as follows:

p̃(dijk,t|X , s,Gst , ρst
) ∝ p(X , s|Gst , ρst

, dijk,t)π(dijk,t)

= ρ
dijk,t
st δ{0}(xijk,t)

dijk,t(1− ρst)
1−dijk,t

(exp{z′tgijk,st})
xijk,t(1−dijk,t)

(1 + exp{z′tgijk,st})
(1−dijk,t)

=
[
ρst δ{0}(xijk,t)

]dijk,t

[
(1− ρst)

(exp{z′tgijk,st})
xijk,t

1 + exp{z′tgijk,st}

]1−dijk,t

. (C.66)

C.3.9 Full conditional distribution of ρl

For each regime l = 1, . . . , L, the full conditional distribution for the mixing probability ρl of
the observation model in eq (3.2) is given by:

p(ρl|X ,D, s) = p(ρl|D, s) ∼ Be(ãl, b̃l) , (C.67)

with:

ãl = Nl
1 + aρ

l (C.68a)

b̃l = Nl
0 + b

ρ
l . (C.68b)

We get this result starting from eq. (3.18) and integrating out the latent variables Ω, as fol-
lows:

p(ρl|X ,D, s) ∝ π(ρl)
∫

G
L(X ,D, s|ρl,Gl)p(Gl) dGl

∝
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∏
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∏
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 · ρaρ
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0+b
ρ
l −1 , (C.69)

where we have defined the counting variables, for every l = 1, . . . , L:

Nl
1 = ∑

t∈Tl

I

∑
i=1

J

∑
j=1

K

∑
k=1

1{dijk,t = 1} (C.70a)

Nl
0 = ∑

t∈Tl

I

∑
i=1

J

∑
j=1

K

∑
k=1

1{dijk,t = 0} . (C.70b)
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C.3.10 Full conditional distribution of µl

The full conditional distribution for the intercept term of the second equation of the model
is given by:

p(µl|y, s, Σl) ∼ NM(µ̃l, Υ̃l) , (C.71)

with:

µ̃l = Υ̃
′
l

µ′lΥ
−1
l + ∑

t∈Tl

y′tΣ
−1
l

′ , (C.72a)

Υ̃l =
[

TlΣ
−1
l + Υ

−1
l

]−1
, (C.72b)

for each regime l = 1, . . . , L. We have derived the updated hyper-parameters from:

p(µl|y, s, Σl) ∝ π(µl)p(y|s, Σl, µl)

∝ exp
{
−1

2
(µl − µl)

′Υ
−1
l (µl − µl)

}
∏
t∈Tl

exp
{
−1

2
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′Σ−1
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}
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2

µ′lΥ
−1
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−1
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µ′lΣ
−1
l µl − 2y′tΣ

−1
l µl
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−1
2

µ′l

(
TlΣ
−1
l + Υ

−1
l

)
µl − 2

∑
t∈Tl

y′tΣ
−1
l + µ′lΥ

−1
l

 µl


 . (C.73)

C.3.11 Full conditional distribution of Σl

The full conditional distribution for the covariance of the error term of the second equation
of the model is given by:

p(Σl|y, s, µl) ∼ IWM(ν̃l, Ψ̃l) , (C.74)

with:

ν̃l = νl + Tl , (C.75a)

Ψ̃l = Ψl + ∑
t∈Tl

(yt − µl)(yt − µl)
′ , (C.75b)

for each regime l = 1, . . . , L. We have derived the updated hyper-parameters from:

p(Σl|y, s, µl) ∝ π(Σl)p(y|s, µl, Σl)

∝ |Σl|−
νl+m−1

2 exp
{
−1

2
tr
(

ΨlΣ
−1
l

)}
∏
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|Σl|−1/2 exp
{
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2
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′Σ−1
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}

= |Σl|−
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2 exp

−1
2
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(

ΨlΣ
−1
l

)
+ ∑
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(yt − µl)
′Σ−1

l (yt − µl)


= |Σl|−

νl+m−1+Tl
2 exp

−1
2

tr
(

ΨlΣ
−1
l

)
+ tr

∑
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′Σ−1

l
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= |Σl|−
νl+m−1+Tl

2 exp

−
1
2

tr


Ψl + ∑

t∈Tl

(yt − µl)(yt − µl)
′

Σ−1
l



 ,

(C.76)

where we have used the property of linearity of the trace operator.

C.3.12 Full conditional distribution of ξl,:

The full conditional distribution of each row l = 1, . . . , L of the transition matrix of the
hidden Markov chain, under the assumption that the initial distribution of the state st is
independent from the transition matrix Ξ, that is p(s0|Ξ) = p(s0), is given by:

p(ξl,:|s) ∼ Dir(c̃) , (C.77)

where:
c̃ =

(
c1 + Nl,1(s), . . . , cL + Nl,L(s)

)
. (C.78)

It can be derived from:

p(ξl,:|s) ∝ π(ξl,:)p(s|ξl,:)

∝
L

∏
k=1

ξ
ck−1
l,k

L

∏
g=1

L

∏
k=1

ξ
Ng,k(s)
g,k p(s0|Ξ)

∝
L

∏
k=1

ξ
ck−1
l,k

L

∏
k=1

ξ
Nl,k(s)
l,k p(s0|Ξ)

=
L

∏
k=1

ξ
ck+Nl,k(s)−1
l,k p(s0|Ξ) . (C.79)

Concerning the notation, we denoted the collection of hidden states up to time t by st =
(s0, . . . , st) and we used Ni,j(s) = ∑t 1(st−1 = i)1(st = j) for counting the number of transi-
tions from state i to state j up to time T. Under the assumption p(s0|Ξ) = p(s0), we obtain
the full conditional posterior in eq. (C.77). By contrast, if the initial distribution of s0 de-
pends on the transition matrix (for example, when it coincides with the ergodic distribution
η∗(Ξ)), we have:

p(ξl,:|s) ∝ gl(ξl,:)η
∗(Ξ) , (C.80)

where gl(ξl,:) is the kernel of the Dirichlet distribution in eq. (C.79). We can sample from
it via a Metropolis Hastings step, either for a single or for multiple rows of the transition
matrix, using gl(ξl,:) as proposal for row l. See Frühwirth-Schnatter (2006) for further details.

C.3.13 Full conditional distribution of st

For sampling the trajectory s = (s1, . . . , sT), we can adopt two approaches: (i) update st for
each t = 1, . . . , T using a single-move Gibbs sampler step. This implies sampling each state
st from its posterior distribution conditioning on all the other states. (ii) update the whole
path s from the full joint conditional distribution in a multi-move Gibbs sampler step, also
called the Forward-Filtering-Backward-Sampling (FFBS) algorithm (see Frühwirth-Schnatter
(2006)).

Define s−t = (s0, . . . , st−1, st+1, . . . , sT)
′. Since the hidden chain is assumed to be first

order Markov, we can derive the full conditional distribution for the each state st:

p(st|s−t,X , y,D, Ω,G, µ, Σ, Ξ, ρ, W, φ, τ) = p(st|st−1, st+1,Xt, yt,D,G, µ, Σ, Ξ, ρ) . (C.81)
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Staring from the complete data likelihood in eq. (3.18) for a given time t and integrating out
the latent variables (D, Ωt), we obtain the un-normalised posterior probability of state l at
time t for l ∈ {1, . . . , L}:

p(st = l|st−1 = u, st+1 = v, Xt, yt, ρ,G, µ, Σ, Ξ) ∝ qt
l,uv , (C.82)

where qt
l,uv is given by:

qt
l,uv =

I

∏
i=1

J

∏
j=1

[
(1− ρl)

exp{z′tgijk,l}
1 + exp{z′tgijk,l}
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[
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1
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−1

2
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′Σ−1
l (yt − µl)
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·

 L

∏
g=1

ξ
1{st−1=u}
g,l

( L

∏
k=1

ξ
1{st+1=v}
l,k

)
. (C.83)

By normalizing one gets:

p(st = l|st−1 = u, st+1 = v, Xt, yt, ρ,G, µ, Σ, Ξ) =
qt

l,uv

∑L
k=1 qt

k,uv

∀ l . (C.84)

Combining together all possible L values of the state variable, we can recognise that the
posterior distribution of the state latent variable at time t follows a categorical distribution
with probability vector p̃t

uv = ( p̃t
1,uv, . . . , p̃t

L,uv)
′:

p(st|st−1 = u, st+1 = v, Xt, yt, ρ,G, µ, Σ, Ξ) ∝
L

∏
l=1

(qt
l,uv)

1{st=l} . (C.85)

If we consider conditioning on (st−1, st+1) instead of on the specific couple (st−1 = u, st+1 =
v), we get an un-normalised posterior probability (denoted qt

l) similar to eq. (C.84), but
without the indicator variables. The result in eq. (C.85) thus translates in:

p(st = l|st−1, st+1,Xt, yt,G, ρ, µ, Σ, Ξ) =
qt

l

∑L
k=1 qt

k

∝ qt
l ∀ l (C.86)

p(st|st−1, st+1,Xt, yt,G, ρ, µ, Σ, Ξ) ∝
L

∏
l=1

(qt
l)
1{st=l} . (C.87)

By contrast, the multi-move Gibbs sampler consists in sampling the path from the joint
full conditional distribution p(s|−). It is based on the factorisation of the full joint condi-
tional distribution as the product of the entries of the transition matrix Ξ and the filtered
probabilities. Since the observations (Xt, yt) depend only on the contemporaneous value
of the hidden chain st, filtering the state probabilities is feasible. Staring from the complete
data likelihood in eq. (3.18), we integrate the latent variables (D, Ω) and sample the trajec-
tory from the full joint conditional distribution:

p(s|X , y,G, ρ, µ, Σ, Ξ) ∝ p(X , y, s|G, ρ, µ, Σ) = p(X , y|s,G, ρ, µ, Σ)p(s|Ξ) . (C.88)

Consequently, at each iteration of the Gibbs sampler we firstly compute the filtered state
probabilities using p(X , y|s,G, µ, Σ) as likelihood function. Define X t−1 = {X1, . . . ,Xt−1}
and yt−1 = {y1, . . . , yt−1}. Since the two observation processes are independent from each
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other as well as from their own past conditionally on the current state, the predictive prob-
ability correspond to the conditional distribution of the observations given the state:

p(Xt, yt|st = l,X t−1, yt−1,G, ρ, µ, Σ) = p(Xt, yt|st = l,G, ρ, µ, Σ)

= p(yt|st = l, µl, Σl) · p(Xt|st = l, ρl,Gl) (C.89a)

= p(yt|st = l, µl, Σl) ·
I

∏
i=1

J

∏
j=i

K

∏
k=1

p(xijk,t|st = l, ρl,Gl) .

