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The theory of option pricing is a topic of great interest in �nancial literature. Investors
and traders face di�culties attempting to obtain the correct value of an option. Empirical
research demonstrates that future prices changes are di�cult to predict using mathematical
models. However, option theory has improved in leaps and bounds since 1972, when
Black and Scholes published the �rst analytical approach to pricing European options
([Black & Scholes (1973)]).

An option1 entitles the holder to buy or sell a speci�ed amount of an underlying asset
at a set price before or on the expiration date of the option2 ([Markham & Sharpe (2002)]).

1In 1973 the Chicago Board of Trade (CBOT) began to trade what are known in the trade as so-called

options ([Markham & Sharpe (2002)]), futures and other �nancial derivatives.
2European options may only be exercised on the expiration date, while American options can be exercised

at any time up to the expiration date. European call and put options are widely referred to as plain vanilla

options because they are so simple, with the more advanced options commonly known as exotic.
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Because it is viewed as a right rather than an obligation, the holder is able to choose not to
exercise his right and let the option expire. There are two types of options: call options and
put options. The former is an agreement that enables the holder to buy a bond, stock, or
commodity (de�ned as an underlying asset) for a speci�c price on a speci�c date, whereas
the latter enables them to sell the underlying asset for a speci�c price on a speci�c date. An
option value is de�ned by several variables linked to the underlying asset and the �nancial
markets ([Hull (2011)], pp. 214-218) such as:

• The Current Value (S) of the Underlying Asset : Options are assets which derive their
value from an underlying asset. Consequently, the value of the asset is in�uenced by
changes in the value of the underlying asset. As calls entitle you to buy the underlying
asset at a set price, there is generally an increase in the call option price and a decrease
in that of the put option as the underlying asset's price increases.

• The Strike Price (K) of Option: an options's price generally increases as the option
gets closer to being ITM (in-the-money). This is because the strike price becomes
incresingly favorable in regard to the current price of the underlying asset. Likewise,
an option's price decreases as the option moves towards OTM (out-of-the-money), as
the strike price is less favorable in regard to the price of the underlying asset.

• The time left before expiration (T) on the option: the longer an option has before the
expiration date, the greater the odds are of it becoming pro�table (in-the-money). This
is because the more time we have before expiration, the more time there is for the value
of the underlying asset to change, which increases the call and the put options' value.
Moreover, the time value is a�ected by the volatility of the underlying asset because
when you have a volatile underlying asset, you can expect plentiful price movements.

• The Volatility (σ) of the underlying asset: volatility is a measure of the uncertainty
concerning future asset price movements. A greater level of volatility suggests the asset
value is able to reach a greater range of values, while a lower volatility suggests the
asset value is only subject to minor �uctuations. Greater variance in the value of the
underlying asset will increase make the option value. While it seems counter-intuitive
that an increase in a risk measure (variance) should increase value, options di�er from
other securities because options' buyers are not able to lose more than the price they
initially; in fact, there is the potential for good yields from large price movements.

• Dividends Paid (d) on the Underlying Asset: the underlying asset's value is expected
to go down if there are dividend payments made on the asset during the option's life.
Therefore, the value of a call on the asset is a decreasing function of the size of projected
dividend payments, and the value of a put is an increasing function of projected dividend
payments, whereas a put option's price is an increasing function of expected dividend
payments.

• The interest rate (r): because the option buyer has to pay the up-front option price, this
entails an opportunity cost. This cost will change depending on the level of interest rates
and the option's expiry date. Additionally, the risk-free interest rate is also involved
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when valuing options while calculating the current value of the exercise price. This is
because the exercise price need not be paid (received) before the expiration of call (put)
options.

The �nancial literature seems to believe that the option pricing theory was started by the
seminal research of Black, Scholes and Merton ([Black & Scholes (1973)]). Here they suggest
a mathematical option pricing model which speci�es the fair market value of European
options, taking in to account the probability of constant volatility. The model was based
on the copy of a portfolio, made up of underlying assets and risk-free assets with equal
cash �ows. The model also argues that stock prices follow a log-normal distribution as a
result of several factors. Firstly, asset prices cannot be negative and there are no transaction
costs or taxes. Secondly, information is freely available to everyone. Finally, there is a
consistent risk-free interest rate for all terms and market participants can both borrow and
lend at this rate. Short selling of securities using the proceeds is allowed in the absence of
risk-free arbitrage opportunities. Stocks do not pay dividends; there is a consistent variance
in yield over the term of the option contract which is known to market participants. The
Black-Scholes model is most frequently used as an easy and relatively e�ective approximation.

However, it has long been criticized due to its over-simpli�ed and over-realistic model
assumptions about European call option prices. As the �nancial literature shows us, many
assumptions in the Black-Scholes model could prove incorrect in reality, for instance the
following:

• The log-returns' normality assumption3. Empirical studies demonstrate that loga-
rithmic yields have empirical distributions which are leptokurtic regarding the nor-
mal distribution and which are, in various cases, skewed (e.g., [Mandelbrot (1963)],
[Fama (1965)]). This was the case for [Bollerslev (1986)] who found leptokurtosis in
the monthly S&P500 returns, while [French et al. (1987)] reported skewness in daily
S&P500 returns. [Engle & Gonzalez-Rivera (1991)] discovers excessive skewness and
kurtosis in small stocks. Additionally , recent research con�rms skewed distribution
of log-returns, with a peak around the mean distribution and the heavy tail (see
[Bollen & Inder (2002)], [Carr et al. (2002)]).

• The same cannot be said about homoskedastic volatility, as volatility �uctuates with the
level of supply and demand. Thus the theoretical values can often be inaccurate (see
[Mandelbrot (1963)]). The existing literature intends to model and predict �nancial
volatility, and can be separated into two clear groups: parametric and non-parametric
models. The former group assumes a speci�c functional form for volatility, and models
it according to the function of observable variables, such as ARCH or GARCH models,
[Engle (1982)]; [Bollerslev (1986)] while in the latter �nancial volatility is determined
without imposing any parametric assumptions, which is the reason they known as "re-
alized volatility models" [Andersen et al.(2003)]. While multiple di�erent approaches

3Another crucial point of the Black-Scholes framework is its requirement that continuous trading is possible;

it has a tendency to overvalue deep out-of-the-money calls and undervalue deep in-the-money calls.
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exist in the literature for volatility modeling, we currently possess no single model which
explains all the stylized facts simultaneously, even with long memory modelling.

In order to clarify the ideas of leptokurtism, leverage e�ect, non-normality, and clustering
phenomena, we will be gathering empirical evidence. We will �rstly review the S&P500

daily closing indices4 from January 1999 to December 2010. Then, we will be de�ning a
complete �ltered probability space (Ω,F ,P). This aims to model the uncertainty where P
can describe the physical distribution of the nature states, and {Ft}t∈{0,··· ,T} takes a form
of information �ltration. Therefore this will represent the resolution of uncertainty based on
the information that has been generated by the market prices up to and including time t.
We suppose that F0 = σ {∅,Ω} and FT = F . Instead of using the asset price, we will use the
return. In practical analysis, the return is generally described as a log price change, similar
to the relative price change. Let's denote by St the price of the S&P500 at time t and the
price St−1 at t− 1 by considering the logarithm di�erence of the two consecutive prices:

Yt = log (St)− log (St−1) . (1.1)

It should be mentioned that a log return is the logarithm of a gross return
St
St−1

and log (St)

is de�ned as the log price.

Figure 1.1: Time series plots of the daily prices St, the daily log returns Yt, of the S&P500

in the period of January 1999 - December 2010.

The �rst plot (a) in Figure 1.1 is the time series plot for the daily closing indexes of
S&P500. During the "dot-com bubble", the index reached an all-time high on March 24,
2000, before consequently losing roughly 50% of its value in the stock market decline of 2002.
On October 9, 2007, it again attained a historic high before su�ering from the subprime
mortgage credit crisis between 2008-2010. The second panel (b) in Figure 1.1 shows the
index's daily log returns, the daily yield curve with more volatile �uctuations. In particular,
the high volatilities during the 2008-2010 are better demonstrated in the daily return plot.
Returns, unlike prices, vary around a constant level close to 0, with high oscillations tending
to cluster, which re�ects more volatile market periods.

4The S&P500 is a value-weighted index of the prices of the 500 large-cap common stocks actively traded

in the United States.
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Figure 1.2: Histograms and Q-Q plots of the daily, log returns of the S&P500 in the period
of January 1999 - December 2010. The normal density with the same mean and variance are
superimposed on the histogram plots.

Figure 1.2 displays the probability density function for the daily returns on the S&P500

index since January 1999, followed by a zero mean and a standard deviation of 1. Added to
this is the normal density function with the same mean and variance. Furthermore, in this
diagram the Q − Q (quantile-quantile) plots for the returns are shown. The empirical peak
is greater than the normal distribution and the tails are both thicker.

Figure 1.3: (a) Time series plot of VIX ( blue) and (b) Annualised Historical Volatility using[
1

n− 1

∑n
k=1 (Yt − µ)2

] 1
2

of the S&P500 in the period of January 1999 - December 2010.

Figure 1.3 displays the VIX time series and Annualized Historical Volatility of the S&P500

from January 1999 to December 2010. The Annualized Historical Volatility is calculated using

the expression
[

1

n− 1

∑n
k=1 (Yt − µ)2

] 1
2

where µ is the mean of Yt. The VIX which is a proxy

of the implied volatility was used in order to examine the leverage e�ect:

• Stationarity: The prices of an asset recorded over times are rarely static. However,
their returns generally �uctuate around a constant level, suggesting a constant mean
over time. See Figure 1.1, in fact, with the majority of return sequences, we can model
them as a stochastic process with at least time-invariant �rst two moments.
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• Asymmetry: The distribution of return Yt is frequently negatively asymmetrical (see
Figure 1.2), which re�ects the fact that, in �nancial markets, the downturns are often
much steeper than the recoveries. The skewness measures5 the degree of asymmetry
of a distribution around its mean. It is a pure number that characterises the shape of
the distribution. Negative skewness indicates a distribution with an asymmetric tail
extending toward more negative values

• Volatility clustering: this term means that large price changes (i.e. returns with high
absolute values) occur in clusters. See Figures 1.1 and 1.3. Indeed, great changes in
price are generally followed by large movements in price, and periods of tranquility and
high volatility periods alternate.

• Heavy tails: the probability distribution of return Yt generally possesses heavier tails
than those of a normal distribution. Figure 1.2 provides the quantile-quantile plot for
normality graphical checking.

• Leverage e�ect: Asset returns are negatively correlated with volatility changes.
[Black & Scholes (1976)]. When asset prices fall, companies become highly leveraged
and riskier. And so, the volatility of their stock prices increases. On the other hand,
when the volatility of stock prices increases, investors demand high returns, allowing
the stock prices to decrease. Volatilities triggered by price decline are generally larger
than the gains from declined volatilities. The leverage e�ect is powerful, even if VIX

is an imperfect measure of the volatility of the S&P500 index, involving the volatility
risk premium (see [Aït-Sahalia et al.(2013)]).

Although the fundamental mathematical model has several limitations, the Black-Scholes
methodology was a critical �rst step for option pricing. A large body of work has sought to
deal with the imperfections of the Black-Scholes model. For example, [Rubinstein (1976)] and
[Brennan (1979)] gave us the basis of the discrete time approach. Because the Black-Scholes
model was developed for the continuous pricing of European style options, a simpler model
known as Cox-Rubinstein binomial model presents a discrete pricing model. This model,
created in 1979, is widely referred to as the Binomial Option Pricing Model or the Binomial
Model. However, it was quickly apparent that the binomial model is more applicable as
a pricing model for American Style Options. It is centred around a basic formulation for
the asset price process in which the asset can move to one of two possible prices at any
time. Multiple di�ering models have since been developed, involving increasingly complex
volatility models. However, it's simplicity ensures that, despite its limitations, the original
Black-Scholes model is still the most widely used by the options traders of today.

1.1 GARCH framework

A growing body of work on time series analysis is emerging focused on the di�culties of
modelling volatility as input in option pricing.

5 Although the mean, standard deviation, and average deviation are dimensional quantities, the skewness

is generally de�ned in such a way as to make it non-dimensional. The kurtosis is also a nondimensional

quantity.
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1.1.1 GARCH-in-mean

[Engle (1982)] laid out an early theoretical attempt to show volatility as a time varying
process with the conditional variance and endogenous parametric speci�cation with the class
of autoregressive conditional heteroskedasticity models (ARCH). He modelled the conditional
variance as a linear function of p lagged squared of squared returns Y 2

t to reach a direct
estimation of the joint dynamics of the volatility and returns. This model is widely known
as the ARCH(p) model and is de�ned as:

Dé�nition 1 The process (Yt)t∈{1,··· ,T} called the ARCH(p) process is of the form:{
Yt =

√
htzt

ht = a0 + a1Y
2
t−1 + · · ·+ apY

2
t−p

(1.2)

where ai > 0 for all i, the (zt)t∈{1,··· ,T} are i.i.d random variables6 with mean E [zt] = 0 and

variance V ar [zt] = 1.

Under zero covariance and zero mean, the process is covariance stationary if and only if the
sum of the positive autoregressive parameters is less than one

∑p
i=1 ai < 1, in which case the

unconditional variance equals

V ar [Yt] =
a0

1− a1 − a2 − · · · − ap
.

Furthermore, the equation 1.2, identi�es how the conditional variance ht is determined
by the available information Ft−1. ht possesses the property of time-varying conditional
variance, which means it can capture the volatility clustering. [Bollerslev (1986)] o�ered us
a broader picture of the ARCH model to ensure greater realism. His celebrated7 Generalized
ARCH model, models the conditional heteroskedasticity. The GARCH models are discrete-
time and parametric models tasked with tracking correlation and volatility changes over time,
in a manner where the conditional variance is also a function of its own lags of all order up
to q.

Dé�nition 2 The process (Yt)t∈{1,··· ,T} is a generalized autoregressive conditional het-

eroskedasticity process GARCH(p; q) of order (p, q) ∈ (N∗)2 if :{
Yt =

√
htzt

ht = a0 +
∑p

i=1 aiY
2
t−i +

∑q
j=1 biht−j

(1.3)

where the (zt)t∈{1,··· ,T} are i.i.d random variable with E [zt] = 0, V ar [zt] = 1 and (ai)i∈{1,··· ,p},

(bi)j∈{1,··· ,q} are non negative constants such that a0 > 0.

To put it di�erently, the conditional variance is a function of past returns and past
conditional variances which gives us a predictable measure. The lagged conditional variance
ht−j present in the system causes volatility clustering. The non-negativity conditions of the

6In particular, if ∀t ∈ t ∈ {1, · · · , T}, zt ∼ N (0, ht) then Yt |Ft−1∼ N (0, ht) given information set available

at time t− 1.
7[Bollerslev et al. (1992)] already listed a variety of applications of these models in their survey.
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coe�cients ensure that ht is strictly positive. The process (Yt)t∈{1,··· ,T} in equation 1.3 which
is a GARCH(p; q) only gives a strictly stationary solution with �nite variance when

p∑
i=1

ai +

q∑
j=1

bi < 1

Moreover, this strictly stationary solution is also unique, to ensure the existence of the un-
conditional variance. To obtain this constant unconditional variance, we observe that:

V ar [Yt] = E
[
Y 2
t

]
= E [ht] = a0 + E

 p∑
i=1

aiY
2
t−i +

q∑
j=1

biht−j

 ,
V ar [Yt] = a0 +

p∑
i=1

aiE
[
Y 2
t−i
]

+

q∑
j=1

biE [ht−j ] = a0 + V ar [Yt]

 p∑
i=1

ai +

q∑
j=1

bi


V ar [Yt] =

a0

1−
∑p

i=1 ai −
∑q

j=1 bi

It is worth noticing that, for p = q = 0, the model is reduced to the standard homoskedastic
log normal process, assumed in the Black model. GARCH is probably the most common
�nancial time series model used and has been followed by a large number of models
based on more sophisticated models [Bera & Higgins (1993)], [Berkes et al. (2003)] and
[Giraitis et al. (2005)].

This time-varying volatility structure in equation 1.3 is both compatible with the volatility
clustering e�ect, and contains fat tails from the volatility data and leptokurtosis in series. The
GARCH process's volatility modelling ability was documented by [Hansen & Lunde (2005)].
Despite comparing more than 300 time series models they were unable to �nd conclusive
evidence that any of them outperform the GARCH. Both the capabilities and the limitations
of GARCH models with regard to option pricing have recently been discussed at some length
(see [Hardle & Hafner (2000)], [Christo�ersen et al. (2004)], [Chorro et al. (2015)]) :

• GARCH models make the assumption that the magnitude alone, not the positivity or
the negativity of unanticipated excess returns, determines ht. Under8 E

[
z3
t

]
= 0, the

change in variance tomorrow and excess returns today are conditionally uncorrelated:

ht = a0 +

p∑
i=1

aiht−iz
2
t−i +

q∑
j=1

biht−j

writing ht as a function of lagged ht and lagged z2
t where Y 2

t = htzt, it becomes clear
that the conditional variance is invariant to changes in sign of the innovation zt.

• Another frequently seen phenomenon in �nancial time series is known as the leverage
e�ect. This happens when there is a negative correlation between changes in stock
prices and changes in volatility. GARCH models capture volatility clustering and lep-
tokurtosis. However, when assuming a symmetric distribution, it is impossible for them

8The distribution zt is symmetric.
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to account for the leverage e�ect. The leverage e�ect denotes the negative correlation is
found between the asset return innovations and volatility innovations, this required the
development of new and extended models over GARCH that resulted in new models.
Particularly with the GARCH (1, 1), it can be described by the quantity:

Cov [Yt − Yt−1, ht+1 − ht | Ft−1] = Cov [Yt, ht+1 | Ft−1] = a1h
3
2
t E
[
z3
t

]
measuring the impact of current variations of the log-returns Yt on future variations
of the conditional variance ht. The leverage is equal to zero, if zt is symmetric and
compatible with empirical observations if E

[
z3
t

]
< 0.

As the GARCH (1, 1) model and the GARCH (p, q) model frequently perform as well
as each other, we will focus in on the case when p = q = 1. It should be noted that,
[Hansen & Lunde (2005)] provided convincing evidence �nding a volatility model that per-
forms better than the simple GARCH (1, 1) is a di�cult task. Particularly the GARCH (1, 1)

model solely comprised of three parameters in the conditional variance equation is adequate
for capturing the volatility clustering. We focus on the GARCH-in-mean which includes
an additional term mt in the conditional mean equation. This model simultaneously
characterizes the variance of a time series and the mean's evolution. Time varying condi-
tional expectation is a crucial aspect of GARCH-in-mean models. Financial modeling and
econometric study rely heavily upon the GARCH-in-mean model, for instance [Duan (1995)],
[Chorro et al. (2015)] and [Christo�ersen et al. (2012)], just to list a few. We have chosen
this model due to its simultaneous characterisation of the evolution of the mean and the
variance of a time series.

Furthermore, this particular model capable of explaining the excessive return (risk pre-
mium9) which is unable to be explained through traditional GARCH models as the condition
expectation E [Yt] remains at zero throughout the timeframe. The conditional mean speci�ca-
tion is able to take di�erent forms in practice and ht = F

(
zt−1, ht−1, θ

V
)
can be characterized

by the conditional distribution of the innovations process zt with the parameters θD, and the
structure of the conditional variance of the log-returns. The function F (·), known as the
news impact curve, describes the impact of random shock of return zt on the conditional
variance ht.

Dé�nition 3 (Yt)t∈{1,··· ,T} follows a general GARCH-in-mean order (p, q) ∈ (N∗)2 if :{
Yt = r +mt +

√
htzt

ht = F
(
zt−1, ht−1, θ

V
) (1.4)

where the (zt)t∈{1,··· ,T} are i.i.d random variable, E [zt] = 0, V ar [zt] = 1 and θV is the set of

parameters associated to the volatility.

9In the �nancial market, [Engle et al. (1987)] pointed out: as the degree of uncertainty in asset returns

varying over time, the compensation required by risk averse economic agents for holding these assets, must

also be varying.
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We take conditional mean10 return mt to be an Ft−1-predictable process with respect to
the information �ltraton. Depending on which function F (.) is chosen, and the distribution
of zt, the previous period innovation has di�ering e�ects on the current variance ht. In this
manner, it is possible for there to be multiple di�erent extensions of GARCH models. The
choice of the mean mt e�ects the manner in which conditional return is dependent on the
conditional volatility.

For instance, for the standard GARCH �rst suggested by [Bollerslev (1986)], zt−1 has a
symmetric e�ect on the conditional variance with

ht = F
(
zt−1, ht−1, θ

V
)

= a0 + a1ht−1z
2
t−1 + b1ht−1

where θV = (a0, a1, b1), a0 > 0, a1 and b1 are nonnegative constants, these parame-
ters ensure the strict positivity of ht. This basic GARCH model often acts as a fairly
e�ective system for the analysis of �nancial time series and estimation of conditional
volatility. Nevertheless, a few characteristics are unable to be captured by the standard
GARCH model. We will be looking at di�erent GARCH speci�cations HN-GARCH

by [Heston & Nandi (2000)], GJR-GARCH by [Glosten et al. (1993)], NGARCH and
IG-GARCH by [Christo�ersen et al. (2013)], these models o�er superior �exibility to the
standard GARCH model.

1.1.2 Asymmetric GARCH Models

Over time, a vast body of work has been geared towards discussing the performance of
option pricing for di�erent GARCH speci�cations. An alternative issue was proposed
by [Heston (1993)], who used stochastic volatility models which need information from
the volatility structure to estimate the parameters of the model. The most celebrated
theoretical framework based on GARCH processes for option pricing model was proposed
by [Duan (1995)]. [Heston & Nandi (2000)] developed HN-GARCH model to capture the
leptokurtosis exhibited by �nancial returns. That model generates a closed-form solution for
European options; generally, under the GARCH framework, there are no closed-form solu-
tions to obtain the no-arbitrage price. Regrettably, previous studies suggest that GARCH

models seldom fully capture the thick tails property of the conditional distribution (for
instance [Chorro et al. (2015)]). The introduction of more �exible distribution speci�cations
has enabled this constraint to be overcome, which brings about the use of non normal
distributions to model this excess kurtosis more accurately.

In recent years, a new set of GARCH frameworks are able to capture leverage ef-
fects, asymmetry, time varying skewness and kurtosis. In this set of GARCH models,
[Nelson (1991)] with the exponential EGARCH, the GJR-GARCH [Glosten et al. (1993)],
[Zakoian (1994)] with the threshold GARCH (TGARCH) and the asymmetric a�ne-GARCH

by [Heston & Nandi (2000)] we can see GARCH models which take the asymmetric variance

10In many studies, mt is assumed to be a function of the conditional variance ht of the return at time t.



1.1. GARCH framework 11

e�ects into account. It is established through these frameworks that asymmetric GARCH

models perform better than classic GARCH. A new type of ARCH model known as the
Asymmetric Power ARCH model (APARCH) was introduced by [Ding et al. (1993)], this
model allows the estimation of the optimal power term.

The exponential GARCH model introduced by [Nelson (1991)] incorporates the leverage
e�ect and speci�es the conditional variance in a logarithmic form.

Dé�nition 4 An EGARCH model is expressed as:

log (ht) = log
(
F
(
zt−1, ht−1, θ

V
))

= a0 + a1 (| zt−1 | −γzt−1) + b1 log (ht−1) (1.5)

where θV = (a0, a1, b1, γ), and λ are real parameters.

It is crucial to grasp that the volatility dynamics have a multiplicative form instead of a linear
one:

ht = ea0+a1(|zt−1|−γzt−1)hb1t−1.

And, due to the presence of the exponential function, we do not have any restrictions to the
parameters to guarantee that the conditional variance is positive. Furthermore, if zt−1 > 0,
which corresponds to good news, the total e�ect of zt−1 is a1 (1− γ), if zt−1 < 0 which
corresponds to bad news, the total e�ect of zt−1 is −a1 (1 + γ). Thus, in case γ 6= 0 the
volatility reacts asymmetrically to the rising and falling of stock prices and when | γ |< 1

this asymmetry will be compatible with empirical leverage e�ects.

The GJR-GARCH model, introduced by [Glosten et al. (1993)], is another iteration of
an asymmetric GARCH model, which takes into account the dependence of a coe�cient of
the volatility structure for one particular event:

Dé�nition 5 The GJR-GARCH models are de�ned by:

F
(
zt−1, ht−1, θ

V
)

= a0 + ht−1

(
a1 + γ1{zt−1<0}

)
z2
t−1 + b1ht−1 (1.6)

where θV = (a0, a1, b1, γ) with a0 > 0, (γ, a1, b1) are nonnegative, and 1{zt−1<0} is the indi-

cator function of the event {zt−1 < 0}.

When the distribution of zt is symmetric, second order stationarity condition requires
a1 + b1 +

γ

2
< 1. Dependant on whether zt−1 is above or below 0, z2

t−1 will have a di�erent

e�ect on the conditional variance ht. If there is bad news zt−1 < 0, then 1{zt−1<0} = 1 and
the complete e�ect on next period of conditional variance is (a1 + γ) z2

t−1. In this model, bad
news will also have a larger impact on the conditional variance. If γ > 0, the leverage e�ect
exhibits and suggests that negative shocks will have a larger impact on conditional variance
than positive shocks. The TGARCH (Threshold GARCH) created by [Zakoian (1994)] is a
relatively comparable version of the GJR-GARCH model where the volatility dynamics are
speci�ed in terms of conditional standard deviation instead of conditional variance.

The nonlinear NGARCH model brought in by [Engle & Ng (1993)] allows for asymmetric
behavior in the volatility so that good news i.e. positive returns yield a subsequent decrease
in volatility, while bad news or negative returns yields a subsequently higher volatility.
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Dé�nition 6 The NGARCH model allows for asymmetric behavior in the volatility by setting

:

F
(
zt−1, ht−1, θ

V
)

= a0 + a1ht−1 (zt−1 − γ)2 + b1ht−1 (1.7)

where γ > 0, θV = (a0, a1, b1, γ), a0 > 0, a1 and b1 are nonnegative constants.

The essential point here is that this model takes the negative news into account zt−1 < 0,
which yields a greater impact on variance than positive news zt−1 > 0 provided γ > 0. The
persistence of variance in this model is Ψ = a1

(
1 + γ2

)
+ b1 and the long-run unconditional

variance is h0 =
a0

1−Ψ
.

Another problem with using GARCH models is that they have di�culty fully embracing
the thick tails property of the asset returns Yt. This could be related to the asymmetry
characteristic of error term distribution. The asymmetry may lead to skewed returns. We
can attribute the asymmetries seen in the implied volatility smile to the skewness of the
underlying asset returns. It has been demonstrated that a high level of excess kurtosis is
seen in asset returns, which results in a larger peak than the curvature found in the Gaussian
distribution. [Byun & Cho (2013)] used reams of data on S&P500 index options to carry
out a comparison of the empirical performances of multiple GARCH option pricing models
with non-normal innovations, providing us with evidence that stocks and indices usually
have negative skewness. Simply put this is because the decline rate of stock prices tends to
be higher than the growth rate.

It has been demonstrated that GARCH models do not only capture volatil-
ity clustering, but can also accommodate some of the leptokurtosis in thick tails.
However, GARCH models with conditionally normal errors rarely succeed to ade-
quately capture the leptokurtosis which manifests in asset returns (To list a few
well known articles: [Bollerslev (1987)], [Hsieh (1989)], [Baillie & DeGennaro (1990)],
[Christo�ersen et al. (2013)] and [Chorro et al. (2015)]). [Pagan et al. (1990)],
[Brailsford & Fa� (1996)] and [Loudon et al. (2000)] have thoroughly covered the topic
of forecasting conditional variance with asymmetric GARCH models. A comparison of nor-
mal densities with non-normal ones was carried out by [McMillan et al. (2000)], [Yu (2002)]
and [Siourounis (2002)]. [Barone-adesi et al. (2008)] proposed a method to price options
centred on GARCH models with �ltered historical non-normal innovations.

1.1.3 Non-Gaussian GARCH model

As mentioned above, while modelling time varying volatility, the main features of the
GARCH framework are the volatility speci�cation and the form of the return distribution
with the set of parameters θD. The dynamics of the conditional volatility are generally
combined with the assumption of conditionally Gaussian innovations. Several empirical
studies demonstrate that these assumptions are unable to capture the fat tail and asymmetry
in the distribution of daily log returns. For example, [Chorro et al. (2015)] demonstrates
empirically that it is impossible to entirely capture the skewness and excess kurtosis that
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typify the mass in the tails and the asymmetry of �nancial time series by using the regular
speci�cations of the GARCH framework.

When seeking a better way to re�ect asymmetry, excess kurtosis and excess skewness
in the GARCH models, the �rst major stride was the investigation of GARCH models
with non-normal conditional innovations distributions: see [Boothe & Glassman (1987)],
[Koedijk et al. (1992)] and [Huisman et al. (1998)]. Excess kurtosis can be accounted
for with some of the heavier-tailed distributions like Student-t ([Bollerslev (1987)],
[Baillie & Bollerslev (1989)], and [Beine et al. (2002)]) or the GED distribution
([Nelson (1991)]), however these attempts could not explain excess skewness. Indeed,
while the Student-t distribution models tales which are thicker than the norm, it does not
permit for skewness. Popular leptokurtic distributions, like Student-t, are not �exible enough
to capture the high peakedness and the fat-tails of exchange rate returns simultaneously.
[Liu & Brorsen (1995)] used an asymmetric stable density to capture skewness in a similar
attempt, [Fernández & Steel (1998)] and [Lambert & Laurent (2001)] employed skewed
Student's t-distribution for the purposes of modelling both skewness and kurtosis.

A number of interesting methods have been suggested to give a clearer description of
this deviation from normality. To show the conditional excess kurtosis, [Bollerslev (1987)]
switched the normality of the innovation with students' heavier-tailed distributions.
[Glosten et al. (1993)] tried to deal with the asymmetry problem through the use of skewed
innovation densities. [Christo�ersen et al. (2006)], [Stentoft (2008)], [Chorro et al. (2015)]
among others have considered the merits of less rigid innovation distributions, like
[Barndor�-Nielsen (1998)]'s Normal-Inverse-Gaussian (NIG),or the Generalized Error
Distribution (GED), in an attempt to describe skewness and fat-tails more clearly,
[Christo�ersen et al. (2006)] examine multiple di�erent GARCH option models to gain
better insight into the leverage e�ect. [Christo�ersen et al. (2013)] have invented an a�ne
discrete-time model with the goal of obtaining a close-form option valuation formula by
using the conditional moment-generating function.

The one-dimensional Generalized Hyperbolic (GH (λ, α, β, δ, µ)) distribution of
[Barndor�-Nielsen (1977)] is expressed as the following density function:

∀z ∈ R, dGH (z, λ, α, β, δ, µ) =

(√
α2−β2

δ

)λ
√

2πKλ

(
δ
√
α2 − β2

)Kλ− 1
2

(
α

√
δ2 + (z − µ)

2

)
(√

δ2+(z−µ)2
α

) 1
2−λ

eβ(z−µ)

where δ > 0, α > |β| > 1 and Kλ is the modi�ed Bessel function of the third kind Kλ(z) =
1

2

∫ +∞
0 yλ−1e

− z
2

(
y+ 1

y

)
dy for z > 0. The parameters µ and δ describe the location and the

scale, β describes the skewness (when β = 0 the distribution is symmetric) and α drives the
kurtosis. In particular, when α∗ = αδ and β∗ = βδ, if Z follows GH (λ, α∗, β∗, δ, µ), then

z − µ
δ

↪→ GH (λ, α, β, 1, 0) .
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A noteworthy feature of the GH distribution is that it facilitates easy computation11 of the
moment generating function provided by :

GGH(u) = eµu

(
α2 − β2

α2 − (β + u)
2

)λ
2 Kλ

(
δ

√
α2 − (β + u)

2

)
Kλ

(
δ
√
α2 − β2

) with | β + u |< α.

Furthermore, the GH distribution contains, as limiting cases, some distributions that are
frequently made use of for �nancial applications.

There are multiple possible options for parametrizing the NIG-distribution. One could

most easily characterize it by thinking of it as a case of GH distribution with λ =
1

2
. Us-

ing numerical transformation as a basis, [Badescu et al.(2015)] achieved the integration of a
centered version with unit variance of the NIG parametrization using only two parameters.

Form the expression of the mean and the variance of GH

(
1

2
, α, β, δ, µ

)
:

m = µ+
δβ√
α2 − β2

, σ2 =
δα2√
α2 − β2

. (1.8)

they expressed (δ, µ) in terms of (α, β) by setting ᾱ = δα, β̄ = δβ with m = 0 and σ2 = 1.
Together with 1.8, they were able to solve these equations thus:

σ2 =
δ
ᾱ2

δ2(√
ᾱ2

δ2
− β̄2

δ2

)3 =
ᾱ2

1

δ2

(√
ᾱ2 − β̄2

)3 = 1 =⇒ δ =

(√
ᾱ2 − β̄2

) 3
2

ᾱ

the same for the mean :

m = µ+
δ
β̄

δ√
ᾱ2

δ2
− β̄2

δ2

= µ+
β̄√

ᾱ2 − β̄2

(√
ᾱ2 − β̄2

) 3
2

ᾱ
= 0 =⇒ µ = − β̄

ᾱ

(√
ᾱ2 − β̄2

) 1
2

.

The NIG distribution is especially capable of providing an explicit and simple log moment
generating function

κNIG(z) = µz +

√
ᾱ2 − β̄2 − δ

√
ᾱ2 −

(
β̄ + zδ

)2
which makes the NIG distribution the natural choice to enable the GARCH-type models to
use the conditional Esscher transform. Moreover, the NIG distribution is compatible with
non zero skewness, large kurtosis which is in accordance with the existence of an implied
volatility smile. The reason is that it gives rise to higher probabilities of extreme events in

11As a consequence, moments of all orders are �nite.
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contrast to the Gaussian distribution. Asset return series can also display considerable12

skewness.

In fact, asymmetry of the distribution can be incorporated using leverage e�ects
([Nelson (1991)] and [Glosten et al. (1993)]), or by assuming skewed innovation densities such
as normal inverse Gaussian distribution ([Forsberg & Bollerslev (2002)]) and inverse Gaus-
sian density ([Christo�ersen et al. (2006)]). Inverse Gaussian distribution has one mode in
the interior of the range of possible values and it is skewed to the right. In this section, basic
properties of the inverse Gaussian distribution are presented following [Johnson et al. (1994)]
parameterization. The Inverse Gaussian distribution is an exponential distribution with sup-
port on ]0,∞[ which is a two-parameters family of continuous probability distributions. The
probability density function is :

∀z ∈ ]0,∞[ , dIG (z, µ, λ) =

√
λ

2πz3
e

−λ (x− µ)2

2µ2z

described by two characteristics, µ > 0 is the mean and λ > 0 is the shape parameter. As
λ tends to in�nity, the inverse Gaussian distribution converge to a normal distribution. The
log moment generating function κIG of the IG distribution can be expressed as:

κIG(z) =
λ

µ

(
1−

√
1− 2µ2z

λ

)
Using this log moment generating function κIG(z), �rst four raw moments of the IG distribu-
tion can be computed. The variance, the skewness and the kurtosis of this parameterization
of the inverse Gaussian distribution are, respectively,

V ar(z) =
µ3

λ
, Skew(z) = 3

(µ
λ

) 1
2
and Kurt(z) =

15µ

λ

which tells us that the IG probability density is always positively skewed and the excess
kurtosis is always positive. The idea is to have a distribution that can "reach up high" and
admit some extreme values. It is pretty easy to estimate µ and λ by maximum likelihood.
[Christo�ersen et al. (2006)] used anather parametrization of the IG distribution with single
parameter δ. The mean and the variance of the distribution are equal and the probability
density13 function is given by the following :

∀z ∈ ]0,∞[ , dIG

(
z; δ, δ2

)
=

δ√
2πz3/2

exp

{
−1

2

(z − δ)2

z

}
.

and the log moment generating14 function can be simpli�ed as κIG(z) = δ(1 −
√

1− 2z).
Moreover, the cumulative distribution function of the single parameter Inverse Gaussian

12 Asset return series might exhibit episodes of sharp depreciation (appreciation) not o�set by subsequent

sharp appreciation (depreciation). Two reasons for skewness are: �rst, permanent shocks that lead to changes

in the equilibrium exchange rate may be asymmetric; rapid improvements in Japanese productivity over the

past thirty years is such an example; and second, speculative attacks against a currency tend to be one-sided.
13The standard form of inverse Gaussian distribution is dIG (z; 1, 1) = 1√

2πx3/2
exp

{
− 1

2
(x−1)2

x

}
.

