
UNIVERSITÀ CA’ FOSCARI VENEZIA

DOTTORATO DI RICERCA IN INFORMATICA, 32◦ CICLO

(A.A. 2016/2017 – 2019/2020)

Structured-Light 3D Reconstruction
and Applications

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: INF/01

TESI DI DOTTORATO DI MARA PISTELLATO

MATR. 839976

TUTORE DEL DOTTORANDO

Dr. Filippo Bergamasco

COORDINATORE DEL DOTTORATO

Prof. Agostino Cortesi

December, 2019



Author’s e-mail: mara.pistellato@unive.it

Author’s address:

Dipartimento di Scienze Ambientali, Informatica e Statistica
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Abstract

An increasing number of modern Computer Vision applications rely on the usage of depth
data, allowing the accomplishment of several tasks otherwise being complex or imprac-
tical. As a consequence, a large amount of 3D acquisition methods have been proposed
in literature, each one designed for a specific objective. In particular, structured-light
approaches employ a projector to cast additional information over the scene to compute
correspondences between two views and obtain a dense reconstruction.

This thesis presents two main contributions in the field of 3D reconstruction: first,
some improvements over a state-of-the-art structured light technique called fringe pro-
jection are presented. We start from a theoretical characterization of the acquired signal
and formulate a novel phase unwrapping technique offering high resilience to noise and
outliers. Additionally, we propose a code recovering technique and a phase correcting
method to further improve the final reconstruction accuracy. The second main contri-
bution involves some real-world applications exploiting 3D reconstruction techniques in
heterogeneous fields. In particular, we present a cylinder extraction technique designed
to work in industrial settings where non-oriented, noisy point clouds are acquired from
the scene and a structured-light approach for micrometric surface reconstruction. Another
application involves the employment of the described techniques in the field of cultural
heritage, where the final outcome yields to a reverse engineering process in addiction to
the main preservation purpose.
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1
Introduction

During the last years, the convenience resulting from the availability and processing of
3D data has become a major driving force in recent Computer Vision research. Indeed,
depth data and their integration with classical imaging techniques allows the fulfilment of
several tasks which were challenging or infeasible in the past.

Many Computer Vision applications involve massive usage of 3D data in a number
of situations, for instance in object classification [206] and segmentation [60]. In particu-
lar, recent improvements on Deep Convolutional Neural Networks allow the fusion of data
coming from imaging devices and 3D sensors to perform the same tasks [168,205] achiev-
ing high accuracy levels. Popular applications of such techniques include autonomous
driving [47], human body detection [73] and tracking [149], or consumer entertainment
applications [76, 221].

Moreover, the increased accessibility given by the relatively low cost hardware and
software allowed the spread of such techniques in multiple disciplines. Indeed, three-
dimensional data are nowadays widely employed in a variety of fields, thanks to the wide
range of practical and analytical tasks which can benefit from the additional information
otherwise discarded in 2D imaging. In industrial settings, 3D data can be thoroughly
exploited to improve the performances of inspection systems [7, 133] or to enable accu-
rate robot control [155]. Other examples include medical applications, such as tailored
prostheses development [42], human body scan [207] or accurate vascular reconstruc-
tion [154]. Another field where image depth information brings several enhancements is
Cultural Heritage: 3D knowledge is often used to assist archaeologists for accurate exca-
vation reconstructions [17, 55] or for digitalization and preservation purposes [71]. The
second part of this thesis is dedicated to specific applications exploiting 3D data, with the
aim of highlighting the benefits that such techniques bring to the final outcome. In detail,
we will put particular emphasis on industrial settings and cultural heritage applications.

Over the years, many techniques have been proposed for 3D data acquisition; usu-
ally categorized on the basis of the exploited physical principle and on the design of the
adopted sensor. Some approaches are not even based on imaging. For instance, coordi-
nate measuring machines [81] are instruments which utilize a probe attached to a moving
support to measure material point positions by means of direct contact. Although they
offer a good precision, these machines are confined to highly specialized contexts due to
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the necessity of physical contact with the object. This constraint, indeed, results in severe
limitations in terms of speed and range of objects that can be acquired.

To overcome these shortcomings, the majority of 3D sensors implements contactless
measurement, combining various vision-based technologies. We can distinguish between
two major groups of approaches, namely passive and active reconstruction techniques.

In passive 3D reconstruction methods the scene is captured ”as it is” by two or more
cameras, with no additional hardware (Figure 1.1, left). In this case, the position of cap-
tured items is computed by means of geometric triangulation [111]. The basic principle of
triangulation is quite straightforward: the depth of each observed point is recovered com-
puting the intersection of projective rays coming from corresponding pixels in different
views [79]. For this process to work, two problems must be addressed.

first, the imaging geometry of cameras must be accurately known. Parameters of the
imaging model can be computed through a calibration process which is usually performed
once for each configuration. Such calibration can be carried out using many different
methods that have been extensively covered by recent research and have reached a high
degree of accuracy and repeatability [179].

The second problem to be addressed is seeking for correspondences in different views.
Unfortunately, the search for matches between two points of view is a much challenging
task. The performance of this step greatly depends on a deluge of factors, including
scene geometry, object surface features, illumination and materials. As a result of this
variability, literature counts a large number of approaches, each one of them dealing with
a specific scenario. If the scene is characterized by recognizable visual features, a possible
approach consists in direct exploitation of images to assess correspondences from low-
level data. In this case, some relevant areas of an image are extracted and identified as
image feature descriptors. Two common algorithms are SIFT [131] and SURF [15]. These
techniques extract for each image a number of feature vectors, each of which encloses
information about location and properties like scale and rotation of the extracted area.
The advantage of such descriptors is that they ensure scale and rotation invariance, thus
they can be easily compared in order to assess correspondences among different points
of view. Another image-based approach consists in dense stereo matching [186], which
searches for areas with high correlation along epipolar lines.

All these systems provide an acceptable set of correspondences to be triangulated and
get a 3D point cloud. However, some scenarios could involve a scene which does not
show significant features so that image-based matching would not work. Moreover, other
applications could require a more dense 3D reconstruction.

Active methods employ additional hardware, which is jointly used with at least one
capturing camera. The principal aim of such techniques is to assess the image depth or
points correspondences casting some supplementary information directly on the acquired
scene. Time-of-flight cameras, for instance, consist in a pulsating light source combined
with a sensor measuring the round-trip time of the signal (Figure 1.1, centre) [77,110]. A
popular approach is LIDAR (LIght Detection And Ranging) method [67]. Such values are
exploited to compute a depth map, which in turn can be used for reconstruction if imag-
ing geometry (i.e. camera calibration) is known [53]. Despite this technology have been
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Figure 1.1: Different 3D reconstruction techniques. From left to right: passive stereo,
time-of-flight, structured light.

proven reliable in some specific applications, it suffers from two major drawbacks. First,
the sensor does not usually provide a high resolution response. Moreover, the light round-
trip does not offer a high precision level so the error on depth computation is significant.
For this reason such technology is often used for large-scale environment reconstructions.
While performances of time-of-flight technology are fair in some applications, many sce-
narios demand higher resolution.

Structured Light
Generally speaking, structured light techniques consist in any approach which exploits
an external light source of known behaviour in order to fix point correspondences and
proceed to triangulation (Figure 1.1, right). Such methods are considered to be the most
reliable choice for an accurate surface reconstruction, thanks to their flexibility and the
ease of employment in a large variety of contexts. In fact, the additional light pattern pro-
jected on the captured scene allows for direct signal decoding to assess projector-camera
correspondences or introduces visual features that can be matched through a dense stereo
algorithm. The literature counts a huge number of structured-light 3D reconstruction
techniques, as well as specific approaches meant to be applied in highly specialised ap-
plications. Chapter 2 includes an overview of the more representative structured-light
techniques and coding patterns.

A basic example of a structured light technique is laser scanning [66], where a laser
line is swept through the scene and correspondences are found by its intersection with the
epipolar line in each captured image [79]. The same principle is applied by frame coding
approaches, where the laser is replaced by a digital projector and a specific sequence
of patterns is projected all over the scene. Such patterns are designed to easily decode
the column of the projector frustum hitting a material point, and thus to simulate the
laser sweep. Many pattern strategies have been proposed, ranging from simple binary
sequences [185], to colour schema [38] or single shots exploiting specially crafted grids
[98]. Moreover, in the literature several coding/decoding strategies have been proposed,
each one with a specific goal in mind. For instance, some approaches are specifically
designed to perform real-time reconstruction [58,229] using a reduced number of patterns
in order to increase the speed or exploiting the interaction between projected signal and
the natural texture of the scene [216]. In [63], the authors propose to infer the depth from
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the signal itself using a learning technique, dropping the actual triangulation step.
Despite the abundance of highly specialized patterns, one of the most popular is the

phase shift method [197]. This is particularly true in an industrial setting, since this
approach allows high accuracy, resilience to noise and surface texture and great flexibility.
The basic idea underlying phase-shift is indeed quite simple: the projected patterns are
sine wave intensity frames which are periodic along one direction of the digital projector
frustum. Several shifted patterns are projected and retrieved over time, then the initial
phase (i.e. the phase at frame zero) is computed for each image pixel by convolving the
acquired signal with the ideal projected sinusoid. Unfortunately, due to the periodic nature
of the pattern in space, many pixels will be characterized by the same initial phase, thus a
disambiguation step must be employed: such step takes the name of phase unwrapping.

The initial part of this thesis is focused on phase-shift technique and on some im-
provements over the current state-of-the-art. In particular, we propose a novel phase un-
wrapping approach based on a probabilistic framework, and a subsequent outlier detection
and code recovery which employs the likelihood values from the unwrapping process or
a voting schema in a spatial neighbourhood. Moreover, we also introduce some phase
correction techniques related to signal acquisition in the presence of a scene exhibiting
high-contrast regions.

1.1 Thesis Contents
This thesis is organized in the following way: Chapter 2 introduces a detailed background
for the imaging process and structured-light scanning methods, highlighting the connec-
tions of the presented topics with the novel techniques comprised in the different chapters.
The core of this thesis is then divided into three main parts: Part I contains some improve-
ments over the state-of-the-art 3D reconstruction employing phase-shift technique, while
Part II presents a collection of practical applications where the proposed unwrapping and
correction techniques are employed in real-world settings. Finally, Part III explores the
topic of surface detail transfer, introducing a preliminary study applying learning tech-
niques to perform such task.

In details, Chapter 3 tackles the phase unwrapping task in a multi-phase structured
light approach, presenting a novel unwrapping technique based on a stochastic formu-
lation of the problem. We start by modelling the signal acquisition process, then each
observed phase is considered as a value sampled from a Wrapped Normal distribution of
unknown mean. The unwrapped phase is then computed through maximum likelihood
estimation, and an additional recovery framework based on the same likelihood values is
presented. The work has been published in [161], where the relation with the signal noise
is studied in details, and in [160] where the unwrapping technique and the neighbourhood
recovery algorithm are thoroughly analysed.

Chapters 4 and 5 propose two techniques finalized at improving the unwrapped phase
quality, in the case of multi-period phase-shift 3D reconstruction. Such chapters offer a
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good theoretical basis for two practical correction techniques with the aim of improving
the final 3D reconstruction accuracy. In particular, Chapter 4 describes a novel phase
correction method operating on image zones where non-uniform albedo causes the recov-
ered values to be biased, introducing artefacts in the final reconstructed surface. Such
correction technique has been proposed in [164]. On the other hand, Chapter 5 proposes
a neighbourhood-based recovery technique allowing for restoration of the final coded im-
age in the case of faulty unwrappings. Several recovering strategies are simultaneously
analysed in terms of final coding precision. Such work has been presented in [163].

The second part of this thesis is focused on some real-world applications employing
3D data and structured-light techniques. Chapter 6 describes a calibration technique for a
camera-projector pair setup employed in the subsequent works. The proposed calibration
procedure directly exploits the coded images computed via the phase unwrapping algo-
rithm presented in Chapter 3 and allows for an accurate extrinsic parameter estimation
without using any kind of marker. Chapters 7 and 8 present two industrial-related appli-
cations working with 3D data. The first proposes a cylindrical primitive extraction from
non-oriented point clouds, presented in [162]. It exploits the geometrical properties of the
scene to extract a set of candidates and a game-theoretical inlier selection to devise the
best cylinder estimation. In Chapter 8 a technique for microscopic surface reconstruction
and inspection is presented, along with a specific application for gear teeth inspection.
The method includes a novel calibration procedure for a structured-light system employ-
ing a telecentric camera and a projector with a fixed line pattern. Chapter 9 presents
a structured-light application for 3D reconstruction in cultural heritage. The complete
scanning of an ancient Roman sundial is first described, then the 3D model is exploited
to recover the original working latitude through an optimization process which takes into
account the shadows casted on the object’s surface. Finally, in Chapter 10 we introduce a
preliminary study on the topic of surface detail transfer exploiting learning techniques.
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Related Work

The recent evolution of increasingly affordable and powerful 3D sensors and the consol-
idation of fast reconstruction algorithms enabled the widespread adoption of 3D data in
both consumer [76] and industrial [134] off-the-shelf devices.

While consumer applications place more emphasis on speed and performance, in an
industrial setup accuracy is of greater importance. To this end, a lot of effort has been put
in reconstruction techniques trading design simplicity and speed for higher precision in
3D recovery and robustness to surface characteristics of captured objects.

Active 3D sensing technology exploits the projection of some light patterns of known
spatio-temporal structure onto the object. To decode those patterns, rays emitted by the
projector are matched with the ones entering the camera to recover the depth of each
scene point. Digital projector-based structured light is an example of such approaches.
The main idea behind this technique is to decode from acquired image the correspond-
ing projector coordinates (in pixels) to establish a map between the observed scene and
the projector itself (camera-projector setup) or between different acquisitions of the scene
(multi camera setup).

This Chapter first introduces the fundamental concepts of the imaging process and
projective geometry, then revises the main contributions in the literature in the field of
structured-light 3D reconstruction approaches, with a particular attention to phase un-
wrapping techniques, that is the core topic of Part I of the thesis. Moreover, the chapter
offers an overview on structured-light system calibration, for which we propose a tech-
nique in Chapter 6, and introduces the main motivations behind industrial and cultural
heritage applications explored in the thesis. The last section is dedicated to model fitting,
that is a topic often faced in Computer Vision practical applications.
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Figure 2.1: Pinhole camera model. The optical centre corresponds to the origin of the
camera reference frame, while the image plane is orthogonal to the z-axis and located
at a fixed distance f (focal length). The projection (u, v) of a point is obtained by the
intersection of a ray coming from the origin to the point with the image plane.

2.1 Imaging Process and Epipolar Geometry

The geometry of imaging process in the basis of each vision-based reconstruction tech-
nique. Usually the capturing camera is modelled as an entity which observes physical
points in the real world and maps them in an image plane, forming the image that we
commonly know.

There are several camera models proposed in the literature [79], but the most used
is the so called pinhole camera model. This camera model is formed by a finite centre
of projection (or optical centre) and a plane. The former element is a point in three-
dimensional space and corresponds to the origin of an Euclidean coordinate system, also
known as camera reference frame. The plane located at z = f in such coordinate system
is identified as the image plane. The scalar value f is called focal length of the camera
(in pixels), and it is one of the parameters involved in the imaging process. In the pinhole
model a point X in three-dimensional space is mapped into a point x on the image plane
by intersecting the ray coming from the camera centre and passing through X with the
image plane.

The ray exiting the camera centre and perpendicular to the image plane is known as
principal axis, and it meets the image plane in a specific point called principal point.
Usually the acquired image is represented with a different coordinate system (in pixels),
and its origin does not correspond to the origin projected on the image plane. For this
reason an offset (cx, cy) has to be defined, denoting the real coordinates of the principal
point. Figure 2.1 summarises the anatomy of the pinhole camera model, characterizing
the elements previously described.

If world and image points are represented with homogeneous coordinates, we can
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denote a world point as X = (X, Y, Z, 1)T and its projection on the image plane x =
(x, y, 1)T . Then, the mapping from three-dimensional space to the image plane can be
expressed as follows

fX + Zcx
fY + Zcy

Z

 =

f 0 cx 0
0 f cy 0
0 0 1 0



X
Y
Z
1

 (2.1)

where

K =

f 0 cx
0 f cy
0 0 1

 (2.2)

is called intrinsics camera matrix, and contains the camera inner parameters that charac-
terise the way in which the world is captured on the image plane.

This formulation implicitly assumes that the world points are expressed in the camera
coordinate frame, with the origin corresponding to the centre of projection. In practice
it is common to describe the points observed by the camera in another reference frame,
denoted as world reference frame. The relation transforming a point in world reference
frame to the camera reference frame can be expressed with a rotation matrix R and a
translation vector t. Finally, the camera projection matrix P can be composed in the
following way

P = K[R|t] (2.3)

where K is the intrinsics matrix and [R|t] is a 3 × 4 roto-translation matrix moving the
points from world to camera reference frame. The roto-translation parameters are also
called external or extrinsic parameters of the camera, since they express the relation of
the internal camera coordinate system with the external world.

Lens Distortion

In practice the acquisition process does not work as a perfect pinhole camera, this be-
cause usual camera lenses deviate the entering rays, causing a distortion effect which is
particularly visible in peripheral areas of the acquired image [79]. For this reason the
resulting images need to be corrected before applying any reconstruction algorithm, so
that the acquisition process is again a perfect pinhole system. Several distortion models
have been proposed [51, 220], some of them specifically designed for highly distorted
cameras [189].

Among them, the most diffused model includes radial and tangential factors. Radial
distortion causes straight lines to be bended the more they are far from the principal point,
while tangential distortion is caused by inaccuracies in the lenses alignment with respect
to the image plane.
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Figure 2.2: Epipolar constraint. The 3D point X generates the epipolar plane that inter-
sects the two image planes in correspondence of the two epipolar lines Ll and Lr. The
intersections el and er of the line connecting the camera centres and the image planes are
called epipoles.

Such model is described through five parameters

k = (k1, k2, k3, p1, p2) (2.4)

where k1, k2, k3 express the radial coefficients, and p1, p2 are tangential coefficients. Ra-
dial distortion is corrected using the following formula

x′ = x(1 + k1r
2 + k2r

4 + k3r
6); y′ = y(1 + k1r

2 + k2r
4 + k3r

6) (2.5)

where r is the distance of (x, y) from the principal point and (x′, y′) is the corrected pixel
coordinate. For the tangential distortion, the mathematical model is the following

x′ = x+ (2p1xy + p2(r2 + 2x2)); y′ = y + (p1(r2 + 2y2) + 2p2xy) (2.6)

Since the distortion function is applied in retinal coordinates, k have to be calibrated
along with the camera intrinsic parameters to allow an accurate reconstruction.

Epipolar Geometry

In classical stereo vision method the scene is observed from at least two points of view.
When we have two cameras observing the same scene, if their reciprocal position is
known, a set of constraints deriving from their intrinsics geometrical properties can be
defined and used to perform reconstruction. Assume that both cameras observe the same
material point X, then it is mapped in xl and xr, respectively in the left and right cam-
eras image planes. If the imaging parameters are known and the point correspondences



10 2. Related Work

are given, the 3D coordinates of point X can be easily computed via triangulation by in-
tersecting the two rays originated from the two camera centres and passing through the
points’ projections.

In the case the correspondences between two views are not known a priori, epipolar
geometry constraints are used to significantly reduce the search space on the image plane.
Moreover, many structured-light systems exploit such properties to assess the correspon-
dences between camera and projector image planes.

The two camera centres and the observed point X define a plane called epipolar plane
which intersects the two image planes along two lines Ll and Lr, denoted as epipolar
lines [79]. This relation is shown in Figure 2.2, along with the epipole points el and er,
that are the intersections of the line olor with the image planes. As a consequence of such
geometrical relation between the two image planes, the projected images of X lie on the
correspondent epipolar lines. This constraint is widely employed in stereo reconstruction
approaches, since the search for the correspondence of xl in the right image plane is
limited to the line Lr and practically becomes a 1D search.

Some coding techniques allow only for the identification of vertical or horizontal pro-
jector coordinate and then exploit epipolar constraints to triangulate the points. Assuming
an horizontal camera-projector setup, so that the projected pattern only disambiguates
among its columns. Each point on the camera image plane generates a line on the projec-
tor image plane, so that when the camera observes the projector code h at point (u, v), the
corresponding projector coordinate can be obtained intersecting the computed epipolar
line and the vertical line x = h on the projector image plane.

2.2 Structured-Light Scanning

All the triangulation-based 3D reconstruction techniques work by seeking for a corre-
spondence between points observed by two or more devices [159, 174].

In structured light approaches such correspondences are assessed by projecting some
known information directly on the scene, so that in practice one viewpoint is substituted
by a projector.

When one or more cameras capture the scene, the projected pattern results distorted
by the geometry of the target objects. Specific light patterns are designed to encode a
unique label in each observed point, so that a mapping between camera points and pixel
coordinates in the projector’s image plane can be uniquely defined. Once the correspon-
dences are established 3D structure is computed from the geometric relationship of the
corresponding points.

2.2.1 Coding Techniques

The literature counts a huge number of different patterns involved in structured-light
reconstruction, together with several coding approaches. Each pattern is specifically
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designed to satisfy some requirements, such as acquisition speed [229], coding preci-
sion [214] or outlier resilience. Some approaches have a precise target application like
the measurement of microscopic physical phenomena [203] or the acquisition of specific
materials like glass, black objects [30] or metallic surfaces [103].

Among the variety of light patterns, one major distinction is in the nature of the re-
trieved codes, which can be discrete or continuous [180]. Discrete patterns encode the
same codeword in several pixels, so that the final resolution depends on the density of
projected codes. A classical example of discrete approach is binary coding. On the other
hand, continuous encoding exhibit a smooth profile, and each decoded pixel present a
continuous value in a range. These methods offer a higher reconstruction density and
accuracy: phase shifting technique belongs to this category.

Another common classification for structured-light approaches exploits the way in
which codes are embedded and decoded in the patterns [181]. In details, we can distin-
guish among neighbourhood, direct and time-multiplexing coding.

Neighbourhood-based

In neighbourhood based techniques all labels are encoded in a single pattern, and each
codeword is computed as a function of the values observed around it. Numerous ap-
proaches have been developed for this kind of task: some techniques propose spatial
coding schemas that are repeated and recognized through template matching [62]. Sta-
tistically random codes are projected over the scene such that any camera point can be
associated to a projector point via correlation. Thanks to the simplicity in the imple-
mentation and the speed of acquisition, such approach is actually employed on several
consumer products like Microsoft Kinect V1 (see Figure 2.3, right) and Intel RealSense.
Other single-pattern approaches, like the one proposed in [98] exploit geometrical proper-
ties of a single grid pattern to compute 3D data. In this approach, horizontal and vertical
lines are detected and uniquely identified by looking at their intersections and the distance
among neighbour intersections.

Other methods employ specific structures like De Bruijn sequences [88], which are
pseudo-random values exhibiting specific inner properties. The algorithm used to com-
pute such patterns is based on de Bruijn graphs [68] and generates univocal sequences in
the one-dimensional pattern, so that a stripe’s codeword can be identified by analysing its
neighbourhood (see Figure 2.3, left). M-arrays [156] are random arrays in which an n×m
sub-matrix appears once in the whole pattern. They are a two-dimensional representation
of De Bruijn sequences and can be represented with a binary encoding, coloured dots or
geometric features like circles or stripes (see Figure 2.3, centre for an example). The main
disadvantage of this approach is that the decoding robustness is influenced by the chosen
window size.

Neighbour-based approaches have several advantages in terms of speed and simplic-
ity, but they involve some drawbacks that should be taken into account while developing
a structured-light reconstruction system. First, most of the times they work with coloured
patterns, which requires a fundamental colour calibration step before the proper acquisi-
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Figure 2.3: Neighbourhood-based coding techniques, from left to right: De Bruijn stripe
sequence, coloured M-array and statistical pattern (used in Micorsoft Kinect V1 )

tion. During such calibration extra patterns are usually employed to acquire the necessary
information to correct the acquired scene. Moreover such approaches offer discrete cod-
ing and, if compared with other methods, they offer a low resolution (lower then camera)
and high sensitivity to noise. The code recovery process could also fail in some points if
their neighbourhood is partially occluded.

Direct Coding

Another class of encoding strategies consist in direct coding: in this technique each pixel
independently encodes its own label, with no need of contextual information. Such result
can be obtained either using a wide range of different colours or introducing periodicity.

These approaches can be based on several grey levels or coloured patterns. In the
first case, an early work proposed an approach named intensity ratio depth sensor [37].
Such technique projects along the vertical direction a linear wedge including different
grey levels, then the ratio between every pixel of the same wedge and the pixel value with
constant illumination is computed. This ratio can be directly related to the index of the
column pattern. In practice this approach needs the projection of two pattern and offered
a low accuracy. Subsequent works proposed some improvements over the original work
[41, 143] introducing more patterns to be projected and making this technique similar to
time-multiplexing approaches.

Other direct coding methods are based on coloured patterns. The work described
in [202] propose the rainbow pattern, containing vertical stripes encoded with different
wavelengths. The scene was acquired using two colour filters and then the ratio between
the two images was taken. The works [70, 184] improved the initial proposal adding
periodicity in projected pattern.

Theoretically direct coding techniques offer a high resolution of 3D information, but
in practice these approaches are extremely sensitive to noise since the distance between
close codewords is narrow. Moreover the acquired colours are highly influenced by the
scene features, like illumination or albedo, and thus a proper tuning step or multiple acqui-
sitions are often required. For these reasons, they are not suited for applications involving
moving scenes or accurate measurements.
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Figure 2.4: Time-multiplexing patterns. (a) The projected sequence of binary patterns for
Gray coding approach. (b) Phase shift sinusoidal pattern: the pattern is shifted N times to
complete a period.

Time-multiplexing

In time-multiplexing approaches, coded data is given through a sequence of patterns pro-
jected over time and acquired in a synchronized way. After the acquisition, the sequence
of intensity values observed at each point during the projection are used to compute the
final code. Usually time-multiplexing techniques offer a high measurement accuracy, thus
many approaches have been proposed during the years. The coding strategies can be cat-
egorized into the following groups: binary codes, n-ary codes and phase shifting. There
are also several hybrid approaches that employ a combination of time-multiplexing and
neighbourhood-based encoding.

Binary coding approaches use two levels of illuminations, that can be labelled as
”zeros” and ”ones” during decoding. A classical example of this technique is Graycod-
ing [90], where a series of binary striped patterns is projected. After acquisition each pixel
is labelled with a binary code computed from the sequence of observed intensity values.
The advantages of Gray codes is that adjacent codes are designed to have a Hamming
distance equal to one, preventing coding errors. This approach has two major drawbacks:
(i) the difficulty of identifying code discontinuities with sub-pixel accuracy and (ii) the
errors derived from a scene with non uniform albedo. These issues have been addressed
in several ways, but in practice they make the procedure more complex introducing more
patterns [194] or an error model for edge localization [213].

Another drawback of binary codes is that they require a high number of patterns to
obtain a good density reconstruction, since they only employ two levels of intensity. An
approach leading to the reduction of projected patterns is the use of n different intensity
levels, so that we compute n-ary codes. The work presented in [38] proposes a multilevel
Gray coding approach based on coloured patterns, while in [83] multiple grey levels are
used.

A well-known temporal coding technique is phase shift, in which light patterns are
composed by fringes of a sinusoidal signal. Such pattern is shifted over time and projected
consecutively on the scene during acquisition. Then, the phase component of the signal is
computed pixel-wise from the intensity values [238]. An in-depth theoretical explanation
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of phase-shift technique is given in Section 3.2. This method is widely adopted because of
its intrinsic robustness to noise and its ability to recover continuous codes with sub-pixel
accuracy. Given the periodic nature of the signal the phase values are repeated across
the scene, thus a disambiguation algorithm is required. Such process is called phase
unwrapping or absolute phase retrieval, and consists in identifying the correct fringe
order for each observed phase value. Section 3.3 illustrates a novel probabilistic phase
unwrapping algorithm exploiting multiple sinusoidal signals of different period lengths
observed over time.

A large number of phase unwrapping algorithms have been proposed in the literature,
among them we can distinguish two main classes of approaches: spatial and temporal
phase unwrapping [228]. There is also a third category of hybrid approaches that in-
volves heterogeneous solutions like the usage of pre-known scene information, additional
hardware or combinations with other methods.

In spatial phase unwrapping the relative fringe shifts are computed by looking at
neighbour values in a single phase map [167]. The most popular approach is the so called
reliability-driven: first a quality map is defined over the acquired image, then the points
are iteratively unwrapped following a path traced by decreasing values of the quality map.
In this way the points associated with a higher quality are unwrapped before the others
so that errors coming from noisy observations are not propagated. In [200] and [233] a
number of quality-guided algorithms and strategies are presented. Even if this approach
requires only a single phase map acquisition, it exhibits several drawbacks. First of all,
the scene must not generate a phase discontinuity greater than π: this narrows the kinds
of surface that can be acquired, and also depends on the system’s geometry. Moreover,
this technique only allows the unwrapping of isolated, connected patches of the scene,
thus a whole reconstruction may not be possible. These limitations, in practice, make the
method unflexible and not suitable in many scenarios.

In temporal phase unwrapping some additional information is added after the sinu-
soidal pattern to provide a discrimination among fringes. Several solutions have been
proposed, for instance the addition of Gray codes to assign a different label to each
fringe [182]. Such combination of course suffers from the same issues of the pure Gray
coding approach, and involves a significant number of additional projections. Other works
consist in different kinds of additional signal, for instance a binary random pattern to
perform stereo matching [13], or a coloured striped pattern [46]. Some approaches ex-
ploit distinct phase maps of different period lengths, that are projected after the first one.
Multiple periods leads to better accuracy because additional signals are involved in code
computation instead of being used only for disambiguation purposes.

Also in this case, several algorithms have been proposed to perform phase unwrap-
ping using different phase maps [239]. In the literature, one of the first proposals con-
sists in multi-wavelength phase unwrapping [48, 49]. This technique is also called phase
difference and exploits two close frequencies to generate another phase map from their
difference with no ambiguities. Another technique is the multi-frequency or hierarchical
phase unwrapping [89, 150]. In this approach the last pattern contains only one fringe
(thus it exhibits no discontinuities) and it is used to unwrap the subsequent phase maps.
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The technique described in [236] and [125] introduces a number-theoretical unwrapping
algorithm which exploits look up tables to allow for fast computation. This algorithm of-
fers good results in optimal conditions, but it is very sensitive to small phase inaccuracies
and outliers, leading to a table miss.

Other phase unwrapping methods involve the usage of additional hardware, like cam-
eras or projectors [91,123] to exploit geometrical constraints of the acquisition system. In
particular, the minimum phase method proposed in [12] exploits geometrical constraints
to generate a virtual phase map at a known depth that is used to compute the unwrapped
phase values. Some other techniques involve the prior knowledge of the scene such as
CAD models [116].

The phase unwrapping technique proposed in Chapter 3 belongs to temporal phase
unwrapping methods, since it exploits more than one phase maps projected over time
to retrieve the absolute phase value in each image pixel. The techniques described in
Chapters 4 and 5 consist in a phase correction and code recovery methods that can be
applied to any acquired phase map, independently on the unwrapping approach.

2.2.2 Calibration

Any 3D reconstruction method based on stereo vision requires a fundamental calibration
step involving the estimation of the imaging parameters (i.e. intrinsics and distortion)
along with the geometry of the system. Such task directly affect the reconstruction qual-
ity since the more accurate the procedure is, the more reliable are the following measure-
ments.

In the case of stereo vision applications, we distinguish between two calibration pro-
cesses, namely intrinsic and extrinsic calibration. Intrinsic calibration involves the com-
putation of the imaging parameters (described in Sec. 2.1) defining how to map observed
physical points on the scene to points on the 2D image plane. In particular, for a pinhole
camera, the required parameters are the focal length, the principal point offset and the
distortion coefficients. In the case of active stereo approaches such procedure has to be
carried out for both camera and projector devices, since the projector imaging process can
be practically modelled as an ”inverse camera”, casting a known image onto the scene.

As for intrinsic calibration, the literature includes numerous techniques to retrieve
camera parameters. Popular approaches employ some specifically designed target objects
to be captured by the camera in several positions. A calibration target can consist in a sim-
ple planar object or in a more sophisticated object of known geometry, and usually their
surface exhibit salient features to be extracted and easily identified (like squares, circles
or ellipse patterns). In this way the calibration algorithm is able to robustly associate each
detected image point with a physical point lying on the target’s surface. After the target
object has been acquired and its salient features have been extracted, the estimation of the
camera parameters is usually carried out through an optimization process [80, 212, 232].
Other calibration approaches does not employ specific targets but directly exploit the ob-
served scene features and are addressed as auto-calibration techniques [166, 212].
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In camera-projector setups, the extrinsic calibration step consists in assessing the re-
lationship between the camera reference frame and the projector image plane. This kind
of process exhibits some differences with respect of classical extrinsic calibration tech-
niques since the projector can not acquire images like a camera, but rather it behaves
like a camera which observes a known image, that is the projected pattern. Numerous
camera-projector calibration methods have been proposed in the literature [84, 85, 226].
One of the most used is [230], which proposes a projector calibration technique enabling
the projector to capture a planar checkerboard. This is performed establishing correspon-
dences between camera and projector points, so that the calibration can be carried out as
if the projector was a normal camera. Finally, other approaches discard the assumption
that both projector and camera are focused and developed calibration solution for out-of-
focus calibration. In [117] the calibration process allows the projector to capture only the
centre point of a pixel so that the blurring effect is avoided, while in [16] the out-of-focus
camera is calibrated using an active calibration target.

Chapter 6 proposes a camera-projector calibration technique which computes extrinsic
parameters as well as intrinsic projector parameters at the same time. The method does not
require a specifically designed calibration target, since it only requires any planar surface
to be acquired from various orientations. The problem of seeking for correspondences
between image and world points is resolved through the proposed phase unwrapping al-
gorithm, that offers a dense set of point correspondences over the image plane of both
camera and projector. Then, the system parameters are simultaneously estimated through
an optimization process.

2.2.3 Applications
In the second part of this thesis we explore two completely different scenarios, namely:
industrial quality inspection and cultural heritage. They are both good examples on how
structured-light reconstruction techniques are effective in practical applications and can
be exploited to obtain significant improvements over classical imaging techniques. In
particular, the novel phase unwrapping and correction methods presented in the first part
of the thesis have been applied in the described applications.

