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EXECUTIVE SUMMARY 
 
This thesis is related to climate-risk management and adaptation. Specifically, it focuses on the 

assessment of flood risk to preventively understand the costs of hazard scenarios in a changing 

climate in order to timely elaborate adequate adaptation policies. Italy is a flood-prone country 

that suffers the highest economic impact in all of the EU. Despite this, there is no established 

framework or method at national level to estimate flood risk, and existing country-wide 

assessments are very broad-brushed. This is critical considering that impacts from extreme 

meteorological events are expected to increase by 2050 in Europe. 

The objective of the thesis is to develop an improved methodology for the assessment of flood 

risk combining the most updated and reliable data available by means of advanced spatial and 

statistical approaches. By reducing the uncertainty typical of simple customary methods, the 

improved flood risk model can be used to translate any change in flood hazard probability and 

magnitude into variation of Expected Annual Damage. Key for the improvement of damage 

modelling is the collection and analysis of empirical data from observed flood events; starting 

from a large dataset collected after the 2014 flood on the Secchia basin (Emilia-Romagna), the 

thesis shows different approaches, more and more sophisticated, to elaborate the available 

information into a prognostic tool that can be reliably employed for risk management. Starting 

from a general investigation on the performances of transferred univariable models (depth-

damage curves) over different damage categories (Ch.2), my research proceeded with the 

development of an empirical-base univariable model by using a statistical calibration procedure 

(Ch.3). In my third study (Ch.4) I collected heterogeneous country-wide data (e.g. land use, 

soil sealing, population and building census, cadastral information, production value) and 

combined them by using a dasymetric approach in order to draw a detailed and homogeneous 

representation of exposure in terms of asset, population, GDP, and social vulnerability. 

Exposure to different hazard scenarios is then estimated in relation to JRC flood hazard 

modelling. 

My last study (Ch.5) takes a far more advanced step in the identification of a tool that can be 

practically employed for country-wide risk assessment by validating an innovative 

multivariable, synthetic damage model for residential structures by means of machine learning. 
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1 INTRODUCTION 

1.1  Background and motivation 

Human civilisation depends on water. Since its very beginning, societies required to understand 

the hydrological cycle and consequently manage the water resources in order to provide a 

service (drinking water, irrigation, sanitation, energy) while controlling the flood hazard. This 

has never been an easy task, as evidenced by numerous myths and stories found in the history 

of mankind concerning devastating deluges and floods (Pindar 450BC; Pleins 2003; Wu et al. 

2016). History also shows how we learnt to successfully control the waters through trials, errors 

and observations, ultimately claiming larger and larger portions of the valleys for the 

development of human activities. However, while population and wealth grew, the anthropic 

pressure on the floodplains intensified. Natural ecosystems regulate water flow and foster 

infiltration and natural water retention. When forests and wetlands are turned into impermeable 

urban areas, agricultural land or pastures, precipitation runoff is affected; water is discharged 

much faster through the catchments, resulting in higher peak flows that increase the probability 

of floods. 

Today, in Europe, up to 90% of floodplains have been lost or are no longer able to provide an 

ecosystem service in terms of flood risk reduction (EEA 2016). In their place, river 

embankments and other man-made defences were put in action to control river flows and reduce 

(yet never eliminate) flood risk, leading to the accumulation of people and wealth within once 

flood-prone areas (Domeneghetti et al. 2015). At the same time, human-induced climate change 

is altering the water cycle, eventually increasing the variability of extreme meteorological 

events (e.g. intense rainfall) which are among the root causes of flood hazard and threatening 

to make the existing flood defences inadequate (Jonkman 2013; Alfieri et al. 2015a; Alfieri et 

al. 2016). Floods and inundations are today the most frequent and costliest natural disasters 

worldwide. According to the estimates European Environment Agency, between 1980 and 2017 

floods caused losses in the EU exceeding 200 billion Euro, which is approximately 6 billion 

Euro of losses per year affecting 250,000 people (EEA 2010; EASAC 2018). Worse, other 

studies from the EEA have shown that future flood damage and losses may increase fivefold 

with increasing exposure and hazard (Alfieri et al. 2017). Under this perspective, a reliable 
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assessment of current and future flood risk is vital for designing effective disaster risk reduction 

and climate change adaptation policies and plans. 

In the age of information, our capacity to record, measure and analyse natural phenomena has 

far outreached any previous effort. Remote sensing, Artificial Intelligence (AI) development, 

numerical modelling and other data-management and computation improvements are proving 

essential to tighten the knowledge gap. Still, there are many sources of uncertainty that affect 

the estimate of flood risk, such as the scarce number of complete empirical observation datasets 

that can be used to extrapolate models, the difficulties to obtain a detailed characterization of 

the exposed value, and the limited availability of hazard scenarios. 

My thesis aims to contribute to the literature related to flood risk by investigating the 

performance of existing risk assessment methods while proposing further advancements based 

on updated data sources, improved spatial techniques and innovative modelling approaches. 

Starting from empirical observations collected from historical floods in Italy, my research leads 

to a better understanding of the complex “flood impact” process and provides insights about 

the economic modelling of flood damage. The improvements brought by the conducted research 

are relevant to the objectives of the EU Floods Directive (2007/60/EC) and to the targets of the 

UN’s Sendai Framework for Disaster Risk Reduction 2015-2030, specifically to the reduction 

of economic disaster losses in relation to global Gross Domestic Product (GDP), and the 

reduction of disaster damage to critical infrastructure and the disruption of basic services. 

1.2  Flood risk assessment 

Flood impact is a complex phenomenon human, social, economic and environmental capitals. 

It can directly affect health and pose a threat to life, cause physical damage to households and 

productive activities, harm livestock and pollute land, erode social cohesion, but also interrupt 

critical infrastructures and supply chains (e.g. power outages), thus generating a series of 

indirect impacts that spread along the economic network. A multi-disciplinary approach is 

therefore required to assess the different dimensions of flood impact. In general terms, flood 

risk is expressed as a function of the hydrological hazard, the extent and value of the exposed 

assets, and their relative susceptibility to suffer damage from water inundation (Smith 1994; 

Meyer and Messner 2005; Scawthorn et al. 2006; Messner et al. 2007a; Jonkman et al. 2008a; 

Thieken et al. 2009; Merz et al. 2010a; de Moel and Aerts 2011a; Jongman et al. 2012a; 

Huizinga et al. 2017). Flood hazard is estimated by assessing the probability that a given area 

is flooded, as a result of an event of defined magnitude. This information is usually provided in 
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the form of flood scenarios referring to different frequency of occurrence and measured in terms 

of hazard variables (i.e. flooded extent, water depth, flow velocity and event duration). The 

elaboration of accurate flood scenarios involves advanced physical modelling and the 

thoroughly collection of detailed datasets related to land morphology, soil, hydrological 

features and climatic conditions. Flood risk assessment provides an estimate of the costs 

associated to each hazard scenario by combining them with the representation of exposed value 

by means of a vulnerability model. However, risk assessment approaches can vary depending 

on the temporal and spatial scales at which the assessment is carried on (de Moel et al. 2015), 

the category of impact that is investigated, the tools employed, the availability of data (de Moel 

and Aerts 2011a) and the type of ood (e.g. uvial, pluvial or coastal ood) (Apel et al. 2004; 

Thieken et al. 2006a; Messner et al. 2007b). Impacts can translate into intangible and tangible 

costs: intangible are those costs that are hardly measured in economic terms, such as harm to 

health and life, environmental degradation, or social disruption; differently, tangible costs can 

be quantified in economic terms. Impacts are also identified as direct or indirect. Direct tangible 

impacts refer to the economic costs sustained to repair or replace damaged physical asset. 

Indirect tangible losses, on the other hand, refer to the consequence of direct impacts affecting 

the production chain on a larger spatial and temporal scale (Meyer et al. 2013b; Hallegatte 

2015). Indirect losses can also be referred to as flow losses (Koks et al. 2015a; Carrera et al. 

2015). 

1.3  Objectives and outline of the thesis 

My research has contributed to an integrated framework for assessing the potential change in 

economic losses caused by floods accounting for both climate variability and socio-economic 

development. The risk assessment framework proposed in this thesis is shown in figure 1.1. 

The framework is built over the three customary macro-components of risk: hazard, exposure 

and vulnerability. 

The hazard component involves the modelling of flood scenarios that are consistent with 

observations (when assessing past events) and with climate projections (when assessing future 

events). The exposure component combines a variety of heterogeneous datasets into a 

standardised spatial representation of socio-economic value, including population count, 

classification of buildings, reconstruction costs, production value per economic sector, and 

other variables. These two components are the inputs for the vulnerability model, which first 

produces an estimate of the direct economic impacts by means of spatial analysis; then, a sub-
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national macro-economic model simulates the effect of the economic shock over regional 

production, including spill-over effects to other Regions. 

 
Fig. 1.1. Proposed flood risk assessment framework built over the main components of risk assessment: 

hazard, exposure and vulnerability. 

The sum of direct economic damage to physical asset and indirect losses to production provides 

a measure of the expected total losses in relation to the probability of the accounted scenario; it 

can be multiplied by the event probability, to compute the annual average damage and losses. 

This is then summed for all scenarios to provide a measure of the Expected Annual Damage 

and Losses (EAD&L), i.e. the integral of the area under the damage probability curve. By 

comparing EAD&L measured from a set of climate scenarios, it is possible to produce an 

estimate of the costs associated with global warming. 

The thesis takes the case of Italy, the EU Country with the largest population living in flood-

prone areas (about 7 million people) and the largest amount of annual uninsured economic 

losses: around 4 billion Euro of public money were spent over a 10 years period to compensate 

the damage inflicted by major extreme hydrologic events countries (Associazione Nazionale 

fra le Imprese Assicuratrici 2015; Alfieri et al. 2016; EEA 2016; Paprotny et al. 2018). 
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According to ISPRA, from 2009 until 2012, the recovery funding amounted to about 1 billion 

Euro per year, and this is only a fraction of the real damage, estimated to be around EUR 2,2 

billion (Zampetti et al. 2012). In this context, and particularly compelled by the EU Flood 

Directive (2007/60/EC), sound and evidence-based flood risk assessments must underpin the 

development and implementation of cost-effective flood risk reduction strategies and plans.  

 

Fig.1.2. Population exposed to flood risk in Italy, map produced by ISPRA (2017) in compliance to the 

Flood Directive (2007/60/EC). The estimate is based on the mosaicking of flood-prone areas with a 

return time between 100 and 200 years (P2, medium hazard) obtained from local District Basin 

Authorities, and on the resident population from the 15th ISTAT Census (2011). 



22 
 

 

However, efforts to produce a country-wide flood risk assessment in Italy have been limited to 

the initial requirements of the Flood Directive; i.e., the current Italy-wide flood risk assessment 

is based on a generalized definition of hazard perimeters assembled from the information 

produced by local administrations (Fig. 1.2) (ISPRA 2014). In addition, the existing assessment 

does not include a proper damage model, which is required to connect the hydrologic and social 

dimensions and to translate hazard mapping into risk estimates. This issue is linked to the lack 

of a systematic, standardized collection of ex-post data and their methodical analysis, despite 

the frequency of flood events (Molinari et al. 2013; Molinari et al. 2014b). 

The thesis document is organised in five chapters. The chapters from 2 to 5 represent individual 

research articles that have been previously accepted and published by international peer-

reviewed journals, except for the last one which has been just recently submitted to the journal. 

Each essay represents a step forward in my understanding of the flood damage phenomenon 

and in the elaboration of practical instruments for flood risk management. Specifically, the four 

manuscripts included in this thesis focus on the modelling of direct economic costs of flood 

events by addressing the spatial representation of socio-economic value and the development 

of proper empirically validated tools to estimate the risk associated with hazard scenarios. More 

research has been conducted to cover all components of the proposed framework, planning to 

include additional chapters on hazard modelling, indirect losses and implications of risk 

scenarios; however, these essays could not be completed by the time of this dissertation (see 

par. 1.5 - Future research). 

In my first publication (Chapter 2), I conducted a general evaluation of flood impact over 

different damage categories. The transferability potential of an existing univariable model 

(DamageScanner) is tested using hazard and compensation records from the aforementioned 

Secchia case study. Additionally, the study explores both physical asset and foregone 

production losses, the latter measured amidst the spatially distributed gross added value (GVA). 

The second article (Chapter 3) was developed during my visiting period at the Austrlian 

National University. Here I produce a new Flood Loss Function for Italian residential structures 

(FLF-IT) based on the empirical observations included in the Secchia dataset. The performance 

of the statistical model is validated for the prediction of loss ratios and absolute damage values. 

A three-fold cross-validation procedure is carried out over the empirical sample to measure the 

range of uncertainty from the actual damage data. The validation procedure shows that FLF-IT 

performs better in the estimation of direct damage compared to transferred third-party models. 
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The third article (Chapter 4) is dedicated to improve the spatial representation of socio-

economic exposure and to measure social vulnerability. A spatially-weighted dasymetric 

approach based on multiple ancillary data is applied to downscale important socio-economic 

variables resulting in a grid dataset for Italy. This set contains multi-layered georeferenced 

information about physical exposure, population, GDP and social vulnerability. We test the 

performance of this approach compared to other spatial interpolation methods. Then, we 

combine the grid dataset with flood hazard scenarios to exemplify its application for the purpose 

of risk assessment. 

The final article of the thesis (Chapter 5) compares the performances of expert-based and 

empirical (both uni- and multivariable) damage models for estimating the potential economic 

costs of flood events to residential buildings. Multivariable models account for a larger number 

of factors related to hazard and exposure and are potentially more robust and flexible when 

extensive input information is available. In this study the observation dataset comprises three 

recent major flood events in Northern Italy (Adda 2002, Bacchiglione 2010 and Secchia 2014), 

including hazard features (depth, velocity and duration), buildings characteristics (size, type, 

quality, economic value) as well as reported losses. First, the relative importance of each 

explanatory variable on the damage output is assessed by means of a tree-based regression 

approach. Then, the performance of four literature flood damage models of different nature and 

complexity are compared with the performance of univariable, bivariable and multivariable 

models empirically developed for Italy and tested at the micro scale based upon observed 

records. The uni- and bivariable models are produced testing linear, logarithmic and square root 

regression while multivariable models are based on two machine learning techniques, namely 

Random Forest and Artificial Neural Networks. Results identify the best fitting models and 

provide important insights about the choice of the approach for operational disaster risk 

management. 

1.4  Main findings and lesson learnt 

The idea behind the flood risk framework that gives the title to the thesis was to screen and 

collect information and data about hazard, exposure and vulnerability components, having them 

standardised using a solid spatial approach and then combined using a proper impact model for 

assessing flood risk in Italy at any scale. But as I found out soon, a single approach cannot 

easily provide an answer to a whole range of challenges a various spatial and temporal scales, 

typologies of floods and categories of impacts. After narrowing down the analysis to 
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measurable economic damage, thus excluding non-economic capitals (i.e. human, 

environmental, social), the task of producing a sound tool for risk assessment remains a difficult 

one due to the complexity of the phenomena and the scarcity of empirical data. As I found out 

from the study presented in chapter two, existing assessment tools are afflicted by uncertainties, 

depending for the most part on the methods employed to estimate vulnerability. Required 

observations about impacts are usually trackable for some risk categories, which represent a 

large share of the total. Specifically, in my research the direct losses suffered by residential 

private properties often constitute the bulk of the damage, followed by impacts on commercial 

and industrial activities and infrastructures. Economic impacts on agricultural production are 

strongly depending on seasonality and hardly verifiable, but in general they are several orders 

of magnitude smaller. Indirect losses are likely as important as direct ones; but in reality, they 

are unlikely measurable as they spread in time (and time) long after the aftermath of a flood 

disaster. For all these reasons, I chose to dedicate my efforts towards direct residential damage, 

which also offers the largest availability of observations to train impact models. 

A critical stage of the research has been dedicated to build a solid dataset of empirical flood 

damage records, which currently represents one of the most extensive and detailed for the 

country. On this basis, it was possible to apply several statistical approaches to investigate the 

flood impact process, from rudimental to advanced, and to identify the best performing damage 

models. In chapter five, advanced assisted machine learning is proven to be a powerful tool to 

investigate flood loss data for this purpose. My results corroborate previous findings from 

literature about the relationship between hazard variables and estimated losses; first, water 

depth is identified to be the most important predictor of damage. Additional hazard variables 

only marginally improve the model estimates, at the cost of a major complexity and data 

requirements. Secondly, performance testing showed that expert-based models are better 

candidates for transferability in space and time compared to empirically-obtained models. 

Alongside, the work conducted in chapter four contributes to the practical applicability of a 

scalable national risk model by providing a detailed, standardised representation of exposed 

economic capitals in the form of a spatial georeferenced dataset which includes all the variable 

required by the proposed risk assessment framework (plus indicators of social vulnerability). 

The grid allows to perform a risk analysis at high resolution (250 meters) and obtain an estimate 

of losses that can be represented at any administrative level. 
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In addition to the scientific contribution on the field of flood risk management, the research 

comprised in this thesis contributed to several European research and innovation projects (e.g. 

ENHANCE, Enhancing risk management partnerships for catastrophic natural hazards in 

Europe, and CLARA, Climate forecast enabled knowledge services) and to the Italian National 

Climate Change Adaptation Plan (PNACC). 

1.5  Limitations and further research 

The difficulty to collect exhaustive empirical information about flood losses makes the few 

available datasets extremely precious for the development of flood risk modelling. This is why 

the flood data acquired from the Secchia flood event have been recursively analysed during my 

research. Indeed, more independent flood damage datasets could benefit the value of the 

analysis. In particular, the inclusion of damage records from other types of flood events (e.g. 

flash floods, coastal floods) would help to understand if a general damage model is adequate to 

interpret slightly different damage processes. 

Moreover, the research does not provide conclusions about the measure of impacts over the 

assets and production of business activities. Additional efforts are required to this end both on 

the side of data collection and on the elaboration of proper modelling approaches. 

Ultimately, the body of this thesis does not cover all the components of the risk framework 

shown in figure 1.1, focusing mostly on the direct impacts. However, more studies have been 

under production in relation to the other components. My ongoing research sets out to address: 

 Evaluation of hazard modelling approaches at different scales 

This essay will include a comparison on the performance of different flood hazard 

modelling approaches at different spatial scales. Expected outputs will include a new 

national map of flood prone areas and associated hazard probabilities. 

 Measuring the indirect impacts of extreme events 

In this study a macro-economic approach is used to assess the indirect costs of disasters 

caused by extreme meteorological events. A Computable General Equilibrium model is 

applied to assess the indirect financial losses on regional economies due to economic 

shocks from natural disasters. The proposed case study is the disastrous event of October 

2018 in Veneto. 
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 Disaster insurance as economic policy instrument to cope with climate change 

The paper will include an assessment of Expected Annual Damage scenarios in relation 

to an ensemble of downscaled climate projections for Italy. The study builds upon the 

knowledge and the methodologies developed in previous publications and it should 

provide important conclusions on the expected upcoming losses from flood disasters. 
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2 IMPROVING FLOOD DAMAGE ASSESSMENT MODELS 
IN ITALY  

2.1  Introduction 

 

The EU Floods Directive (FD, 2007/60/EC) manifested a shift of emphasis away from structural 

defence approach to a more holistic risk management, with structural and non-structural 

measures having the same importance. The FD compels the identification of areas exposed to 

flood hazard and risk, and the adoption of measures to moderate flood impacts. A sound, 

evidence-based risk assessment should underpin public disaster risk reduction and territorial 

development policies. Stage-damage curves (SDCs) are a customary tool used for assessing risk 

arising from the physical disruption of physical tangible assets (Genovese 2006; Messner et al. 

