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Abstract 

This research focuses on the analysis, from a game theoretical perspective, of International 

environmental agreements in the presence of adaptation. Despite its private good nature, adaptation 

plays a crucial role in climate agreements negotiation because of its strategic relation with mitigation. 

For this reason, it is very important to include both strategies in IEAs modeling. 

The dissertation is a collection of three papers which expand the existing literature on IEAs in 

different directions: 1) the standard mitigation-adaptation game (M+A-Game) is analysed in a 

Stackelberg scenario; 2) the strategic relation between mitigation and adaptation and its effect on 

climate negotiation is analysed assuming that mitigation, attenuating climate change damages, can 

also affect the effectiveness of adaptation; 3) the existing theoretical results are tested through an 

Integrated Assessment Model (IAM) application. 

The strategic relation between mitigation and adaptation, the effect of adaptation on mitigation 

strategies and on negotiation’s outcome are analysed. Successful climate cooperation requires both 

large stable coalitions and high welfare improvements with respect to non-cooperation. The paradox 

of cooperation persists in most of the game configurations considered. Optimistic results arise only 

in a situation in which strategic complementarity holds both in mitigation and mitigation-adaptation 

space.  



  



 

 

Abstract (Italiano) 

L’obiettivo di questa ricerca è analizzare, applicando la teoria dei giochi, la formazione di accordi 

internazionali sul clima in presenza di adattamento. Nonostante la natura di bene privato 

dell’adattamento, il suo ruolo è fondamentale nell’ambito della negoziazione climatica per via della 

interdipendenza strategica con la mitigazione. Per questo motivo, è molto importante includere 

entrambe le strategie nella modellizzazione di accordi internazionali sul clima. 

La tesi è composta da tre articoli che espandono lo stato dell’arte della letteratura sugli accordi 

internazionali sul clima in queste direzioni: 1) il gioco con mitigazione e adattamento (M+A-Game) 

è analizzato in un contesto di Stackelberg leadership; 2) la relazione strategica tra mitigazione e 

adattamento e le conseguenze sulla negoziazione climatica sono analizzate assumendo che la 

mitigazione, limitando gli impatti ambientali futuri, è in grado di influenzare l’efficacia 

dell’adattamento; 3) i risultati teorici esistenti sono testati attraverso l’applicazione di un Integrated 

Assessment Model (IAM). 

Il focus dell’analisi è sulla relazione strategica tre mitigazione e adattamento, sull’effetto 

dell’adattamento sulle strategie di mitigazione e sul risultato della negoziazione Il successo della 

cooperazione climatica richiede un’ampia partecipazione che porti a sostanziali miglioramenti nel 

benessere sociale rispetto ad una situazione non cooperativa. Il paradosso della cooperazione persiste 

nelle molteplici configurazioni analizzate, e solo in una situazione in cui sia le strategie di mitigazione 

sia mitigazione e adattamento sono complementi strategici le previsioni sui risultati della 

negoziazione sono ottimiste.  
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EXECUTIVE SUMMARY 

Public debate on climate change and on the need for immediate and effective solutions is becoming 

increasingly central. International negotiations for the reduction of greenhouse gas (GHG) emissions, 

within the annual UNFCCC Conferences of Parties (COPs), are attracting the interest of medias and 

public opinion. Despite the increasing pressures for the implementation of effective measures against 

climate change, and despite decades of negotiations, the solution still appears far and difficult to 

achieve. 

To support and explain the reasons behind climate negotiation failures, economic science applies a 

game theoretical approach to model International Environmental Agreements (IEAs) games. Starting 

from the early 90’s, IEAs games have largely explained the obstacles to the formation of a large and 

effective agreement. The first strand of this literature has modeled climate negotiation considering 

only mitigation, i.e., the reduction of GHG emissions to limit future climate change, while omitting 

the possibility for players to implement adaptation, i.e., measures that combat and reduce the impacts 

of climate change. The reason behind this modeling choice is that mitigation represents the objective 

of cooperation: it is a public good which generates a positive externality. With cooperation, members 

of the coalition internalize the positive externality and provide the optimal abatement level. These 

models have widely shown the difficulties in reaching an effective agreement. This result is known 

as the paradox of cooperation: stable coalitions for the reduction of GHG emissions are either small 

or, if large participation is achieved, it only brings small welfare improvements from non-cooperation. 

Hence, cooperation is reached only when it is least needed. 

Over the last decade, a new strand of IEAs games literature has emerged. In addition to mitigation, 

adaptation is introduced as a policy strategy to combat climate change. Despite its private good nature, 

adaptation plays a crucial role in climate agreements negotiation because of its strategic relation with 

mitigation. The few existing models of IEAs in the presence of adaptation find optimistic conclusions 

in terms of cooperation. After the introduction of adaptation, players’ mitigation strategies can 
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become strategic complements. If the strategic relation between adaptation and mitigation is strong 

enough, mitigation strategies are no longer substitutes. This fact neutralizes the leakage effect, 

reduces free riding incentives and increases participation. 

This work has the intent of further exploring IEAs in the presence of adaptation. On the one hand it 

aims to extend existing theoretical results, on the other hand these results are tested through an 

application of an Integrated Assessment Model (IAM). 

With the standard game theoretic approach, the analyses performed in a pure mitigation context are 

conducted in a game considering both mitigation and adaptation. The paradox of cooperation is tested 

both in a Nash-Cournot and in a Stackelberg scenario. Furthermore, the strategic relation between 

mitigation and adaptation is further analysed considering conditions that could lead to strategic 

complementarity between these two policy options. 

With an Integrated assessment approach, the existing theoretical results are tested considering real 

aggregate data on 6 different macro regions. Strategic interactions and coalition stability are analysed 

in a complex and asymmetric context. 

The dissertation is a collection of three papers (chapters) which expand the existing literature on IEAs 

in different directions: 1) the standard mitigation-adaptation game (M+A-Game) is analysed in a 

Stackelberg scenario; 2) the strategic relation between mitigation and adaptation and its effect on 

climate negotiation is analysed assuming that mitigation, attenuating climate change damages, can 

also affect the effectiveness of adaptation; 3) the existing theoretical results are tested through an 

integrated assessment model application. 

The first Chapter is a paper co-authored with Professor Michael Finus. It analyses whether and how 

Stackelberg leadership of signatories affects the formation of stable climate agreements in a 

mitigation (M-) and in a mitigation-adaptation (M+A-) game with symmetric players. Larger 

coalitions are obtained when mitigation reaction functions are downward sloping (always the case in 
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the M-Game, and one possibility in the M+A-Game). However, wide participation only leads to low 

welfare improvements. When mitigation reaction functions are upward sloping (only possible in the 

M+A-Game), Stackelberg leadership turns to be an obstacle for cooperation. Stackelberg leadership 

is not able to improve upon the Nash-Cournot scenario, and the paradox of cooperation is persisting 

also in the M+A-Game. 

Chapter two is a paper co-authored with Professor Francesco Bosello. It considers a standard IEAs 

game with symmetrical players and assumes a double mitigation-adaptation relation. The common 

assumption that higher mitigation decreases the marginal benefit of adaptation and vice versa is 

enriched allowing for the possibility that mitigation, leading to lower and more manageable damages, 

determines a greater effectiveness of adaptive measures. With the additional assumption, 

complementarity between mitigation and adaptation is possible. Upward sloping mitigation reaction 

functions are less likely to occur, but still possible and, if this is the case, the grand coalition can form. 

Nonetheless, large participation can induce substantive welfare gains, avoiding the paradox of 

cooperation, only if adaptation and mitigation are strategic complements. 

In the third and last chapter, an updated version of the RICE model is applied to test the main 

theoretical results on the introduction of adaptation in IEAs. Adaptation and mitigation are found to 

be strategic substitutes and, after the introduction of adaptation, individual mitigation (emissions) 

levels can be complements. Adaptation also favours cooperation, but it does not lead to large 

participation. While in the M-Game no internally stable coalitions form, the M+A-Game leads to 2-

players (out of 6) internally stable coalitions. Allowing for optimal transfers between coalition 

members, in both games full cooperation is achieved. However, the positive effect of adaptation on 

coalition stability can still be found looking at free riding incentives. Adaptation reduces (or 

eliminate) the leakage effect and weakens the incentives to deviate from the agreement. 

Further extensions are possible, and already scheduled for future research work, both from a game 

theoretic and an integrated assessment perspective. The standard adaptation-mitigation game can be 
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analysed by assuming that adaptation is chosen before mitigation to test the strategic role of 

anticipatory adaptation. For what concerns the IAM part, the last chapter of this dissertation still 

requires additional work to lead to more robust results. Furthermore, IAMs could be also applied to 

test the theoretical results of the first two papers of this dissertation. Stackelberg leadership and more 

complex adaptation-mitigation interconnections can be modeled to see their effects in presence of 

asymmetries and intertemporal maximization processes.



 

 

CHAPTER ONE 

The (Un)importance of Stackelberg Leadership for the Formation of 

(Un)successful International Climate Agreements* 

 

 

Abstract 

We analyze in a simple game-theoretic model whether and how Stackelberg leadership of signatories 

affects the formation of stable climate agreements in a mitigation (M-Game) and in a mitigation-

adaptation game with symmetric players. We show generally that stable coalitions are larger under 

the Stackelberg scenario than under the Nash-Cournot scenario in the M-Game and in the M+A-

Game if reaction functions in mitigation space are downward sloping. In the M+A-Game, if reaction 

functions are upward sloping, this relation is reversed. In order to evaluate outcomes, we contrast 

the total potential gains from cooperation with the gains achieved by stable coalitions. This allows 

testing for Barrett’s paradox of cooperation as established for the M-Game in Barrett (1994), and 

later reiterated by many others: stable coalitions are either small or if they are large, the potential 

gains from cooperation are small. We show that this paradox generally carries over to the M+A-

Game under the Stackelberg scenario. This is also true in the M+A-Game under the Nash-Cournot 

assumption, except if, apart from upward sloping reaction functions in mitigation space, mitigation 

and adaptation are complements and not as commonly assumed substitutes. Thus, our results neither 

support the expectation that Stackelberg leadership nor the inclusion of adaptation in climate change 

negotiations as emerges from Bayramoglu et al. (2018) will cut through the Gordon node of 

unsuccessful climate agreements. 

 

Keywords: Climate change, mitigation-adaptation game, international environmental agreements, 

Stackelberg leadership 

 

 

* This paper, co-authored with Professor Michael Finus, is submitted, and under revision, in The Journal 

of Environmental Economics and Management (JEEM).  
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1. Introduction 

Mitigation and adaptation are two strategies to combat climate change. Mitigation directly targets the 

cause of the problem, reducing greenhouse gases emissions, causing global warming. Instead, 

adaptation aims at ameliorating the negative consequence of global warming. Whereas mitigation is 

typically viewed as a pure public good, adaptation is seen as a private good (reducing only damages 

of the party conducting adaptation). Addressing global warming requires international cooperation: 

isolated actions will not make a big difference if other countries do not follow suit. However, the 

signature and ratification of effective international climate agreements have proved to be difficult in 

the past. There is a widespread consensus that the Kyoto Protocol has not been able to curb the 

increase of greenhouse gases in the past, and also most scholars have doubts about the effectiveness 

of the Paris Accord signed in 2015 as highlighted by the latest IPCC 1.5 degrees report (IPCC 2018). 

As the effects of global warming become more and more visible, adaptation becomes increasingly 

important as a policy option. This is not only evident by the increasing literature on the costs and 

effectiveness of adaptation as well as about the practical and technical obstacles of implementation, 

in particular, in developing countries (IEG 2013 and World Bank 2010), but adaptation is also an 

integral part of almost all recent climate change negotiations (UNFCCC 2014 and 2016). The main 

obstacle of addressing the cause of global warming is the public good nature of mitigation. Reducing 

emissions comes at a cost that is borne by individual countries, but the benefits are enjoyed by all 

countries worldwide. This free-rider incentive structure is certainly amplified by policy makers’ 

myopia, focusing on the short-term cost of mitigation and discounting the future benefits of reduced 

climate damages. 

International climate negotiation failures have been largely explained by game-theoretic models of 

international environmental agreements (IEAs).1 In the standard workhorse model with only 

                                                 
1  The first models go back to Barrett (1994), Carraro and Siniscalco (1993) and Hoel (1992). This 

literature on IEAs has grown substantially over recent years. A collection of the most influential 
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mitigation and symmetric players, i.e., models in which mitigation is the only strategy to address 

global warming and in which all countries have the same (strictly concave) payoff function, only 

small agreements are stable if signatories and non-signatories choose their mitigation levels 

simultaneously, which has been called the Nash-Cournot scenario. For Stackelberg leadership of 

signatories, more optimistic results have been obtained in terms of the size of stable agreements 

(Barrett 1994; Diamantoudi and Sartzetakis 2006; Rubio and Ulph 2006). However, as Barrett (1994) 

coined it, the paradox of cooperation persists: stable coalitions are either small or if they are large, 

the potential gains from cooperation are small. Recently, Bayramoglu et al. (2018) showed for the 

Nash-Cournot scenario that more optimistic results may be obtained if countries have a second 

strategy at their avail, namely adaptation, which they coined the mitigation-adaptation game. Based 

on insights from Ebert and Welsch (2011 and 2012) in the context of two countries, they show that 

in such an extended game with n players and the possibility to form coalitions, mitigation levels in 

different countries may no longer be strategic substitutes but may become complements if the cross 

effect between mitigation and adaptation is sufficiently strong. They demonstrate that with a 

complementary relationship of mitigation levels, reaction functions are no longer downward sloping 

but are upward sloping in mitigation space. Most importantly, with upward sloping reaction functions, 

larger agreements are stable, irrespective whether mitigation and adaptation are substitutes (as 

commonly believed) or complements (as an unlikely but possible option according to Ingham et al. 

2013). Overall, it appears that Bayramoglu et al. (2018) derive a more optimistic conclusion regarding 

the prospects of cooperation if adaptation is added as a second strategy to an IEA-game, provided 

cross effects between mitigation and adaptation are sufficiently strong.  

                                                 

articles have been collected in a volume by Finus and Caparros (2015), including a survey in the 

introduction to this volume. In this volume, various extensions of the standard model are included for 

which in some cases more positive results are obtained. The importance of this topic is also highlighted 

by some of the finest recent papers, e.g., Battaglini and Harstad (2016) and Harstad (2012). 
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In this paper, we introduce Stackelberg leadership in a mitigation-adaptation game as Eisenack and 

Kähler (2016) have done for two players, but extend the analysis to n  players and coalition formation.2 

In order to allow for a direct comparison between the mitigation and the mitigation-adaptation game 

as well as across the two scenarios, Nash-Cournot and Stackelberg leadership, we employ the setting 

of Bayramoglu et al. (2018). We address two research questions in this paper.  

1) Does Stackelberg leadership improve over the Nash-Cournot scenario? We provide a general proof 

that stable coalitions are larger if reaction functions in mitigation space are downward sloping, which 

is always the case in the mitigation game and is one option in the mitigation and adaptation game. 

However, the reverse is true if reaction functions are upward sloping, which is another option in the 

mitigation-adaptation game. Importantly, if stable coalitions are larger under the Stackelberg than 

under the Nash-Cournot scenario, improvements in terms of global welfare are (very) small. If this 

relationship is reversed, i.e., stable coalitions are smaller under Stackelberg leadership than under the 

Nash-Cournot scenario, Nash-Cournot leads usually to better outcomes. 

2) Does the paradox of cooperation as established by Barrett (1994) for the M-Game and later iterated 

by many others also hold for the M+A-Game? We show that for the Stackelberg scenario this paradox 

directly carries over without qualification in the M+A-Game. For the Nash-Cournot scenario we come 

to a less positive conclusion than Bayramoglu et al. (2018). Only if, apart from upward sloping 

reaction functions in mitigation space due to strong cross effects between mitigation and adaptation, 

mitigation and adaptation are complements, the paradox will disappear, otherwise it persists.  

In what follows, we lay out the model in section 2, derive our results in section 3 and conclude in 

section 4 with some hints about future research. Section 3 derives first some general results that help 

                                                 
2  There is a long tradition of economic applications of Stackelberg leadership. See for instance Basu and 

Singh (1990), Endres (1992), Gal-Or (1985) and Vickers (1985). In particular, including the possibility 

of Stackelberg leadership in IEAs modeling is crucial to understand some of the mechanisms behind 

climate negotiations. 
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to understand the basic driving forces and incentive structure for coalition formation across the two 

games and two scenarios and then discusses some further interesting properties based on simulations, 

which are reported in Appendix A.6. All proofs are contained in the Appendix, A.1 to A.5. 

2. The Model 

2.1 Payoff Functions 

We consider n  symmetric countries 1,2,...,i n= , with N  the set of all countries. We compare two 

different games. In the Mitigation Game (M-Game), countries have only mitigation as a strategy to 

combat climate change, whereas in the Mitigation-Adaptation Game (M+A-Game), they also have 

adaptation as a second strategy. 

Following Bayramoglu et al. (2018), the payoff function of every country i  in the M-Game is given 

by:  

 ( ) ( ) ( ),i i i i iw M m B M C m= −   (1.a) 

whereas in M+A-Game it is given by: 

 ( ) ( ) ( ) ( ), , ,i i i i i i i i iw M m a B M a C m D a= − − . (1.b) 

In the M-Game, the individual payoff comprises benefits iB , which are a function of total mitigation, 

1

n

i

i

M m
=

= , minus the cost iC , which is a function of individual mitigation im . In the M+A-Game, 

benefits are a function of both strategies, total mitigation M  and individual adaptation ia . Costs 

comprise mitigation cost ( )i iC m  and adaptation cost ( )i iD a  where the latter cost is a function of 
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individual adaptation ia . Both, mitigation, the pure public good, as well as adaptation, the pure 

private good, contribute to benefits.3 

The strategy space of country i  is given by 0,i im m 
 

 and 0,i ia a 
 

. If we assume 

( ) ( ), , 0 ,i i i i iw M m a w M m= = , both games are directly comparable. Moreover, we assume that all 

countries have the same payoff function, i.e., all countries are assumed to be ex-ante symmetric. 

Hence, we can drop index i , whenever no misunderstanding is possible. However, as will become 

clear below, countries may nevertheless be ex-post asymmetric as in our model countries 

endogenously choose whether they join an agreement and become signatories (S) or remain outside 

and become non-signatories (NS), as these groups choose different mitigation levels. If we want to 

stress this difference, we use subscript S  and NS , respectively. 

All welfare functions, as well as their first and second derivatives, are assumed to be continuous. 

Following Bayramoglu et al. (2018), we introduce the following assumptions, with the understanding 

that assumptions a) and b) apply to both games whereas the remaining assumptions apply only to the 

M+A-Game. In terms of notation, we denote for instance 
M

BB
M

=


, 
2

2MM
BB

M
=


 and 

2

Ma aM
i

BB B
M a

= =
  .  

                                                 
3  It is generally known that the public good provision game can be alternatively framed as an emission 

game; they are dual problems. In the context of mitigation and adaptation, this is evident by comparing 

Bayramoglu et al. (2018) and Rubio (2018). In the emission game, the equivalent to the benefit 

function in the public good game is the damage function with aggregate emissions and adaptation 

being the arguments in this function. 
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General Assumptions I 

Both Games 

a) 0MB  , 0MMB  , 0mC  , 0mmC  . 

b) 
0 0

lim lim 0M m
M m

B C
→ →

  . 

M+A-Game 

c) 0aB  , 0aaB  , 0aD  , 0aaD  . 

If 0aaB = , then 0aaD   and vice versa: if 0aaD = , then 0aaB  . 

d) 
0 0

lim lim 0a a
a a

B D
→ →

    

e) i) 0aM MaB B=   or ii) 0aM MaB B=  .  

These assumptions and their implications are discussed in Bayramoglu et al. (2018). Mitigation and 

adaptation are substitutes as commonly assumed for assumption e) i), but are complements for 

assumption e) ii). It will become apparent that for most results, the sign of the cross derivative does 

not matter, though the absolute size of this derivative will turn out to be important. In order to reduce 

the complexity of some of the subsequent proofs, we assume that third derivatives are equal to zero, 

which implies linear reaction functions. In the Appendix, we mention whenever we need this 

assumption, though it will no longer be mentioned in the text. 

2.2 The Coalition Formation Game 

We consider the workhorse model of international environmental agreements, which is a two-stage 

cartel formation game. In the first stage, countries decide on their membership. Those countries, 

which join coalition P , P N , are called signatories and those which remain outside are called 

non-signatories. In the second stage, signatories act as a single player, choosing their economic 

strategies by maximizing the aggregate payoff over all signatories. Non-signatories act as single 

players, maximizing their own payoff. The solution of the second stage leads to an economic strategy 
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vector for every coalition P  of size p , 1 p n  . If this strategy vector is unique, notation simplifies 

and we can write 
*( )iw p . As we will see below, as all signatories i P  choose the same strategy 

vector and the same applies to all non-signatories j P  (though signatories and non-signatories will 

choose different strategy vectors) we can also write 
* ( )Sw p  and 

* ( )NSw p , with the understanding that 

* ( )NSw p  does not exist if p n=  and 
* *( ) ( )S NSw p w p=  if 1p = .4 Below, we derive sufficient conditions 

(see General Assumptions II below), which guarantee the existence and uniqueness of second stage 

equilibria. 

For the second stage, we need to distinguish between the two games, the M- and M+A-Game. 

Moreover, we distinguish between the Nash-Cournot (NC) and the Stackelberg (ST) scenario. Under 

the NC-scenario, signatories and non-signatories choose their economic strategies simultaneously, 

and under the ST-scenario they do so sequentially, with signatories being the Stackelberg leader and 

non-signatories the followers, in line with the assumptions in the literature on IEAs (e.g., Barrett 1994 

and Rubio and Ulph 2006), but with a small modification: we do not allow for a singleton player to 

act as a leader in the case in which no coalition forms. 

If coalition P  is empty or, which is equivalent, if it consists of only one player, the equilibrium 

economic strategy vector will be the same as in the Nash equilibrium in games without coalition 

formation. Conversely, if coalition P N= , i.e., the grand coalition has formed, this corresponds to 

the social optimum. In both extreme cases, there are no leaders and followers and the NC- and ST-

scenario coincide. Hence, difference in equilibrium strategies between the two scenarios in the second 

stage arise when there is partial cooperation, i.e., 1 p n  . 

                                                 
4  Strictly speaking, 0=p  and 1=p  imply the same coalition structure. For notational simplicity, we 

assume 1 p n  . 
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In the first stage, and making already use of the symmetry assumption, and the simplified notation 

because of a unique economic strategy vector for every coalition of size p , 1 p n  , a coalition of 

size p  is stable if it is internally and externally stable. 

 Internal stability: ( ) ( )* * 1S NSw p w p −        (2) 

 External stability: ( ) ( )* * 1NS Sw p w p +   

Internal stability requires that a signatory has no incentive to leave a coalition of size p . External 

stability requires that a non-signatory has no incentive to join a coalition of size p . A coalition which 

is internally and externally stable is called stable and the size of such a coalition is denoted by 
*p . It 

is important to note that despite second stage equilibria for 1p =  and p n=  are the same for the NC-

and ST-scenario, internal stability for p n=  and external stability for 1p =  will be different. 

2.3 Assumptions in the Second Stage 

Under the NC-scenario, we assume in line with Bayramoglu et al. (2018) that all countries choose 

their mitigation levels in the M-Game and their mitigation and adaptation levels in the M+A-Game 

simultaneously. As shown by Bayramoglu et al. (2018), in the M+A-Game, this is equivalent to all 

countries choosing first their mitigation levels and then all countries choosing their adaptation levels.  

