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Introduction

The objective of this thesis is to develop and implement a Financial Trading

System1 (FTS ) able to operate autonomously into the financial market. The

developed FTS has to be able to manage, without supervision, an invested capital

and to obtain positive performances.

The structure of the FTS is based on the implementation of an algorithm, the

Q-Learning algorithm2, belonging to the Reinforcement Learning techniques, that is

a branch of the artificial intelligence. The considered algorithm is able to real time

optimize its behavior on the basis of the feedbacks received by the environment in

which it operates.

The theoretical framework on which the developed FTS is based, allowing for

effective trading activities, is the Adaptive Market Hypothesis (AMH), which can

be viewed as an evolution of the Efficient Market Hypothesis (EMH).

The FTS is applied on five real stock prices time series and on an artificial one.

For each time series many configurations are tried with different parameters values

characterizing each configuration. Moreover, many simulations are carried out

for each configuration, in order to identify the most profitable, which is suitable

for any financial asset. The structure of the thesis is developed in five chapters.
1A Financial Trading System (FTS) is defined as a system able to automatically make and

submit orders on the financial market on the basis of predefined rules.
2The Q-Learning algorithm is an algorithm able to optimize, in real time, its behavior on the

basis of the responses it receives from the surrounding environment.
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The first chapter is a description of the theory which justifies financial trading

activities, that is the Adaptive Market Hypothesis (AMH), which derives from the

Efficient Market Hypothesis (EMH). In the same chapter is briefly described the

objective of the thesis and an historical overview of the Reinforcement Learning is

provided. The second chapter provides an accurate description of all the features

of Reinforcement Learning, which will be useful to develop and implement the

utilized FTS. In the third chapter, the specific elements and the values of the

parameters, characterizing the FTS, are presented and justified. Furthermore, the

six time series are described, reporting the main descriptive statistics and some

graphical representations characterizing them. In the fourth chapter are presented

all the results of all the configurations applied on each time series. The results are

compared and explained through the use of some important statistics and graphs.

The fifth chapter consists in the conclusions of the thesis.
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Chapter 1

Market Hypothesis’ evolution

This chapter is focused on the theory of financial market efficiency, Efficient

Market Hypothesis, and on another one, Adaptive Market Hypothesis, that can

be viewed as an evolution of the former. The latter theory finds its roots in evo-

lutionary principles and it is introduced as it justifies the possibility of effective

trading activities. In the second part of the chapter, the objective of the thesis

is described, that is the development of a Financial Trading System through the

implementation of the Q-Learning algorithm. The algorithm is considered as an

agent that takes financial decisions and receives feedbacks from the environment in

which it operates, that is the financial market. Finally, the last paragraph consists

in an brief historical overview of the artificial intelligent branch here considered,

that is the Reinforcement Learning. It is provided a brief description of the birth

and evolution of the main features constituting the Reinforcement Learning, that is

the trial and error, the optimal control problem and the temporal-difference learning

methods.
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The capital market’s main purpose is the allocation of the capital stock, owned

by the economy, among its partecipants. It can be viewed as an ecosystem in which

different market agents3 interact among them in order to seek profit opportunities.

This interrelation among market agents and market resources define the market

ecology. Indeed, ecology studies the interaction among organisms and the environ-

ment in which they act.

Here, I consider two theories relating the market ecology : one is the evolution of

the another.

1.1 Efficient Market Hypothesis (EMH )

The more powerful and enduring theory regarding financial markets is the Effi-

cient Market Hypothesis (EMH). The illustration of this theory may be exemplified

through an old joke, widely used among economists, that I will report from the

paper of Andrew W. Lo:

An economist is strolling down the street with a companion. They come

upon a $100 bill lying on the ground, and as the companion reaches down

to pick it up, the economist says, "Don’t bother, if it were a genuine

$100 bill, someone would have already picked it up."

This example of economic logic is useful to explain the EMH, which states that

market prices, at any time, fully reflect all available information. Consequently, as

new information comes into the market, such as the autenticity of the $100 bill

on the ground, it is instantaneously exploited and incorporated in market prices,

eliminating, in such a way, any profit opportunity.

So, in an efficient market, price changes are unpredictable as they incorporate all

information. Assuming a discrete-time framework, an asset price variation in two

subsequent time instants can be described as a stochastic process in which the

variation is due to an unexpected new information:
3Market agents may be pension funds, hedge funds, financial institutions and retail investors.
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Pt+1 = E(P̃t+1|⌦t) + "̃t+1

where t and t+ 1 represent the two subsequent time instants, Pt+1 is the price of

an asset at time t+ 1, E(·) is the expectation operator, P̃t+1 is the random variable

"financial asset price" at time t+ 1, ⌦t is the set of information available at time t,

"̃t+1 is the random variable representing the financial asset prediction error at time

t+ 1, with E("̃t+1) = 0.

The conditional expectation E(P̃t+1|⌦t) is meant to imply that all the information

available in t is fully utilized in determining the price at time t, allowing for an

error term.

This efficient market model has two special characterization, that is the Submartin-

gale Model and the Random Walk Model [11].

Submartingale Model is defined as follows:

E(P̃t+1|⌦t) � Pt.

The expression above states that the generating prices sequence follows

a submartingale4 with respect to the available information in each time

instant, ⌦t. So, the submartingale expects the price in time instant

t+ 1, that is projected on the basis of the available information ⌦t, to

be equal to or greater than the current price.

An important implication, derived from the implicit assumption that the

conditional returns on ⌦t are non-negative, suggests that any trading

strategy can not be greater than a buying-and-holding policy.

Random Walk Model is based on the statement that the current price

"fully reflects" all available information. This assumption implies that
4A submartingale is a stochastic process which gives the expected price of the next period,

given the current informations, equal to or greater than the current price.

5



price changes, in subsequent time instants, are independent and identi-

cally distributed. So the model can be represented as follows:

E(P̃t+1|⌦t) = E(P̃t+1).

The expression states that the mean of the distribution of the stock

price is independent of the available information ⌦t, consequently also

the entire distribution of the generating stock prices process is.

So, the more efficient market is the one that generates the more random sequence

of prices and, the most efficient market among all is the one in which price changes

are random and unpredictable. This derives directly from the competition among

market partecipants which attempt to profit even from the smallest information.

In doing so, they incorporate the information into the market price eliminating,

in such a way, any profit opportunity that justify their trades. If this happens

instantaneously, no profit can be gathered as any new information has been already

incorporated (as the $100 bill on the ground).

One of the central principle of modern financial economics concerns the necessity

of taking into consideration the risk aversion of investors5. This yielded to a

neoclassical version of the EMH in which price changes are unforcastable as they

depend not only by the available information but also by the weight of investors’

marginal utilities. So, the general belief can be summarized in the following three

points [15]:

a. each investor forms expectations rationally6, that is she/he makes optimal

decisions, based on its own preferences, by trading off costs and benefits

weighted by the statistically correct probabilities and marginal utilities;
5A risk averse investor is an investor who prefers to avoid loss rather than making a gain. Such

investor prefers investments with a known and low degree of risk and, consequently, a low return
rather than a higher return with a higher and uncertain risk.

6A rational investor is an investor who tries to maximize her/his own needs and that acts in
her/his own interests. She/he makes rational expectations, that are expectations based on all
available information, by trading off the costs and benefits among all possible action in order to
choose the best one.
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b. markets aggregate information in an efficient way;

c. equilibrium prices incorporate all available information.

1.2 The Three P’s

The rational financial paradigm exposed above can be summarized by The Three

P’s of Total Risk Management [13], namely prices, probabilities and preferences.

The interaction among prices, probabilities and preferences has its roots in the

most fundamental idea of modern economics, that is the law of supply and demand.

According to this principle, the price and the quantity of any traded commodity

is determined by the crossing of the supply and demand curves. The demand

curve represents the relationship between the price and the amount of a commodity

that the consumer is able to buy at any given level of price. It is the aggregation

of all individual consumers’ demands, each originated from the optimization of

individual’s preferences, bounded by budget constraints dependent on prices, in-

come, savings, borrowing charges. The supply curve is the relationship between

the price and the quantity producers want to supply at any given level of price. It

is the aggregation of outputs, whose production derives from the optimization of

producers’ production function, subjected to resources restrictions, that depend

on prices, costs of materials, wages and financings. Consequently, the intersection

between the two curves determines the equilibrium point, that is the price-quantity

pair that satisfy both parts, while any other point satisfies only one. As both

consumers and producers determine their consumption and production plans under

uncertainty, as future income and business conditions are estimated, probabilities

affect both sides of the market. Therefore, the interaction among the three P’s form

a general equilibrium, in which demand equals supply, in an uncertain environment,

where rational agents act in order to optimize their own interests.

To determine an equilibrium, only two of the three P’s are sufficient to determine

also the third one. So, given preferences and probabilities of an equilibrium point,

prices can be determined exactly. Alternatevely, an equilibrium in which prices
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and probabilities are known, preferences can be inferred. Otherwise, if prices and

preferences are given, probabilities can be extracted.

Summarizing, if prices contain all available information, the preferences and future

plans of all markets’ partecipants are known, the market environment is perpetually

in equilibrium and stationary7. In practice, however, it is possible to note that the

market is dynamic.

1.3 Sufficient Market Conditions for Efficiency

The EMH requires some conditions to make the market efficient, such as the

lack of transaction costs for financial securities, the free availability of information

to all market partecipants, same view of investors concerning the implications of

present information on current prices and future prices’ probability distribution of

each security. Under these conditions, the market price fully reflects all available

information.

However, these conditions are few realistic in the real financial markets as, for

instance, transaction costs exist, free and available information for all investors

is not feasible and market’s partecipants could have not the same view about the

implications of present and future probabilistic price evolution. Fortunately, these

conditions are sufficient for an efficient market, however not necessary. Indeed, the

market prices still reflect all available information even if there are transaction

costs that tend to obstruct transactions flow. Furthermore, the market is efficient

even if not all, but a suffient number of investors, have access to direct available

information. Finally, market inefficiency can not derive from the disagreement

among investors’ expectations, unless there are investors’ better or worst evaluations

of available information that are already incorporated in market prices [11].

7A stationary market is a system in which the demanded and supplied quantities of goods and
services remain constant over time and consequently also prices, incomes, population size and
resources are kept constant.
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1.4 Degrees of Efficiency

As information is one of the core elements in EMH, it can be classified in three

different levels, based on the degree of information incorporated in the security

prices.

In the first level, called weak efficiency, prices fully reflect only the information

recorded in the past prices time series. Investors can obtain such information

through a technical and quantitative analysis. The second level of market efficiency

is called semi-strong efficiency. Information in this level derives from the fundamen-

tal analysis, that is prices reflect not just information of the weak efficiency level

but also firms’ business public information such as announcement of dividends, of

the last quarter’s earnings, new stock issue, annual reports and so on. The last level

of efficiency is the strong efficiency that incorporates the two previous forms and,

moreover, includes private informations obtained through a painstaking analysis

of the business and the economy. This kind of information can be obtained by

a privileged group of investors that have monopolistic access, as are insider and

private informations, to any relevant information for the price formation.

The assertion behind the weak efficiency hypothesis is that no investor can gather

profits higher than the market ones by studying past security prices. Under the

assumption of the semi-strong efficiency, it is not possible to profit using public

available information. On the basis of the strong efficiency, no investor is able to

make systematic profits from monopolistic information.

Therefore, under the previous assumptions, especially under the strong efficiency,

that includes the other two, the market is perfectly efficient. So, gather more

information is useless and constitutes an expensive activity. Consequently, there is

no reason to trade, as it is not possible to earn systematic profits, and the financial

market would likely collapse.
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1.5 Evolution to the Adaptive Market Hypothesis

(AMH)

The EMH, however, that states that market agents are rational when making

decisions, does not reflect the real financial market. In fact, common feeling suggests

that humans, and therefore market agents, do not always behave rationally when

making decision, especially under uncertainty. Indeed, in taking decisions, market

agents’ behavior is influenced by biases such as overconfidence, overreaction, risk

aversion, herding, mental accounting, miscalibration of probabilities, hyperbolic dis-

counting, regret. This behavioral distorsion, in decision making process, sometimes

results in predictable and financially ruinous behavior, which is likely to bring to

an inefficient market. Consequently, if the market is not efficient, this makes sense

for investors to spend time to gather and trade informations, as security prices are

not immediately and correctly updated with the new information. This gives rise

to profit opportunities that represent a compensation for investors’ effort in gather

and trade information. In this new perspective, the previous efficient market levels,

weak efficiency, semi-strong efficiency and strong efficiency can be viewed as the

speed at which security prices adjust at new information.

The difference between the price adjustement processes in an efficient market and

in a market influenced by behavioral biases, that is partly inefficient market, can

be illustrated in the following figure:

Figure 1.1: Price reaction when bad
news arrive.

Figure 1.2: Price reaction when good
news arrive.
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As soon as bad or good news arrive, in an efficient market, price immediately

handles it and instantly moves to a new level (red line). In this case there is no

margin to act. Instead, in a market in which market partecipants are not rational,

there might be a slow reaction to a new information (blu line) or an overreaction

(green line). In this case the price adjusts itself to the new price level but, in the

meanwhile, there is margin to operate.

To conciliate the EMH with its behavioral critics, a new theory arised, that is the

Adaptive Market Hypothesis (AMH). The AMH is based on a biological evolutionary

perspective8 view of the environment, in this case the financial markets, in which

the economic agents interact and continously evolve [12]. Evolution is a consequence

of changes of environmental conditions that determine a change in market agents’

behavior. The dynamics of evolution make the markets efficient and determine the

wax and wane of financial institutions, investment strategies and institutional and

individual fortunes [15].

This approach can be traced to the recent development in the emerging discipline of

evolutionary psychology that, in applying the evolutionary principles (competition,

reproduction, mutation and natural selection) to social interactions, gives a com-

pelling explanation of certain types of human behaviors, such as altruism, fairness,

ethics, morality. Indeed recently, economist and biologists have begun to expand

their study toward these connections under different perspectives, that is economic

sociobiology, evolutionary game theory, evolutionary economics and economics as a

complex system. Under this perspective is possible to pass from market efficiency

to an evolutionary alternative, that is the Adaptive Market Hypothesis.

In this framework, in which different imperfections exist, the law of natural selection,

or survival of the richest [16], determine the markets and institutions evolution. In

fact, the presence of a high degree of competitiveness of global financial markets

and the huge rewards that the "fittest" traders accumulate, imply that the natural

selection determines the successful investor conventional profile. Market agents

that are unable to adapt themselves to the environment mutation, are eliminated

from the market after suffering a certain level of losses. Therefore, the number
8A biological evolutionary perspective is based on principles such as competition, reproduction,

mutation and natural selection.
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of competitors, their adaptability skills and the presence of profit opportunities,

that characterize the market ecology, are the determinants of the market efficiency

degree. Any counterproductive behavior will be reshaped and modified by the

natural selection to better fit it to the current environment.

