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Abstract

IN this thesis, we present new schemes which leverage a constrained

clustering method to solve several computer vision tasks ranging from

image retrieval, image segmentation and co-segmentation, to person

re-identification. In the last decades clustering methods have played a vital

role in computer vision applications; herein, we focus on the extension,

reformulation, and integration of a well-known graph and game theoretic

clustering method known as Dominant Sets. Thus, we have demonstrated

the validity of the proposed methods with extensive experiments which are

conducted on several benchmark datasets.

We first discuss ‘Dominant Sets for "Constrained" Image Segmentation,’

DSCIS. In DSCIS, we present a unified model to tackle image segmenta-

tion and co-segmentation problem in both an interactive and unsupervised

fashion; whereby, the proposed algorithm can deal naturally with several

types of constraints and input modality, including scribbles, sloppy con-

tours, and bounding boxes, and is able to robustly handle noisy annotations

on the part of the user. Our method is based on some properties of a family

of quadratic optimization problems related to dominant sets, a well-known

graph-theoretic notion of a cluster which generalizes the concept of a maxi-

mal clique to edge-weighted graphs. In particular, we show that by properly

controlling a regularization parameter which determines the structure and

the scale of the underlying problem, we are in a position to extract groups of

dominant-set clusters that are constrained to contain predefined elements.

Following, we present novel schemes for content-based image retrieval

(CBIR) using constrained dominant sets (CDS). We present two different
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CBIR methods. The first method, ‘Multi-feature Fusion for Image Retrieval

Using Constrained Dominant Sets,’ MfFIR, fuse several hand-crafted and

deep features to endow a representative similarity which better define the

closeness of given query and gallery images; whereas, the second one,

‘Constrained Dominant Sets for Image Retrieval,’ CDSIR, exploit a con-

strained diffusion process to produce a robust similarity between query and

gallery images. In MfFIR, we propose a computationally efficient approach

to fuse several hand-crafted and deep features, based on the probabilis-

tic distribution of a given membership score of a constrained cluster in an

unsupervised manner. Towards this end, we first introduce an incremen-

tal nearest neighbor (NN) selection method, whereby we dynamically se-

lect k-NN to the query. Next, we build several graphs from the obtained

NN sets and employ constrained dominant sets (CDS) on each graph G

to assign edge weights which consider the intrinsic manifold structure of

the graph, and detect false matches to the query. Finally, we compute the

positive-impact weight (PIW) based on the dispersive degree of the charac-

teristics vector. As a result, we exploit the entropy of a cluster membership-

score distribution. In addition, the final NN set bypasses a heuristic voting

scheme. Our approach presents two main advantages. Firstly, compared to

the state of the art methods, it can robustly quantify the effectiveness of fea-

tures for a specific query, without any supervision. Secondly, by diffusing

the pairwise similarity between the nearest neighbors, our model can easily

avoid the inclusion of false-positive matches in the final shortlist. On the

other hand, in CDSIR, we leverage constrained dominant sets to dynam-

ically constrain a similarity diffusion process to provide context-sensitive

similarities.

Finally, we present a Deep Constrained Dominant Sets (DCDS); in which,

we are able to optimize the constrained-clustering process in an end-to-end

manner and leverage contextual information in the learning process. In this

work, we integrate the well-known graph and game-theoretic method called

CDS into a deep model and tackle the challenging computer vision prob-

lem of person re-identification. Furthermore, we reformulate the problem

of person re-identification as a constrained-clustering problem and build a

model that is end-to-end trainable.
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Preface

THis dissertation is submitted in fulfillment of the requirements for the

degree of doctor of philosophy at Ca’ Foscari University of Venice.

The thesis presents novel methods which inherit several techniques

from game theory, graph theory, and deep learning. The first chapter in-

troduces the graph and game theoretic clustering methods called Domi-

nant Sets and its constrained variant Constrained Dominant Sets. The sec-

ond chapter presents the application of constrained dominant sets to tackle

the problem of interactive image segmentation and co-segmentation (in

both supervised and unsupervised fashion) [99]; it has been appeared in

Transactions on Pattern Analysis and Machine Intelligence (TPAMI). The

third chapter discusses two distinct methods which attack the same prob-

lem of content-based image retrieval. The first method, called Constrained

Dominant Sets for Image Retrieval [169], has been presented in Interna-

tional Conference on Pattern Recognition (ICPR); whereas, the second one

called Multi-feature Fusion using Constrained Dominant Sets for Image

retrieval [8] has been appeared in a journal known as Image and Vision

Computing (IVC). Finally, the last chapter presents a very interesting work

which integrates constrained dominant sets in a deep neural network model.

It is a collaboration work with Dr. Mubarak Shah; which has been done

while I was a visiting scholar at the Center for Research in Computer Vi-

sion (CRCV). This work [9] has been published in International Conference

on Computer Vision (ICCV).
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Introduction

Manually labeling a large amount of data, that arise due to a deluge of in-

formation from several automations and data collections, is costly. Due to

this reason, unsupervised clustering has attracted a considerable attention of

pattern recognition community. Clustering deals with defining classes from

the data without a prior knowledge of the class labels. Cluster analysis has

been applied to solve several real world problems such as anomaly detec-

tion, image segmentation, natural language processing, document grouping

and recommendation systems.

Clustering methods can be roughly divided into two main categories

such as partitioning and hierarchical algorithm. Partitioning based clus-

tering methods split the dataset into k <or = n groups, where n is the

number of objects in the dataset, whereas hierarchical algorithms gradu-

ally form clusters through either agglomerations or divisions. Furthermore,

there has been a resurgence of interest around graph based (pairwise) meth-

ods [6, 52, 127], that cast the data to be clustered (pixels, super-pixel, edge

elements, etc) as a vertices of a similairity (edge-weighted) graph, where

the edges reflect neighborhood relations, and the weights denote the simi-

larity between data. Indeed, it is natural to map the data to be clustered to

the nodes of a weighted graph (the so-called similarity graph), with edge

weights representing similarity relations. In cluster analysis, graph cluster-

ing is defined as a process of searching for groups of related vertices in a

graph. Graph-theoretic clustering methods are of significant interest since

they cast clustering as pure graph-theoretic problems for which a solid the-

ory and powerful algorithms have been developed. As can be observed
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from [43], these methods can produce highly intricate clusters, but they

rarely optimize an easily specified global cost function. Graph-theoretic

clustering methods basically comprises searching for certain combinatorial

structures in the similarity graph, such as a minimum cut [52, 127, 150] or

a minimum spanning tree [166].

In this thesis, we present different approaches that leverage techniques

which are based on some properties of a family of quadratic optimization

problems related to dominant sets, a well-known graph-theoretic notion of a

cluster which generalizes the concept of a maximal clique to edge-weighted

graphs. Moreover, we exploit the constrained version of dominant sets clus-

tering known as constrained dominant sets clustering [172] (CDS); which

is based on some properties of a family of quadratic optimization problems

related to dominant sets. In particular, by properly controlling a regulariza-

tion parameter which determines the structure and the scale of the underly-

ing problem, one can extract a dominant set cluster which is constrained to

contain user-provided constraints. Thus, we able to tackle several computer

vision problems such as image segmentation and co-segmentation, image

retrieval, and person re-identification problems.

We first discuss our novel and multi-modal scheme, which is formu-

lated in such a way that tackles the problem of image segmentation and

co-segmentation in both unsupervised and interactive manner. Image seg-

mentation is arguably one of the oldest and best-studied problems in com-

puter vision, being a fundamental step in a variety of real-world applica-

tions, and yet remains a challenging task [132] [50]. Besides the stan-

dard, purely bottom-up formulation, which involves partitioning an input

image into coherent regions, in the past few years several variants have

been proposed which are attracting increasing attention within the commu-

nity. Most of them usually take the form of a “constrained” version of the

original problem, whereby the segmentation process is guided by some ex-

ternal source of information. For example, user-assisted (or “interactive”)

segmentation has become quite popular nowadays, especially because of its

potential applications in problems such as image and video editing, medical

image analysis, etc. [21,24,81,87,102,113,120,149]. Given an input image

and some information provided by a user, usually in the form of a scribble

or of a bounding box, the goal is to provide as output a foreground object

in such a way as to best reflect the user’s intent. By exploiting high-level,

semantic knowledge on the part of the user, which is typically difficult to

formalize, we are therefore able to effectively solve segmentation problems

which would be otherwise too complex to be tackled using fully automatic

segmentation algorithms. Another example of a “constrained” segmenta-
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tion problem is image co-segmentation. Given a set of images, the goal

here is to jointly segment same or similar foreground objects. The problem

was first introduced by Rother et al. [33] who used histogram matching

to simultaneously segment the foreground object out from a given pair of

images. Recently, several techniques have been proposed which try to co-

segment groups containing more than two images, even in the presence of

similar backgrounds. Joulin et al. [4], for example, proposed a discrimina-

tive clustering framework, combining normalized cut and kernel methods

and the framework has recently been extended in an attempt to handle mul-

tiple classes and a significantly larger number of images [5]. In this work

(which is an extended version of [172]), we propose a unified approach to

address this kind of problems which can deal naturally with various input

modalities, or constraints, and is able to robustly handle noisy annotations

on the part of the external source. In particular, we shall focus on interac-

tive segmentation and co-segmentation (in both the unsupervised and the

interactive versions).

Next, we present our works on CBIR. Image retrieval (CBIR) has re-

cently attracted considerable attention within the computer vision commu-

nity, especially because of its potential applications such as database re-

trieval, web and mobile image search. The goal of semantic image search,

or content-based image retrieval (CBIR), is to search for a query image

from a given image dataset. This is done by computing image similari-

ties based on low-level image features, such as color, texture, shape and

spatial relationship of images. Variation of images in illumination, rota-

tion, and orientation has remained a major challenge for CBIR. Recently,

locally constraining the diffusion process has shown its effectiveness on

learning the intrinsic manifold structure of a given data. However, exist-

ing constrained-diffusion based retrieval methods have several shortcom-

ings. For instance, manual choice of optimal local neighborhood size, do

not allow for intrinsic relation among the neighbors, fix initialization vec-

tor to extract dense neighbor; which negatively affect the affinity propa-

gation. In CDSIR, leveraging the constrained dominant sets we tackle the

above issues. On the other hand, we develop a feature-fusion based im-

age retrieval method known as Multi-feature Fusion for Image Retrieval

Using Constrained Dominant Sets (MfFIR) . Multi-feature based CBIR at-

tacks the CBIR problem by introducing an approach which utilizes multiple

low-level visual features of an image. Intuitively, if the to-be-fused feature

works well by itself, it is expected that its aggregation with other features

will improve the accuracy of the retrieval. Nevertheless, it is quite hard to

learn in advance the effectiveness of the to-be-fused features for a specific
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query image. In MfFIR, we propose a computationally efficient approach

to fuse several hand-crafted and deep features, based on the probabilistic

distribution of a given membership score of a constrained cluster in an un-

supervised manner.

We finally discuss our work on the challenging computer vision prob-

lem of person re-identification. In this work, for the very first time, we in-

tegrate the well known graph and game theoretic clustering method called

dominant sets in end-to-end manner. Thereby, we do the optimization of

constrained-clustering process in the context of deep learning. Person re-

identification aims at retrieving the most similar images to the probe im-

age, from a large-scale gallery set captured by camera networks. Among

the challenges which hinder person re-id tasks, include background clutter,

pose, viewpoint and illumination variation can be mentioned. Person re-id

can be considered as a person retrieval problem based on the ranked similar-

ity score, which is obtained from the pairwise affinities between the probe

and the dataset images. However, relying solely on the pairwise affinities of

probe-gallery images, ignoring the underlying contextual information be-

tween the gallery images often leads to an undesirable similarity ranking.

To overcome this, we propose an intriguing scheme which treats person-

image retrieval problem as a constrained clustering optimization problem,

called deep constrained dominant sets (DCDS). Given a probe and gallery

images, we re-formulate person re-id problem as finding a constrained clus-

ter, where the probe image is taken as a constraint (seed) and each cluster

corresponds to a set of images corresponding to the same person. By op-

timizing the constrained clustering in an end-to-end manner, we naturally

leverage the contextual knowledge of a set of images corresponding to the

given person-images. We further enhance the performance by integrating

an auxiliary net alongside DCDS, which employs a multi-scale ResNet. To

summarize, the main contributions of this thesis are:

• It leverages the constrained dominant sets to attack several computer

vision problems in both classical and deep flavors.

• The proposed DSCIS has a number of interesting features which dis-

tinguishes it from existing approaches. Specifically: 1) it solves both

image segmentation and co-segmentation in an interactive and unsu-

pervised manner. 2) in the case of noiseless scribble inputs, it asks the

user to provide only foreground pixels; 3) it turns out to be robust in

the presence of input noise, allowing the user to draw, e.g., imperfect

scribbles.

• The proposed Image retrieval methods come with several advantages.
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In particular, the proposed CDSIR: 1) it constrains the diffusion pro-

cess by locally extracting dense neighbors whose local neighborhood

size (K) is fixed automatically; means that different neighbors can

have a different value of K. 2) it has no initialization step; the dy-

namics, to extract the dense neighbors, can start at any point in the

standard simplex 3) it turns out to be robust to noisy affinity matrices.

• On other hand, through MfFIR, we contribute a generic approach

which can be applied not only to image retrieval but also to other

computer vision problems, such as object detection and person re-

identification. Furthermore, unlike existing feature-fusion methods,

we propose a simple but efficient entropy-based feature effectiveness

weighting system.

• Finally, for the very first time, we integrate the well-known cluster-

ing method, dominant sets, in a deep neural network (DNN) model.

Moreover, we establish a one-to-one correspondence between person

re-identification and constrained clustering problem.
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CHAPTER1

Dominant Sets and Quadratic Optimization

Clustering or partitioning a given data based on the similarity among the

data points is a fundamental task in many fields of study such as Ma-

chine Learning, Computer Vision, and Statistics. In this chapter, we discuss

the well-known graph and game-theoretic pairwise data clustering scheme

called Dominant Sets and its constrained variant Constrained Dominant

Sets.

In the dominant set framework, the data to be clustered are represented

as an undirected edge-weighted graph with no self-loops G = (V,E,w),
where V = {1, ..., n} is the vertex set, E ⊆ V × V is the edge set, and

w : E → R∗
+ is the (positive) weight function. Vertices in G correspond to

data points, edges represent neighborhood relationships, and edge-weights

reflect similarity between pairs of linked vertices. As customary, we repre-

sent the graph G with the corresponding weighted adjacency (or similarity)

matrix, which is the n×n nonnegative, symmetric matrix A = (aij) defined

as aij = w(i, j), if (i, j) ∈ E, and aij = 0 otherwise. Since in G there are

no self-loops, note that all entries on the main diagonal of A are zero.
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Chapter 1. Dominant Sets and Quadratic Optimization

For a non-empty subset S ⊆ V , i ∈ S, and j /∈ S, define

φS(i, j) = aij −
1

|S|

∑

k∈S

aik . (1.1)

This quantity measures the (relative) similarity between nodes j and i, with

respect to the average similarity between node i and its neighbors in S.

Note that φS(i, j) can be either positive or negative. Next, to each vertex

i ∈ S we assign a weight defined (recursively) as follows:

wS(i) =

{

1, if |S| = 1,
∑

j∈S\{i} φS\{i}(j, i)wS\{i}(j), otherwise .
(1.2)

Intuitively, wS(i) gives us a measure of the overall similarity between ver-

tex i and the vertices of S \ {i} with respect to the overall similarity among

the vertices in S \ {i}. Therefore, a positive wS(i) indicates that adding

i into its neighbors in S will increase the internal coherence of the set,

whereas in the presence of a negative value we expect the overall coher-

ence to be decreased.

A non-empty subset of vertices S ⊆ V such that W (T ) > 0 for any

non-empty T ⊆ S, is said to be a dominant set if:

1. wS(i) > 0, for all i ∈ S,

2. wS∪{i}(i) < 0, for all i /∈ S.

It is evident from the definition that a dominant set satisfies the two basic

properties of a cluster: internal coherence and external incoherence. Con-

dition 1 indicates that a dominant set is internally coherent, while condition

2 implies that this coherence will be destroyed by the addition of any vertex

from outside. In other words, a dominant set is a maximally coherent data

set.

Now, consider the following linearly-constrained quadratic optimization

problem:
maximize f(x) = x

′Ax

subject to x ∈ ∆
(1.3)

where a prime denotes transposition and

∆ =

{

x ∈ Rn :
n∑

i=1

xi = 1, and xi ≥ 0 for all i = 1 . . . n

}

is the standard simplex of Rn. In [103, 107] a connection is established

between dominant sets and the local solutions of (1.3). In particular, it is
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1.1. Constrained dominant sets

Figure 1.1: An example graph (left), corresponding affinity matrix (middle), and scaled affinity

matrix built considering vertex 5 as a user constraint (right). Notation Ci refers to the ith

maximal clique.

shown that if S is a dominant set then its “weighted characteristic vector,”

which is the vector xS ∈ ∆ defined as

xS
i =

{
wS(i)∑

j∈S wS(j)
, if i ∈ S,

0, otherwise

is a strict local solution of (1.3). Conversely, under mild conditions, it turns

out that if x is a (strict) local solution of program (1.3) then its “support”

σ(x) = {i ∈ V : xi > 0}

is a dominant set. By virtue of this result, we can find a dominant set by

first localizing a solution of program (1.3) with an appropriate continuous

optimization technique, and then picking up the support set of the solution

found. In this sense, we indirectly perform combinatorial optimization via

continuous optimization. A generalization of these ideas to hypergraphs

has recently been developed in [119].

Note that, by construction, dominant sets capture compact structures.

To deal with arbitrarily shaped clusters, path-based similarity measures can

profitably be used [171]. In the work reported in this thesis, however, we

did not make use of this notion.

1.1 Constrained dominant sets

Let G = (V,E,w) be an edge-weighted graph with n vertices and let A
denote as usual its (weighted) adjacency matrix. Given a subset of vertices

S ⊆ V and a parameter α > 0, define the following parameterized family

3
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of quadratic programs:

maximize fα
S (x) = x

′(A− αÎS)x

subject to x ∈ ∆
(1.4)

where ÎS is the n× n diagonal matrix whose diagonal elements are set to 1

in correspondence to the vertices contained in V \ S and to zero otherwise,

and the 0’s represent null square matrices of appropriate dimensions. In

other words, assuming for simplicity that S contains, say, the first k vertices

of V , we have:

ÎS =

(
0 0

0 In−k

)

where In−k denotes the (n − k) × (n − k) principal submatrix of the n ×
n identity matrix I indexed by the elements of V \ S. Accordingly, the

function fα
S can also be written as follows:

fα
S (x) = x

′Ax− αx′
S̄xS̄

xS̄ being the (n − k)-dimensional vector obtained from x by dropping all

the components in S. Basically, the function fα
S is obtained from f by

inserting in the affinity matrix A the value of the parameter α in the main

diagonal positions corresponding to the elements of V \ S.

Notice that this differs markedly, and indeed generalizes, the formula-

tion proposed in [106] for obtaining a hierarchical clustering in that here,

only a subset of elements in the main diagonal is allowed to take the α
parameter, the other ones being set to zero. We note in fact that the orig-

inal (non-regularized) dominant-set formulation (1.3) [103] as well as its

regularized counterpart described in [106] can be considered as degenerate

version of ours, corresponding to the cases S = V and S = ∅, respectively.