Under the ST-scenario, we assume signatories choose first their economic strategies (mitigation in 

the M-Game and mitigation and adaptation in the M+A-Game) as leaders and then non-signatories 

do the same as followers. In the M+A-Game, this is equivalent to any alternative sequence as long as 

signatories choose their mitigation levels first and each group does not choose adaptation before 

mitigation.5  

                                                 
5  If adaptation was chosen before mitigation, the strategic role of adaptation would change and would 

lead to different outcomes (see Breton and Sbragia 2019 Eisenack & Kähler 2016, Masoudi and 

Zaccour 2017 and 2018 and Zehaie 2009). 
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Below, we list the first order conditions in an interior equilibrium (which follows from the General 

Assumptions I above) in the two games under the two alternative scenarios.  

Consider first the NC-scenario. In the M-Game, signatories internalize the externality among its p  

members whereas non-signatories just maximize their own welfare. Hence, (3.a) and (3.b) imply 

( )
( )m S

m NS

C m
C m

p
=  and therefore S NSm m  due to the strict convexity of the mitigation cost 

function. In the M+A-Game, the same is true considering (4.a) and (4.b) and the fact that signatories 

and non-signatories will choose the same adaptation level according to (5), i.e., i S NSa a a= = , as 

adaptation is a private good.  

Table 1: First Order Conditions under the NC- and ST-Scenario in the Two Games* 

 M-Game 

 NC-scenario ST-scenario 

Signatories  ( ) ( )M m Sp B M C m =          (3.a) ( )( ) ( )'1M NS m Sp B M R C m  + =
 

        (6.a) 

Non-signatories     ( ) ( )M m NSB M C m=          (3.b)                       ( ) ( )M m NSB M C m=       (6.b) 

 M+A-Game 

 NC-scenario ST-scenario 

Signatories ( ) ( ),M i m Sp B M a C m =     (4.a) ( )( ) ( )', 1M i NS m Sp B M a R C m  + =
 

     (7.a) 

Non-Signatories      ( ) ( ),M i m NSB M a C m=   

(4.b) 

                       ( ) ( ),M i m NSB M a C m=  (7.b) 

Both       ( ) ( ),a i a iB M a D a=         (5)                        ( ) ( ),a i a iB M a D a=       (8) 

* Let ( )NS NS SM R M= . Then, ' NS
NS

S

M
R

M


=


 with S SM p m=   and ( )NS NSM n p m= −  . 

Let us now consider the ST-scenario. Firstly, compared to the NC-scenario, it is evident from Table 

1 that only the first order conditions of signatories regarding mitigation have changed. Secondly, we 

notice that the Stackelberg leaders choose their economic strategies such as to find the point on the 

followers’ reaction function associated with the highest possible welfare for the leaders. That is, 

signatories as leaders, take into consideration how non-signatories will react. Thirdly, if we let 
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( )NS NS jm r M −=  be the best response of one non-signatory, given the mitigation level of all other 

players jM − , or, using the symmetry assumption, which implies that all non-signatories de facto 

behave equally, we can define an aggregate best response function of all non-signatories 

( )NS NS SM R M=  with NSM  being the aggregate mitigation level of all non-signatories and SM  the 

aggregate mitigation level of all signatories (and hence S NSM M M= + ). Accordingly, 
' ( )NS jr M−  

and 
' ( )NS SR M  are the respective slopes of these best response or reaction functions. Similarly, we 

can derive the slopes of individual and aggregate best response functions of signatories, 
' ( )S ir M −  and 

' ( )S NSR M . Fourthly, these slopes are derived by totally differentiating the first order conditions for 

mitigation. Following Bayramoglu et al. (2018), in the M+A-Game, this takes into account that 

equilibrium mitigation and adaptation are linked. That is, before total differentiation of (4.a) and (4.b), 

respectively, we notice that (5) implicitly defines equilibrium adaptation as a function of total 

mitigation, i.e., 
*( )ia M . For convenience, we reproduce the result of Bayramoglu et al. (2018) in 

Proposition 1 below. 

Proposition 1: Slopes of Reaction Functions in Mitigation and Adaptation Space  

Let 
M

MMB =  in the M-Game and 
( )

2

aMM A

MM

aa aa

B
B

D B

+ = +
−

 in the M+A-Game. The slopes of 

individual and aggregate reaction functions of signatories and non-signatories in mitigation space 

are given by ( )
( )

'

S i P

mm S

p
r M

C m p
− 


=

− 
, ( )

( )

2
'

2S NS

mm S

p
R M

C m p


=

− 
, 

( )
( )

'

NS j P

mm NS

r M
C m

− 


=

−
 and ( )

( )

( ) ( )
'

NS S

mm NS

n p
R M

C m n p

− 
=

− − 
, respectively. That is, 

reaction functions are downward sloping in the M-Game because 0M   and the same is true in 

the M+A-Game if 0M A+   with a slope strictly larger than 1−  and strictly smaller than 0 . In the 

M+A-Game, if 0M A+   reaction functions are upward sloping.  
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In the mitigation-adaptation space, given each country’s reaction function ( )ia f M= , the slope of 

this function is given by ( )' i aM

aa aa

a B
f M

M D B


= =
 −

 and hence the reaction function is downward 

sloping if 0aMB   and upward sloping if 0aMB  . 

Proof: See Bayramoglu et al. (2018), Proposition 2. 

The most interesting part of Proposition 1 is that reaction functions in mitigation space do not have 

to be downward sloping in the M+A-Game, as this is always the case in the M-Game, but can be 

upward sloping in the M+A-Game. Thus, the leakage effect in terms of mitigation, due to mitigation 

levels in different countries being strategic substitutes, may turn into an anti-leakage effect such that 

mitigation levels become strategic complements. The latter possibility arises if the cross effects 

between mitigation and adaptation are strong, i.e., aMB  and ia

M




 are large in absolute terms because 

( )
2

,
aM i

aM

aa aa

B a
B

D B M


= 

− 
 even though, interestingly, the sign of aMB  does not matter (as aMB  is squared 

in M A+ ). That is, it does not matter whether mitigation and adaptation are strategic substitutes 

( 0)aMB   or complements ( 0aMB  ) but only that this cross effect is sufficiently large (compared 

to the direct effect MMB  such that 0M A+   is possible).6  

With reference to Table 1, under the ST-scenario, comparing the first order conditions of signatories 

and non-signatories in the M-Game ((6.a) and (6.b)) and in the M+A-Game ((7.a) and (7.b)), we have 

( )

( )
( )

'1

m S

m NS

NS

C m
C m

p R
=

 +
. Hence, only if 

' 0NSR   (which is only possible in the M+A-Game), can we 

conclude ( ) ( )S NSm p m p , given the convexity of the mitigation cost function. In contrast, if 

                                                 
6  In the following, we rule out the uninteresting and special case of 0M A + = . 
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'1 0NSR−   , which is always the case in the M-Game and is one possibility in the M+A-Game, 

( ) ( )S NSm p m p  is possible if p  is small. 

In terms of the existence and uniqueness of second stage equilibria, it turns out that our General 

Assumptions I are sufficient when reaction functions are downward sloping but additional General 

Assumptions II need to be imposed in case reaction functions are upward sloping. That is, we need 

further assumptions in the M+A-Game if 0M A+   as explained in Appendix A.1. 

General Assumptions II 

In the M+A-Game let 
( )

2

aMM A

MM

aa aa

B
B

D B

+ = +
−

. If 0M A+  , for any coalition size p , a sufficient 

condition for the existence of a unique second stage equilibrium is:  

( )

( )

( )

2

1M A

mm S mm NS

n pp

C m C m

+
 −

  +  
  

 under the Nash-Cournot scenario and 

 
( )
( )

( )

( )

2 '1
1

NSM A

mm S mm NS

p R n p

C m C m

+
  + −
   + 
  

 under the Stackelberg scenario. 

We note that if 0M A+  , 
'1 0NSR+  .  

3. Results 

3.1 Preliminaries and Definitions 

In the following analysis, we focus on comparing the sizes and success of stable agreements under 

the NC- and ST-scenario. In order to explain differences, it will be helpful to consider some general 

properties of coalition formation under the two scenarios. Moreover, it will turn out to be useful to 

work with a specific welfare function in order to illustrate a couple of general interesting points. On 

the one hand, and as it is well-known from the literature on IEAs, only this allows to make sharp 

predictions about first stage equilibria (i.e., the size of stable agreements). On the other hand, this 
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allows running simulations for those results, which cannot be obtained analytically; again, a feature 

quite common in the literature on IEAs. Nevertheless, it will be apparent from subsection 3.2 that we 

are able to derive a couple of very general and useful results, which are complemented in subsection 

3.3 with further details based on simulations. 

Definition 1: Positive Externality, Superadditivity and Cohesiveness 

Let 2n p  . 

i) PEP: The expansion of coalition 1p −  to p  exhibits a positive (negative) externality if: 

( ) ( ) ( )* * 1NS NSw p w p  − . 

If this holds for all p , 2n p  , the game is a positive (negative) externality game. 

ii) SAD: The expansion of coalition 1p −  to p  is superadditive if: 

( ) ( )  ( ) ( )* * *1 1 1S S NSp w p p w p w p   −  − + − . 

If this holds for all p , 2n p  , the game is superadditive. 

iii) WCOH: The expansion of coalition 1p −  to p  is welfare cohesive if: 

( )   ( )   ( )   ( )* * * *1 1 1 1S NS S NSp w p n p w p p w p n p w p + −   −  − + − +  −  

If this holds for all p , 2n p  , the game is welfare cohesive. 

iv) MCOH: The expansion of coalition 1p −  to p  is mitigation cohesive if: 

( )   ( ) ( )  ( )   ( )* * * *1 1 1 1S NS S NSp M p n p M p p M p n p M p + −    −  − + − +  −  

If this holds for all p , 2n p  , the game is mitigation cohesive. 

The first two properties may be viewed as positive properties in that they help to explain whether 

stable coalitions will be small or large. Positive externality makes it attractive to stay outside a 

coalition whereas for negative externalities just the opposite holds. Superadditivity can be viewed as 

a necessary condition to make joining a coalition attractive. In a superadditive and negative 

externality game, the grand coalition is the unique stable agreement (Weikard 2009). Thus, 
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cooperation does not pose a problem. In contrast, in positive externalities games, typically, stable 

coalitions are small. This is evident if superadditivity fails, but even if it holds, the positive externality 

effect may be stronger than the superadditivity effect such that only small coalitions are stable. 

The third and the fourth property can be viewed as normative properties. Clearly, in the grand 

coalition, total welfare and total mitigation levels are higher than in any other coalition (see 

Bayramoglu et al. 2018). However, it may not always be true that these levels increase with every 

enlargement of a coalition, irrespective of its size, as we will illustrate and explain in more detail 

below. Note that a sufficient condition for welfare cohesiveness is superadditivity and positive 

externalities. 

In line with the literature on IEAs and following Bayramoglu et al. (2018), we consider a welfare 

function with quadratic benefits and quadratic costs in order to illustrate some results. In the M-Game, 

we assume: 

 
2 2

2 2

M

i i

g c
w bM M m

 
= − − 
 

  (9) 

and in the M+A-Game we consider: 

 ( )2 2 2

2 2 2

M A

i i i i

g c d
w bM M a fM m a+  

= − + − − − 
 

 such that 0aMB    (10.a) 

and  

 ( )2 2 2

2 2 2

M A

i i i i

g c d
w bM M a fM m a+  

= − + + − − 
 

 such that 0aMB   (10.b) 

assuming that all parameters b , g , c   , f , and d  are strictly positive. If we were to set 0g = , 

we could retrieve the linear-quadratic welfare function, also frequently considered in the literature on 

IEAs. However, in this case, in the M-Game, countries would have a dominant strategy ( 0M =  

and reaction functions would be orthogonal), implying that the NC- and ST-scenario are identical. 

For expositional clarity, we ignore this case.  
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It is also clear that by setting 0ia =  in the M+A-Game, we are back in the M-Game. In Appendix 

A.2, we derive conditions for the parameters, which ensure that the sufficient conditions for existence 

and uniqueness are satisfied plus additional conditions, which ensure interior equilibria.  

For welfare function (9), 
M g = −  and 

'

NS

g
r

c g
= −

+
 and hence reaction functions are downward 

sloping. We notice that the absolute value of this slope increases in the benefit parameter g  and 

decreases in the cost parameter c . For welfare functions (10.a) and (10.b), 

2
M A f g d

d

+ − 
 =  which 

is negative if 
2 0f g d−    and positive if 

2 0.f g d−    Accordingly, the slope of the reaction 

function, 
( )

( )

2

'

2NS

f g d
r

c d f g d

− 
=

 + − 
, may either be negative or positive. The difference between (10.a) 

and (10.b) is just the sign of the cross derivative aMB , which does neither affect M A+  nor 
'

NSr . 

In our simulations, which are reported in Appendix A.6, we consider five runs, covering a wide range 

of parameter values, displaying results for the NC- and ST-scenario. In Table A.1, we consider the 

M-Game (and hence 0M  ), whereas in Table A.2 to A.5 we consider the M+A. In Tables A.2 

and A.3 0M A+   is assumed whereas in Tables A.4 and A.5 0M A+  . The difference is that the 

first table of each set (i.e., Table A.2 and A.4), assumes 0aMB   and the second (i.e., Tables A.3 and 

A.5) assumes 0aMB  . Hence, we cover all possible interesting parameter constellations. 

In order to evaluate stable coalitions, we consider two indices in our simulations, restricting ourselves 

to the welfare dimension, even though similar indices could be defined in terms of mitigation. We 

recall that no-cooperation with 1p =  corresponds to the classical Nash equilibrium without coalition 

formation and full cooperation with p n=  corresponds to the social optimum. We denote total welfare 
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with W , 
1

n

i

i

W w
=

= , and use superscripts to refer to the social optimum, SO, Nash equilibrium, NE, 

and stable coalitions in the NC- and ST-scenario, respectively. 

Definition 2: Importance of Cooperation and Improvement upon the Nash Equilibrium 

- The Importance of Cooperation Index (ICI) measures the percentage global welfare 

improvement from moving from no-cooperation (NE) to the social optimum (SO): 

100
SO NE

NE

W W
ICI

W

−
=   

- The Improvement upon the Nash equilibrium Index (INI) measures the percentage global 

welfare improvement obtained in a stable equilibrium under the NC- and ST-scenario, 

respectively: 

( )*

100

NC NC NE

NC

NE

W p W
INI

W

−
=  , 

( )*

100

ST ST NE

ST

NE

W p W
INI

W

−
=  . 

Both indices are relative measures as absolute values are meaningless without any benchmark. Index 

ICI measures the potential gains from cooperation or what Barrett (1994) called the “need for 

cooperation”. Index INI measure the performance of stable coalitions. Clearly, if ICI is small, also 

INI must be small, even stable coalitions may be large. If ICI is large, INI may be small because only 

small coalitions are stable. Hence, cooperation is interesting and successful if ICI and INI is large 

because the potential gains from cooperation are large and these gains are reaped because large 

coalitions are stable. Relating Barrett’s paradox of cooperation to the above indices means that either 

only small coalitions are stable in which case INI is small, or large coalitions are stable, but then ICI 

and hence INI are small. That is whenever cooperation would be needed most, stable coalitions 
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achieve little. It is also for this reason that focusing only on the size of stable coalitions 
*p  is not 

sufficient for an evaluation, we also need to evaluate outcomes in terms of global welfare gains. 

3.2 Propositions 

In this subsection, we derive some general results, which are summarized in Proposition 2 below. In 

the M-game, reaction functions are downward sloping (Proposition 2.a). Consequently, signatories 

having a strategic advantage (i.e., a first mover advantage) under the ST-scenario, will lower their 

mitigation level compared to the NC-scenario, knowing that non-signatories will partly make up for 

this by mitigating more. Overall, for any given coalition size p , total mitigation will be lower under 

the ST- than under the NC-scenario. The Stackelberg leader will be better off and the reverse is true 

for the follower. It is for this reason that stable coalitions under the ST-scenario will be at least as 

large than under the NC-scenario. Hence, we provide a general proof of this relation which has been 

found in many papers on IEAs and which will also be illustrated for our specific welfare functions 

below. Moreover, as it is evident from Proposition 2.a, this result extends to the M+A-Game, provided 

reaction functions are downward sloping. 

Proposition 2: Comparison of NC- and ST-Scenario, Mitigation, Payoffs and Stable Coalitions  

Consider a generic coalition of size p , 1n p  .  

a) In the M-Game with 0M   and in the M+A-Game if 0M A+  , and hence reaction functions 

are downward sloping in mitigation space, the following relations hold for every p , 1n p  : 

- ( ) ( )NC STM p M p , ( ) ( )NC ST

S Sm p m p  and ( ) ( )NC ST

NS NSm p m p ;  

- ( ) ( )NC ST

S Sw p w p  and ( ) ( )NC ST

NS NSw p w p . It follows that 

- 
* *ST NCp p .  
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b) In the M+A-Game with 0M A+  , implying upward sloping reaction functions in mitigation 

space, the following relations hold for every p , 1n p  : 

- ( ) ( )NC STM p M p , ( ) ( )NC ST

S Sm p m p  and ( ) ( )NC ST

NS NSm p m p ; 

- ( ) ( )NC ST

S Sw p w p , ( ) ( )NC ST

NS NSw p w p  and ( ) ( )NC STW p W p  

- ( ) ( ) ( ) ( )ST NC ST NC

S S NS NSm p m p m p m p−  −  if the mitigation cost function is a strictly convex 

polynomial function such that  

( ) ( ) ( ) ( )ST NC ST NC

S S NS NSw p w p w p w p−  − . It follows that 

- 
* *ST NCp p . 

Proof: See Appendix A.3. 

It is also evident from Proposition 2.a why it is not possible to draw any general conclusion about 

total mitigation levels and global welfare for stable coalitions under the two scenarios. In terms of 

global welfare, we do not know whether ( ) ( )NC NC ST STW p W p  or the reverse is true for a given p  

as signatories are better off but non-signatories worse off under the ST- than under the NC-scenario. 

Hence, we also do not know generally whether ( ) ( )* *NC NC ST STW p W p  or the opposite is true in 

equilibrium. In terms of global mitigation, we know that ( ) ( )NC STM p M p  but 
* *NC STp p  and 

hence, generally, ( ) ( )* *,NC NC ST STM p M p  . 

Finally, Proposition 2.b stresses that the intuition the ST-scenario always leads to larger stable 

coalitions is wrong if reaction functions in mitigation space are upward sloping, which is possible in 

the M+A-Game if cross effects are strong enough such that 0M A+  . In such a matching game, 

both, signatories and non-signatories, increase their mitigation levels under the ST- compared to the 

NC-scenario. This also translates into a Pareto-improvement for all countries and hence in higher 

total welfare. However, compared to the NC-scenario, non-signatories gain more than signatories 
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under the ST-scenario, i.e., there is a second mover advantage.7 The reason is that signatories increase 

their mitigation levels more than non-signatories and hence carry higher additional mitigation costs. 

This explains why the size of stable coalitions are generally weakly smaller under the ST- than NC-

scenario. Again, this makes it impossible to conclude generally whether ( ) ( )* *NC NC ST STM p M p  

and ( ) ( )* *NC NC ST STW p W p  hold or the reverse is true. 

In order to illustrate the relation between stable coalitions under the two scenarios in the two games, 

we determine stable coalitions for our specific welfare functions as introduced above. 

Proposition 3: Stable Coalitions in the M- and M+A-Game for Specific Welfare Functions 

Consider payoff function (9) in the M-Game and (10.a) and (10.b) in the M+A-Game and assume the 

conditions on parameters in Appendix A.2 to hold. The size of stable coalitions 
*p  under the CN- and 

ST-scenario are given by (assuming that 7n  ): 

 

M-GAME M+A-GAME 

0   0   0   

NC ST NC ST NC ST 

*p    * 1,2NCp    * 2,STp n   * 1,2NCp    * 2,STp n   * 3,NCp n=   * 2,3STp =  

 

Proof: See Appendix A.4. 

It is evident that for downward sloping reaction functions, under the ST-scenario, even the grand 

coalition could form. In contrast, under the NC-scenario, only small coalitions are stable. For upward 

                                                 
7  This is in line with the literature on Stackelberg games with symmetric players (though usually 

confined to two players). There is a first (second) mover advantage in the presence of downward 

(upward) sloping reaction functions (Gal-Or 1985). 
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sloping reaction functions, the reverse is true. Under the NC-scenario, large coalitions can be stable, 

whereas under the ST-scenario only small coalitions are stable.8 

In order to rationalize different equilibrium coalition sizes, we consider the general properties in the 

two games under the two scenarios. 

Proposition 4: Properties in the M- and M+A-Game under the CN- and ST-scenario  

Consider the general welfare function (1.a) in the M-Game and welfare function (1.b) in the M+A-

Game. Further assume the General Assumptions I and II to hold. Then the following conclusion can 

be drawn: 

 

M-GAME M+A-GAME 

0   0   0   

NC ST NC ST NC ST 

PEP ✓ 
fails when 

MCOH fails 
✓ 

fails when 

MCOH fails 

✓ ✓ 

SAD 
may fail for 

small p 
✓ 

may fail for 

small p 
✓ ✓ ✓ 

WCOH 
may fail for 

small p 

may fail for 

small p 

may fail for 

small p 

may fail for 

small p 
✓ ✓ 

MCOH ✓ 
may fail for 

small p 
✓ 

may fail for 

small p 
✓ ✓ 

Properties as defined in Definition 1; ✓ = property holds for all expansion 1p −  to p , 2 p n  , except 

for PEP for which 2 p n  . 

Proof: See Appendix A.5. 

Under the NC-scenario, the game is a positive externality game. Total mitigation increases steadily 

with an expansion of the coalition from which also non-signatories benefit due to the non-

exclusiveness of the public good. Non-signatories reduce their contribution to this public good if 

                                                 
8  Bayramoglu et al. (2018) show that for welfare function (10.a) and (10.b) and 0   in the M+A-

Game,  * 3,NCp n . We find that if 7n   (as assumed in our simulations), this leads to 

 * 3, .NCp n= See Appendix A.4. 
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reaction functions are downward sloping (and hence have not only higher benefits but also lower 

mitigation costs). However, even if 0  , non-signatories contribute less than proportionally to the 

total increase in total mitigation and hence also enjoy a positive externality from the expansion of the 

coalitions. Therefore, with positive externalities, there is an incentive to remain a non-signatory.  

Moreover, under the NC-scenario, if 0  , it is also evident that superadditivity may fail due to the 

leakage effect, which is also an obstacle to form large stable coalitions. Together, this explains why 

only small coalitions are stable if reaction functions are downward sloping. In contrast, if reaction 

functions are upward sloping, superadditivity always holds, as the game has turned into a matching 

game with anti-leakage. This allows to form larger stable coalitions, including the grand coalition in 

the M+A-Game if 0  . It is also evident that if the leakage effect is present (i.e., 0  ), welfare 

cohesiveness may fail (as a result of a failure of superadditivity).  

Under the ST-scenario, the negative conclusion about the size of stable coalitions if reaction functions 

are downward sloping (i.e., 0  ) is just reversed. Roughly speaking, and as our simulations will 

confirm, the steeper the reaction function, the larger is the strategic advantage of the leader over the 

follower and hence the larger will be stable coalitions. Moreover, superadditivity always holds, and 

at least for not too large coalitions, the enlargement of coalitions may not be associated with positive 

but with negative externalities, making it attractive for non-signatories to join the coalition. The fact 

that larger coalitions may not necessarily lead to substantially better outcomes, as will be confirmed 

in subsection 3.3 based on simulations, is already apparent by the fact that welfare and mitigation 

cohesiveness does not generally hold if 0.  9 In other words, larger stable coalitions under 

Stackelberg leadership comes at a price. 