14and the moments V ar(z) = δ, Skew(z) =
3√
δ
and Kurt(z) =

15

δ
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distribution is related to the standard normal distribution by:{
P(Z < z) = Φ(z1) + e2δΦ(z2), for 0 < z ≤ δ,
P(Z > z) = Φ(−z1)− e2δΦ(z2), for z ≥ δ. (1.9)

where z1 = δ
z1/2
− z1/2and z2 = δ

z1/2
+ z1/2, where the Φ is cumulative distribution function

(CDF) of the standard normal distribution. The variables z1 and z2 are related to each
other by the identity z2

2 = z2
1 + 4δ. As we can see from the cumulative distribution function

of the IG (equation 1.9), the function is related to the normal distribution. Its cumulant
generating function is the inverse of the cumulant generating function of a Gaussian random
variable. The IG-GARCH developed by ([Christo�ersen et al. (2006)]) consists of combining
an Inverse Gaussian distribution with a GARCH type volatility model. Moreover, the
idea of explicitly modeling pricing options based on IG-GARCH models has a long history
in empirical �nance, [Christo�ersen et al. (2006)] illustrated with an extensive empirical
test of the model using S&P500 index options that the Inverse Gaussian GARCH models
performance is superior to a standard existing nested model.

An alternative derivation of the Black-Scholes equation and formula involves a risk-
neutral measure, under which, as its name suggests, all agents in the economy are neutral
to risks, so that they are indi�erent between investments with di�erent risks as long as
these investments have the same expected return. It can be shown that, in the absence of
arbitrage opportunities, there exists a unique risk-neutral measure in a complete market,
where all tradable assets can be replicated by a set of fundamental assets (the fundamental
theorem of arbitrage). In the literature, it is well known that option prices are derived
from the risk-neutral measure. The connection between physical and risk-neutral measure
known as pricing kernel, stochastic discount factor or state price density, was developed by
[Rubinstein (1976)] and [Brennan (1979)]. The pricing kernel or stochastic discount factor
is a key component of any option pricing model. It is a state dependent function15 that
discounts payo�s using time and risk preferences. The fundamental theorem of option pricing
suggests that the price is its discounted expected value of future payo� speci�cally under
risk-neutral measure or valuation. [Rubinstein (1976)] set the pricing kernel as a monotonic
function of return and [Hansen & Singleton (1982)] postulate that the pricing kernel is
a power function of the returns. [Gerber & Shiu (1994)] introduced exponential-a�ne
stochastic discount factor. The choice of an exponential a�ne pricing kernel often leads to
tractable computations, and provides results which are easy to compare with the standard
Black-Scholes formula.

1.2 Risk Neutral Valuation for Option Pricing

There are many papers in the �nancial literature dealing with possible choices of a risk
neutral measure, some of the widely used risk neutral measures are identi�ed for general
discrete time models. The RNVR has proved to be an important tool in the pricing and

15It summarizes investor preferences for payo�s over di�erent states of the world.
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hedging of �nancial derivatives (see [Rubinstein (1976)]). It consists of evaluating the price
of contracts as the expected value of the discounted payo� function under a martingale
measure.The construction of this new probability measure allows us to price derivatives in
hypothetical markets where the economic agents are risk neutral. The minimal martingale
measure (MMM) constructed by [Follmer & Schweizer (1991)] was also studied in the
�nancial literature. Two other well known tools are the conditional Esscher transform, which
was �rst applied to option pricing by [Gerber & Shiu (1994)], and the extended Girsanov
principle (EGP) introduced by [Elliott & Madan (1998)].

The objective of this section is to present di�erent risk neutral probability measures
which are equivalent to the physical measure P. We reminde that (Ft)t∈{0,··· ,T} repre-
sente the information �ltration associated to (zt)t∈{1,··· ,T} with F0 = {∅,Ω} and (Ft =

σ (zu; 1 6 u 6 t))t∈{0,··· ,T}. We denote by GP
Yt|Ft−1

(u) the conditional moment generating
function of Yt given Ft−1 is de�ned by

GP
Yt|Ft−1

(u) = EP [euYt∣∣Ft−1

]
(1.10)

where Ft−1 denotes the information set prior to time t−1 and the notation EP [·|Ft−1] denotes
the conditional expectation given Ft−1 under the dynamic P measure. We assume that under
the historical probability P, the dynamics of the bond price process (Bt)t∈{0,··· ,T} and the
discounted price process

(
S̄t
)
t∈{0,··· ,T} are given by

Bt = Bt−1e
r, B0 = 1 and S̄t =

St
Bt
,

where r is the constant risk-free rate expressed on a daily basis.

Dé�nition 7 A probability measure Q is an equivalent martingale measure (EMM) with

respect to P if:

• Q ∼ P, ∀X ∈ F , Q(X) = 0⇐⇒ P(X) = 0,

•
(
S̄t
)
t∈{0,··· ,T} is a martingale under Q with respect to the information �ltration

(Ft)t∈{0,··· ,T}, that is
EQ [S̄t∣∣Ft−1

]
= S̄t−1.

In particular we have ∀t ∈ {0, · · · , T − 1} , EQ [St|Ft−1] = erSt−1 and we denoted by
dQ
dP

it's Radon-Nikodym derivative. This de�nition established the links between the existence
of an EMM and the absence of arbitrage opportunities. First we state a proposition which is
a very useful tool for constructing equivalent martingale measures.

Proposition 1.2.1 Let P and Q be equivalent measures de�ned on the measurable space

(Ω,F). Then there exists an almost surely positive random variable Zt such that :

for all A ∈ Ft
{

EP [Zt|Ft−1] = 1

Q (A) = EQ [ItZt|Ft−1]
(1.11)

where Ft is a �nite sub-σ-algebra of F .
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The Radon-Nikodym process has the following properties ∀t ∈ {0, · · · , T} and s > t :

Zt :=
dQ
dP

∣∣∣∣ Ft = EP
[
dQ
dP

∣∣∣∣Ft] , EQ [g |Ft] =
EP [Zsg|Ft]

Zt
and EQ [ST ] = EP

[
ST

dQ
dP

∣∣∣∣FT]
where g is a Q-integrable measurable function and ZT is called the Radon-Nikodym deriva-
tive on FT . Assuming continuously compounded returns, the martingale condition for the
discounted stock price can be replaced by:

EQ [eYt∣∣Ft−1

]
= er,

which is the immediate consequence of the second condition in De�nition 7 as follows :

EQ [S̄t∣∣Ft−1

]
= S̄t−1 =⇒ EQ [e−rtSt∣∣Ft−1

]
= e−r(t−1)St−1 =⇒ EQ [eYt∣∣Ft−1

]
= er.

Another approach allowing to build a martingale measure is based on the well-known stochas-
tic discount factor approach. This approach can be linked with the risk neutral valuation
relationship (RNVR) principle using an equilibrium argument.

Dé�nition 8 A positive process (Mt)t∈{0,··· ,T} adapted to the information �ltration F is call

a one periode stochastic discount factor (SDF) process if the following relations hold :

∀t ∈ {0, · · · , T − 1} , EP
[
Bt+1

Bt
Mt+1

∣∣∣∣Ft] = 1 and EP
[
St+1

St
Mt+1

∣∣∣∣Ft] = 1. (1.12)

In particular, the pricing relations in the previous de�nition give the following restrictions
for the parameters : {

EP [erMt+1|Ft] = 1

EP [
eYtMt+1

∣∣Ft−1

]
= 1

(1.13)

Moreover, following both de�nition 7 and 8, the speci�cation of an EMM is equivalent to the
characterisation of a one-period stochastic discount factor process, through the relation:

dQ
dP

= erT
T∏
i=1

Mi. (1.14)

where Q is the EMM and (Mt)t∈{0,··· ,T−1} represents the SDF. In fact, in one hand using
tower property16 of the conditional expection, we have the following

EP
[
St+1

St
Mt+1

∣∣∣∣Ft] = EP
[
St+1

St
Mt+1EP

[
St+2

St+1
Mt+2

∣∣∣∣Ft+1

]∣∣∣∣Ft]
EP
[
St+1

St
Mt+1

∣∣∣∣Ft] = EP
[
St+1

St
Mt+1

St+2

St+1
Mt+2

∣∣∣∣Ft] = EP
[
St+2

St
Mt+1Mt+2

∣∣∣∣Ft]
and by iteration from t+ 2 to T we have :

EP
[
St+1

St
Mt+1

∣∣∣∣Ft] = EP

[
ST
St

T∏
k=t+1

Mk

∣∣∣∣∣Ft
]

= EP
[
ST
St
Mt,T

∣∣∣∣Ft] =

EP
[
ST
St
M0,T

∣∣∣∣Ft]
M0,t

= 1

16H1 ⊂ H2 ⊂ F we have E(E(X | H2) | H1) = E(X | H1).
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where Mt,T =
∏T
k=t+1Mk. In the other hand using the risk neutral measure we obtain that :

EQ
[
S̄t+1

S̄t

∣∣∣∣Ft] = EQ
[
St+1

St
e−r
∣∣∣∣Ft] = EQ

[
St+1

St
e−rEQ

[
St+2

St+1
e−r
∣∣∣∣Ft+1

]∣∣∣∣Ft]
EQ
[
S̄t+1

S̄t

∣∣∣∣Ft] = EQ
[
St+1

St
e−r

St+2

St+1
e−r
∣∣∣∣Ft] = EQ

[
St+2

St
e−2r

∣∣∣∣Ft]
and by iteration from t+ 2 to T we have :

EQ
[
S̄t+1

S̄t

∣∣∣∣Ft] = EQ
[
ST
St
e−r(T−t)

∣∣∣∣Ft] =

EP
[
ST
St
e−r(T−t)EP

[
dQ
dP

∣∣∣∣FT]∣∣∣∣Ft]
EP
[
dQ
dP

∣∣∣∣Ft]

EQ
[
S̄t+1

S̄t

∣∣∣∣Ft] =

EP
[
ST
St
e−r(T )EP

[
dQ
dP

∣∣∣∣FT]∣∣∣∣Ft]
e−r(t)EP

[
dQ
dP

∣∣∣∣Ft] = 1

when comparing both expressions, we can see clearly the link between the notion of EMM
and the SDF

EP
[
dQ
dP

∣∣∣∣FT] =
dQ
dP

= erTM0,T = erT
T∏
i=1

Mi and EP
[
dQ
dP

∣∣∣∣Ft] = ertM0,t = ert
t∏
i=1

Mi.

which provid the result
dQ
dP

= erT
∏T
i=1Mi.

1.2.1 Local Risk Neutral Valuation Relationship

For the pricing of options in a GARCH volatility framework in the �nancial literature, most
of the studies use the local risk neutral valuation principle (or LRNVR for short) introduced
by [Duan (1995)] to deal with the choice of a risk neutral measure. One of the important
properties of the LRNVR framework of [Duan (1995)] is that this approach provides an
economic17 argument to choose a particular equivalent martingale measure under the GARCH

model with conditionally normal stock innovation.

Dé�nition 9 A probability measure Q is said to satisfy the local risk neutral valuation rela-

tionship if the following conditions are satis�ed:

• Q is an equivalent martingale measure equivalent to P,

• Given Ft−1, Yt follows a Gaussian distribution under Q,

• V arQ [Yt|Ft−1] = V arP [Yt|Ft−1].

17[Duan (1995)] provided a rigorous theoretical foundation and economic justi�cation of the validity of

LRNVR. For details, see Theorem 2.1 of [Duan (1995)].
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The third condition required in the precedent de�nition is that the one period conditional
variance of the returns are invariant almost surely under the equivalent measures. To show
the application of the LRNVR, we consider a GARCH-type process for the log return process
Yt with normal innovations to simplify the illustration: Yt =

(
r + λ

√
ht −

1

2
ht

)
+
√
htzt zt ∼P N(0, 1)

ht = F
(
zt−1, ht−1, θ

V
) (1.15)

where r is the one-period risk-free rate and EP
[
St
St−1

∣∣∣∣Ft−1

]
= er+λ

√
ht .

Generalizing the results of [Rubinstein (1976)] and [Brennan (1979)], [Duan (1995)] de-
rived the locally risk-neutral valuation relationship when dealing with GARCH volatility
dynamics. This is satis�ed by a risk-neutral measure

EQ
[
St
St−1

∣∣∣∣Ft−1

]
= er and h∗t = V arQ [Yt|Ft−1] = V arP [Yt|Ft−1] = ht, (1.16)

the conditional variance of the logarithmic return is invariant under the change of probability
measure from P to Q almost surely. Under the measure Q, we can derive the risk-neutral
asset return process as: Yt =

(
r − 1

2
h∗t

)
+
√
htz
∗
t z∗t ∼Q N(0, 1)

h∗t = F
(
z∗t−1, h

∗
t−1, θ

V
) (1.17)

where z∗t = zt + λ is a standard normal random variable under the locally risk-neutral
measure Q. In fact, from the de�nition 9, Yt follows a Gaussian distribution under Q and
eYt = eυt+

√
htz∗t . Moreover, we obtain in one hand:

EQ
[
St
St−1

∣∣∣∣Ft−1

]
= EQ

[
eυt+

√
htz∗t

∣∣∣Ft−1

]
= eυtEQ

[
e
√
htz∗t

∣∣∣Ft−1

]
and in the other hand using the moment generating function of a Gaussian random variable
we have :

EQ
[
St
St−1

∣∣∣∣Ft−1

]
= e(υt+

1
2
V arQ[log(Yt)|Ft−1])EQ [1|Ft−1] = e(υt+

1
2
ht).

Therefore, we deduce from the martingale condition EQ
[
St
St−1

| Ft−1

]
= er that υt = r− ht

2
and the dynamics of the conditional volatility may be explicitly expressed as a function of z∗t
:

log
St
St−1

= r − 1

2
h∗t +

√
h∗t z
∗
t under Q,

using again the condition in equation 1.16 with h∗t = ht we can write :

r − 1

2
ht +

√
htz
∗
t = r + λ

√
ht −

1

2
ht +

√
htzt,

z∗t = zt + λ,
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substituting this result into the NGARCH process, yields

h∗t = a0 + a1h
∗
t−1 (zt−1 − γ − λ)2 + b1h

∗
t−1.

The LRNVR can be applied only when the driving noise is normally distributed.
However, many empirical studies show that the normality assumption should be relaxed
to allow for leptokurtic and skewed densities. [Duan (1999)] extends LRNVR to be a
generalized LRNVR (GLRNVR) to deal with non-Gaussian GARCH with skewed and
leptokurtic distributions. Nevertheless, the GLRNVR requires intensive calculation for each
time t, thus largely impact the e�ciency of the implementation.

The following sections will introduce three well known alternative risk neutral measures
that can be applied for non-Gaussian innovations. The conditional Esscher transform,
which was �rst applied to option pricing by [Gerber & Shiu (1994)], the extended Girsanov
principle introduced by [Elliott & Madan (1998)]. The last one is the second order Esscher
transform by [Monfort & Pégoraro (2012)] which including a quadratic term in the pricing
kernel to modify not only the conditional mean but also the conditional variance.

1.2.2 The Esscher transform

The Esscher transform was �rst introduced in actuarial science by [Esscher (1932)].
[Gerber & Shiu (1994)] show that it can be applied to price derivative securities if the log re-
turn process has stationary and independent increments. The conditional Esscher transform
has been adapted by [Bühlmann et al. (1996)] to price option in discret time �nancial mod-
els. The conditional version is related to a utility maximization problem for some speci�c
form of the utility function. In contrast to [Duan (1995)] approach, this latter framework
allow a wide variety of return innovations to be chosen within the class of in�nite divisible
distribution.

Dé�nition 10 (Conditional Esscher transform) Let θt be a Ft−1 measurable random vari-

ables. The probability measure Qess is called the conditional Esscher transformed measure of

P if conditional moment generating functions exist:

dQess

dP

∣∣∣∣∣ Ft−1 =
t∏
i=1

eθiYi

GP
Yi|Fi−1

(θi)

where θt is denoted as the Esscher parameter with respect to the �ltration Ft.

Moreover, following the de�nition 8 and the equation 1.14 that link stochastic discount factor

and equivalent martingale measure, the SDF associated to
dQess

dP
have a parametric form

characterized by an exponential a�ne of the log-returns :

∀t ∈ {1, · · · , T} , Mt = eθtYt+ξt



22 Chapter 1. Introduction

where ξt = rT − log
(
GP
Yt|Ft−1

(θt)
)
are Ft−1 measurable random variables.

Based on the description introduced in [Gerber & Shiu (1994)], we can characterize the
Esscher risk neutralized measure by the following proposition.

Proposition 1.2.2 Let the process Zt de�ned by:

Zt =
dQess

dP

∣∣∣∣∣ Ft−1 =
t∏
i=1

eθ
∗
i Yi

GP
Yi|Fi−1

(θ∗i )

where θ∗i is a predictable process de�nes as the unique solution of the equation:

GP
Yi|Fi−1

(1 + θ∗i ) = erGP
Yi|Fi−1

(θ∗i ) . (1.18)

Proof Under Qess, the moment generating function of Yt given Ft−1 is given by

GQess
Yt|Ft−1

(u) =
GP
Yt|Ft−1

(u+ θt)

GP
Yt|Ft−1

(θt)
(1.19)

which can be obtained by the following :

GQess
Yt|Ft−1

(u) = EQess [euYt∣∣Ft−1

]
= EP

[
euYt

Zt
Zt−1

∣∣∣∣Ft−1

]
= EP

[
euYt

eθ
∗
t Yt

GP
Yt|Ft−1

(θ∗t )

∣∣∣∣∣Ft−1

]

=
EP [euYteθ∗t Yt∣∣Ft−1

]
GP
Yt|Ft−1

(θ∗t )
=

EP [e(u+θt)Yt
∣∣Ft−1

]
GP
Yt|Ft−1

(θ∗t )
=

GP
Yt|Ft−1

(u+ θt)

GP
Yt|Ft−1

(θt)
.

When u = 1, we obtain GQess
Yt|Ft−1

(1) = er then the martingale equation 1.18 holds. �
It is important to notice that the solution of θ∗t always exists, given that the moment gen-
erating function exists and is twice di�erentiable. Subsequently, the equation 1.18 ensures
the unicity and the martingale property of the conditional Esscher transform risk neutral
measure is satis�ed. Then Qess is called the conditional Esscher transform with respect to
P generated by the process Yt and the Esscher parameter θ∗t . Under the conditional Esscher

transform, the Radon-Nikodym derivative
dQess

dP
can be describe by:

dQess

dP

∣∣∣∣∣ FT = ZT =

T∏
i=1

eθ
∗
i Yi

GP
Yi|Fi−1

(θ∗i )
. (1.20)

If we consider a Gaussian innovation under the Esscher transform measure Qess since for all
t ∈ {1, · · · , T} we have Yt ∼ N(mt, ht) (GARCH model in equation 1.4) under measure P,
then the conditional moment generating function is given by :

GP
Yi|Fi−1

(u) = eumt+u
2 ht

2

GQess
Yt|Ft−1

(u) =
e

(
(u+θ∗t )mt+(u+θ∗t )2

ht
2

)
e

(
(θ∗t )mt+(θ∗t )2

ht
2

) = e

(
umt+u2

ht
2

+uhtθ∗t

)
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In the particular if mt =

(
r + λ

√
ht −

1

2
ht

)
, for u = 1 in the equation 1.19, the Esscher

parameter θ∗t can be expressed as :

θ∗t =
1

ht

(
r −mt −

ht
2

)
=
−λ√
ht
.

Therefore, by equation 1.20 we have :

dQess

dP
=

T∏
i=1

eθ
∗
i Yi

GP
Yi|Fi−1

(θ∗i )
=

T∏
i=1

eθ
∗
i Yi−θ∗imi−

hi
2 (θ∗i )

2

dQess

dP
=

T∏
i=1

e

(
− λ√

hi
Yi+

rλ√
hi

+λ−λ
√
hi

2
−λ

2

2

)

dQess

dP
=

T∏
i=1

e
− 1

2hi

(
λ2hi+2λ

√
hi

(
Yi−r−λ

√
hi+

1
2hi

))
.

Moreover, the asset returns are conditionally Gaussian Yt ∼Qess N(mt+θ∗t ht, ht) under Qess,
and the dynamics for Yt is again a Gaussian model the same dynamics characterization as
Duan's RNVR. The conditional Esscher transform is thus a convenient tool for derivative
valuation when the distributions of asset returns are non-normal. However, solving for θt for
each time step t ∈ {1, · · · , T} may be computationally demanding.

1.2.3 The Extended Girsanov Principle

The extended Girsanov Principle was proposed by [Elliott & Madan (1998)] and provides
another approach in choosing a risk neutral measures under the discrete time framework. The
construction of the new measure is based18 on a multiplicative Doob decomposition of the

discounted stock price
(
S̃t

)
t∈{0,··· ,T}

as a product of a predictable process and a martingale:

S̃t = S̃0AtNt with At =
t−1∏
i=0

EP

[
S̃i+1

S̃i

∣∣∣∣∣Fi
]

where Nt is a Ft martingale, At is a Ft predictable process19 with respect to Ft.

Dé�nition 11 A probability Q with respect to F is said to satisfy the Extended Girsanov

Principle if the conditional law of the discounted stock price under the new measure is equal

to the conditional law where their martingale component from the multiplicative Doob decom-

position prior to the change of measure :

LQ
[
S̃t

S̃t−1

∣∣∣∣∣Ft−1

]
= LP

[
Nt

Nt−1

∣∣∣∣Ft−1

]
. (1.21)

18The economic foundation of the extended Girsanov principle is to minimize the adjusted hedging capital

of investors hedging portfolio. For details, the reader is referred to [Elliott & Madan (1998)]

19Immediate consequence of
S̃i+1

S̃i
=
Ai+1Ni+1

AiNi
=⇒ EP

[
S̃i+1

S̃i

∣∣∣∣Fi] =
Ai+1

Ai
.
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In fact, the dynamics of the discounted stock price process under P has the following
representation :

S̃t = S̃t−1e
νtNt+1

Nt
with eνt =

At
At−1

= e−rEP [eYt∣∣Ft−1

]
.

where νt is the one period discounted excess returns between t− 1 et t.

Dé�nition 12 De�ne a change of measure density process (Lt)t∈{1,··· ,T} by

L̄t =
t∏
i=1

gPi

(
S̃i

S̃i−1

)
eνi

gPi

(
e−νi

S̃i

S̃i−1

) .

which is a F-martingale under P where gPt is the conditional density function of
Nt

Nt−1
given

Ft−1 under P.

Proposition 1.2.3 ([Elliott & Madan (1998)]) Let Qegp be the probability de�ned by the

density L̄T with respect to P then Qegp is the unique equivalent probability measure that

satis�es the de�nition 11. Under the extended Girsanov change of measure Qegp is then

de�ned:
dQegp

dP
= L̄T ,

with Qegp is the unique equivalent probability measure that satis�es the equation 1.21.

In the Gaussian case, the risk-neutral dynamics implied by the EGP coincide with those
given by the conditional Esscher transform. However, this is no longer the case for the
NIG distribution case. Under the extended Girsanov principle measure, the Radon-Nikodym
derivative is given by

dQegp

dP
=

T∏
i=1

fPi

(
Yt − r +mt +

ht
2

)
fPi (Yt)

=
T∏
i=1

e
− 1

2hi

(
λ2hi+2λ

√
hi

(
Yi−r−λ

√
hi+

1
2hi

))
.

where fPi is the conditional pdf of Yt given Ft−1. Thus,

dQegp

dP
=

t∏
i=1

fPi

(
Yi − r +mi +

hi
2

)
fPi (Yi)

=
t∏
i=1

e
− 1

2hi

(
Yi−r+

hi
2

)2

e
− (Yi−mi)

2

2hi

dQegp

dP
=

t∏
i=1

e
− 1

2hi

((
Yi−r+

hi
2

)2
−(Yi−mi)2

)
=

t∏
i=1

e
− 1

2hi

(Yi−r+ht
2

)2
−
(
Yi−

(
r+λ
√
hi−

1

2
hi

))2


dQegp

dP
=

t∏
i=1

e
− 1

2hi

(
λ2hi+2λ

√
hi

(
Yi−r−λ

√
hi+

1
2hi

))
.
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It is important to notice that concerning the Model 1.15 the Radon-Nikodym derivative
dQess

dP
and

dQegp

dP
derived by the Esscher transform and the extended Girsanov principle,

respectively, satisfy the same representation :

dQess

dP
=
dQegp

dP
=

t∏
i=1

e
− 1

2hi

(
λ2hi+2λ

√
hi

(
Yi−r−λ

√
hi+

1
2hi

))

Consequently, the equivalent martingale measures Qess and Qegp obtained from the two ap-
proaches are the same. Subsequently, the risk-neutral dynamics of Model 1.15 under measure
Qess and Qegp is written as follows: Yt =

(
r − 1

2
h∗t

)
+
√
htz
∗
t

h∗t = F
(
z∗t−1, h

∗
t−1, θ

V
) (1.22)

with z∗t ∼Q N(0, 1) and z∗t = zt−1 − λ. Duan's method is speci�c to normal innovations
and does not naturally extend to non-normal GARCH. One advantage of the EGP is
that it does not require any distributional assumption about the returns. Thus this princi-
ple can be applied to investigate pricing and hedging for various types of discrete time models.

In another point of view, few papers have investigated certain aspects of the empir-
ical performance of monotonically declining kernels. For instance [Bakshi et al.(1997)],
illustrate that the prices of S&P500 calls are inconsistent with monotonically de-
clining kernels and motivate U-shaped pricing kernels. The �rst empirical evi-
dence of nonmonotone pricing kernels was reported in [Aït-Sahalia & Lo (1998)] and
[Jackwerth (2000)]. Subsequent empirical assessments of pricing kernel monotonicity
include [Barone-adesi et al. (2008)], [Chabi-Yo et al. (2008)], [Barone-adesi et al. (2012)],
[Christo�ersen et al. (2013)], [Beare & Schmidt (2016)]. Each of these studies produced a
comprehensive assertion on the importance to leave out the idea of the monotonicity of the
stochastic discount factor. We mention, among many others, [Monfort & Pégoraro (2012)]
introduce the notion of Second-Order GARCH Option Pricing Model using the Second-Order
Esscher Transform as a U-shaped function stochastic discount factor with the exponential
quadratic fonction the log-returns.

1.2.4 Second Order Esscher Transform

A variety of alternatives for pricing kernel have been developed to provide an answer to
the nonmonotone pricing kernels problems. As a natural alternative of the of monotonically
declining kernels, [Monfort & Pégoraro (2012)] derived from the Esscher Transform the notion
of Second Order Esscher Transform for GARCH Option Pricing Model. They introduced an
extension of the classical Essher transform including a quadratic term in the pricing kernel.
This approache propose to modify not only the conditional mean but also the conditional
variance. Providing the intuition of a U-shaped stochastic discount factor, they speci�ed the
exponential quadratic function of log-returns by using �rst-order and second-order stochastic
risk-sensitivity coe�cients as follows :
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∀t ∈ {1, · · · , T} , Mt = eθ2,tY
2
t +θ1,tYt+ξt (1.23)

where ξt, θ1,t and θ2,t are Ft−1 measurable random variables. Moreover, the pricing relation
described in de�nition 1.12 can be written in this case as:

ξt = −r − log

(
GP

(Yt,Y 2
t )|Ft−1

(θ1,t, θ2,t)

)
er =

GP
(Yt,Y 2

t )|Ft−1
(θ1,t + 1, θ2,t)

GP
(Yt,Y 2

t )|Ft−1
(θ1,t, θ2,t)

.

Furthermore, the dynamics of the log-returns Yt can be describe using the moment gener-
ation function under the equivalent martingale measure QQua associated to the exponential
quadratic stochastic discount factor Mt in 1.23:

GQQua
Yt|Ft−1

(u) =
GP

(Yt,Y 2
t )|Ft−1

(u+ θ1,t, θ2,t)

GP
(Yt,Y 2

t )|Ft−1
(θ1,t, θ2,t)

However, unlike the Esscher transform, where the pricing equations have a unique solution
(proposition 1.2.2), the previous system has in general an in�nite number of solutions.

In particular, if ∀t ∈ {1, · · · , T}, θ2,t = 0 we obtain the risk neutral dynamics associated
to the Esscher transform in system 1.22 with ht = h∗t . Considering the Gaussian GARCH

model (in equation 1.15) where Yt ∼ N(mt, ht), the logarithm of the conditional moment
generating function GP

(Yt,Y 2
t )|Ft−1

(u, v) of
(
Yt, Y

2
t

)
under P can be express in the following

way:

log
(
GP

(Yt,Y 2
t )|Ft−1

(u, v)
)

= log
(
EP
[
euYt+vY

2
t

∣∣∣Ft−1

])
log
(
GP

(Yt,Y 2
t )|Ft−1

(u, v)
)

=
htu

2 + 2mtu+ 2vm2
t

2 (1− 2vht)
− 1

2
log (1− 2vht)

for (u, v) ∈ R2 with v <
1

2ht
. This is due to the very particular form of the Gaussian density

function (see [Chorro et al. (2015)] for more details).

Following [Monfort & Pégoraro (2012)], assuming θ2,t <
1

ht
and considering π =

h∗t
ht

as

a constant proportional wedge between ht and h∗t , in the case of NGARCH, we obtain the
dynamics of Yt under QQua :

Yt =

(
r − 1

2
h∗t

)
+
√
h∗t z
∗
t z∗t ∼Q N(0, 1)

h∗t = πa0 + πa1h
∗
t−1

(
z∗t−1 −

1√
π

(λ+ γ)− 1

π
(π − 1)

)2

+ b1h
∗
t−1

with π = 1 + 2θ2,th
∗
t and π > 0 implying a U-shape for 1.23, the U-shape quadratic Esscher

transform induces a risk neutral variance strictly greater than the historical one. If ∀t ∈
{1, · · · , T}, θ2,t = 0 then π = 1 which implies that ht = h∗t . In this case we recover the risk
neutral dynamics associated to the Esscher transform in system 1.22 under Qess.
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1.3 Estimation

After selecting a reasonable model, we need to estimate the parameters to �t the data. In
this section, our aim is to �t the GARCH models we discussed in section 1.1. As such, we
focus our discussion on a brief review of the maximum likelihood estimation (MLE) and the
quasi-maximum likelihood (QML) strategies to estimate the parameter θ =

(
λ, θV , θD

)
based

on i.i.d observations.

1.3.1 Maximum Likelihood Estimator

The maximum likelihood estimator remains the preferred estimator to estimate the parame-
ters. The probability density function for a random variable Y of the model 1.4, conditioned
on a set of parameters θ =

(
λ, θV , θD

)
, is denoted by f (Y |θ). In this setting, the joint density

of n-observation independent and identically distributed observations (Y1, · · · , Yn) from this
process is the product of the individual densities:

L (Y |θ) = f (Y1, · · · , Yn|θ) =
n∏
i=1

f (Yi|Y1, · · · , Yi−1, θ)

This joint density is the likelihood function, de�ned as a function of the unknown parameters
vector, θ, where Y is used to indicate the collection of sample data. The conditional log-
likelihood based on the observations (Y1, · · · , Yn) is

l (Y |Y1, · · · , Yn, θ) = logL (Y |θ) =
n∑
i=1

log [f (Yi|Y1, · · · , Yi−1, θ)] , (1.24)

In practice it is often more convenient to work with the logarithm of the likelihood function.
The best estimator, θ̂, is the value of θ that maximizes L (Y |θ) (which is equivalent to
maximize l (Y |Y1, · · · , Yn, θ)). We are looking for the θ̂, that maximizes the likelihood of
observing our sample, when it exists, by

θ̂∗ = arg Max
θ

f (Y1, · · · , Yn|θ) (1.25)

or equivalently as the solution of the vectorial score equation:

n∑
i=1

∂ log [f (Y1, · · · , Yn|θ)]
∂θ

= 0

which is the necessary condition for maximizing l (Y1, · · · , Yn|θ). Let's work through an
example analytically for the Inverse Gaussian distributions. The IG distribution, which is
often used as the underlying distribution to capture asymmetry with GARCH option pricing,
the conditional density function of Yn given (Y1, ..., Yn−1) is given by :

f (Yn | Y1, ..., Yn−1, η) =

n∏
i=1

η
√

2πY
3/2
i

exp

{
−1

2

(Yi − η)2

Yi

}
.
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and the conditional log-likelihood is given by

l (Y1, · · · , Yn|η) =

n∑
i=1

log [f (Yi|Y1, · · · , Yi−1, η)] ,

l (Y1, · · · , Yn|η) =

n∑
i=1

log

[
η

√
2πY

3/2
i

exp

{
−1

2

(Yi − η)2

Yi

}]
,

l (Y1, · · · , Yn|η) = n log (η)− n

2
log (2π)− 3n

2
log ((Yi))−

1

2

n∑
i=1

[
(Yi − η)2

Yi

]
and we calculate derivatives of the log-likelihood function with respect the parameter η, we
obtain the likelihood equations for η :

∂l (Y1, · · · , Yn|η)

∂η
= 0 ⇐⇒ η2

n∑
i=1

[
1

Yi

]
+ nη + n = 0 where η > 0

The maximum likelihood estimator is e�cient, and it achieves Cramér-Rao lower bound when
the sample size tends to in�nity. However, this method may lead to inconsistent estimates if
the distribution of the innovation is misspeci�ed. Alternatively, the Gaussian MLE, regarded
as a quasi-maximum likelihood estimator (QMLE) may be consistent and asymptotically
normal, provided that the innovation has a �nite fourth moment.

1.3.2 Quasi-Maximum Likelihood Estimation

The Quasi Maximum Likelihood20as brought in by [Wedderburn (1974)],which is sometimes
referred to as pseudo-likelihood estimate, this estimator is possibly the most well-known
estimation strategy for conditional heteroskedasticity time series. The function that is
maximized to form a QMLE a more simple structure of the actual log likelihood function
de�ned in 1.24. This simple function is frequently formed with the log-likelihood function
of an unspeci�ed model. On the other hand, the original ML method assumes that the
speci�ed density function is the true density function. As a consequence, the �ndings in
the ML method are merely special cases of the QML method. [Francq & Zakoian (2004)]
has suggested that the conditional heteroskedasticity time series is speci�cally applicable to
Quasi-maximum likelihood (QML) method.

Is this case, we can use the dynamic GARCH in mean model to show the method of Quasi-
maximum likelihood. When we remembering the dynamic GARCH model in the function
1.15 without speci�c distribution for the innovation zt, the observations (Y1, · · · , Yn) follow
the dynamic:  Yt =

(
r + λ

√
ht −

1

2
ht

)
+
√
htzt

ht = F
(
zt−1, ht−1, θ

V
) (1.26)

where (zt)t∈{1,··· ,n} is a sequence of i.i.d. random variables of variance one, mean zero. In
this setting of the QML approach, the conditional log-likelihood based on the observations
(Y1, · · · , Yn) :

20w
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l (Y1, · · · , Yn | θ) =

n∑
t=1

− log(ht)

2
+ log

dθD
Yt − r − λ

√
ht +

1

2
ht

√
ht


 (1.27)

with the set of the parameters θ =
(
λ, θV , θD

)
.The true value of the parameter is not known,

and is shown by θ =
(
λ, θV , θD

)
which denotes the value under the true model. The innova-

tions are i.i.d random variables with mean 0, variance 1, and unknown density f (·), we do
not make any assumption on the distribution for QML.

• We need the conditions for h0 and θ to begin with. For a given value of parame-
ters, under the second-order stationarity assumption, the unconditional variance is an
acceptable 21 selection for the unidenti�ed initial values.

