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Introduction

This Doctoral thesis is divided in three chapters, each corresponding to a self-consistent theo-

retical paper in which, even if with different focus and methodology, the aim is to understand

the economics beyond social interactions. In particular, I investigate how different strategic,

informational or social environment affect the diffusion and evolution of agents’ beliefs, prefer-

ences and norms.

The first chapter “On the Interplay Between Norms and Strategic Environments” is a joint

work with Pietro Dindo and studies the role of different strategic environment for the dynamics

of norms in a heterogeneous population divided into two cultural groups. The main contri-

bution is to model norms as preferences over actions that modifies the payoff associated with

playing according to it. We are able to reproduce different social outcomes, such as convergence

toward the same social norm, the persistence of norms’ heterogeneity, or even polarization of

norms, while using the same norms formation model and depending on the type of strategic

environment agents are exposed to during their adult life (e.g.complements vs substitutes)

In the second chapter “Cultural Transmission with Incomplete Information: Parental Self-

Efficacy and Group Misrepresentation”, a joint work with Fabrizio Panebianco, we analyze,

using the solution concept of self-confirming equilibrium, a cultural transmission model where

parents have incomplete information about the the social structure and the efficacy of their

vertical transmission efforts. Equilibria with wrong conjectures may arise. Main contributions

are that in the short-run cultural complementarity instead of substitution holds and in the

long-run the dynamics can display stable or unstable polymorphic equilibria, or just a stable

homomorphic equilibrium.

The last chapter “Non-Bayesian Social Learning and the Spread of Misinformation in Net-

works” addresses the problem of the spread of permanent and temporary misinformation in

a social network where agents interact to learn an underlying state of the world with a non-

Bayesian social learning process. The main difference with the standard naive social learning
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is the continuous stream of new signals that agents receive at each period. Considering the

permanent misinformation, pursuit by stubborn agents, we show that, despite receiving new

signals every period, agents are not able to learn the underlying state of the word, nor to reach a

consensus. The extent of deviation from the truth depends on a new measure of centrality “the

updating centrality”, that provides the key agents of the social learning process. Conversely,

temporary misinformation, represented by shocks of rumors or fake news, has only short-run

effects on the opinion dynamics. Our results are based on spectral graph theory techniques. In

particular, using Perron-Frobenius theorem and Cheeger’s inequality we show that the consen-

sus among agents is not always a sign of successful learning. Moreover, the consensus time is

increasing with respect to the “bottleneckedness” of the underlying network, while the learning

time is decreasing with respect to agent’s self-weights.
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Chapter 1

On the Interplay Between Norms and

Strategic Environments1

Abstract

This paper investigates the intergenerational dynamics of norms in a heterogeneous population

divided into two cultural groups. In their adult life, agents are randomly matched to play sym-

metric 2 × 2 strategic games. Adults’ norms, modeled as preference over actions, interact with

material payoffs in determining best reply actions and thus Nash Equilibria. In turn, games

influence norms because actions played in equilibrium reinforce the corresponding norm. At

the end of their life, parents transmit their norms to offsprings who, in their youth, actively

choose their own norm taking into account both the inherited norms and the norms of their

peers. In our model, stable norms emerge as a steady state outcome of the joint dynamics of

norms, actions, and socialization levels. We exploit this model to study the evolution of norms

under different strategic environments: complements or substitutes. In general, complements

and substitutes environment produce different social outcomes, namely full convergence and full

divergence of norms, respectively. However, for specific choices of material payoffs and initial

norms both partial and full convergence and divergence of norms can arise as stable outcome

in both strategic environments.

Journal of Economic Literature Classification Numbers: C7, D9, I20, J15, Z1

Keywords : Evolution of Norms, Cultural Transmission, Endogenous preferences, Cultural Het-

erogeneity.

1This chapter is joint with Pietro Dindo, Ca’ Foscari University of Venice, pietro.dindo@unive.it
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From any given set of rules of conduct of the element will arise a steady structure

(showing ’homeostatic’ control) only in an environment in which there prevails a

certain probability of encountering the sort of circumstances to which the rules of

conduct are adapted. A change of environment may require, if the whole is to

persist, a change in the order of the group and therefore in the rules of conduct of

the individuals; and a spontaneous change of the rules of individual conduct and of

the resulting order may enable the group to persist in circumstances which, without

such change, would have led to its destruction.[Hayek 1967: 71]

1.1 Introduction

Some cultural traits, as language, result to be more homogeneous in the societies than others,

like for example aggressiveness or effort choices at workplace. This is mainly due to the fact

that incentives to coordinate are, often, stronger for some cultural traits than others. Neverthe-

less, although cultural assimilation is desirable, cultural heterogeneity is ubiquitous in different

societies even when there are strong incentives to coordinate.2

In this paper, we consider the interplay between norms and Nash equilibrium outcomes of

different strategic environments to explain the evolution of norms. We define norms as “mental

representations of appropriate behavior” (Aarts and Dijksterhuis, 2003) or “internal standard of

conduct” (Schwartz, 1977), namely they represent preferences over actions. By shaping agents’

preferences and behaviors, different norms lead to different strategic outcomes (Akerlof, 1976;

Young, 1998). At the same time, changes in the socio-economic environments can have an effect

on the selection of norms (Hayek, 1967).3

Our approach focuses on three components: (i) the process of norms formation through

socialization, (ii) the influence of norms on agents’ preferences ordering, and thus on Nash

equilibria, of one-stage games, (iii) the intergenerational transmission of norms and socializa-

tion levels as dependent on equilibrium actions played in one-stage games. The aim of the

paper is to propose a model able to reproduce the emergence of different norms depending on

the underlying strategic environment and to explore its properties for policy purposes.

2Bisin and Verdier (2012) offers a review of empirical examples of cultural heterogeneity and resilience of
cultural traits. For example, the slow rate of immigrants’ integration in Europe and US, the persistence of
’ethnic capital’ in second- and third-generation immigrants or even cases of minorities’ strongly attachment to
languages and cultural traits.

3Our definition of norms differs from the literature of evolutionary game theory (??, for example) where a
norm is broadly defined as an equilibrium of a strategic interaction.
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Our analysis is aimed at reproducing different social outcomes, such as convergence toward

the same social norm, the persistence of norms’ heterogeneity, or even polarization of norms,

while using the same norms formation model and depending on the type of strategic environ-

ment agents are exposed to during their adult life (e.g. complements vs substitutes). For

example, we want to understand whether the material incentives to coordinate necessarily lead

to a total assimilation of norms or, instead, they may leave space for multicultural society or,

even, to the arising of an oppositional culture with the consequent separation of the minor-

ity. Relatedly, we investigate whether anti-coordinating environments are doomed not to be

integrated. Moreover, we wonder if there exist socio-economic environments where material in-

centives make norms “disappear” in the long run. Understanding the relationship between the

environment and the emergence of different cultures may help to better address policy issues.

Modeling the interplay between actions, norms, and socialization levels enables us to show that

different material payoffs, even within the same class of games, can lead to very different social

outcomes. Policy intervention might benefit from this insight.

We consider a population divided into two communities, where individuals belonging to

the same community are endowed with the same continuous cultural trait or personal norm.

Individuals interact twice during their lives. First (while young), each agent forms a new norm

taking into account both the inherited norm and inherited socialization level. The latter repre-

sents the willingness to conform to peers, as transmitted by parents. Then (in the adult age),

agents are randomly matched to play symmetric 2 × 2 games. Payoffs, and thus best reply

actions and equilibria, depend both on a material component and on an immaterial one, the

latter being norm dependent. Thus, norms parametrize agent preferences over material payoffs.

At the end of their lives (old age), each agent transmits a norm and a socialization parameter

to his offspring. The transmission is moved by cognitive dissonance and cultural substitution.

Cognitive dissonance is the tendency of agents to have consistency between behavior (action)

and norms (preferences over actions) and it is a key assumption to model the feedback from

the strategic environment to the norms’ transmition. Cultural substitution captures the idea

that the vertical socialization level of offsprings negatively depends to the diffusion of parents’

behavior in the population. The assumption of cultural substitution allows us to study the

evolution of socialization’s levels but do not affect results about norms dynamics.

In Section 1.2.1, we analyze the norm formation mechanism of the youth age. At this

stage, we study how, interacting with peers, agents of both communities symmetrically form

the norms that will affect the payoff structure of games played in the adult age. The main

intuition is that children are not passive during the transmission process; on the contrary, they

are responsible for the formation of their own norms. We follow Kuran and Sandholm (2008)
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and assume that in choosing the norm, each agent faces a trade-off between his observable4

inherited norm and a social coordination payoff, minimizing a loss function. A socialization

parameter describes the strength of such trade-off. With respect to the previous literature,

we introduce heterogeneity in the socialization parameter, which determines the weight put on

the inherited norm (vertical socialization) and the weight put on the entire population average

norm (horizontal socialization).5

In Section 1.2.2, we model the effect of norms on different strategic environments. We in-

terpret each agent’s norm as the preference for a particular behavior that modifies the payoff

associated with playing according to it. The intuition is that some behavior (action) can be

more or less in line with the personal norm of one agent. Each strategic environment is a sym-

metric 2 × 2 game, which is meant to be representative of tasks that people can face in their

adult age. We mainly discuss two different kind of norms associated with different strategic

environment. In particular, we have in mind a linguistic dilemma as an example of strategic

environment with complements (i.e. the material incentive is to coordinate to the same lan-

guage) and the choice of being aggressive or not in a competition for a shared resource for what

concern strategic environment with substitution (i.e. the material incentive is to ant-coordinate

on the level of aggressiveness, as in the classical hawk-dove game).6 In their adult age agents

can face several games, of the same type, described by a distribution of payoffs. Agents of each

community strategically interact with agents belonging to both groups, in random matching

games. We propose a multiplicative interaction between norms and material payoffs. If the

norms are neutral the payoffs of the game are equal to material payoffs and agents play the

original 2 × 2 game. If norms assume extreme values agents stick to the associated action,

giving no importance to material payoffs. When norms have intermediate values, there is a

trade-off between the material consequence of actions and playing according to the behavior

associated with such norms. Relatedly, we derive the possible Nash equilibria as depending on

the tension between material payoffs and norms over behavior.

In Section 1.2.3, in order to characterize the feedback between the strategic environment

and norms, we study the transmission of norms from old to young and the evolution of the

socialization parameter. We exploit the tendency of people to seek consistency between pref-

erences over actions and behavior. In particular, we let agents move their norm toward the

action predominantly played in the adult age, to reduce cognitive dissonance, as in Kuran and

4We assume complete information.
5We refer to Cavalli-Sforza and Feldman (1981); Bisin and Verdier (2001) for the terminology.
6We also discuss how, depending on the circumstances, some norms can be associated to both complements

or substitution environments, for example the optimal effort level in team work strongly depends on the nature
of the task and if there is the possibility to free-ride on the team-mate’s effort.
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Sandholm (2008). Agents transmit this modified norm to their offspring. The choice of social-

ization also depends on actions played in the adult age and is moved by cultural substitution

(Bisin and Verdier, 2001). Namely, we assume that parents have fewer incentives to vertically

socialize their children when their behavior is widely spread in the population.

In Section 1.3, we derive all possible long-run outcomes. We consider two limit cases:

uniform and point distribution of one-stage game payoffs. On the one hand, with uniform

distribution of payoffs environments with complements or substitutes produce very different

social outcomes. In a social environment with complements, cultural assimilation, i.e. both

communities share the same norm and behavior, emerges as stable steady state. On the other

hand, substitution in the material incentives leads the emergence of oppositional cultures, the

strong polarization of norms and behavior of agents belonging to different communities. The

different steady states also have different socialization levels. Under assimilation, agents have

a maximum horizontal socialization level, and thus a minimum vertical socialization. Under

polarization, the horizontal socialization level is close to its minimum, and the vertical one is

close to its maximum. Interestingly, when there is polarization of norms, the larger the ma-

jority, the farther away are both norms and socialization levels. Indeed, in order to stick to

its preferred behavior (different from the one of the majority) the smaller the minority is, the

higher the vertical socialization becomes.

Results change when the one-stage game payoffs is not uniform. Provided agents play al-

ways the same game (singular payoff distribution) and depending on the initial norms, in both

complements and substitutes environments it is possible to converge toward cultural assimi-

lation or to diverge and having the arising of oppositional cultures or separation. Moreover,

we show that even partial convergence or partial polarization can be sustained in games with

complements and substitutes, respectively. In these cases, one community has a norm so strong

as to generate a dominant strategy while the other does not have such a strong norm and best

replies to the dominant action only by looking at material payoffs.

Section 1.4 discusses about general payoff distributions, the role of the assortativity on the

matching process for the steady state outcome and speed of convergence, and discuss possible

further development of the model allowing for mixed (complements and substitutes) environ-

ments.

Section 1.5 concludes the paper and discusses possible extensions.
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1.1.1 Literature Review

In recent years a very wide literature about norms and their effect in socio-economic outcomes

has emerged. Many works focus on the relationship between norms (or culture) and coordi-

nation. Acemoglu and Jackson (2014) study the evolution of a cooperation norm; Dalmazzo

et al. (2014) present conditions under which harmful cultural traits can persist in a commu-

nity; Michaeli and Spiro (2017) address the arising of biased norm when agents, with pressure

to conform to each other, play coordination game; Carvalho (2016) shows how cultural con-

straints can lead to miscoordination. Along this research line, we should consider Tabellini

(2008), where agents, matched together to play a Prisoner Dilemma, face a trade-off between

individual values (inherited from parents) and material incentives. The main contributions of

our work with respect to these papers are that we study the outcome for different classes of

games at once, and that the norm formation process depends both on the imitation of peers

(horizontal socialization) and parents’ transmission (vertical socialization).

The literature about cultural transmission was initiated by Cavalli-Sforza and Feldman

(1981) and, in economics, by Bisin and Verdier (2001), where the evolution of cultural traits is

the result of parent’s socialization choices. Socialization can be vertical (parents), horizontal

(peers), and oblique (role models). Along these lines, Bisin and Verdier (2017) study the joint

evolution of culture and institutions. In our paper, the socialization is vertical, when parents

transmit their preferences to offsprings, and horizontal, when peers interact together to form

new norms. In our model the transmitted cultural traits are continuous, as in Panebianco

(2014). For a complete theoretical and empirical survey on cultural transmission literature see

Bisin and Verdier (2012).

For what concern the effect of norms on the payoff structure, this paper refers to a specific

behavioral literature (López-Pérez, 2008; Kessler and Leider, 2012; Kimbrough and Vostroknu-

tov, 2016) where actions are moved by the will to adhere to a norm.7 The main difference is

that in our paper agents are affected by a group-specific norm, not necessarily equal for the

whole society, so that different players can be subject to different norms.

The concept of cognitive dissonance that we use for the dynamics of preferences was intro-

duced in economics by Akerlof and Dickens (1982). Kuran and Sandholm (2008) and Calabuig

et al. (2014), whose norm formation and norm dynamics are close to ours, have also elements

of cognitive dissonance in the updating of norms. In particular, our contribution can be seen

7An alternative viewpoint is that norms imply preferences for a certain distribution of outcomes, i.e. uniform
across players.
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as an extension of Kuran and Sandholm (2008) where agents, endowed with their norms, in-

teract in strategic environments, and where the dynamics of norms depends on the interaction

between norms and the related equilibrium outcome of games. If we switch-off feedbacks of

equilibrium action on transmitted norms and horizontal socialization, our model boils down to

a discrete time version of Kuran and Sandholm (2008). Having these feedbacks changes the

results drastically, for example we are able to reproduce cultural heterogeneity even with fixed

communities and complete interaction.

Concerning the applications, our model talks to the literature of identities and opposi-

tional cultures pioneered in economics by Akerlof and Kranton (2000); for example Kuran and

Sandholm (2008) study the tension between cultural integration and multiculturalism, Bisin

et al. (2011) focus on the reason that leads to the presence of oppositional cultures, Olcina

et al. (2017) address the problem of minorities embedded in a relationships network who decide

whether or not to be assimilated to the majority norm. Our main contribution with respect

this literature is to make explicit the effect of different strategic environments.

Our results can be applied even in the framework of learning and opinion dynamics (DeG-

root, 1974; DeMarzo et al., 2003; Golub and Jackson, 2010, 2012) where there is the tension

between reaching consensus and disagreement. For example, Yildiz et al. (2013) find in the

presence of stubborn agents the reasons of disagreement, Golub and Jackson (2010) study the

general conditions for reaching the consensus in a network, and ? show how an endogenous net-

work structure can lead to opinion’s polarization. In this framework, according to our model,

agents form their opinion taking into account both their previous opinion and the one of oth-

ers. Then, when they are supposed to take decisions, they are affected by both opinions and

material rewards. Thus, they update and transmit new opinions taking into account also the

experience gained through interaction. The main insight of our work with respect to this liter-

ature is that the interplay between material incentives and opinions may be crucial for leading

to a consensus or to disagreement.

1.2 The Model

In this section, we model the interplay between norms and strategic environments, as rep-

resented by games. Consider a non-atomic society as a continuum of individuals of mass 1.

Agents in the society are divided into two communities I = {1, 2}. Define η ∈
(

1
2
, 1
)

the size of

the majority and assume, without loss of generality, that community 1 is the majority. Agents

belonging to the same community are assumed to be equal and i ∈ {1, 2} is the representative

13



agent of each community.

Each period time t ∈ N ∪ {0} represents a generation of agents. We divide the life into

three different sub-periods. In Stage (i), youth, the social coordination game that microfunds

the choice of personal norms takes place, in Stage (ii), adult age, agents interact by playing

games whose payoffs are determined also by personal norms, in Stage (iii), old age, norms are

transmitted to the next generation.

Stage (i) When young, members of the two communities are endowed with type-specific

observable personal norms θt = (θ1,t, θ2,t) ∈ [0, 1]2 and flexibility parameters ft = (f1,t, f2,t) ∈
[0, 1]2, both characteristics are inherited by the previous generation. Interacting together, young

symmetrically choose ex-post personal norms xt = (x1,t, x2,t) ∈ [0, 1]2 taking into account both

inherited norms and a preference for conformity.

Stage (ii) During their adult age, agents interact in a strategic environment. Agents are

randomly matched in pairs to play several symmetric 2×2 games. Different games are available

in the same period and each game is played with probability γ. Each agent plays with members

of both communities, namely η time against the majority and 1−η against the minority. Games

and population match are drawn from independent distributions. Norms influence total payoffs

and the Nash equilibrium actions emerge as the response of both material payoffs and personal

norms xt. Eη,γ[At] = (Eη,γ[A1,t], Eη,γ[A2,t]) ∈ [0, 1]2 is the vector of average actions in period t,

where Eρ[.] is the expectation operator with respect to measure ρ.

Stage (iii) At the end of their life, every agent reproduces asexually, giving birth to one child.

At this stage, parents transmit new norms and choose how much to socialize their offsprings.

During the transmission, parents are assumed to be myopic and to be not able to anticipate

the future utility of the offspring, therefore the transmission is fully mechanical. We model

the feedback from the environment (game) to norms as a cultural transmission where the Nash

equilibrium action most played in the game leads to the inherited personal norms of the new

generation. In particular, we consider two forces: cognitive dissonance, for the choice of the

norm to be transmitted, and cultural substitution, for the choice of the socialization parameter

f .8

We can think about this model as a three-period overlapping generation model (young, adults

and old).

8We provide definitions and details about cognitive dissonance and cultural substitution in Section 1.2.3.

14



We start our analysis, in the next section, from the illustration of the formation of norms

in the young age. Next, we consider the effect of norms on the payoffs of games played in

agent’s adult lie. Finally, we characterize the transmission process. In the first two sections,

we avoid the time index to simplify the notation.

1.2.1 Young Age Norms’ Formation

In this section, we model agents choice of ex-post norms x ∈ [0, 1]2, stemming from the inherited

norms θ and horizontal socializations f . In our model, young agents (children) are active in

choosing their own personal norms.

As in many cultural evolution paper (e.g. Kuran and Sandholm, 2008) agent ex-post norms

x are the result of social interaction. The general idea is that each agent choice of a norm is

affected both by his inherited norm and by the average ex-post norm chosen by his peers.9 Since

we have two communities θ, f and x are two dimensional vectors. In particular, we assume

that the utility of a generic agent of one community i ∈ {1, 2} is:10

ui(x, θi, fi) = − fi(xi − Eη[x])2︸ ︷︷ ︸
social coordination

− (1− fi)(xi − θi)2︸ ︷︷ ︸
group (or family) identity

where Eη[x] is taken over the distribution of individual characteristics and it is the average

chosen norm.11 The parameter fi, which can differ across communities, is the horizontal so-

cialization. (1− fi) is thus the vertical socialization. The utility function captures the tension

between inherited preferences and coordinating with others. When choosing a personal norm

agents want to pick one not too different from the one of their peers, depending on their hori-

zontal socialization parameter.12

Given the distribution of θ and f across the population, the ex-post personal norm is de-

fined by the unique symmetric Nash equilibrium of the social interaction game, where agents of

the same type choose the same ex-post personal norm. The ex-post norm of an agent belonging

9This is consistent with sociological literature about social norms, see ? for a survey.
10Notice that, in principle, agents in the same community can make different choices. However, we focus only

on symmetric choices for all the agents of the same community and thus, with an abuse of notation, we use
only the community index from the beginning.

11Eη[x] can be seen as descriptive norm (?). Notice that since agents are myopic in their youth they are
not able to anticipate future payoffs and thus form their norms taking in consideration only parents and peers
pressure and not the subsequent strategic environment.

12This formulation is exactly equivalent to the conformity game played by children in Vaughan (2013). More-
over, beauty contest like utility function, introduced in economics by Morris and Shin (2002), is widely used
both in the literature of evolution of cultural traits (Kuran and Sandholm, 2008, among others) as well as in
network economics for opinion or belief learning and dynamics (Golub and Jackson, 2012; ?), where it can be
seen as a micro-foundation of the so called De Groot model (DeGroot, 1974)
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to community i depends on both the distribution of inherited norms θ and on the distribution

of socialization parameters f .

Proposition 1

For all θ and f , there exists a unique symmetric Nash Equilibrium of the norm formation game

with

xi = fi

(
Eη [θ]− covη[f, θ]

(1− Eη[f ])

)
+ (1− fi)θi for i = 1, 2 (1.1)

The average norm is

Eη[x] = Eη[θ]−
(

Eη[f ]

1− Eη[f ]

)
covη[f, θ] (1.2)

Proof. In the Appendix. �

The result is a generalization of Kuran and Sandholm (2008). In that setting, f is the same

for both groups, cov[f, θ] = 0, and thus (1.2) Eη[x] = Eη[θ]: the population average ex-post

norm is equivalent to the population average inherited norm. In our model, the heterogeneity

of horizontal socialization introduces a distortion in the distribution of ex-post norms. If the

covariance between socialization parameters and norms is zero, then the average ex-post norm

in the society is exactly the average of inherited norms. On the other hand with positive or

negative covariance, even a minority, if enough rigid, can make her group norms prevail.

Since we have only two types of communities13, we can represent the equilibrium norms as a

convex combination of inherited norms as follows.

Corollary 1.1

The Nash Equilibrium of Proposition 1 can be written asx1 = p1θ1 + (1− p1)θ2

x2 = p2θ1 + (1− p2)θ2

, (1.3)

where p1 = (1−f1)(1−f2(1−η))
1−f1η−f2(1−η)

∈ (0, 1), p2 = f2η(1−f1)
1−f1η−f2(1−η)

∈ (0, 1) and p1 > p2 for all η, f1, f2.

Each agent, as result of the social interaction, chooses a norm that is a convex combination

between her initial norm and the one of the other community. Weights depend on both types

socialization parameters and the majority size η. By taking the difference of p1 and p2, it can

13However that Proposition 1 is valid for any number of communities.
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be easily seen that p1 is always greater that p2. Thus if θ1 > θ2, then x1 > x2 (and viceversa):

it is not possible to have a switch of ordering between ex-ante and ex-post norms.

1.2.2 Nash Equilibria for Normal Form Games with Norms

In this section, we model how norms change the payoffs of each one-stage game and study

the implication on the game’s (pure) Nash equilibria. Agents in the adult age are called to

make strategic decisions. Their choice is affected both by material and immaterial payoffs. The

latter are represented by the willingness to choose an action as indicated by their norms. Some

norms are often associated with cooperative environment while others with competitive ones.

Before to proceed with the analysis we provide anecdotic examples about norms associated

with environments with complements, substitutes, or both.

Language (complements) When people interact in a multicultural environment, they have

to choose the language to use. On the one hand, there are evident “material” incentives to

coordinate on the same language. On the other hand, agents can have different preferences in

using a specific language (norms), depending on agents ability to speak the two languages or

other idiosyncrasies. The interaction of such preferences with the incentive for coordination

may result in different Nash equilibria. If the norm is mild, one possibility is to use the native

language when meeting a person of the same community and the leading language otherwise.

If the norm is “strong enough” the game could instead become an anti-coordination one, when

each member of a community uses only its most preferred language.

Aggressiveness (substitutes) In competitive interactions for shared resources the mate-

rial incentives is to anti-coordinate, the optimal action is to be aggressive when the other agent

is not, and viceversa (see hawks-doves type of games). In this case, the underlying material

environment is an anti-coordination game, but norms can transform it in a coordination one.

Namely, very pacific types would always behave peacefully independently on incentives, and

viceversa.

Work Ethics (mixed) In interacting at the workplace people may face both an environ-

ment with complements and with substitutes. If we consider a work task that needs a team

effort to be accomplished and there is no reward if both agents do not exert a high level of

effort, agents have incentives to coordinate and the game is with complements. On the con-

trary, easy tasks that can be accomplished with the effort of only one agent open the doors for

freeriding and the game is with substitutes. This two examples can be though as, on the one

hand, a tough economy where resources are extractable at high labor cost in which agents have
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to cooperate to survive (complements), and, on the other hand, a flourishing economy where

there are abundant and easily extractable resources, in which some agents have the chance to

freeride (substitutes).

In the general case, agents play different games in each round. In this section we shall char-

acterize how norms change payoffs and thus the Nash Equilibria of each of these games. We

represent the tasks that individuals face with symmetric bimatrix games where norms x interact

with material payoffs and lead to the total, material plus immaterial, payoff. For each bimatrix

game Γ, the set of players is N = {r, c} and the action space is defined as A = Ar ×Ac where

Ar = Ac = {1, 0} is the set of actions available for each player (e.g. language A or language

B, being aggressive or not, high effort or low effort at the workplace). Each player belongs

to one of the two communities and ir (jc) is the community of player r (c). The material

payoff function of the symmetric bimatrix game is π : A → R2, where: πr(1, 1) = πc(1, 1) = a,

πr(0, 0) = πc(0, 0) = d, πr(1, 0) = πc(1, 0) = c and πr(0, 1) = πc(0, 1) = b.

Norms chosen in previous period x belong to the closed interval [0, 1], while the actions of

the game are binary and are associated with extreme norm values 0 or 1.14 We consider norms

as preferences over behavior, namely, the more the behavior deviates from the norms, the more

the agents face a loss of utility.15 Therefore, the real perceived payoffs are, in general, different

from just the material payoffs. In particular, for each A = (Ar, Ac) ∈ A player r has the

following payoff function with norms

Πr(A;xir) = [Arxir + (1− Ar)(1− xir)]πr(Ar, Ac). (1.4)

The same modification of the material payoff holds also for player c. Equation (1.4) implies

that the payoff of a game with norm xir is Πr(1, Ac;xir) = xirπr(1, Ac) when Ar = 1 and

Πr(0, Ac;xir) = (1− xir)πr(0, Ac) when Ar = 0. Table 1.1 represents the payoff matrix associ-

ated with Γ.

When x > 1/2 the norm is in favor of action 1 so that agent total payoff for playing action

1 is larger than when the norm is x = 1/2 and than when the norm is in favor of action 2,

x < 1/2. The larger the norm the larger such an influence. If a norm is extreme (x = 0 or

x = 1), the agent always plays the associated action, thus giving no importance to material

14The action can be though depending on the situation as use language A or language B, use min effort or
max effort, etc.

15Notice that we could express this ordering of preferences over consequences in the framework of psychological
games (??, among others) where players have belief-dependent motivations (such as intentions-based reciprocity,
emotions, or concern with others’ opinion) in our case agents would have ex-ante beliefs about their own action
(norms) and care about the consistency of these beliefs and the chosen actions.

18



Agent c

1 0

Agent r
1 xira, xjca xirc, (1− xjc)b
0 (1− xir)b, ximc (1− xir)d, (1− xjc)d

Table 1.1: Bimatrix game with norms as preferences over behavior

payoffs. In these cases we say that the norm is strong. When instead x = 1
2

the transformation

has no effect on best replies and the norm is said to be neutral. For example, if r is neutral,

then Π
(
A; 1

2

)
= 1

2
π(A) independently on played action and thus with no effect on best replies.

Modeling the effect of norms as in (1.4) we capture the idea that norms change preferences

over material payoffs, as in Bisin et al. (2004) and Tabellini (2008) but, at the same time, when

norms are extreme (0 or 1), the transformation is consistent with the interpretation of Carvalho

(2016) where norms restrict agents’ strategy set.16

Since we are interested in studying the evolution of norms when agents are exposed to dif-

ferent strategic environments, in particular when in absence of norms actions are complements

or substitutes, we restrict the ordering of the material payoffs a, b, c, d. Defining b̄ = b
a+b

the

material force that leads out from the equilibrium (1, 1) and d̄ = d
c+d

the force that pushes to-

ward the equilibrium (0, 0), it is possible to categorize the possible games with material payoffs

π(A) as Γ(b̄, d̄). In particular

1. Coordination (Complements): b̄ < 1
2
< d̄

2. Anti-Coordination (Substitutes): d̄ < 1
2
< b̄.17

Therefore, we can define the game with norms as Γ(b̄, d̄, x). When b̄ < 1
2
< d̄, we say that

the society interact in a environment with complements. When d̄ < 1
2
< b̄, agents face an

environments with substitutes. Notice that, similarly to norms, also b̄ and d̄ belongs to the

interval [0, 1]. However, they represents material, instead of moral, incentives. If b̄ = d̄ = 1
2
,

then there are no material incentives.