                                                 
9  Welfare cohesiveness fails whenever the superadditivity effect is dominated by the negative externality 

effect. Mitigation cohesiveness may fail as the Stackelberg leaders use their strategic advantage to 

reduce their contribution to the public good, which may not be compensated by the followers’ 

additional mitigation effort. 
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Such a price also needs to be paid under the ST-scenario if reaction functions are upward sloping 

(i.e., 0  ). Even though welfare and mitigation cohesiveness hold throughout, stable coalitions are 

small and smaller than in the NC-scenario. The small coalitions are due to the fact that positive 

externalities hold throughout and non-signatories benefit more than signatories from Stackelberg 

leadership of signatories. 

3.3 Further Results and Discussion 

The discussion in this subsection is supported by our simulations, which are summarized in Tables 

A.1 to A.5 in Appendix A.6. We address two research questions. 1) Does the ST-scenario improve 

over the NC-scenario? In order to answer this question, Table A.1 to A.3 will be helpful. That is, we 

focus on downward sloping reactions in mitigation space, i.e., 0  , as for upward sloping reaction 

functions, i.e., 0  , we already know that 
* *NC STp p . 2) Does the paradox of cooperation as 

established by Barrett (1994) for the M-Game and later iterated by many others also hold for the 

M+A-Game? In order to answer this question, Table A.2 to A.5 will be helpful. 

3.3.1 Does the ST-scenario improve over the NC-scenario? 

In the M-Game, we know  * 1,2NCp   and  * 2,STp n  from Proposition 3. Hence, under the NC-

scenario, whenever n  is sufficiently large ( 100n =  in our simulations), stable coalitions cannot 

achieve much. Under the ST-scenario, we find that the steeper the reaction functions (implying a high 

ratio of the parameters /g c  for welfare function (9)), the larger will be 
*STp . However, it is easily 

proved that 100
SO NE

NE

W W
ICI

W

−
=   decreases in the ratio /g c . As Table A.1 confirms if 

*STp

approaches the grand coalition, the value of ICI is very small. Accordingly, also 

( )*

100

ST ST NE

ST

NE

W p W
INI

W

−
=   must be very small. Also the reverse is true, if reaction functions are 

flat (low value of /g c ), ICI is large but 
*STp  is small and hence INI is small. Hence, overall, INI is 
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generally small under both scenarios, and the ST-scenario only marginally improves upon the NC-

scenario.10  

In the M+A-Game and downward sloping reaction functions in mitigation space, we know 

 * 1,2NCp   and  * 2,STp n  from Proposition 3, irrespective of the sign of the cross derivative .aMB  

As in M-Game, the same conclusion conclusions are valid with reference to Tables A.2 and A.3. The 

NC-scenario allows only for small stable coalitions anyway, and the ST-scenario, though it may 

generate larger stable coalitions, makes hardly any difference to no cooperation: INI shows low values 

for all parameter constellations and the ST-scenario only marginally improves upon the NC-scenario. 

For completeness, it is worthwhile mentioning that for upward sloping reaction functions (Tables A.4 

and A.5), the ST-scenario implies usually lower welfare gains than the NC-scenario as stable 

coalitions tend to be smaller. Only in a few cases, when 
* 3NCp =  will the ST-scenario marginally 

improve upon the NC-equilibrium, but this is when INI is anyway small. 

3.3.2 Does the paradox of cooperation also hold for the M+A-Game? 

For the NC-scenario and downward sloping reaction functions, the paradox holds because we know 

 * 1,2NCp   from Proposition 3 and hence INI is low (see Tables A.2 and A.3), irrespective of the 

sign of the cross derivative aMB . We know this may change for upward sloping reaction functions, 

as then  * 3,CNp n=  from Proposition 3, and hence the grand coalition may be stable. However, as 

is evident from Table A.4 for 0aMB  , even if 
*NCp n= , ICI and hence INI are small, and if 

* 3NCp =  

ICI may be large but INI is small (because 
* 3NCp n=  ), the classical paradox of cooperation. Only 

if 0aMB   (Table A.5), we find that 
*NCp n=  as well as ICI and INI may be large. This appears to 

be the only “anti-paradox constellation”. However, this rests on the rather unlikely assumption that 

                                                 
10  For one parameter constellation in Table A.1, the sizes of stable coalitions under both scenarios are 

identical, 
* * 2NC STp p= = , and hence NC STINI INI . 
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mitigation and adaptation are complements apart from upward sloping reaction functions in 

mitigation space. This may be seen as qualifying the positive conclusion as derived by Bayramoglu 

et al. (2018).  

Finally, for the ST-scenario, INI is always small. For downward sloping reaction functions, as in the 

M-Game, also in the M+A-Game large stable coalitions go along with small ICI and hence INI. For 

upward sloping reaction functions, stable coalitions are always small and hence INI is also small. 

Hence, the paradox of cooperation holds for all parameter constellations for the ST-scenario. 

Looking to both stable coalition size and welfare performances in the NC-scenario, is interesting to 

compare our results with Heugues (2014). The paper exogenously introduce complementarity 

between abatement strategies in a pure emissions game, i.e., without modeling adaptation. It is found 

that large coalitions, up to half of the players, can form in the cases where cooperation is most needed. 

Hence, differently from our results, upward sloping reaction functions are not able to lead to full 

cooperation. Nonetheless large improvements from non-cooperation are achieved. We find instead 

that upward sloping reaction functions can lead to full cooperation but, under the standard assumption 

of substitutability between mitigation and adaptation, only small welfare improvements from non-

cooperation are achieved. 

4. Summary and Conclusion 

In this paper, we considered the standard two-stage coalition formation game with symmetric players. 

We explored four different settings: a) mitigation game (M-Game), b) mitigation-adaptation game 

(M+A-Game), c) Nash-Cournot scenario (NC-scenario) and d) Stackelberg scenario (ST-scenario). 

In the first stage of the game, players choose whether to sign an agreement and be part of a climate 

agreement or to remain outside as a singleton. In the second stage, signatories choose their economic 

strategies (mitigation or mitigation and adaptation) by maximizing their aggregate welfare, while 
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non-signatories maximize their individual welfare. The sequence of these decisions differed between 

the NC- and the ST-scenario. 

Our analysis combined the features of two contributions. The first contribution by Barrett (1994), 

Diamantoudi and Sartzetakis (2006) and Rubio and Ulph (2006) studied the effect of ST-scenario on 

the size of stable agreements in the M-Game. The second contribution by Bayramoglu et al. (2018) 

studied the effect of moving from the M- to the M+A-Game under the NC-scenario, i.e., when all 

players simultaneously choose their economic strategies.  

We complemented these studies by considering Stackelberg leadership in the M+A-Game. This 

allowed us to address two research questions. 1) Does the ST-scenario improve over the NC-scenario? 

2) Does the paradox of cooperation as established by Barrett (1994) for the M-Game and later iterated 

by many others also hold for the M+A-Game? 

We found that the ST-scenario leads to larger stable coalitions if reaction functions in mitigation 

space are downward sloping, i.e., mitigation levels in different countries are strategic substitutes. This 

happens because signatories reduce their mitigation efforts, forcing followers to mitigate more 

compared to the NC-scenario. Therefore, participation is more attractive in the ST- than in the NC-

scenario. However, we found that whenever the difference in stable coalition sizes is large between 

the two scenarios, the potential gains from cooperation are small. Hence, the ST-scenario only 

marginally improves upon the NC-scenario. In contrast, if reaction functions in mitigation space are 

upward sloping in the M+A-Game, stable coalitions are even smaller in the ST- than in the NC-

scenario, which is also reflected in lower equilibrium total welfare. Thus, taken together, the ST-

scenario does not always lead to larger stable coalitions and larger global welfare than the NC-

scenario, but if this is the case, the welfare improvements are very marginal. 

The results for the ST-scenario confirmed Barrett’s paradox of cooperation: either coalitions are small 

or, if they are large, the potential gains from cooperation are small. This is also true for the NC-

scenario, with one exception: reaction functions in mitigation space need to be upward sloping, and, 
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additionally, mitigation and adaptation need to be complements and not substitutes. Hence, the 

paradox of cooperation extends to a richer coalition game, which includes adaptation as an additional 

strategy to mitigation for the widespread assumption that mitigation and adaptation are substitutes. 

For future research, two obvious extensions come to mind. Firstly, we assumed that adaptation is 

either chosen simultaneously with mitigation or after mitigation. In other words, we considered 

“reactive adaptation”. However, in a dynamic game in which negotiations spread over some time and 

in which contracts are renegotiated, like for instance in Battaglini and Harstad (2016) and Harstad 

(2012), one can easily perceive that adaptation becomes “active” as considered for instance by Buob 

and Stephan (2011) and Heuson et al. (2015). Coalition formation games have been analysed under 

this assumption by Masoudi and Zaccour (2017 and 2018) considering cooperation on adaptation 

with R&D spillovers and by Breton and Sbragia (2019) using a specific climate cost function that 

considers vulnerability. Secondly, we assumed symmetric players. In order to capture the current 

interesting discussion whether industrialized countries should support developing countries by 

providing adaptation because of their high vulnerability to climate change and their lack of adaptation 

capacity, the model would need to be extended to allow for asymmetry in terms of benefit and cost 

functions like this is considered in Eyckmans et al. (2016), Lazkano et al. (2016) and Li and Rus 

(2018).  
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Appendix 

A.1 Derivation of the General Assumptions II 

The procedure to derive sufficient conditions for the existence and uniqueness of mitigation and 

adaptation equilibria for every coalition of size p  follows Bayramoglu et al. (2018). The procedure 

is based on the concept of replacement functions. Let ( )S Sm g M=  be the individual replacement 

function of a signatory and ( )NS NSm g M=  be the replacement function of a non-signatory. The 

aggregate replacement function ( )G M  is derived by summing over all replacement functions, which 

for symmetry is 

1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

i S NS i S NS

i i

m p m n p m M G M g M p g M n p g M
= =

=  + −  = = = =  + −   .  

If every replacement function is downward sloping over the entire mitigation space, the aggregate 

replacement function will be downward sloping as well (which is the vertical aggregation of 

individual replacement functions) and hence will intersect with the 45-degree line once. In other 

words, the level of M , which satisfies the equality above is the equilibrium *M , which upon 

substitution into individual replacement functions gives 
*

Sm  and 
*

NSm . As we will see below, 

replacement functions are downward sloping (like reaction functions, see Proposition 1) if 0  . In 

the case of upward sloping replacement functions ( 0  ), a sufficient condition for uniqueness is 

that the aggregate replacement function has a slope of less than 1 over the entire domain such that it 

intersects with the 45-degree line and only once. Finally, as reaction functions of adaptation as 

function of total mitigation (see Proposition 1) are continuous and single valued, also equilibrium 

adaptation levels will be unique. Below, we derive the sufficient conditions in the case of the ST-

scenario, which are those in the NC-scenario as derived by Bayramoglu et al. (2018) if we set 

' 0.NSR =   

The first order conditions of signatories in the M-Game and M+A-Game (6.a) and (7.a) in Table 1, 

respectively, using the concept of individual replacement functions, read: 

( )( ) ( )'1 ( )M NS m Sp B M R C m M  + =
 

 

( )( ) ( ) ( )( )', 1M i NS m Sp B M a M R C m M   + =
 
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Total differentiation with respect to M , and ignoring third derivatives for simplicity, gives the slope 

of the individual replacement function of signatories, keeping in mind the different values of   in 

the M- and M+A-Game: 

( )
( )
( )

'

'
1 NS

S

mm S

p R
g M

C m

    +
 = . 

For non-signatories, we find, using the first order conditions (6.b) and (7.b) in Table 1, respectively: 

( ) ( )( )M m NSB M C m M=  

( )( ) ( )( ),M i m NSB M a M C m M=  

and hence we derive the slope of the individual replacement of non-signatories: 

( )
( )

'

NS

mm NS

g M
C m


= . 

Accordingly, the slope of the aggregate replacement function is given by: 

( )
( )
( )

( )

( )

2 '

'
1 NS

mm S mm NS

p R n p
G M

C m C m

   + −  =   +
 
 

 

which is negative if 0  , but is positive if 0  , and hence we need that 
'( ) 1G M   holds, which 

is the sufficient condition we state in the General Assumptions II. 

A.2 Existence, Uniqueness Conditions for an Interior Second Stage Equilibrium for 

Welfare Function (9), (10a.) and (10.b) 

In the M-Game for welfare function (9), we have MB b g M= −  , 0MMB g= −  , m iC c m=  , 

mmC c=  and hence 
M

MMB g = = − . Hence, we have: ( )'

S i

p g
r M

c p g
−


= −

+ 
, 

( )
2

'

2
,S NS

p g
R M

c p g


= −

+ 
 ( )'

NS j

g
r M

c g
− = −

+
 and ( )

( )

( )
'

NS S

n p g
R M

c n p g

− 
= −

+ − 
. Moreover, 

( )2

NC

S

p b
m

p n p g c


=

+ −  +
, 

NC
NC S
NS

m
m

p
= , 

( ) ( )
2 2 2 22

ST

S

p b c
m

n p g n p c g c g p c

 
=

−  + −   +   +
 and  



Stackelberg Leadership  47 

 

 

 

( )

( ) ( )
2 2 2 2

( )

2

ST

NS

g n p c b
m

n p g n p c g c g p c

 − + 
=

−  + −   +   +
. 

For both scenarios, the existence and uniqueness condition is always satisfied because 0M  . No 

further conditions for an interior equilibrium need to be imposed as mitigation levels are always 

positive for any (positive) value of parameters. 

In the M+A-Game, considering payoff function (10.a) for which 0aMB  , we have 

M iB b g M f a= −  −  , 0MMB g= −  , 0MaB f= −  , aB f M= −  , 0aaB = , m iC c m=  , ,mmC c=

a iD d a=  , aaD d=  and 
( )

2 2
M A

f f g d
g

d d

+
− − 

 = − + = . The sign of   depends on the sign of 

2f g d−  . From the existence and uniqueness condition under the NC-scenario 

( )

( )

( )

2

1
mm S mm NS

n pp

C m C m

 −
  +  

  
, noticing that ( ) ( )mm S mm NSC m C m c= =  as well as   are constants, 

the left-hand side of this inequality increases in p . Hence, using p n= , we derive for payoff function 

(10.a) ( )2 2 0c d n f g d −  −    for this condition. We notice that this condition is not binding if 

2 0f g d−    as expected. 

For reaction functions, we derive: 

( )
( )

( )

2

'

2S i

p f d g
r M

c d p f d g
−

 − 
=

 −  − 
., ( )

( )
( )

2 2

'

2 2S NS

p f d g
R M

c d p f d g

 − 
=

 −  − 
, ( )

( )

2
'

2NS j

f d g
r M

c d f d g
−

− 
=

 − − 
, 

( )
( ) ( )

( ) ( )

2

'

2NS S

n p f d g
R M

c d n p f d g

−  − 
=

 − −  − 
 and ( )' f

f M
d

−
= . 

For the NC-scenario, we have: 

( )

( ) ( )2 2

NC

S

p b d f
m

c d p n p f d g

  −
=

 − + −  − 
, 

NC
NC S
NS

m
m

p
=  and 

( ) ( )

( ) ( )

2

2 2

NC

i

c n p p b f g
a

c d n p p f d g

  − − +   − 


=

− − +  − 
. 

Five conditions, as identified in Bayramoglu et al. (2018), need to hold. We will state all the 

conditions below, after the analysis of the Stackelberg scenario conditions. 

In the ST-scenario, we find: 
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( )ST

S

c p d b d f
m

Z

  − 
= , 

( )( )2) ( )(
ST

NS

c d n p f

Z

b d f
m

g d  − −  −   − 
=


 and  

( )2 2 2( ) ( ) ( ) ( )
ST

i

b f g f d g n p c c d n p f X
a

Z

  −   −   − +    + − −
=   

with ( )2 2 2 2 2 2 2( ) ( 2 2 ) ( ) ( ): f c d p n pZ d g f d g n p c d= −   −   + − + − −  +  and 

2 2( ) (2( ) ):X b f c d n p p g c d n p p    − + +    − +=   .  

The numerators of 
ST

Sm  and of 
ST

NSm  are greater than zero if ( ) 0b d f −    which is exactly the same 

condition than in the NC-scenario ( 4 4ST NCC C= ). The remaining term in 
ST

NSm  is positive due to the 

existence and uniqueness condition 3 3ST NCC C=  as stated below. The denominator Z , as shown in 

detail in the following, is also positive due to the existence and uniqueness condition 3 3ST NCC C=  

below. Finally, for adaptation level, 
ST

ia , the additional condition 5STC is needed to guarantee 

positive individual adaptation levels, which implies that the numerator of 
ST

ia  is positive. 

Recalling that non-signatories’ aggregate mitigation reaction function is 

( )
( )

( ) ( )
'

NS S

mm NS

n p
R M

C m n p

− 
=

− − 
, the existence and uniqueness condition of the ST-scenario is 

( )
( )

( )

( )

2 '1
1

NS

mm S mm NS

p R n p

C m C m

  + −
   + 
  

. For welfare function (10.a), this condition reads: 

( )
( ) ( )( )

2 2 2 2 2 2 2

2
0

( ) ( 2 2 ) ( ) ( )f c d p n p f d g n p dd g

c d c d n p f d g

c−   




− 

 

   +



−

− − −

+



+ − −
. We can show that this 

condition holds due to the existence and uniqueness condition 3 3ST NCC C=  below. Looking at the 

numerator, we note that it is identical to the term Z , which is in the denominator of equilibrium 

mitigation and adaptation levels as stated above. The second term 
2 2 2( ) ( )f d g n p−  −  is always 

positive. Hence, we have to sign ( )2 2 2 2( 2 2 ) ( )c d c d dp n gp f − −  −  + . Dividing by c d , we 

obtain 
2 2( 2 2 ) ( )c d p p f d gn− + − −  , which is always greater than 0 if 3 3ST NCC C=  as stated 

below holds. ( 2 2( 2 2 ) ( )c d p p f d gn− + − −   takes on the lowest value for p n= . Replacing p n=

, we obtain )3 3ST NCC C= . With this step, we have also proved that 0Z  . Looking at the 
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denominator of the condition above, it is also clear that it is positive because of 3 3ST NCC C=  

( ) ( )( 2 0c d n p f d g − −  −    if ( ) )2 2 0c d n f g d −  −   . 

Remark: An alternative existence and uniqueness condition in the Stackelberg game is obtained by 

deriving the second order condition for signatories, which needs to be negative for a maximum. We 

obtain the following condition: 

( )2 2 2 2 2 2 2( ) ( 2 2 ) ( ) ( ) 0f c d p n p f d g n p c dd g  −   + +− − − −  +   which is the numerator of 

the condition above. 

Taken together, the conditions that need to be satisfied in the M+A-Game for the NC- and the ST-

scenario are the following: 

1 1 : 0ST NCC C b g M f a= −  −    

2 2 : 0ST NCC C f M= −    

( )2 23 3 : 0ST NCC C c d n f g d=  −  −    

4 4 : 0ST NCC C b d f=  −    

( )25 : 0NCC c n b f g  −   −    

2 2 2 2 2

2

5 : ( ) ( ) ( ) ( ) ( )

( 2 2 ) 0

STC b f g f d g n p c f p f n c d b f c d p n p

g c d p n p

 



 −   −   − +   − +  −     + − +

 +



 −



  
 

where 1C  and 2C  are required for the General Assumptions I to hold; 3C  is the existence and 

uniqueness condition; 4C  and 5C  are the mitigation and adaptation non-negativity conditions, 

respectively. Substituting the highest possible equilibrium mitigation and adaptation levels for given 

p  in 1C  and 2C , it turns out that these two conditions are captured by the non-negativity conditions 

4C  and 5C . Therefore, for both scenarios, only condition 3C  to 5C  are relevant, with 3C  being 

only relevant if 
2 0f g d−   , i.e., if 0M A+  . 

Moving now to the case of 0aMB   i.e., considering explicit payoff function (10.b), it turns out that 

some of the conditions above can be dropped and no additional conditions need to be imposed.  
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A.3 Proof of Proposition 2 

Mitigation Game 

We want to prove ( ) ( )NC STM p M p . Let us assume the opposite, namely: ( ) ( )NC STM p M p . 

In the pure mitigation game, 0M  , and therefore 
' 0NSR  . Then from the first order conditions in 

Table 1 and the General Assumptions I, we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )' '1 1ST ST NC NC NC

m S M NS M NS M m SC m p B M R p B M R p B M C m     =   +    +   =
     

 

for signatories and  

( ) ( ) ( ) ( )ST ST NC NC

m NS M M m NSC m B M B M C m=  =  

for non-signatories, assuming 1n p  . It follows that ( ) ( )ST NC

m S m SC m C m , ( ) ( ).ST NC

m NS m NSC m C m

Therefore, given the convexity of cost functions, 
ST NC

S NSm m  and 
ST NC

NS NSm m  must hold. Hence, 

( ) ( )NC STM p M p , which contradicts our initial assumption ( ) ( )NC STM p M p . Thus, we have: 

( ) ( )NC STM p M p . Consequently, ( ) ( )NC ST

NS NSm p m p  must hold from the first order conditions of 

non-signatories and for ( ) ( )NC STM p M p  it must be that ( ) ( )NC ST

S Sm p m p  holds. 

Signatories, as Stackelberg leaders, will be better off (or equally well off) than in the simultaneous 

move game by axiomatic reasoning, i.e., ( ) ( )NC ST

NS NSw p w p . Non-signatories, as followers, will have 

lower benefits due to lower M  and higher costs due to higher NSm . Therefore, we have 

( ) ( )NC ST

NS NSw p w p . Taken together, 
* *ST NCp p  follows from the condition of internal stability (2). 

Mitigation-Adaptation Game 

In a first step, we differentiate the left-hand side of signatories’ first order conditions in mitigation 

space (7.a) under the ST-scenario with respect to M : 

( )( ) ( )( )
( )

'

'
, 1

1
M i NS

i
MM Ma NS

p B M a M R a
p B B R

M M

    +     =  +   +     
. 

assuming third derivatives to be zero. Knowing that 
i aM

aa aa

a B

M D B


=

 −
 and rearranging terms, we 

obtain: 
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( )( ) ( )( )
( )

'

'
, 1

1
M i NS

NS

p B M a M R
p R

M

    +
   =    +

 
. 

Then, differentiating the benefit side of non-signatories’ first order conditions (7.b), we obtain: 

( )( )( ),M i
i

MM Ma

B M a M a
B B

M M

     = +  =    
. 

The signs of these derivatives depend on the sign of   (as 
'1 0NSR+   is always true). Therefore, 

for both, signatories and non-signatories, the left-hand side of marginal benefits in their respective 

first order conditions will decrease (increase) in the level of total mitigation M  if ( )0   . 

1) Let us assume 0  . We want to show ( ) ( )NC STM p M p  but assume the opposite: 

( ) ( )NC STM p M p . 

From signatories’ first order conditions under the NC-scenario (4.a) and under the ST-scenario (7.a), 

keeping in mind that with 0   the marginal benefits in the first order conditions decreases in total 

mitigation M , the following holds: 

( ) ( )( ) ( ) ( )( ) ( )' ', 1 , 1ST ST ST ST NC NC NC

m S M i NS M i NSC m p B M a M R p B M a M R   =   +    + 
   

 

        ( )( ) ( ),NC NC NC NC

M i m Sp B M a M C m  =
 

 

For non-signatories, using (4.b) and (7.b) accordingly, we have: 

( ) ( )( ) ( )( ) ( ), ,ST ST ST ST NC NC NC NC

m NS M i M i m NSC m B M a M B M a M C m=  = . 

