
University ca’ Foscari di Venezia
Department of Environmental Science,

Informatics and Statistics

Master’s course in Software Dependability and Cyber Security

Thesis work

Tainted flow analysis and propagation
across interfaces of IoT ecosystem

Supervisor: Candidate:
prof. Agostino Cortesi Yuliy Khlyebnikov

Academy year 2018-2019

1

Contents

1 Introduction 6

2 Related work 11
2.1 State of Art in the IoT Security 12

2.1.1 IoT security, general case study 12
2.1.2 IoT security, authentication threats 14
2.1.3 IoT security, communication threats 16
2.1.4 IoT security, static analyses as possible solution 17

3 Preliminaries 19
3.1 Data-Flow analysis . 19

3.1.1 Tainted Flow analysis 22
3.2 IoT ecosystem, case study scenario 24

3.2.1 Illustrative scenario 25
3.2.2 IoT back-end . 26
3.2.3 Servlet . 27
3.2.4 Front-end . 29

4 Cross-interface taint analysis 32
4.1 Formal model . 32

4.1.1 Program . 33
4.1.2 Communication medium 34
4.1.3 IoT Ecosystem 34
4.1.4 Data source and sink 35
4.1.5 Julia functionalities and final algorithm 35

4.2 Implementation . 37
4.3 Plant monitoring system analysis 38

4.3.1 Tagging process 39

2

4.3.2 Combining the analysis 41

5 Experimental results 43
5.1 Communication Channel: Cloud (Firebase) 44

5.1.1 Doorbell . 44
5.1.2 Electricity Monitor 45

5.2 Communication Channel: NFC 47
5.3 Communication Channel: Bluetooth 48
5.4 Robocar . 51

6 Conclusions 53
6.1 Experimental work . 54
6.2 Future work . 55

6.2.1 Cross-program argument type control 55
6.2.2 Cross-program constant value propagation . . 57

6.3 Learned skills . 57

3

Acknowledgments

Before starting this document, I would like to express my gratitude
to all professors of Computer Science department of Ca’ Foscari.

Thanks you, I have had a good opportunity to enrich my IT
skills, participate in different projects and improve my teamwork.
Heartfelt thanks A. Cortesi, P. Ferrara and A. Mandal for giving me
an occasion to take part in this research work and gain insights
into the Static Analysis field.

Thanks professor A. Albarelli for giving me opportunity to take
part in PID group and meet and help a lot of Venice/Rovigo com-
panies.

Heartfelt thanks my mum, stepfather, cousin for support me
both, morally and materially during this 2 years of my master
course.

Finally, thanks to all my classmates, for a great study together.

4

Abstract

Internet of things is the network extension consisting of lots of
physical objects which integrates various sensors and a software.
A modern IoT ecosystem still comprises lots of security, privacy
and data consistency threats. They are due to various reasons
and in particular Cross-program propagation of tainted data which
has been also listed in the OWASP IoT top 10 most critical secu-
rity risks. When interactive programs run on distinct devices (like
in IoT systems), they are possibly written in a different program-
ming languages and communicate over different channels. Stan-
dard taint analyses detect if an un-sanitized value (e.g., properly
escaped) coming from a source (e.g., methods retrieving some user
input or sensitive data) flows into a sink (e.g., methods executing
SQL queries or sending data through Internet) within a program. In
this work we enhanced the existing static analysis mechanism for
taint analysis to support the interactive multi-program system. The
proposed framework has been implemented with a JuliaSoft static
analyzer. Preliminary experimental on randomly chosen Github
projects demonstrates the effectiveness of our approach by detect-
ing serious vulnerabilities which are not getting discovered when
analysis kept in isolation.

Keywords IoT Security, Static Analysis, Taint Analysis, Cross-
Interface Taint Analysis

5

Chapter 1

Introduction

The Internet of Things(IoT) - is an extension of a network that
consists of physical objects(things) that are integrate with various
sensors and a software. It allows people to be up to date about the
state of different data. These exchanged data can assume various
types such as simple measurements(temperature, humidity, wind
direction) that are reported by a variety of devices such as station-
ary, mobile and wearable sensors to more complex inputs such as
multiple streams at time. This provides a huge benefit towards at-
taining industry 4.0 by facilitating a sophisticated mechanism for
gathering and utilizing the generated information. Besides things,
a typical IoT system is also comprised of gateways that commu-
nicate through a network to an enterprise back-end server. The
figure 1.1, proposed by Eclipse, highlights a specific IoT scenario
that contains three main parts: (1) things, (2) gateways, (3) cloud
platform.

Security, privacy and data consistency threats are still a huge
issue for a modern IoT ecosystem. With exponential expansion of
new involved interconnected devices(smart-locks, wearable, small
and big appliances, car-keys) the situation becomes more problem-
atic. A report by the biggest cyber security software company, Se-
mantic in [1], the number of attack on the IoT field grew from 6000
to 50000 between 2016 and 2017. Bellow are several examples of
cyber security threats:

6

IoT

Figure 1.1: Generic IoT System

• LocationSmart: As reported by Techrepublic in [2], this threat
compromised the user’s smartphone location allowing every-
one with no need of prior authentication to get the exact loca-
tion of mobile phones in the US and Canada;

• Jeep CAN bus hack: is another IoT vulnerability in [14], dis-
covered by a group of researches on Jeep’s CAN bus. It al-
lowed an attacker to get control (e.g. speed up or slow down,
even veer of the road) of the Jeep vehicle through so called
Sprint cellular network;

• Mirai botnet: infected IoT components, as reported by Csoon-
line in [15], based on ARM processors, with a malware which
turned them to the malicious network called botnet to be able
to organize a large-scale DDoS attack;

All these threats due to the absence of security standards but
also due to unstable software running over embedded devices. It
actually becomes more involved process to debug and discover the
code issues by the device’s manufacturer. The major bottleneck
to archive stable software is the lack of crucial tools and tech-
niques for analyzing vulnerabilities. Another important and weak
point of an IoT network are interconnections which allows sharing
data among things. The security and integrity of an IoT system
is challenged at multiple stages, as data flows through many de-
vices, networks, and administrative boundaries. For this reason,

7

IoT

OWASP highlighted ”insecure ecosystem interfaces” as a major se-
curity threat in OWASP IoT Top 10 2018 in [17]. Although there
are a huge number of baselines in order to mitigate vulnerabilities
most of them are not mandatory and thus not applied by manu-
facturer of an IoT device. Since the IoT is comprised of multiple
heterogeneous components it is difficult to attain security with a
single solution. Other at risk parts include insecure web, back-end
API, cloud storage and mobile interface that all play a crucial role
in comprising the device or it’s related components. The optimal
solution is a holistic framework that assess all security vulnerabil-
ities.

Traditional testing and debug analysis often does not reveal
possible security and privacy issues in IoT software. For this rea-
son the usage of some automatized tools, such as static code ana-
lyzers becomes of vital importance. In particular a such analyzers
are carried out within the implementation phase of Code Devel-
opment Lifecycle. They allows a source code inspection against
a range of properties to determine behavior of a program without
executing it. Nowadays, on market there are a lot of both online
an offline sound static analyzers like Julia for Java, CodeSonar for
C/C++, AlphaScan for JavaScript, Rails, dot NET, etc. Although all
of those tools are able to perform an efficient source code test, they
are not suitable for IoT purposes. In fact, an IoT ecosystem, of-
ten consists of multiple components, executing independently and
an isolated code analysis offered by all of the tools above is not
sufficient. This makes it difficult to discover the vulnerabilities it
experiences as it interacts with other programs.

The main goal of this work is to provide a technique to en-
hance the IoT taint analysis. In particular, devise a cross-interface
taint checker which is capable of detecting security vulnerabilities
of multiple related program having some common communication
interfaces. In general, taint analysis allows to discover if an un-
sanitized value (e.g., properly escaped) coming from a source (e.g.,
methods retrieving some user input) flows into a sink (e.g., methods
executing SQL queries) within a program. However this taint anal-
ysis on the cross-interface system represents the critical point and

8

IoT

has been also listed in OWASP Top 10 at [17]. We addressed this
issue by defining a cross-interface taint analysis mechanism based
on the formal aspect of the data flow approach, presented in [5].

In order to reach our goals we first of all have studied the case
by applying some of the data-flow analysis technique, introduced
by professor A.Cortesi during the lectures. We have also analyzed
already existing solutions, such as Julia static analyzer [18], which
has been actually extended with new features. In particular, we
used the Julia to construct a set of source and sinks for each pro-
gram of the given IoT system. Then analyzed sets are used to detect
taint paths for every program. Finally, the obtained result is parsed
to determine the connectivity in the tainted paths among the inter-
active programs to construct the tainted graph. To apply and test
the devised mechanism, we used an example plant monitoring IoT
ecosystem developed by Amit Mandal. Where tainted path from IoT
back-end to the front-end user application has been discovered.

Additionally, we performed a set of analysis of an IoT android
based systems taken from GitHub repositories. We have grouped
the tested projects on communication channel criteria and reported
the detailed results on a Chapter 5. However, by providing pro-
grams of each single IoT component and annotated sources and
sinks, we’ve got possible paths representing the taint data propa-
gation. Again, such an approach appears to be a powerful tech-
nique to discover a lot of security issuese.g SQLi, XSS, etc during
the system development phase.

The structure of the document is composed in 5 chapters as
follows:

1. Related work

2. Preliminaries

3. Cross.interface taint analysis

4. Experimental results

5. Conclusions

9

IoT

In which I’ll apply all of techniques learned during my master’s
Cyber security courses, such as Software correctness, security and
reliability, Cloud computing, advanced data management and pro-
gramming. Illustrate a detailed information to the problem defi-
nition, solution and discuss of obtained results. Finally conclude
with the future use-cases and possible extensions of this work.

10

Chapter 2

Related work

IoT ecosystems have become, since last decade the most popu-
lar and comfortable technology in almost all the areas. As IoT-
Analytics resource points out in [19], still nowadays there is a
strong growth in sectors like: connected industry - 22%, smart cities
- 20%, connected cars - 13%, smart agriculture - 6%, connected build-
ings - 5%, connected health - 5%, smart retails - 4%. This intercon-
nects a different business giving us new opportunities but from
technical point of view it’s also a starting point for the diversity of
devices which are capable to process and exchange data among
them. The main reason for this diversified adaption of IoT is that
it’s closely related to other computing paradigms from wireless sen-
sor network (similar core concepts) to edge computing and cloud
computing technologies. Thus it allows to introduce some of the
advanced techniques in order to collect information, manage phys-
ical resources(e.g., inventory) and logistics, remote work. It’s neces-
sary to mention that beside al of the facilities of IoT, it also inherits
the security concerns of those technologies. Moreover, apart to the
existing vulnerabilities, it also posses some unique security threat
due to its own system architecture. As reports the ”Securelist”
resource in [20], one of the biggest antivirus software companies
- ”Kaspersky”, the most popular attacks on IoT components are
against Telnet passwords - 77.40%, and what concerns download-
ing malware preferred option is one of the Mirai family - 20%. But
not only, there are different smaller cases where an intruder is able
to introduce an attack and event completely impersonate of the

11

IoT State of Art in the IoT Security

Thing. Recently, there were proposed lots of mitigation methods
and literature to address these issues. In the following sections,
I would like to gain insight into different IoT’s security areas, dis-
cover weak points and analyze possible solution which are already
available or not on the real world IoT scenario.

