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Abstract

Most precipitation in the mid-latitudes is attributable to convective clouds and frontal

systems. Although their development is most often not induced by the underlying

terrain, the orography can play a substantial role in altering their features. A

potential consequence is the modification of the spatial distribution of precipitation

at the ground, which likely exhibits a highly segmented nature in both space and

time.

For statistical modelling purposes, observed precipitation data are in general too

coarse in space to be representative of the topographic variations of the "true"

precipitation field. Aiming at describing the spatial distribution and intensity of pre-

cipitation over complex terrain, we specify a statistical model which does not solely

rely on observed data but also incorporates established analytical approximations of

the physical processes involved.

In particular, a 2-dimensional advection equation for the column integrated hy-

dreometeor density is derived, by reducing the quasi-analytical up-slope model by

Smith and Barstad, 2004. The advection equation contains terms that model local

orographic processes causing condensation and hydrometeor production, as well as

hydrometeor advection and precipitation. A Simultaneous AutoRegressive model

for a latent potential precipitation rate has then been defined by discretizing the

advection equation and perturbing it by means of stochastic noise. The moment

statistics of the latent field depend on both physical quantities and unknown pa-

rameters estimated from data. Occurrences and intensities of precipitation are then

derived on the basis of the latent field. An extension of the statistical model also

includes a representation of large-scale precipitation.

The statistical model inherently uses atmospheric fields that can be provided by

numerical climate models. Thus, the framework can be nested into climate models

and provide a process-informed and spatially-consistent sub-grid refinement adjusted

by observations.
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The model was used to perform idealized experiments and applied to real case

studies, in which showed a good agreement with observations.
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1Introduction

1.1 Motivation and Problem Statement

The term "orographic precipitation" traditionally refers to the rain and snow resulting

when airflow interacts with mountains (Houze, 2012).

Most precipitation in the mid-latitudes is attributable to convective clouds and frontal

systems. Although their development is not induced by the underlying terrain, the

orography can play a substantial role in altering their features. The dynamic of the

impinging moist flow interacts with thermodynamic and microphysical processes

as well as with the large-scale flow and the height and shape of the topographic

features. Moreover, as stated in Roe, 2005, orographic precipitation is a transient

phenomenon, in the sense that the precipitation rates can sensibly vary as the

synoptic conditions evolve during the passage of a preexisting storm.

The perturbation of the large-scale flow when it interacts with mountain ranges

is visible on a wide range of length scales, from the one typical of boundary layer

motions to the one of planetary waves (Smith, 1979). Consequently, the signature

of the mountains on the spatial pattern of precipitation is visible from very short

distances (few kilometers) to length scales greater than the one of the mountain

range itself; the latter case favors or enhance the formation of some of the desertic

areas on the planet (e.g Great Indian Desert, Atacama Desert in Chile, Death Valley

in the USA, Piedmont in the italian Alps); at short scales, the potentail consequence

is the modification of the spatial distribution of precipitation at the ground, which

likely exhibits highly segmented nature in both space and time.

Observations of precipitation are usually composed of long-term records of data

from sparse rain gauge stations. When from sparse recorded data one attempts to

create an interpolated surface over an area of interest, the accuracy of precipitation

estimates is dependent on the density and distribution of rain gauge stations. Indeed,

if data are not representative of the studied process, the accuracy of the resulting

interpolated fields might be questionable. The poor representativeness of observed

data of the topographic variations of the "true" precipitation field may be due to

different reasons. For example rain gauges over mountains are are in general too

coarse in space for that scope: their spatial density can span from at least one station

every 5Km in Switzerland to less than 1 station in 80km2 in known under-sampled

areas as over the Himalaya. Another potential limitation is linked to how the stations

are distributed, since most of the gauges are usually set at lower elevations. Because
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both climate and orographic processes at high elevations are quite different than the

ones at low elevations, the data are not necessarily able to capture the signal with

an adequate homogeneous representation over a catchment of interest. A similar

issue could arise when two mountain slopes close in space but differently exposed to

the incoming moist flow have rain gauges with different density. Thus data do not

necessarily contain all the signal of the precipitation process one wants to map.

For mapping orographic precipitation, both statistical approaches and analytical

models were proposed in literature, the second coming from the work by Smith,

1979. Approaches from both the branches are presented and compared in section

1.2.2. These model necessarily allow a partial and approximated description of the

physical orographic processes and sometimes rely on parameterization to assess

and tune for introducing processes not completely understood or of a very high

complexity.

The objective of this work is the definition of a statistical framework able to describe

the spatial distribution and intensity of precipitation over complex terrain and to cre-

ate interpolated surfaces of rainfall occurence and intensity accordingly. The model

does not solely rely on observed data but also incorporates scientific knowledge on

the phenomena involved. This is achieved by incorporating into the model estab-

lished analytical descriptions of some of the physical processes causing orographic

precipitation and, at the same time, letting unkown parameters be estimated from

the observations. Combining the two approaches it will be possible to gain infor-

mation from both the observed data and the knowledge on the processes. Because

of the nature of processes included in the model, the framework is customized for

6-hourly to daily data.

Chapter 1 is devoted to the review of scientific background : section 1.2.1 presents

the main mechanisms of orographic precipitation; section 1.2.2 reviews the existing

methods for mapping precipitation over mountainous regions. Chapter 2 presents

the statistical model here defined, together with some theoretical discussion and

extentions of the model. Chapter 3 collects experiments carried out with the statis-

tical model: section 3.1 presents experiments on a set of idealized terrains, while

section 3.2 shows case study on real data over California. A discussion and some

conclusions are reported in chapter 4.

2 Chapter 1 Introduction



1.2 Scientific Background

1.2.1 Mechanisms of Orographic Precipitation

The categories of storms responsible of most of the precipitation in the atmosphere

are convective clouds and frontal systems in the mid-latitudes and tropical cyclones

in the tropics. These formations originate due to atmospheric synoptic mechanisms

not related to the features of the underlying terrain, with the exception of rare and

occasional episodes. Convective storms are formed drawing energy from the vertical

stratification of temperature and water vapor in the atmosphere. Deep and broad

convective cores might be enhanced or modified near and over mountains. That is

especially true in warm seasons by the control exerted by the diurnal cycle. Frontal

systems draw their energy from the horizontal variation of atmospheric temperature,

when warm and moist air from lower latitudes enters extra-tropical cyclones and

rises as conveyor belts over cold and warm fronts in the mid-latitudes producing

clouds and precipitation. Orographic enhancement of cyclonic rainfall can occur on

the windward sides of the mountain ranges when the storm is already mature and

the modification of the fallout depends also on the maturity stage of the storm itself

when it passes the topographic formation. Tropical cyclones draw their energy from

the latent heat present in the upper levels of the oceans. Occasionally precipitation

may also be caused solely by orographic mechanisms when the wind blows over

rugged terrain apart from the occurrence of one of the synoptic storm categories. It

happens for example when moist trade winds blow over the mountainous islands of

Hawaii.

In general, the mountains interact with the atmosphere affecting flow convergence,

flow dynamics, cloud microphysics, the humidity and thermodynamics, depending

on the shape and relative position of the topographic barrier and the nature of the

incoming formed weather system and low level flow.

The influence of topography on precipitation can be attributed primarily to localized

disturbances of the vertical structure of the atmosphere. Such disturbances result

from orographic formations acting either as

• an obstacle for the impinging moist air triggering dymanic and thermdynamic

processes in the flow.

• elevated heat sources and sinks which in general produce diurnal cycles in the

vertical motions.

• concentrated source of roughness in rare cases like remote isolated islands or

isolated peaks.

1.2 Scientific Background 3





air parcel passes the mountain peak and moves downward along the lee slopes, it

remains saturated until it reaches the lee side cloud base level (LCB); this level is

at lower elevation than on the windward side where the parcel still retains all ts

original moisture content. Below the LBC, the parcel becomes unsaturated again,

and its descent proceeds adiabatically.

The differences in the process in the upwind and downwind side of the orographic

formation induces a precipitation divide in the two regions which is known as Rain

Shadow Effect. It is responsible of the formation of the major desertic areas on

the continents as well as contributes greatly to the spatially-segmented nature of

precipitation at a more local level in the mountain valleys of the same range.

Flow dynamics and static stability

The impinging airflow responds differently mostly depending on three elements:

(a) Upstream flow velocity (b) Static stability (c) Mountain shape

The three information are often combined in the so called Non-dimensional Mountain

height - Inverse Froude Number:

M =
Nmh

U
(1.2)

where U is upwind cross-barrier flow, Nm = gT
Γd−γ

is the moist Brünt-Vaisala fre-

quency, h is the maximum height of the terrain and Γd and γ are the dry and

environment lapse rate respectively.

When the ratio U
Nmh

is large, the airflow easily rises over the terrain, and when it

is small, the oncoming airflow may be blocked, and its horizontal trajectory may

be deflected. Moreover, the ratio is a measure of the importance of non-linear

regimes in the flow, so taht when the ratio is greater then one, the linear theory

for density-stratified fluid might not be appropriate. (Smolarkiewicz and Rotunno,

1989)

Stable flow: Stable moist air impinging a topographic barrier generally follows the

terrain upward. The vertical motion produces a cloud in the windward side of the

mountain or strengthens a preexisting larger cloud entity (e.g. one associated to a

frontal system), while on the lee side the cloud is evaporated. This process applies

to terrain of any size.

The stable cross-barrier flow, furthermore, sets off gravity waves motions. The result

is the presence of two regions of vertical motion: the upslope flow in the windward

slope and a vertically propagating gravity waves on the lee side and over the crest,

1.2 Scientific Background 5



where a cloud might be produces aloft. Moreover, vertically propagating wave

motion interacts and/or favors precipitating convective clouds on the lee side. Fig.

1.2 from Jiang and Smith (2003) shows the vertical cross section of the steady-

state solutions simulated by the ARPS numerical model with control parameters

Brunt-Väisälä Frequency Nd = 0.011s−1, horizontal wind U0 = 10m/s. The vertical

velocity is contoured, and regions of upward and downward motion appear induced

by gravity waves.

Fig. 1.2: Figure from Jiang and Smith, 2003 . Vertical cross section of the steady-state
solutions simulated by the ARPS numerical mode for a statically stable flow. The
vertical velocity is contoured, the mixing ratio of snow is shaded.

Unstable flow : Air ascending the terrain can overturn on a sub-barrier scale as it

rises. In case of intense unstable conditions, the resulting convective clouds could

reach great heights (∼ 10Km) and be triggered within pre-existing cloud systems.

Moreover, if the side of the mountain range is jagged, intense convective clouds can

form and water precipitate over the upslope side of each consecutive peak.

Blocking : In case of high values of the Inverse Froude Number, when the air

upstream of a mountain barrier is strongly stable or has a weak cross-barrier flow

component, the air is blocked and does not rise over the terrain. One result is that

the effective obstacle to pass is moved upstream and the air ascends well ahead the

mountain barrier, rising over the low-level blocked flow.

Sometimes the blocking is only partial and can produce an acceleration in the

downward flow in the lee side of the mountain. The flow returns to an equilibrium

in the form of hydraulic jump which creates region of air ascent and precipitating

cloud downstream of the barrier.

Geometry of the mountain ranges and microphysics

Microphysical processes govern the transition from the condensation of water vapor

to water drops and ice crystals with precipitable size. These processes require time,

so that time scales of particles growth are linked to the time scales of flow passing a
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mountain range. Moreover, the height, steepness and width of the mountain range

affect and limit the locations where the falling particles can land.

For a more comprehensive and deep review of orographic precipitation mechanisms,

the reader is referred to Houze, 2012, Colle et al., 2013, Colle, 2004, Roe, 2005 and

references therein.

1.2 Scientific Background 7



1.2.2 Models for the Spatial Distribution of precipitation over

complex terrain

Two main approaches are usually used to estimate the spatial distribution of oro-

graphic precipitation: the interpolation of rain gauge station data and the so called

up-slope methods. Both methods have advantages and disadvantages, as well as

the ability of capturing different features of the process they aim at modeling and

estimating.

Methods belonging to both groups will be presented and critically compared in the

following paragraphs.

Statistical approaches

The available observational data of precipitation are usually long-term records

from sparse rain gauge data. In order to extrapolate information on un-sampled

locations or grids points , deterministic methods (e.g. Thiessen Polygon) as well

as geostatistical interpolation methods (e.g. Kriging techniques) have often been

used. More recently, multiple regression approaches were introduced allowing the

inclusion of secondary aspects (altitude, exposition to the wind) to improve the

estimates.

A general form of interpolation function is common to most of the interpolation

methods: let us consider the point sj in the 2D-space, its pair (xj , yj) of coordinates

and a function hj = hj(xj , yj) which denotes the observed process of interest at

the sampled j = 1, ..., n points. An estimate of the process h0 interpolated at any

un-sampled site s0(x0, y0) can be represented as a weighted linear combination of

the observed values hj on the other n sites:

h0 =
n

∑

j=1

wjhj

where wj is the weight attributed to the sampled point j.