It follows that ( ) ( )ST NC

m S m SC m C m  and ( ) ( )ST NC

m NS m NSC m C m  hold and, therefore, given the 

convexity of cost functions, 
ST NC

S NSm m  and 
ST NC

NS NSm m  must hold. These inequalities contradict the 

assumption ( ) ( )NC STM p M p  so that ( ) ( )NC STM p M p  must hold. Consequently, 

( ) ( )NC ST

NS NSm p m p  must hold from the first order conditions of non-signatories and hence for 

( ) ( )NC STM p M p  we must have ( ) ( )NC ST

S Sm p m p . 

Stackelberg leaders will be better off (or equal well off) than in the simultaneous game by axiomatic 

reasoning. For non-signatories, the variables that affect their welfare by going from the Nash-Cournot 
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to the Stackelberg scenario are total mitigation (that also affects equilibrium adaptation levels) and 

individual mitigation. We know that mitigation costs will increase due to higher NSm . In order to 

evaluate the overall effect, we totally differentiate non-signatories’ welfare function: 

( ) ( ) ( ) ( ), ,
NC NC

NS ii i i i
NS NS

i NS

C m D aB M a B M a a a
w M M m M

M a M m M M

    
 =  +   −  −  

     
 

and, using the first order conditions in terms of adaptation, a aB D= , we get: 

( )NS M m NS NSw B M C m m =  −  . 

As we know from above that 0M   and 0NSm  , it follows that non-signatories’ welfare will 

drop when moving from the NC- to the ST-scenario. Therefore, pulling results together for 0  , it 

holds that ( ) ( )CN ST

S NSw p w p  and ( ) ( )CN ST

NS NSw p w p , though nothing can be said about aggregate 

welfare ( )W p . From the last two inequalities and considering the internal stability condition (2), it 

follows that 
* *ST NCp p . 

2) We now consider 0  . We want to show ( ) ( )NC STM p M p . 

Due to upward-sloping mitigation reaction functions, we need to consider two possibilities:  

( ) ( )NC STM p M p  would be compatible only with ( ) ( )NC ST

S Sm p m p  and ( ) ( )NC ST

NS NSm p m p ; 

( ) ( )NC STM p M p  would be compatible only with ( ) ( )NC ST

S Sm p m p  and ( ) ( )NC ST

NS NSm p m p . 

We note that, axiomatically, the Stackelberg leader will receive a higher (or equal) welfare compared 

to the simultaneous game. To see how signatories’ welfare will change when moving from the NC- 

to the ST-scenario, we total differentiate welfare function (1.b). The result would be the same for 

non-signatories, except for individual mitigation levels (as done below). We have: 

( ) ( ) ( ) ( ), ,
NC NC

S ii i i i
S S

i S

C m D aB M a B M a a a
w M M m M

M a M m M M

    
 =  +   −  −  

     
 

and, using the information a aB D=  from the first order conditions with respect to adaptation, we get: 

( )S M m S Sw B M C m m =  −  . 
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From the first order conditions of signatories under the NC-scenario (4.a) in Table 1, we know that 

( )M m Sp B C m = . We also know that in case of upward sloping mitigation reaction functions, 

sM p m    as also non-signatories change their mitigation levels in the same direction as 

signatories. Therefore, ( )M m S sB M C m m    must be true, implying that the benefit effect 

dominates the cost effect. Consequently, signatories can only increase their welfare by becoming 

Stackelberg leaders by increasing their mitigation level compared to the NC-scenario. Therefore for 

0  , we will have: ( ) ( )NC STM p M p , ( ) ( )NC ST

S Sm p m p  and ( ) ( )NC ST

NS NSm p m p . 

For non-signatories, we have: 

( )NS M m NS NSw B M C m m =  −  . 

From the first order conditions of non-signatories under the NC-scenario (4.b) in Table 1, we know 

that M mB C= . We also know that because of upward sloping mitigation reaction functions 

NSM m    holds and hence ( )M m NS NSB M C m m   . Hence, taken together, 

( ) ( )NC ST

S Sw p w p  and ( ) ( )NC ST

NS NSw p w p  and hence ( ) ( )NC STW p W p  if 0  . 

Finally, we need to show ( ) ( ) ( ) ( )ST NC ST NC

S S NS NSm p m p m p m p−  −  and ( ) ( )ST NC

S Sw p w p−  

( ) ( )ST NC

NS NSw p w p −  which results in 
* *ST NCp p . Looking at signatories’ and non-signatories’ 

welfare functions, we can rewrite those as follows: ( ) ( )( )NC NC NC NC

NS S S NSw w C m C m= + −  and 

( ) ( )( )ST ST ST ST

NS S S NSw w C m C m= + − . Using this, ( ) ( )ST NC

S Sw p w p− ( ) ( )ST NC

NS NSw p w p −  translates into 

( ) ( ) ( ) ( )ST NC ST NC

S S NS NSC m C m C m C m−  − . This will be true provided ( ) ( )ST NC

S Sm p m p−   

( ) ( )ST NC

NS NSm p m p−  holds, which we need to prove. Assume mitigation cost functions to have the 

following form: ( ) ,S S

c
C m m 


=   ( )NS NS

c
C m m 


=   with 1   and hence ( ) 1

m S SC m c m  −=  , 

( ) 1

m NS NSC m c m  −=  . From the first order conditions with respect to mitigation in the NC-scenario 

we know that 
( )

( )m S

m NS

C m
C m

p
=  and hence 

1
1S

NS

c m
c m

p




−
−

=   and consequently 

1 1NC NC

S NSm p m − −=   so that 1NC NC

S NSm p m −=  . From the first order conditions under the ST-scenario 
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for mitigation we know that 
( )

( )
( )

'1

m S

m NS

NS

C m
C m

p R
=

 +
. For our polynomial cost function, we obtain 

( )1 ' 11ST ST

S NS NSm p R m − −=  +   so that ( )'1 1ST ST

S NS NSm p R m −=  +  . Basic algebraic manipulation 

delivers: ( )1 1NC NC NC NC

S NS NSm m m p m − = − = −  and ( )( )'1 1 1ST ST ST ST

S NS NS NSm m m p R m − = − =  + − . 

Now because of 0  , 
' 0NSR   and, therefore, 

CN CN ST ST

S NS S NSm m m m−  − . Rearranging this inequality, 

we have: ( ) ( ) ( ) ( )ST NC ST NC

S S NS NSm p m p m p m p−  − . 

A.4 Proof of Proposition 3 

For the NC-scenario, Bayramoglu et al. (2018) demonstrated that in M-Game and in M+A-Game 

with 0   stable coalition size can be either 
* 1p =  or 

* 2p = . In the M+A-Game with 0   they 

have shown that 
* 3p   as internal stability holds for all smaller p  but external stability does not. 

Now, cumbersome calculations (which are available upon request) show that if 7n  , either 
* 3p =  

or 
*p n=  as confirmed by our simulations. 

For the ST-Scenario, in the M- and M+A-Game, we know from Proposition 2 
* *NC STp p  if 0. 

Hence, we need to show that 2STp =  is always internally stable as this implies 
* 2STp  . Hence, we 

compute ( ) ( )* *( ) : 1S NSIS p w p w p= − −  in the M- and M+A-Game, substitute 2p =  and show that 

( 2) 0IS p =  . As ( )IS p  is a large term, in particular in the M+A-game, we do not reproduce it here, 

though results are available upon request. In order to show that  * 2,STp n , it suffices to run 

simulations which delivers 
*STp  in the entire interval. We have conducted such simulations of which 

Tables A.1, A2 and A.3 provide a (small) sample. Again, all simulations are available upon request. 

Finally, in the M+A-game and 0  , we know from Proposition 3 that 
* *NC STp p  and for welfare 

function (10.a) and (10.b) that  * 3,NCp n= . Hence, it suffices to produce examples which deliver 

 * 2,3STp   provided we can show that 
* 1STp  . This is indeed the case because for 2p =  the 

internal stability condition ( ) ( )* *( 2) : 2 1 0S NSIS p w w= = −   holds and 1STp =  is externally unstable. 

Further notice that the internal stability condition at 2p =  is identical to the condition of 
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superadditivity, which we know holds from Proposition 4 for any expansion 1p −  to p , 2n p   

in the Stackelberg scenario.  

Remark: In the M-Game, knowing that the slope of the reaction function increases in g  and 

decreases in c , one can calculate the following limits: lim ( ) 0
g

IS p
→

=  and 
0

lim ( ) 0
c

IS p
→

=  which proves 

that any coalition p  is internally stable for those limits, including the grand coalition, in which case 

all smaller coalitions will be externally unstable. A detailed proof is available upon request. 

A.5 Proof of Proposition 4 

Mitigation Cohesiveness (MCOH) 

The difference ( ) ( 1)M p M p− −  can also be investigated by considering 
M

p




, treating p  as a 

continuous variable. Bayramoglu et al. (2018) have shown that in the NC-scenario in the M- and 

M+A-Game. Following their approach, only minor modifications for the ST-scenario are necessary. 

Total differentiation of the first order conditions of signatories and non-signatories in the M- and 

M+A-Game, as provided in Table 1, delivers after rearranging terms, and recalling the difference of 

the term in the two games (and setting third derivatives to zero): 

( )

( )

( )
( )

'
'1

1NS
M NSS

mm S mm S

M
p R

B Rm p

p C m C m


   +

 + 
= +


 

( )
NS

mm NS

M

m p

p C m


 

 
=


. 

We know that ( )S NS
S NS

m mM
m p m n p

p p p

 
= +  − + − 

  
. Substituting 

Sm

p




 and 

NSm

p




 from above 

and rearranging terms, we obtain: 

( )
( )

( )
( )

( )
( )

'

2 '

1

1
1

M NS

S NS

mm S

NS

mm S mm NS

p B R
m m

C mM

p p R n p

C m C m

  +
− +


=

   + −
 −  +
  
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The term 
( )
( )

'1M NS

mm S

p B R

C m

  +
 is always positive and the denominator is always positive by the General 

Assumptions II. Hence, if 0S NSm m−  , we can conclude 0
M

p





. We know that 0S NSm m−   if 

0   in which case we can also conclude 0NSm

p





 and 0Sm

p





 from above. If 0  , 

0S NSm m−   is possible and hence nothing can be generally concluded. In order to show that is 

possible for some the examples provided in Appendix A.6 are sufficient.  

Positive Externality (PEP) 

In the context of the NC-scenario, see Bayramoglu et al. (2018). In the ST-scenario, we derive exactly 

the same condition: 

( )
1NS

M

mm NS

w M
B

p p C m

    
=   −       

 

noting that 0MB   from the General Assumptions I and 
( )

1 0
mm NSC m

 
−   

 
 from the sufficient 

condition of existence and uniqueness as stated in the General Assumptions II. Therefore, NSw

p




 

depends on the sign of 
M

p




. Whereas 0

M

p





 always holds in the NC-scenario, and this is also true 

in the ST-scenario if 0   as we know from above, we also know that in the ST-scenario 0
M

p





 

is possible provided 0   in which case non-signatories do not enjoy a positive but suffer from a 

negative externality if the coalition is expanded. 

Superadditivity (SAD) 

We need to show: ( ) ( )  ( ) ( )* * *1 1 1S S NSp w p p w p w p   −  − + −  for all p , 2 p n  . For the NC-

scenario Bayramoglu et al. (2018) established in both games that a sufficient condition for SAD to 

hold are (weakly) upward sloping reaction functions, i.e., 0  . For the ST-scenario, SAD must 

hold by axiomatic reasoning. Step 1: Any move from 1p −  to p  implies one more signatory. Keeping 

total mitigation of the p  signatories at the same level than at 1p −  ( ( )Sp m p =  

  )1 ( 1) ( 1)S NSp m p m p− − + − , total mitigation cost will have decreased among the p  signatories as 
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the first order conditions of mitigation imply cost-effectiveness among signatories. The n p−  non-

signatories will not have changed their strategies in Step 1. Step 2: The p  Stackelberg leaders choose 

their equilibrium strategies by maximizing their aggregate payoff, controlling the best-response of 

non-signatories. If they choose different strategies in step 2 compared to step 1, the aggregate welfare 

of the p  signatories must have further increased. For the final move from 1 1p n− = −  to p n= , 

when there are no outsiders left after the move, the SAD-condition is equal to welfare cohesiveness 

(WCOH) and WCOH for this last move does generally hold because total welfare in the grand 

coalition is strictly larger than in any other coalition in an externality game by axiomatic reasoning.  

Welfare Cohesiveness (WCOH) 

If a game is superadditive and exhibits a positive externality throughout, this is sufficient that WCOH 

holds. Both conditions hold in both scenarios for 0  . In order to prove that WCOH may fail to 

hold, the examples provided in Appendix A.6 are sufficient.



 

 

TABLES 

 

Table A.1: Mitigation Game* 

 

Table A.2: Mitigation-Adaptation Game, 0  , 0aMB  * 

Base simulation parameters: b=10, β=10, g=1, f=1, c=1, d=5. The other simulations analyze the change of one parameter value  

PARAMETERS 
'

NSr  ICI 
NASH-COURNOT STACKELBERG 

PEP SAD WCOH MCOH p* INI PEP SAD WCOH MCOH p* INI 

b=10, g=1, c=1. -0.5000 0.01 ✓ p>17 P>16 ✓ 1 0 p>30 ✓ p>27 p>30 51 0 

b=10, g=5, c=1. -0.8333 0 ✓ p>17 P>16 ✓ 1 0 p>59 ✓ p>53 p>59 84 0 

b=10, g=100, c=1 -0.9901 0 ✓ p>17 P>16 ✓ 1 0 p>90 ✓ p>85 p>90 100 0 

b=10, g=0.01, c=1. -0.0099 32.37 ✓ p>14 ✓ ✓ 1 0 ✓ ✓ ✓ ✓ 3 0.51 

b=10, g=0.001, c=1. -0.0001 426.11 ✓ ✓ ✓ ✓ 2 1.71 ✓ ✓ ✓ ✓ 3 4.41 

b=10, g=1, c=300. -0.0033 122.87 ✓ ✓ ✓ ✓ 2 1.26 ✓ ✓ ✓ ✓ 3 2.37 

b=10, g=1, c=0.1. -0.9901 0 ✓ p>17 P>16 ✓ 1 0 p>70 ✓ p>62 p>70 92 0 

b=10, g=0.1, c=350. -0.0003 1258.81 ✓ ✓ ✓ ✓ 2 1.89 ✓ ✓ ✓ ✓ 2 1.79 

b=30, g=1, c=1. -0.5000 0.01 ✓ p>17 P>16 ✓ 1 0 p>30 ✓ p>27 p>30 51 0 

PARAMETERS 
'

NSr  ( )'f M     ICI 
NASH-COURNOT STACKELBERG 

PEP SAD WCOH MCOH p* INI PEP SAD WCOH MCOH p* INI 

Base -0.4444 -0.20 -0.80 0.01 ✓ p>17 p>15 ✓ 1 0 p>27 ✓ p>24 p>27 52 0 

b=3 -0.4444 -0.20 -0.80 0 ✓ p>17 p>15 ✓ 1 0 p>32 ✓ p>24 p>32 100 0 

β=11 -0.4444 -0.20 -0.80 0.01 ✓ p>17 p>15 ✓ 1 0 p>30 ✓ p>24 p>30 83 0.01 

g=2 -0.6429 -0.20 -1.80 0 ✓ p>17 p>16 ✓ 1 0 p>43 ✓ p>28 p>43 99 0 

f=0.5 -0.4872 -0.10 -0.95 0.01 ✓ p>17 p>15 ✓ 1 0 p>33 ✓ p>25 p>33 92 0.01 

c=0.5 -0.6154 -0.20 -0.80 0 ✓ p>17 p>16 ✓ 1 0 p>39 ✓ p>34 p>39 66 0 

c=50 0.0157 -0.20 -0.80 13.10 ✓ p>15 ✓ ✓ 1 0 p>2 ✓ p>2 p>2 7 1.05 

c=300 -0.0027 -0.20 -0.8 94.19 ✓ ✓ ✓ ✓ 2 0.82 ✓ ✓ ✓ ✓ 3 1.50 

c=500 -0.0016 -0.20 -0.80 135.57 ✓ ✓ ✓ ✓ 2 0.79 ✓ ✓ ✓ ✓ 3 1.77 

d=2 -0.3333 -0.50 -0.50 0.02 ✓ p>17 p>15 ✓ 1 0 p>23 ✓ p>20 p>23 54 0 

d=50 -0.4949 -0.02 -0.98 0.01 ✓ p>17 p>15 ✓ 1 0 p>29 ✓ p>27 p>29 51 0 
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Table A.3: Mitigation-Adaptation Game, 0  , 0aMB  * 

Base simulation parameters: b=10, β=10, g=1, f=1, c=1, d=5. The other simulations analyze the change of one parameter value 

Table A.4: Mitigation-Adaptation Game, 0  , 0aMB  * 

Base simulation parameters: b=10, β=10, g=2, f= 6.5, c=50000 d=20. The other simulations analyze the change of one parameter value. 

PARAMETERS 
'

NSr  ( )'f M    ICI 
NASH-COURNOT STACKELBERG 

PEP SAD WCOH MCOH p* INI PEP SAD WCOH MCOH p* INI 

Base -0.4444 0.20 -0.80 0.01 ✓ p>17 p>15 ✓ 1 0 p>26 ✓ p>24 p>26 46 0 

b=3 -0.4444 0.20 -0.80 0.01 ✓ p>17 p>15 ✓ 1 0 p>26 ✓ p>24 p>26 46 0 

g=2 -0.6429 0.20 -1.80 0 ✓ p>17 p>16 ✓ 1 0 p>40 ✓ p>37 p>40 65 0 

g=0.21 -0.0099 0.20 -0.01 32.39 ✓ p>14 ✓ ✓ 1 0 ✓ ✓ ✓ ✓ 3 0.51 

f=2.23 -0.0054 0.45 -0.01 70.06 ✓ p>10 ✓ ✓ 1 0 ✓ ✓ ✓ ✓ 3 1.44 

f=-0.5 -0.4872 0.10 -0.95 0.01 ✓ p>17 p>15 ✓ 1 0 p>29 ✓ P>27 p>29 50 0 

c=0.5 -0.6154 0.20 -0.8 0 ✓ p>17 p>16 ✓ 1 0 p>38 ✓ P>35 p>38 62 0 

c=300 -0.0027 0.20 -0.8 121.10 ✓ ✓ ✓ ✓ 2 1.06 ✓ ✓ ✓ ✓ 3 2.17 

c=500 -0.0016 0.20 -0.8 186.91 ✓ ✓ ✓ ✓ 2 1.09 ✓ ✓ ✓ ✓ 3 2.60 

d=1.00001 0 1 0 4469.51 ✓ ✓ ✓ ✓ 2 1.97 ✓ ✓ ✓ ✓ 2 1.97 

d=50 -0.4949 0.02 -0.98 0.01 ✓ p>17 p>15 ✓ 1 0 p>29 ✓ P>27 p>29 51 0 

PARAMETERS 
'

NSr  ( )'f M    ICI 
NASH-COURNOT STACKELBERG 

PEP SAD WCOH MCOH p* INI PEP SAD WCOH MCOH p* INI 

Base 0 -0.33 0.11 176.42 ✓ ✓ ✓ ✓ 3 0.01 ✓ ✓ ✓ ✓ 2 0.07 

beta=9.286 0 -0.33 0.11 217.07 ✓ ✓ ✓ ✓ 3 0.63 ✓ ✓ ✓ ✓ 2 0.09 

g=2.11 0 -0.33 0 172.46 ✓ ✓ ✓ ✓ 3 0.21 ✓ ✓ ✓ ✓ 2 0.07 

c=45001 0 -0.33 0.11 195771.75 ✓ ✓ ✓ ✓ 3 0.23 ✓ ✓ ✓ ✓ 2 0.08 

d=21.1 0 -0.31 0 190.47 ✓ ✓ ✓ ✓ 3 0.23 ✓ ✓ ✓ ✓ 2 0.08 

CASE 1 0.0001 -0.33 0.29 0 ✓ ✓ ✓ ✓ 100 0 ✓ ✓ ✓ ✓ 2 0 

CASE 2 0.0001 -0.99 4.99 0 ✓ ✓ ✓ ✓ 100 0 ✓ ✓ ✓ ✓ 2 0 

CASE 3 0.0001 -0.99 9.99 0 ✓ ✓ ✓ ✓ 100 0 ✓ ✓ ✓ ✓ 2 0 
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CASE 1: b=10, β=30, g=1.9, f=6.5999, c=3000, d=19.8. CASE 2: b=10, β=10, g=2 f=6.999999, c=50000, d=7. CASE 3: b=100, β=100, g=5 f=14.999999, 

c=100000, d=15. 

Table A.5: Mitigation-Adaptation Game, 0  , 0aMB  * 

Base simulation parameters: b=10, β=30, g=2, f= 6.5, c=3000 d=20. The other simulations analyze the change of one parameter value. 

CASE 2: b=10, β=10, g=2 f=6.999999, c=50000, d=7. CASE 3: b=1, β=1, g=1 f=2.9999, c=5000, d=6. 

 

* For the general properties of the game (PEP, SAD, WCOH and MCOH), ✓ means that they hold for every coalition of size p . If this is not the case, p  

values indicated refer to intervals or specific values for which a given condition holds. For any other interval or values of p , the condition fails. If SAD 

holds for a given p , it means that the move from 1p −  to p  is superadditive. For ( )'f M ,  , ICI  and INI  we round to two digits and for 
'

NSr  we 

round to 4 digits. 

PARAMETERS 
'

NSr  ( )'f M     ICI 
NASH-COURNOT STACKELBERG 

PEP SAD WCOH MCOH p* INI PEP SAD WCOH MCOH p* INI 

Base 0 0.33 0.11 18.64 ✓ ✓ ✓ ✓ 3 0.01 ✓ ✓ ✓ ✓ 3 0.01 

b=1 0 0.33 0.11 1154.69 ✓ ✓ ✓ ✓ 3 0.87 ✓ ✓ ✓ ✓ 3 0.87 

beta=1 0 0.33 0.11 7402.91 ✓ ✓ ✓ ✓ 3 5.57 ✓ ✓ ✓ ✓ 3 5.60 

g=2.11 0 0.33 0 1775.05 ✓ ✓ ✓ ✓ 3 2.11 ✓ ✓ ✓ ✓ 3 2.11 

c=1126 0.0001 0.33 0.11 33.92x105 ✓ ✓ ✓ ✓ 3 3.66 ✓ ✓ ✓ ✓ 3 3.71 

d=18.37 0.0001 0.35 0.29 10.06x106 ✓ ✓ ✓ ✓ 100 10.06x106 ✓ ✓ ✓ ✓ 3 2.25 

d=21.1 0 0.31 0 1814.15 ✓ ✓ ✓ ✓ 3 2.16 ✓ ✓ ✓ ✓ 3 2.16 

CASE 2 0.0001 0.33 0.29 12.58x108 ✓ ✓ ✓ ✓ 100 12.58x108 ✓ ✓ ✓ ✓ 3 0.62 

CASE 3 0.0001 0.49 0.49 87.41x105 ✓ ✓ ✓ ✓ 100 87.41x105 ✓ ✓ ✓ ✓ 3 2.09 



 

 

 

CHAPTER TWO 

Accounting for adaptation and its effectiveness in International 

Environmental Agreements* 

 

 

Abstract 

This paper analyses, within a standard International Environmental Agreement game, the effect of 

the introduction of adaptation on climate negotiation. The model expands the existing literature by 

considering a double relation between the two strategies. The common assumption that higher 

mitigation decreases the marginal benefit of adaptation and vice versa is enriched allowing for the 

possibility that mitigation, leading to lower and more manageable damages, determines a greater 

effectiveness of adaptive measures. We show that the general results from the literature still hold. In 

particular, that the presence of adaptation can determine upward sloping mitigation reaction 

functions and that, in this case, the grand coalition can form. Nonetheless, large participation can 

induce substantive welfare gains only if adaptation and mitigation are strategic complements. We 

show that, complementarity is facilitated when adaptation effectiveness is linked to mitigation levels. 