As the environment changes more or less continously, the market partecipants have

to be able to adapt themselves to new situations by learning and developing more

suitable behaviors. Such changes in behaviors are driven by changes in individual’s

preferences via the strength of natural selection. In fact, preferences are likely to

change and to be shaped over time by factors internal to the individual, such as

related to the individual’s personality, and external to it, due to environmental

conditions. So, it can be affirmed that behavior is not necessarily intrinsic in every

agent and exogenous from the environment, but its evolution is subjected to the

natural selection in the respective environment. Preferences and market forces are

elements that interact among them, driven by competition, by natural selection

and by the variety of individual and institutional behavior, in order to produce a

dynamic environment.

Under the evolutionary perspective, individuals and institutions are viewed as

organism that improve themselves through the natual selection process, by maxi-

mizing the survival of their "genetic" material. This postulate is opposite to that

of the EMH, that considers individuals’ rational expectation and expected utility

maximization. As individuals are subjected to behavioral biases that decrese their

degree of rationality, they are not capable to reach such kind of optimization. In

fact, it is too costly and computationally expensive. Alternatively to optimization,

humans can look for a degree of satisfaction, not necessarily optimal. This sat-

isfactory point is reached not analitically, but through trial and error and, then,

by a natural selection mechanism. Individuals base their choices on their past

experience and make predictions on the potential optimal, receiving feedbacks from

the environment. These techniques allow individuals to develop some heuristics

in order to solve economic challenges. As long as the economic challenges remain

constant in time, heuristics will adapt in order to achieve a near optimal solution.

However, as the environment changes, the old heuristics will change in order to
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best suit the new conditions. In such cases, it is possible to temporarily observe

improper and suboptimal actions. However, rather than call such behaviors as

irrational, is more proper label them as maladaptive [16]. Consequently, the AMH

theory can be viewed as an evolution of the EMH, that is a combination of the

EMH with evolutionary principles, which key characteristics are the following [16]:

a. Individuals act in their own interest;

b. Individuals commit mistakes;

c. Individuals learn and adapt their behaviors;

d. Competition leads adaptation and innovation;

e. Natural selection shapes market ecology ;

f. Evolution defines the market dynamic.

In both theories individuals act for themselves. In efficient markets individuals do

not make mistakes, and consequently they have no possibility to learn and adapt,

as the environment is stationary and perpetually in equilibrium. However, in the

AMH framework, individuals learn from errors and adapt themselves accordingly.

Adaptation is driven by market forces, that constitute survival key factors. The

interaction among the market agents is driven by natural selection and so, the

environment is a consequence of this process. All the factors that drive evolution,

such as egoism, adaptation, competition, natural selection and environmental states,

are determinants of market dynamic.

The informations derived by the intersection among the environment conditions

and the number and variety of species that constitute the market ecology, are fully

reflected in market prices. The term species identifies different markets’ groups, each

with similar features. For example, one specie may be constituted by pension funds;

another specie might be formed by retail investors; hedge funds are another specie;

market makers a fourth one and so on. If these different species interact among

them, competing for a limited quantity of resuorces, that market is probably higly

efficient. Conversely, if the competition concerns a small number of species for an
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abundant quantity of resources, the market is likely to be less efficient. The quantity

of resources in a given environment is comparable to the profit opportunities in a

given market. The competition depends by the amount of resources present. A

high amount of resources is accompanied by a low degree of competition. Therefore,

to an increase in competition, due to a diminuishing of resources supply or to an

increase in population size, is associated the exhaustion of the former. This will

bring to a population reduction and, in extreme cases, the extinction of certain

species or permanent sources exhaustion, and so a decrease in competition. Then

the cycle will start all over again.

Given that in the AMH framework the environment is dynamic and in continous

evolution, reaching an equilibrium point, which is central to the EMH, here is not

guaranteed. In many cases such equilibrium can not exist or the convergence is

inexorably slow.

From the AMH framework can be derived some concrete and practical implications:

1. The first implication regards the relation between risk and reward. This

relation tends to change over time as it is determined by the magnitude of the

population, and its preferences in market ecology, and by institutional aspects,

such as environmental regulation and tax law. A change in this factors will

probably affect the risk-reward relationship. The logical consequence of this

implication is that the equity risk premium9 will also change over time as the

risk preferences of all market partecipants are not constant but are shaped by

the natural selection forces.

2. In the AMH, contrary to the EMH, gather information makes sense as security

prices are not immediately updated with upcoming informations. This creates

arbitrage10 opportunities, otherwise the market would collapse. As such

opportunities are exploited, they disappear. However, new opportunities

appear continously because of the cycle of life of certain species and because

of the change of institutions and business conditions. Therefore, in the AMH
9The equity risk premium is the reward demanded by investors for investing in equity or in a

stock, so in a risky asset, rather than in a riskless asset.
10Arbitrage is the simultaneous purchase and sale of a security to lock in a profit from an

imbalance in the price.
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framework are observable complex market dynamics, such as trends, episodes

of panic, obsessions, bubbles and crashes that give the reason for an active

portfolio management.

3. The last implication regards investment strategies that can have good per-

formances in certain environments and bad performances in others. The

profitability of strategies created from the exploitation of arbitrage oppor-

tunities can have oscillating trends, so can be more or less profitable over

time.

Therefore, under the perspective that the financial market is dynamic and constantly

in evolution, so the population size tends to change, the investors’ preferences change

and environmental conditions change, in the AMH framework there makes sense

an active portfolio management.

1.6 Aim of the Thesis

It is reasonable to assume that the AMH is valid and so it will be the reference

theoretical framework in which the Financial Trading System (FTS), that I will

develop, will operate. To develop such a FTS, I will implement an algorithm11,

through a software created in MATLAB R� environment, which might be described

as an economic agent able to take any suitable financial decision in the financial

market. To make this FTS profitable, is necessary to provide it with problem solving

capabilities, so to render it "intelligent". Intelligence gives to an economic agent

the ability of think, learn, understand and perceive informations, make judgements,

make logical thoughts. Through this characteristics, intelligence makes an agent

able to adapt herself/himself to the sorrounding environment, by adapting her/his

behaviors to new situations. As I consider an area of artificial intelligence, that

is the Reinforcement Learning, the agent that I consider is an artificial agent12,

subsequently called agent, that will act as a retail or as an institutional investor, so
11An algorithm is an unambigous procedure able to solve a class of operations within a limited

amount of time.
12An artificial agent is an algorithm created to replicate specific features of human agent.
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it must be provided with intelligence. An intelligent agent is an autonomous and

computational entity able to act in an environment in order to reach its objectives.

It optimizes its goals by using all available informations. In particular, it is able to

adapt itself and its actions, in a flexible and rational way, to environmental changes,

in order to overcome any obstacle. This is possible thanks to the capacity of an

intelligent agent to learn, to solve problems, to plan and to make decisions.

Figure 1.3: The agent discloses the environment
and produces action outputs in order to affect it.

([23])

In the figure above is represented the relationship existing between agent and

environment. On the basis of the perception of the environment and on the

available informations about it, an intelligent and rational agent takes some actions

and form intentions, that will affect the environment, trying to maximize agent’s

objectives. However, to reach such objectives, the agent must have the following

characteristics [23] [25]:

a. autonomy : the agent has absolute control upon its behavior and actions;

b. reactivity : it perceives the environment and promptly adapts itself to envi-

ronmental changes;

c. proactiveness : it is able to takes goal-directed initiatives;

d. social ability : it can interact with other agents or humans.

So, an intelligent agent must take financial decisions, such as when to buy an asset,

when to sell it or when to stay out of the market, in order to manage a portfolio in
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a profitable way.

All theories of learning and intelligence are based on the underlying idea of learning

by interacting. In fact, thanks to the interaction with the environment, it is possible

to develop optimal behaviors.

1.7 Historical Threads of Reinforcement Learning

The three main threads of Reinforcement Learning were pursued independently

before they came together into the modern Reinforcement Learning.

One thread, which has its roots into the psychology of animal learning, regards

learning through trial and error. This learning process is at foundation of all

theories of learning and intelligence of all living beings, that discover the unknown

sorrounding environment by trying all the actions and movements available to them.

The learning source consists in the feedback received by the environment, that

could be a reward or a punishment. Consequently, the memory of what is good and

what is bad play a central role in this process, as this will bring to the selection of

actions with a better performance.

The second thread regards the question of optimal control and its solution through

the use of value functions and dynamic programming. Optimal control, which term

was coined in the late 1950s, concerns the problem of designing a controller to

reduce at minimum a measure of dynamic system’s behavior in time. To solve this

kind of problem, several approaches were developed, some of which use the concept

of dynamical system’s states13 and of value function14, also called optimal return

function, in order to define a functional equation that can be solved by a class of

methods called dynamic programming. Dynamic programming was considered the

only suitable method for solving general stochastic optimal control problems15.

The third thread is related to temporal-difference learning methods, based on the
13A dynamical system is a system that evolves over time and, consequently, each state also

changes.
14A value function is a function that evaluates what is good for an agent, in terms of expected

return, in the long run.
15A stochastic problem concerns processes which are driven by randomness and whose generating

model, that is unknown, can be approximated.
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difference between temporally subsequent value estimates. Also the origin of this

thread derives from animal learning psychology.

In the 1980s these three elements were fully brought together and this was essential

for the birth of the modern field of Reinforcement Learning. The 1989 is the

year in which the Q-Learning was developed, as a consequence of the intersection

between the temporal-difference and optimal control threads. Q-Learning is the

method used in this thesis for the development of the algorithm for financial trading.
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Chapter 2

Reinforcement Learning

In this chapter, I will provide a computational approach, that is the Reinforce-

ment Learning, able to solve dynamic optimal stochastic control problems. The

idea behind this method is to learn by interacting directly with the environment,

suitably memorizing past experiences. As a model of the environment is unknown

and, in order to adapt the method to the specific problem to solve, qualifiable as

stochastic control problem, the Temporal Difference Learning methods are used. In

particular the Q-Learning algorithm, belonging to the branch of the temporal dif-

ference methods, is considered and is described in detail in order to be implemented.

Reinforcement Learning consists in learning how to behave in given situations

by interact directly with the surrounding environment. This concept is at the basis

of all theories of learning and intelligence and it is the principal source of knowledge

of the envirnonment. The simplest example might be the infant that discovers the

world around her/him by trying all the actions that she/he can do. The infant,

that is the learner, have not a teacher, but she/he has to learn and memorize the

consequences of her/his actions in order to perform better in the subsequent actions.
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So, the learner has to descover the most suitable actions which bring to the best

consequences by trying them. In this way, the learner uses its experience to improve

its performance over time. The learner, also called agent, has no prior knowledge

about the environment, so she/he is driven by the evaluative feedback, that is the

reward. The reward signal, that can be positive or negative, is the premium or the

loss, consequence of a chosen action. As the learner does not know which actions

to take, she/he must discover which ones maximize the reward by selecting them.

The actions selected affect the immediate reward but also affect the environment

in future situations and, through that, the future rewards. So, maximizing the

immediate reward is not the only aim of the learner, but also subsequent rewards

are. So, the goal of the agent is to perform actions that bring to the maximization

of the long run reward. These two factors, trial and error and delayed reward, are

the most important features of reinforcement learning.

As the agent has no knowledge about the environment, she/he has to grasp the

state of the environment and consequently, on the basis of her/his past experiences,

select the actions that are able to affect her/his own state. In doing so, the agent

must have an objective or objectives concerning the state of the environment. In

her/his decision process must be included the following three aspects:

1. sensation;

2. action;

3. objective.

Unfortunately, there are no examples of optimal behavior that can represent all

the situations in which the agent can act. This fact brings to the one of the chal-

lenges of the Reinforcement Learning, that is the trade-off between exploration and

exploitation16. The agent, in order to get the best results, must have a preference

for actions that she/he already tried in the past and found to be winning. But, to

select such winning actions, the agent has to prove actions never taken before. The

only feedback that she/he receives is the reward. The agent in this way explores
16Exploration consists in the act of exploring the environment while exploitation is the act of

selecting that action, among the explored ones, that gives the higher result.
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the environment by trying different kind of actions, (exploration), in order to select

the best one that gives the better result, (exploitation). As the environment is

generally not stationary and continously changing, the agent has to supervise it and

appropriately react and update her/his strategy. This is the exploration-exploitation

dilemma, and none of them can be pursued without falling at the task [20]. A

balance is needed, so the agent can learn by exploring and can perform well by

exploiting what is already known.

2.1 Markov Decision Process

The problem of Reinforcement Learning can be formalized using the Markov

Decision Process17 (MDP) framework, which determines how the agent interacts

with the environment throughout three signals: a state signal, an action signal and

a scalar reward signal. The environment is everything the agent can not control

and can not change arbitrarly. Here is not assumed that the agent does not know

anything of the environment. Even if the agent has a complete knowledge of the

environment, it still faces a challenging task. For example, we might know how a

Rubik’s cube works, but we still be incapable to solve it. The boundary between

the agent and the environment represents the limit of the absolute control of the

agent and not of its knowledge.

The agent interacts with the environment in order to achieve a goal. It selects the

actions and the environment gives feedback to these actions, in the form of rewards.

In particular, the environment is defined as a descrete time steps t = 0, 1, 2, 3, ....

In each time step the environment is represented by a state, which is a unique

representation of all what is relevant for the problem that is modelled. In each time

state t, the agent gets a representation of the environment’s state, st 2 S, where S

is the set of available states. On the basis of st, the agent selects an action at 2 A,

where A(st) represents all actions available in the state st. Selecting an action at in
17A Markov Decision Process is a formalization of sequential decision making process. In such

a model, the environment is configured as a set of states in which the selection of an action, that
depends only on the current environmental state, has to maximize immediate and future rewards.
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a state st, the system makes a transition from st to a new state st+1. The transition

probability, in the MDP, depends only on the current state, and does not depend

on previous actions and states, that is:

P (st+1|st, at, st�1, at�1, ...) = P (st+1|st, at)

In the current state st, it is incorporated all the necessary informations in order to

take an optimal decision, so it does not matter which states or actions preceded it.

In the subsequent state st+1, the agent receives a reward rt+1 2 R, as a consequence

of the selected action at. The reward represents the evaluation of the one-step

decision-making performance and, as said previously, the goal is to maximize the

long term performance, which is assessed by the total accumulated rewards.