16An agent that takes into account both material and moral payoffs as in (1.4) can be seen as “Homo Moralis”
in the language of Alger and Weibull (2013). Moreover, the functional form for payoffs (1.4) is also consistent
with one commonly used in the behavioral literature on social norms (López-Pérez, 2008; Kessler and Leider,
2012; Kimbrough and Vostroknutov, 2016) where a cost function c of violating the norm is subtracted to the
material payoff: Πr(Ar, Ac;xir ) = πr(Ar, Ac) − c(x,A, π). Indeed, with c(x,A, π) = πr(Ar, Ac)(Ar + xir (1 −
2Ar)) we get exactly equation (1.4).

17 Notice that restricting the ordering of b̄, d̄, 12 can be used to characterize even Prisoner Dilemma and
Efficient Dominant Strategy Equilibrium games, where 1

2 < min{b̄, d̄} and 1
2 > max{b̄, d̄}, respectively. We do

not consider them because in this work we want to focus on complements vs substitutes.
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We can now proceed with the equilibrium analysis. For simplicity, we assume complete in-

formation about material payoffs, norms, and rationality of agents and thus we can use (pure

actions) Nash equilibria. The equilibrium analysis relies on the double effect on moral and

material incentives. Moral incentives depend on the consistency between norms and actions.

Therefore, the final decision depends on the strength of the norm as compared to the two

threshold b̄ and d̄. b̄ establishes the minimum strength of the norm for action 1 to be played

when the opponent plays 1. d̄ establishes the maximum strength of the norm for action 0 to

be played when the opponent plays 0.18

Define Â(b̄, d̄, x) := Âr(b̄, d̄, xir)× Âc(b̄, d̄, xjc) the set of Nash Equilibria with norms.

Proposition 2 In a Bimatrix Game with norms Γ(b̄, d̄, x):

• If xir , xjc > b̄, then (1, 1) ∈ Â(b̄, d̄, x).

• If xir , xjc < d̄, then (0, 0) ∈ Â(b̄, d̄, x).

• If xir > d̄ and xjc < b̄, then (1, 0) ∈ Â(b̄, d̄, x).

• if xir < b̄ and xjc > d̄, then (0, 1) ∈ Â(b̄, d̄, x).

Proof. We solve the generic game with norms as described in Table 1.1. The best-replies are:

Âr(Ac = 1; b̄, d̄, xir) =

1 if xir > b̄

0 if xjc < b̄
and Âr(Ac = 0; b̄, d̄, xir) =

1 if xir > d̄

0 if xjc < d̄
.

Since the game is symmetric we do not compute the best reply for agent j. Looking for

the fixed-point of the best replies we find the Nash Equilibria. �

Figures 3.2 represents the actions played in equilibrium by two agents belonging to different

communities as a function of their norms and for different strategic environments: comple-

ments or substitutes. Nash equilibria depend on the position of threshold values d̄ and b̄.

Figure 3.2(a) represents a game with complements, b̄ < 1
2
< d̄. Figure 3.2(b) represents a game

with substitutes, d̄ < 1
2
< b̄. The main diagonal represent the action played by agents of the

same community, since the norm is the same. When the action is marked with the subscript

∗, it is a dominant strategy. As expected, for xir , xjc in the neighborhood of neutral norms

(xir = xjc = 1
2
), the games have the same equilibria as the corresponding game without norms,

18This is consistent, even if in a totally different framework, with Eshel et al. (1998), who found that the
imitation dynamics depends only upon the values α and β which are strictly related respectively with our b̄ and
d̄.
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(a) (b)

Figure 1.1: Equilibria Space of Games with (a) Complements b̄ < 1
2 < d̄ and (b) Substitutes

d̄ < 1
2 < b̄.

while as xir , xjc move away from 1
2

the games have have different equilibria.

Notice that when xir > max{d̄, b̄} or xir < min{d̄, b̄}, r has a dominant strategy, respec-

tively playing 1 or playing 0. Otherwise, if min{d̄, b̄} < xir < max{d̄, b̄}, then r has not a

dominant strategy and reacts to the action of c. Thus if both xir and xjc are between min{d̄, b̄}
and max{d̄, b̄}, then we have multiple equilibria.

For all games, we can distinguish different areas in the space of personal norms of the two

players.19 In particular, there are five main areas to keep in considerations. For extreme norm

values, the games have a unique equilibrium: in R1∗,1∗ , R1∗,1 and R1,1∗ , the x’s approach 1

and the equilibrium is (1, 1); in R0∗,0∗ ,R0∗,0 and R0,0∗ the xs tend to 0 and the equilibrium

is (0, 0). Only in 2 of these 6 regions both players play a dominant strategy. In R1∗,0∗ and

R0∗,1∗ , norms are polarized and Nash equilibria are, respectively, (1, 0) and (0, 1) for all type of

strategic environments. With intermediates value of x, in R, the game has multiple equilibria.

In particular, if b̄ < d̄ we have a coordination game with the two equilibria (1, 1) and (0, 0); if

b̄ > d̄ we have an anti-coordination game and the two equilibria are (1, 0) and (0, 1).

We shall assume that in each period agents play different games. In particular, we name γ

a probability density on the space of vectors (b̄, d̄) and assume that the game with payoffs

Γ(b̄, d̄;x) is played with probability γ(b̄, d̄). In order to study the effect of different strategic

environment on norms dynamics, we further assume that games played belong always to the

same environment. Namely, in complements environments b̄ ∈
[
0, 1

2

]
and d̄ ∈

[
1
2
, 1
]
, viceversa

19See in the appendix Corollary 2.1, for a formal definition of each region.
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for substitutes environments b̄ ∈
[

1
2
, 1
]

and d̄ ∈
[
0, 1

2

]
. In particular, we focus our analysis on

the two extrema cases: (i) γ is a uniform distribution on sets of (b̄, d̄) with support
[
0, 1

2

]
×
[

1
2
, 1
]

for complements and
[

1
2
, 1
]
×
[
0, 1

2

]
for substitutes. (ii) γ is a point distribution of an element

of the set
[
0, 1

2

]
×
[

1
2
, 1
]

for complements and
[

1
2
, 1
]
×
[
0, 1

2

]
for substitutes.

We have seen that norms can be strong enough to overcome material incentives and select

many more equilibria than when norms are absent. For this reason, to discipline our analysis,

we shall complement our model by modeling also the effect of actions on norms. It shall be the

joint dynamics of norms and equilibrium actions to characterize the possible Nash equilibria

depending on the strategic environment and the society composition.

1.2.3 Cultural Transmission

At the end of each time period t, given the action played during their adult ages, agents transmit

new norms θt+1 to their offsprings and decide how much let them socialize with the peers by

transmitting an horizontal socialization ft+1. In this section, we model both transmissions as a

function of generation t norms, xt, socializations, ft, and average actions chosen when playing

the one-stage games.

Formation of Transmitted Norms

First, we assume that agents try to reduce the cognitive dissonance that arises if there is no

consistency between their original preference over actions xt and their average behavior.

Regarding Nash equilibrium actions, agents are randomly matched to play against the whole

population. Thus, an agent belonging to the majority, community i = 1, will be matched η

time with his own type and 1− η with others, viceversa for a player belonging to the minority.

Moreover, as discussed in previous section, each agent in his adult life plays an infinite number

of games with different payoffs (b̄, d̄) distributed according to a probability measure γ.

In order to get the average action played by the representative agent of one community we

have to integrate actions with respect both population and payoffs measure, η and γ.20 In par-

ticular, all the time agents play a game with a unique Nash equilibrium the transmitted action

is uniquely defined to be the Nash equilibrium one. When, instead, the played game has not

a unique Nash equilibrium, we assume indifference on the type of action that is transmitted.

Thus each time an agent of community i plays against an agent of community j in period t,

20Notice that, due to the assumption of independence the order of integration does not affect the result and
Eη,γ [.] = Eγ,η[]
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the transmitted action is

Ai,j,t =

Âi,j,t(b̄, d̄, x) if the Nash equilibrium is unique

1
2

otherwise
.

Whenever there are multiple equilibria, the feedback from actions to norms of a player of

community i when playing with a player of community j in date t is Ai,j,t = 1
2
.21

(a) (b)

Figure 1.2: Eη[A1,t], Eη[A2,t] in (a) Complements
(
b̄ ≤ 1

2 ≤ d̄
)
, (b) Substitutes

(
d̄ ≤ 1

2 ≤ b̄
)

environ-

ments

Given a particular game, and Ai,j,t for all i, j = 1, 2, the average action for both communities

in period t are Eη[A1,t] = ηA1,1,t + (1− η)A1,2,t

Eη[A2,t] = (1− η)A2,2,t + ηA2,1,t

(1.5)

In Figure 1.2, we show average actions for agents of both communities for different (x1, x2),

in both complements and substitutes game. It is easy to generalize (1.5) to take into account

different levels of assortativity in the matching, in that case results do not change.

Considering all possibile games that agents face in their life and integrating with respect to the

payoffs distribution γ, we finally get the vector of average actions:

Eη,γ[At] = (Eη,γ[A1,t], Eη,γ[A2,t]) = ϕ(xt) (1.6)

21A different possibility could be to consider the Mixed Nash equilibrium. In several empirical works the
approximation of 1

2 is widely used in presence of multiple equilibria (Bjorn and Vuong, 1984; Kooreman, 1994;
Soetevent and Kooreman, 2007).
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By cognitive dissonance, for a generic i we let the ex ante personal norms of generation t + 1,

θt+1, to move towards the transmitted actions Eη,γ[At] as in

θi,t+1 = ζ(xi,t, Eη,γ[Ai,t]) = (1− λ)xi,t + λEη,γ[Ai,t] (1.7)

with λ ∈ (0, 1). If λ = 0 the strategic environment (games) has no effect on the evolution of

preferences, this is the case considered by Kuran and Sandholm (2008). Otherwise, the inherited

norm of the next generation depends directly on the norm of the parent xt and indirectly also

on the strategic environment through the expected equilibrium actions in Eη,γ[At]. Parents

want to leave to their offsprings norms that are a combination of their norms and of what they

have learnt to be the best action in the specific strategic environment they face.

Formation of Horizontal Socialization

The dynamics of the socialization level depends on the outcome of strategic environment and

is modeled assuming cultural substitution.22

We assume that the more their action is close to the average of the society, the more agents

let their offsprings horizontally socialize with the peers (the less they vertically socialize them).

Given the average action in the whole society,

Ēη,γ[At] = ηEη,γ[A1,t] + (1− η)Eη,γ[A2,t],

the transmitted horizontal socialization for a generic agent of community i is

fi,t+1 = ψ(fi,t, Eη,γ[At]) = f̄(1− |Eη,γ[Ai,t]− Ēη,γ[At]|). (1.8)

The horizontal socialization of community i directly depends on the differences between the

action of the agent and the action of the whole society. When the distance between actions is

maximal, f goes to its lower bound. When the distance is minimal(agents play all the same

action) f reaches the upper bound, f̄ ≤ 1.

Notice that f̄ is the maximum possible flexibility parameter of the society, namely the highest

level of horizontal socialization of a community toward the whole society, and thus also to the

other community.

22Under cultural substitution “parents have fewer incentives to socialize their children the more widely dom-
inant are their values in the population” Bisin and Verdier (2001). Usually, in the literature of cultural trans-
mission, cultural substitution is microfounded. Here we assume it. In Appendix B, we show that if parents
optimally chose their socialization effort there is cultural substitution.
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1.3 Norm and Socialization Level Dynamics

In this section, we consider the whole dynamics of the model and we present results for envi-

ronments with complements and substitutes.

As anticipated in Section 1.2.1, in each period x depends directly on θ and f . Implicitly

equation (1.1) for a generic i can be written as:

xi,t+1 = υ(θi,t+1, fi,t+1). (1.9)

Combining equations (1.6 - 1.9) we get the dynamics of our model

xt
ϕ(.)−−−−−→ Eη,γ[At]

ζ(.), ψ(.)−−−−−−−→ θt+1, ft+1
υ(.)−−−→ xt+1.

The whole dynamics can be written asxt+1 = Ξ(xt, ft)

ft+1 = Φ(xt, ft)
, (1.10)

where Ξ(xt, ft) = υ(ζ(xt, ϕ(xt)), ψ(ft, ϕ(xt))) and Φ(xt, ft) = ψ(ft, ϕ(xt)).

We name E the set of steady states of (1.10) with generic elements (x∗1, x
∗
2, f

∗
1 , f

∗
2 ). We further

define Eη,γ[A
∗
i ] as the average equilibrium action played by a representative agent of community

i ∈ {1, 2} at steady state, and p∗1 = p1(f ∗1 , f
∗
2 ) and p∗2 = p2(f ∗1 , f

∗
2 ), the equilibrium weights as

defined in Corollary 1.1.

First, we provide a relation between norms and average actions at the steady state.

Proposition 3

Given the dynamics in (1.10), for all strategic environments, the norms (x∗1, x
∗
2) solvex∗1 = φ∗1Eη,γ[A

∗
1] + (1− φ∗1)Eη,γ[A

∗
2]

x∗2 = φ∗2Eη,γ[A
∗
1] + (1− φ∗2)Eη,γ[A

∗
2]

(1.11)

where φ∗1 =
p∗1−(p∗1−p∗2)(1−λ)

1−(p∗1−p∗2)(1−λ)
.

Proof. In the Appendix. �
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In a steady state, norms are a convex combination of the average actions played by the agents

of the two communities. Weights depend both on the steady state horizontal socialization levels

f ∗, through weight p∗1 and p∗2, and on two exogenous variables, the size of the majority η and

the influence of games on norms λ.

We now present steady state norms, horizontal socialization, and actions’ vector played by

agents of the two communities for both complements and substitutes environment. We con-

sider both uniform and point payoffs’ distributions.

1.3.1 Uniform Distribution

In this section γ is a uniform distribution on sets of (b̄, d̄). We divide results between complements

and substitutes.

If in adult age agents face a complements environment they play several games in which

b̄ ≤ 1
2
≤ d̄.

Below, we characterize the set of possible steady states together with their global stability.

Proposition 4 (Complements)

For all η ∈ (0, 1), f̄ ∈ (0, 1), and λ ∈ (0, 1), if (b̄, d̄) is uniformly distributed in the set[
0, 1

2

]
×
[

1
2
, 1
]
, then

• the set of steady states is

E = {(1, 1, f̄ , f̄), (0, 0, f̄ , f̄),

(
1

2
,
1

2
, f̄ , f̄

)
};

• the average actions at the steady state, Eη,γ[A
∗], are, respectively,

(1, 1), (0, 0),

(
1

2
,
1

2

)
;

• for all initial conditions the dynamics converges to an element of the set E. Moreover,

the basin of attraction of (1, 1, f̄ , f̄) is at least
[

1
2
, 1
]2 × [0, f̄]2, the basin of attraction of

(0, 0, f̄ , f̄) is at least
[
0, 1

2

]2 × [0, f̄]2, and
(

1
2
, 1

2
, f̄ , f̄

)
is a saddle.

Proof. in the Appendix �

In a complements environment, if payoffs are uniformly distributed over all the support
[
0, 1

2

]
×
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[
1
2
, 1
]
, the only possible long-run outcome are assimilation toward one extreme norm. In fact,

both communities always converge to the same norms and the horizontal socialization is at its

maximum. In this kind of equilibria norms and action played at the steady state are the same.

We now discuss results for a substitutes environment, where agents play several games in which

d̄ ≤ 1
2
≤ b̄.

Proposition 5 (Substitutes)

For all η ∈ (0, 1), f̄ ∈ (0, 1), and λ ∈ (0, 1), if (b̄, d̄) is uniformly distributed in the set[
0, 1

2

]
×
[

1
2
, 1
]
, then

• the set of steady states is

E = {(1, 1, f̄ , f̄), (0, 0, f̄ , f̄),

(
1

2
,
1

2
, f̄ , f̄

)
, (φ1, φ2, f̄η, f̄(1−η)), (1−φ1, 1−φ2, f̄η, f̄(1−η))};

• the average actions at the steady state, Eη,γ[A
∗], are, respectively

(1, 1), (0, 0),

(
1

2
,
1

2

)
, (1, 0), (0, 1);

• For all initial conditions the dynamics converges to an element of the set. Moreover,

(1, 1, f̄ , f̄) and (0, 0, f̄ , f̄) are unstable, the basin of attraction of (φ1, φ2, f̄η, f̄(1− η)) and

(1−φ1, 1−φ2, f̄η, f̄(1− η)) is at least
[

1
2
, 1
]
×
[
0, 1

2

]
×
[
0, f̄
]2

and
[
0, 1

2

]
×
[

1
2
, 1
]
×
[
0, f̄
]2

,

respectively, and
(

1
2
, 1

2
, f̄ , f̄

)
is a saddle.

Proof. In the Appendix �

In an environment with substitutes, if payoffs are uniformly distributed over all the support[
1
2
, 1
]
×
[
0, 1

2

]
, there still exist steady states with assimilation as in the previous (complements)

case, however they are unstable. Moreover, there exist steady states with separation. In the

latter norms are polarized (φ1 >
1
2

and φ2 <
1
2
), horizontal socialization is at its minimum

for both communities (ηf̄ , (1 − η)f̄) and agents of the two communities always play opposite

actions Eη,γ[A
∗] = (0, 1) or Eη,γ[A

∗] = (1, 0). In these cases the minority tends to be culturally

separated, in fact the larger is the size of the majority η the smaller the horizontal socializa-

tion level of the minority becomes. Here the effect of coordination game played by children is

evident. If they care only about inherited norms θ, because parents are able to fully vertically

socialize the offspring (f1 = f2 = 0), then norms became fully polarized (φ1 = 1 and φ2 = 0).
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(a) (b)

Figure 1.3: Qualitative dynamics for (a) Complements and (b) Substitutes environments

The main implication of Propositions 4 and 5 is that different environments lead to differ-

ent social outcomes. In particular, we have shown how in substitutes environments emerge

steady states with polarization of norms that do not exist in complements ones. Moreover, al-

though steady states with assimilation may exist in both cases, when games played in adult age

are substitutes, this kind of steady states are not stable. It is important to point out that, ac-

cording to Proposition 4, an environment with complements always lead to norms homogeneity.

1.3.2 Point Distribution

Despite our results, an empirical observation is that an environment that favors coordination is

not always enough to ensure the occurrence of complete assimilation or to avoid the occurrence

of polarization in society. There are both cases in which the process of cultural integration

occurs without achieving complete assimilation, having the resilience of cultural traits, as well

as cases of cultural separation and the rise of oppositional cultures.23 Bisin and Verdier (2012)

offer a review of empirical examples of cultural heterogeneity and resilience of cultural traits.

For example, the slow rate of immigrants’ integration in Europe and US, the persistence of ’eth-

nic capital’ in second- and third-generation immigrants, or even cases of minorities’ strongly

attachment to languages and cultural traits.

In this section, we show how to reconcile our model of norm formation with these empiri-

cal observation. We do so by considering limit cases of point distribution namely when γ is

23We refer to Berry (1997) and Ryder et al. (2000) (among others) for the terminology about cultural
assimilation, integration, marginalization and separation. They proposed a concept of minority’s self-
identification, based on a two-dimensional framework, which takes into account for differences in both adaptation
and interaction processes between the minority and the dominant culture.
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singular on the set (b̄, d̄) showing how polarization can occur even in environments with com-

plements and milder cultural heterogeneity can occur in environments with both complements

and substitutes.24

Before we discuss the possible steady states in both complements and substitutes environment,

we first provide a general result.

Proposition 6 For all η ∈ (0, 1), f̄ ∈ (0, 1), and λ ∈ (0, 1), if (b̄, d̄) is a point in the set

[0, 1]× [0, 1], then all steady states are asymptotically stable and their basins of attraction form

a partition of the state space of norms and socialization levels.

Proof. In the Appendix. �

Proposition 6 ensures the convergence and the stability of dynamics described in (1.10). That

is, for every initial conditions and for all parameters, the dynamics converges to a steady state

norm and flexibility parameter. The main idea is that we can partition the whole state space

of norms and socialization levels, [0, 1]2 × [0, 1]2, in basins of attraction of steady states.

Complements

Figure 1.4 shows all the possible steady states in environments with complements.

The first result is that two stable steady states with cultural separation (polarized norms and

minimal horizontal socialization) can exist depending on the value of b̄ and d̄ and on the norms’

distance between the two communities. For simplicity, we now formally present only one of the

two steady states with cultural separation (blu in Figure 1.4), the other can be easily derived

by symmetry.

If b̄ > φ∗1 and d̄ < φ∗2 and initial norms belong to the region R1∗,0∗ , then the dynamics de-

scribed in (1.10) converges to the steady state (φ∗1, φ
∗
2, f̄η, f̄(1−η)), where norms are polarized,

horizontal socialization is at the minimum, and agents belonging to different communities al-

ways play different actions, Eη,γ[A
∗] = (1, 0). This occurs despite in all rounds agents are

playing a coordination game, according to material payoffs.

The result is driven from the fact that if games played in adult life have always the same

non degenerate payoffs, then there exist initial norms, x1 high enough and x2 low enough, that

24We present and discuss the results informally, we remand to the appendix to have formal derivation and
discussion.
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sustain the equilibrium with anti-coordination. Playing this equilibrium leads, by cognitive

dissonance, to norms polarization and thus cultural separation.

If agents interact in complements another class of steady states can exist (white in Figure

1.4), where there is cultural integration but not complete assimilation. In such steady states,

only the agents of one community have a well-defined group-specific norm, which induce them

to always play a specific action as dominant strategy. While agents belonging to the other

community have a mild norm. When the latter are matched among themselves, they face

the original coordination problem, while they conform to the behavior of agents belonging to

the other community whenever they encounter them. This is a clear example of integration,

namely there is convergence toward an homogeneous norms, but, at the same time, the identity

is not totally lost as in assimilation.

Real life examples of this result are linguistic choices between immigrants and natives. Na-

tives always use their own language. Agents belonging to a linguistic minority, after a long

interaction with natives, became proficient in both languages (i.e. second or third generation

immigrants). Therefore, they end up using the two languages indifferently, but conforming with

the natives whenever they interact with them.

In steady states with integration, we have two sources of symmetry. One is with respect to the

community with a well defined norm, the other with respect to the action played. Therefore

there can exist up to four steady states of this type. Again we formally characterize only one

of these equilibria.

E.g. let us focus on the region R1∗,1, were there can exist a steady state where b̄ < x2 < d̄ and

Eη,γ[A] =
(
1, 1

2
(1 + η

)
.

Notice that with point distribution this kind of steady state are stable in their basin of attrac-

tion, but may do not exists for certain values of (b̄, d̄) as shown in Figure 1.5. While steady

states with assimilation always exist, those with integration may not exist (see for example

Figure 1.5).

The difference between assimilation and integration equilibria is important with respect to

different policy goals. For example, sometimes a policy is considered successful only when

minorities (immigrants) completely lose their previous norms or culture and are assimilated;

instead in other circumstances the resilience of cultural traits can be considerate socially desir-

able, in these cases the policymaker reaches his goal if the minority integrate with the majority
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Figure 1.4: Steady States of x for Complements with b̄ = 0.2, d̄ = 0.8, f̄ = 0.3, η = 0.5, λ = 0.6.

Figure 1.5: Steady States of x for Complements with b̄ = 0.2, d̄ = 0.8, d̄′ = 0.7, b̄′ = 0.1, f̄ = 0.3,
η = 0.5, λ = 0.6.

but keeping some of their cultural traits. In this second case, there is a partial convergence and

there is still room for a multicultural society.

Moreover, from a policy maker point of view, it is interesting to appraise the long-run effects

due to a change in game incentives (Figure 1.5 ). We observe that moving the parameters b̄, d̄

can significantly affect the social outcome. In Figure 1.5 (left panel) we can see how diminishing

d̄ to d̄′ the basin of attraction of the steady state with assimilation (grey) becomes much wider

and integration (white) disappears. Figure 1.5 (right panel) shows that in such a case, moving

the two material incentives together, d̄ to d̄′ and b̄ to b̄′, it is possible to reach assimilation even

if the communities start off having initial norms that are polarized. This sheds further light on

the relationship between uniform and point distribution. In fact, if (b̄, d̄) is not a single point,

but moves in the whole space
[
0, 1

2

]
×
[

1
2
, 1
]
, then the steady states presented in this section

are not robust to game change.
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Substitutes

Figure 1.6 shows all the possible steady states in substitutes environments when γ is singular.

The main difference with the case of uniform distribution is that steady states with assimilation

can be stable. Moreover, in environments with substitutes, steady states may exist (white in

Figure 1.6) where one community has a well defined norm while the members of the other

community have a norm that, when they are matched among themselves, does not induce

preferences over actions. Namely, interacting in their own community agents are indifferent on

the action to play, but when matched with the other community they act in the opposite way.

In a sense, we can talk about marginalization, in fact, there is a weakening of identification

with original cultural identity but even a rejection of dominant culture.

Figure 1.6: Steady States of x for Substitutes with b̄ = 0.8, d̄ = 0.2, f̄ = η = 0.5, λ = 0.75.

1.4 Discussion

Payoffs Distribution This paper is a first attempt to analyze the effect of different en-

vironment on norms that arise in the society. We study only extreme cases for the payoffs’

distribution (uniform and point). We can easily generalize our results for all possible uniform

distributions. The relevant parameters to understand the existence of different steady states

and the dynamics are the boundary points (the highest and the lower) of the support of the dis-

tribution and their relationship with the material incentives b̄, d̄. Namely, in the interior points

of the support the dynamics is the same as studied in 3.1, while outside it results discussed

in 3.2 hold. Considering probability distribution functions different from the uniform one, the

analysis is less straightforward, it mainly depends on the density in the tails. Our conjecture is

that the relevant parameters are threshold values over which the density is vanishing, and thus

the probability that an agent face that particular game is extremely low. Thresholds should

depends, non trivially, on the second, third and fourth moments. Although all these possible

32



intermediate cases could can be interesting to study from a technical point of view, we believe

that they should not provide any novel qualitative insight.

Assortativity We have studied the case of perfect random matching without taking into

account the possibility of having assortative matching. In order to consider different levels of

assoratativity it is enough to consider a paramenter ε that can assume values less then 1−η for

the majority and η for the minority and add to the probability of being matched with agents

belonging to the same community. This generalization does not affect results, and the proof

of all the proposition remain the same.25 The only effect of an higher level of assortativity

is to slow down the convergence to the steady state, and thus the assimilation of norms, in

environment with complements and increasing the speed of convergence to the steady state,

and thus the polarization, in environment with substitutes.

Mixed Environments While in this paper we keep the type of environment (complements

or substitutes) fixed, an extension of the model allowing changes in the type of environment

should be worth to be investigated. Our conjecture is that norms may not converge and

generate cycles.The same results should be found also when the strategic environment resembles

Prisoner Dilemma. In fact, according to our preliminary analysis, depending on the material

payoffs parametrization, the Prisoner Dilemma can act both as complements or substitutes

environment. This extension is particularly relevant to study more complex environments where

some interactions are cooperative and other competitive. Moreover, our analysis suggests that if

in a society there are many tasks that require a joint effort, then agents develop more cooperative

norms. This is supported by the empirical evidence that suggests how tough environments with

less developed institutions, or fewer resources, favor norms of cooperation Lowes et al. (2017).

Since often institutions (complements substitutes) are endogenous and co-evolve within the

society, both because agents have, in some circumstances, the chance to vote to choose their

institution, or because policy maker can design different institutions depending on the society,

can create non trivial culture-institution dynamics.

1.5 Conclusion

In this paper, we study a cultural transmission model where the relationship between norms

and strategic environments is made explicit. Agents divided into two communities form their

community norm by taking into account the norm received by their previous generation and

by conforming to the average norm of the society. The relative strength of the two forces is

25The only difference is to have η′ = η + ε instead of η, but this does not play a role, the only condition
relevant for the proofs is that η′ < 1 and, thus, 1− η′ > 0.
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regulated by a horizontal socialization parameter. The norm received by the previous gener-

ation depends on the average equilibrium actions played in the game under the hypothesis of

minimization of cognitive dissonance. We derive conditions under which cultural assimilation is

reachable or not. Provided games material payoffs are randomly distributed but preserve their

complements/substitutes (coordination/anti-coordination) feature, the long-run dynamics con-

verges to cultural assimilation in environments with complements and to cultural segregation

in environment with substitution. Moreover, when specific games are chosen, provided initial

conditions show enough heterogeneity, we are able to obtain the rise of oppositional cultures

and situations of cultural heterogeneity. For example, we show that even if the environment

provides incentives to coordinate it is still possible to observe multicultural society or even

cultural separation. At the same time in anti-coordinating environments it is still possible to

reach assimilation.
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Appendix A

Proof of Proposition 1

In order to simplify the notation, we consider payoffs for a representative agent of each com-

munity. The payoff of an generic agent belonging to community i = 1, 2

ui(x, θi, fi) = −fi

xi − (ηx1 + (1− η)x2)︸ ︷︷ ︸
Eη [x]


2

− (1− fi)(xi − θi)2

becomes Since the single agent is negligible in the population, when i takes decisions he does

not affect the whole average. Thus, the first order condition is

∂ui(x, θi)

∂xi
= 0

−2fi (xi − (ηx1 + (1− η)x2))− 2(1− fi)(xi − θi) = 0

fi (xi − (ηx1 + (1− η)x2)) + (1− fi)(xi − θi) = 0.

As a result

xi = fiEη[x] + (1− fi)θi (1.12)

Taking expectations of (1.12) on both sides we get

Eη [x] = Eη [fEη[x] + (1− f)θ]

Eη [x] = Eη [fEη[x]] + Eη [θ]− Eη[fθ]

Eη [x]− Eη [f ]Eη[x] = Eη [θ]− Eη[fθ]

Eη [x]− Eη [f ]Eη[x] = Eη [θ]− Eη[f ]Eη[θ]− covη[f, θ]

(1− Eη[f ])Eη [x] = (1− Eη[f ])Eη [θ]− cov[f, θ]

Eη [x] = Eη [θ]− covη[f, θ]

(1− Eη[f ])

.