At the same time, this condition also shrinks the possibility to observe upward sloping mitigation 

reaction function. This suggests a key role played also by the “nature” of complementarity between 

mitigation and adaptation that in some cases can reduce the room for the formation of large and 

welfare improving climate change agreements. 

 

Keywords: Climate change, adaptation effectiveness, mitigation-adaptation strategic relation, 

International Environmental Agreements game. 

 

 

 

* This paper, co-authored with Professor Francesco Bosello, is submitted, and under revision, in Games 

and Economic Behavior.  
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1. Introduction 

Contrasting climate change is increasingly recognised as one of the key challenges that our society 

has to address. The two pillars of climate change policy are mitigation and adaptation. The former 

acts directly on the cause of the problem, reducing emissions and lowering future climate change. 

The latter acts on its consequences tackling directly climate impacts. Recognizing the global public 

bad nature of climate change, the international community started since the beginning of the 90’s a 

complex negotiation process under the umbrella of the United Nation Framework Convention on 

Climate Change to set and coordinate an equitable, effective and efficient climate action. 

These negotiations rounds offered a natural and extremely fertile ground to apply game-and coalition 

theory models. These have been amply used to predict the potential outcomes of international 

negotiations on climate change and, in particular, to explain the very reason behind the unsatisfactory 

achievement of “large” cooperation or of “substantive” environmental effectiveness. The first stream 

of literature on International Environmental Agreements (IEAs), however, has largely focused on 

mitigation, while adaptation has been somewhat overlooked. The general results of this literature is 

that a large (with many countries) and stable (without internal defeaters or external entrants) coalition 

is not possible to obtain (Hoel 1992, Carraro and Siniscalco 1993, Barrett 1994)11. The driver of the 

outcome is the incentive to free ride. Intuitively: when, or exactly because, the agreement produces 

large environmental benefits (it is stringent), then the incentive to free ride by single players is too 

strong to be possibly offset by the remaining members of the coalition. Thus, the coalition shrinks 

until the incentive to free ride becomes sufficiently small. This typically occurs when few members 

(two/three) are left. There is a “dual” interpretation of this exit: when large coalitions do form, it is 

                                                 
11  The literature on IEA games has extended over the years. For a collection of some of the most 

influential papers see Finus and Caparros (2015). Many aspects of climate negotiation are analyzed 

and, in some cases, more optimistic conclusions are achieved (see for instance Barrett and Dannenberg 

(2012), Eyckmans and Finus (2007) and Finus and Maus (2018)). 
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because the underlying agreements entail a low incentive to free ride, i.e., they are close to a “do 

nothing” business as usual. 

In the last decade, a more recent stream of literature emerged studying the interplay between 

mitigation and adaptation in IEAs. This crop of papers is mostly based on empirical Integrated 

Assessment Modes with only few proposing theoretical framework (Zehaie 2009, Ebert and Welsch 

2011 and 2012, Ingham et al. 2013, Eisenack and Kahler 2016). Even fewer have analyzed how the 

presence of adaptation could affect the size and stability of an IEA (Benchekroun et al. 2011, Buob 

and Siegenthaler 2011, Marrouch and Chaudhuri 2011, Auerswald et al. 2018, Bayramoglu et al. 

2018). 

The presence of adaptation might indeed change the nature of the emission reduction game, acting 

on the incentive to free ride. A first suggestion in this direction is offered by Auerswald et al 2018 

showing that in a leader-follower game the commitment to adapt by a group of signatory countries 

can be a credible signal of a low willingness to mitigate. This can induce outsiders to increase their 

mitigation effort respect to a “no adaptation” case. Then, total abatement in the presence of adaptation 

would depend on the shape of the respective mitigation reaction functions. A further refinement in 

this direction, is proposed by Marrouch and Chaudhuri (2011). They show that, if adaptation is 

possible, the optimal reply to a potential free rider a climate agreement is more adaptation and not 

more mitigation. This could reduce the free riding benefit and thus foster the stability of a climate 

coalition. But there is more. Under given conditions, the presence of adaptation can make mitigation 

reaction functions upward sloping, therefore an abating coalition acting as Stackelberg leader can 

induce higher abatement in non-signatories. 

The upward sloping nature of mitigation reaction function induced by adaptation is thus a key 

property for the stability of climate coalition. This issue has been extensively examined by 

Bayramoglu et al. (2018). One of the interesting points of the paper is that upward sloping mitigation 

reaction functions occur when the adaptation-mitigation interaction is “sufficiently large”, regardless 
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of whether the two strategies are complements or substitutes. Nonetheless, complementarity and 

substitutability do play a role in determining abatement and welfare levels of the M+A-Game. 

The strategic relation between mitigation and adaptation has been examined by a parallel stream of 

literature, concluding that whether the two are complements or substitutes is mostly an empirical 

matter. Adaptation and mitigation are commonly seen and modeled as economic substitutes: if the 

cost of mitigation falls (rises), then the optimal response is to increase (decrease) the level of 

mitigation and decrease (increase) the level adaptation. However, for instance, Ingham et al. (2013) 

show that, when adaptation costs depend on the amount of mitigation, the two strategies can be 

complements. This can occur if adaptation were harder to implement under faster rates of climate 

change. By reducing emissions, countries not only reduce the rate of climate change, but also facilitate 

(buy time for) adaptation. As assumed by Ingham et al. (2013), adaptation and mitigation may be 

linked by more than one relationship and as a result the standard assumption of strategic 

substitutability may be reversed. 

Starting from this idea, the purpose of this paper is to further investigate the interconnections between 

mitigation-adaptation and the effects that they could have on climate negotiation outcomes.  

Our starting point is Bayramoglu et al. (2018), whose analysis we enrich inserting a double connection 

between adaptation and mitigation12. Differently from Ingham et al. (2013), we introduce the second 

relation in the benefit side of the payoff function, and not in the cost side. In this way, we keep the 

two strategies interconnected only through benefit effects, while their costs are independent as in 

Bayramoglu et al. (2018). 

The first relation we consider is the standard one: higher levels of adaptation, reducing the marginal 

damage from climate change, weaken the benefits from mitigation. Conversely, higher levels of 

                                                 
12  Our modification is therefore introduced in the M+A-Game, while the pure mitigation game does not 

change from Bayramoglu et al. (2018). 
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mitigation, by generating less damages to be attenuated, reduce the incentive for protection. The 

second, is similar in spirit to Ingham et al. (2013). Specifically, we include an adaptation effectiveness 

parameter that depends on total mitigation level so that higher mitigation determines higher 

productivity of adaptation. This assumption finds support in the scientific literature. The IPCC AR4 

(IPCC 2007) states that as climate change increases, not only do the costs increase but also the options 

for successful (we read effective) adaptation diminish. Adaptation effectiveness appears closely 

linked to the rate and magnitude of climate change according to Adger et al. (2007) while Romero-

Lankao et al. (2014) state that “several lines of evidence indicate that effective adaptation requires 

changes in approach and becomes much more difficult if warming exceeds 2°C above preindustrial 

levels”. 

In summary, the present paper: i) enriches the interaction between adaptation and mitigation linking 

the effectiveness of adaptation to mitigation levels, ii) finds how this enriched interaction influences 

the complementary or substitutability of mitigation and adaptation, iii) studies the effect of this more 

complex interaction on stable coalition size, mitigation level and welfare performance. 

In what follows: section 2 introduces the game theoretical model and its general assumptions, section 

3 presents the game, section 4 solves the two stages of the game presenting major results, section 5 

concludes. 

2. The model 

We consider n  symmetric players (countries) 1,2,...,i n= , and 2 different games. In the pure 

mitigation game (M-Game), our reference, players can only use emissions reduction as a strategy to 

combat climate change. In the mitigation-adaptation game (M+A-Game), adaptation is introduced. 

In the M-Game we adopt the same general payoff function of Bayramoglu et al. (2018) given by: 

 ( ) ( ) ( ),i i i i iw M m B M C m= −   (1.a) 

In the M+A-game we introduce a substantial modification, with the payoff function given by: 
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 ( ) ( )( ) ( ) ( ), , , ,i i i i i i i iw M m a B M a M C m D a= − −  (1.b) 

The total welfare will be the sum of all individual payoffs 
1

n

i

i

W w
=

= . 

In the M-Game (function 1.a), individual payoff is given by the benefit iB  from total mitigation 

1

n

i

i

M m
=

= , minus the cost iC  of individual mitigation im . In the M+A-Game (function 1.b), benefits 

depend on total mitigation M , individual adaptation ia  and its effectiveness   that is a function of 

total mitigation. Adaptation effectiveness ( )M  also interacts with adaptation as it will be clear from 

the general assumptions that characterize the model. The cost functions ( )i iC m  and ( )i iD a  depend 

on the individual mitigation and adaptation levels. Every player i  in the M-Game will decide its level 

of individual mitigation 0,i im m 
 

, while in the M+A-Game it will also set its individual adaptation 

level 0,i ia a 
 

. Players have identical individual payoff functions, and thus are ex-ante symmetric. 

For notation simplicity in the following we drop the index i . However, after the first stage of the 

game, players can have different objective functions, and therefore mitigation levels, depending on 

whether they are part of the climate coalition or not. Where appropriate, we stress this difference 

using the index S for signatories and NS for non-signatories. 

All payoff functions are assumed to be continuous with continuous first and second derivatives. Then, 

the following general assumptions on payoff functions are introduced13. The subscripts refer to the 

kind of the derivative, e.g. M

B
B

M


=


, 
2

2MM

B
B

M


=


 and 
2

Ma

B
B

M a


=
 

.  

                                                 
13  Those not related to adaptation effectiveness properties are the same of Bayramoglu et al. (2018) . 
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General assumptions 

M-Game: 

a) 0MB  , 0MMB  , 0mC  , 0mmC  . 

b) 
0 0

lim lim 0M m
M m

B C
→ →

    

M+A-Game: 

ai) 0M M MB B B = +   , 0MMB  , 0mC  , 0mmC  . 

bi) 
0 0

lim lim 0M m
M m

B C
→ →

    

c) 0aB  , 0aaB  , 0aD  , 0aaD  . 

If 0aaB = , then 0aaD   and vice versa: if 0aaD = , then 0aaB  . 

d) 
0 0

lim lim 0a a
a a

B D
→ →

  . 

e) 0M  , 0MM  . 

f) 0B  , 0B  , 0M MB B  =   . 

g) 0aM MaB B=  . 

h) 0a aB B =  . 

i) 
( )( ), ,

0
a M

aM Ma Ma a M

B M a M B
B B B B

M a





 
= = = = +  

 
 

With, in assumption ai):

( )( ) ( )( ) ( )( ), , , ,
0

M i i M

MM MM M M MM M M

B M a M B M a M M
B B B B B

M



  

  
  

 + 
= = +  +  +  


 

with 
( )( ), ,

2M M M M

B M a M
B B B B

M



   


 


= = +  = 


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Assumptions a), ai), c) and f) set the standard properties of concave benefit and convex cost functions. 

This configuration guarantees, together with assumptions b), bi) and d), strictly positive mitigation 

and adaptation equilibrium levels in both games.  

Assumptions a), ai) and c) also describe the nature of mitigation and adaptation. Mitigation is a pure 

public good, as the marginal benefits are affected by total mitigation and not only by individual one. 

Adaptation is instead a private good: its marginal benefits depend only on individual adaptation 

levels. Assumption e) represents the new element of this theoretical work. Adaptation effectiveness 

is defined as an increasing concave (or linear) function of total mitigation level. The logic behind this 

assumption is the idea that adaptive measures cannot be equally applied regardless of the damage 

level. In case of catastrophe, adaptation can’t be applied: even with an extreme effort, the damage 

can’t be substantively attenuated. Mitigation allows to avoid extreme damages and, as emissions 

decrease and climate change slows, adaptation starts to be increasingly effective. In this context,   

sets the amount of damage that can be avoided through adaptive measures. It can be conceived as a 0 

to 1 variable: for example, value 1 would mean that the damage could be completely absorbed by 

adaptation, while with a value of 0.5 damage could be reduced by the 50%. The smaller the severity 

of damages the larger the portion that can be eliminated by adaptation. This is what assumption e) 

captures. 

The relation between mitigation and adaptation is described by assumptions g), e) and h). Assumption 

g) confirms their standard trade-off: higher levels of adaptation reduce the marginal benefit of 

mitigation and vice versa. For assumption e), higher mitigation determines higher effectiveness of 

adaptive measures. This in turn, through assumption h) that describes the relation between adaptation 

and its effectiveness, increases marginal benefits from adaptation. The overall resulting cross 

derivative sign is uncertain. It is given by the sum of these two effects as described in assumption i).  
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3. The game 

The International Environmental Agreement game is typically solved as a 2-stage game where 

countries choose whether to participate or not in a mitigation coalition in the first stage and set their 

level of mitigation (in the M-game) or of both mitigation and adaptation (in the M+A-game) in the 

second stage. 

Countries who join the coalition P  in the first stage are the signatories (S), other countries are the 

non-signatories (NS). The size of coalition P  is indicated by p . If p n=  the grand coalition (full 

cooperation) forms. In an externality game this always represents the social optimum (SO). If 1p =  

the non-cooperative Nash equilibrium (NE) forms. We refer to all other coalition sizes 1 p n   as 

partial cooperation. 

In a game with a positive externality, a necessary condition for coalition formation is profitability. 

The coalition of size p  is profitable if each signatory gets a higher payoff inside the coalition rather 

than in a non-cooperative Nash equilibrium. Formally, profitability can be written: 

( ) NE

Sw p w . 

In the presence of free riding incentives, profitability is not a sufficient condition for the formation of 

a climate agreement. Stability is also needed. According to the majority of IEAs literature, here we 

use the open membership rule (D’Aspremont et al. 1983). i.e., players can join and leave the coalition 

without the consensus of others. Consequently, stability should be both internal and external.  

Internal stability requires that none of the signatories would be better off leaving the coalition P while 

other players stay in the coalition. External stability requires that none of the non-signatories would 

be better off joining the coalition. Formally, internal stability can be written: 

 ( ) ( )* * 1S NSw p w p −   (2) 

while external stability is: 
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( ) ( )* * 1NS NSw p w p +  

When profitability, internal and external stability are jointly satisfied the coalition can be formed. For 

every coalition P , we allow for a unique equilibrium vector of mitigation (mitigation and adaptation) 

decisions to exist. We introduce the uniqueness and existence condition in the next section. 

In the second stage of the game, the coalition acts as a single player maximizing its payoff and 

internalizing the positive externality arising from mitigation. In the M-Game, signatories will choose 

the level of mitigation that maximizes their aggregate payoff, while each non-signatory will instead 

choose the mitigation level maximizing its individual payoff. In the M+A-Game signatories and non-

signatories simultaneously set their mitigation and adaptation levels or, equivalently, they first set 

their mitigation levels and then, in a second step, adaptation levels14. 

4. Solving the game 

The game is solved by backward induction. We start from the second stage analysing mitigation and 

adaptation first order conditions, equilibrium levels and interdependencies, and then we move to the 

analysis of the first stage coalition formation. 

4.1 Second stage: mitigation and adaptation decisions 

4.1.1 Preliminaries 

In the second stage, after a coalition P  has formed in the first stage, signatories and non-signatories 

choose their optimal strategies. The first order condition for mitigation levels are given by: 

 ( ) ( )M mp B M C m =   (3.a) 

                                                 
14  The equivalence of the two games can be easily derived from the FOCs of the M+A-Game, and the 

demonstration is identical to Bayramoglu et al. (2018), thus we omit it. Final equilibrium levels will 

be the same as long as adaptation is not chosen before mitigation. The strategic role of anticipatory 

adaptation has been studied, in a 2-players context, by Zehaie (2009). 
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in the M-Game and: 

 ( )( ) ( )( ) ( ) ( ), , , ,M M mp B M a M B M a M M C m    +  = 
  (3.b) 

in the M+A-Game. 1p =  for non-signatories and 2p   for signatories if a coalition of at least 2 

players has formed. 

In the M+A-Game we have the additional FOC for adaptation: 

 ( ) ( ),a aB M a D a=   (4) 

These FOCs, enable to identify some relations between signatories and non-signatories in terms of 

mitigation, adaptation and welfare levels. 

Lemma 1 (Mitigation, adaptation and payoff levels’ relations between signatories and non-

signatories) If a coalition of size 2p   has formed in the first stage, then the following holds: 

- ( ) ( )* *

S NSm p m p  

- ( ) ( )* *

S NSa p a p=  

- ( ) ( )* *

S NSw p w p  

Proof: see Appendix A.1 

The first and last statements hold for both games, while the second one, involving adaptation, only 

refers to the M+A-Game. The free ride incentive is well explained by the relations of Lemma 1 as 

non-signatories are better off than signatories in both M- and M+A-Game. 

Mitigation FOCs (3.a) and (3.b) define players’ reaction functions in the mitigation space. Total 

mitigation is the individual mitigation level of player i plus the mitigation of all other players: 

i iM m M−= + . In this way, every mitigation FOC defines im  as a function of iM− . This is the 

individual reaction function of player i  in the mitigation space. In both M- and M+A-Game we can 
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identify the individual mitigation best response functions of signatories and non-signatories 

respectively as ( )S i Pr M− 
 and ( )NS j Pr M−  . Aggregate mitigation reaction of signatories ( )S NSR M  

and of non-signatories ( )NS SR M  capture the strategic interaction between the two groups of players. 

Moving to adaptation, FOC (4) is equal for all players. Individual adaptation can be expressed as a 

function of total mitigation. This indicates the reaction functions in the adaptation space 

( ) ( )*f M a M=  that is equal for signatories and non-signatories. 

A preliminary step of the analysis is to define the condition that guarantees to have a unique second 

stage equilibrium. The following assumption needs to be satisfied. 

Additional assumption (Existence and uniqueness conditions of a second stage equilibrium). In the 

M+A-Game, let 
( )

2

aM a MM A

MM

aa aa

B B
B

D B

 
+

+ 
 = +

−
. If 0M A+  , then a unique second stage 

equilibrium exists if: 
( )

( )

( )

2

1M A

mm S mm NS

n pp

C m C m

+
 −

  +  
  

  

Proof: see Appendix A.1  



Adaptation Effectiveness  73 

 

 

 

4.1.2 General results 

Proposition 1 (slopes of reaction functions in the mitigation space). Let M

MMB =  for the M-Game 

and
( )

2

aM a MM A

MM

aa aa

B B
B

D B

 
+

+ 
 = +

−
 for the M+A-Game. Slopes of individual and aggregate 

signatories’ mitigation reaction function are given respectively by ( )
( )

'S i P

mm S

p
r M

C m p
− 


=

− 
 

and ( )
( )

2

2
'S NS

mm S

p
R M

C m p


=

− 
. Slopes of individual and aggregate non-signatories’ reaction 

functions are given respectively by ( )
( )

'NS j P

mm NS

r M
C m

− 


=

−
 and 

( )
( )

( ) ( )
'NS S

mm NS

n p
R M

C m n p

− 
=

− − 
. 

The proof follows the same lines of the derivation of existence and uniqueness condition in Appendix 

A.1 and is therefore omitted. The slopes are derived by totally differentiating the first order condition 

for mitigation (3.a) and (3.b).  

In the M+A-Game, reaction functions can be upward sloping, and this will happen in our model when 

0  . 

The substantive difference from Bayramoglu et al. (2018) stems from the term determining the slope 

of mitigation reaction functions in the M+A-Game. In Bayramoglu et al. (2018) it is defined as: 

( )
2

aMM A

MM

aa aa

B
A B

D B

+ = +
−

.  

We can notice that “our” M A M AA+ +  . In fact, the positive squared term of M A+  is lower than the 

one of M AA +  as it is composed by two compensating effects. The negative term is also smaller (

MM MMB B ) by the definition of MMB . Therefore, in our configuration, introducing adaptation 

effectiveness dependence on total mitigation level, increases the stringency of the condition to have 
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upward sloping mitigation reaction functions in the M+A-game. Accordingly, if a country increases 

its mitigation commitment it will be easier to be in the case where all other countries react by reducing 

their mitigation levels. Intuitively, in our M+A-game, mitigation entails a double positive externality. 

On the one hand all the players will receive a higher direct benefit from total mitigation, on the other 

hand countries will receive higher benefits from their adaptive measures as they will be more 

effective. Having a double positive externality, the free riding incentive will be higher and hence 

mitigation levels will likely be strategic substitutes. 

Now, endowed with our new assumption on adaptation effectiveness, we explicit the strategic 

relations between adaptation and mitigation, i.e., conditions for complementarity or substitutability. 

Proposition 2 (Adaptation-mitigation strategic relation) In the mitigation-adaptation space, the slope 

of each player’s reaction function ( )f M  is given by ( )' aM a M

aa aa

B Ba
f M

M D B

 + 
= =
 −

. Then, 

mitigation and adaptation will be substitutes or complements if 0aM a MB B  +    or 

0aM a MB B  +     respectively. 

Proof: see Appendix A.2 

Proposition 2 sets the possibility to have strategic complementarity between mitigation and 

adaptation. Strategic complementarity occurs when the positive term a MB   , originated by the 

dependence of adaptation effectiveness on mitigation, dominates the standard negative 

interdependency aMB . This outcome is an alternative formalization of the findings of Ingham et al. 

(2013) in which complementarity could arise in the special case where adaptation costs were 

depending on the amount of mitigation15. 

                                                 
15  Other studies in which adaptation and mitigation are found to be strategic complements are Yohe and 

Strzepeck (2004 and 2007). They focus on tipping points saying that, when impacts from climate 

 



Adaptation Effectiveness  75 

 

 

 

It is worth stressing, an important implication of Propositions 1 and 2. As in Bayramoglu et al. 2018, 

it is the interaction between mitigation and adaptation that can determine upward sloping mitigation 

reaction functions, but not the nature of the relation. In  , the term 
aM a M aMB B B +  =  (which 

determine the nature of interaction between mitigation and adaptation) is squared. Thus, upward 

sloping mitigation reaction functions can occur either with complementary or substitute mitigation 

and adaptation. What is needed is that the strategic relation is “sufficiently” strong (large value of 

aM a MB B  +   in absolute terms). 

This said, the strategic relation between adaptation and mitigation does play an important role on the 

final equilibrium levels of the M+A-Game. Compared to the pure mitigation game, we can conclude, 

in line with Bayramoglu et al. (2018): 

Corollary (Mitigation levels in the M-Game and in the M+A-Game) Consider an arbitrary coalition 

of size p  formed at the first stage of the game. At the second stage, if adaptation and mitigation are 

strategic substitutes (complements) then we will have ( ) ( ) ( )M A M

S Sm p m p+   , 

( ) ( ) ( )M A M

NS NSm p m p+    and ( ) ( ) ( )M A MM p M p+   . 

Proof: see Appendix A.2 

Complementarity or substitutability between mitigation and adaptation determines the change in 

mitigation levels moving from the M-Game to the M+A-Game. When the two strategies are 

complements, for any given coalition size p , individual and total mitigation levels will be higher in 

the M+A-Game compared to the pure mitigation game. If they are substitute, mitigation levels will 

be lower. 