It is precisely this increased flexibility which allows us to use this idea for

finding groups of “constrained” dominant-set clusters.

We now derive the Karush-Kuhn-Tucker (KKT) conditions for program

(3.3), namely the first-order necessary conditions for local optimality (see,

e.g., [94]). For a point x ∈ ∆ to be a KKT-point there should exist n
nonnegative real constants µ1, . . . , µn and an additional real number λ such

that

[(A− αÎS)x]i − λ+ µi = 0

for all i = 1 . . . n, and
n∑

i=1

xiµi = 0 .
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Since both the xi’s and the µi’s are nonnegative, the latter condition is

equivalent to saying that i ∈ σ(x) implies µi = 0, from which we obtain:

[(A− αÎS)x]i

{

= λ, if i ∈ σ(x)

≤ λ, if i /∈ σ(x)

for some constant λ. Noting that λ = x
′Ax − αx′

S̄
xS̄ and recalling the

definition of ÎS , the KKT conditions can be explicitly rewritten as:







(Ax)i − αxi = x
′Ax− αx′

S̄
xS̄, if i ∈ σ(x) and i /∈ S

(Ax)i = x
′Ax− αx′

S̄
xS̄, if i ∈ σ(x) and i ∈ S

(Ax)i ≤ x
′Ax− αx′

S̄
xS̄, if i /∈ σ(x)

(1.5)

We are now in a position to discuss the main results which motivate

the algorithm presented in this thesis. Note that, in the sequel, given a

subset of vertices S ⊆ V , the face of ∆ corresponding to S is given by:

∆S = {x ∈ ∆ : σ(x) ⊆ S}.

Proposition 1. Let S ⊆ V , with S 6= ∅. Define

γS = max
x∈∆V \S

min
i∈S

x
′Ax− (Ax)i

x′x
(1.6)

and let α > γS . If x is a local maximizer of fα
S in ∆, then σ(x) ∩ S 6= ∅.

Proof. Let x be a local maximizer of fα
S in ∆, and suppose by contradiction

that no element of σ(x) belongs to S or, in other words, that x ∈ ∆V \S . By

letting

i = arg min
j∈S

x
′Ax− (Ax)j

x′x

and observing that σ(x) ⊆ V \ S implies x′
x = x

′
S̄
xS̄ , we have:

α > γS ≥
x
′Ax− (Ax)i

x′x
=

x
′Ax− (Ax)i

x′
S̄
xS̄

.

Hence, (Ax)i > x
′Ax − αx′

S̄
xS̄ for i /∈ σ(x), but this violates the KKT

conditions (1.5), thereby proving the proposition.

The following proposition provides a useful and easy-to-compute upper

bound for γS .

5



Chapter 1. Dominant Sets and Quadratic Optimization

Proposition 2. Let S ⊆ V , with S 6= ∅. Then,

γS ≤ λmax(AV \S) (1.7)

where λmax(AV \S) is the largest eigenvalue of the principal submatrix of A
indexed by the elements of V \ S.

Proof. Let x be a point in ∆V \S which attains the maximum γS as defined in

(1.6). Using the Rayleigh-Ritz theorem [62] and the fact that σ(x) ⊆ V \S,

we obtain:

λmax(AV \S) ≥
x
′
S̄
AV \SxS̄

x′
S̄
xS̄

=
x
′Ax

x′x
.

Now, define γS(x) = max{(Ax)i : i ∈ S}. Since A is nonnegative so is

γS(x), and recalling the definition of γS we get:

x
′Ax

x′x
≥

x
′Ax− γS(x)

x′x
= γS

which concludes the proof.

The two previous propositions provide us with a simple technique to

determine dominant-set clusters containing user-selected vertices. Indeed,

if S is the set of vertices selected by the user, by setting

α > λmax(AV \S) (1.8)

we are guaranteed that all local solutions of (3.3) will have a support that

necessarily contains elements of S. Note that this does not necessarily im-

ply that the (support of the) solution found corresponds to a dominant-set

cluster of the original affinity matrix A, as adding the parameter −α on a

portion of the main diagonal intrinsically changes the scale of the under-

lying problem. However, we have obtained extensive empirical evidence

which supports a conjecture which turns out to be very useful for our inter-

active image segmentation application.

To illustrate the idea, let us consider the case where edge-weights are

binary, which basically means that the input graph is unweighted. In this

case, it is known that dominant sets correspond to maximal cliques [103].

Let G = (V,E) be our unweighted graph and let S be a subset of its ver-

tices. For the sake of simplicity, we distinguish three different situations of

increasing generality.

Case 1. The set S is a singleton, say S = {u}. In this case, we know from

Proposition 2 that all solutions x of fS
α over ∆ will have a support which

contains u, that is u ∈ σ(x). Indeed, we conjecture that there will be a
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unique local (and hence global) solution here whose support coincides with

the union of all maximal cliques of G which contain u.

Case 2. The set S is a clique, not necessarily maximal. In this case, Propo-

sition 2 predicts that all solutions x of (3.3) will contain at least one vertex

from S. Here, we claim that indeed the support of local solutions is the

union of the maximal cliques that contain S.

Case 3. The set S is not a clique, but it can be decomposed as a collection

of (possibly overlapping) maximal cliques C1, C2, ..., Ck (maximal with re-

spect to the subgraph induced by S). In this case, we claim that if x is a

local solution, then its support can be obtained by taking the union of all

maximal cliques of G containing one of the cliques Ci in S.

To make our discussion clearer, consider the graph shown in Fig. 1.1.

In order to test whether our claims hold, we used as the set S different

combinations of vertices, and enumerated all local solutions of (3.3) by

multi-start replicator dynamics (see Section 1.2). Some results are shown

below, where on the left-hand side we indicate the set S, while on the right

hand-side we show the supports provided as output by the different runs of

the algorithm.

1. S = ∅ ⇒ σ(x1) = {5, 6, 8}, σ(x2) = {5, 7, 8}
2. S = {2} ⇒ σ(x) = {1, 2, 3}
3. S = {5} ⇒ σ(x) = {4, 5, 6, 7, 8}
4. S = {4, 5} ⇒ σ(x) = {4, 5}
5. S = {5, 8} ⇒ σ(x) = {5, 6, 7, 8}
6. S = {1, 4} ⇒ σ(x1) = {1, 2}, σ(x2) = {4, 5}
7. S =
{2, 5, 8}

⇒ σ(x1) = {1, 2, 3}, σ(x2) = {5, 6, 7, 8}

Notice that in the unconstrained case (S = ∅), the algorithm returns the

two largest cliques, depending on the starting point. We refer the reader

to [108] (and references therein) for a thorough analysis of the use of repli-

cator and similar dynamics for the (unconstrained) maximum clique prob-

lem.

The previous observations can be summarized in the following general

statement which does comprise all three cases. Let S = C1 ∪C2 ∪ . . .∪Ck

(k ≥ 1) be a subset of vertices of G, consisting of a collection of cliques

Ci (i = 1 . . . k). Suppose that condition (1.8) holds, and let x be a local

solution of (3.3). Then, σ(x) consists of the union of all maximal cliques

containing some clique Ci of S.
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1.2 Finding constrained dominant sets using replicator dy-

namics

Given an arbitrary real-valued n × n matrix W = (wij), consider the fol-

lowing continuous-time dynamical system

ẋ = xi ((Wx)i − x
′Wx) (1.9)

for i = 1 . . . n, where a dot signifies derivative w.r.t. time, and its discrete-

time counterpart:

xi(t+ 1) = xi(t)
C + (Wx(t))i

C + x(t)′Wx(t)
(1.10)

where C is a proper constant to avoid negative values in the numerator

(and denominator). These are known as replicator dynamics in evolution-

ary game theory [60,148] and it turns out that, for a large constant C, (1.10)

is essentially an Euler discretization of (1.9).

It is readily seen that the standard simplex ∆ is invariant under these

dynamics, which means that every trajectory starting in ∆ will remain in

∆ for all future times. Moreover, their stationary points, i.e., the points

satisfying ẋ = 0 for (1.9) and xi(t+ 1) = xi(t) for (1.10), coincide and are

the solutions of the equations:

xi ((Wx)i − x
′Wx) = 0 .

A stationary point x is said to be asymptotically stable if every trajectory

which starts close enough to x will eventually converge to it.

The following result, known as the Fundamental Theorem of Natural

Selection [60], provides us useful information concerning the convergence

properties of replicator dynamics.

Theorem 1. If W is symmetric (W = W ′), then the function x(t)′Wx(t) is

strictly increasing along any nonstationary trajectory, under both continuous-

time (1.9) and discrete-time (1.10) replicator dynamics. Furthermore, any

such trajectory converges to a stationary point. Finally, a vector x ∈ ∆ is

asymptotically stable under (1.9) and (1.10) if and only if x is a strict local

maximizer of x′Wx on ∆.

Thanks to these properties, replicator dynamics naturally suggest them-

selves as a simple heuristics for finding (constrained) dominant sets [103].

In our case, the matrix W is given by

W = A− αÎS
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which, in the discrete-time case, yields:

xi(t+ 1) =







xi(t)
C+(Ax(t))i

C+x(t)′(A−αÎS)x(t)
if i ∈ S

xi(t)
C+(Ax(t))i−αxi(t)

C+x(t)′(A−αÎS)x(t)
if i /∈ S

(1.11)

Since the process cannot leave the boundary of ∆, it is customary to

start the dynamics from some interior point, a common choice being the

barycenter of ∆. This prevents the search from being initially biased in

favor of any particular solution. By virtue of our theoretical results, we

know that when the algorithm converges to a vector x, its support σ(x) will

correspond to a constrained dominant set, while its positive components

will reflect the membership score of the selected vertices.

Clearly, the behavior of the algorithm depends on the choice of the pa-

rameter α. Our own experience is that α might affect the convergence time

(number of steps of the replicator dynamics) as well as the distribution of

the membership scores of the final solution (i.e., the components of the

converged vector). In particular, we observed that the membership scores

assigned to the constrained dominant-set vertices become larger and larger

(thereby making the scores of the other dominant-set vertices smaller and

smaller) as α increases. This phenomenon, however, manifests itself more

sensibly, and might become an issue, only for large values of α. No sig-

nificant effect on the algorithm’s performance has been observed for rea-

sonable choices of the parameter. Accordingly, we recommend using a

reasonably small value for α, close to the lower bound predicted by our

theoretical results. This is what we actually did in all the experiments re-

ported below. As for the parameter C in (1.11), its function is only to scale

the matrix A − αÎS properly to avoid negative values. An obvious choice

would be C = α, which is the value we used in our experiments.

Although in the experiments reported in this thesis we used the repli-

cator dynamics described above, we mention a faster alternative to solve

linearly constrained quadratic optimization problems like ours, namely In-

fection and Immunization Dynamics (InImDyn) [117]. Each step of InIm-

Dyn has a linear time/space complexity as opposed to the quadratic per-step

complexity of replicator dynamics, and is therefore to be preferred in the

presence of large affinity matrices.
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Chapter 1. Dominant Sets and Quadratic Optimization

1.3 Summary

In this chapter, we briefly introduced the well-known graph and game theo-

retic clustering algorithm called Dominant Sets, and its variant Constrained

Dominant Sets.
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CHAPTER2

Dominant Sets for “Constrained” Image

Segmentation

Image segmentation has come a long way since the early days of com-

puter vision, and still remains a challenging task. Modern variations of

the classical (purely bottom-up) approach, involve, e.g., some form of user

assistance (interactive segmentation) or ask for the simultaneous segmen-

tation of two or more images (co-segmentation). At an abstract level, all

these variants can be thought of as “constrained” versions of the original

formulation, whereby the segmentation process is guided by some external

source of information. In this chapter, we propose a new approach to tackle

this kind of problems in a unified way. Our work is based on some prop-

erties of a family of quadratic optimization problems related to dominant

sets, a graph-theoretic notion of a cluster which generalizes the concept of

a maximal clique to edge-weighted graphs. In particular, we show that by

properly controlling a regularization parameter which determines the struc-

ture and the scale of the underlying problem, we are in a position to extract

groups of dominant-set clusters that are constrained to contain predefined

elements. In particular, we shall focus on interactive segmentation and co-

segmentation (in both the unsupervised and the interactive versions). The

11



Chapter 2. Dominant Sets for “Constrained” Image Segmentation

proposed algorithm can deal naturally with several types of constraints and

input modalities, including scribbles, sloppy contours and bounding boxes,

and is able to robustly handle noisy annotations on the part of the user.

Experiments on standard benchmark datasets show the effectiveness of our

approach as compared to state-of-the-art algorithms on a variety of natural

images under several input conditions and constraints.

2.1 Introduction

Segmentation is arguably one of the oldest and best-studied problems in

computer vision, being a fundamental step in a variety of real-world ap-

plications, and yet remains a challenging task [132] [50].Besides the stan-

dard, purely bottom-up formulation, which involves partitioning an input

image into coherent regions, in the past few years several variants have

been proposed which are attracting increasing attention within the commu-

nity. Most of them usually take the form of a “constrained” version of the

original problem, whereby the segmentation process is guided by some ex-

ternal source of information. For example, user-assisted (or “interactive”)

segmentation has become quite popular nowadays, especially because of its

potential applications in problems such as image and video editing, medical

image analysis, etc. [21,24,81,87,102,113,120,149]. Given an input image

and some information provided by a user, usually in the form of a scribble

or of a bounding box, the goal is to provide as output a foreground object

in such a way as to best reflect the user’s intent. By exploiting high-level,

semantic knowledge on the part of the user, which is typically difficult to

formalize, we are therefore able to effectively solve segmentation problems

which would be otherwise too complex to be tackled using fully automatic

segmentation algorithms.

Another example of a “constrained” segmentation problem is co-segmentation.

Given a set of images, the goal here is to jointly segment same or similar

foreground objects. The problem was first introduced by Rother et al. [33]

who used histogram matching to simultaneously segment the foreground

object out from a given pair of images. Recently, several techniques have

been proposed which try to co-segment groups containing more than two

images, even in the presence of similar backgrounds. Joulin et al. [4], for

example, proposed a discriminative clustering framework, combining nor-

malized cut and kernel methods and the framework has recently been ex-

tended in an attempt to handle multiple classes and a significantly larger

number of images [5].

In this chapter (which is an extended version of [172]), we propose a

12



2.1. Introduction

unified approach to address this kind of problems which can deal naturally

with various input modalities, or constraints, and is able to robustly han-

dle noisy annotations on the part of the external source. In particular, we

shall focus on interactive segmentation and co-segmentation (in both the

unsupervised and the interactive versions).

Although various kinds of constraints can be envisaged to encode top-

down information in segmentation processes, our work is focused on what

we might refer to as “first-order” (or unary) constraints, which require that

one or more “seed” points be part of the extracted group. Second- or higher-

order constraints, of the type discussed for example in [47, 78, 165], which

include must-link constraints (pairs of points that should belong to the same

cluster) and cannot-link constraints (pairs of points that should belong to

different clusters), will not be treated here, although it is not difficult to

adapt our framework to deal with these cases.

Our approach is based on some properties of a parameterized family of

quadratic optimization problems related to dominant-set clusters, a well-

known generalization of the notion of maximal cliques to edge-weighted

graph which have proven to be extremely effective in a variety of com-

puter vision problems, including (automatic) image and video segmenta-

tion [103, 107] (see [116] for a recent review). In particular, we show

that by properly controlling a regularization parameter which determines

the structure and the scale of the underlying problem, we are in a position

to extract groups of dominant-set clusters which are constrained to contain

user-selected elements. We provide bounds that allow us to control this pro-

cess, which are based on the spectral properties of certain submatrices of the

original affinity matrix. The resulting algorithm has a number of interesting

features which distinguishes it from existing approaches. Specifically: 1) it

is able to deal in a flexible manner with both scribble-based and boundary-

based input modalities (such as sloppy contours and bounding boxes); 2) in

the case of noiseless scribble inputs, it asks the user to provide only fore-

ground pixels; 3) it turns out to be robust in the presence of input noise, al-

lowing the user to draw, e.g., imperfect scribbles or loose bounding boxes.

Experimental results on standard benchmark datasets demonstrate the ef-

fectiveness of our approach as compared to state-of-the-art algorithms on a

wide variety of natural images under several input conditions. Figure 2.1

shows some examples of how our system works in both interactive segmen-

tation (in the presence of different input annotations) and co-segmentation

settings.

13



Chapter 2. Dominant Sets for “Constrained” Image Segmentation

Figure 2.1: Left: An example of our interactive image segmentation method and its outputs,

with different user annotation. Respectively from top to bottom, tight bounding box (Tight BB),

loose bounding box (Loose BB), a scribble made (only) on the foreground object (Scribble on

FG) and scribbles with errors. Right: Blue and Red dash-line boxes, show an example of our

unsupervised and interactive co-segmentation methods, respectively.

2.1.1 Background

Existing interactive segmentation interfaces fall into two broad categories,

depending on whether the user annotation is given in terms of a scribble

or of a bounding box, and supporters of the two approaches have both

good reasons to prefer one modality against the other. For example, Wu

et al. [149] claim that bounding boxes are the most natural and economi-

cal form in terms of the amount of user interaction, and develop a multiple

instance learning algorithm that extracts an arbitrary object located inside

a tight bounding box at unknown location. Yu et al. [164] also support the

bounding-box approach, though their algorithm is different from others in

that it does not need bounding boxes tightly enclosing the object of interest,

whose production of course increases the annotation burden. They provide

an algorithm, based on a Markov Random Field (MRF) energy function,

that can handle input bounding box that only loosely covers the foreground

object. Xian et al. [154] propose a method which avoids the limitations of

existing bounding box methods - region of interest (ROI) based methods,

though they need much less user interaction, their performance is sensitive

to initial ROI.

On the other hand, several researchers, arguing that boundary-based in-

teractive segmentation such as intelligent scissors [102] requires the user to

trace the whole boundary of the object, which is usually a time-consuming

and tedious process, support scribble-based segmentation. Bai et al. [16],

for example, propose a model based on ratio energy function which can be

optimized using an iterated graph cut algorithm, which tolerates errors in

the user input. In general, the input modality in an interactive segmentation

algorithm affects both its accuracy and its ease of use. Existing methods
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2.2. Application to interactive image segmentation

work typically on a single modality and they focus on how to use that input

most effectively. However, as noted recently by Jain and Grauman [66],

sticking to one annotation form leads to a suboptimal tradeoff between hu-

man and machine effort, and they tried to estimate how much user input is

required to sufficiently segment a novel input.

The co-segmentation problem has also been addressed using user in-

teraction [35, 153]. Here, a user adds guidance, usually in the form of

scribbles, on foreground objects of some of the input images. Batra et

al. [35] proposed an extension of the (single-image) interactive segmenta-

tion algorithm of Boykov and Jolly [24]. They also proposed an algorithm

that enables users to quickly guide the output of the co-segmentation algo-

rithm towards the desired output via scribbles. Given scribbles, both on the

background and the foreground, on some of the images, they cast the label-

ing problem as energy minimization defined over graphs constructed over

each image in a group. Dong et al. [153] proposed a method using global

and local energy optimization. Given background and foreground scrib-

bles, they built a foreground and a background Gaussian mixture model

(GMM) which are used as global guide information from users. By con-

sidering the local neighborhood consistency, they built the local energy as

the local smooth term which is automatically learned using spline regres-

sion. The minimization problem of the energy function is then converted

into constrained quadratic programming (QP) problem, where an iterative

optimization strategy is designed for the computational efficiency.