2.1 State of Art in the IoT Security

In this section I will point out the actual state of the Internet of
Things’s technologies, underlining the security impact, basing my
research on already available scientific literature.

2.1.1 IoT security, general case study

Frustaci at al. [1], provided general definition of an IoT ecosystem
based on three layers perception, transportation, application. Spec-
ified the related threats to each layer and highlighted the weakest
one. Moreover, KHATTAK et al. [8] performed detailed analysis of
the perception layer, by describing it’s main components, identify-
ing possible security attacks and available counter measurements.
They further presented the security properties(e.g. authentication,
confidentiality, integrity, non-repudiation, etc) and standards in or-
der to archive the goals of modern IoT system. GE, Mengmeng at
al. [2], proposed their formal definition of the framework for ac-
cessing the security of IoT, by showing how an intruder could be
able to reach some vulnerable IoT device, through examination of
potential attack paths. ABDUL-GHANI et al. [13], evaluated IoT
reference model by extending it with a set of modern security at-
tacks (e.g. Eavesdropping,Man-in-middle, Bluesnarfing, Hijacking,
Dictionary Attack, UPD flood, etc) . Moreover, provided a potential
countermeasures for each IoT asset. TWENEBOAH-KODUAH et al.
[6], evaluated the taxonomy of various system-inherent security is-
sues responsible for exposing IoT systems to various cyber-threat
vectors. They demonstrated attack scenarios on smart metering
communication which shows that vulnerable IoT systems can be
exploited by using crafted vectors. Beside the taxonomy based ap-

12

IoT State of Art in the IoT Security

proach some literature focuses on security framework for IoT ap-
plications in general. ASPLUND at al. [3], presented an inter-view
based study to identify the common IoT security requirements in
sectors like, energy, water and health. Sowing that, most of the
respondents are not aware about the IoT security risks, prioritiz-
ing technology availability rather then robustness and data con-
sistency. Similarly, Trend Micro research in [21], pointed out that
a huge number (91%) of today’s companies should improve their
awareness against IoT attacks. Das et al. [4] performed a compar-
ative study of different security protocols of IoT. For this purpose,
they presented a taxonomy for security protocols used in IoT which
includes device authentication, access control, privacy preserva-
tion etc. Whereas, Mavropoulos et al. [7] presented a class-based
notation of the modeling language and a mechanism for transition
between different models called Apparatus. However, majority of
these systems are generic in nature and merely outlines the generic
system vulnerabilities. It does not provide in depth analysis of ma-
jor security issues such as device authentication and its exposer
to network. Hasan at el. [9], applied Machine Learning approach
to predict IoT attacks like, Denial of Service, Malicious control, Spy-
ing. They cried out a number of tests, which reported that, the
most functional method was so called Random Forest in [23], with
accuracy near 99,4%. However, such tests were performed on a
virtual environment, neglecting some real-world factors. A study
done by LOHACHAB et al. [10] reports the kinds of the most pop-
ular attack, executed on Iot systems - DDoS, underling possible
scenario, working mechanisms and eventual impact. Furthermore
gave a vast panoramic of available tools(e.g. data mining, deep
learning, path identification, power spectrum analysis) to mitigate
the issue. However stressed on need of new more advanced tech-
nologies to deal with the novel DDoS. Miloslavskaya, Tolstoy at al.
[11] provided a concept of information security, based on Big Data
over the IoT field and highlighted it’s key features like 24×7 se-
curity coverage, holistic approach with defense-in-depth, advanced
context-based analytics in order to catch anomalies, threats with a
real-time scenario.

13

IoT State of Art in the IoT Security

2.1.2 IoT security, authentication threats

The biggest part of an IoT security issues deals with authentication
mechanisms. Usually a such embedded devices includes reduced
memory space, and computational capabilities. Thus making it
impossible to carry out modern access control procedures or to
store sufficient length protection passwords. In this regard, tak-
ing into account exploits discovered by [15], lots of threats, mal-
ware injection, data leakage were recently come out within IoT
systems. Sujatha et al. [23] evaluated three factor authentica-
tion (e.g. password, RFID, biometric) and provided a testbet imple-
mentation to allow authentication with such factors. GAMUNDANI
et al. [14] reports, most of them are due to weak password pro-
tection(80%), absence of encryption mechanisms on data transi-
tion(70%) or firmware updates(60%). However recent literature and
lots of research work in IoT field has been done to address a such
problem. Hao et al. [16] devised an end-to-end IoT device authen-
tication which offers seamless integration of physical security with
the asymmetric cryptography-based authentication mechanism. It
estimates the device features by using type of intermediate nodes
radio-frequency etc. Which then used in cryptographic key. The re-
sults showed better protection against various computation-based
impersonation attacks. Similarly SHAH in [17] provided an secure
authentication technique based on challenge-response mechanism
and a concept of Vault (e.g. finite set of equisized keys). This gar-
ntee authorized access, by updating the vault over the time, even
in case the key has been compromised by an intruder. They fur-
ther showed relatively small energy consumption and short time
response by testing the protocol on a real Arduino based, IoT sys-
tem. Another result achieved in [18], with secure re-encryption
mechanism. This allows to reduce computation process by sharing
re-ecrypted keys with proxy server which then will transform cipher
text of a some IoT thing to allow it’s decryption by others. Challa
et al. [19] devised a signature-based authenticated mechanism for
the IoT devices. It is simulated using NS2 and evaluated using
Burrows-Abadi-Needham logic. Beside Taint Propagation Across
IoT Ecosystem Interfaces authentication a secure network is also

14

IoT State of Art in the IoT Security

essential to prevent IoT systems from cyber attacks. Porambage
et al, [20] proposed secure two-phase authentication technique for
sensor wireless network. In particular it, allows to prove the user’s
identity by testing the validity of his lightweight certificate and in
case establish a secure connection between a such user and the
sensor. Giuliano et al. [21] analyzes security aspects of IoT capil-
lary networks for various IP and non-IP IoT devices and proposed
an algorithm based on secure key renewal mechanism for safely
accessing uni and bi-directional IoT devices. Although, they stud-
ied approaches enhances security, but majority of these methods
incurs a substantial implementation complexity and imposes sig-
nificant overhead to the already power constrained IoT devices.
Further, the performance is also affected by the secure network
channel between various IoT devices for data transmission. Be-
side traditional authentication methods which comprises key ex-
change or password/pin validation, biometric authentication has
been used, since lasts years in several areas. It provides highest
level of security and is more challenging to be compromised. A re-
cent study in [22] points out that the Iris match approach can be
used whiting IoT scenario, allowing to prove an identity through
two-phase authentication process. Kinikar et al. [24] proposed an
open authentication protocol OAuth based on authentication tech-
nique through access token stored on the server. Farris et al. [26]
analyzed security features of network functions virtualization (NFV)
and software defined network (SDN) from IoT security perspective.
They also depicted the open challenges for SDN and NFV based
security mechanisms for IoT. Whereas, Shin et al. [25] proposed
a secure protocol using trust between Proxy Mobile IPv6 (PMIPv6)
domain and IOT systems to address security issues. The proposed
protocol supports features like: handover management, where mu-
tual authentication, key exchange, etc.

15

IoT State of Art in the IoT Security

2.1.3 IoT security, communication threats

The key feature of an IoT ecosystem is to be able to send mea-
sured or collected data to some end-point, where they could be
elaborated. Beside a such data, IoT actuators usually requires
some user’s private information to be exchanged, thus it becomes
important to garntee also a robust connection, encryption mech-
anisms to be applied in order to protect transferred data. This
is another weak point of a such system, since traditional encryp-
tion algorithms requires a lot of computations which are not fea-
sible with majority of embedded things. For this purpose Kim et
al. [18] devised a mechanism by implementing proxy re-encryption
towards managing data with comparatively less encryptions, and
also a data sharing process for secure and efficient data transmis-
sion. Whereas Sahay et al. [27] propose a mechanism for detect-
ing the malicious nodes responsible for the version number attack,
thus preventing the flow of malicious data in the system. Hou et
al. [28] devised a three-dimensional approach for exploring IoT se-
curity by combining the concept of IoT architectures and data life
cycles. Unlike many other security measures it considers the data
flow from IoT end-point devices through the Internet to a cloud or
vice versa. However, it is focused on secure usage of IoT data, it
does not ensure the taintedness of the data.

Beside the lack of advanced and specific cipher mechanisms,
another issue is increasing spread of various thingbots(e.g. VPN
Filter, UPnProxy, OWARI, DoubleDoor, JenX), which infects routers
and another intermediate network nodes. f5 public resource, in-
vestigated in [13] that the thingbots above, allows intruders to per-
form attacks like, crypto-jacking, DDoS, PDos, installing tor nodes,
make packet sniffing, crypto-jacking. This is due to the absence
of specifically devised techniques and tools which be able to rec-
ognize and block malicious botnets. To this regard there was pre-
sented some scientific literature, to gain insight the issue. Hguyen
et al. [29] offered a botnet detection technique based Machine
learning approach. They analyzed (SOHO) IoT device firmware
through PSI graph and discover with use of convolution neural
networks whether it contains malicious strings. The accuracy of

16

IoT State of Art in the IoT Security

nearly 92% confirms that this is a good starting point address an
issue. Prokofiev et al. [30] used statistical methods(e.g. logistic
regretion) to evaluate the probability of an IoT device belonging to
some malicious botnet. Again this method reports very good accu-
racy(nearly 97.3%) and precision(94%) and the capability to detect
Telnet/SSH based botnet attacks. Whereas Choi et al [31] evalu-
ated the DNS traffic and defined a key features to distinguish the
malicious botnet DNS requests. In particular devised an algorithm
which is able to identify botnet queries by using previous key fea-
tures. Another allowing factor to this kind of attacks is so called
hidden backdoors. Manufacturers of IoT things usually sales their
devices with some opened communication ports (e.g. Telnet, SSH,
Sip, UPnP) it makes easier the procedure of support but also allows
attacks to gain additional insight into device. To this regard, Tien
et al. [32] provided an algorithmShDep which is able to analyze an
IoT thing’s firmware, based on various scripts and discover if there
is some opened service ports(hidden backdoor). To this end, the
graph based approach is applied in order to represent the commu-
nication among scripts. Then by traversing a path it’s possible to
discover telnet or other unsafe service connection.

2.1.4 IoT security, static analyses as possible solu-
tion

In order to mitigate previously discussed threats, the static pro-
gram analysis in [33] (in particular data-flow taint analysis) may be
very useful, since allows to discover data propagating across differ-
ent systems and it’s effect on the transmitted IoT ecosystem. This
technique also helps make IoT software more robust and solve most
security bugs by it’s manufacturer, during the development phase
of software life cycle. In general, there are lots of solutions based
on this approach, and our technique is one of them, for example
Click et al. [34] proposed a mechanism for conditional constant
propagation based on lattice representation by defining special flow
functions over the composed domain. Pioli and Hint [35] devised a
flow function by combining constant propagation and pointer anal-
ysis. However, most of the studied approaches discussed about

17

IoT State of Art in the IoT Security

propagation of some specific type of data instead of taint propaga-
tion in general. Recently, a some other static analysis approaches
have been used to analyzes the security of IoT systems. Huuck et al.
[36] discussed the uses static code analysis to detect some of these
issues. Similarly Cleik et al [37] identified security and privacy is-
sues of five IoT platforms, and applied existing static analyzers to
detect these issues. These approaches pointed out that ”a suite of
analysis tools and algorithms targeted at diverse IoT platforms is
at this time largely absent”. The biggest company that produces
static analyzers(GrammaTech) has also claimed in [12], that the
only way to keep software, developed for IoT landscape both, design
and codding error free is to adapt the mandatory use of static code
analysis across development projects. A such technique offers a
vast gamma of source code controls(constant propagation, live vari-
able analysis, taint analysis). Further, the taint analysis should be
performed over multiple programs in order to be complete, as IoT
systems composed of multiple interactive components executing
independently. Therefore, the current IoT security landscape de-
mands a mechanism for analyzing the security vulnerabilities of
the IoT system which facilitates cross-interface data propagation.
In this regard the existing taint analysis techniques can be very
useful, but they can only analyze a program in isolation. There-
fore, the taint analysis should be enhanced to support the analysis
of a multiple interactive programs running independently.