The interaction between the agent and the environment can be represented in the

figure below:

Figure 2.1: Interaction between agent and environment
in Markov Decision Process

([20])

We can observe in the figure that the agent chooses an action in a state and the

perception it receives from the environment consists in the environment’s state after

the action plus a scalar reward signal associated to that step.

The behavior of the agent is carried on by its policy, ⇡t, that is a function ⇡t(s, a)

that outputs an action at = a for each state st = s. As the goal of the agent is

to maximize the reward in the long run, it has to implement its policy in each

step. Reinforcement Learning methods point out the way in which the agent has to

improve its policy, on the basis of its experience. The assumption underlying the
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Reinforcement Learning is that a model of MDP is not known, that is, is not known

the transition and the reward models. Here come in play the role of the interaction

of the algorithm with the environment that induces the exploration-exploitation

trade-off, in order to optimize its behavior, being directed by the subsequent rewards.

2.2 Reinforcement Learning elements

The Reinforcement Learning system is constituted by four subelements: a policy,

a reward function, a value function and a model for the environment, that is optional

[20].

A policy determines the way in which the agent behaves at a givent time instant.

More specifically, the policy is a mapping of the set of actions to be taken when

the agent will find itself in a set of environment states. The policy is sufficient to

determine the behavior of the agent in reaching its objective.

A reward function determines the immediate goal of the agent. The reward for

being in a state or taking an action in a state is represented by a single number.

It is the primary indicator for changing the policy as it specifies what are good

and bad events for the agent. For example, in a biological system, the reward

corresponds to the experiences of pleasure or pain. Consequently, it can be viewed

as the direction towards which the system, that is the MDP, must be addressed.

Thus, it indicates where the agent is directed, but not how to reach it. This means

that the computation of the reward function is external to the agent, so it can not

be arbitrarily changed as it is outside the agent’s control, thus, it is part of the

environment. However, the objective of the agent is the maximization of the reward

in the long run, which can be measured by the value function.

The value function measures the value of a state as a whole amount of rewards

that can be obtained over the future by the agent, starting from the actual state in

which it is. So, it measures how good is for the agent being in a state, or taking

action in a state, in the long run. Since rewards are a measure of the immediate

and intrinsic desirability of a state, the values measure the long-run desirability
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of states, taking into consideration the probable future states and the associated

rewards. For instance, a state might lead a low reward in the short-run, but a high

reward in the long-run. Also the reverse is true. The agent has to prefer always the

former respect to the latter.

So, as rewards derive directly from the environment, they are interpreted in a pri-

mary sense, whereas values, as predictions of rewards, are interpreted in a secondary

sense. In particular, without rewards is not possible to estimate values but, to

estimate values is necessary to realize rewards. As the primary objective of the

agent is the maximization of the value, decisions are made on the basis of values

estimation. The agent has to seek actions that bring states with the highest value

not the highest reward, as this actions bring the greater amount of rewards in the

long-run. While the rewards derive directly from the environment, values have to

be estimated and reestimated by the agent in each step, at each time instant.

The model of the environment can forecast the behavior of the environment, that is

the model can conduct the agent toward the next state and the next reward based

on the actual state. Models are useful for designing future actions to take future

states. However, in Reinforcement Learning algorithms a model for the environment

is unknown and, so, I consider only the model free methods.

2.3 Goals, Rewards and Optimality criteria

In Reinforcement Learning the goal of the agent is the maximization of the

cumulative reward it gather in the long run, and not the immediate reward rt+1 2 R,

expressed as a single number. The sequence of rewards the agent cumulates after

time step t can be denoted rt+1, rt+2, rt+3, .... The sum of these sequence of rewards

determines the return Rt, whose expected value maximization constitutes the

objective of the agent. Rt is a function of the actual and future rewards and can be

represented as follows:

Rt = rt+1 + rt+2 + rt+3 + ...+ rT
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where T is the final time step. When T is known, the formula above determines

the model of optimality for a finite horizon case. However, in the infinite horizon

model, where T is unknown and might be infinite, the discounting concept must be

introduced. Based on this approach, the agent attempts to select actions so that the

sum of the discounted rewards it receives over time is maximized. In particular, the

agent selects the action at, in the time step t, in order to maximize the discounted

return:

Rt = rt+1 + �rt+2 + �2rt+3 + ... =
1X

k=0

�krt+k+1

where the parameter � 2 [0, 1] is the discount rate. The discount rate determines

the present value of future rewards. Rewards gathered later in time are discounted

more than rewards obtained earlier, as they are actualized. Indeed, a reward re-

ceived k time steps in the future is worth �k�1 times. The discount rate guarantees

that the sum of the rewards in the infinite horizont model is finite. When � = 0,

the agent is said to be myopic as it is concerned about maximizing immediate

rewards and not the future ones. When � = 1, the agent is more farseeing as it

gives heavy weights to future rewards.

2.4 Value Functions

Reinforcement Learning algorithms imply the estimation of value functions that

evaluate "how good", in terms of expected return, it is for the agent to be in a

state, or to select a given action in a given state. The rewards the agent expects to

receive varies on the basis of the action selected, that is on the basis of particular

policies. So, technically, the value of a state s under a policy ⇡, denoted V ⇡(s),

is the expected return from s following ⇡. Formally, V ⇡(s), so called state-value

function for policy ⇡, can be defined as:

V ⇡(s) = E⇡{Rt|st = s} = E⇡

( 1X

k=0

�krt+k+1|st = s

)
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where E⇡{·} is the expected value under policy ⇡.

Analogously, the value of choosing an action a, in a given state s, following a policy

⇡, is the expected return from s, selecting the action a, under the policy ⇡. The

function Q⇡(s, a) is called action-value function for policy ⇡:

Q⇡(s, a) = E⇡{Rt|st = s, at = a} = E⇡

( 1X

k=0

�krt+k+1|st = s, at = a

)
.

It is possible to estimate both value functions from experience. Indeed, the agent

should maintain one of the two value functions as parameterized function and

adjust the parameters of the chosen function, on the basis of observed rewards, in

order to match better the subsequent states.

Value functions used in Reinforcement Learning satisfy a fundamental property

that is the satisfaction of certain recursive relationships. The expression of the

state-value function, V ⇡(s), for any policy ⇡ and any state s, can be defined in terms

of the so-called Bellman Equation18, in which the following consistency condition

holds between the value of s and the value of each possible subsequent state:

V ⇡(s) = E⇡{Rt|st = s}

= E⇡

( 1X

k=0

�krt+k+1|st = s

)

= E⇡

(
rt+1 + �

1X

k=0

�krt+k+2|st = s

)

= E⇡

(
rt+1 + �V ⇡(st+1)|st = s

)

The state-value function V ⇡(s) is the unique solution to the Bellman Equation.

The Bellman Equation averages all the possible next states, weighting each by its
18The Bellman Equation is a recursive formula that expresses the relationship between the

value of a state and all successive states’ values.
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possibility of happening. It establishes that the value of the actual state must equal

the discounted value of the expected subsequent states, plus the corresponding

reward.

A similar result is available for the action-value function, Q⇡(s, a), which is a unique

solution for the Bellman Equation. Indeed, for any policy ⇡, for any state s and for

any action a, there is a consistency condition that is valid between any pair value

(s, a) and the value of each subsequent pair:

Q⇡(s, a) = E⇡{Rt|st = s, at = a}

= E⇡

( 1X

k=0

�krt+k+1|st = s, at = a

)

= E⇡

(
rt+1 + �

1X

k=0

�krt+k+2|st = s, at = a

)

= E⇡

(
rt+1 + �Q⇡(st+1, at+1)|st = s, at = a

)
.

2.5 Optimal Value Functions

Achieving a Reinforcement Learning objective, for any given MDP, means finding

the best policy that receives the highest reward in the long run by exploring the

environment on the basis of own experience. A policy ⇡ is stated to be better than

or equivalent to a policy ⇡0 if its value function is higher or equal to that of ⇡0 for

each state. In particular, ⇡ � ⇡0 if and only if V ⇡(s) � V ⇡0
(s) for all s 2 S or

Q⇡(s, a) � Q⇡0
(s, a) for all s 2 S and all a 2 A. There is always an optimal policy,

⇡⇤, that is better than or equal to all other policies. The optimal policy defines the

optimal state-value function, V ⇤, that can be written as:

V ⇤(s) = max
⇡

V ⇡(s) for all s 2 S
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or the optimal action-value function, Q⇤, defined as:

Q⇤(s, a) = max
⇡

Q⇡(s, a) for all s 2 S and all a 2 A.

As V ⇤ and Q⇤ are value function for a policy, they satisfy the Bellman equation

and, as they are the optimal state-value function and optimal action-value function,

they satisfy the Bellman optimality equation19. It specifies that the value of a state

in which an optimal policy is followed, have to be equal to the expected return

obtained by selecting the best action in that state.

The Bellman optimality equation for V ⇤(s) can be represented as follows:

V ⇤(s) = max
a2A

Q⇡⇤
(s, a)

= max
a

E⇡⇤{Rt|st = s, at = a}

= max
a

E⇡⇤

( 1X

k=0

�krt+k+1|st = s, at = a

)

= max
a

E⇡⇤

(
rt+1 + �

1X

k=0

�krt+k+2|st = s, at = a

)

= max
a

E⇡⇤

(
rt+1 + �V ⇡⇤

(st+1)|st = s, at = a

)
.

Analogously, the Bellman optimality equation for Q⇤(s, a) is:

Q⇤(s, a) = E
h
r(st, at, st+1) + �max

a0
Q⇤(st+1, a

0)|st = s, at = a
i
.

The Bellman optimality equation gives a system of equations, one for each state.

Solving the system made by n equations in n unknowns value functions, for each n

states, means finding a unique solution, V ⇤(s), independent of the followed policy.

Then, to find the optimal policy associated to V ⇤(s), the action that gives the higher
19The Bellman optimality equation is that equation in which the value function satisfies the

Bellman equation for the optimal value function.
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value in each state, among all the available actions in that state, is selected to move

the agent in the next state. In this case the policy is called to be greedy, that defines

a policy which selects actions looking only at short-term consequences. But, using

V ⇤(s) in evaluating the one-step consequences, the greedy policy is optimal also in

the long run, as V ⇤(s) takes into consideration the rewards related to future actions.

Consequently, by means of V ⇤(s) the optimal expected long-term return is a value

that is locally and immediately available for each state. So, looking for an action

that gives an optimal policy in the next state yields to the long-term optimal actions.

2.6 Policy evaluation, Policy improvement and Value

iteration

The Reinforcement Learning approach in achieving its objectives consists in

estimate value functions in order to determine good policies. The first step is

the policy evaluation, that consists in computing a state-value function, V ⇡, for

an arbitrary policy ⇡, through an iterative method, that is through successive

approximations. This method starts from an initial approximation value of the

state-value function, V ⇡
0 (s), that is chosen arbitrarily. Each next state-value function

is obtained computing the Bellman equation for V ⇡, using it as an update rule,

which updates the current value function V ⇡
k into V ⇡

k+1:

V ⇡
k+1(s) = E⇡{rt+1 + �V ⇡

k (st+1)|st = s} for all s 2 S.

Each iteration of this method computes each successive approximation by applying

the same operation to each s, that is by updating the old value of s with a new

value. This algorithm, called iterative policy evaluation, assures the convergence of

the sequence {V ⇡
k } to V ⇤ as k ! 1 if � < 1. However, in practice it is not possible

to evaluate the convergence in the limit so it must be stopped before, when the

quantity |V ⇡
k+1(s)� V ⇡

k (s)| is suitably small.
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Once the value function of a policy is known, the next step consists in improving

the policy. This process, called policy improvement, can be done by computing the

value of all actions through the action-value function, Q⇡(s, a), and check if it is

higher than V ⇡(s) for some action a 2 A. If it is greater, then, selecting a in s

and then follow ⇡ determines a better policy. So, policy improvement produces a

strictly better policy except when the original policy is already optimal. It can be

extended to all actions in all states. The policy improvement may determine an

increse of the global return in the long-run, choosing the best action in each state,

as follow:

a =

8
><

>:

⇡
0
(s) with probability 1 � "

a 2 A(s) with probability "

where " 2 (0, 1) and ⇡0(s) is the candidate policy which maximizes Q⇡(s, a). That

is, ⇡0(s) is the greedy policy and can be expressed as:

⇡
0
(s) = argmax

a
Q⇡(s, a)

= argmax
a

E{rt+1 + �V ⇡(st+1)|st = s, at = a}

where argmaxa(·) indicates the best action that maximizes its argument. This

selection approach, the "�greedy policy, is applicable both to deterministic policy

and to stochastic policy. The action is selected between two policies. In particular,

the greedy policy, that is deterministic, is selected with probability 1 � " and

the non-greedy policy is selected with probability ". Selecting an action from the

greedy policy means exploiting the current knowledge of the action values. Instead,

selecting a random action from those available in the non-greedy policy means

exploring the actions available in a state in order to select the one that is better

than the greedy action. The first policy, called exploitation policy, maximizes the

expected return in the short-run. The exploration policy, that is the last one, may

increase the reward in the long-run.
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This method of finding an optimal policy through the sequence of policy evalua-

tion and policy improvement is called policy iteration. However, in the iterative

computation of policy evaluation the convergence to V ⇤ occurs only in the limit

and it is computationally expensive. A solution is provided by the value iteration

Bellman algorithm, through which it is possible to break off the evaluation after

one iteration. This algorithm combines a truncated version of policy evaluation

with the policy improvement without the need to wait for full convergence. Indeed,

it is possible to stop the evaluation after the first step and, based on this evaluation,

proceed with the policy improvement. This iterative process can be represented by

the following expression:

V ⇡
k+1(s) = max

a
E{rt+1 + �V ⇡

k (st+1|st = s, at = a)}

where V ⇡
k+1(s) represents the updated estimate of the state-value function under the

new policy, determined by the improvement strategy in the step k + 1, taking into

consideration the estimation of the policy in step k. This expression is identical to

the policy evaluation expression with the difference that it requires the maximum

to be taken among the actions. Like policy evaluation, also value iteration stops, in

practice, when the state-value function changes by only a small amount.

2.7 Temporal-Difference Learning

Temporal Difference (TD) learning algorithms update estimates of values on

the basis of other learned estimates, without the need to wait for a final outcome.

This method of estimation, based on experience, is called bootstrapping, and it does

not require an environmental model.