Most of the interpolation techniques can be seen as a particular case of the previous

model and differ on how the weights w are found and attributed to the points.

Deterministic methods such as Thiessen Polygon and Inverse Distance Weighting

are classical methods commonly used in hydrological models. They don’t include

any specific attention to the topographic influence and they constitute an established

benchmark in comparative studies of statistical interpolation techniques.

The Thiessen Polygon is a deterministic method for interpolation first introduced by

Thiessen, 1911. The author recognizes that precipitation varies considerably also
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over quite limited distances. When one attempts to reconstruct average values of

rainfall over an area where observations are available only on sparse and unevenly

distributed gauges, the amount of rain recorded at any station should be representa-

tive only for the region enclosed by an imaginary line drown midway between the

station under consideration and the surrounding stations. The consequence is that

the area is divided into polygons of influence and each interpolated point takes the

value of the closest sampled point. Besides the advantage of the simplicity of the

method, the estimation is based only on one measurement and discontinuities are

created on the edges of the polygons. Recalling the general model form, the weight

wj is equal to one if the point j is the closest to the unsampled point on which the

value h is estimated or zero otherwise.

The Inverse Distance Weighting (IDW) algorithm is based on the idea that the value at

a point is more influenced by closer points than by points farther away. The method

permits to calculate the value at un-sampled point by the weighted average of data

observed at surrounding points. The weights are determined according to the inverse

of the distance between the points. For determining the value h0 on point s0 the

weight wi attributed to the generic sampled value at point si can be determined as:

wi =

1
|D0i|d

∑ns
j=1

1
|D0j|d

, d > 0 (1.3)

where D0i is the distance between the sample and un-sample point s0 and si and d

controls for the distance - decay effect. Dirks et al., 1998 found that for precipitation,

depending on the temporal scale considered, the distance of influence varies. In

particular they use a value d equal to 1 for yearly time step, 2 for daily and monthly

time steps and 3 for hourly data minimizes the interpolation errors.

The method was extended by Lu and Wong, 2008 who proposed an adaptive version,

where the inverse-distance weight is modified by means of a decay parameter

that is allowed to vary over the study area. Although IDW is a relatively simple

deterministic interpolation method, which provides adaptable weights for sensible

local interpolations, the choice of the weighting function is arbitrary.

Geostatistical Interpolation Methods use statistical properties inferred from data

and geographical information to interpolate recorded data.

Kriging methods were at first developed by Matheron, 1971 who introduced the

concept of regionalized variables to estimate areal averages considered as realizations

of stochastic processes. These methods were subsequently applied to the interpo-

lation of precipitation stations (e.g Tabios and Salas, 1985). Like the two methods

previously described, the Ordinary Kriging relies on the concept the spatial points

influence each other according to their proximity and provides an estimate on an

un-sample location as linear relationship of the value at the surrounding points. The
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weights w are determined taking advantage of the mean and spatial correlation

structure found in the data. This is achieved examining the strength of the covaria-

tion of the process between two sites as function of the pair-wise distance between

the same two sites, by means of semivariograms estimated from the data.

In particular, defining the semivariogram for the points si, sj as γ(Dij) = 1
2var[hi −

hj ] = σ2 − cov(Dij) where Dij is the distance between si and sj and σ2 is the

marginal variance, the weights w for interpolating h on the site s0 can be determined

minimizing the variance of the errors:

V ar[ǫ0] = σ2 − 2
∑

j

wj [σ2 − γ(D0j)] +
∑

i

∑

j

wiwj [σ2 − γ(Dij)]

Kriging methods require second order stationarity (homogeneity of the mean and of

the covariance as function of distance). The reader is referred to classical textbook

such as Cressie, 1993 for a more in-depth description of this methodology.

The use of ordinary Kriging over mountainous regions is questionable. Indeed,

Kriging uses only the information carried by data: in its ordinary formulation, it does

not account for any external aspects (such as elevation) except indirectly for the

part of their influence reflected and represented in the data. However, this means

that the estimate on an unsampled point is likely to be mistaken if the surrounding

points fall at different elevations (Tabios and Salas, 1985). On this regard, Dingman

et al., 1988 performed a linear regression on precipitation vs. elevation, then they

performed kriging on residuals after subtracting the regressed elevation effect. Ly

et al., 2011b studied the effect of using different parametric models for the semi-

variogram when performing kriging for the interpolation on 1 Km2 regular grids of

daily precipitation data.

Extensions to Ordinary Kriging have been introduced and their use proposed for

the interpolation of precipitation data over complex terrain with the primary aim of

improving the estimates including the effect (or covariation) of auxiliary variables

(e.g. elevation).

In Phillips et al., 1992 the authors compare two extensions of kriging such as ordinary

kriging on elevation-detrended data, proposing to detrend the data using spherical,

exponential and gaussian functions of altitude. They also proposed the interpolation

method Cokriging (Goovaerts, 1997) using elevation as auxiliary variable.

Cokriging is a multivariate extension of kriging that calculates estimates of a poorly

sampled variable with help of a better-sampled co-variable. The determination of

the weights w is then based on a cross-variogram model for the combination of both

variables.
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Luo et al., 2011 showed Cokriging may be advantageous when the auxiliary variable

is highly correlated (r2 > 0.5) with the primary variable and the former is over-

sampled, while could lead to poorer results when the correlation with elevation is

weak.

On the correlation between precipitation data and elevation, Daly et al., 1994

reviewed previous works which assessed with data the general increase of clima-

tological precipitation with elevation in different areas. The author also reviewed

the assessment of the relative spatial location of the most intense rainfall rate with

respect to the shape of the mountain. Although it is not possible to generalize the

location where the maxima occur for mapping purposes, in some of the reviewed

works precipitation maxima in the midlatitudes are found at or near the crests, but

maxima can also occur below the crests on the windward slope in subtropical regions

(e.g Hawaii islands) and in the mid-latitudes in high or broad mountain ranges. In

these conditions the clouds discharge precipitation before reaching the peak (e.g

Sierra Nevada). Moreover, in narrow but very steep mountains, the condensed

water can be advected to the lee side before precipitating and create a climatological

maximum of rainfall downwind the crest. Similarly, Frei and Schär, 1998, studying

annual means on the eastern european Alps, found precipitation is more intense at

lower levels in high mountains because of the exponential relationship between satu-

ration vapor pressure and temperature (and hence elevation). Given this complexity,

Houze, 2012 noted that interpolation schemes that automatically set precipitation

amount proportional to terrain high might be in error especially in areas of high

terrain.

In this thesis a very similar result is found contrasting elevation and precipitation

over the Oregon and Washingthon states for the climatological 1985-2015 daily

precipitation, as shown in Fig. 1.3 The analysis was repeated for both occurrence

(estimated probability) and intensity dividing the entire region into three subregions

with slightly different mountain shapes . The right panels in the figure show the

sub-domain on which the analysis was performed (coloured area). In each sub-

domain the longitudinal profile of the mountain range was built considering the

latitudinal mean altitude. The left panels present the terrain profile (black) and the

probability of rainfall (orange) for the three sub-domain. Similarly, the panels in the

middle column show the terrain profile and the daily mean amount of precipitation

(orange). Almost identical patterns are also found considering seasonal and annual

values.

Groisman and Legates, 1994 also found that unreliable data in complex terrain

at high altitudes could also lead to estimate biases as large as 25% where snow

accumulates. On the same aspect, Daly et al., 1994 reviewed functional forms used

to relate altitude to precipitation intensity, such as linear, log-linear and exponential.

1.2 Scientific Background 11



Fig. 1.3: E-W sections of Cascades (OR and WA, USA) and observations of probability of
precipitation occurrence and precipitation intensity.

Among statistical methods that incorporate secondary information, Goovaerts, 2000

instead compares three multivariate geostatistical algorithms for incorporating ele-

vation into the spatial prediction of precipitation, with an application in Portugal.

In particular the author used 1) a simple kriging letting the mean vary locally as

a linear relationship of elevation; 2) kriging with external drift: after deriving the

locally varying mean as in 1), a simple kriging is performed on the residuals; 3)

Co-located kriging (Goovaerts, 1998): as opposite to the first two methods, the latter

incorporates altitude also in the surrounding area of the point of interest.

Modification of the standard procedures just presented were introduced by Ly et al.,

2011a who compared seven semi-variogram models (logarithmic, power, exponential,

Gaussian, rational quadratic, spherical and penta-spherical) fitting daily data with a

particular attention in avoiding predicting negative precipitation, and they found

the Gaussian model was the best fit most frequently.

Schiemann et al., 2011 combined gage data with radar data and proposed the use

of a non-parametric semi-variogram that was then tested using the different kriging

approaches previously mentioned.

Many uncertain factors enter the choice of the interpolation method to use. Regard-

ing the uncertainty inherent in the time dimension, two works are reported here in

which the uncertainties in time scales and time spans are analyzed:
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Chen et al., 2017 pointed the attention on the peculiarity of the time scales of the

interpolated data: they recognized that the use of different interpolation schemes in

the same catchment may cause large differences in spatial distribution of rainfall,

and that methods can perform differently on the same spatial domain depending on

the temporal scale considered. For this reason they proposed an improved regression-

based scheme using principal component regression with residual correction: they

added topographic factors as covariates based on station latitude and longitude,

elevation, slope, and slope aspect. They then applied an inverse distance weighted

regressions on the residuals. Moreover the method uses slightly different data

processing methods for each of three time scales, namely hourly, daily and annual.

The author compared the proposed method to an inverse distance scheme and

multiple regression for the three time scales on the mountainous catchment of the

Fuhe River in southeastern China.

Focusing more on the time span of the analysis, Lloyd, 2005 compared (i) moving

window regression, (ii) inverse distance weighting; (iii) ordinary kriging, (iv) simple

kriging with a locally varying mean and (v) kriging with an external drift for monthly

precipitation data in Great Britain. Methods (i),(iv),(v) make use of elevation as

secondary variable. They applied all the methods to predict values for each month

in 1999 and concluded that in different months different methods of interpolation

perform best.

Some studies focused on interpolating simultaneously both temperature and precipi-

tation (e.g Buytaert et al., 2006, Daly, 2006). Indeed, single regression functions

may not accurately represent spatially varying meteorological variables across large

regions (Daly, 2006). In this regard, Tobin et al., 2011 proposed a variant of Kriging

with external drift using an unbiased robust anisotropic variogram and using vari-

ables from a 6-h numerical weather forecasts model and elevation data as covariates.

They estimated simultaneously both precipitation and temperature. This approach

allowed to provide instantaneous lapse rates which better capture snow/rainfall

partitioning.

Another class of approaches are those based on Polynomial Regression - Multiple

regression . The first is a type of regression that prescribes an r-th order polynomial

relation between one or more predictors and the dependent variable; the second

is a regression model with more than one predictor or independent variable. The

peculiarity of this class of approaches is their ability to use information from many

secondary variables at the same time, regardless their geostatistical attributes. In the

literature,many authors introduced sophisticated variables as covariates attempting

to represent the effect on precipitation of geographic, topographic and large-scale

climatic features at the same time.

Goodale et al., 1998 used a second-order polynomial least-squares regression for

monthly precipitation, monthly averaged maximum and minimum daily tempera-
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ture, and monthly averaged daily solar radiation, using position and elevation as

independent variables.

Ninyerola et al., 2007 developed a multiple regression, combined with a residual

correction method to obtain a predicted surface on 200m resolution over the Iberian

peninsula. The method is a combination of statistical (multiple regression) and

spatial interpolation (splines and inverse distance weighting) tools, the second ap-

proach used as a further mapping on the residuals of the first model. The covariates

used are altitude, latitude, continentality, terrain curvature and solar radiation. The

authors also presented an interesting discussion on the choice of non-frequently

used geographical and climatological variables as covariate of the model.

Agnew and Palutikof, 2000 proposed a regression-based approach to build high-

resolution (1km) maps of mean seasonal temperature and precipitation for the

Mediterranean Basin. The covariates used for model development include: longi-

tude, latitude, elevation, distance from the nearest coast, direction to the nearest

coast, slope, aspect, and the ratio of land to sea within given radii. Feidas et al.,

2014 suggested a methodology for mapping seasonal and annual air temperature

and precipitation in Greece using several topographical and geographical variables

(location, elevation, distances from the coasts, slope, Sea-to-land ratio, Normalized

difference vegetation index (NDVI)). The model shows different levels of accuracy

in each season.

As pointed by Chen et al., 2017, studies using these approaches focused only

on monthly or seasonal data, making the evaluation of their performance not

straightforward for other time scales. Moreover, when many independent variables

are used, multicollinearity may exist among them, even if some studies used stepwise

regressions to select the most informative variables to use.

Among approaches introduced in the contest of algorithmic modeling, Support

Vector Machines (SVM) (Vapnik and Vapnik, 1998) and Neural Networks were

also applied for mapping precipitation respectively by Li et al., 2011, who also

introduced a combined use of SVM and Kriging and by Di Piazza et al., 2011 for

mean annual and monthly rainfall data in Sicily (Italy).