18

Chapter 3

Preliminaries

This chapter will provide the fundamentals of Data-flow analysis,
one of the most popular technique used within a static analysis.
It will show how data-flow, and in particular tainted-flow analysis
may be useful in order to point out potential security issues. More-
over it will provide the role of it’s components and security threats
and contain an example of tainted flow analysis. The chapter will
be broken down into two sections, for clarity: 3.1 Data flow analy-
sis and 3.2 IoT Case study. The first section introduces data-flow
and tainted flow analysis. The second section illustrates a specific
scenario of IoT, discusses possible security issues and mitigation
methods.

3.1 Data-Flow analysis

In general, Data-Flow analysis can be defined as a technique which
allows, without an explicit execution to discover information about
flow of data of a computer program. Where data may assume var-
ious types: constants, variables, expressions, depending on a spe-
cific instance of analysis. Usually, this technique is widely used
by a compilers in order to optimize source code as well as by bug-
finding tools to gather some common issues of program code. To
this regard, the program is expressed in terms of a Control Flow
Graph(CFG). A CFG is an oriented graph where each node repre-
sents a statement and each edge shows possible control flow prop-

19

IoT Data-Flow analysis

agation. Among the set of all vertices, entry nodes have no pre-
decessors while exits nodes have no successors. The control flow
enters through the entry node and leaves through the exit node.

To represent properties of program’s data, the notion of fact is
defined. In particular a fact characterizes the value of the prop-
erty at each program point. For this purpose, on the Control Flow
Graph, each node has the set of facts which are valid before en-
tering(IN) and after exiting(OUT) such node. Moreover, since within
a statement some information may by generated or killed(e.g. no
more valid), each node has also a set of GEN and KILL facts. The
following figure shows an example of a portion of CFG reporting the
sets of facts:

Depending on specific instance of data-flow analysis, IN(n) and
OUT(n) can be defined with respect to the GEN(n), KILL(n) or IN(n+1),
OUT(n-1), where n+1 are successors and n-1 predecessors respec-
tively of the node n. However there might be a case when a given
node n on CFG, has more then one predecessor/successor, so the
meet(u) operator is applied to all OUT or IN sets of predecessors/-
successors respectively. In general, for a particular data-flow anal-
ysis, IN and OUT set’s definitions are resumed with a system of

20

IoT Data-Flow analysis

equations.
The aim of the data-flow analysis is to evaluate, for each node

n of CFG, the sets IN(n) and OUT(n) by iterating through previ-
ously defined system of equations, until the sets change(not joined
the fixed point). Once the IN(n) = {fact1, fact2, .., factk} and OUT =

{fact1, fact2, .., factl} has been computed for each node n, some mea-
sures to reduce code complexity or common bugs management are
made. For example by applying Reaching definition analysis at [9]
to a given source code, a lot of computations(constant values) may
be performed even before executing the program. Since it allows
to discover for each statement, what are the earlier defined state-
ments with target variable which can be assignment to a current
instruction. In this case, N(n) and OUT(n) equations are defined as
follows:

IN(n) =

∅, if n is entry node;⋃
∀s∈pred(n)

OUT (s); otherwise;

OUT (n) = GEN(n) ∪ (IN(n)−KILL(n));

Where pred(n) is the set of predecessors of node n.
Another instance of data-flow analysis is very busy expressions

in [11]. In particular, the aim is to get for all program’s points p,
so called ”busy” expressions which, no meter the selected path on
CFG from p, they are used before any of their variables are rede-
fined. This allows code checker tool to reduce code size, especially
on embedded IoT devices, where there is some memory constrain.
The fact is represented by an expression and the IN(n) and OUT(n)
equations are defined as follows:

OUT (n) =

∅, if n is exit node;⋂
∀s∈succ(n)

IN(s) otherwise;

IN(n) = (OUT (n)−KILL(n)) ∪GEN(n);

21

IoT Data-Flow analysis

Where succ(n) is a set of all successors on CFG of node n.
The last example, I want to report is called live variable anal-

ysis in [10]. The main goal in this case is to determine, for each
program’s point p, which are the ”live” variables at the exiting from
p. In general the variable is said to be live, if there exists a path on
CFG from some node k to a usage node l and on that path a such
variable is not redefined. This technique allows to reduce again the
variables set of some program, especially in case, there is a little
number of register. What concerns the data-flow equations, they
are defined as:

OUT (n) =

∅, if n is exit node;⋃
∀s∈succ(n)

IN(s) otherwise;

IN(n) = (OUT (n)−KILL(n)) ∪GEN(n);

Data-flow analysis is a wildly used technique which allows code
optimization, performance improving but also finding program vul-
nerabilities and information leakage. In the following sub-section,
I would like to focus attention on one more technique of data-flow
framework. In particular, tainted flow analysis and how it can be
used to discover potential code vulnerabilities.

3.1.1 Tainted Flow analysis

Tainted analysis can be defined as a technique which tracks an
un-sanitized data propagation, between a previously defined source
and sink program points. In particular, the main goal of the anal-
ysis is to find out, whether there exists a path from source to sink
which does not go across a sanitizer, if so mark a such path as
tainted. For tainted analysis, a path from source to sink on the
CFG, can be seen as a chain of data dependencies. To this regard,
[16] defined taint analysis as a quadruple:

Tainted = (P, Src, Snk, S)

22

IoT Data-Flow analysis

Where P is a program defined with CFG, Src is a set of sources,
the program points where a particular data has been generated.
Snk is a set of sinks, program points where a particular data is
consumed. Finally S represents a set of sanitizers, might be some
predefined functions or user controls of data. In general, as pre-
sented by James Clause et al. [38], there exists two kinds of tainted
flow propagation:

• Explicit: which is due to the explicit value dependencies of the
program variables. For example, if some variable, a contains
tainted value, and then it appears within expression assigned
to a variable x, this would affect x making it tainted as well:

a = 5; ”Tainted”;

x = a ∗ 2;

Figure 3.1: Example of explicit tainted flow

• Implicit: which is due to the implicit control flow dependencies
in the code. For example, let’s consider again the tainted vari-
able a, and the if-then-else construct, where variable x appears
within both: then and else blocks. The if condition depends
on a value. So as a consequence, also the value assigned to x

will depend on tainted value of a, thus become tainted as well.

a = 5; ”Tainted”;

if(a > 2) then

x = 10;

else

x = 20;

Figure 3.2: Example of implicit tainted flow

To address the issue several implementations has been pre-
sented within the recent literature. Cao et al. [39] implemented
tool to perform the flow-sensitive tainted analysis of modern ver-
sion of PhP web applications. They used a built-in(PhP) feature to

23

IoT IoT ecosystem, case study scenario

construct a CFG, then discover the source node and traverse and
analyze all paths starting from a such node towards a potential
sinks. However the proposed solution supports only procedure-
oriented fashion and need to be integrated for OOP case. Another
proposal was made by Zhang et al. [40], where they implemented
a low-overhead system for binary taint flow analysis. In particu-
lar, the system inspects a binary code stream of the program, and
checks whether it contains a data used for control transfer target,
if so marks the source as tainted and arises a warning.

With such technique it’s possible to discover code vulnerabili-
ties like SQLi [6], Cross-Site scripting [7], since the effect on execu-
tion of malicious payload, introduced by intruder can be pointed
out during compile time. Although tainted analysis is even built-
in feature of some SDKs(e.g. tainted checking in Perl [3], Ruby [4])
and some enterprise check tools are available(Julia soft [18]), they
are devised to be used mostly with Desktop or Smartphone appli-
cations. Furthermore allows an isolated analysis, which means
discovering only tainted paths within a single program. This is the
major bottleneck for the IoT oriented software, where in general
more programs and communication among them should be con-
sidered. That’s why we aimed to device an automatized tool, which
extends this technique to the IoT field. In particular, apply an al-
ready available taint checker to all components of an IoT ecosystem
and combine obtained results in order to get global tainted paths.

3.2 IoT ecosystem, case study scenario

In this section, I will focus attention on a real world IoT ecosys-
tem, which is used to collect environmental data(e.g. temperature,
humidity, soil-moisture). Provide an example of the cross-interface
taint propagation, and apply tainted flow analysis using one of the
available solutions on the market(JuliaSoft), in order to point out
the issue. Finally discuss about obtained results.

24

IoT IoT ecosystem, case study scenario

3.2.1 Illustrative scenario

In this sub-section I would like to provide a real world example of
IoT ecosystem based on 4 main components: IoT back-end, cloud
storage, servlet, user front-end.. The communication scenario among
those components is depicted on the following figure.

Figure 3.3: Illustrative scenario of IoT ecosystem

In particular, it’s a simplified Plant Monitoring System(thing)
with Raspberry 326 Pi 3B+ with 64-bit, Quad-Core, Broadcom
BCM2837B0 CPU 327 running at 1.4GHz and 1GB of LPDDR2
SDRAM. The thing runs a java program in order to collect measure-
ments from two different sensors: temperature & humidity sensor
and an soil-moisture sensor. Retrieved data is then send to a re-
mote hadoop database. Which is afterwords accessed by a user
front-end, through either dynamic JSP web page or android ap-
plication. Android app is built on Android API 25 which in turn
interacts with the java servlet in order to utilize data repository.
Here, java servlet is a simple servlet which reads the data from
Hbase in [22] tables and sends them as requested by the app.

These apps are then analyzed using Julia static analyzer for
taint propagation in the software [41]. In general taint analysis
checks which program points can possibly be affected by the un-
sanitized user input. It performs tainted analysis by statically

25

IoT IoT ecosystem, case study scenario

racking explicit information flow in the program, from the selected
sensitive data locations source into the selected leakage locations
(sinks). In this way Julia is able to return an exhaustive report to
identify potential data leaks with respect to the source and sink.
In particular, the checker is based on two phases, Init and Report.
Within the Init phase, Excel file is produced form the program un-
der analysis. A such file contains the possible candidate points
that can become leakage locations, as well as possible sensitive
data source locations. These are then tagged with the category of
sensitive data they retrieve, or leakage points they disclose infor-
mation to. The report phase instead analyzes an application by
applying the specification provided through the annotated Excel
file created by Init phase. By the end of this phase, an exhausted
report, with all possible data flow graphs representing potential
un-allowed leakages, is provided. With the following sub-sections,
I will show the particular task of each component and highlight
possible tainted flow propagation.

3.2.2 IoT back-end

As mentioned before, it’s based on java application. The Figure 3.4
depicts the code snippet of a such IoT back-end program. At line
13 and 19 the system performs a read of sensor data, then it makes
some computation and finally adds the data to the database objects
from line 27 to line 30. In the init phase the analyzer generates the
specification file with the all possible source and sink methods.
Thus, we may tag the readline() method as source, whereas add()
method as sink. Afterwords, in the report phase we supplied the
tagged specification. The final results report possible leakage of
data between source and sink depicted in Figure 3.7, i.e the flow
from the sensor reading to the storage is tainted.