TD methods solve the prediction control problems20 using the past experience

as the result of a followed policy ⇡. For each nonterminal state st, they update
20The prediction control problem consists in the estimation of a value function V ⇡ for a given

policy ⇡ (prediction) and in finding an optimal policy (control) for the estimated function.
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their estimate V of V ⇤ using the reward rt+1 occured in time t+ 1. The simplest

method, known as TD(0), which consider only one step ahead when adjusting value

estimates, has the following update expression:

Vk+1(st) = Vk(st) + ↵[rt+1 + �Vk(st+1)� Vk(st)]

where ↵ 2 (0, 1] is the learning rate and measures the degree of the update. The

expression in the brackets, that is the difference between rt+1+�Vk(st+1), the target,

and Vk(st), the old estimate, is an error in the estimate:

�k = rt+1 + �Vk(st+1)� Vk(st)

Whenever there is a change in successive predictions, that is a change in the error,

a learning source is produced, that is an amount able to adjust and improve the

value of the current policy. TD methods try to minimize the difference between

subsequent predictions and, in this way, the value of the current policy is adjusted

and improved in each time step. For this reason TD methods are said to be

implemented in an online incremental fashion.

The main advantage of the TD methods is that they do not require a model of the

environment neither of the transitions probability distribution for two subsequent

steps. In fact, they learn from each transition independently of the action selected.

This makes the TD methods an appropriate instrument to solve stochastic control

dynamic problems, such as financial ones.

To adapt TD methods to financial data, that are often non-stationary time series,

that is, have no constant mean and no constant variance over time, it would be

more appropriate to give more weight to recent rewards, so to what is learned latest,

than to rewards received in steps far in the time. A widespread method is to use a

constant learning rate. Replacing Rt+1 = rt+1 + �Vk(st+1), it is possible to rewrite

the previous expression of Vk+1(st) as follows:
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Vk+1(st) = Vk(st) + ↵[Rt+1 � Vk(st)].

This result in Vk+1(st) is a weighted average of past rewards and the initial estimate

Vk(s0):

Vk+1(st) = Vk(st) + ↵[Rt+1 � Vk(st)]

= ↵Rt+1 + (1� ↵)Vk(st)

= ↵Rt+1 + ↵(1� ↵)Rt + (1� ↵)2Vk(st�1)

= ↵Rt+1 + ↵(1� ↵)Rt + ↵(1� ↵)2Rt�1 + ...+

↵(1� ↵)T�1R1 + (1� ↵)TVk(s0)

= (1� ↵)TVk(s0) +
TX

t=1

↵(1� ↵)T�tRt.

This is a weighted average sum in which the sum of the weights is (1 � ↵)T +
PT

t=1 ↵(1 � ↵)T�t = 1. Given that (1 � ↵) < 1, the weight given to the rewards

decreases exponentially as the number of intermediate rewards increases.

In stationary problems there are two conditions to be met in order to assure the

convergence, with probabiliy 1, of the estimate of the state-value function Vk(st) to

the true value V ⇤:

1X

t=1

↵t = 1 and
1X

t=1

↵2
t < 1.

The first condition ensures that the steps are enough numerous to overcome any

initial conditions or random fluctuations. The second condition is required to ensure

that the steps become small enough in order to converge to the optimal state-value

function V ⇤, or to the optimal action-value function Q⇤. The two conditions are

met when the learning rate, ↵, decreases over time. Indeed, if ↵ decreases after

each time step, the estimation of Vk(st) becomes more precise until the convergence
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to V ⇤. However, in a non-stationary environment is preferable a constant learning

rate. In this case, the second condition
P1

t=1 ↵
2
t < 1 is not satisfied, meaning that

the estimates might never completely converge to V ⇤ but might continue to change

on the basis of the last received rewards.

Therefore, for any fixed policy, ⇡, the algorithm converges in the mean to the true

value V ⇤ if the learning rate is constant and sufficiently small.

2.8 Q-Learning Algorithm

Among the TD methods, the Q-Learning (QL) algorithm is one of the most used

method in solving prediction control problems. This method estimates an action

value function Q(s, a) in a state s, by repeteadly executing all available actions a,

following a policy ⇡. By trying all actions in a state, the algorithm learns which

is the best in terms of rewards and, by using the one-step lookahead it updates

the previous action-value function. In such a way both the policy and the value

function are improved.

QL is an online off-policy control algorithm which has the following update-rule

structure:

Qk+1(st, at) = Qk(st, at) + ↵[rt+1 + �max
a

Qk(st+1, a)�Qk(st, at)].

The agent pass from state st to state st+1 by taking action at and obtaines a reward

rt+1 in such a way that Qk(st, at) is maximized at each state. It is online as it

updates its estimates after each visit of each time step, with no need to wait until

the terminal one. It is off-policy as the improvement process passes through two

policies, that is a policy that is used to estimate value functions while using another

policy which is more exploratory. More precisely, the algorithm learns regardless

the performed actions as it updates on the basis of the action that maximizes the

value function on the next step, that is on the basis of the greedy action, albeit in
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the actual state-action pair is selected a greedy action or an exploratory one. It is

a control algorithm as it selects actions in order to reach its objective, that is the

highest estimate of the action-value function. Indeed, the QL algorithm converges

to the optimal action-value function, Q⇤, regardless the exploration policy followed,

under the conditions that each state-action pair is executed an infinite number of

times, and the learning rate ↵ decreases appropriately. For this reason the QL

algorithm is said to be exploration-insensitive.

There are different exploration strategies that can be used by the QL algorithm.

The most widely used is the ✏-greedy one, in which the greedy action is selected

with probability 1-✏ and another random action is selected with probability ✏ from

an uniform distribution. One drawback of this strategy consists in the fact that, as

exploration actions are selected uniform randomly, it is likely to select an action

that is not the best action. An improved and more complex strategy uses the

Boltzmann distribution function:

e
Qt(st,a)

⌧

Pn
i=1 e

Qt(st,ai)
⌧

where ⌧ is a positive parameter called temperature. If ⌧ is set to be very high,

⌧ ! 1, the actions are selected randomly, so they are equiprobable. If ⌧ is small,

with ⌧ ! 0, this strategy approaches to the greedy method.

2.9 Value Function Approximation and Optimiza-

tion

In the financial problem that I will consider, that is the application of a FTS on

real time series, stock returns are continous and stochastic, so an exact representation

of the action-value function cannot be provided. Indeed, approximation is needed.

An effective approximation is based on two prerequisites. The first one consists in

chosing an approximation function with enough elements so that it can approximate
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closely the function that have to be approximated. The second one requires

an efficient algorithm to calibrate the parameters of the approximation function.

However, the two mentioned objectives are often in conflict. In fact, a large number

of variables characterizing the approximation function requires a large number of

parameters to be tuned or can happen that the dependence among the parameters

is non linear. These elements increase the computational complexity.

Using parametric approximator, it is possible to represent the action-value function

Q(st, at) by a parameterized functional form with a fixed parameter vector ✓t 2 ⇥.

✓t = [✓0 ✓1 ✓2 ✓3 . . . ✓N ]
0
.

The approximator of the action-value function, Q(st, at;✓t), totally depends by the

parameter vector that might vary step by step. As the objective is to find the

optimal parameter vector ✓⇤ that gives the best approximation of the action-value

function, that is which minimizes the "gap" between the unknow action value

function Q⇤ and its estimate Q(st, at;✓t), the minimization of the mean-squared

error (MSE) aproach is widespread used:

min
✓t

MSE(✓t) =
X

s2S,a2A(s)

[Q⇤(s, a)�Q(st, at;✓t)]
2.

An optimal objective would consist in finding the global optimum, in correspondence

of which, for the vector ✓⇤, the MSE(✓⇤)  MSE(✓) for all ✓. However, this result

can be reached if the approximation function is linear, otherwise it may converge

to a local optimum [20], that is to a vector ✓⇤ for which MSE(✓⇤)  MSE(✓) for

all ✓ in the proximity of ✓⇤.

As this optimization problem concerns the minimization of the MSE, the concepts

of global and local minimizer will be respectively given:

Local minimizer : A vector ✓⇤ is a local minimizer of a function f if the

following inequality f(✓⇤)  f(✓) is valid for all ✓ near ✓⇤.
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Global minimizer : A vector ✓⇤ is called global minimizer of a function

f if f(✓⇤)  f(✓) is valid for all ✓.

To guarantee that a local minimizer is also a global minimizer, the action-value

function must satisfy the convexity property. Before proceeding, some definitions

are appropriate [17]:

Definition: A set C ⇢ En is said to be convex if 8x1, x2 2 C and every

real number ↵ 2 (0, 1), the point ↵x1 + (1� ↵)x2 2 C, where x is an

n-dimensional vector in the n-dimensional Euclidean space En.

From a geometrical point of view, a set is defined as convex if, given two points

belonging to the set, every point on the line segment connecting the two points is

also part of the set.

Figure 2.2: Convexity
([17])

Proposition: Convex sets in En satisfy the following relations:

a. If C ⇢ En is a convex set and � is a real number, then the set

�C = {x : x = �c, c 2 C}

is convex.
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b. If C and D are two convex sets, then the union

C [ D = {x : x = c + d, c 2 C,d 2 D}

is convex.

c. The intersection of any collection of convex sets is convex.

For a convex function with more than one variable, the following definition holds

[17]:

Definition: A function f defined on a convex set ⌦ is said to be convex

if 8x1,x2 2 ⌦ and every ↵ 2 [0, 1], the following expression is valid:

f(↵x1 + (1� ↵)x2)  ↵f(x1) + (1� ↵)f(x2).

If 8↵ 2 (0, 1) and x1 6= x2, the following is valid:

f(↵x1 + (1� ↵)x2) < ↵f(x1) + (1� ↵)f(x2).

f is said to be strictly convex.

In order to provide a graphical exemplification, a convex function (of one variable)

is the one in which the line connecting two points on its graph lies above the curve

representing the function.

Figure 2.3: Convex function
([17])
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The existence of a solution for the minimization problem here considered is guaran-

teed by the Weierstrass theorem, which enunciates that if f is continous and the

set of parameters ⇥ is compact21, a solution exists [17]. The minimization of the

MSE concerns the minimization of a quadratic and unconstrained function, whose

parameters can assume any value in the feasible set ⇥, as ⇥ = En, that is ⇥ is

not compact. To reduce the MSE step by step until the minimum is reached, a

minimizing sequence can be used.

To find the minimizer ✓⇤, a method that determines the direction of ✓ can be used.

It is based on a parameter column vector, dt 2 En, which determines the descent

direction, at each iteration, of the MSE from the parameter vector ✓ toward ✓⇤.

The consequent sequence vector ✓1, ✓2, . . . , ✓T is produced based on the following

algorithm:

✓t+1 = ✓t + ↵dt

where ↵ 2 (0, 1] is the step-size parameter, or learning rate, that determines the

size of the movement. Consequently, step by step, the parameter vector is nearer

to the minimizer ✓⇤.

2.10 Gradient Descent Method

In minimization problems of function approximation processes is widespreadly

used the gradient descent method. This method, well suitable to Reinforcement

Learning, is applied to the approximator of the action-value function in order to

find the minimizer parameter vector.

In the gradient descent method the parameter column vector is a vector ✓t and the

approximate function Q(st, at;✓t) is differentiable for all s 2 S and all a 2 A. Step

by step the interaction between the agent and the environment produces examples
21A set is compact if it is both closed and bounded, that is if it is closed and it is contained

within some sphere of finite radius [17].
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of state-action pairs. The strategy used by the gradient descent method consists

in minimizing the MSE between the unknown and estimated value function, so

adjusting the parameter vector by a small amount, after each step, in the direction

that reduces the error:

✓t+1 = ✓t �
1

2
↵r✓t [Q

⇤(s, a)�Q(st, at,✓t)]
2

= ✓t � ↵[Q⇤(s, a)�Q(st, at,✓t)]r✓t [Q
⇤(s, a)�Q(st, at,✓t)]

where r✓tf(✓) is the vector of partial derivatives of f(✓) with respect to ✓, that

is the gradient of the function f(✓) with respect to ✓, and where the direction is

descending:

dt = �1

2
r✓t [Q

⇤(s, a)�Q(st, at,✓t)]
2

= �[Q⇤(s, a)�Q(st, at,✓t)]r✓t [Q
⇤(s, a)�Q(st, at,✓t)].

As Q⇤(s, a) is the optimal but unknown value of the state-action function, the

previous expression is rewritten as:

✓t+1 = ✓t + ↵[Q⇤(s, a)�Q(st, at,✓t)]r✓tQ(st, at,✓t).

The gradient descent method proceeds in the direction of the negative gradient

of the parametrized function which is to minimize. The negative gradient, step

by step, is addressed towards the direction in which the MSE is minimized, so

until r✓tQ(st, at,✓t) approaches zero. However, the descent gradient takes only

small steps towards the negative gradient as finding an action-value function with

zero error in each state-action pair, that is a difference between the unknown

action value function and its estimate near zero, is not feasible. In fact, what is

needed is an approximation that balances the errors in different states. Finally, the
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convergence of the gradient descent method to the local optimum is guaranteed, in

a stationary environment, if the previously stated standard stochastic conditions,
P1

t=1 ↵t = 1 and
P1

t=1 ↵
2
t < 1, are satisfied. In a non-stationary environment

the convergence is reached in the mean.

As said previously, the Q⇤(s, a) is not available, so it can be replaced by an

approximation to it:

Q⇤(s, a) ⇠= qt = rt+1 + �max
a

Q(st+1, a;✓t).

If qt is an unbiased estimate, that is if E[qt] = Q⇤(s, a) for each t, therefore the

convergence of ✓t to a local minimum is guaranteed, under the usual stochastic

approximation conditions for decreasing learning rate. The substitution gives the

following parameter updating expression:

✓t+1 = ✓t + ↵[qt �Q(st, at,✓t)]r✓tQ(st, at,✓t)

= ✓t + ↵[rt+1 + �max
a

Q(st+1, a;✓t)�Q(st, at,✓t)]r✓tQ(st, at,✓t).

So, as the parameter vector ✓t is updated step by step, a move toward the optimal

value is done.

2.11 Convergence Issues

As stated previously, the optimization problem which concerns the search of a

parameter vector ✓t that minimizes the difference between the unknown and the

approximated action value function, cannot guarantee convergence of the parameter

vector to a global minimum, in particular when the function to minimize is not

convex, because of the presence of local minimum. In fact, the gradient descent

method follows downwards the shape of the function, looking for a minimum, and

so it is attracted by any type of minimum, either local or global. This constitutes
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one of the weaknesses of the gradient descent method when dealing with non-convex

functions with local minimum. In fact, once it reaches any stationary point22, even

a local maximum, it stops in that point. In theory it is possible, for a parameter

vector ✓, to have multiple limit points23 if there exists a set of multiple local minima.