2.2 Application to interactive image segmentation

In this section, we apply CDS to the interactive image segmentation prob-

lem. As input modalities we consider scribbles as well as boundary-based

approaches (in particular, bounding boxes) and, in both cases, we show how

the system is robust under input perturbations, namely imperfect scribbles

or loose bounding boxes.

In this application the vertices of the underlying graph G represent the

pixels of the input image (or superpixels, as discussed below), and the edge-

weights reflect the similarity between them. As for the set S, its content

depends on whether we are using scribbles or bounding boxes as the user

annotation modality. In particular, in the case of scribbles, S represents

precisely those pixels that have been manually selected by the user. In the

case of boundary-based annotation instead, it is taken to contain only the

pixels comprising the box boundary, which are supposed to represent the

background scene. Accordingly, the union of the extracted dominant sets,
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Chapter 2. Dominant Sets for “Constrained” Image Segmentation

say L dominant sets are extracted which contain the set S, as described in

the previous section and below, UDS = D1 ∪ D2..... ∪ DL, represents ei-

ther the foreground object or the background scene depending on the input

modality. For scribble-based approach the extracted set, UDS, represent

the segmentation result, while in the boundary-based approach we provide

as output the complement of the extracted set, namely V \UDS.

Figure 2.2 shows the pipeline of our system. Many segmentation tasks

reduce their complexity by using superpixels (a.k.a. over-segments) as a

preprocessing step [61,149,164] [144,155]. While [149] used SLIC super-

pixels [1], [164] used a recent superpixel algorithm [185] which considers

not only the color/feature information but also boundary smoothness among

the superpixels. In this work, we used the over-segments obtained from

Ultrametric Contour Map (UCM) which is constructed from Oriented Wa-

tershed Transform (OWT) using globalized probability of boundary (gPb)

signal as an input [12].

We then construct a graph G where the vertices represent over-segments

and the similarity (edge-weight) between any two of them is obtained using

a standard Gaussian kernel

A
σ
ij = 1i 6=jexp(‖fi − fj‖

2/2σ2)

where fi, is the feature vector of the ith over-segment, σ is the free scale

parameter, and 1P = 1 if P is true, 0 otherwise.

Given the affinity matrix A and the set S as described before, the system

constructs the regularized matrix M = A − αÎS , with α chosen as pre-

scribed in (1.8). Then, the replicator dynamics (1.10) are run (starting them

from the simplex barycenter) until they converge to some solution vector

x. We then take the support of x, remove the corresponding vertices from

the graph and restart the replicator dynamics until all the elements of S are

extracted.

2.2.1 Experiments and results

As mentioned above, the vertices of our graph represents over-segments

and edge weights (similarities) are built from the median of the color of

all pixels in RGB, HSV, and L*a*b* color spaces, and Leung-Malik (LM)

Filter Bank [82]. The number of dimensions of feature vectors for each

over-segment is then 57 (three for each of the RGB, L*a*b*, and HSV

color spaces, and 48 for LM Filter Bank).

In practice, the performance of graph-based algorithms that use Gaus-

sian kernel, as we do, is sensitive to the selection of the scale parameter
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W,

W

W,

RD

Figure 2.2: Overview of our interactive segmentation system. Left: Over-segmented image (output

of the UCM-OWT algorithm [12]) with a user scribble (blue label). Middle: The corresponding

affinity matrix, using each over-segments as a node, showing its two parts: S, the constraint set

which contains the user labels, and V \ S, the part of the graph which takes the regularization

parameter α. Right: The optimization RD (Replicator Dynamics), starts from the barycenter and

extracts the first dominant set and update x and M, for the next extraction till all the dominant

sets which contain the user labeled regions are extracted.

σ. In our experiments, we have reported three different results based on

the way σ is chosen: 1) CDS_Best_Sigma, in this case the best parameter

σ is selected on a per-image basis, which indeed can be thought of as the

optimal result (or upper bound) of the framework. 2) CDS_Single_Sigma,

the best parameter in this case is selected on a per-database basis tuning

σ in some fixed range, which in our case is between 0.05 and 0.2. 3)
CDS_Self_Tuning, the σ2 in the above equation is replaced, based on [167],

by σi∗σj , where σi = mean(KNN(fi)), the mean of the K_Nearest_Neighbor

of the sample fi, K is fixed in all the experiment as 7.

Datasets: We conduct four different experiments on the well-known

GrabCut dataset [120] which has been used as a benchmark in many com-

puter vision tasks [83] [81, 135, 136, 149, 164] [112, 159]. The dataset con-

tains 50 images together with manually-labeled segmentation ground truth.

The same bounding boxes as those in [81] is used as a baseline bounding

box. We also evaluated our scribbled-based approach using the well known

Berkeley dataset which contains 100 images.

Metrics: We evaluate the approach using different metrics: error rate,

fraction of misclassified pixels within the bounding box, Jaccard index

which is given by, following [97], J =
|GT∩O|
|GT∪O|

, where GT is the ground

truth and O is the output. The third metric is the Dice Similarity Coeffi-

17



Chapter 2. Dominant Sets for “Constrained” Image Segmentation

cient (DSC), which measures the overlap between two segmented object

volume, and is computed as DSC = 2∗|GT∩O|
|GT |+|O|

.

Annotations: In interactive image segmentation, users provide annota-

tions which guides the segmentation. A user usually provides information

in different forms such as scribbles and bounding boxes. The input modal-

ity affects both its accuracy and ease-of-use [66]. However, existing meth-

ods fix themselves to one input modality and focus on how to use that input

information effectively. This leads to a suboptimal tradeoff in user and ma-

chine effort. Jain et al. [66] estimates how much user input is required to

sufficiently segment a given image. In this work as we have proposed an

interactive framework, figure 2.1, which can take any type of input modal-

ities we will use four different type of annotations: bounding box, loose

bounding box, scribbles - only on the object of interest -, and scribbles with

error as of [16].

2.2.1.1 Scribble based segmentation

Given labels on the foreground as constraint set, we built the graph and

collect (iteratively) all unlabeled regions (nodes of the graph) by extract-

ing dominant set(s) that contains the constraint set (user scribbles). We

provided quantitative comparison against several recent state-of-the-art in-

teractive image segmentation methods which uses scribbles as a form of

human annotation: [24], Lazy Snapping [87], Geodesic Segmentation [21],

Random Walker [55], Transduction [42] , Geodesic Graph Cut [112], Con-

strained Random Walker [159].

We have also compared the performance of our algorithm againts Bi-

ased Normalized Cut (BNC) [96], an extension of normalized cut, which

incorporates a quadratic constraint (bias or prior guess) on the solution x,

where the final solution is a weighted combination of the eigenvectors of

normalized Laplacian matrix. In our experiments we have used the opti-

mal parameters according to [96] to obtain the most out of the algorithm.

We also provide some qualitative comparisons with the Semi-Supervised

Normalized Cut (SSNCut) algorithm recently introduced in [31], which in-

corporates (soft) must-link and cannot-link constraints.

Tables 2.1 and 2.2 and the plots in Figure 2.4 show the respective quan-

titative and the several qualitative segmentation results. Most of the results,

reported on table 2.1, are reported by previous works [81, 112, 149, 159,

164]. We can see that the proposed CDS outperforms all the other ap-

proaches.

Error-tolerant Scribble Based Segmentation. This is a family of

18
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Methods Error Rate

BNC [96] 13.9

Graph Cut [24] 6.7

Lazy Snapping [87] 6.7

Geodesic Segmentation [21] 6.8

Random Walker [55] 5.4

Transduction [42] 5.4

Geodesic Graph Cut [112] 4.8

Constrained Random Walker [159] 4.1

CDS_Self Tuning (Ours) 3.57

CDS_Single Sigma (Ours) 3.80

CDS_Best Sigma (Ours) 2.72

Table 2.1: Error rates of different scribble-based approaches on the Grab-Cut dataset.

Methods Jaccard Index

MILCut-Struct [149] 84

MILCut-Graph [149] 83

MILCut [149] 78

Graph Cut [120] 77

Binary Partition Trees [121] 71

Interactive Graph Cut [24] 64

Seeded Region Growing [2] 59

Simple Interactive O.E [51] 63

CDS_Self Tuning (Ours) 93

CDS_Single Sigma (Ours) 93

CDS_Best Sigma (Ours) 95

Table 2.2: Jaccard Index of different approaches – first 5 bounding-box-based – on Berkeley

dataset.
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Figure 2.3: Left: Performance of interactive segmentation algorithms, on Grab-Cut dataset, for

different percentage of synthetic scribbles from the error region. Right: Synthetic scribbles and

error region

scribble-based approach, proposed by Bai et. al [16], which tolerates im-

perfect input scribbles thereby avoiding the assumption of accurate scrib-

bles. We have done experiments using synthetic scribbles and compared

the algorithm against recently proposed methods specifically designed to

segment and extract the object of interest tolerating the user input errors

[16, 90, 122, 129].

Our framework is adapted to this problem as follows. We give for our

framework the foreground scribbles as constraint set and check those scrib-

bled regions which include background scribbled regions as their members

in the extracted dominant set. Collecting all those dominant sets which are

free from background scribbled regions generates the object of interest.

Experiment using synthetic scribbles. Here, a procedure similar to the

one used in [129] and [16] has been followed. First, 50 foreground pixels

and 50 background pixels are randomly selected based on ground truth (see

Fig. 2.3). They are then assigned as foreground or background scribbles,

respectively. Then an error-zone for each image is defined as background

pixels that are less than a distance D from the foreground, in which D is

defined as 5 %. We randomly select 0 to 50 pixels in the error zone and

assign them as foreground scribbles to simulate different degrees of user

input errors. We randomly select 0, 5, 10, 20, 30, 40, 50 erroneous sample

pixels from error zone to simulate the error percentage of 0%, 10%, 20%,

40%, 60%, 80%, 100% in the user input. It can be observed from figure

2.3 that our approach is not affected by the increase in the percentage of

scribbles from error region.
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2.2.1.2 Segmentation using bounding boxes

The goal here is to segment the object of interest out from the background

based on a given bounding box. The corresponding over-segments which

contain the box label are taken as constraint set which guides the segmenta-

tion. The union of the extracted set is then considered as background while

the union of other over-segments represent the object of interest.

We provide quantitative comparison against several recent state-of-the-

art interactive image segmentation methods which uses bounding box: Loose-

Cut [164], GrabCut [120], OneCut [136], MILCut [149], pPBC and [135].

Table 2.3 and the pictures in Figure 2.4 show the respective error rates and

the several qualitative segmentation results. Most of the results, reported

on table 2.3, are reported by previous works [81, 112, 149, 159, 164].

Segmentation Using Loose Bounding Box. This is a variant of the

bounding box approach, proposed by Yu et.al [164], which avoids the de-

pendency of algorithms on the tightness of the box enclosing the object

of interest. The approach not only avoids the annotation burden but also

allows the algorithm to use automatically detected bounding boxes which

might not tightly encloses the foreground object. It has been shown, in

[164], that the well-known GrabCut algorithm [120] fails when the loose-

ness of the box is increased. Our framework, like [164], is able to extract

the object of interest in both tight and loose boxes. Our algorithm is tested

against a series of bounding boxes with increased looseness. The bounding

boxes of [81] are used as boxes with 0% looseness. A looseness L (in per-

centage) means an increase in the area of the box against the baseline one.

The looseness is increased, unless it reaches the image perimeter where

the box is cropped, by dilating the box by a number of pixels, based on

the percentage of the looseness, along the 4 directions: left, right, up, and

down.

For the sake of comparison, we conduct the same experiments as in

[164]: 41 images out of the 50 GrabCut dataset [120] are selected as the rest

9 images contain multiple objects while the ground truth is only annotated

on a single object. As other objects, which are not marked as an object

of interest in the ground truth, may be covered when the looseness of the

box increases, images of multiple objects are not applicable for testing the

loosely bounded boxes [164]. Table 2.3 summarizes the results of different

approaches using bounding box at different level of looseness. As can be

observed from the table, our approach performs well compared to the others

when the level of looseness gets increased. When the looseness L = 0,

[149] outperforms all, but it is clear, from their definition of tight bounding
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Methods L =
0%

L =
120%

L =
240%

L =
600%

GrabCut [120] 7.4 10.1 12.6 13.7

OneCut [136] 6.6 8.7 9.9 13.7

pPBC [135] 7.5 9.1 9.4 12.3

MilCut [149] 3.6 - - -

LooseCut [164] 7.9 5.8 6.9 6.8

CDS_Self Tuning

(Ours)

7.54 6.78 6.35 7.17

CDS_Single Sigma

(Ours)

7.48 5.9 6.32 6.29

CDS_Best Sigma

(Ours)

6.0 4.4 4.2 4.9

Table 2.3: Error rates of different bounding-box approaches with different level of looseness as an

input, on the Grab-Cut dataset. L = 0% implies a baseline bounding box as those in [81]

box, that it is highly dependent on the tightness of the bounding box. It

even shrinks the initially given bounding box by 5% to ensure its tightness

before the slices of the positive bag are collected. For looseness of L = 120
we have similar result with LooseCut [164] which is specifically designed

for this purpose. For other values of L our algorithm outperforms all the

approaches.

Complexity. In practice, over-segmenting and extracting features may

be treated as a pre-processing step which can be done before the segmenta-

tion process. Given the affinity matrix, we used replicator dynamics (1.10)

to exctract constrained dominant sets. Its computational complexity per

step is O(N2), with N being the total number of nodes of the graph. Given

that our graphs are of moderate size (usually less than 200 nodes) the algo-

rithm is fast and converges in fractions of a second, with a code written in

Matlab and run on a core i5 6 GB of memory. As for the pre-processing

step, the original gPb-owt-ucm segmentation algorithm was very slow to

be used as a practical tools. Catanzaro et al. [25] proposed a faster alter-

native, which reduce the runtime from 4 minutes to 1.8 seconds, reducing

the computational complexity and using parallelization which allow gPb

contour detector and gPb-owt-ucm segmentation algorithm practical tools.

For the purpose of our experiment we have used the Matlab implementation

which takes around four minutes to converge, but in practice it is possible

to give for our framework as an input, the GPU implementation [25] which

allows the convergence of the whole framework in around 4 seconds.
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2.3. Application to co-segmentation

Figure 2.4: Exemple results of the interactive segmentation algorithm tested on Grab-Cut dataset.

(In each block of the red dashed line) Left: Original image with bounding boxes of [81]. Middle

left: Result of the bounding box approach. Middle: Original image and scribbles (observe that

the scribbles are only on the object of interest). Middle right: Results of the scribbled approach.

Right: The ground truth. Blue box: Results of Semi-Supervised Normalized Cuts (SSNcut) [31].
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Figure 2.5: Overview of our unsupervised co-segmentation algorithm.

2.3 Application to co-segmentation

In this section, we describe the application of constrained dominant sets

(CDS) to co-segmentation, both unsupervised and interactive. Among the

difficulties that make this problem a challenging one, we mention the sim-

ilarity among the different backgrounds and the similarity of object and

background [131] (see, e.g., the top row of Figure 2.6). A measure of “ob-

jectness” has proven to be effective in dealing with such problems and im-

proving the co-segmentation results [56,131]. However, this measure alone

is not enough especially when one aims to solve the problem using global

pixel relations. One can see from Figure 2.6 (bottom) that the color of the

cloth of the person, which of course is one of the objects, is similar to the

color of the dog which makes systems that are based on objectness measure

fail. Moreover the object may not be the one which we want to co-segment.
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Figure 2.6: The challenges of co-segmentation. Example image pairs: (top left) simi-

lar foreground objects with significant variation in background, (top right) foreground

objects with similar background. The bottom part shows why user interaction is impor-

tant for some cases. The bottom left is the image, bottom middle shows the objectness

score, and the bottom right shows the user label.

Figures 2.5 and 2.7 show the pipeline of our unsupervised and inter-

active co-segmentation algorithms, respectively. In figure 2.5, I1 and I2

are the given pair of images while S1 and S2 represent the corresponding

sets of superpixels. The affinity is built using the objectness score of the

superpixels and using different handcrafted features extracted from the su-

perpixels. The set of nodes V is then divided into the constraint set (S)

and the non-constraint set (V \S). We run the CDS algorithm twice: first,

setting the nodes of the graph that represent the first image as constraint set

and O2 represents our output. Second we change the constraint set S with

nodes that come from the second image and O1 represents the output. The

intersection O refines the two results and represents the final output of the

proposed unsupervised co-segmentation approach.

Our interactive co-segmentation approach, as shown in Figure 2.7, needs

user interaction which guides the segmentation process putting scribbles

(only) on some of the images with ambiguous objects or background. I1, I2, ...In
are the scribbled images and In+1, ..., In+m are unscribbled ones. The corre-

sponding sets of superpixels are represented as S1,S2, ...Sn, ...Sn+1, ...Sn+m.

A
′
s

and Au are the affinity matrices built using handcrafted feature-based

similarities among superpixels of scribbled and unscribbled images respec-

tively. Moreover, the affinities incorporate the objectness score of each

node of the graph. Bsp and Fsp are (respectively) the background and

foreground superpixels based on the user provided information. The CDS
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algorithm is run twice over A′
s

using the two different user provided infor-

mation as constraint sets which results outputs O1 and O2. The intersection

of the two outputs, O, help us get new foreground and background sets

represented by Bs, Fs. Modifying the affinity A
′
s
, putting the similarities

among elements of the two sets to zero, we get the new affinity As. We

then build the biggest affinity which incorporates all images’ superpixels.

As our affinity is symmetric, Aus and Asu are equal and incorporates the

similarities among the superpixels of the scribbled and unscribbled sets of

images. Using the new background and foreground sets as two different

constraint sets, we run CDS twice which results outputs O′
1 and O

′
2 whose

intersection (O′) represents the final output.

2.3.1 Graph representation and affinity matrix

Given an image, we over-segment it to get its superpixels S , which are

considered as vertices of a graph. We then extract different features from

each of the superpixels. The first features we consider are obtained from

the different color spaces: RGB, HSV and CIE Lab. Given the superpixels,

say size of n, of an image i, Si, F
i
c is a matrix of size n × 9 which is

the mean of each of the channels of the three color spaces of pixels of the

superpixel. The mean of the SIFT features extracted from the superpixel

F i
s is our second feature. The last feature which we have considered is the

rotation invariant histogram of oriented gradient (HoG), F i
h.

The dot product of the SIFT features is considered as the SIFT simi-

larity among the nodes, let us say the corresponding affinity matrix is As.

Motivated by [27], the similarity among the nodes of image i and image j
(i 6= j), based on color, is computed from their Euclidean distance Di×j

c as

Ai×j
c = max(Dc)−Di×j

c +min(Dc)

The HoG similarity among the nodes, Ai×j
h , is computed in a similar

way , as Ac, from the diffusion distance. All the similarities are then min

max normalized.