Other models proposed in literature do not fit inside any broader class of statistical

approaches. It is meaningful to mention here other interpolation methods that

account in various way for the effect of elevation: Şen and Habib, 2000 created

four different precipitation categories according to relative positions and elevation

and by means of a cumulative semi-variogram; Gottardi et al., 2012 used a linear

relationship of elevation which strength on each day depends on the concurrent

weather pattern; other models make predictions depending on the dominant wind

direction and the spatial scales at which topography influences precipitation (Meers-

mans et al., 2016) or allow for an auto-search of most-informative climatic and

topographic characteristics (Guan et al., 2005).
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A spatio-temporal Autoregressive Model for daily precipitation was introduced

by Sigrist et al., 2011. For capturing the spatial dependence the authors used an

approach based on an autoregressive convolution and they also modeled temporal

dependencies. A rich literature exist for spatio-temporal precipitation data, but its

description is beyond the scope of this review.

Hutchinson, 1998 introduced a Thin Plate Smoothing Spline for the spatial in-

terpolation of annual mean rainfall. The author also incorporated a continuous,

spatially varying, dependence on appropriately scaled elevation, that made a domi-

nant contribution to the surface accuracy.

PRISM (Precipitation-elevation Regressions on Independent Slopes Model, Daly

et al., 1994) assesses the elevation-precipitation relationship and the spatial scale

at which the topography influences the spatial distribution of precipitation. The

characteristic feature of this model is the division of the spatial surface into facets

with same or very similar topographic characteristics and the definition of topographic

regimes, in term of orientation and steepness of the slopes.

Two common limitations are evident in many of the methods mentioned in this

section: they do not include any natural or physical scale, so that, as an example,

wide mountains and narrow mountains are treated identically. Moreover they rely

on the indirect contribution of topographic and climatic aspects, not considering

explicit descriptions of known physical mechanisms.

Up-slope models

The Up-slope models constitute a category of analytical or quasi-analytical models in

which the terrain slope and wind speed are used to estimate the condensation rate

above the terrain due to forced uplift of moist flow impinging a topographic barrier.

Early and grounding contributions in this direction are the models by Collier (1975),

Rhea (1977), and Smith (1979). An assumption common to these models is that

the water that condenses for forced uplift falls immediately to the ground. The

consequence is that physical scales in both the space and time domains are not

directly taken into account.

Several quasi-analytical models have instead included scale-dependent processes:Hobbs

et al. (1973) and Bader and Roach (1977) have described raindrop/snow fall speeds

and washout of cloud water.

Alpert and Shafir (1989), Sinclair, 1994, and Smith, 2003 have included the advec-

tion of condesed water of hydrometeors in their upslope models. These descriptions

allow the condensed water to drift downwind improving the agreement with ob-

served rainfall patterns.
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Upslope-advection models such as Smith, 1979 assume that the terrain-induced

vertical air velocity penetrates upward through the moist layer without changing

velocity. It is known from mountain wave theory that such motions may either decay

or oscillate with altitude, depending on the horizontal scale and aspect ratio of the

terrain, static stability and wind speed. In either case, the upslope estimates may

exceed the actual condensation rate.

A second possible issue is related to the leeside descent: in upslope models, it is

usually assumed that only upslope regions influence precipitation. With instanta-

neous conversion and fallout, the windward slope receives rain while the flat and

downslope regions are dry. When time delays and advection are included like in

Smith, 2003, the water condensed for uplift motions is distributed downstream,

with no regard for local terrain. This approach neglects the evaporation of cloud

water and hydrometeors caused by descending air and the total precipitation is

overestimated by this assumption. Smith and Barstad, 2004 adjusted the approach

for evaporation in the lee side using negative terms of evaporation in the leeside,

but still does not account for the possible evaporation of the advected condensed

water. Alpert and Shafir (1989) introduced in this regard an adjustable coefficient to

reduce the prediction into a reasonable range.

The errors induced by these two issues are strongly scale dependent. For smooth

hills with scales of approximately 100 km, the upslope estimates are usually quite

reasonable. When the terrain is rising and falling with scales of 20 km or less, both

assumptions fail and models can overestimate the total precipitation by a factor of 5

or larger.
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2Methods

In this chapter the statistical model derived for mapping precipitation over moun-

tainous terrain is presented. It was defined after deriving a reduced version of the

up-slope time-delay model by Smith, 2003 introduced in the section 1.2.3. Hereafter

the up-slope model is more extensively presented as most of its features and skills

are still found in the statistical model. Then the derivation of the latter as well as the

description of its properties and estimation procedures for its unknown parameters

is given. The chapter is completed by sections suggesting additional extensions of

the model and special cases of application.

2.1 Smith’s up-slope time-delay model

Smith, 2003 and Smith and Barstad, 2004 introduced an advection equation model

for the prediction of precipitation over mountainous terrain.

The authors begin postulating a pair of steady-state advection equations for the

following two quantities on the generic point (x, y) in the 2D-space:

• qc(x, y)
[

Kg
m2

]

vertically integrated cloud water density

• qs(x, y)
[

Kg
m2

]

vertically integrated hydrometeor density .

Dqc

Dt
= U · ∇qc = S(x, y) −

qc

τc
(2.1)

Dqs

Dt
= U · ∇qs =

qc

τc
−

qs

τf

(2.2)

Reading all the elements included, the core of the model is the representation of

the up-slope mechanisms in the term S(x, y)
[

Kg
s·m2

]

, which represents a distributed

source of condensed water arising from the forced ascent of moist air over the terrain.

In particular, in this term, the horizontal wind, measures of moisture content and

static stability as well as the terrain geometry are used to estimate the rate of cloud
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production. Many shapes of S are possible, and the authors introduced some of

them in Smith and Barstad, 2004.

One possible source of condensation is the following:

S(x, y) =
Γm

γ
ρ · qV SAT 0 · ~U · ∇h(x, y) (2.3)

where:

• ~U · ∇h(x, y) is the vertical velocity induced by topography (+ / -);

• qV SAT 0(x, y) is the Saturation specific humidity at the ground

• Γm is the moisture lapse rate;

• γ is the environment lapse rate;

S takes positive values in region of air ascent and negative values in regions of

descent, where its values are interpreted as evaporation rates. The measure of static

stability in the ration Γm

γ
does not have any direct effect on the horizontal flow,

meaning it does not deflect it in case of high stability. At the same time it enhances

the condensation rates when it is greater than one and thus widens the area where

significant condensation occurs.

The key and distinguishing element of this up-slope model is however the inclusion

of the characteristic time scales τc, τf : the author states that from the condensation

of water vapor to the fallout of rain, a certain amount of time is required for

microphysical processes to take place. The two time-delays then quantify the time

required by cloud microphysical processes for the conversion of cloud water to

hydrometeors (τc) and for the hydrometeors fallout (τf ). The inclusion of the

time delays has the immediate consequence of allowing for the advection of the

condensed water and the formed hydrometeors before reachinf the ground, which

implies precipitation is distributed downwind of the cloud sources over a distance

given by the time delays themselves and the wind speed. Moreover, the time

parameters act as indirect control of the precipitation efficiency. The two time scales

are not known, but analysis by Jiang and Smith (2003) suggested a feasible range for

both τf , τc as [200s, 2000s], and the two are usually set equal to each other (τc = τf )

in applications.

The last term of the first equation qc

τc

[

Kg
s·m2

]

represents the rate of conversion from

cloud water to hydrometeors, while the last term of the second equation qs

τf

[

Kg
s·m2

]

is

the precipitation rate.

The up-slope model benefits from properties that make it suitable for real applications

and that are still found in the statistical model.
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- It is Linear and analytically tractable ;

- It is applicable to actual complex terrain: without the requirement of repre-

senting the terrain by idealized shapes. Moreover the shape of the real terrain

becomes one of the natural length scales that can be included in the model;

- It is applicable to arbitrary wind directions: the model can be directly used in

real applications without the need of rotating the coordinate axes;

- It reduces to the classical upslope model at the limit of short time delays τ ;

- It includes all the basic physical elements of orographic precipitation mecha-

nisms: airflow dynamics, condensed water conversion, advection and fallout,

and downslope evaporation, leading to a theory of precipitation efficiency.

The model also has some limitations:

- It only partially accounts for flow blocking or very unstable conditions: the

static stability influences the intensity of the vertical motion but does not

modify the horizontal trajectory of the flow, which may happen in case of

blocking.

- It is vertically integrated: it cannot account for vertical variations of the

atmospheric variables included.

- It uses constant time-delays over the area, thus being unable to describe more

complex variations in the microphysics.

- Because it uses steady state equations there isn’t a real temporal resolution in

the model.

- There is no distinction among ice and water, altough Barstad and Schüller,

2011 proposed an extension accounting for two vertical layers at this scope.

The statistical model defined in this thesis is built from a reduction of the system

2.1 by Smith (2003). The model will be described in the following section 2.2, but

it is worth it to mention here that it is built on the analytical core of Smith (2003)

model, yet it has more flexibility in dealing with some the mentioned limitations.
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2.2 Derivation of the Statistical Model

The system of two equations specified in the model by Smith, 2003, as presented

in the previous section, allows the representation and parameterization of both the

processes that lead from condensation to the formation of hydrometeors and from

the formation of hydrometeors to drops fallout.

The system was here simplified postulating a single advection equation for the column

integrated cloud water density q. This simplification was possible and results in a

still valid description because in the original Smith’s model, the two processes don’t

interact but in a temporally consecutive way and moreover because using a statistical

approach, precipitation is a quantity more commonly observed.

The proposed governing equation becomes:

Dq

Dt
= U · ∇q = S −

q

τ
(2.4)

and specifically for the case of a 2-dimensional spatial domain reads:

Dq

Dt
= u

∂

∂x
q(x, y) + v

∂

∂y
q(x, y) = S(x, y) −

q(x, y)

τ
(2.5)

where now, following Jiang and Smith (2003) but considering here a single equation,

the parameter τ ⊂ [400s, 4000s] parameterizes the time required for the condensed

particles to precipitate, U [m/s] is the horizontal wind that advects the cloud water

during the time given by τ , S(x, y)
[

Kg
s·m2

]

is a distributed source of condensation

arising from forced ascent over the mountain slopes of the flow and the last term on

the right hand side
q(x,y)

τ
= p∗(x, y)

[

Kg
s·m2

]

is again the precipitation rate.

Equation 2.5 can be conveniently written for the precipitation p∗ term q
τ

= p∗:

Dp∗

Dt
= uτ

∂

∂x
p∗(x, y) + vτ

∂

∂y
p∗(x, y) = S(x, y) − p∗(x, y) (2.6)

Because the source function of cloud water S as presented in 2.3 takes values on R,

also p∗ does. Since we will never observe a negative value for rainfall rate, p∗ would

rather be interpreted as a latent tendency rate of precipitation, whereas the values

of rainfall rate / occurrency actually observed as its indicators.

2.2.1 Case 1: Precipitation Data on a Regular Grid

Equation 2.6 was then discretized using a forward differences scheme. This method

is often referred to as Upwind differencing, and this choice appears natural noticing
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the signal of p∗ can only be propagated along the direction of the wind. In other

words, the value of a field p∗ at a point xi is not affected by the flow nor by the

value of p∗ downwind xi, and the signal present in xi should instead flow farther

away following the wind. The upwind scheme, moreover, produces values that

are not unstable, meaning that the scheme is monotonicity preserving and does

not produce local minima or maxima or fast oscillating values in the field as it

could occur using centered differences schemes.Because the advection equation used

for deriving the statistical model is a steady state advection equation, one could

reasonably argue that the problem moves in a pure spatial setting and that schemes

based on centered differences would be at least equally preferable. Instead, the issue

on the discretization of advection equation still holds. Indeed, even in a pure spatial

setting, what drives the instabilities is not considering the natural propagation of

the signal downwind. Accounting for opposite contributions from both downwind

and upwind sites, as it is the case in centered differences, would lead to unphysical

solutions and conflicts and to the possible failure of the numerical scheme. Moreover,

the truncation local error, namely the amount of error produced in one step of a

numerical approximation because of the truncation, is smaller in unilateral schemes.

For positive components u, v of the horizontal wind U the following discretization is

obtained, defining a unilateral process:

uτ
p(x, y) − p(x − ∆x, y)

∆x
+ vτ

p(x, y) − p(x, y − ∆y)

∆y
= S(x, y) − p(x, y) (2.7)

It is possible to perturb the previous differences by means of a stochastic noise η,

making the solution of the difference equation a stochastic spatial process
{

p∗(x, y) :

(x, y) ∈ D
}

as well defined over a finite regular lattice D.

uτ
p(x, y) − p(x − ∆x, y)

∆x
+ vτ

p(x, y) − p(x, y − ∆y)

∆y
= S(x, y) − p(x, y) + η(x, y)

(2.8)

Assuming
{

p∗(x, y) : (x, y) ∈ D
}

=
{

p∗(si) : i = 1, ...n
}

is defined over a finite

subset composed of n nodes of the lattice D on the plane, we can let η be a

random vector following a n-dimensional zero mean and zero pairwise covariance

gaussian distribution η ∼ N(0, Λ) where Λ is a diagonal variance matrix and let

η(x, y) ∼ N(0, σ2(x, y)) be the univariate marginal distribution for the generic point

(x, y) on the lattice. As generally assumed in literature, also in this thesis the case of

homogeneous variance η ∼ N(0, Λ), Λ = σ2I is the only one considered, but other

choices are allowed if knowledge about how to let the stochastic noise vary in space

were available.
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The noise added can reflect both the scientific uncertainty of the deterministic

relation used and random impulses in the system with a lower order of magnitude

with respect to the main signal.