The question now is to check if each limit point is also a stationary point. To

assure that the vector dt and the gradient r✓tf(✓t) will not become asymptotically

orthogonal24 in proximity of a nonstationary point, as two vectors can be orthogonal

only in a stationary point, two conditions must be imposed on the feasible direction

dt:

c1 k r✓tf(✓t) k2 �r✓tf(✓t)
0dt and k dt k c2 k r✓tf(✓t) k

where c1 and c2 are positive scalars. The proof of the convergence for a constant

learning rate is given by the following proposition [5]:

Let ✓t be a sequence generated by a gradient method ✓t+1 = ✓t + ↵dt,

where dt satisfy the just mentioned conditions. Assume that for some

constant L > 0, one has

k r✓tf(✓t)�r⇤
✓f(✓t

⇤) k L k f(✓t)� f(✓t
⇤) k, 8dt,dt

⇤ 2 ⌦

and

0 < ↵ <
2c1
Lc22

Then either f(✓t) ! �1 or else f(✓t) converges to a finite value and limt!1 r✓tf(✓t) =

0. Furthermore, every limit point of ✓t is a stationary point of f 25.

22A stationary point is defined as a vector ✓⇤ satisfying the condition r✓⇤f(✓⇤) = 0 [5]
23A limit point, whithin some open sphere, is that point for which exists, at some small arbitrarly

distance from it, other points different from the limit point.
24Two vectors x and y are orthogonal when their scalar product is zero, that is x0y = 0
25The stationary point of a function f is a point where the function’s derivative or partial

derivative is zero.
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2.12 Linear Function Approximation

To find the approximator of the action-value function, Q(st, at;✓t), for which

the parameter vector ✓t converges to the optimal one, ✓⇤, is suitable to use a linear

function approximation:

Q(st, at,✓t) = ✓t�st =
NX

n=0

✓t(n)�st(n)

where the vector �st is the so called squashing function, which is a suitable trans-

formation of the states, and might be non-linear.

One property of the squashing function is the increasing monotonicity, that is given

two vectors a and b that satisfy the following inequality:

a  b

then the following inequality is true for any increasing transformation of the function

f :

f(a)  f(b)

This property is useful in order to preserve the order of the transformed values, as

in each state, it is selected that action that maximizes the value of the action-value

function. In this way is assured that the approximator of the action value function

increases in order to approach to the optimal unknow action-value function.
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Chapter 3

Q-Learning at work

In this chapter, I describe the specific characteristics of the implemented FTS.

In particular, I specify all the elements, such as the state descriptors variables, the

actions that the FTS can choose, the reward functions and the squashing function

used. Transaction costs and their application are also illustrated, to make the FTS

more realistic.

The time series utilized are described and the main descriptive statistics are pre-

sented, with some graphical representation, in order to give an idea in which

environment the FTS will operate.

Combining the different parameters values, different configurations are obtained

and tested. Each configuration will be tested simultaneously K times. As the

results are always different in each iteration, due to the random initialization of

the parameters vector ✓ and to the value of the exploratory actions. Finally, in

order to obtain one operational trading signal to be adoperated in the real financial

market, in each time step it is selected among the majority of the actions performed.
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3.1 State representation: s

The environment, in each time step, is represented by a state that illustrates

the most relevant informations for the agent. To evaluate the performances of the

developed FTS, basic and simple environmental informations are used. Indeed, each

state, in the implemented algorithm, is described by the actual logarithmic return

and the N � 1 past ones of each asset. So, at time t, the state of the environment

can be represented by the following vector:

st = [et�N+1 et�N+2 . . . et],

where e⌧ = ln(p⌧/p⌧�1), in which p⌧ is the stock price at time ⌧ . In order to get

a FTS that reacts promptly to new informations, the tests are carried out on the

current return, N = 1, and on the current return plus the past five ones, N = 5,

which represents a stock market week.

3.2 Action values: a

In each time step t, the QL algorithm tries all available actions, in order to learn

and select which is the best in terms of the obtained reward, rt+1. In my model,

the actions that the algorithm can carry out, to reach the continous states st+1,

are of finite number. The possible actions are:

at =

8
>>>>><

>>>>>:

�1

0

1

where �1 means "sell or stay-short-in-the-market-signal", 0 means "stay-out-from-

the-market-signal", implying the closing of any previous open position, and 1 means

"buy or stay-long-in-the-market-signal" [4].
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As consequence of the selected action at, the agent receives, in the next time step

t + 1, a reward rt+1. The approach choosen by the algorithm, in selecting the

actions, is the "�greedy policy. This approach passes through two policies, that

is a greedy policy, in which the agent exploits its knowledge of the environment,

selected with probibility 1� ", and a non-greedy policy, selected with probability

", in which the agent explores the environment by choosing the actions randomly.

The selection of the action through this improvement criterion can be represented

as follows:

a =

8
><

>:

argmaxa Q(st, at,✓t) with probability 1� "

at with probability "

where " 2 {2.5%, 5%} and at ⇠ Ad{�1, 0, 1}. The parameter " determines the

rate of exploration actions, selected from a uniform distribution. Higher is the

value, more exploration actions the agent will select. Due to the randomness

selection, the agent may choose actions with bad performances, but also may

select actions that can achieve good results. To find such winning actions that

improve the performances, the agent has to try them. In this way, it explores the

environment and then it can exploits the acquired knowledge in order to obtain

positive results. The choice between exploration and exploitation is known as the

exploration-exploitation dilemma.

Actions, in the action-value function computation, are represented as vectors and

not as single values -1, 0, 1, that is:

• action �1, meaning sell or stay-short-in-the-market, is represented as the

vector

a�1 = [1 0 0]0;

• action 0, meaning stay-out-from-the-market, is represented as the vector

a0 = [0 1 0]0;
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• action 1, meaning buy or stay-long-in-the-market, is represented as the vector

a1 = [0 0 1]0.

Such action vectors are used in order to differentiate among the different actions,

even if the action value is always the same and, consequently, the sum of all

elements in each vector is always 1. This choice is justified by the fact that, the

linear regression used to estimate the action-value function for different possible

actions, will always penalize some actions respect to others, if different action values

will be used. In this case, as the parameters ✓ and state descriptors s are always

the same for the three possible actions, the value of the action-value function will

be determined by the value of each action. In fact, if the agent selects a greedy

action, so the action which brings the highest value of the estimated action-value

function, the action with value 1 (buy) will always be favored respect to the action

with value -1 (sell), as the former value will be higher than the latter one. The

action with value 0 will always be neutral. So, in each time step, the value of the

three estimated action-value functions is conditioned by the value of the possible

actions. In fact, the choice will depend by the value of the product of each action

value and the same parameter ✓. So:

• the action-value function related to the sell or stay-short-in-the-market would

be:

Q(st, a�1;✓t) = ✓t�st = ✓(0) +
N�1X

n=1

✓t(n)�st(n) + ✓(N)�(�1);

• the action-value function related to the stay-out-from-the-market would be:

Q(st, a0;✓t) = ✓t�st = ✓(0) +
N�1X

n=1

✓t(n)�st(n) + ✓(N)�(0);

• the action-value function related to the buy or stay-long-in-the-market would

be:
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Q(st, a1;✓t) = ✓t�st = ✓(0) +
N�1X

n=1

✓t(n)�st(n) + ✓(N)�(1).

The only value that changes in the three estimated action-value functions is the

value of the selected actions and, as the squashing function must be monotonic

increasing then, in a positive linear regression function, the actions will be ranked

as follows:

a�1 < a0 < a1.

However, associating to each action a different vector, which sum is always 1,

the selection among the actions will depend by the parameter value ✓. Now, the

action-value functions can be represented as follows:

• the action-value function related to the sell or stay-short-in-the-market :

Q(st,a�1;✓t) = ✓t�st,a�1 = ✓(0) +
N�1X

n=1

✓t(n)�st(n) + ✓(N)�ta�1;

• the action-value function related to the stay-out-from-the-market :

Q(st,a0;✓t) = ✓t�st,a0 = ✓(0) +
N�1X

n=1

✓t(n)�st(n) + ✓(N)�ta0;

• the action-value function related to the buy or stay-long-in-the-market :

Q(st,a1;✓t) = ✓t�st,a1 = ✓(0) +
N�1X

n=1

✓t(n)�st(n) + ✓(N)�ta1.

Now, each action vector has its own parameter ✓, which assumes differen values. So,

the choice depends by the value of one variable, that is the parameter ✓ multiplied

by the value of the action vector, which is always 1.
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3.3 Reward function: r(st, at, st+1)

The ultimate aim of each investor is to obtain the higher return, or the higher

economic utility or the higher risk-adjusted return. The reward represents, for the

agent, the premium or the punishment for a chosen action.

One of the reward functions used in this thesis is the Sharpe ratio, that is a risk-

adjusted return measure. The Sharpe ratio, that is the most used reward function

in different Reinforcement Learning papers, will be used as a benchmark for the

other reward functions.

• The Sharpe ratio is defined as:

SRt =
EL(et)p
VarL(et)

2 R

where SRt is the Sharpe ratio at time t, EL(·) and VarL(·) are, respectively,

the sample mean and the sample variance of the returns et, obtained by the

trading system, computed over the last L stock market days. So, the Sharpe

ratio gives a measure of the return of an asset, adjusted by its risk. The

higher the risk, the higher the return, as riskier assets give greater gains, but

also greater losses.

The Sharpe ratio is based on the assumption that returns are normally distributed

and this can bring to misleading results as, generally, returns are not simmetrically

distributed, that is are skewed26[1]. Furthermore, one drawback in using standard

deviation as a measure of risk, consists in the fact that, positive and negative

fluctuations are treated in the same way and with the same weight. As an investor

looks at gains and losses assymetrically, she/he is more concerned about downside

risk, that she/he seeks to avoid. Downside fluctuations are more reflective of

investor’s intuition of risk than the concept of variance do.
26Skewness is a measure of assymetry with respect to the Normal distribution. A positive

skewness means that the right tail of the distribution is longer and so the data are concentrated in
the left side of the distribution. Contrary, swekness is negative when the left tail of the distribution
is longer.
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One performance measure that is downside risk-adjusted, so that looks at the left

tail of the distribution, is the Sortino ratio.

• The Sortino ratio is defined as follows:

Sortinot =
EL(et)

SSDL(et)
2 R

where Sortinot is the Sortino ratio at time t, EL(·) and SSDL(·) are, re-

spectively, the sample mean and the sample semi-standard deviation of the

returns et, obtained by the trading system and computed over the last L stock

market days. This ratio gives a measure of return of an asset, adjusted by

its downside volatility, that is the negative volatility, so takes into account

negative fluctuations.

Another, and more precise, downside risk-adjusted return measure that overcomes

the limit of the normal distribution of data is the Expected Shortfall ratio.

• The Expected Shortfall ratio is represented as follows:

ESR✏ =
EL(et)

ES✏,L(et)
2 R

where ESR✏ represents the ratio at time t between the sample mean of the

returns et, obtained by the trading system, computed over the last L stock

market days, and the Expected Shortfall (ES✏,L) at a confidence level ✏ 2 [0, 1],

computed over the same L market days of the returns et. The ES✏ formula is:

ES✏(et) =
1

✏

Z ✏

0

V aRp(et) dp.
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The ES✏ is a coherent27 measure of risk and can be defined as the expected

value of losses below the Value at Risk (V aRp). Consequently, the computation

of the ES✏ requires, first, the computation of the V aRp.

The Value at Risk formula can be represented as follows:

V aRp(et) = qp(�et)

where qp(et) is the p-quantile of et. The V aRp is defined as the maximum

expected loss over a given time horizon and a given confidence level p 2 [0, 1] [9].

To compute the V aRp, I used the historical simulation28 method, which does

not require the assumption of normal distribution of returns. The historical

simulation method ranks the returns from the lowest to the highest. Using a

confidence level p equal to 5%, the method compute the 95th percentile, over

the past L stock market days, in correspondence of which the expectation

of the worst daily loss will not exceed the worst 5% of returns. Based on

the values of V aRp founded, the ES✏ is computed. The latter is an average

loss instead of a worst-case loss, like the former. The choice of the Expected

Shortfall as a measure of risk, instead of the Value at Risk, is justified by the

fact that this last one is not a coherent risk measure, as it is not subadditive.

The three considered reward functions are computed over the last L = 11 and

L = 22 stock market days, this last corresponding to a stock month.

The reward signal that the Q-Learning based financial trading system receives in

each time step is the only feedback that the environment gives. It represents the

goodness of the selected action and it indicates the direction where the system is

addressed.
27A measure of risk ⇢ is coherent if it is monotonous, positevely homogeneous, translation

invariant and subadditive. The risk measure ⇢, defined on a set V , is monotonous if, given
two random variables X,Y 2 V,X  Y ) ⇢(X) � ⇢(Y ). It is positively homogeneous if, for
X 2 V, h > 0, hX 2 V ) ⇢(hX) = h⇢(X). It is translation invariant when, for X 2 V, a 2
R, X+a 2 V ) ⇢(X+a) = ⇢(X)�a. It is subbadditive if, for X,Y 2 V,X+Y 2 V ) ⇢(X+Y ) 
⇢(X) + ⇢(Y ).

28The historical simulation is a non-parametric model as, to be defined, it does not require the
parameters as the mean and the standard deviation. Indeed, this method directly sample the
returns in order to identify the value which corresponds to the required confidence level.
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3.4 Transaction costs: �

Everytime the agent takes an action that changes its postition on a stock, a

transaction cost is applied. The transaction costs are applied both in the opening

and in the closing of each position, for this reason they are half divided. The

transaction cost, �, can be defined as follows:

� =
transaction cost

2
.

On the tests carried out, the applied transaction cost, �, is expressed in terms of

percentage and it is equal to 12%�. The choice of this value is based on the main

transaction costs applied by several Italian brokerage firms.

Transaction costs are applied when a new long or a new short position on a stock

is opened or when an old one is closed. The net-of-transaction-costs return at time

t+ 1 as consequence of the action taken by the FTS at time t can be represented

as follows:

rnett+1 = atet+1 � � | at+1 � at |

where atet+1 = rgrosst+1 . The transaction costs, in such a representation, affect the

net logarithmic return only if two subsequent actions are different. The application

and the derivation of this formula can be shown below:

• The gross monetary gain, Ggross
t+1 , is obtained from the multiplication between

the gross percentage return, rgrosst+1 , and the gross invested capital, Egross
t :

Ggross
t+1 = Egross

t rgrosst+1

• The monetary transaction costs are obtained from the application of the
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percentage transaction costs, �, on the gross invested capital:

� = Egross
t � | at+1 � at |

• In order to obtain the net monetary gain, Gnet
t+1, the monetary transaction

costs must be subtracted from the gross monetary gain:

Gnet
t+1 = Ggross

t+1 ��

= Egross
t rgrosst+1 � Egross

t � | at+1 � at |

= Egross
t (rgrosst+1 � � | at+1 � at |)

• Now, it is easy to obtain the evolution of the net capital, that is the equity

line:

Enet
t+1 = Egross

t +Gnet
t+1

= Egross
t + Egross

t (rgrosst+1 � � | at+1 � at |)

= Egross
t (1 + rgrosst+1 � � | at+1 � at |)

= Egross
t (1 + rnett+1).