Substituting Eη[x] in (12) we find the optimal action of each player belonging to community i
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as a function of the distributions of θ and f

xi = fi

(
Eη [θ]− covη[f, θ]

(1− Eη[f ])

)
+ (1− fi)θi (1.13)

�

Proof of Corollary 1.1

Applying the ex-post norm formation rule (1.13) to our particular case where η is the share of

agents with ex-ante norm θ1 and 1− η is the share of agents with θ2, we get:

x1 = f1

(
ηθ1 + (1− η)θ2 −

covη[f, θ]

1− f1η − f2(1− η)

)
+ (1− f1)θ1

Computing

covη[f, θ] = Eη [(f − Eη[f ])(θ − Eη[θ])] =

= η(f1−f1η−f2(1−η))(θ1−θ1n−θ2(1−η))+(1−n)(f2−f1η−f2(1−η))(θ2−θ1η−θ2(1−η))

= η(1− η)2(f1 − f2)(θ1 − θ2) + η2(1− η)(f2 − f1)(θ2 − θ1)

= η(1− η)(f1 − f2)(θ1 − θ2)((1− η) + η)

⇒ covη[f, θ] = η(1− η)(f1 − f2)(θ1 − θ2)

we obtain

x1 = f1

(
ηθ1 + (1− η)θ2 −

η(1− η)(f1 − f2)(θ1 − θ2)

1− f1η − f2(1− η)

)
+ (1− f1)θ1

x1 =
f1(1− η)(1− f2)

1− f1η − f2(1− η)︸ ︷︷ ︸
1−p1

θ2 +
(1− f1)(1− f2(1− η)

1− f1η − f2(1− η)︸ ︷︷ ︸
p1

θ1

The same can be done for x2.

�

Corollary 2.1

Before to proceed with other proofs we formally partition the space [0, 1]2 in regions where the

different Nash equilibria emerge as described in Figure 3.2.
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Corollary 2.1 The regions of norms xir and xjc in which different Nash Equilibria emerge

are the following:

R1∗,1∗ = {(xir , xjc) : xir > max{d̄, b̄} ∧ xjc > max{d̄, b̄}}

R0∗,0∗ = {(xir , xjc) : xir < min{d̄, b̄} ∧ xjc < min{d̄, b̄}}

R = {(xn, xm) : min{d̄, b̄} < xin < max{d̄, b̄} ∧min{d̄, b̄} < xim < max{d̄, b̄}}

R1∗,0∗ = {(xir , xjc) : xir > max{d̄, b̄} ∧ xjc < min{d̄, b̄}}

R0∗,1∗ = {(xir , xjc) : xir < min{d̄, b̄} ∧ xjc > max{d̄, b̄}}

R1∗,1 = {(xir , xjc) : xir > max{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ d̄ > b̄}

R1∗,0 = {(xir , xjc) : xir > max{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ b̄ > d̄}

R1,1∗ = {(xir , xjc) : xjc > max{d̄, b̄} ∧min{d̄, b̄} < xir < max{d̄, b̄} ∧ d̄ > b̄}

R0,1∗ = {(xir , xjc) : xjc > max{d̄, b̄} ∧min{d̄, b̄} < xir < max{d̄, b̄} ∧ b̄ > d̄}

R0∗,0 = {(xir , xjc) : xir < min{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ d̄ > b̄}

R0∗,1 = {(xir , xjc) : xir < min{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ b̄ > d̄}

R0,0∗ = {(xir , xjc) : xir < min{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ d̄ > b̄}

R1,0∗ = {(xir , xjc) : xjc < min{d̄, b̄} ∧min{d̄, b̄} < xir < max{d̄, b̄} ∧ b̄ > d̄}

Proof of Proposition 3

Substituting the dynamics of θs in equation (1.3) we getx1,t+1 = p1,t+1[(1− λ)x1,t + λEη,γ[A1,t]] + (1− p1,t+1)[(1− λ)x2,t + λEη,γ[A2,t]]

x2,t+1 = p2,t+1[(1− λ)x1,t + λEη,γ[A1,t]] + (1− p2,t+1)[(1− λ)x2,t + λEη,γ[A2,t]]
(1.14)

⇒

x1,t+1 = p1,t+1λ

1−p1,t+1(1−λ)
Eη,γ[A1,t] + (1−p1,t+1)λ

1−p1,t+1(1−λ)
Eη,γ[A2,t] + (1−p1,t+1)λ

1−p1,t+1(1−λ)
x2,t

x2,t+1 = (1−p2,t+1)λ

1−(1−p2,t+1)(1−λ)
Eη,γ[A2,t] + p2,t+1λ

1−(1−p2,t+1)(1−λ)
Eη,γ[A1,t] + p2,t+1λ

1−(1−p2,t+1)(1−λ)
x1,t

Where p1,t = (1−f1,t)(1−f2,t(1−η))

1−f1,tη−f2,t(1−η)
, p2,t = f2,tη(1−f1,t)

1−f1,tη−f2,t(1−η)
.

Substituting and computing the steady state we get

⇒

x∗1 = φ∗1Eη,γ[A
∗
1] + (1− φ1)Eη,γ[A

∗
2]

x∗2 = φ∗2Eη,γ[A
∗
1] + (1− φ2)Eη,γ[A

∗
2]

(1.15)
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Where φ∗1 =
p∗1−(p∗1−p∗2)(1−λ)

1−(p∗1−p∗2)(1−λ)
and φ∗2 =

p∗2
1−(p∗1−p∗2)(1−λ)

.

Substituting p∗1 and p∗2 we get φ∗1, φ
∗
2 depending only on f ∗1 , f

∗
2 , η, λφ∗1 =

(1−f∗1 )f2η+λ(1−f∗1−f∗2 +f∗1 f
∗
2 )

f1(1−η)+f∗2 η−f∗1 f∗2 +λ(1−f∗1−f∗2 +f∗1 f
∗
2 )

φ∗2 =
f∗2 η(1−f1)

f1(1−η)+f∗2 η−f∗1 f∗2 +λ(1−f∗1−f∗2 +f∗1 f
∗
2 )

�

Proof of Proposition 4

Let start to define the dynamics for horizontal socializationf1 = f̄(1− (1− η)|(Eη,γ[A1,t]− Eη,γ[A2,t])|)

f2 = f̄(1− η|(Eη,γ[A2,t]− Eη,γ[A1,t]])|)
(1.16)

To verify that (1, 1, f̄ , f̄), (0, 0, f̄ , f̄) and
(

1
2
, 1

2
, , f̄ , f̄

)
belong to the set of steady states is enough

to substitute them in (1.14) and (1.16)

To understand the dynamics we need to study Eη,γ[A
∗
1] and Eη,γ[A

∗
2] is the space [0, 1]2.

In fact Eη,γ[A
∗
1] and Eη,γ[A

∗
2] affect directly the horizontal socialization dynamics (1.8) and

the norms dynamics through (1.7) and (1.8). By symmetry we can focus only on regions

{(x1, x2) : x1 >
1
2
, x2 >

1
2
} and {(x1, x2) : x1 >

1
2
, x2 <

1
2
}.

• If x1 >
1
2

and x2 >
1
2

Eη,γ[Ā1] =
∑

Ai1p(A1 = Ai1) = 1∗γ(d̄ < x1)+

(
1− 1

2
η

)
∗γ(d̄ > x1 ∧ d̄ < x2)+

1

2
∗γ(d̄ > x1 ∧ d̄ > x2)

Where

–

γ(d̄ < x1) =

∫ x1

1/2

γ(d̄)dd̄ =

∫ x1

1/2

2dd̄ = 2

(
x1 −

1

2

)
–

γ(d̄ > x1 ∧ d̄ < x2) = 4 (1− x1)

(
x2 −

1

2

)
–

γ(d̄ > x1 ∧ d̄ > x2) = 4 (1− x1) (1− x2)
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Therefore

Eη,γ[A1] = 2

(
x1 −

1

2

)
+

(
1− 1

2
η

)
∗ 4 (1− x1)

(
x2 −

1

2

)
+

1

2
∗ 4 (1− x1) (1− x2)

= 2x1 − 1 +

(
1− 1

2
η

)
∗ 2 (1− x1) (2x2 − 1) + 2 (1− x1) (1− x2)

= 2x1 − 1− 2 + 2x1 + 4x2 − 4x1x2 + (1− x1 − 2x2 + 2x1x2)η + 2− 2x1 − 2x2 + 2x1x2

= −1 + 2x1 + 2x2 − 2x1x2 + (1− x1 − 2x2 + 2x1x2)η

When x1 and x2 are both larger than 1
2
, if Eη,γ[A1] > x1, then by symmetry Eη,γ[A2] > x2.

Therefore, since x1,t and x2,t are a convex combination of θ1,t and θ2,t (3) and θ1,t and

θ2,t grow if Eη,γ[A1] > x1 and Eη,γ[A2] > x2 respectively, we can conclude that x1,t and

x2,t grow whenever Eη,γ[A1] > x1 and Eη,γ[A2] > x2. Therefore, to prove that (1, 1, f̄ , f̄)

is the only steady state of (10), and that the region {(x1, x2) : x1 >
1
2
, x2 >

1
2
} has no

cycle and that it is always the basin of attraction of (1, 1, f̄ , f̄) it is enough to prove that

Eη,γ[A1] > x1 and Eη,γ[A2] > x2. By symmetry, the same reasoning applies to (0, 0, f̄ , f̄).

Let us verify thatEη,γ[A1] ≥ x1

−1 + 2x1 + 2x2 − 2x1x2 + (1− x1 − 2x2 + 2x1x2)η ≥ x1

−1 + x1 + 2x2 − 2x1x2 + (1− x1 − 2x2 + 2x1x2)η ≥ 0

(x1 − 1)︸ ︷︷ ︸
≤0

(1− 2x2)︸ ︷︷ ︸
≤0

(1− η)︸ ︷︷ ︸
>0

≥ 0 always satisfied

⇒ Eη,γ[A1] ≥ x1 ⇒ xt,1 − xt−1,1 > 0

By symmetry

⇒ Eη,γ[A2] ≥ x2 ⇒ xt,2 − xt−1,2 > 0

• If x1 >
1
2

and x2 <
1
2

Eη,γ[A1] = 1 ∗ γ(d̄ < x1) +
1

2
η ∗ γ(d̄ > x1 ∧ b̄ > x2) +

1

2
∗ γ(d̄ > x1 ∧ b̄ < x2)

Where

–

γ(d̄ < x1) =

∫ x1

1/2

γ(d̄)dd̄ =

∫ x1

1/2

2dd̄ = 2

(
x1 −

1

2

)
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–

γ(d̄ > x1 ∧ b̄ > x2) =

(
1−

∫ x1

1/2

2dd̄

)
∗
(

1−
∫ x2

0

2db̄

)
= 2(1− x1)(1− 2x2)

–

γ(d̄ > x1 ∧ b̄ < x2) = 2(1− x1)2x2

Eη,γ[A1] = 2x1 − 1 +
1

2
η ∗ 2(1− x1)(1− 2x2) +

1

2
∗ 2(1− x1)2x2

= 2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2

= 2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2

Let us verify that Eη,γ[A1] ≥ x1

2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 ≥ x1

x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 ≥ 0

(1− x1)(−1 + η(1− 2x2) + 2x2) ≥ 0

(1− x1)︸ ︷︷ ︸
≥0

(1− η)︸ ︷︷ ︸
≥0

(2x2 − 1)︸ ︷︷ ︸
≤0

≤ 0

⇒ Eη,γ[A1] ≤ x1

By symmetry the same applies to x2.

Eη,γ[A2] =
1

2
(1 + η) ∗ γ(d̄ < x1 ∧ b̄ < x2) +

1

2
∗ γ(d̄ > x1 ∧ b̄ < x2)

Eη,γ[A2] =
1

2
(1 + η) ∗ 2

(
x1 −

1

2

)
2x2 +

1

2
∗ 2(1− x1)2x2

Eη,γ[A2] = 2(1 + η)

(
x1 −

1

2

)
x2 + 2(1− x1)x2

Eη,γ[A2] ≥ x2 ?

2(1 + η)

(
x1 −

1

2

)
x2 + 2(1− x1)x2 ≥ x2(

2(1 + η)

(
x1 −

1

2

)
+ 2(1− x1)

)
x2 ≥ x2

(+2ηx1 − η + 1)x2 ≥ x2
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(η (2x1 − 1)︸ ︷︷ ︸
≥0

+1)

︸ ︷︷ ︸
≥1

x2 ≥ x2

Eη,γ[A2] ≥ x2

Now if we prove that Eη,γ[A1] ≥ x2 and Eη,γ[A2] ≤ x1, then by eq (3) Eη,γ[A1] ≤ x1 and

Eη,γ[A2] ≥ x2 are sufficient condition to ensure that x1,t ≥ x1,t+1 and x2,t ≤ x2,t+1, in all

points {(x1, x2) : x1 >
1
2
, x2 <

1
2
}.

Let us verify that Eη,γ[A1] ≥ x2

2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 > x2

2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 − x2 > 0

2x1 − 1 + (1− x1)(η(1− 2x2) + 2x2)− x2 > 0

2x1 − 1− x2 + (1− x1)(η + 2x2(1− η)) > 0 Always

Let us verify that Eη,γ[A2] ≤ x1

2(1 + η)

(
x1 −

1

2

)
x2 + 2(1− x1)x2 ≤ x1

2x1x2 − x2 + 2ηx1x2 − ηx2 + 2x2 − 2x1x2 ≤ x1

x2 + 2ηx1x2 − ηx2 ≤ x1

x2(1− η + 2ηx1) ≤ x1

if x1 = 1

x2(1 + η) ≤ 1 always (max{x2} = 1/2,max{η} = 1)

if x1 = 1
2

x2 ≤
1

2
always

Since Eη,γ[A1] has x2 as lower bound and Eη,γ[A2] has x1 as upper-bound, then in the

region x1 ≥ 1
2
, x2 ≤ 1

2
x1 decrease and x2 increase over time in all points {(x1, x2) : x1 >

1
2
, x2 < 1

2
}. The opposite holds in {(x1, x2) : x1 < 1

2
, x2 > 1

2
}, by symmetry. Notice

that these two conditions ensure that the only possible equilibrium in these regions is(
1
2
, 1

2
, f̄ , f̄

)
, which is a saddle.

�
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Proof of Proposition 5

Again, to understand the dynamics we need to study Eη,γ[A1] and Eη,γ[A2] is the space [0, 1]2.

In fact Eη,γ[A1] and Eη,γ[A2] affect directly the horizontal socialization dynamics (7) and the

norms dynamics through (7) and (8). By symmetry we can focus only on regions {(x1, x2) :

x1 >
1
2
, x2 >

1
2
} and {(x1, x2) : x1 >

1
2
, x2 <

1
2
}.

• If x1 >
1
2

and x2 >
1
2

Eη,γ[A1] = 1 ∗ γ(b̄ < x1) +
1

2
η ∗ γ(b̄ > x1 ∧ b̄ < x2) +

1

2
γ ∗ (b̄ > x1 ∧ b̄ > x2)

= 2x1 − 1 +
1

2
η4(1− x1)(x2 −

1

2
) +

1

2
4(1− x1)(1− x2)

Let us verify that Eη,γ[A1] ≤ x1

2x1 − 1 + 2η(1− x1)

(
x2 −

1

2

)
+ 2(1− x1)(1− x2) ≤ x1

x1 − 1 + 2η(1− x1)

(
x2 −

1

2

)
+ 2(1− x1)(1− x2) ≤ 0

(1− x1)(2η

(
x2 −

1

2

)
+ 2(1− x2)− 1) ≤ 0

(1− x1)(2ηx2 − η + 1− 2x2) ≤ 0

(1− x1)︸ ︷︷ ︸
≥0

(1− 2x2)︸ ︷︷ ︸
≤0

(1− η)︸ ︷︷ ︸
≥0

≤ 0 Always

By symmetry Eη,γ[A2] ≤ x2, thus both x1 and x2 decrease overtime.

Since by eq (3) both x1,t and x2,t are convex combinations of θ1,t and θ2,t which directly

depends on Eη,γ[A1] and Eη,γ[A2] respectively, then Eη,γ[A1] ≤ x1 and Eη,γ[A2] ≤ x2

are sufficient conditions to ensure that xi,t ≥ xi,t+1 for all i ∈ {1, 2}. By symmetry

xi,t ≤ xi,t+1 for all i ∈ {1, 2} when x1 ≤ 1
2
, x2 ≤ 1

2
. Thus, the only possible equilibrium in

these regions is
(

1
2
, 1

2
, f̄ , f̄

)
, which is a saddle.

Let us assume that x1 >
1
2

and x2 <
1
2

Eη,γ[A1] = 1 ∗ γ(b̄ < x1) + (1− 1

2
η) ∗ γ(b̄ > x1 ∧ d̄ > x2) +

1

2
∗ γ(b̄ > x1 ∧ d̄ < x2)

Eη,γ[A1] = 2x1 − 1 + 2(1− 1

2
η)(1− x1)(1− 2x2) + 2(1− x1)x2
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Let us verify that Eη,γ[A1] > x1

2x1 − 1 + 2(1− 1

2
η)(1− x1)(1− 2x2) + 2(1− x1)x2 > x1

x1 − 1 + 2(1− 1

2
η)(1− x1)(1− 2x2) + 2(1− x1)x2 > 0

(1− x1)(2(1− 1

2
η)(1− 2x2) + 2x2 − 1) > 0

(1− x1)(2− η − 4x2 + 2ηx2 + 2x2 − 1) > 0

(1− x1)︸ ︷︷ ︸
≥0

(1− 2x2)︸ ︷︷ ︸
≥0

(1− η)︸ ︷︷ ︸
≥0

≥ 0 Always

⇒ Eη,γ[A1] ≥ x1 and by symmetry Eη,γ[A2] ≤ x2

Eη,γ[A2] =
1

2
(1− η) ∗ γ(b̄ < x1 ∧ d̄ < x2) +

1

2
∗ γ(b̄ > x1 ∧ d̄ < x2)

Eη,γ[A2] =
1

2
(1− η) ∗ 2

(
x1 −

1

2

)
2x2 +

1

2
∗ 2(1− x1)2x2

Let us verify that Eη,γ[A2] ≤ x2

Eη,γ[A2]] =
1

2
(1− η) ∗ 2

(
x1 −

1

2

)
2x2 +

1

2
∗ 2(1− x1)2x2 ≤ x2

2(1− η)

(
x1 −

1

2

)
x2 + 2(1− x1)x2 ≤ x2

2(1− η)

(
x1 −

1

2

)
x2 + 2(1− x1)x2 ≤ x2

2x1x2 − x2 − 2x1x2η + x2η + 2x2 − 2x1x2 ≤ x2

−2x1x2η + x2η ≤ 0

x2η (1− 2x1)︸ ︷︷ ︸
≤0

≤ 0 always

We recall that x1,t+1 = φ1,t+1Eη,γ[A1,t] + (1− φ1,t+1)Eη,γ[A2,t]

x2,t+1 = φ2,t+1Eη,γ[A1,t] + (1− φ2,t+1)Eη,γ[A2,t]
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Thus x1,t+1 ≥ x1,t ⇐⇒ φ1,t+1Eη,γ[A
∗
1,t] + (1− φ1,t+1)Eη,γ[A

∗
2,t] ≥ x1,t

x2,t+1 ≤ x2,t ⇐⇒ φ2,t+1Eη,γ[A
∗
1,t] + (1− φ2,t+1)Eη,γ[A

∗
2,t] ≤ x2,t

From which x1,t+1 ≥ x1,t ⇐⇒ φ1,t+1 ≥
x1,t−Eη,γ [A∗2,t]

Eη,γ [A∗1,t]−Eη,γ [A∗2,t]

x2,t+1 ≤ x2,t ⇐⇒ φ2,t+1 ≤
x2,t−Eη,γ [A∗2,t]

Eη,γ [A∗1,t]−Eη,γ [A∗2,t]

Since, in the space
[

1
2
, 1
]
×
[
0, 1

2

]
, Eη,γ[A1] ≥ x1 and Eη,γ[A2] ≤ x2 for all t then as t→∞

Eη,γ[A1]→ 1 and Eη,γ[A2]→ 0 Thusx1,t+1 ≥ x1,t ⇐⇒ φ1,t+1 ≥ x1,t

x2,t+1 ≤ x2,t ⇐⇒ φ2,t+1 ≤ x2,t

Since φ1,t and φ2,t depends (among endogenous variables) only on f1,t and f2,t and both con-

verges as t → ∞ to f̄η and f̄(1 − η) respectively, then φ1,t → φ1 and φ2,t → φ2. Thus in this

region there are two possible equilibria

The opposite holds in {(x1, x2) : x1 <
1
2
, x2 >

1
2
}, by symmetry. �

�

Proof of Proposition 6

In specific regions of x, the dynamics of f is independent on the x and decoupled, namely the

flexibility of one community does not depends on the one of the other. In particular it is

ft =

[
1− µ 0

0 1− µ

]
ft−1 + constant

Thus

lim
t→∞

ft = f ∗

Now we can consider the dynamics on xt. For all possible f the dynamics is linear in x, the

coefficient matrix depends on f ∗ and it is a stochastic matrix

xt = (1− λ)

[
p1,t(f

∗) 1− p1,t(f
∗)

p2,t(f
∗) 1− p2,t(f

∗)

]
xt−1 + constant

We can observe that the coefficient matrix remain stochastic for all time period, namely∑
j Pi,j = 1. For example, moving one period ahead and looking at the first row of the coefficient
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matrix looking at the first row we have that

p1,tp1,t−1 + (1− p1,t)p2,t−1 + p1,t(1− p1,t−1) + (1− p1,t)(1− p2,t−1)

p1,tp1,t−1 + p2,t−1 − p1,tp2,t−1 + p1,t − p1,tp1,t−1 + 1− p2,t−1 − p1,t + p1,tp2,t−1 = 1

And thus as t→∞ we have

xt − x∗i = (1− λ)tP(t)(x0 − x∗i)

where P(t) is a stochastic matrix, and term (1− λ)t converges to zero, therefore

lim
t→∞

xt = x∗

And in all the region of the state space we converge to a steady state.

In the next section we characterize all the possible steady states of (1.10) and their possible

basin of attraction.

�

Point Distribution: Steady States

In this section we discuss in general all the possible steady state with point distribution. Re-

sults hold in general.

We define e as a generic element of E , thus we can enumerate the possible steady states as

e1, e2, ...

Proposition 7 [Convergence]

Consider the norm and socialization level dynamics in (1.10). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1)

• e1 = (1, 1, f̄ , f̄) and e2 = (0, 0, f̄ , f̄) ∈ E. The average actions at the steady state are,

respectively, Eη[A
∗] = (1, 1) and A∗ = (0, 0).

• e3 =
(

1
2
, 1

2
, f̄ , f̄

)
∈ E if and only if the original 2x2 symmetric games has multiple Nash

equilibria. The average actions at the steady state are Eη[A
∗] =

(
1
2
, 1

2

)
Proposition 8 [Polarization]

Consider the norm and socialization level dynamics in (1.10). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1)
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• e4 = (φ1, φ2, f̄η, f̄(1− η)) ∈ E if and only if φ ∈ R1∗,0∗. The average actions at the steady

state are Eη[A
∗] = (1, 0).

• e5 = (1− φ1, 1− φ2, f̄η, f̄(1− η)) ∈ E if and only if 1− φ ∈ R0∗,1∗. The average actions

at the steady state are Eη[A
∗] = (0, 1).

Proposition 9 [Partial Convergence]

Consider the norm and socialization level dynamics in (1.10). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1), with b̄ < d̄

• e6
d̄

=
(
1− 1

2
(1− η)(1− φ1), 1− 1

2
(1− φ2)(1− η), f̄

(
1− 1

2
(1− η)2

)
, f̄
(
1− 1

2
η(1− η)

))
∈

E if and only if 1− 1
2
(1− φ2)(1− η) < d̄ < 1− 1

2
(1− η(1− φ1)). The average actions at

the steady state are Eη[A
∗] =

(
1, 1

2
(1 + η)

)
.

• e7
d̄

=
(
1− 1

2
ηφ1, 1− 1

2
ηφ2, f̄

(
1− 1

2
η(1− η)

)
, f̄
(
1− 1

2
η2
))
∈ E if and only if 1 − 1

2
ηφ1 <

d̄ < 1− 1
2
ηφ2. The average actions at the steady state are Eη[A

∗] =
(
1− 1

2
η, 1
)
.

• e8
d̄

=
(

1
2
ηφ1,

1
2
ηφ2, f̄

(
1− 1

2
η(1− η)

)
, f̄
(
1− 1

2
η2
))
∈ E if and only if 1

2
ηφ2 < b̄ < 1

2
ηφ1.

The average actions at the steady state are Eη[A
∗] =

(
1
2
η, 0
)
.

• e9
d̄

=
(

1
2
(1− η)(1− φ1), 1

2
(1− η)(1− φ2), f̄

(
1− 1

2
(1− η)2

)
, f̄
(
1− 1

2
η(1− η)

))
∈ E if and

only if 1
2
(1 − η)(1 − φ1) < b̄ < 1

2
(1 − η)(1 − φ2). The actions at the steady state are

Eη[A
∗] =

(
0, 1

2
(1− η)

)
.

Proposition 10 [Partial Polarization]

Consider the norm and socialization level dynamics in (1.10). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1), with d̄ < b̄

• e6
b̄

=
(
1− 1

2
(1− φ1)(1 + η), 1− 1

2
(1− φ2)(1 + η), f̄(1

2
(1 + η2)), f̄(1− 1

2
η(1 + η))

)
∈ E if

and only if b̄ < 1− 1
2
(1− φ1)(1 + η) ∧ d̄ < 1− 1

2
(1− φ2)(1 + η). The average actions at

the steady state are Eη[A
∗] =

(
1, 1

2
(1− η)

)
.

• e7
b̄

=
(
1− φ1(1− 1

2
η), 1− φ2(1− 1

2
η), f̄(1− 1

2
η(1− η)), f̄(1

2
η(3− η))

)
∈ E if and only if

d̄ < 1 − φ1(1 − 1
2
η) ∧ b̄ < 1 − φ2(1 − 1

2
η). The average actions at the steady state are

Eη[A
∗] =

(
1
2
η, 1
)
.

• e8
b̄

=
(
φ1(1− 1

2
η), φ2(1− 1

2
η), f̄(1− 1

2
η(1− η)), f̄(1

2
η(3− η))

)
∈ E if and only if φ2(1 −

1
2
η) < d̄ < φ1(1 − 1

2
η) ∧ b̄ > φ1(1 − 1

2
η). The average actions at the steady state are

Eη[A
∗] =

(
1− 1

2
η, 0
)
.

• e9
b̄

=
(

1
2
(1 + η)(1− φ1), 1

2
(1 + η)(1− φ2), f̄(1

2
(1 + η2)), f̄(1− 1

2
η(1 + η))

)
∈ E if and only

if 1
2
(1 + η)(1− φ1) < d̄ < 1

2
(1 + η)(1− φ2)∧ b̄ > 1

2
(1 + η)(1− φ2). The average actions at

the steady state are Eη[A
∗] =

(
0, 1

2
(1 + η)

)
.
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Corollary 10.1 The steady state described in Proposition 8, 9, 10 and 11 are the only possible

steady states of (1.10). Moreover

• If the game played is with complements, b̄ < 1
2
< d̄, (1.10) has a minimum of three steady

states, (e1, e2, e3), and a maximum of nine, (e1, ..., e9
d̄
).

• If the game played is with substitution, b̄ < 1
2
< d̄, (1.10) has a minimum of three steady

states, (e1, e2, e3), and a maximum of nine, (e1, ..., e9
b̄
).

• If the game played is a Prisoner Dilemma, 1
2
< {b̄, d̄}, (1.10) has a minimum of two

steady states, (e1, e2), and a maximum of six. The latter are (e1, ..., e5, e7
d̄
, e8
d̄
) if d̄ < b̄,

and (e1, ..., e5, e6
d̄
, e9
d̄
) if b̄ < d̄.

With point distribution Eη,γ[A] = Eη[A], thus in order to prove the previous propositions

we need to substitute Eη[A] (listed in Figure 4) in equation (16) and (17).