Structured-light 3D scanning and phase shift are widely employed in a variety of in-
dustrial applications, thanks to the method’s flexibility and its potential high degree of
accuracy. In such settings, the adoption of a precise measurement system is a key element
to assess the quality of the manufactured objects during construction, specially because
an accurate and extensive control also reduces potential issues that may emerge during
the subsequent production steps. Commonly employed tools are CMM (Coordinate Mea-
suring Machines), but they require physical contact with the object and thus are not al-
ways the best choice. On the contrary, structured-light approaches are portable solutions
which can be easily integrated in industrial settings, allowing for high precision measure-
ments without touching the artefact [222, 223]. Moreover, 3D data are often exploited
for automation, in order to perform automatic scene understanding [78], and in robotics



2.2. Structured-Light Scanning 17

applications to support the manipulation of objects [112,115]. Finally, industrial applica-
tions have been developed in order to acquire materials with specific surface reflectance
properties (i.e. metallic or shiny), which result particularly challenging [43, 102, 103].

In this thesis two specific industrial applications will be discussed. First, Chapter
7 proposes an algorithm for cylindrical primitive fitting from acquired point clouds (for
which the related work is described in the next Section). Second, a structured light system
for micrometric surface measurement is presented in Chapter 8.

The latter topic is interesting for its relevance in several applications. These range
from quality control [217], fabric defect inspection [106], weld pool surface depth mea-
surement [178] or laminated plastic wrinkles evaluation [225] to small coins or electrical
component verification [126, 141]. These approaches usually employ telecentric lenses,
thanks to their extended depth of field [120]. For example, the method described in [119]
proposes to combine fringe projection with binary defocusing technique [114] for 3D mi-
croscopic profilometry. Two different setups are analysed: the first including both camera
and projector telecentric lenses and the second one employing only a telecentric camera.
These specialised applications often need specific calibration procedures for systems with
telecentric optics. Calibration targets are often used, such as one or more planar surfaces
with squared or circular features [118], that can be easily detected and identified by the
imaging system. Once the initial parameters are estimated, they are refined through a
bundle-adjustment procedure [127].

The approach proposed in Chapter 8 is based on a camera-projector setup, both equipped
with telecentric lenses: a fixed pattern including several parallel lines is projected onto the
scene to recover the depth information corresponding to the intersections with the anal-
ysed object. The novelty resides in a new calibration technique using a sphere acquired
by the system to devise the intrinsic and extrinsic parameters together with a specific ap-
plication for gears surface inspection.

A completely different field explored in this thesis, which benefits from the usage of
3D reconstruction methods, is cultural heritage. There are a number of applications in
which 3D data can substitute other kinds of recording techniques [153]. For instance,
classical close-range photogrammetry approaches are designed to capture the object ge-
ometry and can be integrated or substituted with a 3D scanning process for some kinds of
artefacts [28]. One of the main purposes of 3D scanning in cultural heritage is the digital-
isation with the subsequent documentation and archiving of historical objects, in addition
to the analysis of some characteristics that would have been infeasible with other instru-
ments [57]. Moreover, the available 3D scanning techniques offer a high flexibility level
so that the digitalisation process can involve small or medium items, like a statue, or larger
scenes as entire temples [192] or cities [104]. Other applications in this field include the
monitoring of archaeological excavation fields [56, 59], serving both as documentation
and monitoring support; and the reassembly of fractured objects [86].

The application presented in Chapter 9 explores two different aspects of 3D recon-
struction for cultural heritage: the digitalisation of an ancient artefact for preservation
purposes, and the exploitation of the acquired model to devise some relevant features
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about its usage. The first part of the Chapter is indeed dedicated to the description of a
specific pipeline that we adopt to recover the complete 3D model of an ancient Roman
sundial using structured-light technique. In the second part we describe a mathematical
approach to devise the optimal working latitude and the original gnomon’s shape based
on the acquired 3D model.

2.3 Model Fitting
A fundamental task in many Computer Vision application employing 3D data is the ex-
traction and identification of one or more well-known objects included in the scene: two
examples are human body detection [73] or object segmentation [205]. In some situa-
tions 3D data are far from being perfect: this can be due to limitations of the working
environment (light conditions, occlusions, etc.) or to the nature of the scanned objects
themselves. For instance, the scanning process of objects presenting shiny metallic areas
could easily lead to an incomplete or noisy 3D surface [11]. Furthermore, many times
the acquired scene is complex and contains several elements which are to be filtered out
as they are not relevant for the subsequent analysis. The extraction of elementary shapes
such as geometrical primitives (planes, spheres, cylinders, pyramids) is an essential task
in several scenarios [93,121,208], such as industrial automation and inspection [74,172],
reverse engineering [135] or robot manipulation [196]. These applications often require a
robust and reliable parameter estimation in order to perform additional operations.

Chapter 7 focuses on the specific task of cylinder extraction from generic 3D point
clouds, proposing a novel extraction algorithm. Indeed, cylindrical shapes are often found
in many applications including natural landscape analysis [157, 165], robot manipula-
tion [142], automated pipe-run reconstruction [169] or industrial quality inspection [138].
In this section we briefly cover a number of state-of-the-art cylinder fitting and extraction
techniques pertinent with the proposed method. Among these solutions we can distin-
guish two different approaches: the ones requiring oriented point clouds (i.e. each point
is associated with a normal vector) and the ones which only uses 3D points locations.
While surface normals significantly reduce the parameter search space and the problem
complexity, their availability in acquired data is not always ensured and the reliability
of computed normals strongly depends on the quality of the point cloud itself. We can
distinguish between two conceptually different tasks, that are fitting and extraction.

The aim of fitting methods is to compute the best set of parameters for a cylindrical
model (axis, location and radius) to suit the given point cloud. Usually this kind of task is
performed after the acquired data has been segmented, so that we can associate a subset
of 3D points with a geometrical primitive to be fitted. The parameter estimation is usually
carried out through a linear or non-linear least-squares minimization of the points distance
from the fitted surface [136]. Since these techniques assume a Gaussian distribution of
noise, they exhibit high instability with respect to outliers. Consequently, the approach
works if the segmentation is almost exact (so there is no clutter) or when the scene in-
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cludes only a single cylindrical shape acquired with a good degree of accuracy. In [151]
the authors propose a Maximum Likelihood Estimation assuming a Gaussian mixture dis-
tribution for errors, and they apply the method to a terrestrial laser scanning application.
The algorithm proposed in [148] extracts a single cylinder from noisy and possibly in-
complete data samples. It adopts robust Principal Component Analysis and regression to
reliably compute the parameters of a single cylinder. The approach described in [33] pro-
poses algebraic methods to efficiently compute cylinder parameters from a minimal set of
points, in both oriented and non-oriented cases. In [171] a fitting method for laser scanner
is proposed: an ellipse is fitted for each line acquisition, then cylindrical parameters are
devised from the set of 3D ellipses. The method does not require point normals but it is
designed to work on a scene containing a single cylinder in a specific industrial scenario,
therefore this approach can not be applied to other contexts.

Extraction algorithms are applied when capturing more complex scenes, including
a number of primitives to be detected and other elements that should be automatically
discarded. In the literature, the two major classes for extraction algorithms consist in
RANSAC and Hough-based.

Thanks to their robustness, RANSAC-based methods [65, 209] are widely employed
for primitive extraction and fitting [29]. They directly exploit acquired data to exclude
outliers and devise a good set of parameters. The work described in [39] splits the ex-
traction task in two phases, both exploiting random sampling techniques. First, the set of
points is filtered extracting a possible cylinder direction from the Gaussian image of the
whole point cloud, then its size and location are extracted in the same way. Note that the
first step of this method highly relies on point normals to extract the cylinder orientation.
In [187] the authors propose a shape detection algorithm operating in unorganized point
clouds where the point normals have been precomputed. They formulate a method which
works on large point clouds, exploiting points spatial proximity to devise their belong-
ing to a shape, and then apply a hierarchical sampling strategy. Despite the advantages
offered by RANSAC-based approaches, their non-deterministic nature makes them im-
practical when dealing with large-scale point clouds. Moreover, data exhibiting severe
noise levels could be problematic for shape detection also because the performances are
highly influenced by point normal accuracy.

Another class of approaches for primitive extraction is Hough-based methods. As in
the well-known Hough transform [61], the generalised method uses specifically designed
voting spaces to extract the primitives in the scene. In the case of cylinders the five
parameters needed translate in a 5-dimensional voting space, resulting infeasible. To
overcome this problem, the approach in [170] proposes a sequential Hough transform
divided into two steps in order to reduce the dimensionality. This method first exploits
normals in a 2-dimensional accumulator to estimate the axis rotation, then it estimates
radius and location in a 3D accumulator.

Some works present variations of Hough-based technique for some specific applica-
tions. For example, the authors in [165] propose a fallen tree detection for terrestrial laser
scanning. In particular, they make some assumptions on the position of the cylinders and
apply some filtering to have an initial prior over data, then they propose a cylinder extrac-
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tion based on [170] and a final refinement to obtain single tree stems. Another popular
application is pipe-run reconstruction: in [152] the authors propose a prior segmenta-
tion and an area-based adaptive Hough transform to reduce time and space complexity.
Hough-based methods are usually time-consuming for large amount of data and the vot-
ing space discretization could lead to poor performances. Moreover, in absence of point
normals the parameter space dimensionality makes the approach infeasible so surface
normals are always required and their precision highly influences the final outcome.

In addition to these two methods, several works combine RANSAC, Hough and other
approaches within a pipeline, or exploit some prior knowledge of the scene to get bet-
ter results. In [64] the author propose a cylinder detection algorithm for robot grasping
applications. They assume the objects lying on a planar surface and perform an initial
image classification using a CNN, then they propose an extension of the two-step Hough
transform employing a randomized sampling scheme and finally use surface curvature to
filter the results. Another cylinder fitting for robot grasping is proposed in [72], where the
authors propose a significant data preprocessing phase, followed by a RANSAC model
fitting employing a custom validation and a Hough-based voting scheme. The method
proposed in [211] is composed by several steps: first, they select points belonging to po-
tential cylindrical surface by analysing the curvature values, then for each of them a fitting
procedure is run starting from its neighbourhood. The fitting algorithm is applied several
times so that at each iteration additional inlier points are appended to the current cylin-
drical model; moreover a validation procedure determines the reliability of the extracted
cylinder. Finally the set of cylinders is obtained through mean shift clustering.

Many extraction algorithms are designed to solve specific tasks, so they are based on
strong structural assumptions, for example a prior over the cylinder orientation and loca-
tion. In [128] an approach for large-scale point clouds is presented. In such application
normals can not be exploited, but the authors assume to observe only horizontal or vertical
pipes, so the cylinder orientations are significantly constrained. The approach proposed
in [138] exploits an initial registration of the CAD model to the point cloud in order to
have some prior information on the acquired data. Another common assumption consists
in observing only objects lying on a planar surface, like in robot grasping [64, 72].

The majority of described methods require normal or curvature pre-computation, which
we already stated to be sensitive to noise and outliers. Moreover, they need a specific tun-
ing step for several parameters involved in the process. An accurate parameter calibration
is a time-consuming task, and could be an advantage if working with stable conditions,
but could be a serious limitation when working with heterogeneous scenes.

The extraction algorithm presented in Chapter 7 is partially inspired by [171], and
improves the concept to extract multiple cylinders from an unknown configuration with
several sources of noise. The method does not require point normals: it basically slices
the scene with randomly generated virtual planes to compute a set of ellipses, each of
which generates two cylinder candidates. Then, a specifically designed cylinder similarity
function is employed in a clustering process based on game theory, which ensures the
selection of the subset with the best mutual consensus.



I
Structured-Light Scanning





3
Robust Phase Unwrapping by

Probabilistic Consensus

In phase shift profilometry sinusoidal patterns are projected and each point is labelled
according to the observed phase. Then, due to the periodic nature of the signal, a dis-
ambiguation method (known as phase unwrapping) is needed. Several unwrapping tech-
niques have been proposed in the literature, since noisy signals lead to inaccuracies in
phase estimation.

This Chapter presents a novel phase unwrapping approach based on a probabilistic
framework. The method involves the projection of multiple sinusoidal patterns with dis-
tinct period lengths, encoding different phase values at each point location. Phase values
are then modelled as samples from a Wrapped Gaussian distribution with an unknown
mean, determined by the projector code that generated the values. This formulation allows
us to robustly perform phase unwrapping via Maximum Likelihood Estimation, recover-
ing code values from the observed phases. Furthermore, the same likelihood function can
be exploited to identify and correct faulty unwrappings by gauging mutual support in a
spatial neighbourhood. An extensive experimental assessment validates the Gaussian dis-
tribution hypothesis and verifies the improvements in coding accuracy when compared to
other classical unwrapping techniques.
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3.1 Introduction
As already discussed in Chapter 2, the literature counts a vast number of solutions when
dealing with phase unwrapping applications. Unfortunately, in case of noisy acquisitions
many approaches discard the measurements that do not attain some prescribed precision
levels. For instance, in number-theoretical methods the discrete look up table approach
results in errors or missing codes, while in Graycoding approach all phases are used but
only one (possibly noisy) phase map is exploited to devise the final unwrapped values.

The technique introduced in this chapter is designed to work in the opposite direc-
tion: we propose a robust multiple-period method that does not discard any acquired
phase value. The very basic idea in fact is to keep all phase observations and use them to
compute the code which most likely generated such values. We propose a novel phase un-
wrapping algorithm based on a probabilistic approach: phase values (ϕ1, ..., ϕn) observed
at each point are considered as independent samples from a continuous distribution of un-
known mean with variance σ̄2. They are used to generate a likelihood function defined
over the space of unwrapped codes, then the final code is computed through Maximum
Likelihood Estimation. In this way we are able to retrieve the most likely code value
for each pixel, resulting in a simple and flexible approach. Cramér-Rao bounds are also
exploited to relate the phase variance σ̄2 to the variance of the observed signal, that can
be easily estimated online during fringe acquisition. Moreover, we propose a simple yet
effective recovery approach that exploits Likelihood values in combination with spatial
neighbours to perform outlier detection and correction.

Novel Contribution
The rest of this Chapter is organized as follows: Section 3.2 covers the basic principles of
phase shift technique and introduces the error model we adopted with the mathematical
notation. In Section 3.3 the novel probabilistic unwrapping method is presented, while
in Section 3.4 the connection between the signal standard deviation and the standard de-
viation of the likelihood function is studied using Cramér-Rao lower bounds. In Section
3.5 the neighbourhood-based error recovery is explained and finally in Section 7.3 both
synthetic and real-world experiments are displayed in order to assess the algorithm perfor-
mances. The techniques presented in this Chapter have been published in [160] and [161].

3.2 Phase Shift
Phase-shift technique consists in generating a sinusoidal pattern spanning either the hor-
izontal or vertical extent of the projector image plane (Fig. 3.2, left). During the acqui-
sition, the pattern is spatially shifted so that each projector pixel encompasses an entire
period after m subsequent shifts. Together with m, the period length λ (measured in
pixels) of the sine pattern is chosen a-priori. It affects both the phase difference of two
neighbouring pixels along with the spatial ambiguity of all pixels in the image. Indeed,
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Figure 3.1: Acquisition process and different period lengths. First row shows one of the
shifted light pattern projected on the scene, each one with a different period length (1300,
160 and 60 pixels). In the second row the correspondent phase maps are shown. Third
row shows the computed phase values along the red line.

two adjacent pixels will exhibit a phase-difference of 2π
λ

. Consequently, points which are
λ pixels away will be characterized by the same phase value. The first row in Figure 3.1
shows three examples of a simple scene while projecting one of the shifted light patterns.
The different patterns differ in period length (from left to right: 1300, 160 and 60 pixels).
After acquisition, the signal phase is computed for each pixel from observed intensity
values in that point over time. From now on, we will address this output as phase map (or
phase image), i.e., an image where values consist of the computed phases at each image
coordinate. Examples of phase maps are shown in Figure 3.1, second row.

The choice of period length λ is driven by two opposing needs. On one hand, a
longer period will reduce the phase ambiguity along the image, with the extreme case of
λ larger than the projector size causing no ambiguity at all (as in Figure 3.1, right). On the
other hand, it is well known that the phase localization of the signal is proportional to the
frequency, so we need to keep it small to increase the accuracy. Usually, λ is kept in the
order of dozens of pixels (Fig. 3.2, Center) and an unwrapping step is used to distinguish
different fringes. The disambiguation technique is based on the idea of projecting multiple
different sinusoidal signals (at different periods λ1 . . . λn) that can be combined to get a
unique code for each projector’s pixel.

The problem of the aforementioned multi-phase shift approach is that the signal ac-
quired by the camera is perturbed by different noise sources, causing an imperfect phase
estimation. Possible sources are, for example: (i) The thermic white noise of the cam-
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Figure 3.2: Left: Vertical sinusoidal pattern with a period length of 17 px. The pattern is
shifted from right to left so that each pixel observe one complete period after m samples.
Center: The recovered phase for each pixel. Since the period is shorter than the with of
the projected image, we observe a phase ambiguity among the fringes. Right: Real-world
example of the acquired signal compared to the projected ideal signal for a pixel with
phase 0. Note how the samples are slightly noisy especially in the lower portion of the
sine period.

era, especially at high gains or very short exposure times; (ii) The non-linear interactions
between neighbouring pixels due to intrinsic properties of each material (micro-facets
and reflections causing a wrong signal response); (iii) An imperfect mechanical and/or
electronic functioning of the projecting device (particularly true for laser projectors), (iv)
External noise sources like indoor ambient lighting subject to the oscillatory nature of the
power outlet. Whatever the reason, a noisy phase estimation affects not only the accuracy
of the reconstructed surface, but may cause a completely wrong phase unwrapping. In-
deed, methods not particularly tolerant to phase errors produce a lot of erroneous codes
for challenging materials, like brushed metals or glossy plastic.

In the following sections we briefly cover the basic Phase Shift method and introduce
definitions and symbols that will be used throughout the Chapter.

3.2.1 Signal Model

Before describing our method, we start by formalizing the mathematical details of the
projected signal and the corresponding noise model.

For any projector pixel P at coordinates (ξ, v), we project over time the following
sinusoidal signal, discretized as a sequence of m subsequent samples:

Z(t) = sin

(
2π

t

m
+ φP

)
, t = [0 . . .m). (3.1)

Assuming a vertical pattern, the ideal pixel phase φP depends both on the period λ and its
horizontal position on the image plane, according to the following simple relation:

φP = 2π

(
ξ

λ
−
⌊
ξ

λ

⌋)
. (3.2)
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The value of φP cannot be measured directly, but it can be estimated from observed
samples. Such values are subject to different noise sources affecting the acquisition pro-
cess. As commonly performed in signal theory applications [139, 175], we derive our
observation model assuming to acquire a set of noisy samples:

z(t) = sin

(
2π

t

m
+ φP

)
+ w[t] (3.3)

where w[t] is a zero-mean white Gaussian noise of variance σ2. Albeit not completely
motivated by physical considerations, the assumption we made on the statistical nature of
the noise represents a good trade-off between the simplicity of the model and the observed
behaviour. Such convenience is supported by our experimental evidence (see Sec. 7.3 for
details).

Given the acquired signal z, the Maximum Likelihood estimator of the phase is de-
fined as:

φ̂P = argmax
φP

p(φP ; z) (3.4)

where, considering our assumption on the statistical nature of the noise, we have:

p(φP ; z) =
1

σ(2π)m/2
e−

1
2σ2

∑m−1
t=0

(
z(t)−sin(2π t

m
+φP )

)2

. (3.5)

Switching to the natural logarithm of the likelihood and arranging the terms, we obtain
the common non-linear least-squares minimization:

φ̂P (z) = argmin
φP

m−1∑
t=0

(
z(t)− sin

(
2π

t

m
+ φP

))2

. (3.6)

Since the least squares best fit based of a lower order Fourier series is exactly equiv-
alent to the truncated DFT, the phase of the acquired single-tone signal can be easily
recovered as:

φ̂P (z) = atan2(x, y) + π (3.7)

with

x =
m−1∑
i=0

cos

(
2π

m
i

)
z(i); y =

m−1∑
i=0

sin

(
2π

m
i

)
z(i) (3.8)

and where atan2 : R2 → [−π, π] evaluates the correct arctangent angle of x/y selecting
the appropriate quadrant based on the arguments signs.
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3.2.2 Phase Recovery

Suppose that the sinusoidal pattern is composed of m shifted patterns to be projected on
the scene, then the amount of shifting in each pattern is set to 2π

m
radians. This way, after

m shifted images, each pixel has observed one entire period of the sine pattern.
Given the set of captured grayscale images I1, I2, ..., Im, we denote as Ii(u, v) the

intensity value observed in Ii at pixel coordinates (u, v). As we stated in the previous
section, the resulting phase value ϕ(u, v) is then computed as follows:

ϕ(u, v) =
1

2π
atan2(x, y) + 0.5 (3.9)

plugging the observed values Ii(u, v) as the acquired signal z(i) in Equation (3.8):

x =
m∑
i=0

cos

(
2π

m
i

)
Ii(u, v); y =

m∑
i=0

sin

(
2π

m
i

)
Ii(u, v)

Where atan2 : R2 → [−π, π] computes the correct arctangent angle of x/y selecting
the appropriate quadrant based on the signs of the arguments. Note that the angle is nor-
malized in order to get phase values between 0 and 1.

The result of this process is an image of phase values computed at each pixel location,
as shown in the second row of Figure 3.1. In these examples we fixed the sample number
m = 20. In the leftmost phase image the period length is equal to the image width, so we
obtain increasing phase values along horizontal sections of the image. Other images show
the typical repeated fringes of phase values, caused by the periodic nature of the signal.
The first choice seems convenient because it implies the total absence of ambiguities. In
fact, one could think of using such phase values as a direct coding technique, but this
solution is highly inaccurate because the accuracy of phase recovery is proportional to
signal frequency. On the other hand, acquiring periodic values introduces ambiguity but
leads to a better precision.

This is clear when observing third row of Figure 3.1. Here, phases along the horizontal
red line are plotted against their spatial position. Each fringe in phase image corresponds
to a segment in the plot, where the phase function is strictly monotonic. If we restrict the
observation to a single known fringe, there is no ambiguity and we could directly compute
the code from which the phase values were originated; thus, a robust technique which is
able to disambiguate among the fringes is fundamental. In other words, if we are able
to identify the correct fringe in which a phase value have been observed, we can easily
compute the code.
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3.2.3 Projector Codes and Phases

Computing projector codes from an observed phase is our primary goal, since it estab-
lishes a unique correspondence between camera and projector points. Phase values de-
pend on projector coordinates by design, thus in this section we present the fundamental
equations which model the relationship between these two values.

We identify projector’s horizontal coordinates with variable ξ: these values range in
[0, ξmax − 1], with ξmax equal to projector width. Then, the projected signal’s phase can
be modelled as a periodic function in ξ, that we will identify as ϕ(ξ) ∈ [0, 1). Note that
phase values have been normalized in [0, 1) using Eq. (3.9) from acquired images while
projecting shifted patterns.

We denote with λ the period length expressed in pixels. This value controls the signal
periodicity and implies ϕ(ξ) = ϕ(ξ + kλ) with k ∈ N. Phase function can be interpreted
as the fractional part inside a fringe and is defined in the following way:

ϕ(ξ) =
ξ

λ
−
⌊
ξ

λ

⌋
. (3.10)

If the observation is limited to a single fringe, phase values are increasing, not periodic
and range between zero and one.

We label these fringes from left to right with sequential natural numbers in order to
distinguish them. The fringe identifier is called fringe number and it is also a function of
ξ. We denote the function identifying the fringe number as η(ξ):

η(ξ) =

⌊
ξ

λ

⌋
∈ N (3.11)

which can be interpreted as the integer part of the signal.
Given these definitions, we can easily express the relationship between projector co-

ordinates ξ, phase value and fringe number in the following way:

ξ = (η(ξ) + ϕ(ξ))λ. (3.12)

The simple intuition behind this equation comes from the definitions of ϕ(ξ) and η(ξ).
Phase value is interpreted as the fractional part inside a fringe, while fringe number gives
the integer part of a code by definition. As a consequence, if we put together integer
and fractional part and then multiply by period length λ, we obtain exactly the projector
coordinate ξ. Values of ϕ(ξ) are available directly in the acquired phase image, while λ
is a constant value. Thus, η(ξ) is the only element which allows to disambiguate among
points with the same phase.
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3.2.4 Error Sources
Errors in phase estimation have a direct impact in the final reconstruction accuracy. We
define as phase error the distance (in radians) between observed phase and the true phase
value in the same projector coordinate:

εϕ = dc(ϕ
∗(ξ), ϕ̄(ξ)) (3.13)

where ϕ̄(ξ) is the correct phase in ξ, defined in Eq. (3.10), while ϕ∗(ξ) is the observed
phase at the same point. The distance between two phases has to consider their periodicity.
For this reason, we define dc as a signed circular distance (in the range [−0.5, 0.5]) of two
normalized angles:

dc(ϕ1, ϕ2) = sign(ϕ1 − ϕ2)min{|ϕ1 − ϕ2|, 1− |ϕ1 − ϕ2|}. (3.14)

The formulation follows the fringe design: phase images are split in several stripes
where values range in [0, 1). Values near 1 are indeed spatially close to values around
zero because they belong to different adjacent fringes. This is evident in second row of
Figure 3.1. For example, we have that dc(0.8, 0.1) = 0.3.

We already mentioned that several external factors could interfere in phase recovery
process. Some error sources are directly caused by physical characteristics of the acquir-
ing procedure, and most of the time such elements are not predictable, e.g., reflections or
unexpected changes in light conditions. Given the non deterministic nature of the process,
we define phase error εϕ as a random variable:

εϕ ∼ N(0, σϕ). (3.15)

We modelled εϕ as a Normal Distribution with zero mean and standard deviation equal
to σϕ1. Even if the error is limited in the range [−0.5, 0.5], the Normal distribution is still
a good approximation for this model because in practice we never observed σϕ greater
than 0.1 radians. Therefore, less than 10−6 of the values drawn from such distribution fall
outside the 5 standard deviations coverage. To study the impact of this error in the final
code computation, we rewrite Equation 3.12 as:

ξ = (η(ξ) + (ϕ∗(ξ) + εϕ))λ

= λη(ξ) + λϕ∗(ξ) + λεϕ.
(3.16)

It is evident that phase error εϕ has a significant impact on final code value ξ, since the
code is affected by an additive error proportional to phase length λ. We define the final
code error in pixels as the multiplication of phase error εϕ and phase length λ:

εξ = λεϕ. (3.17)

1Further details on this characterization will be given in Experimental section.
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Figure 3.3: Coding errors with different period lengths (left to right: λ = 53, 127, 1080
px) and constant error standard deviation σϕ = 0.05 rad. In second row the same values
are used to measure depth errors for different disparities (d in three distinct curves). Plots
show in x-axes the actual object depth and in y-axes the depth error after triangulation.

This implies that also code error εξ is a random variable distributed as a Normal Dis-
tribution with the standard deviation amplified by λ:

εξ ∼ N(0, λσϕ) (3.18)

indeed, period length λ plays a key role in absolute phase recovery since it magnifies code
error εϕ and thus has an important impact on the final triangulation.

In Figure 3.3 we show some examples on how phase length directly affects recon-
struction accuracy: in each column we tested different period lengths, respectively λ =
53, 127, 1080. Since the projector’s width is 1080 pixels, the last example contains a
single fringe. Each figure has been generated simulating a Gaussian phase error with
σϕ = 0.05. The first row shows, for different λ, the correspondent code error |εξ| in the
acquired phase images. While in the first picture we have an average error of 2.11 pixels,
increasing the period length raises the value to 5 in the case λ = 127 and reaches 43
pixels when λ = 1080. As expected, this result shows that longer periods will lead to a
low coding precision and thus in an inaccurate 3D reconstruction. Second row in Figure
3.3 shows the impact of code error εξ when triangulating an object located at increasing
distance z̄. We simulated a camera-projector configuration, both with focal length equal
to 1080. The camera observes a material point at (0, 0, z̄) labelled with a code perturbed
with a zero-mean Gaussian with standard deviation of σξ pixels, and the depth of trian-
gulated point is denoted with z∗. The error |z̄ − z∗| is plotted in y-axes against the actual
point depth z̄ (in x-axes). Such error is also influenced by camera-projector disparity,
so we simulated three different disparities which are comparable with the focal length.
Each curve in the plots represents a distinct configuration. These plots confirm the severe
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Figure 3.4: Examples of likelihood functions for different pattern configurations and
phase standard deviations. First row shows n = 1 and λ1 = 7, second row n = 2
and λ1 = 7, λ2 = 9, third row n = 3 and λ1 = 7, λ2 = 9, λ3 = 11. We set σϕ = 0.05 rad
for both, and used two different estimations: σ∗ = 0.1 (left) and 0.03 (right).

degeneration of 3D reconstruction precision when choosing a long period length.

3.3 Probabilistic Phase Unwrapping
Our approach employs n sinusoidal patterns of different coprime period lengths λ1, λ2, ..., λn.
At each point, n phase values are observed, corresponding to the same unknown code ξ.
The true (hidden) phases associated to each period length λi are denoted as ϕ̄i. We group
such values in a phase vector:

ϕ̄ = (ϕ̄1, ..., ϕ̄n) = (ϕ1(ξ), ..., ϕn(ξ)) (3.19)

Where each ϕi(ξ) is defined as in Equation 3.10. The observed phases computed from
intensity images are estimations of true phase values under different noise sources. We
denote these values as

ϕ∗ = (ϕ∗1, ..., ϕ
∗
n). (3.20)

Considering the periodicity of the signal, we characterize them as a vector of indepen-
dent random variables distributed as Wrapped Normal distributions of support [0, 1] and
mean ϕ̄:

ϕ∗i ∼ Nw(ϕ̄i, σi) (3.21)

where σi is the standard deviation of phase values for pattern i. Given the small value of
σi, such distribution can be efficiently approximated as a Gaussian [107], and the Proba-
bility Density Function relative to observed phases in the i-th pattern is defined as
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fi(ϕ
∗
i ; ξ, σi) =

1√
2πσi

e
− dc(ϕ

∗
i ,ϕ̄i)

2

2σ2
i (3.22)

In this notation we place the variable ϕ∗i before the semicolon and we consider all
other parameters fixed. Note that parameter ξ is the distribution mean and it is implicitly
included in the definition of ϕ̄i. Given a code ξ and a standard deviation σi, the integral
of such function expresses the probability of observing phase value ϕ∗i inside an interval.

Assume that we fixed the values of σ = (σ1, ..., σn), the values of ϕ∗ can be consid-
ered as independent samples from the distribution (3.21) of unknown mean. Therefore,
we can switch the roles of phase value and projector code in Equation (3.22) considering
ϕ∗ as constant value and ξ as the variable. The Likelihood function L : [0, ξmax)→ R+ is
defined as the product of all individual PDFs and it is defined over the space of projector
codes:

L(ξ;ϕ∗,σ) =
n∏
i=1

fi(ξ;ϕ
∗
i , σi) =

n∏
i=1

1√
2πσi

e
−
dc

(
ϕ∗i ,
(
ξ
λi
−
⌊
ξ
λi

⌋))2

2σi (3.23)

This function expresses the likelihood of projector codes ξ given that we observed ϕ∗

as phase values. In this way we move code recovery from discrete to continuous domain,
computing a measure of likelihood over the space of codes ξ, and the code which most
likely generated the phases is the one which maximizes the likelihood function:

ξ∗ = argmaxξ∈[0,ξmax) L(ξ;ϕ∗,σ). (3.24)

This approach does not exclude a priori any value ofϕ∗, indeed, we preserve as much
information as we can and compute the best possible code which generated the observed
data. This is a fundamental aspect that distinguish this method with other unwrapping
techniques, in fact number theoretical approaches fail when facing noisy observations.
We prefer to accept such values and compute the best possible code rather than having no
code at all: our goal is to exploit all measured phases as best as possible.

Following the theoretical discussion made so far, we now summarize our proposed
stochastic code recovery approach. Before starting the acquisition, one must choose how
many periods to project and their period length in pixels. To avoid ambiguity along the
projector’s codes space, all period lengths must be co-prime and their LCM smaller than
the projector width (or height, if we project horizontal patterns). Moreover, one must
specify the expected standard deviations of estimated phases, i.e. the vector σ̄.

It is worth spending a couple of words here, because σ̄ is in fact the only required
parameter of our algorithm. First, we formulated the solution assuming a possibly dif-
ferent σ̄i for each projected period. This accounts the fact that, for the microscopic char-
acteristics of the surface, different sine frequencies may exhibit different signal noises.
Moreover, longer periods are less localizable in space, so it is a good practice to use more
samples m for long periods than for the short ones. Second, this approach allows us to
not exclude a-priori any value of the estimated ϕ̂. Indeed, the vector σ̄ is essentially a
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weight acting on all the acquired patterns. One may choose to keep extremely short or
long periods, or to use very few samples, and modify the values of the relative σ̄i accord-
ingly. The choice of σ is a fundamental part in this process, since it controls the degree of
selectivity of likelihood function. In fact, an overestimation of σi brings to a more tolerant
likelihood, which could give more relevance to very unlikely values. On the other hand,
an underestimation leads to a very selective function which drops close to zero in many
intervals.

Figure 3.4 shows some examples of likelihood with a variable number of sinusoidal
patterns (denoted as n) and sigma estimations. We simulated a 100-pixels projector and
a vector of perturbed phase observations for ξ = 50. We assumed the same value for
all σi and we used σϕ = 0.05 to perturb phases. In the first row we set n = 1 with
λ1 = 7: in this scenario we have complete ambiguity since each maximum value has the
same probability of being observed in every fringe. In the second row we have n = 2
and we added a pattern of length λ2 = 9, while in the last row a third signal is added
with λ3 = 11. The introduction of further signals causes the exclusion of some codes
and a higher likelihood value for others. In leftmost plots we overestimated the standard
deviation setting σ∗i = 0.1 ∀i, while in rightmost plot we underestimated the same value
setting σ∗i = 0.03 ∀i. In the first case the function includes a very large interval of values
around the correct one and does not penalize the rest. In the case σ = 0.03 the function is
more selective and does not have more than one or two peaks.