26

IoT IoT ecosystem, case study scenario

1 public class Server{
2 private static Socket socket1;
3 private static Socket socket2;
4 public static void main(String[] args){
5 try{
6 int rowNo = 1;
7 ...
8 while(true) {
9 // sensor 1

10 InputStream is1 = socket1.getInputStream();
11 InputStreamReader isr1 = new InputStreamReader(is1);
12 BufferedReader br1 = new BufferedReader(isr1);
13 String msg1 = br1.readLine();
14 String[] readings1 = msg1.split("\t+");
15 // Sensor 2
16 InputStream is2 = socket2.getInputStream();
17 InputStreamReader isr2 = new InputStreamReader(is2);
18 BufferedReader br2 = new BufferedReader(isr2);
19 String msg2 = br2.readLine();
20 String[] readings2 = msg2.split("\t+");
21 //Compute Average of two Sensor
22 humidity =

(Float.parseFloat(readings1[0])+Float.parseFloat(readings2[0]))/2;
23 tc = (Float.parseFloat(readings1[1])+Float.parseFloat(readings2[1]))/2;
24 tf = (Float.parseFloat(readings1[2])+Float.parseFloat(readings2[2]))/2;
25 // create an object with the measured data
26 Put p = new Put(Bytes.toBytes("row"+rowNo));
27 p.add(Bytes.toBytes("ambiance"),Bytes.toBytes("humidity"),Bytes.toBytes(""+humidity));
28 p.add(Bytes.toBytes("ambiance"),Bytes.toBytes("tempc"),Bytes.toBytes(""+tc));
29 p.add(Bytes.toBytes("ambiance"),Bytes.toBytes("tempf"),Bytes.toBytes(""+tf));
30 p.add(Bytes.toBytes("soil"),Bytes.toBytes("moisture"),Bytes.toBytes(readings1[3]));
31 // insert data into the database
32 try {
33 table.put(p);
34 } catch (IOException e) {...}
35 rowNo++;}
36 ...
37 }}}

Figure 3.4: Code Snippet for IoT Backend.

Figure 3.5: Taint Analysis Results of the Thing

3.2.3 Servlet

What concerns a servlet, it’s again has been implemented with
java(JSP web page). It main purpose is to perform access to the
data and send them to the android application. The following fig-
ure depicts the code snippet of the servlet [24] which has been used

27

IoT IoT ecosystem, case study scenario

within the project.

1 @WebServlet("/HbaseConnection")
2 public class HbaseConnection extends HttpServlet {
3 public HbaseConnection() {
4 super();}
5 protected void doPost(HttpServletRequest request, HttpServletResponse

response){
6 response.setContentType("text/html;charset=UTF-8");
7 try {
8 String sensType = request.getParameter("sensType");
9 String result = queryHbase(sensType);

10 response.setStatus(HttpServletResponse.SC_OK);
11 OutputStreamWriter writer = new

OutputStreamWriter(response.getOutputStream());
12 writer.write(result);
13 writer.flush();
14 writer.close();
15 } catch (IOException e) {...}}
16 //query Hbase
17 public String queryHbase(String sensType) {
18 double val=0.0;
19 String result = "";
20 try {
21 Class.forName("org.apache.drill.jdbc.Driver");
22 Connection connection =

DriverManager.getConnection("jdbc:drill:zk=192.168.1.6:2181/drill/drillbits1");
23 Statement st = connection.createStatement();
24 ResultSet rs1 = st.executeQuery("SELECT CONVERT_FROM(SensData." + sensType

+ ", ’UTF8’) FROM hbase.SensData");
25 int count=0;
26 while(rs1.next()){
27 System.out.println("-->"+rs1.getString(1));
28 float temp = Float.parseFloat(rs1.getString(1));
29 val = val+temp;
30 count++;}
31 val = val/count*100;
32 val = Math.round(val);
33 val = val/100;
34 } catch (ClassNotFoundException | SQLException e) {...}
35 return ""+val;}}

Figure 3.6: Code Snippet for the Servlet.

In particular, at line 28 the value sent by IoT back-end is re-
trieved using parseFloat() method from the database whereas at
line 12 with write() method it is sent through the Internet. These two
methods are respectively target as source and sink in the specifica-
tion file, generated within init phase of checker. Further, the tagged
specification file is supplied for the report phase of the analysis.
The taint analysis results depicted in Figure shows that tainted
flow does exist from the identified source and sink.

28

IoT IoT ecosystem, case study scenario

Figure 3.7: Taint Analysis Results of the Servlet

3.2.4 Front-end

For the user front-end, we considered an android App. It’s actually
consist of two different components: BackgroudWorker, primar-
ily responsible for collecting data from servlet, and Main activity,
which takes the values received by the Background Worker and
perform the intended action. The Figures 3.8, 3.9 reports both
code snippets: of Main Activity and Backgroud Worker.

1 public class MainActivity extends AppCompatActivity {
2 TextView textView;
3 RadioGroup radioGroup;
4 RadioButton radioButton;
5 protected void onCreate(Bundle savedInstanceState) {
6 super.onCreate(savedInstanceState);
7 setContentView(R.layout.activity_main);
8 textView = (TextView)findViewById(R.id.tvResult);
9 radioGroup = (RadioGroup)findViewById(R.id.rgSensType);}

10 public void onClick(View view) {
11 String sensor="";
12 String type = "mul";
13 BackgroundWorker backgroundWorker = new BackgroundWorker(this);
14 String result = null;
15 int sensType = radioGroup.getCheckedRadioButtonId();
16 if(sensType!=-1) {
17 radioButton = (RadioButton) findViewById(sensType);
18 String str = (String) radioButton.getText();
19 if(str.equals("Soil Moisture")){sensor = "soil.moisture";}
20 else if(str.equals("Temerature in Celsius")){sensor = "ambiance.tempc";}
21 else if(str.equals("Temerature in Fahrenheit")){sensor = "ambiance.tempf";}
22 else if(str.equals("Humidity")){sensor = "ambiance.humidity";}
23 ...
24 textView.setText("Average "+str+": "+result);}
25 ...}}

Figure 3.8: Code snippet of Android App (Main Activity).

If we perform the analysis of a such android application, with
the readLine() method of Background Worker at line 19 as a source
and setText() method of the Main Activity at line 24 as a sink. Then
the analysis results, at Figure 3.10 shows that a tainted flow still
exists among them.

29

IoT IoT ecosystem, case study scenario

1 public class BackgroundWorker extends AsyncTask<String, Void, String> {
2 ...
3 protected String doInBackground(String... params) {
4 String type = params[0];
5 String temp = params[1];
6 String servletURL = "http://192.168.1.6:9080/IOTQuery/HbaseConnection";
7 if(type.equals("mul")){
8 try {
9 String result, line;

10 URL url = new URL(servletURL);
11 HttpURLConnection httpURLConnection = (HttpURLConnection)

url.openConnection();
12 ...
13 BufferedWriter bufferedWriter = new BufferedWriter(new

OutputStreamWriter(outputStream, "UTF-8"));
14 String post_data = URLEncoder.encode("sensType",

"UTF-8")+"="+URLEncoder.encode(temp,"UTF-8");
15 bufferedWriter.write(post_data);
16 ...
17 InputStream inputStream = httpURLConnection.getInputStream();
18 BufferedReader bufferedReader = new BufferedReader(new

InputStreamReader(inputStream,"UTF-8"));
19 while((line = bufferedReader.readLine())!=null){
20 result += line;}
21 bufferedReader.close();
22 inputStream.close();
23 httpURLConnection.disconnect();
24 return result;
25 ...}
26 return null;}
27 protected void onPreExecute() {
28 alertDialog = new AlertDialog.Builder(context).create();
29 alertDialog.setTitle("Connection Status");}
30 protected void onPostExecute(String result) {}
31 protected void onProgressUpdate(Void... values) {
32 super.onProgressUpdate(values);}}

Figure 3.9: Code snippet of Android (Background Worker).

Figure 3.10: Taint Analysis Results of the Android App

30

IoT IoT ecosystem, case study scenario

The performed analysis detects the tainted path from the spec-
ified source and sink for individual components. If we take a close
look at these analysis results we can observe that tainted data did
propagated over the Internet in the following fashion:

sensor → database→ servlet→ Androidapp

This gives us the complete path for the tainted data propagation
across the different interfaces of IoT. However, the project we have
tested comprises just a couple of components but in general an
IoT system consists of a hundreds of different parts which in turn
might include lots of sources and sinks. Thus making this kind
of manual analysis nearly infeasible. The existing static analysis
techniques efficiently detects the taint propagation for a program
in isolation. But, when multiple programs running independently
interacts with each other over some communication medium, the
tainted path may extend to the other program modules participat-
ing in interaction, which may appear safe when analyzed in iso-
lation. Thus, in order to get the complete flow, the existing taint
analysis techniques need to be enhanced to support analysis of
multiple interactive programs executing independently.

31

Chapter 4

Cross-interface taint analysis

In this section we will enhance the existing taint analysis mech-
anism to support the interactive multi-program system. For this
propose we used the inter-procedural data flow approach discussed
in [12] and [5] as the basis for our formalization.

4.1 Formal model

As we have discussed in Chaper 3, each time we are dealing with
the IoT ecosystem, we actually must consider multiple components(e.g.
back-end embedded devices, cloud storage, servlets, front-end user
devices). Due to their different nature, all of them will run a pro-
gram which is independent from others, is written with different
programming language, runs on it’s own stack and manages in-
dependently possessed resources. However that programs share
some data across a communication medium(e.g. wired network
IEEE 802.3, Wi-Fi IEEE 802.11, LTE, 5G, Bluetooth, Zig-bee, Zig-
wave) in order to produce a common result. For this reason we
aimed to discover possible ways, of not properly sanitized data,
been propagated across the system. Thus define a formal model
and a set of properties, to be able to implement a sound taint prop-
agation analysis and run it on a real world example.

The rest of this chapter is organized as follows: at 4.1.1 we
provide a formal representation of a program of IoT ecosystem, at
4.1.2 formal aspects and role of a communication medium, at 4.1.3

32

IoT Formal model

we define an IoT ecosystem using super-graph technique, at 4.1.4
provide a formal definition of Juliasoft static analyzer used func-
tionalities. Finally provide the algorithm to construct the graph
representing tainted paths obtained from the earlier results.