Now given the definition of basin of attraction and proposition 8, 9, 10, 11 it is trivial to

find all the possible basin of attraction. The possible steady states of (1.10) have the following

basin of attraction:

1. B(e1)



3 R1∗,1∗ always

3 R1∗,1 iff d̄ > b̄ ∧ e6
d̄
∈ R1∗,1∗

3 R1,1∗ iff d̄ > b̄ ∧ e6
d̄
∈ R1∗,1∗

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R1∗,1 ∧ e6
d̄
∈ R1∗,1∗

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R1,1∗ ∧ e6
d̄
∈ R1∗,1∗
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2. B(e2)



3 R iff e2 ∈ R

3 R1∗,0∗ iff e4 ∈ R

3 R0∗,1∗ iff e5 ∈ R

3 R1∗,1 iff d̄ > b̄ ∧ e6
d̄
∈ R

3 R1,1∗ iff d̄ > b̄ ∧ e7
d̄
∈ R

3 R0,0∗ iff d̄ > b̄ ∧ e8
d̄
∈ R

3 R0∗,0 iff d̄ > b̄ ∧ e9
d̄
∈ R

3 R1∗,0 iff b̄ > d̄ ∧ e6
b̄
∈ R

3 R0,1∗ iff b̄ > d̄ ∧ e7
b̄
∈ R

3 R1,0∗ iff b̄ > d̄ ∧ e8
b̄
∈ R

3 R0∗,1 iff b̄ > d̄ ∧ e9
b̄
∈ R

3. B(e3)



3 R0∗,0∗ always

3 R0,0∗ iff d̄ > b̄ ∧ e8
d̄
∈ R0∗,0∗

3 R0∗,0 iff d̄ > b̄ ∧ e9
d̄
∈ R0∗,0∗

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R0,0∗ ∧ e8
d̄
∈ R0∗,0∗

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R0∗,0 ∧ e9
d̄
∈ R0∗,0∗

4. B(e4)


3 R1∗,0∗ iff e4 ∈ E

3 R1∗,0 iff b̄ > d̄ ∧ e6
b̄
∈ R1∗,0∗

3 R1,0∗ iff b̄ > d̄ ∧ e8
b̄
∈ R1∗,0∗

5. B(e5)


3 R0∗,1∗ iff e5 ∈ E

3 R0,1∗ iff b̄ > d̄ ∧ e7
b̄
∈ R0∗,1∗

3 R0∗,1 iff b̄ > d̄ ∧ e9
b̄
∈ R0∗,1∗

6. B(e6
d̄
)

3 R1∗,1 iff d̄ > b̄ ∧ e6
d̄
∈ E

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R1∗,1

7. B(e7
d̄
)

3 R1,1∗ iff d̄ > b̄ ∧ e7
d̄
∈ E

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R1,1∗

8. B(e8
d̄
)

3 R0,0∗ iff d̄ > b̄ ∧ e8
d̄
∈ E

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R0,0∗
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9. B(e9
d̄
)

3 R0∗,0 iff d̄ > b̄ ∧ e9
d̄
∈ E

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R0∗,0

10. B(e6
b̄
)

3 R1∗,0 iff b̄ > d̄ ∧ e6
b̄
∈ E

3 R1∗,0∗ iff b̄ > d̄ ∧ e4 ∈ R1∗,0

11. B(e7
b̄
)

3 R0,1∗ iff b̄ > d̄ ∧ e7
b̄
∈ E

3 R0∗,1∗ iff b̄ > d̄ ∧ e5 ∈ R0,1∗

12. B(e8
b̄
)

3 R1,0∗ iff b̄ > d̄ ∧ e8
b̄
∈ E

3 R1∗,0∗ iff b̄ > d̄ ∧ e4 ∈ R1,0∗

13. B(e9
b̄
)

3 R0∗,1 iff b̄ > d̄ ∧ e9
b̄
∈ E

3 R0∗,1∗ iff b̄ > d̄ ∧ e5 ∈ R0∗,1

Now we can consider all the possible equilibria e basin of attraction and we can easily check

that ⋃
∀ei∈E

B(ei) = [0, 1]2 × [0, 1]2

Thus, independently on parameters b̄, d̄, η, f̄ the dynamics (1.10) always converge to a stable

steady state, no matter the starting point.

�
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Chapter 2

Cultural Transmission with Incomplete

Information: Parental Self-Efficacy and

Group Misrepresentation1

Abstract

This paper introduces incomplete information in the standard model of cultural transmission

(Bisin and Verdier, 2001). We show that if parents are not fully aware of own group size

and about the efficiency of the cultural transmission technology, they may end up to sustain

wrong conjectures about both quantities. This translates in having complementarity instead of

substitution between optimal socialization effort and own population share. In the long run, if

conjectures are shaped by cultural leaders who want to maximize the presence of the trait of

their own community in the next period, conjectures are characterized by a negative bias so that

agents tend to underrepresent own group in the population. Our main finding is that, depending

on the magnitude of the bias, the dynamics can display stable or unstable polymorphic equilib-

ria, or just a stable homomorphic equilibrium.

Journal of Economic Literature Classification Numbers: A14, C72, J15, D10, Z10, Z13

Keywords: Cultural Transmission, Group Under-Representation, Self-Confirming Equilibrium,

Incomplete Information, Cultural leaders

1This chapter is joint with Fabrizio Panebianco, Università Cattolica del Sacro Cuore. E-mail:
fabrizio.panebianco@unicatt.it
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2.1 Introduction

It is a well-established fact that members of cultural or ethnic groups find it hard to have an

unbiased perception of own population share in the society, even if the correct information is

publicly available. In 2016 the magazine “The Economist” analyzed the perception that Euro-

pean citizens of different countries have about the share of muslim population in own country2.

It turned out that this perception is extremely biased. For example, the less biased ones seem

to be the Germans who think muslims to be 19% of the population, while they are just about

6%. The most biased are Hungarians, who think muslims to be 7% while they are 70 times

less, 0.1%. A recent paper by Alesina et al. (2018) finds evidence that citizens strongly overes-

timate the share of migrants in the population. In some cases, as for the US, while migrants

accounts for a 10% of the population, people think they are almost 40%. This strong misper-

ception, paired with the populist story of immigrants’ invasion, may have consequences on the

way agents of different groups decide, for example, to transmit own cultural values to other

members, and, when it comes to cultural traits, can affect the long run composition of the

society.

Considering the issue of values’ transmission, it is well know in the social psychological

literature that the efficacy of parental transmission, that is the technology by which parents

try to transmit own traits and opinions to offspring, may not be perfect or frictionless. The

true parental efficacy is difficult to test since it depends on both external exogenous factors,

such as neighborhood composition, child characteristics, or other ecological variables (Belsky

et al., 1984), and on internal endogenous characteristics, such as parental beliefs about their

own efficacy. The latter is known as “Parental Self-Efficacy” (PSE), which can be defined as

people’s beliefs about their capabilities to organize and execute a set of tasks related to par-

enting a child. High levels of “Parental Self-Efficacy” are associated with higher quality of

parent-child interactions that leads to better offsprings’ development, higher parental involve-

ment and efficacy and lower stress (Bandura, 1993; Coleman and Karraker, 2000; de Montigny

and Lacharité, 2005, among others).

We take into consideration the possibile misperception of own group size, and Parental

Self-Efficacy issues, by introducing incomplete information in the standard model of cultural

transmission (Bisin and Verdier, 2001). We consider a cultural transmission model in which

parents of two different cultural groups exert some effort to try to induce own type to chil-

dren. However, differently from standard literature, we introduce incomplete information in

two different ways: we assume that parents ignore the actual population shares, and they also

2The Economist, “Islam in Europe: perception and reality”, 23/03/2016
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ignore how efficiently they are able to send messages to children during the socialization pro-

cess.This double uncertainty is motivated by the fact that, on one hand, can be very costly

to check the exact population share in the neighborhood where the children interact; on the

other hand, parental true effectiveness is by definition unobservable and parents can only try

to infer it looking at offspring’s outcome.3 Parents just have conjectures about both, and

then exert socialization efforts maximizing a subjective expected utility. These two elements

are both new with respect to the literature in which it is usually assumed that parents know

population shares and the transmission technology is common knowledge and normalized to a

zero-frictions technology. We show that if parents are not fully aware of own group size and

about the efficiency of the cultural transmission technology, they may end up to sustain wrong

conjectures about both quantities. This translates in long run consequences about composition

of the society that may reverse the standard predictions of the model.

Socialization is a complex process that makes parents very attentive about their choices.

Moreover, since parents may ignore their group population shares and their own efficacy in

parental transmission, an implicit process of learning occurs during parenting to try to have

correct conjectures about these. To take this issues into account, we consider parents that try

not to have wrong conjectures about the true parameters, to efficiently transmit their values.In

details, during the socialization process parents receive some form of feedback from children

about how much they have been overall convinced by each trait during the socialization pro-

cess. This feedback enables parents to make some inference about own conjectures. Only

conjectures that are compatible with the feedback received can be sustained. We model this

with an equilibrium concept that fits very well with this situation, the self-confirming (or con-

jectural) equilibrium (Battigalli and Guaitoli, 1988; Fudenberg and Levine, 1993a). Indeed,

this equilibrium requires that, under incomplete information, agents maximize their subjective

expected utility and have conjectures that must be confirmed by the feedback they receive, but

they may be wrong. Although this equilibrium concept is static, as we discuss in the paper, this

equilibrium concept has also a strong learning foundation that requires repeated parent-child

interaction where parents revise their conjectures until the parental experience does not confirm

them.4 We strongly believe that it is a natural way to model cultural transmission processes

which are characterized by repeated parent-child interaction and parents’ learning process.

The first set of results we have regards the static setting, that is the choice of a single gen-

3Also in social psychological literature, there are no data nor measures about the true parental effectiveness,
but only about PSE.

4In details, any form of adaptive learning process, if converges, it does so to a self-confirming equilibrium
(Milgrom and Roberts, 1991).
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eration. At first, in Section 3, we characterize the set of self-confirming equilibria, showing that

a higher “Parental Self-Efficacy” induces higher socialization effort, as documented by social

psychological literature. Then we discuss how the key concepts of cultural substitution and

cultural complementarities change in our setting. While with complete information there is no

difference between conjectures and true parameters, with incomplete information this difference

is crucial. We propose the definition of “conjectured cultural substitution (complementarity)” -

optimal socialization efforts are decreasing (increasing) in the conjecture about own population

shares - as opposed to the “actual cultural substitution (complementarity)” - optimal socializa-

tion efforts are decreasing (increasing) in own population shares. Our main finding is that it is

possible to obtain “actual cultural complementarity” in the Bisin and Verdier (2001) cultural

transmission mechanism if incomplete information is considered. Moreover, whenever there is

“conjectured cultural substitution (complementarity)” then there is “actual cultural comple-

mentarity (substitution)”. In particular, if agents underestimate the share of their traits in

the society there is cultural substitution with respect the conjecture and, surprisingly, cultural

complementarity with respect the true population share. On the other hand, whenever agents

overestimate their own group in the society we obtain multiple equilibria and, depending on

the choice, both cultural complementarity and substitution can exists. We also show that no

agent can largely overestimate own group size and still have own conjectured confirmed, while

underestimation of any magnitude can be sustained and confirmed. We study the welfare loss

associated with incomplete information with respect to the standard case in Section 5. We show

that the loss is increasing in the difference between the conjecture and the true parameter. We

also discuss how intolerance relates with welfare loss.

We then move to the analysis of the dynamic in section 6, introducing a minimal model of

leadership. We postulate the existence of two cultural leaders, one for each cultural group.5

Leaders can choose to induce a positive or negative bias in the conjectures of their commu-

nity members. Each cultural leader, in order to maximize the share of the trait of her own

community in the next period, always choose to instill a negative bias in agents belonging to

their cultural group. The implications are particularly rich. We identify thresholds for the

magnitude of biases of the two communities. Depending on the biases’ magnitude with respect

the threshold values, all possible social compositions can arise in the long run. In particular, if

the bias of one cultural group overcome the corresponding threshold, then there exist a stable

equilibrium in which the whole society converge to that culture. The most important result,

with respect previous literature, is that if the bias of both groups do not overcome the threshold

value then, despite having actual cultural complementarity in socialization choice there exists

5In recent years the study of cultural leaders has become of interest in the cultural transmission literature,
for example Verdier and Zenou (2015), Prummer and Siedlarek (2017) and Verdier and Zenou (2018)
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a stable equilibrium with cultural heterogeneity. In the opposite case an unstable polymor-

phic equilibrium is shown and long run cultural homogeneity is the result. This is particularly

relevant because, in previous cultural transmission papers (Bisin and Verdier, 2001; Cheung

and Wu, 2018), cultural complementarity leads always to cultural homogeneity. We further

discuss the role of different magnitude of population conjectures’ bias showing that an higher

bias translate in a higher population share in the long-run. Moreover, the presence of one

group in the society at the steady state positively depends on the intolerance and effectiveness

as parents of agents belonging to that specific group.

2.2 The Model

Consider a society composed of a continuum of agents. Each agent belongs to one cultural

group. Each group is characterized by a specific discrete cultural trait. Let the set of traits

be I := {a, b} and the fraction of individuals with trait i ∈ I be qi. We assume that in

each group all agents are equal. Then, with a little abuse of notation we refer to i as the

representative agent displaying trait i ∈ I. In each period, each agent reproduces asexually

giving birth to just one child. Children are born without any specific trait, and traits are

acquired during the cultural transmission process. Cultural transmission from one generation

to the next one is a probabilistic process that is the result of a vertical socialization step, that

transmits parental trait to child with probability di, and an oblique socialization step, that

transmits with probability 1 − di a random trait of the population.6 Parents exert an effort

τ i ∈ T := [0, 1] to induce own type to child in the vertical socialization step. Then di := ϕ(τ i)

where ϕ : T → [0, 1] and is increasing in τ i.

Parental Efficacy In the standard cultural transmission literature, from Bisin and Verdier

(2001) on, it is assumed that parental effort translates without friction to vertical socialization,

namely ϕ(τ i) = τ i. However, the efficacy of parental transmission may not be perfect due

to several factors, such as neighborhood composition, child characteristics, or other ecological

variables (Belsky et al., 1984). For this reason, we consider a generalization of ϕ(τ i) allowing

for an efficacy parameter αi ∈ R+, defining di := ϕ(τ i) = αiτ i. The parameter αi can reduce

the efficacy of effort in case of frictions, but in some cases the vertical socialization technology

can be such that it magnifies the effects of the parental effort.7 To simplify the analysis, we

assume the efficiency to be group specific. Call S := [0, 1]2 and, for each i ∈ I, let si ∈ S be

a generic pair (αi, qi). We define the following consequence function mapping from the triple

6We remand to Cavalli-Sforza and Feldman (1981) and Bisin and Verdier (2001) for the terminology.
7Even if, with a generic αi ∈ R+, we may have that αiτ i > 1, we will show later that it will never be the

case so that ϕ : T → [0, 1] is always true.
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of effort, efficiency, and population shares to transition probability pii, that is the probability

that a given parent i gets a child of the same type. For each i ∈ I,

pii : T × S → [0, 1]

(τ i, αi, qi) 7→ αiτ i + (1− αiτ i)qi
(2.1)

We also define pij := 1− pii that is the probability that own child is socialized to the different

trait. This is given by pij = (1− αiτ i)(1− qi).

Incomplete information Differently from standard literature in cultural transmission, we

assume that parents have incomplete information about the efficiency of their effort, αi, and

about the composition of the social environment the child is embedded into, qi.8 Indeed parents

may not be sure about how much the messages they send to children during the vertical

socialization are effective, and they may also ignore the exact composition of the society in

terms of groups shares. Then, each parent has conjectures about si and, given these conjectures,

produces a subjectively optimal effort to try to induce own type to the child. For each i ∈ I,

define as ŝi := (α̂i, q̂i) ∈ S the pair of conjectured effort efficiency and population shares.9

Given i ∈ I, and given ŝi, conjectures induce a conjectured transition probability function,

describing what parent i thinks is the probability that own child is socialized to the same trait

as her own.

p̂ii : T × S → [0, 1]

(τ i, α̂i, q̂i) 7→ α̂iτ i + (1− α̂iτ i)q̂i
(2.2)

As we did for transition probabilities, we define p̂ij := 1− p̂ii = (1− α̂iτ i)(1− q̂i).

Notice that parents are not able to observe their own actual efficacy, αi, but they can have

information only about the effect of their action on offspring outcome (pii in this model). Thus,

8Note that, although children may have a neighborhood composition different from the overall population
shares due to homophily, in this framework we choose to ignore this issue. Even if homophily may be somehow
relevant, the main contribution of this paper regards how parental cultural transmission works when oblique
socialization effects, however defined, are not known to the parents, together with parental effort efficacy. In the
first part of the analysis, when no population dynamics occurs, it would be indifferent to allow for homophily
or not, since what is relevant is the overall effect of oblique socialization on transition probabilities. When it
comes to the population dynamic, the dynamics with and without homophily would be a bit different. However,
we decided to ignore this issue since the presence of homophily does not change the quality of the results, but
makes the framework fr too complicated distracting from the main research question.

9Note that we consider here just deterministic conjectures. We can potentially have probabilistic conjectures
of the form ŝi ∈ ∆(S). However, given the structure of the utility function we describe below, for every
probabilistic conjecture there exists one deterministic conjecture inducing the same subjectively optimal action.
Then, without loss of generality, we decided to focus on deterministic conjectures.
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they form conjectures about α̂i.10 α̂i is what in the social psychological literature is called

“Parental Self-Efficacy”, namely people’s beliefs about their capabilities to organize and exe-

cute a set of tasks related to parenting a child (Bandura, 1993; Coleman and Karraker, 2000;

de Montigny and Lacharité, 2005, among others).

Subjective expected utility maximization We assume that each parent i ∈ I prefers

having a child of own type than one of a different type. As standard, for every i ∈ I and

j ∈ I \{i}, we model these preferences as a vector (V ii, V ij) ∈ [0, 1]2 where V ii > V ij. For each

i ∈ I, let ∆V i := V ii − V ij.

Parents choose the level of socialization effort using imperfect empathy, namely they evaluate

the types of children using their own preferences (Bisin and Verdier, 2001). Assuming quadratic

socialization costs, parents maximize their subjective expected utility given own conjectures.

Then, for every i ∈ I, and j ∈ I \ {i} we get the following problem

max
τ i∈[0,1]

Eip̂ii [u
i] = p̂iiV ii + p̂ijV ij − 1

2
(τ i)2 (2.3)

Confirmed conjectures Since parents try to do their best to successfully socialize own

children, we assume that they try not to have wrong conjectures. The best they can do is not

to have conjectures that contrast with some piece of evidence they can get. To do so we assume

that each parent i ∈ I, during the socialization process, receives some message mi from own

child, and that, in equilibrium, she must have conjectures that are not in contrast with the

message received. For simplicity we assume that the message received by parents is exactly the

transition probability, that is mi = pii. The assumption here is that parents are able to perfectly

observe the true pii. We thus assume that parents, during the whole socialization process, are

able to understand through deep communication with own children how much the children are

convinced by parental traits in a [0, 1] scale.11 This is, we think, a particularly relevant aspect

of socialization, somehow ignored in standard literature, since parents are not blind and do not

just discover the type of child at the end of the process, but interact with children during the

socialization and may get some messages about how children are prone to get one trait against

the other one.12 Therefore, the information obtained by the parent i ∈ I can be described by a

feedback function f : T × S → [0, 1]. If a parent i ∈ I receives a particular message mi, what i

10Also in social psychology literature does not exists a measure of objective efficacy. In particular,
11Coleman and Karraker (2000)) outlines several possible mechanisms through which parental self-efficacy

α̂ develops, in our model we focus on the actual parental experiences, in fact, the feedback provided from
adult-child interactions is considered a key determinant of the formation of parental self-efficacy.

12Below in the paper we provide an interpretation of the proposed concept of equilibrium and about confirmed
conjectures in which parents update time by time their effort depending on the message sent by children, and
converge to the equilibrium effort For the time being we assume that the effort is chosen by each parent once
and for all at the beginning of each period.
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can infer, conditioned on her socialization effort τ i, is that the set of conjectures consistent with

the message is given by f−1
i,τ i

(mi) := {(αi, qi) : fi(τ
i, αi, qi) = mi}. This is the set of conjectures

compatible with the message received. Notably, the true parameters must be part of this set,

but this set will generically be larger.

Selfconfirming equilibrium We now define our equilibrium concept for this problem. We

use the notion of selfconfirming equilibrium in which parents produce a subjectively optimal

socialization effort, and the conjectures on which maximization is based are confirmed, that is,

conjectures are compatible with the message received.13 Let r : S → R+ be the best response

operator, so that r(α̂i, q̂i) is the subjectively optimal effort agent i ∈ I exerts if she displays

conjectures (α̂i, q̂i).14

Definition A profile (τ i, α̂i, q̂i)i∈I of socialization choice and conjectures is a selfconfirming

equilibrium at (αi, qi,∆V
i)i∈I if, for each i ∈ I

1. (subjective rationality) τ i ∈ r(α̂i, q̂i)

2. (confirmed conjectures) (α̂i, q̂i) ∈ f−1
i,τ i

(mi)

The first condition simply states that agents exert an effort that is an optimal response

given their conjectures. The second condition implies that these conjectures must be confirmed

by the message received. That is to say that if parents have these conjectures, then even if they

are wrong, they cannot infer that they are wrong from the message received from the child.

The main intuition behind this equilibrium concept is that if parents have incomplete informa-

tion they can just act depending on some conjectures they have. Nothing ensures that these

conjectures are correct. However, since parents get some feedback, they just keep conjectures

that are compatible with the signals received. However, there the signal may be compatible

with multiple conjectures, and some of them may be wrong.

As anticipated before, αi is empirically impossible to observe given that parents may just

observe the effect of their socialization effort and, as we assumed here, how much children are

convinced about the different traits. By no way parent may have a direct and objective mea-

sure of their efficacy. Thus parents use received signals about population shares and transition

probabilities to form conjectures about their self-efficacy. We have assumed that talking with

their children, parents are perfectly able to deduce the correct transition probability pii. In

such a case, as we show in the next section, parents manage to have correct conjectures about

13Battigalli and Guaitoli (1988), Fudenberg and Levine (1993a), Battigalli et al. (2015), Battigalli (2018).
14At this stage we have not proved that the correspondence r is single-valued. However, given the concavity

of the problem this is ensured and we define directly from here r : S → [0, 1] as a function and not as a
correspondence.
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self-efficacy if and only if the signal about population share is correct. If we relax this assump-

tion and messages on the transition probability are noisy, similar results occur, parents end up

to correct conjectures α̂i if and only if signals about population share are noiseless.

Learning foundation of Selfconfirming equilibrium The selfconfirming equilibrium has

a learning foundation that makes it particularly fit to model parental socialization choices.

A selfconfirming equilibrium can be seen as the steady state of an adaptive learning dynam-

ics in which conjectures are updated given the feedback agents receive at each period, when

agents maximize their instantaneous expected utility (Fudenberg and Levine, 1993b; Milgrom

and Roberts, 1991; Battigalli et al., 1992). In terms of our socialization process it is as if the

socialization time is composed of infinitely many periods, and the child adopts a type at the

end of all the periods. At the beginning of each period, each parent fixes her socialization

choice. Then the vertical and oblique socialization schemes proceed as previously described,

with children producing messages for parents. Each message is how much the child has been

convinced, in that period, by each trait. Parents observe the message and update their con-

jectures, with an arbitrary adaptive learning dynamics. Then the process restarts again with

a new round of vertical and oblique socialization. A fixed point of this adaptive learning pro-

cess is a selfconfirming equilibria, where agents end up to play actions that are sustained by

conjecture confirmed by experience. Thus if this process converges, then it must converge to

a selfconfirming equilibrium. This mimics the fact that parents during socialization actually

change their efforts depending on the feedback they can get from children. We highlight the

fact that this learning foundation is just an interpretation of the selfconfirming equilibrium that

is relevant for its introduction in a cultural transmission model with incomplete information.

However the model we present here is not a learning model but, in each cohort, it is a static

model that uses this equilibrium concept.

Notice that, as shown by Milgrom and Roberts (1991), the convergence to selfconfirming equi-

librium does not depend on specific learning rules but holds for any possible adaptive learning.

A process is consistent with adaptive learning if the players can find a way to justify choices

in terms of the past realizations. Best Reply Dynamics, Fictitious Play, and Bayesian learning

are all example of adaptive learning.15 Therefore, selfconfirming equilibrium, although static,

is consistent with all possible parental learning processes of this kind and it is the best way to

capture the implicit process of learning that occurs during parenting.

15It is, thus, important to underline how selfconfirming equilibrium is the fixed point of the learning process
even if agents update their conjecture as a Bayesian. This is relevant because it show that even fully rational
Bayesian parents may have, in equilibrium, wrong conjecture about their efficacy and population shares. Intu-
itively, given parents’ conjectures optimal effort levels can induce outcome that confirm the previous conjectures,
in the case, parents do not revise their conjectures (for a deeper discussion see for example Battigalli, 2018).
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2.3 Characterization of Equilibra

We can now characterize the set of selfconfirming equilibria.16

Proposition 1 A selfconfirming equilibrium at (αi, qi,∆V i)i∈I of the socialization game is

a profile (τ i, α̂i, q̂i)i∈I in which, for each i ∈ I

τ i = α̂i(1− q̂i)∆V i (2.4)

(α̂i, q̂i) : α̂i(1− q̂i)[α(1− qi)− α̂(1− q̂i)]∆V i = q̂i − qi (2.5)

Proof in the Appendix. �

The socialization effort positively depends on the “Parental Self Efficay” α̂i. This result is

in line with the social psychological literature where, as outlined in Coleman and Karraker

(2000), high parenting self-efficacy has been found to predict higher parental effort and perfor-

mance.17

Notice that even if parents correctly observe pii from the messages they receive, this is not

enough to make a correct inference about the underlying parameters (αi, qi). In fact, since the

feedback function f is surjective, agents are not able to derive the exact parameter values but

only the locus of points (τ i, αi) consistent of the feedback. We can observe that if an agent has

a correct conjecture about the ratio of own trait in the population, namely q̂i − qi = 0, then

the only locus of points that supports selfconfirming equilibrium is (α̂i, q̂i) = (αi, qi), namely

parent has correct conjectures and the socialization choice described in (2.3) boils down to the

standard (Bisin and Verdier, 2001) result

τ ibv = αi(1− qi)∆V i (2.6)

Namely the Bisin and Verdier (2001) socialization choice, τ ibv, is nothing but the selfconfirming

socialization choice when agents have correct conjectures about effectiveness and trait’s share

in the population. From now on we will use τ ibv as a benchmark for our analysis. We now

go further in the equilibrium characterization analyzing how conjectures are shaped and the

derived selfconfirming efforts differ from the standard literature ones.

16Notice that we define it as a socialization game even if there is no interaction among parents.
17For example, responsivity to children’s needs (Donovan and Leavitt, 1985; Donovan et al., 1997; Unger

and Wandersman, 1985), engagement in direct parenting interactions (Mash and Johnston, 1983), and active
parental coping orientations (Wells-Parker et al., 1990).
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We can interpret our model as if parents receive a bidimensional signal, over pii and qi, where

the first one is always correct. Different signals lead to different (confirmed) conjectures α̂i,

which is correct whenever the signal about qi is correct. Notice that if parents do receive

any signals about qi, then q̂i is nothing but an exogenous conjecture and together with α̂i

should satisfy conditions of Proposition 1. Assuming absurdly that parents are perfectly able

to observe their own self-efficacy, and thus conjectures α̂i are correct, (as in Bisin and Verdier

(2001)), then q̂i = qi whenever the signal about p̂ii is correct. In such a case parents may have

incorrect conjectures about population share if only if they are not able to have correct guesses

of transition probabilities of offsprings.

Let us start with the analysis of the conjectures in equilibrium.

Figure 2.1 provides a generic representation of (2.5), describing how equilibrium conjectures

are shaped. In what follows we decide to characterize conjectures α̂i, given q̂i. Indeed, fixing a

conjecture q̂i, we study which α̂i satisfies (2.5). First of all if q̂i is too large with respect to qi

Figure 2.1: αi = 0.8, ∆V i = 1, qi = 0.4

there are no conjectures compatible with the confirmation requirement. This is to say that an

agent, in equilibrium, cannot think, and be confirmed in her conjecture, her group to be too

large with respect to what it is in reality. In details, defining q̄i := qi +
τ i2bv

4∆V i
, then if q̂i > q̄i

no confirmed conjectures can be find. Interestingly notice that, on the contrary, there is no

lower bound to have confirmed conjectures, so that agents may have arbitrarily low conjectures

on q̂i and still find a α̂i confirming them. In other words, if agents strongly over-represent

own group, they may find they are committing a mistake, while if they under-represent it, and

maybe strongly under-represent it, they may not have a way to understand they are wrong.

Moreover, if q̂i ∈ [qi, q̄i] two possible α̂i satisfy the confirmed conjectures requirement. If q̂i < qi

then only a single α̂i satisfies the requirement.
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We now formalize the discussion characterizing the Parental Self-Efficacy α̂, namely the conjec-

ture on α, that can sustain selfconfiming equilibrium. Consider equation in (2.5) expressing the

condition for confirmed conjectures. Let ξi :=
√

4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2, and solve

(2.5) for α̂i. Then, fixing conjecture about population shares q̂i, for each i ∈ I there are two

conjectures about socialization efficiency, α̂ih and α̂il, that satisfy (2.5). They are given by the

following18

α̂ih =
τ ibv + ξi

2(1− q̂i)∆V i
, α̂il =

τ ibv − ξi

2(1− q̂i)∆V i
(2.7)

For each i ∈ I, we can then compute the optimal socialization efforts. Since there are two possi-

ble equilbrium conjectures, there are also two possible equilibrium efforts. Define τ ih :=
τ ibv + ξi

2
,

and τ il :=
τ ibv − ξi

2
.

Next proposition characterizes the set of selfconfirming equilibria with respect different values

of the conjectures (q̂i)i∈I . Define by Ei ∈ T × S the set of selfconfirming equilibrium choices

and conjectures for each i ∈ I, with generic element (τ i, α̂i, q̂i). Then, the set of selfconfirming

equilibria is given by E := ×i∈IEi.

Proposition 2 For each i ∈ I:

i) If q̂i > q̄i, it does not exist any α̂i ∈ [0, 1] satisfying the confirmed conjectures property,

and Ei = ∅;

ii) If qi < q̂i < q̄i, Ei = {{(τ ih, α̂ih, q̂i)}, {(τ il , α̂il, q̂i)}}, with τ il < τ ih < τ ibv and α̂il < α̂ih < αi;

iii) If q̂i = qi, Ei = {{(τ ibv, αi, qi)}};

iv) If q̂i < qi < q̄i, Ei = {{(τ ih, α̂ih, q̂i)}}, with τ ih > τ ibv and α̂ih > αi.

Proof. in the Appendix. �.

This proposition analyzes how efforts differ with respect to the Bisin Verdier framework, and

how conjecture relates to the true parameter values. As a direct consequence of the multiplicity

of confirmed conjectures discussed above, we observe in some cases a multiplicity of equilibria.

