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SUMMARY 

Extreme weather events, from river flooding to droughts and tropical cyclones, are likely to 

become both more severe and more common in the coming years, resulting from drivers such 

as climate change and mismanagement of natural resources. 

The damages caused by these extreme events will be felt across all sectors of society, 

particularly in the form of economic losses to productivity and physical assets. In the face of 

this threat, policy- and decision-makers are increasingly calling for new approaches and tools 

to support risk management and climate adaptation pathways that are able to capture the 

full extent of multi-sectoral damages.  

Beginning with a review of the state-of-the art literature concerning Machine Learning (ML) 

methods, this Thesis builds a GIS-based Bayesian Network (BN) approach that is capable of 

capturing and modelling multi-sectoral flooding damages against future ‘what-if’ scenarios 

(e.g. changes in land use/cover and flooding hazard patterns). In doing so the work addresses 

key knowledge gaps in the literature, while providing support and additional insight for 

decision making underpinning the definition of strategies and policies for Disaster Risk 

Reduction and Management. 

To enable this approach, a risk-based conceptual framework was developed in line with the 

current IPCC definitions, that highlights pathways of interaction between hazard, exposure, 

and vulnerability indicators related to flooding events, and the subsequent damages to the 

agricultural, industrial, and residential sectors. Building on this framework, the BN model was 

then trained and validated by exploiting data collected from the 2014 Secchia River flooding 

event, as well as other variables selected for the case study area. Moreover, in this stage, a 

novel approach to defining the structure of the BN was performed, reconfiguring the model 

according to expert judgment and data-based validation. 

During the validation process, the finalized BN model showed a good predictive capacity for 

flooding damages in the agricultural, industrial and residential sectors, predicting the severity 

of damages with a classification accuracy of about 60% for each of these assessment 

endpoints. Model accuracy would be improved with additional and more detailed 

observational data, as indicated in the validation stage showing as the range of uncertainty in 

the model prediction for each sector increases with decreasing quantities of data. However 

the model still performs successfully despite the constraints within the available dataset. This 
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gives a greater picture of multi-sectoral flooding damages than that found in the current BN-

related literature, which focuses almost exclusively on the residential sector. In support of 

this, a sensitivity analysis was completed, examining the relative importance of the 

explanatory BN variables (e.g. area of reported damages, land use, and flooding hazard) 

towards the multi-sectoral damages, and highlighting those that should therefore be 

prioritized in a more detailed data collection, allowing for better capturing and modelling of 

multi-sectoral damages against future flooding events. 

Finally, based on the finalized BN model, ‘what-if’ scenario analysis was performed to 

understand the potential impacts of future changes in i) land use patterns, as well as ii) 

increasing flood depths resulting from more severe flood events. The output of the model 

showed a rising probability of experiencing large monetary damages under both scenarios, 

representing the increased damages likely to be faced in the future as extreme events become 

more common and as under the projected land development in the case study area. 

In summary, this Thesis presents a full narrative for the analysis of multi-sectoral flooding 

damages through a BN approach, not only offering a predictive damage model, but also 

describing its construction, as well the potential applications of the methodology for risk 

assessment purposes. In spite of constraints within the case study dataset, the results of the 

appraisal show good promise, and together with the designed BN model itself represent a 

valuable support for Disaster Risk Management and Reduction against extreme river flooding 

events, enabling more effective and reliable decision making.  
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OBJECTIVES AND MOTIVATIONS 

Extreme weather events, from river flooding to droughts and tropical cyclones, pose a 

significant threat to communities across the world, in terms of economic losses to production 

and damages to physical assets, as well as wider societal losses to people and the 

environment (UNFCCC, 2020). The risks presented by these events are likely to become both 

more severe and more common in the coming years as a result of climate change and 

anthropic over-exploitation of natural resources, further worsening the potential impacts 

(IPCC, 2018). 

In the face of this rising threat, in order to reduce damages, policy- and decision-makers 

require new integrated approaches and tools to support risk management and climate 

adaptation pathways, particularly to understand the nuances of damages across different 

sectors and under multiple possible scenarios. In terms of flood damage, where stage-damage 

curve models have previously been commonly used (Amadio et al., 2016; Jongman et al., 

2012; Thieken et al., 2009; Wing et al., 2020), they are increasingly being replaced by more 

sophisticated models, drawing from expert knowledge, increased variable input, and more 

powerful computational methods, including those exploiting functionalities offered by 

Machine Learning (ML). Among these, upcoming Bayesian Network (BN) approaches 

(Schröter et al., 2014; Wagenaar et al., 2019, Paprotny et al., 2020), represent useful methods 

able to integrate heterogeneous data sources, allowing for predictive hazard and impact 

assessments based on real-world training dataset. 

Working in collaboration with the Fondazione Centro Euro-Mediterraneo sui Cambiamenti 

Climatici (CMCC)1, this thesis will contribute to the goals of the European Commission-funded 

LODE (Loss Data Enhancement) project2, which aims to optimize the analytical tools and 

procedures  used for damage data collection and processing, in order to support the 

development of policies and strategies for Climate Change Adaptation and Disaster Risk 

Reduction. 