(C.89b)

From eq. (C.5), we have that the logarithm of the predictive probability is:

log p(Xt, yt|st = l,X t−1, yt−1,G, ρ, µ, Σ) =

= log p(yt|st = l, µl, Σl) +
I

∑
i=1

J

∑
j=1

K

∑
k=1

log p(xijk,t|st = l, ρl,Gl) (C.90)

where:

p(yt|st = l, µl, Σl) = (2π)−m/2 |Σl|−1/2 exp
{
−1

2
(yy − µl)

′Σ−1
l (yt − µl)

}
(C.91)

p(xijk,t = 1|st = l, ρl,Gl) = (1− ρl)
exp{z′tgijk,l}

1 + exp{z′tgijk,l}
(C.92)

p(xijk,t = 0|st = l, ρl,Gl) = ρl + (1− ρl)
1

1 + exp{z′tgijk,l}
. (C.93)

C.4 Computation for Pooled case

The complete data likelihood from (C.13) reads:

L(X |θ) = ∏
t∈Tl

I

∏
i=1

J

∏
j=1

K

∏
k=1

ρ
dijk,t
l ·

(
0xijk,t11−xijk,t

)dijk,t ·
(

1− ρl
2

)1−dijk,t

· exp
{
−

ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z′tgijk,l)

}
p(ωijk,t) . (C.1)

In the pooling case, we are assuming that the tensor of coefficients in each regime l = 1, . . . , L
is given by:

Gl = gl · I , (C.2)

where I is a I × J ×Q× K tensor made of ones and gl ∈ R, for each l = 1, . . . , L. Therefore
gijk,l = glιQ, where ιQ is a column vector of ones of length Q. We can rewrite the complete
data likelihood as:

L(X |θ) ∝ ∏
t∈Tl

I

∏
i=1

J

∏
j=1

K

∏
k=1

exp
{
−

ωijk,t

2
(z′tglιQ)

2 + κijk,t(z′tglιQ)

}

= ∏
t∈Tl

I

∏
i=1

J

∏
j=1

K

∏
k=1

exp
{
−

ωijk,t

2
(glSz

t )
2 + κijk,t(glSz

t )

}
, (C.3)
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where Sz
t = z′tιQ = ∑Q

q=1 zq,t. Then:

L(X |θ) ∝ exp

−1
2 ∑

t∈Tl

∑
i,j,k

g2
l (S

z
t )

2ωijk,t − 2glSz
t κijk,t

 , (C.4)

It is assumed that gl, for each l = 1, . . . , L, has prior distribution:

gl|τ, wl ∼ N (0, τwl) . (C.5)

This yields the posterior distribution:

p(gl|Ωt, τ, wl) ∝ exp

−1
2 ∑

t∈Tl

∑
i,j,k

g2
l (S

z
t )

2ωijk,t − 2glSz
t κijk,t

 exp

{
−1

2
g2

l
τwl

}

= exp

−1
2

 g2
l

τwl
+ ∑

t∈Tl

∑
i,j,k

g2
l (S

z
t )

2ωijk,t − 2glSz
t κijk,t


= exp

−1
2

g2
l

 1
τwl

+ ∑
t∈Tl

∑
i,j,k

(Sz
t )

2ωijk,t

− 2gl

∑
t∈Tl

∑
i,j,k

Sz
t κijk,t



 .

(C.6)

Therefore, for each l = 1, . . . , L:

π(gl|Ωt, τ, wl) ∼ N (ml, s2
l ) , (C.7)

with:

s2
l =

 1
τwl

+ ∑
t∈Tl

∑
i,j,k

(Sz
t )

2ωijk,t

−1

(C.8)

ml =

∑
t∈Tl

∑
i,j,k

Sz
t κijk,t

 · s−2
l . (C.9)

Assume the prior distributions:

π(τ) ∼ Ga(aτ, b
τ
) (C.10)

π(wl|λl) ∼ Exp(λ2
l /2) (C.11)

π(λl) ∼ Ga(al
λ, bl

λ) , (C.12)

then the posterior distributions of the variance hyper-parameters τ, wl, λl are obtained as
follows.

The posterior distribution of τ is given by:

p(τ|g, w) ∝ π(τ)p(g|w, τ)

∝ τaτ−1 exp
{
−b

τ
τ
} L

∏
l=1

exp

{
−

g2
l

2τwl

}
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= τaτ−1 exp

−1
2

[
2b

τ
τ +

L

∑
l=1

g2
l

wl

1
τ

]
∼ GiG

(
aτ − 1, 2b

τ
,

L

∑
l=1

g2
l

wl

)
. (C.13)

The posterior distribution of wl, for each l = 1, . . . , L, is given by:

p(wl|gl, τ, λl) ∝ π(wl|λl)p(gl|wl, τ)

∝
λ2

l
2

exp

{
−

λ2
l

2
wl

}
exp

{
−

g2
l

2τwl

}

= exp

−1
2

[
λ2

l wl +
g2

l
τ

1
wl

]
∼ GiG

(
1, λ2

l ,
g2

l
τ

)
. (C.14)

The posterior distribution of λl (integrating out wl), for each l = 1, . . . , L, is given by:

p(λl|τ, gl) ∝ π(λl)
∫

p(gl|τ, wl)p(wl|λl) dwl

∝ π(λl)p(gl|τ, λl)

∝ λ
al

λ−1
l exp

{
−bl

λλl

} √τ

2λl
exp

{
−
∣∣gl
∣∣√τ

λl

}

∝ λ
al

λ−2
l exp

{
−1

2

[
2bl

λλl +
∣∣gl
∣∣√τ

1
λl

]}
∼ GiG

(
al

λ − 1, 2bl
λ,
∣∣gl
∣∣√τ

)
. (C.15)

C.5 Additional Simulations’ Output

C.5.1 Size 100,100,3,2

Setup: I = J = 100, Q = 3, M = 2.
We run the Gibbs sampler for N = 500 iterations and the outcome is plotted from Fig. C.5
to C.11(b).
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FIGURE C.5: Hidden Markov chain: true (blue) versus estimated (red).
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(a) Regime 1.
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(b) Regime 2.

FIGURE C.6: Frobenious norm (blue line) and its progressive mean (red line) of
the difference between the true tensor G∗l and the MCMC samples of the tensor Ĝl .
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(a) Regime 1.
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(b) Regime 2.

FIGURE C.7: ACF of Frobenious norm of the difference between the true tensor G∗l
and the MCMC samples of the tensor Ĝl .



164 Appendix C. Appendix C

(a) Regime 1. (b) Regime 2.

FIGURE C.8: Posterior distribution of the mixing probability parameter ρl (blue)
and the true value of the parameter (red).

(a) Posterior distribution of ξ1,1. (b) Posterior distribution of ξ1,2.

(c) Posterior distribution of ξ2,1. (d) Posterior distribution of ξ2,2.

FIGURE C.9: Posterior distribution (blue) and true value (red) of the transition
probabilities.
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(a) Regime 1. (b) Regime 2.

FIGURE C.10: Frobenious norm of the MCMC samples (blue line) and true value
(red line) of the parameter µ̂l .

(a) Regime 1. (b) Regime 2.

FIGURE C.11: Frobenious norm of the MCMC samples (blue line) and true value
(red line) of the parameter Σ̂l .

C.5.2 Size 150,150,3,2

Setup: I = J = 150, Q = 3, M = 2.
We run the Gibbs sampler for N = 500 iterations and the outcome is plotted in the following
figures.
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FIGURE C.12: Hidden Markov chain: true (blue) versus estimated (red).
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(a) Regime l = 1.
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(b) Regime l = 2.

FIGURE C.13: Frobenious norm (blue line) and its progressive mean (red line) of
the difference between the true tensor G∗l and the MCMC samples of the tensor Ĝl .
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(a) Regime 1.
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(b) Regime 2.

FIGURE C.14: ACF of Frobenious norm of the difference between the true tensor
G∗l and the MCMC samples of the tensor Ĝl .
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(a) Regime 1. (b) Regime 2.

FIGURE C.15: Posterior distribution of the mixing probability parameter ρl (blue)
and the true value of the parameter (red).

(a) Posterior distribution of ξ1,1. (b) Posterior distribution of ξ1,2.

(c) Posterior distribution of ξ2,1. (d) Posterior distribution of ξ2,2.

FIGURE C.16: Posterior distribution (blue) and true value (red) of the transition
probabilities.
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(a) Regime 1. (b) Regime 2.

FIGURE C.17: Frobenious norm of the MCMC samples (blue line) and true value
(red line) of the parameter µ̂l .

(a) Regime 1. (b) Regime 2.

FIGURE C.18: Frobenious norm of the MCMC samples (blue line) and true value
(red line) of the parameter Σ̂l .

C.5.3 Size 200,200,3,2

Setup: I = J = 200, Q = 3, M = 2.
We run the Gibbs sampler for N = 200 iterations and the outcome is plotted in the following
figures.



C.5. Additional Simulations’ Output 169

0 10 20 30 40 50 60

0.5

1

1.5

2

2.5

3

3.5

4

FIGURE C.19: Hidden Markov chain: true (blue) versus estimated (red).
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(a) Regime 1.
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(b) Regime 2.

FIGURE C.20: Frobenious norm (blue line) and its progressive mean (red line) of
the difference between the true tensor G∗l and the MCMC samples of the tensor Ĝl .
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(a) Regime 1.
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(b) Regime 2.

FIGURE C.21: ACF of Frobenious norm of the difference between the true tensor
G∗l and the MCMC samples of the tensor Ĝl .
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(a) Regime 1. (b) Regime 2.

FIGURE C.22: Posterior distribution of the mixing probability parameter ρl (blue)
and the true value of the parameter (red).

(a) Posterior distribution of ξ1,1. (b) Posterior distribution of ξ1,2.

(c) Posterior distribution of ξ2,1. (d) Posterior distribution of ξ2,2.

FIGURE C.23: Posterior distribution (blue) and true value (red) of the transition
probabilities.
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(a) Regime 1. (b) Regime 2.