4.1.1 Program

What concerns a program, it can can be represented as a graph Gp

as follows:

Definition 4.1. An IoT ecosystem program P is defined as a
flow graph: Gp = {Np, Ep, Sp, Exp}

Where Np is the set of nodes corresponding to statements in the
program. Sp is the set of all unique entry points of different pro-
cedures/functions. Similarly Exp represents the set of all unique
exit points. Beside start and exit nodes, the statements of Gp can be
classified into a call node (Callp) or a return node (Retp), where Callp
represents statements which calls some other functions, whereas
Retp represents statements where control returns to the calling site.
Thus {Callp, Retp} ∈ Np . Again, Ep represents the finite set of di-
rected edges, showing the relation among nodes in Gp. It can be
defined as:

Ep = (Sp ×Np) ∪ (Np ×Np) ∪ (Np × Callp) ∪ (Callp × Sp)∪
(Exp ×Retp) ∪ (Np × Exp)

Where:
(Sp ×Np): connects a start node to a statement within the same

program p;
(Np×Np): represents an edge between statements within a pro-

gram p;
(Np × Callp): represents an edge from a statement to a call site

node within the program p;
(Callp × Sp): represents an edge between a call-site node and a

start node of another procedure within a program p;

33

IoT Formal model

(Exp × Retp): represents an edge between an exit node and a
return-site node of another procedure within a program p;

(Np×Exp): represents an edge between a statement and an exit
node within the program p;

4.1.2 Communication medium

IoT ecosystem is made up of multiple programs {P1, P2, .., Pn} run-
ning on different devices. That programs communicate with each
other through some communication channel. A communication
channel (C) consists of type of communication medium, sending(IS)

and receiving(IR) interfaces. These interfaces consist of a set of
communication functions which enable a program to send (f s ∈ IS)

or receive (f r ∈ IR) data/signal to and from the communication
channel. Therefore formally it can be stated as:

Definition 4.2. An IoT ecosystem channel C is defined as a flow
graph: C = {medium, IS, IR}

Where: IS = {f s1 , f s2 , .., f sh} and IR = {f r1 , f r2 , .., f rk}

4.1.3 IoT Ecosystem

IoT ecosystem consisting of various interactive programs can be
represented as a directed graph G∗, connecting all the programs
over the communication channel and can be defined as follows:

Definition 4.3. An IoT ecosystem is defined as a directed flow
graph: G∗ =

{
{Gp1 , Gp1,, .., Gpn}, {Ec1 , Ec1 , .., Ecm}

}
Where, Gpi(1 ≤ i ≤ n) is a graph, which represents the program

Pi and Eci(1 ≤ i ≤ m) represents the edges which connect nodes
belonging to different programs of the ecosystem, it corresponds
to the program connection through communication channel . Pro-
grams communicating over the channel C implement the commu-
nication functions to send/receive data.

34

IoT Formal model

Thus, an edge Ec between two programs h and k, respectively Gph

and Gpk can be defined as:

Definition 4.4. An inter-program edge through communica-
tion channel C is Ec = (nsh, n

r
k), where nsh ∈ Gph, n

r
k ∈ Gpk and h 6= k

4.1.4 Data source and sink

Taint analysis technique performs a check between a given pair
of source and sinks, across which tainted data may propagate to
the other programs. Here the source (σsrc) and sink (σsnk) are the
program points from where the specific data is generated or con-
sumed. They generally are defined by the user, as annotations
for some specific field (e.g. data) of interest for the overall system.
However in ecosystem with multiple interconnected programs there
might present a multiple internal sources(σisrc) and sinks respec-
tively (σisnk) across the communicating interfaces, as each program
executes independently. Therefore, formally sources and sinks can
be defined as:

Definition 4.5. A set of source and sinks in an IoT ecosystem
is σsrc = σesrc ∪ σisrc , σsnk = σesnk ∪ σisnk and e 6= i

4.1.5 Julia functionalities and final algorithm

In general, the taint analysis can be defined as a mechanism to
check the possibility of a data (field of interest) being modified in
an un-sanitized way. To analyze the taintedness of a program we
used the Julia static analyzer in [18]. The analysis of the Julia are
organized in two phases:

1. Init: where the analyzer takes an individual program GP as
an input and produces a ”sink-configuration” (confp) file. A
such file consists of all possible sources(σPsrc) and sinks(σPsnk)

35

IoT Formal model

of a given program. Thus the init process (Analysisi) can be
defined as follows:

(Analysisi) : (Gp)→ confp where,

confp = {{σpsrc, σ
p
snk, tgp} : tgp 6= null}

2. Report: the second phase takes programs and ”source-sink
configuration” (conf ′p) as an input and returns a tainted path
among those source and sinks. Therefore formally the report
phase of the analysis, (Analysisr) of program p can be defined
as:

(Analysisr) : (Gp × conf ′p)→ Rp ∈ Φ(Gp) and,

conf ′p = {{σpsrc, σ
p
snk, tgp} : ∃tgp 6= null}

The obtained results need to be integrated in order to get a
complete trace of the tainted data propagation, for this purpose
we also devised Algorithm 1. It thus takes interactive programs
: {Gp1 , Gp2 , .., Gpn}, user defined source and sinks {σesrc, σesnk} and
API for the communication channels {Ec1, Ec1, Ecm} as input. The
algorithm first of all generates all possible sources (σsrc) and sinks
(σsnk), by combining the user provided sources and sinks with that
of the communication APIs. After that it applies init phase to each
program(Gpi) passed as input. A such phase produces the source-
sink configuration file for each program(confp). Later TagConfig()
procedure, tags the source-sink-configuration file, based on the
generated sources (σsrc) and sinks (σsnk) and returns the modified
source-sink configuration (conf ′pi). Afterwords the second phase,
(report) of the analyzer is carried out, it provides the set of tainted
paths(Ri) for each program. Then by evaluating the last sets, we
discover the so called ”common edges”, in particular those which
interconnects two different programs by relative source and sink.
It thus allows us to reconstruct the overall graph and get only the
reachable paths between user specified sources (σesrc) and sinks
(σesnk).

36

IoT Implementation

Algorithm 1 Integrating Multiple Analysis
1: Input: {Gp1, Gp2, ..., Gpn}, {σesrc, σesnk}, {Ec1, Ec2, ..., Ecm}
2: σsrc ← σesrc ∪ (

m⋃
i=0

(f r ∈ Eci))

3: σsnk ← σesnk ∪ (
m⋃
i=0

(f s ∈ Eci))

4: confpi ← Analysisi(Gpi)

5: conf
′
pi ← tagConfig(confpi, σsrc, σsnk)

6: Ri ← Analysisr(Gpi, conf
′
pi)

7: CommonEdges ::=
m⋃
k=0

{
(nsi , n

r
j) ∈ Eck : nsi ∈ Ri, n

r
j ∈ Rj

}
8: overallGraph ::=

⋃
{(Ri, Rj) : ∃(nsi , nrj) ∈ CommonEdges : nsi ∈

Ri, n
r
j ∈ Rj})

9: reachable ::= {(σesrc, σesnk) : ∃path(σesrc, σ
e
snk) ∈ overallGraph}

10: taintedGrapg ::= Πreachable(σe
src,σ

e
snk)

(overallGraph)

11: procedure TAGCONFIG(confpi, σsrc, σsnk)
12: if (σpisrc ∈ σsrc ∧ σ

pi
snk ∈ σsnk) then

13: tgpi ← ”ti” where tgpi ∈ confpi
14: end if
15: return confpi
16: end procedure

4.2 Implementation

The mechanism discussed above, for cross-interface taint analysis
has been implemented on Julia static analyzer, which is a commer-
cial static analyzer for java and .NET bytecode, based on abstract
interpretation. It currently features 45 different checkers such as:
Nullness Checker, Injection checker etc. The taint analyzer of Julia
has been widely utilized to detect various security vulnerabilities
such as SQL injections and XSS as well as to the detection of leak-
ages of sensitive data. The Injection checker can be instrumented
with additional sources and sinks by adding specific Java annota-
tions to the analyzed code . We utilized this analysis mechanism to
develop our own ”cross-interface taint checker”. Figure 4.1 depicts
the working principle of the devised checker where the number in-
dicates the order in which different tasks are performed. Where it

37

IoT Plant monitoring system analysis

first generates the possible set of source and sinks from the given
program in the form of an Excel file. These are then tagged using
the communication channels API’s. This tagged sources and sinks
are then send to the analyzer along with the program for the taint
analysis. Afterwords the analyzer provides detail information about
tainted paths in a XML file. This XML file later parsed to determine
the connectivity in the tainted paths of interactive programs which
helps in construction of tainted graph.

Figure 4.1: Working principle of devised technique

4.3 Plant monitoring system analysis

In the section 3.2 we illustrated the real world example of the IoT
ecosystem and possible taint propagation by applying the manual
cross-interface tainted flow analysis. However in real world sys-
tems it will be very difficult to investigate tainted data propagation
across the different interfaces manually. To automate the detec-
tion of cross-interface taint propagation, in section 4.1 we devised
a mechanism which allows to detect the tainted path across the

38

IoT Plant monitoring system analysis

interfaces for a given communication channel. In order to demon-
strate the functionality and feasibility of the devised approach we
analyzed the same example used in Section 3.2. To this regard I
would like to discuss, in the following sub-sections about the pro-
cess of analysis through our algorithm.

To start analysis, we first of all passed the jar files correspond-
ing to the IoT back-end [25] HbaseStorageRPi.jar(Gp1), Servlet [24]
IoT-Query.jar(Gp2) finally Android application [26] Gp3 to the devised
algorithm. Moreover, it also requires the sources and sinks(external
and intermediate) and communication media as an input. In par-
ticular, for the tested project the external source is Reading sensor
data (σesrc) whereas the the external sink is displaying it on applica-
tion UI (σesnk). What concerns the communication channel API’s for
sending(f si) and receiving(f ri) data from IoT back-end to database
(Ec1) and database to android app (Ec2) are considered as the in-
termediate sources and sinks respectively.

The IoT back-end stores measurements into HBase database
and Servlet retrieves them and sends to the Android Application
over the internet. Therefore the Hbase database is the medium of
communication (Ec1) between IoT back-end (Gp1) and the Servlet
(Gp2). Further, the data read by the Servlet is sent to the App over
the Internet. Thus, Internet is another communication channel
between the Servlet and the application.

4.3.1 Tagging process

In order to explain, in detail the execution of the analysis, I will
refer to the Figure 4.2 which highlights, by using YED graph the
tainted data flow across programs.

The init phase of the analysis (Analysisi(Gp1)) generates the source-
sink configuration (confp1) for the IoT back-end program, where
the method readline() at line 57 of Server.Java is considered by the
user as external source (σesrc). Environmental measurements of
IoT back-end is then sent to the Hbase storage. For this purpose,
the method add() at line 80 − 83 of Server.Java is used and can
be easily identified as the intermediate sink (σesnk). The process of
tagging of the intermediate sources and sinks in confp1 has been

39

IoT Plant monitoring system analysis

automated by considering the communication channel (Ec1) pro-
cedures responsible for storing data in Hbase and matching them
with the possible sinks. Thus the method add() is target as the in-
termediate sink. The result, target configuration (conf ′p1) file, along
with Gp1 are passed to the report phase of checker to get the tainted
path(s) (R1) between source and sink.

Moving to the servlet (Gp2), it receives the data from the Hbase
database and sends it to the Android App (Gp3) over the Internet
Ec2. Here, the source and sink both are intermediate, facilitated
by the communication Hbase and Internet respectively. The init
phase (Analysisi(Gp2)), produces the the source-sink configuration
(confp2) with empty tags. During the tagging process, the method
getString() at line 69 of HbaseConnection.java in the servlet program
has been considered as an intermediate source (σisrc). In particular
it’s responsible for reading the data from the Hbase database Ec1.
Similarly, for the intermediate sink the tagging process matched
the method used for sending data over the Internet in the generated
source-sink configuration (confp2) file. To this regard the method
write() of [java.io.Writer] class has been tagged as the intermediate
sink (σisnk). This tagged source-sink configuration (conf ′p2) file as
well as the Servlet program (Gp2) were analyzed in report phase
(Analysisr(Gp2)) for the tainted paths R2.