                                                 

change are ‘‘not smooth, non-monotonic and not manageable’’, adaptation-mitigation 

complementarity should be the rule and not the exception. 
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Compared to Bayramoglu et al. (2018) we can also claim that, under the standard assumption of 

substitutability, the introduction of the dependence of adaptation effectiveness upon mitigation, 

induces a lower decrease of mitigation levels in the M+A-Game. This is true for both signatories and 

non-signatories, and hence also applies to total mitigation (Appendix A.2). 

4.2. First stage of the game 

In the first stage players choose whether to join the mitigation coalition or not. This is the crucial 

stage of the game in which cooperation takes form.  

4.2.1. General properties 

To characterize the incentives to join a coalition P and to analyze the effect on coalition size, on 

second stage mitigation and welfare levels we first introduce three properties of the game: positive 

externality property (PEP), superadditivity (SAD) and cohesiveness (COH). We refer to two 

dimensions of cohesiveness. The standard one that is the welfare dimension (WCOH), and the 

mitigation dimension (MCOH). 

Definition 2: Superadditivity, Positive externality, and Cohesiveness 

i) Superadditivity holds if, for every coalition size 2p   and for every i P : 

( )   ( ) ( )* * *1 1 1S S NSp w p p w p w p  −  − + −  

ii) Positive externality property holds if, for every j P : 

( ) ( )* * 1NS NSw p w p −  

iii) Mitigation cohesiveness holds if, for every coalition size 2p   and for every i P : 

( ) ( ) ( )   ( )   ( )* * * *1 1 1 1S NS S NSp M p n p M p p M p n p M p + −   −  − + − +  −  

iv) Welfare cohesiveness holds if, for every coalition size 2p   and for every i P : 

( ) ( ) ( )   ( )   ( )* * * *1 1 1 1S NS S NSp w p n p w p p w p n p w p + −   −  − + − +  −  
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Superadditivity and positive externality are linked to stable coalition size. Looking to the internal 

stability condition (2), it is clear that superadditivity is a necessary condition for coalition stability. If 

coalition of size p  is stable, then the move from 1p −  to p  is superadditive. If we consider a 

coalition of size 2p = , then SAD is a sufficient condition for its stability. If the move from 1p =  to 

2p =  is superadditive, then the coalition 2p =  is internally stable. PEP refers instead at the positive 

externality generated by the coalition. It holds when the welfare of players outside the coalition 

benefit from an enlargement of participation. This property is an obstacle to the stability of large 

coalitions. As the coalition gets larger, the incentives to stay outside are bigger and therefore the 

internal stability condition is more difficult to be satisfied. 

If both SAD and PEP hold, then welfare cohesiveness holds as well. However, neither of the two 

cohesiveness properties are associated with coalition stability. They refer instead to the positive effect 

that higher participation to a climate agreement would have on total mitigation and welfare levels. 

When cohesiveness holds, larger coalitions would bring higher total mitigation (MCOH) and/or 

higher total welfare (WCOH). However, if they fail, larger coalitions would bring a loss in terms of 

total mitigation and/or welfare. For this reason, we should not only look at the number of participants 

in a mitigation agreement, but also which are the final mitigation and welfare levels16.  

                                                 
16  For cohesiveness properties, we don’t focus on adaptation. In our model it is directly related to total 

mitigation level and, therefore, we could link it to mitigation cohesiveness property. When total 

mitigation increases in the size of coalition p  (MCOH holds), adaptation will decrease (increase) if 

the two strategies are substitutes (complements). 
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Proposition 3 (general properties of the games) For what concerns the properties of our pure 

mitigation and mitigation-adaptation game: 

a) SAD always holds when 0   

b) PEP always holds in both games 

c) MCOH always holds in both games 

Proof: see Appendix A.3 

The general properties of the game do not differ from Bayramoglu et al. (2018). We now check how 

the enrichment of the relationship adaptation-mitigation, affects three aspects: stable coalition size, 

mitigation levels and the welfare of coalitions17. 

4.2.2. Explicit payoff functions 

To investigate these aspects, we introduce explicit functional forms for the payoff of the two games. 

That of the M-Game is taken from Bayramoglu et al. (2018): 

 2 2

2 2

M

i i

g c
w bM M m

 
= − − 
 

  (5) 

In the M+A-Game the payoff function is instead given by: 

( )2 2 2

2 2 2

M A

i i

g c d
w bM M a fM m a +  

= − + + − − − 
 

 

Where ( )M e M =  . Therefore, the extended payoff for the mitigation adaptation game is: 

 ( )2 2 2

2 2 2

M A

i i

g c d
w bM M a e M fM m a+  

= − + +  − − − 
 

  (6) 

                                                 
17  Adaptation levels can be directly related to total mitigation level given the strategic relations between 

the two strategies. For coalition evaluation we only focus on global welfare though the same analysis, 

with very similar conclusions, could be conducted also in total mitigation terms. 
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The payoff functions are quadratic-quadratic. Parameters b , g , c ,  , e , f  and d  are assumed to 

be strictly positive.18  The M- and M+A-Game are directly comparable as the former can be obtained 

setting adaptation level to zero in the latter.  

Appendix A.4 analyzes the payoff functions verifying that all the general assumptions of the model 

are satisfied, that the existence and uniqueness additional assumption holds and that mitigation and 

adaptation levels are non-negative.  

To quantify welfare impacts we use the indices described in: 

Definition 3 (Importance of Cooperation Index and Improvement upon the Nash Equilibrium) 

- the Importance of Cooperation Index (ICI) is the percentage welfare improvement moving 

from the Nash equilibrium (NE) to the social optimum (SO): 

100
SO NE

NE

W W
ICI

W

−
=   

- the Improvement upon the Nash equilibrium Index (INI) is the percentage welfare 

improvement brought by the equilibrium coalition compared to non-cooperation: 

( )* *

100

NE

NE

W p W
INI

W

−
=   

The index ICI measures the need for cooperation. High (low) ICI values indicate large (small) gains 

from full cooperation compared to the Nash equilibrium. The INI index measures the achievement of 

a given stable coalition comparing the welfare of that coalition with the non-cooperative situation. 

The two indices are related as the highest possible value of INI is ICI: they will have the same value 

in the cases where the social optimum is reached.  

                                                 
18  The perhaps less interesting case of linear-quadratic payoff function could be easily obtained setting 

g=0. 
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4.2.3. Simulation results 

The following results are highlighted. 

Result 1 (climate cooperation in a pure mitigation setting) 

In the mitigation game, at most a 2 players stable coalition forms. This occurs when the need for 

cooperation (ICI) is large i.e. when mitigation reaction functions are very flat. The 2-players stable 

coalition brings just small welfare improvements compared to non-cooperation (small INI) and 

remains far from the welfare improvements potentially achievable in full cooperation (see Table 1). 

The addition of adaptation highlights different results depending on 0   or 0   (Tables 2, 3, 4 

and 5 in Appendix A.4), namely:  

Result 2 (Effects of adaptation in case of 0  ) 

With 0  , mitigation reaction functions remain downward sloping also in the M+A-Game. Stable 

coalition size can be at most 2. Thus, there is not a detectable effect of adaptation on the stable 

coalition size. Nonetheless, when, in some parameterization, the M-Game does not allow stable 

coalition to form, the M+A-Game allows 2 players stable coalitions. This requires flat mitigation 

reaction functions and high need for cooperation. 

The M+A-Game generally leads to higher welfare equilibrium level than the M-Game. This happens 

because there are two instruments that can be used to cut climate change costs and, in a first best, two 

instruments can never perform worse than one. The gains are however small and the INI index is 

always small. Finally, if the strategies are substitutes (complements), then the total mitigation level 

are lower (higher) in the M+A-Game than in the M-Game. The mitigation gap increases with the 

slope of the reaction function in the mitigation-adaptation space i.e., ( )'f M  is large in absolute 

terms.  
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Result 3 (Effects of adaptation in case of 0  ) 

With 0  the M+A-Game can present upward sloping mitigation reaction functions. In our 

configuration, 0   can be obtained without violating any condition only in those parameterizations 

where in the M-Game reaction functions are extremely flat and the 2 players stable coalition forms. 

In the M+A-Game this leads to stable coalitions formed by 3 or all n  players. Adaptation thus 

increases the size of stable coalitions. Looking to the game properties and Proposition 3, the 

enlargement of stable coalitions can be explained by more favorable condition for cooperation as, 

with upward sloping mitigation reaction functions, superadditivity always holds. In turn, as MCOH 

always holds, WCOH follows. Therefore, in this case, enlarging the coalition is always good for total 

welfare. 

When the stable coalition size is 3, total mitigation level in the stable coalitions is higher (lower) 

when adaptation and mitigation are complements (substitutes) compared to the M-Game. The need 

of cooperation ICI is high in case of complementarity and low in the case of substitutability.  

When the grand coalition forms, the social optimum is reached. Equilibrium mitigation levels will 

always be higher in the M+A-Game than in the M-Game regardless of the relationship between the 

two strategies. However, when mitigation and adaptation are substitute, the grand coalition is 

obtained only in cases where the need for cooperation is very low and, therefore, the improvement 

from non-cooperation is also small. When the two strategies are complements and the grand coalition 

forms, the social optimum is reached, and brings very high welfare improvement from the Nash 

equilibrium. 

5. Summary and Conclusion 

This paper investigates how the presence of adaptation can influence the size and stability of 

international climate change agreements, their mitigation and welfare levels. It does so introducing a 

richer interaction across mitigation and adaptation. Namely, following the suggestions from the 
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empirical and theoretical literature on adaptation, the possibility that adaptation effectiveness depends 

on the level of mitigation. In the light of this enrichment, the paper also re-examines the nature of the 

strategic interaction between mitigation and adaptation. 

Our analysis confirms that the presence of adaptation can make mitigation reaction functions upward 

sloping. The interesting point is that this can occur when mitigation and adaptation are either 

complement or substitute. What is needed is a “sufficiently large” interdependence across the two 

strategies. However, when adaptation effectiveness is made dependent upon mitigation levels, the 

possibility to observe this outcome reduces. Counterintuitive it may seem, this is explained by the 

fact that, with that modification, the positive externality produced by one’s mitigation on others 

increases: mitigation acts now not only reducing others’ climate change damages directly, but also 

indirectly, improving their adaptation effectiveness. This reinforces the tendency to reply with less 

mitigation by one player to more mitigation by another player. 

When mitigation reaction functions remain downward sloping, then the presence of adaptation does 

not enlarge the size of stable coalitions compared to the pure mitigation game. However, there are 

more stable coalitions. When mitigation reaction functions are upward sloping, adaptation increases 

the size of stable coalition and can lead to the formation of the grand coalition. 

Complementarity or substitutability across mitigation and adaptation, on their turn, impact the 

abatement and the welfare level of the stable coalitions. Respect to this point, we show formally that 

complementarity can be originated when adaptation effectiveness depends upon mitigation levels.   

Then, when the two strategies are complements, for any given coalition size, individual and total 

mitigation levels will be higher in the M+A-Game compared to the M-Game. If they are substitute, 

mitigation levels will be lower. Nonetheless, under the standard assumption of substitutability, the 

introduction of the dependence of adaptation effectiveness upon mitigation, induces a lower decrease 

of mitigation level in the M+A-Game. 
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The M+A-Game generally leads to higher welfare equilibrium levels than the M-Game. This 

intuitively because players are endowed with an additional instrument to maximize their objective 

function. With downward sloping mitigation reaction functions and small coalition size, the welfare 

gains are however small either compared to non-cooperation or the pure mitigation game. With 

upward sloping mitigation reaction functions and larger stable coalition two situations can emerge. 

When there is mitigation-adaptation substitutability, large, and possibly, the grand coalition are 

obtained only in cases where the need for cooperation is very low. Therefore, the welfare 

improvement from non-cooperation is also small. With mitigation-adaptation complementarity, when 

the social optimum is reached, it brings very high welfare improvement from non-cooperation. 

We can derive two major policy implications from our work. The first is that a joint negotiation on 

mitigation and adaptation seems always welfare improving. Also when mitigation and adaptation are 

substitute, and mitigation reaction functions are downward sloping, adaptation increases the number 

of stable coalitions. This is a potentially positive message in the context of a fragmented regime or a 

bottom-up approach to climate negotiations like that endorsed by the Paris agreement. For instance, 

by supporting adaptation in developing countries, developed countries could spur the formation of 

abating “clubs”, that could be a starting point to then achieve further mitigation goals. Moreover if, 

as it seems possible, mitigation and adaptation are complements and mitigation reaction function are 

upward sloping, joint negotiation on mitigation and adaptation can lead to the formation of a stable 

grand coalition. Here however, we flag a second insight which is less positive. Indeed, we showed 

that complementarity is facilitated when adaptation effectiveness is linked to mitigation level as 

suggested by many authors. Nonetheless, this same condition also shrinks the possibility to observe 

upward sloping mitigation reaction function, which is crucial for large abating coalitions. This 

suggests that also the “nature” of complementarity matters, and that in some cases this can reduce the 

room for the formation of large and welfare improving mitigation coalition.   
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Possible extensions of this work could take in account on the one hand players heterogeneity, as 

considered for instance in Eyckmans et al. (2016) and Lazkano et al. (2016), and on the other hand a 

more precise specification of the adaptation effectiveness function. In our explicit function, in order 

to satisfy the general assumptions and the non-negativity conditions, we considered adaptation 

effectiveness as a linearly increasing function of total mitigation level. A more accurate representation 

could consider evidences from the literature to specify the concavity of this function. It could be also 

interesting to test our theoretical outcomes with an empirical application of an Integrated Assessment 

Model (IAM). IAMs have been already applied for coalition formation analysis in a pure mitigation 

context19. However, despite some models have been extended including adaptation (Agrawala et al. 

2011, De Bruin et al 2009), coalition formation has not been analysed. 
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Appendix 

A.1 Proof of Lemma 1 and Additional Assumption 

A.1.1 Lemma 1 

To analyse the relation between mitigation levels of signatories and non-signatories in the 2 games, 

we look at mitigation FOCs (3.a) and (3.b). We consider 1p =  for non-signatories and 2p   for 

signatories. Both in the mitigation and in the mitigation-adaptation game, we can identify the 

following relation: 
( )

( )m S

m NS

C m
C m

p
= . Therefore, for every coalition size 2p  , given the 

convexity of cost functions, each signatory will mitigate more than each non-signatory in both games. 

For what concerns adaptation levels in the M+A-Game, from FOC (4) it is clear that all players will 

choose the same adaptation level that will depend on total mitigation. 

From these conclusions it follows that, for both M and M+A-Game (because of symmetry and equal 

adaptation levels): ( ) ( )* *

S NSw p w p  for every  )2,p n . Signatories will face higher mitigation 

costs than non-signatories, while benefits will be identical. 

A.1.2 Additional Assumption: Existence and Uniqueness Condition 

The procedure to derive the sufficient condition for existence and uniqueness of a second stage 

equilibrium follows Bayramoglu et al. (2018). It is based on the concept of replacement functions, 

that are useful to check for the existence and uniqueness of the Nash equilibrium in public aggregative 

games (Cornes & Hartley 2007). Individual replacement functions for signatories and non-signatories 

are defined as ( )S Sm g M=  and ( )NS NSm g M=  respectively. The aggregate replacement function 

( )G M  consists in the summation of individual replacement functions. Because of players symmetry, 

we have: 

1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

i S NS i S NS

i i

m p m n p m M G M g M p g M n p g M
= =

=  + −  = = = =  + −    

If the aggregate replacement function is downward sloping, then it will intersect with the 45-degree 

line once. This point represents the unique equilibrium mitigation level *M  which, substituting into 

individual replacement functions, gives the individual equilibrium mitigation levels 
*

Sm  and 
*

NSm . As 

we show below, replacement functions are downward sloping (like reaction functions, see Proposition 

1) if 0  . With negative slope of replacement functions, then the existence of a unique equilibrium 
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is guaranteed. When the slope is positive ( 0  ) a sufficient condition to have a unique equilibrium 

is a slope of the aggregate replacement function lower than 1 for every possible coalition size p , so 

that the 45-degree line is intersected once. For what concerns adaptation levels, as they can be 

expressed as continuous and single valued functions of total mitigation, they will be unique whenever 

total mitigation level is unique. 

Now, to derive the sufficient condition for existence and uniqueness equilibrium, we rewrite the 

mitigation FOCs of the two games considering individual mitigation as a function of total mitigation. 

In this way, from FOCs (3.a) and (3.b), we obtain the individual replacement functions for the two 

games: 

( ) ( )( )M m ip B M C m M  =   

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), , , ,M M m ip B M a M M B M a M M M C m M    +  =   

Total differentiation of these two conditions with respect to M , gives the slope of individual 

replacement functions for signatories (considering 2p   ) and for signatories (considering 1p = ). 

The individual slopes of replacement functions are given by: 

( )
( )

'S
mm S

p
g M

C m


=  

( )
( )

'S
mm NS

g M
C m


=  

The aggregate replacement function ( )G M  , is obtained by summing up all individual replacement 

functions: ( ) ( )   ( )' ' 'S NSG M p g M n p g M=  + −  : 

( )
( )

( )

( )

2

'
mm S mm NS

n pp
G M

C m C m

− 
= +  

The existence and uniqueness condition requires an aggregate replacement function slope lower than 

one. The following condition is therefore obtained: 

( )

( )

( )

2

1
mm S mm NS

n pp

C m C m

 −
  +  

  
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For the M-Game we have 
( )M M

MM

B M
B

M


=  =


. For the M+A-Game we have instead. 

( ) ( )( ) ( ) ( )( ) ( )( ), , , ,M MM A
B M a M M B M a M M M

M

  
+

 + 
 =


. Solving this derivative, we 

obtain: MM Ma M M M a M MM

a a
B B B B B B B

M M
      

  
+  +  + +  +  +    

. Knowing that 

M M MB B B   = +  , 
MM MM M M MM M MB B B B B    = +  +  +   and that, as proved for Proposition 

3, aM a M

aa aa

B Ba

M D B

 + 
=

 −
 replacing and rearranging we obtain 

( )
2

aM a MM A

MM

aa aa

B B
B

D B

 
+

+ 
 = +

−
. 

Uniqueness condition is therefore needed only for the M+A-Game, in which 0M A+   is a 

possibility. The condition can be written as: 

( )

( )

( )

2

1M A

mm S mm NS

n pp

C m C m

+
 −

  +  
  

 

A.2. Proof of Proposition 2 and Corollary 

In the M+A-Game, considering the first order condition (4), we can characterize the optimal 

adaptation level 𝑎∗ as a function of total mitigation M. We can rewrite the FOC for adaptation as: 

( ) ( )( ) ( )( )* *, ,a aB M a M M D a M =  

This FOC express the reaction function in the mitigation-adaptation space ( )f M . Differentiating it 

with respect to M and readjusting, we obtain the slope of this function: 

( )
*

' aM a M

aa aa

B Ba
f M

M D B

 + 
= =
 −

 

From the general assumptions the denominator is positive and therefore the sign of this equation 

depends on the numerator. The first term is negative, while the second term is positive. We have 

strategic substitutability (complementarity) between mitigation and adaptation if 

( )0aM a MB B  +    . 

 

 



Adaptation Effectiveness  91 

 

 

 

Corollary 

We want to analyze the effect of introducing adaptation on total mitigation level. Looking to M+A-

Game mitigation FOC (3.b) we see that adaptation has a double effect on it: first, it reduces MB  as 

0MaB   and, second, it increases B  as 0aB  . Depending on which of these two effects dominates 

the other we can have higher or lower individual mitigation levels in the M+A-game than in the M-

game. If the adaptation effect on the left-hand side of equation (3.b) is positive, then mitigation levels 

will increase as the cost function is convex while the benefit function is concave. Vice versa, 

mitigation levels will decrease. The M+A-Game mitigation levels will be higher than M-game 

mitigation levels if 0Ma a MB B +   . This condition, looking to the general assumptions of the 

model, is equal to the numerator of ( )'f M  which determines its sign. Therefore, we will have higher 

(lower) mitigation levels in the M+A-game respect to the M-Game if adaptation and mitigation are 

strategic complements (substitutes). Compared this with the results of Bayramoglu et al. (2018), we 

can see the difference effect of the introduction of adaptation under the standard assumption of 

substitutability. The second relation between mitigation and adaptation that we insert, reduces (or 

invert) the strategic substitutability of the two strategies. It follows that the introduction of adaptation 

in our model leads to a lower decrease of mitigation levels compared with Bayramoglu et al. (2018). 

A.3. Proof of Proposition 3 

For the M-Game, the conclusions on superadditivity, PEP and MCOH have already been proved by 

Bayramoglu et al. (2018). We focus instead on our M+A-Game version. The proofs follow the same 

procedure of Bayramoglu et al. (2018). 

SAD 

For superadditivity, we consider the general definition: ( )   ( ) ( )* * *1 1 1S S NSp w p p w p w p  −  − + − . 

Step 1: On the right-hand side, the equilibrium levels are ( )* 1M p − , ( )* 1Sm p − , ( )* 1NSm p −  and 

( )* 1a p −  with ( ) ( )* *1 1S NSm p m p−  − . A quantity   is deducted from all signatories’ mitigation 

levels and a non-signatory’s mitigation level is set at the same level so that 

( ) ( )* *1 1NS Sm p m p − = − − . All others non-signatories mitigation level is kept at the original value 

( )* 1NSm p −  and   is chosen to leave the total mitigation ( )* 1M p −  unchanged. In this way, benefits 

will not change but costs will drop because, from the properties of the cost function, we can conclude:

( )( )   ( )( ) ( )( )* * *1 1 1 1S S NSp C m p p C m p C m p    − −  −  − + −
   

. The payoff obtained from this 
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marginal change is denoted as ( )(1)

Sw p  and it holds that: ( )   ( ) ( )(1) * *1 1 1S S NSw p p w p w p −  − + − . 

Step 2: if 0  , as it will be clear when we analyze mitigation levels’ change in coalition size p  in 

the next proof, for all other non-signatories it holds that ( ) ( )* *1NS NSm p m p−   and, because 0s

NS

w

m






, from step 2 we have (2) (1)

S Sw w . Step 3: ( ) ( )* (2)max S S Sp w p p w p p w =    .Going back to the SAD 

condition, we see that moving from the right-hand side to the left-hand side the aggregate payoff of 

the enlarged coalition increases. This is because total costs decrease (step 1), all outsiders increase 

their mitigation level (step 2) and the players in the enlarged coalition can freely choose mitigation 

and adaptation (step 3). 

Mitigation Cohesiveness 

We want to find how individual and total mitigation levels change in the size of the coalition. 

Considering p  as a continuous variable, what we are looking for is the sign of the derivative 
M

p




. 

For the M+A-Game, we can rewrite mitigation FOC (3.b) considering equilibrium mitigation levels 

as a function of coalition size p. Doing so, we obtain the following conditions respectively for 

signatories and non-signatories: 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( ), , , ,M M m Sp B M p a M p M p B M p a M p M p M p C m p    +  =
 

 

( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( ), , , ,M M m NSB M p a M p M p B M p a M p M p M p C m p  +  =  

Differentiating these two conditions with respect to p  and rearranging, we obtain how individual 

mitigation levels of signatories and non-signatories change in the coalition size. Taking in mind the 

difference in the term   of the two games, we obtain: 

 

( ) ( )
S M M

mm S mm S

m B BM p

p p C m C m

  +  
=  +

 
 

( )
NS

mm NS

m M

p p C m

  
= 

 
 

We know that ( )NS NS
S NS

m mM
m p m n p

p p p

 
= +  − + − 

  
. Substituting Sm

p




 and NSm

p




, and 

rearranging we obtain: 
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 
( )

( )
( )

( )

2

1

M M

S NS

mm S

mm S mm NS

p B B
m m

C mM

p n pp

C m C m

  + 
− +


=

  −
−  + 

 

 

S NSm m−  is always positive as demonstrated for Lemma 1, the term 
 

( )
M M

mm S

p B B

C m

  + 
 is always 

positive from the general assumptions and the denominator is always positive because of the 

uniqueness and existence condition. Therefore, we can conclude the following: 

0
M

p





 

( )0sm

p


 


 and ( )0nsm

p


 


 if ( )0   . 