FIGURE C.24: Frobenious norm of the MCMC samples (blue line) and true value
(red line) of the parameter µ̂l .

(a) Regime 1. (b) Regime 2.

FIGURE C.25: Frobenious norm of the MCMC samples (blue line) and true value
(red line) of the parameter Σ̂l .

C.6 Additional Application’s Output

In this section we report some additional plots concerning the Gibbs sampler’s output for
the estimation of the hyper-parameters in the application described in Section 3.6.
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FIGURE C.26: Posterior distribution (left), MCMC output (middle) and autocorre-
lation function (right) of the global variance parameter τ.

FIGURE C.27: Posterior distribution (left plots), MCMC output (middle plots) and
autocorrelation functions (right plots) of the level-specific variance parameters φ.

Each row corresponds to a different value of r = 1, . . . , R.
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FIGURE C.28: Posterior mean of the variance each marginal of the tensor of co-
efficients, in state 1 (left) and state 2 (right). The cell (h, r) of each matrix, for
h = 1, . . . , 3 and r = 1, . . . , R, corresponds to the estimated variance τ̂φ̂rŵh,r,l of

the marginal γ
(r)
h,l .
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FIGURE C.29: Posterior distribution (left plot), MCMC output (middle plots) and
autocorrelation functions (right plots) of the local variance hyper-parameters λ.

Regime 1 (blue) and regime 2 (orange).

FIGURE C.30: Posterior distribution (left plots), MCMC output (middle plots) and
autocorrelation functions (right plots) of the transition probabilities of the hidden

Markov chain Ξ, in the order (top to bottom): ξ1,1, ξ1,2, ξ2,1, ξ2,2.

FIGURE C.31: Posterior distribution (left plots), MCMC output (middle plots) and
autocorrelation functions (right plots) of the common coefficient gl in the pooled

model. Regime 1 (blue) and regime 2 (orange).





175

Appendix D

Appendix D

D.1 Functional PCA

In this section, denote f(·) = ( f1(·), . . . , fT(·))′ a sequence of T random functions ft : Rn →
R and let V : Rn ×Rn → R be the covariance operator defined as:

V( f )(·) =
∫

Rn
v(·, y) f (y) dy , (D.1)

where the kernel v : Rn ×Rn → R, expressed as v(x, y), is the covariance function.
Functional principal component analysis (fPCA) is the infinite-dimensional analogue of

multivariate principal component analysis (PCA), from which it borrows the terminology
and interpretation (see (Ramsay and Silverman, 2005, ch.8) and Ferraty and Vieu (2006)). It
is possible to interpret fPCA as a truncated the Karhunen-Loéve decomposition (Karhunen
(1947), Loève (1945)). The latter is used to represent a function f : Rn → R via an infinite
linear combination of basis functions ξ j(·) with coefficients β j given by:

f (x) =
∞

∑
j=1

β jξ j(x) . (D.2)

In fPCA, the infinite sum is truncated by keeping only J components, thus reducing the
infinite-dimensional problem into a finite-dimensional one, given by (ξ j(·), β j), j = 1, . . . , J.
In fact, the purpose of fPCA is to find out the linear combination of principal component
functions (or factors) ξ(·) = (ξ1(·), . . . , ξ J(·))′ and principal component scores (or load-
ings) β = (β1, . . . , β J)

′, which best approximates a given function (or series of functions).
The factors represent the main modes of variability and the scores specify the weight of
each principal component function in the approximation of the observed function. Let
f̆ = ( f̆1(·), . . . , f̆T(·))′ the set of functions approximating the series f = ( f1(·), . . . , fT(·))′.
Then each f̆t(·) is obtained as:

f̆t(·) = β′tξ(·) =
J

∑
j=1

βt,jξ j(·) . (D.3)

For identification purposes, the principal component functions are often constrained to be
orthonormal, that is ||ξ j(·)||2 = 1, j = 1, . . . , J and 〈ξk(·), ξ j(·)〉 = 0, for k 6= j.

Different criteria are available for the choice of the number J of principal components
to take in the approximation1 of eq. (D.7). We interpret the estimation of the factors as an
eigenproblem (see next paragraph) and, after having sorted the estimated eigenvalues in
decreasing order, we keep the first J eigenfunctions (corresponding to the factors) such that
the proportion of variability explained is above a threshold d̄. In the empirical analysis,

1Notice that the number and shape of the factors necessary to approximate a function provide information about its
complexity.
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regardless of the criterion used, the value of J is generally very small, thus allowing to
interpret and use fPCA as a dimensionality reduction technique for the original series f(·).

There are several ways to estimate the principal component functions, according to the
interpretation of the problem (see Ramsay and Silverman (2005) and Ferraty and Vieu (2006)
for a review). By interpreting them as the eigenfunctions of the covariance operator of the
functions ( f1(·), . . . , fT(·)), we can estimate each pair (ξ j, ρj) of principal component func-
tion and score by solving the eigenproblem:

∫
Rn

V(x, y)ξ j(x) dx = ρjξ j(y) (D.4a)

〈ξ j(·), ξ j(·)〉 = 1 (D.4b)

subject to the additional constraint 〈ξk(·), ξ j(·)〉 = 0, for k 6= j. For t = 1, . . . , T, j = 1, . . . , J,
the principal component scores, in the case of orthonormal eigenfunctions, satisfy:

β j,t =
∫

Rn
ft(x)ξ j(x) dx = 〈 ft(·), ξ j(·)〉 . (D.5)

Following an alternative approach, each function ξk(·) is obtained by solving the optimiza-
tion problem: 

max
ξk

1
T

T

∑
t=1

(∫
Rn

ft(x)ξk(x) dx
)2

(D.6a)

s.t.
∥∥ξk(x)

∥∥
2 = 1 (D.6b)

with the additional constraint that 〈ξk, ξ j〉 = 0, for k 6= j. For t = 1, . . . , T, j = 1, . . . , J, the
scores are obtained again from eq. (D.5). In both cases, the output is a sequence of estimated
factors ξ̂(·) = (ξ̂1(·), . . . , ξ̂ J(·))′ and scores B̂ = (β̂1, . . . , β̂T), with β̂t = (β̂t,1, . . . , β̂t,J)

′ for
t = 1, . . . , T. Then, we obtain:

f(·) ≈ f̆(·) = B̂′ξ̂(·) , f̆t(·) = β̂
′
tξ̂(·) . (D.7)

In the paper we follow the first interpretation and estimate the principal component func-
tions and scores by solving an eigenproblem. This poses the preliminary problem of estimat-
ing the covariance of the observed sample of functions f(·). The standard sample covariance
function estimator is given by:

V̂(x, y) =
1
T

T

∑
t=1

ft(x) ft(y) . (D.8)

Alternative non-parametric estimators have been developed in the earlier contributions of
Hall et al. (2006), Li and Hsing (2010), Yao et al. (2005) and Staniswalis and Lee (1998).
In matrix notation, eq. (D.8) is written as v(x, y) = T−1f′(·)f(·). By exploiting eqs. (D.8)
and (D.7) we get:

T−1f′(·)f(·) = T−1ξ(·)B′Bξ(·) . (D.9)

Therefore, the k-th principal component function ξ̂k(·) and the score β̂t = (β̂t,1, . . . , β̂t,J)
′ =

(〈 ft(·), ξ1(·)〉, . . . , 〈 ft(·), ξ J(·)〉)′, for t = 1, . . . , T, are obtained by solving the eigenproblem2:

Vξk(·) = ρkξk(·) , (D.10)

2This can also be interpreted as a n-dimensional Fredhölm integral equation of the second type, see Atkinson (2009),
Atkinson and Han (2005)
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under the constraints 〈ξk(·), ξ j(·)〉 = 0 for k 6= j and ||ξk(·)||2 = 1. One way of solving
the eigenproblem requires to discretize the functions on a specified grid of points {xi}N

i=1,
which permits to re-state eq. (D.10) as a finite-dimensional eigenproblem in matrix form.
Then, standard methods used in multivariate PCA are applied for obtaining the solution.

Alternatively, one may assume that both the original functions ft(·) and the eigenfunc-
tions ξk(·) can be expressed as a finite linear combination of some chosen basis functions
ψ(·) = (ψ1(·), . . . , ψK(·))′, with different coefficients:

ft(·) =
K

∑
k=1

dt,kψk(·) = d′tψ(·) , ξ j(·) =
K

∑
k=1

aj,kψk(·) = a′jψ(·) , (D.11)

for t = 1, . . . , T and j = 1, . . . , J. Given the choice of the basis functions, this reduces
the infinite-dimensional problem for ξ j(·) to a finite-dimensional one for the vector aj =
(aj,1, . . . , aj,K)

′. From eqs. (D.1), (D.8) and (D.10) we obtain:

T−1ψ(·)′D′DMaj = ρjψ(·)′aj (D.12)

T−1D′DMaj = ρjaj , (D.13)

with D = (d1, . . . , dT) and M = (〈ψk(·), ψj(·)〉)k,j, which is the identity matrix if the basis
functions form an orthonormal system.

As common practice in multivariate PCA, the estimated eigenvalues ρ̂1, ρ̂2, . . . are then
sorted in decreasing order and the number J of principal component functions to take is
decided on the basis of the proportion of total variation explained J = arg minj{∑j ρ̂j > d̄}.

D.2 Computations

In this section we provide the details of the computations needed in Section 4.3. We start by
recalling a result from Lyche and Morken (2008) stating some useful properties of B-spline
functions. A comprehensive discussion of spline functions and their properties can be found
in De Boor (2001) and Schumaker (2007).

D.2.1 Proof of Lemma 4.3.0.1

In the following we show the procedure for solving the constrained optimal smoothing
problem in eq. (4.23). Let λ̄

x,y
= λ̄

x⊗ λ̄
y denote an extended knot sequence (see Section 4.2.1

for the notation). We define the difference λ̄
x,y
i,k − λ̄

x,y
j,k as the difference between the first co-

ordinate, that is λ̄
x,y
i,k − λ̄

x,y
j,k = λ̄x

i − λ̄x
j and λ̄

x,y
k,i − λ̄

x,y
k,j = λ̄

y
i − λ̄

y
j . In this section, for ease

of notation we omit the bar and the superscripts and we implicitly refer to augmented knot
sequences, that is we use λi,j instead of λ̄

x,y
i,j .