This is discussed in Figure 2.2 that summarizes the results of Proposition 2, and in which the

diagonal represents the equilibrium with correct conjectures (Bisin and Verdier, 2001). Start

focusing on conjectures q̂i. If a group underestimates its own presence in the society q̂i < qi

18There are some issues that we need to address. First of all some of these conjectures, while they satisfy (2.5),
they may be unfeasible because negative. Second, even if feasible, each of the conjectures (α̂h, q̂

i) and (α̂l, q̂
i)

induces a subjectively optimal vertical socialization effort that needs to be feasible. In the next proposition we
address both these issues. Notice also that in some cases we can find that α̂i > 1, that means that parents think
that there are no frictions in the vertical transmission, but that, on the contrary, this transmission is extremely
efficient. Most importantly, for every q̂i < q̄i, we have that di ∈ [0, 1].
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the socialization choice of its members is unique and, due to a cultural substitution reasoning,

always higher than in the baseline model Bisin and Verdier (2001) with complete information;

on the other hand, if a group overestimate the presence of its own trait in the society, q̂i > qi,

there is room to two different conjectures and two different selfconfirming socialization choices,

both below to the Bisin-Verdier benchmark, but with different magnitudes. This multiplicity

derives from the multiplicity of confirmed conjectures discussed above. Notice also that in all

cases, q̂i < qi if and only if α̂i > αi. Then in equilibrium parents can overestimate own group in

the society only underestimating their efficacy in the vertical socialization, and viceversa. This

immediately comes from the functional form of the feedback function. This result can, at least

in part, explain why the “Parental Self-Efficacy” are lower among immigrants. Agents belong-

ing to minorities, in fact, has less room to underestimate their own presence in the society.

Consider now the case of q̂i < qi where the equilibrium is unique. To understand why, in this

case, only one equilibrium is possible, notice that the conjecture α̂il would suggest to the parent

to choose a negative socialization effort (τ i < 0) that is not possible. Therefore the parent

would choose the corner solution (τ i = 0). However, given the shape of the feedback function,

a null effort would be compatible just with a correct conjecture about qi (since in this case

pii = qi), and this would contrast with the assumption that q̂i < qi. Then, for the same reason,

when q̂i = qi the Bisin Verdier result holds.

Figure 2.2: α = 0.9, ∆V i = 0.9

2.3.1 Cultural Complementarity and Substitution

One of the main results of the standard models of cultural transmission with complete infor-

mation is the cultural substitution property. This property requires that optimal socialization
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efforts are decreasing in own population shares. There is still debate about how to get cases

in which the opposite property, cultural complementarity, holds. The two properties, then,

have different consequences in terms of the derived population dynamics in particular for what

regards the stability of polymorphic equilibria. In the case of complete information, cultural

complementarity and substitution are uniquely and unambiguously defined since parents react

to actual population shares, so that there is no difference between what agents think to be the

social composition of the society affecting the oblique socialization process, and what this com-

position actually is. In the case of incomplete information, agents just have conjectures about

population shares, so that efforts decision directly depends on the conjecture q̂i. On the other

hand, qi indirectly affects the socialization decision of agent i, since, given a certain conjecture

q̂i, the confirmed conjecture α̂i depends on the true qi, so that equilibrium τ i depends on qi

itself in a non trivial way. Therefore it is worth defining the concept of cultural substitution or

complementarity properties with respect to both the true parameter qi and the conjecture q̂i.

Definition For each i ∈ I and for each τ i ∈ {τ il , τ ih},

• τ i displays actual cultural substitution (complementarity) if it is decreasing (in-

creasing) in qi.

• τ i displays conjectured cultural substitution (complementarity) if it is decreasing

(increasing) in q̂i.

Next proposition describes how the equilibrium socialization choice relates to actual and

conjectured cultural complementarity and substitution.

Proposition 3 For each i ∈ I, τ ih displays actual cultural complementarity and conjectured

cultural substitution. τ il displays actual cultural substitution and conjectured cultural comple-

mentarity.

Proof. in the Appendix �.

It is possible to see results of Proposition 3 in Figure 3.2. In Figure 3.2a we can see how so-

cialization choices relate to conjecture q̂i. If q̂i < qi the unique equilibrium socialization choice

is negatively related to the conjecture about the share of traits in the society, so that there is

conjectured cultural substitution. This result is not surprising since cultural substitution with

respect to what people consider to be own population share in taking socialization choices is

what we find in all model of cultural transmission. However, if q̂i > qi we have already seen

that there are two possible equilibria and we observe both cultural substitution and complemen-

tarity associated respectively to the high and low socialization choice. In fact, if parents have
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(a) (b)

Figure 2.3: Socialization choice with respect: (a) q̂i with qi = 0.1, 0.5, 0.9, and (b) qi with q̂i =

0.2, 0.5, 0.8, α = 0.9. α = ∆V i = 0.9

the the low efficiency conjecture α̂i then, when q̂i > qi, they get stuck at the low socialization

equilibrium and an increase in their conjecture leads to an increase in the socialization choice

so that cultural complementarity is shown. The opposite occurs with the higher socialization

effort.

Consider now the case for actual cultural complementarity and substitution. This is interest-

ing since conjectures cannot be observed, so that the relationship between effort and actual

population shares is what can be somehow observed. In this respect, Figure 3.2b shows that

when q̂i < qi the unique equilibrium τ i exhibits cultural complementarity property with respect

to the true qi. This result should be interpreted keeping in mind that, fixing the conjecture

q̂i, the effect of qi on the socialization choice is indirect and passes through the conjecture α̂ih.

Using the learning interpretation of the equilibrium, if the presence of trait i in the society (qi)

increases, then parents can misinterpret the feedback they received and attribute the increase

of pii to an increase on α̂ih, keeping fixed their conjecture q̂i, and thus they exert higher social-

ization effort ( ∂τ
i

∂α̂ih
> 0).

This makes particular sense because conjectures about population shares are more difficult

to test and, thus, to revise for the individual in the short-run. Conjectures about population

shares can be induced by social media, political or cultural leaders and news so that parents,

by rational inattention, take them almost as given and produce compatible conjectures about

what is the efficiency of the socialization process.

As briefly discussed in Section 3, if parents have correct conjectures about self-efficacy, α̂i = αi,

as in Bisin and Verdier (2001), then equilibria with wrong conjecture can exist if only if there is

noisy signals about transition probabilities. In this case, however, parents have always cultural
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substitutions and not cultural complementarity.

2.3.2 Transition Probabilities

We have seen how incomplete information about the true parameters may produce multiple

selfconfirming equilibria, the low and the high socialization equilibria. In this section we are

interested in studying the transition probability pii stemming from selfconfirming equilibria

and compare it with the benchmark Bisin-Verdier transition probability.

From the evaluation of the consequence function (2.1) at the two possible socialization

efforts derived from confirmed conjectures, and substitution (2.7) in (2.1) we get

pii∗h = qi + αi(1− qi)τ
i
bv + ξi

2
, pii∗l = qi + αi(1− qi)τ

i
bv − ξi

2
(2.8)

Let pii∗ be the realized transition probability, then

Proposition 4

• If q̂i < qi, pii∗ = piih with pii > piibv

• If q̂i > qi, pii∗ ∈ {piih , piil } with piil < piih < piibv

Proof. in the Appendix �.

The presence of multiple equilibria when q̂i > qi induces a bifurcation in the population dy-

namics. We have, however, a reasonable way to select one of the two transition probabilities

at each period. Recall that the presence of two transition probabilities is due to the presence

of the two equilibrium efforts that, in turn, depends on the fact that for each conjecture q̂i

there are two feasible α̂ih and α̂il. Notice however that parents are not indifferent between these

two conjectures. While they cannot choose between them in terms of which is the most likely,

since the two conjectures are both confirmed by the feedback, they provide different levels

of subjective expected utility, since they induce different effort levels and different transition

probabilities. In particular the following result holds

Proposition 5 For each i ∈ I, and for every triple (qi, αi, q̂i) such that the set of self-

confirming equilibria Ei = {{(τ ih, α̂ih, q̂i)}, {(τ il , α̂il, q̂i)}}, Eipiih [ui(qi)] > Ei
piil

[ui(qi)].

Proof. in the Appendix �.

Since parents know their subjective expected utility functional form, and since they want to
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maximize it, parents may be conscious that choosing α̂ih as opposed to α̂il, while being equally

likely in terms of conjecture confirmation, provides a higher level of expected utility. Then,

we assume that they choose the conjecture that maximizes their expected utility. In this way,

when multiple equilibria are possibile, they always choose the one inducing higher effort and

higher transition probability.

Assumption 1 For each i ∈ I, if qi < q̂i, Ei = {{τ ih, α̂ih, q̂i}}.

Notice that this equilibrium selection is corroborated by social psychological literature. Indeed,

higher Parental Self-Efficiency is empirically associated with lower parental depression, anxiety,

and stress, therefore higher parent’s utility, and has positive effect on the development of the

offspring (Jackson and Huang, 2000; Kuhn and Carter, 2006). Moreover, it has some prop-

erties that makes it particularly reasonable. In particular, it induces continuity in the effort

with respect to conjectured population shares. Indeed, fixing a ε ∈ [0, 1] arbitrarily small, and

consider q̂′i := qi − ε, then τ ih(q̂
′i) is chosen. It is then likely that if parents experience a little

increase in their conjectures, q̂′′i := qi+ε, the effort choice is not very far from the previous one.

Then τ ih(q̂
′′i) is more likely to be chosen than τ il (q̂

′′i). Notice also that this equilibrium selection

process is such conjectured cultural substitution is always shown. Again, this is a standard

property of efforts with respect to what parents react to during the socialization process. This

equilibrium selection also induces continuity of socialization effort on actual population shares,

for the same reasoning explained above but applied to actual rather than conjectured popu-

lation shared. At last, by Proposition ?? we aways observe actual cultural complementarity.

This is a main difference with respect to literature about cultural transmission with complete

information where parents always choose their socialization under cultural substitution. With

incomplete information we show that parents think to choose the socialization effort under

cultural substitutions, instead, since they do not know true population shares, the cultural

substitutions property refers only to their conjecture. On the other hand, they actually chose

under cultural complementarity, through the mechanism of confirmed conjectures.

2.4 Welfare with Wrong Conjectures

Before moving to the analysis of the population dynamics, we study how much the wrong but

confirmed conjectures may cost in terms of utility loss. Notice that we refer only to a parent-

specific type of welfare, in fact, parents are paternalistic and do not actually really care about

the true welfare of their children. In details, whenever parents have correct conjectures they

produce an effort that is optimal to the environment. The derived utility is our benchmark.

However, when parents misperceived the population shares the equilibrium effort is ex-ante sub-

jectively optimal but ex-post suboptimal. For each i ∈ I, define δq̂i := qi − q̂i. Notice however
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Figure 2.4: Transition probabilities with respect q̂i with qi = 0.1, 0.5, 0.8

that parents do not know the correct parameter qi, otherwise they would have used it in the

decision process. Then they cannot compute how much they loose in terms of expected utility

and, for the same reason, how much they loose in terms of realized utility. A policymaker,

however, may know the correct parameters, can compute both, and compute the loss in terms

of ex post utility when agents use wrong conjectures.19 Define U i
bv := U i

(αi,qi)(α
i, qi, τ ibv) as the

average utility realized by i agents, at parameters (αi, qi) when they have correct conjectures

and perform the Bisin-Verdier effort. In this case transition probabilities are computed at the

correct qi with the Bisin-Verdier efforts. Define U i
q̂i := U i

(αi,qi)(α̂
i
h, q̂

i, τ ih) as the average utility

realized by i agents, at parameters (αi, qi) when they have conjectures (α̂ih, q̂
i) and exert effort

τ ih. In this case transition probabilities are computed at the correct qi and at the exerted effort

τ ih. Let ∆U i
q̂i := U i

bv−U i
q̂i be the average loss i agents experience having wrong conjectures. Then

Proposition 6 For each i ∈ I, ∆U i
q̂i = 1

8
(τ ibv − ξi)2 > 0, and

∂∆U i
q̂i

∂δq̂i
=

∆V i(τ ibv−ξ
i)

2ξi

Proof. in the Appendix �

To inspect the properties of the loss it is worth looking at Figure 2.5 to see how it changes

with respect to conjectures. The loss is a convex function of the distance from the correct

value. In details, in the correct value it reaches, by definition, a null value. Interestingly, it is

steeper for positive biases than for negative ones. This is due to the fact that a negative bias

induces a higher effort than a positive bias, and the derived transmission probability, higher

than the case of a positive bias, partially recover the loss. Another source of asymmetry is

19Notice that, while for an individual parent the realized utility depends on the realization of the socialization
process, when talking about representative agents of a group, as we do in this paper, the utility function is
exactly the average utility parents of type i gets, and the policy maker just looks at this.
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Figure 2.5: Loss

given by the different levels of ∆V i. In details, given a downward bias, more intolerant agents

experience a higher loss, while this relations is reverted for positive biases. Notice that, since

the welfare is lower for each group, also the total welfare is lower. We can compute the wel-

fare loss of the whole society given q̂i and q̂j. This is given by 1
8
[qi(τ ibv−ξi)2 +(1−qi)(τ jbv−ξj)2].

These results have two main consequence. First of all, given a fixed misperception of own

group population shares, agents have a lower loss by under perceiving that over perceiving the

share. Second, whenever agents of a group under represent their own presence in the society,

the more intolerant they are the more they loose in welfare, since the loss is increasing in ∆V i.

It is important to underline how, in this framework, introducing the possibility for agents

to pay a cost to receive better information does not affect the results. This is due to the fact

that parents have deterministic conjectures and they are not aware that their conjecture can be

wrong.20 Thus, their marginal expected benefit to have new information is zero, even if their

actual ex-post marginal benefit would be positive. To anticipate the discussion of the next

section, if the signals are provided by cultural leaders, then agents may believe to leaders or

have private different conjectures and believe in that. In both cases, they do not have incentives

to pay to acquire new pieces of information.

20With probabilistic conjectures this results may be different and depend on parents’ higher order beliefs.
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2.5 Long-run Dynamics

In this section we study the consequences of incomplete information for the analysis of the long

run dynamics of population traits. We find that incomplete information may totally revert

standard prediction of cultural transmission literature. Incomplete information about popu-

lation shares is a particularly relevant issue since conjectures about population shares can be

shaped by social media, news or fake news, cultural leaders that may use this dimension when

it comes to be a particularly salient issue in the public debate. We then introduce the presence

of a cultural leader that induces one (possibly biased) conjectures in own group. On the other

hand, conjecture about parental efficacy is strictly related to the parent-offspring relationship

and then we assume that each parent has some (possibly wrong) conjecture that cannot be

shaped by the policy maker. We discuss how the bias in the population shares conjectures in-

duced by the cultural leaders may drastically change the long run dynamics of the population.

We introduce time indexes for all the quantities. In details, for each time t, the equilibrium

transition probabilities are given by pii∗t and pjj∗t . Notice that equilibrium transition probabil-

ities are defined given conjectures q̂i and q̂j and the derived αih and αjh. In Appendix 2.6 we

show what happens if conjectures about population shares do not evolve along time and prove

that this may not be sustainable in the long run with these conjectures being confirmed.

We first set the dynamic system. Recalling that, for each i ∈ I, di∗ = αiτ i∗, for every given

time t, the population share of type i ∈ I in the subsequent period is described by the following

law

qit+1 = pii∗t q
i
t + pji∗t (1− qit) (2.9)

= qit[1 + (di∗t − d
j∗
t )(1− qit)] (2.10)

Using a continuous time approximation we get

q̇it = qit(1− qit)(di∗t − d
j∗
t ) (2.11)

At this stage, we introduce a cultural leader for each community, li, lj.21 Leaders have the

power of inducing a bias p (positive) or n (negative) in the perception of their community

members, but cannot control the intensity of biases, which we consider exogenous and constant

along all the dynamics. For each i ∈ I, intensity of the bias if given by βi ∈ (0, 1).22 Thus

leader li chooses an action ai ∈ {p, n}.
21Among some previous work about cultural leaders Nteta and Wallsten (2012), Acemoglu and Jackson

(2014),Verdier and Zenou (2015), Prummer and Siedlarek (2017), Verdier and Zenou (2018)
22Endogenizing the intensity of the bias βi does not bring any meaningful insight.
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Define an indicator function Iai which takes value 0 if the leader i chooses ai = n and 1 if she

chooses ai = p. Then we define biased conjectures for community i as

q̂iβ,t = βiIai + (1− βi)qit (2.12)

Thus, if a leader chooses a positive bias the derived conjecture about population share will be

q̂it = β + (1 − β)qit > qit; if the leader choses a negative bias, then q̂it = (1 − β)qit < qit. Both

leaders, at each time t, are not forward looking23 and are interested only in maximizing the

presence of their trait in the society one period ahead. Therefore

max
ai

ul
i

t (ai, aj) = qit+1(ai, aj) (2.13)

Proposition 7 A leader who faces the maximization problem (2.13) chooses always ai = n.

Then q̂iβ,t = (1− βi)qit.

Proof. in the Appendix �

Following Proposition ??, cultural leaders, in order to maximize the share of the trait of her

own community in the next period, always choose to instill a negative bias in agents belonging

to their cultural group. This is a simple results that derives from the fact that, independently

on other leader’s choice, it is always better to induce a negative bias in own population con-

jectures, since this would induce a higher socialization effort and a higher share of own type

in next generation, so that for each leader i ∈ I, choosing a negative bias is a dominant strategy.

We have assumed that cultural leaders are myopic in their decisions to choose their group’s

bias, thus we implicitly assume that leaders are individuals with a finite life. We can also think

about leaders as centralized cultural institutions with a more forward looking perspective, in

that case, the game between cultural leaders is a differential dynamic game. However, results

do not change. The space of action is dichotomous, positive or negative bias. Moreover, as

shown in Section 3.1, with negative biases there is always cultural complementarity in social-

ization effort, thus a negative bias leads to a higher parental effort. For these reasons, for

cultural leaders maximizing the presence of their trait in the society is equivalent to maximize

to long-run one.

23Since we are in an intergenerational setting, leaders cannot live forever.
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We can now consider the long-run dynamics of (2.22) with biased conjectures.

q̇it =
1

2
qit(1− qit)φ(qit, q̂

i
β,t, q̂

j
β,t) (2.14)

Before providing a characterization of steady states, define the following thresholds:

β̄i :=
αj4

αi2
∆V j2

∆V i
, β̄j :=

αi4

αj2
∆V i2

∆V j
(2.15)

Proposition 8 Given ai = n, the dynamics (2.14) is well defined for all qi ∈ [0, 1] for all qi.

{0, 1} ⊆ Qi
ss and there is at most one polymorphic steady state q∗ ∈ (0, 1). Moreover, for each

i ∈ I,

• qi = 1 (qi = 0) is stable if and only if βi > β̄i (βj > β̄j)

• q∗ is stable if and only if βi < β̄i and βj < β̄j

Proof. in the Appendix �

Proposition 8 states that, depending on primitive parameters of the model (α and ∆V ) and

bias β, the cultural dynamics can show both stable and unstable polymorphic equilibria, and

also no polymorphic equilibria at all.

Consider Figure 2.6 that describes all the possibile cases that can happen in the dynamics. If

the negative biases are both large (part I of the graph), then an unstable polymorphic equilib-

rium is shown. This derives from the fact that for large negative biases, each group thinks to be

extremely smaller than what it is in reality. Then, as we have already seen in previous section,

while we have conjectured cultural substitution, our model predicts actual cultural complemen-

tarity, and then unstable polymorphic equilibrium is observed. The opposite occurs for small

negative biases (part III of the graph). In this case agents have almost correct conjectures, and

then Bisin Verdier results are good proxies of the dynamics. If, on the contrary, the biases are

unbalanced, then one group takes over the other and invades the society.

Notice that the presence of groups’ heterogeneity in, at least one, between the biases or in

α and ∆V produces the possibility of globally stable homomorphic equilibria. Consider, for

example, the case of Figure 2.6 when βi = βj. The dynamics can lay in parts I, III and IV

of the graph. This is due to the difference between the intolerance of agents belonging to the

two groups. On the contrary, if there is complete homogeneity in the α, ∆V and β then the

dynamics have always, stable or unstable, polymorphic equilibria (I and III in Figure 6).

71



Figure 2.6: Cultural dynamics q̇i for different βi, βj with αi = αj = 1, ∆V i = 0.55, ∆V j = 0.5.

This result has important implications both from a theoretical point of view and from an ap-

plied prospective.

Let us focus first on the difference between the population dynamic with incomplete infor-

mation as compared to the case in which agents have complete information. In the standard

case, as (Bisin and Verdier, 2001; Cheung and Wu, 2018), cultural substitution always leads

to cultural heterogeneity while cultural complementarity leads to cultural homogeneity. In an

incomplete information setting, however, in spite of having actual cultural complementarity

in socialization choice, under certain condition, there exists a stable equilibrium with cultural

heterogeneity. Interestingly, the primitives of the model (∆V i, αi)i∈I determine the thresholds

β̄i and β̄j and thus the different long run that are possible given reciprocal intolerance and

actual parental efficacy. Then, the actual biases βi and βj determine which of the four possible

outcomes is selected.

We know move to discuss applied implication of results. Let us consider a society where one of

the two leaders is identitarian and maximize (2.13) and a non-identitarian, or group utilitarian,

leader that maximize welfare. The identitarian leader decides to induce a negative bias, while

the non-identitarian truthfully report the true population shares. In such a situation, looking

at Figure 2.6 we move only in one axis. Assuming i is the non identitarian leader, then βi = 0,
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thus the only two possible social outcomes are I and III, namely depending on βj a stable poly-

morphic equilibrium or globally stable homomorphic equilibrium where dominate j can exist.

In particular, we can see that the more the agents belonging to the group with identitarian

leader intolerant (∆V j) or effective as parents (αj) are, the more is the space for domination

of that group in the long run. The same reasoning applies to the case with two identitarian

leaders, where if the βi = βj, the intolerance and parental efficacy of the two groups determine

population shares in the equilibrium with cultural heterogeneity. Moreover, starting from III,

where βi < β̄i and βj < β̄j and keeping βj fixed, the more βi grows and approaches β̄i the

more the polymorphic equilibrium moves to the right increasing the share of agents belonging

to i in the society.
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2.6 Conclusion

This paper generalizes the classical cultural transmission model proposed by Bisin and Verdier

(2001) to an incomplete information setting. We show that if parents are not fully aware of own

group size and about the efficiency of the cultural transmission technology, they may end up

to sustain wrong conjectures about both quantities. While in the standard setting there is no

difference between conjectures and true parameters, with incomplete information this difference

is crucial. Thus, we propose the definition of “conjectured cultural substitution (complemen-

tarity”) as opposed to the “actual cultural substitution (complementarity”). The main finding

is that, with incomplete information, it is possible to obtain “actual cultural complementarity”

in the standard cultural transmission mechanism. In the long-run we are able to reproduce all

the possible social outcome as depending on the magnitude of bias on the population share.

The most interesting result is that, in spite of having actual cultural complementarity in so-

cialization choice, can exist, in the long run, a stable equilibrium with cultural heterogeneity.

This result is particularly relevant because in previous cultural transmission papers, cultural

complementarity leads always to cultural homogeneity.
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Appendix A

Proofs of Propositions

Proof of Proposition 1

Solving the problem in (2.3) we can see that subjective rationality is satisfied by (2.4)

τ i = α̂i(1− q̂i)∆V i

Where ∆V i = V ii − V ij represent the cultural intolerance of a parent of trait i.

To have selfconfirming equilibria parent’s conjectures, α̂i and q̂i, have to be confirmed by

the experience (feedback). Assuming mi, the message of feedback function of agent i, being

equal to pii, namely f = g, then the conjectures are confirmed if and only if

ατ i + (1− ατ i)qi = α̂τ i + (1− α̂τ i)q̂i

therefore the conjectures that support selfconfirming equilibria are described by (2.5)

(α̂i, q̂i) : α̂i(1− q̂i)∆V i(α(1− qi)− α̂(1− q̂i)) = q̂i − qi

�

Proof of Proposition 2

From equation (2.5) we get the following condition on α̂i and q̂i

α̂iαi(1− qi)(1− q̂i)∆V i − α̂i2(1− q̂i)2∆V i + (qi − q̂i) = 0

Solving for α̂i we get the conjectures on αi that support selfconfirming equilibria

α̂ =
α(1− qi)

√
∆V i ±

√
4(qi − q̂i) + α2(1− qi)2∆V i

2(1− q̂i)
√

∆V i
(2.16)

α̂i ∃ iff ξi ≥ 0, namely q̂i ≤ q̄i, with q̄i = qi + αi2(1−qi)2∆V i

4
.

if q̂i > q̄i = qi +
αi2(1− qi)2∆V i

4
⇒ @ α̂i (2.17)
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Substituting (2.16) in (2.4) we get

τ i =
αi(1− qi)∆V i ±

√
4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2

2
(2.18)

Let call ξi =
√

4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2 we can write the previous equation as

τ i =
τ ibv ± ξi

2
(2.19)

Where ξi Q τ i if qi Q q̂i.

Since the existence of τ i depends on the existence of α̂i we can say that

if q̂i > q̄i = qi +
αi2(1− qi)2∆V i

4
⇒ Ei = 0 (2.20)

Moreover

τ i =
αi(1− qi)∆V i ±

√
4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2

2
∈ [0, 1]

Defining

τ ih =
τ ibv + ξi

2
, τ ih =

τ ibv − ξi

2
(2.21)

It is trivial to see that τ ih is always positive.

We can further prove that τ ih =
τ ibv + ξi

2
≤ 1 always, in fact√

4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2

2
≤ 1− τ ibv

2

⇒
√

4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2 ≤ 2− τ ibv

⇒ 4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2 ≤ 4 + τ i2 − 4τ ibv

⇒ 4(qi − q̂i)∆V i ≤ 4− 4τ ibv

⇒ (qi − q̂i)∆V i ≤ 1− τ ibv

⇒ q̂i − qi ≥ 1

2
α(1− qi)︸ ︷︷ ︸
≤ 1

2

− 1

∆V i︸ ︷︷ ︸
≥1

Always satisfied!!
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⇒ τ ih ≤ 1

With the same reasoning we verify under which condition τ il ∈ [0, 1].

Since τ il ≤ τ ih ≤ 1 it is enough to verify conditions for τ il > 0. Given the definition τ il is

positive if and only if

α(1− qi)
√

∆V i ≥
√

4(qi − q̂i) + α2(1− qi)2∆V i

⇒ α2(1− qi)2∆V i ≥ 4(qi − q̂i) + α2(1− qi)2∆V i

⇒ q̂i ≥ qi

We can now sum up the above results and obtain exactly the conditions of Proposition 2. All

the conditions regarding the relation ship between αi, α̂ih and α̂il stem from (2.16). The first

point of Proposition 2 is proven by (2.17) and (2.20). Then, we have shown that if q̂i ≤ q̄i then

τ ih always exists and belongs to [0, 1] and that τ il is positive if and only if q̂i ≥ qi. In the end,

it is trivial to see by (2.18) that whenever q̂i = qi then τ i = τ ibv and that τ ibv ≤ τ ih always.

�

Proof of Proposition 3

In order to prove Proposition 3 we should consider the sign of first derivative of τ ih and τ il with

respect both q̂i and qi. Before to proceed we recall from Proposition 2 that if q̂i < qi then ∃ τ ih
but @ τ il , while if q̂i > qi then ∃ τ ih, τ il

• Conjectured cultural substitution (complementarity)

∂τ ih
∂q̂i

= − ∆V i√
4(qi − q̂i) + αi2(1− qi)2∆V i

< 0

⇒ Cultural Substitution

∂τ il
∂q̂i

=
∆V i√

4(qi − q̂i) + αi2(1− qi)2∆V i
> 0

⇒ Cultural Complementarity
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• Actual cultural substitution (complementarity)

∂τ ih
∂qi

=
1

2
∆V i

(
2− αi2(1− qi)∆V i√

∆V i(4(qi − q̂i) + αi2(1− qi)2∆V i)
− α

)
> 0

2− αi2(1− qi)∆V i − α
√

∆V i(4(qi − q̂i) + αi2(1− qi)2∆V i) ≥ 0

Since this function is always decreasing in both αi and ∆V i and increasing in q̂i then it

reach its minimum at αi = ∆V i = 1 and q̂i = 0, namely

2− (1− qi)−
√

4qi + (1− qi)2 ≥ 0

Therefore there is cultural complementarity, if

2 ≥ (1− qi) +
√
qi2 + 2qi + 1+

2 ≥ (1− qi) + (1 + qi) = 2

Therefore if αi = ∆V i = 1 and q̂i = 0 then
∂τ ih
∂qi

= 0 otherwise,
∂τ ih
∂qi

> 0

⇒ Cultural Complemetarity

∂τ ih
∂qi

=
1

2
∆V i

(
−α− 2− αi2(1− qi)∆V i√

∆V i(4(qi − q̂i) + αi2(1− qi)2∆V i)

)
< 0

⇒ Cultural Substitution

�

Proof of Proposition 4

pii∗ = di + (1− di)qi

pij∗ = 1− pii

pii∗ = αiτ i + (1− αiτ i)qi

pii∗ = qi + τ iαi(1− qi)

pii∗ = qi +
τ ibv ± ξi

2
αi(1− qi)

by Proposition 2 we know that if q̂i < qi then τ il =
τ ibv−ξ

i

2
do not exists, thus pii∗ is unique and
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with q̂i > qi there are two pii∗: (i) pii∗h associated to τ ih and (ii) pii∗l associated to τ il .