• The Gaussian GARCH framework, which we apply, corresponds to zt are habitually
distributed normally where the conditional Gaussian quasi-likelihood are shown as :

l
(
Y1, · · · , Yn | λ, θV

)
=

n∑
t=1

− log(ht)

2
− log(2π)

2
−

(
Yt − r − λ

√
ht +

1

2
ht

)
2ht

and
(
λ, θV

)
are estimated by maximizing the conditional Gaussian quasi-likelihood as

follows :
θ̂ =

(
λ̂, θ̂V

)
= arg Max

(λ,θV )
l
(
Y1, · · · , YT | λ, θV

)
(1.28)

• θD is obtained by maximizing the conditional log-ikelihood in the function 1.27 with
residuals that can be assessed from the step before:

(
zi

(
λ̂0,n, θ̂

V
n

))
i∈{1,··· ,n}

=

Yi − r − λ
√
hi +

1

2
hi

√
hi

(
θ̂Vn

)

i∈{1,··· ,n}

By contrast, less consideration is given to inference using a non-Gaussian QMLE. Nor-
mally a non-Gaussian QMLE does not show a consistent estimation when the true error
distribution strays from the likelihood. A non-Gaussian QMLE method which is tough on
error misidenti�cation, is more e�ective than Gaussian QMLE, and it needs to choose the
correct innovation distribution.

1.3.3 Other estimation strategies

However, calibration on option prices can directly value the GARCH model parameters. This
method �nds parameters using the non-linear least squares estimation (NLS) that reduces
a loss function that identi�es the error between the model prices and the market ones. A

21In reality what is important is the choice of initial values
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wide breadth of work has already been done showing where stochastic volatility models are
valued based on empirical information on option prices using the non-linear least squares
(NLS) approach (for instance: [Christo�ersen et al. (2004)], [Barone-adesi et al. (2008)]).
There are two conceivable approaches, one that estimates a di�erent set of parameters
for each cross-section of options, and one which is used to estimate all cross-sections
in the sample. Many employ NLS, using loss functions to minimize the pricing error
of the daily cross-section of options, including but not exclusively [Bakshi et al.(1997)].
[Duan (1995)] suggests a GARCH model where we would use a single cross-section. The lat-
ter method is used in [Heston & Nandi (2000)] and [Christo�ersen et al. (2004)], for example.

Moreover, the importance of �ltering volatility from fundamental returns to approximat-
ing model parameters using several cross-sections of options means the subsequent estimations
are consistent with returns. This is in the sense that the volatility used to value options is
consistent with the models' risk neutralization and the fundamental return data. Yet while
returns are used in the �ltering, the loss function does not explicitly cover an element based
on returns. This situation needs to combine loss functions for options data and returns data.
The works that exist on option pricing with GARCH speci�cations use returns to �lter con-
ditional spot volatility. Let us deliberate on the speci�cation of the GARCH in mean model
in equation1.4. In this case, ht can be extracted as observable using the volatility updating
rule (see [Christo�ersen et al. (2004)]): ht = F

(
zt−1, ht−1, θ

V
)
,

zt =
Yt − (r +mt)√

ht
.

(1.29)

The updating from ht to ht+1 can then only be expressed in terms of observables and param-
eters by substituting zt in the variance dynamic. We can attain a returns based proxy for
spot variances

(
hRt
)
for the structural parameters that are given −. [Heston & Nandi (2000)]

and [Christo�ersen et al. (2004)] set initial spot volatility at time zero to equal unconditional
volatility 250 days before the �rst date included in the sample. Therefore we can note any
loss function of interest as only a function of the parameters and observables.

In [Kanniainen et al. (2014)] it is suggested that the root mean square error between
model and market option prices is a justi�able loss22 θ∗ shows that they �nd estimates of
the set of the risk neutral parameters, minimizing the Implied Volatility Root Mean Square
Error (IVRMSE)23:

θ̂∗ = arg Min
θ

IV RMSE (θ) = arg Min
θ

√√√√ 1

NTOp

∑
t,i

(
ci,t
(
hRt ; θ

)
− ĉi,t

V̂i,t

)2

. (1.30)

In this equation, nt is the amount of option contracts in the model at time t and
NTOp =

∑TOp
t=1 nt where TOp is the number of days in the options sample. ci,t (h∗t ; θ) shows

22Note that �nancial works on option theory do not propose the appropriate loss function. Because of this

loss functions are mostly selected out of econometric function.
23The Implied Volatility Root Mean Square Error (IVRMSE). This will be used in the empirical study to

assess and compare the performances of the models, in terms of pricing
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the price of the i−th option at time t given by the model24 while ĉi,t is the price observed
in the market. V̂i,t is the Vega associated to ĉi,t that is calculated using the implied
Black-Scholes volatility σi,t attained from the market price.

[Kanniainen et al. (2014)] proposed a di�erence method to make spot volatility observ-
able. They suggested extracting the daily spot volatilities from the series of VIX, instead of
calculating spot volatilities from return sequence with the volatility updating rule VIX can
be theoretically worked out by using a formula given by the CBOE :

VIX2
t =

2

τ

∑
i

4Ki

K2
i

Q(Ki)−
1

τ

(
Ft(t+ τ)

K0
− 1

)2

where τ =
30

365
, r is the risk-free interest rate to expiration, Ft is the forward index level

computed bt the index option prices, K0 denoted the �rst strike below the the forward index
level F , Ki is the strike of ith out-of-money option25 Q(Ki) is the midpoint of the bid-ask
spread for each option with strike Ki, 4Ki is the interval between strike prices - half the
distance between the strike on either side of Ki. The VIX index is quoted as percentage
rather than a dollar amount.

In fact, VIX represents the market's expectation of the movements in the S&P500 about
volatility 30 day ahead and estimates expected volatility from the prices of stock index options
in a wide range of strike prices:

1

τ

(
VIXt

100

)2
∼= EQ

 T∑
j=1

ht+j

 (1.31)

where T = 30, EQ [.] is an expectation under the risk-neutral measure.
[Kanniainen et al. (2014)] extablixhed close forme expression for the VIX for the case
of the a�ne model by [Heston & Nandi (2000)] (HN-GARCH), the nona�ne models
GJR-GARCH by[Glosten et al. (1993)] and the NGARCH by[Engle & Ng (1993)] under
Gaussian innovation. They proposed to calibrate the models on option prices with a proxy
for the conditional variance can be extracted from the series of VIX using the following
expression:

hVIX
t =

(
1− Ψ̄

)T
1− Ψ̄T

[
τ

T

(
VIXt

100

)2

− h0

(
1− 1− Ψ̄T(

1− Ψ̄
))] (1.32)

where Ψ̄ denote the volatility persistence under the risk-neutral measures and the h0 uncon-
ditional long-term variance.

θ̂∗ = arg Min
θ

√√√√ 1

NTOp

∑
t,i

(
ci,t
(
hVIX
t ; θ

)
− ĉi,t

V̂i,t

)2

. (1.33)

24This price has been calculated using the FFT methodology shown in section 2.3 and it depends on the

risk-neutral conditional volatility at time t, h∗t , that is found from the log-returns and the risk-neutral GARCH

updating rule prepared at its unconditional level.
25a call if Ki > K0; a put if Ki < K0; both call and put if Ki = K0
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It may be preferable to use the NLS approach rather than MLE for the purpose of
option pricing, i.e. to estimate the parameters directly using information on option prices.To
calibrate a model with the nonlinear leastsquares approach using option data, a large set
of option contracts must be valued repeatedly to minimize the pricing error. If closed-form
solutions are available for option prices and VIX index, computation is not necessarily a
major problem. However, if a GARCH speci�cation requires Monte Carlo methods, the
NLS approach becomes computationally very demanding compared to Returns-MLE. NLS
as it is computationally more expensive than MLE, especially if no closed-form solutions are
available for option prices. Therefore, fast global optimization algorithms are crucial when
calibrating volatility models using option data. moreover, the IVRMSE loss function may
cause problems when using large option datasets because it is computationally intensive, as it
requires inversion of the Black-Scholes formula at each step of the numerical search procedure.

The next subsection reviews several tools we need for option pricing valuation approachs:
the Fast Fourier transform that can be used with closed formulas like in the case of GARCH

setting in the spirit of [Heston & Nandi (2000)], the Monte Carlo Simulation method to
simulate sample paths of the asset as a simple alternative to the parametric speci�cation
of the SDF, performance metric for option pricing to analyze the pricing error gap between
various option pricing models.

1.4 Option pricing Valuation

Various techniques have been provided in the �nancial literature to answer the problem of
valuing a European call under di�erent assumptions of the underlying asset's model. In our
subsequent discussion, the current stock price is set to be St and the price of a derivative
instrument with terminal payo� g (ST ) at the maturity T can be expressed in term of its
payo� function by the following conditional26 expectation :

Ct (g) = EQ

[
e−r(T−t)g (ST )

∣∣∣Ft] , (1.34)

for instance, the pay o� of the European call option at the terminal condition is given by
(ST −K)+.

In particular, if the characteristic function of the underlying is tractable in closed form,
option prices can also be obtained by the power and versatility of Fourier Analysis using Fast
Fourier transform. Once the dynamics of the log-returns under the risk-neutral measure Q of
the GARCH type model is available with closed form formulas obtain from the characteristic
function, the option valuation can be calculated by Fast Fourier transform introduced by
[Carr & Madan (1999)]. They provided an e�cient tool in producing call prices for European

26In this case, the Black and Scholes value of Ct for the call options on a non-dividend-paying stock is simply

given by Ct = StN (d1) −Ke−r(T−t)N (d2) where d1 =

log

(
St
K

)
+

(
r +

1

2
σ2

)
(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

and N (d1) is the cumulative probability distribution function for a standardized normal distribution.
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option, this approach can manage complicated models with accuracy and without loss of
e�ciency. This next subsection describes the FFT algorithm.

1.4.1 The Fast Fourier transform (FFT)

First, we present the de�nition of the Fourier transform of a function and review some of
its properties. The Fourier transform is a linear operator which transforms a function into a
continuous range of its frequency components. Let f be a piecewise continuous real function
over ]−∞,+∞[ which satis�es the integrability condition:∫ +∞

−∞
|f(x)| dx < +∞.

Dé�nition 13 The Fourier transform of f is de�ned by the following expression:

f̂(w) =

∫ +∞

−∞
f(t)eiwtdt ∀w ∈ R. (1.35)

Given f̂(w), the function f can be recovered by the following Fourier inversion formula:

f(t) =
1

2π

∫ +∞

−∞
f̂(w)e−iwtdw ∀w ∈ R. (1.36)

Then if f is a square integrable function, the Fourier transform of f and its inverse transform
are well de�ned.

This section describes the fair value of the European call option. Let k be the log of the
strike price K and st the log of the price St of the underlying asset and let qT (s) be the risk
neutral density of the log price s of the underlying asset associated to the EMM Q. The fair
value CT−t(k) of the option at time t is related to the risk-neutral density qT (s) by :

CT−t(K) = e−r(T−t)EQ
[
(ST −K)+

∣∣Ft]
CT−t(K) = e−r(T−t)EQ

[(
elog(ST ) − elog(K)

)
+

∣∣∣∣Ft]
CT−t(K) =

∫ +∞

k
e−r(T−t)(elog(ST ) − elog(K))qT−t(s)ds

CT−t(k) =

∫ +∞

k
e−r(T−t)(esT − ek)qT−t(s)ds

and using those equations, the initial call value of the option at time t = 0 of a European
call option with strike K and maturity T is given by the following expression, as we see in
[Chorro et al. (2015)] :

CT (k) =

∫ +∞

k
e−rT

(
es − ek

)
qT (s)ds.
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The square integrability of the call value function is required since we will compute the Fourier
transform and its inverse. Unfortunately such expression is not integrable, condition that is
necessary to apply the FFT. When the log strike price k converges toward to −∞, we have:

lim
k−→−∞

CT (k) =

∫ −∞
+∞

e−rT (es) qT (s)ds

lim
k−→−∞

CT (k) = e−rTEQ [ST |F0]

lim
k−→−∞

CT (k) = S0.

which is non zero and therefore CT (k) is not integrable. According to [Carr & Madan (1999)],
in order to have a square integrable function, we are going to consider the modi�ed call price
:

cT (k) = eαkCT (k)

where α > 0 is chosen in order to make cT (k) square-integrable. The Fourier transform of
cT (k) can be expressed in -terms of the characteristic function of log(ST ) under Q :

ΨT (w) =

∫ +∞

−∞
eiwkcT (k)dk

ΨT (w) =

∫ +∞

−∞
eiwk

∫ +∞

k
eαke−rT (es − ek)qT (s)dsdk

ΨT (w) =

∫ +∞

−∞
e−rT qT (s)

∫ s

−∞
(e(α+iw)k+s − e(α+1+iw)k)dkds

ΨT (w) =

∫ +∞

−∞
e−rT qT (s)e(iw+α+1)s

(
1

iw + α
− 1

1 + iw + α

)
ds

ΨT (w) =
e−rT

α2 + α+ i(2α+ 1)w − w2

∫ +∞

−∞
qT (s)e(iw+α+1)sds

ΨT (w) =
φT (w − i(α+ 1))e−rT

α2 + α+ i(2α+ 1)w − w2

where φT (.) is the characteristic function of log(ST ) under the risk neutral probability Q .

Proposition 1.4.1 Let α > 0, the Fourier transform of cT (k) exists if EQ
{
Sα+1
T

}
< +∞

Proof From the de�nition of characteristic function, we have :

|φT (−i(α+ 1))| =
∣∣∣EQ

{
e(−i(α+1))i logST

}∣∣∣ =
∣∣∣EQ

{
e(α+1) logST

}∣∣∣ = EQ

{
S

(α+1)
T

}
thus we have the following equality :

ΨT (0) =

∫ +∞

−∞
cT (k)dk =

φT (−i(α+ 1))e−rT

α2 + α

|ΨT (0)| =
e−rTEQ

{
S

(α+1)
T

}
α2 + α
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and EQ

{
S

(α+1)
T

}
< +∞ implies |ΨT (0)| < +∞. Therefore, cT (k) is well de�ned when the

moment of order (α+ 1) of the underlying is �nite. �

The call price CT (k) can be recovered by taking the Fourier inversion transform:

CT (k) = e−αkcT (k) =
e−αk

2π

∫ +∞

−∞
e−iukΨT (u)du =

e−αk

π

∫ +∞

0
e−iukΨT (u)du

by substitution, we obtain :

CT (k) =
e−αk

π

∫ +∞

0
e−iwk

[
φT (w − i(α+ 1))e−rT

α2 + α+ i(2α+ 1)w − w2

]
dw

Concerning the FFT implementation, we start with the choice on the number of intervals
N equidistant points and the step-width ∆w. A numerical Riemann approximation for CT (k)

is given by :

CT (k) ≈ e−αk

π

N−1∑
j=0

e−iujkΨT (uj)∆u

where uj = j∆u = jδ and ∆u = δ = a
N . The FFT returns N values of k and we employ

a regular spacing of size λ, so which gives us log strike levels ranging from −b to b, where
λ = 2b

N . Thus

CT (kl) ≈
e−αkl

π

N−1∑
j=0

e−ijδ(−b+λl)ΨT (jδ)δ ≈ e−αkl

π

N−1∑
j=0

e−ijλδleijδbΨT (jδ)δ

CT (kl) ≈
e−αkl

π

N−1∑
j=0

e−iδλjleijδbΨT (jδ)δ.

where δλ = 2π
N . We have succeeded in extracting the analytical expression of the Fast

Fourier transform of the faire value of the the call price of the European option. However,
the choosing of the parameters and the algorithm steps need to be carefully studied in order
to have accurate results. In fact, the freedom of choice of the damping coe�cient and the
integration path a�ect the accuracy of the method.

On the other hand, when characteristic functions are not avalaible in a closed expression,
we can use Monte Carlo simulations of independent realizations Sn,t of the process St and
approximate the conditional expectation in equation 1.34. This method is particularly use-
ful because of its ability to estimate integrals and the e�ciency of Monte Carlo simulation
increases with the number of paths used in the simulations.

1.4.2 Monte Carlo and Empirical Martingale Simulation Method

Theoretical foundation of Monte Carlo methods are mainly based on two fundamentals
asymptotic results : the Strong Law of Large Numbers and the Central Limit Theorem.
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The Strong Law of Large Numbers predicts that, under integrability conditions, the mean
of a sequence of i.i.d random variables converges toward the expectation as the sample size
increases.

Theorem 1.4.1 Let (Xi)i∈N∗ be a sequence of i.i.d random variables.

• Suppose that X ∈ L1 (Ω,F ,P), we have :

Xi + · · ·+Xn

n

a.s and L1

−−−−−−−−→ EP [X]

• if EP [|X|] = +∞, the sequence
∑n

i=1Xi diverges almost surely.

When we analyse a method, there are three particularly important considerations: bias,
variance and computing time.

Theorem 1.4.2 Let (Xi)i∈N∗ be a sequence of i.i.d random variables. Suppose that X1 ∈
L2 (Ω,F ,P), then

(X1 + · · ·+Xn)− nm√
nσ

D−−−→ N(0, 1)

where m = EP [X] and σ2 = V ar [X].

For instance, based on the expectation in equation 1.34, the Monte Carlo estimate of
the call value CT−t (g) of the conditional distribution of the ST given Ft under Q can be
computed by the following procedure :

1. Generate (St,i)i∈{1,··· ,N} a N -sample of the conditional distribution of ST given Ft under
Q,

2. Compute the estimate price by using the following expression :

CT−t (g) ≈ 1

N

N∑
n=1

e−r(T−t)g (St,n)

CT−t (g) ≈ 1

N

N∑
n=1

e−r(T−t) (St,n −K)+ for g (x) = (x−K)+

and from the central limit theorem, it is possible to obtain the con�dence interval associated
to the option price whose length is proportional to the variance of the estimator :

CT−t (g)

e−r(T−t)
∈

[∑N
n=1 (St,n −K)+

N
− 1.96σ̂N√

N
,

∑N
n=1 (St,n −K)+

N
+

1.96σ̂N√
N

]

where σ̂2
N =

N

N − 1

∑N
n=1

(
(St,n −K)+

)2
N

−

(∑N
n=1 (St,n −K)+

N

)2
 .

We can increase the e�ciency of the Monte Carlo simulation by reducing the variance
of the estimator. There is a e�cient variance reduction technique, the so-called Empirical
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Martingale Simulation Method (EMS). Moreover, as details in [Duan & Simonato (1998)].
Classical no arbitrage bounds are often violated once the classical Monte-Carlo approximation
is used, in particular the martingale condition is not empirically veri�ed :

EQ

[
e−r(T−t)ST

∣∣∣Ft−1

]
≈ CT−t (Id) 6= St.

To overcome the preceding problem and in order to improve the e�ciency of the Monte
Carlo price estimators, [Duan & Simonato (1998)] have proposed the EMS method that is a
powerful and simple multiplicative adjustment to Monte Carlo simulation. In the following,
we describe the EMS procedure for option pricing:

1. Use the standard Monte Carlo simulation method to generateN independent realisation
of ST under Q, denoted by (ST,i)i∈{1,··· ,N},

2. the empirical martingale adjustement modi�es the simulated sample paths as follows :

S̃T,i =
ST,i

1
N

∑N
i=1 ST,i

Ste
−r(T−t)

3. compute the option prices estimator CEMS
t,n of a European call option with a payo�

function g (x) = (x−K)+, strike K and maturity T by

CEMS
t,n =

e−r(T−t)

n

n∑
i=1

(
S̃T,i −K

)
+

For more details, [Chorro et al. (2012)] proposed an explicit study of the empirical pricing
performance of the empirical martingale simulation method.

After �tting a variety of forcasting models for option valuation, when more than one
forecasting technique seems reasonable for a particular application, then all the models can
be compared and evaluated on the basis of the pricing errors generated by them. One can
subtract the forecast value from the observed value of the price and obtain a measure of
error. The forecast accuracy measures can also be used to rank pricing models. Mean Error
(ME), Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error
(RMSE), Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE) are
used as forecast accuracy measures.

1.4.3 Performance Measures

All the models are compared on the basis of the forecasting errors generated by them. In
order to evaluate the pricing forecast performance, and also to order the predictions, the
literature related to the evaluation of option pricing forecast have developed several measures
of accuracy. The accuracy of a forecast performance refers to how well a given forecasting
technique can guess the value of the predicted attribute for new or previously unseen data :

Dé�nition 14 Let (Ci)i∈1,··· ,n be a datasetof real market observations and
(
Ĉi

)
i∈1,··· ,n

the

associated forecasts obtained from a given model.
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• Then the mean error (ME) is given by:.

ME =
1

n

n∑
i=1

(
Ci − Ĉi

)
• The average absolute di�erences is taken to obtain the mean absolute error (MAE).

MAE =
1

n

n∑
i=1

∣∣∣Ci − Ĉi∣∣∣
The mean absolute error (MAE) or mean absolute deviation (MAD) is calculated by

taking the absolute value of the di�erence between the estimated forecast and the actual

value so that the negative values do not compensate the positive values.

• The Mean squared error (MSE) is taken to measure the variability in forecast errors:

MSE =
1

n

n∑
i=1

(
Ci − Ĉi

)2

• The root mean square error (RMSE) measures the geometric average magnitude of the

square error.

RMSE =

√√√√ 1

n

n∑
i=1

(
Ci − Ĉi

)2

• The percentage error (MPE) is the relative of error at a particular point of time in the

series.

MPE =
1

n

n∑
i=1

(
Ci − Ĉi
Ci

)
The average percentage error in the entire series is a general measure of �t useful in

comparing the �ts of di�erent models.

• Because the positive and negative errors may tend to cancel themselves, MPE statistic

is often replaced by the mean absolute percentage error (MAPE).

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Ci − ĈiCi

∣∣∣∣∣
The closer MAPE approaches zero, the better the forecasting results.

An important aspect of the forecast metrics used for price evaluations is their capability
to rank among model results. The more discriminating measure that produces higher
variations in its model performance metric among di�erent sets of model results is often the
more desirable. In this regard, the MAE might be a�ected by a large amount of average
error values without adequately re�ecting some large errors. Giving higher weighting to
the unfavorable conditions, the RMSE usually is better at revealing model performance
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di�erences.

The sensitivity of the RMSE to outliers is the most common concern with the use of
this metric. In fact, the root mean squared error is more sensitive than other measures to
the occasional large error: the squaring process gives disproportionate weight to very large
errors. The RMSE gives a relatively high weight to large errors. This means the RMSE is
most useful when large errors are particularly undesirable. If an occasional large error is not
a problem in decision situation, then the MAE or MAPE may be a more relevant criterion.
Furthermore, in the data assimilation �eld, the sum of squared errors is often de�ned as
the cost function to be minimized by adjusting model parameters. In such applications,
penalizing large errors through the de�ned least-square terms proves to be very e�ective
in improving model performance. Under the circumstances of calculating model error
sensitivities or data assimilation applications, MAE are de�nitely not preferred over RMSE .

1.5 Outline of the Thesis

This thesis makes the following contributions to the literatures :

1. In an important paper, [Christo�ersen et al. (2006)] proposed an option pricing model
based on an IG-GARCH process and the conditional Esscher transform to under-
line the importance of modelling conditional skewness. One of the main features of
this approach is to provide, as in [Heston & Nandi (2000)], semi-closed form formu-
las for call options but for non Gaussian innovations. Recently, the monotonicity
of the stochastic discount factor (often supposed to be exponential a�ne of the log-
returns) was discussed in the literature (see for example [Christo�ersen et al. (2006)]
and [Monfort & Pégoraro (2012)]) to favor U shapes. In this �rst paper, we have ex-
plored an extension of [Christo�ersen et al. (2006)] using an U-shaped pricing kernel
that increases the �exibility of the link between the historical and the risk-neutral dis-
tributions while preserving the tractability of the model. Our empirical results are
clear, the in and out of sample pricing performances of the IG-GARCH are improved
by the choice of this new pricing kernel. What is more, we show in this framework
that an estimation strategy based on returns-VIX information provides very interesting
pricing errors at a low computational cost because expensive calibration on options can
be bypassed.

2. The second chapter of the present thesis derives from a very simple �nding: under
Gaussian hypotheses, some GARCH-type models have outstanding properties (closed-
form expressions for the VIX and/or option prices) that fail when NIG innovations
are involved. Nevertheless, it is now well documented that Gaussian GARCH option
pricing models produce poor pricing errors when compared with skewed and fat-tailed
counterparts. Thus, inspired by the so-called quasi-maximum likelihood estimator, a
new two-steps approach is provided to both take bene�t of these remarkable features
in Gaussian environment and work with more realistic distributions. This strategy
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estimates separately the volatility and the distribution parameters supposing Gaussian
innovations in the �rst step to incorporate VIX or options information in the estimation
process. In a second step, the NIG distribution is �tted from the residuals obtained in
the previous stage. What is more, we provide an empirical test for our new estimation
methodology on a large dataset of options written on the S&P500.

3. This �nal chapter attempts to �ll several gaps in the GARCH option pricing
literature, in particular, from an empirical point of view. Firstly, in the spirit
of [Christo�ersen et al. (2004)] the aim of our study is to provide an intensive
comparison analysis of empirical performances, in VIX index or options valuation,
between di�erent GARCH type models using Gaussian or non-Gaussian distributions
under di�erent classes of risk neutral measures. Furthermore, particular attention
is granted on the choice of the information set (VIX, options, returns) in the esti-
mation process. As a natural non-Gaussian alternative we favor the so-called NIG

distribution not only because it is known to �t the statistical properties of asset
returns remarkably but also because, combined with the Esscher and EGP SDF,
the pricing equations may be solved explicitly. What is more, monotonic and non-
monotonic pricing kernels ([Monfort & Pégoraro (2012)], [Chorro & Fanirisoa (2016)]
are considered for Gaussian and IG distributions. To our knowledge, in the existing
literature empirical studies asked about, in general, the impact of the distribu-
tion ([Christo�ersen et al. (2006)], [Chorro et al. (2012)]), the choice of the SDF
([Badescu et al.(2011)], [Christo�ersen et al. (2013)], [Chorro & Fanirisoa (2016)])
or the estimation strategy ([Hao & Zhang (2013)], [Kanniainen et al. (2014)],
[Papantonis (2016)], [Lalancette & Simonato (2017)]) on pricing performances, but
few of them consider all these factors at the same time. Our study is a mean of
making a contribution to understand the global impact of these complementary aspects
(24 combinations of GARCH/distribution/SDF/estimation are tested). Secondly,
inspired by the work of [Hao & Zhang (2013)] that proposes to explain the poor
pricing performances of Gaussian GARCH models by their ine�ciency to capture the
variance risk premium, we also explore in this chapter if it is possible to partly classify
GARCH option pricing models by their ability to simply reproduce the VIX index.
From purely numerical aspects, such a conclusion would be very interesting to backtest
these models in an e�cient way only using VIX information, when available, instead
of complex option datasets.
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In the �nancial literature, ARCH/GARCH models, introduced by [Engle (1982)] and
[Bollerslev (1986)], have gained widespread acceptance over the last few decades to model
the heteroscedasticity of asset returns. They emerged as one of the most popular and
�exible discrete time alternatives to continuous time di�usions because the endogenous
parametric speci�cation of volatility makes it possible to estimate the joint dynamics of
returns and volatility using only the time series of returns. From this seminal step, GARCH
models have been extended in various directions to cope, in particular, with asymmetry
properties (see e.g. [Terasvirta (2009)] for a recent survey). Recently, [Duan (1995)] was
the �rst to provide a coherent theoretical framework, the so-called Local Risk Neutral
Valuation Relationship (LRNVR), to price contingent claims when the underlying dynamics
is given by a GARCH model with Gaussian innovations. While this approach outperforms
the [Black & Scholes (1973)] benchmark, it is restricted to Gaussian innovations and the
prices are obtained using Monte Carlo simulations. Following the preceding methodology,
[Heston & Nandi (2000)] considered a new conditionally-normal GARCH-like volatility
updating scheme able to cope with skews in option prices. Moreover, they derived an
interesting semi-closed form expression for call option prices, making the pricing of such
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�nancial products fast and compatible with calibration estimation methods at a reasonable
computational cost. Nevertheless, as this model is conditionally Gaussian, it usually fails to
capture the short term behavior of equity option smiles. In fact, it is now well-documented
([Chorro et al. (2015)], p.41) that Gaussian innovations cannot take into account all the
mass in the tails and the asymmetry that characterize the distribution of daily log-returns
even if an asymmetric GARCH �lter is applied.1

During the last decade (see [Chorro et al. (2015)], Chap.3 for a recent survey), researchers
have intensively investigated the way to extend the Duan's option pricing model to incorpo-
rate the skewness and leptokurtosis observed in �nancial datasets into GARCH residuals.
In general, such a choice is motivated by equilibrium arguments (see [Badescu et al.(2009)])
and/or by its compatibility with the myriad of possible candidates for the distribution. An
important contribution in this direction was the work of [Siu et al. (2004)] in which the
authors used for the �rst time, in the GARCH setting, the conditional Esscher transform
introduced in [Bühlmann et al. (1996)] to price European options using a shifted Gamma
distribution. This approach is equivalent (see [Gouriéroux & Monfort (2007)]) to considering
a special parametric form for the pricing kernel (exponential-a�ne of the log-returns) and
allows for explicit and tractable risk-neutral dynamics in many situations.2 The �exibility
of the exponential-a�ne parameterization is probably one of its main advantages with
respect to its natural competitors as the generalized LRNVR of [Duan (1999)] (see also
[Stentoft (2008)] and [Simonato & Stentoft (2015)]) or the extended Girsanov principle
of [Elliott & Madan (1998)] (see also [Badescu et al.(2008)] and [Badescu et al.(2011)]).
Nevertheless, in spite of their di�erences, all the preceding speci�cations coincide with the
LRNVR in the Gaussian framework and depend on a single stochastic parameter related to
the equity risk premium and uniquely determined by the martingale constraints.

The choice of a �exible characterization for the pricing kernel is an old topic (see
[Rubinstein (1976)], [Brennan (1979)]. [Campbell et al. (1997)], [Cochrane (2001)],
[Ross (1978)], and [Harrison& Kreps (1979)] among others) that often leads to para-
metric forms that are monotonic functions of the log-returns ([Rubinstein (1976)],
[Hansen & Singleton (1982)], [Hansen & Singleton (1983)], [Gerber & Shiu (1994)], and
[Bühlmann et al. (1996)]). However, many recent empirical studies suggest evidence
against the monotonicity assumption ([Bates (1996)], [Bakshi et al.(1997)], [Ziegler (2007)],
[Chabi-Yo et al. (2008)], and [Bakshi et al.(2015)]). In the GARCH setting, two approaches
have been proposed to overcome this problem and take into account market and volatility
risks: [Monfort & Pégoraro (2012)] introduced an extension of the classical Esscher trans-
form, including a quadratic term in the pricing kernel while [Christo�ersen et al. (2013)]
proposed a variance dependent pricing kernel (see also [Badescu et al.(2015)] for a slightly

1Concerning asymmetric volatility responses, refer to the EGARCH model introduced in [Nelson (1991)],

the GJR GARCH model of [Glosten et al. (1993)], the APARCH model developed in [Ding et al. (1993)], as

well as the TGARCH studied in [Zakoian (1994)].
2See among others, [Christo�ersen et al. (2006)] for the Inverse Gaussian distribution,

[Badescu et al.(2008)] for the mixture of Gaussian distributions, [Chorro et al. (2012)] for the Gener-

alized hyperbolic distribution.
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di�erent approach compatible with non-a�ne models).

In this chapter, we propose an extension of the so-called Inverse Gaussian GARCH (IG-
GARCH) model of [Christo�ersen et al. (2006)] where the authors provide a new particular
a�ne GARCH structure with Inverse Gaussian innovations to take conditional skewness
into account. Using the pricing kernel derived from the conditional Esscher transform, they
obtained the risk neutral dynamics, depending only on historical parameters, which gave
rise to a closed-form option pricing formula as in [Heston & Nandi (2000)].

The main idea is to use an extended and non-monotonic version of the exponential-a�ne
pricing kernel, particularly well-adapted to the Inverse Gaussian distribution, in order to
increase the �exibility of the link between the historical and the risk-neutral distributions
while preserving the tractability of the model. In fact, even in the case of our3 new
pricing kernel, closed-form expressions remain available for European call options and the
VIX index.4 Therefore, it is possible to combine, at a reasonable computational cost,
historical returns dynamics with options or VIX information in the estimation process
to build more accurate joint likelihood as explained in [Christo�ersen et al. (2012)] and
[Kanniainen et al. (2014)].

Finally, we perform a GMM test to check the validity of each pricing kernel with
respect to the martingale conditions and present a comparative analysis of in-sample
and out-of-sample pricing performances of the IG-GARCH model associated with both
exponential-a�ne and exponential U-shaped pricing kernels and estimated using options or
VIX information. We compute the Implied Volatility Root Mean Square Error (IVRMSE)
for each model to evaluate and compare the pricing errors. This empirical study provides
strong evidences indicating that the exponential U-shaped pricing kernel is clearly superior
in approximating the price of options written on the S&P500 for the concerned period.
What is more, we show, in this framework that an estimation strategy based on returns-VIX

information provides very interesting pricing errors at a low computational cost because
expensive calibration on options can be bypassed.

The remainder of the chapter is organized as follows. The next section de�nes and develops
the theoretical framework, giving, in particular, the risk neutral dynamics under the two
di�erent pricing kernels and the associated closed form expressions for option prices and
the VIX index. We present in Section 3 the methods of estimation based on di�erent joint
maximum likelihood. The numerical results are contained in Section 4. More precisely,
we describe the returns, VIX and options datasets on the S&P500 used in the chapter, we
perform a GMM test to validate the martingale conditions and, �nally, provide the in and
out-of-sample pricing performances. Concluding remarks are given in Section 5.

3The new form of the pricing kernel has been inspired by the work of [Monfort & Pégoraro (2012)] which

introduces a second-order Esscher transform particularly well-adapted to the Gaussian (or mixture of Gaus-

sian) case. In the IG-GARCH setting, the idea is to replace in the pricing kernel, the quadratic term of

[Monfort & Pégoraro (2012)] by a hyperbolic one that is more suitable for our choice of distribution.
4The VIX expresses the market expectations of the 30-day volatility implied in equity index options.
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2.1 The stock price dynamics and the stochastic discount fac-

tors

This section presents the theoretical framework of the present chapter. Our study uses as a
core model the inverse Gaussian GARCH (IG-GARCH) model of [Christo�ersen et al. (2006)]
known to cope with conditional skewness as well as conditional heteroskedasticity and a
leverage e�ect. First, let us brie�y review the main lines of this approach that will be used
in the following as a keystone to price options written on the S&P500 index using di�erent
pricing kernels.

2.1.1 The stock price dynamics under the physical probability measure P

We consider a discrete time economy with a time horizon T ∈ N∗ consisting of a risk-free zero-
coupon bond (associated with the risk-free rate r expressed on a daily basis and supposed
to be constant) and a stock (the risky asset). Following [Christo�ersen et al. (2006)], we
assume that, under the physical probability measure P, the logarithm of the returns of the
stock price process (St)t∈{0,...,T} ful�lls Yt+1 = log

(
St+1

St

)
= r + νht+1 + ηyt+1

ht+1 = w + bht + cyt + a
h2t
yt

(2.1)

with a0 > 0, a1 ≥ 0, b1 ≥ 0 and where the (yt)t∈{1,...,T} are random variables generating
an information �ltration denoted by (Ft)t∈{0,...,T} where F0 = {∅,Ω} and (Ft = σ(yu; 1 ≤
u ≤ t))t∈{1,...,T}. Moreover, we suppose that, given Ft−1, yt follows an Inverse Gaussian
distribution with degree of freedom δt = ht

η2
.5 Traditionally, the moment generating function6

of the pair (yt,
1
yt

) can be expressed as:

E
[
e
θyt+

φ
yt

]
=

δt√
δ2
t − 2φ

e

[
δt−
√

(δ2t−2φ)(1−2θ)
]

(2.2)

from which we deduce that

E[Yt | Ft−1] = r + (ν +
1

η
)ht, V ar[Yt | Ft−1] = ht

and
Cov[Yt − Yt−1, ht+1 − ht | Ft−1] = Cov[Yt, ht+1 | Ft−1] = (

c

η
− η3a)ht.