Writing the previous expression in matrix notation makes the understanding of the

moments of the defined stochastic process straightforward:

p∗ = Ap∗ + Bp∗ + Cp∗ + S + η (2.9)

where, for a finite lattice of n = m × m points:

• p∗
nx1, Snx1, ηnx1

• Anxn → Matrix with diagonal elements −τ
(

u
∆x

+ v
∆y

)

A = −τ
( u

∆x
+

v

∆y

)

In

• Bnxn → is a matrix which elements are the parameters that propagate the

signal p∗ along the W-E direction;

Defining:

B̃m×m =
uτ

∆x















0 0 0 ...

1 0 0 ...

0 1 0 ...

... ... ... ...















B = B̃m×m ⊗ Im

• Cnxn → is a matrix which elements are the parameters that propagate the

signal p∗ along the S-N direction;

Defining:

C̃m×m =
vτ

∆y















0 1 0 ...

0 0 1 ...

0 0 0 ...

... ... ... ...















C = Im ⊗ C̃m×m

Defining W = A + B + C, a more compact form of 2.9 is:

p∗ = Wp∗ + S + η (2.10)
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The model 2.10 identifies a Simultaneous Autoregressive Model (SAR) (e.g. Cressie,

1993, ch.6) )

p∗ =
(

I − W
)−1

S +
(

I − W
)−1

η(2.11)

which first moment is:

µ =
(

I − W
)−1

S (2.12)

and for the properties of the second moment of a random vector η, the variance

covariance matrix Σ for p∗:

Σ = V ar
[

(

I − W
)−1

η
]

=
(

I − W
)−1

Λ
(

I − W T
)−1

(2.13)

Eq. 2.11 can be also be expressed as

(I − W )(p∗ − µ) = η (2.14)

Setting Λ = σ2I or, equivalently, E
[

ηηT
]

= σ2I it is straightforward to define a

multivariate Gaussian distribution for p∗ over the spatial domain:

p∗ ∼ Gauss(
(

I − W
)−1

S, σ2
(

I − W
)−1(

I − W T
)−1

) (2.15)

and the log-likelihood function as well:

−
1

2
ln2πσ2 +

1

2
ln|Z| −

1

2σ2
(p∗ − µ)Z(p∗ − µ) (2.16)

where Z = (I − W T )(I − W ) and |Z| indicates the determinant of Z.

In applications, the horizontal wind components u and v as well as the spatial lags

∆x and ∆y are known, and τ and σ2 are instead unknown parameters that can be

estimated from observed data as shown in section 2.2.2.
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Properties

In his founding work, Whittle, 1954 was the first who suggested a spatial autoregres-

sive model to capture autocorrelation in the 2-D space based on the the definition of

the joint probability of the process on the selected points of the space domain. His

approach is in opposition to the one of Besag, 1974, based instead on the definition

of conditional probabilities which posed the basis to what is referred to as Conditional

Autoregressive Model (CAR). The distinction between the two, which is originally

due to Brook, 1964, arises from the fact that, as opposed to time series where the

definition of the joint probability and the conditional probability are equivalent, the

two approaches lead to different results in the space domain.

The matrix W is interpreted as the spatial-dependence matrix: intuitively, taken two

points on the lattice (si), (sj), p∗(si) depends positively on p∗(sj) if wij > 0 while

wij = 0 denotes independence. In other words, for the generic si site, the matrix

W shows if the site sj contributes to the value in si, by means of a corresponding

non-zero entry in the ij cell.

Necessary and sufficient condition for the existence of the SAR model is (I − W )

be non-singular. A proof is found in Ripley, 2005. If (I − W ) is nonsingular, the

covariance matrix Σ is strictly positive definite as required for a covariance matrix

to be valid. For any specification of the structure of (I − W ) there will be a set of

parameter values in W that make the matrix (I − W ) itself singular. These values

depend on both the sample size (or size of the lattice) n, as well as the indexes of the

non-zero elements in W (Anselin and Florax, 2012). That set of parameter values

can be found solving the polynomial equation

|I − W | = 0 (2.17)

for which there will be in general k < n distinct roots that will depend on both n and

the structure of W . Finding the set of values in W that makes the model non-valid

in every circumstance it is applied is of crucial importance.

Useful properties on the parameters of SAR models are known and can be exploited

when the structure of the matrix (I − W ) is of the kind (I − ρW̃ ) where ρ ∈ R

is a parameter that can actually be interpreted as an autoregressive parameter. A

common structure for W̃ is the so called proximity matrix, in which W̃ has unit

entries in a cell when the two correspondent points are neighbors and 0 otherwise.

Another widely used structure for W̃ is the so called row stochastic matrix, which

elements in each row sum to 1. Good properties are known if (I − W ) has one

of these two structures and especially when ρ < 1, and in those cases intervals of

ρ for which (I − ρW̃ ) is not singular are easy to find. The reader is referred to

LeSage, 2008 for a comprehensive presentation. It is clear that the structure of
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the SAR model derived in this chapter is more sophisticated and requires a further

manipulation in order to make all the elements clear.

Reconsidering the elements present in the matrix (I − W ), its determinant depends

on the position of the non-zero entries in W , the size n of the lattice, and the values

of τ, u, v, ∆x, ∆y. In applications, for a given problem, the quantities u, v, ∆x, ∆y

are known or fixed, while τ is the only parameter on which we can set constraints

in order to (I − W ) be non singular. Besides the mathematical requirements,

one should also remember that τ has a physical meaning, being a time. The

constraints must therefore also respect his physical domain. As an example, in which

a southwesterly flow is assumed, the case of a 2 × 2 lattice is considered here, setting

u = 12m/s, v = 9m/s, ∆x = ∆y = 1000m.

(I − W ) reads :



















1 + τ
(

u
∆x

+ v
∆y

)

− τu
∆x

0 0

0 1 + τ
(

u
∆x

+ v
∆y

)

− τu
∆x

0

− uτ
∆x

0 1 + τ
(

τu
∆x

+ τv
∆y

)

− u
∆x

0 − vτ
∆y

0 1 + τ
(

u
∆x

+ v
∆y

)



















and hence:















1 + τ ∗ 0.021 −τ ∗ 0.012 0 0

0 1 + τ ∗ 0.021 −τ ∗ 0.012 0

−τ ∗ 0.009 0 1 + τ ∗ 0.021 −τ ∗ 0.012

0 −τ ∗ 0.009 0 1 + τ ∗ 0.021















with the following characteristic polynomial :

(1.4 e−7)τ4 + (3.4e−5)τ3 + 0.0026τ2 + 0.084τ + 1

which is greater than 0 for every positive τ and so also for any value in its feasible

range τ ∈ [400, 4000]. When both u, v are positive, any change in the length of the

spatial lags ∆x, ∆y or in the velocities u, v or again in the size n of the lattice would

not modify that positive values of τ are not roots of the characteristic polynomial.

W does not have to be symmetric, meaning wij = wji is not a requirement. Most

authors state the assumption wii = 0, i = 1, ...n, although there is not necessarily

any theoretical constraint on the diagonal of W to be a 0-vector for model validity,

as long as (I − W ) is not singular. In the case treated here diag(W ) = diag(A) and

thus has elements −τ
(

u
∆x

+ v
∆y

)
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The covariance matrix Σ is a full matrix: each point on the lattice is correlated to all

the other points at an extent that decreases with the decreasing order of proximity,

but that cannot be directly established simply on the basis of the sites pairwise

spatial distance. Moreover, despite the introduction of an homoskedastic error term

η ∼ Gauss(0, σ2I), the autocorrelation in p∗ induce heteroskedasticity it the latter,

being the elements on the main diagonal of Σ not all equal.

If we consider the dependence structure between p∗ and the stochastic noise η, it is

easily shown that

cov(p∗, ǫ) = E[p∗ηT ] = Λ(I − W T )−1 (2.18)

which is not diagonal, meaning that the error η and p∗ are not stochastically inde-

pendent.

The two models are here contrasted using the same notation, to make comparison

between the two easier and to present how they can be conceptually and theoretically

linked under certain circumstances. Following Cressie, 1993, Ripley, 2005 and

Anselin and Florax, 2012 :

SAR model:

(I − W )(p∗ − µ) = η; p∗ ∼ Gauss(µ, (I − W T )−1Λ(I − W T )−1) (2.19)

or marginally for one generic single point

p∗(si) = µi +
n

∑

i=1

wij(p∗(sj) − µj) + ηi (2.20)

CAR model:

(I − C)(p∗ − µ) = ν; p∗ ∼ Gauss(µ, (I − CT )−1M) (2.21)

where M = diag(τ1, ..., τi, ..., τn) contains in the main diagonal the conditional

variances associated to sites s1, ..., sn.

The log - likelihood has the same structure of the one of the SAR model, namely

−
1

2
ln2πσ2 +

1

2
ln|Z| −

1

2σ2
(p∗ − µ)Z(p∗ − µ) (2.22)

but where now Z = (I − C).
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Looking at the expression for one generic single point:

p∗(si) = µi +
n

∑

i=1

cij(p∗(sj) − µj) + νi (2.23)

For this model E[p∗νT ] = M , and being M diagonal it means the stochastic error

term is not stochastically dependent on p∗.

where setting τi and τj the conditional variance for the points si and sj respectively,

the elements of the matrix C should be such that τicij = τjcji and cij = 0 if sites si

and sj are independent.

This is equivalent to require the matrix (I − C) be non singular and the covariance

matrix (I − C)−1M be symmetric and positive-definite.

The two approaches are not in general equivalent. They lead to the same model if

and only if (I − C)−1 = (I − W )−1Λ(I − W T )−1, given a proper definition of a mean

µ such that it makes no difference in the choice between the two models Cressie,

1993. When these last requirements are met, any SAR model can be represented as

a CAR model, but the opposite is not always necessarily the case. From the previous

equivalence between the covariance matrices, it is clear that even in case the two

approaches led to the same model, C would differ from W . More precisely, any SAR

model is a CAR model with C = W + W T − W T W . In those cases when a CAR

model can be seen as a SAR model, the reverse relation between the two spatial

dependence matrices W and C takes a less natural form, since W = I − LT where

LLT is the Cholesky decomposition of (I − C) Ripley, 2005.

Although the conditional dependence specified by a CAR model is often more natural

than the one created by a SAR model and although working with a CAR model

poses fewer computational issues, the SAR model of Eq. 2.11 does not allowed a

straightforward specification of an equivalent CAR model. Indeed, although the

CAR model theoretically derived would still be a valid model, when the means of

the two models are contrasted, the choice between (I − W )−1S and (LT )−1S is

not equivalent. Choosing the second representation of the mean would introduce

artificial symmetries in the mean field of p∗ that again would be unphysical. The

following Fig. 2.1 gives a visual insight of the issue: for the idealized terrain

displayed in the left panel and wind components u = 12.65m/s, v = 9.06m/s, the

mean field of p∗ is displayed as derived by the SAR model (central panel) and the

CAR model (right panel):

The SAR model captures well as expected the advection toward the North-East

corner of the cloud water as well as positive values of the mean of p∗ in the upslope
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Fig. 2.1: Comparison of the mean of a SAR model and a CAR model on an idealized terrain.

region. The CAR model, instead, introduces an unphysical symmetry as well as not

expected regions with positive values in the mean of p∗.

In the SAR model the dependence at the edges of the lattice, being simultaneously

specified for every site, does not pose any issue. In contrast, the CAR model suffers

from the so-called edge effect, that requires a more sophisticated determination of

the dependence structure for the sites at the edges of the lattice.

Comparison with Smith’s Model

The statistical model derived in Eq. 2.11 is not just a discretized version of Smith’s

model. Firs of all it allows to estimate from data the unknown value of the parameter

τ , instead of requiring tuning procedures.

The statistical model is more flexible: it basically controls for two elements, namely

the production of cloud water and the progation of the signal across the space

domain. For the first element, it allows to use a spatially varying values of the large-

scale variables used to estimate the source S for each site, instead of a single value

for the entire domain as in the deterministic model. Regarding how the signal is

propagated, the statistical in Eq. 2.11 could be straightforwardly extended allowing

the intensity of the horizontal wind used for building W to vary in space, again in

opposition to the deterministic model. Moreover, once the structure of the statistical

model has been recognized, many modifications and extensions are allowed that

will let the model valid. One possible extension is the one presented in section 2.3

2.2.2 Estimation

In the case of gaussian data, since p∗ is stochastically dependent on η, using least

squares for estimates would not be consistent Whittle, 1954. Insightful discussions
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on the methods for parameter estimation using approaches based on likelihood can

be found in Cressie, 1993, Ripley, 2005 among others. LeSage, 2008 presented both

likelihood estimation (ch.2) and methods based on the Bayesian approach (ch.5).