We then construct the Ai×i
c , the similarities among superpixels of image

i, which only considers adjacent superpixels as follows. First, construct the

dissimilarity graph using their Euclidean distance considering their aver-

age colors as weight. Then, compute the geodesic distance as the accumu-

lated edge weights along their shortest path on the graph. Assuming the

computed geodesic distance matrix is Dgeo, the weighted edge similarity of

superpixel p and superpixel q, say ep,q, is computed as
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Figure 2.7: Overview of our interactive co-segmentation algorithm.

ep,q =

{

0, if p and q are not adjacent,

max(Dgeo)−Dgeo(p, q) +min(Dgeo), otherwise
(2.1)

Ai×i
h for HoG is computed in a similar way while and Ai×i

s for SIFT is built

by just keeping adjacent edge similarities.

Assuming we have I images, the final affinity Aγ (γ can be c, s or h in

the case of color, SIFT or HOG respectively) is built as

Aγ =







A1×1
γ · · · A1×I

γ

...
. . .

...

AI×1
γ · · · AI×I

γ







As our goal is to segment common foreground objects out, we should

consider how related backgrounds are eliminated. As shown in the example

image pair of Figure 2.6 (top right), the two images have a related back-

ground to deal with it which otherwise would be included as part of the co-

segmented objects. To solve this problem we borrowed the idea from [151]

which proposes a robust background measure, called boundary connectiv-

ity. Given a superpixel SP i, it computes, based on the background mea-

sure, the backgroundness probability P i
b. We compute the probability of

the superpixel being part of an object P i
f as its additive inverse, P i

f = 1 -

P i
b. From the probability Pf we built a score affinity Am as

Am(i, j) = P i
f ∗ P

j
f
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2.3.2 Optimization

We model the foreground object extraction problem as the optimization of

the similarity values among all image superpixels. The objective function

is designed to assign the object region a positive membership score and

the background region zero membership score, respectively. The optimal

object region is then obtained by maximizing the objective function. Let the

membership score of N superpixels be {xi}
N
i=1, the (i, j) entry of a matrix

Az is zij .
Our objective function, combining all the aforementioned terms (Ac,As,Ah

and Am), is thus defined, based on equation (3.3), as:

N∑

i=1

N∑

j=1







1

2
xixjmij
︸ ︷︷ ︸

objectness score

+
1

6
xixj (cij + sij + hij)

︸ ︷︷ ︸

feature similarity

−αxixj







(2.2)

The parameter α is fixed based on the (non-)constraint set of the nodes.

For the case of unsupervised co-segmentation, the nodes of the pairs of

images are set (interchangeably) as constraint set where the intersection of

the corresponding results give us the final co-segmented objects.

In the interactive setting, every node i (based on the information pro-

vided by the user) has three states: i ∈ FGL, (i is labeled as foreground la-

bel), i ∈ BGL ( i is labeled as background label) or i ∈ V \(FGL ∪ BGL)
(i is unlabeled). Hence, the affinity matrix A = (aij) is modified by setting

aij to zero if nodes i and j have different labels (otherwise we keep the

original value).

2.3.3 Experiments and results

To evaluate the effectiveness of our approach, we conducted extensive ex-

periments on standard benchmark datasets that are widely used to evaluate

co-segmentation algorithms, namely, image pairs [59] and MSRC [104].

The image pairs dataset consists of 210 images (105 image pairs) of differ-

ent animals, flowers, human objects, buses, etc. Each image pair contains

one or more similar objects. Some of them are relatively simple and oth-

ers include complex image pairs containing foreground objects with higher

appearance variations or low-contrast objects with complex backgrounds.

The MSRC dataset contains 14 categories with 418 images in total. We

evaluated our interactive co-segmentation algorithm on nine selected object

classes of MSRC dataset (bird, car, cat, chair, cow, dog, flower, house,

sheep), which contains 25~30 images per class. We put foreground and
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[Ours] [62] [65] [68] [12] [66] [69] [67]
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Figure 2.8: Precision, Recall and F-Measure of our unsupervised co-segmentation algorithm and

other state-of-the art approaches on the image pair dataset.

Figure 2.9: Some qualitative results of our unsupervised method tested on the image pair dataset.

Upper row: Original image Lower row: Result of the proposed unsupervised algorithm.
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background scribbles on 15~20 images per class. Each image was over-

segmented to 78~83 SLIC superpixels using the VLFeat toolbox.

In order to directly compare the performance of our algorithm with state-

of-the-art approaches, in the experiments reported here we used precision,

recall and F-measure, which were computed based on the output mask and

the ground-truth segmentation. Precision is calculated as the ratio of cor-

rectly detected objects to the number of detected object pixels, while recall

is the ratio of correctly detected object pixels to the number of ground truth

pixels. The F-measure is computed as customary as

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall

where we set β2 = 0.3 as in [56, 58, 59].

We have applied Biased Normalized Cut (BNC) [96] on co-segmentation

problem on the MSRC dataset by using the same similarity matrix we used

to test our method, and the comparison result of each object class is shown

in Figure 2.10. As can be seen, our method significantly surpasses BNC

and [153] in average F-measure. Furthermore, we have tested our inter-

active co-segmentation method, BNC and [153] on image pairs dataset by

putting scribbles on one of the two images. As can be observed from Table

3.1, our algorithm substantially outperforms BNC and [153] in precision

and F-measure (the recall score being comparable among the three compet-

ing algorithms).

We have also examined our unsupervised co-segmentation algorithm

by using image pairs dataset, the barplot in Figure 2.8 shows the quan-

titative result of our algorithm comparing to the state-of-the-art methods

[56, 80, 152]. As shown here, our algorithm achieves the best F-measure

comparing to all other state-of-the-art methods. The qualitative perfor-

mance of our unsupervised algorithm is shown in Figure 2.9 on some ex-

ample images taken from image pairs dataset. As can be seen, our approach

can effectively detect and segment the common object of the given pair of

images.

Finally, to assess the robustness of our interactive co-segmentation al-

gorithm we conducted the following experiment on the MSRC dataset. We

first generated random noise-scribbles by flipping 10~20 superpixel labels

from foreground to background and vice versa. We then randomly selected

from 0%, to 100% erroneous superpixels from the noise-scribbles and ran

our algorithm. As can be observed from Figure 2.10(left) our algorithm

performs consistently well, thereby confirming the behavior observed with

error-tolerant scribble-based segmentation (Section 5.1.1), and previous ex-
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Metrics Precision Recall F −measure

[153] 0.5818 0.8239 0.5971

BNC 0.6421 0.8512 0.6564

Ours 0.7076 0.8208 0.7140

Table 2.4: Results of our interactive co-segmentation method on Image pair dataset putting scrib-

bles on one of the image pairs.
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Figure 2.10: Left: Performance of our interactive image co-segmentation framework with

different percentage of erroneous superpixels. Right: F-Measure based performance

comparison of our interactive co-segmentation method with state-of-the-art methods

on MSRC dataset.

perimental findings with dominant sets [103, 116, 119].

2.4 Summary

In this chapter, we have introduced the notion of a constrained dominant

set and have demonstrated its applicability to problems such as interac-

tive image segmentation and co-segmentation (in both the unsupervised

and the interactive flavor). In our perspective, these can be thought of as

“constrained” segmentation problems involving an external source of infor-

mation (being it, for example, a user annotation or a collection of related

images to segment jointly) which somehow drives the whole segmentation

process.

The approach is based on some properties of a family of quadratic op-

timization problems related to dominant sets which show that, by properly
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selecting a regularization parameter that controls the structure of the under-

lying function, we are able to “force” all solutions to contain the constraint

elements. The proposed method is flexible and is capable of dealing with

various forms of constraints and input modalities, such as scribbles and

bounding boxes, in the case of interactive segmentation. Extensive exper-

iments on benchmark datasets have shown that our approach considerably

improves the state-of-the-art results on the problems addressed. This pro-

vides evidence that constrained dominant sets hold promise as a powerful

and principled framework to address a large class of computer vision prob-

lems formulable in terms of constrained grouping. Indeed, we mention that

they are already being used in problems such as content-based image re-

trieval [169], multi-target tracking [139] and image geo-localization [168].

The kind of constraints we dealt with in this thesis might be called first-

order, or unary, positive constraints, as they refer to a situation whereby one

wants to include one or more given vertices into the final cluster solution.

Of course, other types of constraints can be (and have indeed been) con-

sidered when doing clustering. Using the terminology introduced above,

for example, one might want to enforce (first-order) negative constraints,

according to which certain vertices have to be excluded from the extracted

cluster. This situation can easily be addressed within our framework by

simply setting the initial values of the replicator dynamics corresponding

to the to-be-excluded vertices to zero. Note that by combining unary (nega-

tive and positive) constraints, and by employing the simple peel-off strategy

described in [103] to extract multiple clusters, it would be straightforward

to generalize the proposed framework to multi-cluster versions of the prob-

lem involving multi-label seeds. Second-order constraints, better known in

the literature as must-link and cannot-link constraints [31, 47, 78, 165], can

also be easily incorporated. For example, a cannot-link constraint which

prescribes that vertices i and j should not be part of the same cluster, can

be enforced by setting aij = 0 in the affinity matrix. In fact, a result proven

in [7] shows that, by doing so, no dominant set can contain both vertices.

Similarly, must-link constraints might be enforced by setting aij to a suffi-

ciently large value, e.g., the maximum entry in the affinity matrix (see [74]

for a similar idea).

The reason why in this work we focused primarily on first-order positive

constraints is that, despite their simplicity, they allow us to address in a

unified manner various well-known segmentation settings which have been

traditionally treated separately in the literature. Of course, the combination

of various forms of pairwise or higher-order constraints might give rise to

a more general and flexible segmentation framework, and it is our plan to
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investigate these ideas in our future work.
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CHAPTER3

Constrained Dominant Sets for Image

Retrieval

3.1 Multi-features Fusion Using Constrained Dominant Sets

for Image Retrieval

Aggregating different image features for image retrieval has recently shown

its effectiveness. While highly effective, though, the question of how to up-

lift the impact of the best features for a specific query image persists as an

open computer vision problem. In this paper, we propose a computationally

efficient approach to fuse several hand-crafted and deep features, based on

the probabilistic distribution of a given membership score of a constrained

cluster in an unsupervised manner. First, we introduce an incremental near-

est neighbor (NN) selection method, whereby we dynamically select k-NN

to the query. We then build several graphs from the obtained NN sets and

employ constrained dominant sets (CDS) on each graph G to assign edge

weights which consider the intrinsic manifold structure of the graph, and

detect false matches to the query. Finally, we elaborate the computation

of feature positive-impact weight (PIW) based on the dispersive degree of

the characteristics vector. To this end, we exploit the entropy of a clus-
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Figure 3.1: Overview of the proposed image retrieval framework. Based on the given

features, F1, F2, ...Fn, we first incrementally collect the NN ′s to the query Q, de-

noted as NN1, NN2, ...NNn. Next, for each NN we build the corresponding graph

G′
1
, G′

2
, ...G′

n, and then, we apply CDS on each graph to learn the PIW of each

feature, PIW1, P IW2, ...P IWn, in the subsequent plot, the blue and red curves de-

pict the ranked score of NN’s before and after the application of CDS, respectively.

Following, the final candidates, which come from each feature, pass through a voting

scheme. Finally, using the obtained votes and PIW’s we compute the final similarity,

Fsim(Q,D), between the query and the dataset images by equ. 3.10 .

ter membership-score distribution. In addition, the final NN set bypasses

a heuristic voting scheme. Experiments on several retrieval benchmark

datasets show that our method can improve the state-of-the-art result.

3.1.1 Introduction

The goal of semantic image search, or content-based image retrieval (CBIR),

is to search for a query image from a given image dataset. This is done by

computing image similarities based on low-level image features, such as

color, texture, shape and spatial relationship of images. Variation of images

in illumination, rotation, and orientation has remained a major challenge

for CBIR. Scale-invariant feature transform (SIFT) [91] based local feature

such as Bag of words (BOW) [128], [65], [163], has served as a backbone

for most image retrieval processes. Nonetheless, due to the inefficiency of

using only a local feature to describe the content of an image, local-global

feature fusion has recently been introduced.

Multi-feature based CBIR attacks the CBIR problem by introducing an

approach which utilizes multiple low-level visual features of an image. In-

tuitively, if the to-be-fused feature works well by itself, it is expected that its
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Retrieval

aggregation with other features will improve the accuracy of the retrieval.

Nevertheless, it is quite hard to learn in advance the effectiveness of the

to-be-fused features for a specific query image. Different methods have re-

cently been proposed to tackle this problem [158], [174], [180]. Zhang et

al. [174] developed a graph-based query specific fusion method, whereby

local and global rank lists are merged with equal weight by conducting a

link analysis on a fused graph. Zheng et al. [180] proposed a score level

fusion model called Query Adaptive Late Fusion (QALF) [180], in which,

by approximating a score curve tail with a reference collected on irrele-

vant data, they able to estimate the effectiveness of a feature as negatively

related to the area under the normalized curve. Yang et al. [158] used a

mixture Markov model to combine given graphs into one. Unlike [174]

where graphs are equally weighted, [158] proposed a method to compute a

weight which quantifies the usefulness of the given graph based on a naive

Bayesian formulation, which depends only on the statistics of image simi-

larity scores.

However, existing multi-feature fusion methods have different draw-

backs. For instance, [180], [174], [36], [175] heavily rely on a pre-calculated

and offline stored data, which turns out to be computationally expensive

when new images are constantly added to the dataset. On the other hand,

Ensemble Diffusion (ED) [18] requires O(n3) to perform a similarity dif-

fusion. In addition to that, its feature-weight computation approach is not a

query specific.

Inspired by [180], in this work we present a novel and simple CBIR

method based on a recently introduced constrained cluster notion. Our ap-

proach presents two main advantages. Firstly, compared to the state of the

art methods, it can robustly quantify the effectiveness of features for a spe-

cific query, without any supervision. Secondly, by diffusing the pairwise

similarity between the nearest neighbors, our model can easily avoid the

inclusion of false positive matches in the final shortlist. Towards this end,

we first dynamically collect the nearest neighbors to the query, therefore,

for each feature, we will have a different number of NNs. Subsequently,

we set up the problem as finding a cluster from the obtained NNs, which

is constrained to contain the given query image. To this end, we employ a

graph-theoretic method called constrained dominant sets [172]. Here is our

assumption: if the nearest neighbor to the query image is a false match, af-

ter the application of CDS its membership score to the resulting constrained

cluster should be less than the fixed threshold ζ, which leads us to detect and

exclude the outliers. Furthermore, we introduce the application of entropy

to quantify the effectiveness of the given features based on the obtained
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membership score. In contrast to [180], our method does not need any ref-

erence or external information to learn a query specific feature-weight. Fig.

3.1 shows the pipline of the proposed method.

In particular, we make the following contributions. 1) Compared to the

previous work [174], [180], we propose a simple but efficient entropy-based

feature effectiveness weighting system; in addition to that, we demonstrate

an effective way of outlier or false nearest neighbor detection method. 2)

Most importantly, our proposed model is a generic approach, which can be

adapted to distinct computer vision problems, such as object detection and

person re-identification. 3) We show that our unsupervised graph fusion

model easily alleviates the asymmetry neighborhood problem.

This chapter is structured as follows. In section 2 we briefly survey

literature relevant to our problem, followed by technical details of the pro-

posed approach in Sec. 3. And, in Sec. 4 we show the performance of our

framework on different benchmark datasets.

3.1.2 Related Work

CBIR has become a well-established research topic in the computer vision

community. The introduction of SIFT feature plays a vital role in the ap-

plication of BOW model on the image retrieval problem. Particularly, its

robustness in dealing with the variation of images in scale, translation, and

rotation provide a significant improvement in the accuracy of similar image

search. Sivic et al. [128] first proposed BOW-based image retrieval method

by using SIFT, in that, local features of an image are quantized to visual

words. Since then, CBIR has made a remarkable progress by incorporating

k-reciprocal neighbor [114], query expansion [32], [114], [140], large vi-

sual codebook [110], [14], diffusion process [158] [170], [137] and spacial

verification [110]. Furthermore, several methods, which consider a com-

pact representation of an image to decrease the memory requirement and

boost the search efficiency have been proposed. Jegou et al. [69] developed

a Vector of Locally Aggregated Descriptor(VLAD), whereby the residuals

belonging to each of the codewords are accumulated.

While SIFT-based local features have considerably improved the result

of image search, it does not leverage the discriminative information en-

coded in the global feature of an image, for instance, the color feature yields

a better representation for smooth images. This motivates the introduc-

tion of multiple feature fusion for image retrieval. In [174], a graph-based

query specific fusion model has been proposed, in which multiple graphs

are combined and re-ranked by conducting a link analysis on a fused graph.
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Following, [158] developed a re-ranking algorithm by fusing multi-feature

information, whereby they apply a locally constrained diffusion process

(LCDP) on the localized NNs to obtain a consistent similarity score.

Although the aggregation of handcrafted local and global features has

shown promising results, the advent of a seminal work by A.Krizhevsky

et al. [77] in 2012 changed the focus of the computer vision community.

Since then, convolutional neural network (CNN) feature has been used as

a main holistic cue in different computer vision problems, including CBIR.

Despite its significant improvement on the result of image retrieval, CNN

feature still can not endow the demanded accuracy on different benchmark

retrieval datasets, especially without the use of fine-tuning. Thus, aggregat-

ing graphs which are built from a hand-engineered and CNN-based image

features has shown improvement in the accuracy of the retrieval [128], [69],

[109], [70], [39], [72].

In addition to that, Yang et al. [158] applied a diffusion process to un-

derstand the intrinsic manifold structure of the fused graph. Despite a sig-

nificant improvement on the result, employing the diffusion process on the

final (fused) graph restricts the use of the information which is encoded

in the pairwise similarity of the individual graph. Instead, our proposed

framework applies CDS on each graph which is built from the correspond-

ing feature. Thus, we are able to propagate the pairwise similarity score

throughout the graph. Thereby, we exploit the underutilized pairwise sim-

ilarity information of each feature and alleviate the negative impact of the

inherent asymmetry of a neighborhood.

3.1.3 Proposed Method

3.1.3.1 Incremental NN Selection

In this subsection, we show an incremental nearest neighbor collection

method to the given query image. We start with an intuitive clustering

concept that similar nodes with common features should have an approxi-

mate score distribution, while outliers, or nodes which do not belong to a

similar semantic class, have different score values. Accordingly, we pro-

pose a technique to search for the transition point where our algorithm starts

including the outlier nodes. To this end, we examine how distinctive two

subsequent nodes are in a ranked list of neighbors. Thus, we define a crite-

rion called neighbors proximity coefficient(NPC), which is defined as the

ratio of two consecutive NNs in the given ranked list. Therefore, images

are added only if the specified criterion is met, which is designed in such a

way that only images that are very likely to be similar to the query image
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are added. Thereby, we are able to decrease the number of false matches to

the query in the k-nearest neighbors set.