The integral constraint in eq. (4.23) yields:∫ b1

a1

∫ b2

a2

sm(u, v) dv du =
∫ b1

a1

s̃m(u, b2)− s̃m(u, a2) du

= sm+1(b1, b2)− sm+1(b1, a2)− sm+1(a1, b2) + sm+1(a1, a2)

= sm+1(λg+1,g+1)− sm+1(λg+1,0)− sm+1(λ0,g+1) + sm+1(λ0,0) = 0
(D.14)

Starting from this result, we look for an equation allowing us to express the coefficient of a
bivariate spline of order k with those of a spline obtained after differentiating it with respect
to both arguments (that is, we look for an analogue of eq. (4.14)).
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Now, we should derive the implication that the previous solution has on the coefficients
ci,j of the spline sm+1(u, v) (e.g.: in the univariate case we end up with 0 = sm+1(λg+1) −
sm+1(λ0) = cg − c−m−1 thus implying c−m−1 = cg)3.

By exploiting known properties of splines (see Lyche and Morken (2008)) we obtain:

0 = sm+1(λg+1,g+1)− sk+1(λg+1,0)− sm+1(λ0,g+1) + sm+1(λ0,0) , (D.15)

0 = ∑
i

∑
j

cij

[
Bi(λg+1)Bj(λg+1)− Bi(λg+1)Bj(λ0)− Bi(λ0)Bj(λg+1) + Bi(λ0)Bj(λ0)

]
.

(D.16)

By property (i) and (iii):

• for i = j = g it holds:

Bg(λg+1)Bg(λg+1)− Bg(λg+1)Bg(λ0)− Bg(λ0)Bg(λg+1) + Bg(λ0)Bg(λ0) = 1 , (D.17)

• for i = j = −m− 1 it holds:

B−m−1(λg+1)B−m−1(λg+1)− B−m−1(λg+1)B−m−1(λ0)

− B−m−1(λ0)B−m−1(λg+1) + B−m−1(λ0)B−m−1(λ0) = 1 , (D.18)

• for i, j /∈ {−m− 1, g} the previous equation is always 0 since at least one of the terms
of each product is 0.

Therefore we obtain:

sm+1(λg+1,g+1)− sm+1(λg+1,0)− sm+1(λ0,g+1) + sm+1(λ0,0) = 0 , (D.19)

which implies:
cg,g + c−m−1,−m−1 = 0 ⇐⇒ cg,g = −c−m−1,−m−1 . (D.20)

Now, by applying sequentially the recursion linking spline function with its partial deriva-
tives and using a knot sequence (or an extended knot sequence) with equal number of knots
along both directions:

d
du

d
dv

sm+1(u, v) =
d

du
d

dv

g

∑
i=−m−1

g

∑
j=−m−1

cijBm+2
i (u)Bm+2

j (v)

=
d

dv

g

∑
j=−m−1

Bm+2
j (v) ·

(
d

du

g

∑
i=−m−1

cijBm+2
i (u)

)

=
d

dv

g

∑
j=−m−1

Bm+2
j (v) ·

(
g

∑
i=−m

cu
ijB

m+1
i (u)

)
(D.21)

=
g

∑
i=−m

Bm+1
i (u)

 d
dv

g

∑
j=−m−1

cu
ijB

m+2
j (v)

 (D.22)

=
g

∑
i=−m

g

∑
j=−m

cuy
ij Bm+1

i (u)Bm+1
j (v) .

3They obtain the result by using the properties of B-splines in Lyche and Morken (2008). Some bases are exactly 1,
others 0, reducing the spline function to the coefficient of the unique basis equal to 1.
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Since by definition:

sm(u, v) =
g

∑
i=−m

g

∑
j=−m

bijBm+1
i (u)Bm+1

j (v) , (D.23)

by assuming bij = cuy
ij we get the equality:

d
du

d
dv

sm+1(u, v) = sm(u, v) . (D.24)

It is now necessary to develop the above expression for the constraint on the coefficients
in order to find out the precise relationship between the cij (coefficients of sm+1) and bij
(coefficients of sm). This is required in order to derive the solution of eq. (4.23) by minimizing
the first equation, thus solving an unconstrained optimization problem. First, recall that the
coefficients of a univariate spline are related to those of its first order derivative via the
relation:

d
du

sm(u) = ∑
i

c̆iBm
i (u) = sm−1(u) c̆i = m

ci − ci−1

λi+m − λi
. (D.25)

In the bivariate case, first define cu
ij, for fixed j and i = −m, . . . , g, as:

cu
ij = (m + 1)

ci,j − ci−1,j

λi+m+1,j − λi,j
. (D.26)

Then, iterated application eq. (D.25) along each dimension gives, for j = −m, . . . , g:

bi,j = cuy
i,j = (m + 1)

cu
i,j − cu

i,j−1

λi,j+m+1 − λi,j
=

(m + 1)2

λi,j+m+1 − λi,j

(
ci,j − ci−1,j

λi+m+1,j − λi,j
−

ci,j−1 − ci−1,j−1

λi+m+1,j−1 − λi,j−1

)

=
(m + 1)2

λi,j+m+1 − λi,j

(
ci,j − ci−1,j

λi+m+1,j − λi,j
−

ci,j−1 − ci−1,j−1

λi+m+1,j−1 − λi,j−1

)
. (D.27)

This implies that the matrix B has the following top-left (i.e. b−m,−m) and bottom-right (i.e.
bg,g) entries:

b−m,−m =
(m + 1)2

λ−m,1 − λ−m,−m

(
c−m,−m − c−m−1,−m

λ1,−m − λ−m,−m
− c−m,−m−1 − c−m−1,−m−1

λ1,−m−1 − λ−m,−m−1

)
, (D.28)

bg,g =
(m + 1)2

λg,g+m+1 − λg,g

(
cg,g − cg−1,g

λg+m+1,g − λg,g
−

cg,g−1 − cg−1,g−1

λg+m+1,g−1 − λg,g−1

)
. (D.29)

We need conditions for linking the (g+m+ 1)× (g+m+ 1) coefficient matrix B = (bi,j)i,j of
the spline function sm(u, v) and the (g + m + 2)× (g + m + 2) coefficient matrix C = (ci,j)i,j
of the spline function sm+1(u, v). In the univariate case they are two vectors whose lengths
differ by one, and the condition to be imposed consists in the equality of the first and last
entry of the coefficient vector of the spline with higher degree. In the bivariate case, instead,
2(g + m + 1) + 1 constraints are required:

C =


c−m−1,−m−1 c−m−1,−m . . . c−m−1,g
c−m,−m−1

...
cg,−m−1

C̄

 (D.30)
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From the previous computations, we obtain the constraint:

c−m−1,−m−1 = −cg,g . (D.31)

We need to incorporate this result obtained from the integral constraint. From eq. (D.27) we
have that4:

bi,j =
(m + 1)2

λi,j+(m+1) − λi,j

[
1

λi+(m+1),j − λi,j
(ci,j − ci−1,j)−

1
λi+(m+1),j−1 − λi,j−1

(ci,j−1 − ci−1,j−1)

]

= Di
j,j

[
Ej

i,i(Kc:,j)i − Ej−1
i,i (Kc:,j−1)i

]
, (D.32)

which, using the shorthand N = (g + m + 1) and letting {e1, . . . , eN} be the canonical basis
of the space of N × N matrices, gives the following expression for the column vector b:,j:

b:,j =

[
N

∑
k=1

eke′k ⊗ (Dj
k,kEj

k,k)

]
Kc:,j −

[
N

∑
k=1

eke′k ⊗ (Dj−1
k,k Ej−1

k,k )

]
Kc:,j−1

=



Dj
1,1Ej

1,1

Dj
2,2Ej

2,2
. . .

. . .
Dj

N,NEj
N,N




(Kc:,j)1
(Kc:,j)2

...
(Kc:,j)N



−



Dj
1,1Ej−1

1,1

Dj
2,2Ej−1

2,2
. . .

. . .
Dj

N,NEj−1
N,N




(Kc:,j−1)1
(Kc:,j−1)2

...
(Kc:,j−1)N

 . (D.33)

For j = −m, . . . , g, we define the (g + m + 1)× (g + m + 1) diagonal matrix Di by:

Dj = diag

(
(m + 1)2

λ−m,j+m+1 − λ−m,j
,

(m + 1)2

λ−m+1,j+m+1 − λ−m+1,j
, . . . ,

(m + 1)2

λg,j+m+1 − λg,j

)
. (D.34)

and, for j = −m− 1,−m, . . . , g, we define the (g + m + 1)× (g + m + 1) diagonal matrix Ej

by:

Ej = diag

(
1

λ1,j − λ−m,j
,

1
λ2,j − λ−m+1,j

, . . . ,
1

λg+m+1,j − λg,j

)
. (D.35)

The matrix K coincides with the matrix representation of the linear operator L which per-
forms first differences Lg+m+1 given by the (g + m + 1)× (g + m + 2):

K = Lg+m+1 =


−1 1

−1 1
. . . . . .
−1 1

 . (D.36)

4We used the notation Ai
j,j to mean the (j, j)-th entry of the diagonal matrix Ai.
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Therefore, for j = −m, . . . , g, the (g + m + 1)× 1 vector of first differences Kc:,j is given by:

Kc:,j =


c−m,j − c−m−1,j
c−m+1,j − c−m,j

...
cg,j − cg−1,j

 . (D.37)

In order to rewrite eq. (D.32) in more compact form, we introduce the following N× (N + 1)
matrices, which allow to select the first (or last, respectively) N columns from another one by
post-multiplication. Let {eN

1 , . . . , eN
N} be the canonical basis of the space of square matrices

of size N × N and define the N × (N + 1) matrix PN,m = [eN
1 , . . . , eN

m−1, 0N, eN
m , . . . , eN

N] with
m ∈ {1, . . . , N + 1}, which, by pre-multiplying a vector of length (N + 1), selects all but the
m-th entry. The (N + 1)×N matrices S f

c , S`
c defined as follows, instead, when pre-multiplied

by a (N + 1)× (N + 1) matrix A select the sub-matrix made with the first (last, respectively)
N columns and rows A:

S f
c = P′N,N+1 =


1

. . .
1

0 . . . 0

 , S`
c = P′N,1 =


0 . . . 0
1

. . .
1

 . (D.38)