Every time an action is taken to open a new position, the all amount of previous capi-

tal is invested and, when a previous open position is closed, the capital is disinvested.

3.5 Squashing function: �

The squashing function plays the role of transformator of the state descriptors,

in order to estimate the action-value function. The purpose of the transformation of

the states consists in enhance the sensitivity of the process which select the greedy

action.
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The squashing function used here, for the trasformation of the states, is the logistic

function, which has the following form:

�(x) =
a

1 + be�cx
� d

where a = 2, b = 1, c = 1015 and d = �1. The function is a S-shaped function

which varies in the range [�1, 1], as the daily stock returns, generally, vary in this

interval and rarely assume the extreme values. Daily stock return usually approach

values near zero. Consequently, I set up the squashing function in the range [�1, 1],

with zero as central value. In this way, almost all returns will be captured in an

efficient way.

The sensitivity of the function can be increased by changing the value of the

parameter c.

Figure 3.1: Comparison among different logistic functions
with different values of c.

In the figure above are represented three different logistic functions with different

values of c. As c increases, the form of the function becomes more steepest. This

configuration translates in a more sensitive FTS as, close values will be distant after

the transformation, allowing the process to differentiate between two subsequent

state descriptors. The S-shaped form of the logistic function allows the algorithm
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to perceive intermediate data with more accuracy, as they are more frequent. For

this reason, intermediate values require more distinction among them, as they are

closer to each other, allowing the agent to capture and learn the difference among

these intermediate values. The high chosen value of c renders the algorithm more

sensitive to two subsequent state descriptors.

As the states are continous, the process of transformation through the squashing

function is comparable to a clustering process. Indeed, in this way the state values

are organized and approximated.

3.6 Time series

The algorithm is applied on five daily closing stock prices time series from the

FTSE MIB Index and on an artificial one. The real time series are downloaded from

Yahoo Finance site. The time series used are Assicurazioni Generali S.p.A., Buzzi

Unicem S.p.A., Mediobanca S.p.A., Saipem S.p.A. and Telecom Italia S.p.A.. Each

time series is selected from different economic sectors, such as insurance industry,

construction industry, banking industry, petroleum industry and telecommunications

industry, respectively.

The artificial time series is a GARCH process, that is a random walk price series

with autoregressive trend process. The model used to generate such a time series is

[4]:

pt = exp

(
zt

maxzt �minzt

)
,

where zt = zt�1 + �t�1 + 3at, �t = 0.9�t�1 + �, with at ⇠ N (0, 1) and bt ⇠ N (0, 1).

This process shares the features characterizing real financial price series, like a

non constant volatility and trends on short time frames. The period taken into

account goes from November 30, 1993 to November 30, 2018, that is about 6370

days, corresponding to 25 stock market years.

The main descriptive statistics of the daily returns of each time series are summarized
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in the table below:

Mean Median Max Min St. Dev. Skewness Kurtosis
Assicurazioni Generali S.p.A. 1.4851e-05 0.00000 0.1231 -0.1835 0.0188 -0.06990 9.8181

Buzzi Unicem S.p.A. 2.3004e-04 0.00000 0.1404 -0.1527 0.0213 0.00240 5.6617
Mediobanca S.p.A. 6.5264e-05 -0.00031 0.1533 -0.2385 0.0218 -0.07090 7.8887

Saipem S.p.A. 1.1278e-04 0.00000 0.1700 -0.4199 0.0253 -1.54210 27.3261
Telecom Italia S.p.A. 3.9668e-06 0.00000 0.6065 -0.5992 0.0393 0.21630 144.1168
Artificial time series 4.9014e-05 0.00005 0.0129 -0.0130 0.0038 0.01310 2.9707

Table 3.1: Main descriptive statistics of daily stock logarithmic returns.

The mean of returns of all time series is around zero. The Skewness, that

measures the degree of asymmetry, range from �1.54210 to 0.21630. This index

should be compared to the one of a Normal distribution, in which is equal to 0.

The time series with the highest Skewness is the Saipem S.p.A., because of the

presence of outliers in the left tail. The Kurtosis indicates how much the data

are concentrated in the center and in the tails of the distribution, rather than in

the shoulders. The comparison should be made with the Kurtosis of a Normal

distribution, in which it is equal to 3. In the table is observable that, apart the

Artficial time series, the other time series have a high Kurtosis, meaning that the

data are distributed in the tails.

A graphical representation of such distributional features is given by the figures

below. Each histogram is plotted against a Normal distribution. While in the

second plot is represented the QQ-plot, that is a representation of the quantiles

of the distribution against the quantiles of the Normal distribution. From the

graph is observable that all real time series have heavy tails, compared to a Normal

distribution, as they follow a convex-concave pattern and all real time series have

outliers. Heavy tails are confirmed by the positive excess Kurtosis of each real

time series. The returns of the Artificial time series, on the other hand, have a

distribution near the Normal one.
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Figure 3.2: Histogram and Q-Q plot of each daily stock logarithmic returns.

Given that all the time series have different descriptive statistical values, the FTS

will test different environments with, consequently, different performances.

In the figures below, the daily stock prices and the respective daily stock returns

of each time series are represented. The returns of real time series present high

variability, while in the GARCH process the volatility is more constant over time

around a constant mean. Constant variability and constant mean define a stationary

process so, it is feasible to expect that the Artificial time series will be easier to

learn.
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Figure 3.3: Daily prices and daily returns of all time series.
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3.7 Simulations

The implementation of the Q-Learning algorithm, for finding the optimal policy

⇡⇤, can be summarized by the following steps [20]:

1. Set the discount factor � and the learning rate parameter ↵;

2. Initialize randomly the parameter vector ✓0 and the starting state s0;

3. Repeat for each time step:

• Estimate Qt(st, at,✓t) for each available action at of state st

• Choose an action at from st following the "-greedy policy

• Take action at, observe the subsequent state st+1 and the obtained

reward rt+1

• Estimate and select the maxa Q(st+1, at,✓t)

• Update the parameter ✓t:

✓t+1 = ✓t + ↵[rt+1 + �maxa Q(st+1, a;✓t)�Q(st, at,✓t)]r✓tQ(st, at,✓t)

• st = st+1

until the stopping criterion is satisfied.

In the tests carried out, I set � = 97.5% and ↵ = 40%, as are the values generally

used in the prominent literature. The discount rate is smaller than 1 in order to

assure that the infinite reward sum sequence has a finite value, and it approaches 1

in order to make the agent more farsighted. The learning rate ↵ is set constant and

enough high in order to allow the agent the possibility to learn a non-stationary

environment.

The parameter vector ✓, at the beginning of each trading period t = 0, is randomly

initialized on the basis of a uniform probability distribution. For this reason, repeat-

ing many times the same configuration, the final results change each time. For this

reason, I carried out simultaneously 500 simulations for each different configuration,

in order to obtain a good approximation of the performances of the FTS.

To render the FTS realistic, transaction costs are considered. For each configuration,
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the gross and the net results are presented, to highlight the impact of transaction

costs.

Summarizing, for the development of the FTS, I use two different values of N (1

and 5), three different reward functions (SR, Sortino and ESR), two values of L

(11 and 22) and two different values of " (2, 5% and 5%), for a total of twenty-four

different configurations.

3.8 Operative signals

Each of the 500 simulations carried out, of each configuration, brings different

results, due to the stochastic characteristics of the process taken into account. So,

in each time step, for each time series, there are 500 possible actions to take. To

render operative the algorithm, in order to obtain only one trading signal, in each

time step, to perform in the real financial market, the action signal is determined

on the basis of the majority of the action signals performed in each time step [19].

So, the action that the agent has to take in each time step, is an average of all the

actions of all simulations performed in that time step. Formally:

āt =

PK
k=1 at,k
K

where āt represents the average action value at time t, at,k is the action at time t of

the k-th simulation of K total number of simulations. In particular, to translate

into an operative action signal the average action value, āt, the following three

intervals are used:

at =

8
>>>>><

>>>>>:

�1 sell or stay-short-in-the-market-signal if āt 2
h
�1,�0.29

i

0 stay-out-from-the-market-signal if āt 2
⇣
�0.29, 0.29

⌘

1 buy or stay-long-in-the-market-signal if āt 2
h
0.29, 1

i
.
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Consequently, all the 500 equity lines performances are summarized into an operative

equity line, that follows the trend in the mean. In this operative phase, transaction

costs are applied when there is a change in stock positions, that is if a new position

is taken or a previous one is closed.
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Chapter 4

Application and outcomes

In this chapter I illustrate the results obtained from the application of the

implemented FTS on several configurations. It is carried out on five real daily stock

price time series and on an artificial one.

The performances are measured through four statistics, that is the gross and the net

yearly logarithmic return, the percentage of times the capital invested is equal to

or greater than the starting capital and the annual average number of transactions.

For each stock time series are illiustrated the results obtained by the application of

several FTS configurations, which are stored in tables. For the best performance, of

each stock price time series, two figures are provided, which illustrate the evolution

and the behavior of the FTS.

The results, then, are clustered in a table on the basis of each single configuration

parameters. This gives a general idea of the global performances of the financial

trading system.
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4.1 Statistics

The performances of the implemented FTS are measured through the average

yearly logarithmic return and through the evolution of the invested equity, in order

to check if the investment has bring to a positive return.

The twenty-four configurations are applied to each daily stock prices time series,

that are Assicurazioni Generali S.p.A., Buzzi Unicem S.p.A., Mediobanca S.p.A.,

Saipem S.p.A., Telecom Italia S.p.A. and the artificial time series, configured as a

GARCH process. The analysed period goes from November 30, 1993 to November

30, 2018.

I will present the results through several statistics, such as the gross and the net

average yearly logarithmic return obtained during the trading period, the percentage

of times in which the net equity line is greater than or equal to the starting capital,

and the average number of transactions per stock market year taken by the system.

This statistics are calculated on the results produced by the operative actions

signals. The operative action signals, as stated in the previous chapter, consist on

the average of all action signals of all 500 simulations in each time step, so:

āt =

P500
k=1 at,k
500

.

Once the average action value is computed, it is translated into an operative action

signal through three defined intervals:

at =

8
>>>>><

>>>>>:

�1 sell or stay-short-in-the-market-signal if āt 2
h
�1,�0.29

i

0 stay-out-from-the-market-signal if āt 2
⇣
�0.29, 0.29

⌘

1 buy or stay-long-in-the-market-signal if āt 2
h
0.29, 1

i
.

At the end of the trading period, it is possible to define the final gross and net

capital invested and, based on this results, it is possible to compute the average

daily logarithmic return and then, the average yearly logarithmic return, both gross
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and net:

• Average daily return = ( Final Capital
Initial Capital)

1
T � 1

• Average yearly return = ḡ = (1 + Average daily return)252 � 1

where T indicates the total trading days of the investment period, that are 6370,

and 252 corresponds to the days of a trading year.

The percentage of time in which the net average capital is equal to or greater than

the initial capital is computed as follows:

% =
⌃

T
⇤ 100

where ⌃ represents the number of times in which the equity line is equal or is above

the initial invested capital. This last statistic gives a qualitative information about

the capital invested as it considers the evolution of the capital during the trading

period [4]. On the contrary, the average yearly return considers only the initial and

the final capital. Based on this two considerations, a FTS that has generated a

positive equity line during the trading period but, at the end it collapsed, giving a

final capital lower of the initial invested capital, can be considered a satisfactory

FTS.

The last statistic consider the average number of transactions per year and it is

computed as follows:

# =
⇧

T/252

where ⇧ represents the number of performed actions during the trading period.

This statistic is useful to check if the system takes too many actions, so opens or

closes positions too many often, as too many transactions imply high transaction

costs and consequently a lower final net capital.
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4.2 Results

The results are presented in the tables below, for each time series, with all the

500 simulations for each of the twenty-four configurations. Also the final capital,

both gross and net, are reported. Transaction costs are applied on the operative

phase. The columns labeled g[%]gross and g[%]net show, respectively, the gross and

net average yearly logarithmic return. The column labeled % shows the percentage

of times in which the net equity line is higher or equal to the initial invested capital.

The column labeled # shows the average number of transactions in a trading year.

Two figures, of the best performance in terms of the higher yearly net logarithmic

return, are shown for each stock. The first figure shows all the equity lines of all

the simulations and the gross and net operative equity line. The bold black line

represents the gross operative equity line, while the bold green line represents the

net one. The second figure is divided into four panels. The first panel shows the

daily stock prices time series; the second panel reports the operative actions signals

taken during all the trading period; the third panel shows the reward function; the

fourth panel represents both the gross (blue line) and the net (green line) equity

capital that is obtained by investing at time t0 a starting capital of C = 100 euro

until the terminal state T .

The first results reported are from the application of the FTS to the Assicurazioni

Generali S.p.A. time series.

Ass.Generali N=1

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 1.40 -3.48 67.62 8.15 142.24 40.84
SR 11 5% -3.95 -11.35 2.09 13.22 36.10 4.77
SR 22 2.5% -1.87 -6.06 15.48 7.20 62.04 20.59
SR 22 5% -1.11 -7.98 1.41 11.87 75.34 12.24

Sortino 11 2.5% -1.67 -7.08 14.12 9.34 63.32 15.63
Sortino 11 5% -0.72 -7.70 9.74 2.03 83.36 13.20
Sortino 22 2.5% -2.49 -8.34 17.16 10.21 52.85 11.08
Sortino 22 5% -1.65 -9.82 7.18 14.33 65.64 7.35
ESR 11 2.5% -0.51 -3.66 -6.06 5.30 87.78 38.95
ESR 11 5% -4.60 -11.70 1.49 12.74 30.44 4.31
ESR 22 2.5% 0.81 -3.11 53.17 6.57 122.78 44.98
ESR 22 5% -2.72 -8.60 1.24 10.29 49.81 10.32
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Ass.Generali N=5

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 0.37 -4.09 0.27 7.52 109.66 34.80
SR 11 5% 1.84 -2.83 0.38 7.76 158.33 48.44
SR 22 2.5% 2.06 -1.54 1.15 5.94 167.22 67.63
SR 22 5% 0.66 -3.81 0.79 7.52 118.04 37.47

Sortino 11 2.5% 1.94 -1.51 0.96 5.70 162.60 68.17
Sortino 11 5% -1.40 -5.86 0.75 7.68 70.11 21.76
Sortino 22 2.5% 2.13 -1.23 1.62 5.54 170.35 73.10
Sortino 22 5% -0.46 -4.47 0.77 6.81 88.96 31.52
ESR 11 2.5% 1.05 -1.39 1.12 4.04 130.33 70.30
ESR 11 5% -1.49 -6.10 0.75 7.92 68.44 20.43
ESR 22 2.5% 2.41 0.61 54.02 2.93 182.54 116.62
ESR 22 5% 2.31 -0.78 21.29 5.07 177.88 2.11

Table 4.1: Assicurazioni Generali S.p.A. daily stock prices time series.