Records of observed precipitation take values in R+, and aiming at decomposing the

process into two steps "occurrence" and "intensity" of precipitation, a dichotomous

variable would indicate the presence, 1 or the absence, 0 of recorded precipitation.

In both cases the methods used for gaussian data are not directly applicable and

diverse approaches must be followed.

The SAR Probit Model for Precipitation Occurrence

When modeling precipitation occurrence the dependent variables for which we can

get observations at the ground are binary variables with {0, 1} responses which reflect

absence and presence of precipitation respectively. Equal values are more likely

observed at close location if a spatial dependence does exist. In literature, models

built with the aim of modeling binary data are referred to as Limited dependent

variables spatial models, in which one identifies adequate linkages between the

binary observed response and a modeled latent unobserved process revealed by the

binary variable.

The Latent Response Model, (Verbeek, 2008, p.180) is a representation commonly

used for this scope that makes use of the concept of a latent process. Following this

approach when modeling binary dependent variables, the observed dichotomous

response y ∈ {0, 1} is treated as indicators of the latent, continuous unobserved

process. Among latent response models, the Probit Model constitute one possible

approach. In particular, in the case treated in this thesis, once the SAR model

has been derived (2.10) for the latent, unobservable process p∗, the probit model

assesses an adequate linkage between p∗ and the observations y, defining what is

usually referred to as a SAR probit model (e.g LeSage, 2008 ). More precisely, the

latter model assumes the latent unobserved process p∗ follows a normal distribution

such that the observed y ∈ {0, 1} values are reflected in:

yi = 1, if p∗
i > 0

yi = 0, otherwise
(2.24)

McMillen, 1992 proposed an EM algorithm (Dempster et al., 1977 is a classical

reference) for a Probit variant of the SAR model that produces consistent maximum

likelihood estimates. In each iteration t until convergence, the method estimates:

in the E-step the vector of the expected values of p∗ given the observed data y

and which depends on the estimated value of τ obtained in the previous iteration,
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namely Ê[p∗|y, τ̂ t−1]; then, in the M step, those estimates are directly introduced in

a log-likelihood function for τ , and an estimate at iteration t for the latter is obtained

maximizing that function. The value obtain at this stage will be used in the E-step of

the successive iteration t + 1. The method produces biased yet consistent estimates

of the covariance matrix (McMillen, 1992).

LeSage, 2000 proposed a method based on Markov Chain Monte Calro (MCMC)

samples that overcomes some of the limitations in McMillen, 1992 moving from

the works by Albert and Chib, 1993 for non-spatial probit models and LeSage 1997.

Another option is to consider the so-called Tobit (or censored regression) model

variant of the SAR model (e.g LeSage, 2008). An historic and conceptual review

of these approaches is found in LeSage, 2008, while Fleming, 2004 gave a more

extensive discussion contrasting alternative approaches to estimating parameters for

SAR Probit models and other Limited dependent variable spatial models.

The parameter estimation of the SAR probit model (2.10, 2.24) for precipitation

occurrence is done here after adapting the method by LeSage, 2000 and nesting

the one by Li and Ghosh, 2015 as it will be described below. The adaptation makes

possible to account for the different model specification of Eq. 2.11, and the different

unknown parameters involved.

For an introduction to Bayesian methods for spatial data the reader is referred to

Banerjee et al., 2014. In the Bayesian approach followed here, given the observed

vector with binary elements y, the n×1 elements of the unobserved p∗ are considered

parameters to be estimated as well through the procedure. Setting a priori distribu-

tions on τ, σ2, and after the estimation of p∗ it is in principle possible to proceed and

estimate the remaining model parameters τ, σ2, sampling in particular from their

posterior distribution (τ, σ2|p∗, y). Hereafter the parameter σ2 is considered fixed

and known.

What makes possible the use of this approach is a result found by Albert and Chib,

1993: they argued that in the case the vector of the latent process p∗ were known,

y would be known as well. With an abuse of language, it means the information

carried by p∗ contains all the information carried by y (the opposite untrue), and

that allowed them to conclude:

p(τ, σ2|y∗) = p(τ, σ2|y∗, y) (2.25)

In other words, treating p∗ as an additional set of parameters to be estimated, the

conditional posterior distribution for the parameters τ, σ2 conditioning on both p∗

and y takes the form of a Bayesian regression problem for a continuous dependent

variable instead of a problem involving the binary-value vector y.
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To estimate the vector of n parameters p∗
i, i = 1, ..., n, the estimation via MCMC

sampling requires to draw, at any pass, sequential samples from any individual

p∗
i from its conditional distributions p(p∗

i|p
∗

−i), thus conditional on all the other

elements in the vector p∗
−i excluding the i − th.

Through a large number of passes, this sampling method produces a sequence of

draws for the parameters that converges to the joint posterior distribution p(p∗, τ |y)

or eventually p(p∗, τ, σ2|y).

Albert and Chib, 1993 considered the case of non-spatial regression model (indepen-

dent observations) for binary observed data y and found a conditional distribution

for the individual p∗ that takes the form of an univariate truncated normal distribu-

tions, namely a normal distribution whit bounded values. (lower, upper or both).

See Li and Ghosh, 2015 for a clear description and properties of the truncated

normal distribution and sampling methods.

Dealing with a SAR model for spatially dependent observations, the previous ap-

proach leads to a multivariate truncated normal (MVTN) distribution (e.g Li and

Ghosh, 2015 for properties of the MVTN) for the latent p∗ parameters from which

one needs to sample. The condition 2.25 still holds: while the individual conditional

posterior distribution p(τ |σ2, y∗) is as in the case of a continuous dependent variable,

drawing from the n−variate truncated normal for p∗ is not straightforward. Geweke,

1991 pointed out that this cannot be done for the case of a truncated multivariate

distribution. That is, the individual elements from a vector such as y∗ cannot be

obtained by sampling from a sequence of univariate truncated normal distributions

as in the case of independent observations.

An MCMC sampler for the SAR probit model

The scheme of the MCMC sampler adapted from LeSage, 2000 is the following: the

scheme requires to sample sequentially from the conditional posterior distributions

for τ, p∗. Within this sequence, it is also needed to sample a set of n values to fill-in

the vector p∗.

A uniform distribution was chosen for τ in its feasible range [400, 4000]: p(τ) =
1

4000−400 . The algorithm is then composed of the following steps:

1. sampling τ from its individual conditional posterior distribution p(τ |p∗). Mak-

ing explicit W = τW̃ , the following expression was found:

p(τ |p∗) ∝ |In − τW̃ |exp
(

−
1

2σ2
[(In − τW̃ )p∗ − S]T [(In − τW̃ )p∗ − S]

)

(2.26)
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where |In − τW̃ | is the determinant of In − τW̃ . Samplings was then accom-

plished using a Metropolis-Hastings algorithm.

2. Sampling each p∗
i from its conditional distribution. Issues on this second

sampling procedure were pointed out before. Finding methodologies to draw

from this distribution is an active branch of research. One well known method

is the one proposed by Geweke, 1991, but here the more efficient adaptive

Gibbs sampling introduced by Li and Ghosh, 2015 was used. The method

allows to derive the conditional univariate truncated normal distribution for a

transformed variable of p∗ for each site. The distribution is such that it is easy

to sample from it. The truncation boundaries of the transformed variable are

determined from the values of the observations y. The method is also efficient

because it adopts 3 different sampling algorithms depending on the values of

the boundaries, optimizing the acceptance rate of the algorithm.

Each pass of the MCMC sampler constitutes only a single sample of τ and one single

sample for the entire vector p∗. A large number of passes must be done to produce a

large sample of draws from the joint posterior distribution of the model parameters.

Once the sample of draws is obtained, it can be used to construct parameter estimates

based on statistics of the posterior distributions.

SAR model for precipitation intensity

Precipitation can be considered a mixture of discrete and continuous distributions,

since precipitation is a continuous variable with exact zeros if no precipitation

is recorded Dunn, 2004. Following a chain-dependent stochastic approach (Katz,

1977), the discrete and the continuous part are modeled separately in two-stages.

In literature many probability distributions for precipitation intensity has been

suggested. The reader is referred to Wilks, 2011 and references therein for a review

and to and Wilks and Wilby, 1999 for a comprehensive historical picture.

In other works, it is assumed both precipitation occurrence and itensity can be

modeled using the same latent Gaussian process. Various known transformation

functions have been suggested to transform the Gaussian values to the desired

intensities. For example, Katz and Parlange, 1995 used a power transform with

exponent smaller than 1, Allcroft and Glasbey, 2003 used a quadratic power function,

Sigrist et al., 2012 used a power function, and Allard and Bourotte, 2015 used a

power-exponential function . Kleiber et al., 2012 applied a two-part transformation

function, with one part being the standard normal distribution and the second part

the inverse of a gamma distribution.

A discussion on the choice or definition of a suitable probability density function for

precipitation intensity or transform of a gaussian latent process is beyond the scope
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of this work. A general structure will be kept, choosing for the case studies presented

in chapter 3 a power transform based on the approach in Katz and Parlange, 1995.

The intensities are found applying a power transform of order k, 0 < k < 1 to the

latent gaussian field p∗ on "wet" sites, when p∗ > 0. k is chosen as the value that

makes the 95th percentile of both the distributions be equal. Namely, letting y be

the observed precipitation on "wet" sites:

k : (p∗)k
[.95] = y[.95] (2.27)

This choice lets the spatial dependence be entirely determined in the latent process p∗

and in the estimate of the 95th percentile treats the observed values as observations

from i.i.d variables.

2.2.3 Prediction

Once the parameters τ and eventually σ2 are estimated as described in the previous

section, it is possible to predict the values of precipitation occurrence and amount

on unsampled (not observed) sites.

This can be achieved determining the values of the source function S, of the mean

µ = (I − W )−1S and of the covariance matrix Σ =
(

I − W
)−1

σ2I
(

I − W T
)−1

for the unsampled sites and generating the field p∗ from a multivariate gaussian

distribution and consequently occurrence y and intensity x on those spatial points.

In order to calculate µ and Σ all the values required are now known.

At this stage it is also possible to modify the grid, namely modifying the values of

∆x, ∆y. It is instead not possible to directly modify the components u, v of the wind

speed. That would require recomputing the source function of condensation S, as

well as getting a new estimate for τ , since that reformulation would imply a different

spatial pattern of precipitation at the ground.

2.2.4 Case 2: Irregularly Spaced Precipitation Data

The model in 2.11 is defined for observed data on a regular lattice. Observations

of precipitation are often recorded at irregularly spaced sites. To combine the

advantages of the proposed scheme with the flexibility required in sample designs,

an adaptation of the model formulation is required.
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Although building the source function S is straightforward on unevenly spaced points,

the major issue is faced in modeling the spatial dependence structure, and thus in

defining the proximity matrix W . That might be handle taking advantage from the

fact that matrix W contains the measures ∆x, ∆y of the distance between the pairs

of points. From a theoretical point of view, the values of elements ∆x, ∆y, present at

the denominator of each non-zero entry of W , can vary among pairs of points, and

so across the entries of W , as long as the resulting matrix (I − W ) is non-singular

for model validity. The issue is thus restricted to the choice of neighbors for each site

si among all the other spatial points sj,j 6=i, and in setting the proper corresponding

entry (i, j) in matrix W = A + B + C, by specifying the correct pairwise distances

(∆x(i, j), ∆y(i, j)).

White and Ghosh, 2009 proposed a neighbor function for defining a CAR model on

an irregular lattice. Here a similar approach is followed and a new neighbor function

is defined which accomodates to the peculiarities of model 2.11.

For the identification of a neighbor, a maximum distance dmax is set. The distance

should be set small enough for preventing far points to have an influence and at

the same time big enough to ensure matrix W has at least one non-zero entry in

each row in addition to the elements on the main diagonal. Thus, parameter dmax

ensures the resulting matrix (I − W ) is sparse. Moreover, for site si, only sites in

the upwind sector with respect to si can become its neighboring points. Thus, in

case of a Southwesterly wind, neighbors of point si must be searched in the sector

South-West of it. A second parameter dl might be necessary in some case to represent

an intermediate distance. In particular, pairs of points closer that dl are considered

as they were neighbors on a regular lattice, and thus set as distant as at the artificial

distance dl itself. This artificial spacing avoids the distances ∆x and ∆y to be too

small, and thus matrix W and the covariance matrix to have single entries with

very high values that might corrupt the estimates. Moreover, dl and dmax could

serve in ensuring matrix (I − W ) is non-singular. Matrices A,B,C necessary to build

eq. 2.9, are consequently built as hereafter explained, taking again as example a

Southwesterly wind.