For example, if A = [A f |aN+1] = [a1|A`] then AS f
c = A f and AS`

c = A`. Notice also that
the transposed versions, that is S f

r = (S f
c )
′ and S`

r = (S`
c)
′, allow to select rows instead of

columns. It is now possible to rewrite eq. (D.32) as:

vec (B) =

D−mE−m

. . .
DgEg

 vec
(

S`
rC̃S`

c

)
−

D−mE−m−1

. . .
DgEg−1

 vec
(

S f
r C̃S f

c

)
= DE vec

(
S`

rC̃S`
c

)
−DF vec

(
S f

r C̃S f
c

)
, (D.39)

where, letting {e−m, . . . , eg} be the canonical basis for the space of square matrices of size
(g + m + 1)× (g + m + 1), we defined:

D =
g

∑
i=−m

eie′i ⊗Di size (g + m + 1)2 × (g + m + 1)2

E =
g

∑
i=−m

eie′i ⊗ Ei size (g + m + 1)2 × (g + m + 1)2

F =
g−1

∑
i=−m−1

eie′i ⊗ Ei size (g + m + 1)2 × (g + m + 1)2

C̃ =
[
Kc:,−m| . . . |Kc:,g+1

]
size (g + m + 1 + 1)× (g + m + 1 + 1) ,

and S`
rC̃S`

c (respectively, S f
r C̃S f

c ) select the bottom-right (respectively, top-left) square sub-
matrix of C̃ of size (g + m + 1)× (g + m + 1), denoted (C̃)

g
−m (respectively, (C̃)

g−1
−m−1).
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Now, we need to include in eq. (D.39) the information obtained in eq. (D.31) from the
integral constraint in eq. (4.23), that is:

c−m−1,−m−1 = −cg,g . (D.40)

To this end, notice that there is no possibility of defining a unique matrix K which is able
to give the desired result by a suitable choice of its entries (as opposed to the univariate
case). This is mainly due to the fact that in the linear system representation of C̃ the terms
c−m−1,−m−1 and cg,g are never in the same equation and the constraints on the other coeffi-
cients of K prevent to obtain the result. We propose to solve this issue as follows. Instead of
transforming the matrix C and then vectorize it, reverse the order, that is, vectorize C then
apply a suitable transformation. Then, define the ((g + m + 1 + 1)2 − 1)× 1 vector:

c̃ = P(g+m+1+1)2−1,1 · vec (C) , (D.41)

which corresponds to the vectorization of the matrix C without the element5 c−m−1,−m−1.
Consider the N × (N + 1) matrix LN representing the first difference operator L:

LN =


−1 1

−1 1
. . . . . .
−1 1

 . (D.42)

Since we are dealing with the vectorisation of a matrix, vec (C), we must keep in mind that
taking first differences of the whole vector implies taking differences also between the first
entry of a column and the last of the previous one, which is undesired. Therefore we need to
modify the structure of the difference operator matrix accordingly: we can do it by “shifting”
to the right the blocks of non-zero entries every N − 1 rows, where N is the number of rows
of the original matrix C. Moreover, taking into account the integral constraint6 in eq. (D.31)
we get in top right corner 1 instead of 0 whereas the first column of the difference operator
matrix is removed. Consequently, we define K∗ to be the matrix with number of columns
equal to the size of c̃ (that is, (g+m+ 1+ 1)2− 1) and number of rows equal to the number of
entries of C minus a row (that is, (g+m+ 1)(g+m+ 2)), which is lost by taking differences.
We obtain the (g + m + 1)(g + m + 2)× ((g + m + 2)2 − 1) block diagonal matrix:

K∗ =


K11 K1N

K−m

K−m+1

. . .
Kg

 , (D.43)

where each (g + m + 1)× (g + m + 2) matrix Ki = Lg+m+1, for i = −m, . . . , g, whereas K1N

is a (g + m + 1)× (g + m + 2) with all zeros but the top-right entry and the (g + m + 1)×

5We remove from vec (C) all the entries equal to c−m−1,−m−1, thus obtaining a vector c∗ of length equal to the length
of vec (C) minus the number of occurrences of c−m−1,−m−1.

6The constraint here has the opposite sign as compared to the univariate case, but it is coherent. In fact, it stems from
the integral constraint and in the univariate case the integral is obtained by taking the difference between the value at the
extrema of integration, while in the bivariate case the values at the top-right and bottom-left corners are added while those
at the other two vertices of the rectangle are subtracted.
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(g + m + 1) square matrix K11 is given by:

K11 =


1
−1 1

−1 1
. . . . . .
−1 1

 . (D.44)

For example, let IR, IC be the number of rows and columns in C, respectively. Then the size
of the matrix K∗ is (IC(IR − 1))× (IC IR − 1).

By exploiting the previously defined diagonal matrices Dj, Ej, we define the following
(g + m + 1)2 × (g + m + 1)2 block diagonal matrices:

D =
g

∑
i=−m

eie′i ⊗Di =


D−m

D−m−1

. . .
Dg

 , (D.45)

E =
g

∑
i=−m

eie′i ⊗ Ei =


E−m

E−m−1

. . .
Eg

 , (D.46)

F =
g

∑
i=−m

eie′i ⊗ Ei−1 =


E−m−1

E−m

. . .
Eg−1

 . (D.47)

Finally, we define T f , Tl to be two selection matrices of size (g + m + 1)2 × (g + m + 1)(g +
m+ 2) which select entries from a vector of length (g+m+ 1)(g+m+ 2) by pre-multiplication:

T f =

 1 0 . . . 0
. . . ...

...
1 0 . . . 0

 , Tl =

 0 . . . 0 1
...

... . . .
0 . . . 0 1

 . (D.48)

Finally, define A = [ET f − FTl]K∗. We obtain the following equation relating the vectorized
matrices of spline coefficients B and C:

b = vec (B) = D
[
ET f K∗c̃− FTlK∗c̃

]
= D

[
ET f − FTl

]
K∗c̃ = DAc̃ , (D.49)

The next step consists in re-writing the objective function of the optimization problem (4.23)
using matrix notation. First of all, since the B-spline basis for the bivariate spline is the
product of two univariate B-splines, given a sample (z, u, v) = {zi, (ui, vi)}n

i=1 we define the
modified version of the matrix Cm+1(u) used in the univariate case as follows:

Cm+1(u, v) =


Bm+1
−m (u1)Bm+1

−m (v1) . . . Bm+1
g (u1)Bm+1

−m (v1) . . . Bm+1
g (u1)Bm+1

g (v1)
...

...
Bm+1
−m (un)Bm+1

−m (vn) . . . Bm+1
g (un)Bm+1

−m (vn) . . . Bm+1
g (un)Bm+1

g (vn)

 ,

(D.50)
whose size is n× (g + m + 1)2 and generic entry Cm+1

i,j (u, v) = Bm+1
j1

(ui)Bm+1
j2

(vi), with j1, j2
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obtained by inverting7 the linear indexing j = j1 + (j2 − 1)(g + m + 1). Each row is con-
structed by first fixing the index for the B-spline along the direction of v, that is Bm+1

j (vi),
then considering all the combinations with the B-spline along the direction of u, that is
Bm+1

h (ui). Then the index j is incremented and the process is iterated until the exhaustion
of the basis. Notice that each row of the matrix corresponds to the same observation point.
This construction is necessary to rewrite a bivariate spline function given the observation
points {(ui, vi)}n

i=1 in matrix form, obtaining a vector of size n× 1:

sm(u, v) = Cm+1(u, v)b . (D.51)

In order to write the matrix form of the integral of the squared derivative (of order ` ≤ m− 1)
of the bivariate spline function, start by defining the (g + m + 1− `)2 × (g + m + 1− `)2

matrix of inner products of the B-spline basis functions of order m− ` as follows:

Mm,` =


〈Bm+1−`
−m+` Bm+1−`

−m+` , Bm+1−`
−m+` Bm+1−`

−m+` 〉 . . . 〈Bm+1−`
g Bm+1−`

g , Bm+1−`
−m+` Bm+1−`

−m+` 〉
...

...
〈Bm+1−`
−m+` Bm+1−`

−m+` , Bm+1−`
g Bm+1−`

g 〉 . . . 〈Bm+1−`
g Bm+1−`

g , Bm+1−`
g Bm+1−`

g 〉

 ,

(D.52)
where the generic entry is Mm,`;i,j = 〈Bm+1−`

j1
Bm+1−`

j2
, Bm+1−`

i1
Bm+1−`

i2
〉, where i1, i2, j1, j2 are

obtained, as for Cm+1
i,j (u, v), by inverting the linear indexing i = i1 + (i2− 1)(g + m + 1− `)

and j = j1 + (j2 − 1)(g + m + 1− `). The inner product is defined in the usual way (see
Algorithm 5.22 in Schumaker (2007) for numerical computation) as:

〈Bm+1−`
i Bm+1−`

j , Bm+1−`
h Bm+1−`

l 〉

=
∫ λg

λ0

∫ λg

λ0

Bm+1−`
i (u) Bm+1−`

j (v) Bm+1−`
h (u) Bm+1−`

l (v) du dv ≥ 0 . (D.53)

Under the assumptions made in the text, that is (a1, b1) = (λ0,0, λg,g), (a2, b2) = (λu,0, λu,g),
`1 = `2 = `, n1 = n2 = n, the objective function in eq. (4.23) can be re-written as the sum of
two terms:

J`(sm) =
∫ b1

a1

∫ b2

a2

[
s(`1,`2)

m (u, v)
]2

dv du + α

 n1

∑
i=1

n2

∑
j=1

wij

(
zij − sm(ui, vj)

)2


=
∫ λg,g

λ0,0

∫ λu,g

λu,0

[
s(`,`)

m (u, v)
]2

dv du + α

 n

∑
i=1

n

∑
j=1

wij

(
zij − sm(ui, vj)

)2


=
∫ λg,g

λ0,0

∫ λu,g

λu,0

[
s(`,`)

m (u, v)
]2

dv du + α

 n′

∑
i′=1

wi′
(
zi′ − sm(ui′ , vi′)

)2

 (D.54)

= J1
` (sm) + J2

` (sm) . (D.55)

The double sum has been reduced to a single sum under the hypothesis that the sample con-
sists of a value zi and a point (ui, vi). The third line has been obtained after vectorization.
The extrema of integration are the same as in the univariate case, but now it is necessary to

7The inversion is obtained by solving a linear system with two equations and two unknowns, j1, j2, which has a unique
solution: j1 = j− (j2 − 1)(g + m + 1) and j2 = bj/(g + m + 1)c, where bxc denote the integer part of x.
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stress formally that when integrating with respect to v, the extrema of integration in princi-
ple may depend on u. The idea is nonetheless simple: the area of integration consists of the
points included in the square with vertices (λ0,0, λ0,g, λg,0, λg,g). Concerning the derivative,
by choosing `1 = `2 = ` = 2 we are performing second-order derivative, thus obtaining a
solution in the class of cubic spline functions.