Given an initial ranked list R. And then, we define top-k nearest neigh-

bors (kNN) to query Q as

kNN(q, k) =

{

Add ni if Sim(q,ni+1)
Sim(q,ni)

>NPC

0 otherwize
(3.1)

where |kNN(q, k)| = k, and |.| represents the cardinality of a set.

kNN(q, k) = {n1, n2, ...nk}, where kNN(q, k) ⊆ R (3.2)

3.1.3.2 Graph Construction

Different features, F = F1, F2...Fn, are extracted from images in the dataset

D and the query image Q, where each feature encodes discriminative in-

formation of the given image in different aspects. We then compute the

distance between the given images based on a distance metric function

d′(Ii, Ij), where Ii and Ij denote the given feature vector extracted from

image i and j respectively. Following, we compute symmetric affinity ma-

trices A′
1, A

′
2, . . . A′

n from each distance matrix Di using a similarity

function S(Di). We then apply minimax normalization on each similarity

matrix as: Ai =
V

ij
α −min(Vα)

max(Vα)−min(Vα)
, where Vα is a column vector taken from

matrix A′
i, which comprises the pairwise similarity score between a given

image V i
α and images in the dataset V j, which is denoted as V ij

α . Next, we

build undirected edge-weighted graphs with no self-loops G1, G2...Gn from

the affinity matrices A1, A2, ...An, respectively. Each graph Gn is defined

as Gn = (Vn, En, wn), where Vn = 1, ..., n is vertex set, En ⊆ Vn × Vn is

the edge set, and wn : E −→ IR∗
+ is the (positive) weight function. Ver-

tices in G correspond to the given images, edges represent neighborhood

relationships, and edge-weights reflect similarity between pairs of linked

vertices.

3.1.3.3 PIW Using Entropy of CDS

Since the nearest neighbor selection method heavily relies on the initial

pairwise similarity, it is possible that the NN set easily includes false matches

to the given query. This usually happens due to the lack of technics which

consider the underlying structure of the data manifold, especially the inher-

ent asymmetry of a neighborhood is a major shortcoming of such systems.
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For instance, although Sim(ni, q) = Sim(q, ni), the nearest neighbor re-

lationship between query Q and image ni may not be symmetric, which

implies that mi ∈ kNN(q, k) but mi /∈ kNN(ni, k). As demonstrated in

the past retrieval works, the k-reciprocal neighbors [114] and similarity dif-

fusion process [64] have been vastly taken as the optimal options to tackle

this issue. However, the existing methods are not computationally efficient.

In this work, we remedy the existing limitations using an unsupervised con-

strained clustering algorithm whereby we exploit the pairwise similarity to

find a cohesive cluster which incorporates the specified query.

3.1.3.4 Constrained Clustering for Coherent Neighbor Selection

Towards collecting true matches to the query image, we employ an unsuper-

vised clustering algorithm on the top of the previous steps. Our hypothesis

to tackle the asymmetry problem between the given query and its nearest

neighbors is that images which are semantically similar to each other tend

to be clustered in some feature space. As can be seen in the synthetic exam-

ple (See Fig. 3.2), retrieved image i4 and i6 are outliers or false positives to

the query image Q. We can confirm this by observing the common neigh-

bors of Q with i4 and i6. But due to the lack of contextual information, the

system considers them as a true match (neighbor) to the query. In our pro-

posed model, to attack this issue, we represent the set of kNN as a graph

G′ accordingly to subsection 3.1.3.2. Then, we treat outliers finding prob-

lem as an unsupervised clustering problem. We first convert graph G′ into

a symmetric affinity matrix A, where the diagonal corresponding to each

node is set to 0, and the ij − th entry denotes the edge-weight wij of the

graph so that Aij ≡ Aji. Accordingly, given graph G′ and query Q, we cast

detecting outliers from a given NN set as finding the most compact and

coherent cluster from graph G′, which is constrained to contain the query

image Q. To this end, we adopt constrained dominant sets [172], [99] which

is a generalization of a well known graph-theoretic notion of a cluster. We

are given a symmetric affinity matrix A and parameter µ > 0, and then we

define the following parametrized quadratic program

maximize fµ
Q(X) = X ′(A− µΓ̂Q)X

fµ
Q(X) = X ′ÂX

subject to X ∈ ∆

(3.3)
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where a prime denotes transposition and

∆ =

{

X ∈ Rn :
n∑

i=1

Xi = 1, and Xi ≥ 0 for all i = 1 . . . n

}

∆ is the standard simplex of Rn. Γ̂Q represents n × n diagonal matrix

whose diagonal elements are set to zero in correspondence to the query Q
and to 1 otherwise. And Â is defined as,

Â = A− µΓ̂Q =








0 . . .

. −µ . .

. . −µ .

. . . −µ








where the dots denote the ij th entry of matrix A. Note that matrix Â is

scaled properly to avoid negative values.

Let Q ⊆ V, with Q 6= ∅ and let µ > λmax(AV \Q), where λmax(AV \q)
is the largest eigenvalue of the principal submatrix of A indexed by the

element of V \q. If X is a local maximizer of fµ
Q(X) in ∆, then δ(X)∩Q 6=

∅, where, δ(X) = i ∈ V : Xi > 0. We refer the reader to [172] for the

proof.

The above result provides us with a simple technique to determine a

constrained dominant set which contains the query vertex Q. Indeed, if Q
is the vertex corresponding the query image, by setting

µ > λ(AV \Q) (3.4)

we are guaranted that all local solutions of eq (3.3) will have a support that

necessarily contains the query element. The established correspondence be-

tween dominant set (coherent cluster) and local extrema of a quadratic form

over the standard simplex allow us to find a dominant set using straightfor-

ward continuous optimization techniques known as replicator dynamics, a

class of dynamical systems arising in evolutionary game theory [21]. The

obtained solution provides a principled measure of a cluster cohesiveness

as well as a measure of vertex participation. Hence, we show that by fixing

an appropriate threshold ζ on the membership score of vertices, to extract

the coherent cluster, we could easily be able to detect the outlier nodes from

the k-nearest neighbors set. For each X i, ζ i is dynamically computed as

ζ i = Λ(1−max(X i) +min(X i))/L (3.5)
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where max(X) and min(X) denote the maximum and minimum mem-

bership score of X i, respectively. Λ is a scaling parameter and L stands for

length of X i. Moreover, we show an effective technique to quantify the use-

fulness of the given features based on the dispersive degree of the obtained

characteristics vector X.

3.1.3.5 PIW Using Entropy of Constrained Cluster.

Entropy has been successfully utilized in a variety of computer vision ap-

plications, including object detection [133], image retrieval [37] and visual

tracking [95]. In this chapter, we exploit the entropy of a membership-score

of nodes in the constrained dominant set to quantify the usefulness of the

given features. To this end, we borrowed the concept of entropy in the

sense of information theory (Shannon entropy). We claim that the discrim-

inative power of a given feature is inversely proportional to the entropy of

the score distribution, where the score distribution is a stochastic vector. Let

us say we are given a random variable C with possible values c1, c2, ...cn,
according to statistical point of view the information of the event (C = ci)
is inversely proportional to its likelihood, which is denoted by I(Ci) and

defined as

I(Ci) = log
( 1

P (ci)

)

= −log(p(ci)). (3.6)

Thus, as stated by [123], the entropy of C is the expected value of I, which

is given as

H(C) = −
N∑

i=1

P (ci)log(P (ci). (3.7)

For each characteristic vector Xi, Xi+1...Xz, where Xi =
{
Xi

µ, X
i
µ+1...X

i
n

}
, we

compute the entropy H(exp(X i)). Each X i corresponds to the member-

ship score of nodes in the CDS, which is obtained from the given feature

F i. Assume that the top NNs obtained from feature x are irrelevant to the

query Q, thus the resulting CDS will only contain the constraint element Q.

Based on our previous claim, since the entropy of a singleton set is 0, we

can infer that the feature is highly discriminative. Although this conclusion

is right, assigning a large weight to feature with irrelevant NNs will have a

negative impact on the final similarity. To avoid such unintended impact,

we consider the extreme case where the entropy is 0. Following, we in-

troduce a new term Ca, which is obtained from the cardinality of a given

cluster, Kc, as Cai = Ki
c∑z

i=1 K
i
c
. As a result, we formulate the PIW computa-
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Figure 3.2: (a) Initial score distribution of the top k nearest neighbors to the query Q,

green and red points denote the false-negative and false-posetive NNs. (b) Graph G′,

built from the initial pairwise similarity of the k-nearest neighbor set. And the blue

box contains the CDS nodes which are obtained by running CDS on graph G′. (c) The

resulting constrained dominant set membership-score distribution.

tion from the additive inverse of the entropy εi = 1 − H(X i), and C i
a, as:

PIW i =
ϑi

∑z

i=1 ϑ
i

Thus,

z∑

i=1

PIW i = 1 (3.8)

where ϑi = εi + C i
a, and i represents the corresponding feature.

3.1.3.6 Naive Voting Scheme and Similarity Fusion

In this section, we introduce a simple yet effective voting scheme, which is

based on the member nodes of k-nearest neighbor sets and the constrained

dominant sets, let NN1, NN2...NNz and CDS1, CDS2...CDSz represent the NN
and CDS sets respectively, which are obtained from G′

1, G
′
2...G

′
z. Let us

say ξ = 2(z − 1) − 1, and then we build ξ different combinations of

NN sets, ϕ1, ϕ2...ϕξ. Each ϕ represents an intersection between z − 1
unique combinations of NN sets. We then form a super-set ̟ which

contains the union of ϕ sets, with including repeated nodes. Assume that

NNs = {NN1, NN2, NN3}, ξ = 3, thus each ϕ set contains the intersection of

two NN sets as ϕ1 = {NN1 ∩NN2}, ϕ2 = {NN1 ∩NN3} and ϕ3 = {NN2 ∩NN3}.

Hence the resulting ̟ is defined as ̟ = (ϕ1⊖ϕ2⊖ϕ3), where (.⊖ .) is an

operator which returns the union of given sets, including repeated nodes.

We have also collected the union of CDS sets as ω = (CDS1 ⊖CDS2 ⊖CDS3).

Following, we compute κ as (κ = ϕ1 ∩ϕ2 ∩ ...ϕξ). Thereby we find super-

sets ̟,ω and κ. Next, we design three different counters, which are formu-

lated to increment when the NN node appears in the corresponding super-
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sets. Based on the value obtained from each counter, we finally compute

the vote scores for each NN node to the query as v1 = v1/η, v2 = v2/θ
and v3 = v3/ι, where η, θ and ι are parameters which are fixed empirically.

Note that the outlier detecting capability of our framework is encoded in

the voting process. Thus, if a NN node ni is contained in more than one

cluster, its probability to be given a large weight is higher. This is due to

the number of votes it gets from each cluster.

3.1.3.7 Final Similarity.

After obtaining the aforementioned terms, we compute the final similarity

as follows: say we are given n features, Q is the query image and D denotes

image dataset, then the initial similarity of D to Q, with respect to feature

Fi, i = 1...n, ,is given as S
(i)
D,Q. Let PIW

(i)
Q , i = 1...n, encode the weight

of feature Fi for query Q, and then the final similarity score, Fsim(Q,D),

between Q and D is given as

Ns =
k∏

i=1

(S
(i)
D,Q)

PIW
(i)
Q (3.9)

Fsim(Q,D) = λNs + (1− λ)
Ψ∑

Ω=1

vΩ (3.10)

where Ψ = 3, is the total number of voter sets. And λ ∈ [0, 1] defines the

penalty factor which penalizes the similarity fusion, when λ = 1 only Fs is

considered, otherwise, if λ = 0, only v is considered.

3.1.4 Experiments

In this section, we present the details about the features, datasets and eval-

uation methodology we used along with rigorous experimental analysis.

3.1.4.1 Datasets and Metrics

To provide a thorough evaluation and comparison, we evaluate our ap-

proach on INRIA Holiday, Ukbench, Oxford5k and Paris6k datasets.

Ukbench Dataset [105]. Contains 10,200 images which are categorized

into 2,550 groups, each group consists of three similar images to the query

which undergo severe illumination and pose variations. Every image in this

dataset is used as a query image in turn while the remaining images are

considered as dataset images, in “leave-one-out" fashion. As customary,
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Figure 3.3: five relevant images to the query where the green and red frame indicate the

True and False posetives to the query, respectively. Top-row (a) and (b): show the top

five relevant images of our proposed method. Bottom row (a) and (b): show the top

five relevant images obtained from a Naive fusion of several features.

we used the N-S score to evaluate the performance of our method, which is

based on the average recall of the top 4 ranked images.

INRIA Holiday Dataset [67]. Comprises 1491 personal holiday pic-

tures including 500 query images, where most of the queries have one or

two relevant images. Mean average precision (MAP) is used as a perfor-

mance evaluation metric.

Oxford5k Dataset [110]. It is one of the most popular retrieval datasets,

which contains 5062 images, collected from flicker-images by searching for

landmark buildings in the Oxford campus. 55 queries corresponding to 11

buildings are used.

Paris6k Dataset [111]. Consists of 6392 images of Paris landmark

buildings with 55 query images that are manually annotated.

3.1.4.2 Image Features

Object Level Deep Feature Pooling (OLDFP) [101]. OLDFP is a com-

pact image representation, whereby images are represented as a vector of

pooled CNN features describing the underlying objects. Principal Compo-

nent Analysis (PCA) has been employed to reduce the dimensionality of

the compact representation. We consider the top 512-dimensional vector in

the case of the Holiday dataset while considering the top 1024-dimensional

vector to describe images in the Ukbench dataset. As suggested in [101],

we have applied power normalization (with exponent 0.5), and l2 normal-

ization on the PCA projected image descriptor.
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BOW. Following [179], [180], we adopt Hamming Embedding [67].

SIFT descriptor and Hessian-Affine detector are used in feature extrac-

tion, and we used 128-bit vector binary signatures of SIFT. The Hamming

threshold and weighting parameters are set to 30 and 16 respectively, and

three visual words are provided for each key-point. Flickr60k data [67] is

used to train a codebook of size 20k. We also adopt root sift as in [11],

average IDF as defined in [178] and the burstiness weighting [68].

NetVLAD [10]. NetVLAD is an end-to-end trainable CNN architecture

that incorporates the generalized VLAD layer.

HSV Color Histogram. Like [158], [180], for each image, we extract

1000-dimensional HSV color histograms where the number of bins for H,

S, V are 20, 10, 5 respectively.

Table 3.1: The performance of baseline features on Holidays, Ukbench, Oxford5k and

Paris6k datasets.

Datasets Metrics NetVLAD

[10]

BOW OLDFP HSV Rres

[64]

Gres

[64]

Rvgg

[64]

Gvgg

[64]

Holidays MAP 84 80 87 65 - - - -

Ukbench N-S score 3.75 3.58 3.79 3.19 - - -

Oxford5k MAP 69 - - - 95.8 87.7 93 -

Paris6k MAP - - - - 96.8 94.1 96.4 95.6

3.1.4.3 Experiment on Holiday and Ukbench Datasets

As it can be seen in Fig.3.3(a), the noticeable similarity between the query

image and the irrelevant images, in the Holiday dataset, makes the retrieval

process challenging. For instance, (See Fig.3.3(a)), at a glance all images

seem similar to the query image while the relevant are only the first two

ranked images. Moreover, we can observe that the proposed scheme is

invariant to image illumination and rotation change. Table 3.2 shows that

our method significantly improves the MAP of the baseline method [101]

on Holiday dataset by 7.3 % while improving the state-of-the-art method

by 1.1 %. Likewise, it can be seen that our method considerably improves

the N-S score of the baseline method [101] on the Ukbench dataset by 0.15

while improving the state-of-the-art method by 0.03.

Furthermore, to show how effective the proposed feature-weighting sys-

tem is, we have experimented by fusing the given features with and without

PIW. Naive fusion (NF) denotes our approach with a constant PIW for all

features used, thus the final similarity Fs defined as Fs =
1
k
(
∏k

i=1(S
(i)
D,Q)).

In Fig.3.6 we have demonstrated the remarkable impact of the proposed
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Figure 3.4: Feature positive-impact weights (PIW’s) learned by our algorithm. Top-left,

top-right, bottom-left, and bottom-right: on Holiday, Ukbench, Oxford5k and Paris6k

datasets, respectively.

PIW. As can be observed, our scheme effectively uplifts the impact of a

discriminative feature while downgrading the inferior one. Note that in the

PIW computation we have normalized the minimum entropy (See eq.3.8),

thus its values range between 0 and 1. Accordingly, one implies that the

feature is highly discriminative, while zero shows that the feature is indis-

criminate.

In order to demonstrate that our scheme is robust in handling outliers,

we have conducted an experiment by fixing the number of NNs (disabling

the incrimental NNs selection) to different numbers. As is evident from

Fig.3.6, the performance of our method is consistent regardless of the num-

ber of kNN . As elaborated in subsection 3.1.3.4, the robustness of our

method to the number of k comes from the proposed outlier detection

method. Since the proposed outliers detector is formulated in a way that

allows us to handle the outliers, we are easily able to alleviate the false

matches which are incorporated in the nearest neighbors set. This results

in finding a nearly constant number of nearest neighbors regardless of the

choice of k.
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Figure 3.5: The cardinality of constrained dominant sets for the given features.

3.1.4.4 Experiment on Oxford5k and Paris6k Datasets

In the same fashion as the previous analysis, we have conducted extensive

experiments on the widely used Oxford5k and Paris6k datasets. Unlike the

Holiday and Ukbench datasets, we adapt affinity matrices which are ob-

tained through a diffusion process on a regional Resnet and V GG repre-

sentation [64], and they are denoted as Rres and Rvgg respectively, as well

as affinity matrices Gres and Gvgg which are also obtained through a dif-

fusion process on a global Resnet and V GG representation, respectively.

Table 3.2 shows that the proposed method slightly improves the state-of-

the-art result. Even if the performance gain is not significant, our scheme

marginally achieves better MAP over the state-of-the-art methods. Further-

more, as shown in Fig 3.4, the proposed model learns the PIW of the given

features effectively. Therefore, a smaller average weight is assigned to Gvgg

and NetV LAD feature comparing to Rres and Rvgg.

3.1.4.5 Robustness of Proposed PIW

As can be seen in Fig 3.4, for all datasets, our algorithm has efficiently

learned the appropriate weights to the corresponding features. Fig. 3.4

shows how our algorithm assigns PIW in a query adaptive manner. In Holi-

day and Ukbench datasets, the average weight given to HSV feature is much

smaller than all the other features used. Conversely, a large PIW is assigned

to OLDFP and NetVLAD features. Nevertheless, it is evident that in some
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Table 3.2: Comparison among various retrieval methods with our method on benchmark datasets,

where QALF is implemented with the same baseline similarities used in our experiments.

Datasets Metrics Baselines QALF

[180] [158]

NF ED

[19] [54] [115] [156] [15]

Ours

Ukbench N-S score 3.79 [101] 3.84 3.86 3.86 3.93 - - - 3.76 3.94

Holiday MAP 87 [101] 88 88 91 93 90 83 89 77 94

Oxford5k MAP 95.8 [64] - 76.2 94.4 - 89.1 79.7 81.4 67.6 96.2

Paris6k MAP 96.8 [64] - 83.3 - - 91.2 83.8 88.9 - 97.4
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Figure 3.6: Comparison with state-of-the-art fusion methods with respect to varying k.

Naive Fusion (NF), Reranking by Multi-feature Fusion (RMFD) [158], and QALF

[180].

cases a large value of PIW is assigned to HSV and BOW features as well,

which is appreciated considering its effectiveness on discriminating good

and bad features in a query adaptive manner.