In particular, ht is the conditional variance of the log-returns and 2.1 may be considered
as a GARCH-type model of conditional volatility accommodating with asymmetric volatility

5There exist in the literature di�erent parameterizations of the Inverse Gaussian distribution. In this

chapter, the de�nition and properties of the Inverse Gaussian distribution are presented along the lines of

[Johnson et al. (1994)] and [Barndor�-Nielsen (1998)]. In particular, the associated density function is given

by the one parameter family: 1{y>0}
δ√

2πy3
e−(√y−δ/√y)2/2 where δ ∈ R∗+ and we have P(yt = 0) = 0.

6Having option pricing in mind, the existence and the simple expression of the moment generating of the

Inverse Gaussian distribution will be fundamental to using the so-called Esscher transform (and the variant

presented in this chapter) to specify the stochastic discount factors.
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responses. We refer the reader to [Christo�ersen et al. (2006)] for an in-depth discussion on
the statistical characteristics of this process.

To conclude the presentation of the historical dynamics, let us review one of the key
feature of the IG-GARCH model (that may be seen in this way as a skewed analogous of the
[Heston & Nandi (2000)] model): the historical conditional moment generating function of
log(ST ) may be expressed using backward recursive equations.

Proposition 2.1.1 (See [Christo�ersen et al. (2006)] Appendix A) Given Ft, the moment
generating function under P of log(ST ) is characterized by:

GP
log(ST )|Ft(φ) = E

[
S(T )φ | Ft

]
= S(t)φexp

[
A(t) +B(t)

(
w + bht + cyt + a

(ht)
2

yt

)]
with A(T ) = B(T ) = 0 and

A(t) = A(t+ 1) + φr + wB(t+ 1)− 1
2 log(1− 2a(η)4B(t+ 1))

B(t) = bB(t+ 1) + φν + (η)−2 − (η)−2
√

(1− 2a(η)4B(t+ 1))(1− 2cB(t+ 1)− 2φη).

This property of the conditional moment generating function will be used in the option pricing
analysis to obtain prices using the fast Fourier transform methodology.

2.1.2 Two stochastic discount factors and the related risk-neutral dynam-
ics

When we have option pricing in mind, conditional distributions of returns and volatility
speci�cations are not the only issues we should pay attention to. In fact, the use of realistic
discrete time volatility structures and continuous distributions gives rise to incompleteness
and equivalent martingale measures are not unique in general. It is a conventional knowledge
that in the discrete time setting the construction of such a probability measure is equiva-
lent to the speci�cation of a one-period stochastic discount factor process (see for example
[Chorro et al. (2015)], Chap. 3.2.2). The purpose of this section is to present two approaches
compatible with the dynamics introduced in 2.1 in order to obtain tractable risk-neutral pro-
cesses. The �rst one, due to [Bühlmann et al. (1996)], and �rst applied in the GARCH
setting by [Siu et al. (2004)], is based on the conditional extension of the [Esscher (1932)]
transform used by [Gerber & Shiu (1994)] to price contingent claims in continuous time.
The second and new one, inspired by the second-order Esscher transform introduced by
[Monfort & Pégoraro (2012)] for Gaussian GARCH models, induces more �exibility in the
de�nition of the stochastic discount factor and permits to obtain di�erent realistic shapes.

2.1.2.1 The exponential-a�ne stochastic discount factor

The conditional Esscher transform introduced by [Bühlmann et al. (1996)] has been a major
innovation in the discrete time �nancial literature providing a �exible framework to price
European derivatives. In the GARCH setting it has been combined, with empirical suc-
cesses, with various families of distributions such as Gaussian jumps in [Duan et al. (2005)]
and [Duan et al. (2006)], mixture of Gaussian distributions in [Badescu et al.(2008)], or
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Generalized Hyperbolic distributions in [Chorro et al. (2012)]. This approach is equiva-
lent (see [Gouriéroux & Monfort (2007)]) to considering a stochastic discount factor that
is exponential-a�ne of the log-returns:7

∀t ∈ {1, · · · , T}, M ess
t = eθtYt+εt ,

where θt and εt are Ft−1-measurable random variables that may be uniquely obtained, under
mild conditions, from the pricing equations8{

EP {erM ess
t | Ft−1} = 1

EP
{
eYtM ess

t | Ft−1

}
= 1.

(2.3)

The equivalent martingale measure associated with (M ess
t )t∈{1,··· ,T} is denoted by Qess and

in the framework of the IG-GARCH model 2.1 introduced in the preceding section we obtain
the following proposition that perfectly describes the risk-neutral dynamics under Qess:

Proposition 2.1.2 (See [Christo�ersen et al. (2006)] Appendix B) Assuming that the pro-

cess (Yt)t is de�ned by 2.1, then,

a) ∀t ∈ {1, · · · , T}, the system (2.3) admits a unique solution (θ∗t , ε
∗
t ) characterized by:

θ∗t = θ∗ = 1
2

[
η−1 − 1

ν2η3

[
1 + ν2η3

2

]2
]

ε∗t = −r(θ∗ + 1)− θ∗νht −
[
δt

(
1−

√
(1− 2θ∗η)

)]
.

b) Under Qess, the process (Yt)t is again an IG-GARCH model with changed parameters: Yt+1 = log
(
St+1

St

)
= r + ν∗h∗t+1 + η∗y∗t+1

h∗t+1 = w∗ + bh∗t + c∗y∗t + a∗
(h∗t )2

y∗t

(2.4)

where ν∗ = ν
(
η∗

η

)− 3
2
, y∗t+1 = yt+1

(
η∗

η

)−1
,

w∗ = w
(
η∗

η

) 3
2
, c∗ = c

(
η∗

η

) 5
2
, a∗ = a

(
η∗

η

)− 5
2
,

with η∗ =
η

1− 2θ∗η
and where, given Ft−1, y

∗
t follows an Inverse Gaussian distribution with

degree of freedom δ∗t =
h∗t

(η∗)2 .

We remark, from the preceding proposition, that the conditional dynamics under Qess

is the same as under the historical probability with changed parameters and that the
risk-neutral conditional variance can be expressed as h∗t+1 = (η∗/η)

3
2ht+1.9 One important

empirical consequence for the pricing of European call and put options is that proposi-
tion 2.1.1 remains valid under Qess, thus semi-closed form formulas will be available for prices.

7This exponential-a�ne restriction of the stochastic discount factor is equivalent to the assumption (12)

of [Christo�ersen et al. (2006)].
8The equations are derived by applying the pricing formula to the risk-free and risky assets.
9Contrary to what happens for Gaussian GARCH models, the IG-GARCH framework is able to cope with

the well-known stylized fact that the risk-neutral variance is in general greater than the historical one.
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Even if the assumption of an exponential-a�ne stochastic discount factor is well
theoretically justi�ed in the literature, in particular in equilibrium pricing models (see
[Badescu et al.(2009)]), it is not the only issue to obtain arbitrage-free price processes that
derive from the pricing equations (2.3). Therefore, in the next subsection, we are going to
see how to extend the exponential-a�ne pricing kernel M ess

t in order to increase the �exibil-
ity of the link between the historical and the risk-neutral distributions while preserving the
tractability of the model.

2.1.2.2 The exponential U-shaped stochastic discount factor

We derive in this subsection the risk-neutral dynamics of the IG-GARCH model us-
ing an exponential U-shaped pricing kernel that extends the classical conditional Ess-
cher transform. Inspired by the second-order Esscher transform recently introduced by
[Monfort & Pégoraro (2012)] in the Gaussian setting, we include the term

ρt
yt

in the spec-

i�cation of M ess
t to be able to generate an exponential U-shaped function:

∀t ∈ {0, · · · , T}, MUshp
t = e

θtYt+εt+
ρt
yt = e

θtYt+εt+
ηρt

Yt−r−νht+1

where θt, εt and ρt are Ft−1 measurable random variables.10 Under the risk-neutral proba-
bility QUshp associated with (MUshp

t )t∈{1,··· ,T}, the overall dynamics of the log-return is, once
again similar the historical one:

Proposition 2.1.3 (See Appendix) ∀t ∈ {1, · · · , T}, if we assume a constant proportional

wedge between ht and h
∗
t (i.e h

∗
t /ht = π) the dynamics of Yt under QUshpis of the form:

Yt+1 = log
(
St+1

St

)
= r + ν∗h∗t+1 + η∗y∗t+1

h∗t+1 = w∗ + bh∗t + c∗y∗t + a∗
(h∗t )

2

y∗t

(2.5)

where ν∗ =
ν

π
, w∗ = wπ, c∗ =

cπη∗

η
, a∗ =

aη

πη∗
,

η∗ = 3

√
π2

ν2

(
−1 +

√
1 + 8ν

27π

)
+ 3

√
π2

ν2

(
−1−

√
1 + 8ν

27π

)
,

and where, given Ft, y∗t+1 follows an IG distribution with degree of freedom δ∗t+1 =
h∗t+1

(η∗)2
.

As before, we obtain a similar IG-GARCH structure for the risk-neutral dynamics of
the log-returns. Of course, if ∀t ∈ {1, · · · , T}, we impose ρ∗t = 0, we recover the result of
the proposition 2.1.2. Nevertheless, the risk-neutral dynamics given by proposition 2.1.2
only depends on the initial historical set of parameters while the dynamics presented in
proposition 2.1.3 introduces a risk-neutral parameter π. Therefore, the �rst model may

10From (2.1), we obtain MUshp
t = e

θtηyt+
ρt
yt

+εt+θt(r+νht). In the empirical exercise performed in section

4, we obtain, independently of the estimation process, η < 0, θt < 0 and ρt > 0. Therefore, lim
yt→0+

MUshp
t =

lim
yt→+∞

MUshp
t = +∞ and MUshp

t is a U -shaped function of yt.
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be directly estimated from returns using a conditional version of the classical maximum
likelihood (ML) estimation while an extra information (based on option prices) is needed for
the estimation of the second one. In the next two subsections we show how to include this
extra information in an e�cient way in the estimation strategy. More precisely, we show
that for the two risk-neutral IG-GARCH models we have numerically e�cient closed form
expressions not only for the price of European call options but also for the VIX index at any
time.

2.1.3 Pricing European call options using Fast Fourier Transform (FFT)

It is well-known from the pioneering work of [Heston (1993)] that the price of European call
options may be expressed using the risk-neutral conditional moment generating function of
log(ST ) (see also [Chorro et al. (2015)], p. 184): if Q is an arbitrary equivalent martingale
measure, we have

e−r(T−t)EQ[(ST −K)+ | Ft] = St
2 + e−r(T−t)

π

∫ +∞
0 Re

[
K−iφGQ

log(ST )|Ft
(iφ+1)

iφ

]
dφ

− Ke−r(T−t)(1
2 + 1

π

∫ +∞
0 Re

[
K−iφGQ

log(ST )|Ft
(iφ)

iφ

]
dφ).

Even though this formula prevents to use slow Monte Carlo methods to approximate the
price process, two important numerical issues stay. First, GQ

log(ST )|Ft has to be computed
e�ectively, second, �nding the price necessitates univariate numerical integration. For the
�rst point, the IG-GARCH model is particularly well-designed because proposition 2.1.1
(combined with the two preceding risk-neutral dynamics) provides an interesting backward
recursive approach. For the second point, the answer is given by [Carr & Madan (1999)]
who o�er a powerful strategy based on the Fast Fourier Transform (FFT) to compute option
prices e�ciently for a full range of strikes and a given maturity.11 In the empirical part,
this approach will be used to estimate parameters directly from option prices minimizing an
appropriate loss function.

To conclude this section, we provide, for the IG-GARCH model and the two preceding
speci�cations of the stochastic discount factor, a closed-form expression for the one-month
risk-neutral expectation of the integrated variance to integrate information on VIX without
costly computations.

2.1.4 Related VIX formulas

In a recent study, [Hao & Zhang (2013)] (see also [Qiang et al. (2015)]) derived VIX formulas
implied by various non-a�ne Gaussian GARCH dynamics combined with the so-called
[Duan (1995)] Local Risk Neutral Valuation Relationship. Furthermore, they proposed a
new joint likelihood estimation methodology, including returns and VIX data that was used

11For the sake of brevity, we refer the reader to [Chorro et al. (2015)], p. 137, where a detailed algorithm

is proposed with the associated R source code also used in the present chapter.
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in [Kanniainen et al. (2014)] to improve pricing performances in the Gaussian GARCH
setting.12 The aim of this subsection is to simply obtain analogous formulas for the a�ne
IG-GARCH model to implement VIX likelihood approaches in the empirical part of the
chapter.

The VIX index may be seen as the fair-value strike for a 22-business days variance swap
and is known as the fear index. From 2003, the VIX relies on the concept of static replication
using all calls and puts with valid quotes, and thus it is independent of any underlying option
pricing model. Nevertheless, in discrete time and in the absence of jumps, it can be written
as

1

τ

(
VIXt

100

)2

= EQ

[
1

Tc

∫ t+Tc

t
hsds | Ft

]
≈ 1

Tc

Tc∑
j=1

EQ [ht+j | Ft] (2.6)

where τ = 252, Tc = 22, Q is an equivalent martingale measure13 and ht the conditional and
historical daily variance. Concerning the IG-GARCH model, from the risk-neutral dynamics
described in 2.4 and 2.5 we remark, using iterative properties of the conditional expectation,
that the expected conditional variance EQ [ht+j | Ft] can be expressed (see the proof in the
Appendix) as a linear combination of the conditional spot variance ht+1 and the unconditional
variance h0, weighted by (ψ∗)j−1:

EQ [ht+j | Ft] = ht+1 [ψ∗]j−1 + h0

[
1− (ψ∗)j−1

]
where the risk-neutral variance persistence ψ∗ = b+

c∗

(η∗)2 +a∗ (η∗)2 and πh0 =
w∗ + a∗ (η∗)4

1− ψ∗
only depend on the risk-neutral parameters of the model.14 Therefore, we easily obtain that:

1

τ

(
VIXt

100

)2

= ht+1
1− (ψ∗)Tc

(1− ψ∗)Tc
+ h0

(
1− 1− (ψ∗)Tc

(1− ψ∗)Tc

)
. (2.7)

2.2 Estimation of parameters

In the literature, there exist di�erent methods for the estimation of GARCH parameters,
the most popular one being the conditional version of the classical Maximum Likelihood
Estimation (MLE). In fact, once the GARCH volatility structure and the innovations' density

12Such a joint calibration of model parameters is also performed in [Badescu et al.(2017)] for the NGARCH

model with non-Gaussian innovations when the risk-neutral dynamics is obtained using the so-called extended

Girsanov principle of [Elliott & Madan (1998)] and in [Papantonis (2016)] for the Heston-Nandi model asso-

ciated with the variance dependent pricing kernel of [Christo�ersen et al. (2013)]. In the latter study a new

bivariate normal model for log-returns and the VIX is also introduced to take into account market correlations

but this approach is not a priori compatible with the conditional IG distribution of the log-returns in our

setting.
13In this section, we implicitly suppose that Q derives from the one period stochastic discount factor

processes de�ned in sections 2.2.1 and 2.2.2.
14For the IG-GARCH model, the risk-neutral parameters are simple functions of the historical ones in the

case of an exponential-a�ne stochastic discount factor while they are functions of the historical parameters

and π under QUshp.
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are speci�ed, the conditional log-likelihood based on return observations is in general easy
to express and historical parameters are obtained using optimization schemes. For the IG-
GARCH model, the knowledge of historical parameters is su�cient to deduce the dynamics
under Qess because risk-neutral parameters are functions of the historical ones. For the
dynamics under QUshp, it is not a priori possible to extract the risk-neutral parameter π from
return data only. Any additional information, based, for example on options or the VIX

index, has to be exploited. To make fair the comparison between the risk-neutral dynamics
presented in this chapter and to better exploit the technical �exibility of the IG-GARCH
framework, we favor in our study joint estimation strategies using both Returns-Option (see
for example [Christo�ersen et al. (2012)]) and Returns-VIX (see [Kanniainen et al. (2014)])
observations.

2.2.1 Joint MLE Estimation using option prices and asset returns

It is well-known that GARCH parameters may be e�ciently extracted from option data,
when semi-closed form formulas are available for call options prices, minimizing an appro-
priate loss function. In [Heston & Nandi (2000)] or [Christo�ersen et al. (2006)] the authors
minimize the root mean square error between model and market option prices but as argued in
[Christo�ersen et al. (2012)] this criteria places a greater weight on expensive in-the-money
and long-maturity options. To overcome this problem, the linear vega-approximation of im-
plied volatility errors is a popular approach. We obtain estimates of the set of parameters
involved in the risk-neutral dynamics, denoted by θ∗, minimizing the Implied Volatility Root
Mean Square Error (IVRMSE):15

θ̂∗ = arg Min
θ∗

IV RMSE (θ∗) = arg Min
θ∗

√√√√ 1

NTOp

∑
t,i

(
ci,t (h∗t ; θ

∗)− ĉi,t
V̂i,t

)2

. (2.8)

Here, nt is the number of option contracts in the sample at time t and NTOp =
∑TOp

t=1 nt
where TOp is the number of days in the sample of options. ci,t (h∗t ; θ

∗) denotes the price of the
i−th option at time t given by the model16 while ĉi,t is the price observed in the market. V̂i,t
is the Vega associated with ĉi,t that is computed using the implied Black-Scholes volatility
σi,t obtained from the market price.

To avoid the distortion of parameters that may appear when performing pure cali-
bration exercises,17 we present in this subsection a joint MLE estimation using both op-
tion prices and asset returns to estimate the parameters of the model as explained in

15The Implied Volatility Root Mean Square Error (IVRMSE) will be used in the empirical study to evaluate

and compare the pricing performances of the models.
16This price is computed using the FFT methodology presented in section 2.3 and depends on the risk-

neutral conditional volatility at time t, h∗t , that is obtained from the log-returns and the risk-neutral GARCH

updating rule initialized at its unconditional level.
17In fact, when calibrating model parameters, all the attention is focused on the minimization of the in-

sample error. Therefore, it is possible to over�t the options dataset and to produce poor out-of-sample pricing

errors.
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[Christo�ersen et al. (2012)]. On the one hand, we need to build the log-likelihood function
associated with the log-returns (Y1, ..., YT ). Under IG innovations, the conditional density
function of Yt given (Y1, ..., Yt−1) is given by:

f (Yt | Y1, ..., Yt−1) =
h(t)√

2π (Yt − r − νht)3
e
−

1

2


√√√√Yt − r − νht

η
−
ht
η2

√
η

Yt − r − νht

2

,

and the conditional log-likelihood is given by

logLR =
T∑
t=1

log f (Yt | Y1, ..., Yt−1) (2.9)

that is a function of the historical parameters. On the other hand, in order to obtain the log-
likelihood function associated with option data, we consider the Black-Scholes Vega weighted
option valuation error:

εi,t =

(
ci,t (h∗t ; θ

∗)− ĉi,t
V̂i,t

)
that is an approximation of the implied volatility error. Moreover, assuming that the errors
(εi,t) are independent and identically distributed centered Gaussian random variables the
corresponding option log-likelihood can be written (see [Christo�ersen et al. (2006)]) as:

logLOp = −1

2

∑
i,t

log
 1

NTOp

∑
i,t

ε2
i,t

+
ε2
i,t

1

NTOp

∑
i,t ε

2
i,t

 (2.10)

Using both likelihoods in equations 3.9 and 4.16, the joint estimation of the parameters can
be obtained by maximizing the joint log-likelihood function:

θ̂∗ = arg Max
θ∗

T +NTOp

2

logLR
T

+
T +NTOp

2

logLOp
NTOp

(2.11)

where T is the number of days in the returns sample, and NTOp is the total number of option
contracts.18

2.2.2 Joint MLE Estimation using asset returns and VIX index

This subsection introduces a joint MLE estimation using both returns and the VIX index.
In a recent paper, [Hao & Zhang (2013)] proposed a joint likelihood estimation method that
incorporates VIX information to capture, in GARCH estimation, the Variance Risk Premium.
Their study is based on closed-form formulas for the VIX approximations associated with
several Gaussian GARCH pricing models. These formulas, similar to the one obtained in the

18We have θ∗ = {ν, ω, b, c, a, η} in the case of the exponential-a�ne stochastic discount factor and θ∗ =

{ν, ω, b, c, a, η, π} in the case of the exponential U-shaped one.
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present chapter for the a�ne IG-GARCH model, permit to compute e�ciently the related log-
likelihood from risk-neutral parameters. Using a similar approach [Kanniainen et al. (2014)]
have implemented a joint maximum likelihood estimation using returns and VIX with auto-
regressive disturbances to enhance the estimation performances of the GARCH option pricing
model at a reasonable computational cost. More precisely, in this latter study, the likelihood
function on VIX is obtained considering the following model which introduced an error process
with autoregressive disturbances:{

ut = %ut−1 + et
ut = VIXMarket

t −VIXModel
t (h∗t+1; θ∗)

(2.12)

where (et)t are independent and identically distributed centered Gaussian random variables
with variance Σ and where VIXModel

t (h∗t+1; θ∗) is obtained from equation 3.6. Therefore,

logLVIX = −T
2

(
log(2π) + log(Σ(1− %2))

)
+

1

2

(
log(1− %2)

)
− 1

2Σ

(
u2

1 +
T∑
t=2

(ut − %ut−1)2

1− %2

)
.

(2.13)
We combine this log-likelihood with the one associated with the log-returns in equation 3.9
to solve the joint likelihood optimization problem on returns and VIX as follows:

θ̄∗ = arg Max
(θ∗,%)

(logLR + logLVIX) (2.14)

where θ̄∗ = (θ∗, %∗) and %∗ is the estimated value of the autoregressive parameter introduced
above.

2.3 Empirical results

Based on the preceding theoretical results, this section examines the empirical pricing per-
formances of the IG-GARCH models using the two di�erent stochastic discount factors.

2.3.1 Data properties

To implement the previous joint maximum likelihood estimation strategies using VIX or
options information we use in this chapter several time series data. The �rst one is made of
daily log-returns of the S&P500 index and the associated CBOE VIX ranging from January
07, 1999 to December 31, 2009. The series of returns is computed from closing prices.
Both the returns and VIX series have 2718 daily observations available for our study. In
Table 2.1, we provide the descriptive statistics of the S&P500 log-returns and VIX time series.

The second dataset is made of Wednesday's European call options written on the
S&P500 from the CBOE. It contains call option prices for a large range of moneynesses
and maturities. The sample period extends from January 01, 2009 to December 31, 2010.
Our sample consists of option contracts on 104 Wednesdays and we apply, as most of the
empirical studies in the literature (see [Heston & Nandi (2000)], [Christo�ersen et al. (2006)]
or [Kanniainen et al. (2014)]), the same �lters as [Bakshi et al.(1997)]. To empirically study
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the real option pricing performances of our models, we split up our option dataset into an
in-sample and an out-of-sample one. The models will be estimated with the Returns-Option
strategy only using the in-sample data. The in-sample option data ranges from January 01,
2009 to December 31, 2009 and the out-of-sample data from January 01, 2010 to December
31, 2010. Table 2.2 (resp. Table 2.3) reports the in-sample (resp. out-of-sample) summary
statistics for option data: average price, average implied volatility and the number of
contracts for each moneyness/maturity19 category. The in-sample contains 1332 contracts
and the out-of-sample one 1533. Finally, for the risk-free rate that is essential to implement
pricing formulas, we use the daily 3 month U.S. Treasury bills (secondary market), obtained
from the U.S. Federal Reserve website.

Table 2.4, contains the estimated parameters, as well as their standard errors, for the IG-
GARCH model combined with the two di�erent stochastic discount factors using the option-
returns and the VIX-Returns methodologies. All the parameters are statistically signi�cant at
conventional 5% signi�cance levels. Instead of focusing on the individual parameter values of
the models we can analyze the main �nancial properties. For both estimation methodologies
and pricing kernels all volatility models are highly persistent under historical and risk-neutral
probabilities, the leverage coe�cients are negative and the levels of annualized volatility
are in the same range as similar empirical studies. When we analyze the implied variance
risk premium, we observe that the IG-GARCH models combined with both pricing kernels
captures values in line with classical empirical studies (see [Papantonis (2016)] and references
therein). This is a major di�erence we respect to Gaussian GARCH models.

2.3.2 Testing the validity of the stochastic discount factors

Before testing the pricing performances of the IG-GARCH model more precisely, we propose,
following [Guégan et al. (2013)], questioning the consistency of the exponential-a�ne and
exponential U-shaped forms of the stochastic discount factor. In this way, we perform a
Generalized Method of Moments (GMM) test based on the classical martingale conditions
for the risky asset and the associated derivatives. In fact, when (Mt) is a one-period stochastic
discount factor we need to have{

EP
{
eYt+1Mt+1 | Ft

}
= 1

EP

{
Pt+1(K,T )
Pt(K,T ) Mt+1 | Ft

}
= 1

(2.15)

where Pt(K,T ) is the price at time t of a call option of strike K and maturity T . Therefore,
we test the null hypothesis EP

{
eYt+1Mt+1 | Ft

}
= 120 using the statistics

tS =
1

T

T∑
t=1

(
Mt+1

St+1

St
− 1

)
. (2.16)

19We divide the option data into 18 categories according to either moneynesses and times to expiration.

The moneyness is de�ned as the ratio between the forward price of the underlying asset and the option's

strike price.
20We perform a similar analysis to test the moment condition for the returns on the options for di�erent

moneynesses and di�erent time to maturities. The results are presented in Table 2.6, Table 2.7, Table 2.8

and Table 2.9 with similar conclusions.
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Under the null hypothesis, tS/σ̂T
√
T is asymptotically standard normal where σ̂T is the

Newey-West long-run sample variance estimate forMt+1
St+1

St
−1. The results are presented in

Table 2.5: for each collection of estimated parameters (see Table 2.4), the statistics proposed
in equation 2.16 is computed and compared to the 5% level critical values for standard normal
distribution. We �nd that the null hypothesis is accepted for each stochastic discount factor
and estimation methodology. More precisely, the values of the GMM test statistics obtained
in Table 2.5 are between −1.96 and 1.96 and the null hypothesis that the moment condition
is equal to zero is not rejected at a 5% risk level. This preliminary analysis is not su�cient
to discriminate both stochastic discount factors and estimation methodologies that are all
compatible with the martingale restriction. In the next subsection, we investigate the related
pricing performances in detail.

2.3.3 Pricing performances

Observing the general pricing performances reported at the bottom of Table 2.4, one might
reach, without ambiguities, to the conclusion that, independently of the estimation method,
the IG-GARCH model combined with a U-shaped pricing kernel provides a much better �t
(in-sample and out-of-sample) than the classical exponential-a�ne approach.

In fact, the in-sample implied volatility roots mean square error IVRMSE for the period
2009 with 1322 contracts is 0.04641 for the exponential-a�ne SDF model using the joint
MLE estimation with option-returns data, while the U-shaped SDF performs slightly better
with an IVRMSE of 0.04022, which represents a 13.35% improvement as observed in Table
2.11. Analogous in-sample results are observed when estimating the models using the joint
MLE with VIX-Returns data, the IVRMSE is smaller when the U-shaped SDF is used: the
IVRMSE for the exponential-a�ne SDF is now 0.04755 versus 0.03988 for the U-shaped
SDF, which represents a 16.134% improvement. We can also observe from Table 2.12 to
Table 2.15 the values of the in-sample IVMRSE for di�erent moneynesses and maturities.
Therefore, the in-sample analysis strongly favors the U-shaped speci�cation. Concerning
the choice of the estimation methodology, even if the results are quite similar, in terms of
computational time, we can observe from Table 2.10 that the results associated with the
VIX approach are clearly faster to obtain than results from option prices.21

The preceding conclusion is not really surprising because an extra parameter is intro-
duced in our approach allowing for more �exibility in calibration exercises. Therefore, it is
now interesting to focus on the true test for a pricing model, the out-of-sample pricing per-
formances for the period 2010 when the models are evaluated using the parameter estimates
from the 2009 sample period. As observed in Table 2.4, when the model is estimated using
option-returns information, the IVRMSE drops from 0.06113 to 0.05133 with the U-shaped
pricing kernel which represents a 16.033% improvement. The same holds when VIX-Returns
observations are used to estimate the model with a 16.442% improvement. Furthermore, we

21This conclusion was conjectured in [Papantonis (2016)]:"'This technique is expected to produce equiv-

alent results to those obtained by using the whole cross-section of options, while at the same time being

straightforward and computationally more e�cient"'.
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can observe from Table 2.12 to Table 2.15 that this result is homogenous regarding money-
nesses and time to maturities. It is now clear that the out-of-sample results largely con�rm
the in-sample ones, the IG-GARCH model provides better pricing performances when the
U-shaped SDF is used to obtain risk-neutral dynamics.

2.4 Conclusion

In an important paper, [Christo�ersen et al. (2006)] proposed an option pricing model based
on an IG-GARCH process and the conditional Esscher transform to underline the importance
of modelling conditional skewness. One of the main features of this approach is to provide, as
in [Heston & Nandi (2000)], semi-closed form formulas for call options but for non-Gaussian
innovations. Recently, the monotonicity of the stochastic discount factor (often supposed
to be exponential-a�ne of the log-returns) was discussed in the literature (see for example
[Christo�ersen et al. (2006)] and [Monfort & Pégoraro (2012)]) to favor U shapes. In this
chapter, we have explored an extension of [Christo�ersen et al. (2006)] using a U-shaped
pricing kernel that increases the �exibility of the link between the historical and the risk-
neutral distributions while preserving the tractability of the model. Our empirical results are
clear, the in and out-of-sample pricing performances of the IG-GARCH are improved by the
choice of this new pricing kernel. Furthermore, we show in this framework that an estimation
strategy based on Returns-VIX information provides very competitive pricing errors at a low
computational cost because expensive calibration on options can be bypassed.
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Appendix: Proofs

Proposition 1.1.3

Let us �rst suppose that the pricing equations
EP

{
erMUshp

t+1 | Ft
}

= 1

EP

{
eYt+1MUshp

t+1 | Ft
}

= 1

π =
h∗t+1

ht+1

(2.17)

have a unique solution denoted by (θ∗t+1, ε
∗
t+1, ρ

∗
t+1). The preceding system can be expressed

using the conditional moment generating of the pair (Yt+1, y
−1
t+1) under P :

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1, ρ
∗
t+1) = e−r−ε

∗
t+1

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1 + 1, ρ∗t+1) = e−ε
∗
t+1

π =
h∗t+1

ht+1
.

(2.18)

To obtain the dynamics under QUshp, we compute the risk-neutral conditional moment
generating function of Yt+1:

GQUshp
Yt+1|Ft(u) = EQUshp

[
euYt+1 | Ft

]
= EP

[
euYt+1erMUshp

t+1 | Ft
]

= er+ε
∗
t+1GP

(Yt+1,y
−1
t+1)|Ft

(θ∗t+1 + u, ρ∗t+1).

Using the �rst equation in (5.2), we can express the risk-neutral moment generating
function simply using the historical one:

GQUshp
Yt+1|Ft(u) =

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1 + u, ρ∗t+1)

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1, ρ
∗
t+1)

.

Given Ft, we know that yt+1 follows, under the historical probability P, an IG distribution
with degree of freedom δt+1 = ht+1

η2
. Therefore, using (2.2), we obtain

GQUshp
Yt+1|Ft(u) =

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1 + u, ρ∗t+1)

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1, ρ
∗
t+1)

= eu(r+νht+1) e
[δt+1−

√
(δ2t+1−2ρ∗t+1)(1−2(θ∗t+1+u)η)]

e[δ
∗
t+1−
√

(δ2t+1−2ρ∗t+1)(1−2θ∗t+1η)]

and

GQUshp
Yt+1|Ft(u) = e

[u(r+νht+1)]+δ∗t+1

[
1−
√

1−2(u)η∗
]
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where η∗ =
η

1− 2θ∗t+1η
22 and δ∗t+1 =

√
(δ2
t+1 − 2ρ∗t+1)(1− 2θ∗t+1η). Therefore, we can write

Yt+1 = r + νht+1 + η∗y∗t+1

where, given Ft, y∗t+1 follows an IG distribution with degree of freedom δ∗t+1. In particular
risk-neutral volatility at time t+ 1 ful�lls h∗t+1 = η∗δ∗t+1 and we deduce from

Yt+1 = r + νht+1 + η∗y∗t+1 = r + νht+1 + ηyt+1

that yt+1 =
η∗y∗t+1

η∗ . Therefore, using that π =
h∗t+1

ht+1
, (2.1) gives

h∗t+1 = w∗ + bh∗t + c∗y∗t + a∗
(h∗t )

2

y∗t

where

w∗ = wπ, c∗ =
cπη∗

η
, a∗ =

aη

πη∗
.

To conclude the proof it only remains to express η∗ using the historical parameters of the
model and π. We start from

δ∗t+1 =
h∗t+1

(η∗)2
=
√

(δ2
t+1 − 2ρ∗t+1)(1− 2θ∗t+1η).

The martingale condition for the risky asset implies GQUshp
Yt+1|Ft(1) = er from which we can

extract ρ∗t+1 as a function of θ∗t+1:

ρ∗t+1 =
δ2
t+1

2

[
1− ν2η4

(1− 2θ∗t+1η)
[
1−

(√
1− 2η∗

)]2
]
.

Therefore,

h∗t+1

(η∗)2
=

−νht+1

1−
√

1− 2η∗

and

π =
−ν[

1−
(√

1− 2η∗
)] [η∗]2 .

Then, the parameter η∗ is obtained as the solution of the following cubic equation:

(η∗)3 +
2π

ν
η∗ + 2

π2

ν2
= 0.

It is well known that this equation has a unique real solution if and only if23

22A priori, the parameter η∗ depends on time through θ∗t+1 but as we are going to see below, θ∗t+1 is time

independent.
23From the empirical values of the parameters obtained in Table 4, this condition is always ful�lled in our

framework.
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4

(
2π

ν

)3

+ 27

(√
2π

ν

)4

> 0 ⇔ 27π > −8ν.

More precisely, we get

η∗ =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27

where p =
2π

ν
and q = 2

π2

ν2
and we can simplify this expression to obtain

η∗ = 3

√√√√π2

ν2

(
−1 +

√
1 +

8ν

27π

)
+ 3

√√√√π2

ν2

(
−1−

√
1 +

8ν

27π

)
.

Finally, we may deduce from the preceding equality that

θ∗t+1 =
1

2η
− 1

2

[
3

√
π2

ν2

(
−1 +

√
1 + 8ν

27π

)
+ 3

√
π2

ν2

(
−1−

√
1 + 8ν

27π

)]

and that the pricing system (5.1) has a unique solution depending on the historical parameters
and π. �

VIX as a function of the spot volatility (Section 1.1.4)

Under both speci�cations of the pricing kernel, the risk-neutral dynamics of the IG-
GARCH model may be written as{

Xt+1 = r + ν∗h∗t+1 + η∗y∗t+1

h∗t+1 = w∗ + bh∗t + c∗y∗t + a∗
(h∗t )2

y∗t

where, given Ft, y∗t+1 follows an IG distribution with parameter
h∗t+1

η∗ under the risk-neutral
probability Q. Therefore,24

EQ [ht+j | Ft+j−2] = EQ

[
h∗t+j
π
| Ft+j−2

]
=

1

π

[
w∗ + bh∗t+j−1 +

c∗

(η∗)2
h∗t+j−1 + a∗EQ

[
(h∗t+j−1)2

y∗t+j−1

| Ft+j−2

]]

=
1

π

[
w∗ +

[
b+

c∗

(η∗)2 + a∗ (η∗)2

]
h∗t+j−1 + a∗ (η∗)4

]
=

1

π

[
h∗t+j−1ψ

∗ + h∗0 [1− ψ∗]
]

= ht+j−1ψ
∗ + h̃0 [1− ψ∗]

24Using the fact that an IG random variable Z with degree of freedom δ ful�lls E[ 1
Z

] = 1
δ

+ 1
δ2
.
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where ψ∗ = b+
c∗

(η∗)2 + a∗ (η∗)2 is the variance persistence, h̃0 =
h∗0
π

and h∗0 =
w∗ + a∗ (η∗)4

1− ψ∗
is the unconditional volatility, under the risk-neutral probability. Now, using the tower
property of the conditional expectation operator, the j−step ahead prediction of the risk-
neutral volatility under the risk-neutral measure is given by

EQ [ht+j | Ft] = ht+1 [ψ∗]j−1 + h̃0

[
1− (ψ∗)j−1

]
and (3.6) follows easily from (4.13). �
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2.5 Tables and �gures
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Table 2.2: GMM tests for the estimated models to test the moment condition on returns

Estimation\ SDF M ess
t MUshp

t

Returns-option −0.0276 0.0011

Returns-VIX −0.0267 0.0082

We compute the statistics tS for the IG model both combined with the Esscher and the
U−shaped stochastic discount factors. In each case, the model parameters are estimated

using the Returns-option and the Returns-VIX strategies.