The best configuration, in terms of the higher net yearly logarithmic return obtained,

is the one with N = 5, L = 22, " = 2.5% and the Expected Shortfall ratio as reward

function. The final capital, both gross (182.54) and net (116.62), is higher than the

starting capital and, for 54.02% of times, the net equity line is equal or above the

starting capital. Both logarithmic returns are positive: the gross is equal to 2.41%,

while the net is 0.61%.
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Figure 4.1: Assicurazioni Generali S.p.A.
N = 5, L = 22, " = 2.5%, ESR.

The graphics of this configuration are reported above. In the first figure are rep-

resented all the 500 equity lines and the gross (black line) and net (green line)

operative equity lines. The equity lines of Assicurazioni Generali S.p.A. have not a

main trend. For the fist 3700 observations the two operative equity lines, gross and

net, have many drawdowns but with small magnitude. Then, they increase and

maintain an approximately constant trend until the end of the trading period. In

the second panel of the second figure the actions taken by the system are reported.

The system does not take many actions. In fact, the number of transactions per

year is of 2.93. It is interesting to note how the agent tries to learn the environment.

In fact, it buys the stock when the price starts to increase and sells it when the

price starts to decrease. The low number of transactions taken during the trading

period can be attributed to the combination of two factors: a high learning rate

and a low exploration rate. The high learning rate is necessary as the environment
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is not stationary and the time series have several structural breaks29. Due to the

structural breaks, the environmental features change and the FTS has to adapt

itself to this changes. So it must unlearn what it already learned and must start

to learn the new environmental characteristics on the basis of few informations.

Therefore, a high learning rate brings to high updates of the action-value functions

the system is trying to maximize. The exploration rate is low, so the system does

not need to explore too much the environment, because of the high learning rate.

The same configuration applied to the other two reward functions performs well

only in terms of gross yearly returns, as the net logarithmic returns are negative.

Among the three reward functions, the Expected Shortfall ratio is the one with the

best performance, followed by Sortino ratio and the last, the Sharpe ratio. This

is a predictable result, as the Expected Shortfall is a more precise measure of risk,

compared to the other two.

There are others configurations with a positive gross logarithmic return but, due to

the transaction costs, the net one is always negative. Another observation that can

be pointed out, is related to the number N of returns used in the state descriptors.

For each reward function, the higher performances are obtained when N is higher.

So the system prefers more informations in order to learn and, consequently, takes

actions.

The following table reports the results concerning the second time series, that is

Buzzi Unicem S.p.A.. The best configuration, among all, is the one with N = 5,

L = 11, " = 2.5% and the Expected Shortfall ratio as reward function. Both final

capitals are above the initial capital, 143.73 the gross one and 124.29 the net one.

The gross and net yearly logarithmic return are 1.45% and 0.86%, respectively. For

95.80% of times, the net equity line is greater or equal to the starting capital.

29A structural break is an unaxpected change in a time series trend, typical of a non-stationary
environment.
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Buzzi Unicem N=1

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% -4.98 -10.81 7.01 10.45 27.49 5.55
SR 11 5% -7.24 -16.12 7.65 5.28 14.95 1.18
SR 22 2.5% -5.10 -10.74 9.16 10.13 26.66 5.66
SR 22 5% -4.44 -13.57 8.68 16.58 31.70 2.51

Sortino 11 2.5% -6.16 -13.16 6.74 12.78 20.05 2.83
Sortino 11 5% -5.53 -13.49 8.31 14.52 23.75 2.57
Sortino 22 2.5% -7.43 -13.70 4.18 11.59 14.22 2.41
Sortino 22 5% -7.05 -15.90 7.35 16.50 15.76 1.26
ESR 11 2.5% -5.71 -10.75 19.33 9.06 22.62 5.65
ESR 11 5% -7.07 -14.79 4.60 14.29 15.67 1.75
ESR 22 2.5% -7.42 -12.94 4.16 10.13 14.24 3.01
ESR 22 5% -5.14 -12.55 3.74 13.42 26.34 3.37

Buzzi Unicem N=5

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 1.40 -0.28 13.67 2.77 142.00 93.06
SR 11 5% 1.18 -1.07 5.28 3.72 134.48 76.28
SR 22 2.5% 0.88 -1.45 12.29 3.88 124.84 69.13
SR 22 5% 0.72 -1.81 4.29 4.20 119.73 63.13

Sortino 11 2.5% 0.81 -0.68 10.29 2.46 122.50 84.27
Sortino 11 5% 0.69 -0.84 10.50 2.53 118.82 80.78
Sortino 22 2.5% 1.41 -0.36 52.22 2.93 142.48 91.24
Sortino 22 5% 0.17 -1.49 16.17 2.77 104.47 68.50
ESR 11 2.5% 1.45 0.86 95.80 0.95 143.73 124.29
ESR 11 5% 0.52 -1.76 9.63 3.80 114.09 63.02
ESR 22 2.5% 1.54 -0.34 46.24 3.09 146.92 91.86
ESR 22 5% 0.28 -1.28 10.09 2.61 107.44 72.19

Table 4.2: Buzzi Unicem S.p.A. daily stock prices time series.

A graphical representation of this configuration applied to the time series of Buzzi

Unicem S.p.A. is reported below. The operative equity lines are almost straight,

confirmed by both figures. There is a quite constant trend until observation 3000,

then the equity lines increase in correspondence of a relative peak in the price time

series, maintaining the trend for about three years. When the price reached another

relative peak, in observation 3800, the equity lines increase again and then keep a

constant trend until the end of the trading time. In fact, the system takes a small

number of actions, with an average number of transactions in a trading year of 0.95.

The reason can be attributed to the multiples structural breaks characterizing this

time series and, as in the previous time series, to the combination of a high learning

rate with a low explorative rate. Observing the table, the gross yearly logarithmic

returns are all positive for N = 5 and all negative for N = 1. The net logarithmic

return pass from �16.12% in the worst case, for N = 1, to �1.81% in the worst

case, for N = 5. Even for this time series, the algorithm performs better with a

state descriptor with more informations.
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Figure 4.2: Buzzi Unicem S.p.A.
N = 5, L = 11, " = 2.5%, ESR.
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The outputs of the time series Mediobanca S.p.A. are not optimal. In fact, all the

net yearly logarithmic returns are negative. The best peformance, in terms of the

lower negative net yearly logarithmic return, is given by the configuration with

N = 5, L = 22, " = 5%, ESR as reward function. The gross yearly logarithmic

return is 1.67% while the net one is �0.20%. The gross final capital is 151.98 and

the net one is 94.96. This time series is hard to be learned as it presents many

structural breaks that change the environmental characteristics. So the FTS has to

unlearn what it has already learned and start the process again.

Mediobanca N=1

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% -5.52 -11.15 2.40 10.13 23.84 5.04
SR 11 5% -2.50 -9.40 5.29 12.11 52.77 8.24
SR 22 2.5% -3.81 -9.45 4.49 9.97 37.48 8.13
SR 22 5% -4.91 -12.44 5.14 13.61 28.00 3.48

Sortino 11 2.5% 1.51 -4.36 9.59 9.81 146.12 32.43
Sortino 11 5% -0.14 -8.44 3.94 14.33 96.62 10.77
Sortino 22 2.5% -2.19 -8.19 2.51 10.45 57.19 11.55
Sortino 22 5% -5.60 -13.80 1.08 15.04 23.32 2.33
ESR 11 2.5% -1.29 -6.05 3.64 8.15 72 20.68
ESR 11 5% -2.66 -10.63 2.40 14.09 50.63 5.85
ESR 22 2.5% -2.03 -6.53 60.14 7.76 59.60 18.16
ESR 22 5% -1.68 -9.49 3.91 13.62 8.04 65.23

Mediobanca N=5

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 0.52 -1.20 8.83 2.85 113.96 73.75
SR 11 5% -0.34 -2.46 0.79 3.56 91.75 53.25
SR 22 2.5% 1.20 -0.39 4.48 2.61 135.07 90.69
SR 22 5% -0.64 -2.99 1.13 3.96 84.97 46.43

Sortino 11 2.5% -0.80 -2.68 1.67 3.17 81.58 50.30
Sortino 11 5% -1.80 -3.98 1.41 3.72 63.26 35.88
Sortino 22 2.5% -1.17 -2.67 1.18 2.53 74.35 50.53
Sortino 22 5% -2.37 -4.90 1.15 4.36 54.58 28.08
ESR 11 2.5% -1.29 -2.88 1.12 2.69 47.82 72.01
ESR 11 5% -1.05 -3.44 0.66 4.04 41.31 76.55
ESR 22 2.5% 0.69 -1.02 47.56 2.85 119.09 77.15
ESR 22 5% 1.67 -0.20 3.69 3.09 151.98 94.96

Table 4.3: Mediobanca S.p.A. daily stock prices time series.

Observing the panel reporting the operative actions taken by the system, it is clear

how the system acted. After it took a long position, when the price started to

decrese, the system took many short and neutral positions, as it was hesitant on

the position to be taken. This burned the initial capital from the beginning. Then

the system took long positions only when the price started to increase and reached
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the major peaks. The subsequent short positions, when the price began to decrease,

brought the gross equity line above the starting capital, but not the net one, due

to the transaction costs. In fact, the net equity line is above the starting capital

for 3.69% of trading time. However, for most of the time, the FTS took neutral

positions because of many drawdowns of the price that made the system to forget

what it already learned. For this reason the system preferred to stay out from the

market for most of the time. In fact, the annual average number of transactions is

3.09.

Also for this time series, the best configuration is given by the one that uses the

Expected Shortfall ratio as reward function. Moreover, the configurations with

N = 5 gives better results than the configurations with N = 1.
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Figure 4.3: Mediobanca S.p.A.
N = 5, L = 22, " = 5%, ESR.

The best performance, for the Saipem S.p.A. time series, is given by the configu-

ration with N = 5, L = 11, " = 5% and Sortino ratio as reward function. This

configuration gives a gross yearly return of 3.33% and a net one of 2.69%. The

gross and net final capital is of 228.78 and 195.50, respectively. This time series

performed quite well in all configurations, at least for what concerns the gross yearly

logarithmic return. The net one is always positive for configurations with N = 5.
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Saipem N=1

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 3.99 -0.56 42.16 7.36 268.53 86.87
SR 11 5% 4.18 -3.62 13.27 12.82 281.12 39.39
SR 22 2.5% 2.99 -3.19 15.14 10.21 270.71 44.10
SR 22 5% 3.46 -3.92 8.87 12.19 236.07 36.38

Sortino 11 2.5% 7.79 0.88 48.54 10.92 611.03 114.81
Sortino 11 5% 4.74 -4.82 14.98 15.75 321.99 28.67
Sortino 22 2.5% 5.75 -0.41 44.63 9.89 411.01 90.07
Sortino 22 5% 7.29 -2.49 4.02 15.75 591.38 52.90
ESR 11 2.5% -1.19 -7.87 0.46 11.56 73.90 2.59
ESR 11 5% 0.28 -8.08 0.39 14.33 107.28 11.90
ESR 22 2.5% 1.25 -5.24 3.82 10.92 136.73 25.65
ESR 22 5% 5.58 -2.97 5.46 13.93 394.46 46.62

Saipem N=5

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 2.09 1.27 90.92 1.35 168.73 137.50
SR 11 5% 1.63 0.80 86.50 1.35 150.24 122.23
SR 22 2.5% 1.81 1.18 91.72 1.09 157.48 134.58
SR 22 5% 1.27 0.11 86.57 1.90 137.49 102.84

Sortino 11 2.5% 1.91 1.19 96.02 1.19 161.39 134.67
Sortino 11 5% 3.33 2.69 96.17 1.03 228.78 195.50
Sortino 22 2.5% 2.52 2.03 99.95 0.79 187.31 165.99
Sortino 22 5% 1.88 1.15 95.82 1.19 159.90 133.36
ESR 11 2.5% 0.93 0.21 87.37 1.19 126.43 105.41
ESR 11 5% 1.54 0.57 88.83 1.58 147.26 115.56
ESR 22 2.5% 1.64 0.63 94.75 1.66 150.99 17.26
ESR 22 5% 1.37 0.40 93.04 1.58 140.87 110.52

Table 4.4: Saipem S.p.A. daily stock prices time series.
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Figure 4.4: Saipem S.p.A.
N = 5, L = 11, " = 5%, Sortino.

In the two figures above the behavior of the time series under the best configuration

is illustrated. The two operative equity lines are quite straight. Indeed, after

about observation 1100, the agent exits the market. The average annual number

of transactions is of 1.03 and are all performed before. The explanation of this

behavior can be attributed, in part to the structural breaks the time series present

and the consequently difficulty to learn a changing environment; in part to the

relatively high learning rate. In fact, until observation 1100, the price trend is

quite constant. When the price reached a local mimima in observation 1100, the

system sold the asset and decided to exit the market. However, due to this choice,

the system missed other peaks that the price time series reched in the subsequent

observations. The choice to sell just in that moment is justified by the fact that,

the price trend was quite constant in the previous observations and then started

to decrease. Once a local minima was reached the price remained constant at the

minimum level and the system decided to exit. Due to the sell, the equity lines
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returned above the initial capital and, until the end of the trading period, keep

constant. Indeed, the percentage of time in which the net equity line is equal or

above the starting capital is of 96.17%.

To give an idea of the effects the learning rate has on the FTS behavior, below

are reported the figures of the same optimal configuration, that is N = 5, L = 11,

" = 5% and Sortino ratio, but with a lower learning rate, ↵ = 10%. The system, now,

takes more actions than in the previous case, trying to learn the environment, with

an annual average of 7.44. The outputs of this configuration are worse compared

with the previous configuration. The gross yearly logarithmic return is still positive,

4.42%, but the net one is negative, �0.19%. The operative equity lines do not

follow a main trend but start to increase on the last years of the trading period,

when the system take short positions, as the price starts to decrease. The final

capitals are 298.06, the gross one, and 95.30, the net one.
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Figure 4.5: Saipem S.p.A.
N = 5, L = 11, " = 5%, Sortino, ↵ = 10%.