Finally, what concerns the Android application (Gp3), it moni-
tors the sensor data in real-time, for this regard it interacts with the
servlet (Gp2). In particular, app receives data from the servlet over
the internet (Ec2) (intermediate source) and displays it locally within
the app (user defined external sink). As usual, first the source-
sink configuration file (confp3) is generated within init phase of the
analyzer. Afterwords, the tagging process identifies the method
readLine() of [java.io.BufferedReader] class at line 52 of Backgroud-
Worker.java as intermediate source(σisrc) by matching the generated
source with the methods responsible for receiving data from the
input stream of HTTP (Ec2). Whereas the method setText() of [an-
droid.widget.TextView] class is identified as the external sink σesnk

by the user and tagged accordingly. The report phase of the analy-
sis provides the tainted path R3 between the identified source and
sink.

40

IoT Plant monitoring system analysis

4.3.2 Combining the analysis

Report phase of Julia analyzer produced tainted paths (R1, R2, R3)

for different programs (Gp1, Gp2, Gp3). A such paths are then com-
bined by checking if sources(σsrc) and sinks(σsnk) belong to the
same communication channel(Ec) in order to generate the over-
all graph. Afterwards a reachability analysis of the various nodes
in the overall graph is performed and the reachable portion of the
overall graph is projected as the tainted graph. The figure 4.2 re-
ports the tainted paths grouped together and connected to each
component by using the inter-program edges which corresponds to
the communication channels. In particular, the yellow square box
represents the nodes in the tainted path which involves in some
operation with/using the data coming from the source. The thin
arrowed lines, on the figure represents edges of tainted path within
the same program.

For instance, the tainted graph of IoT back-end points out that
at line 57, there is a reading of sensor’s value and it’s marked as
tainted. Afterwords it propagates through lines 58− 60 to reach the
sink at line 82 of the original source code. Here data is stored in
the database which is then retrieved by Servlet. This inter-program
iteration over the communication channel is shown as a thick edge
with the communication channel name (DB) as label. The servlet,
gets values at line 69 of the source code which them propagates
to statements at line 63 and line 83 respectively. Finally at line
83 tainted data are first passed to the method doPost() line 35 and
then transmitted to the Android Application, at line 40 over the
internet. This lats communication is represented again with thick
edge labeled Internet. This transmitted tainted data is received
by the Android App in the doInBackground class at line 52 of the
source code. Inside the application the tainted data retrieved at line
52 is then used at lines 53 and 59 where reaches the user interface
of the app(σesnk).

The Figure 4.2 clearly reports us that the tainted IoT back-end
sensor’s data propagates to the front-end user application across
two different communication channels.

41

IoT Plant monitoring system analysis

Figure 4.2: End-to-End taint propagation of the Plant monitoring
system

42

Chapter 5

Experimental results

In this Chapter I would like to point out some results we got by
testing devised cross-interface taint checker on a couple of IoT
projects, picked up from GitHub repositories. In particular IoT
projects based on Android Things, where each component(Things
and Android App) interacts through different communication chan-
nels over some network. IoT Thing based on android facilitates
building Applications on hardware platforms such as, Raspberry
Pi, where, the Android Things console helps in building and deliv-
ering the Software images to target devices. It’s necessary to men-
tion the advantage of the Board Support Package (BSP) of Google,
which in turn gives a trusted platform for developing Apps with
standard updates and fixes. This makes it the most popular devel-
opment platform in IoT field. It addition, it also supports advanced
connectivity over cloud, bluetooth and Near Field Communication
(NFC) among the different components of the IoT system. To this re-
gard, we selected the projects that should satisfy the following cri-
teria: they must have at-least an Android or Web Application along
with the Things App. A such selection narrowed down the avail-
able repositories to a very small number. Among them majority of
the repositories are functionality wise repetitive and many did not
compiled because of missing resources, or incorrect Gradle Build
files.

The rest of the chapter is organized on 4 sections. Where we re-
port tainted path(s) discovered by our mechanism on some reposi-
tories(IoT systems), categorized on the communication channel which

43

IoT Communication Channel: Cloud (Firebase)

facilitate inter App interaction. In particular, the section 5.1 illus-
trates some example of tainted analysis on the IoT systems with
cloud based communication channel, whereas 5.2 an example of
system based on NFC communication and finally 5.4 we provide a
safe IoT system.

5.1 Communication Channel: Cloud (Fire-
base)

In this sub-section we report results of testing two GitHub projects
namely: Doorbell [27] and Electricity Monitor [28]. In particular,
both repositories represents Android IoT applications, based on
cloud communication channel - ”Firebase” by Google. Actually
there exists a thousands of IoT projects which uses cloud services
as medium of communication between the thing and the Android
Application.

5.1.1 Doorbell

This repository represents an IoT ”smart” doorbell system. In par-
ticular, it allows to capture the image of the user who is pressing
the bell button. The obtained image from the Android thing cam-
era is then processed using Google’s Cloud Vision API. Afterwords
the image, Cloud Vision annotations and metadata are uploaded
to a Firebase database. This data in the Firebase can be finally
accessed by the companion Android App.

In order to perform analysis, we provided intermediate sources
and sinks represented by method signatures for sending and re-
ceiving data from the Firebase. Further, we provided the external
source (acquireLatestImage() of [android.media.ImageReader]) class
and sink (load() method of the [com.example.androidthings.
doorbell.GlideRequests]) class for the system. As showed before,
the init phase of the analysis generates the source-sink configu-
ration files which are then tagged. In particular, acquireLatestIm-
age() (of [android.media.ImageReader] class) within DoorbellActiv-
ity class (line 162 of the source code) responsible for acquiring the

44

IoT Communication Channel: Cloud (Firebase)

image from the camera module is tagged as external source. The
putBytes() method of class [com.google.firebase.storage.
StorageReference] (used at line 181 in DoorbellActivity) is target as
sink by the automated tagging process facilitated by the commu-
nication channel method signatures. What concerns the android
application, getReferenceFromUrl() method of [com.google.
firebase.storage.FirebaseStorage] class which is used at line 88 in
DoorbellEntryAdapter class, is intermediate source. Whereas load()
method of the class [com.example.androidthings.doorbell
.GlideRequests] used at line 91 of the source code of DoorbellEn-
tryAdapter has been passed as the external sink. The programs
along with the tagged source-sink configuration files are then ana-
lyzed for the report phase. The Figure 5.1.1 represents the tainted
data propagation for the Thing and the Android Application. Ad-
ditionally, the result of the reachability analysis after combining
the tainted graph using the devised mechanism shows that tainted
data did propagated from the thing to the Android App over the
Firebase communication medium.

5.1.2 Electricity Monitor

The second project represents an IoT system which is used to track
the unavailability of the electricity and notifies the user about the
same as a notification by an Android App. Similarly to the Doorbell,
it uses the Firebase as the medium of communication between the
Thing and the Android App.

As usual, we started the analysis of the system by providing
methods used for sending and receiving data from Firebase, as a
set of intermediate source and sinks to the analyzer. We also pro-
vided the electricityLog object of [za.co.riggaroo.electricitymonitor.
ElectricityLog] class as external source and timeOn members of the
[za.co.riggaroo.electricitymonitor.ElectricityViewModel] class as the
external sink. After that, the init phase generated the source-sink
configuration, which has been tagged as follows: the source pro-
vided before has been target as external one, whereas the sink has
been tagged by matching the the source-sink configuration with
the sinks of the Firebase, send/receive methods. Further, the set-

45

IoT Communication Channel: Cloud (Firebase)

Figure 5.1: End-to-End taint propagation for cloud based commu-
nication channel (DoorBell)

Value() of [com.google.firebase.
database.DatabaseReference] class used at line 41 within Electric-
ityMonitorActivity, is tagged as the intermediate sink. For the an-
droid application, the getValue() method of [com.google.firebase.
database.DataSnapshot] class used at line 74 within OverviewPre-
senter, has been tagged by the automated process as intermediate
source. Finally, timeOn, timeOff members of the [za.co.riggaroo.
electricitymonitor.ElectricityViewModel] class has been set as the
external sink. All the programs along with tagged source-sink con-
figuration have been then analyzed in the report phase of Julia
checker. The analysis generated us end-to-end taint propagation
graph for the IoT system over the communication medium Fire-
base, which is summarized in the Figure 5.1.2.

46

IoT Communication Channel: NFC

Figure 5.2: End-to-End taint propagation for cloud based commu-
nication channel (ElectricityMonitor)

5.2 Communication Channel: NFC

The third example we want to report is based on Near Field Com-
munication(NFC) medium to interaction between the Things and
the Android App. In particular the GitHub repository of the project
is called Color-Thing [29] and it allows to change the color of the
LED by an Android App. For this it sends the RGB Values to the
Things using NFC.

What concerns the taint analysis of this project, we first of all
specified sending and receiving method signatures. This will help
in tagging the intermediate source and sink generated in the init
phase of the analysis. In particular, in the Android application, the
method onColorSelected() of the class [com.holgis.colorconnection.
client.ControllerActivity] used in line 271 is marked as the ex-

47

IoT Communication Channel: Bluetooth

ternal source. Whereas In the Thing, the Method setPWM() of
[com.holgis.colorthings.PCA9685] class used at line 80 − 82 of Col-
orActivity is set as external sink. After the the init phase, a such
information is updated in generated source-sink configuration file
for the corresponding programs. Thus, for the Android Application
the method sendReliableMessage() of [com.google.android.gms.
nearby.connection.Connections] class is tagged as the intermediate
source by the automated tagging process. Similarly for the Thing,
the method onMessageReceived() of [com.google.android.gms.nearby.
connection.Connections.MessageListener] class is tagged as the in-
termediate sink by the devised automated mechanism. These pro-
grams and tagged source-sink configuration files are used to per-
form the analysis in the report phase, where it generates the tainted
path for the individual programs. Later this tainted paths are com-
bined to generate the complete flow as depicted in Figure 5.3

5.3 Communication Channel: Bluetooth

Another wireless communication medium wildly used within IoT
field is Bluetooth. For this purpose we analyzed the project: ”Blue-
tooth Low-Energy (BLE) fun - Android (Things)” [30]. A such IoT sys-
tem allows to use Bluetooth Low Energy to communicate between
an Android Things board and an Android device. And in partic-
ular it sends a counter from the thing to the Android App using
bluetooth.

The analysis of the project, first generates the source-sink con-
figuration file from the init phase of the Julia checker. Here the
getInt() of [android.content.SharedPreferences] class used at line 18

of AwesomenessCounter in the things program has been set as ex-
ternal source. Whereas the method setText() of the [android.widget.
Button] class used at line 39 of InteractActivity class in the app
program has been set as external sink. What concerns intermedi-
ate source and sinks, they have been tagged with the help of the
bluetooth communication API. In particular, for the Things app the
sendResponse() method of [android.bluetooth.BluetoothGattServer]
class has been marked as intermediate sink. And the instance

48

IoT Communication Channel: Bluetooth

Figure 5.3: End-to-End taint propagation for NFC based com- mu-
nication channel

49

IoT Communication Channel: Bluetooth

of android.bluetooth.BluetoothGattCharacteristic used in onCharac-
teristicRead() method of GattClient class has been tagged as an
intermediate source for the Android Application. This tagging pro-
cess has been automated in the devised approach. Afterwords the
tagged source-sink and the programs are analyzed within the re-
port phase, where it generates the tainted paths. Finally, the re-
sults of the analysis are depicted on Figure 5.3. In particular, it
shows that our devised mechanism tracked the path from the ex-
ternal source to the external sink via various program points over
the bluetooth communication medium.