Table 2.3: GMM tests, desegregated by moneynesses and times to maturities, to test the
moment condition on options for the IG model combined with M ess

t and estimated using the
Returns-Option strategy.

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 −0.0012 −0.0020 −0.0523 −0.0055

0.975 < S/K < 1.00 0.0134 0.03141 −0.0924 0.0086

1.00 < S/K < 1.025 −0.1548 0.00205 −0.0845 −0.0260

1.025 < S/K < 1.05 0.0593 0.02654 −0.0304 0.0159

1.05 < S/K < 1.075 −0.0951 0.01434 −0.0575 −0.0108

1.075 < S/K −0.0109 −0.0041 −0.0364 −0.0076

All −0.0027 −0.0003 −0.0248 −0.0032

Table 2.4: GMM tests, desegregated by moneynesses and times to maturities, to test the
moment condition on options for the IG model combined with MUshp

t and estimated using
the Returns-option strategy.

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 −0.0175 −0.0138 −0.0757 −0.0147

0.975 < S/K < 1.00 −0.0397 0.0129 −0.0964 −0.0104

1.00 < S/K < 1.025 −0.1300 −0.0465 −0.1590 −0.0556

1.025 < S/K < 1.05 0.0028 0.0001 −0.1445 −0.0110

1.05 < S/K < 1.075 −0.1089 −0.0247 −0.1916 −0.0456

1.075 < S/K −0.0415 −0.0215 −0.0614 −0.0205

All −0.0150 −0.0088 −0.0413 −0.0097
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Table 2.5: GMM tests, desegregated by moneynesses and times to maturities, to test the
moment condition on options for the IG model combined with MUshp

t and estimated using
the Returns-VIX strategy.

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 −0.0209 −0.0184 −0.0805 −0.0173

0.975 < S/K < 1.00 −0.0476 −0.0026 −0.1213 −0.0188

1.00 < S/K < 1.025 −0.1695 −0.0877 −0.1825 −0.0734

1.025 < S/K < 1.05 −0.0099 −0.0157 −0.1533 −0.0201

1.05 < S/K < 1.075 −0.1300 −0.0438 −0.1903 −0.0544

1.075 < S/K −0.0487 −0.0282 −0.0680 −0.0246

All −0.0180 −0.0123 −0.0448 −0.0117

Table 2.6: Computation times (in hours) to estimate the IG model with the di�erent estima-
tion and risk-neutralization strategies

Estimation\ SDF Returns-Option Returns-VIX

M ess
t 8.0147 0.0151 (54.7 sec)

MUshp
t 9.1583 0.0243 (87.6 sec)

Table 2.7: Comparison, based on the IVRMSE, of empirical pricing performances of the
IG-GARCH model using M ess

t or MUshp
t

Model Returns-Option Returns-VIX

IVRMSE (2009) 13.351% 16.134%

IVRMSE (2010) 16.033% 16.442%

For example, the value 13.362% represents the improvement (in percentage) of the pricing
error for the IG-GARCH model estimated using the Returns-Option strategy when we use

the U-shaped pricing kernel instead of the exponential-a�ne one.

Table 2.8: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using
the Returns-Option estimates and M ess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.4756 0.0552 0.0192 0.0921

0.975 < S/K < 1.00 0.0298 0.0127 0.0086 0.0131

1.00 < S/K < 1.025 0.0234 0.0127 0.0092 0.0123

1.025 < S/K < 1.05 0.0242 0.0111 0.0087 0.0127

1.05 < S/K < 1.075 0.0314 0.0120 0.0085 0.0152

1.075 < S/K 0.1053 0.0321 0.0132 0.0463

All 0.1103 0.0315 0.0132 0.0464
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Table 2.9: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using
the Returns-VIX estimates and M ess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.8456 0.1628 0.0352 0.1411

0.975 < S/K < 1.00 0.0482 0.0151 0.0092 0.0174

1.00 < S/K < 1.025 0.0287 0.0129 0.0081 0.0126

1.025 < S/K < 1.05 0.0294 0.0118 0.0077 0.0171

1.05 < S/K < 1.075 0.0328 0.0116 0.0082 0.0148

1.075 < S/K 0.0889 0.0316 0.0453 0.0429

All 0.1009 0.0366 0.0412 0.0475

Table 2.10: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using
the Returns-Option estimates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.6107 0.1538 0.0337 0.1270

0.975 < S/K < 1.00 0.0272 0.0150 0.0092 0.0153

1.00 < S/K < 1.025 0.0268 0.0121 0.0080 0.0119

1.025 < S/K < 1.05 0.0228 0.0117 0.0078 0.0130

1.05 < S/K < 1.075 0.0323 0.0106 0.0075 0.0121

1.075 < S/K 0.0642 0.0301 0.0527 0.0411

All 0.0670 0.0307 0.0406 0.0402

Table 2.11: In-sample IVRMSE, desegregated by moneynesses and time to maturities, using
the Returns-VIX estimates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.3772 0.0273 0.0095 0.0686

0.975 < S/K < 1.00 0.0191 0.0066 0.0040 0.0072

1.00 < S/K < 1.025 0.0160 0.0070 0.0047 0.0071

1.025 < S/K < 1.05 0.0170 0.0062 0.0043 0.0077

1.05 < S/K < 1.075 0.0254 0.0072 0.0048 0.0109

1.075 < S/K 0.0913 0.0240 0.0086 0.0385

All 0.0941 0.0227 0.0082 0.0398
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Table 2.12: Out-of-sample IVRMSE, desegregated by moneynesses and time to maturities,
using the Returns-Option estimates and M ess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.0768 0.0408 0.0149 0.0685

0.975 < S/K < 1.00 0.0128 0.0086 0.0076 0.0094

1.00 < S/K < 1.025 0.0123 0.0094 0.0079 0.0096

1.025 < S/K < 1.05 0.0182 0.0105 0.0086 0.0120

1.05 < S/K < 1.075 0.0265 0.0125 0.0105 0.0160

1.075 < S/K 0.1215 0.0575 0.0908 0.0773

All 0.0766 0.0427 0.0540 0.0611

Table 2.13: Out-of-sample IVRMSE, desegregated by moneynesses and time to maturities,
using the Returns-VIX estimates and M ess

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 1.0532 0.2465 0.0531 0.1976

0.975 < S/K < 1.00 0.0622 0.0223 0.0145 0.0220

1.00 < S/K < 1.025 0.0365 0.0176 0.0125 0.0173

1.025 < S/K < 1.05 0.0377 0.0167 0.0119 0.0131

1.05 < S/K < 1.075 0.0423 0.0153 0.0115 0.0194

1.075 < S/K 0.1155 0.0408 0.0733 0.0606

All 0.1190 0.0503 0.0605 0.0630

Table 2.14: Out-of-sample IVRMSE, desegregated by moneynesses and time to maturities,
using the Returns-Option estimates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.0638 0.0180 0.0101 0.0327

0.975 < S/K < 1.00 0.0097 0.0082 0.0077 0.0085

1.00 < S/K < 1.025 0.0107 0.0092 0.0090 0.0094

1.025 < S/K < 1.05 0.0140 0.0098 0.0091 0.0108

1.05 < S/K < 1.075 0.0235 0.0118 0.0106 0.0152

1.075 < S/K 0.1498 0.0537 0.0239 0.0770

All 0.0959 0.0346 0.0169 0.0513
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Table 2.15: Out-of-sample IVRMSE, desegregated by moneynesses and time to maturities,
using the Returns-VIX estimates and MUshp

t .

T < 60 60 6 T 6 180 T > 180 All

0 < S/K < 0.975 0.0659 0.0190 0.0106 0.0338

0.975 < S/K < 1.00 0.0099 0.0086 0.0082 0.0088

1.00 < S/K < 1.025 0.0109 0.0095 0.0094 0.0098

1.025 < S/K < 1.05 0.0143 0.0102 0.0096 0.0112

1.05 < S/K < 1.075 0.0239 0.0122 0.0111 0.0156

1.075 < S/K 0.1513 0.0548 0.0247 0.0780

All 0.0972 0.0354 0.0176 0.0527
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In a seminal paper, [Heston (1993)] proposed a stochastic volatility model providing a
closed-form solution for the price of a European call option. More precisely, in this model, the
characteristic function of the log-returns under the risk-neutral distribution has a closed-form
expression and options are priced e�ciently from the powerful Fast Fourier Transform (FFT)
as explained in [Carr & Madan (1999)]. In particular, the parameters of the model may be
calibrated from option datasets at a reasonable computational cost because Monte Carlo
simulations can be bypassed. In the GARCH setting, [Heston & Nandi (2000)] o�ered a
discrete-time framework replicating this key feature. Unfortunately, this remarkable property
comes at an hefty price: in [Heston & Nandi (2000)], GARCH residuals are supposed to be
Gaussian and the recursive volatility structure cannot be chosen arbitrary.1 Nevertheless,
in a recent paper, [Hao & Zhang (2013)] computed model-implied estimates of the VIX

1Explicit backward-recursive equations to compute e�ciently the moment generating function of the log-

returns are obtained because, in this Gaussian setting, both conditional expectation and variance of the volatil-

ity process are a�ne functions of the volatility at the preceding trading date. In [Christo�ersen et al. (2006)],

the authors proposed a non-Gaussian alternative to the Heston-Nandi model preserving the tractability but,

once again, the volatility structure is selected to obtain a characteristic function that is an exponential a�ne

function of the state variables.
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index for a large family of asymmetric GARCH updating rules under Gaussian innovations.
One of the main advantages of this approach is to be compatible with classical GARCH
speci�cations and to provide an alternative approach to estimating the parameters using
both log-returns and VIX information when available. In [Kanniainen et al. (2014)] and
[Papantonis (2016)], the authors proved that these joint maximum likelihood estimation
strategies improve considerably the pricing performances of a�ne and non-a�ne GARCH
models when using the volatility index. However, these studies are restricted once again to
a Gaussian setting.

It is now a well-known fact in the literature (see for example [Chorro et al. (2015)]
section 2.4 and references therein) that non-Gaussian innovations provide a better �t to
daily log-returns taking into account all the mass in the tails and the asymmetry. This
superiority is con�rmed as far as option pricing is concerned because Gaussian GARCH
models are unable, in general, to capture the variance risk premium. Unfortunately, when
working with non-Gaussian residuals and non-a�ne volatility prescriptions it is not possible
to obtain closed-form expressions for the VIX index or option prices and joint maximum
likelihood estimation methodologies cannot be implemented e�ciently.2

The objective of this chapter is to propose and study a new estimation methodology for
non-Gaussian GARCH models, called the two-step estimation strategy, that incorporates,
with low computational cost, VIX or options information in the estimation process. More
precisely, this strategy estimates separately the volatility and the distribution parameters: in
the �rst step, we assume Gaussian innovations to estimate volatility parameters maximizing
joint Option-Returns or joint VIX-Returns likelihood when closed-form formulas are available
for the VIX index or plain vanilla options. In a second step, a non-Gaussian distribution is
�tted from the residuals obtained in the previous stage. Thereby we both take bene�t of the
remarkable features of GARCH models in Gaussian environment and work with more realistic
distributions. In a deep empirical study, we question the e�ciency of this new �exible
estimation methodology in terms of option pricing errors. We use two volatility structures
(the a�ne [Heston & Nandi (2000)] and the non-a�ne3 [Glosten et al. (1993)] GARCH
models) combined with the Normal Inverse Gaussian distribution and risk-neutralized
using the conditional Esscher transform to analyze the ability of the two-step approach to
reproduce empirically observed stylized facts of cross section of options. Our message is
clear, the use of non-Gaussian innovations estimated with the two-step approach improves
the pricing performances of GARCH models without increasing the computational burden.

The rest of the chapter is organized as follows : in the �rst section, we will review both
the a�ne-model GARCH-HN and the non-a�ne-model GARCH-GJR. We will also present

2A notable exceptions is the NIG NGARCH model associated with the extended Girsanov principle of

[Badescu et al.(2018)] where the authors obtained an analytic solution for the VIX. Their approach will be

compared to our two-step estimation strategy in the next chapter.
3Other non-a�ne GARCH structures, as the NGARCH model of [Engle & Ng (1993)], have also been

tested with similar results.
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also the Normal Inverse Gaussian distribution and some of its properties. Section two will
describe the estimation of parameters. Moreover, the two steps modi�ed-QML estimation
methodology topic will be discussed and developed in that part. Section three will discuss
the data, the results of the analysis and the forecasting of the �nancial time series. Finally,
we will �nish with a brief conclusion of the work.

3.1 Framework and building blocks

We de�ne the section frame by the following process: Firstly, we will consider two
models of time varying volatility dynamics which characterize the conditional volatility:
[Heston & Nandi (2000)]'s a�ne GARCH-HN and the non-a�ne GARCH-GJR model in-
troduced by [Glosten et al. (1993)]. We will then inspect the risk neutral dynamics of each
model under Normal Inverse Gaussian innovation with the exponential a�ne stochastic dis-
count factors M ess

t i.e. the Esscher Transform

3.1.1 GARCH-HN

We next utilized the a�ne GARCH, introduced by [Heston & Nandi (2000)], with the fol-
lowing4 dynamics: {

Yt = r + λ0ht +
√
htzt

ht = a0 + a1
(
zt−1 − γ

√
ht−1

)2
+ b1ht−1

(3.1)

with a0 > 0, a1 > 0, b1 > 0 where r is the risk free rate, zt are held to be as i.i.d
random variables with E [zt] = 0 and V ar [zt] = 1. We represent the leverage e�ect by the
parameter γ, which shows the negative trade-of between volatility and returns. We are able
to determine that the variance persistence is Ψ = b1 + a1γ

2 and the average volatility level is

E [ht] =
a0 + a1
1−Ψ

. Considering Gaussian innovations, due to this models's a�ne structure, it

has all the bene�ts of a closed-form solution for the cost of a European call option. During
the estimation process, this enables us to use option data directly.

The locally risk-neutral dynamics5 for the GARCH-HN model in the equation (3.1), under
Gaussian conditional distribution, are discovered by the moment generating function of Yt
given Ft−1. We can write the dynamics thus:

Yt = r − 1

2
ht +

√
htz
∗
t

ht = a0 + a1

(
z∗t−1 −

(
γ + λ0 +

1

2

)√
ht−1

)2

+ b1ht−1.
(3.2)

where zt+1 are i.i.d N(0, 1), the persistence is �xed as Ψ∗ = b1 + a1

(
γ + λ0 + 1

2

)2
and the

variance's �rst value h0 is �xed as equal to the average volatility level.

4A unique second order stationary solution exists if and only if a1γ
2 + b1 < 1.

5The parameters of Mess
t can be obtained from the pricing relations and the moment generation function

(for more details see [Chorro et al. (2015)] in page 88).
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3.1.2 GARCH-GJR

We next utilised the non-a�ne GARCH-GJR, developed by [Glosten et al. (1993)], created
for the analysis of the asymmetric e�ects of positive and negative asset returns. We de�ne
the model in the following equation6: Yt = r + λ0

√
ht −

ht
2

+
√
htzt

ht = a0 + ht−1

[
b1 + a1 (zt−1)2 + γmax (0,−zt−1)2

] (3.3)

with a0 > 0, a1, b1, γ > 0 where zt are i.i.d random variables with E [zt] = 0, V ar [zt] = 1

and the asymmetry7 is captured by γ. When γ > 0, the model will account for leverage
e�ect, meaning future volatility is risen more highly by bad news than good news (zt > 0).

We can express the persistence as Ψ = b1+a1+
γ

2
and the unconditional variance h0 =

a0

1−Ψ
.

Under the risk-neutral measure Qess with Gaussian innovations, [Duan (1995)] suggests
that the risk-neutral volatility dynamics may be de�ned thus: Yt = r − ht

2
+
√
htz
∗
t

ht = a0 + ht−1

[
b1 + a1

(
z∗t−1 − λ0

)2
+ γmax

(
0,−

(
z∗t−1 − λ0

))2]
.

(3.4)

where z∗t are i.i.d N(0, 1), the persistence Ψ∗ = b1 +[a1 + γN(λ0)]
(
1 + λ2

0

)
+γλ0n(λ0) where

N(.), n(.) describes the standard normal cumulative in addition to the functions of density
function. We must indicate that, unlike the a�ne model, the non-a�ne GARCH-GJR model
gives us no closed-form formula for option prices. The capacity of it to exploit the option
data is thus decreased, and these must instead be computed by Monte Carlo methods.

Nevertheless, in a recent work, [Kanniainen et al. (2014)] determined the implied VIX

formulas for the GARCH-HN and GARCH-GJR models under Gaussian innovations. They
employed a joint likelihood estimation methodology, including returns and VIX data, to give
better pricing performances. Following [Hao & Zhang (2013)], the VIX index can be viewed
as the fair-value strike for a variance swap of 21-business days:

1

τ

(
VIXt

100

)2

=
1

Tc

Tc∑
j=1

EQess [ht+j | Ft] (3.5)

where τ = 250, Tc = 21. Through the use of the tower property of the conditional expecta-
tion under the risk neutral dynamics in equation 3.2, 3.3, the forecast conditional variance
EQess [ht+j | Ft] can be represented thus:

EQess [ht+j | Ft] = ht+1 [Ψ∗]j−1 + h̃0

[
1− (Ψ∗)j−1

]
with h̃0 =

a0 + (a1 · 1HN )

1−Ψ∗

where the indicator8 function of HN is denoted as 1HN . Furthermore, we �nd ∀t ∈
6The variance is similarly weak stationary under the physical probability if Ψ = b1 + a1 +

γ

2
< 1.

7Asymmetry and leverage: ([Glosten et al. (1993)], [Chorro et al. (2015)]) Asymmetry explains the fact

that positive and negative shocks of equal magnitude do not have the same e�ects on volatility; the term

leverage refers to the possibility that negative shocks increase volatility.
8i.e 1HN = 1 when HN is used and zero otherwise.
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{1, · · · , T}, the expression of the n of HN . Moreover, we obtain ∀t ∈ {1, · · · , T} the ex-
pression of the VIXt thus:

VIXt = 100


√√√√τ

[
ht+1

1− (Ψ∗)Tc

(1−Ψ∗)Tc
+ h̃0

(
1− 1− (Ψ∗)Tc

(1−Ψ∗)Tc

)] . (3.6)

where h̃0 is the unconditional variance under the risk-neutral measure, and Ψ∗ the persistence
under the risk-neutral probability.

3.1.3 NIG-GARCH models

We will rapidly cover the Normal Inverse Gaussian distribution9 (NIG) proposed by
[Barndor�-Nielsen (1998)]. We will consider Y ∼ NIG (α, β, δ, µ), a random variable fol-
lowing a Normal Inverse Gaussian distribution along with parameters θD = (α, β, δ, µ). Its
probability density function is formed thus:

dNIG (z, α, β, δ, µ) =
α

π
e
δ

(√
α2−β2+β

(
z − µ
δ

)) K1

αδ√1 +

(
z − µ
δ

)2


√
1 +

(
z − µ
δ

)2
(3.7)

where δ > 0, α >| β |> 0 where µ is the location, β the skewness, α the tail-heaviness and
δ the scale. K1 is the modi�ed Bessel function of the third kind with index one, with mean

m = µ +
δβ√
α2 − β2

and variance σ2 =
δα2√
α2 − β2

3 . Hence, every a�nely transformed, and

in particular every linearly combination, NIG random variable, is an NIG random variable.
Next we will take a look at the transformed NIG random variable:

X =
1

σ
(Y −m) with X ∼ NIG

(
α̃, β̃, δ̃, µ̃

)
(3.8)

which is a centered version with unit variance where α̃ = σα, β̃ = σβ, δ̃ = δ
σ and µ̃ = −m

σ + µ
σ .

The stochastic discount factors M ess
t , employed by us in this chapter are characterized

by an exponential a�ne form the Esscher Transform developed by [Gerber & Shiu (1994)].
M ess
t is denoted as ∀t ∈ {0, · · · , T} as M ess

t = eθtYt+εt where Yt is the logarithm of the stock
price process' returns at time t, θt and εt and Qess are predictable coe�cients. Under −, the
dynamic of the NIG-GARCH-HN and NIG-GARCH-GJR are altered in a non-linear fashion
as detailed in [Chorro et al. (2015)] (chapter 3 proposition 3.4.7.):

z∗t ↪→ NIG
(
α̃, β̃ +

√
htθ

q
t , δ̃, µ̃

)
9 This distribution is generally well suited to �nancial time series returns (see [Barndor�-Nielsen (1998)],

[Badescu et al.(2015)] and [Badescu et al.(2017)]). We could regard the NIG distribution as a subclass of the

generalized hyperbolic distributions.
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where

θt = −1

2
− α̃β̃

√
δ̃

√
ht%

3
2

− 1

2

√√√√√√
(
α̃mt +

√
δ̃htβ̃%

)2

htδ̃%3

 4α̃4δ̃2

htδ̃%3 +
(
α̃mt +

√
δ̃htβ̃%

)2 − 1


% =

√
α̃2 − β̃2 and mt = λ0ht for HN and mt = λ0

√
ht −

ht
2

for GJR. However, we should

point out that both models can be estimated and investigated empirically. Indeed, in this
chapter we aim to suggest an alternative to facilitate the estimation of NIG-GARCH model.

3.2 Estimation of parameters

For the two-step modi�ed Quasi-Maximum Likelihood estimation of NIG-GARCH processes,
instead of immediately employing the NIG distribution, we will begin by giving our attention
to the Gaussian-GARCH estimable using several di�erent methods. We employed the joint
estimation procedure of [Kanniainen et al. (2014)] which gives us a joint MLE estimation
analysis of a�ne and non-a�ne Gaussian-GARCH models, combining information from the
underlying asset returns and options data or VIX index.

We are able to approximate the Gaussian-GARCH-HN volatility model's parameters θV

through direct calibration with option prices. Nevertheless, it must be pointed out that
this approach depends having closed-form expressions of the option price, which is true
for the Gaussian GARCH-HN. However, once started, this approach is extremely intensive
on computing time. The amount of pricing simulation paths has an e�ect on computing
time. To reduce the time spent, and to provide information from VIX indexes, we employ
[Christo�ersen et al. (2012)]'s joint MLE estimation option-returns in addition to the joint
MLE estimation VIX-returns explained in [Kanniainen et al. (2014)].

3.2.1 Joint MLE estimation

Let us de�ne the cardinal of the set of option market prices be as N .
[Christo�ersen et al. (2012)] maintains that it is possible to obtain the model parameters
θ =

(
λ0, θ

V
)
by employing the joint MLE estimation techniques with option and returns

information:

θ̂ = arg Max
θ

T +N

2

logLR
T

+
T +N

2

logLOp
N

(3.9)

where logLR denotes the conditional log-likelihood function associated with the returns and
logLOp is the conditional log-likelihood function associated with the option data. ci

(
hRt ; θ∗

)
denotes the model prices and ĉi the option market prices. Then we may describe logLOp as
follows:

logLOp = −1

2

N∑
t=1

log

(
1

N

N∑
i=1

ε2
i

)
+

ε2
i

1

N

∑N
i=1 ε

2
i

 with εi =
ci
(
hRt ; θ∗

)
− ĉi

V̂i
,
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where V̂i is the Black and Scholes Vega associated with ĉi, and the implied volatility errors

(εi) are supposed to be i.i.d centered Gaussian variables with variance
1

N

∑N
i=1 ε

2
i . In both

Gaussian-GARCH models, logLR is obtained thus:

logLR = −1

2

T∑
t=1

(
log(2π) + log(ht) +

(Yt − r −mt)
2

ht

)
.

where mt = λ0ht for HN and mt = λ0

√
ht −

ht
2

for GJR.

According to [Kanniainen et al. (2014)]), it is possible to obtain the estimated parame-
ters θ =

(
λ0, θ

V
)
associated with the joint-MLE estimation of VIX-Returns by solving the

optimization: (
θ̂, %̂
)

= arg Max
(θ,%)

(logLR + logLVIX) (3.10)

where the log-likelihood logLVIX on (VIXt)t can be de�ned as:

logLVIX = −T
2

(
log(2π) + log(Σ(1− %2))

)
+

1

2

(
log(1− %2)

)
− 1

2Σ

(
u21 +

T∑
t=2

(ut − %ut−1)
2

1− %2

)
(3.11)

under the assumption that the errors process (ut) = VIXMarket
t −VIXModel

t (ht−1; θ) is follow
autoregressive disturbances ut = %ut−1 + et and (et)t are i.i.d Gaussian random variables
with mean zero and variance Σ2.

The respective bene�ts of both procedures are that former studies the information from
option data and from the returns proportionally, whereas the latter simultaneously amalga-
mates the VIX and the returns data. However, due to its use of options, the former needs
closed-form expressions of the prices. Like in the case of NLS, it may only be employed in
the case of Gaussian-GARCH-HN. Moreover, both of these alternatives are dependent on
the Gaussian innovation hypothesis. Nevertheless, we require each of these joint estimation
strategies in our novel method to estimate non-Gaussian GARCH models.

3.2.2 Two-step estimation strategy

The two-step estimation strategy, like the QML procedure, separately estimates the vector of
volatility parameters θ =

(
λ0, θ

V
)
and the distribution parameters θD in two separate phases.

This is performed successively. When �xing the volatility dynamics in equation 3.1 and 3.3,
in the primary phase, the QML estimation takes it for granted that the innovations zt follow
a Gaussian distribution to approximate the volatility parameters

(
λ0, θ

V
)
. The secondary

phase involves the estimation of the distribution parameter θD by maximizing:

T∑
t=1

− log(ht)

2
+ log

[
dθD

(
zt

(
λ̂0, θ̂

V
))]
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employing the standardized10 residuals where dθD is the density function of the NIG
distribution.

In a similar manner, the distribution and volatility parameters are looked at separately,
particularly though the reduction of the dimensions of optimization problems. Rather than
looking at a normal distribution in the second step, our focus is on the density function of
centered NIG distribution. The iterative algorithm requires the following steps:

• Step 1: We suppose that the (zt)t are i.i.d N(0; 1) under P. In this manner, we can
estimate the vector of volatility parameters

(
λ0, θ

V
)
as follows :

� When there is a closed-form formula for option prices, we can obtain
(
λ0, θ

V
)
for

the maximization problem in equation (3.9).

� When there is no closed-form formula for option prices but we do have a closed-
form formula for the VIX index then, we can obtain

(
λ0, θ

V
)
through the max-

imisation the joint VIX-Returns likelihood (3.10).

• Step 2: From the i.i.d residuals
(
z1

(
λ̂0, θ̂

V
)
, · · · , zT

(
λ̂0, θ̂

V
))

that may be extracted

by the step before, We obtain the distribution vector of parameters θD by maximizing:

T∑
t=1

− log(ht)

2
+ log

[
dθD

(
zt

(
λ̂0, θ̂

V
))]

where dθD is the density function of a centered NIG random variable with unit variance
in equation 3.7.

In comparison to the aforementioned estimation strategies, the two-step approach en-
ables us to take advantage both of the Gaussian hypothesis and the impact of the NIG
distribution. To obtain an explicit expression of the risk neutral dynamics, we have
made the assumption that the innovations are i.i.d Gaussian random variables as described
[Kanniainen et al. (2014)]. This makes the optimization procedure smaller and enables us
to estimate volatility parameters. In return, though the NIG distribution gives us no price
estimations, it enables the use of speci�c methods for price calculation. Chie�y, as described
in [Chorro et al. (2015)], the use of the Monte Carlos simulation with the Empirical Martin-
gale Simulation Method (EMS) can e�ectively approximate the option prices. Moreover, as
our results clearly illustrated, the prices that we obtained from this process performed better
than those with closed-form solutions from the Gaussian hypothesis.

3.3 Empirical results

3.3.1 Data properties

In addition a dataset of options was used and written on the S&P500. We limited ourselves
to contracts from Wednesday due to the quantity of option pricing models to analyze in

10

(
z1
(
λ̂0, θ̂

V
)
, · · · , zT

(
λ̂0, θ̂

V
))

=

Y1 − r − λ̂0h1
√
h1

(
θ̂V
) , · · · , YT − r − λ̂0hT

√
hT
(
θ̂V
)

 for the GARCH-HN.
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this section. It concerned 4563 options contracts quoting the prices of the period beginning
in January 2nd, 2009 and ending in April 15, 2012. We split the option data set into two
subcategories: the �rst where the model parameters are valued (to use for the a�ne models
the joint likelihood estimation centred on returns and options) and the second category which
was used to equate the pricing performances of the models. The initial category for the in-
sample approximation contrast is named Dataset A from January 2nd, 2009 to December 22,
2010 and comprises 2714 and contracts. On the other hand, the subsequent category for the
out-of-sample contrast is named Dataset B and comprises 1849 contracts with 67-Wednesdays
from January 03, 2011 to April 15, 2012.

3.3.2 Pricing performance using Montecarlo simulation

Using Monte Carlo techniques we can implement the estimated parameters
(
λ̂0, θ̂

V , θ̂D
)
to

decide the price options. The Empirical Martingale was used to increase the numerical e�-
ciency of the Monte Carlo simulation as a tool to decrease the variance.11 Simulation Method
(EMS). To demonstrate this [Chorro et al. (2015)] conducted a detailed study of the empiri-
cal pricing performance of the (EMS). To calculate and contrast the Implied Volatility Root
Mean Square (IVRMSE) and the Volatility Risk Premium (VRP) we used the estimated
parameters and the simulated option prices. It is important to note that [Papantonis (2016)]
de�nes the Volatility Risk Premium as the di�erence between the conditional volatility esti-
mated with the physical and risk-neutral expectations:

V RPt = EP
t [V ar (Yt+1)]

1
2 − EQ

t [V ar (Yt+1)]
1
2 =

√
ht −

√
h∗t .

where EP
t (.) and EQ

t are correspondingly the conditional expectation with the physical
measure − and risk-neutral measure −. When we consider Gaussian-innovation, it is evident
that the risk-neutral conditional variance h∗t is equivalent to ht (see [Chorro et al. (2015)]).
If we accept this, the VRP in GARCH-HN and GARCH-GJR cases could be zero, which is
not the situation of the VRP in NIG-GARCH model.

For every evaluation procedure, Table 3.1 and Table 3.2 to total the parameters estimated
from the two-steps Modi�ed-QLME estimation for NIG-GARCH model. The table 3.3, 3.4,
3.5, 3.6, 3.7 and 3.8 present to us, in a clear format, the pricing performances founded on
IVRMSE, VRP and time to calculate each model. From the results of these tables we can
suggest various empirical deductions. When it comes to the NIG-GARCH model, the results
from these were very promising summaries for the time series method to option pricing.
Normally, we get an added reduction in the IVRMSE when contrasted with the GARCH-HN
model in terms of joining together NIG distribution and GARCH-GJR model.

The values of IVRMSE from the table 3.3, 3.5, the pricing performances of the NIG-
GARCH-GJR is superior, compared to the NIG-GARCH-HN model (which itself stands as
a good model when contrasted to Gaussian). The option pricing performance is better when

11The empirical martingale simulation is an fascinating technique used to decrease the variance that

[Duan & Simonato (1998)] has presented. It was used extensively to heighten the numerical e�ciency of

the Monte Carlo estimators in GARCH option pricing models (for example [Chorro et al. (2015)])
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using the two step approximation method, as shown in table 3.7. Furthermore, when assessing
option returns, the NIG-GARCH-GJR models convey a performance which is similar to that
of the class NIG-GARCH-HN. However, it is less e�cient than the NIG-GARCH model
based on the VIX returns. Nonetheless, we it is important to that the second method is
undoubtedly due to the use of the VIX in its pricing approach, consequently accounting for the
true volatility premium. When it comes to option pricing, both in-sample and out-of-sample
studies favor the NIG-GARCH-GJR models with Returns-VIX co-dependant approximation
(see table 3.4, 3.6 and 3.7 as well as 3.8). When considering the �nal result, we can con�rm the
calculation time (see table 3.3 and 3.5 ) which o�ers a clear indication of NIG-GARCH-GJR
as an suitable method for option valuation modelling.

3.4 Conclusion

We introduce in this chapter a new estimation strategy for non-Gaussian GARCH option
pricing models. This two-step inference methodology incorporates, with low computational
cost, VIX or options information in the estimation process. It �nds its origin in a very
simple observation : under Gaussian hypotheses, some GARCH-type models have outstand-
ing properties (closed-form expressions for the VIX and/or option prices) that fail when
more realistic innovations are involved. More precisely, this strategy estimates separately the
volatility and the distribution parameters assuming in the �rst step Gaussian innovations to
estimate volatility parameters while in a second step, a non-Gaussian distribution is �tted
from the residuals previously obtained . We provide a deep empirical study to illustrate the
importance of combining a non-Gaussian distribution and joint likelihood estimation method-
ologies using VIX or options information and prove that the two-step approach improves the
pricing performances of GARCH models without increasing the computational burden.
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3.5 Tables and �gures

Figure 3.1: Plot of h, h∗ and V RP for GARCH-HN estimated with Return-VIX

Figure 3.2: Plot h, h∗ and V RP for GARCH-GJR estimated with Return-VIX

.



78

Chapter 3. A new two-step estimation strategy for non-Gaussian GARCH

models

T
able

3.1:
Sum

m
ary

�ts
of

the
�rst

step
G
A
R
C
H
-G

aussian-E
ss:

E
stim

ates
and

standard
errors

using
returns

dataset
and

the
in-sam

ple
dataset

(2009-2010)
w
ith

G
aussian

innovation
and

M
ess.

R
eturns

m
eans

M
L
E
-estim

ation
procedure

using
only

returns
inform

ation,
O
pt-V

IX
m
eans

Joint
M
L
E
estim

ation
using

returns
and

option
inform

ation,
R
et-V

IX
m
eans

Joint
M
L
E
estim

ation
using

returns
and

V
ix

inform
ation.

G
A
R
C
H
-ty

p
e

H
N
-G

A
R
C
H

G
J
R
-G

A
R
C
H

H
N
-G

A
R
C
H

H
N
-G

A
R
C
H

G
J
R
-G

A
R
C
H

In
fo
rm

a
tio

n
R
etu

rn
s

R
etu

rn
s

O
p
t-R

et
R
et-V

IX
R
et-V

IX

a
0

3.854E
−

08
3.049E

−
06

1.859E
−

07
3.757E

−
12

4.966E
−

06
S
ta
n
d
.D
ev

(0.0044)
(0.00111)

(0.0009)
(0.0007)

(0.0004)
a

1
2.254E

−
05

1.243E
−

01
1.542E

−
06

2.252E
−

05
1.240E

−
01

S
ta
n
d
.D
ev

(0.0001)
(0.0003)

(0.0003)
(0.0002)

(0.0000)
b

1
8.272E

−
01

8.509E
−

01
6.500E

−
01

9.117E
−

01
8.504E

−
01

S
ta
n
d
.D
ev

(0.0035)
(0.00068)

(0.0030)
(0.0086)

(0.0015)
γ

5.379E
+
01

2.208E
−

02
4.586E

+
02

1.423E
+
01

2.314E
−

02
S
ta
n
d
.D
ev

(0.0011)
(0.0025)

(0.0095)
(0.0088)

(0.0005)
λ

0
1.020E

+
00

2.288E
−

01
8.596E

+
00

1.513E
+
00

1.989e −
0
1

S
ta
n
d
.D
ev

(0.0000)
(0.0055)

(0.0008)
(0.0501)

(0.0033)
%

−
−

−
0.9992

0.8924
S
ta
n
d
.D
ev

−
−

−
(0.0106)

(0.0012)



3.5. Tables and �gures 79

T
ab
le

3.
2:

Su
m
m
ar
y
�t
s
of

th
e
M
L
E
-e
st
im

at
io
n
pr
oc
ed
ur
e
w
it
h
N
IG

in
no
va
ti
on

of
hi
st
or
ic
al

pa
ra
m
et
er
s
us
in
g
M

es
s
.
T
hi
s
ta
bl
e

sh
ow

s
th
e
se
t
of

es
ti
m
at
ed

N
IG

-d
is
tr
ib
ut
io
n
pa
ra
m
et
er
s
ob
ta
in

fr
om

th
e
se
co
nd

st
ep

of
th
e
tw
o
st
ep
s
es
ti
m
at
io
n
pr
oc
ed
ur
e
us
in
g
th
e

re
su
lt
s
of

th
e
pr
ev
io
us

ta
bl
e
3.
1
w
it
h
in
-s
am

pl
e
da
ta

(2
00
9-
20
10
).