3.1.4.6 Impact of Parameters

To evaluate the robustness of our method we have performed different ex-

periments by changing one parameter at a time. Thereby, we have observed

that setting Λ to a large value results in assigning insignificant PIW to in-

discriminate features. The reason is that after the application of CDS, the

cluster membership-score of the dissimilar images to the query will be-

come smaller. Thus, since the threshold fixed to choose the true neighbors

is tighter, the resulting constrained dominant set will be forced to yield a

singleton cluster. As a result, we obtained a very small PIW due to the

cardinality of the constrained-cluster. In addition to that, we observe that

the MAP start to decline when λ is set to a very large value (See. Fig 3.7,

right).
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Figure 3.7: Left: Time complexity of our algorithm (red) and QALF [180] (blue) on

Holiday dataset. Right: The impact of λ on the retrieval performance, on Holiday

dataset.

3.1.4.7 Impact of Cluster Cardinality

On the Ukbench dataset, as can be observed in Fig. 3.5, the average car-

dinality of the constrained clusters which is obtained from HSV and BOW

feature is 3 and 1.7, respectively. In contrast, for NetVLAD and OLDFP,

the average cluster cardinality is 3.4 and 3.5, respectively . Similarly, in

the case of the Holiday dataset, the cluster cardinality obtained from HSV

feature is one while for BOW, NetVLAD and OLDFP is 4.5, 5 and 5.6,

respectively. Thus, from this, we can draw our conclusion that the cardi-

nality of a constrained dominant set, in a certain condition, has a direct

relationship with the effectiveness of the given feature.

3.1.4.8 Computational Time

In Fig. 3.7 we depict the query time taken to search for each query image,

red and blue lines represent our method and QALF, respectively. The ver-

tical axis denotes the CPU time taken in seconds, and the horizontal axis

shows the query images. As can be seen from the plot, the proposed frame-

work is faster than the fastest state-of-the-art feature-fusion method [180].

As for time complexity, in our experiment we used a replicator dynamics to

solve problem (3.3), hence, for a graph with N nodes, the time complexity

per step is O(N2), and the algorithm usually takes a few steps to converge,

while that of [18] is O(N3). However, we note that by using the Infection-

immunization algorithm [118] we can achieve even faster convergence as

its per-step complexity would be linear in the number of nodes.
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3.1.5 Summary

In this chapter, we addressed a multi-feature fusion problem in CBIR. We

developed a novel and computationally efficient CBIR method based on a

constrained-clustering concept. In particular, we showed an efficient way

of estimating a positive impact weight of features in a query-specific man-

ner. Thus it can be readily used for feature combination. Furthermore, the

proposed scheme is fully unsupervised, and can easily be able to detect

false-positive NNs to the query, through the diffused similarity of the NNs.

To demonstrate the validity of our method, we performed extensive exper-

iments on benchmark datasets. Besides the improvements achieved on the

state-of-the-art results, our method shows its effectiveness in quantifying

the discriminative power of given features. Moreover, its effectiveness on

feature-weighting can also be exploited in other computer vision problems,

such as person re-identification, object detection, and image segmentation.

3.2 Constrained Dominant Sets for Image Retrieval

Learning new global relations based on an initial affinity of the database

objects has shown significant improvements in similarity retrievals. Lo-

cally constrained diffusion process is one of the recent effective tools in

learning the intrinsic manifold structure of a given data. Existing methods,

which constrained the diffusion process locally, have problems - manual

choice of optimal local neighborhood size, do not allow for intrinsic rela-

tion among the neighbors, fix initialization vector to extract dense neighbor

- which negatively affect the affinity propagation. We propose a new ap-

proach, which alleviate these issues, based on some properties of a family

of quadratic optimization problems related to dominant sets, a well-known

graph-theoretic notion of a cluster which generalizes the concept of a maxi-

mal clique to edge-weighted graphs. In particular, we show that by properly

controlling a regularization parameter which determines the structure and

the scale of the underlying problem, we are in a position to extract dom-

inant set cluster which is constrained to contain user-provided query. Ex-

perimental results on standard benchmark datasets show the effectiveness

of the proposed approach.

3.2.1 Similarity Diffusion for Image Retrieval

Retrieval has recently attracted considerable attention within the computer

vision community, especially because of its potential applications such as

database retrieval, web and mobile image search. Given user provided
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query, the goal is to provide as output a ranked list of objects that best

reflect the user’s intent. Classical approaches perform the task based on

the (dis)similarity between the query and the database objects. The main

limitation of such classical retrieval approaches is that they does not allow

for the intrinsic relation among the database objects.

Recently, various techniques, instead of simply using the pairwise simi-

larity, they try to learn a better similarities that consider manifold structures

of the underlying data. Qin et al. in [114] try to alleviate the asymmetry

problem of the k-nearest neighbor (k-nn) using the notion of k-reciprocal

nearest neighbor. In [63] the notion of shared nearest neighbor is used

to build secondary similarity measure, which stabilize the performance of

the search, based on the primary distance measure. In [44] shape meta-

similarity measure, which is computed as the L1 distance between new

vector representation which considers only the k-nn set of similarities fix-

ing all others to 0, was proposed. Choosing the right size of the neighbor

is important. In [76], the notion of shortest path was used to built a new

affinity for retrieval.

Diffusion process is one of the recent effective tools in learning the

intrinsic manifold structure of a given data [40, 161, 162]. Given data, a

weighted graph is built where the nodes are the objects and the edge weight

is a function of the affinity between the objects. The pairwise affinities

are then propagated following structure of the weighted edge links in the

graph. The result of the affinity propagation highly depends on the quality

of the pairwise similarity [79, 134]. Inaccurate Pairwise similarity results

in a graph with much noise which negatively affects the diffusion process.

Constraining the diffusion process locally alleviate this issue [40,134,162].

Dominant neighbor (DN) and k-nn are two notions used by the recent exist-

ing methods to constrain the diffusion process locally [40,161,162]. In [40],

it has been shown that affinity learning constraining relation of an object to

its neighbors effectively improves the retrieval performance and was able

to achieve 100 % bull’s eye score in the well known MPEG datset. The

author of [40] put automatically selecting local neighborhood size (K) as

the main limitation of the approach and is still an open problem. The in-

fluence of selecting different K values was also studied which proved that

the parameter is a serious problem of the approach. For MPEG7 dataset,

the choice is insignificant while for the other two datasets YALE and ORL

choosing the reasonable K is difficult which resulted in a decrease in per-

formance for the right value of K. Moreover, it is obvious that the selection

of k-nn is prone to errors in the pairwise similarities [162]. Since any k-nn

decision procedure relies only on affinities of an object to all other objects,
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k-nn approach is handicapped in resisting errors in pairwise affinities and

in capturing the structure of the underlying data manifold.

Yang et al. in [162], to avoid the above issues, proposed the notion of

dominant neighbors (DN). Instead of the k-nn, here a compact set from

the k-nn which best explains the intrinsic relation among the neighbors

is considered to constrain the diffusion process. However, the approach

follows heuristic based k-nn initialization scheme. To capture dominant

neighbors, the approach first choose a fixed value of K, collect the K nearest

neighbors and then initialize the dynamics, the dynamics which extracts

dense neighbors, to the barycenter of the face of the simplex which contains

the neighbors. It is obvious to see that the approach is still dependent on

K. Moreover, as fixing K limits the dynamics to a specified face of the

simplex, objects out of k-nn(q) which form a dominant neighbor with q
will be loosed. The chosen k-nn may also be fully noisy which might not

have a compact structure.

In this section, we propose a new approach to retrieval which can deal

naturally with the above problems. Our approach is based on some prop-

erties of a family of quadratic optimization problems related to dominant

sets, a well-known graph-theoretic notion of a cluster which generalizes

the concept of a maximal clique to edge-weighted graphs. In particular,

we show that by properly controlling a regularization parameter which de-

termines the structure and the scale of the underlying problem, we are in

a position to extract dominant-set cluster which is constrained to contain

user-specified query.

The resulting algorithm has a number of interesting features which dis-

tinguishes it from existing approaches. Specifically: 1) it is able to con-

strain the diffusion process locally extracting dense neighbors whose local

neighborhood size (K) is fixed automatically; different neighbors can have

different value of K. 2)it has no any initialization step; the dynamics, to

extract the dense neighbors, can start at any point in the standard simplex

3) it turns out to be robust to noisy affinity matrices.

The rest of this chapter is organized as follows. In the next section we

will discuss the most related works to our approach. The experimental

results are given in section 3.2.3.

3.2.2 Diffusion Process

Given a set of, say n, objects, the relation among them can be represented as

an undirected edge-weighted graph G = (V,E,w), where V = {1, ..., n}
is the vertex set, E ⊆ V × V is the edge set, and w : E → R∗

+ is the
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(positive) weight function. Vertices in G correspond to data points, edges

represent neighborhood relationships, and edge-weights reflect similarity

between pairs of linked vertices. As customary, the graph G is represented

with the corresponding weighted adjacency (or similarity) matrix, which is

the n×n nonnegative, symmetric matrix A = (aij) defined as aij = w(i, j),
if (i, j) ∈ E, and aij = 0 otherwise. A diffusion process then starts from a

predefined initialization, say V and propagate the affinity value through the

underlying manifold based on a predefined transition matrix, say T , and

diffusion scheme (S).

Off-the-shelf diffusion processes, which basically differ based on the

choice of V , T and S , the most related ones to this work are [162] and

[160]. In both cases, the diffusion process is locally constrained. While

in [160] the notion of k-nn is used to constrain the diffusion process locally,

dominant neighbor notion (DN ) is used by [162].

3.2.2.1 Nearest Neighbors

In the first case, the edge-weights of the k-nn are kept i.e define locally

constrained affinity L = (lij) defined as lij = w(i, j), if (i, j) ∈ k-nn(q),

and lij = 0 otherwise. Then the diffusion process, setting V as the affinity

A , is performed by the following update rule.

Vt+1 = LVL (3.11)

Nearest neighbors constrained diffusion process, alleviating the issue of

noisy pairwise similarity, significantly increases the retrieval performance.

However, the approach has two serious limitations: First, automatically se-

lecting local neighborhood size (K) is very difficult and is still an open

problem [40]. In [40] the influence of selecting different K values was

studied which proved that the parameter is a serious problem of the ap-

proach. For MPEG7 dataset, the choice was insignificant while for the

other two datasets, YALE and ORL, choosing the reasonable K was dif-

ficult which even resulted in a decrease in performance, for ORL from

77.30% to 73.40% and for YALE 77.08% to 73.39%, for the right value

of K. Moreover, it is obvious that the selection of k-nn is prone to errors in

the pairwise similarities [162].

3.2.2.2 Dominant Neighbors

Yang et al. in [162], to avoid the above issues, proposed the notion of

dominant neighbors (DN ). Instead of the k-nn, here a compact set from

the k-nn which best explains the intrinsic relation among the neighbors is
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MPEG7 B1 B2 B3 B4 B5 B6(Ours)

A1 99.91 99.93 100 100 99.88 100

A2 99.92 99.93 100 100 99.88 100

A3 99.93 99.94 100 100 99.88 100

A4 99.92 99.94 100 100 99.88 100

Table 3.3: Results on MPEG7 dataset. Bull’s eye score for the first 40 elements

considered to constrain the diffusion process. To do so, the author used the

dominant set framework by Pavan and Pelillo [103].

A dominant neighbor (DN ) is set as a dominant set, say DS , from the

k-nn which contains the user provided query q, lets call it DS(q).

3.2.2.3 Proposed Method

Given a query q, we scale the affinity and run the replicator 1.10, say the

dynamics converges to x
∗. The support of x

∗, σ(x∗), is the constrained

dominant set which contains the query q, let us call it CDS(q). The edge-

weights of the CDS(q) are then kept i.e define locally constrained affinity

L = (lij) defined as lij = w(i, j), if (i, j) ∈ CDS(q), and lij = 0 otherwise.

The diffusion process is then performed by the same update rule as in 3.11.

For the proof of convergence of the update rule we refer the reader to [161].

3.2.3 Experiments

The performance of the approach is presented in this section. The ap-

proach was tested against three well known data sets in the field of re-

trieval: MPEG7(shape), YALE(faces) and ORL(faces). For all test data

sets the number of iterations for the update rule is set to 200. A given pair-

wise distance D is transformed to similarity (edge-weight) using a standard

Gaussian kernel

A
σ
ij = 1i 6=jexp(−D/2σ2)

where σ is the free scale parameter, and 1P = 1 if P is true, 0 otherwise.

L is then built, from A, using the constrained dominant set framework. The

diffusion process is then computed using the update rule 3.11 which re-

sulted in the final learned affinity for ranking.

A similar experimental analysis as of [40] has been conducted. In [40], a

generic framework with 72 different variant of diffusion processes was de-

fined which are resulted from three steps: initialization, definition of tran-

sition matrix and diffusion process. In our experiment, the update scheme

is fixed to 3.11 which has proven to be effective. The four different types
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of initialization schemes are Affinity Matrix A (A1) [142], Identity Ma-

trix I (A2), Transition Matrix P which is the standard random walk tran-

sition matrix (A3) [100] and Transition Matrix PkNN which is the random

walk transition matrix constrained to the k-nearest neighbors (A4) [100].

Including our transition matrix (B6), we have in total 6 different types

of transition matrices: P (B1), Personalized PageRank Transition Matrix

PPPR (B2) [100], PkNN (B3), Dominant Set Neighbors PDS [162] (B4),

and Affinity Matrix A (B5)

R 20 25 30 35 40

B3 94.321 97.871 98.614 99.357 100

B4 94.296 97.846 98.614 99.357 100

Ours 94.354 97.896 98.614 99.360 100

Table 3.4: Results on MPEG7 dataset varying the first R returned objects

Metric: The Bull’s eye score is used as a measure of retrieval accuracy.

It measures the percentage of objects sharing the same class with a query q
in the top R retrieved shapes. Let us say C is the set of objects in the same

class of the query q and O is the set of top R retrieved shapes. The Bull’s

eye score (B) is then computed as B=
|O∩C|
|C|

MPEG7: a well known data set for testing performance of retrieval and

shape matching algorithms. It comprises 1400 silhouette shape images of

70 different categories with 20 images in each categories. In all reported

results, Articulated Invariant Representation (AIR) [53], best performing

shape matching algorithm, is used as the input pairwise distance measure.

The retrieval performance is measured fixing R to 40.

The retrieval performance has also been tested by varying the first R re-

turned objects, the set in which instances of the same category are checked

in. For the purpose of this experiment we use the best diffusion variants (B3

and B4 initialized with A2). The performance of the algorithms is shown

in Table 3.4.

MPEG7 has been used, most frequently, for testing retrieval algorithms.

Table 3.5 shows the comparison against different state-of-the-art approaches.

YALE: [22] a popular benchmark for face clustering which consists of

15 unique people with 11 pictures for each under different conditions: nor-

mal, sad, sleepy, center light, right light, ... etc that include variations of

pose, illumination and expression. Similar procedure of [71] and [40] were

followed to build the distance matrix. Down sample the image, normalize

to 0-mean and 1-variance, and compute the Euclidean distance between the
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[88] [20] [53] [89] [162] [40] Ours

85.40 91.61 93.67 95.96 99.99 100 100

Table 3.5: Retrieval performance comparison on MPEG7 dataset. Up: methods, Down: Bull’s eye

score for the first 40 elements

vectorized representation. The retrieval performance is measured fixing R
to 15.

YALE B1 B2 B3 B4 B5 B6(Ours)

A1 71.74 71.24 75.59 75.31 70.25 75.15

A2 71.96 70.69 77.30 76.20 69.92 77.41

A3 72.07 70.57 74.93 76.14 70.30 75.37

A4 72.23 70.74 77.08 76.10 70.25 77.36

Table 3.6: Results on YALE dataset. Bull’s eye score for the first 15 elements

Results of the algorithm on YALE data set varying R is shown in Table

3.7.

R 20 25 30 35 40

B3 71.240 74.105 77.303 79.559 80.826

B4 70.854 72.176 76.198 77.741 79.063

Ours 71.350 74.050 77.411 80.000 81.653

Table 3.7: Results on YALE dataset varying the first R returned objects

ORL: face data set of 40 different persons with 10 grayscale images per

person with slight variations of pose, illumination, and expression. Similar

procedure as of YALE data set was followed and The retrieval performance

is measured fixing R to 15.

Results of the algorithm on ORL data set varying R is shown in Table

3.9.

3.2.4 Summary

In this work, we have developed a locally constrained diffusion process

which, as of existing methods, has no problems such as choosing optimal

local neighbor size and initializing the dynamics to extract dense neighbor
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ORL B1 B2 B3 B4 B5 B6(Ours)

A1 72.75 73.48 74.25 73.90 70.58 74.25

A2 72.75 73.75 77.42 74.82 70.15 77.42

A3 73.12 73.75 75.52 75.35 71.05 75.52

A4 73.12 73.75 77.32 75.50 71.40 77.32

Table 3.8: Results on ORL dataset. Bull’s eye score for the first 15 elements

R 20 25 30 35 40

B3 70.950 75.250 77.425 79.275 80.550

B4 68.850 72.900 74.825 76.775 77.700

Ours 70.950 75.250 77.425 79.275 80.550

Table 3.9: Results on ORL dataset varying the first R returned objects

which constrain the diffusion process. The framework alleviates the issues

with an up-tick in the results.
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CHAPTER4

Deep Constrained Dominant Sets for

Person Re-identification

In this work, we propose an end-to-end constrained clustering scheme to

tackle the person re-identification (re-id) problem. Deep neural networks

(DNN) have recently proven to be effective on person re-identification task.

In particular, rather than leveraging solely a probe-gallery similarity, diffus-

ing the similarities among the gallery images in an end-to-end manner has

proven to be effective in yielding a robust probe-gallery affinity. However,

existing methods do not apply probe image as a constraint, and are prone

to noise propagation during the similarity diffusion process. To overcome

this, we propose an intriguing scheme which treats person-image retrieval

problem as a constrained clustering optimization problem, called deep con-

strained dominant sets (DCDS). Given a probe and gallery images, we re-

formulate person re-id problem as finding a constrained cluster, where the

probe image is taken as a constraint (seed) and each cluster corresponds

to a set of images corresponding to the same person. By optimizing the

constrained clustering in an end-to-end manner, we naturally leverage the

contextual knowledge of a set of images corresponding to the given person-

images. We further enhance the performance by integrating an auxiliary
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DNN 

Model

(a) Person classification network

(b) Verification network

(c) Triplet loss based network

(d) Quadruplet loss based network

(e) Conventional diffusion based network

(f) Constrained clustering based network (DCDS)
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Figure 4.1: Shows a variety of existing classification and similarity-based deep person

re-id models. (a) Depicts a classification-based deep person re-id model, where P i

refers to the ith person. (b) Illustrates a verification network whereby the similarity

S and dissimilarity D for a pair of images is found. (c) A Triplet loss based DNN,

where A,P,N indicate anchor, positive, and negative samples, respectively. (d) A

quadruplet based DNN (e) Conventional diffusion-based DNN, which leverages the

similarities among all the images in the gallery to learn a better similarity. (f) The

proposed deep constrained dominant sets (DCDS), where, P indicates the constraint

(probe-image); and, images in the constrained cluster, the enclosed area, indicates the

positive samples to the probe image.

net alongside DCDS, which employs a multi-scale ResNet. To validate the

effectiveness of our method we present experiments on several benchmark

datasets and show that the proposed method can outperform state-of-the-art

methods.

4.1 Introduction

Person re-identification aims at retrieving the most similar images to the

probe image, from a large scale gallery set captured by camera networks.