2007c; Thieken et al. 2009; Jongman et al. 2012c), typically as a function of flood 

characteristics (primary water depth, in some cases speed and persistence) over different land 

cover (LC) categories (Messner et al. 2007c; Merz et al. 2010b). SDCs are either empirically 

determined from observed damage events or inferred from bibliographic sources. Most flood 

risk assessment studies employ empirical SDC models that are developed elsewhere and neither 

tested nor calibrated for the specific study area (Sargent 2013). The lack of practical 

corroboration compromises the reliability of the model results. In addition, the SDC models are 

afflicted by substantial uncertainties stemming from the variability of assets value and 

vulnerability (Messner et al. 2007c; Merz et al. 2010b; de Moel and Aerts 2011b). To some 

extent, these uncertainties can be reduced if the damage models are designed to reproduce the 

economic conditions of households and businesses (Luino et al. 2009a; de Moel and Aerts 

2011b). Different SDC models have been reported in literature, but most of them have been 

developed for site-specific application and are rarely tested for transferability. SDC based on 

empirical material from Italy are rare (Molinari et al. 2012a; Scorzini and Frank 2015a). This 

is despite the common practice of state compensation for household (private) losses, for which 

certified damage reports are collected. In addition, SDC models often assume that the potential 

damage is constant throughout the year. This does not hold for agricultural land, where the crop 

value varies depending from the crop maturity. Furthermore, SDC models address physical 

assets damage and hence are not able to determine output losses in terms of foregone production 
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that arises from impairment of economic activities until after the production process are fully 

recovered. Spatially distributed economic and social variables such as population density and 

GDP can help to estimate impact on the economic flow from natural hazards. Different 

methodologies are employed for this purpose, such as econometric models (Noy and Nualsri 

2007; Strobl 2010; Cavallo et al. 2012), Input-Output (IO) models (Jonkman et al. 2008b; 

Hallegatte 2008; Henriet et al. 2012; Koks et al. 2014a) and Computable General Equilibrium 

(CGE) models (Jonkhoff 2009; Bosello et al. 2012; Rose and Wei 2013; Carrera et al. 2015). 

These are useful to estimate the impact of a hazard on the economy up to the regional level but 

require disaggregated data that is rarely available at lower scales. The availability of sound 

flood risk models appropriate for the Italian economic and social circumstances is essential for 

well-designed and informed flood risk management policies. In this paper, we explore ways to 

improve the damage and loss assessments for the sake of a better risk assessment and 

management. Methods such as those explored in this paper have been tested elsewhere at the 

national (Winsemius et al. 2013) and international scale (Ward et al. 2013). 

The paper is structured as follows. First, we test the applicability and transferability of up-to-

date SDCs against household damage declarations in the aftermath of the 2014 Modena flood 

in the Emilia-Romagna Region. Successively, we describe a detailed crop-specific model for 

agricultural losses, better suitable for compensation claims (Forster et al. 2008; Tapia-Silva et 

al. 2011; Twining 2014). Ultimately, we explore the use of Gross Value Added (GVA) as an 

indicator of exposure for production losses (Peduzzi et al. 2009). 

2.2  Data and methods 

Most commonly, flood risk R is determined as a function of hazard probability (H), exposure 

(E) and vulnerability (V): R = H x E x V (Crichton 1999; Kron 2005; Messner et al. 2007c; 

Barredo and Engelen 2010). Hazard is expressed as observed or modelled probability p of river 

discharges exceeding the holding capacity of river embankments. Exposure represents the 

depreciated or replacement value of the tangible physical assets in hazard-prone areas. 

Vulnerability is the susceptibility to damage under different levels of flood submersion. The 

structural damage to physical tangible assets is also termed direct impact or damage on stock 

(Merz et al. 2010b; Meyer et al. 2013a). When productive capital is damaged, the impacts can 

also be valued in terms of production losses or foregone flows of production. Sometimes, flow 

losses are equated to indirect impacts or damage. This is misleading because production losses 

are an alternative manifestation of material damage to productive capital assets, one that 
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contemplate the value of output (good and services) that would have been produced during the 

time of suspended production, rather than the depreciated value of the damaged asset. Flow 

losses are able to capture situations in which production is disrupted as a result of dearth of 

critical input with no material damage to productive capital, for example in case of lifeline 

disruption (Przyluski and Hallegatte 2011). Here we avoid this ambiguity by referring to 

damage in terms of partial or total physical asset destruction and losses in terms of foregone 

production flows. This is consistent with economic theory according to which the value of a 

stock is the discounted flow of net future returns from its operation (Rose, 2004). We estimate 

the flood damage both as asset damage using the SDC model and as production losses in terms 

of affected annual GVA (Figure 2.1). Agricultural losses are estimated using a complementary 

model that accounts for crop production cost and the value of yields (Thieken et al. 2009). 

ASSET DAMAGE  PRODUCTION LOSSES 
Adjusted max damage value per land 

cover classes on a 5m grid 
 

Spatial distribution of GVA on a 
250m grid 

   
Stage-Damage Curves model  Stage-Impact Curve model 

   
Flood depth simulation for analysed event (Secchia 2014) 

   
Damage as share of max land cover 

value 
 Loss as share of GVA value 

   
Comparison with empirical damage 

data 
 

Evaluation of exposed agricultural 
production 

   

Adjustment of SDC and max values   
Time-dependent evaluation of 

agricultural losses 

Figure 2.1. Flood damage assessment methodological approach. 

2.2.1 SDC models for asset damage 

Among the SDC models found in literature, two have been found performing reasonably well 

compared to reported empirical damage in Italy (Scorzini 2015): Damage Scanner (DS or SDC-

1) (Klijn et al. 2007a) and JRC (SDC-2) (Huizinga 2007a). SDC-1 has been recently updated 

(de Moel et al. 2013b; de Moel et al. 2014; Koks et al. 2014a) with additional sub-classes for 

residential, rural and industrial damage (Tebodin 2000). This set estimates impact over 

buildings surface separately from other sealed areas such roads. Differently, SDC-2 aggregates 

the impact for mixed land cover classes: the maximum value for each of these main classes is 

built over the weighted sum of buildings and area, including both the structure and content. 
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This approach is adapted to work in conjunction with low resolution land cover maps such 

CLC. Depth resolution also varies among the two sets: SDC-1 takes steps of 0.1 m, while the 

other set has 0.5 m steps. All these curves are based on expert judgment and none of them have 

been validated on empirical damage data. SDC-1 and SDC-2 are the best available options up 

to date for transferability testing. The damage is estimated for sealed areas and agricultural land, 

while roads and natural areas are neglected. For residential damage we consider both the 

damage to physical structure of buildings and to their associated content. The model accounts 

also for damage to passenger vehicles based on average price from statistical registers (ACI, 

2014). 

With the proposed methodology, we aim to simulate the impact of the flood event which hit the 

province of Modena province during 2014. On January 19th, a 80 meters wide levee breach 

occurred on the Secchia river, spilling 200 cubic meters per second in the surrounding 

countryside, covering nearly 6.5 thousand ha of cultivated land (figure 2.2). Seven 

municipalities were affected, with the small towns of Bastiglia and Bomporto suffering the 

largest share of losses being flooded for more than 48 hours. The total volume of water pumped 

out of the inundated area was estimated to exceed 20 million cubic meters (Fotia 2014). For the 

purpose of this paper we used the hydrological simulation of the event produced by D’Alpaos 

et al. (2014). The extent of the simulated flood is nearly five thousand hectares, with an average 

depth of 1 meter. 

 

Figure 2.2. Simulated max flood depth ensuing from the Secchia levee breach in January 2014 near 
Modena. Impacted areas are highlighted for residential and industrial land cover. 
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The damage estimated through SDC is compared to households-declared damage made 

available by local authorities, while damage to business activity is not yet available. The 

damage reports distinguish between structure, mobile goods (furniture and common domestic 

appliances) and registered vehicles (private cars and motorcycles). 

2.2.2 Agricultural losses 

Expected losses in sparsely populated rural areas are often substantially lower than those in 

residential areas, since the density of exposed value is lower. For this reason, agricultural 

damage is often neglected or accounted for by using simple approaches with coarse estimates. 

Yet a thorough loss assessment is necessary in areas where agricultural production is the 

predominant activity (Messner et al. 2007c) as it guides compensation where compelled by 

liability or granted in form of state aid (Forster et al. 2008; Tapia-Silva et al. 2011; Twining 

2014). Standard SDC models are suboptimal for this purpose as they hardly account for the 

variety in cultivated crops values, yields, and the progressive distribution of production costs. 

The SDC typically assumes a constant economic value throughout the year, which is not 

consistent with the fact that the damage depends from when a flood occurs (Ward et al. 2011). 

In our enhanced model, we determine the representative full crop damage per hectare DMAX as 

a weighted average of all major crops’ values in the analysed area (equation 2.1) at any time 

during the growing session (equation 2.2 and 2.3). 

���� = ∑ ��
�
��� × �� ×

����

���
   [Equation 2.1] 

Where: 

 i = crop index 

 P = producer prices (per tonnes) 

 Y = yield (tonnes/hectare) 

 UAA = Utilised Agricultural Area1 

DMAX at any time t during the growing season can be estimated either by taking into account 

the end-of-the-season yield and producer price of crop i, minus production costs not exerted 

until the end of the production cycle (equation 2.3); or as a sum of all production costs exerted 

from the beginning of the growing season up to the damaging event, plus the land rent (equation 

4). The best estimate of the crop value at the harvesting time is Gross Saleable Product2 (GSP).  
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� = ∑ (����� ∑ �����

� �
��

��� ×
����

���
) [Equation 2.2] 

                                                           
1 UUA comprises total area of arable land, permanent crops and meadows. 
2 The average gross income from the sale of the yield expressed in €/ha, not inclusive of direct costs. 
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Where: 

 DC are the direct production costs3 

 t a defined moment of the production cycle (0 < t <End). 

����
� = ∑ (����� + ∑ ���

� �
��

��� ×
����

���
) [Equation 2.3] 

Where: 

 TNI = Total Net Income calculated on the previous years’ average 

 DC = sum of crop specific production costs exerted until the damaging event 

The average yield, production cost and net income per hectare of arable and permanent crops 

are determined for different cultivation patterns in the Emilia-Romagna administrative region 

(RER) based on empirical observations (Altamura et al. 2013). The direct cost is calculated as 

a function of average cost of technical means (raw materials, machinery) and labour per hectare. 

Costs are distributed among the production year on the basis of each crops lifecycle as 

exemplified in figure 2.3. 

 
Growing season months   Period Costs 

 OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP  1 sow 50% 
Wheat 1 1 2 2 2 2 2 2 3 4 4 4  2 growth 30% 
Maize 3 4 4 4 4 4 1 1 1 2 2 3  3 harvest 20% 
Alfalfa 2 2 2 2 2 1 1 2 2 2 2 2  4 renewal 0% 

Figure 2.3. Allocation of production cost and the typical growing season for the most common cereal 
crops in the study area. 

Field analysis conducted after the event (Setti 2014) highlighted that the flood occurred at a 

time when many field crops had not yet been planted. Wheat and alfalfa were the most 

commonly exposed crops, but the only physical harm reported was some occasional yellowing 

among crop fields. Vineyards and other permanent crops were in vegetative rest and apparently 

did not suffer any damage. In the end, the report on regional agricultural production for the year 

2014 (OAA-RER 2014) does not revealed any substantial yield reduction. On the contrary, the 

average yield per hectare in 2014 were slightly higher than 2013. 

2.2.3 Gross Value Added model for production losses 

To estimate the production losses we use gridded Gross Value Added (GVA) (Peduzzi et al. 

2009; Green et al. 2011) based on the statistical disaggregation of GVA at the local market 

                                                           
3 Sum of the costs for technical means and labour, excluding subsidies. 
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areas4 (in Italian Sistemi Locali di Lavoro SLL) for three macro-economic branches: 

agriculture, industry and services (ISTAT 2013). We assume that within the SLL the GVA is 

uniformly spread, but only over the land cover classes ascribed to each specific branch of 

economic activities. In the case of agriculture and industry, the GVA is attributed to respectively 

the UAA and total industrial area distinguishable in the land use/cover data sets. The GVA 

generated by services is distributed proportionally to the population density. The assumption 

behind this is that since services are multiple and dispersed, they are proportional to the number 

of residents served. A population density grid is produced based on the 2011 census tracks 

(ISTAT 2011a) using a cell resolution of 250 meters. The expected losses as a share of GVA 

per cell are then calculated using a step function (Equation 2.4, Figure 2.4) (Carrera et al. 2015), 

inspired by literature on flood damage functions (de Moel and Aerts 2011b; De Moel et al. 

2012; Jongman et al. 2012c; Saint-Geours et al. 2014). The curve assumes that the higher the 

water level, the more persistent is the productivity loss. This assumption is based on three 

principles: a) higher water-depths cause larger productive asset damage; b) larger asset damage 

typically requires longer recovery periods; and c) flood water retreat is a function of flood depth. 

The relation between water depth and persistence of the impact is likely afflicted by uncertainty, 

however we assume the curve suited for our purposes.  

������ �� ��� �,�  =  � �� �,� �  × �� 

�

���

 [Equation 2.4] 

Where: 

FC = flooded cell k 

c = damage factor applied to each FCk based on its water depth 

N = number of cells belonging to sector S for each system L 

 
Figure 2.4. Stage-impact curve for GVA losses. 
 

                                                           
4 Local market areas (SLL) have been devised by the Italian Statistical Bureau as continuous territorial areas in 
which most of the daily work activity of resident people takes place. Typically a SLL is smaller than a NUTS3 
unit and larger than a municipality. 
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2.3  Results  

2.3.1 Asset losses 

The damage assessment carried out on the Modena flood using the two selected SDC models 

(SDC-1 and SDC-2) yield values that differ by 170 million, corresponding to one third of the 

SDC-2 estimate (figure 2.5, left). Besides, there is a sizeable divergence in distribution of the 

estimated damage across the land cover categories. The SDC-1 yields a damage that is more 

than two times higher than SDC-2 output for the industrial land cover category. On the contrary, 

SDC-1 estimated damage is lower than SDC-2 by a factor 0.7 for the residential land cover 

category and only one fifth for rural category. 

  
Figure 2.5. (left) damage estimates from SDC-1 and SDC-2 models for the 2014 flood event on 
aggregated land covers; (right) comparison of models output for residential areas against registered 
compensation requests from households. 

Overall, SDC-1 overestimates declared damage in residential areas by a factor 4.5, but for the 

urban spaces outside buildings this difference peaks factor 9.2. SDC-2 results are even larger, 

13 times greater than those observed. The damage shares between structure, mobile goods and 

private vehicles simulated by SDC-1 resemble5 the ratios of declared damage (figure 2.5, right). 

For the calibration exercise, we have chosen SDC-1 over SDC-2 because it is able to 

disaggregate structural and content-wise damage in isolated dwellings and built-up areas. Both 

estimated and declared damage are geocoded and aggregated into a 250 m grid.  

                                                           
5 Simulated damage: 57/33/10%. Declared damage: 60/35/5%. 
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Figure 2.6. Location matching for residential land cover between empirical (black Xs) and simulated 
damage (aggregated to 250 meters cells). 

The calibration is carried out only on matching cells using regression analysis under the 

hypothesis of linear relationship. There are 61 (out of 157) matching cells between simulated 

and empirical damage, which is less than 40% in terms of affected area but the matching cells 

account for 83% of simulated and 75% of the declared damage. As shown in Figure 2.6, this 

mismatch is caused mainly by uncertainty in the land cover data for sparsely developed areas 

and in the extent of the flood boundaries, but the core damage areas of Bastiglia and Bomporto 

match well between recorded and simulated damage. For each land cover category, the 

maximum damage value is individually adjusted using the B (slope) coefficients as scaling 

factor. Figure 2.7 shows the results of linear regression between SDC-1 output and empirical 

damage before and after calibration for total (A), structural (B) and content (C) damage 

categories. 
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Figure 2.7. Scatterplot showing empirical damage (X axis) and SDC results (Y axis) per grid cell using 
original land cover values (cross indicator, dotted line) and calibrated ones (circle indicator, black line) 
for: A) total residential area; B) building structure; C) buildings content. 

The pre-calibration output overestimated the total damage in residential areas by a factor 4.5-7 

depending on the within-urban land cover category. The calibrated damage values are regressed 

with the observed/reported damage with good results (R2=0.8) for all categories except for 

urban area where registered vehicles are assumed to be homogeneously distributed. This 

proven to be an over simplistic assumption. For buildings structure and content the coefficient 

(B) is close to 1.0, and the final output overestimate recorded residential damage by just 6% 

(Table 2.1). 

Land cover  Observed  Simulated 

Description Area  Damage  Damage R2 B 
 

(m2)  (million Euro)  (million Euro) 
  

Urban area (vehicles) 1,432,650  5,5  2,4 0.3 0.2 

Buildings 234,950  36  41,9 0.8 1.0 

Buildings structure 
 

 22,3  24,3 0.8 1.0 

Buildings content 
 

 13,7  17,6 0.7 1.0 

Total 1,667,600  41,5  44,4 0.8 0.9 

Table 2.1. Observed exposed area and simulated damage inclusive of regression results for each 
calibrated land cover category tested against empirical data. 

2.3.2 Agricultural losses 

The flood extent comprises predominately rural areas (43 km2), with a prevalent share of arable 

crops (81% of UUA). The typical crops include cereals, in particular soft wheat and maize (40% 

of arable crops) and forage (52% of arable crops). Other arable crops together cover less than 

8 per cent. Vineyards and other permanent crops cover the remaining 19% of UAA. As shown 

in Figure 2.3, in January maize crops are fallow, while wheat is in its vegetative stage. This 
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means that just half of cereal production is affected. Losses for wheat crops include all the initial 

costs, which amounts to 50 per cent of total value. Permanent crops are affected by 20% of 

annual production value. The maximum damage (total loss) to cropland estimated from these 

share using equation [2] is 343 Euro/ha, less than half compared to the max value used by SDC-

1 (790 Euro/ha). This adjusted max value leads to a maximal estimated loss by SDC-1 of 375 

thousand Euro over 4.2 thousand ha of crop land. Empirical sampling on crop production 

suggests that the assumption of total loss for exposed crops is over-pessimistic, since crop plants 

shown good tolerance to inundation(Setti 2014)(Setti 2014)(Setti 2014)(Setti 2014)(Setti 

2014)(Setti 2014)(Setti 2014)(Setti 2014)(Setti 2014)(Setti, 2014) (Setti, 2014). Overall, an 

estimate based on case-specific data should be preferred over unadjusted SDC values. 