Once σ̄ is chosen and the n sinusoidal patterns (one for each period) are acquired,
for each pixel of the camera we estimate the phases (ϕ∗1, ..., ϕ

∗
n) using equation (3.9). At

this point, for each camera pixel, we search for an initial integer estimate of the projector
code by taking the value of ξ̇ ∈ {0, 1, . . . ξmax} for which L(ξ̇; ϕ̂, σ̄) is maximum. Due
to the different spatial resolution between camera and projector, it is unlikely that each
camera pixel observe exactly one projector pixel. Indeed, one of the strengths of phase-
shifting is that one can precisely recover the projector coordinate with sub-pixel precision.
In other words, the code ξ∗ that maximizes the likelihood function can assume any real
value between 0 and ξmax. Unfortunately, due to the signed circular distance, we cannot
give a direct analytical solution for the global maximum ξ∗. However, if we restrict the
search in a small neighbourhood of ξ̇ so that the circular distance never wraps, and take the
logarithm of the Likelihood,L(ξ; ϕ̂, σ̄) becomes a parabola for which we can compute the
maximum by sampling three distinct points on it. Therefore, once we identified the integer
part of the projector code ξ̇, we recover the sub-pixel maximum ξ∗ with the following
formula:

ξ∗ =
L(ξ̇ + δ;ϕ∗,σ∗)− L(ξ̇ − δ;ϕ∗,σ∗)

4L(ξ̇;ϕ∗,σ∗)− 2
(
L(ξ̇ + δ;ϕ∗,σ∗) + L(ξ̇ − δ;ϕ∗,σ∗)

) (3.25)

We are still working with a process subject to several sources of noise and wrong
measurements could lead to an incorrect code. In the case of coding errors, we could
exploit spatial information to validate codes which are incoherent with respect to their
neighbourhood. We explore this recovery option in the next section.
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3.4 σ̄ Lower-Bounds

Now that we described the general algorithm, we still need to clarify how to provide
reasonable values for the vector σ̄.

One simple way is to empirically measure the phase error on a set of repeated experi-
ments and compute its standard deviation.

There are two drawbacks in this approach. First, this sort of ”calibration” must be
performed every time a new object is acquired or any other condition changes the expected
signal-to-noise ratio of acquired sinusoids. Second, the operation cannot be performed
along with the acquisition because the exact phase of each acquired signal is not known,
as it depends on the scene geometry.

To overcome that, the only way is to project the same known phase for all the projector
pixels (essentially setting λ = 1) to collect statistics on its distribution. Unfortunately, this
special pattern is useless for 3D reconstruction so it will just consume projector time to
calibrate the parameter needed for our method.

Instead of directly calibrate σ̄, we can empirically measure the variance of the signal
noise w[t] and relate it to the variance of the phase estimator.

Since φP is an unknown deterministic parameter of some probability function via the
unbiased estimator φ̂P , the variance of the estimator is subject to the Cramér-Rao bound:

var(φ̂P ) ≥ 1

J(φP )
(3.26)

where J(φP ) is the Fisher information defined as:

J(φP ) = E

[(
∂ ln p(z;φP )

∂φP

)2]
= −E

[
∂2 ln p(z;φP )

∂2φP

] (3.27)

By substituting (3.5) in (3.27) we obtain:

ln p(z;φP ) = ln

(
1

σ(2π)m/2

)
− 1

2σ2

m−1∑
t=0

(
z(t)− sin

(
2π

t

m
+ φP

))2

(3.28)
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∂2 ln p(z;φP )

∂2φP
= −2K

[m−1∑
t=0

cos2
(
2π

t

m
+ φP

)

−
m−1∑
t=0

sin2
(
2π

t

m
+ φP

)

+

m−1∑
t=0

sin

(
2π

t

m
+ φP

)
z(t)

]

E

[
∂2 ln p(z;φP )

∂2φP

]
= −2K1

[m−1∑
t=0

cos2
(
2π

t

m
+ φP

)

−
m−1∑
t=0

sin2
(
2π

t

m
+ φP

)

+

m−1∑
t=0

sin

(
2π

t

m
+ φP

)
E[z(t)]

]
(3.29)

where K = − 1
2σ2 . Since

E[z(t)] = sin

(
2π

t

m
+ φP

)
+ E[w[t]] (3.30)

and E[w[t]] = 0 by definition, we obtain:

E

[
∂2 ln p(z;φP )

∂2φP

]
= −2K

m−1∑
t=0

cos2

(
2π

t

m
+ φP

)
var(φ̂P ) ≥ σ2∑m−1

t=0 cos2

(
2π t

m
+ φP

) (3.31)

Equation (3.31) states that the variance of our phase estimator must be greater than a
value proportional to the variance of the Gaussian white noise σ2 and inversely propor-
tional to the number of samples m. Indeed, since cos2(x) ≤ 1, we have:

m−1∑
t=0

cos2(2π
t

m
+ φP ) ≤ m. (3.32)

This makes sense, as we expect to reduce the estimation error either by acquiring more
samples or by increasing the signal-to-noise ratio. With this new formulation, the value
of σ can be empirically estimated online with the acquisition of the sinusoids, just by
computing the observation errors with respect to our ideal projected pattern.
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Figure 3.5: Code estimation in the case n = 3 with one erroneous phase value. The
first two phases ϕ1, ϕ2 are slightly perturbed with a random zero-mean Normal noise
with σϕ = 0.01 rad. Error ε3 on the last phase value ranges from −0.5 to 0.5 (shown
in x-axis). The argmax of each phase triplet is computed and the code ξ∗ is plotted (in
y-axis). Note that the correct code is ξ = 50. Rightmost plot shows the magnified central
area of the other one. The red line identifies the correct code.

Even if we did not solved the problem completely, we experimentally observed that
the empirically estimated phase standard deviation is actually very close to the theoretical
lower-bound (3.31). Hence, by just using a value of σ̄ equal to the lower bound, we
almost always obtain satisfactory results.

3.5 Neighbourhood-Based Recovery

Maximum Likelihood Estimation allows a robust unwrapping, even with noisy acquisi-
tions. Nevertheless, if we have large errors, the maximum likelihood value could still not
correspond to the correct code. For this reason, in this section we propose a neighbourhood-
based technique that performs error detection and recovery based on local spatial infor-
mation. Error detection is a relevant issue in any application, since the identification of
wrong codes has a direct impact in the final reconstruction. Luckily, due to the multi-
phase design and the co-primality property of period lengths, wrong codes tend to fall
very far from the correct one. In other words, when observed phase values are incorrect,
they result in a code significantly far from the exact solution.

3.5.1 A Faulty Unwrapping Scenario

Suppose to observe three phases ϕ∗ = (ϕ∗1, ϕ
∗
2, ϕ

∗
3). By chance, the first two have a

small error, but ϕ∗3 is far from the correct ϕ̄3 (this typically happens when light conditions
changed during acquisition). Since periods are coprime, the likelihood function computed
only over ϕ∗1, ϕ

∗
2 will exhibit several well separated local maxima (similar to Fig.3.4, sec-

ond row), one of them corresponds to the correct code ξ̄, while the others are generated
from the signals ambiguity. When we add the observation ϕ∗3, the likelihood function
cannot exhibit any new local maxima (for its multiplicative nature) so the average sepa-
ration between those peaks is not reduced. Therefore, if the resulting global maximum is
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erroneous, this will be separated as well from the correct code ξ̄.

Figure 3.5 clarifies this concept. We simulated a small random error on ϕ1 and ϕ2 and
set an increasing phase error on ϕ3. The leftmost plot shows values of code ξ∗ (computed
as the maximum likelihood) as the error ε3 on the third phase changes. The rightmost
figure shows the behaviour around the correct value ξ = 50. An error in ϕ3 between
-0.06 and 0.06 results in a correct projector coordinate, with a precision of ±0.5 pixels,
but when the error exceeds a certain level we have a significant change of projector codes
in terms of spatial position. In this case, we jump from ξ∗ = 49.5 to ξ∗ = 5 when ε3 is
below -0.08 and the value closest to the correct code is ξ = 60, which is 10 pixels far
from the solution.

This feature allows a simple error detection because erroneous values are clear out-
liers when compared to a limited spatial neighbourhood. In the system we are going to
describe, if a code has not enough support from its neighbours, it is labelled as invalid.
When this happens, likelihood function can be exploited a second time to retrieve other
code candidates. In fact, if we consider the function peaks (thus not only the absolute
maximum), we collect a set of values which show a high likelihood of being the correct
code.

Figure 3.6 shows an example in a range of 50 pixels. Likelihood values are plotted
along each row using an intensity colour scale. Maximum values correspond to correct
codes most of the time, producing the peaks in the diagonal. Moreover, we can notice that
other peaks are aligned at about 10 pixels distance. When the maximum is not the correct
code, the second or third peak will lie on the diagonal; thus in case of an error, it is still
a valid candidate to recover the correct code. In the next section we propose a validation
system that exploits these properties to fix possible code errors.

Figure 3.6: Likelihood values (plotted as intensity values in a colour scale) over the code
space (x-axis) for each observed pixel (y-axis). Ideally, values lying on the diagonal
should correspond to maximum values in each row.
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3.5.2 Code Recovery by Exploiting Neighbouring Likelihoods

After acquisition, at each camera point (u, v) we collect a vector of phases ϕ∗(u, v) and
a likelihood function L(u,v)(ξ) is defined as in Equation 3.23. We then compute the first
K local maxima to obtain a set of code candidates with a high likelihood. Such set is
denoted as

C(u, v) = {ξ∗1 , ξ∗2 , ..., ξ∗K} (3.33)

For each camera pixel (u′, v′) we compute a score for each candidate by looking at
its neighbourhood values, then we select the candidate which obtained the highest score.
The score for each value ξ∗i ∈ C(u′, v′) with respect to its neighbourhood is computed in
the following way

V (ξ∗i , (u
′, v′)) =

∑
(u,v)

ω(u′ − u, v′ − v)S(ξ∗i , C(u, v)) (3.34)

where ω(u,v) : Z2 → R+ is a Gaussian kernel function with a standard deviation σω
weighting the points in the neighbourhood. The function S expresses the consensus of
code ξ∗i in the set C(u, v). In our implementation, it returns the normalized Likelihood
value of the code ξ′ ∈ C closest to candidate ξ∗i and below a certain threshold ε.

S(ξ∗i , C) =

{
0 if @ ξ′ ∈ C st |ξ∗i − ξ′| < ε
L(ξ′)
Lmax : ξ′ = min(ξ∗i , C) otherwise

(3.35)

Where min(ξ∗i , C) returns the point ξ′ ∈ C which minimizes the distance from ξ∗i to
any code in set C:

min(a, C) = argmin
c∈C

|a− c| (3.36)

We return likelihood value of the closest code among its neighbours because it is a
good indicator of the relative importance of a code with respect to other values in C. In
other words, the higher its likelihood is, the more we trust a neighbour. Since we can
not compare likelihood values coming from different points, we measure its relevance
dividing it by the maximum value. The value of ε is usually set to the minimum period
length. The final code at (u′, v′) is computed as the value ξ∗max, which maximizes function
V :

ξ∗max = argmax
ξ∗i ∈C(u′,v′)

V (ξ∗i , (u
′, v′)) (3.37)

that is the code which receives the higher support from its neighbourhood.
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3.6 Experimental Evaluation

To provide an exhaustive evaluation of the proposed unwrapping method, we performed
both synthetic and real-world experiments. In particular, synthetic experiments allowed
us to have a complete control over the parameters involved in the process, while real
experiments show the ability of the proposed method to obtain good results in a variety
of real-world applications. The experimental section is divided in three parts. First, we
focus on the parameter σ and on its impact on the final unwrapping correctness Second,
we analyse the potential of the proposed neighbourhood recovery and finally we com-
pare quantitatively and qualitatively our technique with respect to other state-of-the-art
approaches.

The real-world experiments were performed with a structured-light scanner developed
in our lab. The device is composed by a single MatrixVision BlueFox3 5Mpix camera and
an LG projector with a resolution of 1920× 1080 px. Camera and projector relative pose
was calibrated using the fiducial markers descried in [21]. We manually corrected the
projector gamma to obtain a camera signal response as linear as possible. Once calibrated,
the defined gamma settings remained unchanged throughout the experiments.
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Figure 3.7: Relation between the acquired signal distribution and standard deviation σ
(top row) with the theoretical lower-bound and the empirical phase standard deviation σ̄
(bottom row) for the three different chosen materials.
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3.6.1 Phase and Signal Standard Deviation

We performed a first set of experiments to assess the validity of our statistical noise model
on a real scene. We considered three different kinds of planar surfaces, namely: matte
white plastic, a brushed aluminium metal sheet and a dark coloured cardboard. The goal
is to compare the acquired signal standard deviation σ with the standard deviation of the
phase estimator σ̄i. To do that, we generated a pattern composed by a variable number of
samples m with a period equal to one. This way, each pixel P in a scene observed exactly
the same true phase φP = 0, allowing us to empirically estimate the standard deviation of
the phase error among pixels. Similarly, by knowing the phase, we computed the error of
acquired signal with respect to the projected ideal sinusoid. In this way we can test if our
zero-mean white Gaussian noise assumption is supported by experimental evidence.

In Figure 3.7 we show the results of this experiment for the three different materials.
On the top row we plotted the histogram of the error of raw acquired signal for a sinusoidal
pattern composed by m = 60 samples.

In all cases, the signal was analyzed by collecting the errors in a ROI of size 400×300
pixels selected to cover the central region of the projected area. We can see that the em-
pirical distributions follow quite well our supposed Gaussian model with a mean close to
zero. Especially for the cardboard material, we report a little positive bias that we guess is
caused by blooming effect. In fact, blooming clearly bias the acquired intensity by always
overshooting the actual value. Nevertheless, we think that the proposed assumptions are
fair enough to approximate the real behaviour of the phenomenon. For each material, we
computed the empirical standard deviation σ (from the m = 60 samples case) to compute
the lower-bound according to (3.31).

In the second row of Figure 3.7 we plotted both the lower-bound and the empirically
measured phase standard deviation varying the number of samples m for the three dif-
ferent materials. As expected, the empirical standard deviation of the estimated phase
is proportional with the standard deviation of the signal. In fact, the white matte plastic
exhibits a lower error due to its nearly Lambertian nature. Metal sheet is more noisy due
to small reflections and dark cardboard is the worst since the low albedo is heavily de-
creasing the signal-to-noise ratio. In all the cases the estimated phase standard deviation
is slightly above the theoretical lower bound computed from the signal. This validates
our claim that the given bound can be effectively used to give a good estimation of the
unknown σ̄.

3.6.2 Sigma Estimation

In our approach we model phase error as a zero-mean Gaussian distribution, and we char-
acterize such random noise with a standard deviation vector σ: the analysis of such pa-
rameter defines the starting point of the subsequent evaluation. Since error sources come
from real-world phenomena, the first group of tests have been designed to observe the
empirical noise distribution affecting actual phase measurements. In all the experiments
the acquired objects were located at about 1m away from the projector.
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Figure 3.8: Empirical validation of Gaussian noise assumption: in these acquisitions all
expected phases were equal to zero. Left: distributions of measured phase values for dif-
ferent materials (from left to right: matte plastic, cardboard and metal) and samples (1st
row 15 samples, 2nd row 65 samples). All histograms are centred at zero and clearly
exhibit a bell shape, that validates the Gaussian assumption on noise affecting phase
measurements. Right: quantile-quantile plot of observed phase values with respect to
a Normal distribution. The good fitting of our data with respect to the line means that the
Normal distribution is suitable for representing the phenomenon.

As in the previous tests, we generated a mono-phase pattern (setting λ = 1), i.e. a
sequence such that all acquired pixel will exhibit the same expected phase value, equal to
zero. This pattern of course has no utility for unwrapping, but since the phase is known
for all pixels, we used it in this preliminary study to empirically characterize the noise
affecting phase estimation. Since the acquired scene has a direct impact on the signal
to be processed, we analysed the response of different materials as we did before (white
matte plastic, dark cardboard and silver metal).

In the first experiment the signal was acquired for each material, then phase values
were computed over all camera pixels. Histograms on Figure 3.8 display the resulting
distributions of estimated phase values for each material in the case of 15 (first row) and
65 samples (second row). The number of samples directly affects phase accuracy: in fact
for a higher sampling rate each surface shows a tighter histogram, and consequently a
smaller standard deviation. As we expected, each material exhibits a different response
in terms of noise, but all histograms show a coherent behaviour: they are centred on zero
and clearly exhibit a bell shape, that suggest a Gaussian data distribution. Such hypothesis
is validated by the q-q plot shown in right side of Figure 3.8. In this graphical test the
quantile values from a Standard Normal Distribution are plotted against quantiles from
a sub-sample of our data. The resulting figure shows a good correspondence between
the two distributions, which supports our assumption that the error can be modelled as a
zero-mean Gaussian random variable.

The leftmost plot of Figure 3.9 shows, for each material, the standard deviation values
obtained increasing the number of samples (from 5 to 70). As we already discussed,
the standard deviation decreases as the number of samples raises. In particular, different
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Figure 3.9: Left: Standard deviation observed on phase values varying the number n of
pattern samples. Right: phase standard deviation measured with respect to average signal
intensity of acquired images. In both cases, three different materials had been tested.

materials exhibit different variability but they have the same behaviour when varying the
sample number. In detail, the matte white surface provides the best response, while a
darker or metallic object causes a more noisy signal.

Next, we exploited the same experimental setup to examine the relation of phase stan-
dard deviation with respect to the average signal intensity. In the second experiment we
projected the previous pattern with λ = 1 and m = 30. Then, for each acquisition, we
gradually changed the global illumination of the scene and recorded the average image
intensity (from 0 to 255). The rightmost plot of Figure 3.9 shows the standard deviation
values for each material plotted against the average signal intensity (note the logarithmic
scale in the y-axis). In correspondence of darker scenes (from 0 to 50) we notice an ini-
tial significant decreasing in the standard deviation for all the tested materials, then when
optimal conditions are passed (around 100 for matte plastic), a slight rising in the values
can be noticed. Of course the optimal light condition is determined by the scene features
and it should be adjusted depending on the material properties.

After assessing the plausibility of the Gaussian model, we now study the effect of
parameter σ on the phase map accuracy. To do so, we simulated a virtual projector and
generated three phase maps, with period lengths respectively of 11, 13 and 17 pixels. The
phase values were independently perturbed with a zero-mean additive Gaussian noise
(our theoretical noise model) characterized by a known standard deviation σ. Note that
we made no assumptions on the relation among the σi: each period can be characterized
by a different sigma. Tests were performed in the following way: first, we randomly
selected σ as a 3D vector inside a cube of size 0.1, and used it to perturb the ground truth
phase maps; then we generated another random vector σ∗ to be used as sigma estimation
in the Likelihood function. Finally, for each estimation test we computed the RMS (Root
Mean Square) of coding errors, in pixels.

The leftmost plot in Figure 3.10 shows the Euclidean distance between real and esti-
mated sigma vectors, that is |σ − σ∗|, against the final error RMS values in pixels (on
y-axis). In case of small estimation distances (from 0 to 0.03) the error ranges from 0.2
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Figure 3.10: Impact of different sigma estimations on the final RMS (in pixels). Left:
effect of distance |σ−σ∗| on the final coding error. Right: the same experiment, separat-
ing vector relative orientation (on x axis) and magnitude of estimated sigma vector (better
viewed in colour).

to 0.3 pixels, while as the distance increases the RMS of the coding error exhibits more
variability and reaches values up to 0.7 pixels. Many samples with high distance (not
shown in the figure) resulted in an error of several pixels and were considered outliers.
In the rightmost plot of Figure 3.10 we used the same data of the previous experiment
and separated the angle formed by σ and σ∗ (x-axis) from their magnitude difference
(y-axis); each point is coloured with the corresponding RMS value. The RMS values that
we obtained is essentially uniform along the vertical direction (that is the magnitude dif-
ference); and they grow proportionally with the relative angle between the vectors. This
result implies that, in terms of decoding accuracy, the relative angle between σ and its es-
timation σ∗ is more relevant than their distance. In other words, it is in general sufficient
to guess the correct proportion among the σi instead of their optimal values.

3.6.3 Comparisons on Synthetic Setup
In this section we present the set of experiments performed to compare the accuracy and
reconstruction capabilities of our technique with respect to other unwrapping methods.
We performed both synthetic and real-world tests: the former let us test the system ex-
cluding any uncontrolled factor to obtain a comparison that is as precise as possible, while
the latter allowed us to reveal the potential of the proposed method in challenging real-
world scenarios.

We decided to compare our method with a number-theoretical unwrapping approach
described in [125] and a classical Graycoding disambiguation. Spatial phase unwrapping
has not been considered for two main reasons: first, it allows the separate recovery of
connected surface areas and makes some assumptions about the geometry of the system
(large discontinuities are not supported); this limitations restrict a lot our target, that is
more general-purpose. Second, it employs only one phase map: this means that the mea-
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Figure 3.11: Comparison of Probabilistic approach with respect to number theoretical
method [125] (1st row) and Graycoding disambiguation technique combined with just the
first phase pattern (2nd row). Left: coding RMS is plotted (on y-axis) against increasing
phase error σ. Right: percentage of outlier codes over all decoded points (on y-axis)
varying phase error σ. A code was classified as outlier if its distance from the correct
code is greater than half the shortest period length.

surements errors on such values have a direct impact on the final reconstruction, despite
a (hopefully) optimal quality map. Indeed, the precision offered by a single phase map
can not be further improved, even with a perfect disambiguation technique. This draw-
back also holds for all approaches based on a single phase map, like the minimum phase
method [12] or Graycoding. For this reason, we can group all these methods under a
general ”Graycoding approach” that offers a good fringe disambiguation, using just one
phase measurement.

The synthetic setup emulates the real conditions that we observed in the previous
section: we generated three sinusoidal patterns of length 17, 23, 27 and simulated a 1080p
projector. Note that in these experiments we did not apply the neighbour-based recovery,
but simply choose the code which exhibit the higher likelihood value.

The first row of Figure 3.11 shows the code error RMS (left) and codes outlier percent-
age (right) for both number-theoretical approach and our probabilistic method (displayed
as two separate curves). The experiment was performed by generating a phase map for
each period length, perturbed according to a Gaussian random noise with increasing sigma
values (from 0.01 to 0.08, on x-axis). Then, both unwrapping methods have been applied
on the same data and the coding RMS and outliers percentage were computed. The out-
lier percentage was computed considering as outliers all the codes such that their distance
from the correct code was greater than half of the minimum period length; in the plots
the ratio between the number of outliers and the total number of codes is displayed. Such
process has been repeated 10 times, and the errorbars denote clearly that the number-
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Figure 3.12: Projector delay recovery: percentage of correctly estimated shifts (inliers)
against the acquired noise standard deviation.

theoretical approach was in general more unstable with respect to our proposed method.
Moreover, probabilistic technique exhibits a linear behaviour as σ (i.e. the amount of
noise) increases, offering more stable results. In terms of outlier percentage, probabilis-
tic approach offers almost 100% of correct codes when σ is smaller than 0.03 rad, while
number-theoretical method exhibits a small outlier percentage (up to 20%) at the same
low noise levels. In case of high noise level, probabilistic approach recovered almost
60% of codes, while number-theoretical provides only 20% of them. In the second row of
Figure 3.11 we used only the first phase map from the previous tests and performed fringe
disambiguation through Graycoding to compute projector codes, then we computed code
error RMS and outlier percentage. Graycoding method offers a good disambiguation, but
the recovered codes are less accurate because they are subject to the measurements of a
single phase map, while our technique and number-theoretical exploit multiple phases to
disambiguate and recover the correct code. In the case of Graycoding, outlier percentage
never exceed 10% even at high noise levels: this was expected because the error can not
be greater than a period length. Despite this, such inlier ratio can not be accepted because
the coding precision is extremely inaccurate if compared with probabilistic or number-
theoretical approaches. Moreover, we considered an infallible fringe disambiguation: in
real-world scenarios a disambiguation signal could lead to more outliers, especially along
the code discontinuities.

3.6.4 Projector Delay Recovery
One of the key strengths of our method is the resilience against noisy phase estimations.
To demonstrate that, we tested the approach with the challenging task of recovery the
correct code even if the projector and camera are not synchronized.

This can be useful in practice because ensuring a proper synchronization of the camera
frames with the projected patterns usually requires a custom electronics that increases the
cost and complexity of the scanner.

For simplicity, we assumed that the exposure time of the camera is far lower than the
display time of each projected pattern. This way, all the acquired samples z(t) are affected
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by a fixed unknown integer shift but the camera never acquires in-between two projector
frames.

We generated a synthetic 3-periods signal composed by m = 60 samples (as in previ-
ous experiments) perturbed with a variable zero-mean noise with variance σ2. Then, we
shifted all the patterns by a random shift 0 ≤ k ≤ m. Afterwards, we run our method for
each possible circular shift k of the signal collecting, for each pixel, the value of the max-
imum likelihood obtained. Pixel wise, we compared all the maximum likelihood values
to select the shift corresponding to the higher one. The result is that each pixel votes for
the shift producing the higher maximum likelihood of the codes.

Since the data was synthetically generated, we marked as inliers all the pixels that
actually voted for the correct shift and plotted the inlier percentage against the noise in
Fig.3.12.

The experiment shows an inlier percentage greater than 50% (sufficient to correctly
recover the unknown shift) for input signal noise std. up to 0.45, which is more than 5
times the noise levels we measured for all the three different materials in Fig.3.7. There-
fore, we are confident that in the vast majority of real world cases the synchronization
may be avoided with no severe consequence on the unwrapping result.

3.6.5 Neighbourhood-Based Recovery
In this section we evaluate the performances of the proposed neighbourhood-based fault
recovery. To this end, we run some synthetic tests to assess the feasibility of this approach
and its sensitivity to the parameters. We employed the setup from the previous section
and simulated the acquisition of a planar surface. In Figure 3.13, the first 50 pixel values
are plotted against their corresponding codes: probabilistic (left) and number-theoretical
(right) unwrapping are displayed. Since we are observing a plane, we expect all the codes
to increase linearly with the camera pixel (this gives us the ”ground truth” to compare
with). In the case of probabilistic approach we found that outliers are actually (i) far from

Figure 3.13: Code recovery comparison. Left: codes computed with our probabilistic
method choosing maximum likelihood values. Right: codes computed from the same
phase images using a number-theoretical approach for disambiguation.



48 3. Robust Phase Unwrapping by Probabilistic Consensus

Figure 3.14: Left: ratio of correctly recovered points wrt the number of peaks extracted
from the likelihood function. Other figures show the same ratio combining number of
peaks K and different window size.

the correct value (ie. far from the diagonal) and (ii) sparse, showing the characteristics of
salt and pepper noise. Those conditions fits perfectly our approach since the sparsity of
the faulty unwrappings suggests the usage of the neighbourhoods and the severity of the
code error allows a simple identification of the outliers. Indeed, the outlier neighbours
have been often correctly unwrapped, so the neighbourhood values could be useful in the
recovery of the correct code.

We analysed the recovery behaviour varyingK and σω, which respectively control the
number of likelihood peaks for each code and the relevance of the involved neighbours.
To this end, we designed a first experiment to verify the presence of the correct code
among the first K likelihood peaks in each observed point. We simulated n = 3 phase
patterns of lengths λ = 17, 23, 27 and we computed the percentage of correct codes within
the first K peaks for different noise levels (phase errors σ = 0.04, 0.06, 0.08). Results are
shown in leftmost plot of Figure 3.14: the case K = 1 corresponds to the approach of
previous section (without neighbourhood recovery) that is taking the code associated to
the maximum likelihood value. In the case of a low noise level, K = 2 is sufficient
to collect 90% of correct codes, while at higher noise levels 3 or 4 peaks are enough to
include the exact code in the set of candidates. This test shows that, in case of errors,
we can still exploit the likelihood values to recover the correct code exploiting a small
number of the function’s peaks as candidates.

In the second experiment we evaluated the recovery ability of the voting technique
described in Section 3.5. In particular, we varied the parameters K and σω to compute
the percentage of correctly recovered points for each combination. The intensity images
in Figure 3.14 display the results: each plot is characterized by a different noise level
(from left to right 0.04, 0.06 and 0.08) and covers several values for K (x-axis) and σω
(y-axis); the colour scale denotes the percentage of recovered codes. We already observed
that, in a low noise configuration, two peaks are enough to find the correct code among
the candidates. Indeed, the leftmost image (σ = 0.04) shows that K is irrelevant and the
results are better involving less pixels in the voting window. In all tests, the percentage of
recovered values results always above 90%. In the other two plots we have higher noise
conditions, but in both cases the percentage decreases for σω > 3. In general, we have
good results with small values of σω and 4 or 5 peaks, depending on the magnitude of
noise.
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Figure 3.15: Code RMS (left) and outlier percentage (right) for points recovered through
the proposed neighbourhood-based technique.

Finally, we measured error RMS and outlier percentage on recovered codes. This
experiment can be compared with Figure 3.11, in which we showed the performances of
our approach in the same setting but without neighbourhood recovery.

Following the results of the previous parameter analysis, we chose K = 4 and σω = 3
and run our code recovery method 10 times for different values of σ. Results are shown in
Figure 3.15. The RMS error of the recovered codes (left plot) is in general lower than the
curve obtained by applying our method without neighbourhood recovery: this proves that
the recovered codes are indeed correct. Similarly, the right plot shows a strong reduction
in the number of outliers, in particular for noise level below 0.07 radians. Overall, the
test suggests that the neighbourhood recovery greatly improves the number of correctly
decoded points, resulting in a denser triangulated surface.

3.6.6 Qualitative Evaluation

In the following experiments we tested the reconstruction ability of the proposed method
on some real-world acquisitions. In particular, we decided to compare the quality of coded
images and reconstructions quality with other techniques. The employed setup was the
same used in the previous section: we projected 20 samples of three sinusoidal patterns
with lengths 17, 21 and 31 pixels.

In the first experiment we focused on an ideal Lambertian object to compare acquired
coded images in a scenario subject to low noise conditions. We scanned a white chalk
low relief (Fig. 3.16, top-left) and computed projector codes using our method, number-
theoretical approach and Graycoding disambiguation. The unwrapped values computed
by our method are shown in Figure 3.16 on bottom-left corner. The bottom-right plot of
Figure 3.16 displays the code values for all three methods which have been sampled along
the segment displayed as a thick black line in the corresponding coded image (bottom-
left). Graycoding results are in general more noisy with respect to the others (especially
along code discontinuities) because it exploits only the first phase image to locate the
fractional part of codes. Values resulting from number theoretical and probabilistic ap-
proaches are similar but the proposed method appears more stable and exhibits no dis-
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Figure 3.16: First row: the scanned object and the three acquired phase maps (period
length 17, 21 and 33). Second row: computed projector codes using our method, the
black segment denotes the selected codes plotted on the right as example. The rightmost
plot shows the code values from the three techniques (probabilistic, number theoretical
and Graycoding using just the first phase image). Graycoding results are in general more
noisy and number theoretical exhibits some discontinuities due to algorithm failures.

continuities (ie. no coding errors). The missing values from the number theoretical un-
wrapping are mostly due to a noisy estimation of phases that leads the method to fail,
given its discrete nature based on look up tables. This frequently happens in some areas
where the signal acquisition is made difficult by particular surface responses or scarce
illumination. The effects on the final 3D reconstruction are visible in Figure 3.18 (first
row), showing the final triangulated meshes acquired during this experiment using the
number-theoretical (left) and our technique (right).

In the second test we scanned a silvery metal sink (Fig.3.17, top-left), a particularly
challenging object for the reflective nature of the surface and the concavity of the shape.
We have chosen this kind of item to stress the methods in case of high noise levels,
that involves a higher phase standard deviation and thus the presence of several outliers.
Figure 3.17 (first-row) shows the obtained 3D reconstructions for probabilistic, number-
theoretical and Graycoding methods respectively. The reconstructions clearly show that
the proposed technique allows for the computation of a larger number of correctly un-
wrapped phases with respect to other techniques. This results in a denser triangulated
mesh with lower error. The profile plots shown in the second row (corresponding to
the red line superimposed in the 3D rendering) confirms the higher quality the acquired
surface. Finally, Figure 3.18 qualitatively shows that the proposed unwrapping method
offers a better reconstruction even in problematic regions where the signal is affected by
shadows and inter-reflections caused by surface geometry.
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Figure 3.17: First row: picture of the scanned object and the 3D range-maps obtained
applying respectively (from left to right): proposed, number-theoretical and Graycoding.
Second row: one of the three phase maps used for Graycoding and the cross sections of
3D data obtained by slicing the scene in correspondence of the red line.

Figure 3.18: Qualitative comparisons of reconstructed scenes. Left: number theoreti-
cal approach, right: proposed probabilistic technique. We display two simple objects
acquired using three fringe patterns of different period lengths. Our technique offers a
better reconstruction even in simple scenarios, especially in areas where the signal results
noisy due to the surface geometrical characteristics.
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3.7 Conclusions
In this Chapter we presented a robust technique for accurate code recovery and phase
unwrapping for multi-phase structured-light scanning. Specifically, we proposed a prob-
abilistic approach in which we model the phases as samples from a Wrapped Normal dis-
tribution with a given variance and unknown mean. This modelling allows us to recover
the projector codes in terms of a Maximum Likelihood Estimation of each distribution
mean. We also exploit the Cramér-Rao bound to derive a lower-bound for the phase es-
timator variance according to the variance of acquired signal. This way, the estimation
of the vector σ̄ (the only parameter required by our method) can be efficiently computed
on-line with the acquisition of the sinusoidal patterns. Additionally, our method exploits
likelihood functions and spatial neighbourhood consensus to further detect coding errors
and eventually recompute the correct value.