Building matrix B: matrix B explains the signal propagation in the longitudinal

direction. The distances ∆x(i, j) at the denominator of the (i, j) entries of matrix B

are determined in the following way:

∆x(i, j) =



















dx;l if 0 < dij < dl

dx;ij if dl < dij < dmax

∞ otherwise

(2.28)
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where dij is the distance between the sites si, sj , dx;ij is the distance in the lon-

gitudinal direction between sites si and sj and dx;l is the longitudinal component

of the artificial minimum distance dl. The case ∆x(i, j) = ∞ is equivalent to not

considering the point sj as neighbor and influential of si.Thus, a n × n matrix B̃ is

created by inserting the elements 1
∆x(i,j) in the corresponding (i, j) entries. Finally,

matrix B is:

B = uτB̃ (2.29)

Building matrix C: matrix C explains the signal propagation in latitude. The

distances ∆y(i, j) at the denominator of the (i, j) entries of matrix C are determined

in the following way:

∆y(i, j) =



















dy;l if 0 < dij < dl

dy;ij if dl < dij < dmax

∞ otherwise

(2.30)

where the elements are interpreted similarly as those presented for matrix B. Thus,

a n × n matrix C̃ is created by inserting the elements 1
∆y(i,j) in the corresponding

(i, j) entries. Finally, matrix C is:

C = vτC̃ (2.31)

Building matrix A: in model 2.11 defined on the regular lattice, matrix A was:

A = −τ
(

u
∆x

+ v
∆y

)

In. Now ∆x, ∆y must be substituted by the average values

∆x = ∆x, ∆y = ∆y computed among the values used to build matrices B and C

respectively. Or, if values dx;l, dy;l were set, then those would be the new ∆x, ∆y to

use in matrix A. Thus, after defining appropriate ∆x, ∆y, matrix A is:

A = −τ
( u

∆x
+

v

∆y

)

In (2.32)

As an example, imagine to observe precipitation data on the 20 spatial points

depicted in fig. 2.2:

and to build matrix B for a Southwesterly wind. Let us set dmax = 2.5. For point (1),

we look for suitable neighbors South West of the point itself. Neighbor point of (1)

is (14), with dx;ij = 2. Thus, the first row of B will have all zero entries, but 1/2 in

the 14th column. Neighbors of point (2) are (7) and (16), with distances dx;ij = 1

and dx;ij = 2 respectively. Thus the second row of matrix B will have entries 1 and

1/2 in the corresponding 7th and 16th columns.
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Fig. 2.2: Example of 20 irregularly spaced points over

The same procedure is used to build matrix C.

2.3 Inclusion of large-scale precipitation

The statistical model defined in Eq. 2.11 computes and propagates cloud water

arising from up-slope orographic mechanisms. Large scale precipitation fraction

from frontal systems or wide convective cores is not directly taken into account.

To allow the inclusion of these large scale components of precipitation, two exten-

sions of the model are here suggested. If knowledge of the large scale precipitation

(LSP hereafter) on the study area is available (for example from climate/forecast

model or reanalysis), it is possible to add its contribution, modifying 2.10 as follows:

p∗ = Wp∗ + α ∗ LSP + S + η (2.33)

with mean µ = (I − W )−1(α ∗ LSP + S) and the same covariance matrix as before.

α is an unknown parameter that must be estimated from data. It modulates the

direct impact of the large scale precipitation on the spatial distribution, in order
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to avoid shocks that could arise introducing directly the value of the intensity of

LSP obtained from climate models, and using instead the information in observed

data to complement it. This choice also reflects that the orographic enhancement of

preexisting storms vary strongly for frontal systems reaching their maturity before

or after the passage over the mountain range. Corradini et al., 2000 suggested that

the enhancement is of the order of 50% in prefrontal storms to 150% in postfronatl

storms. The reader is referred to Houze, 2012 and Barros and Lettenmaier, 1994 for

a deep review of the features of baroclinic disturbances and their interaction with

mountains.

The second extension further adds a third unknown parameter as weight factor of the

orographic source S. Letting the design matrix become the n×2 matrix X = [S, LSP ]

and the new two-dimensional parameter vector λ = (λ1, λ2)T , the extended model

reads:‘

p∗ = (I − W )−1(Xλ) + (I − W )−1η (2.34)

with mean µ = (I−W )−1(Xλ) = (I−W )−1(λ1S+λ2LSP ) and same covariance ma-

trix as before. λ1, λ2 will thus weight the small scale orographic (S) and large-scale

(LSP) components to let total precipitation match observations. Here λ1 modulates

the effect of the orographic cloud source S. In particular, the Source function 2.3 is

built under the assumption of nearly saturated atmosphere, an assumption that often

leads to overestimate the actual condensation and precipitation rates. λ1 then could

act as correction of this strong assumption, reducing the rate of cloud production

thanks to the information inferred from observed precipitation data used to estimate

λ1

2.3.1 Estimation

The estimation procedure exposed in the previous section must be modified to

include new unknown parameters. Here the estimation procedure for model 2.34 is

presented. Additional full conditionals must be found for λ = (λ1, λ2), and the one

for τ must be modified accordingly as well. Something to note is that the inclusion

of an unknown parameter in the mean µ, will lead to an identification issue: in fact

in the probit SAR model, different pairs of values of σ2, α, would lead to the same

value of the likelihood function of p∗ (Geweke, 1993). So in this case the value of σ2

must be fixed as a proper constant.

Recalling the procedure exposed in section 2.2.2, an uninformative a priori is set

again for τ : τ ∼ Unif(400, 6000). The upper bound was augmented to 6000s after

noticing the natural behaviour of the chains. A bivariate gaussian distribution is
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chosen for λ: λ ∼ N(0, T ), T = 1e + 10I2, with zero mean, zero covariance and

uninformative standard deviation.

The three main steps of the sampling scheme then become:

1 Sample each individual p∗
i , i = 1, ..., n from its full conditional posterior distri-

bution p(p∗
i |p∗

−i, τ, λ, y)

2 Sample τ from p(τ |λ,∗ , y) via Metropolis-Hastings. Making explicit W = τW̃ ,

the kernel of p(τ |λ,∗ , y) is:

p(τ |p∗, λ, y) ∝ |In − τW̃ |exp
(

−
1

2σ2
[(In − τW̃ )p∗ − λX]T [(In − τW̃ )p∗ − λX]

)

(2.35)

3 Sample λ from p(λ|τ, p∗, y): p(λ|τ, p∗, y) ∼ NMV (d∗, σ2f∗), a bivariate Gaus-

sian distribution where

d∗ = (XT X − T −1)−1(XT (In − τW̃ )p∗)

f∗ = (XT X − T −1)−1

which is characterized by small negative correlation between the two coeffi-

cients λ1, λ2.
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3Results

3.1 Idealized Experiments

This section reports a set of idealized experiments carried out simulating from the

statistical model in eq. 2.11, prescribing some values of the unknown parameters.

Four different idealized terrains are built and used in four experiments. Each

experiment is based on the same set of 3 different environmental conditions, making

possible to confront the behavior of the statistical model in a total of 12 comparable

experiments.

The idealized ridges are chosen in order to identify a few yet clear features of a real

topography: N-S oriented long ridges allow a straightforward comparison of the

effect of different mountain slopes on precipitation patterns in a setting close to some

of the main real mountain ridges (e.g. Cascades (North-West USA), Sierra Nevada

(CA, USA), Andes (South America)); an isolated circular Gaussian hill constitutes a

reference experiment resembling isolated high peaks; the last idealized terrain used

is composed of N-S oriented multiple ridges. All the idealized terrains have size and

proportions reasonably resembling a real terrain.

The atmospheric variables used to build the quantities in the source function (eq.

2.3) as well as the horizontal components of the wind velocity are taken from a

sample day in winter from the Era-interim dataset (Dee et al., 2011) for a box over

the Coastal Range and Sierra Nevada in California, US. This allows testing the model

using realistic variables consistent with each other. The vertical levels used for all the

variables are in the interval 850hPa - 700 hPa, motivated by the results in Neiman

et al., 2002, who found the highest correlation between the flow velocity and rainfall

over the California Coastal Range is found at approximately the same altitude of

the peak of mountain ranges. The value of the saturation water density is set to

ρsref = 0.009[Kg/(m2)]

Furthermore, in each experiment and sub-experiments, the time-delay parameter τ is

set to 8 different values, namely (1, 400, 800, 1000, 1500, 2000, 4000) seconds. τ = 1

approximates a simple upslope model where water falls immediately to the ground

after condensation.

All the simulations from the statistical model are realized using the same seed and the

same value of σ2 for the covariance matrix Λ = σ2I of the noise term η ∼ N(0, Λ).
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Fig. 3.4: Source function related to the three sub-experiments: A) left panel; B) central
panel; C) right panel

With respect to the previous experiment, the less steep slope in the windward side

and the steeper one on the leeside produces less amount of precipitation and a

sharper shadow effect. Being the source of condensation sensibly smaller than in the

previous experiment, the overall amount of precipitation at the ground is greatly

reduced. Because of the decision of keeping fixed the value of the parameter σ2, the

signal to noise ratio in this experiment is smaller.
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3.2 Case studies on the Coast Range and Sierra

Nevada in California, US

3.2.1 Domain and Data

The following case studies are based on observed data of precipitation from CPC US

Unified Precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,

USA, from their Web site at http://www.esrl.noaa.gov/psd/. The dataset is composed

of daily observations of accumulated precipitation on a .25 × .25 regular grid.

A spatial box centered on California,US is used. The box has corners

−124E, −116E, 35N, 44N .

The atmospheric variables used are taken from the ERA-Interim reanalysis (Dee

et al., 2011). For all the atmospheric fields originally produced on vertical levels

in the reanalysis, only the mean value within the vertical interval 850 − 700hPa

is considered. This vertical layer approximately corresponds to the height of the

mountain ranges, and this choice follows the results of Neiman et al., 2002 as already

explained in the idealized experiments. The fields at the surface used to build the

quantity required in the statistical model are 2 meter temperature and large-scale

precipitation. The fields distributed on vertical levels are the horizontal components

of the wind, temperature, geopotential and specific humidity.

The terrain elevation is from the GTOPO30 global digital elevation model (DEM)

with a horizontal grid spacing of 30 arc seconds from the U.S. Geological Survey’s

EROS Data Center. In order to enhance the signal and reduce the noise, the DEM

was smoothed using a Singular Spectrum Analysis (Ghil et al., 2002), through which

the 85% of the variance of terrain altitude is explained.

Fig. 3.9 shows the original terrain and the smoothed one.

3.2.2 Case Study 1: Empirical Estimation

The first case study refers to the 24 hours spanning from 12:00 UTC Dec,1 2005

to 12:00 UTC Dec,2 2005. The atmospheric conditions recorded in the selected

24h interval created a typical interaction between synoptic westerly frontal systems

moving to the continent and the orography of the Coast Range and Sierra Nevada.

Figure 3.10 shows the observed precipitation on the .25 × .25 degrees lattice com-

posed of 33 × 33 = 1089 points. The right panel shows a histogram for the intensity

of recorded precipitation.

A site is usually considered "wet" if the recorded precipitation exceeds 1mm. The

day considered in this case study can be seen as a prevalently "wet" day: among the
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Fig. 3.9: Spatial domain - Left: Elevation GTOPO30; Right: smoothed terrain.

959 sites on land, 815 recorded at least 1mm of rainfall during the 24 hours, for a

fraction of 84% of "wet" sites. This disproportion might create a situation of model

overfitting: let us imagine we want to improve the agreement of the model with the

observations in terms of occurrence. Such a disproportion will likely produce an

increasing in agreement simply by increasing the number of sites predicted as "wet",

regardless the position and a balance between the true classification of the mistaken

sites. To enhance the signal, a threshold of 2mm was instead chosen to divide "dry"

from "wet" sites, which creates a percentage of 78% of "wet" sites on the area.

Fig. 3.10: Observed Precipitation: CPC US Unified Precipitation data
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The observed precipitation is assumed to be the result of both large scale processes

and orographic effects. The fraction due to the large-scale precipitation is taken

from the ERA-Interim reanalysis, as shown in Fig. 3.11.

Fig. 3.11: Large Scale precipitation fraction - ERAInterim
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The static stability was estimated following Smith and Barstad, 2004 from ERA-

Interim data by the ratio γmo

γ
, where the numerator is the moisture lapse rate and

the denominator is the environmental lapse rate. Values greater than 1 indicate a

static stable atmosphere. The saturation water vapor density ρsref was computed

using the Tetens equation for the saturation vapor pressure. The saturation water

vapor pressure and the static stability are shown in Fig. 3.12 and 3.13 respectively.