Let Z = (zij)ij, W = (wij)ij be n × n matrices and z = vec (Z), w = vec (W) be their
vectorization. By exploiting eq. (D.51), the second component of eq. (D.55) can be written in
matrix form as:

J2
` (b) = α

(
z− Cm+1(u, v)b

)′
W
(

z− Cm+1(u, v)b
)

. (D.56)

As for the first addendum, since the derivative of spline is another spline of lower degree, it
can be represented in matrix form. In particular, it is given by the product of the vectorised
coefficient matrix b and a vector of B-spline basis functions g(u, v) defined as:

g(u, v) =
[

Bm+1
−m Bm+1

−m (v), . . . , Bm+1
g (u)Bm+1

−m (v), . . . , Bm+1
g (u)Bm+1

g (v)
]

. (D.57)

This allows to write:

J1
` (sm) =

∫ λg,g

λ0,0

∫ λu,g

λu,0

[s(`,`)
m (u, v)]2 dv du =

∫ λg,g

λ0,0

∫ λu,g

λu,0

b
(`)′

g(u, v)′g(u, v)b
(`)

dv du

= b
(`)′
[∫ λg,g

λ0,0

∫ λu,g

λu,0

g(u, v)′g(u, v) dv du

]
b
(`)

= b
(`)′

Mm,`b
(`)

= J1
` (b) , (D.58)

where the last line follows from the definition of the matrix Mm,`. We are left to find an ex-
plicit form for the vectorised coefficient matrix of the original spline of degree m, b, and that

of its `-th derivative, b
(`)

. Recall the previous manipulation of the integral constraint gave
a linear relation between b and c̃, with a restriction was accounted for in the construction
of the matrix K∗. In the problem at hand there no constraints, therefore we use the matrix
K defined in eq. (D.36). Finally, notice that we can compute the `-th derivative of sm(u, v)
by simply iterating ` times the procedure previous used for the first order derivative, with a
slight modification of the matrices involved. In fact, the size of the matrices need to shrink
at each derivation step (in fact, the degree of a spline determines the length of its coefficient
vector). Therefore, by indexing each matrix with a subscript corresponding to the order of
the derivative, we obtain for the `-th order derivative (similar to eq. (D.49)):

b
(`)

= S`b =

[
`

∏
h=1

Dh

[
EhT f

h − FhTl
h

]
Kh

]
b . (D.59)

All the definitions are provided below in eq. (D.60), (D.62), (D.63), (D.64), (D.65). Notice
however that they are just simple generalisations of the matrices used when we dealing with
the integral constraint: in fact in that case we were considering a first order derivative, while
here we are considering a `-th order derivative. The only significant difference consists in
the substitution of the matrix K with the difference operator matrix Kh defined in eq. (D.62).
Let {e−m+h, . . . , eg} be the canonical basis of the space of (g + m + 1− h)× (g + m + 1− h)
matrices, with h = 1, . . . , `. The block diagonal (g + m + 1− h)2 × (g + m + 1− h)2 matrix
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Dh is given by:

Dh =
g

∑
i=−m+h

eie′i ⊗Di
h =


D−m+h

h
D−m+h+1

h
. . .

Dg
h

 , (D.60)

where each block Dj
h, for j = −m + h, . . . , g, h = 1, . . . , `, is a (g + m + 1− h)× (g + m + 1−

h) diagonal matrix:

Dj
h = diag

(
(m + 1− h)2

λ−m+h,j+m+1−h − λ−m+h,j
,

(m + 1− h)2

λ−m+h+1,j+m+1−h − λ−m+h+1,j
, . . . ,

(m + 1− h)2

λg,j+m+1−h − λg,j

)
.

(D.61)
Notice that when ` = 1 and the original spline has degree m + 1 we are back in the previous
case. As previously noted, in dealing with derivatives without constraints, the matrix K
can be substituted by the difference operator matrix defined in eq. (D.42). It has the same
structure and entries for each h = 1, . . . , `, but with different size. Since we are dealing with
the iterative vectorisation of a matrix, we must account that at each derivative the last row of
the original matrix is lost due to differentiation. This is reflected in a reduction of the number
of rows Kh by a factor of hN at each step, where N is the number of columns of the original
matrix. Finally, since differencing is performed iteratively, the vector to be differenced is the
outcome of the previous iteration, hence its length (which is equal to the number of columns
of Kh) corresponds to the number of rows of Kh plus hN. Summarizing, for h = 1, . . . , ` we
define the (g + m + 1)(g + m + 1− h)× (g + m + 1)(g + m + 2− h) matrix:

Kh =

−1 1
. . . . . .
−1 1

 . (D.62)

Similarly, she selection matrices T f
h , Tl

h, with h = 1, . . . , `, have the structure as T f , Tl, but
their size is (g + m + 1− h)2 × (g + m + 1)(g + m + 1− h). They are defined as follows:

T f
h =

 1 0 . . . 0
. . . ...

...
1 0 . . . 0

 Tl
h =

 0 . . . 0 1
...

... . . .
0 . . . 0 1

 . (D.63)

Finally, the matrices E and F are generalized to obtain the (g+m+ 1− h)2× (g+m+ 1− h)2

block diagonal matrices:

Eh =
g

∑
i=−m+h

eie′i ⊗ Ei
h =


E−m

h
E−m−1

h
. . .

Eg
h

 , (D.64)

Fh =
g

∑
i=−m+h

eie′i ⊗ Ei−1
h =


E−m−1

h
E−m

h
. . .

Eg−1
h

 , (D.65)
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where each Ej
h, with j = −m− 1 + h, . . . , g, h = 1, . . . , `, is the (g + m + 1− h)× (g + m +

1− h) diagonal matrix:

Ej
h = diag

(
1

λ1,j − λ−m+h,j
,

1
λ2,j − λ−m+h+1,j

, . . . ,
1

λg+m+1−h,j − λg,j

)
. (D.66)

To sum up, we can re-write the first addendum of the objective function of the optimization
problem in eq. (D.55) in compact form as follows:

J1
` (b) = b

(`)′
Mm,`b

(`)
= b

′
S′`Mm,`S`b . (D.67)

Putting together eq. (D.67) and (D.56) we obtain the following matrix representation of the
objective function of the optimisation problem in eq. (4.23):

J`(b) = b
′
S′`Mm,`S`b + α

(
z− Cm+1(u, v)b

)′
W
(

z− Cm+1(u, v)b
)

. (D.68)

We can now exploit the linear relation obtained in eq. (D.49) by working out the integral con-
straint and substitute it in eq. (D.68). This transforms the constrained optimization problem
in eq. (4.23) into an unconstrained optimisation problem for c̃, with objective function:

J`(c̃) = c̃′A′D′S′`Mm,`S`DAc̃ + α
(

z− Cm+1(u, v)DAc̃
)′

W
(

z− Cm+1(u, v)DAc̃
)

.
(D.69)

The system of first order necessary conditions for an optimum is obtained from:

dJ`(c̃)
dc̃′

= 2A′D′S′`Mm,`S`DAc̃− 2αA′D′Cm+1(u, v)′Wz

+ 2αA′D′Cm+1(u, v)′WCm+1(u, v)DAc̃ = 0 . (D.70)

Define the following variables for easing the notation:

Nm,` = A′D′S′`Mm,`S`DA ,

H(u, v) = Cm+1(u, v)DA .

Therefore, one gets:

Nm,`c̃ + αH(u, v)′WH(u, v)c̃ = αH(u, v)′Wz[
Nm,` + αH(u, v)′WH(u, v)

]
c̃ = αH(u, v)′Wz . (D.71)

If the condition of the Rouché-Capelli theorem for the system to admit solution is satisfied
and the matrix

[
Nm,` + αH(u, v)′WH(u, v)

]
has full rank, then the system has a unique

solution c̃∗. By contrast, if the matrix is singular the problem admits an infinite number of
solutions which can be obtained by computing the Moore-Penrose pseudo-inverse (denoted
by †):

c̃∗ = α
[
Nm,` + αH(u, v)′WH(u, v)

]† H(u, v)′Wz , (D.72)

with a slight abuse of notation. Among this set of solutions, we choose the one with smallest
norm. As a final step, we use eq. (D.49) and plug-in the optimal value of c̃ for obtaining the
optimal value of the coefficients b

∗
:

b
∗
= DAc̃∗ . (D.73)
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D.2.2 Eigenproblem

In the following we show the computations required for obtaining eq. (4.29). In this section,
differently from the previous ones, we explicitly denote all the arguments of a function for
making notation clearer. Thus, for example, we have that f̆t(·) = f̆t(·, ·), where the first is
follows the notation of the previous sections, while the second is according to the notation
of this section. We use the standard estimator for the sample covariance (alternative non-
parametric estimators have been proposed by Hall et al. (2006), Li and Hsing (2010), Yao
et al. (2005) and Staniswalis and Lee (1998)), that is:

v(l1, m1, l2, m2) =
1
T

T

∑
t=1

f̆t(l1, m1) f̆t(l2, m2) . (D.74)

Then, the eigenproblem can be formulated as follows, for j = 1, 2, . . .:∫ b1

a1

∫ b2

a2

v(·, ·, l2, m2)ξ j(l2, m2) dl2 dm2 = ρjξ j(·, ·) . (D.75)

In order to solve this problem, we choose to express the eigenfunctions as finite linear com-
binations of the same set of basis functions used for the functions f̆t(·, ·), that is the basis
B-spline functions ψ(·, ·) = (ψ1(·, ·), . . . , ψK(·, ·))′ in eq. (4.26). Define the coefficient vectors
aj = (aj,1, . . . , aj,K)

′. To summarize, we have:

f̆t(·, ·) = d′tψ(·, ·) =
K

∑
k=1

dt,kψk(·, ·) , (D.76)

ξ j(·, ·) = a′jψ(·, ·) =
K

∑
k=1

aj,kψk(·, ·) . (D.77)

By stacking all data together in f̆(·, ·) = ( f̆1(·, ·), . . . , f̆T(·, ·))′ and D = (d1, . . . , dT), we
obtain:

f(·, ·) = Dψ(·, ·) . (D.78)

We can thus rewrite eq. (D.75) in matrix notation:

1
T

∫ b

a

∫ b

a
ψ(·, ·)′D′Dψ(l2, m2)ψ(l2, m2)

′aj dl2 dm2 = ρjψ(·, ·)′aj (D.79)

1
T

ψ(·, ·)′D′D
[∫ b

a

∫ b

a
ψ(l2, m2)ψ(l2, m2)

′ dl2 dm2

]
aj = ρjψ(·, ·)′aj , (D.80)

then define the matrix of inner products:

M =
∫ b

a

∫ b

a
ψ(l2, m2)ψ(l2, m2)

′ dl2 dm2 =

〈ψ1(·, ·), ψ1(·, ·)〉 . . . 〈ψ1(·, ·), ψK(·, ·)〉
...