We performed multiple experiments to assess accuracy and robustness of the method.
Both in synthetic and real-world scenarios, our approach outperformed similar unwrap-
ping methods based on combinations of multiple sinusoidal signals, without requiring
specific patterns to disambiguate among fringes (like the common Graycoding technique).
From the the experiments, we observed how the empirically estimated phase variance is
close to the theoretical lower-bound, suggesting that we can effectively use that value for
the subsequent code recovery. In particular, when compared with a number theoretical
algorithm, our technique offers a more accurate code recovery and a smaller outlier per-
centage, at a price of a slower unwrapping compared with similar methods. One possible
limitation of our method with respect to a number theoretical approach is the algorithm
execution time: while other approaches rely on pre-computed values, our technique needs
to compute (for each acquired pixel independently) the likelihood values in all integer pro-
jector codes, that is the product of three functions evaluated in that point. This could be
a limitation in scenarios where a faster execution is preferred over an accurate phase un-
wrapping. The estimation of a suitable value for σ (that is the only parameter required
by the unwrapping algorithm) is a relevant task, even if we show that our approach is
not particularly sensitive to the given prior on the phase variances. Experimental results
show that the phase standard deviation directly depends on the sampling value and on the
acquired scene; in fact, a good variance estimator can be easily recovered empirically or
through a calibration step performed at the beginning of an acquisition session.



4
Adaptive Albedo Compensation for

Accurate Phase-Shift Coding

Phase shift coding technique are considered to be the most adaptive with respect to the
features of the objects to be captured. The theoretical invariance to signal strength and
the absence of discontinuities in intensity make this approach an ideal candidate to deal
with complex surfaces of unknown geometry, color and texture. However, in practical
scenarios, unexpected artifacts could still result due to the characteristics of real cameras.
This is the case, for instance, with high contrast areas resulting from abrupt changes in the
albedo of the captured objects. In fact, the not negligible size of pixels and the presence
of blur can produce a mix of signal integration from adjacent areas with different albedo.
This, in turn, would result in a bias in the phase recovery and, consequentially, in an
inaccurate 3D reconstruction of the surface. While this problem affects most structure
light methods, little effort has been put in addressing it. With this Chapter we propose a
model for the phase corruption and a theoretically sound correction step to be adopted to
compensate the bias. The practical effectiveness of our approach is well demonstrated by
a complete set of experimental evaluations.
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Figure 4.1: Effect of the phase offset induced by abrupt changes on the albedo of object
texture. See the text for details.

4.1 Introduction

Phase shift coding works by projecting a sinusoidal pattern whose initial phase is progres-
sively shifted between sequential frames. By convolving the observations over time [201],
each image pixel x is assigned to its initial phase ϕ(x). Given the periodic nature of the
signal, ϕ(x) is expected to repeat throughout the scene. This ambiguity problem is re-
solved by means of an additional phase unwrapping step [125] which reliably translate
ϕ(x) to a unique projector coordinate φ(x), corresponding to the (possibly fractional)
column of the projector frustum (i.e. the plane of a virtual laser stripe).

One of the best features of phase shift is that, as long as the projected signal is a proper
sine wave [227], the recovery of φ(x) is not affected by the albedo of the surface, since
the convolution is inherently invariant with respect to scale. Unfortunately, this invariance
holds only if the albedo is uniform within the integration surface of each pixel, which in
turn depends both on pixel size and focus. It is well-known that if the camera pixel falls
between two surface portion with very different reflectance (i.e. high contrast areas) the
recovered codes will suffer from a displacement error due to the uneven signal integration.

This undesired phenomenon is well exemplified in Figure 4.1, where the case of the
reconstruction of a planar checkerboard is shown. The fringe pattern is projected along
the horizontal direction and thus the recovered codes, shown in the top-right subfigure,
grow from left to right. The effect of the abrupt albedo change corresponding to the
edge of the checks is not easy to spot in the figure. Indeed its just a fraction of projector
pixel. Nevertheless, when such biased estimate is used to reconstruct the 3D surface,
the triangulation step amplifies its impact. This can be observed in the bottom-left and
bottom-right parts of the figure, where we show respectively the depth map and a shaded
perspective view of the reconstructed surface. From this representations the effect of the
bias is much more apparent and it can be observed that it results in an overestimation or
underestimation of the code depending on the change being from dark to light colour or
vice versa.
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Figure 4.2: Details about the code recovery bias due to contrast changes along the signal
direction (see the text for details).

In Figure 4.2 we analyse this behaviour with more detail by highlighting four separate
slicing of the reconstructed mesh. From such slicing we can see that the passage from a
white to a black check (blue stretch) results in a slight underestimation of the code, and
thus to an excessive depth in the reconstructed surface. The opposite happens when the
transition is from dark to light albedo (green stretch). This effect, however, can be noticed
only when the albedo gradient is aligned with the fringe direction. In fact, in this cases,
the only visible artifact is the slightly larger noise exhibited by the surfaces reconstructed
over black checks. This is indeed expected and it is due just to the smaller range of the
signal in dark areas.

While a moderate amount of effort have been devoted to the modulation of an accurate
sine signal [190], its compensation with respect to distortion due to non-uniform albedo
is a much less covered research topic.

To our knowledge, this topic has been recently addressed by a couple of research
groups. Zhong and Burke [32] propose a very simple model for the phase error gen-
eration and correction. They consider high-to-low and low-to-high transitions in 2x2
pixels windows. Once such transitions are detected, the magnitude difference in albedo
is estimated and corrected during the phase computation step. Differently, Xiaochang
et. al [224] propose to address the problem by working directly on the recovered phases
rather than on the image intensities. Their method first detects the high contrast areas by
means of a Sobel operator and then suppresses the artifacts through linear interpolation of
the surrounding phases, which are supposed to be recovered over areas of uniform albedo.

Novel Contribution
In this chapter we present a novel correction approach that is quite different with respect
to the current literature. We propose to model the code bias produced by contrast changes
as a convolution occurring between the surface albedo and the code values that should
have been observed without errors. Then, a correction factor can be applied directly to
the computed values by simply inverting the convolution formula. The resulting technique
is very simple to implement, yet it exhibits a solid performance, as assessed through an
in depth experimental session involving both synthetically generated data and real scans.
The technique presented in this Chapter has been published in [164].
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Figure 4.3: Principle underlying the integration error through high-contrast edges (the
ratio between pixel size and fringe length is exaggerated for illustration purposes. In
practice pixel size are a very small fraction of fringe length).

4.2 Albedo-Induced Phase Recovery Errors
Pixels in real-word camera do not perform punctual sampling of the observed objects.
Rather they operate an integration over both the time of exposure and the finite surface
area from which they gather reflected photons. The extent of the captured area is deter-
mined by two factors. The first one is the relation between optics geometry and pixel size
on the sensor. The second factor is the blur due to the non pinhole behaviour of optics.
In Figure 4.3 we illustrate the consequences of a non punctual integration over signal
fringes. If the integration happens within regions of uniform albedo, its finite extent in
space has little influence. This is mainly because, during the phase shift steps, all the
phase displacements are presented within the integration area an the symmetric nature of
the signal compensates any bias, for reasonable sizes of the window. Differently, when
the albedo changes within the integration window this symmetry breaks and a bias is in-
troduced. Since no information is available at sub-pixel level, we propose to model this
effect with a discrete approximation computed over neighbour pixels:

φ̂(x) =

∑
h∈Ω

I(x+ h)φ(x+ h)W (h)∑
h∈Ω

I(x+ h)W (h)
(4.1)

where φ̂(x) is the observed code, x is a 2D vector of pixel coordinates, h ∈ Ω is a
displacement vector, W is a weight function, I(x) and φ(x) are respectively the albedo
and the correct code that should be assigned to pixel x.

In detail,W is a symmetric radial weight function and we are assuming that
∑
h∈Ω

W (h) =

1. Ω ⊂ Z2 represents a symmetric convolution window which depends on the camera
characteristics. As an example, if if the integration happens over a 3× 3 window, Ω is:

Ω =


(−1,−1), (0,−1), (1,−1),
(−1, 0), (0, 0), (1, 0),
(−1, 1), (0, 1), (1, 1)

 (4.2)
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We should clearly point that our model makes an important assumption. Basically,
we are deeming the convolution of the phase and of the signal to be equivalent. This is
not true in general, still it could be a good approximation for integration intervals small
enough to consider both linear.

While these assumption seems sound approximations at first glance, they must at least
be checked experimentally to verify the practical effectiveness of the proposed approach.
In order to perform such evaluation we must introduce a proper compensation strategy.

4.3 Adaptive Albedo Compensation

We formulate our compensation strategy by considering the following approximation of
the real albedo I and phase φ in a neighbourhood of a point x given by the first order
Taylor expansion:

I(x+ h) = Î(x) +∇Î(x)Th (4.3)

φ(x+ h) = φ(x) +∇φ̂(x)Th (4.4)

In practical terms, we approximate the real albedo as a linear combination of the ob-
served albedo and its gradient. Similarly, we linearly approximate the phase with the
gradient of the observed phase. Both are motivated by the fact that we expect the convo-
lution modelled in eq.4.1 to have a major impact on the phase φ(x) more than the phase
gradient or the albedo. The former because it is a differential quantity affected by a sim-
metric integration window. The latter because the albedo can be obtained without the
projector and thus do not suffer from the integration of different fringes.

Using these approximations, eq. 4.1 can be rewritten as:

φ̂(x) =

∑
h∈Ω

(
Î(x) +∇Î(x)Th

)(
φ(x) +∇φ̂(x)Th

)
W (h)∑

h∈Ω

Î(x)W (h) +
∑
h∈Ω

∇Î(x)ThW (h)
(4.5)

From this formulation, with a few algebraic passages, we can make φ(x) explicit:

φ̂(x)
∑
h∈Ω

Î(x)W (h) + φ̂(x)
∑
h∈Ω

∇Î(x)ThW (h) =∑
h∈Ω

Î(x)φ(x)W (h) +
∑
h∈Ω

Î(x)∇φ̂(x)ThW (h)+∑
h∈Ω

∇Î(x)Thφ(x)W (h) +
∑
h∈Ω

hT∇Î(x)∇φ̂(x)ThW (h)
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φ(x)

(∑
h∈Ω

Î(x)W (h) +
∑
h∈Ω

∇Î(x)ThW (h)

)
=

φ̂(x)

(∑
h∈Ω

Î(x)W (h) +
∑
h∈Ω

∇Î(x)ThW (h)

)
−∑

h∈Ω

Î(x)∇φ̂(x)ThW (h)−
∑
h∈Ω

hT∇Î(x)∇φ̂(x)ThW (h)

φ(x) = φ̂(x)−

∑
h∈Ω

Î(x)∇φ̂(x)ThW (h) +
∑
h∈Ω

hT∇Î(x)∇φ̂(x)ThW (h)∑
h∈Ω

Î(x)W (h) +
∑
h∈Ω

∇Î(x)ThW (h)

φ(x) = φ̂(x)−
Î(x)∇φ̂(x)T

∑
h∈Ω

hW (h) +∇Î(x)T∇φ̂(x)
∑
h∈Ω

hThW (h)

Î(x)
∑
h∈Ω

W (h) +∇Î(x)T
∑
h∈Ω

hW (h)

Since both the window Ω and the weight function W are symmetric we have that∑
h∈Ω hW (h) = 0.
Moreover, we have that

∑
h∈Ω W (h) = 1, thus:

φ(x) = φ̂(x)−
∇Î(x)T∇φ̂(x)

∑
h∈Ω

hThW (h)

Î(x)
(4.6)

φ(x) = φ̂(x)− k∇Î(x)T∇φ̂(x)

Î(x)
(4.7)

Where k =
∑
h∈Ω h

ThW (h), is a parameter depending on Ω and W which, in turn,
depend on the overall sum of physical characteristics of the imaging process, including
the pixel size and the optics geometry.

Before proceeding with the experimental evaluation of the proposed compensation
(4.7), we would like to discuss two of its aspects in detail.

The first observation is about the parameter k: since this value is bound to the physical
aspects of the capturing process, it should be calibrated for any given structured light
scanner. In the following section we will suggest a practical method to perform this task.
It should also be noted that the assumption made about the energy conservation in the
weight function (i.e.

∑
h∈Ω W (h) = 1) is not really needed since this value could be

embedded in the multiplicative constant k as a result of calibration.
Second, if we go back to qualitative example of the phenomenon, shown in Figure 4.2,

we can verify the consistency of (4.7) with respect to the observed artifacts. In particular,
we notice that the compensation magnitude is monotonically increasing with respect to
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Figure 4.4: Example of code bias correction before and after calibrating k.

the dot product between the albedo gradient and the code gradient. This makes sense, as
the artifacts in Figure 4.2 are strong when the abrupt change in texture intensity is aligned
with the fringe orientation, while negligible bias can be observed when they are orthog-
onal. Moreover, also the sign of the bias is modeled correctly, since (4.7) is providing a
negative compensation when the albedo gradient grows with the fringe direction and vice
versa.

4.4 Calibration
Calibrating the right value of k for a given (real or synthetic) scanning system is in general
quite straightforward. In practice, the only required condition is to knwon in advance
the expected phases φ(x) for a stretch of image pixels and then to find the value of k
minimizing the RMS error with respect to the observed phases φ̂(x).

We solve the ground-truth problem by using as a calibration object a perfectly planar
checkerboard with bright and dark checks. We select two pixels on a horizontal line
(u1, v) and (u2, v), located respectively in two dark and bright adjacent checks. According
to our model, we assume that for the pixels inside areas with uniform albedo there is no
bias, thus φ(u1, v) = φ̂(u1, v) and φ(u2, v) = φ̂(u2, v). Since the calibration object
is planar and the projector code is linear, the expected ground-truth can be obtained by
linear interpolation:

φ(u, v) = φ̂(u1, v) + (u− u1)
φ̂(u2, v)− φ̂(u1, v)

u2 − u1

(4.8)

Using eq. (4.8) we can define the following set of equations:

φ(i, v)− φ̂(i, v) = k
∇Î(i, v)T∇φ̂(i, v)

Î(i, v)
u1 ≤ i ≤ u2 (4.9)

By solving system (5.2) using least squares, a good estimate for k can be easily re-
covered. Note that, since the estimation of φ(u1, v) and φ(u2, v) is still subject to noise,
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Figure 4.5: Behaviour of the parameter k for different levels of blur and different base
phase periods.
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Figure 4.6: Actual impact of the bias without correction (left) and after the compensation
has been applied (right) with increasing blur levels on a synthetic setup.

we suggest to build the system to be optimized by combining different pixel stretches in
different parts of the image. Moreover, we assume that the observed image albedo is al-
ways greater than zero. This is not a limiting factor since zero albedo means no projector
signal and hence no projetor code to correct.

In Figure 4.4 we show and example of the calibration process, including the estimated
ground-truth (black line), the observed codes before correction (red line) and the resulting
corrected codes.

4.5 Experimental Results
The validation of the proposed albedo compensation method has been performed on both
synthetically generated data and real scans. For all the experiments we adopted the phase
recovery and unwrapping method described in [125]. The calibration of k has always
been performed using a checkerboard target and 20 stretches of 30 pixels each to create
the system (5.2) with 600 equations. The compensation has been performed by applying
equation (4.7) to all the pixels of the recovered image, in fact one of the advantages of our
approach with respect to others is that it does not require any step to isolate high-contrast
areas to be corrected.
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Figure 4.7: Experiments performed with a real scan system on a planar checkerboard.
On the left the estimated value of k and on the right the RMS of the 3d reconstruction.
Both experiments have been performed at different blur levels achieved by decreasing the
distance of the acquired surface.

4.5.1 Synthetical Evaluation

The goal of this first batch of experiments is to demonstrate some properties of the method
in a controlled simulated environment. Specifically, we created a test scene made up of a
combination of 3D objects textured with high contrast checkerboard patterns. Note that
there is no loss of generality introduced by choosing a checkerboard pattern, since the
interaction between the texture and the object surfaces will still result in a wide range
of different combinations of viewing conditions. We simulated the scanning process by
projecting the sine wave patterns using ray tracing. The resolution of the virtual projector
and of the virtual camera, and their relative position, have been chosen so that the size of
projector pixels is about the same of camera pixels (which is the typical condition with
real scanners). To simulate the effects of both non punctual integration and defocus we
applied an artificial blur by means of a convolution performed with a Gaussian kernel
with varying standard deviation σ.

The first experiment that we performed is designed to study the behaviour of param-
eter k with respect to changes in blur and in the signal. Specifically we varied the blur
strength σ in a range from 0 to 5, and we adopted 3 different base period length, respec-
tively of 10, 20 and 30 pixels of the virtual projector. The resulting plot is shown in Figure
4.5. As a general observation, k is growing with the amount of blur, which is of course
expected. With medium levels of blur k seems to be independent from the length of the
period of the scanning signal. This independence actually breaks for higher levels of de-
focus. It must be noticed that this happens when the standard deviation of the blur become
comparable with the period length. In fact the short periods require stronger correction.
This could be partially justified by the observation that, under those conditions, the lin-
earity assumptions we made break. However, in practice, blurs above 2 or 3 pixels are
symptoms of severe image defocusing and should not happen with a properly designed
setup.

The second experiment is about assessing the compensation ability of the method and
its breaking point. To this end, we computed the RMS error on phase recovery again for
different blur levels, adopting for each one of these levels the optimal calibrated value of
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k. Since most pixels are not edges, we computed the RMS only on the pixels with high
response to a Sobel operator. The results are shown in Figure 4.6. In the left part of the
figure we plot the error in phase recovery without any correction. As expected it grows
with the blur level and the short periods are affected the most. In the right part we show
how the phase error get compensated by our method. The compensation is very effective
even with the shortest period, with close to negligible phase errors (notice that the two
plots have a different scale). By using the most suitable value for k the correction works
up to several pixels of blur radius, with the exception of the shortest period which breaks
earlier than the other two.

4.5.2 Evaluation on Real Scans

Since we are proposing a method to be adopted in actual products, our evaluation would
not be complete without studying how well the compensation works with real-world scan-
ners.

This second batch of experiments has been performed using a camera-projector scan-
ner featuring a 3Mpixels CCD monochromatic camera and a 1080p digital projector. The
camera optics have been configurated to match the projector frustum, thus providing sim-
ilar pixel sizes between them. The baseline between camera and projector is about 10cm.
The camera intrinsics have been calibrated using [24] and refined with [19] and the ex-
trinsics using markers [18, 22].

Since it is not so easy to obtain a ground-thruth from real-world objects we performed
our experiments by scanning a planar checkerboard and, subsequently, by fitting a plane
on the points triangulated by the scanner. The effectiveness of the compensation is mea-
sured by means of RMS error of triangulated points with respect to the fitted plane. This
is of course an indirect measurement, but, at the end of the day, it is almost directly related
to phase recovery errors and it is a critical parameter for evaluating the accuracy of scan-
ners. Since most of the points are not on edges (and thus unaffected by contrast changes)
we computed the RMS error on the 10% of points corresponding to the highest albedo
gradient magnitude. Finally, given that the camera optics are fixed, in order to simulate
the blur due to different setup we exaggerated the iris aperture (to obtain a shallow depth
of field) and changed the distance of the target.

The results of this experiment are shown in Figure 4.7. Regarding the relation between
k and blur, we can observe that it still changes monotonically with it. The curve trend is a
bit different from the one obtained with synthetically experiments, but this can be justified
by the complexity of the actual focusing process in real lens. The dependence on period
length seems to be negligible (albeit here our choice of period length was constrained by
the scanning software). The performance of compensation is plotted on the right part of
Figure 4.7. It can be observed a noticeable increase in accuracy, regardless of the distance,
and thus of the blur level.
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Figure 4.8: Comparisons of the results achieved by our method with those obtained us-
ing [224]. The two plots on the left show the RMS of two reconstructed surfaces with
increasing texture intensities. The qualitative examples on the right show the applied
mask and three reconstructions of the same surface, respectively (from left to right) with
no correction, compensated using [224] and corrected by our method.

4.5.3 Comparisons and Qualitative Examples

Our last experiment is about rating the effectiveness of our method when dealing with
complex physical objects and to compare it with an alternative approach. As for the other
experiments one of the main concerns is how to obtain a reasonable ground-truth. To this
end, we modified the projector software to multiply the original sine wave patterns with
a white and gray checkerboard template. This way, the signal is superimposed on a high-
contrast mask, resulting in an effective simulation of a varying albedo on the observed
shape. Indeed, from the point of view of the camera, there is no way to distinguish changes
in albedo due to a natural texture and to our multiplicative pre-processing. Finally, we
ruled out any influence of natural textures by using only objects made of white plaster
with various shapes and sizes.

In our tests, we first performed a full reconstruction without applying any mask, with
the aim of obtaining the best possible estimate of the real surface. Then we measured
the RMS error on points with albedo gradient magnitude greater than 0.5. The idea is to
increase the contrast of the object texture under a controller environment.

As discussed in the introduction, albedo compensation is a surprisingly little covered
topic in literature. Among the few methods addressing this problem we decided to com-
pare with the one proposed by Xu, Wang and Liu [224]. This choice is mainly due to the
fact that, like our approach, it works directly in the code space, making the comparison
fair.

The results of this test are shown in Figure 4.8 by means of both an error plot con-
ceptually similar to the one presented in Figure 4.7, and of a few qualitative examples.
The texture intensity express the modulation applied to the signal inside the gray blocks,
ranging from 0.9 to 0.45.

The upper plot shows the results obtained on a plaster cube, which is a simpler object
made of flat surfaces. The lower one covers the more complex winged lion figurine for
which we also show the renderings of the reconstructed surface obtained for each one of
the tested approaches.
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4.6 Conclusions
With this chapter we described a simple yet very effective method to compensate the bias
suffered by phase shift techniques when dealing with surface of non-uniform albedo. The
method has several advantages: it is based on a sound modelling of the code corruption
phenomenon that has been verified through an in-depth experimental analysis. Differently
from other methods, it does not require a preliminary time-consuming step to detect high
contrast areas in the captured scene, so it can be applied blindly to the whole image
during acquisition. Moreover, it depends on a single parameter k, which has been shown
to be easy to calibrate for a given scanning system and can also be performed during
the structured-light system calibration. Finally, the proposed compensation is very easy
to implement and its computation complexity is linear with the number of pixels to be
processed, making the correction immediate.



5
Neighborhood-Based Recovery of

Phase Unwrapping Faults

Several unwrapping methods exploit additional signals of mutually prime periods, in or-
der to observe a distinct combination of phases for each spatial point. Unfortunately, for
such combination to be properly recognized, a very high accuracy in phase recovery must
be attained for each signal. In fact, even modest errors could lead to unwrapping faults,
making the overall approach much less resilient to noise than plain phase shift. With this
Chapter we introduce a feasible and effective fault recovery method that can be directly
applied to multi-period phase shift. The combined pipeline offers an optimal accuracy
and coverage even with high noise conditions, overcoming the setbacks of the original
method. The performance of such pipeline is established by means of an in depth set of
experimental evaluations and comparison, both with real and synthetically generated data.
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Figure 5.1: Capturing of a 3D surface by means of phase shift coding.

5.1 Introduction
In structured-light 3D reconstruction the signal is observed by one or more cameras, can
then be used to assign a distinctive code to each material point in the scene. This code
enables the labelling of corresponding points between different views and thus perform
triangulation. In this Chapter we are not dealing with the triangulation step, which is itself
a wide research topic [23, 79]. Instead, we are interested in the coding signal recovery.

Regardless of the wide choice in coding strategies, most commercial solutions still
adopt the old-fashioned phase shift method [197]. The underlying idea is indeed quite
simple: the projected frames are sine wave intensity patterns that are periodic (usually)
along one direction (see Figure 5.1). A total of n patterns is projected over time, each
one being shifted by an offset of 2Π

n
periods. After all the patterns have been captured

by a camera, each image pixel u, v is labelled with a base phase value ϕ(u, v) ∈ [0, 1)
recovered by means of correlation (for details see for instance [201]). Since the signal is
periodic in space, the same value of ϕ appears several times and an additional unwrap-
ping step is needed. Most phase unwrapping approaches resort to the projection of an
additional pattern sequence (often Gray codes), exhibiting lower accuracy, but which is
not affected by ambiguity. However, such methods have the drawback that not all the pro-
jected patterns effectively contribute to the accuracy of ϕ. To allow a better exploitation of
captured signals, some authors proposed multi-period approaches which use phase shift
also for disambiguation (for instance [125]). While promising, these latter techniques
are seldom adopted in actual devices. In fact, as we will show in the experimental sec-
tion, they are quite sensitive to noise as the unwrapping step requires an extremely high
accuracy in phase recovery.

Novel Contribution
In this Chapter we introduce a practical method to address such noise sensitivity, propos-
ing a set of code recovery strategies exploiting spatial proximity of computed codes. In
particular, for each code we estimate an error measure and propose three voting schemas
that use the values of the n independently observed phases in different ways: vector fringe
consensus, independent fringe consensus and complete fringe-set check. The resulting
pipeline enables the practical adoption of multi-period phase shift with a minimal ef-
fort and guarantees maximal accuracy at any noise level. This work has been presented
in [163].
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5.2 Multi-period Phase Shift

Multi-period phase shift, proposed by Lilienblum and Michaelis [125], combines phase
recovery and unwrapping by mean of n independent phase shift sequences of different
(and possibly coprime) period lengths λ1, λ2, ..., λn, resulting in a vector of recovered
phases ϕ = (ϕ1 ϕ2 ... ϕn)T . The main idea, depicted in Figure 5.2, is that, given an
unique projector coordinate ξ, the phases vector ϕ will be also unique. In fact, the same
combination of phases will not appear again until ξ′′ = ξ′ + k ξmax, where ξmax =
LCM(λ1, λ2, ..., λn) (that is the Least Common Multiple of all period lengths).

More in detail, we can define functions ϕi(ξ) and ηi(ξ) respectively as phase value
and fringe number expected to be recovered from projector coordinate ξ by the ith pattern
sequence:

ηi(ξ) =

⌊
ξ

λi

⌋
ϕi(ξ) =

ξ

λi
−
⌊
ξ

λi

⌋
(5.1)

From these definitions we can infer the following system of equations

ξ = (ηi(ξ) + ϕi(ξ))λi ∀i = 1, ..., n (5.2)

After the patterns have been projected and the phases ϕi(ξ) recovered, the only un-
knowns left are the components of the fringe numbers η = (η1(ξ) η2(ξ) ... ηn(ξ))T and
the projector coordinate ξ itself. Imposing the condition ξ < ξmax, the system has an
unique solution, thus allowing to recover the sought projector coordinate ξ.

Such unique solution can be easily found by considering the differences between
phases. Specifically, fixing two pattern sequences j and k, the right sides of the equa-
tions in system (2) can be equated, obtaining:

(ηj(ξ) + ϕj(ξ))λj = (ηk(ξ) + ϕk(ξ))λk

λjηj(ξ)− λkηk(ξ) = λkϕk(ξ)− λjϕj(ξ)
(5.3)

λ 3

λ 2

λ 1

0 1 2 3 4 5 6 7 ... η3(ξ)
φ3(ξ)

0 1 2 3 4 5 6 ... η2(ξ)
φ2(ξ)

φ

0 1 2 3 4 ... η1(ξ)
φ1(ξ)

0 ξ' ξ'' ξ'

Figure 5.2: Disambiguation principle in multi-period phase shift.
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In particular, from the right part of such relation, we can define a phase difference
vector based on the offset from pattern sequence 1:

Φ(ξ) = a = (a1, ..., an); ai = λ1ϕ1(ξ)− λiϕi(ξ) (5.4)

Since we already limited the code values, elements ai are not ambiguous and a map
H can be defined in the following way:

H(a) =

{
(h1, h2, ..., hn) : ∀i{ai = λihi − λ1h1}
undefined otherwise

(5.5)

allowing for an easy conversion between phase difference vectors and fringe numbers:

H(Φ(ξ)) = (η1(ξ), η2(ξ), ..., ηn(ξ)) (5.6)

The range of values inH is a finite set, which depends only on period lengths λ1, ..., λn.
Therefore, it is possible to pre compute all the values forH and store them in a LUT (Look
Up Table). This data structure allows to compute fringe numbers in a fast way given the
sequence of phase observations ϕ.

Of course, in the real-world ϕ will be affected by errors due to several error sources.
So it is not obvious that Φ(ξ) will be accurate enough for H to map it to the correct fringe
vector. As a matter of fact, as we show in Sec. 5.4, even modest levels of noise lead to
difference vectors that are not in the domain of eq. 5.5. This, in turn, leads to LUT access
faults and, in general, to the inability of recovering the correct value for ξ (see [125] for
details). It should be noted that, once the LUT access fails, the difference vector offers no
hint about where to search for a fringe vector that would justify the obtained ϕ. To this
end, a brute force solution would be to check for all the feasible combinations of fringe
values and select the one that minimizes the radius of estimated ξ. Unfortunately this
would lead to a huge number of tests. In the following section we propose three strategies
to reduce the number of fringe vectors to be checked.

5.3 Neighborhood-based Fault Recovery
The following strategies are actually rather naive. However, the main contribution of this
Chapter is about their evaluation in terms of effectiveness and feasibility with respect to
computational efficiency. Our goal, indeed, is to show that multi-period phase shift can
be easily adopted in real-world scenarios without drawbacks.

The shared mechanics of all the following strategies involves the selection of a reduced
set of fringe vectors η to be tested, that we call Sη, and a rule to extract among its elements
the optimal fringe vector η∗(Sη).

For a given vector of observed phases ϕ and a fringe vector η ∈ Sη, we define an
estimation for both the projector coordinate ξ and its error ε. The obvious estimator for ξ
is the average of the independent values obtained from each period sequence.
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According to eq. 5.2, it can be computed as:

ξ(ϕ,η) =

∑n
i=1(ηi(ξ) + ϕi(ξ))λi

n
(5.7)

One of the main advantages of eq. 5.7 is that, assuming that no outliers are present,
each single pattern equally contributes to a better assessment of ξ.

A reasonable estimator for the error of ξ(ϕ,η) could be of course the standard devia-
tion exhibited by the averaged values. However, since the number of signals involved in
multi-period phase shift is usually small, we opted for a more conservative choice. We
assess the error commited as the radius of the independent estimates for ξ, that is:

ε(ϕ,η) = max
1≤i,j≤n

|(ηi(ξ) + ϕi(ξ))λi − (ηj(ξ) + ϕj(ξ))λj| (5.8)

The optimal fringe vector can thus be found as:

η∗(Sη) = arg min
η∈Sη

ε(ϕ,η) (5.9)

Consequently, the optimal estimate for ξ within the set of candidates Sη is ξ(ϕ,η∗(Sη)).
Additionally, we also define a general criterion to be adopted in order to retain or

discard such estimates. This is needed because if no valid candidate for η exists in Sη,
then the obtained value for ξ could be totally random. Since this is just an outlier detection
measure, the criterion can be very coarse. We adopt a threshold tε over ε(ϕ,η). To this
end ξ(ϕ,η∗(Sη)) is considered recovered only if ε(ϕ,η∗(Sη)) < tε. Otherwise, the point
is deemed to be non-recoverable. We propose to set tε = 0.5 (

∑n
i=1 λi)/n. This is a quite

coarse estimate, since the typical error is much lower than half the average period length.
Still in all experiments this threshold never resulted in an outlier accepted as a valid ξ.

5.3.1 Vector Fringe Consesus
All the strategies proposed to build Sη for a pixel (u, v) works by looking at the neighbor-
hood of the pixel itself. We define Nk(u, v) as the set of the k nearest pixels to (u,v) that
are correctly mapped using map H . Moreover, we define Nk(u, v,η) as the set of pixels
in Nk(u, v) that are mapped by H to η and we say that η ∈ Nk(u, v) if |Nk(u, v,η)| > 0.

The Vector Fringe Consensus strategy (VFC) defines the set of fringe vectors to be
checked as:

Svfc(u, v) = {η | |Nk(u, v,η)| ≥ |Nk(u, v,η
′)| ,∀η′} (5.10)

This means that all the most frequent vectors in the neighborhood of (u, v) are checked.

5.3.2 Independent Fringe Consesus
We define Nk(u, v, η, i) as the set of pixels in Nk(u, v,η) such that ηi = η for any η, and
the set of best candidates for a given fringe i as:
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Siifc(u, v) = {η | |Nk(u, v, η, i)| ≥ |Nk(u, v, η
′, i)| ,∀η′} (5.11)

This means that each set Siη(u, v) contains the most frequent fringe numbers for period
i within the set Nk(u, v).

Using these sets, the Independent Fringe Consensus strategy (IFC) defines the set of
fringe vectors to be checked as:

Sifc(u, v) =
n∏
i=1

Siifc(u, v) (5.12)

That is the Cartesian product of all the sets Siifc(u, v).
It should be noted that the set Sifc(u, v) is not necessarily a super set of Svfc(u, v) as

there is no guarantee that the most frequent combinations as whole fringe vectors η are
composed of the most frequent independent components. Indeed, the rationale of IFC
is to decouple single coordinate of η in order to deal with corner cases including fringe
boundaries, where only one or two fringe numbers actually changes.

5.3.3 Complete Fringe-set Check

The third strategy is the most exhaustive, since it checks all the possible combinations of
fringe numbers that appear in the neighborhood of the pixel. To this end, we first define
the set of single fringe coordinates as:

Sicfc(u, v) = {η | |Nk(u, v, η, i)| > 0} (5.13)

In a similar manner to IFC, also the complete Fringe-set Check strategy (CFC) defines
a set of fringe vectors to be checked as a Cartesian product:

Scfc(u, v) =
n∏
i=1

Sicfc(u, v) (5.14)

This time, however, for a fringe number to be included it has just to be present in at
least one neighbor. This is a very relaxed constraint and it is not clear if such allowance
would result in an unfeasible number of fringe vectors to check. As we will show in the
experimental section, this is not the case and the number of actual fringe combination to
validate is in practice quite modest.
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Figure 5.3: Comparison of the recovery rate and resulting RMS error achieved by the
proposed methods.

5.4 Experimental Evaluation
The proposed approach is introduced in order to solve a practical problem with multi-
period phase shift. To this end, it is paramount to assess its effectiveness with an in depth
experimental evaluation.

In this section we perform such analysis with a set of different goals in mind. First
of all, we want to show the ability of our method in recovering unwrapping faults both in
terms of percentage of recovered points and of their accuracy. Then, we demonstrate that
such ability is not critically affected by the number of candidates inspected, and thus the
method can be applied without a significant performance loss. Finally a proper compar-
ison with a standard non multi-period approach is reported. This last test highlights the
improvement in accuracy granted by the redundant information offered by different (and
independent) signals.

5.4.1 Fault Recovery with Noisy Signal

For an useful evaluation of the effectiveness of our method as a recovery tool, it is very
important to know exactly the expected fringe numbers ηi for each given image pixel.
This is hard to obtain accurately with real-world scans since it would require to perfectly
know the geometry of the observed object, of the projector frustum and the relative pose
of camera and projector.