2.3.3 Production losses 

The losses are calculated for each economic sector as a share of total annual production. The 

largest share of damage come from the industrial sector, affected for 434 million Euro, 

equivalent to 14% of its annual production (4.2% of total GVA for SLL Modena, see Table 

2.2). The ratio between asset damage and annual GVA sheds light on the equivalence of 

structural damage and production losses as a function of the flood characteristics (Figure 2.8). 

For water depth around 1 meter, the linear trend describes an asset damage close to annual 

production losses (ratio of 1), similarly to the stage-impact curve assumptions in figure 2.5. 

 

 

 

 

Table 2.2. Modelled impact on GVA from the event 
of Modena 2014. 

 
Million 

Euro 

Sector 

% 

Total 

% 

Agriculture 9,1 6,41 0,09 

Industry 434.1 14,11 4,20 

Services 147.2 2,07 1,42 

TOTAL 590,4  5,71 

 

Figure 2.8. Scatterplot of mean water depth (X) and 
ratio of SDC damage over exposed GVA (Y). 

2.3.4 Discussion 

In this paper, we have presented three ways to improve the current state-of-the-art of flood risk 

assessment models based on SDC method. Major uncertainties in damage assessments are 

associated with the value of risk-exposed elements (i.e. maximum damage values) and the 

depth-damage curves (De Moel and Aerts 2011; Scorzini 2015). First, we have shown that by 
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adjusting the maximum damage values for the specific conditions of the assessment area, the 

consistency of the model improves substantially. Prior adjustments, the tested SDC models 

overestimate the reported damage by a factor 4 to 13. After calibration, the maximum damage 

values for residential buildings are 4 to 4.5 times smaller than the original values and the 

simulation of total damage is very close to empirical observations. These considerations for the 

Italian territory are consistent with those found by Scorzini (2015), who similarly stresses the 

importance of evidence-based SDC to perform a meaningful flood risk assessment. 

Then, we considered the temporal variability in the agricultural sector using detailed crop yield 

data and local production patterns. This approach produces a different outcome compared to 

the conventional SDC estimate: the maximum crop-yield loss per hectare is less than a half of 

what is assumed by SDC-1; similarly, lower damage estimates using a time-dependent approach 

are found in Forster et al. (2008). Still, our estimate appears to represent a pessimistic scenario 

compared to available evidences of small to no damage to crops production in our case study. 

Lastly, we explains how the GVA approach can approximate output losses within the flooded 

area with relative ease, if economic data are available. We estimated that the production losses 

amount to around 600 million Euros, or 5.7 per cent of the annual GVA of the Modena SLL. 

Asset damage appears close to the annual GVA when the average water depth reaches one 

meter. However, these results are hardly comparable with empirical observations about 

production losses at the regional scale and thus cannot be properly validated. 

2.4  Conclusion 

Our analysis aimed at improving flood damage assessment modelling in Italy. The comparison 

of damage estimates made by SDC models with empirical recorded damage is key for this task. 

In this paper we tested two frequently used SDC models against reported flood damage after a 

major flood event in Northern Italy. Model calibration is proven mainly useful to improve the 

loss assessment in a specific event area, while it is yet to be studied how these calibrated curves 

can be adjusted for application in surrounding regions. The calibration here is carried out for 

residential land cover categories only, while empirical damage records about industrial land 

cover is awaited to complete the assessment in future research.  

Further improvements can be achieved when a larger number of empirical damage evidences, 

typically collected by the Civil Protection Agency (CPA), is made accessible to academic 

community. Another research thread capable to improve the reliability of flood risk models by 

reducing the largest uncertainty in the definition of maximum damage values entails the 
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spatially disaggregated socioeconomic data such as population, household income, cadastral 

value of property. With the growing availability of digital spatial data related to these variables, 

their implementation in an integrated model is a advisable step to improve the 

representativeness and reliability of flood risk assessment. 
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3 FLOOD LOSS MODELLING WITH FLF-IT: 
A NEW FLOOD LOSS FUNCTION FOR ITALIAN 
RESIDENTIAL STRUCTURES 

3.1  Introduction 

Floods are the natural hazards that cause the largest economic impact in Europe today 

(European Environment Agency 2010). Italy is no exception, with about 80% of its 

municipalities being exposed to some degree of hydrogeological hazards (Zampetti et al. 2012). 

Regarding flood hazard frequency, 8% of Italy’s territory and 10% of its population are exposed 

to a flood probability of once every 100 to 200 years (ANCE/CRESME 2012a; Trigila et al. 

2015a). This issue is reflected in over a billion Euros spent from 2009 to 2012 on recovery from 

extreme hydrological events (Zampetti et al. 2012). Italy is, in fact, the European country where 

floods generate the largest economic damage per annum (Alfieri et al. 2016). This is especially 

worrisome considering that the frequency of extreme flood losses may be doubled at least by 

2050 in Europe due to climatic change factors and urban expansion (Jongman et al. 2014). 

Climate variability already affects rainfall extremes and the peak volumes of discharge in rivers 

(Alfieri et al. 2015a; Karagiorgos et al. 2016). Relentless urban sprawl within catchments alters 

the water run-off speed and propagation while increasing the value of exposed land use 

(Barredo 2009). In order to effectively prevent massive losses, disaster risk management 

requires estimation well in advance of the frequency and magnitude of potential flood events, 

and their consequences in terms of economic damages (Kaplan and Garrick 1981; UNISDR 

2004; Thieken et al. 2008; Elmer et al. 2010; Neale and Weir 2015; Hammond et al. 2015). 

Therefore, it is indispensable to provide decision-makers with reliable assessment tools that are 

able to produce such knowledge, after which an efficient risk reduction strategy can be 

adequately planned (Penning-Rowsell et al. 2005; Merz et al. 2010a; Emanuelsson et al. 2014; 

McGrath et al. 2015). 

In general, flood losses are classified as marketable (tangible) or non-marketable (intangible) 

values, and as direct or indirect (Thieken et al. 2005; Jonkman 2007; Kreibich et al. 2010; 

Meyer et al. 2013b; Molinari et al. 2014a). Direct damage takes place when the floodwater 

physically inundates buildings and structures, whereas indirect damage accounts for the 

consequences of direct damage on a wider scale of space and time (Hasanzadeh Nafari et al. 



46 
 

 

2016c). The tools employed to assess flood risk consist of a variety of damage models, with 

differing methods depending on the type of accounted losses. While Input-Output models, 

Computable General Equilibrium models and other econometric tools are often used to estimate 

indirect economic losses (Hallegatte 2008; Koks et al. 2015a; Carrera et al. 2015), the focus of 

most flood damage models is still on the estimation of direct, tangible losses using stage-

damage curves. Stage-damage curves or flood loss functions are used to depict a relationship 

between water depth and economic damage for a specific kind of structure or land cover 

(Messner et al. 2007b; Kreibich and Thieken 2008; Thieken et al. 2009; Merz et al. 2010a; 

Jongman et al. 2012a). Damage curves can be empirical or synthetic. Empirical curves are 

drawn based on actual data collected from one specific event. Due to the differences in flood 

and building characteristics, they cannot be directly employed in different times and places 

(McBean et al. 1986; Gissing and Blong 2004). To resolve this issue, general synthetic curves 

based on a valuation survey have been created for different types of buildings. Valuation 

surveys assess how the structural components are distributed in the height of a building (Smith 

1994; Barton et al. 2003). Afterwards, the magnitude of potential flood losses is estimated based 

on the vulnerability of structural components and via “what-if” questions (Gissing and Blong 

2004; Merz et al. 2010a). Damage functions can also be distinguished as absolute or relative. 

The first type states the damage directly in monetary terms, while the relative type states the 

damage as a percentage of the total exposed value, which can refer to the total replacement 

value or the total depreciated value (Kreibich et al. 2010). Relative functions have an advantage 

over absolute functions, namely that they are more flexible for transfer to different regions or 

years since the damage ratio is independent of the changes in market values (Merz et al. 2010a). 

Still, both types are developed on sample areas which have particular geographical 

characteristics that affect both the quality of the exposed value and the flood phenomena 

(Proverbs and Soetanto 2004; McGrath et al. 2015). Therefore, transferred models may carry a 

high level of uncertainty, unless they are calibrated with an empirical dataset collected from the 

new study area (Cammerer et al. 2013; Molinari et al. 2014b; Hasanzadeh Nafari et al. 2015). 

Although Italy has seen several flood disasters in recent years, flood records do not enable 

development or validation of a national loss flood function because the information is still poor, 

fragmented and inconsistent. This issue largely depends on the lack of an established official 

procedure for the collection and the storage of damage data (Molinari et al. 2014b). Another 

obstacle is the heterogeneity across different regions of digital geographic information, which 

is the key to correctly represent the driving factors of exposure and vulnerability influencing 
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the sustained damage. Few attempts at drawing a depth-damage relation from post-disaster 

reports have been made (Luino et al. 2009b; Molinari et al. 2012b; Papathoma-Köhle et al. 

2012; Molinari et al. 2014b; Scorzini and Frank 2015b; Amadio et al. 2016), while other 

uncalibrated synthetic functions have been derived from pan-European studies (Huizinga 

2007b). The use of such uncalibrated functions on the Italian territory has proven troublesome 

(Amadio et al. 2016), showing a large degree of uncertainty. 

Our research aims to calibrate and validate a new relative flood loss function for Italian 

residential structures (FLF-IT) based on real damage data collected from one large river flood 

event in the region of Emilia-Romagna at the beginning of 2014. The focus of this study is on 

direct tangible damage, and the spatial scale is on the order of individual buildings. This 

research builds on a newly derived Australian approach called FLFA (Hasanzadeh Nafari et al. 

2016a, 2016b). 

3.2  Case study 

The region of Emilia-Romagna is located in Northern Italy, on the southern side of the Po River, 

the longest of all Italian rivers. This region has the greatest flood prone area both in relative and 

absolute terms: about 10,000 km2, including 64% of the population are exposed to a medium 

flood probability (return period between 100 and 200 years), while 2,500 km2 and 10% of the 

population are exposed to a high probability (return period between 20 and 50 years) (Trigila 

et al. 2015a). This includes more than half of the region’s territory. Our empirical data comes 

from a flood generated by the Secchia river in 2014 near the town of Modena, in the central 

part of Emilia-Romagna. 

3.2.1 Event description 

January 2014 was a dramatic month for floods in Italy, with 110 flood events recorded over a 

span of 23 days due to extreme meteorological conditions. Severe precipitations hit central 

Emilia-Romagna between the 17th and the 19th of January, with an areal mean of 125 mm of 

cumulative rain over 72 hours flowing in the Secchia catchment. The increase in the river flow 

volumes caused heavy stress on the levees, which stand 7-8 meters over the flood plain. At 

around 6 am, approximately 10 meters of the eastern Secchia levee were overwashed and 

breached at the top by one meter, thereby starting to flood the countryside. In 9 hours, the levee 

section was completely destroyed for a length of 80 meters, spilling 200 m3 per second in the 

surrounding plain and flooding nearly 65 km2 of rural land (Figure 3.1) (D’Alpaos et al. 2014b). 

Seven municipalities have been affected, with the small towns of Bastiglia and Bomporto 
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suffering the largest share of losses. Both towns, including their industrial districts, remained 

flooded for more than 48 hours. The total volume of water inundating the area was estimated 

to be around 36 million m3 (D’Alpaos et al. 2014b). 

 

Figure 3.1. Identification of case study, flooding from the river Secchia during January 2014 in central 
Emilia-Romagna, Northern Italy. 

3.2.2 Data description 

The information about cumulative water depths comes from the hydraulic simulation of the 

event produced by the technical-scientific committee in the official report (D’Alpaos et al. 

2014b; Vacondio et al. 2014). The extent of the simulated flood is nearly 5 km2, with an average 

depth of one meter. The flow volume at the breach is calculated using the 1-D model HEC-
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RAS calibrated on recorded observations from the event. The evolution of the flooding is 

simulated by a 2-D hydraulic model using the finite-volume method over a Digital Terrain 

Model (DTM) obtained by LiDAR scans at a one-meter resolution. The simulation also 

accounts for the gradual change in the size of the breach from 10 to 80 meters (Vacondio et al. 

2014).  

A database of damage declared by residential properties has been made available for this 

research by the local authorities. Damage records are listed by address for the three 

municipalities of Bastiglia (70% of the total damage), Bomporto (24%) and Modena (6%). The 

total damage sums up to EUR 41.5 million, of which: 54% is damage to structural parts, 

including installations; 33% is damage to movable contents, meaning furniture and common 

domestic appliances; and 13% is represented by registered vehicles, such as cars and 

motorcycles. For the purpose of our study, only the structural damage is considered. The 

recorded damage is compared to the average market values of the residential properties, as 

reported by the cadastral map for the semester preceding the flood event (Agenzia delle Entrate 

2018). The majority of residential structures in the area share the same general characteristics: 

they are brick or concrete buildings built in the last 30 years, with no underground basement or 

parking (slab-on-ground). Houses have at least two or three floors. However, only the ground 

floors have been affected in this particular event. 

The information related to water depth, total structural damage and average market value is 

linked together at the building scale (Figure 3.2) by combining the street numbers points and 

residential buildings perimeters from the official regional geodatabase (Regione Emilia 

Romagna 2011). The mean of cumulative water depths simulated by the hydraulic model is 

calculated within the area of each building unit. Accordingly, each address linked to a damage 

record is first georeferenced as a street number point; then the points falling within the same 

building unit are summed into an aggregated value representing the total structural damage 

occurred in that building, including private dwellings and common parts. This spatial join is 

necessary since building perimeters do not include any information about addresses. 
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Figure 3.2. Visualisation of the empirical damage records suffered by the individual dwellings during 
the flood event of 2014. Records are projected to official street number points by using their "address" 
field. The information is then transferred from the points to the building features that contains them. The 
point records that fall within the same building perimeter are summed up into one aggregated damage 
value for each residential building. About 97% of damage records are correctly projected. The remaining 
3% of damage records is discarded due to inconsistent projection, incomplete address or gaps in the 
record data. The colour gradient (yellow to red) indicates the magnitude of the damage for both 
individual points and building units. 

The procedure it is performed successfully for EUR 21.7 million, corresponding to 97% of the 

total residential damage. The remaining 3% of records are excluded due to incomplete addresses 

or inconsistency with the spatial data. Percentages of damage vs. depths of water for all 613 

final samples have been depicted in Figure 3.3. 
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Figure 3.3. Empirical data utilised for calibrating the FLF-IT model (613 relative damage records in the 
original dataset). 

3.3  The FLFA method 

The FLFA method is based on a simplified synthetic approach called the sub-assembly method, 

proposed by the HAZUS technical manual (FEMA 2012). This method measures the extent of 

losses for each stage of floodwater and suggests a flexible curve that accounts for the variability 

in the characteristics of structures. In the first step, one or more representative building 

categories are selected from the study area. The ratio of damage for every stage of water and 

within each category of the building is a function of the vertical distribution of structural 

components (i.e., vulnerability and the total value exposed to flood) (Lehman and Hasanzadeh 

Nafari 2016). More specifically, each structural component starts suffering damage after a 

specific stage is reached. Commonly the first decimetres of water cause damage to some of the 

most valuable items such walls, floors, insulation and electrical wiring (FEMA 2012). 

Accordingly, the relationship between the damage percentage (dh) and water depth can be 

described by a root function (Kreibich and Thieken 2008; Elmer et al. 2010; Cammerer et al. 

2013). The following function (1) is developed by Hasanzadeh Nafari et al. (2016a) for the 

Australian case study: 

�� = �
�

�
�

�

�
×  ����      [Equation 3.1] 
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The root (r) controls the rate of alteration in the percentage of damage relative to the growth of 

the water depth (h) over a total height (H) of the floor. The Dmax is the total percentage of 

damage corresponding to the total height of the floor. A higher value of r means a slower 

increase in the rate of damage. The obtained curve is then adjusted and calibrated using the 

empirical data collected from the selected study area. Hence, this approach is defined as an 

empirical-synthetic method. Due to the inherent uncertainty in the data sample, the study has 

employed a bootstrapping approach, which produces three stage-damage functions (i.e. most 

likely, maximum and minimum damage functions) for each type of building. This range of 

estimate describes confidence limits around the functional parameters and represents the 

uncertainty that exists in the data sample. The advantages of this simplified synthetic approach 

include calibration with empirical data, a better level of transferability in time and space, 

consideration of the epistemic uncertainty of data, and the ability to change parameters based 

on building practices across the world. 

3.4  Calibration of FLF-IT 

Based on the formula represented previously, the model calibration process includes choosing 

the most appropriate values for the root of function and the maximum percentage of damage 

(i.e., r and Dmax), with reference to the empirical dataset (Hasanzadeh Nafari et al. 2016b). The 

selection will be made by the chi-square test of goodness of fit, to minimise predictive errors. 

Also, instead of a deterministic regression analysis, this study has relied on the probabilistic 

relationship among the percentage of damage and other damage-related parameters (i.e. 

building and flood characteristics) (Hasanzadeh Nafari et al. 2016a). In this regard, a 

bootstrapping approach has been employed to resample the damage data 1,000 times. This 

method assists in exploring the confidence limits around the parameters and illustrates the 

epistemic uncertainty of the empirical damage data (Lehman and Hasanzadeh Nafari 2016). To 

be more specific, first the original dataset including 613 data points was resampled using a 

bootstrapping approach. For the new resample, the most appropriate value of the root function 

and the maximum percentage of damage were selected by the chi-square test of goodness of fit. 

The two previous steps were repeated 1,000 times, and 1,000 sets of parameters (i.e., r and 

Dmax) were generated as the result. Finally, by the above iteration, the averages of the 1,000 

calibrated parameters converged to a fixed value considered as the most likely scenario. The 

most likely parameters produce the smallest cumulative error compared to the actual damage 

data. Also, from the 1,000 sets of parameters generated above, the function that maximises the 
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depth-damage relationship was taken as a maximum damage curve, and the observation that 

created the minimum depth-damage relationship was considered for the minimum depth-

damage function. Results of the model calibration are presented in Table 3.1 and Figure 3.4. 

Number of Samples Parameters 
Range of parameters 

Minimum Most likely Maximum 

613 
r 2.7 2 1.7 

Dmax 10% 20% 40% 

Table 3.1. Number of samples and range of r and Dmax values, calculated by the bootstrap and chi-square 
test goodness of fit. 

 
Figure 3.4. Visualisation of minimum, most likely and maximum damage functions, calculated by 
bootstrap and chi-square test of goodness of fit. 