PEP 

Looking to positive externality property, we can consider coalition size p  as a continuous variable 

and analyze the sign of 
nsw

p




. When 0nsw

p





, PEP holds. We can rewrite the payoff of a non-

signatory as ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( ), ,ns NSw B M p a M p M p C m p D a M p= − − . 

We differentiate it with respect to p  knowing from the FOCs 3.b and (4) respectively that 

M M mB B C +  =  and a aB D= . Rearranging and substituting 
( )

NS

mm NS

m M

p p C m

  
= 

 
 we obtain: 

 
( )

1ns
M M

mm NS

M
B B

p p C m
 

    
= +    −       

 

0M MB B +    from the general assumptions of the model and 
( )

1 0
mm NSC m

 
−   

 
 from the 

existence and uniqueness condition. Since we have proved that 0
M

p





, then PEP always holds. 
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A.4. Preliminaries of explicit payoff functions 

For the explicit payoff function of the pure mitigation game, all the assumptions of the model and the 

existence and uniqueness condition are always satisfied irrespective of the (positive) parameters 

values as in Bayramoglu et al. (2018). 

Moving to the M+A-Game, we look to payoff function (6). Doing some simple partial derivatives, 

we find that MB b g M f a= −  −  , ( )MB b g M e f a= −  + −  , 0MM MMB B g= = −  , 0,MaB f= − 

0MaB f e= − +  , ( )aB e f M= + −  , 0aaB = , 1aB  = , B a = , 0B = , M e = , 0MM = , 

m iC c m=  , mmC c= , aD d a=  , aaD d= . 

From 
( )

2

aM a MM A

MM

aa aa

B B
B

D B

 
+

+ 
 = +

−
 we get 

( ) ( )
2 2

e f e f g d
g

d d

− − − 
 = − + = . The sign of   

depends on the difference ( )
2

e f g d− −  . The additional assumption on existence and uniqueness 

condition is: 
( )

( )

( )

2

1
mm S mm NS

n pp

C m C m

 −
  +  

  
. For our explicit payoff function, the condition is most 

restrictive when p n=  and therefore we obtain: 
( )

2

1
mm s

n

C m


  and, substituting the values and 

rearranging: ( )( )22 0c d n g d e f −   − −  .  

For reaction functions, we derive: 

( )
( )( )

( )( )

2

'

2S i

p e f d g
r M

c d p e f d g
−

 − − 
=

 −  − − 
, ( )

( )( )
( )( )

22

'

22
S NS

p e f d g
R M

c d p e f d g

 − − 
=

 −  − − 
,

( )
( )

( )

2

'

2NS j

e f d g
r M

d g e f c d
−

− − 
=

 − − + 
, ( )

( ) ( )( )
( ) ( )( )

2

'

2NS S

n p e f d g
R M

c d n p e f d g

−  − − 
=

 − −  − − 
 and ( )' e f

f M
d

−
=  

Reaction functions in the mitigation space will be downward (upward) sloping if 

( )
( )

2

0
e f g d

d

− − 
 =   . Reaction functions in the mitigation-adaptation space will be downward 

(upward) sloping if ( )0e f−   , i.e., mitigation and adaptation will be strategic substitutes 

(complements) if ( )0e f−   . 
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Looking to mitigation and adaptation levels, we obtain: 
( )( )

( ) ( )( )22
S

p c d b d e f
m

p n p d g e f c d

   +  −
=

+ − −



 − + 
, 

( )( )

( ) ( )( )22
NS

c d b d e f
m

p n p d g e f c d

  +  −
=

+ − −



 − + 
 and 

( ) ( )( )

( ) ( )( )

2

22

p n p b e f g c
a

p n p d g e f c d

 + −   − +  + 
=

+ −   − + −
. 

The denominator of mitigation and adaptation levels is always positive because of the existence and 

uniqueness condition. Hence, the following conditions need to be satisfied in the parameters’ choice 

for the M+A-Game simulations: 

( )1: 0C b g M e f a−  + −    

( )2 : 0C e f M + −    

( )( )223: 0C c d n g d e f −   − −   

( )4 : 0C b d e f+  −   

( ) ( )( )25 : 0C p n p b e f g c + −   − +  +    

Where 1C  and 2C  are required for the general assumptions to hold, 3C  is the most restrictive 

existence and uniqueness condition, 4C  and 5C  are respectively the mitigation and adaptation non-

negativity conditions. 

Looking to 1C  and 2C , they take the most restrictive values in case of f e  and with social 

optimum mitigation level (highest value) and Nash equilibrium adaptation level (highest value since 

with f e  mitigation and adaptation are substitutes). Substituting these values, we see that these two 

conditions are respectively captured by 4C  and 5C . There will be three conditions left that we need 

to observe in performing simulations: 3C , 4C  and 5C . In case of f e , all the conditions would 

be less stringent.  
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Tables 

Table 1: Mitigation game* 

PARAMETERS 
'

NSr  ICI SAD PEP MCOH WCOH p* ( )*M p  INI 

b=10, g=1, c=1. -0.5000 0.01 p>17 ✓ ✓ P>16 1 9.90 0 

b=10, g=10, c=1. -0.9091 0 p>17 ✓ ✓ P>16 1 0.99 0 

b=10, g=100, c=1 -0.9901 0 p>17 ✓ ✓ P>16 1 0.09 0 

b=10, g=0.001, c=1. -0.0009 426.11 ✓ ✓ ✓ YES 2 925.60 1.71 

b=10, g=1, c=0.1. -0.9901 0 p>17 ✓ ✓ P>16 1 9.99 0 

b=10, g=1, c=300. -0.0033 122.86 ✓ ✓ ✓ ✓ 2 2.54 1.26 

b=10, g=1, c=3000. -0.0003 1117.86 ✓ ✓ ✓ ✓ 2 0.33 1.88 

b=10, g=1.9, c=3000. -0.0006 650.91 ✓ ✓ ✓ ✓ 2 0.32 1.80 

b=30, g=1, c=1. -0.5000 0.01 p>17 ✓ ✓ P>16 1 29.70 0 
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Table 2: Effect of adaptation, first set of simulations: 0  , ( )' 0f M  * 

PARAMETERS 
'

NSr  ( )'f M  Ψ ICI SAD PEP MCOH WCOH p* ( )*M p  ( )*a p  INI 

M-Game: 

b=10, g=1, c=1. 

-0.5000 x x 0.01 p>17 ✓ ✓ P>16 1 9.90 X 0 

M+A-Game: Effect of considering adaptation 

β=10, e=1, f=2, d=5 -0.4444 -0.20 -0.80 0.01 p>17 ✓ ✓ p>15 1 9.88 0.02 0 

β=10, e=1, f=1.5, d=5 -0.4872 -0.10 -0.95 0.01 p>17 ✓ ✓ p>15 1 9.37 1.06 0 

β=10, e=1, f=1.01, d=5 -0.4999 0 -0.99 0.01 p>17 ✓ ✓ p>16 1 9.88 1.98 0 

β=10, e=1, f=2, d=50 -0.4949 -0.02 -0.98 0.01 p>17 ✓ ✓ p>15 1 9.89 0 0 

β=10, e=1, f=2, d=1.000001 0 -0.99 0 0 ✓ ✓ ✓ ✓ 2 0 9.99 0 

β=10, e=2, f=1, d=5 -0.4444 0.20 -0.80 0.01 p>17 ✓ ✓ p>15 1 14.81 4.96 0 

β=10, e=3, f=1, d=5 -0.1666 0.40 -0.20 0.22 p>17 ✓ ✓ ✓ 1 66.66 28.66 0 

β=10, e=1.01, f=1, d=5 -0.4999 0 -0.99 0.01 p>17 ✓ ✓ p>16 1 9.92 2.02 0 

β=10, e=2, f=1, d=50 -0.495 0.02 -0.98 0.01 p>17 ✓ ✓ p>15 1 10.30 0.41 0 

β=10, e=1, f=2, d=1.000001 0 0.99 0 4874.37 ✓ ✓ ✓ ✓ 2 0 9.99 1.98 
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Table 3: Effect of adaptation, third set of simulations: 0  , ( )' 0f M  * 

SIMULATIONS 
'

NSr  ( )'f M  Ψ ICI SAD PEP MCOH WCOH p* ( )*M p  ( )*a p  INI 

M-Game: 

b=10, g=1, c=3000 -0.0003 

x x 

1117.86 ✓ ✓ ✓ ✓ 2 0.33 

x 

1.88 

M+A-Game: Effect of considering adaptation         

β=30, e=1, f=2.6, d=5 -0.0002 -0.32 -0.49 0.12 ✓ ✓ ✓ ✓ 2 0.01 6.00 0.0001 

β=30, e=1, f=1.1, d=5 -0.0003 -0.02 -0.99 33.67 ✓ ✓ ✓ ✓ 2 0.31 5.99 0.056 

β=30, e=1, f=2, d=50 -0.0032 -0.02 -0.98 268.99 ✓ ✓ ✓ ✓ 2 0.31 0.59 0.44 

β=30, e=3.2, f=1, d=5 0 0.44 -0.03 735.26 ✓ ✓ ✓ ✓ 2 0.78 6.34 0.33 

β=30, e=1.1, f=1, d=5 -0.0003 0.02 -0.99 42.47 ✓ ✓ ✓ ✓ 2 0.35 6.01 0.07 

β=30, e=2, f=1, d=50 -0.0032 0.02 -0.98 321.37 ✓ ✓ ✓ ✓ 2 0.35 0.61 0.53 

β=30, e=1, f=4.2, d=10 0 -0.32 0.02 0.63 ✓ ✓ ✓ ✓ 3 0.14 2.99 0.0006 

β=30, e=1, f=4.3, d=10 0 -0.33 0.09 0.05 ✓ ✓ ✓ ✓ 3 0.04 2.99 0.00004 

β=30, e=1, f=4.5, d=12 0 -0.29 0.02 7.31 ✓ ✓ ✓ ✓ 3 0.04 2.48 0.008 

β=30, e=4.3, f=1, d=10 0 0.33 0.09 1182.87 ✓ ✓ ✓ ✓ 3 0.69 3.22 1.31 

β=30, e=4.6055, f=1, d=10 0.0001 0.36 0.29 9.83X106 ✓ ✓ ✓ ✓ 100 5.6X105 2.03X105 9.83X106 

β=30, e=6, f=1, d=20 0.0001 0.25 0.25 9309.66 ✓ ✓ ✓ ✓ 3 0.62 1.65 1.88 

β=30, e=6.099, f=1, d=20 0.0001 0.25 0.29 4.74X105 ✓ ✓ ✓ ✓ 100 1.77X106 4.52X105 4.74X105 
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Table 4: Effect of adaptation, fourth set of simulations: 0  , ( )' 0f M  )* 

SIMULATIONS 
'

NSr  ( )'f M  Ψ ICI SAD PEP MCOH WCOH p* ( )*M p  ( )*a p  INI 

M-Game: b=10, g=1.9, 

c=3000. -0.0006 
x x 

650.91 ✓ ✓ ✓ ✓ 2 0.32 
x 

1.80 

M+A-Game: Effect of considering adaptation         

β=30, e=1, f=7.5, d=20 0 -0.33 0.21 1.58 ✓ ✓ ✓ ✓ 3 0.01 1.49 0 

β=30, e=1, f=7.5999, 

d=19.8 0.0001 -0.33 0.29 0 ✓ ✓ ✓ ✓ 100 2.27 0.76 0 

β=30, e=7.5, f=1, d=20 0.0001 0.33 0.21 6228.60 ✓ ✓ ✓ ✓ 3 0.70 1.72 2.19 

β=30, e=7.5999, f=1, 

d=19.8 0.0001 -0.33 0.29 8.28X105 ✓ ✓ ✓ ✓ 100 3X105 105 8.28X105 

 

 

* For the general properties of the game (PEP, SAD, WCOH and MCOH), ✓ means that they hold for 

every coalition of size p . If this is not the case, p  values indicated refer to intervals or specific 

values for which a given condition holds. For any other interval or values of p , the condition fails. If 

SAD holds for a given p , it means that the move from 1p −  to p  is superadditive. For ( )'f M , 

, ICI , INI , ( )*M p  and ( )*a p  we round to two digits and for 
'

NSr  we round to 4 digits.



 

 

 



 

 

 

CHAPTER THREE 

International Environmental Agreements, Mitigation and Adaptation: 

an Integrated Assessment Analysis  

 

 

Abstract 

This paper focuses on the effects of the introduction of adaptation in International Environmental 

Agreements (IEAs) games. We empirically test the theoretical results of the literature with an 

application of an Integrated Assessment Model (IAM). We update a version of the Nordhaus’ RICE 

model taking 2015 as starting year and considering 2 games: the pure mitigation game (M-Game) in 

which mitigation is the only policy option to reduce future climate damages, and the mitigation-

adaptation game (M+A-Game) in which adaptation is also an option. We find that mitigation and 

adaptation are, as expected, strategic substitutes. Furthermore, as theoretical results suggest, we find 

that the introduction of adaptation alters the strategic relation between players mitigation (emissions) 

levels. In the M+A-Game, mitigation reaction functions can be upward sloping. Consequently, free 

riding incentives are reduced, and coalition stability is easier to achieve. Without monetary transfers, 

the M-Game does not lead to any stable coalition, while in the M+A-Game coalitions formed by 2 

out of 6 macro regions can form. Allowing for the possibility of optimal transfers, both games lead 

to full cooperation. However, we note that, considering adaptation, more coalitions become stable 

and, in the case of social optimum, the difference between the surplus of cooperation and the free 

riding incentives is enlarged. 

 

Keywords: International environmental agreements – Mitigation-adaptation game – Integrated 

assessment modeling 
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1. Introduction 

The success of climate cooperation is of paramount interest for our society. Game theoretic modeling 

of International Environmental Agreements (IEAs) and applied Integrated Assessment models 

(IAMs) are the two main instruments used to explore the prospects of international negotiations for 

the reduction of greenhouse gas emissions. 

Difficulties in reaching a large and effective agreement have been extensively investigated by game 

theoretic models. In a pure mitigation (or emissions) game, i.e., games without the option to adapt to 

combat climate change, the common result is that only small stable coalitions can form (Carraro and 

Siniscalco 1993, Hoel 1992 and, for a recent survey on IEAs literature, Finus and Caparros 2015). 

More optimistic results are found when players are asymmetric and when monetary transfers within 

the coalition members are possible (Finus and McGinty 2018). 

The introduction of adaptation can change substantively the picture. Intuitively, when adaptation is 

possible, the optimal reply to a potential free rider can be more adaptation and not more mitigation. 

This could reduce the free riding benefit and thus foster the stability of a climate coalition. 

Furthermore, if the interaction between mitigation and adaptation is sufficiently large, independently 

upon the fact that mitigation and adaptation are strategic complements or substitutes mitigation 

reaction functions can be upward sloping (Ebert and Welsh 2011, 2012; Bayramoglu et al. 2018). 

Under this condition stable coalition size will increase compared to the pure mitigation game, and 

even the grand coalition can form (Bayramoglu et al. 2018 and Rubio 2018). 

The purpose of this paper is to introducing data, test these theoretical results through an Integrated 

Assessment Model (IAM) and verify their robustness when more realistic assumptions concerning 

cost and benefit of climate change policies, country asymmetries, dynamic settings are accounted for. 
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IAMs couple a climate and an economic module in order to analyse the interactions between the 

socio-economic and the environmental sphere20. IAMs have been extensively applied to the study of 

climate policies (Kriegler et al. 2014 and Moore and Diaz 2015). 

In a more limited number of cases they have been applied to study the problem of the formation of 

climate change coalitions, but with a focus on mitigation. In a pure mitigation context, IAM analysis 

suggests, in accordance with the theory, that stable coalition size is generally small (Finus 2008), but 

that participation can be increased using various monetary transfer schemes or mitigation burden 

sharing rules (Eyckmans and Finus 2007 and Altamirano-Cabrera et al. 2008). 

Adaptation has been introduced in IAMs more recently (De Bruin et al. 2009b and Agrawala et al. 

2011). However, to our knowledge, AD-IAMs have not been applied for the analysis of stability of 

international environmental agreements. Instead, the main fields of application have been the analysis 

of adaptation cost and benefits and the optimal policy mix between adaptation and mitigation (De 

Bruin et al. 2009a and Bosello et al. 2010)21. 

To perform our analysis, we use an updated version of the RICE-96 model (Nordhaus and Yang 

1996). Model enrichments include: re-calibration of the model damage function by using the more 

recent insights from the literature, re-initialization of the model to year 2015; introduction of an 

adaptation module, benchmarking of the model on the shared social economic pathway n°2. 

In particular, adaptation is introduced as an additional control “flow” variable that competes with 

mitigation and investment in the utility maximization process. 

                                                 
20  The first model is the aggregate DICE and it dates back to the early 90’s (Nordhaus 1993). Over the 

years, many regionalized versions (RICE) have been developed (Nordhaus and Young 1996, Nordhaus 

2010) and other IAMs have been modeled (see for instance Tol 1995 and Bosetti et al. 2006). 

21  For a survey of the main IAM studies on adaptation cost and benefits and on the optimal policy mix 

see Agrawala et al. 2011. 
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We also consider multiple coalition structures. That is, we examine how adaptation can influence size 

and stability of climate coalitions considering all the single coalition structures that can form starting 

from the 6 geo-political blocks of the model. While on the one hand considering 6 regions can be a 

limiting aspect of our analysis, on the other hand it suffices to verify the main properties of theoretical 

models keeping the integrated assessment analysis more manageable. 

In the pure mitigation game, as theory suggests, we find that mitigation (emissions) reaction functions 

are downward sloping, i.e., when mitigation (emissions) of others increases (decrease) the best 

response will be to decrease mitigation (increase emissions). For what concerns stable coalitions, no 

coalitions form without the possibility of transfers. Considering optimal transfers large coalitions, up 

to the grand coalition, can become stable. 

Adaptation and mitigation (emissions) strategies are substitutes, i.e., when total emissions increase 

so does individual adaptation and vice versa. The introduction of adaptation, as in the theoretical 

models, leads to changes in the strategic relationship between players’ mitigation strategies. 

Mitigation reaction functions can become upward sloping, i.e., when other players increase mitigation 

now the optimal response will be to match this behaviour increasing abatement as well. In particular, 

in our IAM, the reaction functions of 4 out of 6 players turn to be upward sloping when also adaptation 

is an option. The leakage effect is attenuated (or disappears), and this is positive for coalition stability 

as free riding incentives are lower. Indeed, from the stability analysis we find that now some 

coalitions, despite small, are internally stable. While in the M-Game with no transfers cooperation 

was not possible, in the M+A-Game 4 coalitions formed by 2 players are internally stable. Allowing 

for optimal transfers, larger coalitions, up to full cooperation, are internally stable. 

The model is described in section 2. Section 3 describes the game, results are presented in section 4. 

Section 5 concludes. 
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2. The model 

The model we use for our analysis is an updated version of the Nordhaus’ RICE model (Nordhaus 

and Yang 1996). Enrichments consist either in the addition of an adaptation module to the RICE 

model that originally considered only mitigation, or in the re-calibration of the climate change damage 

and adaptation functions, GDP and emission trends, based on the latest available information. The 

remaining equations’ structure is the same as the RICE-96 model. Therefore, we are working with a 

Ramsey type model in which the climate change dimension is hard linked with the economic 

dimension. Emissions, by product of economic activity, feed back onto the economy through a 

reduced form climate change damage function translating temperature increases into GDP losses. 

Temperature increases are calculated starting from emissions through a reduced form climate module. 

Policy variables, mitigation or adaptation, can influence the process. The former reducing emissions, 

the latter reducing damages. These actions, however, cost. The intertemporal optimization process 

that in the model aims to maximize the discounted flow of per capita consumption, finds the optimal 

balance between mitigation, adaptation, investments and residual damage. 

The relevant feature of RICE-like models, crucial for our analysis, is the possibility to simulate 

strategic behaviour across players. In this version, the six macro-regions that compose the world 

economy: 1) United States of America (USA), 2) Japan (JPN), 3) European Union (EU28), 4) China 

(CHN), 5) Former Soviet Union countries (FSU) and 6) Rest Of the World (ROW) can either play 

cooperatively or non-cooperatively. 

In the first case there is a global central planner that maximises global welfare, thus fully internalizing 

the benefit of climate action. In the second case each region maximizes its own welfare disregarding 

effects on other. We expand also upon this feature enabling the study of intermediate coalition 

structures where sub groups of regions act cooperatively among themselves against non-cooperative 

singletons. 
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Addressing to the appendix A for the full model equation listing, next sections describe the main 

modification introduced.  

2.1 Modelling adaptation 

To enable the simulation of the M+A-Game, the model is expanded to include the possibility for 

regions to adapt. To do this the scaling factor transforming gross into net output becomes:
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. The adaptation cost share of GDP ( ) 2

1
i

i

c

ic a t  is added at the 

numerator. Adaptation benefits, in the form of damage reduction, are introduced at the denominator. 

Adaptation level ( )ia t  is a new decision variable that can take values between 0 (no damages are 

avoided) and 1 (damages are completely avoided). 

We modeled adaptation as a flow variable. In each period, players have to choose the optimal 

adaptation level knowing that both costs and benefits will arise in that period and would not affect 

the following periods. An alternative modelling approach in IAMs, is to present adaptation as a stock 

variable: adaptation investments built adaptive capacity and protection level over time (see e.g. 

Bosello et al. (2010 and De Bruin (2011)). However, for our purposes the “flow” assumption is more 

convenient. On the one hand, both adaptation and mitigation are flow variables and hence they are 

more easily comparable. On the other hand, the theoretical results we want to test are all based on the 

concept of flow adaptation, as theoretical IEA games are mostly played over one single period. 

To conclude, note that, differently from mitigation, adaptation is a private good. Individual adaptation 

level only reduces individual damages. There are no externalities associated with adaptation. 

2.2 Initial data, trend data and parameters’ calibration 

The model requires a series of initial and trend data shaping the evolution of exogenous variables, 

technical progress and population. The initial model year is 2015. Regional GDP and population are 
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taken from World Bank (2019). The 2015 capital stock for the 6 regions is obtained applying to the 

original values (referring to 2005) used in RICE-2010 (Nordhaus 2010) economic growth data. 

Initial emissions levels are derived harmonizing a mix of sources. The Seventh National 

Communications to the UNFCCC for the EU and Japan, (European Commission 2017, Government 

of Japan 2017); the Climate Action Tracker (Climate Action Tracker 2019) for the United States, 

China and Former Soviet Union Countries. ROW emissions are computed as a residual from global 

2015 emissions. The other starting data to initialize the model are the temperature increase with 

respect to the pre-industrial level. which is set to nearly 1°C in 2015 (NOAA 2016), and the 

atmospheric concentration of GHG in billion tonnes of CO2 equivalent, that is an updated value from 

RICE-2010. 

Initial data for the 6 macro regions are reported in Appendix A. 

Population trend replicates the socio-economic pathway SSP2 (Riahi et al. 2017), that is the “middle 

of the road” scenario. Technological change and emission intensity trends are also calibrated to 

replicate GDP and emissions trends of the SSP2. 