...
〈ψK(·, ·), ψ1(·, ·)〉 . . . 〈ψK(·, ·), ψK(·, ·)〉


(D.81)

〈ψi(·, ·), ψj(·, ·)〉 =
∫ b

a

∫ b

a
ψi(l, m)ψj(l, m) dl dm , (D.82)

thus obtaining:
T−1D′DMaj = ρjaj . (D.83)
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In order to obtain a positive semi-definite matrix, we apply the linear transformation uj =

M1/2aj, where A1/2 is the principal square root of the positive definite matrix A. Then,
re-write the previous equation as an eigenproblem for uj as follows:

T−1M1/2D′DM1/2uj = ρjuj , (D.84)

which is a standard multivariate eigenproblem for the matrix T−1M1/2D′DM1/2. The num-
ber of components to take, J, is determined by the fraction of variability explained: we sort
the estimated eigenvalues ρ̂j, for j = 1, 2, . . ., in decreasing order. Then, we fix a threshold d̄
and retain all the pairs of eigenvalues and eigenvectors until the corresponding cumulated
proportion of explained variability reaches, that is J = arg minj{∑j ρ̂j ≥ d̄}.

D.3 Additional plots

FIGURE D.1: First differenced series of S&P500 (left) and NASDAQ (right).

FIGURE D.2: Estimated time series (solid, blue) and forecast (solid, red) with 95% confidence intervals
(dashed, black) of each entry of the vector of fPCA scores {β̂t}t,from j = 1 (top left) to j = J (bottom).

D.4 Bandwidth selection

In this section we present the estimation results under a different specification of the band-
width parameter m. We defined two equally spaced discrete grids, Mn

1 between 0.01 and
0.1 andMn

2 between 0.01 and 0.3, and for each grid we specify a length of n = 6 or n = 12
points. Therefore, we have in total four different cases M6

1,M12
1 ,M6

2,M12
2 . We estimated

the copula pdf in each period t = 1, . . . , T for each value of m in each grid and, then we
compute the optimal bandwidth based on least squares cross validation method (LSCV).
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The least squares cross validation criterion (see Silverman (1986), Wand and Jones (1994))
to be minimized is given by:

LSCV(m) =
∫

f̂m(y) dy− 2
N

N

∑
i=1

f̂m;−i(xi) , (D.85)

where

f̂m;−i(x) =
1

N − 1

N

∑
j 6=i
Km(x− yj) (D.86)

is the leave-one-out estimate of the pdf. By minimizing the LSCV(m) criterion for each
period, we obtain T = 38 bandwidths. Finally, we choose their mean as the value of m to be
used in the application (the results are similar for all the four grids).

We checked also the results of the procedure for m = 0.05 and Figs. D.4-D.10 report the
corresponding outcome. We considered also cases for values higher values of the bandwidth
above 0.05, by using m = 0.07 and m = 0.11. The results highlighted that such choices lead
to clear oversmoothing, thus we not report here the plots.

FIGURE D.6: Estimated time series (solid, blue) and forecast (solid, red) with 95% confidence intervals
(dashed, black) of each entry of the vector of fPCA scores {β̂t}t,from j = 1 (top left) to j = 4 (bottom).
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FIGURE D.7: Contour plots (first and third row) and the corresponding 3D density plot (second
and fourth row) of the forecasted bivariate copula pdfs, approximated via fPCA, for each horizon
h = 1, . . . , 5 (first and second rows) and h = 6, . . . , 10 (third and fourth rows), starting from the

top-left panel.

FIGURE D.8: Upper (left) and lower (right) tail dependence coefficients of the bi-
variate time series (xt, yt), for t = 1, . . . , 38 (x-axis). Each curve corresponds to a

different threshold u = 0.01, 0.02, . . . , 0.20.

FIGURE D.9: Upper (left) and lower (right) tail dependence coefficients of the bi-
variate time series (xt, yt), for t = 1, . . . , 38 (x-axis), threshold u = 0.10.
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FIGURE D.10: Upper (left) and lower (right) tail dependence coefficients of the
forecasted bivariate copula pdf cT+h(·), for h = 1, . . . , 10 (x-axis), threshold u =

0.10.
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KIDZIŃSKI, L., P. KOKOSZKA, AND N. M. JOUZDANI (2016): “Principal component analysis
of periodically correlated functional time series,” arXiv preprint arXiv:1612.00040.

KIERS, H. A. (2000): “Towards a standardized notation and terminology in multiway anal-
ysis,” Journal of Chameometrics, 14, 105–122.

KIM, C.-J. AND C. R. NELSON (1998): “Business cycle turning points, a new coincident
index, and tests of duration dependence based on a dynamic factor model with regime
switching,” Review of Economics and Statistics, 80, 188–201.

KIVELÄ, M., A. ARENAS, M. BARTHELEMY, J. P. GLEESON, Y. MORENO, AND M. A.
PORTER (2014): “Multilayer networks,” Journal of Complex Networks, 2, 203–271.

KIVELÄ, M., R. K. PAN, K. KASKI, J. KERTÉSZ, J. SARAMÄKI, AND M. KARSAI (2012):
“Multiscale analysis of spreading in a large communication network,” Journal of Statistical
Mechanics: Theory and Experiment, 2012, P03005.



BIBLIOGRAPHY 209

KLAASSEN, F. (2002): “Improving GARCH volatility forecasts with regime-switching
GARCH,” in Advances in Markov-Switching Models, Springer, 223–254.

KLEPSCH, J., C. KLÜPPELBERG, AND T. WEI (2017): “Prediction of functional ARMA pro-
cesses with an application to traffic data,” Econometrics and Statistics, 1, 128–149.

KOH, K., S.-J. KIM, AND S. BOYD (2007): “An interior-point method for large-scale l1-
regularized logistic regression,” Journal of Machine learning research, 8, 1519–1555.

KOKOSZKA, P. (2012): “Dependent functional data,” ISRN Probability and Statistics.

KOLACZYK, E. D. (2009): Statistical analysis of network data: methods and models, Springer
Science & Business Media.

KOLAR, M., L. SONG, A. AHMED, AND E. P. XING (2010): “Estimating time-varying net-
works,” The Annals of Applied Statistics, 4, 94–123.

KOLDA, T. G. (2006): “Multilinear operators for higher-order decompositions.” Tech. rep.,
Sandia National Laboratories.

KOLDA, T. G. AND B. W. BADER (2009): “Tensor decompositions and applications,” SIAM
Review, 51, 455–500.

KOLDA, T. G., B. W. BADER, AND J. P. KENNY (2005): “Higher-order web link analysis us-
ing multilinear algebra,” in Fifth IEEE International Conference on Data Mining, IEEE Com-
puter Society, 242–249.

KÖNIG, M. D., D. ROHNER, M. THOENIG, AND F. ZILIBOTTI (2017): “Networks in conflict:
theory and evidence from the great war of Africa,” Econometrica, 85, 1093–1132.

KOOP, G. AND D. KOROBILIS (2016): “Model uncertainty in panel vector autoregressive
models,” European Economic Review, 81, 115–131.

KOOP, G., D. KOROBILIS, AND D. PETTENUZZO (2018): “Bayesian compressed vector au-
toregressions,” Journal of Econometrics.

KOROBILIS, D. (2013a): “Hierarchical shrinkage priors for dynamic regressions with many
predictors,” International Journal of Forecasting, 29, 43–59.

——— (2013b): “VAR forecasting using Bayesian variable selection,” Journal of Applied
Econometrics, 28, 204–230.

——— (2016): “Prior selection for panel vector autoregressions,” Computational Statistics &
Data Analysis, 101, 110–120.

KOSTAKOS, V. (2009): “Temporal graphs,” Physica A: Statistical Mechanics and its Applications,
388, 1007–1023.

KRIVITSKY, P. N. AND M. S. HANDCOCK (2014): “A separable model for dynamic net-
works,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 29–46.

KROONENBERG, P. M. (2008): Applied multiway data analysis, John Wiley & Sons.

KRUIJER, W., J. ROUSSEAU, AND A. VAN DER VAART (2010): “Adaptive Bayesian density
estimation with location-scale mixtures,” Electronic Journal of Statistics, 4, 1225–1257.

LAMBERT, D. (1992): “Zero-inflated Poisson regression, with an application to defects in
manufacturing,” Technometrics, 34, 1–14.

LAURITZEN, S. L. (1996): Graphical Models, Clarendon Press.



210 BIBLIOGRAPHY

LEE, N. AND A. CICHOCKI (2016): “Fundamental tensor operations for large-scale data
analysis in tensor train formats,” arXiv preprint arXiv:1405.7786.

LENZEN, M., L.-L. PADE, AND J. MUNKSGAARD (2004): “CO2 multipliers in multi-region
input-output models,” Economic Systems Research, 16, 391–412.

LENZEN, M., R. WOOD, AND T. WIEDMANN (2010): “Uncertainty analysis for multi-region
input–output models–a case study of the UK’s carbon footprint,” Economic Systems Re-
search, 22, 43–63.

LI, L. AND X. ZHANG (2017): “Parsimonious tensor response regression,” Journal of the
American Statistical Association, 112, 1131–1146.

LI, Y. AND T. HSING (2010): “Uniform convergence rates for nonparametric regression and
principal component analysis in functional/longitudinal data,” The Annals of Statistics, 38,
3321–3351.