G
A
R
C
H
-t
y
p
e

H
N

G
J
R

H
N

H
N

G
J
R

In
fo
rm

a
ti
o
n

R
et
u
rn
s

R
et
u
rn
s

O
p
t-
R
et

R
et
-V
IX

R
et
-V
IX

α̂
1.
25
01

1.
15
50

1.
46
30

1.
43
65

1.
35
89

S
ta
n
d
.D
ev

(0
.0
00
4)

(0
.0
10
89
)

(0
.0
00
5)

(0
.0
00
8)

(0
.0
00
1)

β̂
−
0.
01
06

−
0.
14
32

−
0.
00
61
−
0.
05
38
−
0.
00
58

S
ta
n
d
.D
ev

(0
.0
00
8)

(0
.0
05
7)

(0
.0
00
8)

(0
.0
00
3)

(0
.0
02
3)

δ̂
1.
47
28

1.
06
23

1.
44
54

1.
39
20

1.
53
36

S
ta
n
d
.D
ev

(0
.0
09
5)

(0
.0
00
0)

(0
.0
00
5)

(0
.0
00
8)

(0
.0
00
0)

µ̂
2.
70
86

0.
13
27

2.
16
02

11
.6
24
3

7.
99
08

S
ta
n
d
.D
ev

(0
.0
05
1)

(0
.0
07
6)

(0
.0
00
0)

(0
.0
01
3)

(0
.0
00
0)

T
ab
le

3.
3:

R
es
ul
ts

of
p
er
fo
rm

an
ce

an
al
ys
is
on

IV
R
M
SE

,
V
R
P
,
an
d
co
m
pu

ta
ti
on

ti
m
e
of

ea
ch

m
od
el
s
un

de
r
G
au
ss
ia
n-
di
sr
ti
bu

ti
on
,

us
in
g
th
e
O
pt
io
n-
R
et
ur
ns

es
ti
m
at
es

of
V
IX

-R
et
ur
ns

es
ti
m
at
es
.

G
A
R
C
H

H
N
-R
et

G
J
R
-R
et

H
N
-O

p
t-
R
et

H
N
-V
IX

-R
et

G
J
R
-V
IX

-R
et

T
im

es
(h
)

0.
01
0

0.
01
8

9.
01
4

0.
00
8

0.
02
1

−
V
R
P

(i
n
%
)

3.
27
E
−

10
2.
86
E
−

16
8.
88
E
−

11
9.
67
E
−
09

7.
12
2E
−

13
in
-I
V
R
M
S
E

0.
05
99
1

0.
05
74
7

0.
05
57
4

0.
05
80
1

0.
05
48
3

o
u
t-
I
V
R
M
S
E

0.
07
77
0

0.
07
64
8

0.
07
33
9

0.
07
35
1

0.
06
50
0



80

Chapter 3. A new two-step estimation strategy for non-Gaussian GARCH

models

T
able

3.4:
C
om

parison,
based

on
the

IV
R
M
SE

,
of

em
pirical

pricing
p
erform

ances
of

the
G
aussian-G

A
R
C
H
(G

A
R
C
H
-1

/G
A
R
C
H
-2,

as
exam

ple:
−

4
.0

72%
=

1
00
·(0.0

5
574
−

0.058
01)/0

.05574),
using

O
prtion-R

eturns
or

V
IX

-R
eturns

inform
ation.

G
A
R
C
H
-1

H
N
-O

p
t-R

et
H
N
-O

p
t-R

et
H
N
-V
IX

-R
et

G
A
R
C
H
-2

H
N
-V
IX

-R
et

G
J
R
-V
IX

-R
et

G
J
R
-V
IX

-R
et

in
-sa

m
p
le

−
4.072

1.6325
5.4818

o
u
t-sa

m
p
le

−
0.163

11.4320
11.5766

T
able

3.5:
R
esults

of
p
erform

ance
analysis

on
IV

R
M
SE

,
V
R
P
,
and

com
putation

tim
e
of

each
m
odels

under
N
IG

-disrtibution,
using

the
returns-option

estim
ates

of
returns-V

IX
estim

ates.

N
IG

-G
A
R
C
H

H
N
-R
et

G
J
R
-R
et

H
N
-O

p
t-R

et
H
N
-R
et-V

IX
G
J
R
-R
et-V

IX

T
im

es
(h
)

0.016
0.024

9.071
0.017

0.036
−
V
R
P

(in
%
)

2.906
2.867

3.011
3.213

3.006
in
-I
V
R
M
S
E

0.05739
0.05502

0.05199
0.05217

0.05124
o
u
t-I

V
R
M
S
E

0.07004
0.06894

0.06397
0.06488

0.05956



3.5. Tables and �gures 81

Table 3.6: Comparison, based on the IVRMSE, of empirical pricing performances of the NIG-
GARCH (GARCH-1 /GARCH-2, as example: −0.346% = 100 ·(0.05199−0.05217)/0.05199),
using Oprtion-Returns or VIX-Returns information.

GARCH-1 HN-Opt-Ret HN-Opt-Ret HN-VIX-Ret

GARCH-2 HN-VIX-Ret GJR-VIX-Ret GJR-VIX-Ret

in-sample −0.346 1.4425 1.7826

out-sample −1.422 6.8938 8.1997

Table 3.7: Comparison, based on the in-sample IVRMSE, of empirical pricing performances
of the HN-GARCH and GJR-GARCH using Gaussian distribution or NIG distribution and
Oprtion-Returns or VIX-Returns information. (as example 6.7276% = 100 · (0.05574 −
0.05199)/0.05574 where 0.05574 represent the in-sample IVRMSE of the Gaussian-HN-
GARCH-Opt-Ret and 0.05199 is the IVRMS of NIG-HN-GARCH-Opt-Ret).

GARCH G-HN-Opt-Ret G-HN-VIX-Ret G-GJR-VIX-Ret

NIG-HN-Opt-Ret 6.7276 6.4047 8.0731

NIG-HN-VIX-Ret 10.377 10.067 11.670

NIG-GJR-Opt-Ret 5.1796 4.8513 6.5475

Table 3.8: Comparison, based on the out of sample IVRMSE, of empirical pricing per-
formances of the HN-GARCH and GJR-GARCH using Gaussian distribution or NIG dis-
tribution and Oprtion-Returns or VIX-Returns information. As example 12.835% =

100 · (0.07339 − 0.06397)/0.07339 where 0.07339 represent the out of sample IVRMSE of
the Gaussian-HN-GARCH-Opt-Ret and 0.06397 is the out of sample IVRMS of NIG-HN-
GARCH-Opt-Ret.

GARCH G-HN-Opt-Ret G-HN-VIX-Ret G-GJR-VIX-Ret

NIG-HN-Opt-Ret 12.8355 12.9778 1.5846

NIG-HN-VIX-Ret 11.5955 11.7399 0.1846

NIG-GJR-Opt-Ret 18.8445 18.9770 8.3692
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An increasing body of literature on time series analysis has been developed for the
challenges of modeling volatility using the GARCH framework. The literature goes back to
[Engle (1982)] with the class of autoregressive conditional heteroscedastic (ARCH) models.
The latter represented the �rst theoretical attempt in order to model volatility as an
endogenous time-varying process which incorporated conditional variance clustering to bring
the model closer to reality. Nevertheless, except for when the maximum lag of the ARCH
model is large, this approach fails to reproduce the decay rate of the unconditional autocor-
relation function of squared log-returns observed in �nancial time series. [Bollerslev (1986)]
proposed the parsimonious Generalized ARCH (GARCH) model1 allowing for a much more
�exible lag structure through a moving average component. Over time, original parametric

1Alternative approaches were proposed by [Taylor (1986)] and [Heston (1993)] using stochastic volatility

models where information from the volatility structure is needed to estimate parameters of the model.
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speci�cations of the conditional variance have been generalized and extended in various
directions to increase the practical �exibility of the model and incorporate in particular
asymmetric e�ects and non-Gaussian innovations (see for example [Chorro et al. (2015)]
Chapter 2).

Concerning the pricing of derivatives, [Duan (1995)] was the �rst paper to propose
a coherent theoretical framework, namely the locally risk-neutral valuation relationship
(LRNVR), to obtain risk-neutral dynamics of Gaussian GARCH models. This methodology
was popularized by Heston and Nandi in [Heston & Nandi (2000)] where a discrete time
a�ne GARCH-type model with Gaussian innovations was able to replicate one of the
key features observed in continuous time literature ([Heston (1993)]): the fact that the
no-arbitrage price of classical European options had semi-closed-form expression.2

In order to improve the numerical performances of Duan's option pricing model, three
complementary areas may be explored:

1. Use more realistic GARCH processes coping with asymmetric volatility responses and
non-Gaussian conditional distributions,

2. Use di�erent risk-neutralization processes compatible with the preceding point,

3. Use, when it is possible, more information than just that of the log-returns to estimate
the model.

The �rst point is now a classic topic and many extensions have been proposed to cope
with these well-documented stylized facts. The asymmetric e�ects of positive and negative
shocks of equal magnitude on conditional volatility, the so-called leverage e�ect, may be
captured using a large family of extended GARCH models the most popular being probably
the exponential EGARCH of [Nelson (1991)], the NGARCH model of [Engle & Ng (1993)],
the GJR-GARCH of [Glosten et al. (1993)], the threshold GARCH of [Zakoian (1994)], and
the a�ne HN-GARCH by [Heston & Nandi (2000)]. However, the leverage parameter of
preceding speci�cations is not su�cient to capture all the skewness and kurtosis levels in
standardized residuals. Therefore, Gaussian hypothesis for the conditional distribution of
log-returns has to be relaxed and a myriad of possible choices may be used to take into ac-
count all the mass in the tails and the asymmetry ([Chorro et al. (2015)] Chapter 2). Among
them, the Generalized Hyperbolic ([Chorro et al. (2012)], [Badescu et al.(2011)]) family and
its Normal Inverse Gaussian (NIG) subclass ([Stentoft (2008)], [Badescu et al.(2015)]), the
Inverse Gaussian (IG) distribution ([Christo�ersen et al. (2006)]), or the mixture of Gaussian
([Badescu et al.(2008)]) clearly improve forecasting performances of related GARCH models.

Once a competing model has been chosen, the choice of the so-called stochastic discount
factor (SDF) to obtain risk-neutral dynamics is fundamental. For this second point, two

2In the Duan's framework, the coe�cients of the GARCH risk-neutral dynamics are just functions of

the historical ones, and so may be directly estimated from the log-returns. Nevertheless, the closed-form

expression permits to e�ciently use available option information to calibrate the model.
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constraining factors apply: this SDF has to be su�ciently �exible to provide explicit
risk-neutral dynamics for a large variety of GARCH structures and innovation distributions
and rich enough to produce good pricing performances. Since the seminal paper of Duan,
several tools have been developed to select an equivalent martingale measure (see for example
[Chorro et al. (2015)] Chapter 3).3

One of the main advantages of GARCH models, with respect for example to stochastic
volatility ones, is that they may be e�ciently estimated using a conditional version of the
maximum likelihood estimation and a dataset of log-returns. In particular, since, in the
case of exponential-a�ne or extended Girsanov principle SDF, the associated risk-neutral
dynamics are explicit transforms of the historical ones, only log-returns information is
needed to compute or approximate European option prices.4 Even so, when an extra piece
of �nancial information (price of plain vanilla options, the VIX index for the S&P500,...)
is available it can be of interest to integrate it, in an e�cient way, to the estimation
process to reduce pricing errors. Therefore, following [Christo�ersen et al. (2012)] it is
now classically possible to build for some a�ne GARCH models (at the very least for the
HN-GARCH [Heston & Nandi (2000)] and the IG-GARCH [Christo�ersen et al. (2006)]
where semi-closed form expressions for option prices are obtained) a joint maximum
likelihood based on log-returns and option prices. In this setting, the a�ne structure of
the model is mandatory: if prices are evaluated using Monte-Carlo methods, computing
the likelihood function may be cumbersome. In a recent study, [Hao & Zhang (2013)] have
computed VIX index formulas implied by various non-a�ne asymmetric Gaussian GARCH
models. They presented closed-form formulas for the VIX index associated with �ve classical
non-a�ne Gaussian GARCH models when [Duan (1995)] LRNVR is used. Based on this
result, [Kanniainen et al. (2014)] proposed a fair comparison between a�ne and non-a�ne
Gaussian GARCH speci�cations using log-returns and VIX information in the estimation.5

For two a�ne GARCH models [Chorro & Fanirisoa (2016)] and [Papantonis (2016)] proved
that incorporating both the physical return dynamics of the index and risk-neutral dynamics

3The exponential-a�ne SDF,Mess, developed by [Bühlmann et al. (1996)] and [Siu et al. (2004)], which is

based on a conditional extension of the pioneering work of [Esscher (1932)], and the SDF given by the extended

Girsanov principle of [Elliott & Madan (1998)] are probably the two best known. In particular, they coincide

with Duan LRNVR in the Gaussian setting. Let us also remark that extended and non-monotonic versions

of the exponential-a�ne SDF are available for particular choices of distributions as the exponential-quadratic

SDF MQua of [Monfort & Pégoraro (2012)] (see also [Christo�ersen et al. (2013)]) for Gaussian innovations

and the exponential U-shaped stochastic discount factor MUsh proposed by [Chorro & Fanirisoa (2016)] in

the second chapter of the present dissertation for the Inverse-Gaussian GARCH model.
4This is not true for MQua or MUsh because, in this case, a risk-neutral parameter (the constant propor-

tional wedge between historical and risk-neutral volatilities) has to be evaluated.
5Recently, a large number of studies have further investigated the ability of the VIX index as an input vari-

able for volatility to forecast option prices. Considered as an expected volatility series, the VIX was proposed

by [Whaley (1993)] and introduced by the CBOE in 1993 to serve as a market volatility indicator. The VIX

captures how much the investor is willing to pay to deal with investment risks. In previous empirical papers

on the importance of the VIX index, the attention focus has primarily been on the impact and the correlation

of the VIX index with the stock market and returns volatility. [Giot et al. (2005)] and [Sarwar (2012)] have

established empirical results that suggest an asymmetric relationship between stock market returns and VIX.

[Cochrane et al. (2012)] observed the adequacy of the VIX index as an important factor in the determination

of stock market returns and also of volatility.
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of the VIX to estimate the parameters of GARCH option pricing models provides competitive
pricing errors at a very low computational cost.6

This chapter attempts to �ll several gaps in the GARCH option pricing literature, in
particular, from an empirical point of view.

Firstly, in the spirit of [Christo�ersen et al. (2004)] the aim of our study is to
provide an intensive comparison analysis of empirical performances, in VIX index or
options valuation, between di�erent GARCH-type models using Gaussian or non-Gaussian
distributions under di�erent classes of risk-neutral measures. Furthermore, particu-
lar attention is granted on the choice of the information set (VIX, options, returns)
in the estimation process. To keep the empirical analysis manageable, we only fo-
cus our attention on four classical parsimonious GARCH(1,1) structures: HN-GARCH
by [Heston & Nandi (2000)], GJR-GARCH by [Glosten et al. (1993)], NGARCH by
[Engle & Ng (1993)], and IG-GARCH by [Christo�ersen et al. (2013)].7 One advantage
of this choice is to question the di�erence between a�ne and non-a�ne models. As a
natural non-Gaussian alternative we favor the so-called NIG distribution not only because
it is known to �t statistical properties of asset returns remarkably but also because,
combined with Esscher and EGP SDF, pricing equations may be solved explicitly.8 Fur-
thermore, monotonic and non-monotonic pricing kernels ([Monfort & Pégoraro (2012)] and
[Chorro & Fanirisoa (2016)]) are considered for Gaussian and IG distributions. To our
knowledge, in the existing literature, empirical studies questioned, in general, the impact of
the distribution ([Christo�ersen et al. (2006)], [Chorro et al. (2012)]), the choice of the SDF
([Badescu et al.(2011)], [Christo�ersen et al. (2013)], [Chorro & Fanirisoa (2016)]) or the
estimation strategy ([Hao & Zhang (2013)], [Kanniainen et al. (2014)], [Papantonis (2016)],
[Lalancette & Simonato (2017)]) on pricing performances, but few of them consider all these
factors at the same time.9 Our study is a means of making a contribution to understand the
combined impact of these complementary aspects (24 combinations of GARCH-distribution-
SDF-estimation are tested).

Secondly, inspired by the work of [Hao & Zhang (2013)] that explained poor pricing
performances of Gaussian GARCH models by their ine�ciency to capture the variance
risk premium, we also explore in this chapter if it is possible to partly classify GARCH

6When closed-form expressions are not available, two recent studies proposed interesting alternatives. In

[Lalancette & Simonato (2017)] the authors proposed, for the NGARCH model with Johnson SU distributed

driving noise, numerical approximations to make possible the computation of the implied VIX index using

Monte-Carlo simulations. In [Chorro & Fanirisoa (2017)] a new estimation strategy for some non-Gaussian

GARCH models is presented to include options or VIX information in the joint estimation at a low compu-

tational cost.
7An equivalent study could be by performed in a companion paper for Markov-

switching [Elliott et al. (2006)], multi-component [Christo�ersen et al. (2008)] and multiple-shock

[Christo�ersen et al. (2012)] GARCH models.
8Such a property is not ful�lled if we use, for example, a mixture of Gaussian distributions.
9For example, in [Kanniainen et al. (2014)] the authors study di�erent GARCH structures with di�erent

estimation strategies, but restrict themselves to the Gaussian setting.
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option pricing models by their ability to simply reproduce the VIX index. In fact, up to
our knowledge, the correlation between the option pricing performances of a model and its
ability to compute accurate VIX measures is not clearly established in the literature. A
challenging aspect of the present study is to make VIX analysis a �rst-stage �lter to discard
the worst GARCH option pricing models. From purely numerical aspects, such a conclusion
would be very interesting to back-test these models in an e�cient way, using only VIX
information, when available, instead of complex option datasets.

This chapter is structured along the following lines. In section 1 we �rst provide a partial
presentation of all competing GARCH frameworks used in the empirical part. More precisely,
weconsider four GARCH structures for modeling volatility as a time-varying process: HN-
GARCH, GJR, NGARCH, and IG-GARCH. Then, in section 2, we recap the main risk-
neutralized frameworks adopted in this chapter. Next, in section 3, we derive the related VIX
index formulas. Section 4 deals with the estimation challenge, presenting methodologies based
on di�erent information sets and the related numerical results in terms of VIX approximation
and option pricing. We conclude in section 5.

4.1 Competing GARCH models

We consider a �nancial asset with a market price at time t given by St and we denote by

Yt = log

(
St
St−1

)
the associated log-returns de�ned on a complete probability space (Ω,F ,P)

where P represents the historical probability measure. Information �ltration {Ft}06t6T is
generated by log-returns supposing that F0 = {∅,Ω} and FT = F . In what follows, we
consider a general dynamics for the stock price process:

Yt = r +mt +
√
htzt

ht = F
(
zt−1, ht−1, θ

V
) (4.1)

where the zt are i.i.d centered and reduced random variables depending on a vector of param-
eters θD, mt is the predictable time-varying excess of returns, r is the risk-free rate and F is a
mapping, compatible with realistic GARCH(1,1) volatility models that depends on a vector of
parameters θV .10 For our empirical horse-race we favor four particular GARCH speci�cations
often used in the literature to cope with volatility clustering and leverage e�ect. Moreover,
these four GARCH-type models belong to two important families: a�ne and non-a�ne frame-
works. While a�ne GARCH models are often used because they yield a semi-closed form
solution for prices of European equity options, it is now well-documented that non-a�ne
ones provide a better �t to �nancial data. One important aspect of our empirical study
will be to question once again this duality. Following [Kanniainen et al. (2014)] we choose
the widely recognized NGARCH [Engle & Ng (1993)], GJR-GARCH [Glosten et al. (1993)],
and a�ne HN-GARCH [Heston & Nandi (2000)] models and we add the IG-GARCH of
[Christo�ersen et al. (2006)] (see also [Chorro & Fanirisoa (2016)]) that is a notable example

10From now on h0 is supposed to be constant and �xed at its unconditional level depending on the persistence

of the model Ψ.
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of an a�ne model within a non-Gaussian setting. In the next sections we brie�y recall the
de�nitions and the main properties of these speci�cations.

4.1.1 A�ne competitors

Since the seminal work of [Heston (1993)], a�ne models, that led to semi-closed form ex-
pressions for option prices, are the keystone of almost all numerical studies. In the dis-
crete time literature, the HN-GARCH [Heston & Nandi (2000)] and the IG-GARCH of
[Christo�ersen et al. (2006)] are two important contributions. More precisely, for the HN-
GARCH model the historical dynamics is given by

{
Yt = r + λ0ht +

√
htzt

ht = a0 + a1

(
zt−1 − γ

√
ht−1

)2
+ b1ht−1

(4.2)

with a0 > 0, a1 ≥ 0, b1 ≥ 0 and for the IG-GARCH speci�cation by

{
Yt = r + νht + ηzt

ht = w + bht−1 + czt−1 + a
h2t−1

zt

(4.3)

with w > 0, b ≥ 0, c ≥ 0, and a ≥ 0.

In the HN-GARCH model the zt are supposed to be Gaussian while in the IG-GARCH
they follow an Inverse Gaussian distribution with degree of freedom δt = ht

η2
.11 The persis-

tence (that will be an important quantity to express associated VIX index formula) of the

HN-GARCH (resp. IG-GARCH) is given by Ψ = b1 + a1γ
2 (resp. Ψ = b +

c

η2
+ aη2).

Under these two hypotheses on the distributions of innovations, it is easy to prove for both
models that the conditional moment generating function GP

log(ST )|Ft(u) = EP[SuT | Ft] of
the log asset price under the physical measure can be written in the following log-linear form
GP

log(ST )|Ft(u) = Sut e
At+Btht+1 where the coe�cients 12 At and Bt can be obtained by working

backward from the maturity date of the option and using terminal conditions AT = BT = 0.
Moreover, one important empirical consequence for the pricing of European call options is
that the very particular form of the conditional moment generating function of log(ST ) leads
to the existence of semi-closed form expressions for prices which allow us to use Fast Fourier
Transform (FFT) methodology and option information in the estimation procedure as ex-
plained in [Chorro et al. (2015)] Chap 4.

11The density function of the IG distribution is given by the one parameter family:

1{y>0}
δ√

2πy3
e−(√y−δ/√y)2/2 where δ ∈ R∗+.

12At = ru + At+1 + a0Bt+1 − 1
2
log(1 − 2a1Bt+1) and Bt = − 1

2
u + b1Bt+1 +(

u2

2
− 2a1γBt+1u+ a1Bt+1γ

2
)

(1− 2a1Bt+1)−1 for the HN-GARCH model and A(t) = At+1 + ur +

wBt+1− 1
2
log(1− 2a(η)4Bt+1) and B(t) = bBt+1 + uν + (η)−2− (η)−2

√
(1− 2a(η)4Bt+1)(1− 2cBt+1 − 2uη)

for the IG-GARCH.
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4.1.2 Non-a�ne competitors

In order to propose asymmetric extensions of the original GARCH(1,1) model, one possibility
is to modify the so-called news impact curve (NIC) introduced in [Engle & Ng (1993)]. For
this purpose, we may shift a symmetric NIC to the right or consider curves centered at 0
allowing for slopes of di�erent magnitudes on either side of the origin. These two approaches
were used by [Engle & Ng (1993)] and [Glosten et al. (1993)] in order to introduce respec-
tively the popular NGARCH and GJR models. In both cases, a single leverage parameter
constrains the response of the conditional variance to depend on the sign of a shock. In the
NGARCH model the dynamics 13 of the risky asset under historical probability is given by

{
Yt = r + λ0

√
ht − log(EP[e

√
htzt ]) +

√
htzt

ht = a0 + b1ht−1 + a1ht−1 (zt−1 − γ)2 (4.4)

with a0 > 0, b1 ≥ 0, a1 ≥ 0 and for the GJR model by

 Yt = r + λ0

√
ht −

ht
2

+
√
htzt

ht = a0 + ht−1

[
b1 + a1 (zt−1)2 + γmax (0,− (zt−1))2

] (4.5)

with a0 > 0, b1 ≥ 0, a1 ≥ 0, and γ ≥ 0. The persistence of the NGARCH (resp. GJR) is

given by Ψ = b1 + a1

(
1 + γ2

)
(resp. ψ = b1 + a1 +

γ

2
). Contrary to models presented in the

preceding section, here, conditional moment generating function is not an exponential-a�ne
function of the one step ahead volatility. To compute option prices we use in general Monte
Carlo approximations. Nevertheless, as remarked in [Hao & Zhang (2013)] VIX implied
formulas are available in this non-a�ne setting at the very least for Gaussian innovations
(and other very particular cases as [Badescu et al.(2018)]).

4.1.3 A �exible alternative to Gaussian distribution

It is now a well-known fact that forecasting performances of GARCH-type models are im-
proved when using non-Gaussian innovations. Historically, several interesting distributions
were proposed to better account for the deviation from normality. In the present chap-
ter we have decided to mainly focus our attention on the Normal Inverse Gaussian (NIG)
distribution. This four-parameter family of distributions has been extensively used during
the last decade in discrete time literature, especially for pricing issues ([Stentoft (2008)],

13For the NGARCH model, we take mt = λ0

√
ht − log(EP[e

√
htzt ]) as proposed in [Badescu et al.(2018)].

When innovations are Gaussian the cumulant moment generating function at the point z is equal to z2

2
and

we recover the same excess returns as in the GJR model. Nevertheless we will see that this very particular

choice leads to a closed form expression for the VIX index associated with the NGARCH model with NIG

innovations when extended Girsanov risk-neutralization process is used. This property is remarkable because

up to our knowledge this is the unique example in the literature of an explicit VIX index formula within a

non-Gaussian setting.
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[Badescu et al.(2011)], [Guégan et al. (2013)], [Badescu et al.(2018)]): for (α, β, δ, µ) ful�ll-
ing 0 < |β| < α and δ > 0, the density of the NIG (α, β, δ, µ) is given by14

dNIG (z, α, β, δ, µ) =
α

π
e
δ

(√
α2−β2+β

(
z − µ
δ

)) K1

αδ√1 +

(
z − µ
δ

)2


√
1 +

(
z − µ
δ

)2

where K1 is the modi�ed Bessel function of the third kind with index one. The mean and
the variance of this distribution are respectively given by

m = µ+
δβ√
α2 − β2

, σ2 =
δα2√
α2 − β2

3 . (4.6)

Therefore, from the stability of the NIG family under a�ne transforms, it is possible to obtain
a centered version with unit variance considering

NIG
(
α̃, β̃, δ̃, µ̃

)
=

NIG (α, β, δ, µ)−m
σ

(4.7)

where α̃ = σα, β̃ = σβ, δ̃ = δ
σ and µ̃ = −m

σ + µ
σ .

4.2 Stochastic discount factors and risk-neutral dynamics

From the beginning of the 80's (see [Chorro et al. (2015)] Chap 3 and references therein),
general methods providing arbitrage-free price processes via the notion of equivalent mar-
tingale measure (EMM) have been investigated both in discrete or continuous time frame-
works. Furthermore, the choice of such an EMM is known to be equivalent to the spec-
i�cation of the so-called one-period stochastic discount factor (SDF). Since markets de-
scribed by GARCH models are incomplete, there is a priori an in�nite number of SDF
available for pricing derivatives and a great challenge is to select tractable candidates for
their strong economic foundations and/or empirical performances. In this section, we present
the main paths to risk-neutralization that will be implemented in the numerical part to obtain
arbitrage-free price approximations in Gaussian or non-Gaussian settings. More speci�cally,
starting from the [Duan (1995)] approach particularly well-adapted to Gaussian residuals,
we brie�y recall the main lines of the recent advances in modeling SDF dynamics to cope
with non-Gaussian innovations ([Elliott & Madan (1998)] extended Girsanov principle (EGP)
and [Siu et al. (2004)] conditional Esscher transform) and/or have better representations of
volatility risk ([Monfort & Pégoraro (2012)], [Chorro & Fanirisoa (2016)]).15

14Equivalently this distribution may be characterized by its very simple log-moment generation function

given by κNIG(z) = µz + δ
√
α2 − β2 − δ

√
α2 − (β + z)2. This simple expression will be used in (4.4) and

also to obtain in a very simple way risk-neutral dynamics in GARCH-type models with NIG innovations.
15The purpose of this section is not to provide a self-contained presentation of these classical tools

([Chorro et al. (2015)] Chap 3) but to recall the main intuitions behind Gaussian (see Table 4.3) and non-

Gaussian (see Table 4.4) risk-neutral dynamics that will be compared in the empirical part.
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As in the preceding section, we consider a GARCH-type speci�cation for the log-returns

Yt = r +mt +
√
htzt

ht = F
(
zt−1, ht−1, θ

V
) (4.8)

where the zt are i.i.d centered random variables with unit variance.

Supposing that the zt are i.i.d N (0, 1), [Duan (1995)] was the �rst to provide a coherent
theoretical CCAPM framework to obtain risk-neutral dynamics in a GARCH environment
independently of the underlying GARCH structure. More precisely, if Q is an EMM ful�lling
LRNVR16 then

Yt = r − ht
2 +
√
htz
∗
t

ht = F

(
z∗t−1 −

mt−1√
ht−1
−
√
ht−1

2 , ht−1, θ
V

)
(4.9)

where the z∗t are i.i.d N (0, 1) under Q. For Gaussian models presented in the preceding
section, risk-neutral dynamics deduced from the Duan's argument are given in Table 4.3. In
the non-a�ne GJR and NGARCH setting, prices may be obtained from (4.9) using Monte
Carlo approximations while in the a�ne HN case semi-closed form formulas are available.
Nevertheless, Duan's framework relies on Gaussian hypotheses and cannot be adapted with
simplicity to more general distributions. Based on this observation, [Elliott & Madan (1998)]
proposed a very simple way to select a SDF based on a Girsanov-type transformation that
preserves returns distribution after the change of measure by only shifting the conditional
mean to ful�ll the martingale restriction:17 under the EMM QEGP we have

Yt = r +mt − νt +
√
htz
∗
t

ht = F (z∗t−1 −
νt−1√
ht−1

, ht−1, θ
V ) (4.10)

where z∗t follows the same law as zt under P and where νt ful�lls eνt = e−rEP
[
eYt | Ft−1

]
.

When the zt are assumed to be Gaussian, we recover the same dynamics as in (4.9). More-
over, following [Badescu et al.(2018)], for NIG innovations this is a tractable framework,
especially when combined with the NGARCH model to obtain a closed-form formula for
the associated VIX index.18 Nevertheless, one of the major drawback of this approach,
that may explain partly poor pricing performances of this method for long maturity op-
tions (see [Badescu et al.(2008)] and [Badescu et al.(2011)]), is the fact that from P to QEGP

only the conditional mean is a�ected while the conditional variance, skewness and, kurto-
sis are the same. The conditional Esscher transform introduced in the GARCH setting by
[Siu et al. (2004)] and [Gouriéroux & Monfort (2007)] is probably one of the best-known tool
to select e�ciently EMM. The associated SDF M ess is exponential-a�ne of log-returns and
the predictable associated coe�cients of a�nity are uniquely determined by the pricing equa-
tions related to the bond and the risky asset. In contrast to Duan's approach a wide variety

16A set of assumptions made on the utility function and the aggregated consumption growth that preserves

both Gaussianity and volatility.
17Such a pricing kernel has also been justi�ed from its consistency with risk-adjusted cost minimizing

hedging strategies.
18In fact, the restriction imposed on the conditional mean in (4.4) provides explicit computations.
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of return innovations may be chosen at the very least within the class of mixture or in�nitely
divisible distributions (see [Chorro et al. (2015)] Chap 3.4). Even if this tool coincides with
the LRNVR in the Gaussian case, it allows for strongly non-linear relations between historical
and risk-neutral volatility in the non-Gaussian setting. Furthermore, explicit19 risk-neutral
dynamics (see Table 4.4) may be obtained for the IG-GARCH model (4.3) and GARCH-type

models with NIG innovations. In particular, if we suppose in (4.8) a NIG
(
α̃, β̃, δ̃, µ̃

)
for the

zt, we obtain ([Badescu et al.(2011)]) the following dynamics under the Esscher EMM:

Yt = r +mt +
√
htz
∗
t

ht = F
(
z∗t−1, ht−1, θ

V
) (4.11)

where z∗t follows, under QEss, a NIG(α̃, β̃ +
√
htθ

q
t , δ̃, µ̃) with a predictable parameter θqt

having an explicit form. As remarked in [Monfort & Pégoraro (2012)], the exponential-a�ne
hypothesis concerning the SDF only allows for an equity risk premium and it may be inter-
esting to partly solve empirical puzzles of option prices taking into account a second-order
variance risk premium. To achieve this, the authors introduced an exponential-quadratic
SDF MQua that extends M ess adding a second moment-based source of risk information.
Moreover, under Gaussian hypothesis, this new change of measure preserves the tractability
of the model with a risk-neutral dynamics given by

Yt = r − h∗t
2 +

√
h∗t z
∗
t

h∗t = πF

(
√
π(z∗t−1 −

mt−1√
h∗t−1

−
√
h∗t−1

2 ),
h∗t−1

π , θV
)

(4.12)

where the z∗t are i.i.dN (0, 1) underQQua and π is the proportional wedge between risk-neutral
and historical volatilities assumed to be constant across time.20 As a consequence, for the HN
model (4.2), the dynamics under QQua remains in the same family of a�ne GARCH models,
preserving analytic properties of the HN speci�cation in terms of option pricing. Inspired by
this new methodology, [Chorro & Fanirisoa (2016)] proposed an exponential-hyperbolic SDF
MUshp that is able to cope with the same remarkable features in the case of the IG-GARCH
model (4.3).
To conclude this section, let us precisely describe all related GARCH option pric-
ing models that will be tested in the empirical part: in the a�ne family, the classi-
cal [Heston & Nandi (2000)] and the IG-GARCH model ([Christo�ersen et al. (2006)] and
[Chorro & Fanirisoa (2016)]) will be combined with exponential-a�ne and U-shaped SDF
risk-neutralization processes. In these cases, Monte-Carlo methods won't be used to approx-
imate the price of plain vanilla options. To relax the constraints on variance dynamics and

19In general, to obtain risk-neutral dynamics, pricing equations have to be solved numerically

([Chorro et al. (2012)]) at any time. However for some interesting choices (Gaussian, IG, NIG among others)

solutions are analytic.
20The exponential-quadratic stochastic discount factor can be expressed asMQua

t = eθ2,tY
2
t +θ1,tYt+εt where

(εt, θ1,t, θ2,t) are predictable coe�cients. Obviously, when θ2,t = 0 we recoverMess. The pricing equations for

the bond and the risky asset impose some restrictions on these predictable coe�cients that are not uniquely

de�ned. If we want to obtain a unique solution to the pricing system an extra condition is needed. A natural

candidate is to impose a constant proportional wedge π =
h∗
t
ht

between risk-neutral and historical conditional

variances (see [Chorro et al. (2015)] Chap 3.5). This new risk-neutral parameter (that cannot be estimated

only using any information from the log-returns) can help producing richer dynamics.
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conditional distributions related to a�ne speci�cations, we will also study two classical non-
a�ne structures namely the GJR and NGARCH models with Gaussian or NIG innovations.
In the Gaussian case the dynamics will be risk-neutralized using the LRNVR or the quadratic
SDF while under NIG hypotheses, exponential-a�ne and EGP assumptions will be favored.
This great variety of models and SDF will allow us to question several key aspects of GARCH
option pricing modeling. Finally, for sake of concision and simplicity all the risk-neutral dy-
namics used in this study are gathered in Table 4.3 for Gaussian innovations and in Table
4.4 otherwise.