3.5  Model validation 

3.5.1 Applied damage models 

Besides FLF-IT, Damage Scanner as an uncalibrated relative model frequently used in 

European studies has been selected for comparison in this study. The Damage Scanner model 

(de Bruijn 2006; Klijn et al. 2007b) is based on depth-damage curves previously developed by 

the synthetic approach in the Netherlands using data from “what-if” analyses at the building 

scale (Kok et al. 2004). These curves estimate the magnitude of damage separately for building 

structure and movable content. The damage is expressed in relation to an average maximum 

damage value per square meter, which varies according to land cover classes (e.g. residential, 

industrial, agriculture, and infrastructure). The Damage Scanner model have been employed for 
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predictive purpose in various studies (Bouwer et al. 2010; Ward et al. 2011; de Moel et al. 2011; 

Aerts and Botzen 2011; Koks et al. 2012; Poussin et al. 2012), and it has been more recently 

updated including additional land cover subclasses (de Moel et al. 2013a; Koks et al. 2014b). 

The uncertainty of Damage Scanner has been investigated in comparison to other damage 

models (Bubeck et al. 2011; Jongman et al. 2012a), and its transferability has been evaluated 

for use in different areas of study such as Northern Italy (Amadio et al. 2016). Damage Scanner 

is, in fact, easy to tailor to land cover description available for Italy, and because it expresses 

damage in relative terms, it can be adapted to work on region-specific maximum values. For 

the purpose of comparison with FLF-IT, the curve related to residential structure damage has 

been selected from the Damage Scanner set and applied at building scale on the residential units 

using the same average market values and simulated water stages employed to produce the FLF-

IT. It is worth noting that the predicted absolute damage values are calculated by multiplying 

the estimated loss ratio by the average market value and the area of each property. 

3.5.2  Result comparison and model validation 

Results of the applied damage models have been compared with the observed loss data, and 

their performances have been validated in contrast to real damage data. Due to the lack of an 

independent dataset, a three-fold cross-validation technique was employed for this purpose 

(Seifert et al. 2010). Accordingly, the original damage records including 613 data points were 

first shuffled and partitioned into three equally sized subsets. Then, three iterations of model 

calibration and model testing were performed. In each iteration, one subset including 204 

samples was singled out for model testing, while the remaining two parts including 409 data 

points were used for model calibration (Refaeilzadeh et al. 2009). Model calibration in each 

iteration was performed based on the approach explained earlier. Eventually, the loss ratio of 

the held-out subset was estimated by the FLF-IT model calibrated without it, and the results 

were compared with the actual records. Errors including the mean bias error (MBE), the mean 

absolute error (MAE) and the root mean square error (RMSE) were calculated and averaged 

over all three iterations. The MBE illustrates the direction of the error bias (i.e. a positive MBE 

shows an overestimation in the predicted values, while a negative MBE depicts an 

underestimation); the MAE shows how close the estimates are to the actual damage ratios; and 

the RMSE signifies the variation of the predicted ratios from the actual records (Seifert et al. 

2010; Chai and Draxler 2014). In addition to FLF-IT and for each iteration, errors of the 

Damage Scanner model’s estimates were calculated. The results are presented in Table 3.2.  
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 MBE MAE RMSE 

 FLF-IT 
Damage 
Scanner 

FLF-IT 
Damage 
Scanner 

FLF-IT 
Damage 
Scanner 

Iteration 1 0.015 0.152 0.092 0.188 0.119 0.212 

Iteration 2 -0.010 0.125 0.104 0.177 0.157 0.204 

Iteration 3 -0.009 0.125 0.091 0.164 0.133 0.188 

Average 0.00 0.13 0.10 0.18 0.14 0.20 

Table 3.2. Error estimation for the performance of the FLF-IT model (MBE: Mean Bias Error; MAE: 
Mean Absolute Error; RMSE: Root Mean Squared Error). 

This table clearly shows that FLF-IT has a better performance compared to the Damage Scanner 

model which is not calibrated with the local damage data.  The average of the MBE over all 

iterations shows no bias and represents only around 1% bias in each iteration. The MAE is 10% 

on average, and RMSE alters between 12 and 16% (14% on average). The results of the Damage 

Scanner model show 13% average deviation from the validation subsets ratios; larger average 

values of absolute error; and higher variation of the predicted ratios from the actual records. 

Overall, the small value of the deviations and the low variation of the errors signify that the 

new model performance is accurate. 

The predictive capability has also been studied for some sub-classes of water depth. By this 

test, the performance of the applied damage models will be evaluated for different stages of the 

flood. Figures 3.5 and 3.6 show the precision of the results and the number of relative damage 

records for seven different sub-classes of water depth. 

 
Figure 3.5. Comparison of the flood damage estimation models’ precision per water-depth class (MAE: 
mean absolute error; Number of damage records for each sub-class of water depth, respectively, are 14, 
36, 52, 96, 125, 222, and 68). 
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Figure 3.6. Comparison of the flood damage estimation models’ precision per water-depth class 
(RMSE: root mean square error; Number of samples for each sub-class of water depth, respectively, are 
14, 36, 52, 96, 125, 222, and 68). 

These Figures clearly show that the uncertainty of FLF-IT is less than the Damage Scanner 

model and the results justify the overall better performance of the FLF-IT model. This test 

shows that the application of the Damage Scanner model using the original uncalibrated 

maximum damage values leads to overestimating the actual damage occurred during this flood 

event especially when the water depth is high. In contrast to Damage Scanner, FLF-IT performs 

well specifically when the flood is deep, the extent of damage is more considerable, and the 

prediction performance of the model is more important. The high number of samples with a 

depth more than 60 centimetres supports the reliability of this outcome. 

In addition to the above comparison on the loss ratios, the performance of the model is also 

validated for predicting the absolute damage values. As stated before, the overall reported loss 

for the 613 cases (building fabric) amounted to EUR 21.7 million. In this regard and for each 

iteration, the absolute damage records are resampled using the bootstrapping approach 10,000 

times, and the 95% confidence interval of the total losses was calculated. If the total damage 

value estimated by the models falls within the 95% confidence interval, their performance is 

accepted. Otherwise, it is rejected (Thieken et al. 2008; Seifert et al. 2010; Cammerer et al. 

2013). By this approach, the performance of the applied damage models in terms of structural 

damage estimation in the area of study will be evaluated. The results are presented in Table 3.5, 

which shows that the results of all iterations of the FLF-IT model with the most likely functional 

parameters r and Dmax lie within the 95% confidence intervals and the FLF-IT model has an 

acceptable performance. However, results of Damage Scanner do not lie within the confidence 

intervals of the mean loss ratios, and its performance is rejected in this area of study.  
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 95% 
confidence 

interval 

Estimated damage values (in 10^6 EUR) 

 FLF-IT 
Within 95% 

interval 
Damage 
Scanner 

Within 95% 
interval 

Iteration 1 4.88-6.8 6.5 Yes 16.2 No 

Iteration 2 5.81-7.8 7.7 Yes 15.6 No 

Iteration 3 8.07-10.4 10.1 Yes 21.8 No 

All records 19.94-24.5 24.3 Yes 53.7 No 

Table 3.3. Comparison of total absolute losses estimated by FLF-IT with the 95% confidence interval 
of the resampled damage records. 

Results of these validation tests illustrate the importance of model calibration, especially when 

the water depth is the only hydraulic parameter taken into account (McBean et al. 1986; Chang 

et al. 2008; Cammerer et al. 2013). In other words, flood damage, being a complicated process, 

could be dependent on more damage influencing parameters than those considered here (Fuchs 

et al. 2011; Merz et al. 2013; Grahn and Nyberg 2014; Schröter et al. 2014; Hasanzadeh Nafari 

et al. 2016c). However, by calibrating the loss function with an actual damage dataset and 

providing an empirically-based model, the function estimations are good (i.e. low predictive 

error, low variation and acceptable reliability in results) and its performance is validated for use 

in flood events with the same geographical conditions (i.e. flood characteristics and building 

specifications) as the area of study (McBean et al. 1986; Hasanzadeh Nafari et al. 2016a). While 

the FLF-IT model is shown to be more accurate, there are still some limitations that can be the 

subject of new research. Model validation in this study was based on random samples which 

were not independent of the data used for model calibration, and this test does not give 

information about the transferability of the FLF-IT model. Hence, improvements can be made 

by considering more influencing factors of hazard, exposure and vulnerability; validation with 

more actual damage records from other study areas in Italy; considering other types of structure, 

and taking into account more variations of residential buildings. 

3.6  Conclusion 

Floods are frequent natural hazards in Italy, triggering significant negative consequences on the 

economy every year. Their impact is expected to worsen in the near future due to socio-

economic development and climate variability. To be able to reduce the probability and 

magnitude of expected economic losses and to lessen the cost of compensation and restoration, 

flood risk managers need to be correctly informed about the potential damage from flood 

hazards on the territory. A loss function that can reliably estimate the economic costs based on 

available data is the key to achieving this objective. However, despite a significant number of 
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flood disasters hitting Italy every year, few attempts at developing a flood damage model from 

post-disaster reports have been made. 

Flood loss functions are an internationally accepted method for estimating direct flood damage 

in urban areas. Flood losses can be classified as marketable or non-marketable values, and as 

direct or indirect damages. This study focused on direct, marketable damage due to riverine 

floodwater inundation. We employed a newly derived Australian approach (FLFA) with 

empirical damage data from Italy to develop a synthetic, relative flood loss function for Italian 

residential structures (FLF-IT). The FLFA approach takes data of damage and depth, stratified 

by building classifications, and uses the chi-square test of goodness of fit to fix a parameterized 

function to compute depth-damage estimates. Parameters include the height of the stories, 

maximum damage as a percentage of their total value, and the internal elevation of ground 

floors. Additionally, FLFA illustrates a bootstrapping approach to the empirical data to assist 

in describing confidence limits around the parameterized functional depth damage relationship. 

 

Figure 3.7. Workflow of the analysis. 

Accordingly, the advantages of the new model (FLF-IT) include calibration with empirical data, 

consideration of the epistemic uncertainty of data and the ability to change parameters based 

on building practices across Italy (see Figure 3.7). After model calibration, its performance was 

also validated for predicting the loss ratios and absolute damage values. Also, the performance 

of the new model in comparison to the empirical data has been contrasted with an uncalibrated 

relative model frequently used in Europe. In this regard, a three-fold cross-validation procedure 

and the usual bootstrap approach were applied to the empirical sample to measure the range of 

uncertainty from the actual damage data. This validation test was selected to compensate for 

the lack of comparable data from an independent flood event. Finally, the predictive capability 

has also been studied for some sub-classes of water depth. The validation procedure shows that 
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estimates of FLF-IT are good (no bias, 10% mean absolute error and 14% root mean square 

error) especially when the flood is deep, and its performance is acceptable. However, the 

application of the Damage Scanner model using the original uncalibrated maximum damage 

values leads to overestimating the actual damage occurred during this flood event. 

Results of these validation tests depict the importance of model calibration, especially when the 

water depth is the only hydraulic parameter considered. In other words, by calibrating the loss 

function and providing an empirically-based model, the function performs well (i.e. low 

predictive error, low variation and acceptable reliability) and its performance is validated for 

use in events with the same geographical conditions as the area of study. Awareness of these 

issues is necessary for decision-making in flood risk management. Further research will be 

aimed at considering some additional parameters that may govern the significance of the 

damages for a given depth. An independent dataset is required to evaluate the predictive 

capacity and transferability of the model. 
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4 MAPPING SOCIO-ECONOMIC EXPOSURE FOR FLOOD 
RISK ASSESSMENT IN ITALY 

4.1  Introduction 

In an increasingly urbanized world, a reliable estimation of social, economic and environmental 

capitals which are located in hazard-prone areas is crucial for devising effective disaster risk 

reduction and climate change adaptation strategies. Maps of population and asset exposure are 

very important for helping planners in the design of risk mitigation policies (Bajat et al. 2011), 

but also for responding properly during emergencies (Moon and Farmer 2001). Risk assessment 

typically combines various dimensions (structural, social, economic, institutional and 

environmental) of vulnerability (Fuchs 2009; Kienberger et al. 2009; Fernandez et al. 2016). 

An integrated approach requires a quantitative evaluation of each individual component’s 

characteristics (e.g. buildings, people, productive facilities) in order to determine their overall 

vulnerability (Garcia et al. 2016). This means that a number of different datasets must be 

collected and combined so that an integrated risk assessment can be carried out (Koks et al. 

2015b). Since the quality of the data used to represent these indicators directly affects the 

outcomes of risk assessment (Thieken et al. 2006b), its improvement is directly relevant for risk 

management and spatial planning. However, collecting and harmonizing all the required 

datasets can be challenging. While hazards are typically modelled in a spatially explicit way 

(e.g. raster grids), exposure data such as population density is often available for administrative 

or survey units (Thieken et al. 2006b), where a single value homogeneously represents the entire 

unit’s extent. This is not only an oversimplification of reality, but also the reason behind spatial 

mismatches when trying to combine and compare information projected on statistical units that 

are heterogeneous in their shapes and sizes (Zandbergen and Ignizio 2010). To overcome this 

problem, various areal interpolation methods have been tested for transferring spatial 

information from irregular to uniform units (e.g. regular square grid). The most straight-forward 

method is areal weighting, in which the variable from the source is spatially apportioned to the 

target layer, based on how much of the source area falls within the target area. A more advanced 

set of methods is referred to as dasymetric mapping (Wright 1936). In using this approach, 

ancillary data are employed to gain additional information about the spatial distribution of 

socio-economic variables within the source units. This downscaling process will result in 
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smaller units of homogeneity that more closely resemble the analysed phenomena, rather than 

arbitrary administrative boundaries (Mrozinski and Cromley 1999; Wu et al. 2005). Then, 

dasymetric zones can be generalised into a regular grid by using areal weighting. This step is 

necessary in order to reduce the size of the dataset, making it possible to run the risk assessment 

on very large areas (e.g. countries) while maintaining the advantages of the dasymetric 

approach and an acceptable level of detail. Population and buildings maps can ultimately serve 

as a proxy to geographically project correlated socio-economic variables, for example GDP 

(Eicher and Brewer 2001; Nordhaus et al. 2006). 

We describe a high-resolution, multi-layer exposure grid for Italy, including information about 

exposure and social vulnerability that can be employed to perform risk analysis at the national 

or local scale. The dataset is built by means of a dasymetric approach based on official census 

records about population and buildings, and additional ancillary data related to land cover, 

buildings, demographics and GDP. The ensuing gridded exposure was used for the purpose of 

national climate change adaptation planning in Italy (Mysiak et al. 2018). Our downscaling 

approach is tested within one Italian Region against global state-of-the-art population grids to 

compare their performances and reliability. Then, our grid is combined with hazard scenarios 

produced at a European scale for six different return periods (Alfieri et al. 2014; Alfieri et al. 

2015c) in order to give an example of its application for the purpose of risk assessment. 

4.2  Study area 

Because of its peninsular and mountainous morphology, Italy is susceptible to flood hazard and 

disaster risk. Some 8% of its territory and 10% of its population are reportedly located in areas 

flooded with a chance of 1 in 100-200 in a single year (ANCE/CRESME 2012b; ISPRA 2014; 

Trigila et al. 2015b). In absolute terms, Italy’s annual expected damage under current climate 

is the largest in the European Union (Alfieri et al. 2016). The damage and recovery costs 

inflicted by major flood events over the period 2009-2012 amounted to about one million Euros 

per day (Zampetti et al. 2012). Flood risk is expected to increase due to changes in risk-driving 

factors: on the one side, growing anthropization of natural environments has increased the value 

of asset along the floodplains in the last 50 years, requiring the adoption of higher hazard-

defence standards; on the other side, climate change affects the frequency and magnitude of 

extreme precipitation events (Rojas et al. 2013; Alfieri et al. 2015c; Alfieri et al. 2015b). We 

chose Emilia Romagna Region (RER), located in Northern Italy, to compare the performance 

of interpolation methods (figure 4.1, left). According to the Hydrological System Plan (PAI), 
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RER is the most flood-prone region in the country (ISPRA 2014) (figure 4.1, right), both in 

relative and absolute terms: 2.5 thousand km2 and 10% of its population are exposed to a high 

flood probability (once every 20 to 50 years) and up to 10 thousand km2 and 64% of the 

population to a medium probability (once in 100 of 200 years) (ISPRA 2014).  

 
Figure 4.1. (left) Emilia-Romagna Region, available land cover datasets; (right) official definition of 
flood-prone hazard zones in Italy (FD 2007/60/EC). 

4.3  Methodology 

4.3.1 Data description 

We used the most recent census data of the Italian Statistical Office (ISTAT) to obtain variables 

related to demographics (residential population, gender, age structure, education, employment, 

rate of foreigners), buildings (type, use, age, quality, number of floors) and dwellings (type of 

occupants, area). The size of a census tract is variable and ranges between a hundred square 

meters to hundreds of square kilometers, with an average size of ~750 square meters. 

Residential buildings account for 84% of the total stock and half of them are single-dwelling 

units. More than three-quarters of the dwellings included in the census are occupied by primary 

residents. Industrial activities, retail assets and offices account for 3%, 2.5% and 1.8% of 

buildings (ISTAT 2014). To define the value of assets we used real estate market values, 

available for ~76% of the stock, aggregated to sub-urban functional zones: center and semi-

center, periphery, extra-urban or sub-urban (Agenzia delle Entrate 2014). Land cover data and 
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building perimeters are acquired as shapefiles from the digital Regional Technical Map (RER 

2011), although in most Italian municipalities this information is comparable to that available 

from Open Street Map (OSM) (Geofabrik GmbH 2012). We also used the country-wide land 

cover dataset, made available by the Copernicus Land Monitoring Services (Munafò et al. 

2015), which includes imperviousness, forests and marshes as a raster at a 20-meter resolution. 

This information is combined with the Corine Land Cover dataset (2012) and the transport 

network map (Ministry of Environment, 2008) to mask non-residential built-up areas. A similar 

approach was used by other authors to refine land cover characterization (Steinnocher et al. 

2011; Batista e Silva et al. 2013). The analysis of exposure is performed by means of flood 

hazard simulations produced by LISFLOOD at a European-scale (Dottori et al. 2016a) for six 

flood hazard scenarios of different intensity and probability (return period 10, 20, 50, 100, 200 

and 500 years). The same data were previously used for assessing flood hazard exposure and 

risk across Europe (Alfieri et al. 2015c).  

4.3.2 The dasymetric approach 

Dasymetric mapping uses one or more geographical proxies to downscale the spatial 

information usually provided at the scale of administrative units. As for population, housing 

density is an ideal covariate, as residential floor area is closely correlated (Naroll 1962; Brown 

1987; Wu et al. 2017). Roads, industrial districts and other non-habitable artificial areas are 

identified and masked out, and population is distributed over the remaining built-up areas 

(binary method) (Eicher and Brewer 2001). The resulting dasymetric zones are nested within 

the census tracts and the land cover polygons (Zandbergen and Ignizio 2010), as exemplified 

in Figure 4.2. 

 

Figure 4.2. Example of dasymetric distribution of population count from the census tract unit to 
individual residential buildings based on their area extent. 