In both figures the wind field is overimposed by means of arrows. Average wind

components advecting cloud water are u = 9.752m/s and v = 7.005m/s

Fig. 3.12: Saturation water vapor density [Kg/m3]; Arrows: horizontal wind

Results

The model in 2.33 with the inclusion of the large-scale precipitation is the one

applied in this case study:

p∗ = α ∗ LSP + Wp∗ + S + η (3.5)

with mean µ = (I − τW̃ )−1(αLSP + S) and covariance matrix Σ = σ2(I − τW̃ )(I −

τW̃ T ). The variance of the noise term η was set as σ2 = 1e − 10. The value of the
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Fig. 3.13: Estimate of static stability as γm/γ. Values greater than 1 refers to stable atmo-
sphere. Arrows: horizontal wind

latter was set because for model identifiability it is not possible to estimate both σ2

and α at the same time .
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Fig. 3.14 shows the source function of condensation S(x, y) computed according to

eq. 2.3 :

Fig. 3.14: Source of condensation arising from forced ascent of the moist flow on the
mountain range, [ Kg

m2
∗s

]

The present case study can serve to show in an empirical way the necessity of includ-

ing the additional term LSP representing large-scale precipitation. This requirement

is evident comparing the observed spatial pattern of precipitation and the pattern

produced by the model ignoring the large-scale precipitation (setting α = 0). The

results of this test are shown in Fig. 3.15

In particular, the simulation for the test was performed letting τ vary between

400s and 4000s. In all simulations we can observe the orographic effect on the

precipitation pattern at the ground, namely an increase of precipitation on the

windward side of the range and dryer conditions in the lee sides. Completely dry lee

sides are in disagreement with the observations, according to which precipitation also

occurs East to the mountain ranges (both Coast Range and Sierra Nevada), although

less intense. That is true because of other mesoscale processes not accounted in the

model. These processes can be taken into consideration by including the Large-scale

component of the precipitation from ERA-Interim data as in the formulation in eq.

2.18. The orographic processes act then as alteration and reinforcement of the

large-scale processes.

Given the importance of including large-scale precipitation, in the case study here

presented the value of the parameters τ and α were estimated as first approach using
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Fig. 3.15: Simulations of precipitation occurrence letting τ vary.

an empirical method for maximizing the accuracy of the estimates of precipitation

occurrence over the 1089 sites. In particular, a grid of possible values for both

τ and α was chosen and the results of the simulation in terms of occurrence,

obtained prescribing the couples of values for the parameters, were compared

with the observations. The couple of values which guarantees the best accuracy was

considered as the best estimate of the unknown parameters.

Precipitation Occurrence

For the occurrence the best set of parameters found were α̂ = 11, τ̂ = 3600s. The

mean term µ = (I − τW̃ )−1(αLSP + S) contains a sum of contributions of a

proportion of LSP given by α and S. Thus, the estimated value α̂ = 11 means the

contribution of large scale precipitation dominates the determination of the spatial

distribution of wet sites. Fig 3.16 shows the simulated latent gaussian precipitation

potential obtained prescribing α̂ = 11, τ̂ = 3600s, and Table 3.2.2 summarizes the

results, showing an overall accuracy of 84% Fig. 3.17 shows the simulated field

prescribing α = 11, τ = 3600s.
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Fig. 3.16: Simulation of Precipitation Potential p* with α = 11, τ = 3600s

Fig. 3.17: Simulation of Precipitation Occurrence with α = 11, τ = 3600s
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simulated

observed no rain rain

no rain 68 131

rain 22 738

Precipitation Intensity

To determine the intensity of precipitation, an approach based on Katz and Parlange,

1995 was used: the intensity is found applying a power transform of order k, 0 <

k < 1 to the latent gaussian field p∗ on "wet" sites, when p∗ > 0. k is chosen here as

the value that makes the 95th percentile of both the distributions be equal. Namely,

letting y be the observed precipitation on "wet" sites:

k : (p∗)k
[.95] = y[.95] (3.6)

The use of the 95th percentile allows to shrink most of the distribution of the positive

values of p∗ making it match the observed distribution but without relying on the

very highest observed values which might be outliers. This approach also implies

that the spatial dependence is only explained by the latent field p∗ and the power

transform is homogeneous over the area.

The latent field p∗, obtained setting α = 11, τ = 3600 as estimated in the previous

section, was transformed into precipitation intensity after finding k = 0.62. The

results are presented in Fig. 3.20.

To evaluate the model skill, two global measures, namely the Root Mean Square

Error (RMSE) and Pattern Correlation (PC) are computed:

RMSE=20.998

PC = 0.7955

The simulation underestimates the highest observed values, but an overall overesti-

mation of both precipitation occurrence and intensity is evident. In particular, the

signal due to the orography and visible in the observed data seems to be hidden by

large-scale precipitation. This most likely happens because the accuracy in terms

of occurrence was favored and because of the disproportion between wet and dry

sites (see beginning of Chapter 3.2). In this situation, a different quantity might be

minimized for the choice of α, τ : the quantity was chosen as the weighted sum of the

errors in the classification (number of false dry, number of false wet) with weights

inversely proportional to the number of observed dry or wet sites. In particular,
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Fig. 3.18: Simulated precipitation intensity with α = 11, τ = 3600 (left) and observations
(right )

letting wd be the number of sites observed as dry and classified as wet, and dw the

opposite, the quantity to be minimized in the second experiment is:

C = wd ∗ (1 −
n.dry

n
) + dw ∗ (1 −

n.wet

n
) (3.7)

where n.wet and n.dry are the number of wet and dry sites respectively and n

the total number of sites. This choice forces the model to represent well the less

represented class. It is expected to balance the representation of both the large scale

precipitation and the orographic effects.

The values τ̂ = 1600, α̂ = 3 minimize the quantity C. Fig. 3.19 shows the latent

precipitation potential simulated with those values of parameters, and table 3.2.2

reports the accuracy of the results in terms of occurrence, with an overall accuracy

of 81.1%. The value k was recomputed, and the best estimate identified as k = 0.71.

Fig 3.20 shows the simulation of precipitation intensities obtained from the new set

of values for the parameters and its comparison with observations. Global measures

of skill computed for this experiment are again RMSE and Pattern Correlation:

RMSE = 16.12

PC = 0.783
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Fig. 3.19: Simulation of precipitation potential p* for τ̂ = 1600, α̂ = 3

Fig. 3.20: Simulation of precipitation intensity for τ̂ = 1600, α̂ = 3, k = 0.71 and compari-
son with observations
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simulated

observed no rain rain

no rain 123 76

rain 187 573

The new criterium C chosen to determine the best values of α and τ improves the

simulation: the spatial pattern are better represented and both the orographic pre-

cipitation and the large-scale precipitation are balanced and show good agreement

with the observations. Moreover the underestimation of the highest observed values

is less present.

3.2.3 Case Study 2: MCMC estimation

Controlled experiment

A controlled experiment is carried out in order to understand the properties of the

MCMC method presented in section 2.3.1 in a quasi-real setting. The atmospheric

conditions are those recorded in the 24hr interval from 12:00 UTC Feb,5 2006 to

12:00 UTC Feb,6 2006 over a spatial box centered over Sierra Nevada with corners

-122E, -116E, 35N, 40.5N. The domain is smaller than the one considered in the

previous experiment. The terrain elevation and the smoothed topography are shown

in Fig. 3.21 in the left and right panel respectively. Furthermore, a gray box indicates

the study area in the right panel.

Fig. 3.21: Left Panel: GTOPO30 elevation over California (m); Right panel: smoothed
topography (m) by SSA retaining the 85 of variance and a gray square showing
the actual area where the second casy study is carried out.
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The model version of equation 2.34 is used in this experiment, prescribing τ =

5000, λ1 = 0.6, λ2 = 4 for the three unknown parameters. Fig. 3.22 shows the

Source of condensation and Large scale precipitation from ERA-interim, while Fig.

3.23 shows the latent precipitation potential p∗ and the occurrence simulated.

Fig. 3.22: Left Panel: Source of cloud production; right panel:

In order to understand the behavior of the Markov Chains, 20 parallel chains ran

from overdispersed initial values for a very high number of iterations, namely

100000. Initial values range is τ : [400, 6000], λ1 : [0.1, 5], λ2 : [0.1, 5]. Fig. 3.24

shows the results:

The next table summarizes the results showing for each paramater the true value,

the estimated value from the posterior mean and the posterior standard deviation.
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Fig. 3.23: Left Panel: precipitation potential simulated from τ = 5000, λ1 = 0.6, λ2 = 4.;
right panel: simulated occurrence.

Parameters True Parameter Value Posterior Means Posterior Standard Deviation

τ 5000 4605.69 1206

λ1 0.6 0.63 0.38

λ2 4 4.63 2.75

3.2 Case studies on the Coast Range and Sierra Nevada in California, US 61



Fig. 3.24: Controlled experiment - First columns of panels show the posterior densities of
tau (first row), λ1 (second row), λ2 (third row). The densities are estimated
using only iterations from 50000 to 100000. The gray lines indicate the posterior
means. Plots in the right column: 20 chains for the three parameters.
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Case Study on real data - A: 12:00 UTC Dec,1 2005 to 12:00 UTC Dec,2 2005

The second case study is performed on the time interval from 12:00 UTC Dec,1 2005

to 12:00 UTC Dec,2 2005. That is the same day considered in the case study in

section 3.2.2 in which the parameters were estimated empirically. The spatial box is

still centered over the Sierra Nevada, but is smaller, with corners -122E, -116E, 35N,

40.5N. Terrain elevation and the smoothed topography are shown in Fig. 3.21 in

the left and right panel respectively. Observations and atmospheric conditions are

depicted in Fig. from 3.10 to 3.13. Model 2.34 is used in this case study.

Parameter estimates are found following the method based on MCMC outlined on

section 2.3.1. The results from 7 parallel chains, initialized with different start values

are shown in Fig 3.25

The next table summarizes the results showing for each parameter the estimated

value from the posterior mean and the posterior standard deviation.

Parameters Posterior Means Posterior Standard Deviation

τ 4551 2525

λ1 0.00038 0.0004

λ2 0.028 0.0068

Fig. 3.26 shows the precipitation potential field simulated from the parameters value

estimates presented in the previous table:

Accuracy on precipitation occurrence is displayed in the following confusion matrix:

Simulated 0 Simulated 1

Observed 0 74 73

Observed 1 37 345

The following Fig. 3.27 presents accumulated precipitation obtain from precipitation

potential applying the power transformation of eq. 2.27.

Global skill with respect to observations was assessed by means of the RMSE and

Pattern Correlation:

RMSE = 17.005

PC = 0.84
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Fig. 3.25: Experiment on the 2nd Dec: 7 Monte Carlo Chains initialized with different
values. Panels in the first column show the posterior densities for τ , λ1 and λ2.
Panels in the second column show trace plots of the chains for the same three
parameters.

Case Study on real data - B: 12:00 UTC Feb,5 2006 to 12:00 UTC Feb,6 2006

The third case study is performed on the 24hr interval from 12:00 UTC Feb,5 2006

to 12:00 UTC Feb,6 2006. The spatial box is the same depicted in Fig. 3.21 with

corners -122E, -116E, 35N, 40.5N. Fig. 3.28 presents the observed 24hr accumulated

precipitation on the area . With respect to Case Study A, precipitation intensity is

lower as well the area over which precipitation occurs is smaller.
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Fig. 3.26: Experiment on the 2nd Dec: simulated precipitation potential from parameter
estimates τ = 4551, λ1 = 0.00038, λ2 = 0.028.

Fig. 3.27: Experiment on the 2nd Dec: simulated precipitation intensity and comparison
with observations
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Fig. 3.28: Left Panel: 12:00 UTC Feb,5 2006 to 12:00 UTC Feb,6 2006 accumulated precipi-
tation; Right panel: histogram of values of accumulated precipitation over the
area

Fig. 3.29 shows the source S of condensation due to local orographic processes and

Fig. 3.22 right panel is the large-scale precipitation component from ERA-interim on

the time interval considered.

3 chains were used to estimate the parameters. Their traceplots and the constructed

posterior densities are shown in Fig. 3.30

The next table summarizes the results showing for each parameter the estimated

value from the posterior mean and the posterior standard deviation. Fig. 3.31

presents the precipitation potential p* simulated from those parameter estimates.

Parameters Posterior Means Posterior Standard Deviation

τ 5923.104 108.69

λ1 0.001 0.00071

λ2 0.0195 0.00867

Accuracy on precipitation occurrence is displayed in the following confusion matrix:

Simulated 0 Simulated 1

Observed 0 381 72

Observed 1 10 64
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Fig. 3.29: Source of cloud water: 12:00 UTC Feb,5 2006 to 12:00 UTC Feb,6 2006;

The simulated precipitation intensity is shown in Fig. 3.32 together with a compari-

son with observations. Global measure of skill computed for precipitation intensities

are RMSE and Pattern Correlation:

RMSE = 1.63

PC = 0.845
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Fig. 3.30: Experiment on the 5th February 2006: 3 Monte Carlo Chains initialized with
different values. Panels in the first column show the posterior densities for τ , λ1

and λ2. Panels in the second column show trace plots of the chains for the same
three parameters.