4.3 Model implied CBOE VIX

Considered as the investor's expectation of volatility (see [Carr & Wu (2006)]), the CBOE
VIX index can be characterized as a forecast of the 30-day risk-neutral volatility (or 22
working days) of the S&P500 index. In this chapter, we denote by Vixt a daily-based proxy
for VIXt which is the daily-adjusted expression of the expected arithmetic average of variance
(see [Hao & Zhang (2013)]):

Vixt =
1

τ

(
VIXt

100

)2

= EQ

[
1

Tc

∫ t+Tc

t

hudu | Ft

]
≈ 1

Tc

Tc∑
j=1

EQ [ht+j | Ft] (4.13)

where τ = 250, Tc = 22 represents the maturity in days and Q is an EMM. De-
pending on the choice of the risk-neutral dynamics and using iterative properties of
conditional expectation, the term EQ [ht+j | Ft] can be explicitly computed for a large
class of Gaussian ([Hao & Zhang (2013)]) and non-Gaussian ([Chorro & Fanirisoa (2016)],
[Badescu et al.(2018)]) GARCH models. In general, EQ [ht+j | Ft] can be expressed as a
linear function of historical volatility at time t + 1, unconditional variance, and variance
persistence21 under the selected EMM. If we can obtain analytic expressions, we have the
following general form for EQ [ht+j | Ft] and Vixt:

EQ [ht+j | Ft] = ht+1 [Ψ∗]j−1 + h̃0

[
1− (Ψ∗)j−1

]
Vixt = ht+1

1− (Ψ∗)Tc

(1−Ψ∗)Tc
+ h̃0

(
1− 1− (Ψ∗)Tc

(1−Ψ∗)Tc

)
(4.14)

where expressions of h̃0 and Ψ∗ for particular models and SDF are reported in Table 4.5. In
fact, for Gaussian models under the LRNVR and for a�ne models with exponential-a�ne or
U-shaped SDF we have closed form expressions. For example, in the case of the HN model,

we obtain h̃0 =
a0 + a1

1−Ψ∗
and Ψ∗ = b1 +a1(γ+λ0 + 1

2)2 when an exponential-a�ne SDF is used

while we obtain h̃0 =
a0 + πa1

1−Ψ∗
and Ψ∗ = b1+π2a1

(
γ

π
+
λ0

π
+

1

2

)2

under the quadratic SDF.

Unfortunately, in the case of NIG innovations (a notable exception is the NIG NGARCH
model associated with the EGP of [Badescu et al.(2018)] ) or when an exponential-quadratic
SDF is used with the Gaussian NGARCH and GJR structures we do not have closed-form

21Where the variance persistence is the coe�cient in front of ht in EQ [ht+1 | Ft].
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formulas for the implied Vixt. However, as explained in [Lalancette & Simonato (2017)] we
can still use Monte Carlo simulations to approximate conditional expectation EQ [ht+j | Ft]
and Vixt.

4.4 Methodology and empirical results

In this section, we present the main points emerging from this analysis. First, we carry out
numerical experiments to analyze pricing performances of all competing GARCH models,
focusing on a�ne/non-a�ne structures, the risk-neutralization process and the estimation
methodology. A pool of 24 possible combinations (Model/SDF/Estimation) will thereby
be tested to try to understand the impact of underlying factors. Furthermore, a second
experiment aims to question the possibility of partly ranking GARCH option pricing models
by their ability to simply reproduce VIX dynamics, instead of using a heavy set of option
data. More speci�cally, after a brief description of the data, we present the main lines of
classical joint likelihood estimation methodologies based on Option-Returns or VIX-Returns
data (see for example [Kanniainen et al. (2014)] and reference therein) and that of the two-
step estimation strategy recently introduced in [Chorro & Fanirisoa (2017)] for NIG-GARCH
processes. Then, when closed-form expressions for option prices are not available, we recall
how Monte Carlo approximations may be implemented e�ciently in the GARCH framework
using the powerful and simple adjustment proposed by [Duan & Simonato (1998)]. Finally,
this section ends with a presentation of the results based on our empirical �ndings.

4.4.1 Data description

The present study used S&P500 daily returns and VIX data from January 07, 1999 to
December 22, 2010, which are composed of 2718 observations covering about 12 years. We
plotted in Figure 4.1 the S&P500 and CBOE VIX indexes with their log-returns series
while Table 4.1 displayed associated summary statistics.22 This information set was used
to implement both classical conditional maximum likelihood strategies and joint estimation
strategies based on returns and VIX information.

We also used a dataset of options written on the S&P500 obtained from Bloomberg.
Due to the number of option pricing models to test in this chapter, we restricted ourselves
to Wednesday's contracts.23 Therefore, it concerned 4563 options contracts whose prices
were quoted during the period spanning from January 2nd, 2009 to April 15, 2012. We
divided the option data set into two subsets: one in which model parameters are estimated
(to implement for the a�ne models the joint likelihood estimation based on returns and
options) and another subset used to compare pricing performances of models. The �rst
subset, used for the in-sample estimation and comparison, is called Dataset A from January
2nd, 2009 until December 22, 2010 and contains 2714 contracts. However, the second subset
for the out-of-sample comparison is called Dataset B and contains 1849 contracts with

22Let us remark that VIX data from January 03, 2011 until April 15, 2012 are also used in the empirical

part to test the ability of GARCH option pricing models to forecast VIX dynamics.
23We apply to our dataset the same �lters as described in [Christo�ersen et al. (2012)].
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67-Wednesdays from January 03, 2011 until April 15, 2012. This will be used to test the
out-of-sample ability to capture the behavior of the index option smile. Summary statistics
for option data are reported in Table 4.2 for both Dataset A and B: this table shows the
number of contracts, the average price, and the average implied volatility across moneynesses
and times to maturity. The patterns in the Dataset B are clearly similar to those in the
in-sample Dataset A.

Depending on the chosen estimation strategy, the in-sample dataset of returns is
combined with in-sample VIX data or Dataset A to estimate the model as explained in
the next section. Futhermore, usual in and out-of-sample option pricing performances are
studied: we use in-sample estimated parameters to compute approximate prices (from FFT
or Monte-Carlo approximations depending on the structure of the model) for the contracts in
Dataset A and B to analyze associated errors. In the out-of sample exercise presented above,
we assumed that model's parameters are constant over the whole sample period (Dataset
B). Obviously, this may appear as unrealistic and unfair for the simulation and relaxing this
assumption will highlight the robustness of our conclusions. Therefore, in a complementary
numerical experiment, we allowed model parameters to change over time through a rolling
window estimation strategy for the 67 Wednesdays in the Dataset B.24 For each Wednesday
in dataset B, we estimated each model and use corresponding parameters to price options
next Wednesday.25

4.4.2 Estimation methodologies

In this section we denote by ϑ the set of risk-neutral parameters associated with historical
dynamics (4.1). When conditional Esscher transform or extended Girsanov principle are used
to obtain risk-neutral dynamics we simply have ϑ = (θD, θV ) while ϑ = (θD, θV , π) in the
case of U-shaped pricing kernels.26 Moreover, we denote by T (resp. N) the number of VIX
and log-returns daily observations (resp. N the cardinal of the set of option market prices)
involved in the estimation process. One of the main advantages of the GARCH machinery is
that historical model parameters (θD, θV ) may be easily obtained, from a simple log-returns
dataset, using a conditional version of the classical maximum likelihood estimator maximizing

logLR(θD, θV ) =

T∑
t=1

log

(
1√
ht
fθD

(
Yt − (r +mt)√

ht

))
where fθD is the probability density function of the model innovations. However, the
proportional wedge between historical and risk-neutral volatility π cannot be estimated only

24We assume constant windows of 12 years (resp. 2 years) for log-returns and VIX data (resp. for options).
25We particularly use estimated in-sample parameters as initial values for the optimization performed

the �rst Wednesday while we initialize parameters of the following Wednesday estimation process by using

parameters obtained the previous week.
26As de�ned in the preceding sections, θD is the vector of innovation parameters, θV represents the volatility

parameters, and π is the proportional wedge between risk-neutral and historical volatilities supposed to be

constant.
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using returns data. Moreover, during the last decade, several empirical studies underlined
the real interest to incorporate in the estimation process VIX or option information, when
available, to improve related pricing performances. Therefore, we present below two joint
likelihood estimation strategies used in the empirical part:

Joint estimation strategy using Option-Returns information: We consider a set

of option market prices (ĉ1, ..., ĉN ) and de�ne associated weighted Vega errors εi =
ci − ĉi
V̂i

where ci and V̂i are the model prices and the Black and Scholes Vega associated with ĉi.
Following [Trolle & Schwartz (2009)], we suppose that the (εi) are i.i.d centered Gaussian

variables with variance
1

N

∑N
i=1 ε

2
i . Therefore, the associated option log-likelihood is given

by

logLOp(ϑ) = −1

2

N∑
i=1

log

(
1

N

N∑
i=1

ε2
i

)
+

ε2
i

1

N

∑N
i=1 ε

2
i


and we obtain the joint Option-Returns likelihood (see [Christo�ersen et al. (2013)]):

T +N

2

logLR((θD, θV ))

T
+
T +N

2

logLOp(ϑ)

N
. (4.15)

One of the major drawbacks of this approach is the requirement to evaluate several
times the objective function (4.15) in the maximization process. In the case of a�ne
GARCH models presented above, independently of the choice of the exponential-a�ne or
exponential U-shaped SDF, closed-form expressions for option prices are available and make
this process computationally acceptable. As noticed in Section 4.3, for most of Gaussian
GARCH speci�cations and for the NIG NGARCH model combined with the EGP it is
possible to obtain closed-form expressions for the implied VIX. Therefore, as provided by
[Kanniainen et al. (2014)], a similar strategy based on VIX information and not on options
one may be implemented.

Joint estimation strategy using VIX-Returns information: To build the VIX log-
likelihood we suppose with [Kanniainen et al. (2014)] (see also [Chorro & Fanirisoa (2016)]
or [Badescu et al.(2018)]) that VIX pricing errors ut = VIXMarket

t −VIXModel
t follow autore-

gressive disturbances ut = %ut−1 + et where (et)t are i.i.d Gaussian random variables with
mean zero and variance Σ2 are where | % |< 1 to ensure stationarity. Consequently the VIX
log-likelihood is given by

logLVIX(ϑ, %) = −T
2

(
log(2π) + log(Σ(1− %2))

)
+

1

2

(
log(1− %2)

)
− 1

2Σ

(
u21 +

∑T
t=2

(ut − %ut−1)
2

1− %2

)
(4.16)

and we obtain the joint VIX-returns likelihood
(
logLR(θD, θV ) + logLVIX(ϑ, %)

)
.
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Finally, a last estimation strategy will be used in the empirical part for particular GARCH
models with NIG innovations. This strategy, �rst introduced in [Chorro & Fanirisoa (2017)],
derives from a very simple �nding: under Gaussian hypotheses, some GARCH-type models
have outstanding properties (closed-form expressions for VIX and/or option prices) that fail
when NIG innovations are involved. Therefore, inspired by the so-called quasi-maximum
likelihood (QML) estimator, a two-step approach is possible to take bene�t of these
remarkable features in a Gaussian environment:

Two-step estimation strategies using VIX-Returns or Option-Returns infor-

mation: As in the QML approach, this two-step strategy estimates separately volatility and
distribution parameters assuming Gaussian innovations in the �rst step. We start from a
GARCH-type model with NIG innovations

• Step 1: We assume that the (zt)t are i.i.d N (0, 1) under P. Subsequently, we can
estimate the vector of volatility parameters θV as follows :

� In the cases where we have a closed-form formula for option prices, θ̂V may be
obtained by maximizing the joint Option-Returns likelihood (4.15).

� In the cases where we do not have a closed-form formula for option prices but we
have a closed-form formula for the VIX index then θ̂V may be obtained maximizing
the joint VIX-Returns likelihood.

• Step 2: From the i.i.d residuals
(
z1

(
θ̂V
)
, · · · , zT

(
θ̂V
))

that may be extracted from

the previous step, the distribution vector of parameters θD is obtained maximizing

T∑
t=1

− log(ht)

2
+ log

[
fθD

(
Yt − (r +mt)√

ht

)]
where fθD is the density function of a centered NIG random variable with unit variance
as introduced in Section 4.1.3.

To summarize, in our empirical study, the HN model with Gaussian innovations and
the IG-GARCH model (risk-neutralized using Esscher or U-shaped SDF) will be estimated
using the returns, the joint VIX-Returns and the joint Option-Returns likelihoods. The
GJR and NGARCH models with Gaussian innovations (risk-neutralized using Esscher SDF)
will be estimated using the returns and the joint VIX-Returns likelihood. The HN, GJR,
NGARCH with NIG innovations (risk-neutralized using Esscher SDF) will be estimated
using the returns and the two-step estimation strategy. The GJR and NGARCH models
with Gaussian innovations (risk-neutralized using the quadratic SDF) will be estimated
using the joint VIX-Returns likelihood.27

The estimated parameter values and their respective standard errors, obtained from using
the di�erent sets of information, are reported in Table 4.6 (resp. Table 4.14) for Gaussian

27In this case, and only in this case, the methodology of [Lalancette & Simonato (2017)] will be used to

approximate the VIX using Monte Carlo methods.



98

Chapter 4. Discriminating between GARCH models for option pricing by their

ability to compute accurate VIX measures

GARCH models combined with the exponential-a�ne (resp. the quadratic) SDF. For NIG
parameters, the results of the two-step estimation exercises are presented in Table 4.10,
while Table 4.20 shows estimates for the IG-GARCH model under both MEss and MUshp.
Finally, for the NIG-NGARCH model risk-neutralized using the EGP, the joint VIX-Returns
likelihood estimates are illustrated in Table 4.18. In all cases, results are roughly in the same
range as those obtained in many other previous empirical studies.

We notice for the IG-GARCH model that parameter estimates are remarkably stable
across the di�erent approaches. Concerning the other GARCH speci�cations, instead of
focusing on the individual values of each parameter, we remark that global features of each
model (implied persistence, leverage e�ect parameter) di�er only a little from one strategy to
another.28 We classically obtain high historical persistences and all models and estimation
approaches clearly indicate the leverage e�ect. Moreover, in the case of the two U-shaped
pricing kernels, the proportional wedge between the risk-neutral and the historical volatilities
is signi�cantly estimated to be greater than 1, with values ranging between 1.24 and 1.72

(see Tables 4.14 and 4.20) for the Gaussian HN and the IG-GARCH models, as observed
in empirical studies. Last but not least, as remarked in [Kanniainen et al. (2014)], for the
joint VIX-Returns estimation strategy, the autocorrelation coe�cient % is uniformly close to
1 with a minimum value of 0.81 for the Gaussian HN model combined with the quadratic SDF.

Concerning parameters of the NIG distribution, we can see from Tables 4.10 and 4.18
that the observed (negative) values of skewness vary from −0.01 to −0.34 and that observed
kurtosis vary from 1.42 to 2.62. These values provide evidence by their departure from
normality and they are in the same range as those obtained in previous studies (see for
example [Badescu et al.(2011)]).

4.4.3 Criteria for the option and VIX pricing analysis

Once a particular GARCH model has been properly estimated using a well-chosen set of
historical �nancial information, we obtain explicitly from Tables 4.3 and 4.4 the related risk-
neutral dynamics depending on the choice of the underlying SDF. For the HN-GARCH model
with Gaussian innovations ([Heston & Nandi (2000)] and [Monfort & Pégoraro (2012)]) and
the IG-GARCH model ([Christo�ersen et al. (2006)] and [Chorro & Fanirisoa (2016)]), un-
der both exponential-a�ne and U-shaped SDF, we have quasi-closed-form solutions for
pricing vanilla European options e�ciently from FFT methodology (see for example
[Chorro et al. (2015)] Chap 4.2) that massively decrease the required time to price a full
option book. For other non-a�ne speci�cations, prices are approximated using Monte Carlo
simulation using 15000 trajectories.29To test the quality of these price approximations we

28For example, we can deduce from Tables 4.6 and 4.14 that in the case of the GJR GARCH speci�cation we

obtain historical (resp. risk-neutral) persistences around 0.986 (resp. around 0.996) and a leverage parameter

γ between 0.022 and 0.023.
29An important point to emphasize here is the use in our study of the so-called empirical martingale

simulation methodology (EMS) proposed by [Duan & Simonato (1998)] to reduce drastically the variance

of Monte Carlo estimators. As remarked for example in [Badescu et al.(2015)], EMS is an essential tool to

improve numerical e�ciency of Monte Carlo methods especially in the GARCH setting and to use a reasonable
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will use, in the empirical part, the in (Dataset A), out (Dataset B) and Wednesday (rolling
window strategy) Implied Volatility Root Mean Squared Error (IVRMSE30) that measure
the discrepancy between model and option prices:

IV RMSE =

√√√√ 1

N

∑
i

(
ci − ĉi
V̂i

)2

where ci is the option price given by the model, ĉi the corresponding market price and V̂i the
Black and Scholes Vega associated with ĉi. Moreover, another interesting economic criteria
will be the magnitude of the average annualized volatility risk premium (VRP) as de�ned
in [Papantonis (2016)] in order to understand why an equity risk premium is in general not
su�cient to produce realistic price levels. Finally, in order to discuss the correlation between
option pricing performances and the capacity of implied VIX to �t the market VIX, we will use
the measures of adequacy introduced in [Qiang et al. (2015)], namely, the mean percentage
error (MPEVIX), the mean percentage absolute error (MAEVIX) and the root mean squared
error (RMSEVIX) de�ned below:

MPEVIX =
1

N

∑N
j=1

(
VIXModel

j

VIXMarket
j

− 1

)
, MAEVIX =

1

N

∑N
j=1

(∣∣∣∣∣ VIXModel
j

VIXMarket
j

− 1

∣∣∣∣∣
)

and RMSEVIX =

√
1

N

∑N
j=1

(
VIXModel

j −VIXMarket
j

)2
.

(4.17)

4.4.4 Empirical �ndings

Our study relies on 24 combinations of GARCH-distribution-SDF-estimation. To make
the presentation much more readable, we group them into �ve di�erent categories: the
Gaussian-GARCH models combined with MEss, the NIG-GARCH models combined with
MEss, the Gaussian-GARCH models combined with MQua, the NIG-NGARCH model
risk-neutralized using the EGP, and the IG-GARCH model. For each group, we present
in a speci�c table ( see Tables 4.7, 4.11, 4.15, 4.19 and 4.21) option and VIX �tting
performances based on the criteria introduced in the preceding section. Furthermore, we
report for each model the related estimation time and the variance risk premium as de�ned
in [Papantonis (2016)]. For a selected subclass containing more than one element, we provide
internal pairwise comparisons in terms of computational time of estimation and in-sample
pricing performances (see Tables 4.8, 4.12, 4.16 and 4.22) and in terms of out-of-sample and
weekly out-of-sample option valuation errors (see Tables 4.9, 4.13, 4.17 and 4.23). Finally,
general results are provided to allow for broader conclusions: in Table 4.24, out-of-sample

number of simulations to compute option prices. Nevertheless, in spite of their e�ciency when combined with

EMS, Monte Carlo approximations for non-a�ne models make impossible to use option information in the

estimation process at a realistic computational cost.
30In the bulk of recent studies ([Christo�ersen et al. (2012)], [Kanniainen et al. (2014)],

[Chorro & Fanirisoa (2016)], [Badescu et al.(2017)]) this indicator was used to measure pricing perfor-

mances because Vega-weighted errors do not vary too much across maturities and moneyness contrary to

price errors.
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performances of the best models in each category are compared while we can �nd in Table
4.25 (resp. Table 4.26) a summary of VIX and option performance measures of the 24
competitors (resp. the corresponding ranking). Regarding results presented in Table 4.26
we can easily notice that ranks related to option (resp. to VIX) valuation are mostly
independent of the choice of the underlying criteria selected from in sample, out-of-sample or
weekly out-of sample IVRMSE (resp. from RMSE, MPE or MAE). Thus, in the following,
numerical comparisons will rest on out-of-sample IVRMSE and VIX RMSE. We start our
analysis at a group level.

We deduce from Table 4.7 that, when they are estimated only using returns, pricing
performances of Gaussian GARCH models seem to be independent of the choice of the
GARCH structure with IVRMSE ranging from 0.07648 to 0.07770 under Duan's LRNVR.
When an extra piece of �nancial information is introduced into the estimation process,
we obtain the smallest IVRMSE of 0.065 for the non-a�ne speci�cations especially the
GJR model. This is in line with the existing literature that favors non-a�ne Gaussian
stochastic volatility models (see [Kanniainen et al. (2014)] and references therein). Table
4.11 leads to similar conclusions in the NIG environment while Table 4.15 con�rms the slight
superiority of non-a�ne Gaussian speci�cations when using an exponential-quadratic SDF.
Nevertheless, option valuation errors under Gaussian distribution and exponential-a�ne
SDF are the worst of all competitors. A plausible explanation comes from the fact that
these models generate very small variance risk premia (see Table 4.7) which are not in line
with empirical observations. In fact, as reported in Tables 4.11, 4.15, 4.19 and 4.21, when
we use non-Gaussian alternatives and/or U-shaped pricing kernels we recover VRP between
−2.867% (for the NIG-GJR model estimated using returns only) and −3.75411% (for the
IG-GARCH model estimated using Option-Returns information) that are in line with a bulk
of empirical studies ([Papantonis (2016)]). For Gaussian distribution and exponential-a�ne
SDF, the variance risk is neglected and an equity risk premium is not su�cient to produce
realistic price levels.

In Table 4.11, the overall IVRMSE is between 0.05929 and 0.07004 for NIG-GARCH
models risk-neutralized with the Esscher SDF with values that are all smaller than corre-
sponding values for Gaussian innovations. The minimal IVRMSE of 0.05929 is obtained in
the case of the NIG-NGARCH model by estimating with the two-step estimation strategy
using VIX-Returns information as introduced in [Chorro & Fanirisoa (2017)]. Not surpris-
ingly, a �ner modeling approach of conditional skewness improves considerably the quality
of price approximations. The two-step estimation strategy using VIX-Returns information
helps to substantially improve performances at a parsimonious computational cost. The
improvement (of around 14% for non-a�ne speci�cations) from using VIX information is
also fundamental in this framework because returns based estimation strategy only leads
to IVRMSE ranging from 0.06894 to 0.07004. This is con�rmed in Table 4.19 for the
NIG-NGARCH model associated with the EGP with an IVRMSE of 0.05935.

Working with non-Gaussian residuals is not the only way to generate more realistic
VRP than Gaussian-GARCH ones. We present in table 4.15 the IVRMSE of di�erent
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Gaussian-GARCH models when an exponential-quadratic SDF is used to price options. It is
worth noting that in this approach, it is not possible to directly estimate models from returns
market quotes because the extra parameter π is involved in the risk-neutral dynamics.
We obtain good IVRMSE between 0.06006 and 0.06331 that consistently outperform the
Gaussian counterpart with exponential-a�ne SDF. Even if they are slightly worse than
corresponding values for NIG-GARCH models for out-of-sample IVRMSE, the hierarchy
is reversed when considering the next week pricing errors build on the rolling window
estimation strategy. Both a modeling approach based on realistic conditional skewness and
a modeling approach incorporating a variance premium in the pricing kernel seem to capture
valuable empirical features. Therefore, a natural question is how is it possible that these two
aspects are more complementary rather than competitive? The IG-GARCH model appears
as an interesting candidate to tackle this issue.

For the IG-GARCH model, we obtain (see Table 4.21) out-of-sample IVRMSE between
0.067427 (in the case of the Esscher SDF estimated using returns only) and 0.056641

(for the U-shaped SDF and Returns-Options estimation strategy). Once again, a dataset
of returns is not su�cient to produce competitive results. Furthermore, when the joint
VIX-Returns estimation process is performed we obtain an IVRMSE of 0.057568 that is
much closer to the best value at a considerably shorter computation time. The U-shaped
pricing kernel of [Chorro & Fanirisoa (2016)] outperforms by around 7% the Esscher SDF in
a conditionally Inverse-Gaussian environment and produces the best performances observed
in this chapter: conditional skewness is a key factor of GARCH option pricing models that
becomes outstanding when associated with a non-standard SDF.

When using GARCH option pricing models, the modeler is faced with four degrees of
freedom: the GARCH structure, the distribution of the innovations, the pricing kernel, and
the estimation strategy. Now we conclude the analysis of option pricing errors brought
together in Table 4.25 with more general considerations on the impact of each factor caeteris
paribus. Let us start with marginal e�ects: the impact of the choice of a non-a�ne GARCH
structure accounting for the leverage e�ect is small with a 2.2% improvement in favor of
the GJR model. In the same way, in the case of the NIG-NGARCH model estimated using
returns and VIX information, the Esscher and the extended Girsanov principle SDF give rise
to almost identical results with a di�erence of 1.4% for the bene�t of the exponential-a�ne
parameterization (see also [Badescu et al.(2011)] and [Badescu et al.(2015)] that deliver
the same conclusion). Finally, using an estimation strategy based on options and returns
information only improves by around 1% the IVRMSE with respect to its VIX-Returns
counterpart (however, this improvement is around 10.5% when using returns only) as already
observed in [Chorro & Fanirisoa (2016)]. Nevertheless, for this latter point we have to keep
in mind that this slight 1% upgrade comes at a very high computational cost as reported in
Tables 4.8, 4.12, 4.16 and 4.22. More decisively, the NIG distribution reduces the valuation
error of around 11, 6% in comparison to Gaussian innovations while, in the a�ne family,
the IG-GARCH model outperforms by 10.6% the Gaussian HN model. Concerning, the
choice of the SDF, we clearly observe, both in the Gaussian and in the Inverse-Gaussian
case that U-shaped parameterizations yield respectively to 13% and 7% lower IVRMSE
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(see [Christo�ersen et al. (2013)], [Chorro & Fanirisoa (2016)], and [Badescu et al.(2017)]
for similar �ndings). In the light of these observations, it is not surprising to see from Table
4.24 that, when we compare out-of-sample pricing errors between the best models of each
sub-group, the most interesting performances are delivered by a model with non-Gaussian
innovations, risk-neutralized using a U-shaped SDF and estimated maximizing the joint
VIX-Returns log-likelihood, namely, the IG-GARCH model. We conclude that, when it
is possible, the combination of all these factors is fundamental to producing competitive
valuation errors.31 The best model is not the most richly parameterized but a parsimonious
one able to cope with classical stylized facts in terms of historical dynamics and risk
representation.

Even if the ultimate criterion to compare GARCH option pricing models is the value of
the pricing errors associated with a large real-world dataset of option prices, its computa-
tion may lead to large numerical issues in particular when Monte Carlo approximations are
needed. This is true, not only during the estimation stage, but also to compute the objective
function. To conclude this section, we question the possibility of deducing option pricing
performances of a GARCH model from its capacity to forecast VIX dynamics. In Table 4.26,
we have reported the ranks of the 24 models considered in this article regarding VIX and
options adequacy measures introduced in Section 4.4.3. For example,32 when we measure the
relationship between rankings obtained from out-of-sample pricing errors and VIX RMSE we
obtain a signi�cant Spearman's rank correlation coe�cient of 0.92. Moreover, top ten mod-
els obtained using VIX RMSE criterion are mainly as highly ranked as using options based
criterion. The most important conclusion is that the ranking of models is well-preserved in-
dependently of the chosen option or VIX adequacy measure: examining the performance of a
model in �tting VIX time series gives a very good indication on related pricing performances
at a very reasonable computational cost. VIX analysis appears in this way as a very inter-
esting and parsimonious �rst-stage evaluation to discard the worst GARCH option pricing
models.

4.5 Conclusion

In this chapter, we have examined pricing performances of a large collection of GARCH
models by questioning the global synergy between the choice of the a�ne/non-a�ne
GARCH speci�cation, the use of competing alternatives to the Gaussian distribution, the
selection of an appropriate SDF and the choice of di�erent estimation strategies based on
several sets of �nancial information and on standard minimization algorithms. Therefore,
24 combinations of GARCH/distribution/SDF/estimation are tested using a large option

31It is also important to remark that noteworthy results are obtained with non-a�ne GARCH structures

in NIG environment when VIX information is used in the estimation process. In this case, the residual error

of around 3% comes from the necessity to use classical SDF to obtain risk-neutral dynamics.
32In Table 4.26, we notice that the rankings related to options (or VIX) valuation are essentially independent

of the choice of the adequacy measures. For example, Spearman's rank correlation coe�cient between in and

out-of sample pricing errors ranking methodologies is equal to 0.97 . Consequently, we focus our attention on

out-of-sample pricing performances and VIX RMSE.
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dataset written on the S&P500. To do this, an intensive empirical comparison is performed
not only based on in and out-of-sample pricing performances, but also using a weekly rolling
window strategy where the model is estimated each Wednesday to price options one week
later. Uniformly for these three criteria, the IG-GARCH model risk-neutralized using a
U-shaped pricing kernel provides the best results. This gives evidence for the importance of
using a non-Gaussian distribution combined with a non-standard stochastic discount factor
that takes account for the variance risk premium. Of course, to estimate the variance risk
aversion parameter, historical returns are not su�cient and an extra �nancial information
is required. At this point, we have found that the joint VIX-Returns likelihood estimation
provides competitive pricing errors at a very interesting computational cost with respect to
option based estimation processes. This latter �nding holds for all models considered in this
chapter. For non-a�ne GARCH speci�cations, we found that, under NIG innovations, very
interesting pricing errors are obtained when, and only when, VIX information is incorporated
into the estimation strategy. This is e�ciently possible for the NGARCH model using the
EGP risk-neutralization process or using the two-step estimation strategy developed in
[Chorro & Fanirisoa (2017)].

Finally, we have questioned in this study the possibility to deduce option pricing perfor-
mances of a GARCH model from its capacity to forecast VIX dynamics. When we ranked
models using options or VIX criteria we obtained a highly signi�cant Spearman's rank cor-
relation coe�cient of 0.92. Therefore, examining the performance of a model in �tting VIX
time series gives a very good indication on related pricing performances at a very reasonable
computational cost. VIX analysis appears in this way as a very interesting and parsimonious
�rst-stage evaluation to discard the worst GARCH option pricing models.



104

Chapter 4. Discriminating between GARCH models for option pricing by their

ability to compute accurate VIX measures

4.6 Tables and �gures

Figure 4.1: S&P500 and VIX closing prices (top) and daily log-returns (bottom) from January
7, 1999 to December 22, 2010.

Table 4.1: Descriptive statistics of the S&P500 and VIX datasets covering the period January
7, 1999-December 22, 2010.

Number of Min Max Mean Std Dev Skewness Kurtosis
observations

Price index 2718 676.53 1565.15 1182.75 190.14 −0.0959 −0.6909

Log-returns 2718 −0.0947 0.1096 −0.0001 0.0139 −0.1214 7.3758

VIX index 2718 9.8900 80.8600 22.1859 9.6098 1.8853 5.6964

Log VIX 2718 −0.3506 0.4960 −0.0001 0.0613 0.5697 4.1682



4.6. Tables and �gures 105

Table 4.2: Properties of the in-sample (Dataset A) options data (2009-2010) and the out-of-
sample (Dataset B) options data (2011-2012), the table shows the number of contracts, the
average price, and the average implied volatility across moneynesses and times to maturities.

Option Dataset Dataset A Dataset B

PPPPPPPS/K

T
< 60 [60, 180] > 180 All < 60 [60, 180] > 180 All

Number of call option contracts :

0 < S/K < 0.975 178 607 286 1071 107 419 214 740

0.975 < S/K < 1.00 40 103 44 187 36 80 46 162

1.00 < S/K < 1.025 36 96 54 186 30 75 41 146

1.025 < S/K < 1.05 35 93 37 165 31 75 37 143

1.05 < S/K < 1.075 37 93 40 170 28 72 29 129

1.075 < S/K 122 546 267 935 79 312 138 529

All 448 1538 728 2714 311 1033 505 1849

Average call price :

0 < S/K < 0.975 8.558 23.392 41.658 24.536 7.436 21.804 42.351 23.863

0.975 < S/K < 1.00 28.133 59.176 84.700 57.336 25.047 59.893 84.423 56.454

1.00 < S/K < 1.025 42.764 71.741 96.643 70.383 45.442 76.560 103.004 75.002

1.025 < S/K < 1.05 59.721 87.681 109.272 85.558 66.109 95.260 119.433 93.600

1.05 < S/K < 1.075 77.534 103.012 125.367 101.971 88.434 116.030 139.506 114.656

1.075 < S/K 133.310 170.220 187.118 163.549 147.551 178.710 197.623 174.628

All 58.337 85.870 107.460 83.889 63.336 91.376 114.390 89.701

Average implied volatility from call options :

0 < S/K < 0.975 0.212 0.209 0.210 0.210 0.161 0.174 0.182 0.172

0.975 < S/K < 1.00 0.223 0.231 0.233 0.229 0.177 0.198 0.205 0.194

1.00 < S/K < 1.025 0.228 0.230 0.235 0.231 0.202 0.207 0.211 0.207

1.025 < S/K < 1.05 0.239 0.240 0.233 0.237 0.202 0.210 0.213 0.208

1.05 < S/K < 1.075 0.259 0.245 0.235 0.246 0.226 0.222 0.211 0.220

1.075 < S/K 0.308 0.267 0.255 0.277 0.260 0.235 0.228 0.241

All 0.245 0.237 0.234 0.238 0.204 0.207 0.208 0.207
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Table 4.5: We present expressions of the parameters h̃0 and Ψ∗ associated with the closed-
form expression of Vixt in equation 4.14 for di�erent GARCH structures, SDF and conditional
distributions.

GARCH models h̃0 Ψ∗

HN-GARCH :

Gaussian-Ess
a0 + a1

1−Ψ∗
b1 + a1(γ + λ0 + 1

2)2

Gaussian-Qua
a0 + πa1

1−Ψ∗
b1 + π2a1

(
γ

π
+
λ0

π
+

1

2

)2

GJR-GARCH :

Gaussian-Ess
a0

1−Ψ∗
b1 + [a1 + γN(λ0)]

(
1 + λ2

0

)
+ γλ0n(λ0)

NGARCH :

Gaussian-Ess
a0

1−Ψ∗
b1 + a1(1 + (λ0 + γ)2)

NIG-EGP
a0

1−Ψ∗
b1 + a1(1 + (λ0 + γ)2)

IG-GARCH :

Ess
w + a (η)4

1−Ψ∗
b+

c∗

(η∗)2 + a∗ (η∗)2

Ushp
w +

aη

π2
(η∗)3

(1− ψ∗)
b+

c∗

(η∗)2 + a∗ (η∗)2
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Table 4.9: Model comparisons based on out-of-sample IVRMSE and Wednesday-IVRMSE
given in Table 4.7. The upper triangular part of the matrix illustrates relative di�erence (in
percentage) of the out-of-sample IVRMSE between the i-th and the j-th models, as example:
1.5650% = 100 ∗ (0.077701 − 0.076485)/0.077701. The lower triangular part of the matrix
illustrates relative di�erence (in percentage) of the Wednesday-IVRMSE between the j-th
and the i-th models, as example: 1.736% = 100 ∗ (0.06626− 0.06511)/0.06626.