Dasymetric zones are the source for areal interpolation to different aggregation units, such as 

regular grid cells. To this end, the dasymetric zones are overlaid with the target areas (cells) 

and population is spatially apportioned based on areal weighting. This approach assumes 

population density to be uniform within each dasymetric zone, but because dasymetric zones 
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are smaller than the original census tract area, the result is more accurate than a simple areal 

weighting (Wu et al. 2005; Maantay et al. 2007). In fact, interpolation from small source areas 

to large target areas entails smaller errors than the other way round (Langford 2006; Zandbergen 

and Ignizio 2010). Several spatial proxies can be employed for this purpose, but imperviousness 

and land cover data have proven to be more suitable proxies than other ancillary data, such as 

road density or night-time lights (Xie 1996; Ong and Houston 2003); still, if the definition of 

census units and residential areas is too coarse, small scattered settlements may not be captured 

correctly. This may lead to biases in low-density areas (Steinnocher et al. 2011). This issue can 

be addressed by using different urban density classes based on sample areas (Langford et al. 

1991; Goodchild et al. 1993; Bielecka 2005) and by using an average number of dwelling units 

and dwellers per unit within sub-areas (Wu et al. 2005). However, all methods relying on a 2-

D land cover definition lack the information about the height of buildings; the same building 

footprint area can then be associated with a different number of floors, resulting in different 

estimates of population density. For this reason, the linear relationship between population and 

footprint area entails an error and leads to an underestimation of the residential population in 

taller buildings within the same census unit. Most studies apply a corrective factor 

(pycnophylactic constraint) for the total population to coincide with the source data  (Thieken 

et al. 2006b; Gallego 2010). 

Several global population grids are available, including GeoStat (EFGS 2011), LandScan 

(Bhaduri et al. 2002) and the GWP (Balk and Yetman 2004). The state-of-the-art of global 

population grids today is the Global Human Settlement Layer (GHSL), which combines remote 

sensing, ancillary census data and spatial modelling into a global dataset, with a resolution of 

250 meters (Ouzounis et al. 2013; Pesaresi et al. 2014; Freire et al. 2016). Although there is no 

single best dasymetric method, multiple ancillary data are expected to improve the results of 

the downscaling compared to the single data-source method. The precision and accuracy of the 

input data likely plays a more important role than the method used to combine them (Martin et 

al. 2000). To test this hypothesis in our case study, we have applied and compared three 

methods to transfer the information from the recent population and dwellings census to the new 

exposure grid: 

A) simple interpolation based on areal weighting; 

B) dasymetric method based on imperviousness data; 

C) dasymetric method based on detailed land cover and building data.  
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In method A, population density (number of inhabitants per square meter) is directly transferred 

from each census unit into a regular square grid with cell size 250x250 meters, by means of the 

share of interpolated cell area as a weight. In method B and C, population density is calculated 

within each census tract i over residential land cover. The difference between B and C lies in 

the quality and type of land cover data employed to identify residential areas; method B uses 

imperviousness data from Copernicus at a 20 m resolution, while method C relies on polygon 

geometries of land cover and buildings. Population (P) is assumed proportional to housing 

density (Hd) and allocated over residential land cover classes (R) only. This assumption is 

supported by the good correlation found between normalized dwelling area and normalized 

population within each census tract (R2=0.95). Hdi is calculated as the ratio between tract 

population and residential area as identified within each tract boundary. Areal interpolation is 

used to transfer the information from the source layers to the dasymetric zones of residential 

land cover. Then, these are aggregated into regular grid cells by using area weights (Aw) 

calculated as the share of residential area in dasymetric zones over the total area of the cell j 

(Figure 4.3 and Equation 4.1). 

�� = ∑ �����
×  ���� × ���       [Equation 4.1] 

 
Figure 4.3. Transferring of population information from the census units to a regular square grid (cell 
size of 250 meters) by using residential buildings as dasymetric units. 

4.3.3 Mapping economic activity 

The quality of the population grid has a direct influence on the derived grid of Gross Domestic 

Product (GDP). The dataset produced by G-Econ for example (Nordhaus et al. 2006) is drawn 
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from a global population grid with a resolution of about 100 km; the population density in each 

grid cell is multiplied by the Gross Regional Product per capita (GRP), available at NUTS3 

level6 (EUROSTAT 2013). A much finer global GRP dataset was produced by the UN for 2010 

using a 1 km resolution (UNEP 2012) based on LandScan population (Bright et al. 2006). This 

method distinguishes between rural and urban population, assuming the latter to have a higher 

GRP per capita. Other researchers (Huang et al. 2014) projected GDP as disaggregated 

measures per macro-sectors (primary, secondary and tertiary sector production) on the basis of 

land cover. Validation against empirical data showed a small degree of uncertainty for this 

method. For Italy, disaggregated GDP7 measures are available for Labour Market Areas 

(LMA8) for the three main macro-economic branches: agriculture, industry and services. Within 

each branch, Gross Labour Market Value (GLMV) is divided by the respective productive area 

as identified by land cover classes, and proportionally distributed over them. Namely, GLMV 

density is calculated for each LMA: 1) over the total LMA area for agriculture product, 

excluding steep slopes and quotas over 600 meters; 2) over the total industrial area for industry 

product; 3) over the total population for services product. GLMV density per sector is finally 

distributed on each cell by using as weight, respectively, LMA area, industry LC area and 

population density. We assume here an average value per square meter for agriculture and 

industry products within each LMA. Contrarily, services are scattered over the territory; we 

assume that their value is proportional to the number of people served, so population is used as 

a proxy for mapping the distribution of their value. 

4.3.4 Social Vulnerability Index 

Many risk assessment studies focus on the vulnerability of physical assets by accounting for 

potential damage to structures and, occasionally, their content (Jongman et al. 2012b; Jongman 

et al. 2014; Koks et al. 2014a; Roder et al. 2017). Social variables are often neglected, although 

they can help for understanding how the expected burden is distributed. The capacity to cope 

with disaster damage and losses has been previously analysed by using a number of socio-

economic characteristics such as wealth, age, ethnicity, and quality of dwellings, which are 

                                                           
6 Classification of Territorial Units for Statistics developed and regulated by the European Union. NUTS3 
correspond to the administrative level “Region” in most EU countries. 

7 The measure provided is in fact the Gross Value Added (GVA), which is GDP minus taxes plus subsidies on 
products. For simplicity, it will be referred as GDP. 

8 Labour Market Areas refers to ISTAT’s Local Labour Systems (in Italian “Sistemi Locali di Lavoro”, SLL). 



72 
 

 

employed to define a vulnerability index (Cutter et al. 2003; Fekete 2009; Willis et al. 2014; 

Zhou et al. 2014; Koks et al. 2015b; Bakkensen et al. 2016; Fernandez et al. 2016; Frigerio et 

al. 2016; Roder et al. 2017). The choice of variables used in such studies is typically influenced 

by the availability of spatially explicit data (Balica et al. 2009). We select and combine 

indicators which are linked to exposure and vulnerability of households from most recent 

censuses (ISTAT 2011b) into an aggregated index of social vulnerability to flood hazard (SVI). 

It includes data on population (P), buildings (B) and dwellings (D). Four metrics related to P 

are selected among those that describe socio-economic status, as this is assumed to be a main 

determinant of social vulnerability (Cutter 1996; Fekete 2009). First, the Total Age-

Dependency rate expresses the share of the dependent (younger than 15 and older than 65 years) 

over the non-dependent population (Hewitt 1997; Koks et al. 2015b). Second, the 

unemployment rate is used as a proxy of labour economic status. Third, the rate of foreigners 

over total population is assumed to be an expression of accessibility and comprehension of 

emergency indications. Lastly, the rate of population commuting daily outside their 

municipality reveals if the owner can promptly activate hazard mitigation when the event 

strikes. Information related to residential buildings (B) includes the number of floors and the 

preservation state, or quality, of the structure. During floods, ground floors are those mostly 

affected by water; therefore, a high share of 1-floor buildings over the total increases 

vulnerability. Similarly, a high rate of buildings in poor preservation status is used as a proxy 

for higher chances of damage, as well as an indication of limited access to finance. Finally, 

statistics about dwellings include number, total area and vacancy rate. Unoccupied dwellings 

are less likely to be protected from hazards by private risk-reduction actions. 

Most frequently, such indexes are aggregated linearly by addition assigning equal weights to 

all indicators (Cutter et al. 2003; Koks et al. 2015b). With this approach, the lower performance 

of one indicator can be compensated by some higher performance of another indicator. In some 

cases a non-compensatory multi-criteria approach may be more appropriate (OECD 2008); we 

use a fuzzy inference, non-compensatory aggregation that accounts for uncertainty as an 

intrinsic component of the model (Martins et al. 2012). Fuzzy logic makes it possible to deal 

with complex or ambiguous concepts, which are not (easily) quantifiable but blurry, or “fuzzy” 

(Phillis and Andriantiatsaholiniaina 2001; Andriantiatsaholiniaina et al. 2004; Hefny et al. 

2013). Indicators are translated into linguistic values (e.g. high, medium or low) via 

membership function (fuzzification), and then decision rules are applied to combine them. 

Rules reflect the importance assigned to each indicator. The hierarchical structure of our 
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framework is shown in Figure 4.4. The intrinsic indicators related to the three main components 

P, B and D are multiplied by their extrinsic count (number of P, B and D elements) and 

classified into three classes (low, medium, high) using a fuzzy membership function. In doing 

so, we avoid abrupt changes and can discriminate between indicators of primary and secondary 

importance. We assume that, for example, a high rate of commuters does not affect the 

vulnerability of households as much as a high unemployment rate could. Primary indicators are 

distributed into three vulnerability classes (high, medium and low), while secondary indicators 

are split into two classes (high and low). The criteria for the aggregation of each component of 

the SVI are defined by a set of decision rules. The choice of the indicators, criteria and rules is 

one out of the many possible, and inevitably reflects the expert knowledge of the authors; our 

purpose is to provide an example of application of the available data, but decision makers may 

tailor the index on the basis of largely-shared preferences and expert opinions. The index is 

calculated for each census unit and then distributed on the grid by using the dasymetric 

approach in relation to residential density, similarly to population. 

 

Figure 4.4. Hierarchical representation of criteria and vulnerability classes employed to produce the 
fuzzy aggregation of the SVI. 

4.4  Results 

4.4.1 Population 

The outputs from the three downscaling methods A, B and C are all consistent with their source 

data when comparing total population within provinces (NUTS3). We use a multi-scale 

approach (Ouzounis et al. 2013) to evaluate the quality of these outputs (figure 4.5, 4.6 and 

4.7). Simple interpolation (method A) largely underestimates population density in residential 

areas, since it distributes population uniformly from either small/dense and large/scattered 

sections. This method is excluded from further analysis. The GHSL grid overcomes this issue 

by using remote sensing data to project population only within built-up areas. Both methods B 

and C provide a better output by masking non-residential built-up areas and accounting for 
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sparse residential buildings in rural areas. They both perform well in this region, 

underestimating total population by a small share (1.2% and 0.5% respectively) compared to 

the source census data. The error in method B is due to the coarser definition of the land cover 

layer, which does not identify residential areas within some inhabited census units. This bias is 

larger in some regions, such as Basilicata (4,3%), Calabria (3.6%) and Umbria (3.5%). Within 

the RER, we measured the error of relative population distribution for both methods B and 

GHSL (2015) using regression analysis and assuming method C as the best fit to represent the 

baseline (figure 4.5). 

Figure 4.5. Population maps 
obtained by methods A, B and C 
(right column) are compared with 
the GHSL population dataset 
(bottom left) within RER.  
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Figure 4.6. Scatterplot for regression analysis comparing on the Y-axis population cells from GHSL 
(left) and from method B (right) to population from method C, on the X-axis. The red dashed line 
represents 1:1. The test covers the RER area and assumes set C as the most reliable. The R2 coefficient 
for set B is equal to 0.7. The GHSL set has a R2 coefficient of 0.2 against set C. Both models are 
significant within 95%. 

Overall, dasymetric models B and C perform similarly (figure 4.6, right), projecting population 

only where residential land cover is found. The GHSL grid performs decently (figure 4.5, 

bottom left), showing a comparable relative error for the whole country (±1.3%); however, the 

scatterplot shows a much larger dispersion and a lower correlation score (figure 4.6, left). This 

seems to confirm that the combination of multiple ancillary data sources and the use of smaller 

source units have a major importance for the quality of the dasymetric mapping output. By 

narrowing the comparison of method B, C and the GHSL to the urban scale (figure 4.7) we can 

find overall a close agreement between the three datasets. 

 

Figure 4.7. Comparison at the urban scale (city of Bologna) between methods. 
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The GHSL correctly identifies the main urban settlements and some scattered urban areas, while 

ignoring smaller settlements and sparse dwellings. Moreover, it does not discriminate 

residential areas from non-residential impervious surfaces such as industrial districts and 

transport infrastructures, thus distributing population on an area much larger than the one 

effectively occupied by dwellings. Dasymetric methods B and C take advantage of more 

detailed information from the census and project it exclusively within residential units. As a 

further example of the importance of having a reliable description of land use, see figure 4.8: 

the top row shows the ancillary data employed to distribute population density, while the bottom 

row shows the resulting dasymetric maps according to the three methods. The interport in the 

center of the map is a large transport infrastructure which includes few dwellings along its 

extent, for a total of 256 residents. The GHSL populates the whole area with 4,467 residents 

(bottom left). Method B identifies the area as generic non-residential, and projects 245 residents 

only within the few cells including residential units (bottom mid). Method C correctly identifies 

the interport as transport infrastructure, and projects a total of 404 residents within the few 

residential building surfaces (bottom right). 

 
Figure 4.8. Sample from Bologna province (RER) including industrial zones, transport network 
infrastructures and sparse residential land cover. Comparison between the land cover information (top 
row) and the resulting population grids (bottom row) according to GHSL (left), method B (middle) and 
method C (right). 
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The error metrics from the comparison of the three 

approaches within the RER are summarised in table 

4.1, by assuming that method C is the most reliable 

for baseline comparison. The linear regression is 

calculated by selecting cells where at least one of 

the two datasets is populated. Dataset B accounts for 

about twice the populated area compared to the 

GHSL and it fits much better to dataset C (0.72). 

The Mean Absolute error is lower for B, however 

the Mean Absolute Percentage Error shows that 

large residuals exist also in this case. This is caused 

by the mismatch between the two land cover 

datasets, which in some cases can lead to large 

differences in the cell-by-cell distribution of 

population (figure 4.9). 

 

Figure 4.9. Scatterplot of normalised 
residuals from linear regression of dataset 
B on C. 
 

Dataset 
Populated 

area Population 
Relative 

error 

Populated 

cells MAE RMSE R2 

(C) 44% 4,321,494 -0.5%  Regression against C dataset 

(B) 39% 4,287,982 -1.2% 168,093 0.19 43.6 0.72 

(GHSL) 22% 4,452,335 +2.5% 80,681 14.0 68.5 0.24 

Table 4.1. Error metrics within Emilia-Romagna comparing method B, C and GHSL datasets. Dataset 
C is selected as baseline for the estimation of error in set B and GHSL. 

4.4.2 Economic value 

The GDP is projected from the LMA data by using both population and land cover/use as a 

proxy (figure 4.10). The resulting dataset is compared to the GDP dataset produced by the UN 

for 2010. To do so, the UN grid is first re-projected to the same resolution and the GDP is 

converted from 2000USD constant value to 2005EUR (Figure 4.10, left). A comparison of the 

two grids at the scale of LMA units shows a negligible difference (R2=0.92), while on a cell-

by-cell basis the coincidence is rather poor (R2=0.20); this partially depends on the re-projection 

and resampling procedure. Overall, the UN dataset depicts GDP distribution adequately for the 

purpose of country-wide studies; our method offers a better alternative where sub-regional, 

regional and multi-regional studies are concerned. There is one important limitation inherent to 

this approach: GDP is measured according to taxes paid by people and enterprises; however, 

the headquarters of large economic activities individually account for a production value that 
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is in fact generated over a larger territory. Therefore, some urban units in major cities such Milan 

and Rome show extremely large GDP values, since large corporations are legally represented there. 

This can lead to a misestimation of relative exposure. 

 
Figure 4.10. Comparison between GDP datasets: the UN grid for 2010 (left), although coarser, is 
coherent with the dataset we produced using dasymetric method B and LMA values of 2005 (right). 

Table 4.2 shows the regional share of GDP per each macro-sector in relation to population and 

residential area. The three macro-sectors differ consistently in terms of relative contribution to 

GDP: agriculture accounts for about 2%, industry for 27% and services 71% of the total. That 

means that more than two thirds of GDP value are distributed over residential areas. 

Region Population 
Residential 

area 

GDP 

Agricult. Industry Services Total 

Piedmont 6.8% 6.5% 5.7% 9.1% 7.8% 8.1% 

Aosta Valley 0.2% 0.2% 0.2% 0.2% 0.3% 0.2% 

Lombardy 16.5% 17.1% 10.6% 26.2% 19.3% 21.0% 

Trentino South-Tyrol 1.8% 1.7% 3.4% 1.9% 2.1% 2.1% 

Veneto 8.3% 8.9% 8.6% 12.3% 8.5% 9.5% 

Friuli 2.1% 2.5% 1.7% 2.3% 2.4% 2.3% 

Liguria 2.7% 2.0% 2.2% 1.8% 3.2% 2.8% 

Emilia Romagna 7.4% 8.4% 9.9% 10.8% 7.9% 8.7% 

Tuscany 6.2% 5.9% 6.1% 6.8% 6.7% 6.7% 

Umbria 1.5% 1.5% 1.4% 1.4% 1.4% 1.4% 

Marches 2.6% 2.4% 2.3% 3.1% 2.3% 2.5% 

Lazio 9.3% 7.8% 5.9% 6.1% 13.1% 11.0% 

Abruzzo 2.2% 2.9% 2.4% 2.0% 1.7% 1.8% 

Molise 0.5% 0.6% 0.7% 0.4% 0.4% 0.4% 

Campania 9.8% 7.7% 8.1% 4.4% 6.9% 6.3% 

Apulia 6.9% 6.2% 9.2% 3.9% 4.6% 4.5% 

Basilicata 0.9% 1.0% 1.8% 0.7% 0.7% 0.7% 

Calabria 3.2% 2.9% 5.6% 1.4% 2.4% 2.2% 

Sicily 8.5% 9.7% 10.7% 3.6% 6.1% 5.5% 

Sardinia 2.8% 4.2% 3.6% 1.6% 2.3% 2.2% 

Table 4.2. Distribution of population and productive macro-sectors across Italian Regions. 
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4.4.3 Exposure to flood scenarios 

The country-wide grid dataset produced by using method B is employed to estimate social and 

economic exposure to hazard according to six different hazard probability scenarios (Dottori et 

al. 2016a). The non-compensatory version of the SVI is chosen to identify the exposed areas 

with higher vulnerability. The change in the amount of population and GDP exposure according 

to the six RP scenarios is plotted in figure 4.11, left. Exposure grows almost proportionally with 

the increase of magnitude. On the right, exposure is classified according to ten water-depth 

stages. Much of the exposure is related to a water depth between 0.1 and 1.5 meters, although 

the relative depth of a cell increases with the event magnitude. 

  

Figure 4.11. (left) Total Population and GDP exposed to flood hazard for six Return Period scenarios; 
(right) exposure of Population and GDP cells to ten stages of floodwater depth from each RP scenario. 