The table below reports the results of the Telecom Italia S.p.A. asset. The con-

figuration that brings the best outputs have N = 5, L = 11, " = 2.5% and ESR.

The g[%]gross = 4.69 and the g[%]net = 3.40. The final capitals are 318.09, the

gross one, and 232.39, the net one. For most of the time, 99.78%, the net equity

line is above or equal to the starting capital. This is shown in the two figures

below. The system took only 2.06 actions per year. In fact, for most of the trading

period it stayed out from the market. In particular, it bought the asset when the

price started to increase and reached its main peaks. Then the system sold the

asset when the price started to decrease and, as the trend of the time series after

observation 4000 is quite constant, the FTS preferred to stay neutral. Also in

this case, the choice to exit the market when the trend remains constant, with no

variability, can be traced back to the high learning rate.

Observing the table below, the difference among the values with N = 1 and

that with N = 5 is substantial. The net yearly logarithmic returns pass form neg-
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ative to positive and also the final capital, both gross and net, increases considerably.

Telecom N=1

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% -3.97 -9.06 18.28 8.98 35.96 9.08
SR 11 5% -9.81 -16.33 21.25 12.35 7.36 1.1
SR 22 2.5% -7.27 -11.75 22.14 8.11 14.83 4.24
SR 22 5% -9.33 -15.46 22.75 11.52 8.43 1.43

Sortino 11 2.5% -13.23 -18.52 21.88 10.33 2.77 0.56
Sortino 11 5% -10.75 -17.34 20.21 12.54 5.64 0.81
Sortino 22 2.5% -10.34 -15.88 34.85 10.49 6.34 1.27
Sortino 22 5% -8.39 -15.03 27.70 2.31 10.93 1.63
ESR 11 2.5% 0.10 -3.76 70.24 6.49 102.50 37.94
ESR 11 5% -5.81 -12.06 10.58 11.24 22.03 3.89
ESR 22 2.5% -1.94 -5.08 77.17 5.34 60.95 26.78
ESR 22 5% -9.52 -15.51 14.93 11.16 7.98 1.41

Telecom N=5

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 4.90 2.87 95.79 3.25 335.08 204.21
SR 11 5% 3.73 1.42 95.07 3.72 252.16 142.93
SR 22 2.5% 4.70 2.77 99.83 3.09 319.31 199.21
SR 22 5% 3.94 2.46 99.83 2.36 265.52 184.92

Sortino 11 2.5% 3.51 1.51 96.15 3.25 239.03 145.90
Sortino 11 5% 3.69 1.39 95.34 3.72 249.99 141.73
Sortino 22 2.5% 3.49 2.35 95.25 1.82 237.75 179.94
Sortino 22 5% 3.03 1.13 97.64 3.09 212.33 132.75
ESR 11 2.5% 4.69 3.40 99.78 2.06 318.09 232.39
ESR 11 5% 1.69 -0.86 37.96 4.20 152.67 80.46
ESR 22 2.5% 3.54 2.51 99.69 1.66 240.95 186.99
ESR 22 5% 3.45 1.30 99.80 3.48 235.34 138.54

Table 4.5: Telecom Italia S.p.A. daily stock prices time series.
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Figure 4.6: Telecom Italia S.p.A.
N = 5, L = 11, " = 2.5%, ESR.
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The Artificial time series is the series with the best performances. All returns are

positive, both gross and net. The best configuration is the one with N = 5, L = 11,

" = 5% and ES ratio as reward function. The gross yearly logarithmic return is

equal to 14.31% and the net one is equal to 8.52%. The operative equity lines have

a constant increasing trend. In fact, the net equity line is above the starting capital

for 99.98% of trading time, with an annual average number of transactions of 8.63.

Such a constant positive trend is due to the fact that the environment in which

the FTS operates is known, as this time series is generated by a GARCH process.

Moreover, this time series has the lowest standard deviation, 0.038, meaning that is

easier to learn such an environment as it does not have high variability. The final

capitals are high compared to the ones of the real time series. The gross one is

2931.61, while the net one is 788.03.

Artificial series N=1

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 13.17 6.98 99.97 9.34 2278.46 549.66
SR 11 5% 15.16 8.08 99.97 10.53 3539.25 712.58
SR 22 2.5% 11.15 6.22 99.97 7.52 1445.23 460.04
SR 22 5% 12.12 6.13 99.97 9.10 1798.94 450.10

Sortino 11 2.5% 10.25 3.82 99.97 9.97 1176.30 257.81
Sortino 11 5% 11.66 3.66 99.98 12.35 1623.10 247.99
Sortino 22 2.5% 9.48 3.73 99.97 8.94 985.47 252.53
Sortino 22 5% 9.59 0.92 93.44 13.62 1011.17 125.89
ESR 11 2.5% 11.89 6.73 99.97 7.84 1707.91 518.14
ESR 11 5% 14.97 7.70 99.98 10.84 3397.93 652.03
ESR 22 2.5% 9.75 4.59 99.97 7.99 1049.04 310.90
ESR 22 5% 11.48 5.03 99.97 9.89 1557.16 345.39

Artificial series N=5

Reward function L " g[%] gross g[%] net % # F.C gross F.C net
SR 11 2.5% 12.73 8.15 99.98 6.89 2061.87 722.72
SR 11 5% 14.47 7.89 99.98 9.82 3034.56 680.93
SR 22 2.5% 10.25 6.07 99.98 6.41 1175.89 443.20
SR 22 5% 12.08 6.76 99.95 8.08 1782.97 521.94

Sortino 11 2.5% 8.96 4.43 99.75 7.05 873.41 299.05
Sortino 11 5% 9.47 3.13 99.87 9.90 981.42 217.85
Sortino 22 2.5% 8.08 3.84 99.80 6.65 711.98 258.95
Sortino 22 5% 7.55 1.33 99.73 9.90 629.20 139.72
ESR 11 2.5% 12.24 7.52 99.98 7.13 1845.86 624.00
ESR 11 5% 14.31 8.52 99.98 8.63 2931.61 788.03
ESR 22 2.5% 9.38 4.53 99.98 7.52 961.00 306.44
ESR 22 5% 11.74 6.03 99.98 8.71 1648.82 438.30

Table 4.6: Artificial daily stock prices time series.
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Figure 4.7: Artificial time series
N = 5, L = 11, " = 5%, ESR.
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4.3 Remarks

In order to globally evaluate the performances of the system, the results are

agglomerated on the basis of each parameter configuration. In the table below

are showed the percentage of configurations with a positive net average yearly

logarithmic return and the percentage of configurations in which the net equity

line is equal or above the starting capital for at least half of the trading period. A

distinction is made on the basis of the application of such statistics over all the

stock prices time series or over only the real ones.

All series Real series

g[%]net>0 %>50 g[%]net>0 %>50
All configurations 34.72% 38.19% 21.67% 25.83%

N=1 18.06% 23.61% 1.67% 8.33%
N=5 51.39% 52.78% 41.67% 43.34%
L=11 34.72% 36.11% 21.67% 23.33%
L=22 34.72% 40.28% 21.67% 28.33%

" = 2.5% 37.50% 44.44% 25.00% 33.34%
" = 5% 31.94% 31.94% 18.34% 18.33%

SR 33.34% 35.42% 22.50% 22.50%
Sortino 35.42% 35.42% 22.50% 22.50%
ESR 35.42% 43.75% 32.50% 32.50%

Table 4.7: Summary statistics.

The difference between the results obtained from all series and those from only the

real series is, on average, of 10% points. Only 21.67% of configurations, applied

only on real time series, have a positive average yearly logarithmic return. The

percentage is higher, 34.72%, if also the artificial time series is considered. An

interesting result is the difference among the statistics obtained from the configura-

tions with N = 1 and N = 5. For all time series, the percentage of configurations

with a positive net average yearly logarithmic return passes from 18.06% to 51.39%,

and for only the real time series the difference is even more evident. Indeed, this

percentage moves from 1.67% to 41.67%. In fact, in correspondence of N = 5,

the percentage of configurations in which the invested capital is equal or over the

starting capital, is higher. It is of 52.78% for all series and 43.34% for only real series.
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For what concerns the number L of trading days on which the reward functions are

computed, there is no difference between the two values. Another observation can

be done observing the explorative rate ". According to the observations made in the

previous part, a low explorative rate is combined with a high learning rate. In fact,

the configurations with " = 2.5% give better performances than those with " = 5%.

For what concerns the reward functions, the real series perform better utilizing

the Expected Shortfall ratio. Indeed, 32.50% of configurations obtain a positive net

yearly logarithmic return with the ESR, against a 22.50% for the other two reward

functions. Four of the five real time series’ best configurations use the Expected

Shortfall ratio as reward function. This mean that, this reward function which takes

into account the downside risk of an investment, is preferred. Making an average of

the net yearly logarithmic returns of each type of reward function, emerges that

the Expected Shorfall ratio gives higher results for Assicurazioni Generali S.p.A.,

Buzzi S.p.A., Mediobanca S.p.A. and Telecom Italia S.p.A. Only Saipem S.p.A.

performes better, in the mean, utilizing the Sortino ratio and the Artificial time

series gives better results utilizing the Sharpe ratio.

Given the great difference in performances when the number N of returns, utilized

in the state descriptors, increases, I illustrate this variations. In the table 4.8 are

reported the percentage increases of the net yearly logarithmic returns when N

increases from N = 1 to N = 5. For all the real time series is observable a consistent

improvement in the results. The time series that records the higher increment is

Telecom Italia S.p.A., with an average increment of 122%. The Artificial time series

does not report significant improvements as, in this case, the FTS is able to learn

the environment even with a simpler state descriptor, as it is produced by a known

process, that is the GARCH one.
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�[%] of g[%] net

Reward function L " Ass.Generali Buzzi Mediobanca Telecom Saipem Artificial
SR 11 2.5% -18% 97% 89% 132% 327% 17%
SR 11 5% 75% 93% 74% 109% 122% -2%
SR 22 2.5% 75% 86% 96% 124% 137% -2%
SR 22 5% 52% 87% 76% 116% 103% 10%

Sortino 11 2.5% 79% 95% 39% 108% 35% 16%
Sortino 11 5% 24% 94% 53% 108% 156% -14%
Sortino 22 2.5% 85% 97% 67% 115% 595% 3%
Sortino 22 5% 54% 91% 64% 108% 146% 45%

ES 11 2.5% 62% 108% 52% 190% 103% 12%
ES 11 5% 48% 88% 68% 93% 107% 11%
ES 22 2.5% 120% 97% 84% 149% 112% -1%
ES 22 5% 91% 90% 98% 108% 113% 20%

Mean 62% 94% 72% 122% 65% 9%

Table 4.8: %variation of g[%]net with N = 1 and g[%]net with N = 5.

The table 4.9 illustrates the percentage increments of the net final capital between

the configurations with N = 1 and those with N = 5. Also in this case Telecom

Italia S.p.A. is the time series which reports the higher improvements, with an

average increment of 9228%. The Artificial time series was not affected by the

change of the number of returns utilized in the state descriptors.

�[%] of F.C. net

Reward function L " Ass.Generali Buzzi Mediobanca Telecom Saipem Artificial
SR 11 2.5% -15% 1577% 1363% 2149% 58% 31%
SR 11 5% 916% 6364% 546% 12894% 210% -4%
SR 22 2.5% 228% 1121% 1015% 4598% 205% -4%
SR 22 5% 206% 2415% 1234% 12831% 183% 16%

Sortino 11 2.5% 336% 2878% 55% 25954% 17% 16%
Sortino 11 5% 65% 3043% 233% 17398% 582% -12%
Sortino 22 2.5% 560% 3686% 337% 14069% 84% 3%
Sortino 22 5% 329% 5337% 1105% 8044% 152% 11%

ES 11 2.5% 80% 2100% 248% 513% 737% 20%
ES 11 5% 374% 3501% 1209% 1968% 871% 21%
ES 22 2.5% 159% 2952% 325% 598% 357% -1%
ES 22 5% 696% 2042% 46% 9726% 137% 27%

Mean 328% 3085% 643% 9228% 300% 10%

Table 4.9: %variation of F.C. net with N = 1 and F.C. net with N = 5.
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Conclusions

In this thesis, the development and the implementation of financial trading

systems, based on several configurations of the Q-Learning algorithm, is illustrated.

The Q-Learning, an algorithm which belongs to the Reinforcement Learning meth-

ods, is able to real-time interact with a dynamic environment in order to exploit its

knowledge and achieve profitable results. The Adaptive Market Hypothesis is the

theoretical framework in which the algorithm operates. Such theory justifies the

possibility to make profitable trading, as security prices do not immediately and

correctly fully reflect new informations coming into the market. The achievement

of some positive results is a proof that the Adaptive Market Hypothesis theory is

valid.

The FTS is applied on five real daily stock market price time series and on an artifi-

cial one, with different parameters values which give different configurations. After

the analysis and the comparison of the outputs from the different configurations,

some aspects stand out. The first concerns the quantity of informations contained

in the state descriptors. Even if the system uses simple state descriptors, emerged

that more informations help the agent to take more profitable and efficient actions,

which bring to higher results. Indeed, state descriptors which consider the actual

return plus the past four ones give higher results than the ones wich consider only

the actual return.
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A general aim may be finding a configuration that makes the FTS works profitable

in each environment. A first result, in this sense, could regard the reward function.

This is an another considered aspect. Indeed, most of the real stock price time

series perform better with the Expected Shortfall ratio. Respect to the Sharpe ratio,

the Sortino ratio and the Expected Shortfall ratio are more realistic performance

measures, as they takes into account a downside measure of risk. However, this last

one can be considered a more precise measure of risk as gives higher results.

An equilibrium between the learning rate and the exploration rate should be found.

In the obtained outputs, a high learning rate requires a low exploration rate. The

high learning rate is justified by the non stationarity of the environment, in which

the system operates, and by the presence of many structural breaks. Given a

high learning rate, the system has no need to explore too much the surrounding

environment.

Due to the use of operative signals, it is possible to employ such a FTS into the

real financial market. In fact, through the 500 simulations, which require 500

initial capitals and likewise transaction costs, the system has 500 actions to take.

Obviously, such an approach is not feasible, as it is too expensive. Making an

average of all the actions in each time step, it is possible to obain operative action

signals, that is sell, out or buy. This method makes the implemented FTS practical

and, for some configurations, profitable.

Even if the results obtained by my FTS are not optimal, it can be considered as a

starting point for further improvements.
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