Among the challenges which hinder person re-id tasks, include background

clutter, Pose, view and illumination variation can be mentioned.

Person re-id can be taken as a person retrieval problem based on the

ranked similarity score, which is obtained from the pairwise affinities be-
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tween the probe and the dataset images. However, relying solely on the

pairwise affinities of probe-gallery images, ignoring the underlying con-

textual information between the gallery images often leads to an undesir-

able similarity ranking. To tackle this, several works have been reported,

which employ similarity diffusion to estimate a second order similarity

that considers the intrinsic manifold structure of the given affinity ma-

trix [17], [92], [41], [19]. Similarity diffusion is a process of exploiting

the contextual information between all the gallery images to provide a con-

text sensitive similarity. Nevertheless, all these methods do not leverage

the advantage of deep neural networks. Instead, they employ the similarity

diffusion process as a post-processing step on the top of the DNN model.

Aiming to improve the discriminative power of a DNN model, there have

been recent works which incorporate a similarity diffusion process in an

end-to-end manner [124], [125], [28]. Following [23], which applies a ran-

dom walk in an end-to-end fashion for solving semantic segmentation prob-

lem, authors in [124] proposed a group-shuffling random walk network for

fully utilizing the affinity information between gallery images in both the

training and testing phase. Also, the authors of [125] proposed similarity-

guided graph neural network (SGGNN) to exploit the relationship between

several prob-gallery image similarities.

However, most of the existing graph-based end-to-end learning methods

apply the similarity diffusion without considering any constraint or atten-

tion mechanism to the specific query image. Due to that the second order

similarity these methods yield is highly prone to noise. To tackle this prob-

lem, one possible mechanism could be to guide the similarity propagation

by providing seed (or constraint) and let the optimization process estimate

the optimal similarity between the seed and nearest neighbors, while treat-

ing the seed as our attention point. To formalize this idea, in this chapter,

we model person re-id problem as finding an internally coherent and ex-

ternally incoherent constrained cluster in an end-to-end fashion. To this

end, we adopt a graph and game theoretic method called constrained dom-

inant sets in an end-to-end manner. To the best of our knowledge, we are

the first ones to integrate the well known unsupervised clustering method

called dominant sets in a DNN model. To summarize, the contributions of

the proposed work are:

• For the very first time, the dominant sets clustering method is inte-

grated in a DNN and optimized in end-to-end fashion.

• A one-to-one correspondence between person re-identification and

constrained clustering problem is established.
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• State-of-the-art results are significantly improved.

The chapter is structured as follow. In section 2, we review the related

works. In section 3, we discuss the proposed method with a brief intro-

duction to dominant sets and constrained dominant sets. Finally, in section

4, we provide an extensive experimental analysis on three different bench-

mark datasets.

4.2 Related works

Person re-id is one of the challenging computer vision tasks due to the vari-

ation of illumination condition, backgrounds, pose and viewpoints. Most

recent methods train DNN models with different learning objectives includ-

ing verification, classification, and similarity learning [30], [176], [141],

[3], [46]. For instance, verification network (V-Net) [85], Figure 4.1(b),

applies a binary classification of image-pair representation which is trained

under the supervision of binary softmax loss. Learning accurate similar-

ity and robust feature embedding has a vital role in the course of person

re-identification process. Methods which integrate siamese network with

contrastive loss are a typical showcase of deep similarity learning for per-

son re-id [29]. The optimization goal of these models is to estimate the

minimum distance between the same person images, while maximizing the

distance between images of different persons. However, these methods fo-

cus on the pairwise distance ignoring the contextual or relative distances.

Different schemes have tried to overcome these shortcomings. In Figure

4.1(c), triplet loss is exploited to enforce the correct order of relative dis-

tances among image triplets [30], [38], [176] . In Figure 4.1(d), Quadruplet

loss [29] leverages the advantage of both contrastive and triplet loss, thus

it is able to maximize the intra-class similarity while minimizing the inter-

class similarity. Emphasizing the fact that these methods entirely neglect

the global structure of the embedding space, [28], [45], [124], [98], [125]

proposed graph based end-to-end diffusion methods shown in Figure 4.1(e).

Graph based end-to-end learning. Graph-based methods have played

a vital role in the rapid growth of computer vision applications in the past.

However, lately, the advent of deep convolutional neural networks and their

tremendous achievements in the field has attracted great attention of re-

searchers. Accordingly, researchers have made a significant effort to inte-

grate, classical methods, in particular, graph theoretical methods, in end-

to-end learning. Shen et al. [125] developed two constructions of deep

convolutional networks on a graph, the first one is based upon hierarchical

clustering of the domain, and the other one is based on the spectrum of
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graph Laplacian. Yan et al. [157] proposed a model of dynamic skele-

tons called Spatial-Temporal Graph Convolutional Networks (ST-GCN),

which provides a capability to automatically learn both the spatial and tem-

poral pattern of data. Bertasius et al. [23] designed a convolutional ran-

dom walk (RWN), where by jointly optimizing the objective of pixelwise

affinity and semantic segmentation they are able to address the problem

of blobby boundary and spatially fragmented predictions. Likewise, [124]

integrates random walk method in end-to-end learning to tackle person re-

identification problem. In [124], through the proposed deep random walk

and the complementary feature grouping and group shuffling scheme, the

authors demonstrate that one can estimate a robust probe-gallery affinity.

Unlike recent Graph neural network (GNN) methods [125], [75], [124],

[28], Shen et al. [125] learn the edge weights by exploiting the training

label supervision, thus they are able to learn more accurate feature fusion

weights for updating nodes feature.

Recent applications of dominant sets. Dominant sets (DS) cluster-

ing [103] and its constraint variant constrained dominant sets (CDS) [172]

have been employed in several recent computer vision applications rang-

ing from person tracking [138], [139], geo-localization [173], image re-

trieval [170], [8], 3D object recognition [143], to Image segmentation and

co-segmentation [99], [13]. Zemene et al. [172] presented CDS with its

applications to interactive Image segmentation. Following, [99] uses CDS

to tackle both image segmentation and co-segmentation in interactive and

unsupervised setup. Wang et al. [143] recently used dominant sets cluster-

ing in a recursive manner to select representative images from a collection

of images and applied a pooling operation on the refined images, which

survive at the recursive selection process. Nevertheless, none of the above

works have attempted to leverage the dominant sets algorithm in an end-

to-end manner.

In this work, unlike most of the existing graph-based DNN model, we

propose a constrained clustering based scheme in an end-to-end fashion,

thereby, leveraging the contextual information hidden in the relationship

among person images. In addition, the proposed scheme significantly mag-

nifies the inter-class variation of different person-images while reducing the

intra-class variation of the same person-images. The big picture of our pro-

posed method is depicted in Figure 4.1(f), as can be seen, the objective here

is to find a coherent constrained cluster which incorporates the given probe

image P .
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Figure 4.2: Let S = {P, g1, g2, g3} comprises probe, P, and gallery images gi. As can

be observed from the above toy example, the proposed method assess the contribu-

tion of each participant node i ∈ S with respect to the subset S\i. (1) shows graph

G, showing the pairwise similarities of query-gallery images. (2-5) show the rela-

tive weight, WΓ}(i) ( Equ. 4.1), of each node with respect to the overall similarity

between set Γ\i (shaded region) and i. (2) shows that if the Node {g3} is added

with Node {P, g1, g2} it has a negative impact on the coherency of the cluster, since

Wp,g1,g2,g3(g3) < 0. (3) shows that clustering {P} with {g1} and {g2} has a positive

contribution to the compactness of set {P, g1, g2}. (4), similarly, shows the relative

weight of g1, Wp,g1,g2(g1) > 0. (5) shows the relative weight of g2,Wp,g1,g2(g2) > 0.

And, (6) is a coherent subset (dominant set cluster) extracted from the graph given in

(1).

4.3 Our Approach

In this work, we cast probe-gallery matching as optimizing a constrained

clustering problem, where the probe image is treated as a constraint, while

the positive images to the probe are taken as members of the constrained-

cluster. Thereby, we integrate such clustering mechanism into a deep CNN

to learn a robust features through the leveraged contextual information.

This is achieved by traversing through the global structure of the given

graph to induce a compact set of images based on the given initial similarity(edge-

weight).

4.3.1 Modeling person re-id as a Dominant Set

Recent methods [28], [23] have proposed different models, which lever-

age local and group similarity of images in an end-to-end manner. Authors

in [28] define a group similarity which emphasizes the advantages of esti-

mating a similarity of two images, by employing the dependencies among

the whole set of images in a given group. In this work, we establish a nat-

ural connection between finding a robust probe-gallery similarity and con-

strained dominant sets. Let us first elaborate the intuitive concept of finding

a coherent subset from a given set based on the global similarity of given

images. For simplicity, we represent person-images as vertices of graph G,
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Figure 4.3: Workflow of the proposed DCDS. Given n number of gallery images, G, and

probe image P , we first extract their Resent101 features right before the global average

pooling (GAP) layer, which are then fed to CDS-Net (upper stream) and V-Net (lower

stream) branches. In the CDS-branch, after applying GAP, we compute the similarity

between M2 pair of probe-gallery image features, fp and fT
Gi using their dot prod-

ucts, where T denotes a transpose. Thereby, we obtain M ×M affinity matrix. Then,

we run CDS taking the probe image as a constraint to find the solution x∗ ∈ IRM×1

(similarity), and the dissimilarity, x∗
d, is computed as an additive inverse of the simi-

larity x∗. Likewise, in the lower stream we apply elementwise subtraction on M pair

of probe-gallery features. This is followed by GAP, batch normalization (BN), and

fully connected layer (FC) to obtain probe-gallery similarity score, R ∈ IRM×1, and

probe-gallery dissimilarity score, D ∈ IRM×1. Afterward, we elementwise multiply

x∗ and R, and x∗
d and D, to find the final similarity, Fs, and disimilarity, Fd, scores,

respectively. Finally, to find the prediction loss of our model, we apply a cross entropy

loss, the ground truth (Gt) is given as Gt ∈ IRM×1.

and their similarity as edge-weight wij . Given vertices V, and S ⊆ V be a

non-empty subset of vertices and i ∈ S, average weighted degree of each i
with regard to S is given as

φS(i, j) = aij −
1

|S|

∑

k∈S

aik ,

where φS(i, j) measures the (relative) similarity between node j and i, with

respect to the average similarity between node i and its neighbors in S.

Note that φS(i, j) can be either positive or negative. Next, to each vertex

i ∈ S we assign a weight defined (recursively) as follows:

wS(i) =

{

1, if |S| = 1,
∑

j∈S\{i} φS\{i}(j, i)wS\{i}(j), otherwise
(4.1)

where wij(i) = wij(j) = aij for all i, j ∈ V (i 6= j).
Intuitively, wS(i) gives us a measure of the overall similarity between ver-

tex i and the vertices of S \{i}, with respect to the overall similarity among
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the vertices in S \ {i}. Hence, a positive wS(i) indicates that adding i into

its neighbors in S will raise the internal coherence of the set, whereas in the

presence of a negative value we expect the overall coherence to decline. In

CDS, besides the additional feature, which allows us to incorporate a con-

straint element in the resulting cluster, all the characters of DS are inherited.

4.3.1.1 A Set of a person images as a constrained cluster

We cast person re-identification as finding a constrained cluster, where,

elements of the cluster correspond to a set of same person images and

the constraint refers to the probe image used to extract the correspond-

ing cluster. As customary, let us consider a given mini-batch with M
number of person-images, and each mini batch with k person identities

(ID), thus, each person-ID has Ω = M/k images in the given mini-batch.

Note that, here, instead of a random sampling we design a custom sam-

pler which samples k number of person IDs in each mini-batch. Let B =
{I1p1 , ...I

Ω
p1
, I1p2 , ...I

Ω
p2
, ...I1pk , ...I

Ω
pk} refers to the set of images in a single

mini-batch. Each time when we consider image I1p1 as a probe image P ,

images which belong to the same person id, {I2p1 , I
3
p1
...Ikp1}, should be as-

signed a large membership score to be in that cluster. In contrast, the re-

maining images in the mini-batch should be assigned significantly smaller

membership-score to be part of that cluster. Note that our ultimate goal

here is to find a constrained cluster which comprises all the images of the

corresponding person given in that specific mini-batch. Thus, each partic-

ipant in a given mini-batch is assigned a membership-score to be part of a

cluster. Furthermore, the characteristics vector, which contains the mem-

bership scores of all participants is always a stochastic vector, meaning that
∑M

i=1 zi = 1, where zi denotes the membership score of each image in the

cluster.

As can be seen from the toy example in Figure 4.2, the initial pairwise

similarities between the query and gallery images hold valuable informa-

tion, which define the relation of nodes in the given graph. However, it

is not straightforward to redefine the initial pairwise similarities in a way

which exploit the inter-images relationship. Dominant Sets (DS) overcome

this problem with defining a weight of each image p, g1, g2, g3 with regard

to subset S\i as depicted in Figure4.2, (2− 5), respectively. As can be ob-

served from Figure 4.2, adding node g3 to cluster S degrades the coherency

of cluster S = {p, g1, g2, g3}, whereas the relative similarity of the remain-

ing images with respect to set S = {p, g1, g2} has a positive impact on

the coherency of the cluster. It is evident that the illustration in Figure 4.2
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verifies that the proposed DCDS (Deep Constrained Dominant Set) could

easily measure the contribution of each node in the graph and utilize it in an

end-to-end learning process. Thereby, unlike a siamese, triplet and quadru-

plet based contrastive methods, DCDS consider the whole set of images

in the mini-batch to measure the similarity of image pairs and enhance the

learning process.

4.3.2 CDS Based End-to-end Learning

In this section, we discuss the integration of CDS in end-to-end learning.

We adopt a siamese based Resent101, with a novel verification loss to find

probe-gallery similarity, R, and dissimilarity, D scores. As can be seen

from Figure 4.3, we have two main branches: CDS network branch (CDS-

Net) and verification network branch (V-Net). In the CDS-Net, the ele-

ments of pairwise affinity matrix are computed first as a dot product of the

global pooling feature of a pair of images. Afterward, the replicator dy-

namics [148] is applied, which is a discrete time solver of the parametrized

quadratic program, Equ. 4.2, whose solution corresponds to the CDS. Thus,

assuming that there are M images in the given mini-batch, the replicator

dynamics, Equ. 1.10, is recursively applied M times taking each image in

the mini-batch as a constraint. Given graph G = (V,E,w) and its corre-

sponding adjacency matrix A ∈ RM×M , and probe P ⊆ V. First, a proper

modification of the affinity matrix A is applied by setting parameter −α
to the diagonal corresponding to the subset V \P and zero to the diago-

nal corresponding to the constraint image P . Next, the modified adjacency

matrix, B, is feed to the Replicator dynamics, by initiating the dynamics

with a characteristic vector of uniform distribution xt0 , such that initially

all the images in the mini-batch are assigned equal membership probability

to be part of the cluster. Then, to find a constrained cluster a parametrized

quadratic program is defined as:

maximize fα
P (x)

i = x
′Bx where, B = A− αÎp.

subject to x ∈ ∆
(4.2)

The solution, x∗
i , of fα

P (x)
i is a characteristics vector which indicates

the probability of each gallery image to be included in a cluster, containing

the probe image P i. Thus, once we obtain the CDS, x∗
i = [zig1 , z

i
g2
...zigM ],
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for each probe image, we store each solution x
∗
i , in Y ∈ IRM×M , as

Y =







x
∗
i

...

x
∗
M







=







z1g1 z1g2 · · · z1gM
...

. . .
...

zMg1 zMg2 · · · zMgM







.

Likewise, for each probe, P i, we store the probe-gallery similarity, R, and

dissimilarity, D, obtained from the V-Net (shown in Figure 4.3) in S ′ and

D′ as, S ′ = [R1, R2, ...RM ] and D′ = [D1, D2, ...DM ]. Next, we fuse the

similarity obtained from the CDS branch with the similarity from the V-Net

as

Fs = β(Y )⊗ (1− β)(S ′),

Fd = β(Yd)⊗ (1− β)(D′), where, Yd = δ − Y
(4.3)

δ is empirically set to 0.3. We then vectorize Fs and Fd into IR(M2×2),
where, the first column stores the dissimilarity score, while the second col-

umn stores the similarity score. Afterward, we simply apply cross entropy

loss to find the prediction loss. The intriguing feature of our model is that it

does not need any custom optimization technique, it can be end-to-end op-

timized through a standard back-propagation algorithm. Note that, Figure

4.3 illustrates the case of a single probe-gallery, whereas Equ. 4.3 shows

the solution of M probe images in a given mini-batch.

4.3.3 Auxiliary Net

In this work, we integrate an auxiliary net to further improve the perfor-

mance of our model. The auxiliary net is trained based on the multi-

scale prediction of Resnet50 [57]. It is a simple yet effective architecture,

whereby we can easily compute both triplet and cross entropy loss of differ-

ent layers of Resnet50 [57], hence further enhancing the learning capability.

Consequently, we compute the average of both losses to find the final loss.

As can be observed from Figure 4.4, we employ three features at different

layers from Resnet50 conv5_x Layer, and then we fed these three features

to the subsequent layers, MP, Conv, BN, and FC layers. Next, we com-

pute triplet and cross entropy loss for each feature which comes from the

Relu and FC layers, respectively. During testing phase we concatenate the

features that come from the DCDS and Auxiliary Net to find 4096 dimen-

sional feature. We then apply CDS to find the final ranking_score, (See

Figure 4.5).
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Figure 4.4: Illustrates the auxiliary net, which consists of two branches which are jointly

trained. We first use features at different layers, S1, S2, S3, and then feed these to

Global Maxpooling (GMP), Conv, BN, Relu and FC layers for further encoding. We

then compute triplet losses employing the features from the lower three streams after

Relu, shown by yellow, blue, and red circles. Next, after the final FC layer, we compute

the cross-entropy loss for each of the six different outputs, Oi, from the upper and lower

stream shown by distinct colored-boxes. Note that even if the upper and lower stream

apply the same operations, on S1, S2 and S3, they do not share the weights; thus the

encoding is different. We finally compute the final loss as the sum of the average of the

triplet and cross entropy losses.

4.3.4 Constraint Expansion During Testing

We propose a new scheme (illustrated in Figure 4.6) to expand the number

of constraints in order to guide the similarity propagation during the testing

phase. Given an affinity matrix, which is constructed using the features

obtained from the concatenated features (shown in Figure 4.5), we first

collect k-NNs of the probe image. Then, we run CDS on the graph of

the NNs. Next, from the resulting constrained cluster, we select the one

with the highest membership score, which is used as a constraint in the

subsequent step. We then use multiple-constraints and run CDS.

4.4 Experiments

To validate the performance of our method we have conducted several ex-

periments on three publicly available benchmark datasets, namely CUHK03

[85], Market1501 [177], and DukeMTMC-reID [182].

4.4.1 Datasets and evaluation metrics

Datasets: CUHK03 [85] dataset comprises 14,097 manually and automat-

ically cropped images of 1,467 identities, which are captured by two cam-
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Figure 4.5: During testing, given a probe and gallery images, we extract DCDS and

auxiliary features and concatenate them to find a single vector. Afterward, we build M

x M affinity matrix and run CDS with constraint expansion mechanism to find the final

probe-gallery similarity rank.

eras on campus; in our experiments, we have used manually annotated im-

ages. Market1501 dataset [177] contains 32,668 images which are split

into 12, 936 and 19,732 images as training and testing set, respectively.