On the other hand, real-world observation is not critical to the relevance of this evalu-
ation. In fact, the error committed with the reconstruction of each phase ϕi is indeed the
only factor affecting the unwrapping step of multi-period phase shift. Such error can orig-
inate by various sources, however, at the end of the day, the only significant element is its
magnitude. If we model the error as zero-mean Gaussian additive noise, such magnitude
can be expressed as a standard deviation σ and we can evaluate the resilience to noise by
simulating perturbed phase observations:

ϕ̃i =
ξ

λi
−
⌊
ξ

λi

⌋
+N(0, σ) i ∈ 1..n (5.15)
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Figure 5.4: Analysis of the accuracy obtained with different values of parameter k (i.e.
amount of tested neighbors).

where ξ is a randomly generated projector coordinate, n is the total number of periods
and N(0, σ) is a normally distributed unbiased random variable with standard deviation
σ. We also assume the noise magnitude σ to be identical for all the phase observations,
which is reasonable since it mainly depends on the number of samples, which is usually
the same for all the periods.

In our first batch of experiments we generated 106 samples for different values of σ
and an amount of neighbors checks fixed to 10. We applied respectively IFC, VFC and
CFC to recover the faults from plain multi-period phase shift (MPS). We classified a point
as recovered when a method assigns to it the correct set of fringe numbers.

The results are shown on the left plot of Figure 5.3. The red line represents the amount
of points correctly unwrapped by MPS at the first round. The dotted lines show the amount
of points respectively recovered by IFC, VFC and CFC and the continuous lines of the
same color the total number of unwrapped points by combining the initial set with the ones
recovered by each method. There are several observation that can be made by looking at
this data. First of all, even with a small amount of noise (about 2% over the normalized
phase value), MPS fails about 50% of the times. This is a well-known limitation of MPS,
which indeed reduces greatly its feasibility in real-world products. Interesting enough,
both IFC and VFC work reasonably with low noise levels, still their performance drops
fast. The failure of VFC means that with high noise levels it is difficult for the correct
fringe vector to consinstenly gain major consensus. In a similar manner, the failure of
IVC means that even by seeking independently the consensus for each phase component,
it is quite common to obtain a broken vector. This effect is likely due to the fact that each
phase is independently observed and thus the probability of getting a full set of n correct
consensus over fringes, gets smaller as n increases.

Differently, CFC works remarkably well also with a very high noise level. As a matter
of fact it is able to recover all the correct fringes even when MPS offers less than 10% of
unwrapped points. This is partially expected, since for CFC to work it is required that the
correct fringe appers at least in one neighbor. This is a very loose requirement, given that
the observations are independent and the probability of not getting the correct fringe in n
neighbors decreases quickly with n.

While this is a very encouraging result, the recovery of the unwrapping does not auto-
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Figure 5.5: Number of candidate vectors actually tested by CFC for different values of
parameter k.

matically implies a good accuracy. Undoubtedly the overall error obtained by combining
errors in phase recovery when computing the average ξ could still lead to an unacceptable
result. To analyze the overall accuracy we plotted, in the right part of Figure 5.3, the RMS
error of the recovered points with respect to the ground-truth.

By looking at the plot it seems that CFC offers consistently better accuracy than IFC
and VFC. Specifically, the accuracy of CFC is actually comparable with the degree of
precision obtained by points directly unwrapped by MPS at the first round. The breaking
point seems to be around a standard deviation on the synthetically-generated data of about
6%, which is indeed huge (about 1

3
radians). Note also that, until that point, the recovery

error is around a half code unit, which in practice corresponds to sub-pixel accuracy in
projector coordinates. Finally, it should also be noted that the slow increase in the error
exhibited by MPS after the 6% threshold is not really due to some particular merit, but
its a simple consequence of the implied biased selection. In fact, only the observation
characterized by low error are actually unwrapped by MPS at the first round.

5.4.2 Effect of the Number of Neighbor Checks

At this point CFC appears to be the best candidate for unwrapping faults recovery. How-
ever, since it works on the complete Cartesian product of fringe observation sets, it could
end up checking much more candidates than IFC and VFC. For this reason, it is very im-
portant to verify that its accuracy can be achieved without needing an extensive search. To
this end, we performed a batch of tests by setting the noise level at 6% and by exploring
the effect of different choices for parameter k, that is the number of decoded surround-
ing pixels to be considered. The results are shown in Figure 5.4. It can be noted that
the number of neighbors has actually a very limited effect on CFC, which is of course
an important feature. In detail, while a choice of only 5 neighbors implies a slight drop
in performance, 10 check points seem to be more than enough. Finally, we can observe
an interesting phenomenon appearing when the number of checked neighbors grows too
much. As a matter of fact, a large amount of neighbors results indeed in a slightly dimin-
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Figure 5.6: Comparison of the recovery rate and resulting RMS error achieved by CFC
and MPS with a real plane.

ished accuracy and a larger standard deviation. This is probably due to the fact that, when
the product set becomes very large, it could happen randomly that a wrong fringe number
configuration is blessed by a higher coherency than the correct one. This is an impor-
tant observation, in fact it offers an additional reason (beside computational feasibility) to
avoid the naive approach of checking all the possible fringe configurations.

Regarding the computational feasibility of CFC, we are also interested in assessing
how many candidates result from different number of neighbors checks. This is shown
in Figure 5.5 for two different sets of period lengths. The number of actual candidates
exhibits a large variance, since it depends a lot on the position of the observed point. Still,
its magnitude is in general quite low and grows in a linear manner with the size of the
neighbor set. In practice, since 10 neighbors have been shown to be a reasonable choice
for a good performance of CFC, we can conclude that the recovery step would require to
check a very small amount of candidates, with minimal impact in the overall execution
time of the full pipeline over plain MPS.

5.4.3 Real-World Evaluation
In the previous sections we adopted synthetically generated data to enable an evaluation
under controlled conditions of noise and with a well defined ground-truth.

Nevertheless, for a complete validation of the approach a demonstration of its effec-
tiveness with an actual camera-projector setup is needed. To this end, we used a calibrated
camera-projector pair composed of a CCD machine vision camera with 3Mpixels resolu-
tion, a full hd video projector and a disparity of about 20cm. The system was calibrated
using [145] and verified using artificial markers [18, 22]. Since a proper ground-truth
could not be available, we evaluated the performance by capturing planar surfaces of dif-
ferent materials and then by computing the average distance of each reconstructed point
from an ideal plane obtained by fitting all the points reconstructed by using only MPS.
This should be a reasonable substitute for a ground-truth since its a statistical measure
based on a large number of reliable points. Since it’s not possible to set the amount of
desired noise in such kind of experiment, we evaluated the RMS error with respect to the
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Figure 5.7: Examples of reconstruction of difficult surfaces using plain MPS (1st column),
IFC (2nd column), VFC (3rd column) and CFC (4th column).

plane for different amounts of samples used for phase recovery. Under these conditions,
the phase recovery error, and thus the observation noise, is expected to decrease with the
square root of the number of samples. The results are shown in Figure 5.6, by mean of two
plots similar to those shown in Figure 5.3. The observed trends confirm those obtained
with synthetically generated data.

Finally, in Figure 5.7 we also show actual reconstruction examples to supply a basic
intuition about the real effects of the different recovery rates and accuracy levels. The
items reconstructed are a set of planar surfaces placed at a distance of about 1 meter from
the projector-camera system.

5.4.4 Comparison with Gray Coding

As discussed, multi-period phase shift is very sensitive to noise. In fact, even a naive ap-
proach using a single phase shift, combined with gray coding disambiguation, can lead to
more stable unwrapping results. Moreover, approaches designed to deal with the few un-
wrapping errors from gray coding have already been proposed in literature [234]. For this
reason the practitioner could ask if there is any compelling reason to adopt our CFC exten-
sion of MPS. Actually there is a really important difference between the two approaches.
When gray coding is used for disambiguation, the projected patterns do not contribute to
the accuracy of the coding. In fact they are simply discarded once the fringe number for
a point is recovered. Differently, with multi-period phase shift, and thus with CFC, all
the single observed phases provide useful information. In Fig. 5.8 we report the result
of an experiment performed with the same setup presented in Sec. 5.4.1, comparing the
RMS error with respect to ground-truth obtained with CFC and the technique presented
in [234]. The standard deviation of the noise is set to 6%. We applied this error to all the
phases recovered with CFC (over three periods) and to the single phase observed by the
state-of-the-art method [235]. In addition we assumed the unwrapping from gray coding
to be always perfect. The advantage of CFC in terms of accuracy is quite prominent.
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Figure 5.8: Enhanced accuracy of MPS/CFC with respect to gray coding

5.5 Conclusions
With this chapter we examined three strategies for phase unwrapping faults recovery.
Among these, Complete Fringe-set Check (CFC) exhibited the best behaviour and we
think it to be suitable to be adopted in practical scenarios. In comparison with other un-
wrapping techniques, the recovery method directly exploits the measured phase values in
a neighbourhood of the missing code, computing the best values for the fringe number
that allows absolute phase measurements. The advantages of such recovery methods are
the flexibility with respect to the acquired scene and the ease of implementation, which
in practice make it suitable to work in environments where a dense 3D reconstruction
is needed. Despite being rather simple, the proposed technique definitely fixes a long
standing problem with multi-period phase unwrapping methods, that is the inherent high
sensitivity to noise. The effectiveness, efficiency and accuracy of CFC has been demon-
strated by means of a thorough experimental evaluation performed over both real and
synthetically generated data.
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Applications





6
Calibrating a Camera-Projector

Stereo Setup

Regardless the adopted coding strategy, extrinsic calibration is a necessary and fundamen-
tal process in every structured-light 3D reconstruction system. In fact, such procedure
assesses the mutual relation between camera and projector and, after the pattern decoding
step, allows for the subsequent triangulation of the observed scene. This chapter presents
the calibration approach developed for the acquisition device employed in the practical
applications discussed in this thesis. The system acquires a simple planar object with
different orientations and, for each acquired image, the correspondences between camera
and projector pixels are computed through phase unwrapping. Then, an optimization pro-
cess computes the optimal transformation between camera and projector reference frame
exploiting two-view geometrical properties of the system.
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6.1 Introduction
The proposed calibration approach involves a camera-projector system and exploits the
phase unwrapping technique as described in the previous chapters to assess the correspon-
dences between camera image plane and projector image plane. In this method several
shots of a planar surface are acquired. For each shot, the correspondences of camera
and projector pixels induce a homography between the two image planes. Such relations
are then decomposed and exploited to extract both the roto-translation between camera
and projector plane and the projector’s intrinsic parameters. Finally, an optimization step
involving the projector lens distortion is carried out in order to assess the best system
calibration.

6.2 Calibration Approach
In this approach we assume a camera-projector pair structured-light system, with the cam-
era intrinsic parameters already calibrated through an independent procedure. The pro-
jector is also modelled as a camera, thus it is characterized by an intrinsic matrix and
five radial distortion coefficients. In the initial step we consider the projector as a perfect
pinhole system, with no lens distortion. This assumption is fair for the initial parameter
estimation because the projector lenses are specifically designed not to be particularly
distorted.

Suppose that the camera and the projector observe the same planar surface π in the
scene. Then, each 3D point X lying on such plane has two projections xc and xp, re-
spectively on the camera and projector image plane. The images of such points captured
by the camera are related to points on projector’s image plane through a planar homog-
raphy [79]. In other words, a plane π induces a homography H between the two views
such that points on the camera image plane can be mapped to points on projector image
plane and vice versa. Note that such homography is uniquely determined by the plane π.
Figure 6.1 depicts the described scenario.

Since the two images of the same planar surface are related through an homography,
we can express the relation between the points xc and xp (belonging to the plane) in the
following way

xc = Kc H K−1
p xp (6.1)

whereKc andKp are the calibration matrices respectively of the camera and the projector,
while H is the homography matrix induced by the plane.

The matrix H can be decomposed as

H = R− t nT

d
(6.2)

where R and t are the rotation matrix and the translation vector between the projector and
the camera reference frames. The vector n is the normal of the observed plane and d is
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Figure 6.1: Homography H is induced by a plane π and two views that capture the same
point x lying on the plane. Such homography maps points xc on camera image plane to
points xp on projector image plane.

its distance from the camera centre. If we are not interested in the magnitude of t, we can
ignore the value of d including it in the computation of t and obtaining the calibration up
to a scale factor.

6.2.1 Initial Parameter Estimation

During the calibration process, N phase maps are acquired. Each image captures a plane
with a different pose. The phase unwrapping algorithm is applied to the acquired phase
maps and thus the correspondences between camera pixels and projector coordinates are
known for each acquired plane. Point correspondences are extracted by uniformly select-
ing mi valid projector codes in each acquired image Ii, with i = 1, ..., N .

Each acquisition can then be associated with a homography matrix Hi with i =
1, ..., N , which in turn can be decomposed as described in Equation (6.2). In this way,
each different pose is characterized by a triple (Ri, ti,ni). Note that the value d in (6.2),
that is the distance of the plane, can be ignored since it is only affected by a scale fac-
tor. While all the plane normal vectors ni are different in each shot, the values Ri and
ti should be the same, since they represent the roto-translation between camera and pro-
jector image planes. The acquisition process and the phase localization are of course two
tasks subject to several sources of noise, therefore the values Ri and ti are not going to be
identical, and they need to be averaged in a final common transformation. The operation
is not trivial since we need to compute a combination of rotations and translations that is
an average of the N values obtained from the different poses.

Each rigid motion can be associated with a dual quaternion, that is a mathematical
tool allowing an effective representation of rigid motions [52]. Dual quaternions consider
at the same time both the rotation and translation involved in a motion, offering good
theoretical properties, so they are best suited to combining several roto-translations [95].
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Thus, each pose [Ri|ti] generates a dual quaternion denoted as qi. Such values are av-
eraged following the linear blending procedure as described in [95], to obtain an averaged
transformation q̄. Then, in order to make the original homographies represent the same
initial relations, each matrix Hi needs to be adjusted according to the new roto-translation
q̄, while keeping the original normal vectors ni.

After this process we need to compute an initial estimation of Kp, that is the intrinsic
matrix for the projector. We can exploit the relation expressed in Equation (6.1), con-
necting the corresponding points in both image planes with the observed plane and the
computed homography. Since we observed N planes, the associated homographies Hi

can be used to compute an initial estimation of matrix Kp through a single linear least
squares.

Assume we have mi point correspondences in each i = 1, ..., N acquisition, then we
have M =

∑N
i=1 mi point correspondences in total for all the views. Equation (6.1) can

then be rewritten in the following way

H−1 K−1
c Xc = K−1

p Xp (6.3)

where Xc and Xp are 3 ×M matrices containing all the extracted point correspon-
dences in homogeneous coordinates, for the camera and the projector respectively. Defin-
ing C = {ci,j} = H−1 K−1

c Xc, we can define the coefficient matrix as

A =


c1,1 1 0 0
0 0 c2,1 1
...

...
...

...
c1,M 1 0 0

0 0 c2,M 1

 (6.4)

that is a 2M × 4 matrix. Then we define the linear system

A x = b (6.5)

where b is a 2M -vector that is the linearisation of Xp (expressed with 2D inhomogeneous
coordinates) and x = (fx, cx, fy, cy)

T contains the intrinsic parameters of the projector
system, namely the focal length and the center offset. Such system can be easily solved
to compute an initial estimation of the projector imaging parameters.

6.2.2 Distortion and Parameter Optimization
After the first estimation of both Kp and the roto-translation from projector to camera
reference frame, these parameters need to be further optimized minimizing an energy
function defined as follows

E(Kp,q, t,k) =
N∑
i=1

mi∑
j=1

||xjc − (Kc H(q, t,ni)K
−1
p d(xjp,k))||2 (6.6)
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Figure 6.2: Example of extracted points in projector image plane (black cross) and cor-
responding points on camera image plane after applying the relative transformation (red
circles). Such configuration is obtained after the first optimization step.

where xjc and xjp are the j-th observed points in camera and projector image planes ex-
pressed in homogeneous coordinates and k is a 5-dimensional vector containing the dis-
tortion parameters. The rotation between camera and projector is expressed as a unitary
quaternion q rather than an usual rotation matrix R, that should be forced to be orthonor-
mal during the optimization, making the process a constrained optimization. The function
H takes the roto-translation and the i-th plane normal and gives the associated homog-
raphy matrix as output, while the function d distort the observed points according to the
distortion parameters in k. Note that the distortion function here is used because the pro-
jector coordinates xp observed from the camera are the ”perfect” codes as produced in the
projector image plan, thus they need to be distorted before applying the inverse projection
and the homography.

The defined energy function computes the sum of the squared reprojection error (in
pixels) for all the acquired points in all N plane acquisitions and it is first initialized
with the initial estimated parameters as described in the previous section. At the end of
the process, the optimized value for both projector intrinsics Kp and distortion and the
relative pose between camera and projector image frames are simultaneously computed.

6.3 Experimental Setup
The described calibration process was carried out adopting a structured-light scanner de-
veloped in our lab. The device is composed by a single MatrixVision BlueFox3 5Mpix
camera and an LG projector with a resolution of 1920×1080 px, both mounted in a struc-
ture with a vertical setup. The projector gamma has been manually corrected to obtain a
camera signal response as linear as possible.

In each test we collected a set of 10 to 20 shots of a white planar surface with different
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Figure 6.3: RMS of the triangulated point distance from the fitted planes increasing the
number of planes used for calibration. Errorbars represent the standard deviation.

inclinations with respect to the scanner. The phase unwrapping technique described in
Chapter 3 was applied to the acquired phase maps in order to obtain a coded image for
each different plane.

From each coded image Ii a set of valid projector codes was selected through an
extraction technique that ensures a uniform distribution of codes over the camera image
plane. The extracted points were usually ∼ 1000 for each shot. Figure 6.2 shows an
example of extracted points for one shot in the projector image plane.

An initial guess for the projector intrinsic parameters has been used for all the exper-
iments, that is fx = fy = 3000 and cx = 1080, cy = 960 and the initial homographies
were computed using all the given points with a basic least squares approach.

The optimization technique used for minimize the energy function (with projector
distortion coefficients) uses the Nelder-Mead simplex method as described in [108]. We
fixed a maximum number of iterations equal to 10000, with a tolerance of 10−6 pixels.

The algorithm stability was tested using an increasing number of planes to calibrate
the system and validating the calibration parameters using another plane that was not
included in the calibration process. In such experiment we had a pool of 18 different
plane poses. In turn we removed one of these planes (used for validation) and calibrated
using an increasing number of randomly extracted set of planes.

Figure 6.3 shows the validation results, computed as the RMS of the distance of tri-
angulated points with respect to the fitted plane model (not used during calibration). We
tested the calibration performances by randomly extracting 1 to 10 planes and repeating
the process 18 times, one for each different validation plane. Results show that the algo-
rithm offers a precision below 0.5 pixels even using three planes. Moreover, the standard
deviation decreases as the number of plane raises, implying a good stability.

Finally, Figure 6.4 shows the calibrated system together with some of the 3D points
lying on the planes used for calibration.
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Figure 6.4: Final calibration results with a subset of the acquired planes and the associated
triangulated 3D points extracted.

6.4 Conclusions
In this Chapter we introduced a novel calibration method for a camera-projector pair
structured-light scanner. The method employs a number of acquisitions of a planar surface
with different poses and uses our phase unwrapping technique to devise dense camera-
projector point correspondences. The final optimization allows for an accurate estimation
of both projector intrinsic and extrinsics parameters in a simultaneous way with no need
of a specialised calibration target.



7
Cylinders Extraction in

Non-oriented Point Clouds

Finding geometric primitives in 3D point clouds is a fundamental task in many engi-
neering applications such as robotics, autonomous-vehicles and automated industrial in-
spection. Among all solid shapes, cylinders are frequently found in a variety of scenes,
comprising natural or man-made objects. Despite their ubiquitous presence, automated
extraction and fitting can become challenging if performed ”in-the-wild”, when the num-
ber of primitives is unknown or the point cloud is noisy and not oriented.

In this Chapter we pose the problem of extracting multiple cylinders in a scene by means
of a Game-Theoretic inlier selection process exploiting the geometrical relations between
pairs of axis candidates. First, we formulate the similarity between two possible cylin-
ders considering the rigid motion aligning the two axes to the same line. This motion is
represented with a unitary dual-quaternion so that the distance between two cylinders is
induced by the length of the shortest geodesic path in SE(3). Then, a Game-Theoretical
process exploits such similarity function to extract sets of primitives maximizing their in-
ner mutual consensus. The outcome of the evolutionary process consists in a probability
distribution over the sets of candidates (ie axes), which in turn is used to directly estimate
the final cylinder parameters. An extensive experimental section shows that the proposed
algorithm offers a high resilience to noise, since the process inherently discards inconsis-
tent data. Compared to other methods, it does not need point normals and does not require
a fine tuning of multiple parameters.
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7.1 Introduction
The identification and extraction of geometrical primitives (planes, spheres, cylinders,
pyramids) from a scene is an essential task in several scenarios [93, 121], such as in-
dustrial automation and inspection [74, 172], reverse engineering [135] or robot manip-
ulation [196]. Despite the high quality offered by modern acquisition devices, in some
situations 3D data are far from being perfect. For instance, the scanning process of ob-
jects presenting shiny metallic areas could easily lead to an incomplete or noisy 3D sur-
face [11]. Furthermore, many times the acquired scene is complex and contains several
elements which are to be excluded as they are not relevant for the subsequent analysis.
Indeed, any practical shape extraction algorithm must provide a reliable method to filter
out outliers, in addition to a good parameter estimation.

In this Chapter we focus on the specific task of cylinder extraction from generic 3D
point clouds. Cylindrical shapes are often found in many applications such as natural
landscape analysis [157, 165], robot manipulation [142], automated pipe-run reconstruc-
tion [169] or industrial quality inspection [138].

In general, when dealing with primitives identification, we can distinguish two con-
ceptually different tasks, namely fitting and extraction, which differ in the type of problem
and how it is addressed. In the case of fitting the point cloud has already been segmented,
so a subset of 3D points is associated to a possible cylindrical shape. The objective of a
fitting algorithm is to compute the best parameters according to the given data, typically
minimizing the average error with respect to the theoretical surface. On the other hand,
the goal of extraction methods is to detect the primitives included in a complex point cloud
and then devise their parameters. These approaches are often employed when the whole
scene is captured, making the task more challenging than a simple fitting since data could
be incomplete, noisy or include clutter. Usually there are no assumptions on the number
of primitives in the scene, neither on their orientations. Moreover, the presence of point
normals is not always ensured and their quality may depend on the acquisition device or
the used reconstruction algorithm. Extraction methods employ statistically robust algo-
rithms that ensure a high resilience to outlier data, but they could be less accurate when
compared with the previous techniques.

Novel Contribution
The method proposed in this Chapter improves the concept to extract multiple cylinders
from an unknown configuration with several sources of noise. In particular, we formulate
a cylinder similarity function expressing the compatibility between two possible candi-
dates, and a simple yet effective candidate extraction technique based on geometrical
properties of cylindrical primitives. These two ingredients are then combined in a cluster-
ing process based on evolutionary game theory, that ensures the extraction of the subset
of candidates with best mutual support and exhibits excellent robustness to outliers.

The described approach offers three main advantages: first, it does not require an
initial tuning of several parameters nor any prior knowledge of the scene. Second, the
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inlier selection provides a probability distribution over the final subset of candidates, so
that the final model model is computed by averaging the relative fitting scores. Third,
we achieve good estimation accuracy even if most of the cylindrical shapes are occluded
or covered by clutter. An extensive experimental evaluation presented, demonstrating all
these features on both synthetic and real-world cases. This extraction method has been
published in [162].

7.1.1 Dual Quaternions and Rigid Motions

In this Section we give a minimal introduction to dual quaternions to understand the pro-
posed distance function, suggesting the reader to [54, 96] for more information on dual
numbers and dual quaternion algebra for geometrical applications.

Dual quaternions are mathematical objects defined by a composition of quaternions
and dual numbers. The former are common for researchers and practitioners working
with rotations, since it is well known that rotations around the origin can be efficiently
represented by unitary quaternions. The latter is less known, but simple in practice. A dual
number can be written as â = a0 + εaε where ε is called dual unit. The algebra is similar
to complex numbers, except that ε2 = 0. Indeed, the dual conjugate is analog to complex
conjugate ¯̂a = a0−εaε and the multiplication is given by the formula (a0+εaε)(b0+εbε) =
a0b0 + ε(a0bε + aεb0). The square root of a dual number with non zero scalar part a0 is
given by the formula

√
a0 + εaε =

√
a0 + ε

aε
2
√
a0

. (7.1)

Interestingly, the Taylor series of a function with dual argument is limited to the first
order because higher powers of ε are zero. Therefore, sine and cosine of a dual number
are easily defined as:

sin(a0 + εaε) = sin(a0) + εaεcos(a0)

cos(a0 + εaε) = cos(a0) + εaεsin(a0).

Since the dual unit commutes with quaternion units (ie iε = εi), a dual quaternion
q̂ can be written as an ordinary quaternion of dual numbers q̂ = ŵ + ix̂ + jŷ + kẑ
(where i = (i, j, k)) or as a dual number in which the scalar and dual part are ordinary
quaternions q̂ = q0 + εqε. The norm of a dual quaternion is defined as ‖q̂‖ =

√
q̂∗q̂,

where q̂∗ denotes the classical quaternion conjugation q̂∗ = q∗ + εq∗ε . The set of dual
quaternions for which ‖q̂‖ = 1 are called unitary. It can be demonstrated that every
rigid transformation can be represented by a unitary dual quaternion, and conversely,
every unitary dual quaternion represents a rigid transformation. Finally, for the so-called
antipodal property of dual quaternions, q̂ and −q̂ represent the same transformation but
with two different trajectories.
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Unitary Dual Quaternion Manifold

The screw motion between l1 and l2 can be related to the scalar and vector part of a unit
dual quaternion q̂ according to the following formula:

q̂ = cos
θ̂

2
+ ŝ sin

θ̂

2

θ̂ = 2β + ε2‖T‖
ŝ = i~s+ εi(m1 × ~s) (7.2)

where ŝ is a dual quaternion (with zero scalar part) describing the rotation axis and θ̂ is
the dual angle expressing the angle of rotation and the amount of translation.

The set of unit dual quaternions can be seen as 6-dimensional manifold embedded
an 8-dimensional Euclidean space [140]. The corresponding log map can be defined in
closed form as:

log(q̂) = ŝ
θ̂

2
. (7.3)

Such log map allow us to define a distance function between two lines l1 and l2 induced
by the length of the geodesic path in SE(3) from the origin (ie. the identity motion) to q̂.
Let q̂ be the screw motion described in 7.2.1, we define such function as:

d(l1, l2) = min(‖ log(q̂)‖, ‖ log(−q̂)‖) (7.4)

In fact, it represents the length of the shortest geodesic path of the two trajectories
described by q̂ due to the antipodal property.
Operatively, the distance between two axes l1 and l2 in our application is computed as
follows:

1. Determining the points m1 and m2, and the distance vector T = m2 −m1

2. Computing the axis vector ~s

3. Computing the dual quaternion q̂ as in (7.2)

4. Computing the length of the geodesic path as in (7.4)

7.2 The Proposed Method
Our goal is to extract cylindrical shapes from non-oriented point clouds. We simplify
the operation by considering only cylinders with an infinite extent along the axis, thus
reducing their parametrization to a 3D line in space, called axis, and a radius. In practice,
this is not a limiting assumption since (i) co-axial cylinders with different radii are rare
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in common scenes, and (ii) it is simple to estimate the cylinder height once the 3D points
associated with its shape are identified in the cloud.

We parametrize a cylinder ζ with the triplet (p,~v, r), in which (p ∈ R3, ~v ∈ R3) and
r ∈ R describe its axis and radius respectively. We pose the additional constraints of
‖v‖ = 1 and 〈p,~v〉 = 0, resulting in only 5 degrees of freedom out of the 7 parameters
used for the parametrization.

Our method considers the cylinder extraction as a clustering problem. We suppose
to have a set of cylinder candidates representing possible alternative cylindrical shapes
observed in the scene. We designed a robust Game-theoretic process so that candidates
coherent with a common cylindrical model are grouped together and weighted accord-
ing to their mutual fitness. Therefore, by repeating this selection until all candidates are
grouped, we robustly extract a sequence of cylinders ordered by their overall consistency
with the relative candidate cluster. To support this principle, in section 7.2.1 we formulate
a distance function among pairs of candidates that properly accounts for the 3D displace-
ment of their relative axes. Then, in section 7.2.2 we propose a possible way to generate
robust candidates and in 7.2.3 we discuss the details of the Game-theoretical process.

7.2.1 Cylinder Distance Function
Cylinder candidates are clustered together by maximizing a similarity among elements
of the same cluster. The non-trivial aspect is that, a part from the relative radii, a well-
defined function must deem the combined contribution of axes positions and orientations.
Therefore, defining a similarity between two cylinders boils down in defining a distance
between 3D lines (ie. axes) in space.

Let l1 = (c1, ~v1) and l2 = (c2, ~v2) be two 3D lines defined respectively by a point c and
a unitary-norm direction ~v. Following [20], we construct a rigid motion (R̄, T̄ ) mapping
line l1 to l2 or, more formally, the roto-translation such that ∀p ∈ l1,∃ k ∈ R. R̄p +
T̄ = c2 + k~v2. Since every rotation around ~v and every translation along ~v transform a
line in itself, there exist infinitely many (R̄, T̄ ) mapping l1 in l2. Among those, we can
express the one exhibiting the shortest translation length and smaller rotation angle taking
advantage of the kinematic notion of a screw. Chasles’ theorem [40] states that every
rigid motion can be described by means of a translation along a unique line (called screw
axis) followed (or preceded) by a rotation about the same axis. The motion described in
the theorem is called screw and, since its discovery, is one of the most convenient ways
to describe spatial movements. In our setting, we can directly describe (R̄, T̄ ) in terms
of a screw motion, as sketched in Fig. 7.1. Let m1 = c1 + t1~v1 (for some scalar t1) be
the point lying on l1 closest to the line l2. Similarly, let m2 = c2 + t2~v2 be the point of
l2 closest to line l1. By construction, the vector T = m2 − m1 is orthogonal to both l1
and l2 and its length is the minimum distance between all the points of the two lines. This
implies that T has the same orientation (but possibly different magnitude and sense) of
the vector ~v⊥ = ~v1 × ~v2. So, the rotation with angle β = arcsin(‖~v⊥‖) around the axis
defined by point m1 and vector ~s = ~v⊥/‖~v⊥‖ will let l1 be parallel to l2. Since m1 lies on
the rotation axis, its position will not change after the transformation, hence the distance
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Figure 7.1: The defined screw motion between lines l1 and l2

between the two lines will remain equal to ‖T‖. Trivially, a final translation along T will
let l1 coincide with l2. To summarize, the minimum screw motion between the two lines
is the one with axis (m1, ~s), translation length ‖T‖ and rotation angle β.

This modelling is convenient for our purposes because we can relate the parameters
of a screw-motion with the scalar and vector part of a unitary dual quaternion q̂ (refer to
Section 7.1.1 for more details about dual quaternions).

The distance is then defined as following

d(l1, l2) = min(‖ log(q̂)‖, ‖ log(−q̂)‖). (7.5)

Given such axes distance, we can easily derive a similarity function between a couple
of cylinders ζ1 = (p1, ~v1, r1) and ζ2 = (p2, ~v2, r2).

π(ζ1, ζ2) =


e−

d

(
(c1,~v1),(c2,~v2)

)
λ if Ad(ζ1, ζ2) < r1 + r2

∧ min(r1,r2)
max(r1,r2)

> p

0 otherwise

(7.6)

where Ad(ζ1, ζ2) = ‖T‖ is the minimum distance between two axes (c1, ~v1) and (c2, ~v2)
as defined previously, and λ > 0 is a free parameter 1. The value p ∈ [0, 1] is the
minimum ratio between the radii r1 and r2 required for two primitives to be compatible.
The similarity function takes values between 0 and 1 and is inversely proportional to the
axis distance defined in (7.5), thanks to the negative exponential with factor λ. Note that a
cylinder is fully compatible with itself (the ray distance is equal to zero, so the similarity
will be one) and not compatible at all if the axes relative position and the radii are not
consistent with each other.

1In all our tests we fixed λ = 5.
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We will employ such definition of similarity in a clustering process based on Game-
Theoretical framework, which allows the extraction of the more coherent subset of prim-
itives among all candidates.

7.2.2 Candidate Extraction

There are several ways to obtain possible cylinder candidates from a 3D point cloud.
The choice is influenced by the acquisition device, that could introduce some limitations
due to its functioning and level of accuracy. For example, data could not be uniformly
distributed in space and point normals may be available or not. In this approach we do
not assume points to have a specific structure, neither to have normals. In this way the
problem is kept as general as possible, and the method can be applied in a variety of
practical applications.

Our candidate extraction is based on random slicing planes over the scene: we ran-
domly generate N planes and compute the intersection between them and the point cloud.
In this way we obtain N sets of 2-dimensional scattered points used to fit all possible
ellipses, which in turn are used to compute the cylinder candidates.

To simplify the discussion, let’s assume to have acquired a scene containing one sin-
gle cylindrical shape and many other points resulting from other objects or noise. The
intersection between a cylinder ζ and a plane P (whose normal ~n is not orthogonal with
~v) results in an ellipse E with the following properties (see Fig. 7.3, Left):

• The minor semi-axis b is equal to the cylinder’s radius r;

• the ellipse center c lies on the cylinder’s axis;

• the ratio between the major semi-axis a and minor semi-axis b is a function of the
angle α between ~v and ~n, according to:

cosα =
b

a
(7.7)

If 3D data is dense enough, a subset S of points lying sufficiently close to the plane
P can be extracted, generating a set of 2D points. Figure 7.2 shows a simple example of
this extraction process, starting with a point cloud and a slicing plane. According to what
said before, some of these points will lie on the ellipse corresponding to the intersection
between plane and cylinder, while some others will be distributed without any particular
pattern (ie. they are outliers with respect to the elliptical shape). Therefore, any suffi-
ciently robust fitting operation that extracts the elliptical shape E out of S will give clues
on the unknown cylinder enclosed in the scene.
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Figure 7.2: Left: an example of point cloud containing two cylinders and a random slic-
ing plane. Right: scattered points lying on the planar slice and the corresponding fitted
ellipses. Each ellipse will be associated with two possible axes so this plane will generate
four cylinder candidates.