3.2.4 Case Study 3: Unevenly spaced data

This section presents a case study carried out with unevenly spaced observations on

the time interval from 12:00 UTC Dec,1 2005 to 12:00 UTC Dec,2 2005 , the same

time span considered in experiment A presented the previous section.

Observations are station-data daily accumulated precipitation from the Global Histor-

ical Climatology Network (GHCN) dataset, provided by the National Oceanic and At-
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Fig. 3.31: Experiment on the 5th February 2006: precipitation potential simulated from
τ = 5923, λ1 = 0.001, λ2 = 0.0195

Fig. 3.32: Case Study B, 5 February 2006: Simulated precipitation amount and comparison
with observations
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mospheric Administration (NOAA) and retrievable from their website (https://www.ncdc.noaa.gov/ghcn-

daily-description).

On the day of interest, precipitation data from 207 stations were available over the

study region, as shown in Fig. 3.33.

Fig. 3.33: Case Study on unevenly spaced data: 2 December 2005: Topography and location
of station data.

Matrix W was built as explained in section 2.2.4. 3 chains were used to estimate the

unknown parameters. While convergence appear clear for parameter λ, convergence

of τ is more questionable. Fig. 3.34 reports the posterior densities of the parameters

and the trace plots, and the table summarizes the posterior means and standard

deviations.

Parameters Posterior Means Posterior Standard Deviation

τ 417.66 37.33

λ1 0.00065 0.00051

λ2 0.005 0.001

Accuracy on precipitation occurrence over the 207 observations is displayed in the

following confusion matrix:

Simulated 0 Simulated 1

Observed 0 14 41

Observed 1 9 142
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Fig. 3.34: Case Study on unevenly spaced data: 2 December 2005: Trace plot of Markov
Chains and posterior densities.

After the power transform was applied to the latent field p∗ to obtain the intensities,

the following measures of skill were computed:

RMSE = 33.753

PC = 0.5

Fig. 3.35 presents the spatial latent field p∗ obtained on the regular grid used in

the previous case studies A, B after the parameters values are estimated from the

unevenly spaced data. Fig. 3.36 reports the precipitation intensities obtained from

the latent p∗ after applying the power transform.
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Fig. 3.35: Case Study on unevenly spaced data: 2 December 2005: Simulated precipitation
potential

Fig. 3.36: Case Study on unevenly spaced data: 2 December 2005: Simulated precipitation
amount
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3.2.5 Case Study 4: Comparison with other methods

Comparison with Smith’s Model

The first comparison is done in the 24hr spanning from 12:00 UTC Dec,1 2005 to

12:00 UTC Dec,2 2005. Simulation form Smith’s model is done over the same grid

proper of the CPC dataset used in all the previous experiments. The microphysical

time scales were set τc = τf = 2000s, which sum is close to the MCMC estimates

for τ = 4551 found in the case study A on the same date. The background rate

of precipitation LS was added to the source S following Smith and Barstad, 2004.

Results are shown in Fig. 3.37

Fig. 3.37: Smith’s Model, 2 December 2005: Simulated precipitation amount

Comparison with observations (CPC data) are shown in the following figure Fig.

3.38 for both Smith’s model. The comparison is computed in relative differences
simulated−observed

observed
. Measure of skill indicates for this experiment a RMSE = 60.0542
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Fig. 3.38: Smith’s Model: 2 December 2005: comparison with observations (CPC)

Comparison with Thin-Plate Smoothing Splines

The second comparison is done with respect to a statistical method of the kind

proposed by Hutchinson, 1998. The analysis performed here tries to be as close as

possible to the method described in the paper. Time interval: the 24hr spanning

from 12:00 UTC Dec,1 2005 to 12:00 UTC Dec,2 2005; observed precipitation is

daily accumulated precipitation from the Global Historical Climatology Network

(GHCN) dataset. The analysis is done on the square root of precipitation amounts.

The smoothing parameter is chosen in order to minimize the Generalized Cross

Validation and independent variables used are Longitude, Latitude and Elevation.

Measures of skill indicated a RMSE = 18.01436 on the training set, and a pattern

correlation PC = 0.851. The skill is comparable with that of the statistical model

derived in this thesis when applied to gridded data. Thin Plate smoothing splines

have instead a better skill when using unequally spaced station data.

Fig. 3.39 shows the prediction on the CPC dataset grid, achieved using the Thin Plate

Smoothing Splines trained on the unequally spaced data. At the same Thin Plate

smoothing splines do not provide indications on the processes leading to the observed

precipitation pattern. Furthermore, as this method is a pure statistical interpolation

methodology it cannot provide sub-grid signal with respect to a numerical model of

interest.
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Fig. 3.39: Hutchinson’s Thin Plate Smoothing Splines: 2 December 2005:

3.3 Figures and Tables

3.3.1 List of the experiments:
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4Discussion and Conclusion

4.1 Discussion

The model 2.11 descends from a reduced version of Smith’s model. The modification

simplifies the original system of equations which model the advection of cloud water

and hydrometeors as well as transition rates from water vapor to condensed water,

from condensed water to hydrometeors and then to water fallout. Modifying the sys-

tem to a single equation for cloud water density only (as shown in section 2.2), the

precise description of multiple transition phases is lost, and only the transitions from

water vapor to condensed water and then water fallout is made explicit. Because

the transient phase indicated as "hydrometeor" is not usually a recordable quantity

in observational campaigns, and because the two transitions occur in a sequential

manner, the proposed simplification does not reduce the information in typical

applications for which the statistical model was defined. Moreover, the reduction

to a single equation allowed its discrete differences to define a valid Simultaneous

Autoregressive Model, which theoretical properties are known, and allowed to build

a more flexible framework.

The flexibility derives from the possibility for the atmospheric fields used (e.g. wind,

moisture) to potentially vary in space. This is true for both the source function of

condensation S (eq. 2.3) and for the advection of the condensed water. The same

flexibility is given to the value of the time delay τ . Because the wind velocity and

the parameter τ enter in the definition of both the mean and the covariance of the

latent field p∗, the flexibility also allows a more adaptive definition of the moments

of the process.

Since the model 2.11 identifies a valid SAR model, the knowledge on the physical

processes included in the advection equation is combined with the information

carried in observed data by means of unknown parameters estimation. Observations

of precipitation are used to estimate the value of the parameter τ . τ is of fundamental

importance, since it controls the time required to the cloud microphysical processes

to occurr, it indirectly modulates the areas where precipitation falls on the ground,

and finally precipitation intensity. Another advantage dealing with a SAR model

is that, within its valid structure, many extensions and modifications are possible,

making the model adaptive to different applications.

One example is the extension 2.33 presented in section 2.3, where precipitation

generated in large-scale processes is included in the model definition. Information
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carried in data is used to estimate τ and a coefficients of proportionality α, λ that

modulates the effect of large-scale and local-scale precipitation on the process p∗.

The model 2.33 assumes the microphysical time scale τ is equivalent in orographic

processes and in large-scale processes.

A stochastic noise term was added to the discretized advection equation (section

2.2). The noise captures the uncertanty not explained in the analytical deterministic

up-slope model and acts as further random impulses to the signal p∗. In principle,

no restrictions are posed on the shape of the stochastic perturbation, if external

knowledge on its spatial structure is available. The point to outline here is that, even

adding a homoskedastic term, the resulting field p∗ is heteroskedastic, and the non

homogeneity in space is controlled by the atmospheric parameters u, v, the distance

among the points in the lattice ∆x, ∆y and by the time scale τ .

Both models 2.11 and 2.33 are defined on a regular lattice. This might be a limitation

in real applications, where observations are from sparse rain gauges. This restriction

can be partially removed adapting the model for irregularly spaced data. One

possible approach was presented in section 2.2.3. in which a criterium is given for

the choice of neighbor points of each site.

Recalling the physical processes present in model 2.11, it is clear that only vertical

motions due to uplift forced ascent over the mountain slope are included. This

means that strictly convective local processes are not directly represented, although

convection is most often triggered by an initial perturbation in the flow, as the one

experienced in forced ascent over a topographic obstacle. Synoptic-scale convective

storms can be included in the extension 2.33 but the daily cycle is not accounted.

As already stated in chapter 2, the static stability, included in the source term S,

enhances condensation, making larger, ahead upwind the mountain range, the area

over which significant condensation is triggered. Stability does not have any effect

on the flow dynamics: the horizontal wind is not affected, and it is thus not deflected

when it impinges the range in presence of blocking conditions. This assumption is

reasonable in the case of elongated ridges, but it is more questionable for circular

mountain features or isolated peaks.

Once the value of parameter τ is estimated (and α or λ for the extension 2.33), the

model becomes the governing process for p∗ over the study area. Prediction is thus

possible over un-sampled areas in which the same process can be similarly assumed

valid, or over the same study area on a different grid.

The idealized experiments outlined the main features of the model in three different

realistic yet simplified topographic features (elongated ridge, isolated peak, sequen-

tial ridges). The rate of condensation modeled in the source term S is proportional

to the vertical wind velocity: steeper slopes or stronger cross-barrier wind increases

the production of cloud water. Cloud water is then advected solely according to the

speed of the horizontal wind. These features are clearly visible in the experiments
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on an elongated ranges and in a more subtle way revealed in the experiments on

the isolated peak. In the latter experiment, any increase in wind speed increases

the condensation rate accordingly, regardless the direction of the wind, since the

angle of the flow w.r.t the mountain slope is constant. The difference in angle is

reflected solely in the locations where condensation occurs and in how cloud water

is advected downwind.

A known drawback in Smith’s model is the overestimation of condensation and

precipitation rates over multiple ridges (Barstad and Smith, 2005). Indeed, the

model does not have memory of precipitation occurred upwind in the flow, with

the consequence that every windward slope acts as an independent obstacle to pass

and the overall amount of condensed water might exceed the incoming moisture

flux. This drawback is still present in model 2.11, as the experiment on idealized

multiple ridges shows. The importance of the overestimation is indirectly reduced in

the extension 2.33 of the model.

Chapter 3 reported real case studies, carried out over the Coastal Range and Sierra

Nevada in California, USA, in winter days characterized by a Southwesterly wind.

The spatial domain and the synoptic conditions represent a typical scenario in which

orographic precipitation features are most evident. A case study on real data revealed

how important is the inclusion in the framework of precipitation formed in large

scale processes as well as its modulation by means of a coefficient of proportionality

estimated from observations. By defining a customized index of accuracy, the results

from the model shows a good agreement with observation. In the case study the

atmospheric variables (e.g. wind, moisture, large-scale precipitation) were taken

from ERA-Interim reanalysis. The possibility of using fields simulated in reanalysis

or by climate models makes the statistical framework suitable to refine in space

the spatial distribution of precipitation as downscaling procedure of climate models

in retrospective studies and hindcasts. Other case studies showed the ability of

the model in reproducing diverse observed precipitation patterns or regimes, as

well as compares diverse methods for parameter estimation, from empirical scheme

to Bayesian methods. Case studies also shows the potential to use the statistical

framework on unevenly space data for example after applying the simple approach

proposed in section 2.2.

The series of case studies concludes with the comparison of the statistical framework

in Eq. 2.33 with other methodologies. In particular, a comparison with the original

up-slope model used as kernel to derive the statistical model Eq. 2.11 shows

some potential advantages achieved by the statistical framework as well as the

similarities kept in reproducing the processes causing orographic precipitation.

A second comparison was made with respect to a pure statistical interpolation

technique, namely Thin Plate Smoothing Splines. The latter method exhibits a

greater skill with respect to the model Eq. 2.33 when both are trained on unevenly

spaced data and a comparable skill when applied on a gridded observational dataset.
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To note is that Thin Plate Smoothing Splines are not linked to numerical models,

thus are not designed for providing downscaled precipitation fields from numerical

climate models.

The sensibility of parameter τ depends on the spatial scale of observed precipitation.

In particular, variations in its values create greater variations in the simulated field as

the spatial resolution of observations increase. New experiments testing this property

should be carried out in the future changing the size of the domain considered and

the resolution of the lattice.

4.2 Conclusion

In this work a Simultaneous Autoregressive Model for mapping the spatial distribu-

tion and intensity of precipitation over mountanous terrain is defined. The model

includes the features typical of orographic precipitation, being based on an analytical

model of the physical processes involved. At the same time, information in observed

data contributes in the estimate of unknown parameters of the model. The model

has a structure which allows extensions and refinements without modifying its basic

structures and properties, making it suitable to applications in real case studies. The

model, tested over mountain ranges in California, US, shows good agreement with

observations.

The hybrid physical - statistical nature of the framework constitutes a new approach

in literature for modeling orographic precipitation. The combination of the two

approaches creates a synergy that overcomes some limitation typical of each of the

two individually. Furthermore, the framework makes use of atmospheric fields as

wind, humidity, temperatures and large-scale precipitation fields from reanalysis

or numerical climate models. Thus the framework is able to provide downscaled

precipitation for hindcast studies or to provide realistic values for climate model

initialization. The framework may furthermore be used as kernel to build predictive

downscaling methodologies applicable to diverse time scales, from short-range

weather forecasts, to seasonal predictions, up to climate change projections.
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