Figure 5.4: End-to-End taint propagation for Bluetooth based com-
munication channel

50

IoT Robocar

5.4 Robocar

Finally, we want to report an example of a safe IoT system which
does not comprise any cross-interface taint propagation. To this
regard we analyzed Robocar GitHub repository [5]. In particular
it allows to control, over the internet or manually with a regular
joystick, the robotic car using the android thing.

In order to analyze the system, the program of the robotic car
and the android app are made available for the init phase of Ju-
lia checker. It allowed to produce the initial source-sink config-
uration file. In which then, the handleSlideButtonEvent() method
of GameControllerActivity class has been tagged as the external
source for the Thing. The changeSpeed() method of the Localhost-
Driver class has been defined as the external sink. Further, the
automated process tags for the android app setSpeed() method of
the RobocarClient service as the intermediate sink and Robocar-
Response() method of the Main Acttivity class as the intermediate
source. Afterwords, robotic car program and android application as
well as tagged source-sink file have been analyzed in report phase.
This reported in the robotic car the tainted received data which
can reach the intended sink i.e. changeSpeed() method and can
cause serious damage as depicted in Figure . But what concerns
the android application, it does not include any tainted path for
the given source-sink configuration. In particular, by analyzing the
code it appears that the app only sends the directional command,
not the speed of the robotic car. Instead the speed is determined
locally at the Thing’s side. Thus the analysis of the Robocar IoT
system did not report any taint propagation from the perspective of
cross-interface.

51

IoT Robocar

Figure 5.5: A safe IoT System Using cloud based communication
channel

52

Chapter 6

Conclusions

OWASP IoT Top 10 [17] reports, the cross-interface propagation of
tainted data is the most critical point of an interactive IoT system.
With this work we aimed to devise an automated approach which
will be capable of detecting cross-interface taint data propagation
by integrating analyses of different interactive IoT programs in a
sort of black-box framework. To this regard we first of all defined a
formal model for detecting cross-program taint propagation based
on graph representation. We considered both: the control flow
graph of each program of particular IoT system and the communi-
cation channels they use to exchange data. Then we constructed
a graph G∗ which represents the iteration of each single compo-
nent and data propagation of the overall IoT ecosystem. We fur-
ther implemented this model by utilizing the existing taint analysis
mechanism of Julia in order to develop a new cross-interface taint
checker. In particular it works in two phase. In the first phase
it generates a configuration file which represents a possible set of
source and sinks for the given program. These sources and sinks
are then tagged by an automated process with the help of com-
munication channel’s API. In the second phase we analyze the pro-
grams for identified (tagged) sours and sinks to discover the tainted
paths in the program. Afterwords, the obtained result is parsed to
determine the connectivity in the tainted paths among the inter-
active programs to construct the tainted graph for the IoT system.
The overall analysis is carried out statically, so with no need to ex-
plicitly execute analyzed IoT system. Aside from, reducing the time

53

IoT Experimental work

of a manual interconnection of isolated analysis, provides a tech-
nique to prevent security vulnerabilities like, SQLi, XSS, CSRF, by
testing the system before it actual release.

In the next sections I would like to highlight the results we got
by analyzing a set of real world IoT systems with our devised mech-
anism. Further discuss about possible future developments and
integration of the approach. Finally conclude with mentioning the
analysis, development, work in team and results interpretation,
learned skills during this period of work.

6.1 Experimental work

Once we have implemented our mechanism of detecting tainted
data propagation with use of JuliaSoft, we went further and tried
to apply it to some of the IoT systems available on GitHub. In the
Chapter 5, we showed in details that our automated approuch is
capable of detecting security vulnerabilities of multiple related pro-
grams having some common communication channel. In particu-
lar, it successfully pointed out end-to-end tainted data propagation
of IoT systems based on android things, (e.g Doorbell, Color-Thing,
BLE fun). For each of the tested projects we also reported the
graph representation which indicates discovered tainted path(s).
We grouped the projects to be tested on different communication
channels and showed that un-sanitized data can be actually prop-
agated independently of the communication medium. However in
case the overall system does not comprises any tainted path(s), our
mechanism correctly notifies about safety of the IoT ecosystem. In
the following, we list the results obtained for each possible com-
munication medium analyzed with this work:

• Doorbell: gives a possibility to a tainted data be propagated
from the android Thing(IoT back-end) across cloud based com-
munication medium(Firebase) towards the Android applica-
tion. Our automated mechanism was able to detect tainted
path through interfaces of the system components. Detailed
information about tainted path has been reported on 5.1.1;

54

IoT Future work

• Color-Thing: comprises possible tainted data propagation
from the Android Application across NFC communication chan-
nel to the IoT back-end, Raspberry Pi component(LED system).
Again, by setting the correspondent source and sink program
points, out technique was able to discover the tainted path,
which we have also reported at 5.2;

• (BLE) fun: analysis have reported the possible tainted data
propagation from IoT Thing across Bluetooth communication
channel to Android application. By analyzing each single pro-
gram and Bluetooth API with JuliaSoft and afterwords comb-
ing results, we were able to track the tainted path from source
to sink point which we have also reported at 5.3;

• Robocar: in this case, our mechanism identified only a pos-
sible taint data propagation within IoT back-end component,
since then a such data are not sent to the front-end Android
App. Thus the overall system has been considered as a safe;

6.2 Future work

Security within IoT field still leaves opened a huge number of vul-
nerabilities. As discussed before, most of them are due to reduced
computational capabilities of Thing, lack of common standards,
need to satisfy time to market factor by a manufacturer of IoT com-
ponent, heterogeneity of different devices, etc. With this work, we
aimed to devise a tool which will help to produce a safe software
for an IoT ecosystem. It’s necessary to mention that this is the first
step towards modern and secure Internet of Things. With a future
work we want to extend our automated static checker to accept
further inspections of an IoT ecosystem software. To this regard
we are now studying the following two cases:

6.2.1 Cross-program argument type control

An IoT ecosystem, as we showed above, consists of multiple com-
ponents which run it’s own software. These programs are mostly

55

IoT Future work

independent, they have different execution environment, they run
on different architectures, and are written with different program-
ming languages. For instance, to get more control of the heap or to
have further management of hardware of the Thing rather then to
reduce execution latency, some low-level(C/C++) programming lan-
guages are used to develop software for the IoT back-end. Instead,
what concerns front-end user devices, high-level(Java) program-
ming language is preferred. Although different nature of compo-
nents they use some communication media to exchange informa-
tion in order to construct a final result. In general to share data and
even execute methods/functions between C/C++ and Java pro-
grams, the Java Native Interface(JNI) [8] is used. In particular it
allows to share the execution environment of Java program, such
that it’s possible to access Java members from C/C++, it also al-
lows to provide an implementation of Java method on C/C++ side.
Since neither C/C++ compiler nor Java offers a static check of
passed argument types across programs, some issue might arise
during run-time of an IoT system. For instance, passing the dou-
ble value from the java program and receiving a correspondent,
wrong integer value is a feasible operation of JNI. For this purpose,
we are now working on an automated tool which will be capable to
discover this kind of incompatibilities during the static analysis of
a such IoT system. In particular, our goal is to integrate the formal
model by introducing the concept of a call graph [42] and again
by considering also the JNI calls, define a unique graph represen-
tation of the overall system in terms of called method/functions.
Then check whether there are some mismatch occurrences like:

double→ int

boolean→ double

float→ short

And in case arise an error message to avoid a future run time
value misleading. Again, this argument type mismatches are not
statically controlled and especially when programs are developed
by several teams, it’s difficult to discover the wrong value which
propagates across the system causing wrong results.

56

IoT Learned skills

6.2.2 Cross-program constant value propagation

Similarly to the previous case, using JNI as a communication chan-
nel among Java and C/C++ programs, it allows to access the java’s
global members from C/C++ code. To this regard JNI offers a set of
methods which allows to retrieve an identifier of the member and
then get access to it’s value. The issue, we have faced out consists
on accessing the constant java members from the C/C++ function
which afterwords could be successfully modified. For instance the
possible scenario is following one: in the java class Test there is
a const member pi to which has been assigned a value 3.141592,
then a such member is accessed through JNI and stored in some
C++ variable of a class Compute. There is no controls whether an
accessed variable is declared as constant or not, so it allows to
update the value and ”bypass” the global constant property.

For this purpose we want to enhance our previous approach to
integrate also constant value propagation analysis. In particular,
track each constant member on a Control Flow Graph representing
the overall system and discover whether the constant property is
preserved across inter-program calls and if is not, arise an error
message.

6.3 Learned skills

With this work, we devised an automated tool to allow statically
discover a set of vulnerabilities of an IoT ecosystem. Our work
doesn’t stop here, we aimed also to enhance tainted analysis with
other two cases explained above. It’s necessary to mention that be-
hind all that work, analysis and implementation, as well as testing
process, I improved my skills in static analysis techniques, un-
derstood better how the theory I’ve seen during the lectures(e.g call
graph construction, backward and forward analysis, communication
protocols) can be applied in a real world scenario in order to get a
sound results. This work gave me opportunity to get aware how
actually insecure is the IoT field and that it still requires a huge
amount of work to be done until we get a first examples of safe
Internet of Things.

57

Online references

[1] Report from security firm Symantec,
www.techrepublic.com

[2] The biggest IoT security failures of 2018,
www.techrepublic.com

[3] Perl 5 documentation on tainted checking ,
www.perldoc.perl.org

[4] Locking Ruby in the Safe ,
www.phrogz.net

[5] Antonio Zugaldia. 2017. Android Robocar
www.github.com/zugaldia

[6] SQl injection vulnerability,
www.owasp.org

[7] XSS vulnerability,
www.owasp.org

[8] Java Native Interface Specification Contents,
www.docs.oracle.com

[9] Material of Reaching definition technique
http://www.dsi.unive.it+

[10] Material of Live variable technique
http://www.dsi.unive.it

[11] Material of Very Busy Expressions definition technique
http://www.dsi.unive.it

58

https://www.techrepublic.com/article/as-iot-attacks-increase-600-in-one-year-businesses-need-to-up-their-security/
https://www.techrepublic.com/article/5-biggest-iot-security-failures-of-2018/
https://perldoc.perl.org/perlsec.html
http://phrogz.net/programmingruby/taint.html
https://github.com/zugaldia/android-robocar
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
http://www.dsi.unive.it/~avp/04_AVP_2015.pdf
http://www.dsi.unive.it/~avp/05_AVP_2015.pdf
http://www.dsi.unive.it/~avp/06_AVP_2015.pdf

IoT ONLINE REFERENCES

[12] The biggest IoT security failures of 2018,
www.embedded-computing.com

[13] The Hunt for IoT: Multi-Purpose Attack Thingbots Threaten
Internet Stability and Human Life,
www.f5.com

[14] Shock at the wheel: your Jeep can be hacked while driving
down the road,
www.kaspersky.com

[15] The Mirai botnet explained: How teen scammers and CCTV
cameras almost brought down the internet,
www.csoonline.com

[16] Tainted flow analysis,
www.laure.gonnord.org

[17] OWASP Internet of Things Project,
www.owasp.org

[18] Juliasoft code analysis,
juliasoft.com

[19] IoT analytics, The Top 10 IoT Segments in 2018 ? based on
1,600 real IoT projects,
iot-analytics.com

[20] New trends in the world of IoT threats,
securelist.com

[21] Trend Micro Research Finds Major Lack of IoT Security Aware-
ness,
www.smart-industry.net

[22] Welcome to Apache HBase www.hbase.apache.org

[23] Random Forests Leo Breiman and Adele Cutler,
www.stat.berkeley.edu

59

http://embedded-computing.com/eletter-products/why-static-analysis-is-mandatory-for-iot-device-software/
https://www.f5.com/labs/articles/threat-intelligence/the-hunt-for-iot--multi-purpose-attack-thingbots-threaten-intern/
https://www.kaspersky.com/blog/remote-car-hack/9395/
https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html
http://laure.gonnord.org/pro/research/ER03_2015/TaintedFlowAnalysis.pdf
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://juliasoft.com/?lang=it
https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://www.smart-industry.net/trend-micro-finds-major-lack-iot-security-awareness/
https://hbase.apache.org
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

IoT ONLINE REFERENCES

[24] Amit Kr Mandal. 2019. Plant Monitoring System, Servlet.
jgithub.com/amitmandalnitdgp.