In particular, we already observed that the minor axis of E corresponds to the radius
of the cylinder, while the center c defines the position of the axis. The ratio between semi-
axes a and b will determine the axis direction ~v up to two equally-possible configurations
(see Fig.7.3, Right). Due to this intrinsic ambiguity, at least two plane slices are needed
to fully recover a cylinder.

In [171] the authors propose to use multiple slices to collect only the centers (c1 . . . cn)
and the minor axes (b1 . . . bn) of each fitted ellipses. With this method, the cylinder radius
is recovered by averaging each b1 . . . bn and the axis (p,~v) by fitting a 3D line to c1 . . . cn
in a least-squares sense. The approach has three drawbacks. First, it totally discards
information given by each ellipse regarding the possible orientation of cylinder axis (due
to the already mentioned ambiguity). Second, it can only handle a single cylinder in
the data. Third, it can badly suffer from unlucky plane slices (like areas with few scene
content), since all values are averaged without weighting their reliability. This aspect is
partially relevant though, since the subsequent non-linear optimization may still be able
to recover the correct shape.

Our approach follows a similar strategy: we slice the scene with n different random
planes. From each 2D scattered point set obtained from the i-th slice, we robustly extract
all the j = 1 . . . Ni possible ellipses using RANSAC and the ellipse model estimation
method described in [75]. When considered in 3D space, each extracted ellipse Ei,j is
defined by its major and minor semi-axes vectors ~ai,j ∈ R3 and ~bi,j ∈ R3 and its center
ci,j ∈ R3. By construction, ~ai,j and~bi,j are both defined up to a sign and orthogonal to the
normal ~ni of the i-th plane.
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Figure 7.3: Left: Intersection between a cylinder ζ and a plane P . Right: The two possible
cylinders deriving from an ellipse in 3D space. They have radius and center point in
common but differ in the axis direction (denoted as ~v1 and ~v2).

From eachEi,j , we compute the two possible cylinder candidates as the tuples (r, c, ~v =
R~ni)i,j and (r, c, ~v = RT~ni)i,j , where:

r = ‖~bi,j‖
c = ci,j

R = I +

√
1− ‖

~bi,j‖2

‖~ai,j‖2

[ ~bi,j

‖~bi,j‖

]
×

+

+(1− ‖
~bi,j‖
‖~ai,j‖

)

[ ~bi,j

‖~bi,j‖

]2

×
. (7.8)

In the tuples, r and c denote the cylinder radius and axis point shared by the two
candidates and R~ni, RT~ni are two possible axis orientations obtained by rotating the
plane normal ~ni around the minor-axis of the ellipseEi,j with an angle of± arccos

‖~bi,j‖
‖~ai,j‖

2..
Note that we can extract several ellipses from a single plane slice (each one originating

two possible axes), but all cylinder candidates ξ = (r, c, ~v)i,j generated from slice i are
not compatible by construction and hence should be assigned to different clusters. Indeed,
it is simple to observe that distinct coplanar ellipses can only be generated by distinct
cylinders and the two axes coming from the same ellipse are mutually exclusive.

Thanks to this property we can reformulate the similarity function, taking into account
the plane which generated each candidate.

2Matrix R is obtained by the Rodrigues’ formula. The symbol [.]× denotes the skew-symmetric matrix
of the cross-product.
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Therefore, the new similarity between two candidates ξ1 = (r1, c1, ~v
k
1 )i1,j1 and ξ2 =

(r2, c2, ~v
h
2 )i2,j2 is the following

π′(ξ1, ξ2) =


1 if ξ1 = ξ2

π(ξ1, ξ2) if i1 6= i2

0 otherwise
(7.9)

where π(ξ1, ξ2) is the cylinder similarity function as defined in (7.6). The additional con-
dition is added in order to explicitly exclude primitives generated from coplanar ellipses:
in this way all pairs of candidates coming from the same slicing plane will have zero sim-
ilarity. This formulation is particularly convenient in the clustering approach explained in
the next section since the evolutionary process used to extract sets of coherent observa-
tions will inherently exclude incompatible candidates from the final result.

7.2.3 Inlier Selection Process
In the proposed approach the extraction of a subset of candidates containing elements
with a high mutual support is carried out in the context of Evolutionary Game Theory
[219]. We consider a scenario in which we have an initial population of candidates, where
each distinct couple of individuals play a game one versus the other on the basis of pre-
programmed strategies. Then, a selection process brings some elements which match well
together to thrive, while driving the ”unfitting” ones to extinction.

In our specific case, we consider all the M =
∑n

i=1Ni cylinder candidates ξ1 . . . ξM
as the individuals, that we call hypotheses. Rather than the singular characteristics of each
of them, we are interested in expressing how well two hypotheses play together. In other
words, we need to define their behaviour when they are put together in the final popula-
tion. We define such fitness through a payoff-function, which in our case is formulated as
in (7.9). This function can be conveniently represented as an M ×M symmetric matrix
Π in which an element at row i and column j is defined as follows:

Π(i, j) = π′(ξi, ξj). (7.10)

We then consider a discrete probability distribution x = (x1, x2, . . . , xM) over the set
of hypotheses (the entire population). The problem of finding a coherent set of candidates
can be defined formally as finding a particular distribution in the standard simplex x ∈
∆M maximizing the average payoff xTΠx.

One possible solution to the problem employs an evolutionary process starting from
a uniform distribution x(0) and making it evolve through the well-known discrete-time
replicator dynamic [204]

x
(t+1)
i = x

(t)
i

(Πx(t))i

x(t)TΠx(t)
(7.11)

Equation (7.11) belongs to a class of evolutionary dynamics called Payoff-Monotonic
Dynamics that are guaranteed to converge to a solution x̂ in which the set of hypotheses
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with associated probability greater than 0 (namely the support of a population) cannot
include any strategy with mutual payoff equal to 0. In other words, the candidates with
associated non-zero probability in x̂ will only be the ones generated from different planes
and with the distance between the two axes greater than the sum of the two radii. As
a result, only the most consistent cylindrical model will emerge from the whole set of
candidates after the inlier selection process.

7.2.4 Averaging the Winning Candidates
At convergence, a probability distribution over the candidates ξ1 . . . ξM is obtained, but we
are still left with the problem of estimating the resulting cylinder parameters out of it. If
we just consider the support of the population, we might use the same approach of [171]
to just fit the cylinder axis line to the centers of the winning candidates. However, we
now have the chance to produce a better estimation by weighting the contribution of each
candidate considering the probability distribution x̂.

The estimation of the final cylinder ζ = (p,~v, r) is divided in two parts. The radius r
is estimated as the weighted average of the candidate radii (7.12)

r =
M∑
i=1

x̂iri (7.12)

where ri is the radius of ξi. Then, the axis (p,~v) is averaged using the same approach
of [20], posing the problem of 3D lines interpolation in terms of rigid motions blending.
The general approach is as following:

1. An initial axis estimate (p′, ~v′) is computed by linearly interpolating the axis point
p′ and direction ~v′ independently, according to the weights given in x̂

2. All the screw motions between (p′, ~v′) and the cylinder candidates ξ1 . . . ξM are
computed according to (7.2)

3. The screw motions are averaged using the Dual-quatertions Iterative Blending [97]
to obtain an average motion q∗

4. q∗ is applied to (p′, ~v′) to get the final cylinder axis.

7.2.5 Extracting Multiple Cylinders
The process described so far can extract only one cylinder at a time. To extract multiple
cylinders, the two operations are simply repeated by ensuring that the candidates resulting
from one run of the game theoretical process cannot be selected anymore. Specifically,
after the extraction of each cylinder, we manually modify the payoff matrix Π according
to the current population support.
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Figure 7.4: Angle, center and radius errors varying the number of randomly generated
planes. Each curve corresponds to a different surface coverage (the angle θ). Results are
shown for low (1st row) and high (2nd row) noise conditions.

Let k1, k2, . . . kh be the set of indices corresponding to the winning strategies. This
means that they are non-zero elements in the final distribution x̂ (ie. x̂K 6= 0 ∀K ∈
k1 . . . kh). The payoff matrix Π is then modified so that all rows and columns at indices
k1 . . . kh are set to zero (they are considered fully incompatible with any other candidate
in the population). After that, the initial population x0 is reset to the uniform distribution
and the inlier selection process (7.11) is run again until convergence. Since we are using
a payoff-monotonic dynamic, all the previous candidates indexed by k1 . . . kh cannot be
present again in the next set of winning candidates. The whole process is repeated until
all cylinders are extracted from the scene.
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7.3 Experimental Evaluation
In this section we present a set of experiments that we performed to assess the correctness
and robustness of the proposed technique in several situations. Since this approach is de-
signed to work with data coming from real scans, we tested it against both synthetic and
real-world data. The synthetic setup allows us to estimate the behaviour of our cylinder
fitting algorithm while adjusting some external factors such as noise levels, outlier quan-
tity and portion of acquired surface. Moreover, we used such controlled environment to
compare the proposed technique with other fitting approaches. Finally, at the end of this
section, we use real-world data to test the extraction ability in some real-world situations.

Synthetic generated data consist in a point cloud lying on a unitary-radius cylinder,
centred at the origin and with its axis parallel to the z-axis. Such points are perturbed
with two different types of noise: zero-mean Gaussian additive noise and salt and pepper
noise. The former is controlled by its standard deviation σ, while the latter is regulated
by p, that is the probability of a point to be an outlier, with σo (such that σo > σ) being
the outliers’ standard deviation. We also introduced an additional parameter θ, denoting
the angle underlying the portion of observed surface (when θ = 360◦ the cylinder surface
is complete). This parameter is used to simulate a range-map acquisition, since real data
usually include only a portion of the cylinder surface. We measured the algorithm preci-
sion in terms of three quantities, that are: radius relative error (in percentage), the angle
and relative distance between the fitted axis and the ground truth.

7.3.1 Sensitivity Analysis
One of the strengths of our approach is that it only depends on the number of slicing
planes used to generate axis candidates. In fact, other possible parameters (like RANSAC
thresholds for ellipse fitting) depend only on the scale and on the density of data and are
fixed at the beginning of the process. The number of random planes has a direct impact
on the algorithm’s performances, so in the first group of experiments we evaluated our
fitting approach varying the nature of the slicing planes against different kinds of data. In
particular, we are interested in analysing the effects of two factors: the number of planes
involved and their inclination with respect to the actual cylinder’s axis. Moreover, we
evaluated the robustness and the stability of the algorithm in different noise conditions
(low and high noise levels) and with several cylinder’s surface coverages.

In the first experiment we generated N planes with random inclination and position,
and run the inlier selection process on the same randomly-perturbed data increasing the
value N from 10 to 90. We used synthetically generated data as described before, testing
several coverage angles θ and simulating different noise conditions. In Figure 7.4 the error
values are plotted against the increasing number of slicing planes (on x-axis, from 10 to
90), each curve denotes a different surface coverage angle. We measured the axis angle
error (in degrees, first row), the axis translation error (second row) and the radius relative
error (third row). The first column displays the results in a low noise setup (σ = 0.005,
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σo = 0.01 and p = 0.1), while in the second column we show results obtained increasing
the outlier parameters (σo = 0.05 and p = 0.25). Each configuration was tested 10 times
and the error bars display the mean standard error.

As expected, a higher coverage angle implies a better ellipse fitting, producing a set
of more reliable axis candidates. For this reason, in the lower noise scenario, the fitting
precision increases for angles greater than 90◦ and become essentially the same for angles
larger than 135◦, where the curves overlap. In the case of high noise levels we have
basically the same behaviour: for greater values of θ we observe a very good cylinder
fitting, that is comparable to the low-noise scenario. For smaller angles (50◦ and 90◦)
the fitting can be improved by adding more planes, but still the axis inclination error
results the most critical parameter to resolve. Overall, we observe a slight improvement
when we slice the scene with a higher number of planes, but the choice of this parameter
does not result so critical in terms of fitting precision. The number of planes affects
the robustness of the proposed algorithm, and thus should be adjusted depending on the
features of the acquired scene. In the case of low or medium levels of noise we can
safely set the parameter N from 30 to 60 to obtain acceptable outcomes. The results
obtained on partially occluded surfaces are a good indication that, with a suitable number
of planes, the algorithm offers good results with typical scanner range data. Of course,
this parameter depends on the kind of application: if the point cloud contains several
cylindrical primitives the number of planes should be kept relatively high in order to
capture all the elements to extract.

In the previous experiments we generated several planes with a random center and nor-
mal in order to test the general case in which locations and orientations of the primitives
to be extracted are unknown. Nevertheless, there are scenarios in which an approximate
orientation of the objects to be detected is known. In such cases, it makes sense to exploit
such prior information to extract better candidates.

For this reason we analysed the performances of our algorithm varying planes incli-
nations with respect to the cylinder axis. We fixed the number of slicing planes to 20, and
σo = 0.05, with p = 0.1; then we performed two sets of experiments, for low (σ = 0.001)
and very high (σ = 0.1) levels of additive noise. After generating a randomly perturbed
cylinder, we run the fitting algorithm using planes with a random orientation which have
been restricted to a small interval (from 0◦ to 10◦, from 10◦ to 20◦ and so on). The ex-
periment was repeated 20 times for each configuration. In Figure 7.5 we show the three
measured errors (one for each row) as boxplots for each different plane orientation inter-
val. The first column displays results in the low noise setup, while the second column
the results for very noisy conditions. Note that the angle values of intervals refer to the
relative angle between the plane normal vector and the cylinder’s axis, so a small angle
implies the plane to be almost orthogonal to the cylinder’s axis. In practical terms, a larger
plane angle stretches out the ellipses to be fitted, increasing their eccentricity, while an
angle close to zero implies more circular sections. Results show that in both cases (low
and high noise) a larger angle improves the cylinder fitting precision, especially in terms
of axis localization (rotation and translation). This happens because the ellipse fitting
becomes less ambiguous in the case of higher eccentricity of sampled data, therefore the
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Low Noise High Noise

Figure 7.5: Fitting performances using planes at different inclinations, in the case of low
or high noise levels (respectively 1st and 2nd column). The error is splitted into axis angle,
center displacement and radius error. Each boxplot represents an orientation interval in
terms of angle between the cylinder axis and plane normals.

computation of major and minor axes is more accurate. In fact, if we sample noisy points
from a circle, a lot of ellipses with small eccentricity are equally acceptable results, but in
practice they make the axis fitting more unstable. Conversely, the cylinder’s radius is less
affected by the planes inclination, but still we can observe small improvements for higher
angles. This observation should be considered especially when extracting cylinders from
a scene where some prior on their position is known and a high precision is required, even
with noisy point clouds.

7.3.2 Comparisons
In the following set of experiments we focused on the performances of the proposed
algorithm when compared with other cylinder fitting techniques, analysing different noise
conditions. We generated the usual synthetic scene containing a unitary-radius cylinder to
be fitted, and we applied our method against the techniques proposed in [209] and [171].
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Figure 7.6: Angle, center and radius error means increasing the standard deviation of
additive, zero-mean Gaussian noise. We tested three different cylinder fitting technique,
each one denoted by a curve.

The first approach [209] consists in a sample consensus technique (MSAC) that also
needs point normals to estimate the best cylinder fitting from the given point cloud. If
vertex normals are not present, they are estimated by locally fitting a plane in the point’s
neighbourhood. We run such algorithm setting the maximum number of iterations equal to
5000 and the maximum inlier distance equal to 0.03. Conversely, the technique proposed
in [171] exploits fitted ellipses as cylinder sections: the cylinder’s axis is computed by
fitting a line through the centres and the final radius is the average of all radii values.
After that, the cylinder is refined by fitting through a non-linear optimization. To have fair
comparisons, we used the same extracted ellipses as input to both our and the described
techniques.

In the first test we gradually increased the standard deviation of additive Gaussian
noise (from 0.001 to 0.05) and run all the fitting algorithms on perturbed data using 20
slicing planes. Salt and pepper noise was set with σo = 0.04 and p = 0.3. Figure 7.6
shows in different curves the error values for each fitting technique, increasing the level
of noise (on x-axis). Each plot displays a different measured error, namely: (from left
to right) axis angle, centre displacement and percentage of radius error. As usual, the
bars denote standard error values and each experiment has been repeated 20 times. In
the case of axis angle error, the proposed game-theoretical inlier selection offers more
stable results and a better axis orientation precision with respect other approaches. When
comparing axis dislocation and radius errors, our method and the line fitting approach are
similar in terms of precision, while MSAC algorithm is always unstable. In general, the
proposed method exhibits more accurate results in the case of Gaussian additive noise.

In the following set of experiments we compared the fitting performances in the case
of different noise conditions. Figure 7.7 shows the behaviour of the three methods when
the salt and pepper noise increases in terms of outliers frequency (left column) and mag-
nitude (right column). We set σ = 0.001 and 20 random slicing planes, to measure the
different fitting errors as in the previous test (from top to bottom: axis angle, axis distance
and radius error). Data were perturbed 10 times for each configuration, and the error bars
show the standard error. The leftmost column shows the results with a fixed σo = 0.1,
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Figure 7.7: Angle, center and radius error means varying the salt and pepper noise param-
eters. In the first column the standard deviation σo of the outliers was gradually increased,
fixing outlier probability as p = 0.4. In the second column we increased the outlier prob-
ability p and keep σo = 0.1;. We tested three different cylinder fitting techniques, each
one denoted by a curve.

increasing the value of p (the probability of a point to be an outlier). In the rightmost
plots we fixed the outlier probability p = 0.4 and gradually increased the outliers stan-
dard deviation σo from 0.001 to 0.2. In both cases the proposed fitting algorithm exhibits
more accurate and stable results with respect to other techniques, even with a severe noise
component.

Finally, we simulated a typical scenario with a partially occluded object; indeed, this
situation is common in many applications, since most of the times the acquired data is a
range-map or a laser scan line. We run the fitting algorithms for increasing cylinder’s sur-
face coverage angle θ. Results are shown in Figure 7.8, where each plot denotes a different
error value, as in all the previous tests. Note that we displayed only our technique and the
line fitting approach because MSAC errors were so high to hinder a good visualization of
the first two. The additive Gaussian noise standard deviation was set to σ = 0.005, while
the salt and pepper noise was characterized by a standard deviation σo = 0.01 and an
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Figure 7.8: From left to right: angle, center and radius error means increasing the cylinder
coverage angle θ.

outlier probability p = 0.1. We also increased the number of slicing planes (40, with any
random inclination) to have more stable results. As we already noticed, the cylinder’s axis
angle is the most critical parameter to be computed: the leftmost plot of figure 7.8 shows
that the proposed algorithm offers a better axis estimation with respect to the simple line
fitting. In terms of axis dislocation and radius error, the proposed technique and the line
fitting offer similar results; in some cases the line fitting algorithm exhibits slightly better
results for angles smaller than 90◦.

In conclusion, we observed that in general the proposed inlier selection gives more
stable results and a better accuracy in terms of both axis and radius estimation. In some
cases the results are slightly better with respect to the simple line fitting approach, but
especially when we have situations with a large amount of outliers, the performances are
significantly improved, as displayed in Figure 7.7. We also observed that the axis angle is
the most critical element to be estimated, and our approach allows for the best set of can-
didates to be selected in order to filter out noisy data. The basic case of a single cylinder
scene allowed us to analyse the precision of the fitting algorithm in an independent way
from the primitive extraction ability, that will be addressed in the following part.

7.3.3 Real-world Experiments
In this experimental section we tested the multiple cylinder extraction capability of our
algorithm employing real scan data to evaluate the performances in real-world scenar-
ios. We adopted a well-known model dataset containing everyday items, that is the Yale-
CMU-Berkeley Object and Model Set [35]; specifically we used 3d scan data presented
in [34]. Such dataset includes scans of the objects from the Model Set, each one consist-
ing in coloured 3d vertices with no orientation. We selected a subset of cylindrical items
and composed them in several scenes from which some cylindrical primitives are to be
extracted.

In the first experiment we analysed the repeatability and accuracy of our method when
applied to real-world point clouds. We compared the proposed algorithm only with MSAC
approach, that allows the extraction of multiple primitives from a generic point cloud The
line fitting method [172] was excluded because it is designed to work with a single cylin-
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Figure 7.9: Left: an example of the generated scene with two scans of tomato soup object.
Red cylinders have been fitted by our method. Center and right: relative angle means of
the two fitted axes from the scene. The bars represent the standard error.

drical shape to be fitted, therefore its application in such scenario has no sense. Since
MSAC approach requires vertex normals, we computed them for each point by locally fit-
ting a plane on its 80 neighbours3. To extract multiple cylinders with MSAC approach, we
iteratively removed all points falling inside the region delimited by ±5% of the estimated
radius. Note that, while MSAC approach needs to run each time the input is modified,
our algorithm performs the ellipses fitting just once at the beginning, then the extraction
is performed by dynamically run the game-theoretical selection with a modified payoff
matrix (as explained in 7.2.5).

We choose one single object (”tomato soup”), with radius equal to 33 mm and height
equal to 101 mm. The point cloud contains 373,205 vertices; it has no outlier points
but the surface is quite thick, probably due to scanner rangemap registration errors. We
generated a simple scene containing two instances of the object, separated with a known
random translation. In Figure 7.9 an example of such scene is displayed, together with the
cylinders extracted by our algorithm (in red). Since the exact axis of the scanned object
is not known, we evaluated the accuracy of the algorithms measuring the relative angle
between the two estimated axes from the scene. Ideally, since the object was transformed
with a pure translation, such angle should be almost zero. Plots in figure 7.9 display
the relative angle values between the couple of extracted primitives using our technique
and MSAC. In the leftmost plot we simulated various point cloud densities (from 30%
to 100%) starting from the original scan; we plot the relative angle value against the
percentage of randomly sampled points (in x-axis). In this case we used 40 slicing planes
and we performed 4000 MSAC iterations, with minimum inlier distance equal to 2mm.
The experiment was repeated 20 times and the same uniformly sampled data was used as
input for both methods. In the rightmost plot of Figure 7.9 we simulated a partial scene
acquisition (as in a range-map), varying the minimum angle between a fixed point of
view and vertices normals. For this tests we removed all the points for which the relative
angle between the normal and a fixed direction vector is below an increasing threshold
(displayed on x-axis, note that min angle = 0 is the whole point cloud) and computed
the relative angle between the two axes. In this setup we used 50 planes and increased

3We empirically determined that this value gives good results without being too slow in processing.
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Figure 7.10: Qualitative examples obtained in different kinds of scenes, generated using
real scans data.

MSAC iterations up to 5000. The view vector was (0, 1, 0)T and each test was performed
20 times with a random subsampling equal to 0.8. For both experiments we observed that
our algorithm gave a more stable angle value ranging between 2 and 5 degrees, except for
point clouds that have higher occlusion (with a minimum angle greater than 65 degrees).
Moreover, the proposed approach is not influenced by variations in the data density. In
general MSAC approach exhibited a more unstable behaviour and a greater standard error.

Finally, we performed some qualitative tests in various conditions to show the output
of our algorithm in a general cluttered scene. Figure 7.10 displays a selection of gener-
ated point clouds with the extracted cylindrical shapes. We composed the leftmost scene
with objects of different radius and size: ”tomato soup” (radius 33 mm), ”Master Chef”
(radius 51 mm) and ”c cup” (radius 32.5 mm). We used 50 random planes to extract the
three cylinders and displayed the computed radii. Other configurations include objects
with random rotations and a scene with several cylindrical objects to be extracted (Figure
7.10, centre and right respectively). In particular, for the latter we employed 60 planes
and run 9 times the game-theoretical inlier selection.

Figure 7.11 shows two of the various scene that have been generated, with objects of
various shape. We sliced such scene with 60 planes to extract the cylindrical primitives,
that have been successfully localized with no further refinement. Experimental results
show the effectiveness of our extraction method in different cluster conditions, effectively
excluding other elements in the input point cloud.

7.4 Conclusions

In this Chapter we proposed a novel technique to extract multiple cylindrical primitives
from generic, non-oriented point clouds. The method combines two crucial elements: the
definition of an effective similarity function between couples of candidate cylinders based
on dual quaternion algebra, and a candidate extraction based on geometrical properties of
the scene. The game theoretical inlier selection exploits a specially designed payoff-
function among cylinder candidates and allows the method to be general enough to be
used without prior knowledge of the scene. Our approach exhibits a high robustness with
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Figure 7.11: Cylindrical primitives extracted ”in the wild” from two difference scenes.

respect to outliers, that makes it perfect to be applied in practical scenarios where a noisy
point cloud is acquired without normal vectors. Qualitative experiments show that the
proposed extraction method offers high flexibility in very heterogeneous and complex
scenes.



8
An Industrial Application:

Microscopic Surface
Reconstruction

Many practical applications of structured-light 3D reconstruction are targeted to indus-
trial scenarios. In fact, the flexibility and the different accuracy levels offered by such
techniques makes them easily adaptable in a number of applications with different pur-
poses. This Chapter presents a specialized application in the field of microscopic surface
measurement systems, with the focus on a specific case-of-study involving industrial gear-
wheel quality inspection. We employ an acquiring device setup composed by a fixed line
pattern projector and a telecentric camera, both mounted on a rigid structure. We studied
a new calibration approach employing a sphere with a known radius, observed in differ-
ent locations. Moreover, we formulated an axis calibration approach that allows to locate
the observed object orientation with respect to the imaging device, offering a convenient
reference frame to carry out relevant measurements.
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8.1 Introduction
Structured-light approaches allow the disambiguation of points on the scene to recover
their depth via triangulation. The projected pattern can be static (so that it is acquired
with a single shot) or mutable over time, involving multiple acquisitions for the same
scene configuration. A classical example of the latter approach is of course the already
described phase-shift method.

In the literature, fringe projection is widely employed in the context of microscopic
applications, where the acquired object features’ size are in the order of millimitres or mi-
crons. For instance, [25, 176] propose an object shape verification system using stereo
correspondences between the acquired scene and a CAD model of the same artefact.
Other works propose the use of phase-shift to perform microscopic profilometry [119]
or for specific applications like reconstruction of electrical components [120] or small
coins [126]. Even if phase shift offers high resolution and accuracy, it requires the ac-
quisition of multiple frames, with the burden of synchronizing projector and camera, that
is not always a feasible option. Other approaches avoid multiple acquisitions favouring
fixed patterns like random distributions [45] or binary and coloured codes [237].

Despite the selected approach, all the mentioned applications require an initial cali-
bration process. The aim is to assess the geometric relations between the imaging process
and the components that are part of the system. Such calibration has a direct impact on the
quality of the final reconstruction, particularly for industrial-related applications, where
the accuracy level needs to be defined up to a certain confidence.

Novel Contribution
In this Chapter we describe a structured-light case-study based on telecentric fringe pro-
jection profilometry for microscopic measurements. Specifically, we combined a telecen-
tric projector with a fixed stripes pattern (composed by equally spaced parallel lines) and
a telecentric camera. Both camera and projector imaging systems are not affected by dis-
tortion, producing an orthographic projection model.

The contributions are twofold: first we propose a novel calibration solution involving
the observation of a sphere with a known radius in different positions. The intersections of
the spherical surface with the parallel planes generated by the projector pattern originate
a series of ellipses on the camera image plane. We will show how such ellipses can
be used to geometrically compute the system parameters and obtain the correct scale by
fitting the 3D sphere. The second contribution of this Chapter consists in a specific case-
of-study where the described sensor is employed. Such configuration is in fact used to
acquire parts of the surface of industrial gearwheels, with the final aim of performing
some measurements along the object’s teeth. To perform such tasks the relative position
of the acquired object with respect to the camera reference frame needs to be known. For
this reason we propose a robust axis calibration that directly exploits some object features
and a pipeline that allows for accurate surface reconstruction and analysis.
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Figure 8.1: Schema of the acquisition device. Both projector and camera have telecentric
lenses.

8.2 System Configuration

The choice of a telecentric camera for this kind of application is driven by two main
reasons: first, they are characterized by a larger depth of field, second the projective
imaging model is orthographic and hence simpler to calibrate. In contrast, the classical
pinhole lenses offer a very narrow depth of field when used in microscopic applications,
that can be problematic during the acquisition process, specially if used in conjunction
with a projector.

An orthographic camera can be seen as a perspective one with its centre of projection
located at infinity [79]. In this way, the rays coming from the captured objects in the scene
intersect the image plane in an orthogonal way: this implies that the apparent object size
on the camera image plane is not affected by its depth. As a consequence, the size of each
pixel corresponds to a certain length in the real world, and therefore is straightforward
to measure distances along x and y axes. On the other hand, the depth computation and
reconstruction are more complicated.

A schematic configuration of the proposed acquisition system is shown in Figure 8.1.
The projector casts on the scene a fixed pattern consisting in a series of equally spaced
straight lines. As result of orthographic projection, such lines generate a group of equally
spaced parallel planes in 3D space orthogonal to the projector’s image plane. The planes
orientation with respect to the camera coordinate system nor their relative distance in
3D space (called stride) is known a priori. Indeed, the stride value depends on the 2D
distance of the lines on the projector’s image plane, but it is influenced by a multiplicative
unknown scale factor. Such scale depends on the combination of (i) the magnifying factor
characterizing the telecentric lens and (ii) the inclination of the projector’s focus plane
(adjustable via a simple mechanism), that needs to be aligned with the camera image
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Figure 8.2: Left: the parallel planes coming from the projector (not in the picture) and
the camera image plane. The normal vector n and the stride must be calibrated. Right:
the target sphere and its intersection with the projected planes. The parallel projection of
the intersection between sphere and plane is visualized as an ellipse on the camera image
plane.

plane to obtain a better depth of field.
The projected planes are also identical, therefore is not possible to distinguish their

absolute offset or numbering within the projector image plane. For this reason, we assume
to only recognize their relative order (i.e. which one comes before another) but not their
absolute index with respect to the first one.

8.2.1 Calibration Technique
In order to proceed with 3D reconstruction, some geometric parameters of the system
must be computed. We identify three elements that need to be estimated by the calibration
process (shown in Figure 8.2, left):

• the normal vector n of all the parallel planes with respect to the camera reference
frame;

• the stride, which is the distance between each couple of adjacent planes (measured
in camera pixels);

• the scale factor s between camera pixels and the real world (i.e. the pixel size in
millimetres).

During the calibration process, a sphere with a known radius r is placed in the ac-
quisition area of the device (with both camera and projector in focus) and an image is
captured.
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We assume that a subset of N parallel planes originated from the projector are cast on
the sphere’s surface. Their intersections with the sphere generates N circles in 3D space.
This set of circles exhibits some particular properties: (i) they are are coaxial since all
the slicing planes are parallel, and hence all their 3D centres lie on a line L in space. (ii)
the line joining the centres is also orthogonal with the planes (i.e. parallel to their normal
vector n). Such circles are partially visible on the sphere’s surface in correspondence of
the projected light stripes. When the sphere is acquired on the camera image plane, the N
circle arcs on the sphere surface are imaged as portions of 2D ellipses E1, ..., EN .

For each ellipse Ei with i = 1, ..., N , the planes normal vector n can be recovered
up to four equally possible configurations. The recovery of the normal vector n can be
converted into the computation of the orientation of axis L, that in turn corresponds to
the axis of the cylinder passing through the i-th circle. The camera image plane (which
normal vector is π = (0, 0, 1)T ) intersects such cylinder, originating the observed ellipse
Ei. Then, the ratio between the ellipse semi-major axis ai and the semi-minor axis bi is a
function of the angle θ between the normal n and π:

cos θ =
bi
ai
. (8.1)

Two possible axes orientations (up to a sign) can be computed, according to the fol-
lowing relation

θ = ± arccos ||bi||
||ai||

(8.2)

where ai and bi are vector representations of the major and the minor semi-axes of ellipse
Ei on the image plane. The angle θ is indeed the rotation amount to be applied to the im-
age plane normal π around the minor axis ai to obtain the orientation of n (corresponding
to the line L). In this way, each ellipse Ei generates two equally possible normal vectors
n′i and n′′i . Note that also −n′i and −n′′i are valid solutions but can be ignored in the
disambiguation process since they represent the same plane.

The 3D line L connecting all the circles’ centres is projected on the image plane as the
line l passing through the ellipses centres. The computation of the correct n exploits line
l to filter out the wrong plane normals, recalling that the required plane normal is parallel
to the axis L and that all normal vectors generated by the N ellipses must agree. Finally,
the stride (in pixels) is obtained by computing the relative distances between the adjacent
ellipses centres.

Once the stride and plane normal n are computed, the observed points belonging to
the sphere surface cut by the planes can be triangulated by intersecting the 3D planes with
the points observed on the image plane. Note that the geometry of the triangulated points
is correct, but their exact depth is not known, because the planes are not distinguishable
one from the other. This is indeed a fringe disambiguation problem, in fact the final
reconstruction is up to an unknown integer shift (k times the stride value) along the plane
normal direction.
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Figure 8.3: Image processing and inlier ellipses extraction. Top left: acquired image. Top
right: skeleton accumulator from which the connected components are extracted. Bottom
left: selected connected components and all fitted ellipses. Bottom right: inlier ellipses
used for system calibration.

The 3D points are then fitted to a sphere model to obtain the radius in camera pixels.
Since the sphere has a known radius, this value can be exploited to compute the scale
between pixels and millimetres.

In order to obtain a robust parameter estimation, the same sphere is moved and ac-
quired at different locations and the procedure is repeated for each acquisition. The final
parameters are computed by averaging the resulting values, excluding the acquisitions for
which the RMS of the distance between the fitted sphere and the associated 3D points is
above a threshold.

8.3 Calibration Process

In our tests we employed a camera-projector pair, both equipped with orthographic lenses.
The camera acquires greyscale images with a 12 Mpixels resolution, and we used a 0.05
mm thick line pattern on the projector. The devices were mounted on a solid structure with
a relative angle of approximately 45◦, in a way that the plane of focus for both camera
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Figure 8.4: Triangulated ellipse points and fitted 3D sphere. The points are coloured with
their distance from the sphere’s surface and then final RMS is 0.76 pixels.

and projector are aligned to a common area of interest. The sphere used for calibration is
a smooth ceramic object with a diameter of 8 mm and a declared surface tolerance of 0.7
microns.

After the acquisition, the resulting image is processed in order to extract (i) the sets
of 2D points corresponding to the projected lines hitting the sphere’s surface and (ii) the
parameters of each captured ellipse containing the observed arcs.