LIEBL, D. (2010): “Modeling hourly electricity spot market prices as non stationary func-
tional times series,” Tech. rep., University Library of Munich, Germany.

——— (2013): “Modeling and forecasting electricity spot prices: a functional data perspec-
tive,” The Annals of Applied Statistics, 7, 1562–1592.

LINDQUIST, M. A. (2008): “The statistical analysis of fMRI data,” Statistical science, 23, 439–
464.

LOÈVE, M. (1945): “Fonctions aléatoires de second ordre,” Tech. Rep. 220.

LOF, M. AND T. MALINEN (2014): “Does sovereign debt weaken economic growth? A panel
VAR analysis,” Economics Letters, 122, 403–407.

LOPES, H. F. (2014): “A tutorial on computation of Bayes factors,” INSPER working paper,
134.

LOVE, I. AND L. ZICCHINO (2006): “Financial development and dynamic investment behav-
ior: evidence from panel VAR,” The Quarterly Review of Economics and Finance, 46, 190–210.

LOVELOCK, D. AND H. RUND (1989): Tensors, differential forms, and variational principles,
Courier Corporation.

LYCHE, T. AND K. MORKEN (2008): Spline methods draft, Department of Informatics, Center
of Mathematics for Applications, University of Oslo.

MACHALOVÀ, J. (2002a): “Optimal interpolating and optimal smoothing spline,” Journal of
Electrical Engineering, 53, 79–82.

——— (2002b): “Optimal interpolatory splines using B-spline representation,” Acta Univer-
sitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 41, 105–118.

MACHALOVÀ, J., K. HRON, AND G. S. MONTI (2016): “Preprocessing of centred logratio
transformed density functions using smoothing splines,” Journal of Applied Statistics, 43,
1419–1435.

MAGNUS, J. R. AND H. NEUDECKER (1999): Matrix differential calculus with applications in
statistics and econometrics, Wiley, New York.

MAJEWSKI, A. A., G. BORMETTI, AND F. CORSI (2015): “Smile from the past: a general
option pricing framework with multiple volatility and leverage components,” Journal of
Econometrics, 187, 521–531.

MALVERN, L. E. (1986): Introduction to the mechanics of a continuous medium, Englewood.



BIBLIOGRAPHY 211

MANCEUR, A. M. AND P. DUTILLEUL (2013): “Maximum likelihood estimation for the ten-
sor normal distribution: algorithm, minimum sample size, and empirical bias and disper-
sion,” Journal of Computational and Applied Mathematics, 239, 37–49.

MANNER, H. AND O. REZNIKOVA (2012): “A survey on time-varying copulas: specification,
simulations, and application,” Econometric Reviews, 31, 654–687.

MAZZARISI, P., P. BARUCCA, F. LILLO, AND D. TANTARI (2017): “A dynamic network
model with persistent links and node-specific latent variables, with an application to the
interbank market,” arXiv preprint arXiv:1801.00185.

MEINSHAUSEN, N. AND P. BÜHLMANN (2006): “High-dimensional graphs and variable
selection with the lasso,” The Annals of Statistics, 1436–1462.

MELE, A. (2017): “A structural model of Dense Network Formation,” Econometrica, 85, 825–
850.

MENAFOGLIO, A., A. GUADAGNINI, AND P. SECCHI (2014): “A kriging approach based
on Aitchison geometry for the characterization of particle-size curves in heterogeneous
aquifers,” Stochastic Environmental Research and Risk Assessment, 28, 1835–1851.

MEYFROIDT, P., T. K. RUDEL, AND E. F. LAMBIN (2010): “Forest transitions, trade, and
the global displacement of land use,” Proceedings of the National Academy of Sciences, 107,
20917–20922.

MISTRULLI, P. E. (2011): “Assessing financial contagion in the interbank market: maximum
entropy versus observed interbank lending patterns,” Journal of Banking & Finance, 35,
1114–1127.

MITCHELL, T. J. AND J. J. BEAUCHAMP (1988a): “Bayesian variable selection in linear re-
gression,” Journal of the American Statistical Association, 83, 1023–1032.

——— (1988b): “Bayesian variable selection in linear regression,” Journal of the American
Statistical Association, 83, 1023–1032.

MIWAKEICHI, F., E. MARTÍNEZ-MONTES, P. A. VALDÉS-SOSA, N. NISHIYAMA,
H. MIZUHARA, AND Y. YAMAGUCHI (2004): “Decomposing EEG data into space–time–
frequency components using parallel factor analysis,” NeuroImage, 22, 1035–1045.

MONTAGNA, M. AND C. KOK (2016): “Multi-layered interbank model for assessing sys-
temic risk,” Tech. rep., ECB Working Paper.

MURASE, Y., J. TÖRÖK, H.-H. JO, K. KASKI, AND J. KERTÉSZ (2014): “Multilayer weighted
social network model,” Physical Review E, 90, 052810.

NAIK, P., M. WEDEL, L. BACON, A. BODAPATI, E. BRADLOW, W. KAMAKURA, J. KREULEN,
P. LENK, D. M. MADIGAN, AND A. MONTGOMERY (2008): “Challenges and opportunities
in high-dimensional choice data analyses,” Marketing Letters, 19, 201.

NAKAJIMA, J. AND M. WEST (2015): “Dynamic network signal processing using latent
threshold models,” Digital Signal Processing, 47, 5–16.

NEAL, R. M. (1994): “Contribution to the discussion of “Approximate Bayesian inference
with the weighted likelihood bootstrap” by Newton MA, Raftery AE,” Journal of the Royal
Statistical Society: Series A (Methodological), 56, 41–42.

——— (2011): “MCMC using Hamiltonian dynamics,” in Handbook of Markov Chain Monte
Carlo, ed. by S. Brooks, A. Gelman, J. L. Galin, and X.-L. Meng, Chapman & Hall /CRC,
chap. 5.



212 BIBLIOGRAPHY

NELSEN, R. B. (2013): An introduction to copulas, vol. 139, Springer Science & Business Media.

NICHOLSON, W., J. BIEN, AND D. MATTESON (2016): “High dimensional forecasting via
interpretable vector autoregression,” ArXiv e-prints.

NICHOLSON, W. B., D. S. MATTESON, AND J. BIEN (2017): “VARX-L: structured regular-
ization for large vector autoregressions with exogenous variables,” International Journal of
Forecasting, 33, 627–651.

NOWICKI, K. AND T. A. B. SNIJDERS (2001): “Estimation and prediction for stochastic block-
structures,” Journal of the American Statistical Association, 96, 1077–1087.

OH, D. H. AND A. J. PATTON (2017): “Time-varying systemic risk: evidence from a dynamic
copula model of CDS spreads,” Journal of Business & Economic Statistics, 1–15.

OHLSON, M., M. R. AHMAD, AND D. VON ROSEN (2013): “The multilinear normal dis-
tribution: introduction and some basic properties,” Journal of Multivariate Analysis, 113,
37–47.

OSELIO, B., A. KULESZA, AND A. O. HERO (2014): “Multi-layer graph analysis for dynamic
social networks,” IEEE Journal of Selected Topics in Signal Processing, 8, 514–523.

PALLA, K., F. CARON, AND Y. W. TEH (2016): “Bayesian nonparametrics for sparse dynamic
networks,” arXiv preprint arXiv:1607.01624.

PAN, R. (2014): “Tensor transpose and its properties,” arXiv preprint arXiv:1411.1503.

PARK, T. AND G. CASELLA (2008): “The Bayesian lasso,” Journal of the American Statistical
Association, 103, 681–686.

PATTON, A. J. (2006a): “Estimation of multivariate models for time series of possibly differ-
ent lengths,” Journal of Applied Econometrics, 21, 147–173.

——— (2006b): “Modelling asymmetric exchange rate dependence,” International Economic
Review, 47, 527–556.

——— (2012): “A review of copula models for economic time series,” Journal of Multivariate
Analysis, 110, 4–18.

PENSKY, M. (2016): “Dynamic network models and graphon estimation,” arXiv preprint
arXiv:1607.00673.

PETERSEN, A. AND H.-G. MÜLLER (2016): “Functional data analysis for density functions
by transformation to a Hilbert Space,” The Annals of Statistics, 44, 183–218.

PETRIS, G. (2013): “A Bayesian framework for functional time series analysis,” arXiv preprint
arXiv:1311.0098.

POLEDNA, S., J. L. MOLINA-BORBOA, S. MARTÍNEZ-JARAMILLO, M. VAN DER LEIJ, AND
S. THURNER (2015): “The multi-layer network nature of systemic risk and its implications
for the costs of financial crises,” Journal of Financial Stability, 20, 70–81.

POLSON, N. G., J. G. SCOTT, AND J. WINDLE (2013): “Bayesian inference for logistic models
using Pólya–Gamma latent variables,” Journal of the American Statistical Association, 108,
1339–1349.

PRESS, W. H., S. A. TEUKOLSKY, W. T. VETTERLING, AND B. P. FLANNERY (2007): Numeri-
cal recipes: the art of scientic computing, Cambridge University Press.

RAJARATNAM, B., H. MASSAM, AND C. M. CARVALHO (2008): “Flexible covariance estima-
tion in graphical Gaussian models,” The Annals of Statistics, 36, 2818–2849.



BIBLIOGRAPHY 213

RAMSAY, J. O. AND B. W. SILVERMAN (2005): Functional data analysis, Springer Series in
Statistics, Springer, second edition ed.

RASTELLI, R., N. FRIEL, AND A. E. RAFTERY (2016): “Properties of latent variable network
models,” Network Science, 4, 407–432.

RAVIKUMAR, P., M. J. WAINWRIGHT, AND J. D. LAFFERTY (2010): “High-dimensional Ising
model selection using l1-regularized logistic regression,” The Annals of Statistics, 38, 1287–
1319.

ROBERT, C. P. AND G. CASELLA (2004): Monte Carlo statistical methods, Springer.

ROBERT, C. P. AND D. WRAITH (2009): “Computational methods for Bayesian model
choice,” in AIP Conference Proceedings, vol. 1193, 251–262.

ROBINS, G. AND P. PATTISON (2001): “Random graph models for temporal processes in
social networks,” Journal of Mathematical Sociology, 25, 5–41.

ROBINS, G., P. PATTISON, Y. KALISH, AND D. LUSHER (2007): “An introduction to expo-
nential random graph (p*) models for social networks,” Social networks, 29, 173–191.
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