Moreover, pii∗ is increasing in τ i and we know that τ ih > τ ibv > τ il , therefore

• If q̂i < qi then τ i = τ ih > τ ibv, therefore pii∗ = pii∗h > pii∗bv and

• If q̂i > qi then τ i = {τ il , τ ih} < τ ibv, therefore pii∗ ∈ {pii∗l , pii∗h } < pii∗bv

�

Proof of Proposition 5

Substituting τ ih and τ il in the expected utility function we get

E[ui(q̂i, τ ih)] = V ij + ∆V i

(
q̂i + (1− q̂i)α̂i τ

i
bv + ξi

2

)
− 1

2

(
τ ibv + ξi

2

)2

and

E[ui(q̂i, τ il )] = V ij + ∆V i

(
q̂i + (1− q̂i)α̂i τ

i
bv − ξi

2

)
− 1

2

(
τ ibv − ξi

2

)2

The difference is always greater than zero

E[ui(q̂i, τ ih)]− E[ui(q̂i, τ il )] = α̂i∆V iξi
(

1− q̂ − 1

2
(1− q)

)
≥ 0

if 1
2
− q̂i + 1

2
qi ≥ 0 ⇒ q̂i < 1

2
(1 + qi) that is always satisfied, since 1

2
(1 + qi) ≥ q̄i and q̂i ≤ q̄i

�

Proof of Proposition 6

The utility gained under complete information is

ui(qi, τ ibv) = V ij + ∆V i
(
qi + (1− qi)αiτ ibv

)
− 1

2

(
τ ibv
)2

Let us call

∆U i
q̂i = ui(qi, τ ibv)− ui(qi, τ ih)

⇒ ∆U i
q̂i = V ij+∆V i

(
qi + (1− qi)αiτ ibv

)
−1

2

(
τ ibv
)2−V ij−∆V i

(
qi + (1− qi)αi τ

i
bv + ξi

2

)
+

1

2

(
τ ibv + ξi

2

)2
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⇒ ∆U i
q̂i = ∆V i(1− qi)αiτ ibv −

1

2

(
τ ibv
)2 −∆V i(1− qi)αi τ

i
bv + ξi

2
+

1

2

(
τ ibv + ξi

2

)2

⇒ ∆U i
q̂i = τ 2i

bv −
1

2

(
τ ibv
)2 − τ ibv

τ ibv + ξi

2
+

1

2

(
τ ibv + ξi

2

)2

⇒ ∆U i
q̂i =

1

2

(
−τ ibvξi +

(
τ ibv + ξi

2

)2
)

⇒ ∆U i
q̂i =

1

2

(
−τ ibvξi +

τ i2bv + ξi2 + 2τ ibvξ
i

4

)

⇒ ∆U i
q̂i =

1

8
(τbv − ξi)2 > 0 ∀αi,∆V i, qi, q̂i

�

Proof of Proposition 7

qit+1 = pii∗t (ai)q
i
t + (pjj∗t (aj))(1− qit)

Since pii∗t (ai) is the only element of qit+1 that depends on ai and
qit+1

pii∗t (ai)
> 0 then

max
ai

qit+1(ai, aj) = max
ai

piit (ai)

Given assumption 1, the transition probability of each period the only transition probability is

piit = piih,t = qit +
τ ibv,t + ξit(q̂

i
β,t)

2
αit(1− qit)

Defining pii− the transition probability associated with a negative biased q̂i and pii+ the transition

probability associated with a positive biased q̂i and since ξi Q τ ibv iff qi Q q̂i then we can state

that pii− > pii+. Therefore ai = n (and aj = n) is a dominant strategy for leader li (and lj).

�

Proof of Proposition 8

It is possible to express the condition for existence of selfconfirming equilibria, q̂it < q̄it =

qit +
τ i2bv,t
4∆V i

with respect β. Since the bias is always negative the condition becomes

(1− βi)qit < qit +
τ i2bv,t

4∆V i
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⇒ βi > −
τ i2bv,t

4∆V iqit

Which is always satisfied, therefore q̇i does exist for all qi. �

Notice that
∂q̇

∂qi
=

1

2
(qi(1− qi) ∂φ

∂qi
+ (1− 2qi)φ)

therefore

∂q̇

∂qi
|qi=0 = φ and

∂q̇

∂qi
|qi=1 =

1

2
φ

Thus, to study the sign of ∂q̇
∂qi

it is enough to look at φ:

if φ|qi=0 > 0 ⇒ ∂q̇

∂qi
|qi=0 > 0

if φ|qi=1 > 0 ⇒ ∂q̇

∂qi
|qi=1 > 0

.

ξi =
√

4(qi − (1− βi)qi)∆V i + αi2(1− qi)2∆V i2

ξj =
√

4(1− qi − (1− βj)(1− qi))∆V j + αj2qi2∆V j2

φ(qi, q̂iβ, q̂
j
β) = αi2(1− qi)∆V i + αiξi(q̂iβ)− αj2qi∆V j − αjξj(q̂jβ)

•
φ(qi, q̂iβ, q̂

j
β)|qi=0 = αi2∆V i + αiξi|qi=0(q̂iβ)− αjξj|qi=0(q̂jβ)

φ(qi, q̂iβ, q̂
j
β)|qi=0 = 2αi2∆V i − 2αj

√
βj∆V j = 0√

βj =
αi2

αj
∆V i

√
∆V j

βj =
αi4

αj2
∆V i2

∆V j

βj ≤ αi4

αj2
∆V i2

∆V j
⇒ φ(qi, q̂iβ, q̂

j
β)|qi=0 ≥ 0

•
φ(qi, q̂iβ, q̂

j
β)|qi=1 = αi

√
4βi∆V i − αj2∆V j − αj2∆V j
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√
βi =

αj2

αi
∆V j

√
∆V i

βi =
αj4

αi2
∆V j2

∆V i

βi ≤ αj4

αi2
∆V j2

∆V i
⇒ φ(qi, q̂iβ, q̂

j
β)|qi=1 ≥ 0

�

Appendix B

The case for time invariant conjectures

Consider the case in which, for each i ∈ I, conjectures q̂i are time invariant. After a little

algebra, substituting equilibrium quantities into (2.11), we get

q̇it =
1

2
qit(1− qit)φ(qit, q̂

i, q̂j) (2.22)

where φ(qit, q̂
i, q̂j) := (αi)2(1 − qit)∆V

i + αiξit − (αj)2qit∆V
j − αjtξ

j
t . Recall that, even if we

consider q̂it as fixed, however the selfconfirming equilibrium efforts and conjectures are defined

as long as, for each i ∈ I, and for each time t, q̂i < q̄it. Indeed, the threshold q̄it depends on qt

and thus varies with time. It is then possibile that, for a given conjecture q̂it the population dy-

namics evolve such that at some point the existence condition is not satisfied anymore. Recall

that q̄it := qit + αi
2
∆V i

4
. Then a sufficient condition for the equilibrium to exists for any possible

population dynamics is that, for each i ∈ I, q̂it <
αi

2
∆V i

4
≤ 0.25. Of course, even though this is

a sufficient condition, it is quite restrictive since, for example, a group with qit close to 1 must

think to be less that a fourth of the overall population. For this reason, below in the paper we

endogenize the conjectures to avoid this unreasonably large biases. Next proposition, however,

uses this sufficient condition to characterize the dynamics for the cases in which conjectures

do not change and the dynamic is defined at every qit ∈ [0, 1]. Define Qss := {q ∈ [0, 1] : q̇t = 0}.

Proposition 9 For each i ∈ I, let q̂i ≤ αi
2
∆V i

4
. {0, 1} ⊆ Qi

ss and qi = 1 or qi = 0, or both, are

stable. Moreover, if there exists a polymorphic steady state q∗ ∈ (0, 1), Qss = {0, 1, q∗}, qi = 0

and qi = 1 are stable and qi = q∗i is unstable.

Proof . in the Appendix B.2 �.

Figure 2.7 helps explaining the results of Porposition ??. If conjectures are fixed and satisfy
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the sufficient condition for existence of confirmed conjectures at each point of the dynamics,

there are three possibile cases. The first two cases, represented in panels (a) and (b) describe

(a) (b)

(c)

Figure 2.7: Cultural dynamics q̇i with αi = αj = 1: (a) q̂i = 0.1, q̂j = 0.025, ∆V i = 0.5, ∆V j = 0.1

(b) q̂i = 0.025 q̂j = 0.1, ∆V i = 0.1, ∆V j = 0.5 and (c) q̂i = 0.1 q̂j = 0.1, ∆V i = 0.5, ∆V j = 0.5.

the situation in which there exists only one homomorphic stable steady state. These two cases

occur when the two groups have quite unbalanced conjectures. Consider for example panel (a).

In this case group i has a conjecture about qi that is four times the conjectures j have about

qj. Even if, through the feedback, parents update differently the conjectures about αi and αj,

the large imbalance of the conjecture about population shares make i agents produce a much

lower effort than j agents, at every point in the dynamics. Then j agents always increase in

size and, at the end, win in the cultural dynamics. The same happens, with inverted roles, in

panel j. Consider now panel (c) representing the case of quite balanced conjectures. In this

case the difference in the exerted efforts is then given by the difference in the confirmed α̂i and

α̂j. Now, as we have seen in Figure 3.2, fixing q̂i, socialization effort increases with population

shares. Indeed, one of the main results on our model is that it produces cultural complemen-

tarity with respect to actual population shares. In the case of panel (c), given that groups

have same conjecutres about own share, then the group with the larger actual population share
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produces the highest effort, and this determines the shape of the dynamics with one unstable

polymorphic equilibrium.

If the sufficient condition for the existence of confirmed conjectures at any q is not satisfied,

then we may have points in the dynamics in which the equilibrium does not exists and, thus,

the dynamics cannot be determined. This is shown in Figure 8 and in which we show that, if

conjectures of group i does not satisfy the condition, then they dynamics for small qi cannot

be determined. Notice that the condition implies that conjectures must be quite small. If this

is not the case, then when qi gets close to 0, conjectures are very far away from the real value,

and then no α̂i can counterbalance the bias. The fact that the dynamics cannot be computed

simply underlines the fact that in the long run conjectures must somehow be related, at least

to a certain degree, to actual shares.

In the first graph we can observe that with both q̂i = 0.12 < q̄i and q̂j = 0.12 < q̄j the function

is always continuous on the other hand if the conjectures of one or both types overcome that

threshold the function became discontinuous, this mean that, given qi > q̂i for extrema value

of qi selfconfirming equilibria cannot exist.

(a) (b)

(c) (d)

Figure 2.8: q̂i = 0.12 < q̄i and q̂j = 0.12 < q̄j (a) q̂i = q̂i = 0.12, (b) q̂i = 0.12 and q̂j = 0.2, (c)

q̂i = 0.2 and q̂j = 0.12 and (d) q̂i = q̂i = 0.2
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Proof of Proposition 9

It is trivial to see that qi = 0 and qi = 1 are steady states of q̇.

In order to verify that may exists only an other possible steady state we should prove that

the function φ has at most one solution. Moreover we have to show that if a solution exists

the steady state associated with that solution is unstable. Therefore, we should prove that the

function is monotone (uniqueness of solution) and increasing (instability of steady state, with

cultural heterogeneity). Thus, we study the first derivative of φ with respsct qi:

∂φ

∂qi
= −αi2∆V i − αj2∆V j + αi

∂ξi

∂qi
− αj ∂ξ

j

∂qi

where

ξi =
√

4(qi − q̂i)∆V i + αi2(1− qi)2∆V i2

ξj =
√

4(1− qi − q̂j)∆V j + αj2qi2∆V j2

and
∂ξi

∂qi
=

∆V i(2− αiτ ibv)
ξi

∂ξj

∂qi
=

∆V j(αjτ jbv − 2)

ξj

⇒ ∂φ

∂qi
= −αi2∆V i − αj2∆V j + αi

∆V i(2− αiτ ibv)
ξi

+ αj
∆V j(2− αjτ jbv)

ξj

it is decreasing both in ∆V i,∆V j, αi, αj and increasing in q̂i, q̂j thus, to see if φ is increasing

we can study the case ∆V i = ∆V j = αi = αj = 1 and q̂i = q̂j = 0

∂φ

∂qi
= −2 +

2− (1− qi)√
4qi + (1− qi)2

+
(2− qi)√

4(1− qi) + qi2
≥ 0

∂φ

∂qi
= −2 +

2− (1− qi)√
2qi + 1 + qi2

+
(2− qi)√

4− 4qi + qi2
≥ 0

∂φ

∂qi
= −2 +

2− (1− qi)
1 + qi

+
(2− qi)
2− qi

≥ 0

∂φ

∂qi
= −2 +

1 + qi

1 + qi
+

(2− qi)
2− qi

= 0

Since the first derivative computed at his maximum is equal to zero then ∂φ
∂qi
≥ 0 for all

parameters and φ it is always increasing monotone, therefore φ has no more than 1 solution.

⇒ q̇ has no more then three steady states: qi = 0, qi = 1 and qi : φ = 0.
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Therefore it can be both positive and negative, if φ has 1 solution it is always negative and

extrema steady states (q = 1 and q = 0) are stable, otherwise for very asymmetric parameters

only one of the two estrema are stable (q = 1 or q = 0). Namely if an equilibrium with cultural

heterogeneity does exist it is unstable.

�
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Chapter 3

Non-Bayesian Social Learning and the

Spread of Misinformation in Networks

Abstract

People are exposed to a constant flow of information about economic, social and political phe-

nomena, nevertheless, misinformation is ubiquitous in the society. The paper studies the spread

of misinformation in a social environment where agents receive new information each period

and update their opinions taking into account both their experience and neighborhood’s ones.

We consider two sources of misinformation: permanent and temporary misinformation. The

permanent one is modeled with the presence of stubborn agents in the network. Despite agents

are exposed to constant flows of information, having stubborn in the network is enough to pre-

vent the consensus, and thus the learning, to be reached. The distortion induced by stubborn

agents in social learning depends on the “updating centrality”, a novel centrality measure that

identifies the key agents of a social learning process, and generalizes the Katz-Bonacich mea-

sure. Conversely, temporary misinformation, represented by shocks of rumors or fake news, has

only short-run effects on the opinion dynamics. Results show that the consensus among agents

is not always a sign of successful learning. Moreover, the consensus time is increasing with re-

spect to the “bottleneckedness” of the underlying network, while the learning time is decreasing

with respect to agents’s reliance on their private signals.

Journal of Economic Literature Classification Numbers: D83, D85, D72, Z13

Keywords : Opinion Dynamics in Networks, Non-Bayesian Social Learning, Stubborn Agents,

Speed of Convergence
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3.1 Introduction

People form their beliefs and opinions about political, economic and social issues through the

information they have. Nowadays, each person is exposed to a continuous stream of news about

almost every subject. However, since no one has a direct access to the truth, and different pieces

of information are dispersed among agents, people interact together and update their beliefs

taking into account those of others. Moreover, agents tend to take in consideration others’

belief to conform to their peers, or to some role models in society, even if they do not have

better information. There is evidence, in fact, that people’s opinions and decisions are affected

by friends or neighbors or even influencers, such as sports celebrities, fashion bloggers, political

leaders or commentators.1

In this scenario, the role of social media is of primary importance, nowadays, 62% of US

adults use them as a source of news (Gottfried and Shearer, 2016). Social media, like Facebook

and Twitter, allow agents to receive and share a lot of information in a very short time and to

have an easy access to other’s opinions. This, despite leading to a faster dissemination of news

and faster social learning, leaves the door open to the spread of fake-news and misinformation

or, in general, opinion manipulation (Del Vicario et al., 2016).

This raises important questions about the agents’ learning process. Do social learning leads

to a consensus among different individuals? Are agents able to effectively aggregate dispersed

information about the underlying state of the world? How much room is there for belief ma-

nipulation and misinformation? Despite a large amount of data about economic, social and

political phenomena disagreements are ubiquitous in society (Acemoglu and Ozdaglar, 2011).

For example, people tend to disagree on many phenomena such as climate change, the effect of

a flat tax or the guaranteed minimum income on the society, the effect of LGBT adoptions on

the offsprings’ nurture, or even the genuineness of the first moon landing, etc.. Therefore, we

can deduce how consensus and learning are not always reached and there is room for indoctri-

nation and the spread of misinformation. Moreover, since the consensus is a necessary but not

sufficient condition for learning to take place, we wonder if social environments that guarantee

a faster consensus would lead also to a faster learning.2

1 For example, Coleman et al. (1966) discusses the role of doctors in prescription of new drugs, Reingen
et al. (1984), Feick and Price (1987) and Godes and Mayzlin (2004) study the role of influencer marketing in
brand choice by consumers, Martin and Bush (2000) asks if role models influence teenagers’ purchase intentions
and behavior, and Bush et al. (2004) analyzes the influence of sports celebrity on the behavioral intentions
of a particular generation. Fainmesser and Galeotti (2018) propose a model of market interactions between
influencers, followers, and marketers.

2It can be argued that does not exist a truth with respect to some of these examples and it is only a
matter of preferences. However, in this paper, talking about consensus and learning, we refer to opinions about
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The main contribution of this paper is to identify key players (i.e. nodes that if targeted

are more effective in influencing the steady state opinion dynamics) and to analyze topological

features that favor the spread of misinformation in a social learning framework where there is

an underlying true state of the world and agents receive a constant flow of information. We

study the spread of misinformation on a network composed by a set of agents, who each period

receive noisy signals about the true state of the world and update their belief as a convex

combination of the Bayesian posterior beliefs and a linear updating of neighborhood’s beliefs,

as in Jadbabaie et al. (2012). The analysis strongly depends on the assumption of normal

distribution of beliefs, which is necessary to have a tractable close form solution. We consider

two sources of misinformation, permanent and temporary.

One of the main tools used to control opinion dynamics in social media is the use of Social bots,

algorithms that exhibit human-like behavior. They can be used to repeatedly share factious or

even fake news and negatively (positively) comment to show a disagreement (or a consensus)

higher than the true one.3 Another source of permanent misinformation are “prominent agents”

(media, firms or even politicians) that, systematically disseminate opinions and information to

convey consent on themselves or on a particular idea that they support, an example are the

so called “climate deniers”, who promote skepticism about the scientific opinion on climate

change (Oreskes, 2004). Both “prominent agents” and reliable social bots, that systematically

spread misinformation, can be considered stubborn agents since they always support the same

beliefs and do not learn neither by experience nor by peers, they act only to affect the outcome

of others’ social learning. Conversely, due to their use, many among social bots or troll are not

credible and are unmasked in the long-run. Thus, they have only a short period effect in the

opinion dynamics, through shocks of temporary fake news.

Thus, to model permanent misinformation, we assume the presence in the network of stub-

born agents, who do not update their fixed beliefs and, in this way, are able to influence agents’

social learning. Stubborn can represent “prominent agents”, such as media, firms or politicians,

who want to manipulate the opinion dynamics, social bots directly controlled from them, or

“objective” facts, that do not depend on personal or social preferences. E.g. we cannot say if a policy is “good”
or “bad”, since it depends on preferences, but, in principle, we can assess its objective effect in a particular
economy.

3It was estimated (Varol et al., 2017) that the share of bots is between 9% and 15% of the total users active
on Twitter, in the same way, many Facebook’s users are “fakes”. Social bots are used to spread fake news stories
to influence political debates (Ratkiewicz et al., 2011), manipulate the stock market (Ferrara et al., 2016), and
spread conspiracy theories (Bessi et al., 2015), among others. Moreover, Silverman (2016) shows that fake news
stories are among the most shared on Facebook.

89



even agents who have incentives aligned with them.4 Agents care about stubborn opinion either

because they may believe that stubborn have information that they do not have or because

they see stubborn as role models and thus have preferences to conform to them.

We show that having stubborn agents in the network is enough to prevent the consensus,

and thus the learning, to be reached. Differently from classical naive learning model based only

on linear updating (DeGroot, 1974; Golub and Jackson, 2010, among others) the steady state

agents’ opinions do not depend only on stubborn opinions and their centrality, but also on

the true state of the world and on agents’ reliance on their private signals (self-weights). The

relevant centrality measure is a new one, the “updating centrality”. The “updating centrality”

identifies the key agent in a social learning process and, when agents are able to recall all their

past signals, coincides with the Katz-Bonacich centrality of the network without self-weight.

We further discuss the optimal strategy of a farsighted monopolistic stubborn who know the

true state of the world and wants to minimize the distance between the steady state opinion

vector and his own position. The stubborn face a quadratic lying cost increasing in the distance

between her declaration and the truth. The main finding is a threshold value for the cost below

which the stubborn declare an opinion more extreme than her true opinion.

To understand the effect of temporary misinformation, we study the speed of convergence

of social learning in the nearby of steady state and without any stubborn agent, we focus only

on the case in which agents are able to recall all their past signals. This analysis can be thought

as the study of an exogenous shock which temporarily moves opinions away from the steady

state; possible examples of this source of misinformation are the diffusion of unreliable fake

news in social media or rumors in a social circle. Temporary misinformation does not affect

opinion dynamics in the long-run, but have short period effects. Our results are based on

spectral graph theory techniques. In particular, using Perron-Frobenius theorem and Cheeger’s

inequality we show, in line with previous literature, that the speed of reaching the consensus,

inversely depends on the “bottleneckedness”, and thus the homophily, of the underlying net-

work. On the other hand, the speed of convergence toward the truth (speed of learning) mainly

depends on the strength of weights that agents gives to their private signals and, surprisingly,

it may not increase as you decrease the homophily, or in general the“bottleneckedness”, of the

network.5 This is due to the fact that, if the level of private information is different across

4For example, influencer targeted by some firms or political party to support a particular product or policy.
Among theoretical results, Galeotti and Goyal (2009) provides a model about strategic diffusion through influ-
encer, while Fainmesser and Galeotti (2015) and Fainmesser and Galeotti (2016) studies influencer marketing
in both monopolistic and oligopolistic framework.

5Surprisingly with respect the results of Golub and Jackson (2012).
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agents, the learning of better informed agents is slowed down by others and this reduce the

speed of learning of the whole society

The article is organized as follows. In Section 3.1.1 we offer a brief literature review. Sec-

tion 3.2 lays out the formal framework of the model where we present, and microfound, agents’

updating rule. Section 3.3 studies the effect of permanent misinformation introducing the pres-

ence of stubborn agents in the network. Section 3.3.1 characterizes the steady state opinions’

vector and define the “updating centrality”. Section 3.3.2 is devoted to comparative statics

and in particular to measure the marginal distortion due to an outgoing link from a stubborn.

Section 3.3.3 studies the optimal opinion to declare for a monopolistic stubborn who want to

affect the opinion dynamics. Section 3.4 studies temporary misinformation discussing the speed

of convergence toward consensus and the speed of learning, showing when they coincide or differ

and why. Section 3.5 concludes.

3.1.1 Literature Review

The main purpose of this project is to create a deeper link between the literature on learning in

networks and the literature on the optimal targeting of individuals to diffuse (mis)information

or opinions in a social network. Moreover, we show how a constant flow of information may

seriously change the steady states opinions’ vector and the convergence time with respect to

standard DeGroot based models, where agents receive at most one signals at the first period.

This paper refers to different streams of literature.

Opinion Dynamics and Learning in Networks The literature about opinion dynamics

and learning on networks can be divided into two main approaches: Bayesian and non-Bayesian

learning models. (Golub and Sadler, 2016, for a survey). In particular, the social learning

process of this paper belongs to the non-Bayesian stream of literature, which began, and strongly

relies, on the famous DeGroot model, DeGroot (1974).6 Starting from the standard DeGroot

model, DeMarzo et al. (2003) make explicit the role of the network, while Golub and Jackson

(2010) derive general conditions on the adjacency matrix to ensure the reaching of consensus.

Concerning our purpose, the main limit of DeGroot like models is that agents can receive

signals about the true state of the world only at the first period and then they update their

beliefs aggregating others beliefs, as in Golub and Jackson (2010). In such a cases is very

easy to manipulate others’ opinions and spread misinformation in the network. Therefore, to

better analyze the spread of misinformation we consider agents who receive signals about the

6Some paper belonging to the Bayesian learning literature are Bala and Goyal (1998), Gale and Kariv
(2003), Rosenberg et al. (2009), Acemoglu et al. (2011), Mossel et al. (2015). For a deeper discussion about
both Bayesian and non-Bayesian paradigms we remand to the survey Golub and Sadler (2016).
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true state of the world at each period. As social learning process, we use the one proposed

by Jadbabaie et al. (2012), where agents combine their personal experience and the views of

their neighbors as a convex combination of the Bayesian posterior beliefs, given their personal

signals, and a linear updating of neighborhood’s beliefs.

Behavioral explanation for the Learning Process A contribution of our paper is to use

a beauty-contest like utility function (in the spirit of Morris and Shin (2002)) to propose an

explanation for the mechanisms behind the specific social learning process used (Jadbabaie

et al., 2012). Beauty-contest like utility functions are widely used in the literature about

learning and opinion dynamics. For example, Bindel et al. (2015) use a similar utility function

show the correspondence with the DeGroot model and compute its the inefficiency (with respect

to other non-equilibrium strategies) through the price of anarchy. Buechel et al. (2015) study the

opinion dynamics when agents may misrepresent their own opinion by conforming or counter-

conforming with their neighbors. In Olcina et al. (2017) the beauty-contest like utility function

is used to study the norms’ assimilation of ethnic minorities. A similar payoff structure is used

also in Bolletta and Pin (2018) where a dynamic process, with co-evolution of both individual

opinions and network, is characterized. Molavi et al. (2018), studies the behavioral foundations

of non-Bayesian models of learning over social networks under the main behavioral assumption

of “imperfect recall” of others’ beliefs, showing that, social learning rules have a log-linear

form, as long as imperfect recall is the only point of departure from Bayesian rationality. In the

end, Dasaratha et al. (2018) study a set of Bayesian agents that learn about a moving target,

the main result is that, under incomplete information, a fully Bayesian learning model can be

tractable as the standard DeGroot heuristic.

Stubborn Agent As channel of permanent misinformation, we make use of stubborn agents.

Yildiz et al. (2013) use the concept of stubborn agents, firstly proposed by Mobilia (2003) and

Mobilia et al. (2007),7 in a binary opinion dynamics framework. While, models as Grabisch

et al. (2017) and Mandel and Venel (2017) study influences and targeting in networks, through

stubborn agents, using the DeGroot model for the learning process.

Targeting in Networks Since the position of the stubborn in the network is of primary

importance, results refer also to the literature that studies the problem of optimal targeting in

networks (Bloch, 2016, for a survey). Papers as Galeotti and Goyal (2009), Candogan et al.

(2012) and Fainmesser and Galeotti (2015) study targeting and pricing problem from a monop-

olistic point of view, while Goyal et al. (2014), Fainmesser and Galeotti (2016) and Bimpikis

et al. (2016) deal with the same problem in the competitive case. Our main contribution is

7They use the term zealot instead of stubborn.
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to make the first attempt to consider a targeting problem, through stubborn, in a society

where agents receive each period signals about the true state of the world, therefore the tension

between the learning and the targeting force is very relevant in our problem.

Key Player Important contributions, in economics, to targeting problems stem also from

the literature that aims to identify the key agent in a network (Zenou, 2016, for a survey).

Among the first and most important results there is Ballester et al. (2006), which define the

“intercentrality” measure, a centrality measure that takes into account not only a player’s cen-

trality but also her contribution to others’ centrality. While Banerjee et al. (2013) derive a

measure of “diffusion centrality” that discriminates between information passing and endorse-

ment. We contribute to this literature deriving the concept of “updating centrality” measure,

which directly depends on the agent’s (linear) updating rule.

Speed of Learning Since the effect of temporary misinformation has only short run effect,

we analyze the speed of learning and the convergence to consensus. Golub and Jackson (2012),

among others, find the most striking result in this literature, the authors examine how the speed

of learning of average-based updating processes (as DeGroot) depends on homophily, showing

that convergence to a consensus, is slowed by the presence of homophily.8 Our contribution is

to show that, if agents receive signals at each period, that anchor them to the truth, then the

speed learning can be different from the speed of convergence and is not necessarily slowed by

the presence of homophily.

3.2 The Model

In this Section we introduce the baseline model, which strongly relies on Jadbabaie et al.

(2012). In Section 3.3 and 3.4 we study the effect of systematic and temporary misinformation

on agents’ social learning.

The Society The society is represented by a graph G(N,A), where N = {1, 2, ..., n} is the

set of finite nodes or agents and A ∈ [0, 1]N×N is the matrix that captures the interaction

patterns among agents in N . In particular, aij is the ij-th entry and represents the weight

that i gives to agent j, namely how much i listen j in proportion to others agents in N . Each

agent i ∈ N divides her attention between himself and the other agents in N , thus the matrix

is row-stochastic so that its entries across each row are normalized,
∑

j∈N aij = 1. We keep

8In Golub and Jackson (2012), the speed of convergence to a consensus is equivalent to the speed of learning.
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the analysis as general as possible considering a directed network where the interactions can be

asymmetric and one-side, so that aij > while aji = 0.9

States of Nature and Signals The finite set of possible states of nature is Θ ⊆ R where θ∗

is the true state of world. Conditional on the true state of the world θ∗, at each period agents

observe noisy signals ωt = (ω1,t, ω2,t..., ωn,t). Signals, that a generic i receive during her life, are

drawn from a distribution with mean E[ωi] = θ∗, variance σ2ωi > 0, and precision τωi = 1
σ2ωi

,

for all i ∈ N . We further assume that for each agent signals are i.i.d. over time and agents do

not need to have any information about signals generation processes.

Agents’ Opinion Each agent i, has at each time t a normal probability distribution (or

probabilistic belief) over the possible state of the world pi,t(θ) ∈ ∆Θ.10 The opinion (belief)

of i, at each t, is µi,t =
∫

Θ
θpi,t(θ)dθ, the first moment of her probability distribution over Θ.

While, σ2p
i,t and τ pi,t are respectively the variance and the precision of the probability distribution

of i over the possible states at t.

Social Learning We assume that agents observe through communication their neighbors’

beliefs. The observed beliefs are used, jointly with private signals received at each period, to

update beliefs about the underlying state of the world. The matrix A describe weights of com-

munication and reliance on their private signals.11 In this model, agents have always “imperfect

recall” about others’ beliefs, namely, treat them as sufficient statistics for the entire history of

their observations.12 We do not impose any restriction about the recall of past private signals

studying both “imperfect” and “perfect recall”. With “imperfect recall”, agents takes into

account only the last signal received in the updating process. On the other hand with “perfect

recall” agents are able to recall and use the whole history of received signals.

Formally, the updating rule of probabilistic belief for each agent i ∈ N is assumed to be a

convex combination of the Bayesian updating β, and the average probabilistic beliefs of their

neighborhood

9We can trivially restrict the analysis to directed networks, where aij = aji, results do not change.
10Notice that the assumption of normal belief is useful to have in next section tractable (linear) closed form

solution.
11Notice that we are assuming that individuals update their true opinions in a non-fully rational way. In fact,

if individuals were fully rational, they would perfectly account for repetition of information. Empirical evidence
strongly suggests that individuals are not fully-rational in these settings. For example, laboratory experiments
shows that in both complex networks (Grimm and Mengel, 2014) and also in small social networks with common
knowledge (Corazzini et al., 2012), people fail to properly account for repetitions of information.