Figure 8.3 (top-left) shows an example of acquired shot. Some ellipses are out of fo-
cus but most of them are clearly recognizable and exhibit a high contrast on the sphere’s
surface. The points extraction task was performed applying a series of image filters: first,
five binary images were computed applying five different threshold levels to the original
image. Then, for each binary image, its skeletonization is computed, following the ap-
proach described in [113]. The skeleton results are joined into an image accumulator, that
is slightly dilated in order to join the isolated portions of each arc. Figure 8.3 (top-right)
shows the final accumulator: note that higher values correspond to the ellipses that need
to be extracted. Such accumulator is then filtered (values below a threshold are discarded)
and the connected component extracted from it. Figure 8.3 (bottom-left) displays the ex-
tracted connected components: most of then actually belong to the sphere surface and are
part of the ellipses that are to be extracted.

The second task to be addressed is ellipse fitting. An ellipse model is fitted against the
set of 2D points belonging to each connected component. We adopted a RANSAC-based
fitting algorithm, using the approach described in [75] and keeping only the primitives
exhibiting at least 80% inliers among the point data, setting an inlier tolerance of 2 pixels.
In this way all the extracted components that are not ellipses in the image are automat-
ically discarded. Figure 8.3 (bottom-left) shows the computed ellipses superimposed to
the extracted connected components. An additional inlier selection is then performed
over the set of ellipses by fitting a line through their centres and checking their relative
distance in pixels. The ellipses whose centers are not uniformly distributed along the line
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Figure 8.5: Final calibration values and their standard deviation. First row: plane normal
(azimuth and elevation in polar coordinates). Second row: sphere fitting, radius values
and fitting RMS.

are discarded: in Figure 8.3 (bottom-right) the inlier ellipses used to calibrate the system
are displayed.

Finally, the selected ellipses are used to compute the plane normal and the stride value
as described in the previous section. After that, the points belonging to the ellipses are
triangulated and used to fit a 3D sphere in a least-squares sense and to fix the pixel scale.
Figure 8.4 shows the triangulated points and the fitted sphere.

We performed 30 acquisitions of the same sphere in different positions with respect
to the camera. The multiple acquisitions allowed the assessment of the repeatability of
the proposed calibration method and the accuracy of acquired 3D points with respect to
the fitted sphere. In order to obtain a robust parameter estimation we also selected 22
observations exhibiting a final RMS on the fitted sphere surface below a 2px threshold.
Such acquisitions are finally averaged to obtain the final calibration parameters.

Barplots in Figure 8.5 (first row) show the estimated azimuth and elevation values of
the vector n expressed in polar coordinates. The second row shows the measured radii for
each acquisition and the RMS of distance of 3D points with respect to the fitted sphere
model. All the measured values have a good stability: the plane normal is estimated with a
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Figure 8.6: Left: acquisition setup. Right: gear coordinate system and the two cutting
planes used to perform the tooth profile analysis.

standard deviation in the order of 10−4 radians while the sphere radius exhibits a standard
deviation of 4.27 pixel camera. Considering that the computed scale s is 3.24 · 10−3

mm/px, the standard deviation is around 13 microns. The RMS over the sphere surface
ranges from 0.3 to 1.7 pixels, corresponding to 5 pixels on average.

8.4 Case-of-Study: Gearwheel Surface Analysis

This section presents a specific application of the described measuring system in an in-
dustrial setup. In particular, we are interested in acquiring the shape profile of the internal
gearwheel surface during the final steps of their production. Figure 8.6 (right) shows an
example of the specific kind of gears analysed in this application. These objects are em-
ployed in equipments of various fields (both industrial or not) and often the requirements
on the manufacturing precision is high, since the gear’s teeth need to perfectly fit the
shape of other components to provide the best energy transmission efficiency.

The adopted acquisition setup for gear measurements is the same described in the
previous calibration section (i.e. camera and projector with telecentric lenses) and it is
shown in Figure 8.6, left.

8.4.1 Acquisition and Image Processing

As we did for the calibration sphere, we established a sequence of image filters to be
applied to the acquired images so that the line pattern profiles are accurately extracted and
triangulated. In general, the gear surface appears as a semi-shiny material, characterized
by diffused micro-scratches that alter the light reflection and are captured as shown in
Figure 8.7, left. Surface roughness causes the line edges to be indented (clearly visible
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Figure 8.7: From left to right: original acquired image, after pre-processing filters, after
curve detection.

in Figure 8.7, left), and thus could possibly lead to a wrong median line extraction. The
pre-processing task has the purpose to uniform the projected stripes edges along their
direction and have a better extraction of the curves lying on the tooth surface.

The same scene is first acquired with five different camera exposure time. Different
exposures cause a blooming effect on the image, but assuming to acquire locally planar
areas the effect is symmetrical on both edges of the projected stripes, so it does not affect
the median curve extraction.

Each image is then processed applying the following filters:

• Contrast Limited Adaptive Histogram Equalization (CLAHE);

• morphological operators to reduce spikes;

• Bilateral filtering.

The result of image pre-processing task is shown in Figure 8.7, center. In the processed
image the edges of the projected lines appear more sharp and visible, thus their median
curve can be detected easily.

After the pre-processing task, the projected curves are extracted following a procedure
similar to the ellipse arc extraction on the sphere surface. For each image an adaptive
binary threshold is computed and the skeleton is extracted, then all skeletonizations are
joined in an accumulator which is appropriately filtered to obtain the final connected
components belonging to the desired curves. In figure 8.7 (right) the extracted connected
components are highlighted. For each connected component, a spline curve is fitted and
the adjacent curves are detected in order to number each subsequent plane. Finally the
fitted splines are triangulated to obtain a 3D point cloud.

8.4.2 Axis Calibration
During the gear examination process, different teeth surfaces are sequentially acquired
while the gear rotates around its axis. The object’s axis corresponds to the axis of the
cylinder in which the gear is inscribed. Such line in 3D space defines (up to an arbitrary
rotation around it) a reference system for the object itself, thus it is used to define the
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Figure 8.8: Gear axis calibration. Left: extracted points belonging to the cylinder surface.
Right: spherical axis accumulator, all directions but three collected zero inliers.

profiles we need to compute over the teeth surfaces. For this reason, to perform such
measurements, the first task consists in gear axis calibration. Figure 8.6 (right) describes
the gear reference system and highlights two cutting planes defined in such coordinates.
The two planes are respectively parallel to xy and xz planes and are used to produce the
required teeth profiles as intersections with the acquired surface. Since such planes are
defined in axis coordinate system, an accurate measurement is a direct consequence of a
precise localization of the described rotation axis. Thus, its position with respect to the
camera reference frame must be accurately calibrated.

The proposed calibration method assumes to work with circular gears, i.e. objects
that can be inscribed in a cylinder of known radius such that all the points on the exterior
part of the teeth belong to the cylinder’s surface. To perform axis calibration we first take
multiple acquisitions of the same tooth, applying each time a small rotation on the gear
spanning the space volume in which the object remains in focus. The final part of the
observed tooth belongs to the surface of the cylinder that we need to fit to recover its axis,
so such points are isolated and triangulated. Figure 8.8 (left) highlights the described
surface and the relative extracted curves in red. At the end of this process, we obtain a 3D
point cloud containing a set of points lying on the cylinder surface.

To compute the cylinder axis, we propose an approach divided into two steps: first, the
most plausible axis orientation is computed employing a spherical accumulator, then the
outliers points are excluded and the final orientation is refined through a robust technique,
fitting a cylinder model over acquired data.

The aim of the first step is to identify the best axis estimation over a discretized set
of directions. We define a semi-spherical accumulator containing 337 bins, uniformly
distributed over a unitary sphere surface. Each vector in this accumulator is interpreted
as the normal vector of an associated plane in 3D space. It is easy to verify that, as the
plane normal vector gets parallel to the cylinder axis, the projection of the 3D points on
such plane is more likely to fit a circle. In fact, in absence of noise, each cylinder section
orthogonal to its axis is a circle with the same cylinder radius.

For each vector the previously extracted points belonging to the cylinder surface are
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Figure 8.9: Final tooth reconstruction. Left: 3D curves from the triangulated splines.
Right: final surface after registration. In both plots the colour denotes the z coordinate to
highlight the curvature.

projected on the plane, obtaining a set of 2D points. Then a RANSAC-based approach
is applied to fit a circle with a known radius and the inlier points (within a tolerance)
are counted and associated to the corresponding accumulator element. The bin which
obtained more votes is considered the best orthogonal cutting plane, and thus its normal
vector is the best initial estimation for the axis orientation. Moreover, inlier points which
are coherent with the cylindrical model are selected and used in the refinement step. Fig-
ure 8.8 (right) shows the final accumulator values over the unitary sphere surface: most
bins exhibit almost zero inliers, while three elements are clearly close to the required
cylinder’s axis.

The second step in the axis calibration procedure involves the refinement of the cylin-
der axis. The first estimation obtained from the accumulator approach is used as initial
value in a non-linear optimization task, minimizing the sum of the squared distances of
each point from the axis. The result of such optimization is the final gear axis orientation.

8.4.3 Surface Reconstruction
The final teeth reconstruction is carried out by first triangulating the fitted splines (as in
Figure 8.7, after image pre-processing) detected on the image. Each spline is uniformly
resampled and intersected with the corresponding plane exiting the projector to generate
a 3D curve (Figure 8.9, left).

To obtain the complete surface, adjacent curves are then registered in order to compute
point-to-point correspondences between them. In details, each curve is first projected
on its containing plane, then point-to-point correspondences are assessed through ICP
(Iterative Closest Point) algorithm [27], allowing to compute the best rigid transformation
between each couple of curves. Each correspondence is then linearly interpolated to fill
the point cloud. After that, Delaunay 2D triangulation [44] is applied to join the 2D
points projections on the camera image plane and obtain a dense triangulated surface. An
example of the final triangulated surface is shown in Figure 8.9 (right).
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Figure 8.10: Right: tooth surface and fitted cylinder. Centre and right: surface together
with two intersecting cutting planes used to obtain the two profiles.

Tooth Measurements

Once the gear axis is properly calibrated and the surface is acquired, the tooth profile
measurements can be carried out by simply moving the 3D surface in the axis reference
frame. Figure 8.10 (left) shows the acquired data of a single tooth together with the
calibrated cylinder containing the gear. Then, two profile measures are performed by
intersecting the computed surface with two different planes defined in the axis coordinate
system. The intersecting planes are displayed in Figure 8.10: they are parallel to yz-plane
(centre) and xy-plane (right).

The acquisition is performed for different teeth on the same gear and the computed
profiles are compared and plotted in Figure 8.11.

Figure 8.11: Final comparison of teeth profiles obtained intersecting the surface with two
planes.
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8.5 Conclusions
In this Chapter we proposed a microscopic surface 3D acquisition and reconstruction,
with a specific industrial application involving gear’s teeth measurements and quality con-
trol. The described system is composed by a camera-projector pair, both characterized by
orthographic projection. We proposed a calibration process using a spherical object to
retrieve the geometrical characteristics of the system with a precision in the order of mi-
crons. Moreover, we propose a robust gear axis calibration that is used in junction with
the acquisition system to perform some profile measurements over the teeth’s surface.



9
A Cultural Heritage Application: the

Euporus Sundial

The sundial of Euporus was discovered in 1878 in the Circus of Aquileia (Italy), in an
unusual location: the centre of the horse race track. Some studies have tried to demon-
strate that Euporus sundial had been built for a more southern location then the one it was
found at, although no specific alternative positions have been suggested. This Chapter
first presents the workflow designed to fully 3D digitalize such artefact. The final recon-
struction offers an accuracy in the order of the millimetre and thus gives the opportunity
to analyse small details of its surface and to perform non-trivial measurements. Moreover,
we propose a mathematical approach to compute the object’s optimal working latitude as
well as the gnomon position and orientation. The algorithm is designed as an optimization
problem where the sundial’s inscriptions and the Sun positions during daytime are con-
sidered to obtain the optimal configuration. The complete 3D model of the object is used
to get all the geometrical information needed and to validate the results of computations.
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9.1 Introduction
Digitalisation and archiving play a fundamental role in cultural heritage field [137, 198].
Indeed, nowadays there are plenty of technological applications specifically designed to
support such tasks, allowing for fast and precise results which were usually obtained
through manual or analogue tools [146, 183]. In particular, 3D reconstruction offers a
wide range of opportunities in terms of recording artefacts geometry, opening new re-
search directions in terms of conservation, restoration and study [122, 158]. The reasons
behind such applications are several: digital libraries of high-resolution 3D models bring
to the creation of extensive archives, that can be available to a large audience of users,
both in research and public communities. Digitalisation also allows for restoration and
monitoring of artworks which are often exposed to atmospheric agents. In particular,
structured-light scanning techniques have already been employed in some cultural her-
itage applications, leading to optimal results [8, 9, 193].

This Chapter describes a practical case study showing how structured-light scanning
and phase-shift in particular can be applied in a specific cultural heritage application. We
explore two main aspects regarding the study of an ancient sundial: the employed digi-
talization method and the reverse engineering approach determining the gnomon’s shape
and working latitude. The first part of the Chapter deals with the 3D scanning process
preliminary to functional analysis of the sundial, and focuses on the methodological as-
pects of its high-resolution acquisition aimed at capturing the object’s geometry and all
the meaningful details of its inscription. For the first time a complete 3D digitisation is
attempted on this sundial, opening new possibilities in the analysis of its historical back-
ground and providing insights into the level of ancient knowledge of sundial design and
construction principles. The complete 3D model enables to perform many non-trivial
measurements without physically accessing the object, like the calculation of its overall
volume, the planarity of the dial top surface (which affects the shadow curves casted by
its gnomon) and the technique used to chisel the details of its inscriptions.

The second part of the Chapter presents the reverse engineering technique adopted
to reconstruct the original gnomon’s shape. This study first exploits the 3D model to
acquire precise measurements on the sundial’s surface and create a ”synthetic” model of
its inscriptions. Then an optimization process is carried out to simultaneously compute
the best gnomon configuration and the optimal working latitude of the sundial.

9.2 Artefact Characteristics
The National Archaeological Museum of Aquileia (Italy) hosts a rare type of Karst lime-
stone horizontal plane sundial (see Figure 9.1), known as the ”sundial of Euporus” from
the name of its donor, M. Anstitius Euporus, inscribed within the dial. This object per-
tains to the Vitruvian type called “plinthium sive lacunar” [109], that is an horizontal
slab surrounded by a frame, recalling the form of an overturned coffered ceiling [14]. The
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Figure 9.1: Left: Inscriptions on the top surface of the Euporus sundial. Right: 3D
acquisition of the sundial: on the left the structured light scanner mounted on a tripod.

instrument was likely engraved in the 2nd century AD and was discovered in 1878 in the
area of the Roman Circus of Aquileia, in centre of the horse race track [101], probably
not in its original position.

The artefact structure may be considered as resembling a 2 m long by 1 m wide table
(see Figure 9.1, right) placed on top of two ∼ 70 cm high cylindrical columns. The top
planar surface measures 100×206 cm, and it is surrounded by a∼ 10 cm frame extending
all around its rectangular shape.

On one half of the upper surface a set of inscriptions reveals its usage as sundial
(Figure 9.1, left), while on the opposite side of the plane there are three large cracks,
repaired in antiquity with three lead patches. Around the main table, on the left and
bottom side at a distance of about 30 cm, additional stone blocks are present probably
acting as benches.

In this work only the acquisition of the main table was performed, excluding the two
columns supporting the structure and the lateral benches. The digitisation was therefore
greatly simplified because, as explained in the following sections, the process consists in
multiple acquisitions of small partially-overlapping portions of the whole surface. Con-
sidering the geometrical constraints and self-occlusions of the specific object’s shape, the
acquisition of in-between the benches and the supporting columns with the same scan-
ning device would have been impractical. Moreover, the current positioning of all the
stone blocks around the main structure is not faithful with respect to the original posi-
tioning at a Roman age, so the acquisition of all such structure into a single model is not
relevant.

9.3 3D Acquisition Process
The sundial digitisation into a 3D model was accomplished using our custom 3D structured-
light scanner (see Chapter 6 for details). Such acquisition device enables to quickly and
efficiently modifying its features to one’s needs, moreover the complete (software and
hardware) device control allows an effortless reconfiguration of its optical characteristics
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Figure 9.2: Schematic representation of the performed 3D digitisation pipeline.

and the reconstruction of algorithms involved. During the process, the hardware config-
uration can be adapted to capture different areas of the scanned object at different levels
of precision and resolution. We employed multi-period phase shift technique and the un-
wrapping method described in Chapter 3. After the phase unwrapping step, the spatial 3D
position of each observed point is then obtained by triangulating the projector and camera
exiting rays, according to the recovered projector’s codes. Additionally, the signal ampli-
tude is used to get a high-resolution texture of the surface, i.e it captures the brightness
intensity variations of the acquired object surface like in a standard grayscale photograph.

Each scanner acquisition generates a surface composed of a set of connected triangles,
with their 3D vertices (the triangulated points) and the corresponding texture map coming
from the signal amplitude. This 3D surface is called range-map, which is conceptually
equivalent to a 3D photograph capturing both the optical and geometrical properties of
the surface from a specific point of view.

Considering the object shape and size, the 3D digitisation of the whole artefact can-
not be performed with a single acquisition. In fact, the area recorded by the scanner
is not large enough to cover the entire object at a reasonable resolution and the convex
nature of the object self-shadows the back side of each acquired area. The common pro-
cedure involves the acquisition of many overlapping portions of the object from different
points of view in order to collect a set of “3D surface patches”, corresponding to each ac-
quired range-map. In this way, the entire artefact can be recorded with a high resolution,
especially in the engraved sundial zone. The following section describes the specifically-
designed pipeline applied in order to obtain the final reconstruction.

9.3.1 Reconstruction Pipeline
For each different point of view, the scanner produces a high-resolution intensity image
(texture) and the 3D triangulated surface (range-map) defining the geometrical structure
of each observed point. After multiple acquisitions, a sequence of six subsequent opera-
tions was designed to reconstruct the final complete coloured surface. Figure 9.2 presents
a schematic sequence of the tasks performed during such pipeline. The main tasks are the
following: texture and range-map pre-cleaning, pairwise matching, view graph diffusion,
global registration and textured surface computation. In those operations supervision is
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Figure 9.3: Range-map and texture pre-cleaning step before (left) and after (right) apply-
ing the described filters.

almost unnecessary: user intervention is limited to the optional configuration of differ-
ent task-specific parameters. After data pre-processing, the most challenging part of the
pipeline consists in merging all the individual range-maps. This procedure is usually
referred as registration and it has been splitted in two main steps. First, a pair-wise regis-
tration operates on every range-map pair to find the best possible rotation and translation
that aligns the two of them. Second, all pairwise transformations are averaged into a
common consistent 3D space. The latter operation is called global registration, which is
the only semi-automatic part the pipeline presented, requiring a human intervention just
in its last refinement. Finally, the entire model is recovered by means of an automated
algorithm which computes the surface given the registered points and normals.

Texture and 3D Pre-cleaning
The first two tasks entail a preliminary cleaning phase, in which range-maps and textures
are processed independently to filter out noisy elements and improve the overall photo-
metric quality of data, which has a direct impact on the final reconstruction accuracy.
Regarding the range-maps, the initial cleaning process performs the following steps:

1. the triangles close to the range-map border are deleted;

2. all the connected components of the range-map are identified considering the topo-
logical connectivity of vertices induced by triangles (two vertices are adjacent if
they share at least one triangle). Then, such components are ordered by cardinality
and removed if the number of vertices is below a certain threshold (1000 vertices);

3. per-vertex surface normals are computed by averaging the orientation of each trian-
gle insisting on the same vertex.
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Figure 9.4: Example of image feature matching on two subsequent views. To simplify the
visualization, here a small subsample of the actually computed matches is displayed.

The combination of the aforementioned steps improves the quality of the range-maps,
which are typically prone to exhibit errors near the boundaries of the illuminated area. A
visual example of the effect of the range-map cleaning process is shown in the top row of
Figure 9.3.

For what concerns the acquired textures, we faced the problem of normalizing the
uneven illumination of the scanned area due to the relative angle and distance between
the light source and each surface point. Indeed, since the acquired texture is generated
from the amplitude of the projected sinusoid, it is related not only to the intrinsic surface
albedo but also to the actual light energy provided by the projector to each object point. In
other words, surface areas that are far away from the projector’s centre will appear darker
than the other ones, with a decay that is typically exponential with respect to the distance.
The same effect happens with the local surface angle, since slanted faces distribute the
received light energy to a relatively bigger area compared to the faces orthogonal to the
projector’s optical axis. The effect is visible in Figure 9.3 (bottom-left image). Since
the planar surface is angled, we observe an illumination gradient spanning the texture
extent from top (darker) to bottom (lighter). To correct this phenomenon, we normal-
ized each texture by means of an high-pass filter designed to remove the low-frequency
light variations and thus preserve the high-frequency details of the texture, which are in
our interests. This operation was performed with a non-linear top-hat operation using a
disc-shaped structuring element of size 51 × 51. In Figure 9.3 (bottom-right) we show
an example of resulting image texture after the correction. We can clearly see that now
the texture image shows a uniform shading along its extent, yet maintaining its salient
characteristics, such as inscriptions or surface marks.

When all the images have been processed, they can be put near each other (entirely
or partially) with no evidence of texture borders or abnormal changes in light. For this
reason, image normalisation represents a fundamental step in the pipeline presented, since
it allows for a natural range-maps fusion and a surface representation as accurate as pos-
sible.
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Figure 9.5: Left: the complete view graph. Each connected component is denoted by a
different colour. Centre and right: the registered range-maps (after diffusion) from the two
largest connected components. The yellow component (nodes from 41 to 55, connected
as a chain) forms part of the outer frame; while the blue one (from 1 to 25) connects all the
range-maps acquired in the engraved area. Each single view is displayed with a different
colour.

Pair-wise Registration

Given the feature-rich optical nature of the object surface, the pair-wise registration step
was implemented by matching relevant image feature points between every couple of
views. The approach proposed in [132] was followed to provide a set of point-to-point
correspondences between each couple of textures, exploiting well-known SIFT features.
An example of feature matching is shown in Figure 9.4, where the correspondences be-
tween two subsequent acquisitions are shown. It is easy to verify that the majority of such
matches is correct, as they connect the same points across different overlapping textures.

Each range-map assign a 3D point coordinate to each 2D point located on the texture
image, therefore the computed feature matching produces two sets of corresponding 3D
points in space. Since they were acquired separately, such point clouds belong to two inde-
pendent reference frames. Nevertheless, the correspondences can be used to compute the
relative transformation which allows to align the two range-maps. Such transformation is
a composition of a rotation and a translation, computed as described in [82]. Since some
possible matching errors would significantly affect the alignment precision, a RANSAC-
based algorithm was adopted, allowing to select the actual consistent 3D matches and
thus computing the best transformation between point clouds. The approach consists in
two tasks: first, the alignment is computed by randomly selecting a subset of data points
(in this case, 5 points is the minimum required to compute a 3D roto-translation); second,
the remaining points express a consensus vote to assess the precision of the computed
transformation [65].

The quality of the alignment is finally measured in terms of number of inliers, i.e.
couples of 3D points for which distance after the transformation is below a threshold (1
mm for this application). This technique ensured that each registration between couples of
range-maps had an acceptable level of precision. All the pairwise transformations which
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Figure 9.6: Global registration results after applying ICP algorithm. Each connected
component is visualized with a different colour.

exhibit at least 20 inlier points were considered valid to build the so-called view graph,
described in the next paragraph.

View-Graph Diffusion

After pairwise registration, a view graph is used to group together the computed transfor-
mations. The nodes represent the single acquired range-maps, while each edge connecting
two nodes denotes the computed transformation between such views. In other words, the
complete graph shows all the overlapping views of the object. Once the graph is built,
it is possible to identify some subsets of nodes which are internally linked to each other
by at least one path. Since an edge denotes a transformation between two views, each
connected component of the graph represents a group of overlapping range-maps that can
be merged to create a portion of the whole object.

In Figure 9.5 (left) the complete view graph is displayed: each connected component is
identified by a different colour. Within a connected component, different paths between
two views would result in two inconsistent transformations: this because the computed
transformations are still subject to small errors. In order to generate a consistent portion
of the object from each connected component, a state-of-the-art diffusion technique was
applied [210] allowing for the computation of a consistent set of transformation within
each group of connected views. This step also ensures the overall error minimisation for
each set. After the diffusion, the single range-maps belonging to a connected component
are merged to form a macro-section of the sundial. In Figure 9.5 (centre and right) the
merged range-maps coming from the two largest components are shown.

Global Registration and Surface Reconstruction

The global registration step involves the new range-maps coming from each connected
component of the graph. First, they are merged in the same scene and a first rough regis-
tration is performed in a semi-automatic way by manually selecting some correspondence
points. Then, to refine the alignment among all the sections, all the individual components



9.3. 3D Acquisition Process 129

Figure 9.7: Some views of the final coloured model after global registration and Poisson
surface reconstruction. Top: the whole scanned artefact. Bottom: details of the sundial
engraving.

are registered using ICP (Iterative Closest Point) algorithm [231]. Such technique is de-
signed to minimise the distance between two point clouds, and thus compute the best
alignment. One range-map is selected to be the target and each of its point is associated
with the closest point in the other cloud; then the transformation which reduces the overall
distance between closest points is computed and applied to the second range-map. Such
association and transformation is repeated until a required precision is reached. This ap-
proach was adopted only in this last phase because, unlike RANSAC, it would be more
sensitive to outliers (that we already filtered out through the graph). Moreover, it requires
a quite good initial alignment, which is infeasible to perform for each range-map pair.
The results of the global registration of the point clouds is shown in Figure 9.6, where
each connected component is depicted with different colour.

Starting from the registered point clouds, the final surface of the sundial was com-
puted. Since the acquired points in the range-maps come with their normal vectors, the
Screened Poisson Reconstruction method [100] was adopted. This algorithm exploits
points and their normals to obtain a closed watertight triangulated surface which interpo-
lates all the reconstructed points. The output is the set of coloured points and triangles
reconstructing the entire acquired object.

9.3.2 Reconstruction Results

Since the most relevant part of the sundial is the engraved zone, the acquisition process
was planned to capture such area with a higher accuracy level with respect to the rest.
Therefore, the acquisition of the whole artefact was performed in two separate sessions.
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First, the scanner was configured to acquire an area of approximately 50x40cm, at a dis-
tance of 150 cm in order to obtain a high-resolution reconstruction of the main inscriptions
of the sundial, exhibiting a thickness in the order of some millimetres. The second session
entailed a change of the scanner optics in order to acquire a wider area (approximately
150x200 cm) at a distance of 250 cm. This configuration allowed a good trade-off be-
tween the extent of the scanned area and the overall resolution of the acquired point cloud
to easily capture the entire artefact.

All acquired views were planned so that the overlapping portion of each range-map
with its successive was at least 1

3
of the total area. The scanner was moved around the

artefact to acquire the upper portion of the sundial in a single connected component and
the lower sides on another. In this way, the recorded surface was kept as parallel as
possible to the scanner image plane to ensure that all the points lie in the depth of field of
the scanner and ensure a sharp texture recovery.

During the first session 40 range-maps equally distributed on the left, right and top
side of the sundial were acquired. Among them, the first 25 were acquired at 30cm from
the surface and the last 15 at 45cm in order to help the global registration of each view.
During the second session, 45 range-maps were acquired all around the whole artefact
with the exception of an area positioned on the short side of the sundial due to the structure
of the sundial itself (placed on two large cylindrical marble supports and surrounded on
three sides by unremovable marble benches) that prevented the placement of the scanner
in a feasible position for appropriate recording. For each range-map, an average of 6.5
million triangles composed from ∼5 million 3D points were acquired. After the global
registration, each range-map was resampled with a variable number of points, based on
the number of views for each connected component. The goal was to obtain a roughly
uniform distribution of the 3D points among all the connected components. Finally, the
surface was created using the screened Poisson reconstruction technique with a tree depth
set to 11 and 3 samples per node. Figure 9.7 shows the model of the scanned artefact in
its entirety (top row) and some details of the sundial engraving (bottom row). The overall
resolution, in particular for the engraved portion, is high enough to allow the analysis not
only of the whole artefact, but also of the micro-furrows, scratches and unevenness of
surface.

9.4 Gnomon Reverse Engineering
After the description of the digitalization process for the entire artefact, we move the
discussion on the original purpose of the sundial. It is a common fact that, from ancient
times, sundials were manufactured with the purpose of measuring time exploiting the path
traced by the sun in the sky during the day. Usually sundials employ an object to cast a
shadow on a surface where some marks indicate the time or the current part of the day. In
particular, ancient sundials worked by dividing daylight time (i.e. from sunrise to sunset)
into equal parts. Daylight has a variable duration, depending on the day and the latitude,
so each ”time slot” does not have the same duration throughout the year. On the other
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Figure 9.8: Time slots displayed by the sundial, each one denotes an equal subdivision of
daylight. Solstice hyperbole and Equinox line are also highlighted.

hand in this way the sundial quadrant construction is made more easy and the system
does not need longitude correction, since it does not point the ”clock time” as we are used
today.

In this section we describe the optimization process specifically designed to recover
the original gnomon’s shape and inclination, together with the optimal latitude in which
the sundial should be used.

9.4.1 Model Acquisition

The initial phase of this study consisted in the identification of the salient points laying
on the sundial’s surface. The engraved part of the object is characterized by a circle
which contains the eleven segments used to mark the time during the day, together with
the base of the gnomon (see Figure 9.8). The time marks are not perfectly symmetric
with respect to the central line (the sixth), that corresponds to the south-north axis. The
segments’ endpoints are connected by two curves, which are the solstice hyperbole (blue
and yellow curves in Figure 9.8). Such curves indicate the path traced by the shadow of
the gnomon’s tip during two specific days in a year: the Winter and Summer solstices,
which are respectively days with the shortest and the longest light-time. The horizontal
line between the two hyperbole is the Equinox line, which is traced by the shadow during
two days, in Autumn and Spring (red line in Figure 9.8). During equinoxes, light and
night times have the same duration.

It is evident that a correct localization of the marks on the sundial’s plane implies a
more reliable and precise estimation of both the latitude and gnomon’s inclination. We
exploited the 3D reconstruction of the artefact for two main reasons: first, its precision
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Figure 9.9: On the left, the 3D points acquired from the scanned model; on the right, the
corresponding normalized 2D points used for optimization. All measures are displayed
in mm.

reaches the millimetre and thus offers an excellent point localization free from errors;
second, it allows the recovering of non-trivial measures, such as the object’s planarity.

We recovered the coordinates of 34 points in three-dimensional space, marking the
intersections between equinox and solstices curves with the 11 time marks of the day.
Figure 9.9 (left) shows a detail of the 3D model and the extracted points: three for each
time mark (in red) plus the gnomon’s base (in black).

The acquired points were normalized to a convenient reference frame. Specifically,
a plane was fitted such that the distances from each point to the plane are minimized.
Then, the world’s coordinate frame is moved on a geographical plane such that the y-
axis (coinciding with the sundial’s main axis) faces north, x-axis faces east and z-axis is
oriented upward. The applied transformations do not affect the final result; this because
the sundial’s axis must be aligned with the North-South axis to work properly.

The measured points are almost coplanar, in fact the maximum distance from the fitted
plane is 0.8mm. Considering this accuracy, we can assume the points to lay on the plane
(so that their z coordinate is zero) without loss of precision in the following computations.
The result of such normalization is shown in the rightmost part of Figure 9.9.

After the normalization, the point coordinates on the sundial’s plane (apart from the
gnomon’s base) are arranged in a 88-elements column vector:

V = (v1
1, v

1
2, . . . , v

1
11, v

2
1, . . . , v

2
11, v

3
1, . . . , v

3
11, v

4
1 . . . , v

4
11)T (9.1)

where each element vji is a 2-dimensional row vector which indicates the coordinates of a
point on the sundial’s plane corresponding to time mark i = 1, ..., 11 in the day j (equinox
or solstice). They are ordered as follows: Spring Equinox (v1

i ), Summer Solstice (v2
i ),

Autumn Equinox (v3
i ) and Winter solstice (v4

i ). Note that elements v1
i and v3

i are identical,
since the projections during the two equinoxes must correspond.
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9.4.2 Sun Position and Projection
In order to introduce the notation that will be used in the following parts, we define the
following sets:

• Y ⊂ Z: set of years. It is formed by integers such that negative values represent
BC years, and positive AD years.

• ∆: set of dates. Each element d ∈ ∆ indicates a day in the format (year, month,
day).

• T : set of timestamps. Each element t ∈ T encodes a date and a time, accurate up to
seconds. A timestamp can be interpreted as a sequence of values of the kind (year,
month, day, hour, minutes, seconds).

• L = [−90, 90]: set of latitudes (in degrees). Negative values indicate southern
latitudes.

We suppose to have a function which returns the Sun’s position given a latitude and a
timestamp:

S(t, l) : T × L→ S2 (9.2)

Where S2 is the set of 3D vectors belonging to the surface of a unitary sphere. The
result of such function is a unit vector which points at the Sun’s position during timestamp
t and latitude l. To compute the correct Sun’s position given a place, time and a date,
we used the open-source library Pvlib [199], implementing the Solar Position Algorithm
[173]. Such algorithm ensures a precision of ±0.0003 degrees between the years 2000
BC and 6000 AD.

We fixed the longitude value given to the algorithm in all the computations. This
choice has been made for two main reasons: first, as we already discussed, the sundial’s
marks do not indicate the ”clock” time, but the current fraction of light-time (which has
been equally splitted). For this reason we are only interested in the light time of each day,
and not in the real clock time as we were calibrating a clock. Given a place and a date
on Earth, we just need to compute the 12 time slots, without considering the so-called
apparent solar time. Consequently, we have no need of longitude corrections and thus our
formulation can be restricted to latitude only. Second, the geographic area involved in
the research is quite narrow in terms of longitude, but it exhibits a wider latitude range.
Considering that the optimal working location of the object is extremely sensitive to lati-
tude changes (especially for what concerns the hyperbole curves and equinox line), in this
application the longitude can be considered irrelevant.