The parameterization of the mitigation cost function is the same of the original model. We update 

instead the damage function calibration. The new reference point is the damage of RICE-2010 for a 

temperature increase of 2.5°C with respect to pre-industrial levels. We then assume that this damage 

encompasses residual damages and adaptation cost that we disentangled. To do this we follow the 

adaptation cost and benefit study from Nordhaus and Boyer (2000), also used for the calibration of 

AD-RICE 2012 (De Bruin 2014) and information from the latest surveys on adaptation costs and 

benefit, (UNFCCC 2007 and World Bank 2010a) and, for the developing world (World Bank 2006, 

Oxfam 2007 and UNDP 2007). 

All parameters and their values are reported in Appendix A. 
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3 The Game 

3.1 The analysis of multiple coalition structures 

Starting from this set up we apply the Integrated Assessment Model to the study of climate negotiation 

and coalition formation. More specifically, we study all the equilibrium solutions for every possible 

coalition that can form starting from the 6 players of our model. This amounts to 58 possible coalition 

structures, from non-cooperation to full cooperation. The intertemporal maximization process gives, 

for each player, equilibrium values for all the simulation periods. 

Then, coalition stability is analyzed. Using the “standard” open membership rule, i.e., allowing all 

players to freely join and leave the coalition, stability should be both internal and external. Internal 

stability holds when no players inside the coalition would be better off by withdrawing the agreement, 

while external stability holds when no players outside the coalition would be better off by joining the 

agreement. According to the theory, with symmetric players, the failure of external stability of a 

coalition of size p  implies that the coalition of size 1p +  is internally stable. In our case, with 

asymmetric players, this would not be the case. Thus, in this work we test only internal stability22. 

Formally: 

A given coalition P  is internally stable if: 

( )  ( )* *

i P i PU P U P i i P  −    

Recall that, in the context of an intertemporal maximization, iU  refers to the net present value of 

individual utility over the n  simulation periods. 

In the analysis we also allow for monetary transfers within coalition members. With asymmetric 

players, some might gain while others might lose staying in the coalition. Allowing for transfers, 

                                                 
22  In our simulations, when monetary transfers are not possible, no stable coalition would form. The few 

internally stable coalitions are not externally stable as well. 
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provided that the coalition surplus is greater than the free riding incentive, the coalition can become 

internally stable. In our model, utility is a logarithmic function of per capita consumption. Since 

population is exogenous, the net present value of utility, is a homothetic transformation of the net 

present value of consumption (dollars). Thus, monetary transfers will enable the shift of consumption 

and utility from one region to another. 

The specific transfer scheme considered is, as in Carraro et al. (2006), the optimal transfers scheme, 

that guarantees the largest possible participation.  

All this implies a reformulation of the concept of internal stability which becomes “potential internal 

stability”. 

A given coalition P  potentially internally stable if: 

( )  ( )i i

i P i P

U P U P i
 

 −   

Coalition P  is potentially internally stable if the surplus that it generates overcomes the free riding 

incentives. In other words, there will be enough resources to guarantee at least the free rider payoff 

to each signatory. 

3.2 Reaction functions 

One of the most important aspects of our analysis is to study the strategic relationship between 

mitigation and adaptation and the effects of adaptation on players mitigation strategies. To do so, we 

study the reaction functions in the mitigation space (in both M- and M+A-Game) and in the 

mitigation-adaptation space (in the M+A-Game) as done from a theoretical perspective in Ebert and 

Welsh (2011 and 2012) and Bayramoglu et al. (2018). The concept of reaction function is rather 

complicated in an intertemporal setup. Players might react differently in different periods of time. 

Since mitigation is expressed as a rate (a value between 0 and 1) and there is not a concept of 

aggregate mitigation, we focus on actual emissions that can be summed up through all periods. 
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Furthermore, the complexity of the model does not allow us to analytically derive the reaction 

function of the 6 regions. Therefore, we proceed numerically applying the following concepts. 

Slope of mitigation reaction functions 

Player i ’s individual reaction function in the mitigation, or emissions, space is downward (upward) 

sloping if the reaction to an increase of mitigation levels of all other players throughout all the 

periods, everything else equal, results in a higher (lower) aggregate (over the t periods) individual 

emissions level. 

Strategic interaction between mitigation and adaptation  

In the M+A-Game, adaptation and mitigation strategies are strategic substitutes (complements) if 

the optimal response to a higher (lower) total emissions level throughout all the periods is a higher 

(lower) individual adaptation level. 

Checking for slope of reaction function we start from the Nash equilibrium. We then impose a higher 

mitigation level to 5 out of 6 players and test the reaction of the sixth one. In the pure mitigation 

game, the other decision variable, i.e., investments, is kept fixed and the effect of other players’ lower 

emissions is isolated. In the mitigation-adaptation game, while investments are kept fixed, adaptation 

levels are free to adjust optimally. In this way, the effect of adaptation on mitigation reaction functions 

can be captured. The slope of the mitigation reaction function of the reacting country is determined 

comparing its total emissions level over 90 simulation years against the original non-cooperative 

solution.23  

To test the strategic relationship between mitigation and adaptation, we perturb mitigation level for 

all players throughout all the periods. Keeping investment fixed, if the reaction of a player to higher 

                                                 
23  We are aware that, having asymmetric players, mitigation reaction functions slopes may change by 

considering different coalition structures. However, for objective difficulties in testing all the 58 

coalition structures, we focus only on individual mitigation reaction functions in a fully non-

cooperative setting. 
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(lower) mitigation is to decrease (increase) individual adaptation, then adaptation and mitigation 

strategies are strategic substitutes (complements). 

4 Results 

In this section we present the main results of our analysis. As said, we would like to emphasise how 

the introduction of adaptation can change the exit of climate change agreement especially in term of 

stability and size of stable coalitions. As a first preliminary step, we examine the strategic relationship 

between mitigation and adaptation. Then, we move to the effect of adaptation on mitigation reaction 

functions and finally we look into negotiation outcome to analyse the effects on coalition stability. 

4.1 Result 1: Mitigation and adaptation are strategic substitutes 

In the M+A-Game, when all players increase (decrease) their mitigation level over the 25 periods of 

the game, all other things being equal, the optimal response is to decrease (increase) adaptation 

levels in every period. 

Figure B.1 in Appendix B, reports this result highlighting the effect of total emissions reduction 

(increase of total mitigation) on individual adaptation levels. With total emissions decreasing (total 

mitigation increasing) throughout all periods, players react by reducing their adaptation levels. This 

effect is more evident in later periods, when the benefits of emissions reduction manifest. Initially, 

the higher mitigation effort, due to climate inertia, does little to reduce damages and the need to adapt. 

These results confirm that the model behaves according most of the theoretical literature showing 

that, increasing (total) mitigation effort reduces the marginal benefits from adaptation as there will be 

less damages to avoid.  

This outcome can be also analytically derived from the definition of the output scaling factor of the 

M+A-Game: 
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Its denominator expresses the direct interconnection between mitigation and adaptation on the 

benefits side, while on the cost side (numerator) the two strategies do not present direct 

interdependencies. Marginal benefits of adaptation are thus obtained by differentiating the 

denominator with respect to individual adaptation level ( )ia t . The marginal damage reduction due 

to adaptation (its marginal benefit) is 
( ) 2

1
2.5

i

i

T t


−  . This term decreases as ( )T t  decreases. Since 

( )T t  decreases in total mitigation level, then adaptation marginal benefits reduce (increase) as 

mitigation increases (decreases). 

4.2 Result 2: Adaptation can induce upward sloping individual mitigation reaction functions. 

In the pure mitigation game, the 6 macro regions exhibit the standard downward sloping mitigation 

(emissions) reaction function. The introduction of adaptation reverses the slope of the reaction 

function of 4 out of 6 regions. USA, Japan, EU and Former Soviet Union Countries present upward 

sloping reaction functions in the mitigation space. 

Figure B.2 in Appendix B shows the reaction functions of the 6 regions in the two games. Starting 

from the non-cooperative Nash equilibrium, we impose a higher mitigation level to 5 players, and 

test the reaction of the sixth one. The table reports the percentage change in aggregate emissions (over 

the period 2015-2105) imposed to other players and the percentage change in individual emission 

(best response) of every macro-region. In the M-Game, when emissions (mitigation) of all others 

decrease (increases) the optimal response of each player is to increase emissions (decrease 

mitigation). In the M+A-Game, China and Rest of the world maintain this behaviour, while the other 

4 regions react in the opposite way. Now, when emissions of all others decrease (increases) the 

optimal response of these 4 players is to decrease (increase) emissions. When this happens, however, 
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the relative change in the emissions is small, meaning that reaction functions, albeit upward sloping, 

are rather flat. 

Once again, the theoretical results are confirmed by our IAM application. According to the theory, 

mitigation reaction functions become upward sloping when there is a “sufficiently” strong relation 

between (emissions) mitigation and adaptation. This occurs when mitigation-adaptation reaction 

functions are steep. Interestingly, our empirical application shows exactly this (Table B1 in appendix 

B). China and rest of the World, the two regions maintaining downward sloping mitigation reaction 

functions, both in the M- and M+A-Game, are also those with the weakest interdependency between 

emissions and adaptation (plots 1.e and 1.g). 

The intuition behind this result is that, having now adaptation as an option, players can react to higher 

(lower) emissions not only by reducing (increasing) their emissions but also by adapting more (less). 

If the strategic substitutability between the two strategies is strong, then a player reacts to higher 

(lower) emissions with sharp increase (decrease) in adaptation and possibly decrease (increase) 

mitigation. 

4.3 Result 3: Adaptation enhances coalition (internal) stability and welfare surplus from 

cooperation. 

When no transfers across coalition members are allowed, the M-Game is unable to lead to any 

internally stable coalition while in the M+A-Game 4 internally stable coalitions of 2 macro regions 

form. If monetary transfers are possible, many coalitions, including the grand coalition, are 

potentially internally stable in both games. However, the number of stable coalitions is higher in the 

M+A-game than in the M-game. Furthermore, the grand coalition in the M+A-Game leads to a 

higher difference between the surplus generated by the coalition and the free riding incentives. 

In a situation in which monetary transfers across coalition members are not possible, adaptation 

enhances the possibility of cooperation. In the M+A-Game, we found the following internally stable 
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coalitions: USA-European Union, USA-FSU Countries, European Union-FSU Countries and China-

rest of the World. 

Table 1 compares the performance of these 4 coalition in the pure mitigation and mitigation-

adaptation game. We focus on the sign of the changes in mitigation (emissions) and adaptation levels 

compared to the non-cooperative case. The change in aggregate emissions level of signatories (S) and 

non-signatories (NS) are indicated with SE  and NSE  respectively. In the M+A-Game, the change 

in individual adaptation levels is indicated with ia . Looking into those changes, we can get insights 

on the mechanism that makes those coalitions stable after the introduction of adaptation. 

Table 1: Analysis of stable coalitions without transfers 

Coalition 

M-Game M+A-Game 

Internal 

Stability 
SE  NSE  Internal 

Stability 
SE  NSE  ia  

USA-EU28 X - + ✓ - - - 

USA-FSU X - + ✓ - + - 

EU28-FSU X - + ✓ - + - 

CHN-ROW X - + ✓ - - - 

 

All 4 coalitions that become internally stable in the M+A-Game emit less compared to the non-

cooperative case. Due to strategic substitutability between mitigation and adaptation, the individual 

adaptation level in all the 6 regions reduces. 

Comparing M- and M+A-Game, in 2 cases, USA-EU28 and CHN-ROW, internal stability is achieved 

thanks to the reversion of the slope of mitigation reaction functions. In the M-Game, as coalition 

forms and signatories increase their mitigation level, the outsiders’ response is a higher emissions 

level. This “standard” leakage effect implies the existence of free riding incentives that eventually 

make the coalitions not internally stable. On the contrary, in the M+A-Game, the mitigation reaction 
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function of non-signatories is upward sloping. When the coalition reduces emissions, non-signatories 

do the same. Welfare of coalition members is positively affected by this response, and free riding 

incentive are low enough to make the coalition stable. In the other two cases USA-FSU and EU28-

FSU, non-signatories’ mitigation reaction function is downward sloping both in the M- and M+A-

Game. Still, the presence of adaptation, decreases the leakage effect. When non signatories increase 

their emissions, the coalition members also decrease their emissions, but by less when it is possible 

to adapt. This attenuates the incentive to free ride respect to the M-Game. More insights on this 

positive effect of adaptation can be found in the next Result 4. 

Qualitatively similar considerations can be derived considering the possibility of monetary transfers, 

that however play a very important role in the reduction of free riding incentives.  Indeed, with 

transfer, we find that the grand coalition can form both in the M- and M+A-Game. However, some 

indications on the positive effect of adaptation on coalition stability can still be found. First of all, 

some coalitions that are not potentially internally stable in the M-Game, are potentially internally 

stable in the M+A-Game. In details, all the 15 possible 2-players coalitions are stable in the M+A-

Game, while only 12 are stable in the M-Game. When the grand coalition, which is the final 

equilibrium in both games, forms, interesting insights are offered comparing the surplus of 

cooperation with the free riding incentive in case of full cooperation in the two games. The M-Game 

generates a surplus (of consumption net present value) over the free riding incentives of 1.92 USD 

trillion, while in the M+A-Game it increases to 1.97. 

Under an optimal transfers scheme regime, the effect of adaptation is not visible in terms of 

equilibrium coalition’s size. However, adaptation is able to enlarge the benefit of cooperation 

compared to free riding incentives. 
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4.4 Result 4: M+A-Game stable coalitions lead to higher emissions reduction 

The 4 internally stable coalitions in the M+A-Game, only lead to relatively small emissions reduction 

compared to full cooperation. However, the M+A-Game, compared to the M-Game, achieves higher 

emissions reduction thanks to the lower leakage effect. 

Figure B.3 in Appendix B shows the aggregate emissions reduction in the period 2015-2105 generated 

by the 4 internally stable coalitions24. The plot also considers the same coalitions, which are not stable, 

in the M-Game and the grand coalition (full cooperation). Each of the 4 coalitions, is able to lead to 

a higher emissions reduction in the M+A-Game. This happens, again, because of the positive effect 

that adaptation has on mitigation strategies. Looking to the performance of each of the 4 stable 

coalitions of the M+A-Game, we notice that the coalition between China and Rest of the World is the 

one achieving the largest emissions reduction. The reason is straightforward, as China is the major 

emitter and ROW region comprises most world’s countries. Among the other three coalitions, the 

best performing is USA-EU28. This is also not surprising as it is a cooperation between 2 of the 

biggest worlds’ economies. The less performing coalitions, in emissions reduction terms, are USA-

FSU and EU28-FSU. However, since the 4 stable coalitions are only formed by 2 macro regions, they 

achieve a relatively small emissions reduction compared to the grand coalition (social optimum). 

Each of the possible stable coalition is excluding a large amount of global emissions from the 

agreement and hence the final outcome cannot be satisfactory. Monetary transfers play a fundamental 

role in the success of negotiation, as they allow to reach full cooperation. 

 

 

                                                 
24  We analyse stable coalitions’ performance looking only to emissions reduction and not, as in most 

theoretic models, welfare improvements. The welfare discounting in the maximization process makes 

the improvements in the net present value of utility too small to be appreciated. 
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5 Summary and conclusion 

This paper applies an updated version of the Nordhaus’ RICE model to test the effect of introducing 

adaptation in IEAs modeling comparing the pure mitigation (M-) and the mitigation-adaptation 

(M+A-) game.  

Existing literature has applied integrated assessment modeling to the study of IEAs and coalition 

formation only in a pure mitigation context. We extend the application of IAMs to a mitigation-

adaptation game. The objective of analysis reflects the one of the main theoretical models that analyse 

the effect of adaptation on mitigation (emissions) strategies (Ebert and Welsh 2011 and 2012), the 

strategic relation between mitigation and adaptation (Ingham et al 2013) and, more broadly, IEAs in 

the presence of adaptation (Bayramoglu et al. 2018 and Rubio 2018). 

The main theoretical results of these papers are tested, and in large part confirmed, by our IAM 

application. Mitigation and adaptation are strategic substitutes. In presence of higher total mitigation 

(lower emissions and lower climate change damages) players would choose a lower adaptation level. 

Since IAMs are dynamic games that try to reproduce at best the realty, the benefits from emissions 

reduction manifest in later periods and, therefore, also the effect of higher mitigation on adaptation 

marginal benefits shifts. Within an intertemporal maximization, the analysis of mitigation reaction 

functions is also not trivial. We use as a benchmark the reaction of each player i  in the non-

cooperative Nash equilibrium where all other players increase their mitigation levels in every period. 

In the pure mitigation game, individual mitigation reaction functions are downward sloping while in 

the M+A-Game reaction functions can be positively sloped. Increasing the mitigation levels of all 

other players by 5 times, the reaction of 4 out of 6 regions (USA, Japan, EU and Former Soviet Union 

Countries) is now to decrease their aggregate emissions over the period 2015-2105. This result goes 

in the same direction of the theoretical findings of Ebert and Welsh (2011 and 2012) and Bayramoglu 

et al. (2018). More generally, adaptation is able to reduce the leakage effect. Consequently, coalitions 

in the M+A-Game lead to higher aggregate emissions reduction than in the M-Game. Indications in 
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favour of the positive effect of adaptation on coalition stability are also found. Without the possibility 

of monetary transfers, no coalitions form in the M-Game. In the M+A-Game 2-players stable 

coalitions arise. With an optimal transfers scheme both games allow for the formation of the grand 

coalition. However, looking at free riding incentives, they are weaker in the M+A-Game. 

Since this work is the first IAM application to consider coalition formation in a M+A-Game, there is 

room for several extensions and modifications. Considering a model with more than 6 macro regions, 

the results in terms of stable coalition size could show more evidences of the positive role played by 

adaptation. Furthermore, different ways of adaptation modeling are available. This paper, for a direct 

comparison with mitigation, considers adaptation as a flow variable. However, another option would 

be to consider it as a stock or, more realistically, to model both a flow and a stock component of 

adaptation. Finally, the relation between mitigation and adaptation could be enriched assuming an 

additional interdependence as done, in a theoretical work, by Ingham et al. (2013). 
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Appendix 

A.1 Model’s variables and parameters 

The following list reports the exogenous, endogenous and decision variables of the model. 

Variables are the same in the M- and M+A-Game except one. The mitigation-adaptation game has 

one additional decision variable: adaptation level. 

Exogenous variables 

( )iA t  = level of technology 

( )iL t  = population (labour) level 

( )O t  = exogenous forcing from other greenhouse gases 

Endogenous variables 

( )iK t  = capital stock 

( )G

iY t  = gross GDP 

( )iE t  = GHG emissions level 

( )M t  = increase in atmospheric GHG concentration from pre-industrial levels 

( )F t  = climate forcing from total GHG concentration 

( )T t  = atmospheric temperature (increase) respect to pre-industrial level 

( )OT t  = dee temperature (increase) respect to pre-industrial level 

( )i t  = output scaling factor due to climate policies cost and climate damage 

( )N

iY t  = net GDP (net of climate damages and policies cost) 

( )iC t  = consumption level 

( )i t  = welfare weight 

( )iU t  = utility function 

W  = social welfare 

Decision variables 

( )iI t  = investment level 

( )i t  = mitigation level 

( )ia t  = adaptation level (only in the M+A-Game) 
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The regional initial data of the model are the 2015 levels of GDP, population, emissions and capital 

stock. The values are reported in the following Table A.1. 

 Table A.1: Initial regional data: 

 

In the following Table A.2, we report the parameters of the model with their values and calibration. 

The values assigned are generally used for both the M- and the M+A-Game. When this is not the 

case (damage parameters and adaptation cost parameters), we specify the different calibration used 

in the two models. 

Table A.2: Parameters and calibration 

Regional parameters: M-Game Calibration 

1b  = mitigation cost parameter 

USA = 0.07 

JPN = 0.05 

EU-28 = 0.05 

CHN = 0.15 

FSU = 0.15 

ROW = 0.10 

2b  = mitigation cost exponent 2.887 

1  = climate damage parameter 

USA = 0.010365 

JPN = 0.010882 

EU-28 = 0.013934 

CHN = 0.022530 

FSU = 0.007086 

ROW = 0.022982 

2  = climate damage exponent 3.5  

  

 USA JPN EU-28 CHN FSU ROW 

( )1NY t =  

(billions USD) 

18121 4395 16416 11065 1901 23018 

( )1L t =  

(millions) 

326.65 126.10 509.72 1371.37 287.49 4625.27 

( )1K t =  

(billions USD) 

27846.26 6153.29 25808.19 16795.91 4153.24 36904.84 

( )1E t = (CO
2
eq 

million tonnes) 

18.06 3.61 11.77 34.64 10.44 50.72 
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Regional parameters: M+A-Game Calibration 

1b  = mitigation cost parameter 

USA = 0.07 

JPN = 0.05 

EU-28 = 0.05 

CHN = 0.15 

FSU = 0.15 

ROW = 0.10 

2b  = mitigation cost exponent 2.887 

1c  = adaptation cost parameter  

USA = 0.0363 

JPN = 0.0289 

EU-28 = 0.0741 

CHN = 0.1759 

FSU = 0.0349 

ROW = 0.0159 

2c  = adaptation cost exponent 3.5 

1  = gross damage parameter 

USA = 0.014858 

JPN = 0.020765 

EU-28 = 0.020810 

CHN = 0.030863 

FSU = 0.010737 

ROW = 0.024300 

2  = gross damage exponent 3.5 

( )t  = emissions/GDP ratio 
Computed with initial data and with exogenous 

trend data 

Other parameters: both games Values 

  = capital elasticity of output 0.25 

K  = capital stock depreciation rate 0.1 

  = pure rate of social time preference 0.03 

  = per decade carbon removal rate 0.64 

M  = GHG decadence rate 0.0833 

  = climate feedback factor 1.41 

1  = atmospheric level temperature coefficient 0.226 

2  = transfer atm. to ocean coefficient 0.44 

3  = transfer ocean to atm. coefficient 0.02 
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A.2 Model’s equations 

The full equations list of the model is reported. The M- and M+A-Game differ only for the output 

scaling factor. We stress this difference by reporting the two different output scaling factors: ( )i t  

for the M-Game and ( )M A

i t+  for the M+A-Game. All other equations are used in both games. 

Equations 

( )   ( ) ( )1 1i K i iK t K t I t= −  − +  

( ) ( ) ( ) ( )
1G

i i i iY t A t K t L t
  −

=    

( ) ( ) ( ) ( )1 G

i i i iE t t t Y t  = −     

( ) ( )   ( )
1

1 1
n

i M

i

M t E t M t 
=

=  + −  −  

( )
( ) ( )

( )
( )

4.1 log / 0

log 2

M t M
F t O t

   = +  

( ) ( ) ( ) ( ) ( ) ( )1 21 1 1 1OT t T t F t T t T t T t    = − +  −  − −  − − −  
 

( ) ( ) ( ) ( )0

31 1 1O OT t T t T t T t  = − +  − − −   
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( )

( )

2
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1
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FIGURES 

 

Figure B.1: Test of emissions- (mitigation-)adaptation strategic relationship* 

 

* R.F. test scenario is obtained starting from the non-cooperative Nash solution and imposing 

to each player a mitigation level 5 times higher throughout all periods. Investment are kept 

fixed to the Nash level and the reaction in terms of adaptation levels is analyzed.  
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Figure B.2: Test of emissions (mitigation) individual reaction functions 
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Figure B.3: Internally Stable coalitions’(in the M+A-Game) emissions reduction* 

 

 

* Emissions reduction refers to aggregate emissions for the period 2015-2105 compared to the 

non-cooperative case. Full cooperation in the M-Game, by assumption, also implicitly 

includes optimal adaptation. Full cooperation results in our M+A-Game slightly differ because 

of calibration issues. Recall that in the social optimum aggregate welfare is maximized and 

there is no leakage effect.  
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