[25] Plant Monitoring System - IoT Back- end.
jgithub.com/amitmandalnitdgp.

[26] Android App for Plant Monitoring System.
jgithub.com/amitmandalnitdgp.

[27] Dave Smith. 2018. doorbell
jgithub.com/androidthings.

[28] Android things electricity monitor
jgithub.com/riggaroo.

[29] Holger. 2016. Color-Things.
jgithub.com/holgi-s.

[30] Gautier MECHLING. 2018. Bluetooth Low-Energy (BLE) fun
Android (Things)
jgithub.com/Nilhcem.

60

https://github.com/amitmandalnitdgp/IOT-EcoSyatem/blob/master/HbaseConnection.java
https://github.com/amitmandalnitdgp/IOT-EcoSyatem/blob/master/Server.java
https://github.com/amitmandalnitdgp/IOTApp
https://github.com/androidthings/doorbell
https://github.com/riggaroo/android-things-electricity-monitor
https://github.com/holgi-s/ColorThings
https://github.com/Nilhcem/blefun-androidthings

Scientific literature

[1] FRUSTACI, Mario, et al. Evaluating critical security issues of
the IoT world: present and future challenges. IEEE Internet of
Things Journal, 2017, 5.4: 2483-2495

[2] GE, Mengmeng. A framework for automating security analysis
of the internet of things. Journal of Network and Computer
Applications, 2017, 83: 12-27.

[3] ASPLUND, Mikael; NADJM-TEHRANI, Simin. Attitudes and
perceptions of IoT security in critical societal services. IEEE
Access, 2016, 4: 2130-2138.

[4] DAS, Ashok Kumar; ZEADALLY, Sherali; HE, Debiao. Taxon-
omy and analysis of security protocols for Internet of Things.
Future Generation Computer Systems, 2018, 89: 110-125.

[5] TIP, Frank; PALSBERG, Jens. Scalable propagation-based call
graph construction algorithms. ACM, 2000.

[6] TWENEBOAH-KODUAH, Samuel; SKOUBY, Knud Erik; TA-
DAYONI, Reza. Cyber security threats to IoT applications and
service domains. Wireless Personal Communications, 2017,
95.1: 169-185.

61

IoT SCIENTIFIC LITERATURE

[7] MAVROPOULOS, Orestis. Apparatus: A framework for security
analysis in internet of things systems. Ad Hoc Networks, 2018.

[8] KHATTAK, Hasan Ali. Perception layer security in Internet
of Things. Future Generation Computer Systems, 2019, 100:
144-164.

[9] HASAN, Mahmudul. Attack and Anomaly Detection in IoT
Sensors in IoT Sites Using Machine Learning Approaches.
Internet of Things, 2019, 100059.

[10] LOHACHAB, Ankur; KARAMBIR, Bidhan. Critical Analysis
of DDoS - An Emerging Security Threat over IoT Networks.
Journal of Communications and Information Networks, 2018,
3.3: 57-78.

[11] MILOSLAVSKAYA, Natalia; TOLSTOY, Alexander. Internet of
Things: information security challenges and solutions. Cluster
Computing, 2019, 1-17.

[12] REPS, Thomas; SAGIV, Mooly; HORWITZ, Susan. Interpro-
cedural dataflow analysis via graph reachability. Datalogisk
Institut, Kobenhavns Universitet, 1994.

[13] ABDUL-GHANI, Hezam Akram; KONSTANTAS, Dimitri;
MAHYOUB, Mohammed. A comprehensive IoT attacks survey
based on a building-blocked reference model. International
Journal of Advanced Computer Science and Applications
(IJACSA), 2018, 9.3.

[14] GAMUNDANI, Attlee M.; PHILLIPS, Amelia; MUYINGI, Hip-
polyte N. An Overview of Potential Authentication Threats and
Attacks on Internet of Things (IoT): A Focus on Smart Home

62

IoT SCIENTIFIC LITERATURE

Applications. EEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), IEEE, 2018. p. 50-57.

[15] LING, Zhen. An Overview of Potential Authentication An end-
to-end view of iot security and privacy. GLOBECOM 2017-2017
IEEE Global Communications Conference., IEEE, 2017. p. 1-7.

[16] HAO, Peng; WANG, Xianbin; SHEN, Weiming. A Collaborative
PHY-Aided Technique for End-to-End IoT Device Authentica-
tion, IEEE Access, 2018, 6: 42279-42293.

[17] SHAH, Trusit; VENKATESAN, S. Authentication of IoT Device
and IoT Server Using Secure Vaults. 2018 17th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE),
IEEE, 2018. p. 819-824.

[18] KIM, SuHyun; LEE, ImYeong. IoT device security based
on proxy re-encryption. Journal of Ambient Intelligence and
Humanized Computing, 2018, 9.4: 1267-1273.

[19] CHALLA, Sravani. Secure signature-based authenticated key
establishment scheme for future IoT applications. IEEE Access,
2017, 5: 3028-3043.

[20] PORAMBAGE, Pawani. Two-phase authentication protocol for
wireless sensor networks in distributed IoT applications. 2014
IEEE Wireless Communications and Networking Conference
(WCNC) IEEE, 2014. p. 2728-2733.

63

IoT SCIENTIFIC LITERATURE

[21] GIULIANO, Romeo. Security access protocols in IoT capillary
networks. IEEE Internet of Things Journal 2016, 4.3: 645-657.

[22] JOSHY, Annies; JALAJA, M. J. Design and implementation
of an IoT based secure biometric authentication system. 2017
IEEE International Conference on Signal Processing, Informatics,
Communication and Energy Systems (SPICES) IEEE, 2017. p.
1-13.

[23] SUJATHA, S. Mary; DEVI, Y. Usha. Design and imple-
mentation of IoT testbed with three factor authentication.
International Conference on Communication and Electronics
Systems (ICCES) IEEE, 2016. p. 1-5.

[24] KINIKAR, Swati; TERDAL Sujatha. Implementation of open
authentication protocol for IoT based application. International
Conference on Inventive Computation Technologies (ICICT) IEEE,
2016. p. 1-4.

[25] SHIN, Daemin. Secure and efficient protocol for route op-
timization in PMIPv6-based smart home IoT networks. IEEE
Access, 2017, 5: 11100-1111

[26] FARRIS, Ivan. TERDAL Sujatha. A survey on emerging SDN
and NFV security mechanisms for IoT systems. IEEE Communi-
cations Surveys & Tutorials IEEE, 2018, 21.1: 812-837

[27] SAHAY, Rashmi. Efficient Framework for Detection of Version
Number Attack in Internet of Things. International Conference
on Intelligent Systems Design and Applications Springer, Cham,
2018. p. 480-492

64

IoT SCIENTIFIC LITERATURE

[28] HOU, Jianwei; QU, Leilei; SHI, Wenchang. A survey on
internet of things security from data perspectives. Computer
networks, 2019, 148: 295-306

[29] NGUYEN, Huy-Trung; NGO, Quoc-Dung; LE, Van-Hoang. IoT
Botnet Detection Approach Based on PSI graph and DGCNN
classifier. International Conference on Information Communica-
tion and Signal Processing (ICICSP), IEEE, 2018. p. 118-122.

[30] PROKOFIEV, Anton O.; SMIRNOVA, Yulia S.; SUROV, Vasiliy
A. A method to detect Internet of Things botnets. Conference
of Russian Young Researchers in Electrical and Electronic Engi-
neering (EIConRus, IEEE, 2018. p. 105-108.

[31] CHOI, Hyunsang. Botnet detection by monitoring group
activities in DNS traffic. 7th IEEE International Conference on
Computer and Information Technology (CIT 2007), IEEE, 2007.
p. 715-720.

[32] TIEN, Chin-Wei. UFO-Hidden Backdoor Discovery and Se-
curity Verification in IoT Device Firmware. EEE International
Symposium on Software Reliability Engineering Workshops
(ISSREW), IEEE, 2018. p. 18-23.

[33] COUSOT, Patrick; COUSOT, Radhia. Abstract interpretation:
a unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages,ACM, 1977. p. 238-252.

[34] Cliff Click and Keith D Cooper. Combining analyses, com-
bining optimiza- tions. ACM Transactions on Programming
Languages and Systems (TOPLAS) , 17, 2 (1995), 181–196.

65

IoT SCIENTIFIC LITERATURE

[35] PIOLI, Anthony; HIND, Michael. Combining interprocedural
pointer analysis and conditional constant propagation. IBM
Thomas J. Watson Research Division, 1999.

[36] HUUCK, Ralf. The internet of threats and static program anal-
ysis defense. EmbeddedWorld 2015: Exibition & Conferences,
2015. p. 493.

[37] Z Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan,
and Patrick McDaniel. 2018. Program Analysis of Commodity
IoT Applications for Security and Privacy: Challenges and
Opportunities, arXiv preprint arXiv:1809.06962 (2018).

[38] CLAUSE, James; LI, Wanchun; ORSO, Alessandro. Dytan:
a generic dynamic taint analysis framework. Proceedings of
the 2007 international symposium on Software testing and
analysis, ACM, 2007. p. 196-206.

[39] CAO, Kai. PHP vulnerability detection based on taint analysis.
International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions)(ICRITO), IEEE,
2017. p. 436-439.

[40] ZHANG, Ruoyu; HUANG, Shan; QI, Zhengwei. Efficient taint
analysis with taint behavior summary. Third International
Conference on Communications and Mobile Computing., IEEE,
2011. p. 11-14.

[41] FERRARA, Pietro; SPOTO, Fausto. Static Analysis for GDPR
Compliance. ITASEC., 2018.

66

IoT SCIENTIFIC LITERATURE

[42] RYDER, Barbara G. Constructing the call graph of a program.
IEEE Transactions on Software Engineering, 1979, 3: 216-226.

67

	Introduction
	Related work
	State of Art in the IoT Security
	IoT security, general case study
	IoT security, authentication threats
	IoT security, communication threats
	IoT security, static analyses as possible solution

	Preliminaries
	Data-Flow analysis
	Tainted Flow analysis

	IoT ecosystem, case study scenario
	Illustrative scenario
	IoT back-end
	Servlet
	Front-end

	Cross-interface taint analysis
	Formal model
	Program
	Communication medium
	IoT Ecosystem
	Data source and sink
	Julia functionalities and final algorithm

	Implementation
	Plant monitoring system analysis
	Tagging process
	Combining the analysis

	Experimental results
	Communication Channel: Cloud (Firebase)
	Doorbell
	Electricity Monitor

	Communication Channel: NFC
	Communication Channel: Bluetooth
	Robocar

	Conclusions
	Experimental work
	Future work
	Cross-program argument type control
	Cross-program constant value propagation

	Learned skills