GARCH-type HN GJR NGARCH HN HN GJR NGARCH

Ret Ret Ret Opt-Ret VIX-Ret VIX-Ret VIX-Ret

HN-Ret − 1.565 1.393 5.540 5.394 16.340 6.054
GJR-Ret 1.736 − −0.174 4.045 3.890 15.010 4.560
NGARCH-Ret 1.509 −0.230 − 4.212 4.057 15.160 4.727
HN-Opt-Ret 7.923 6.297 6.512 − −0.162 11.430 0.536
HN-VIX-Ret 7.259 5.621 5.838 −0.7212 − 11.570 0.697
GJR-VIX-Ret 10.640 9.062 9.271 2.950 3.645 − −12.30
NGARCH-VIX-Ret 10.530 8.954 9.163 2.836 3.531 −0.118 −

Table 4.10: Parameter estimates and standard errors of the NIG distribution for GARCH
models combined with the Esscher SDF. These parameters have been obtained using the
standard maximum-likelihood algorithm for the residuals extracted from Table 4.6.

GARCH-type HN GJR NGARCH HN HN GJR NGARCH

Information Returns Returns Returns Opt-Ret Ret-VIX Ret-VIX Ret-VIX

α 1.2501 1.1550 1.2702 1.4630 1.4365 1.3589 1.4536
Stand.Dev (0.0004) (0.0108) (0.0036) (0.0005) (0.0008) (0.0001) (0.0009)

β −0.0106 −0.1432 −0.0025 −0.0061 −0.0538 −0.0058 −0.0061
Stand.Dev (0.0008) (0.0057) (0.0015) (0.0008) (0.0003) (0.0023) (0.0001)

δ 1.4728 1.0623 1.6204 1.4454 1.3920 1.5336 1.4538
Stand.Dev (0.0095) (0.0000) (0.0005) (0.0001) (0.0008) (0.0000) (0.0000)

µ 2.7086 0.1327 1.9734 2.1602 11.6243 7.9908 2.0178
Stand.Dev (0.0051) (0.0076) (0.0055) (0.0000) (0.0013) (0.0000) (0.0003)
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Table 4.13: Model comparisons based on out-of-sample IVRMSE and Wednesday-IVRMSE
given in Table 4.11. The upper triangular part of the matrix illustrates relative di�erence (in
percentage) of the out-of-sample IVRMSE between the i-th and the j-th models, as example:
1.565% = 100 ∗ (0.070042 − 0.068946)/0.070042. The lower triangular part of the matrix
illustrates relative di�erence (in percentage) of the Wednesday-IVRMSE between the j-th
and the i-th models, as example: 0.420% = 100 ∗ (0.05950− 0.05925)/0.05950.

GARCH-type HN GJR NGARCH HN HN GJR NGARCH

Ret Ret Ret Ret VIX-Ret VIX-Ret VIX-Ret

HN-Ret − 1.565 1.483 8.669 7.360 14.960 15.34
GJR-Ret 0.420 − −0.088 7.217 5.887 13.610 14.00
NGARCH-Ret 1.361 0.945 − 7.291 5.972 13.680 14.07
HN-Opt-Ret 14.240 13.870 13.050 − −1.433 6.888 7.30
HN-VIX-Ret 13.560 13.200 12.370 −0.783 − 8.203 8.61
GJR-VIX-Ret 15.260 14.900 14.090 1.195 1.964 − 0.45
NGARCH-VIX-Ret 15.230 14.870 14.060 1.156 1.925 −0.039 −

Table 4.14: Parameter estimates and standard errors of Gaussian GARCH models combined
with the exponential-quadratic SDF. Returns means MLE estimation procedure using only
returns information, Ret-VIX means Joint MLE estimation using returns and options in-
formation, Ret-VIX means Joint MLE estimation using returns and VIX information. The
estimation is based on log-returns and VIX datasets from January 7 1999 to December 22
2010 and on the in-sample dataset of options (2009-2010).

GARCH-type HN-GARCH HN-GARCH GJR-GARCH NGARCH

Information Opt-Ret Ret-VIX Ret-VIX Ret-VIX

a0 5.7547E − 14 1.0014E − 12 4.966E − 06 1.780E − 06
Stand.Dev (0.0009) (0.0003) (0.0008) (0.0000)

a1 1.5139E − 06 1.5048E − 06 1.241E − 01 3.877E − 02
Stand.Dev (0.0368) (0.0002) (0.0003) (0.0065)

b1 6.500E − 01 6.5121E − 01 8.504E − 01 9.329E − 01
Stand.Dev (0.0032) (0.0066) (0.0004) (0.0000)

γ 4.5869E + 02 4.586E + 02 2.3142E − 02 1.277E − 07
Stand.Dev (0.0036) (0.0095) (0.0002) (0.0078)

λ0 8.596E + 00 8.672E + 00 1.989E − 01 4.583E − 01
Stand.Dev (0.0006) (0.0036) (0.0015) (0.0004)

π 1.6723E + 00 1.722E + 00 1.2785E + 00 1.2413E + 00
Stand.Dev (0.0048) (0.0022) (0.0012) (0.0092)

% − 0.8099 0.9546 0.9170
Stand.Dev − (0.0003) (0.06235) (0.0023)
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Table 4.15: Option pricing performances and VIX predictability (see section 4.4.3) of
Gaussian-GARCH models combined with the exponential-quadratic SDF. The results are
based on estimates provided in Table 4.14. The column Model Properties presents com-
putational time of estimation in hours and Variance Risk Premium.

GARCH-type HN-GARCH HN-GARCH GJR-GARCH NGARCH

Information Opt-Ret Ret-VIX Ret-VIX Ret-VIX

Model Properties
Times (h) 10.326 0.019 1.053 0.961

−V RP (in %) 3.2301 3.2475 3.3562 3.5628
Predictibility of VIX
MPEV IX −0.0012 −0.0004 −0.0003 −0.0004
MAEV IX 0.0049 0.0047 0.0041 0.0041
RMSEV IX 0.1445 0.1248 0.1119 0.1103

Pricing performances
in-IV RMSE 0.0511 0.0513 0.0507 0.0492
out-IV RMSE 0.0627 0.0633 0.0628 0.0600
We-IV RMSE 0.0514 0.0515 0.0508 0.0493

Table 4.16: Model comparisons based on computational time of estimation and on in-sample
IVRMSE given in Table 4.15. The upper triangular part of the matrix illustrates relative
di�erence (in percentage) of the computational time of estimation between the i-th and the
j-th models, as example: 99.816% = 100∗ (10.326−0.019)/10.326. The lower triangular part
of the matrix illustrates relative di�erence (in percentage) of the in-sample IVRMSE between
the j-th and the i-th models, as example: −0.528% = 100 ∗ (0.05110− 0.05137)/0.05110.

GARCH-type HN-Opt-Ret HN-VIX-Ret GJR-VIX-Ret NGARCH-VIX-Ret

HN-Opt-Ret − 99.816 89.802 90.693
HN-VIX-Ret −0.528 − −5442 −4957
GJR-VIX-Ret 0.626 1.149 − 8.736
NGARCH-VIX-Ret 3.640 4.146 3.033 −

Table 4.17: Model comparisons based on out-of-sample IVRMSE and Wednesday-IVRMSE
given in Table 4.15. The upper triangular part of the matrix illustrates relative di�erence (in
percentage) of the out-of-sample IVRMSE between the i-th and the j-th models, as example:
−0.892% = 100 ∗ (0.06275 − 0.06331)/0.06275. The lower triangular part of the matrix
illustrates relative di�erence (in percentage) of the Wednesday-IVRMSE between the j-th
and the i-th models, as example: −0.097% = 100 ∗ (0.05147− 0.05152)/0.05147.

GARCH-type HN-Opt-Ret HN-VIX-Ret GJR-VIX-Ret NGARCH-VIX-Ret

HN-Opt-Ret − −0.892 −0.223 4.287
HN-VIX-Ret −0.097 − 0.663 5.133
GJR-VIX-Ret 1.243 1.339 − 4.500
NGARCH-VIX-Ret 4.216 4.309 3.010 −
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Table 4.19: Option pricing performances and VIX predictability (see section 4.4.3) of
Gaussian-GARCH models combined with exponential-quadratic SDF. The results are based
on estimates provided in Table 4.18.

VIX Performances −V RP (in %) MPEV IX MAEV IX RMSEV IX

Values 3.3645 −0.0001 0.0039 0.1066

Pricing performances Times (h) in-IVRMSE out-IVRMSE we-IVRMSE

Values 0.0101 0.0480 0.0593 0.0488
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Table 4.21: Option pricing performances and VIX predictability (see section 4.4.3) of the IG-
GARCH model combined with Esscher and U-shaped SDF. The results are based on estimates
provided in Table 4.20. The column Model Properties presents the computational time of
estimation in hours and the Variance Risk Premium.

Joint-Estimation Returns Returns-Option Returns-VIX
Model M ess

t MUshp
t M ess

t MUshp
t

Model Properties:
Times (h) 0.036 9.2684 10.3984 0.0152 0.0348

VPR 3.1785 3.7541 3.5165 3.7042 3.4563
Predictability of VIX:

MPEV IX −0.0011 −0.0004 −0.0003 −0.00008 −0.00019
MAEV IX 0.0051 0.0043 0.0040 0.0039 0.0039
RMSEV IX 0.1364 0.1315 0.1061 0.1010 0.0990

Pricing performances:
in-IVRMSE 0.0543 0.0461 0.0435 0.0464 0.0438
out-IVRMSE 0.0674 0.0610 0.0566 0.0618 0.0575
we-IVRMSE 0.0514 0.0500 0.0480 0.0510 0.0480

Table 4.22: Model comparisons based on computational time of estimation and on in-sample
IVRMSE given in Table 4.21. The upper triangular part of the matrix illustrates relative
di�erence (in percentage) of the computational time of estimation between the i-th and the j-
th models, as example: −2.564 +05% = 100∗(0.036−9.268)/0.036. The lower triangular part
of the matrix illustrates relative di�erence (in percentage) of the in-sample IVRMSE between
the j-th and the i-th models, as example: 15.08% = 100 ∗ (0.054358− 0.046160)/0.054358.

IG-GARCH-type Ess-Ret Ess-Opt-Ret Ushp-Opt-Ret Ess-VIX-Ret Ushp-VIX-Ret

Ess-Ret − −2.5E + 05 −2.8E + 05 57.777 3.333
Ess-Opt-Ret 15.08 − −12.191 99.836 99.624
Ushp-Opt-Ret 19.89 5.663 − 99.853 99.665
Ess-VIX-Ret 14.49 −0.699 −6.745 − −128.94
Ushp-VIX-Ret 19.29 4.957 −0.748 5.617 −
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Table 4.23: Model comparisons based on the out-of-sample IVRMSE and the Wednesday-
IVRMSE given in Table 4.21. The upper triangular part of the matrix illustrates relative
di�erence (in percentage) of the out-of-sample IVRMSE between the i-th and the j-th models,
as example: 9.446% = 100 ∗ (0.067427 − 0.061058)/0.067427. The lower triangular part of
the matrix illustrates the relative di�erence (in percentage) of Wednesday-IVRMSE between
the j-th and the i-th models, as example: 2.759% = 100 ∗ (0.05147− 0.05152)/0.05147.

IG-GARCH-type Ess-Ret Ess-Opt-Ret Ushp-Opt-Ret Ess-VIX-Ret Ushp-VIX-Ret

Ess-Ret − 9.446 16.000 8.295 14.620
Ess-Opt-Ret 2.759 − 7.234 −1.271 5.716
Ushp-Opt-Ret 6.722 4.076 − −9.168 −1.637
Ess-VIX-Ret 0.891 −1.920 −6.251 − 6.899
Ushp-VIX-Ret 6.567 3.916 −0.166 5.726 −

Table 4.24: Model comparisons based on the out-of-sample IVRMSE and the Wednesday-
IVRMSE for best competitors of each sub-group. Due to the weak di�erence between the
results obtained using Opt-Ret or VIX-Ret information we favor the IVRMSE obtained from
Joint MLE estimation using returns and VIX to reduce computational burden. The upper
triangular part of the matrix illustrates relative di�erence (in percentage) of the out-of-
sample IVRMSE between the i-th and the j-th models. The lower triangular part of the
matrix illustrates relative di�erence (in percentage) of Wednesday-IVRMSE between the j-th
and the i-th models.

GJR NGARCH NGARCH NGARCH IG

Gaus-Ess NIG-Ess Gaus-Qua NIG-EGP Ushp

GJR-Gaus-Ess − 8.780 7.603 8.695 11.440
NGARCH-NIG-Ess 14.81 − −1.290 −0.092 2.913
NGARCH-Gaus-Qua 16.74 2.260 − 1.182 4.149
NGARCH-NIG-EGP 17.50 3.152 0.912 − 3.003
IG-Ushp 18.78 4.659 2.454 1.556 −
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Table 4.26: Rankings of the 24 competitors considered in this chapter in terms of option
pricing performances and VIX predictability obtained in Table 4.25.

GARCH IVRMSE V IX
Model in out We RMSE MAE MPE

G.HN.Ret.Ess 24 24 24 24 24 24
G.GJR.Ret.Ess 22 23 22 23 23 23
G.NGARCH.Ret.Ess 20 22 23 22 22 21
G.HN.Op.Ret.Ess 18 20 20 20 21 22
G.HN.Ret.V IX.Ess 23 21 21 19 17 17
G.GJR.Ret.V IX.Ess 15 14 16 16 18 16
G.NGARCH.Ret.V IX.Ess 17 19 18 17 16 15
NIG.HN.Ret.Ess 21 18 19 21 20 20
NIG.GJR.Ret.Ess 16 16 17 18 19 19
NIG.NGARCH.Ret.Ess 19 17 15 15 14 18
NIG.HN.Op.Ret.Ess 12 12 9 14 15 11
NIG.HN.Ret.V IX.Ess 13 13 11 10 13 9
NIG.GJR.Ret.V IX.Ess 8 4 6 7 8 12
NIG.NGARCH.Ret.V IX.Ess 4 3 7 9 11 10
G.HN.Op.Ret.Qua 7 9 12 13 10 14
G.HN.Ret.V IX.Qua 10 11 14 8 9 7
G.GJR.Ret.V IX.Qua 9 10 10 6 5 5
G.NGARCH.Ret.V IX.Qua 11 8 4 5 6 6
NIG.NGARCH.Ret.V IX.EGP 6 5 3 4 1 2
IG.Ret.Ess 14 15 13 12 12 13
IG.Opt.Ret.Ess 3 6 5 11 7 8
IG.Opt.Ret.Ushp 1 1 1 3 4 4
IG.Ret.V IX.Ess 5 7 8 2 3 1
IG.Ret.V IX.Ushp 2 2 2 1 2 3
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Appendix

5.1 Appendix

Proposition 2.3

Let us �rst suppose that the pricing equations
EP

{
erMUshp

t+1 | Ft
}

= 1

EP

{
eYt+1MUshp

t+1 | Ft
}

= 1

π =
h∗t+1

ht+1

(5.1)

have a unique solution denoted by (θ∗t+1, ε
∗
t+1, ρ

∗
t+1). The preceding system can be expressed

using the conditional moment generating of the pair (Yt+1, y
−1
t+1) under P :

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1, ρ
∗
t+1) = e−r−ε

∗
t+1

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1 + 1, ρ∗t+1) = e−ε
∗
t+1

π =
h∗t+1

ht+1
.

(5.2)

To obtain the dynamics under QUshp, we compute the risk-neutral conditional moment
generating function of Yt+1:

GQUshp
Yt+1|Ft(u) = EQUshp

[
euYt+1 | Ft

]
= EP

[
euYt+1erMUshp

t+1 | Ft
]

= er+ε
∗
t+1GP

(Yt+1,y
−1
t+1)|Ft

(θ∗t+1 + u, ρ∗t+1).

Using the �rst equation in (5.2), we can express the risk-neutral moment generating
function simply using the historical one:

GQUshp
Yt+1|Ft(u) =

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1 + u, ρ∗t+1)

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1, ρ
∗
t+1)

.

Given Ft, we know that yt+1 follows, under the historical probability P, an IG distribution
with degree of freedom δt+1 = ht+1

η2
. Thus, using (2.2), we obtain
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GQUshp
Yt+1|Ft(u) =

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1 + u, ρ∗t+1)

GP
(Yt+1,y

−1
t+1)|Ft

(θ∗t+1, ρ
∗
t+1)

= eu(r+νht+1) e
[δt+1−

√
(δ2t+1−2ρ∗t+1)(1−2(θ∗t+1+u)η)]

e[δ
∗
t+1−
√

(δ2t+1−2ρ∗t+1)(1−2θ∗t+1η)]

and

GQUshp
Yt+1|Ft(u) = e

[u(r+νht+1)]+δ∗t+1

[
1−
√

1−2(u)η∗
]

where η∗ =
η

1− 2θ∗t+1η
1 and δ∗t+1 =

√
(δ2
t+1 − 2ρ∗t+1)(1− 2θ∗t+1η). Therefore, we can write

Yt+1 = r + νht+1 + η∗y∗t+1

where, given Ft, y∗t+1 follows an IG distribution with degree of freedom δ∗t+1. In particular
the risk neutral volatility at time t+ 1 ful�lls h∗t+1 = η∗δ∗t+1 and we deduce from

Yt+1 = r + νht+1 + η∗y∗t+1 = r + νht+1 + ηyt+1

that yt+1 =
η∗y∗t+1

η∗ . Thus, using that π =
h∗t+1

ht+1
, (2.1) gives

h∗t+1 = w∗ + bh∗t + c∗y∗t + a∗
(h∗t )

2

y∗t

where

w∗ = wπ, c∗ =
cπη∗

η
, a∗ =

aη

πη∗
.

To conclude the proof it only remains to express η∗ using the historical parameters of the
model and π. We start from

δ∗t+1 =
h∗t+1

(η∗)2
=
√

(δ2
t+1 − 2ρ∗t+1)(1− 2θ∗t+1η).

The martingale condition for the risky asset implies GQUshp
Yt+1|Ft(1) = er from which we can

extract ρ∗t+1 as a function of θ∗t+1:

ρ∗t+1 =
δ2
t+1

2

[
1− ν2η4

(1− 2θ∗t+1η)
[
1−

(√
1− 2η∗

)]2
]
.

Thus,

h∗t+1

(η∗)2
=

−νht+1

1−
√

1− 2η∗

and

π =
−ν[

1−
(√

1− 2η∗
)] [η∗]2 .

1A priori, the parameter η∗ depends on time through θ∗t+1 but as we are going to see below, θ∗t+1 is time

independent.
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Then, the parameter η∗ is obtained as the solution of the following cubic equation:

(η∗)3 +
2π

ν
η∗ + 2

π2

ν2
= 0.

It is well known that this equation has a unique real solution if and only if2:

4

(
2π

ν

)3

+ 27

(√
2π

ν

)4

> 0 ⇔ 27π > −8ν.

More precisely, we get

η∗ =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27

where p =
2π

ν
and q = 2

π2

ν2
and we can simplify this expression to obtain

η∗ = 3

√√√√π2

ν2

(
−1 +

√
1 +

8ν

27π

)
+ 3

√√√√π2

ν2

(
−1−

√
1 +

8ν

27π

)
.

Finally, we may deduce from the preceding equality that

θ∗t+1 =
1

2η
− 1

2

[
3

√
π2

ν2

(
−1 +

√
1 + 8ν

27π

)
+ 3

√
π2

ν2

(
−1−

√
1 + 8ν

27π

)]

and that the pricing system (5.1) has a unique solution depending on the historical parameters
and π.
�

V IX as a function of the spot volatility (Section 2.1.4)

Under both speci�cations of the pricing kernel, the risk-neutral dynamics of the IG-
GARCH model may be written as Yt+1 = log

(
St+1

St

)
= r + ν∗h∗t+1 + η∗y∗t+1

h∗t+1 = w∗ + b∗h∗t + c∗y∗t + a∗
(h∗t )2

y∗t

where, given Ft, y∗t+1 follows an IG distribution with parameter
h∗t+1

η∗ under the risk-neutral
probability Q. Thus3,

2From the empirical values of the parameters obtained in Table 4, this condition is always ful�lled in our

framework.
3Using the fact that an IG random variable Z with degree of freedom δ ful�lls E[ 1

Z
] = 1

δ
+ 1

δ2
.
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EQ
[
h∗t+j | Ft+j−2

]
= w∗ + bh∗t+j−1 +

c∗

(η∗)2
h∗t+j−1 + a∗EQ

[
(h∗t+j−1)2

y∗t+j−1

| Ft+j−2

]

= w∗ +

[
b+

c∗

(η∗)2 + a∗ (η∗)2

]
h∗t+j−1 + a∗ (η∗)4

= h∗t+j−1ψ
∗ + h∗0 [1− ψ∗]

where ψ∗ = b +
c∗

(η∗)2 + a∗ (η∗)2 is the variance persistence, and h∗0 =
w∗ + a∗ (η∗)4

1− ψ∗
is the

unconditional volatility, under the risk-neutral probability. Now, using the tower property of
the conditional expectation operator, the j−step ahead prediction of the risk-neutral volatility
under the risk neutral measure is given by

EQ
[
h∗t+j | Ft

]
= h∗t+1 [ψ∗]j−1 + h∗0

[
1− (ψ∗)j−1

]
and (3.6) follows easily from (4.13).
�
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Abstract

For the purposes of pricing European options under practical models, we have studied
GARCH process applications, using di�erent pricing kernels alongside a strategy of estima-
tion that integrates returns, options, or VIX information. We conducted this analysis on a
large option dataset found in the S&P500 from 1999 to 2012.

In the �rst chapter, our aim is to extend the IG-GARCH approach and the conditional
Escher transform, which emphasise the importance of modelling conditional skewness �rst
dealt with by [Christo�ersen et al. (2006)]. To this end, we have constructed a related
method centred on an extended and non-monotonic version of the exponential a�ne pricing
kernel. This last version includes a U-shaped exponential function, with the aim of improv-
ing the �exibility of the link between the risk-neutral and historical distributions, as the
tractability of the model is well preserved. Most importantly, in this context, an estimation
strategy based on information of returns-VIX provides noteworthy errors on pricing which
comes at a low computational, following [Kanniainen et al. (2014)]. Consequently, it is
possible to combine historical returns at a rational cost with options or VIX information
in the estimation process. This creates more accurate joint likelihood as explained in
[Christo�ersen et al. (2012)] and [Kanniainen et al. (2014)]. But other than that, the empir-
ical study provides us with very convincing evidence. Indeed, it demonstrates the superiority
of the exponential U-shaped pricing kernel for approximating the options' price from the
S&P500 for the relevant period. We have carefully performed a GMM test, a crucial step
to check the validity of each pricing kernel regarding the martingale conditions. Concerning
the IG-GARCH model associated with both exponential a�ne and exponential U-shaped
pricing kernels in addition to estimation using options (VIX information), we have produced
a comparative analysis of in-sample and out-of-sample pricing performances. We then
calculated the Implied Volatility Root Mean Square (IVRMSE) allocated to each model. We
did this in order to estimate and compare the price errors on both returns-option data and
VIX data as performance measurements. The empirical results were clear-cut: choosing this
new pricing kernel improved the in and out of sample pricing performances of the IG-GARCH.

Let us move on to chapter 2. We here attempt to provide an alternative procedure to
the GARCH estimation challenges. Therefore we give greater focus to the analysis of the
GARCH-process model estimation. Naturally, this comes with the Normal Inverse Gaussian
Distribution innovation (NIG), based on using the two-step Modi�ed-Quasi Maximum
Likelihood (QML). The approach also creates uncertainty regarding the GARCH-HN and
GARCH-GJR e�ciency for option pricing through the use of the empirical martingale
simulation. Furthermore, we see a noticeable improvement in the approximation method for
the development of numerical e�ciency of the Monte Carlo simulation about the GARCH
option pricing models described by [Chorro et al. (2015)]. These results enable us to draw
the conclusion that the GARCH-GJR model with NIG distribution should be regarded as
satisfactory means of price process forecasting which provides a more accurate option price.



We also notice that the results of assessing out-of-sample system forecasts, referred to as
NIG-GARCH-GJR, combined with information on the VIX index as well as what turned
out to be the most e�ective predictive model on the basis of Inverse Root Mean Square
Error. Additionally, we obtained clear results demonstrating that the improvement of the
GARCH-GJR models' performance is supported by the VIX-index information. Naturally,
this comes with NIG error assumption which supports the �ndings of previous studies where
the VIX-index is held as acceptable for estimation and forecasts pricing options on GARCH
type models. Due to these �ndings, we are able to assert that the option pricing forecast's
e�ciency and computation speed are also enhanced.

Now, let's move on to chapter 3 where we tried 24 combinations associated with 4 dif-
ferent GARCH frameworks (HN, GJR, IG-GARCH, NGARCH), 3 distributions (Gaussian,
NIG, Inverse Gaussian), 4 SDF. There are several points about to discuss: notably the
question of the total synergy between the choice of a�ne or non-a�ne GARCH speci�cation,
the chief uses of competing alternatives to the Gaussian distribution, selecting a correct
SDF and the choice of diverse approximation strategies which relies on numerous �nancial
information sets and standard minimization algorithms. We were able to do this by carrying
out a rigorous empirical comparison based, not only on the in and out-of-sample pricing
performances, but principally on the employment of a weekly rolling window strategy in
which each Wednesday model estimation was performed on price options one week later. We
have discovered that the risk-neutralized IG-GARCH model which uses a U-shaped pricing
kernel gives the most accurate results in a consistent manner, and this, for these three criteria
(in, out-of-sample and weekly rolling window). Furthermore, this �nding shows that the use
of a non-Gaussian distribution in conjunction with a non-standard stochastic discount factor
which takes account of the variance risk premium is vital. Moreover, we have con�rmed out
that the combined VIX-Returns likelihood approximation gives competitive pricing errors
at remarkably low computational cost regarding option based estimation procedures. We
have observed that this assertion is applicable to every model investigated in this article.
Regarding the non-a�ne GARCH speci�cations, we obtain noteworthy pricing errors, under
NIG innovations only when we integrate VIX information into the strategy of approximation.
Concerning the NGARCH type model, this is possible to a high degree of e�ciency when
we employ the EGP risk neutralization process or the Two-steps approximation strategy
discussed in chapter 2. According to our results, the model using options or VIX criteria
is signi�cantly more appropriate for pricing S&P500 options, due to the highly signi�cant
Spearman's rank correlation coe�cient of 0.9 we obtained. In consequence, an extremely
e�ective indication of the correlated pricing performances (at very low computational cost)
is obtained through the examination of model performance in a suitable VIX time series. In
this way, VIX analysis can be seen as a very useful and parsimonious �rst-stage evaluation
for �ltering out the worst GARCH option pricing models.

Keywords: Option valuation, Pricing kernel, VIX index, non-Gaussian GARCH,
S&P500.
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Nous avons étudié, dans cette recherche, les applications des processus GARCH dans la
théorie de l'évaluation des options pour calculer les prix des options européennes, en utilisant
di�érents "pricing kernel" ainsi qu'une stratégie d'estimation intégrant des informations sur
les rentabilités, les options ou les informations issus du VIX-index. Nous avons appliqué
l'analyse sur un jeu de données d'option de l'indice S&P500, de 1999 à 2012. Le noyau de
cette recherche est structurée dans le but :

• Premièrement : d'approfondir l'approche IG-GARCH qui souligne l'importance de cap-
ture la caractère leptokurtique et les queues épaisses des distributions empiriques des
rentabilités comme proposée par [Christo�ersen et al. (2006)].

• Deuxièmenent : de proposer une extension non monotone de l'exponentiel a�ne "Pric-
ing kernel" qui possède une fonction exponentielle en forme de U pour augmenter la
�exibilité du lien entre les distributions risque au neutre et les distributions historiques,
car le traitement du modèle est bien préservée.

• Troisièmement : de proposer une stratégie d' estimation basée sur les informa-
tions de return-VIX qui génère des erreurs de valorisation d'option très raisonnable
avec un faible coût de calcul comme détaillé dans [Christo�ersen et al. (2012)] et
[Kanniainen et al. (2014)].

• Quatrièmement : de proposer une procédure alternative aux dé�s de l'estimation de
GARCH basée sur l'utilisation du "Two steps Modi�ed-Quasi Maximum Likelihood
(QML)". Nous nous concentrons sur l'estimation des processus GARCH avec la Normal
Inverse Gaussian (NIG) comme distribution conditionnelle.

Passons maintenant aux performances, qui sont analysées plus en détail au chapitre 3.
l'analyse est basée sur l'utilisation d'une vaste collection de modèles GARCH. Nous nous
interrogerons notamment sur la synergie entre le choix de la spéci�cation GARCH a�ne
ou non, l'utilisation d'alternatives à la distribution gaussienne, la sélection d'un SDF correct
ainsi que le choix de diverses stratégies d'estimation. Ainsi, nous avons testé 24 combinaisons
associées à 4 di�érentes spéci�cations de GARCH (HN, GJR, IG-GARCH, NGARCH), 3
distributions (Gaussien, NIG, Gaussien inverse), 4 SDF. Il convient de noter que nous avons
pu y parvenir en e�ectuant une comparaison empirique approfondie basée non seulement sur
les performances des prix "in-sample" et "out of sample", mais principalement sur l'utilisation
d'une stratégie de fenÃªtre glissante hebdomadaire dans laquelle chaque estimation du modèle
du mercredi a été faite pour évaluer les options une semaine plus tard. Ensuite, nous avons



calculé le carré moyen de la volatilité implicite (IVRMSE) attribué à chaque modèle. Cela a
été fait pour faire une estimation et une comparaison des erreurs de prix sur les données de
retour option et les données VIX en tant que mesures de performance. Nous avons obtenu
des résultats empiriques très précis et très convaincants:

• En e�et, il démontre la supériorité du "Pricing kernel" exponentiel en U en termes
d'approximation du prix des options pour l'indice du S&P500 pour la période consid-
érée. Nous avons soigneusement e�ectué un test GMM nécessaire au contrôle de la
validité de chaque Pricing kernel. Le choix de ce Pricing kernel a amélioré les perfor-
mances de la valorisation des options en utilisant le modèle IG-GARCH.

• En ce qui concerne les spéci�cations GARCH a�nes et non a�nes dans le cadre des
innovations NIG, nous pouvons conclure des résultats du chapitre 2 que le modèle
GARCH-GJR associé aux distributions NIG est considéré comme un candidat adéquat
si nous parlons de processus de détermination du prix d'option.

• En outre, nous avons obtenu des résultats clairs qui montrent que les informations
du VIX-index soutiennent l'amélioration des performances des modèles GARCH-GJR
avec l'hypothèse d'innovation NIG. Grâce à ces résultats, nous pouvons a�rmer que
l'e�cacité des prévisions de valorisation des options et leur temps de calcul sont égale-
ment améliorés. Sur cette question, nous avons découvert que l'estimation combinée
avec les VIX-index et les rendements donne des erreurs de valorisation concurrentielles
à un coût de calcul très raisonnable comparé aux procédures d'estimation par options.

• Pour le modèle NGARCH, les résultats sont aussi attractifs dans le cas où nous utilisons
le processus de neutralisation du risque EGP avec la stratégie d'estimation en deux
étapes que nous venons de développer au chapitre 2.

Par conséquent, l'analyse des di�érents modèles en utilisant des informations issues
du VIX fournit une très bonne indication sur les performances à un coût de calcul très
raisonnable. De cette manière, la comparaison des performances à partir des informations
issues du VIX semblé être une première étape d'évaluation très intéressante et parcimonieuse
pour éliminer les pires GARCH modèles de valuation des prix d'option.

Keywords: Option valuation, Pricing kernel, VIX index, non-Gaussian GARCH,
S&P500.
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In questa ricerca, abbiamo studiato, le applicazioni dei processi GARCH nella teoria
della valutazione delle opzioni per calcolare i prezzi delle opzioni europee, utilizzando diverse
"Pricing kernel", anché una strategia di stima includendo informazioni su ritorni, le opzioni o
le informazioni nate dal VIX . Abbiamo applicato l'analisi su un scampolo di dati di opzione
del' indice S&P500, del 1999 al 2012.

• Primo: per approfondire l'approccio di IG-GARCH che enfatizza l'importanza
dell'acquisizione del carattere leptokurtic e spesse code delle distribuzioni empiriche
dei rendimenti come proposto da [Christo�ersen et al. (2006)].

• Secondo: per proporre un'estensione non-monotono del esponenziale a�ne "Pricing
kernel", che ha una funzione esponenziale a forma di "U" per aumentare la �essibilità
del legame tra il rischio di distribuzioni neutri e distribuzioni storiche.

• Terzo: per proporre una strategia per stimare sulla base delle informazioni dei
rendimenti e VIX, che genera errori molto ragionevoli di valutazione delle opzioni
con un basso costo di calcolo come dettagliato in [Christo�ersen et al. (2012)] e
[Kanniainen et al. (2014)].

• Quarto: per proporre una procedura alternativa per le s�de della stima GARCH basata
sull'uso dei "Two steps Modi�ed-Quasi Maximum Likelihood(QML)". Ci concentriamo
sulla stima del processo GARCH con il NIG "Normal Inverse Gaussian" come dis-
tribuzione condizionale.

Adesso veddiamo le prestazioni analizzate in detaglio nel capitolo 3. L'analisi si basa sull'uso
di una vasta collezione di modelli GARCH. In fatti,esamineremo la sinergia tra la scelta
della speci�cazione GARCH, l'uso di alternative alla distribuzione gaussiana, la selezione di
una SDF corretta cosi come la scelta di varie strategie di stima. In fatti, abbiamo testato
24 combinazioni associati con 4 speci�cazioni diverse di GARCH (HN, GJR, IG-GARCH,
NGARCH), 3 distribuzioni (Gaussien, NIG, Gaussien inverse), 4 SDF. Notiamo che abbiamo
potuto raggiungere questo obiettivo eseguendo un accurato confronto empirico basato non
solo sulle prestazioni sui prezzi "in-sample" et "out of sample", ma soprattutto sull'uso di
una strategia di �nestra scorrevole settimanale in cui ogni modello stimato di mercoledÃ¬
è e�ettuato per valutare le opzioni una settimana più tardi. Quindi, abbiamo calcolato la
media Piazza della volatilità implicita (IVRMSE) attribuita a ciascun modello. Questo è
stato fatto per confrontare gli errori di prezzo. Abbiamo ottenuto risultati empirici molto
speci�ci, precisi e molto convincenti:



• Pertanto dimostra la superiorità del "Pricing kernel" esponenziale in U nel senso di
ravvicinamento del prezzo delle opzioni per l'indice di S&P500 per il periodo studiato.
Con attenzione abbiamo e�ettuato una prova GMM necessario per il controllo di ogni
"Pricing kernel". La scelta di questo "Pricing kernel" ha migliorato le valutazione delle
opzioni con il modello IG-GARCH associato.

• Per quanto riguarda le speci�che GARCH "a�ne" e "non-a�ne" per le innovazioni
NIG, possiamo concludere dal Capitolo 2 che il modello GARCH-GJR associato alle
distribuzioni NIG è considerato un candidato adatto se stiamo parlando del processo
NIG prezzo dell'opzione.

• Inoltre, abbiamo ottenuto risultati chiari che mostrano che delle informazioni di indice
VIX migliora le prestazioni dei modelli GARCH GJR con la distribuzione NIG per
l'innovazione.

• Da questi risultati, possiamo dire che l'e�cacita delle previsioni di valutazione di opzioni
e loro tempo di calcolo è anche migliorato. Su questo tema, abbiamo scoperto che stima
combinata con l'indice VIX e rendimenti dà errori di valutazione al costo di calcolo molto
ragionevole rispetto alle procedure di valutazione di opzioni.

• Per il modello di tipo NGARCH, i risultati sono interessanti nel caso in cui utilizziamo
il processo di neutralizzazione del rischio EGP con la strategia di stima in due fasi, che
abbiamo appena sviluppato nel Capitolo 2.

Pertanto, l'analisi di diversi modelli che utilizzano informazioni dal VIX fornisce un'ottima
indicazione delle prestazioni a un costo computazionale molto ragionevole. In questo modo,
confrontare le prestazioni con le informazioni del VIX è sembrato un primo passo molto
interessante e parsimonioso nel processo di valutazione per eliminare i peggiori modelli di
pricing delle opzioni GARCH.
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