Table 4.3 shows population and GDP exposure as a share of their total. Exposure increases 

almost linearly for both indicators with the growth of hazard magnitude (extent and depth). 

Population exposure ranges from 2.1% to 3.6% of the total. Among GDP sectors, agriculture is 

the one that is expected to be most exposed in relative terms, from 6.6% to 9.2% of its 

production value. However, agriculture production accounts for just about 2% of the Italian 

economy, thus in absolute terms its exposure ranges from 0.1 to 0.2% of total GDP. Industry, 

being mostly scattered over rural land and peripheral areas, shows similar relative shares of 

exposure, but its weight over the GDP is much more important (27%), thus exposure of 

industrial production ranges from 1.7% to 2.4% of total GDP. Services exposure is concentrated 

in urban areas and is the lowest in relative terms, growing from 2.3 to 3.8%; however, because 

services contribute for about 71% of Italian economy, their exposure accounts for 1.6% to 2.7% 

of the domestic product. 

0

500

1.000

1.500

2.000

2.500

RP10 RP20 RP50 RP100 RP200 RP500

 -

 10

 20

 30

 40

 50

 60

 70

 80

P
o

p
u

la
ti

o
n

 (
0

00
)

Hazard scenario (magnitude)

M
il

li
o

n
 E

u
r

GDP

Population

0

50

100

150

200

250

300

350

<
 0

.1

0
.1

 -
 0

.3

0
.3

 -
 0

.5

0
.5

 -
 0

.7

0
.7

 -
 1

1
 -

 1
.5

1
.5

 -
 2

2
 -

 3

3
 -

 5

>
 5

P
o

p
u

la
ti

o
n

 (
0

0
0)

Water stage (m)

RP10 RP20 RP50

RP100 RP200 RP500



80 
 

 

Scenario Population 
GDP Agriculture GDP Industry GDP Services GDP 

Total Sector % Total % Sector % Total % Sector % Total % 

RP10 2.1% 6.6% 0.1% 6.2% 1.7% 2.3% 1.6% 3.4% 

RP20 2.5% 7.4% 0.2% 7.0% 1.9% 2.7% 1.9% 3.9% 

RP50 2.9% 8.1% 0.2% 7.7% 2.1% 3.1% 2.2% 4.4% 

RP100 3.1% 8.5% 0.2% 8.1% 2.2% 3.3% 2.4% 4.7% 

RP200 3.3% 8.8% 0.2% 8.5% 2.3% 3.5% 2.5% 5.0% 

RP500 3.6% 9.2% 0.2% 8.9% 2.4% 3.8% 2.7% 5.3% 

Table 4.3. Shares of exposed population and GDP according to six return period scenarios. GDP 
exposure is expressed relatively to sector production and to GDP total. 

Figure 4.12 displays the exposed cells for population and GDP in relation to scenario RP 100, 

which will be referred to as “medium frequency”. Labels display the share of exposure in 

relation to regional totals. Results show how the northern regions are the most exposed to flood 

hazard, both in terms of population and GDP. Tuscany shows the highest share of population 

exposure within the Florence metropolitan area. In its history, Florence has been flooded several 

times by the Arno, with the last tragic event of 1966 causing 35 deaths and millions in losses. 

In terms of GDP exposure, the largest amount is located in Veneto; a large part of the productive 

asset and residential buildings in this Region is spread over floodplains that are exposed to 

hazard triggered by the rivers flowing from the Eastern Alps (Adige, Piave and Brenta-

Bacchiglione catchments) involving the main towns of Vicenza, Padova and Verona already 

from the RP10 scenario. In 2010, central Veneto was hit by massive floods involving more than 

260 municipalities and causing losses for about 500 million Eur. The lower section of the Po 

River, shared by Veneto and the RER, is the area where the largest relative amount of 

agricultural land is exposed to flood hazard. On the northern side of the Po river, the rural 

Province of Rovigo (Polesine) was hit in 1951 by the largest flood event in recent history for 

Italy, causing around 100 deaths and 200 million Eur of damage, and causing people and 

investments to move in other Provinces. Table 4.4 summarises the results of the share of 

exposure at the regional scale. 
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Figure 4.12. Exposed population (left) and GDP (right) according to scenario RP100 (medium 
frequency). Percentage value is relative to the regional total. 

Region 
Population 

GDP 

Agriculture Industry Services Total 

REG% IT% REG% IT% REG% IT% REG% IT% REG% IT% 

Piedmont 3.1% 0.2% 6.1% 0.3% 6.5% 0.6% 2.8% 0.2% 3.9% 0.3% 

Aosta Valley 3.7% 0.0% 0.8% 0.0% 0.8% 0.0% 3.7% 0.0% 2.9% 0.0% 

Lombardy 2.6% 0.4% 18.8% 2.0% 7.5% 2.0% 1.9% 0.4% 4.0% 0.8% 

Trentino South-Tyrol 8.3% 0.1% 3.6% 0.1% 3.5% 0.1% 9.1% 0.2% 7.6% 0.2% 

Veneto 9.1% 0.8% 26.7% 2.3% 18.1% 2.2% 9.2% 0.8% 12.6% 1.2% 

Friuli 3.4% 0.1% 10.7% 0.2% 9.0% 0.2% 2.7% 0.1% 4.5% 0.1% 

Liguria 0.2% 0.0% 0.7% 0.0% 0.7% 0.0% 0.2% 0.0% 0.3% 0.0% 

Emilia Romagna 5.2% 0.4% 21.2% 2.1% 16.8% 1.8% 4.3% 0.3% 8.8% 0.8% 

Tuscany 11.6% 0.7% 4.1% 0.2% 6.7% 0.5% 13.6% 0.9% 11.5% 0.8% 

Umbria 3.2% 0.0% 2.6% 0.0% 2.9% 0.0% 3.1% 0.0% 3.0% 0.0% 

Marches 1.5% 0.0% 1.4% 0.0% 2.0% 0.1% 1.8% 0.0% 1.8% 0.0% 

Lazio 1.7% 0.2% 2.0% 0.1% 3.9% 0.2% 1.8% 0.2% 2.1% 0.2% 

Abruzzo 2.3% 0.0% 1.5% 0.0% 1.7% 0.0% 3.7% 0.1% 3.1% 0.1% 

Molise 0.4% 0.0% 1.2% 0.0% 1.4% 0.0% 0.4% 0.0% 0.6% 0.0% 

Campania 0.4% 0.0% 5.8% 0.5% 4.6% 0.2% 0.4% 0.0% 1.3% 0.1% 

Apulia 0.1% 0.0% 1.7% 0.2% 1.1% 0.0% 0.1% 0.0% 0.4% 0.0% 

Basilicata 0.4% 0.0% 3.9% 0.1% 2.5% 0.0% 0.4% 0.0% 1.2% 0.0% 

Calabria 0.3% 0.0% 1.0% 0.1% 0.7% 0.0% 0.2% 0.0% 0.3% 0.0% 

Sicily 0.1% 0.0% 1.2% 0.1% 3.0% 0.1% 0.1% 0.0% 0.6% 0.0% 

Sardinia 0.5% 0.0% 1.6% 0.1% 1.9% 0.0% 0.4% 0.0% 0.7% 0.0% 

ITALY  3.1%  8.5%  8.1%  3.3%  4.7% 

Table 4.4. Percentage of exposed population and GDP per macro-sectors over total regional (left 
column) and national (right column) amount according to a flood scenario defined by a 100 years Return 
Period. 
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The analysis of the SVI highlights the cells with the highest social vulnerability scores. For 

comparison, the SVI is shown in the form of three discrete classes (low, medium and high). 

Figure 4.13 displays the SVI for scenario RP100 by focusing on the lower section of the Po 

river basin, where most of the exposure is located. SVI values are higher within small rural 

settlements located along the river network, and peripheral areas of larger towns such as Padua 

or Verona. The Po delta region poses hazards to small coastal settlements along the freeway 

from Venice to Ravenna, many of which are characterized by below-average wealth, and higher 

age dependency and unemployment rates. Depressed areas where SVI has high scores are 

expected to be more vulnerable in the aftermath of a disaster and to have less capacity to cope 

with restoration costs. 

 

Figure 4.13. SVI for exposed population according to scenario RP100 (medium frequency). 

4.5  Conclusion 

In this paper we describe a method for producing a high-resolution exposure and vulnerability 

grid to be used for the purpose of flood risk assessment. The new grid dataset makes it possible 

to account for exposure and social vulnerability much better than the original unprocessed, non-

homogeneous data. A similar approach can be followed for other hazard phenomena, provided 

that exposure and vulnerability indicators are chosen according to the specific framework of 

the risk analysis. Our dataset is structured in the form of a regular grid, with a resolution of 250 

meters, which includes information about physical asset, population, domestic product and 
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social vulnerability. Information about demography, buildings, dwellings and GDP macro-

sectors is collected from disaggregated sources and then projected on a grid by means of a 

dasymetric approach. The performance of the dasymetric method employed to build the 

exposure and vulnerability grid at a national scale (method B) is tested on one specific Region 

(the RER). The uncertainty of this approach depends in larger part on the detail of the source 

data providing the statistical information and the quality of the spatial proxy employed to 

project the socio-economic variables. The size of the statistical unit is the most important factor, 

the second being the quality of the georeferenced information about land cover and buildings. 

When a less detailed land cover classification is used, the dasymetric method performs well but 

has larger uncertainty, confirming the findings of Thieken et al. (2006). For analysis carried out 

at NUTS2 or NUTS3 scale, method B and C are comparable. The uncertainty of method B tends 

to grow when shifting to the municipal scale, although unevenly. Additional uncertainty is 

added by the discrepancy of scale and time references between the source ancillary data, and 

the assumptions made to proxy the indicators. In comparison, globally-produced population 

and GDP maps based on similar dasymetric approaches carry a much larger error rate due to 

coarser basedata, thus their use for spatial analysis within the national scale should be held as 

an option only when lacking country-specific sources. 

The grid is employed to estimate socio-economic exposure to flood hazard according to six 

probability scenarios; by doing so, it is possible to identify the distribution of population, asset 

and sectorial domestic product in relation to the magnitude and frequency of potential flood 

events. This information is aimed to help decision-makers when running risk assessments and 

planning of mitigation measures. The high resolution of the grid (250x250 meters) allows to 

investigate the effects locally as well as at the preferred administrative level. The SVI offers a 

supplementary view on the variability of the social dimension. Inevitably, the composition of 

the SVI is also prone to an amount of uncertainty because of the subjective choices in the criteria 

selected for its production. A large survey over expert knowledge and a detailed analysis of 

sensitivity would be required to justify the use of some rules and criteria over others.  
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5 ESTIMATING FLOOD DAMAGE IN ITALY: EMPIRICAL 
VS EXPERT-BASED MODELLING APPROACH 

5.1  Introduction 

Among all natural hazards, floods historically cause the highest economic losses in Europe 

(EEA 2010; EASAC 2018). In Italy alone, a country with the largest absolute uninsured losses 

among EU countries (Alfieri et al. 2016; EEA 2016; Paprotny et al. 2018), around EUR 4 billion 

of public money were spent over a 10 years period to compensate the damage inflicted by major 

extreme hydrologic events (ANIA 2015). From 2009 until 2012, the recovery funding 

amounted to about EUR 1 billion per year; a fraction of the total estimated damage of around 

EUR 2,2 billion (Zampetti et al. 2012). In this context, and particularly compelled by the EU 

Flood Directive (2007/60/EC), sound and evidence-based flood risk assessments should 

provide the means to support the development and implementation of cost-effective flood risk 

reduction strategies and plans. 

Several different approaches of varying complexity exist to estimate potential losses from 

floods, depending mainly on the category of damage (e.g. direct impacts or secondary effects, 

tangible or intangible costs, etc.) and the scale of application (i.e. macro, meso or micro scale) 

(Hallegatte 2008; Apel et al. 2009; de Moel et al. 2015; Koks et al. 2015a; Carrera et al. 2015). 

Direct tangible damages to assets are typically assessed using simple univariable models 

(UVMs) that rely on deterministic relations between a single descriptive variable (typically 

maximum water depth) and the economic loss mediated by the type/value of buildings or land 

cover directly affected by a hazardous event (Smith 1994; Meyer and Messner 2005; Scawthorn 

et al. 2006; Messner et al. 2007a; Jonkman et al. 2008a; Thieken et al. 2009; Merz et al. 2010a; 

de Moel and Aerts 2011a; Jongman et al. 2012a; Huizinga et al. 2017). Empirical, event-specific 

damage models are developed from observed flood loss data. A major drawback of empirically-

based damage models relies on its low transferability to other study areas or regions, as 

significant errors are often verified when these are used to infer damage in other regions than 

those for which they were built to (Apel et al. 2004; Merz et al. 2004; Jongman et al. 2012a; 

Scorzini and Frank 2015b; Amadio et al. 2016; Wagenaar et al. 2016; Scorzini and Leopardi 

2017; Hasanzadeh Nafari et al. 2017; Carisi et al. 2018). Synthetic models, on the other hand, 

are based on ‘‘what-if analyses’’, relying on expert-based knowledge in order to generalise the 

relation between the magnitude of a hazard event and the resulting economic damage. An 
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advantage of synthetic models over empirically-based models relies on the fact that the first are 

less sensitive to the input data, thus being better suited for both temporal and spatial 

transferability (Smith 1994; Merz et al. 2010; Dottori et al. 2016). 

Both empirical and synthetic models can be configured as uni- or multivariable. The vast 

majority of univariable flood damage models account for water depth as the only explanatory 

variable to explain the often complex relation between the magnitude of a flood event and the 

resulting damages; however, a non-exhaustive literature search shows that other parameters 

may influence the flood damage process, such as flow velocity (Kreibich et al. 2009), flood 

duration, and water contamination (Thieken et al. 2005; Molinari et al. 2014b), to name just a 

few. In addition, a large number of other non-hazard factors can be significantly different from 

one place to another, such as type and quality of buildings, presence of basements, density of 

dwellings, early warning systems and precautionary measures (Smith 1994; Penning-Rowsell 

et al. 2005; Kreibich et al. 2005; Thieken et al. 2008; Pistrika and Jonkman 2010; Cammerer et 

al. 2013; Merz et al. 2013; Schröter et al. 2014; Wagenaar et al. 2017a; Carisi et al. 2018; 

Figueiredo et al. 2018). Therefore, multivariable models (MVMs) are potentially better-suited 

alternatives to describe the complex flood-damage relation (Apel et al. 2009; Elmer et al. 2010). 

Common techniques applied in a context of MVM are machine learning (e.g., Artificial Neural 

Networks and Random Forests) (Merz et al. 2013; Spekkers et al. 2014; Kreibich et al. 2017, 

Carisi et al. 2018), Bayesian networks (Vogel et al. 2013), and Tobit estimation (Van Ootegem 

et al. 2015). Moreover, some MVMs support probabilistic analyis of damage (Dottori et al. 

2016b; Essenfelder 2017; Wagenaar et al. 2017b). MVMs need to be validated against empirical 

records in the region of the model application in order to produce reliable estimates (Zhou et 

al. 2013; Molinari et al. 2014b; Scorzini and Frank 2015b; Molinari et al. 2017; Hasanzadeh 

Nafari et al. 2017). However, greater sophistication of MVMs requires more detailed hazard, 

exposure and losses description. Due to the lack of consistent and comparable observed flood 

data, this kind of models are still seldom applied. This is why it is necessary to compile 

comprehensive, multivariable datasets with detailed catalogue of flood events and their impacts 

(see Amadio et al., 2016, Molinari et al., 2012 and 2014, and Scorzini and Frank, 2015). 

Our study contributes to this end by assembling detailed data on three recent flood events in 

Northern Italy. For each event, our dataset comprises the following building-scale data: 1) 

hazard characterization derived from observational data and/or hydraulic modelling, 2) high-

resolution exposure in terms of location, size, typology, economic value, etc. obtained from 

multiple sources, and 3) declared costs per damage categories. Building upon this extensive 
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dataset, we employ supervised learning algorithms to explore the parameters of hazard, 

exposure and vulnerability and their influence on damage magnitude. We test linear, 

logarithmic and square root regression to select the best fitting Uni-Variable (UVM) and Bi-

Variable (BVM) models, and two machine learning techniques, namely Random Forest (RF) 

and Artificial Neural Networks (ANN) for training and testing the empirical MVMs. The 

models developed on the three considered case studies provide a benchmark to test the 

performance of four literature models of different nature and complexity, specifically 

developed for Italy. The results of this study provide important insights to understand the 

feasibility and reliability of flood damage models as practical tools for predictive flood risk 

assessments in Italy. 

5.2  Study area 

With an extent of 46,000 km2, the Po Valley is the largest contiguous floodplain in Italy. It 

extends from the Alps in the north to the Apennines in the south-west, and the Adriatic Sea to 

the east. It comprises the Po river basin, the eastern lowlands of Veneto and Friuli, and the 

south-eastern basins of Emilia-Romagna. The Po Valley is one of the most developed and 

populated areas in Italy, generating about half of the country’s gross domestic product (AdBPo 

2006). In the lower part of the Po river, flood-prone areas are protected by a complex system 

of embankments and hydraulic works that are part of the flood defence system in the Po Valley, 

extending for almost 3,000 km as a result of centuries-long tradition of river embanking (Govi 

and Turitto 2000; Lastoria et al. 2006; Masoero et al. 2013). However, flood protection 

structures generate a false sense of safety and low risk awareness among the floodplain residents 

(Tobin 1995). As a result, exposure has steadily increased in flood prone areas of the Po Valley 

(Domeneghetti et al. 2015). Records of past flood events (1950-1995) maintained by the 

National Research Council (Cipolla et al. 1998) show that more than 3,300 individual locations 

were affected by approximately 1,000 flood events within the Po Valley. 

Three of the most recent flood events within the Po Valley (figure 5.1) have been chosen as 

case studies for this analysis: the 2002 Adda flood that affected the province of Lodi (1); the 

2010 Bacchiglione flood which involved the area of Vicenza (2); and the 2014 Secchia flood 

in the province of Modena (3). All three locations have been subject to frequent flooding 

between 1950 and 2000 according to the historical catalogue. A short description of these three 

events is provided hereinafter to understand the dynamics and the impacts of each flood. 
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Figure 5.1. Case studies in Northern Italy (Po Valley). 1: Adda river flooding the town of Lodi, 2002; 
2: Bacchiglione river flooding the province of Vicenza, 2010; 3: Secchia river flooding the province of 
Modena, 2014. Flooded buildings for which damage records are available are shown in black. 

5.2.1 Adda 2002 

On the 27th of November 2002, the province of Lodi (Lombardy) was struck by a flood caused 

by the overflow of the Adda river. The flood-wave reached a record discharge of about 2,000 

m3/s, corresponding to a return period of 100 years (Rossetti et al. 2010). The river overtopped 

the embankments and flooded the rural area first, later reaching the residential and commercial 

areas within the capital town of the province, Lodi. The low-speed flood waters rose up to 2.5-

3m. The inundation lasted for about 24 hours and affected a large area of the Adda floodplain, 

including 5.5 ha of residential buildings. There were no reported casualties, but several families 

were evacuated during the emergency and important service nodes such as hospitals were 

severely affected. The reported damage to residential properties, commercial assets and 

agriculture summed up to EUR 17.7M, out of which EUR 7.8M relate to residential buildings. 