12We remand to Molavi et al. (2018) for a deeper discussion about the implication of “imperfect recall” of
others’ belief in social learning.
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pi,t+1(θ) = aiiβi,t+1 +
∑
j∈Ni

aijpj,t(θ) (3.1)

Where

βi,t+1 =
l(ωi,t+1|θ)pi,t(θ)∫

Θ
l(ωi,t+1θ)pi,t(θ)dθ

is the Bayesian posterior belief at t for agent i and l(.|θ∗) is the likelihood function that gener-

ates signals ω. Elements aii are the self-reliance of each agent i, while aij represents how agent

i weights j’s beliefs.

To study opinion dynamics, in this paper, we focus on the mean of the distribution. At each

time t the belief (opinion) of agent i is the first moment of the probability distribution (3.1),

namely

µi,t+1 = aii

∫
Θ

θβi,t+1dθ +
∑
j∈Ni

aijµj,t. (3.2)

Before to discuss, in next session, permanent sources of misinformation it is important to

provide a behavioral explanation for our particular social learning rule.

Microfoundation There can be many reasons for which agent may aggregate others’ beliefs.

For example, since agents do not have complete information about the distribution from which

signals are drawn, they want to aggregate others’ information. Another possibility is that they

have preferences to conform to others agents or to specific role models in the society. These

considerations lead us to offer a micro-foundation for the updating rule (3.1) of agents in the

society with the following utility function.13

ui,t (pi,t(θ), p−i,t(θ)) = − (pi,t(θ)− 2aiiβi,t+1)2 −

(
pi,t(θ)− 2

∑
j∈Ni

aijpj,t(θ)

)2

(3.3)

Solving first order conditions for (3.3) we find exactly the updating rule in (3.1).14

In next section we introduce stubborn agents in the network. Agents may care about opinions

of stubborn for the same reasons.

13The first appearance of a similar utility function in economics is due to Morris and Shin (2002). We can
find it in similar frameworks in Bindel et al. (2015), Olcina et al. (2017), Dasaratha et al. (2018), Bolletta and
Pin (2018), among others.

14Which is equivalent to Jadbabaie et al. (2012).
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3.3 Permanent Misinformation

In this section, we introduce in the society a set of stubborn agents S. Stubborn represent

“prominent agents” who have a fixed opinion and repeatedly share factious information or

actual misinformation in social media (or social cliques). A generic stubborn ss ∈ S, is a

particular agent that is not affected by the opinion of others and never revises her opinion θss ,

namely assss = 1 and assi = 0 for all i ∈ N .15

As discussed in the previous section, agents may care about stubborn’s opinions, in (3.3),

for many reasons. For example, agents can ignore the presence of stubborn in the society, or

they may believe that stubborn have information that they do not have or they see stubborn

as role models and thus have preferences to conform to them. Thus, equation (3.3) still holds,

an agent i takes into consideration the opinion of stubborn ss if ss ∈ Ni.

The new adjacency matrix As of the society with stubborn, is defined as16

As =


a11 a12 ... a1n1 a1s1 a1s2

a21 a22 ... a2n a2s1 as2

... ... ... ... ...

0 0 ... 0 1 0

0 0 ... 0 0 1

 =

 A as1,as2

0 1 0

0 0 1



Where as1 and as2 are the column vectors composed by the weight that each agent i gives to

the stubborn. Notice that, with stubborn agents in the society, A is row-substochastic and As

is row-stochastic, such that
∑

j∈N aij +
∑

ss∈S aiss = 1, for each i ∈ N .

Stubborn receive always the same signals ωss for all ss ∈ S with E[ωss ] = θss and zero vari-

ances. Since stubborn agents never revise their opinions, neither through social interaction nor

through signals, their beliefs are fixed over time, µss,t+1(θ∗) = µss,t(θ
∗) = θs.

17

With stubborns, the updating of non-stubborn agents is

µi,t+1 = aii

∫
Θ

θβi,t+1dθ +
∑
j∈N

aijµj,t +
∑
ss∈S

aissθss (3.4)

15Our stubborn agent are the same as the stubborn in Yildiz et al. (2013) and the zealot in Mobilia (2003)
and Mobilia et al. (2007).

16Here we consider the case with only two stubborn agents, but we easily can generalize it to any number of
stubborn.

17We can provide a micro-foundation for stubborn, but in this case it is trivial.

96



(a) (b)

Figure 3.1: (a) Network with 198 nodes and 486 edges G(N,A) (b) same network with 2 stubborn

agents with 7 link each G′(N ∪ S,As)

Where the weight that i gives to a generic stubborn (ss ∈ S) is aiss 6= 0 if and only if ss ∈ Ni.
18 Therefore, (3.2) and (3.4) have exactly the same meaning when ss ∈ Ni.

In next section, 3.3.1, we discuss the effect of stubborn opinions on the steady state opin-

ions’ vector of other agents, we consider the case with only two stubborn agents, but results

hold for any number of stubborn.

3.3.1 Characterization of Steady State Opinions’ Vector

We now write the opinions’ updating rule (3.4), for the whole society, in matrix form. We

decompose the adjacency matrix A as the sum of the diagonal matrix containing all the weight

that agents give to their private signals (self-loops), D = diag[a11, ...ann], and the adjacency

matrix of the same network without self-loops, A = A − D. In particular, D represents

the Bayesian part of agents’ updating and A the linear (DeGroot) one. We further define

β̄i,t =
∫

Θ
θβi,t+1dθ as the first moment of the Bayesian posterior, and β̄t+1 as the column vector

containing the all β̄i,t. as1 and as2 are vectors containing all influences of stubborn over agents.

18Notice that agents may both not to be aware of the presence of stubborn in the network and can consider
them as other agents, or even they may be aware of their presence but they can consider them for other
sociological reasons.
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In matrix form the updating of non-stubborn agent is

µt+1 = D · β̄t+1 +Aµt + as1θs1 + as2θs2 . (3.5)

Before to characterize the steady state of opinion dynamics, let us define G as the diagonal

matrix with γi =
τpi

τpi +τω
as entries, where τ pi is the precision of the probability distribution for

i at the steady state.

Proposition 1 If, for all agents, the probability distribution over Θ at t = 0 (the prior)

is normally distributed and “imperfect recall” of past signals holds, then steady state vector of

opinions (beliefs) is

µ = C (D(I −G)θ∗ + as1θs1 + as2θs2) , (3.6)

where

C · 1 = (I −DG−A)−1 · 1 (3.7)

is the vector of “updating centrality”.

Proof. In the Appendix �.

Proposition 1 shows that the steady state opinion vector is a linear combination of the un-

derlying state of the world and stubborn opinions. Moreover, the relative influence that an

agent has over opinions’ steady state, and thus the weights of the linear combination, depends

on the “updating centrality” and on the weight that she gives to her private signals, and to

stubborn agents, respectively. The “updating centrality”, C ·1, represents the relative influence

of each node at the steady state of a particular social learning framework.19 This result is par-

ticularly relevant with respect to the literature about targeting and the key player in networks

(Bloch, 2016; Zenou, 2016, for reviews of these literature). If a firm (or political party) wants

to target agents who receive a constant flow of information to disseminate their message, it

should target the more central ones with respect the “updating centrality” measure, previously

defined. Differently, from other network centrality, the “updating centrality” of an agent, does

not depends only on the topology of the underlying network, but positively depends on the

steady state belief’s precision τ pi . Namely, according to this centrality measure, agents that

end up to have less sharp opinions at the steady state, ceteris paribus, are less central than

others. The intuition is straightforward, the more the position of an agent allows her to have

19Notice that the vector of “updating centrality” depends on the updating rules, and priors’ distribution. We
are going to characterize the “updating centrality” only in the specific case of our model, but, for example,
it is trivial to see that for the DeGroot like models the “updating centrality” is nothing but the eigenvector
centrality.
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a sharper opinion at the steady state (higher precision), the more, if targeted, her opinion

remains close to the stubborn opinion, and in this way the targeting action results to be more

effective. Roughly speaking the steady state belief’s precision τ pi a measure of how effectively

stubborn can convey her opinion to and through the targeted agent i.

As a particular case we consider the situation in which agents are more rational and are able

to recall all past signals.20

Corollary 1.1 If, for all agents, the probability distribution over Θ at t = 0 (the prior) is

normally distributed and ‘perfect recall” of past signals holds, then steady state vector of opin-

ions (beliefs) is

µ = C (Dθ∗ + as1θs1 + as2θs2) , (3.8)

where

C · 1 = (I −A)−1 · 1 (3.9)

is the vector of “updating centrality”.

Proof. In the Appendix �.

Proposition 1 and Corollary 1.1 show that the presence of stubborn agents in the network

prevents the consensus to be reached at steady state. Under “perfect recall” the probability

distributions over the possible state of the world is degenerate with three picks: the true state

of the world, opinion of stubborn 1 and opinion of stubborn 2. The relationship with the “up-

dating centrality” holds even when agents are able to recall past signals. In this case, since the

belief’s precision τ pi is the same for all agents, the “updating centrality” depends only on the

underlying network and coincides with the Katz-Bonachic centrality of the network without

self-weight (with parameter 1).

Example 1 Consider a society of five agent, N = {1, 2, 3, 4, 5} and two stubborn s = {s1, s2},
with the true state being θ∗ = 10 and stubborn’s opinions , θs1 = 15 and θs2 = 5, respectively.

Let assume that all agents in N have positive self-reliance and perfect recall of past signals.

As for the social structure, we consider the four possibile situations described in Figure 2. We

assume that the network is a normalized 0,1 network, where the intensity of each link is 1
|Ni| ,

with i ∈ Ni, for all i ∈ N . Thus, since each node has a positive self reliance, if (for example)

a node has 3 links the intensity of each link and the self reliance are both 1
4
. Using results

20I disregard intermediate cases, where agents recall some of the past signals, since they do not add much to
the understanding of social learning.
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from Corollary 1.1, it is trivial to compute the steady state opinion vector and the distortion

created by each link toward a stubborn. In order to see the total effect of one or two stubborn

in different social structures we can compute the average steady state opinion µ′1/n which

results to be 10.75 in (a) 9.3101 in (b) 10.0609 in (c) and 11.5000 in (d). These example show

how the effect of stubborn agents on the opinion vector in steady states directly depends on the

centrality of targeted agents, the more the central is the agents connected with the stubborn

the higher is stubborn centrality and thus his influence. �

(a) (b)

(c) (d)

Figure 3.2: Networks composed by agents with “perfect recall” and the intensity of each link of i is
1
|Ni| used in Example 1 (self-loop is omitted in figures) and Example 2 (no self-loops at all). θ∗ = 10,

θs1 = 15, θs2 = 5 the average opinions µ′1/n in the two examples are: (a) 10.75, (b) 9.3101, (c)

10.0609, (d) 11.5000 (in Example 1) and (a) 15 (b), (c) 9.8455, (d) 12.7500 (Example 2).

As we have seen in Proposition 1 and Corollary 1.1, the underlying state of the word θ∗ plays a

role in determining the steady state opinions’ vector µ. To better understand how the constant

flow of new information each period is important to agents’ learning we consider, in the next

example, a set of agents that do not listen the received signals, thus update their belief as in a

standard DeGroot framework.21

21This updating rule is the same used in Golub and Jackson (2010, 2012), in such a case our model with
stubborn is comparable to models as Yildiz et al. (2013) or Grabisch et al. (2017).
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Example 2 Let us consider the same society with the same state of the world and stub-

born as in Example 1, but let all elements aii in D be equal to zero. Namely, agents update

their beliefs without taking in account the signals received at each period, thus the updating

rule is exactly the standard DeGroot linear updating model. Notice that, in this case i /∈ Ni
and thus if (for example) a node has 3 links the intensity of each link is 1

3
. We can easily verify

how the average steady state opinion is 15 in (a) and 5 in (b), the variance is zero in both case.

Namely, if there is only one stubborn in a network where agents linearly update their beliefs

without constant signals (as in DeGroot models) the opinion of each agent always converges to

the stubborn’s opinion. On the other hand, if there is more than one stubborn in the network,

as in (c) and (d), the steady state depends only on the centrality of agents connected with

stubborn and the stubborn’s opinion. In particular, µ′1/n is 9.8455 in (c) and 12.7500 in (d).

Notice that, in Example 1, where agents took into consideration the received signals (aii 6= 0),

the Bayesian updating based on a constant flow of signals mitigates the stubborn influence on

the steady state opinion vectors. �

Corollary 1.1 tells us that, if agents are able to recall past signal their opinions are closer

to the truth than with “imperfect recall”, nevertheless having ‘perfect recall” of signals is not

enough to have the convergence toward the truth. However, there exist particular situations

in which a society with stubborn reaches the truth. It is trivial to see that all elements in µ

are equal to the truth θ∗ if agents do not give importance to the stubborn, as1 = as2 = 0, or if

the stubborns’ opinion is equal to the truth itself, θs1 = θs2 = θ∗. Moreover, if stubborn have

the same influence over the society, namely if as1 = as2 , then the society can converge to the

truth whenever θs1 = 2θ∗ − θs2 . Notice that in these two case the welfare is maximized both

from the policy maker’s and agents’ prospective. We remand to the Appendix B for details and

a deeper discussion about approaching the truth where there are stubborn agents in the society.

We can see that having more than one stubborn agent may facilitate learning if stubborn

are evenly distributed around the truth. Therefore, from a policy maker point of view, it may

make sense to facilitate the entry of stubborn agents, with different opinions, once there is

already one in the network. This shows us that, for example, if the presence of a factious social

media is recognized in the society, having more social media with different opinion may be

desirable. Notice that this argument is valid only if the network is exogenous, as in this paper.

On the contrary, if agents have the possibility to choose their connection then, depending on the

network structure and the strength of the signals, stubborn can be isolated in the long-run, or

there can arise different isolated communities where agents as opinion very close to the stubborn.

In next two section (3.3.2 3.3.3), to convey results and, at the same time, to maintain for-
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mal simplicity, we consider a network with only one stubborn agent. We study, in 3.3.2, the

distortion induced by a stubborn and, in 3.3.3, the optimal declaration of a sophisticated stub-

born.

3.3.2 Marginal Distortion Induced by Stubborn

In order to better understand the effect of stubborn agents on the social learning, we study the

effect of increasing (or decreasing) the influence of a stubborn agent s over a generic agent i of

αis.
22

Since the listening matrix should remain normalized (row-stochastic) if we define âis = ais+αis1

the new influence of a generic stubborn s on agent i then
∑

j 6={i,s} âij =
∑

j 6={i,s} âij − αis

(
∑

j 6={i,s} αij = −αis and therefore αis = −
∑

j αij) we further assume that aii remain fixed for

all i, that αis = α and αij = α
n
, for simplicity.

Let Â = A − ei(gi)
′ be the modified matrix where gi is the n-dimensional listening column

vector that has: (i) 0 in its ith position, (ii) α/|Ni| in all jth positions different from the one

associated with the stubborn; e′i is the is the n-dimensional row vector that has a 1 in its ith

position and 0 elsewhere.

The next proposition describes the effect of introducing one stubborn agent in the society

composed only by non-stubborn agents.

Proposition 2 In a society without stubborn agents, if one agent create a link of intensity α

with a stubborn, the marginal effect is

∆µ = (C −X)αeiθs −XD(I −G)θ∗ (3.10)

and the steady state opinion vector is

µ̂ = (C −X) (D(I −G)θ∗ + αeiθs) (3.11)

Moreover,

X · 1 =
Cei(gi)

′C

1 + (gi)
′Cei

· 1

describe the distortion induced by the stubborn on agents’ “ updating centrality”.

22Since in this section and in the next one we consider only one stubborn we call it s, instead of ss.
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Proof. In the Appendix �.

The distortion induced by a stubborn in the opinion steady state vector is |∆µ|. From (3.10),

it is evident that the distortion is increasing in the distance between θs and θ∗. Moreover, as

shown by the distortion term X, an increase (decrease) in stubborn influence creates a distor-

tion in the centrality of all agents in the network, the new “updating centrality” is (C −X).
23

If we consider a benevolent policy maker who want to minimize the distance between agents’

opinion and the truth, (for example with utility function up(µ) := −(µ − θ∗)2, the distortion

|∆µ| represents a measure of the policy maker’s welfare loss. The welfare of policy maker is

maximum when all the agents learn the truth, |∆µ|.

3.3.3 Monopolistic Stubborn Agent Problem

We have, until now, considered naive stubborn agents that always declare exactly the opinion

that they want to disseminate. We now consider a sophisticated stubborn that is able to opti-

mally choose the opinion to declare in order to maximize the diffusion of the opinion that she

really want to disseminate.

The stubborn knows the true state of the world θ∗ and it is farsighted, namely she is able

to compute the steady state opinion vector µ. The stubborn, given a fixed influence over

agents, can declare any opinion θds ∈ Θ such that minimize the distance between agents’ opin-

ion and her own true opinion θs. We further assume that the stubborn faces a cost of lying

(Kartik et al., 2007; Kartik, 2009). The cost of lying is assumed to be quadratic and propor-

tional to difference between the true state of the world θ∗ and the declared opinion θds , and is

parameterized by k ∈ R+, the intensity of the lying cost.

The interpretation of the intensity of the lying cost, k, can be manifold, it can be thought

as the punishment (fines) for having spread fake news, or as a cost to convince others about

the reliability of your opinion, or can even represent the expected loss in credibility due to a

too extreme declaration.

23In this section, we study to a situation in which stubborn agents are not connected with the rest of the
society (as1 = as2 = 0). In the Appendix we extend the results to generic as1 and as2.
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The stubborn choses to declare θds that solve the following problem

max
θds

us(µ) = − (µ− 1θs)
2 − k(θ∗ − θds)2 (3.12)

Proposition 3 If all agents have normal prior distribution at t = 0 and “imperfect recall” of

past signals, and there is one sophisticated stubborn agent that solves the problem in (3.12), the

stubborn s would declare

θds =
1′Cas

a′sC
′Cas + k

θs −
(C (D(I −G)1))′ as − k

a′sC
′Cas + k

θ∗. (3.13)

Moreover, the steady state vector of opinions (beliefs) is

µ = C

((
D(I −G)− as

(C (D(I −G)1))′ as − k
a′sC

′Cas + k

)
θ∗ + as

1′Cas
a′sC

′Cas + k
θs

)
(3.14)

Proof. in the Appendix �.

From (3.13), we can study conditions under which the stubborn declare a more extreme opinion

than the one that she really has, |θ∗ − θds | > |θ∗ − θs|.

Without loss of generality we consider only the case where θs > θ∗ > 0. From (3.13) we

find k̄ = (1′Cas−a′sC′Cas)θs−(C(D(I−G)1))′asθ∗

θs−θ∗ such that:

k < k̄ ⇔ θds > θs. (3.15)

Whenever the cost of lying k overcomes the threshold k̄, the sophisticated stubborn induces a

lower opinions’ distortion than a naive stubborn that declares exactly the opinion she wants to

disseminate.

To better understand the implication of Proposition 3, we propose a numerical example.

Example 3: Let us consider the two societies described by Figure 2 (a) and Figure 2 (b).

The stubborn in (a) and (b) want to disseminate θds1 = 15 and θds2 = 5, respectively. All agents

have “perfect recall” of past signals. The cost of lying for the stubborn is k = 0.5. In (a) the

stubborn s1 chooses θds1 = 18.6 and the steady state average opinion is µ′1/n = 11.2900. On

the other hand, in (b) the stubborn s2 chooses θds2 = 5.95 and the steady state average opinion

result to be µ′1/n = 9.4411. Notice that the same cost of lying k = 0.5 is low enough for the
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more central stubborn s1 to declare a more extreme opinion (θds1 > θs1 > θ∗), and high enough

for the less central s2 to declare a less extreme opinion (θ∗ > θds2 > θs1). This suggest us that

a more central stubborn has more room to spread misinformation in the society. �

The main message of this section is that in a “smart society” a naive stubborn – who, given

her inability to make a declaration that maximizes her utility, declares her true opinion– is

more dangerous than a sophisticated one – who does declare the opinion that maximizes her

utility–. In fact, a naive stubborn pursuits is own agenda, to disseminate a certain opinion

θs 6= θ∗, no matter on the cost that she faces. On the other hand, a sophisticated stubborn

takes into account how costly is to declare a certain opinion. Therefore, the more the society is

“smart” the more ineffective is the action of the sophisticated stubborn. We say that a society

is more smart than another whenever its the cost of lying k is higher. Therefore, using the

term “smart society” we have in mind both a situation in which is the government who can

implement policy to enhance cost of lying (k ↑) or in which is the population’s culture that,

being is less tolerant to lies, have a higher cost of lying (k ↑).

These results can provide us with insight about different political campaign strategies and

allows us to explain, to a certain extent, the big differences between political statements before

and after voting.

We have previously discussed that a policy may have incentives to introduce stubborn in the

society to contrast the spread of misinformation and facilitate learning. In Appendix B, we

discuss also the competition and the optimal declaration strategy of a stubborn controlled by

policy maker to contrast the effect of a sophisticated stubborn in the society.

3.4 Temporary Misinformation

In the previous sections, we have studied social learning only when there are permanent sources

of misinformations (stubborn agents), in the society. In this section, we address the study of the

speed of convergence to the consensus and the speed of learning of (3.5) in a network without

stubborn agents but with temporary misinformation.

In the real world, there exist temporary sources of misinformation (e.g. rumors or fake news)

that do not affect the long-run learning but may have important short-run effects. Gratton

et al. (2017), for example, show that a bad sender -the spreader of misinformation in our setting-

releases information later than good seder, this is mainly due to the fact that in the long-run
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fake news are unmasked.

Let us consider, for example, a massive diffusion of fake news, or misinformation, in the society

that foreruns an election. In such a case, if the learning take place at a too slow pace the

temporary distortion can seriously affect the election’s outcome. Other examples where the

speed of learning play a crucial role are the diffusion of misinformation regarding health, or

climate change, issues, the longer the learning process the more serious the damages are. It is

important to stress that in this cases the convergence to the consensus is not enough, in fact,

agents may agree but still be far from the truth.

With updating rule as in (3.5), if the network is strongly connected (no stubborn), all agents

learn the truth, in the long-run (Jadbabaie et al., 2012). However, in the short-run the speed of

convergence can play a crucial role. Let us consider the steady state opinions’ vector without

any stubborn, µ = θ∗, and we assume that each agent i receive a shock εi that represents the

diffusion of temporary fake news. The learning process start again by

µt = θ∗ + ε (3.16)

We discuss the problem considering the case in which agents are able to “perfect recall” their

past signals. Thus, the updating rule is24

µt+1 = Aµt +Dθ∗ (3.17)

To study the speed of convergence we avoid to consider the effect of the true state of the world

θ∗ on agents’ updating. Using (3.16), (3.17) becomes

µt+1 = Aµt +D(µt + ε) = Aµt +Dε

ε represents a small deviation from the steady state. There is consensus when agents’ opinion

are very similar to each other, regardless of the initial shock. Therefore Dε is negligible and

the consensus time depends only on the convergence of A. The consensus dynamics of (3.17)

is equivalent to

µt+1 = Aµt (3.18)

Therefore we can use the standard definition of consensus used by Golub and Jackson (2012).

Using the standard l2-norm, we can define consensus time as the time it takes for the distance,

24Since we assume a shock at the steady state, under “perfect recall” agents have collect severals signals
therefore, they observe directly θ∗.
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between average sum of current opinions and steady state opinions of (3.18), to get below ε:

Definition [Consensus Time] The consensus time to ε > 0 of a connected graph G is

CT (ε,G) := sup
µt∈Rn

min{T : ||ATµt −A∞µt|| < ε}

Taking the supremum allows us to consider the worst case as a benchmark.

To define the learning time, we still use the l2-norm. The learning time is the time T , such that

the distance between the opinion vector µt+T and the true state of the world θ∗, is less then ε:

Definition [Learning Time] The learning time to ε > 0 of a connected graph G is

LT (ε,G) := sup
µt∈Rn

min{T : ||µt+T − θ∗|| < ε}

Again, we use the supremum to consider the worst case as a benchmark.

Notice that in our problem, learning time can be different from consensus time. Agents may

have very similar opinions but still be far from the truth and, receiving new pieces of informa-

tion at each period, they approach θ∗ until they reach it.25

We are interested in understanding how the network topology affect the consensus and the

learning time. Thus, before to proceed, it is important to define a “bottleneckedness” measure

of a network.

Definition [Cheeger Constant] The Cheeger Constant of the graph G(N,A) is

φ(G) = min
S⊆N

∑
i∈S

∑
j /∈S

aij
|S||Sc|

where S ∪ Sc = N .

The Cheeger constant is a measure of whether or not a graph has a “bottleneck”. It quantifies

how the network G can be partitioned in two components. If φ(G) is small then the network

is composed by two sets of vertices with few links between them. On the other hand, if φ(G)

is large, then the network has many links between those two subsets. Moreover, the Cheeger

constant is strictly positive if and only if the network is connected.26

25For example, in the past many people did not believe that smoking cigarette was harmful to health.
26The first formulation of Cheeger constant is due to Cheeger (1969), for a deeper discussion of discrete

version we remand to Chapter 2 and 6 of Chung (1996).
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Defining 1 = λA1 ≥ λA2 ≥ λAn the eigenvalue of the matrix A.

Proposition 4 Given the updating rule (3.17) and a network represented by the adjacency

matrix A, then for any ε > 0 the consensus time CT (ε,G) is in the order of λA2 exponentially.

Moreover,
φ(G)2

2
≤ 1− λA2 ≤ 2φ(G) (3.19)

Proof. in the Appendix. �

This result is standard and consistent with previous literature. In fact, the matrix A is stochas-

tic and we know from Markov Chain theorem that speed of convergence negatively depends on

the magnitude of the second eigenvalue of A. Moreover, if shocks are correlated, φ(G) is strictly

related with the spectral homophily measure of Golub and Jackson (2012). The main idea is

that the speed of convergence depends on the second largest eigenvalue of A, and according

to Cheeger’s inequality, the second smallest eigenvalue of the Laplacian matrix, λLAn−2, is an

approximation of the Cheeger constant.27 We can prove that, in our model, λLA2 = 1 − λAn−2,

therefore the smaller λA2 is, the faster the consensus occurs and the more connected the two

subsets of nodes are.28

Figure 3 clearly shows how the more the two subsets of nodes are connected, the faster the opin-

ion to converge toward the consensus. In this example, lower “bottleneckedness” means higher

homophily, in fact, shocks in ε are of opposite sign for agents belonging to the two subgroups.

We can further see, that a faster consensus does not translate in a faster learning. In Figure

3 we can see that, in this particular example, the society with more “bottleneckedness” (less

homophily) is the first to learn the truth in average. Therefore, given our particular updating

rule, the speed of learning does not depend only on the “bottleneckedness” (or homophily) of

the network as in Golub and Jackson (2012).

To study the speed of learning the truth, we go back to consider the dynamics in (3.17) where

the role of θ∗ is explicit. We recall that the steady state of (3.17) is θ∗ and that A is a sub

stochastic matrix, in fact A = A+D.

Let us define āii =
∑n−1

i
aii
n−1

and minaii as the average and the minimum among self-weights,

27In the appendix we provide technical details and formal definition of Chegeer’s inequality and Laplacian
matrix. For a deeper discussion about Chegeer’s inequality we still remand to Chapter 2 and 6 of Chung (1996).

28The second-smallest eigenvalue of the Laplacian matrix λLA
2 is known as the algebraic connectivity of the

graph, and is greater than 0 if and only if the graph described by the adjacency matrix A is a connected graph.
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(a) (b) (c)

Figure 3.3: Convergence of µt to θ∗ = 5 in networks with, εi = 0.25 for i = 1, 2, 3 and εi = −0.25
for i = 4, 5, 6. (a) λA2 = 0.9760, (b) λA2 = 0.5991, (c) λA2 = 0.2283

respectively. And κ(U) as the condition number of the eigenvector basis U .

Proposition 5 Given the updating rule (3.17) and a network represented by the adjacency

matrix A, then for any ε > 0

LT (ε,G) ≤ d log(ε/(κ(U))

log(|λA1 |)
e (3.20)

Moreover,

min
i
{aii} ≤ 1− λA1 ≤ āii (3.21)

Proof. in the Appendix. �

The first part of Proposition 5 shows that, the LT (ε,G) is of the order of the higher eigen-

value of the substochastic matrix A which represent the network without self-weights, and not

on the eigenvalue of the full adjacency matrix A. Moreover, positively depends also on the
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condition number of the eigenvector basis. The second part of Proposition 5 shed light on the

role of self-reliance for the speed of learning in our problem. The minimum self-loop mini{aii}
– which represents the “weakest link” of the learning process, namely the agent that gives less

weight to her own private information— is related, through λA1 , to the lower bound of the time of

learning. Namely, the higher the minimum individual consideration about the stream of infor-

mation is, then the faster the learning can be, at its minimum. Thus, it is extremely important

how bad informed is the less informed agent, improving the lower level it is possible to ensure a

minimum speed of learning. On the other hand, the average self-loop āii – that is the attention

that the society gives, on average, to her own private information– can provide information

about the upper bound of speed of learning, namely the higher the average individual consid-

eration about the stream of information is, then the faster the learning can be, at its maximum.

Notice that if aii = ajj = α for all i, j ∈ N then, from (3.21), α = 1 − λA1 . Moreover

from (3.20) LT (ε,G) ≤ d log(ε/(κ(U))
log(1−α)

e.

We have seen, in Proposition 5 and 6, how the “bottleneckedness” (homophily) of the net-

work plays a crucial role in the consensus time, while self-weights are fundamental for what

concerns the speed of learning.

We should stress that the speed of learning, even if ultimately depends on λA1 , in the short-run

is affected even by other eigenvalues, depending on the magnitude.29 As an approximation

we believe that is enough to consider only λA1 , λ
A
2 , the two largest eigenvalues.30 The main

intuition is that given two societies with similar levels of self-weights then the different the

speed of learning depends on the second largest eigenvalue. Unfortunately, in this case, the

interpretation of λA2 as “bottleneckedness” of the networks is not straightforward.