Once the Sun’s position is determined, the projection of a generic 3D point on the
sundial’s plane has to be defined. This defines a projective system in which the Sun is
the centre, located at infinity, emitting parallel light rays to be projected on the sundial’s
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Figure 9.10: Left: punctual projection, with unknown gnomon configuration. This setup
is sufficient to estimate p2 coordinates as well as the optimal latitude. Right: presumed
gnomon configuration. Points p1 and p2 are projected on sundial’s plane, forming a seg-
ment.

plane. Therefore, the projection of any point into the sundial’s surface is obtained as a
parallel projection [79]. The resulting projection p′ of a 3D point p on a plane is computed
as follows:

p′ =
(

rT1
rT2

)(
p +
−p · n
n · s

s
)

(9.3)

where s is the vector pointing at Sun’s position computed as in (9.2), and n is a unitary
vector representing the normal direction of the plane (i.e. perpendicular to it) in which the

shadow is casted. Finally,

rT1
rT2
nT

 is the rotation matrix transforming the sundial’s plane

to our geographical plane. Note that we used the first two rows of the matrix so that the
final projected point is a 2D point.

From now on, we model the gnomon through its two junction points, characterizing
the shadow’s length and slope. The end of the vertical part will be identified as p1, while
the endpoint of the horizontal part is p2. Figure 9.10 displays a schematic representation
of the projection process. In particular, points and vectors involved in Equation 9.3 are
included (the apostrophe denotes the projection of the point).

9.4.3 Energy Function Minimization

Since the sundial works with 12 equally-spaced time slots during daylight (instead of
absolute solar time), we define a utility function H such that H(d, l) : ∆ × L → T 11.
Given a date d and a latitude l, such function computes the 11 timestamps which should
correspond to the marks on sundial’s plane. Note that each timestamp marks the transition
from one slot to the following one, as sketched in Figure 9.8. For example, the first mark
on the sundial denotes the end of the first slot and the beginning of the second, and so on.
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We estimate the sundial parameters so that the gnomon’s shadow is projected as close
as possible to the corresponding marks at the timestamps returned by function H .

We divided the operation in two independent tasks:

• the joint optimization of p2 and the latitude;

• the computation of p1 and thus the inclination of the gnomon.

This choice is driven by the following observations: the sundial’s working latitude is
only affected by the projection of point p2 during equinoxes and solstices. In fact, the
endpoint of the shadow casted by the gnomon must fall exactly on that specific curves in
four specific days in a year. In this terms, we can forget the gnomon’s shape and consider
only a punctual projection of p2 onto the plane (see Figure 9.10, left). During the four
relevant days that we mentioned, such projection must overlap with the corresponding
curve.

Once the point p2 is fixed, and hence the latitude is recovered, the shadow’s inclination
allows to guess a possible shape for the whole gnomon. In particular, we assume a single
joint in correspondence of point p1. This task could be affected by the thickness of the
stick, and requires an entirely different criterion to assess the correctness of the projection.

Latitude Optimization

For the sundial to work we need the shadow of the gnomon’s tip (identified as p2) to occur
in some predefined points during four days every year. Each of these days is associated
with a curve and, in turn, each curve is marked with eleven points (not equally spaced),
which identify the time slots in which the day has been divided.

Solstices and equinoxes days slightly change each year, thus we define a utility func-
tion D̂(y) which, given a year y, returns four dates from ∆ corresponding to equinoxes
and solstices. These dates are computed as follows: the Summer and Winter solstices are
the dates in which the daylight is respectively maximum and minimum (20-22 June and
20-23 December), while the two equinoxes are days in which daylight is equal to night
time (19-21 March and 21-24 September).

The function P (y, l,p2,n) computes a 88-elements column vector containing the pro-
jections of 3D point p2 at each of the 11 timestamps of each date in D̂(y). The structure
of vector P is analogue to V :

P (y, l, p2,n) = (q1
1,q

1
2, . . . ,q

1
11,q

2
1, . . . ,q

2
11,q

3
1, . . . ,q

3
11,q

4
1 . . . ,q

4
11)T (9.4)

in which each projection qij is a (transposed) 2D vector computed as in Eq.9.3 and de-
pends on the the plane normal n and the parameters defining the Sun’s position (latitude
and time). In an ideal configuration, the coordinates of the computed projections in P per-
fectly overlap with the sundial’s points in V . In practice the projection can not be perfect,
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so we aim to minimize the squared distance of all the projections from the corresponding
sundial’s points. Thus, we formulate the following non-linear least square problem:

(l∗,p∗2,n
∗) = argmin

l,p2,n

∑
y∈Y

(P − V )T (P − V ) (9.5)

where P is a shortcut for P (y, l, p2,n), which formulation involves non-linear terms,
depending on the Sun’s position. The set Y contains a list of years in which the solstices
and equinoxes dates are computed for the subsequent shadow optimization. With this
formulation we optimize simultaneously the latitude, the gnomon’s vertex and the normal
of the sundial’s plane in such a way that the sum of the distances from the casted shadows
to the target points is minimized.

Gnomon’s Inclination Optimization

In this second optimization, we keep fixed the coordinates of p2, the latitude and the plane
normal as the optimal values obtained in the previous task, so that the position of p1 has
an impact only on the shadow’s shape and inclination. Indeed, in this setup the role of
p1 is simply aesthetic because the oblique part of the gnomon projects a segment which
should be aligned with the eleven sundial’s marks to ease the time reading.

For this reason, the position of p1 is optimized such that its punctual projection falls
as close as possible to the line of the corresponding time mark, determined by the current
time slot. The only parameter we need to optimize in this case is the junction’s height,
since the original gnomon was supposed to rise vertically from its base. Thus, the coordi-
nates of point p1 are:

p1 = (x0, y0, h)T (9.6)

where (x0, y0) are the coordinates of the gnomon’s base (Figure 9.9, the black point) and
h is the elevation of the junction point.

Similarly to what we did for p2, we define a function P1(d, l,p1,n) that gives us the
eleven projections of point p1 during the day d at latitude l. Such projections are computed
in correspondence of the eleven timestamps that split the daylight of d into twelve equal
time slots.

P1(d, l,p1,n) = (q̂1, q̂2, . . . , q̂11)T (9.7)

where q̂i = (qi, 1)T . Note that, unlike the previous function P (that is computed for four
particular days of the year), P1 is defined for a single day, since we want the projection of
p1 to be close to the engraved segments during all days and not only during solstices and
equinoxes.

We also need to express the parameters of the eleven lines containing the segments
of the sundial. In a 2D Euclidean plane, a line can be denoted as ` = (a, b, c), involving
three parameters and a point (x, y) lies on such line if ` · (x, y, 1) = 0.
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Figure 9.11: Optimization results of latitude and point p2. The images show the pro-
jections of point p2 (red marks) during equinoxes and solstices of several years before
(left) and after (right) optimization. The rightmost configuration exhibits a better overlap
between projections and sundial’s lines intersections.

We collect these values in a 33-element vector r:

r =

(
`1

||`1||
,
`2

||`2||
, ...,

`11

||`11||

)T
(9.8)

such that `i = (ai, bi, ci) are the three parameters of the i-th line lying on the plane. Each
vector had also be normalized with its norm. Then, we minimize the squared distance of
such projections from the correspondent line engraved on the sundial’s surface.

The energy function to be minimized is the following

h∗ = argmin
h

∑
y∈Y

∑
d∈D(y)

(P1 · r)2. (9.9)

The optimization task is performed during a set of years Y , and we defined a set D(y)
which returns all the valid dates in a year y. Unlike the previous energy function, that
involves non-linear components deriving from the sun’s position, this function is linear
and thus can be optimized through least squares method.

9.5 Results
To have a robust estimation of the gnomon’s configuration and latitude, both optimization
tasks were performed over a set of several years. We chose a set of plausible years in
which the sundial were in use and optimized the configuration for that specific period.

The location of gnomon’s tip p2 and the latitude optimization (described in section
9.4.3) was performed computing all the solstices and equinoxes from 200 AD to 210
AD and minimizing the energy function (9.5). The Nelder-Mead simplex algorithm for
function optimization has been used, as described in [108]. Such method is a numerical
algorithm used in multidimensional optimization problems for which derivatives are not
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Figure 9.12: Energy values during the joint optimization of the latitude and p2. For each
iteration of the optimization algorithm (on x-axis) the energy value is displayed using
logarithmic scale.

known, like in our case in which the sun position function that is not derivable.

The initial latitude was set at 45.46◦ North (Aquileia latitude) and the gnomon’s end-
point was positioned in a plausible way such that its shadows fall close to the ideal sol-
stices and equinoxes points. The plane normal was also initialised as n = (0, 0, 1), that
is perfectly parallel with respect to the ground. The initial configuration is displayed in
Figure 9.11 (left), in which each red cross marks the shadow projected by the gnomon’s
endpoint during the selected days of the period.

The optimization took around 250 iterations to converge, with a maximum tolerance
over both the energy values and the optimized value equal to 10−5. The energy values
during the optimization process are shown in Figure 9.12 against the number of iterations
(in x-axis). To assess the process stability, we run several optimizations slightly chang-
ing the initial gnomon’s endpoint and we observed the same final configuration. After
the optimization, the optimal working latitude of the sundial was 44.019 N (in decimal
notation), while the endpoint of the gnomon was p2 = (23.8225,−0.0007, 50.1031). As
for the plane normal vector n, each test did not change its orientation, so that we kept the
sundial’s plane parallel to the ground. The qualitative result obtained after the optimiza-
tion is shown in Figure 9.11 (right): the shadows casted by the gnomon are now almost
coincident with the marks on the sundial, except in some cases.

Regarding the junction point p1, we optimized its height over all days of the selected
years. Since the function (9.9) is linear, we used the optimal latitude from the previous
process and analytically minimized it via linear least squares. The optimal value for p1’s
height resulted as h = 47.97. Figure 9.13 displays the results obtained with the complete
optimal configuration of the gnomon. The leftmost plot shows the set of shadows pro-
jected during the day respectively in: Winter solstice (in blue), Summer solstice (red) and
equinoxes (green). Note that the inclination of the projected segment is almost parallel
to the engraved lines and the top part of the shadows points at the two hyperbole and the
line.
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Figure 9.13: Final configuration results. Left: shadows projected during daylight time in
Winter solstice (blue), Autumn and Spring equinoxes (green) and Summer solstice (red).
Right: shadows projected during a whole year (every 10 days), in correspondence of the
eleven sundial’s time marks.

The rightmost plot shows the shadows (in red) projected during a whole year in cor-
respondence of the timestamps that denotes the change of timeslots in which each day is
divided. Note that the inclination of the shadows is almost always parallel to the sundial
segments, thanks to the optimization of p1.

Finally, a simulation of the shadow advancement over the day during a year was per-
formed. Figure 9.14 shows three rendered pictures with the computed gnomon and the
projected shadow during the summer solstice, winter solstice and equinoxes. The gnomon
shape and the latitude simulated in the rendering are the optimal values computed during
the optimization task.

9.6 Conclusions

The scanning of the Euporus sundial is the first step of a more in-depth analysis to be
undertaken on the artefact. The reconstruction provides a high quality 3D shape record

Figure 9.14: Digital rendering of the acquired sundial with the simulated gnomon as
computed in our optimization process. The sun position was set according to the optimal
latitude. Pictures show the casted shadow during (from left to right): summer solstice,
winter solstice and equinox.
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of the sundial’s surface with measurement accuracy to the millimetre level and serve as
a fine 3D representation that can be used for documentation, research and conservation
purposes.

Moreover, the 3D model supported a further analysis to determine the geographical
location for which the sundial was designed and shaped. In particular, a mathematical
analysis of the gnomon’s projection and the relative optimization process shown that the
optimal working latitude for this kind of configuration is indeed a southern location with
respect to the place where the object was discovered (lat 44.019 N, while Aquileia latitude
is 45.79 N). A plausible hypothesis is that the Euporus sundial inscription was copied from
another object designed for more southern latitudes, and perhaps some calculation errors
caused its slightly defective functioning in Aquileia area.



III
Future Works and Conclusions





10
Exploring Surface Detail Transfer

via Deep Learning

Almost all the 3D acquisition processes output an oriented point cloud on which a uniform
3D surface needs to be interpolated. Ideally, we would like to capture the object’s small
surface details together with its geometry, but non-uniformity of acquired data is still an
open issue for surface reconstruction algorithms. In this Chapter we propose a preliminary
work in the field of surface detail transfer employing learning techniques. Specifically,
we first propose a technique which exploits spectral analysis to effectively separate high
resolution areas of a surface from the zones exhibiting poor details. After that, a neural
network is trained to transfer the desired high frequencies from high resolution patches to
low resolution areas, allowing for a realistic surface reconstruction.
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10.1 Introduction
Previous chapters mainly focused on 3D acquisition methods and subsequent practical
applications, but three-dimensional data acquisition is only the first step for a complete
reconstruction. Usually when an object needs to be completely acquired, it is first ob-
served from different points of view so that the union of all the range-maps provides a
complete surface coverage. The process of joining all the views in a unique coherent
point cloud is called registration. Several algorithms perform this task, from the popular
ICP (Iterative Closest Point) [27, 50] to other approaches that exploit local 3D features to
assess matches between different views [177].

After registration, the final surface must be computed. Popular surface reconstruction
techniques compute the so-called implicit representation of the surface where the set of
acquired 3D points lies. Such representation consists in a function defined in 3D space
domain returning negative values for all the points contained inside the object’s volume,
positive values for external points and zero on the surface. A special case of the general
implicit function is the signed distance function (SDF), which returns the signed distance
from the surface.

In the literature, several approaches propose to estimate this function and to extract
the zero iso-surface to compute the final surface. Some methods require normal vectors
and employ Radial Basis Functions interpolation [36] or cast the reconstruction as a spa-
tial Poisson problem [99]. The latter proposes a heuristic technique to deal with data
non-uniformity, consisting in the estimation of local density to weight the corresponding
kernels accordingly. With the implicit representation, Marching Cubes [130] is often used
to discretize the 3D space in regular grid cells that are classified as inside or outside the
object’s surface, performing linear interpolation over the edges resulting in a (usually wa-
tertight) triangulated surface. Recently, Deep Learning approaches have been proposed to
perform the same task [124] but, despite promising, their spatial resolution is very limited.

In general, surface reconstruction methods suffer from a non-uniform data sampling
over the surface. Indeed, the acquisition itself and the subsequent registration process
cause the data to be unevenly distributed, generating a variable density over the surface to
be recovered. In those cases, surface reconstruction techniques are not able to accurately
represent the object geometry at smaller scales, since they tend to smooth out zones with
a low point density, implicitly losing the captured details. Moreover, marching cubes
algorithm has a fixed grid size, so the final reconstruction needs to balance a trade-off
between surface detail fidelity and time complexity.

In many cases the acquired object exhibits a characteristic surface pattern all over its
extent, but the non-uniformity of data causes the loss of such detail from the zones in
which it should have been recorded. In those cases the overall surface quality does not
correspond to the desired outcome, even having a prefect implicit function.

The Europus sundial presented in Chapter 9 is a classical example of this situation:
the density of acquired points is not uniform over its surface for two main reasons. First,
the final point cloud is denser and more detailed in correspondence of the engraved zone.
This was done on purpose, since inscriptions are the most salient details of the whole
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artefact, requiring a more accurate acquisition. Second, the object’s placement made im-
possible to evenly acquire the whole surface from some points of view, so we had a lower
resolution in the zones occluded by the benches. Moreover, even having a perfectly uni-
form acquisition all over the surface, the registration process creates inevitable overlaps,
causing non uniform data distribution. In that application we adopted the Poisson sur-
face reconstruction and, although we had satisfactory results, the detail loss is visible on
the final reconstruction. The low resolution areas result smoother and the high resolution
ones are in some way mitigated due to the need of the algorithm to interpolate the whole
point cloud and produce a good implicit function. The entire object is made from the
same material, so its real surface exhibits anywhere the same kind of ”roughness”, which
unfortunately is not entirely evident on the resulting surface. Ideally, we would like to
transfer the high frequencies contained in dense areas to the entire object’s surface, where
low resolution zones generated unrealistic smooth details.

The same issue is encountered in several fields like computer graphics, where there
is the need of generating realistic 3D surfaces by adding high-resolution details to simple
models in order to obtain the appearance of many materials. Other applications requiring
a surface-level editing while preserving the geometry of the object are free-form defor-
mation [188], fusion [94] or morphing [10].

The described task is well reported in the literature and addressed as detail transfer.
Several approaches have been proposed, some of them work in 2D domain and are applied
to images [129] or perform texture synthesis [69, 218]. Detail transfer on 3D surfaces is
also a widely explored topic: some technique propose a pure geometrical approach [195]
or learning-based methods [26]. Other similar approaches consist in surface completion,
i.e. closing surface holes observing the contextual information given by the rest of the sur-
face [147,191]. Recently, geometric deep learning have been proposed [31,144], offering
novel techniques to generalize CNN architectures in order to work in non-Euclidean do-
mains, such as graphs and manifolds.

In this Chapter we present a preliminary exploration in the field of surface detail trans-
fer using learning techniques. We are especially interested in cases similar to the sundial
example, in which we need to reconstruct objects exhibiting a specific surface pattern.
In the majority of the cases, the non-uniform data distribution over the surface and the
reconstruction process cause detail loss in low resolution areas, discarding valuable infor-
mation. The following study is divided in two main parts: first, the separation of surface
detail from geometry through spectral analysis is explored in order to identify which ar-
eas contain the features to be transferred over the rest of the surface. Second, we propose
a learning-based technique to transfer high-frequency details from denser zones of the
surface to sparse areas keeping the underlying geometric topology.

In both tasks we adopted a patch-wise approach, as commonly carried out in the liter-
ature. This choice is driven by two motivations: (i) detail patterns are locally recognizable
in small patches with no need to observe the whole surface, and (ii) the patch-based ap-
proach is more tractable in terms of time complexity and offers good scalability in the
case of large amounts of data.
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Figure 10.1: Different smoothing levels for the same acquired surface. From left to
right: original surface S0, after applying three times Laplacian filter S3, and the maxi-
mum smoothing level (in this case S8).

10.2 Separating Surface Detail from Topology
As we already discussed, the aim of this study is to transfer high-frequency details all
over the surface extent in order to obtain a final object reconstruction that is as realistic
as possible. The main target of the whole process is to accomplish such task so that the
underlying object topology stays unaltered and only the relevant details are isolated and
transferred in the appropriate patches.

To do so, we first need to define an automatic technique that allows to efficiently and
robustly distinguish the ”detailed” part of the surface from low resolution areas. Our pro-
posal is to apply several levels of smoothing to the acquired surface and then, for each
smoothness level, analyse the Fourier spectrum of extracted patches containing the dis-
placements of acquired points from the surface. The general idea behind this procedure
is to identify the appropriate smoothness level which efficiently separates the geometric
component of the surface from the details, that have to be isolated. Once such level is
established the displacement patches are extracted and processed by the detail transfer
technique that will be described in the next Section.

Let’s assume we acquired a point cloud P , resulting from a 3D scanning process as de-
scribed in the previous Chapters. Then, after applying some surface reconstruction tech-
nique, we obtain a surface S = (V, T ), composed by a set of vertices V interconnected
by a set of triangles T . Note that in general P 6= V , since the surface reconstruction
technique usually generates a new point set lying on the surface.

A smoothing filter (like surface Laplacian) is consecutively applied N times to S,
obtaining a sequence S0, S1, ..., SN of different surfaces. To obtain Si, with i = 1, ..., N
the smoothing filter is applied to surface Si−1, then normals are recomputed for the new
vertices and the process is repeated until the changes applied by the filter are not visible.
In particular, note that S0 = S is the original surface and SN represents the surface with
the maximum smoothing level. In Figure 10.1 three different levels of smoothing are
displayed. We produced a synthetic surface simulating a non-uniform sampling over the
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Figure 10.2: Displacement values for each vertex with respect of the maximum smoothed
surface S8. From left to right: S0 (the initial surface, exhibiting larger displacement
values), S3 and S7.

original point cloud, resulting in areas of different detail levels. We applied N = 8 times
Laplacian smoothing filter and display (from left to right): S0, S3 and S8.

For each smoothed surface Si = (Vi, Ti), its displacement values with respect to the
surface SN are computed. These values are obtained for each point in Vi by taking the
length of the segment joining each vertex and the surface SN along the direction defined
by its normal vector. In this way we obtain, for each surface Si, a displacement map
defined over all its vertices and representing the amount of shifting with respect to the
surface SN . Note that surface SN ideally captures only the topological structure of the
original surface, since the details have been removed by repeated smoothing filters. Fig-
ure 10.2 displays three displacement maps for surfaces S0, S3 and S7: as the surface
approaches the maximum smoothing level, the displacement values are smaller.

Assume we have a set of M local patches uniformly distributed over the surface, each
one characterized by a centre and a normal vector defining a tangent plane. Every patch
captures a small portion of the surface, and it is associated with a set of surface vertices
(and their incident triangles) for which the geodesic distance from the patch centre is
smaller than a radius r 1.

Each 3D patch can then be mapped onto its associate tangent plane (defined by the
normal vector) to obtain a 2D representation of its features. The vertices belonging to a
patch are first projected in the tangent plane, adjusting their position to preserve the cor-
rect geodesic distance with respect to the patch centre (along the same projected direction
on the planar surface).
For each smoothness level i = 0, ..., N − 1, the displacement values associated to patches
are projected on its tangent space, generating a sparse set of 2D points for each local
patch. Such displacement values are then interpolated over a regular grid to compute a
dense displacement map, that is an image representation of the local patch displacements.
In this way we obtain, for each smoothness level i, a set of M images containing the

1Note that, while the centres stay unchanged, the patches themselves change for different smoothing
levels and they are designed to partially overlap.
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Figure 10.3: Examples of image patches with displacement values coming from low (left)
and high (right) resolution zones of the surface.

surface displacement pattern of every extracted patch. In Figure 10.3 two examples of
128 × 128 image patches coming from low (left) and high (right) resolution areas of the
surface are displayed.

As already stated, we are particularly interested in analysing the frequency distribu-
tion over the surface patches as the smoothing level increases. Ideally, low frequencies
characterize the topological part of the surface, while high frequencies carry information
about the detail we would like to isolate. Our goal is to exploit the patch image frequen-
cies to identify an ideal smoothing that allows to separate the surface geometry from the
details.

To do so, the 2D Fourier transform is used to compute the spectrum magnitude for
each 2D patch image. Note that we are only interested in analysing the amount of low
and high frequencies contained in the patches, rather then the harmonics directions. For
this reason, we restrict our analysis to the omnidirectional spectrum of each patch. The
omnidirectional spectrum for a 2D image is obtained by fixing a number of frequency bins
(that can be viewed as concentric annuli) and accumulating the power spectrum values for
each bin, normalizing by the bin area. The result is a 1D spectrum with an intensity value
corresponding to each bin, with increased frequency. In this approach, the same spatial
frequencies (i.e. harmonics with the same period but different directions) are summed
together, making the final result totally independent from the patches orientations. The
M omnidirectional spectra of all the patches lying on the same surface Si are grouped
together, obtaining N sets of curves.

Figure 10.4 shows omnidirectional spectra for surfaces S0, S3 and S7: we used 18
frequency bins and plotted the logarithm of the power spectrum. Low and high resolution
patches are plotted with different colours in order to observe their behaviour at different
smoothing levels. We observe that, in general, in correspondence of higher frequencies
the two classes of patches tend to separate and group together.

This separation becomes less evident applying a higher smoothing, since the two
groups tend to gradually merge as the smoothing level increases. This is expected since
the patches extracted from denser areas contain more surface details (i.e. high frequen-
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Figure 10.4: Logarithm of omnidirectional spectra (using 18 bins) for all patches at
smoothing levels 0, 3 and 7. Each curve corresponds to the omnidirectional spectrum
of a patch. Low and high resolution patches are plotted respectively in blue and red.

cies) than the others, and the repeated smoothing filters cause a decreasing in high fre-
quencies. On the other hand, low frequencies in the spectrum represent the geometrical
component of the patches. In the leftmost plot we observe a small overlap in the low
frequencies area, while in the central and rightmost plots the two sets of curves tend to
increasingly overlap between bin 1 and 8. In particular, the curves at smoothing level 3
(central plot) exhibit a significant overlap in low frequencies (from 0 to 6), while main-
taining a good separation in the higher frequencies part.

This means that the observed patches at smoothing level 3 preserve the underlying
surface topology, but still exhibit different detail levels, as expected. This situation is
meaningful since we can exploit this property to (i) isolate low resolution patches and (ii)
transfer the detail contained in the high frequency part from the high resolution patches
to the others, without altering the object’s geometry.

The final objective of this process is to exploit the computed omnidirectional spectra
of image patches to automatically devise the correct smoothing level and thus character-
ize surface detail and separate it from topology. Once we hold this ”optimal” smoothed
surface, we can perform detail transfer.

10.3 Detail Transfer via Deep Learning
In this Section we propose a learning-based technique that is able to learn high frequency
details from high resolution patches and to properly transfer the same kind of roughness
to low resolution patches.

Assume we have formerly identified SD as the optimal surface capturing the object’s
topology, and thus having a partition over the patches separating detailed ones from low
resolution ones. Then, we compute for each patch a sparse and a dense image: sparse
data comes from displacements of original points P with respect to SD, while dense data
from the displacements of SD with respect to S0. The main idea is to feed a specifically
designed network with acquired sparse data and obtain dense patches as output, which
ideally ”filled” sparse data with the required level of detail.
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Figure 10.5: Dense and sparse patches generated from the optimal surface SD. The first
row shows the same high resolution patch, second row a low resolution patch.

Specifically, sparse patches contain the displacements of the original point cloud P
with respect to surface SD. Each point x in P is projected onto the closest point lying on
surface SD, and it is associated with its signed distance from the surface. The projected
points are then moved to the patch tangent plane as already described. Sparse patches are
originated directly from input data, thus they capture the original point cloud density over
the surface. Moreover, they are defined only in correspondence of projections, originating
sparse data. Figure 10.5 (left) displays two examples of sparse patches: from a detailed
area (high resolution, top) and a low resolution patch (bottom). On the other hand, dense
patches images are computed by taking the displacements of S0 with respect to SD, in the
same way we computed the displacement maps in the previous Section. The computed
values represent the amount of displacement to apply to vertices in S4 to meet the surface
S0. Such values are projected on the tangent plane and interpolated on a regular grid
to obtain dense images. Rightmost part of Figure 10.5 shows the dense version (with
high and low resolutions) of the two sparse patches in the leftmost part, highlighting the
difference between low and high resolution patches.

Our approach consists in using only high resolution patches to generate the training
data, simulating different (lower) sampling over sparse patches in such a way that they
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Figure 10.6: Example of patch contained in the test set. Leftmost picture is the ground
truth detailed patch. Following the network output with and without omnidirectional spec-
trum normalization. Rightmost plot shows the three spectra: the target values (black), the
output with (red) and without (blue) spectrum normalization.

resemble low resolution data. The expected output are then the detailed dense patches,
exhibiting a compatible omnidirectional spectra.

In this way, we can formulate the detail transfer as a particular depth completion prob-
lem. In the literature, depth completion is addressed as the task of recovering dense depth
maps from sparse data (for example, coming from LIDAR devices). Several learning ap-
proaches propose specifically designed neural networks which are able to process sparse
input data, provided with a validity mask. Sparsity invariant CNN [215] and its hierar-
chical multi-scale version HMS-Net [87] define sparsity invariant layers to perform this
task, exploiting a boolean validity mask given as input. Other approaches simulate differ-
ent densities in input images to train an encoder-decoder network and make it sparsity-
invariant [92] or employ classical image processing techniques [105].

In our approach we adopt an architecture similar to HMS-Net [87], but we define
an additional custom layer which normalizes the omnidirectional spectrum of the output
image. Input data are three-channel images, containing the sparse image patch, its validity
mask and a high-resolution dense patch used only as target for the output spectrum.

The proposed spectrum normalization layer takes the target image (thus with an ideal
spectrum) and the result of sparse net computation. Then, it normalizes the spectrum of
the final dense patch such that its omnidirectional spectrum has the same values of the
target image. To perform this operation, each frequency bin of the spectrum of predicted
image is uniformly scaled according to the ratio between the target and the input image
spectra, regardless the direction. In this way the predicted patch is not altered in its
pattern, but only the appropriated frequencies are enhanced, accordingly to the target
patch. Figure 10.6 shows the effect of omnidirectional spectrum normalization for an
image contained in the test set. The leftmost picture is the expected output (the ground
truth), while the two central patches represent the network output with and without the
normalization layer. It is evident that the former contains sharper details, being more
compatible with the target patch. The rightmost plot shows omnidirectional spectra for
the three displayed images: the target spectrum (black) is almost overlapped with the net
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Figure 10.7: Sparse low-resolution patch (left), dense patch used as target spectrum for
normalization layer (centre) and predicted dense patch (right).

output employing the additional normalization layer (red), while the result of basic sparse
net (blue) exhibit a different shape, having less low frequencies.

Figure 10.7 shows an example of detail generation applied to a low resolution patch.
Leftmost picture displays the sparse input points coming from a low detailed area of the
surface, the central patch is a high resolution dense patch (from the training set) used only
as spectrum target and the rightmost picture represents the final dense patch with added
high frequency details.

Finally, we applied the proposed transfer method to all sparse low-resolution patches,
employing images from the training set as targets for spectrum normalization. The set
of dense images predicted by the network are then applied to the correspondent surface
patches by applying the displacement values to the involved vertices of the original sur-
face S0. The surface with transferred details is shown in Figure 10.8 (right), where it is
compared to the original surface S0 (left).

Figure 10.8: Original surface (left) and after the application of patch displacements pre-
dicted by the network.
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10.4 Conclusions
This Chapter presents a preliminary investigation in the field of surface detail transfer
using deep learning techniques. The contribution of this work is twofold: first, an ap-
proach that exploits patches omnidirectional spectra to separate detailed from low resolu-
tion patches is presented. Second, a specifically designed network takes sparse input data
representing the displacements of the original point cloud and predicts the corresponding
dense patch, properly adding high frequency details. The proposed network uses a custom
layer that is able to normalize the omnidirectional spectra of the processed patch, making
it compatible with the high resolution areas of the surface. A further investigation step
on the topic could be taken in the direction of geometric deep learning, applying such
paradigm directly to 3D data instead of working with planar patches.
The qualitative preliminary results presented throughout this Chapter show good hints
about the method’s potentialities and represent a promising starting point for a further
formalization and analysis.
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Conclusions

In this thesis we discussed 3D reconstruction techniques and in particular structured-light
methods. The main purpose of the thesis is in fact to present novel contributions for phase
unwrapping algorithms and correction techniques for phase shift method. Moreover, some
practical applications which benefit from the usage of the proposed techniques have been
introduced.

Chapter 3 proposed a novel phase unwrapping approach that considers intrinsic signal
properties and casts absolute phase computation into a probabilistic framework. Code
recovery can be used in conjunction with our probabilistic phase unwrapping method
exploiting likelihood function peaks or be applied to any fringe-based techniques inde-
pendently of the unwrapping algorithm, as shown in Chapter 5. Finally, a phase cor-
rection method was proposed in Chapter 4 allowing to fix phase measurements that are
corrupted by non-uniform albedo in the acquired surface. In all cases, experimental re-
sults confirmed the theoretical assumptions on acquired signal and also exhibit overall
improvements with respect to several state-of-the-art techniques.

The second part of the Thesis is devoted to present a set of practical applications re-
lated to 3D reconstruction. In Chapter 6 we proposed a practical calibration technique
working with structured-light scanner composed by a camera-projector pair, while Chap-
ters 7 and 8 are devoted to industrial applications. We presented a robust cylinder ex-
traction technique working with non-oriented point clouds and a micrometric surface
reconstruction using a tailored structured-light approach. A different practical applica-
tion is presented in Chapter 9, where the scanning process of an archaeological artefact
is presented. The acquired 3D model is then used to devise relevant information about
its functioning during Roman times. Finally, Chapter 10 described a preliminary explo-
ration in the field of surface detail transfer using learning techniques. Preliminary results
shown in this Chapter are promising and will be the base of a subsequent formalization
and improvement in this topic.

Overall, the topics covered by the thesis offer some good examples on how 3D data
can be successfully exploited in heterogeneous fields and with different goals in mind.
Each single application presented in the thesis has its own distinctive objective, that are
precise measurements, accurate parameter estimation or realistic surface reconstruction.
In all of these cases we proposed a reconstruction approach which is able to satisfy specific
needs, depending on the desired outcome.
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[11] AMIR, Y. M., AND THÖRNBERG, B. High precision laser scanning of metallic
surfaces.

[12] AN, Y., HYUN, J.-S., AND ZHANG, S. Pixel-wise absolute phase unwrapping us-
ing geometric constraints of structured light system. Optics express 24, 16 (2016),
18445–18459.

[13] AN, Y., AND ZHANG, S. Three-dimensional absolute shape measurement by com-
bining binary statistical pattern matching with phase-shifting methods. Applied
optics 56, 19 (2017), 5418–5426.

[14] AUBER, P. A. L’orologio solare orizzontale del circo di aquileia (ii sec. d.c.). il
“plintio di euporus”. prima parte. Atti dell’Istituto Veneto di Scienze, Lettere ed
Arti, Classe di scienze fisiche, matematiche e naturali CLXIII (2004-2005) 231-
298.

[15] BAY, H., ESS, A., TUYTELAARS, T., AND VAN GOOL, L. Speeded-up robust
features (surf). Computer vision and image understanding 110, 3 (2008), 346–
359.

[16] BELL, T., XU, J., AND ZHANG, S. Method for out-of-focus camera calibration.
Applied optics 55, 9 (2016), 2346–2352.



156 Bibliography

[17] BERALDIN, J.-A., PICARD, M., EL-HAKIM, S. F., GODIN, G., VALZANO, V.,
AND BANDIERA, A. Combining 3d technologies for cultural heritage interpre-
tation and entertainment. In Videometrics VIII (2005), vol. 5665, International
Society for Optics and Photonics, p. 56650C.

[18] BERGAMASCO, F., ALBARELLI, A., COSMO, L., RODOLA, E., AND

TORSELLO, A. An accurate and robust artificial marker based on cyclic codes.
PAMI 38, 12 (2016), 2359–2373.

[19] BERGAMASCO, F., ALBARELLI, A., COSMO, L., TORSELLO, A., RODOLÀ, E.,
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