5.2.2 Bacchiglione 2010 

From the 31st of October to the 2nd of November 2010, persistent rainfall affected the pre-Alpine 

and foothill areas of Veneto region exceeding 500 mm in some locations (ARPAV 2010). As a 

result, about 140 km2 of land were flooded, involving 130 municipalities (Regione del Veneto 
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2011). The Bacchiglione river, in the province of Vicenza, was particularly negatively affected. 

Heavy precipitation events and early snow melting increased the hydrometric levels of the 

Bacchiglione river and its tributaries, surpassing historical records (Belcaro et al. 2011). On  the 

morning of November 1st, the water flowing at 330 m3/s opened a breach on the right levee of 

the river, flooding the countryside and the settlements of Caldogno, Cresole and Rettorgole 

with an average water depth of 0.5 m (ARPAV 2010). Then the river overflowed downstream, 

towards the chief-town of Vicenza, which was inundated up to its historical center. The 

inundation lasted for about 48 hours, and its extent was about 33 Ha, of which 26 Ha consisted 

of agricultural land and 7 Ha were urban areas. The total damage including residential 

properties, economic activities, agriculture and public infrastructures was estimated to be 

around EUR 26M, while dwellings alone accounted for EUR 7.5 M (Scorzini and Frank 2015b). 

5.2.3 Secchia 2014 

In January 2014 severe rainfall endured for two weeks on the central part of Emilia-Romagna 

region, discharging the annual average amount of rain in just a few days. On the 19th, at around 

6 AM, the water started to overtop a section (10 m) of the of the right levee of the Secchia river, 

which stands 7-8 meters over the flood plain. Later in the morning the levee breached at the top 

by one meter, flooding the countryside. After 9 hours, the levee section was completely 

destroyed for a length of 80 meters, spilling 200 m3/s and flooding around six thousand hectares 

of rural land (D’Alpaos et al. 2014b). Seven municipalities were affected, with the small towns 

of Bastiglia and Bomporto suffering the largest impact. Both towns, including their industrial 

districts, remained flooded for more than 48 hours. The total volume of water inundating the 

area was estimated to be around 36 million m3, with an average water depth of 1 meter 

(D’Alpaos et al. 2014b). The economic cost inflicted to residential properties according to 

damage declaration amounts to EUR 36M. 

5.3  Materials and methods 

5.3.1 Data description 

The dataset we compiled for this analysis comprises:  

 Detailed hazard data, including the flood extent, depth, persistence, and flow velocity. 

 High-resolution spatial exposure data, including type, location and value of buildings. 

 Comprehensive vulnerability data, including the characteristics of building and dwellings 

in terms of material, quality and age. 

 Reported costs of reparation or replacement of damaged goods. 
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The main hazard features (extent, depth, flow velocity and duration) are obtained from flood 

maps produced by 2D hydraulic models based on observations performed during and after the 

events. In detail, the hydraulic simulation for the Adda river has been produced by means of 

River2D model (Steffler and Blackburn 2002) using a 5m resolution digital terrain model and 

high-resolution LiDAR data for the description of the floodplains obtained from the river basin 

district authority. The Bacchiglione flood have been simulated using the 1D/2D model 

Infoworks RS (Beta Studio 2012). The 1D river network geometry comes from a topographic 

survey of cross-sections, while the 2D floodplain morphology (5 m resolution) is obtained from 

LiDAR data produced by the Italian Ministry of Environment (Molinari et al. 2018). The 

reliability of the simulations for the Adda and Bacchiglione floods was verified using 

hydrometric data, aerial surveys of inundated areas and photos/videos from the affected 

population (Rossetti et al. 2010; Scorzini and Frank 2015b). The Secchia flood event has been 

simulated using an innovative, time-efficient approach (Vacondio et al. 2016) which integrates 

both river discharge and floodplain characteristics in a parallel computation. The simulation 

was performed on a 5 meters grid and its results were validated against several field data and 

observations, including a high-resolution radar image (Vacondio et al. 2014; Vacondio et al. 

2017). The information needed for the characterization of exposure is collected from a variety 

of sources and then spatially projected to have a homogeneous, georeferenced dataset for each 

case study. External buildings perimeter and area are obtained from the Open Street Map 

database (Geofabrik GmbH 2018) and associated with official street-number points containing 

addresses. The land cover is freely available as perimeters classified by the CORINE legend 

(4th level of detail) (Feranec, J. Ot’ahel’ 1998) obtained from Regional Environmental Agencies 

databases. Land cover information is used to discriminate housing from other buildings 

(industrial, commercial, etc.). In addition, indicators for building characteristics (Table 1) have 

been selected from the database of the official Italian Census of 2011 (ISTAT). Construction 

and restoration costs as EUR/m2 are obtained for the case study areas from the CRESME 

database (CRESME/CINEAS/ANIA 2014). They are used to convert the absolute damage 

values into relative damage shares. Empirical damage records have been collected by local 

administrations after the flood events in relation to households’ street numbers. The records 

falling outside the simulated flood extents are filtered from the dataset. Each record includes: 

claimed; verified; and refunded damage to residential buildings. Since actual compensation 

often covers only a fraction of the damage costs, claimed damage is preferred in order to 

measure the economic impact (see Carisi et al. 2018). We restricted our analysis on direct 
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monetary damage to the structure of residential buildings, excluding furniture and vehicles. 

Economic losses, building values and construction costs for the three events have been scaled 

to EUR2015 inflation value. 

5.3.2 Damage models overview 

Empirical damage models are drawn based on actual data collected from specific events (e.g. 

Luino et al. 2009; Hasanzadeh Nafari et al. 2017); in some regions they represent the only 

knoweldge base for the assessment of flood risk. However, they carry a large uncertainty when 

employed in different times and places (McBean et al. 1986; Gissing and Blong 2004). 

Differently, synthetic models are based on a valuation survey which assesses how the structural 

components are distributed in the height of a building (Smith 1994; Oliveri and Santoro 2000; 

Barton et al. 2003). In such expert-based models, the magnitude of potential flood loss is 

estimated based on the vulnerability of structural components via “what-if” analysis and in the 

evaluation of the corresponding damage based on building and hazard features (Gissing and 

Blong 2004; Merz et al. 2010a). Most empirical and synthetic models are UVMs based on water 

depth as the only predictor of damage; yet recent studies (see e.g. Dottori et al., 2016 and Merz 

et al. 2013) suggest that MVMs developed using expert-based or machine-learning approaches 

outmatch the performances of customary univariable regression models. However, the 

development of MVMs requires a comprehensive set of data in order to correctly identify 

complex relationships among variables. 

5.3.2.1 Models from literature 

There are few models in the literature that are dedicated to the economic assessment of flood 

impacts over Italian residential structures (see e.g. Oliveri and Santoro 2000; Huizinga 2007; 

Luino et al. 2009; Dottori et al. 2016). These models have been developed independently using 

different approaches, assumptions and base data. The first model we selected for testing (Luino 

et al. 2009b) is an empirical UVM based on the impact data collected after the flash-flood event 

of May 2002 in the Boesio Basin, in Lombardy. One stage-damage curve was generated for 

structural damage to the most common building type in the area using loss data measured after 

the flood combined with estimates of water depth from a 1D hydraulic model. In this model, 

the estimation of building value is based on its geographical location, use and typology, based 

on market value quotations by the official real estate observatory of Italy (Agenzia delle Entrate 

2018). Market values of residential stocks for specific areas. The second model (OS - Oliveri 

and Santoro 2000) is a synthetic UVM developed for a study performed in the city of Palermo 
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(Sicily). The model is based on water depth and consists of two curves, one for buildings with 

2 floors and one for those with more than 2 floors. It considers water stage steps of 0.25 m; for 

each stage, the model computes the overall replacement cost as the result of damage over 

different components (internal and external plaster, fixtures, floors and electric appliances) plus 

the expenses for dismantling the damaged components. The third model we included in our 

analysis is part of a stage-damage curve database developed by the EU Joint Research Centre 

(Huizinga 2007b; Huizinga et al. 2017) on the basis of an extensive literature survey. Damage 

curves are provided for a variety of assets and land use classes on the global scale by 

normalising the maximum damage values in relation to country-specific construction costs. 

These are obtained by means of statistical regressions with socioeconomic development 

indicators. The JRC curves are suggested for application at the supra-national scale but can be 

a general guide to carry on assessments at the meso-scale in countries where specific risk 

models are not available. We select the curve provided for Italy (JRC-IT) to be tested on our 

dataset. 

The fourth model considered is INSYDE, In-

depth Synthetic Model for Flood Damage 

Estimation (Dottori et al. 2016), which is a 

synthetic MVM developed for residential 

buildings and released as open source R 

script. Repair or replacement costs are 

modelled by means of analytical functions 

describing the damage processes for each 

component as a function of hazard and 

building characteristics, using an expert-

based “what-if” approach. Hazard features 

include physical variables describing the 

flood event at the building location, e.g. 

water depth, flood duration, presence of 

contaminants and sediment load. 

Figure 5.2. Examples of damage curves in relation 

to water depth produced by INSYDE for 

riverine floods in relation to a building with 

FA=100 m2, NF=2, BT=3, BS=2, FL=1, YY=1990, 

CS=1. 

Exposure indicators include building characteristics such geometry and features. Building 

features affect costs estimation either by modifying the damage functions or by affecting the 

unit prices of the building components by a certain factor. Damage categories include clean-up 

and removal costs, damage to finishing elements, windows, doors, wirings and installations 
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(Figure 5.2). The model adopts probabilistic functions for some of the buildings’ components 

for which it is difficult to define a deterministic threshold of damage occurrence in relation to 

hazard parameters. The list of explicit input variables accounted by INSYDE is shown in Table 

5.1, with the indication of their respective data sources. Despite the large number of inputs, the 

model proved to be adaptable to the actual available knowledge of the flood event and building 

characteristics (Molinari and Scorzini 2017). 

Variable Description Source Unit Name 
Hazard features 

Water depth Maximum depth Hydro model m he 
Flow velocity Maximum velocity Hydro model m/s v 
Duration Hours of inundation Hydro model h d 

Exposure and vulnerability of buildings 
Replacement value Economic value of the building structure CRESME EUR/m2 RV 
Area and perimeter Footprint area and external perimeter OSM/CTR m2, m FA, EP 
Basement Presence (1) or absence (0) of basement CRESME - B 
Number of floors 1, 2, 3 or more than 3 floors Census/Inspection - FN 
Building type Flat (1), semi-detached (2) or detached (3) Census/Inspection - BT 
Building structure Bricks (1) or concrete (2) Census/Inspection - BS 
Finishing level Low (0.8), medium (1) or high (1.2) Census/Inspection - FL 
Conservation status Bad (0.9), normal (1) or good (1.1) Census/Inspection - CS 

Observed damage 
Damage claims Private and shared structural parts Official survey EUR D 

Table 5.1. List of variables included in the multivariable analysis. 

5.3.2.2 Models developed and trained on the observation dataset 

This section provides an overview about the empirical damage model obtained from our events 

dataset, namely two supervised learning algorithms (Random Forest, Artificial Neural 

Network) and three uni- and bivariable regression models used to assess the importance of 

variables as damage predictors. All these models share the same sampling approach for training 

and validation: the observation dataset is split in three parts, where two thirds are used to train 

the model and one third for validation. 

 

5.3.2.2.1 Multivariable models: supervised learning algorithms 

A probabilistic approach is required in damage estimation in order to control the effects of data 

variability on the model uncertainty. This is useful to overcome the limitations associated with 

the choice of a singular model and to increase the statistical value of the analysis (Kreibich et 

al. 2017). The algorithms we employed to deal with the empirical data share an iterative 

scrambling and resampling approach (1,000 repetitions) in order to draw the confidence interval 

of the models independently from source data variability. For the setup of empirically-based 

MVMs we selected ten variables from those listed in Table 1, excluding those with small 
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variability (basement, conservation status) or those for which an adequate level of detail is not 

possible in our case studies (age, heat system). These ten variables serve as input for two 

machine learning algorithms, namely Random Forest (RF) and Artificial Neural Network 

(ANN), described in the next paragraphs. Both algorithms produce a distribution of estimates 

for each record, from which the mean value is calculated. 

Random Forest 

The RF is a data mining procedure, a tree-building algorithm that can be used for classification 

and regression of continuous dependent variables (CART method - see Breiman 1984) like the 

one used by Merz et al. (2013). RF has numerous advantages, such high prediction accuracy, 

tolerance of outliers and noise, avoidance of overfitting problems, and no need of assumptions 

about independence, distribution or residual characteristics. Because of this, it has already been 

employed in the context of natural hazards, including earthquake-induced damage classification 

(Tesfamariam and Liu 2010), flood hazard assessment (Wang et al. 2015), and flood risk (Merz 

et al. 2013; Spekkers et al. 2014; Chinh et al. 2015; Kreibich et al. 2017; Carisi et al. 2018). 

 
Figure 5.3. Example of one of the regression trees produced by the Random Forest model. 

We use the algorithm implemented in the R package RandomForest by Liaw and Wiener 

(2002). The Random Forest algorithm builds and combines many decision trees, where each 

tree has a non-linear regression structure, recursively splitting the input dataset into smaller 

parts by identifying the variables and their splitting values which maximize the predictive 

accuracy of the model. The tree structure has several branches, each one starts from the root 

node and includes several leaf nodes, until either a threshold for the minimum number of data 

points in leaf nodes is reached or no further splitting is possible. Each estimated value 

represented by the resulting terminal node of the tree answers to the partition question asked in 

the previous interior nodes and depends on the response variable of all the parts of the original 
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dataset that are needed to reach the terminal node (Merz et al. 2013). In order to reduce the 

uncertainty associated with the selection of a single tree, the RF algorithm (Breiman 2001) 

creates several bootstrap replicas of the learning data and grows regression trees for each 

subsample, considering a limited number of variables at each split. This will result in a great 

number of regression trees, each based on a different (although similar) set of damage records 

and each leaving out a different number of variables at each split. The mean value among all 

prediction of the individual trees is chosen as representative output. An example of a built tree 

for the present study is shown in Figure 5.3. Another important strength of RF is its capability 

to evaluate the relative importance of each independent variable in the tree-building procedure, 

i.e., in our case, in representing the damage process. By randomly simulating the absence of 

one predictor, the RF algorithm calculates the decreasing of the performance of the model and 

thus the importance of the variables in the prediction. 

Artificial Neural Network 

ANNs are mathematical models based on non-linear, parallel data processing (Haykin 2001). 

They have been applied in several fields of research, such as hydrology, remote sensing, and 

image classification (Heermann and Khazenie 1992; Giacinto and Roli 2001; Campolo et al. 

2003). The model used in this study (Essenfelder 2017) consists of a Multi-Layer Perceptron 

(MLP) neural network model, using back-propagation as the supervised training technique and 

the Levenberg-Marquardt as the optimization algorithm (Hagan and Menhaj 1994; Yu and 

Wilamowski 2011) (see figure 5.4 for the structure of the model). 

 
Figure 5.4. Structure of the Artificial Neural Network model applied in this study using two neurons 
(nodes) layers. 

The developed ANN model evaluates the Sum of Squared Errors (SSE) of the model outputs 

with regards to the targets for each training epoch as a way of assessing the generalization 

property of a trained ANN model (Hsieh and Tang 1998; Maier and Dandy 2000). The ANN 
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runs in a multi-core configuration and provides an ensemble of trained ANN models as a result, 

thus being suitable for probabilistic analysis. The input and target information are normalized 

by feature scaling before being processed by the model, while the initial number of hidden 

neurons per hidden layer is approximated as two-thirds of the summation of the number of 

neurons in the previous and next layers (Han 2002). Regarding the activation functions, a log-

sigmoid function is used for the connection with neurons in the first and second hidden layers, 

while a linear function is used for the connections with neurons in the output layer, allowing 

values to be either lower or greater than the maximum observed valued in the target dataset. 

This configuration is interesting as it does not limit the output range of the ANN model to the 

range of normalized values. The input data is randomly split between three distinct sets, namely 

training, validation, and test. The training dataset is used to calibrate the ANN model, meaning 

that the weight connections between neurons are updated with respect to the data available in 

this dataset. The validation set is utilized to avoid the overtraining or overfitting of the ANN 

model, being used to stop the training process. The test set is not presented to the model during 

the training procedure, being used only as a way of verifying the efficiency of a trained ANN 

when stressed by new data. In order avoid any possible bias coming from the random split of 

the original dataset into training, validation, and test datasets, about 1,000 training attempts are 

performed, each with a different initial weight initialization and training dataset composition. 

The resulting ANN model consists of an ensemble of 4 models, representing the best overall 

results after the training procedure, that are used to define the confidence interval. 

 

5.3.2.2.2 Univariable and bivariable models 

In order to understand if the added complexity of MVMs brings any improvement in the 

accuracy of damage estimates, we compare them with traditional, deterministic univariable 

(UVM) and bivariable (BVM) regression models that are empirically derived from the 

observation dataset. Considering the first (water depth) or the first two variables (water depth 

and water velocity), we investigate whether a linear, logarithmic or exponential function has 

the best regression fit to the records. All functions that consider water depth are forced to pass 

through the origin, because most buildings have no basement and, accordingly, no water means 

no damage. Similarly to what we did for the MVM training, we uses an iteration of 1,000 

scrambling and resampling cycles which is repeated using the two different sampling strategy: 

first the models are trained on 2/3 of the data and validated on the remaining 1/3 of the records. 
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5.4  Results and discussion 

5.4.1 Recorded hazard and damage 

Our combined dataset contains records of 1,158 damaged residential buildings (Table 5.2). 

More than a half of these were damaged by the Secchia flood, which affected the largest 

residential area (17.7 ha) and caused the largest total losses. Only verified, spatially-matching 

records are accounted; economic losses are scaled to EUR2015 inflation value. Note that these 

losses are related to the structural damage of residential buildings, thus they do not represent 

the full cost of the events. 

Case study 
[River basin, year] 

Affected 
buildings [n] 

Flood  
extent [ha] 

Avg. water 
depth [m] 

Declared damage 
[M EUR 2015] 

Adda, 2002 270 5.5 0.8 4.7 

Bacchiglione, 2010 294 7.1 0.5 7.9 

Secchia, 2014 594 17.7 1 21.1 

Total 1,158 30.3 2.3 33.7 

Table 5.2. Summary of residential buildings affected by the three investigated flood events according 
to hydraulic simulations and damage claims. 

Boxplots in Figure 5 show the variance of variables driving the damage. Water depths range 

from 0.01 to about 2 meters, with most records falling in the interval 0.4 – 1.2 meters. Water 

velocities range between 0.01 and 1.5 m/s. Footprint areas and observed relative damages have 

similar average values for all three events, however the Secchia case study presents the longer 

count of records as well as the largest spread of outliers. 