Corollary 5.1 Let us consider two symmetric graphs G1(N,A1) and G2(N,A2), where A1 =

αI +A1 and A2 = αI +A2, with α ∈ [0, 1]. Given the updating rule (3.17), if φ(G1) ≥ φ(G2)

then for any ε > 0

• CT (ε,G1) ≤ CT (ε,G2)

• LT (ε,G1) ≤ LT (ε,G2)

Proof. in the Appendix �

29We remand to the proof of Proposition 6 for details.
30Notice, in fact, that A is row sub-stochastic therefore all the eigenvalues are less then 1 and most of them

vanish after very few iterations.
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This corollary discusses the particular case where all agents in two different symmetric net-

works give the same weight to the information that they receive. It shows that the ordering of

second largest eigenvalues of adjacency matrices relative to the network without self-loops λA1
2

and λA2
2 is the same the ordering of “bottleneckedness” measures φ(G1) and φ(G2). In Figure

4, we can observe a numerical example where agents give the same weights to their private

information, in such a case, a higher homophily leads to a faster consensus and learning.

Figure 3.4: Convergence of µt to θ∗ = 5 in networks with equal self-loops α = 0.3, θ∗ = 5,
εi = 0.25 for i = 1, 2, 3 and εi = −0.25 for i = 4, 5, 6. (a) λA2 = 0.5846, (b) λA2 = 0.4209, (c)
λA2 = −0.1

From Proposition 4 and 5 and Corollary 5.1 we deduce that, if agents receive a continuous

stream of new information about the true state of the world then, the speed of learning and the

speed of convergence to the consensus are, in general, different. The first one mainly depends

on the self-reliance of agents, namely how much they care about the information that they

receive. The second strongly depends on the “bottleneckedness” of the network and therefore,

when shocks are correlated with network structure, on the homophily. If all agents have the

same fixed reliance on private signals and the network is symmetric, then a smaller “bottle-

neckedness” (higher homophily) leads both to a lower consensus and learning time.

Comparing results with Golub and Jackson (2012) the main insight is that, if agents receive

new information at each time then the speed of learning is not necessarily directly correlated to
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homophily. For example, an increase in the number of connections among agents belonging to

two different subset of the network31 may translate into a lower speed of learning (as in Figure

3), due to the rescaling of self-weights.32 This strongly relies on the fact that agents receive

constant flows of information, unlike in a DeGroot like social learning framework as Golub and

Jackson (2012).

From a policymaker point of view, these results suggest an increase in the network density

does not directly translate into a faster learning of the truth. Moreover, policies that aim to

increase social interaction and decreasing the homophily to facilitate agents’ learning, may suc-

ceed only if agents belonging to different groups have the same level “good information”. On

the contrary, the learning of better informed agents is slowed down by others and this reduce

the speed of learning of the whole society.

3.5 Conclusion

This paper addresses the problem of the spread of misinformation in a social network where

agents interact to learn an underlying state of the world with a non-Bayesian social learning

process. The main difference with the standard naive social learning, as in Golub and Jackson

(2010), is the continuous stream of new signals that agents receive at each period. This implies

a stronger connection to the truth in the learning process. Considering the permanent misinfor-

mation or opinion manipulation pursuit by “prominent” agents we show that despite receiving

new signals every period, agents are not able to learn the underlying state of the word nor to

reach a consensus. This depends on the fact that the network is not strongly connected due to

the presence of “prominent agents” who behave as stubborn. Differently from the benchmark

of DeGroot model, if agents receive signals at each period, the steady state agents’ opinion does

not depends only on the stubborn opinion and the centrality of agents connected to stubborn

but also on the true state of the world and on agents’ self-reliance. We, therefore, introduce a

novel centrality measure the “updating centrality” that, in the case of “perfect recall” of past

signals, corresponds to the Katz-Bonachic centrality. We further characterize the optimal ac-

tion of a stubborn who want to manipulate the opinion dynamics showing his relationship with

the cost of disseminating misinformation. At the end, we discuss the consensus and learning

time after an exogenous shock that temporarily moves opinions away from the steady state. We

prove that the speed of reaching the consensus inversely depends on the “bottleneckedness”,

and thus the homophily, of the underlying network, while the speed of convergence toward the

31That, as said, correspond to a decrease in the level of homophily if shocks are correlated.
32Given that

∑
j aij = 1 for all j ∈ I, if for i aik increase, where k ∈ I/{i}, then the sum of others aij , for

j ∈ I/{k} should decrease of the same amount, thus aii can decrease too.
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truth mainly depends on the strength of self-weights.

A potential interesting extension for the future is to study a similar framework in a society

where agents have the possibility to choose their connection. The probable result is that if

stubborn agents are not very central and agents strongly rely on their private signals, then

stubborn agents end up to be isolated in the long-run and agents reach a full learning. On the

other hand, if stubborn is central and agents have low reliance on private signals can arise differ-

ent isolated communities where agents as opinion very close to the stubborn. In this framework,

it is interesting to investigate if a sophisticated stubborn would declare more extreme opinions

when she is central or peripheral.

Appendix A

Proofs of Propositions

Lemma 1

Before presenting the proof of Proposition 1 and Corollary 1.1 we have to state and proof the

following lemma.33

Lemma 1 (Jadbabaie et al., 2012) Let As denote the matrix of social interactions. The

sequence
∑n

i=1 νipi,t(θ
∗) converges P∗ - almost surely as t → ∞, where ν is any non-negative

left eigenvector of As corresponding to its unit eigenvalue.

Proof.

Notice that since As is stochastic its largest eigenvalue is λ1 = 1. Moreover, always exists

ν a non-negative left eigenvector corresponding to the eigenvalue λ1 = 1. We define pt+1(θ) the

vector of probabilistic belief of all i ∈ N and ps1,t+1(θ), ps2,t+1(θ) the stubborn beliefs. Since

stubborn do not revise their beliefs we can consider only the probabilistic belief’s updating rule

(1) for all i ∈ N (evaluated at θ∗)

33 We adapt the proof from Jadbabaie et al. (2012), the only difference is the presence of stubborn agents
that makes As not to be strongly-connected.
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pt+1(θ∗) = Apt(θ∗)+
n∑
i=1

pi,t(θ
∗)aii

(
l(ωi,t+1|θ∗)∫

Θ
l(ωi,t+1θ∗)pi,t(θ∗)dθ

− 1

)
+

n∑
i=1

[ai,s1ps1(θ
∗) + ai,s2ps2(θ

∗)]

(3.22)

A is a stochastic matrix, therefore the largest eigenvalue is λ1 = 1, we denote with ν the eigen-

vector corresponding to λ1. Notice that all element in ν are non negative and ν ′A = ν ′λ1.

Moreover, for a generic stubborn ps(θ) = 0 for all θ 6= θs.

Let us multiply both sides of (20) by ν ′,

ν ′pt+1(θ∗) = ν ′Apt(θ∗)+
n∑
i=1

νipi,t(θ
∗)aii

(
l(ωi,t+1|θ∗)∫

Θ
l(ωi,t+1θ∗)pi,t(θ∗)dθ

− 1

)
+

n∑
i=1

νi [ai,s1ps1(θ
∗) + ai,s2ps2(θ

∗)]︸ ︷︷ ︸
=0

then we take the expectation E associated with measure P∗ with respect the filtration Ft

E [ν ′pt+1(θ∗)|Ft] = ν ′pt(θ
∗) +

n∑
i=1

νipi,t(θ
∗)aiiE

[(
l(ωi,t+1|θ∗)∫

Θ
l(ωi,t+1θ∗)pi,t(θ∗)dθ

− 1

)
|Ft
]

Jensen’s inequality implies that

E
[(

l(ωi,t+1|θ∗)∫
Θ
l(ωi,t+1θ∗)pi,t(θ∗)dθ

)
|Ft
]
≥

(
E

[(
l(ωi,t+1|θ∗)∫

Θ
l(ωi,t+1θ∗)pi,t(θ∗)dθ

)−1

|Ft

])−1

= 1

then

E [ν ′pt+1(θ∗)|Ft] = ν ′pt(θ
∗) +

n∑
i=1

νipi,t(θ
∗)aii E

[(
l(ωi,t+1|θ∗)∫

Θ
l(ωi,t+1θ∗)pi,t(θ∗)dθ

− 1

)
|Ft
]

︸ ︷︷ ︸
≥0

Therefore

E [ν ′pt+1(θ∗)|Ft] ≥ ν ′pt(θ∗)

Thus, since ν ′pt(θ
∗) is a submartingale with respect Ft then it converges P∗ - almost surely.

�
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Proof of Proposition 1

If the prior distribution of agents at t = 0 is normal then it remain normal for each t, in

fact the bayesian posterior of a normal remains normal and a sum of two normal distributed

random variable remains normally distributed. Moreover the mean of the bayesian posterior

distribution is

β̄i,t+1 =

∫
Θ

θβi,t+1dθ = γi,tµi,t + (1− γi,t)ωi,t+1 (3.23)

where ωi,t+1 is the signal received by agent i at t+ 1. Thus (4) becomes

µt+1 = D(Gtµt + (I −Gt)ωt) +Aµt + as1θs1 + as2θs2 (3.24)

From Lemma 1, we know that the probability distribution converges, pi,t(θ) → pi(θ) therefore

both the mean and the precision converges almost surely µi,t → µi, τ
p
i,t → τ pi and thus γi,t → γi.

Moreover, we recall that E[ω] = θ∗. Thus, by the law of large numbers at the steady state

µ = D(Gµ+ (I −G)θ∗) +Aµ+ as1θs1 + as2θs2

That lead us to

⇒ µ = (I −DG−A)−1︸ ︷︷ ︸
C

(D(I −G)θ∗ + as1θs1 + as2θs2)

�

Proof of Corollary 1.1

If agents are able to recall all the past signals after T period they will compute their bayesian

posterior using all the T signals, therefore

γi,T =
τ pi,T

τ pi,T + T ∗ τω

since

lim
T→∞

γi,T = 0

Then all elements of matrix G approach zero time to time. At the steady state

⇒ µ = (I −A)−1(Dθ∗ + as1θs1 + as2θs2)

�
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Proof of Proposition 2

In order to prove Proposition 2 we state this well known linear algebra result.

Sherman-Morrison Formula. (Sherman and Morrison, 1950) Let B be a nonsingular n-

dimensional real matrix, and u,v two real n-dimensional column vectors such that 1+v′A−1u 6=
0. Then,

(B + uv′)−1 = B−1 − B
−1uv′B−1

1 + v′B−1u

Since G is a diagonal matrix and αii is assumed to be zero, then we can apply the Sherman-

Morrison Formula, where B = (I −DG−A), u = ei and v = gi.

We study the general case. Let us consider the steady state opinion vector.

µ = (I −DG−A)−1 (D(I −G)θ∗ + as1θs1 + as2θs2)

If agents i increase the interaction with the stubborn s1 of α then will decrease proportionally

the interaction of other agents as captured by the vector gi. The new interaction matrix is

Â = A− eig
′
i. Since ei(gi)

′ does not affect the main diagonal D, the new opinion vector. µ̂ is

⇒ µ̂ = (I −DG−A+ eig
′
i)
−1 (D(I −G)θ∗ + (as1 + αei)θs1 + as2θs2)

By Sherman-Morrison Formula we know that

(I −DG−A+ eig
′
i)
−1 = (I −DG−A)−1 − (I −DG−A)−1eig

′
i(I −DG−A)−1

1 + g′i(I −DG−A)−1ei

The first term on the right side is C. We name X the second one. Thus we obtain

⇒ µ̂ = (C −X) (D(I −G)θ∗ + (as1 + αei)θs1 + as2θs2)

⇒ µ̂ = C (D(I −G)θ∗ + as1θs1 + as2θs2)︸ ︷︷ ︸
µ

+ ((C −X)αei −Xas1)θs1 −X(D(I −G)θ∗ + as2θs2)︸ ︷︷ ︸
∆µ

)

If we want to see the effect of creating the first link of intensity α with a stubborn for a generic
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i it is enough to consider a interaction matrix where as1 = as2 = 0, thus

⇒ µ̂ = C (D(I −G)θ∗)︸ ︷︷ ︸
µ

+ (C −X)αeiθs1 −XD(I −G)θ∗︸ ︷︷ ︸
∆µ

)

⇒ µ̂ = (C −X)(αeiθs1 +D(I −G)θ∗)

We can see that

X =
(I −DG−A)−1eig

′
i(I −DG−A)−1

1 + g′i(I −DG−A)−1ei

measures the variation of the updating centrality after introducing a stubborn in the society.

�

Proof of Proposition 3

Let us consider the maximization problem described in (3.12)

max
θds

us(µ) : − (µ− 1θs)
2 − k(θ∗ − θds)2

Expanding the first term we obtain

max
θds

−µ′µ+ 2(1θs)
′µ− (1θs)

′(1θs)− k(θ∗ − θds)2

We can see that this problem is equivalent to

max
θds

−µ′µ+ 2(1θs)
′µ− k(θ∗ − θds)2 (3.25)

With only one sophisticated stubborn agent that declares θds the steady state opinion dynamics

is

µ = C
(
D(I −G)θ∗ + asθ

d
s

)
(3.26)

Substituting (3.26) in (3.25) we obtain

max
θds

−2 (C (D(I −G)θ∗))′ asθ
d
s − a′sC ′Casθd2

s + 2(1θs)
′Casθ

d
s − k(θ∗ − θds)2

We solve the First Order Condition:

−2 (C (D(I −G)θ∗))′ as − 2a′sC
′Casθ

d
s + 2(1θs)

′Cas + 2k(θ∗ − θds) = 0
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⇒ θds =
− (C (D(I −G)θ∗))′ as + (1θs)

′Cas + kθ∗

a′sC
′Cas + k

Therefore we get the optimal declaration for an optimizing stubborn.

θds =
1′Cas

a′sC
′Cas + k

θs −
(C (D(I −G)1))′ as − k

a′sC
′Cas + k

θ∗

Substituting θds in the steady state opinion vector equation we get exactly (3.14).

�

Proof of Proposition 4

To prove that the consensus time of (3.17) is in the order of λA2 exponentially we use the fol-

lowing well-know theorem

Theorem 6 (Perron-Frobenius) Let the eigenvectors be chosen so that ν ′ivi = 1, where

ν ′i is the left eigenvector and vi is the right eigenvector. λ1 and λ2 the first and second largest

eigenvalue and r2 the algebraic multiplicity associated with λ2. Then we get

An = (λA1 )nviν
′
i + o(nr2−1|λA2 |n)

Corollary 6.1 Since A is a stochastic aperiodic matrix λA1 = 1 and v = 1 if the algebraic

multiplicity associated with λA2 r2 is equal to 1, then

An = 1ν ′i + o(|λA2 |n)

a smaller second-largest eigenvalue directly corresponds to a higher rate of convergence. ⇒
CT (ε,G) is in the order of λA2 exponentially.

Before to prove inequality (3.19) we have to introduce the definition of Laplacian matrix and

the result known as Cheeger’s inequality.34

Definition (Laplacian Matrix) A matrix L = (lij) ∈ Rn×n is a Laplacian Matrix L iff

1. li,j ≤ 0, j 6= i

2.
∑n

j=1 li,j = 0, i = 1, 2, ..., n

34We refer to Agaev and Chebotarev (2005) for the discussion about non-symmetric Laplacian matrices and
to Chung (1996) for Cheeger’s inequality.

118



The Laplacian Matrix can be computed as the difference between the diagonal degree matrix

and the adjacency matrix.

Cheeger’s Inequality (Chung, 1996) If λL2 is the second smallest eigenvalue of the Laplacian

of the graph G(N,A), then:
φ(G)2

2
≤ λL

A

n−2 ≤ 2φ(G)

A is a row-stochastic matrix, thus his Laplacian is LA = I −A and its the second smallest

eigenvalue is nothing but λL
A

n−2 = 1−λA2 , where λA2 is second largest eigenvalue of the adjacency

matrix. Therefore

⇒ φ(G)2

2
≤ 1− λA2 ≤ 2φ(G)

�

Proof of Proposition 5

Iterating the process (3.17) we get

µt+T = ATµt +
T−1∑
i=0

AiDθ∗

µt+T = ATµt +
I −AT

I −A
Dθ∗

µt+T = ATµt + (I −AT )θ∗

µt+T − θ∗ = AT (µt − θ∗)

Thus depends on how fast is AT → 0. If A is diagonalizable then, we can define U as the

eigenvector matrix and Λ as the diagonal matrix with eigenvalues on its main diagonal.

A = UΛU−1

is the eigendecomposition of A. Therefore iterating it T times we get

AT = UΛTU−1

119



‖µt+T − θ∗‖ = ‖AT (µt − θ∗)‖

= ‖UΛTU−1(µt − θ∗)‖

≤
n∑
j=1

|λAj |T‖U‖‖U−1‖‖(µt − θ∗)‖

≤ |λA1 |T‖U‖‖U−1‖

Where the last inequality stem from (3.16). Moreover, if

T ≥ log(ε/(κ(U)))

log(|λA1 |)

Then

‖µt+T − θ∗‖ ≤ ε

Therefore

LT (ε,G) ≤ d log(ε/(κ(U))

log(|λA1 |)
e

The LT (ε,G) depends on eigenvalues and eigenvectors. We can, thus, conclude that LT (ε,G)

is of the order of the higher eigenvalue, exponentially. And positively depends on the condition

number of the eigenvector basis. Notice that all eigenvalues have a short-run effect, that decays

over time according to the their absolute values.

We now prove the inequality (3.21) in Proposition 7. Let us define as d̄A and dAmax as the

average and the maximum degree, respectively

• Lower bound

Using the Rayleigh quotient (Horn and Johnson, 1985)

1′A1

1′1
=

∑
ij aij

n
=

∑
i d
A
i

n
= d̄A ≤ λA1 (3.27)

• Upper bound

Let ν1 be an eigenvector belonging to λA1 and ν1i be the entry with largest absolute

value. Then

λA1 |ν1i| =
∑
j

aij|ν1i| ≤ dAmax|ν1i|
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⇒ λA1 =
∑
j

aij ≤ dAmax (3.28)

Putting together (3.27) and (3.28) we finally get

⇒ d̄A ≤ λA1 ≤ dAmax

SinceA = A−D, then the degree of a generic agent i is di =
∑

i aij = 1−aii. Thus, the average

degree d̄A = 1 −
∑

i
aii
n

= 1 − āii and the maximum degree of A is dAmax = maxi{1 − aii} =

1−mini{aii}. Therefore, for a graph described by the adjacency matrix A

1− āii ≤ λA1 ≤ 1−min
i
{aii}

�

Proof of Corollary 5.1

In general, by Cheeger’s inequality we have that

2LAn−2 ≤ φ(G) ≤ 2
√
λL

A
n−2

Namely, φ(G) is increasing in λL
A

n−2 = 1− λA2 . Therefore we can conclude that

φ(G1) ≥ φ(G2) =⇒ λA1 ≤ λA2 =⇒ CT (ε,G1) ≤ CT (ε,G2) (3.29)

Where the last implication stem from Proposition 6.

If A1 = αI +A1 and A2 = αI +A2 then, by Proposition 5, we know that λA1
1 = λA2

1 = 1−α.

Therefore the first eigenvalues does not tell us which network converge faster to θ∗. We know,

from the proof of Proposition 5 that LT (ε,G) depend on eigenvalues of A and not A. Thus,

since λA1
1 = λA2

1 = 1− α we can say that

LT (ε,G1) ≤ LT (ε,G2) ⇐⇒ λA1
2 ≤ λA2

2 (3.30)

Lemma 2 (Horn and Johnson, 1985) Given two commuting matrix C and D, there exists a

unitary matrix U such that U−1CU = ΛC and U−1DU = ΛD. where ΛC ,ΛD are diagonal

matrices with eigenvalues as elements. Thus we get

C +D = U(ΛC + λD)U−1
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Applying this lemma to both A1 and A2 and considering only the second largest eigenvalue,

we obtain that

λA1
2 = α + λA1

2 , λA2
2 = α + λA2

2

Therefore if

λA1
2 ≤ λA2

2 ⇐⇒ λA1
2 ≤ λA2

2 (3.31)

Using (3.29), (3.30) and (3.31) togheter we get exactly the result of Corollary 5.1.

�

Appendix B

Supplementary Materials

Convergence toward the Truth

Let us consider a network with a malevolent stubborn agent, the “spreader”, s who affects the

opinion dynamics declaring θs 6= θ∗ and a benevolent policymaker p (still stubborn) who want

citizens to be as more informed as possible and thus to minimize the distance of steady state

opinion vectors to the truth35

up(µ) = −(µ− 1θ∗)2 (3.32)

Since it is not always possible to directly affect the network structure, we wonder if there is

an action (declaration of θp) that the policymaker p can do to promote the spread of truth

against the presence of stubborn agents in the society. It is clear that (30) is maximized when

all agents have opinions equal to θ∗. In the next proposition, we show that if the influence of

the two stubborn (p=policymaker and s=spreader) is not symmetric, then it is not possible to

reach exactly the truth

Proposition 7 If the two stubborn agents have different influence over agents, ap 6= as 6= 0,

and θs 6= θ∗ then

@ θg : µ = θ∗

If stubborn agents have equal influence over agents, ap = as, and one among them declare

θp = 2θ∗ − θs
35Notice that at this stage we assume the stubborn agent to be naive, namely the opinion θs 6= θ∗ is not the

result of a maximization process, but it is exogenous.
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then all agents in the society learn the truth:

µ = θ∗

Notice that this results can be extended to a society with more than two stubborn, in the

appendix we provide the characterization of the result with many stubborn.

Even if, whenever ap 6= as it is not possible for a policymaker to chose θp such that µ = θ∗

it is still possible to get close enough to the truth by declaring an opinion that minimizes the

distance with the steady state opinions’ vector.

Proposition 8 If all agents have normal prior distribution at t = 0 and “imperfect recall”

and there a malevolent spreader s with fixed opinion θs 6= θ∗ and a benevolent policymaker p

with utility function (3.32), then p would declare the following opinion

θp =
1′Cap − (C (D(I −G)1))′ ap

a′pC
′Cap

θ∗ −
a′pC

′Cas

a′pC
′Cap

θs

then steady state vector of beliefs (opinions) is

µ = C

((
D(I −G)1 + ap

1′Cap − (C (D(I −G)1))′ ap
a′pC

′Cap

)
θ∗ +

(
as − ap

a′pC
′Cas

a′pC
′Cap

)
θs

)
(3.33)

If the stubborn is sophisticated as in Section 3.3, the policy maker has to keep that into

account. To have more tractable results we assume, without loss of generality, that θp = θ∗ = 0

Proposition 9 If all agents have normal prior distribution at t = 0 and “imperfect recall” and

there is a sophisticated malevolent spreader s that solves the problem in (3.12) and a benevolent

policymaker p with utility function (3.32) where θp = θ∗ = 0, then the declared opinions areθds =
1′Cas(a′pC

′Cap+k)

j
θs

θdp = − a′pC
′Cas

a′pC
′Cap+k

1′Cas(a′pC
′Cap+k)

j
θs

(3.34)

where j = k(k+a′sC
′Cas+a′pC

′Cap)+a′sC
′Casa

′
pC
′Cap−a′sC ′Capa′pC ′Cas is a constant.
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Then steady state vector of beliefs (opinions) is

µ = C

(
1′Cas(a

′
pC
′Cap + k)

j

(
as − ap

a′pC
′Cas

a′pC
′Cap + k

))
θs (3.35)

We now provide proofs of proposition in this section.

Proof Proposition 7

Notice that since A is stochastic matrix then (I −A)1 = D1 + as1 + as2, then

• If as1 = as2 = 0

µ = (I −DG−A)−1 (D(I −G)θ∗)

where (I −DG−A)1 = (D(I −G)1), thus

µ = (I −DG−A)−1 (D(I −G)1) θ∗

⇒ µ = (D −DG)−1 (D −DG)︸ ︷︷ ︸
I

1θ∗ = θ∗

• If θs1 = θs2 = θ∗

µ = (I −DG−A)−1 (D(I −G)θ∗ + as1θ
∗ + as2θ

∗)

where (I −DG−A)1 = (D(I −G)1 + as1 + as2), thus

µ = (D + as1 + as2 −DG)−1 (D(I −G)1 + as1 + as2) θ∗

⇒ µ = (D(I −G) + as1 + as2)−1((D(I −G) + as1 + as2)︸ ︷︷ ︸
1

θ∗ = θ∗

• µ = θ∗ if

as1θs1 + as2θs2 = (as1 + as2) θ∗

as1θs1 = (as1 + as2) θ∗ − as2θs2

as1θs1 = as1θ
∗ + as2(θ∗ − θs2)
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If θs1 it is a scalar, the system has only one solution

θs1 = 2θ∗ − θs2

if and only if as1 = as2.

On the other hand, if as1 6= as2 if θs1 is a scalar is not possible for one of the two

stubborn to compensate the distortion created by the other.

(Double check) If as1 = as2 = as and θs1 = 2θ∗ − θs2

µ = (I −DG−A)−1(D(I −G)θ∗ + as1 (2θ∗ − θs2) + as2θs2)

µ = (I −DG−A)−1(D(I −G)θ∗ + 2asθ
∗)

µ = (I −DG−A)−1(D(I −G)1 + 2as)θ
∗

which is equivalent to

µ = (D + 2as −DG)−1(D(I −G)1 + 2as)θ
∗

The first two bullet points discuss the conditions under which the truth is always reached while

the third bullet point prove Proposition 7. Now we generalize the result to more than 2 stub-

born.

If the cardinality of the set of stubborn agents is S and as1 = as2 = ... = ass = as then

µ = θ∗ if

asθs1 +
S∑
s=2

asθss =

(
S∑
s=1

ass

)
θ∗

⇒ asθs1 =

(
as +

S∑
s=2

ass

)
θ∗ −

S∑
s=2

assθss

⇒ asθs1 = asθ
∗ +

S∑
s=2

ass(θ
∗ − θss)

⇒ θs = θ∗ +
S∑
s=2

ass(θ
∗ − θss)
as1

�
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Proof Proposition 8

Maximizing the utility function (3.32)

max
θp
−(µ− 1θ∗)2

max
θp
−µ′µ+ 2(1θ∗)′µ

since

µ = C (D(I −G)θ∗ + apθp + asθs)

substituting µ in the problem and considering only elements depending on θp we get

max
θp
−2 (C (D(I +G)θ∗))′ apθp − 2a′pC

′Casθpθs − a′pC ′Capθ2
p + 2(1θ∗)′Capθp

we now solve the First Order Condition

−2 (C (D(I −G)θ∗))′ ap − 2a′pC
′Casθs − 2a′pC

′Capθp + 2(1θ∗)′Cap = 0

− (C (D(I −G)1))′ apθ
∗ − a′pC ′Casθs − a′pC ′Capθp + 1′Capθ

∗ = 0

Thus the optimal policy maker’s declaration is

θp =
1′Cap − (C (D(I −G)1))′ ap

a′pC
′Cap

θ∗ −
a′pC

′Cas

a′pC
′Cap

θs

Substituting in µ we get exactly

µ = C

(
D(I −G)θ∗ + ap

(
1′Cap − (C (D(I +G)1))′ ap

a′pC
′Cap

θ∗ −
a′pC

′Cas

a′pC
′Cap

θs

)
+ asθs

)

µ = C

((
D(I −G)1 + ap

1′Cap − (C (D(I −G)1))′ ap
a′pC

′Cap

)
θ∗ +

(
as − ap

a′pC
′Cas

a′pC
′Cap

)
θs

)
(3.36)

�

Proof Proposition 9

There are two stubborn, one controlled by the policy maker p and spreader of misinformation

s.
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max
θdp

us(µ) : − (µ− 1θp)
2 − k(θ∗ − θdp)2

We assume, without loss of generality, that θp = θ∗ = 0

max
θdp

us(µ) : − (µ− 0)2 − k(−θdp)2

µ = C
(
apθ

d
p + asθ

d
s

)
(3.37)

max
θdp

−µ′µ− k(−θdp)2

max
θdp

−2a′pC
′Casθ

d
pθ
d
s − a′pC ′Capθd2

p − k(−θdp)2

F.O.C.

−a′pC ′Casθds − a′pC ′Capθdp − kθdp = 0

Solving for θdp

θdp = −
a′pC

′Cas

a′pC
′Cap + k

θds

by symmetry

θds =
1′Cas

a′sC
′Cas + k

θs −
a′sC

′Cap
a′sC

′Cas + k
θdp

Substituting θdp

⇒ θds =
1′Cas

a′sC
′Cas + k

θs +
a′sC

′Cap
a′sC

′Cas + k

a′pC
′Cas

a′pC
′Cap + k

θds

Solving for θds

θds
k(k + a′sC

′Cas + a′pC
′Cap) + a′sC

′Casa
′
pC
′Cap − a′sC ′Capa′pC ′Cas

(a′sC
′Cas + k)(a′pC

′Cap + k)

=
1′Cas

a′sC
′Cas + k

θs

Therefore

⇒ θds =
1′Cas(a

′
pC
′Cap + k)

j
θs (3.38)

where j = k(k + a′sC
′Cas + a′pC

′Cap) + a′sC
′Casa

′
pC
′Cap − a′sC ′Capa′pC ′Cas is a

constant.
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θdp = −
a′pC

′Cas

a′pC
′Cap + k

1′Cas(a
′
pC
′Cap + k)

j
θs (3.39)

θds and θdp are both decreasing in k.

Substituting (3.38) and (3.39) into (3.37) we obtain

µ = C

(
−ap

a′pC
′Cas

a′pC
′Cap + k

1′Cas(a
′
pC
′Cap + k)

j
+ as

1′Cas(a
′
pC
′Cap + k)

j

)
θs

µ = C

(
1′Cas(a

′
pC
′Cap + k)

j

(
as − ap

a′pC
′Cas

a′pC
′Cap + k

))
θs
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