Market1501 dataset has totally 1501 identities which are captured by five

high-resolution and one low-resolution cameras, the training and testing

sets have 751 and 750 identities respectively. To obtain the person bound-

ing boxes, Deformable part Model (DPM) [49] is utilized. DukeMTMC-

reID is generated from a tracking dataset called DukeMTMC. DukeMTMC

is captured by 8 high-resolution cameras, and person-bounding box is man-

ually cropped; it is organized as 16,522 images of 702 person for training

and 18, 363 images of 702 person for testing.

In multiple dataset (MD) setup, we first train our model on eight datasets:

CUHK03 [85], CUHK01 [84], Market1501 [177], DukeMTMC-reID [182],

Viper [34], MSMT17 [147], GRID [93], and ILIDS [181]. Next, we fine-

tune and evaluate on each of CUHK03 [85], Market1501 [177], and DukeMTMC-

reID [182] datasets.

Evaluation Metrics: Following the recent person re-id methods, we

use mean average precision (mAP) as suggested in [177], and Cumulated

Matching Characteristics (CMC) curves to evaluate the performance of our

model. Furthermore, all the experiments are conducted using the standard

single query setting [177].
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Methods mAP rank-1 rank-5

SGGNN [125] ECCV18 82.8 92.3 96.1

DKPM [126] CVPR18 75.3 90.1 96.7

DGSRW [124] CVPR18 82.5 92.7 96.9

GCSL [28] CVPR18 81.6 93.5 -

CPC [146] CVPR18 69.48 83.7 -

MLFN [26] CVPR18 74.3 90.0 -

HA-CNN [86] CVPR18 75.7 91.2 -

PA [130] ECCV18 74.5 88.8 95.6

HSP [73] CVPR18 83.3 93.6 97.5

Ours 85.8 94.81 98.1

RAw/RR [145] CVPR18 86.7 90.9 -

PAw/RR [130] ECCV18 89.9 93.4 96.4

HSPw/RR [73] CVPR18 90.9 94.6 96.8

Oursw/RR 93.3 95.4 98.3

Table 4.1: A comparison of the proposed method with state-of-the-art methods on Mar-

ket1501 dataset. Upper block, without re-ranking methods. Lower block, with re-

ranking method, w/RR, [183].

4.4.2 Implementation Details

We implement DCDS based on Resnet101 [57] architecture, which is pre-

trained on imagenet dataset. We adopt the training strategy of Kalayeh

et al. [73], and aggregate eight different person re-id benchmark dataset to

train our model. In total, the merged dataset contains 89,091 images, which

comprises 4937 person-ID (detail of the eight datasets is given in the sup-

plementary material). We first train our model using the merged dataset (de-

noted as multi-dataset (MD)) for 150 epochs and fine-tune it with CUHK03,

Market1501, and DukeMTMC-reID dataset. To train our model using the

merged dataset, we set image resolution to 450 × 150. Subsequently, for

fine-tuning the model we set image resolution to 384 × 128. Mini-batch

size is set to 64, each mini-batch has 16 person-ID and each person-ID has

4 images. We also experiment only using a single dataset for training and

testing, denoted as single-dataset (SD). For data augmentation, we apply

random horizontal flipping and random erasing [184]. For optimization we

use Adam, we initially set the learning rate to 0.0001, and drop it by 0.1 in

every 40 epochs. The fusing parameter in Equ. 4.3, β, is set to 0.9.
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Methods
Market1501 CUHK03 DukeMTMC-reID

mAP rank-1 rank-5 rank-1 rank-5 mAP rank-1 rank-5

Baseline SD 72.2 86.5 94.0 87.1 94.3 61.1 77.6 87.3

Baseline MD 74.3 87.5 95.3 87.7 95.2 62.3 79.1 88.8

DCDS (SD ) 81.4 93.3 97.6 93.1 98.8 69.1 83.3 89.0

DCDS (MD) 82.3 93.7 98.0 93.9 98.9 70.5 84.0 90.3

Ours (SD +

Auxil Net)

83.0 93.9 98.2 95.4 99.0 74.4 85.6 93.7

Ours (MD +

Auxil Net)

85.8 94.1 98.1 95.8 99.1 75.5 86.1 93.2

Table 4.2: Ablation studies on the proposed method. SD and MD respectively refer to the

method trained on single and multiple-aggregated datasets. Baseline is the proposed

method without CDS branch.

Methods rank-1 rank-5

SGGNN [125] ECCV18 95.3 99.1

DKPM [126] CVPR18 91.1 98.3

DGSRW [124] CVPR18 94.9 98.7

GCSL [28] CVPR18 90.2 98.5

MLFN [26] CVPR18 89.2 -

CPC [146] CVPR18 88.1 -

PA [130] ECCV18 88.0 97.6

HSP [73] CVPR18 94.28 99.04

Ours 95.8 99.1

Table 4.3: A comparison of the proposed method with state-of-the-art methods on

CUHK03 dataset.

4.4.3 Results on Market1501 Datasets

As can be seen from Table 4.1, on Market dataset, our proposed method

improves state-of-the-art method [73] by 2.5%, 1.21%, and 0.6% in mAP,

rank-1 and rank-5 scores, respectively. Moreover, comparing to state-of-

the-art graph-based DNN method, SGGNN [125], the improvement mar-

gins are 3%, 2.5%, and 2% in mAP, rank-1, and rank-5 score, respectively.

Thus, our framework has significantly demonstrated its benefits over state-

of-the-art graph-based DNN models. To further improve the result we have

adapted a re-ranking scheme [183], and we compare our method with state-

of-the art methods which use a re-ranking method as a post-processing. As

it can be seen from Table 4.1, our method has gain mAP of 2.2% over

HSP [73], and 10.5 % over SGGNN [125], 10.8 % over DGSRW.
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Methods mAP rank-1 rank-5

SGGNN [125] ECCV18 68.2 81.1 88.4

DKPM [126] CVPR18 63.2 80.3 89.5

DGSRW [124] CVPR18 66.4 80.7 88.5

GCSL [28] CVPR18 69.5 84.9 -

CPC [146] CVPR18 59.49 76.44 -

MLFN [26] CVPR18 62.8 81.0 -

RAPR [145] CVPR18 80.0 84.4 -

PA [130] ECCV18 64.2 82.1 90.2

HSP [73] CVPR18 73.3 85.9 92.9

Ours 75.5 87.5 -

PAw/RR [130] ECCV18 83.9 88.3 93.1

HSPw/RR [73] CVPR18 84.99 88.9 94.27

Ours w/RR 86.1 88.5 -

Table 4.4: A comparison of the proposed method with state-of-the-art methods on

DukeMTMC-reID dataset.Upper block, without re-ranking methods. Lower block, with

re-ranking method,w/RR, [183].

Train on Duke, CUHK03 → Test on Market1501

Methods mAP rank-1

PUL [48] 20.5 45.5

Ours 24.5 51.3

Table 4.5: A comparison of the proposed method with PUL [48] on Market1501 dataset.

4.4.4 Results on CUHK03 Datasets

Table 4.5 shows the performance of our method on CUHK03 dataset. Since

most of the Graph-based DNN models report their result on the standard

protocol [85], we have experimented on the standard evaluation protocol,

to make fair comparison. As can be observed from Table 4.5, our method

gain a marginal improvement in the mAP. Using a reranking method [183],

we have reported a competitive result in all evaluation metrics.

4.4.5 Results on DukeMTMC-reID Dataset

Likewise, in DukeMTMC-reID dataset, the improvements of our proposed

method is noticeable. Our method has surpassed state-of-the-art method

[73] by 1.7%/1.6% in mAP/rank-1 scores. Moreover, comparing to state-

of-the-art graph-based DNN, our method outperforms DGSRW [124], SG-

GNN [125] and GCSL [28] by 9.1%, 7.3%, and 6% in mAP, respectively.
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4.4.6 Ablation Study

To investigate the impact of each component in our architecture, we have

performed an ablation study. Thus, we have reported the contributions

of each module in Table 4.2. To make a fair comparison with the base-

line and graph-based DNN models, the ablations study is conducted in

a single-dataset (SD) setup. Improvements over the Baseline. As our

main contribution is the DCDS, we examine its impact over the baseline

method. The baseline method refers to the lower branch of our architec-

ture that incorporates the verification network, which has also been utilized

in [126], [124], [125]. On Market1501 dataset, DCDS provides improve-

ments of 9.2%, 6.8% and 3.6% in mAP, rank-1, and rank-5 scores, respec-

tively, over the baseline method; whereas in DukeMTMC-reID dataset the

proposed DCDS improves the baseline method by 8.0%, 5.5% and 1.7% in

mAP, rank-1, and rank-5 scores, respectively.

Comparison with graph-based deep models. We compare our method

with recent graph-based-deep models, which adapt similar baseline method

as ours, such as [124], [125]. As a result, on DukeMTMC-reID dataset

our method surpass [124] by 9.1%/6.8%, and [125] by 17.9 % / 7.4 % in

mAP / rank-1 scores. In light of this, We can conclude that incorporating a

constrained-clustering mechanism in end-to-end learning has a significant

benefit on finding a robust similarity ranking. In addition, experimental

findings demonstrate the superiority of DCDS over existing graph-based

DNN models.

Parameter analysis. Experimental results by varying several parameters

are shown in Figure 4.7. Figure 4.7(a) shows the effect of fusing parameter,

β, Equ. (4.3) on the mAP. Thereby, we can observe that the mAP tends to

increase with a larger β value. This shows that the result gets better when

we deviate much from the CDS branch. Figure 4.7(b) shows the impact

of the number of images per person-ID (Ω) in a given batch. We have ex-

perimented setting Ω to 4, 8, and 16, as can be seen, we obtain a marginal

improvement when we set Ω to 16. However, considering the direct rela-

tionship between the running time and Ω, the improvement is negligible.

c) and d) show probe-gallery similarity obtained from baseline and DCDS

method, using three different probe-images, with a batch size of 64, and

setting Ω to 4, 8 and 16.

In the supplementary material, we provide additional experiments on

cross-dataset person-re-identification (re-id) using the proposed deep con-

strained dominant sets (DCDS) on Market1501 dataset. In section one, we

summarize the datasets we used in our experiments. In section two, we
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present the experiments we have performed on cross-dataset person re-id.

And, in section three, we provide hyper parameter analysis on DukeMTMC-

reID and CUHK03 datasets. Figure 4.8 illustrates an example of our method

training-output (left) and learning objective, target matrix, (right). Fig-

ure 4.9 demonstrates the similarity fusing process, between the V-Net and

CDS-Net, alongside sample qualitative results.

Experiments on cross-datasets evaluation. Due to the lack of abun-

dant labeled data, cross-dataset person re-id has attracted great interest.

Recently, Fan et al. [48] have developed a progressive clustering-based

method to attack cross-dataset person re-id problem. To further validate our

proposed DCDS, we apply our method on cross-dataset person re-id prob-

lem and compare it with progressive unsupervised learning (PUL) [48]. To

this end, we train our model on DukeMTMC-reID and CUHK03 datasets

and test it on Market1501 dataset. We then compare it with PUL [48],

which has also been trained on CUHK03 and DukeMTMC-reID datasets.

As can be observed from Table 4.5, even though our proposed method is not

intended for cross-dataset re-id, it has gained a substantial improvements

over PUL [48], that was mainly designed to attack person re-id problem in

a cross-dataset setup.

4.4.7 Parameter Analysis

Similar to the parameter analysis reported in the main manuscript, we re-

port hyper parameter analysis on DukeMTMC-reID and CUHK03 dataset.

The performance of our method with respect to the fusing parameters on

DukeMTMC-reID and CUHK03 are shown in Figure 4.10 (a) and Figure

4.10 (b), respectively. Thereby, as can be observed, the results show sim-

ilar phenomena as in Market1501, where the mAP increases with a larger

β value. Figure 4.11 shows the similarity distribution given by the baseline

and the proposed DCDS using three different probe-images, with a batch

size of 64, and setting Ω to 4, 8 and 16.

4.5 Summary

In this work, we presented a novel insight to enhance the learning capability

of a DNN through the exploitation of a constrained clustering mechanism.

To validate our method, we have conducted extensive experiments on sev-

eral benchmark datasets. Thereby, the proposed method not only improves

state-of-the-art person re-id methods but also demonstrates the benefit of

incorporating a constrained-clustering mechanism in the end-to-end learn-

ing process. Furthermore, the presented work could naturally be extended
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to other applications which leverage a similarity-based learning. As a fu-

ture work, we would like to investigate dominant sets clustering as a loss

function.
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Figure 4.6: Given a constraint (probe-image) P j , we first collect k-NNs to the probe-

image, based on the pairwise similarities. Subsequently, we run CDS on the graph of

the k-NN. Then, based on the cluster membership score obtained, we choose image

Ii, with the highest membership score and re-run CDS, considering P j and Ii as

constraints, over the graph of the all set of images, IM , in the minibatch. Afterward,

we consider the solution as our final rank.
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Figure 4.7: Illustrates different experimental analysis performed on Market1501 dataset.

a) shows the impact of fusing parameter β in Equ. 4.3. b) shows the performance of

our model with varying the number of images per person in a given batch. c) and d)

illustrate the similarity between the probe and gallery images obtained from the base-

line and DCDS method, respectively. It can be observed that the baseline method has

given larger similarity values for false positive samples (red asterisks above the blue

dashed-line) and smaller similarity values for false negative samples (green circles

below the blue dashed- line). On the other hand, the proposed DCDS has efficiently

assigned the appropriate similarity scores to the true positive and negative samples.
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Target

Same	person	Images Different	person		Images	

Output	(,-.	/0123) Output	(56.3	/0123)

Figure 4.8: On the right hand side, the target matrix is shown. There are total 16 persons

in the mini-batch and 4 images per ID (Ω = 4), batch size = 64. In the target ma-

trix, the white-blocks represent the similarity between the same person-images in the

mini-batch, whereas the black-blocks of the matrix define the dissimilarities between

different person images. In the similarity matrix shown left ( after one epoch) and

middle (after 70th epochs) each row of the output matrix denotes the fused similarity

obtained from the CDS-Net and V-Net, per Equ. (6) in the main manuscript. Thus, we

optimize our model until we obtain an output with a similar distribution of the target

matrix. As can be seen, our model has effectively learned and gives a similarity matrix

(shown in the middle) which is closer to the target matrix.

79



Chapter 4. Deep Constrained Dominant Sets for Person Re-identification

!" # +% = !" #
((!(#)")

! # *(!(#)

Replicator

CDS-Net

V-Net

Probe Positive Negative

rank

⊗

⊗= elementwise multiply
45

AG

R

R

7∗

rank

7∗

rank

9:

9: = ; ⊗ 7∗

Figure 4.9: Exemplar results obtained as a result of the similarity fusion between the V-

Net and CDS-Net. The Upper-row shows the probe and gallery similarity (R) obtained

from the V-Net, where the green circles show persons similar to the probe (shown by

purple-circle), while the red circles denote persons different from the probe image.

Middle-row shows the workflow in CDS-Net. First, graph G is formed using the sim-

ilarity obtained from the dot products. We then construct the modified affinity matrix

B, followed by application of replicator dynamics on B to obtain the probe gallery

similarity (X∗). Finally, We elementwise multiply X∗ and R to find the final probe-

gallery similarity (Fs), shown in the third row. The intensity of the edges in, G, R, x∗,
and Fs define the similarity value, where the bold ones denote larger similarity values,

whereas the pale-edges depict smaller similarity values.
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Figure 4.10: Performance of our model with respect to fusing parameter β, on (a)

CUHK03, and (b) DukeMTMC-reID, datasets.
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4.5. Summary
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Figure 4.11: Shows experimental analysis performed on CUHK03 (1a,b), and

DukeMTMC-reID (2a,b) datasets. 1a, 2a and 1b, 2b illustrate the similarity between

the probe-gallery images obtained from the baseline and DCDS method, respectively.

It can be observed that the baseline method has assigned larger similarity values for

false positive samples (red asterisks above the blue dashed-line) and smaller similar-

ity values for false negative samples (green circles below the blue dashed-line). On

the other hand, the proposed DCDS has efficiently assigned the appropriate similarity

scores to the true positive and negative samples. Note that, for better visibility, we have

randomly assigned a large (close to 1) self-similarity value to the probe (blue-circle).
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CHAPTER5

Conclusion

In this thesis, we have proposed several schemes which exploit constrained

clustering mechanism to tackle different computer vision problems such

as, Image Segmentation and Co-segmentation, Image Retrieval, and Person

Re-identification. Thereby, we validate the indispensability of the proposed

graph-based algorithms. Moreover, the usage of constrained dominant sets

(CDS) in an end-to-end manner demonstrates the advantage of integrating

graph-based classical methods into a deep neural network (DNN) model.

In Chapter 2, we have demonstrated the applicability of CDS to prob-

lems such as interactive image segmentation and co-segmentation (in both

the unsupervised and the interactive flavor). In our perspective, these can

be thought of as “constrained” segmentation problems involving an exter-

nal source of information (being it, for example, a user annotation or a

collection of related images to segment jointly) which somehow drives the

whole segmentation process. The approach is based on some properties of

a family of quadratic optimization problems related to dominant sets which

show that, by properly selecting a regularization parameter that controls the

structure of the underlying function, we are able to “force” all solutions to

contain the constraint elements. The proposed method is flexible and is

capable of dealing with various forms of constraints and input modalities,
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Chapter 5. Conclusion

such as scribbles and bounding boxes, in the case of interactive segmen-

tation. Extensive experiments on benchmark datasets have shown that our

approach considerably improves the state-of-the-art results on the problems

addressed.

In Chapter 3, we addressed the content-based image retrieval problem.

We developed a novel and computationally efficient CBIR method based

on a constrained-clustering concept. In particular, we showed an efficient

way of estimating a positive impact weight of features in a query-specific

manner. Thus it can be readily used for feature combination. Furthermore,

the proposed scheme is fully unsupervised, and can easily be able to detect

false-positive NNs to the query, through the diffused similarity of the NNs.

To demonstrate the validity of our method, we performed extensive exper-

iments on benchmark datasets. Besides the improvements achieved on the

state-of-the-art results, our method shows its effectiveness in quantifying

the discriminative power of given features. Moreover, its effectiveness on

feature-weighting can also be exploited in other computer vision problems,

such as person re-identification, object detection, and image segmentation.

On the other hand, in CDSIR, we have developed a locally constrained

diffusion process which, as of existing methods, has no problems such as

choosing optimal local neighbor size and initializing the dynamics to ex-

tract dense neighbor which constrain the diffusion process. The framework

alleviates the issues while improving the performance. Experimental re-

sults on three well known datasets in the field of retrieval demonstrate that

the approach compares favorably with state-of-the-art algorithms.

In Chapter 4, we presented a novel insight to enhance the learning capa-

bility of a DNN through the exploitation of a constrained clustering mech-

anism. To validate our method, we have conducted extensive experiments

on several benchmark datasets. Thereby, the proposed method not only

improves state-of-the-art person re-id methods but also demonstrates the

benefit of incorporating a constrained-clustering mechanism in the end-to-

end learning process. Furthermore, the presented work could naturally be

extended to other similarity based applications.
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