   

Figure 5.5. Data distribution for four variables from the three sample case studies. 

The scatterplot in Figure 6 better shows the density of observed damages records in relation to 
the maximum water depth. The increase in depth corresponds to a larger range of variability in 
the economic damage. 
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Figure 5.6. Scatterplot of monetary (left) and relative (right) damage (y-axis) in relation to maximum 
observed water depth (x-axis). Records from the same event are shown with the same color. 

5.4.2 Influence of hazard and exposure variables on predicting flood damage 

Water depth (he) is identified by RF as the most 

important predictor of damage (factor 3.4) among the ten 

examined variables (Figure 6). This confirms previous 

findings (Wagenaar et al. 2017a) and justifies the use of 

depth-damage curves for post-disaster need assessment. 

Flow velocity and geometric characteristics of buildings 

(area and perimeters) are also important (factor 2.7 to 

2.3), followed by other predictors such as building value, 

flood duration, number of floors, finishing level and type 

of structure (factor 1 or less). Although water depth is the 

most influential variable, it is only moderately more 

important than other predictors. That substantiates the 

efforts to test the applicability of multivariable 

approaches to improve the estimation of damage. 

 

Figure 5.7. Relative importance of 
variables as predictors of damage 
according to the RF model. 

5.4.3 Performance of the models 

For assessing the predictive capacity of the four selected literature models, we compare them 

with empirically-based, data-trained models structured on the same variables, i.e. the evaluation 

of the models’ performances is carried out by measuring and comparing the error metrics from 

the aforementioned models (JRC-IT, Luino, OS and INSYDE) to those provided by the 
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empirical MVMs obtained from supervised learning algorithms, the BVMs and traditional 

UVMs (depth-damage curves) developed on our dataset. The performances of each model are 

evaluated by using three metrics, namely Mean Absolute Error, Mean Bias Error and Root 

Mean Square Error. The MAE indicates the precision of the model in replicating the total 

recorded damage. The MBE shows the systematic error of the model, which is its mean 

accuracy. The RMSE measures the average magnitude of the error, enhancing the weight of 

larger errors. In addition to these error metrics, the total percentage error (E%, difference 

between observed and simulated damage divided by observed damage) is shown in tables. 

5.4.3.1 Literature models 

As first step, estimates of empirical and synthetic models from literature are compared with 

observed damages and the results in terms of total loss and total percentage error are shown in 

Table 5.3. 

Case study Unit Obs. JRC-IT LUINO OS INSYDE 

Adda 
2002 

M EUR 2015 4.7 24.3 13.0 8.1 5.6 

E%  417.0 176.6 72.3 19.1 
       

Bacchiglione 
2010 

M EUR 2015 7.9 19.2 11.4 6.5 8.3 

E%  143.0 44.3 -17.7 5.1 
       

Secchia 
2014 

M EUR 2015 21.1 64.5 44.1 19.8 28.8 

E%  205.7 109.0 -6.2 36.5 
       

Full set 
M EUR 2015 33.7 108.0 68.5 34.4 42.7 

E%  220.5 103.2 2.0 26.7 

Table 5.3. Estimates and error from literature models compared to observed damage. Monetary values 
are in Million Eur, E% is total percentage error. 

JRC-IT is the worst performing model, largely overestimating damage from the three events 

(E% 143-417), followed by the UV empirical model from Luino which overestimates damage 

with a percentage error ranging from 44 to 177. These results indicate that meso-scale models 

are not suitable for application at the micro-scale and that empirical models should be carefully 

applied for flood events with different characteristics from the ones for which they are 

developed. In fact, Luino’s model was produced for a flash-flood event, with higher velocities 

and impacts. The two synthetic models, OS and INSYDE, perform much better, yet showing a 

large variability of the error factor, depending on the considered case. In detail, OS provides 

better results for the Secchia event (6% underestimation) and worse for the Adda set (72% 

overestimation), resulting in an estimate that is very close to the observations in terms of 

percentual error on the total dataset, although this is mainly due to compensation of positive 
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and negative errors for the different events. Differently, the INSYDE model exhibits a better 

performance for the Bacchiglione event (5% overestimation) and worse for the Secchia case 

study (37% overestimation). It is worth noting that, although the accuracy of the OS model is 

higher than of the INSYDE model for the full set, the latter is more accurate for two out of the 

three case studies (i.e. Adda 2002 and Bacchiglione 2010). Moreover, the INSYDE model 

provides more precise results, with a variance in errors 10 times lower than of the OS model 

and with maximum errors never exceeding an absolute value of 40%. However, INSYDE seems 

to consistently overestimate the total damages. Figure 5.7 compares the estimated and observed 

damages for the entire dataset for the two best performing literature models (OS and INSYDE). 

OS 

 

INSYDE 

 

Figure 5.8. Scatterplot comparing relative damage estimates produced by the two best performing 
literature models, OS (left) and INSYDE (right). Simulated damage on the y-axis, observed damage 
on the x-axis. Colors represent records density. 

5.4.3.2 Data-trained univariable, bivariable and multivariable models 

In this section, damage values estimated by empirical, data-trained UVMs, BVMs and MVMs 

are compared with observed damage data. The results provided by these empirically-based 

models are used as a benchmark to understand the capability of tested literature models in 

predicting damage. The error metrics chosen for comparing the models’ performances are 

presented for relative damage based on official estimates of replacement value, however 

training and validation were carried out also in terms of monetary damage with similar results, 

not presented for the sake of brevity. 
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 UVMs BVMs 

Function MBE MAE RMSE MBE MAE RMSE 

Linear -0.015 0.087 0.127 -0.012 0.087 0.126 

Log -0.046 0.080 0.131 -0.046 0.080 0.131 

Root -0.003 0.086 0.123 -0.002 0.086 0.123 

Table 5.4. Error metrics for the Univariable and Bivariable models. 

    

Figure 5.9. Testing the predictive capacity of uni- and bivariable models: estimated relative damage (y-
axis) from the UVM (left) and BVM (right) are plotted against observed relative damage (x-axis) 
according to the three tested regression functions (LINear, LOGarithmic and ROOT function). 

The results shown in Table 5.4 and figure 5.9 indicate no significant differences between UVMs 

and BVMs. We can affirm that the inclusion of water flow velocity as complementary 

explanatory variable does not improve the performance of simple regression models in our case 

study. For this reason, BVMs are dropped from further discussion from now on, to focus on a 

direct comparison between UVMs and MVMs.  

Taking into consideration only UVMs, MAE and RMSE are very similar for the three tested 

regression functions. However, the root function described by the general formula � = �( √�
�

) 

has a slightly better fit (correlation is higher, MBE is lower) compared to linear and log 

functions. We select the function described by the equation � = 0.13(√�) as the best 

performing UVM to be included in the comparison with MVMs. Our findings confirm previous 

results indicating that the root curve as the most adequate to describe the flood damage process 

(Buck and Merkel 1999; Sluijs et al. 2000; Penning-Rowsell et al. 2005; Scawthorn et al. 2006; 

Kreibich and Thieken 2008; Thieken et al. 2008; Elmer et al. 2010; Cammerer et al. 2013; 

Wagenaar et al. 2017a). Figure 8 shows a direct comparison between the damage estimated by 

the empirically-based models against observed damage. The upper panel shows the output from 
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the UVM described by the root function. The lower panels show the output of the RF (left) and 

ANN (right) algorithms. The two machine learning algorithms produce comparable results, 

with both RF and ANN models tending to slightly overestimate the average damage (higher 

density of points, in red) and to significantly underestimate extreme values (lower density of 

values, in blue). This is a common result of data-driven models, where better results are biased 

to high-frequency values in comparison to low-frequency values due to the larger sample of 

those data in the calibration dataset. In Figure 5.10, the range of estimates, shown as min-max, 

describes the confidence of the model for individual records. In the case of RF, it shows the 

min-max range over all the 1,000 iterations of the model, while in the case of ANN only an 

ensemble of the four best-fit models is shown (see Section 5.3.2.2.1). 

U
V
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ROOT FUNCTION 

 

 

Figure 5.10. Comparison of the predictive 
capacity of UV and MV models: simulated 
damage (y-axis) is plotted against the observed 
damage (x-axis) for the UV model using square 
root function (top-left), Random Forest (bottom-
left) and Artificial Neural Network (bottom-right). 
The grey dashed line shows the range of model 
outputs for each damage record. The median is 
shown in color as a function of the record density. 
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Theoretically, MVMs should simulate the complexity of the flooding mechanism better than 

UVMs. In our test, the ANN model has the best fit to the data, but UVMs (depth-damage curves) 

appear to perform similarly: the MVMs describe recorded damage with a percentage error 

between 0.2 and 10, while UVMs’ error is around 12 (see table 5 in the next paragraph). 

Accordingly, when extensive descriptive data are not available, UVMs appear to be a 

reasonable alternative to describe the flood damage process. These empirically data-driven 

models are useful to understand the capability of multivariable approaches in predicting 

damage, i.e. which is the range of uncertainty that can be expected when assessing the flood 

damage process, comparing to simpler models like UVMs. 

5.4.4 Comparing models’ performances 

First, we evaluate how selected literature UVMs (JRC-IT, Luino and OS) compare to the root 

function trained on the empirical dataset. Figure 5.9 shows the distribution and the density of 

observed relative damage as a function of water depth for the full dataset, together with the UV 

curves selected for testing. This figure explains the results presented in Section 5.4.3.1, with 

the JRC-IT and Luino models growing too fast for shallow water depths, as opposed to OS 

(shown as two separate curves for different number of floors of the building), which has a good 

mean fit to the data. 

 

Figure 5.11. Scatterplot of relative damage records (y-axis) and water depth (x-axis). Points color 

represents record density. The red line shows the empirical root function (� = 0.13(√�), selected as 
best fit. The other lines represent the three UV literature models (JRC-IT, Luino, and OS) selected for 
the test. OS model is made of two curves, in relation to the number of floors of the building. 
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Table 5.5 summarises the main results from all the models in terms of error metrics. 

Specifically, among all models, MVMs RF and ANN are those with the lowest MAE and 

RMSE, followed by UVM ROOT with a MAE of 0.086 and a RMSE of 0.123. In terms of 

percentage error, the ranking is the same, with the only exception of OS, whose result in terms 

of this metric lies between the two empirical data-trained MVMs. Overall, the two expert-based 

literature models OS and INSYDE, are the best performing ones when compared to empirically-

trained models, as shown by MAE, MBE and RMSE. As mentioned before, the performance of 

the UVM OS is very close to those of the MVM INSYDE, although this result may depend on 

the fact that the large share of records come from the Secchia event, for which OS outperforms 

INSYDE. 

 
Model MBE MAE RMSE 

Est. dmg 
[M EUR 

2015] 

Abs. error 
[M EUR 

2015] 

Percent 
error 
[%] 

T
ra

in
ed

 
m

od
el

s UVM (ROOT) -0.003 0.086 0.123 37.8 +4.1 +12.3 

MVM (RF) -0.024 0.081 0.126 30.4 -3.3 -9.8 

MVM (ANN) +0.009 0.091 0.115 33.8 -0.1 -0.2 

L
it

er
a

tu
re

 
m

od
el

s 

 UVM (JRC_IT) +0.217 0.239 0.27 108 +74.3 +220.5 

UVM (Luino) +0.082 0.13 0.154 68.5 +34.8 +103.2 

UVM (OS) -0.009 0.088 0.127 34.4 +0.8 +2.0 

MVM (INSYDE) +0.019 0.093 0.132 42.7 +9.0 +26.7 

Table 5.5. Comparing error metrics between empirically-base models and INSYDE. 

Based on these results, the synthetic models INSYDE and OS currently represent very good 

alternatives for flood risk assessment in Italy, in cases where no empirical loss data are available 

to develop specific damage models. Indeed, our analysis has shown that particular care should 

be taken when transferring models derived from specific events (Luino curve) or from different 

scales (JRC-IT), while synthetic models can be considered more robust tools, relying on a 

physically-based description of flood damage mechanisms. Overall, for the investigated dataset, 

the synthetic MVM INSYDE has not been found to provide an improvement in the accuracy of 

damage estimates compared to those of the UV OS. However, the results of INSYDE are more 

precise if considering the different flood events, with a general, although limited, damage 

overestimation in all the cases, as opposed to OS which exhibited more accurate performance 

only for the Secchia flood and larger variability for the other two events, consequently being 

less precise. Further validation exercises, combined with the application of standardised and 

detailed procedures for damage data collection (e.g. Molinari et al. 2014) could improve 

INSYDE’s predictive accuracy; being an open-source model, it is possible to modify the 
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damage functions for the different building components; for example, the availability of 

datasets with building losses subdivided into different categories (e.g. structural/non-structural 

elements, finishing, systems, etc.) could help to identify which damage components are 

responsible for the larger share of the error. The same cannot be said for OS, which is presented 

as a simple stage-damage curve, without a detailed explanation of the modelling assumptions 

on the considered flood-damage mechanisms.  

As a final consideration, the accuracy and precision of damage observations are key aspects for 

the correct development of an MVM. This makes synthetic and empirical MVMs better fit for 

applications at the micro-scale (up to the census block scale (Molinari and Scorzini 2017)), 

where explanatory variables can be spatially disaggregated. Indeed, the aggregation scale is of 

primary importance in the application of MVMs: if we can compare our results to those reported 

in other studies applying similar multivariable approaches on an extensive damage dataset 

(bagging of regression trees), as in Wagenaar et al. (2017a) and in Kreibich et al (2017), we 

observe that our range of uncertainty is drastically smaller. This difference is likely imputable 

to the fact that, in the referred studies, information is aggregated at the municipality level, as 

opposed to our case, where each variable is precisely linked to buildings’ location.   

5.5  Conclusions 

Risk management requires a reliable assessment tool to identify priorities in risk mitigation and 

adaptation. Such tool should be able to describe potential damage based on the available data 

related to hazard features and exposure characterisation. Recent studies suggest that 

multivariable flood damage modelling can outperform customary univariable models (depth-

damage functions). In this study we collected a large empirical dataset which includes multiple 

hazard and exposure variables for three riverine flood events in Northern Italy, including the 

declared economic damage to residential buildings. On this basis, we produced three 

univariable, three bivariable and two multivariable models that are compared in terms of 

predictive accuracy and precision. We found that water depth is the most important predictor 

of flood damage, followed by secondary variables related to hazard (flow velocity, duration) 

and exposure features (area, perimeter and replacement value of the building). However, our 

results suggest that the inclusion of one additional variable (flow velocity) does not improve 

the estimates produced by simple regression models in a bivariable setup. On the other side, the 

analysis confirms the literature notion that the root function is the best fitting curve to describe 

damage in relation to water depth. Two MVMs were trained using two different machine 



110 
 

 

learning algorithms, namely Random Forest and Artificial Neural Network. These empirically-

trained MVMs performed well (with an error ranging from 1 to 10%) in reproducing the damage 

output from the three events and thus were set as a reference for assessments in the same 

geographic context. In this perspective, other case studies are needed to confirm their 

robustness. Moreover, our results corroborate previous findings about the advantages of 

supervised machine learning approaches for developing or improving flood damage models. 

Still, their application remains limited by the availability of the data required for the MVM 

setup. In case of scarce number of variables, however, simple univariable models trained on the 

specific contexts seem to be a good alternative to MVMs. 

We then considered four literature models of different nature and complexity to be tested on 

our extended case study dataset. We compared their error metrics with those of the empirically-

trained UVMs and MVMs in order to evaluate their performance as predictive tool for flood 

risk assessment. The results have shown that both UV (Oliveri and Santoro 2000) and MV 

(INSYDE, Dottori et al. 2016) synthetic models can provide similar (although obviously larger) 

errors to those observed from empirical models. On the contrary, we found important errors 

when transferring models derived from other specific events (Luino curve) or different scales 

(JRC-IT). Therefore, the tested synthetic models can be currently considered as the best option 

for damage prediction purposes in the Italian context, in cases where no extensive loss data are 

available to derive a location-specific flood damage model. Overall, we found that errors 

produced by synthetic models were smaller than 30% of observed damage, with INSYDE 

providing more precise results over the different, single case study events (with a percentage 

overestimation of 19, 5 and 37% for Adda, Bacchiglione and Secchia, respectively) and is more 

accurate for two out of the three case studies (i.e. Adda and Bacchiglione), while the OS model 

is generally less precise but more accurate for the Secchia flood event only (2% error, as 

opposed to a 72% overestimation for the Adda and 18% underestimation for the Bacchiglione 

event). 

Observed errors depend in part on the inherent larger variability found in the dataset related to 

that particular event. Nevertheless, the collection of additional independent flood records from 

different geographic contexts in Italy would help to further evaluate the adaptability of the 

models, especially of the open-source INSYDE, to estimate their uncertainty, and to increase 

their predictive accuracy. Finally, the work presented here has assembled a dataset that is 

currently one of the most extended and advanced for Italy; on this track, we aim to promote a 

shared effort towards an updated catalogue of floods that includes hazard, exposure and damage 
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information at the micro-scale. To this purpose, the adoption of a standardised and detailed 

procedure for damage data collection is a mandatory step. 

5.6  Data availability 

The INSYDE model is available as R open source code from https://github.com/ruipcfig/insyde 

The hazard simulation of the Secchia flood event was kindly provided by Ing. Vacondio (University 

of Parma), whom we sincerely thank. 
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climate in order to timely elaborate adequate adaptation policies. Italy is a flood-prone country 
that suffers the highest economic impact in all of the EU. Despite this, there is no established 
framework or method at national level to estimate flood risk, and existing country-wide 
assessments are very broad-brushed. This is critical considering that impacts from extreme 
meteorological events are expected to increase by 2050 in Europe. 

The objective of the thesis is to develop an improved methodology for the assessment of flood 
risk combining the most updated and reliable data available by means of advanced spatial and 
statistical approaches. By reducing the uncertainty typical of simple customary methods, the 
improved flood risk model can be used to translate any change in flood hazard probability and 
magnitude into variation of Expected Annual Damage. Key for the improvement of damage 
modelling is the collection and analysis of empirical data from observed flood events; starting 
from a large dataset collected after the 2014 flood on the Secchia basin (Emilia-Romagna), the 
thesis shows different approaches, more and more sophisticated, to elaborate the available 
information into a prognostic tool that can be reliably employed for risk management. Starting 
from a general investigation on the performances of transferred univariable models (depth-
damage curves) over different damage categories (Ch.2), my research proceeded with the 
development of an empirical-base univariable model by using a statistical calibration procedure 
(Ch.3). In my third study (Ch.4) I collected heterogeneous country-wide data (e.g. land use, soil 
sealing, population and building census, cadastral information, production value) and combined 
them by using a dasymetric approach in order to draw a detailed and homogeneous 
representation of exposure in terms of asset, population, GDP, and social vulnerability. 
Exposure to different hazard scenarios is then estimated in relation to JRC flood hazard 
modelling. My last study (Ch.5) takes a far more advanced step in the identification of a tool 
that can be practically employed for country-wide risk assessment by validating an innovative 
multivariable, synthetic damage model for residential structures by means of machine learning. 
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