Accordingly, this thesis aims to build on the state-of-the-art research in the field of ML, 

through the design and application of a BN approach able to capture and model multi-sectoral 

 
1 https://www.cmcc.it 
2 https://www.lodeproject.polimi.it 

http://www.cmcc.it/
https://www.lodeproject.polimi.it/
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damages against multiple ‘what-if’ scenarios, exploiting damage data collected against the 

2014 Secchia river flooding event as training dataset of the BN model.  

To satisfy the full motivations of the work, the practical implementation of this approach will 

involve the following operational phases: 

- An initial critical analysis of state-of-the-art BN approaches (within the wider family of 

ML-based models) for disaster damage assessments and modelling will be performed, 

discussing and comparing the current approaches, with particular attention paid to 

studies dealing with river flood-related hazards.  

- In turn, this preliminary review will pave the way for the design of a novel BN model 

allowing multi-sectoral damage assessment under possible future scenarios. 

- The collection and pre-processing of relevant hazard, exposure, and vulnerability GIS-

based data, used to effectively train, calibrate and validate the BN model for 

application, as well as the projected data (e.g. river flood and land-use/cover 

projections from EU data portals) necessary to shape potential future scenarios to be 

investigated through the BN. 

- Optimal model design will be assessed through a two-tiered approach to model 

configuration and validation, in order to finalize the BN for application for multi-

sectoral damage assessment in the investigated area. These applications will include 

a sensitivity analysis allowing for the identification of the most influential set of 

variables. 

- BN-based future 'what-if' scenario analysis, for better understanding the potential 

multi-sectorial damages against several flood scenarios under different return 

periods, as well as changes in the land use/cover. 

 

The methodology as presented, and the designed BN model itself, will represent a valuable 

support for disaster risk management and reduction against extreme river flooding events. 

Particularly, it will provide a more complete picture on the multi-sectoral impact of flood-

related events across the agricultural, residential, and industrial sectors.  Moreover, the 

examination of a variety of ‘what-if’ future scenarios will further support these aims in the 

analysis of how expected variations in the magnitude of flood-related events, as well as 

changes in the land use will translate into more severe future impacts.  
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THESIS STRUCTURE 

This Thesis is structured in three main sections: Section A provides an overall picture of the 

theoretical background underpinning the design and implementation of BN approaches for 

damage assessment and modelling; Section B describes the BN model as designed for the specific 

case study, including the collection and processing of all necessary data for the model training; 

Section C presents the results of the application of the proposed BN to the case study area of the 

Secchia river basin (Italy), with the main findings from the scenario analysis.  

More specifically; 

Section A introduces the main concepts of BN approaches, firstly within the wider ML family, 

before focusing on their specific key functionalities and methodological phases for their design 

and implementation. A review of the main approaches currently seen leads into a systematic 

review of the key relevant papers in the area, highlighting their strengths and weaknesses. 

Clarification of the main knowledge gaps addressed in the research are further discussed. 

Section B describes the case study area, beginning with the wider context of the Po river basin, 

before more specifically targeting the Secchia basin, with a detailed description of the flooding 

event that occurred in 2014. It also provides details on the dataset collected to inform the BN 

model, as well as the processing methods used to prepare the data for the BN training. Further, 

the risk-based conceptual framework is presented, systematically identifying pathways of 

interaction between climate-related drivers and damages on the exposed sectors. Finally, the 

approach and operative steps for the application of the BN for ‘what-if’ scenario analysis are 

introduced.  

Section C describes and critically analyses the results of the BN methodology applied in the case 

study of the Secchia Basin for multi-sectoral damage assessment, including a range of statistics 

summarizing key damage-related metrics useful to drive disaster risk management and 

adaptation pathways in the analyzed area. Results of the BN model construction and 

configurations’ testing are detailed and discussed, alongside the analysis performed on parameter 

sensitivity and future scenarios. 

The Conclusions provide a summary of the main findings of the Thesis. Discussion of the results 

give an overview of the key study outcomes, highlighting the strengths and weaknesses of the 

approach, and also identifying areas of the research that could potentially further built upon.  
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SECTION A: THEORETICAL BACKGROUND 
 

1. Introduction to Machine Learning and Bayesian Network approaches 

 

Machine Learning (ML) is a branch of Artificial Intelligence that uses computer algorithms to 

learn previously unknown or unattainable patterns from various data inputs, performing tasks 

that would otherwise be too difficult or slow to compute (Alpaydin, 2020). It is an up-and-

coming technique within the world of Disaster Risk assessment and Management (DRM), 

seeing an increasing use in all phases of risk evaluation (Deparday et al., 2019; GFDRR, 2018; 

Wagenaar et al., 2019). 

With rapidly improving technological advances, ML-based methods give the opportunity to 

not only quickly handle large amounts of data (also known as ‘big data’), but also learn from 

them in real time, capturing hidden patterns in the training data and extracting the required 

information for statistical predictions (Al-Jarrah et al., 2015). Damage analysis, in particular, 

can exploit methods under the branch of supervised ML, where a real-life output (i.e. class 

labels) is available for the training of the model, and it is possible to approximately map the 

input variables to their corresponding outputs (Ayodele, 2010). The learnt mapping function 

can then be used for predictive purposes with new input data. In contrast, unsupervised 

learning methods have no available user-provided labelled data to learn from, and as such 

are driven by the statistical patterns inherent within the input data (Kotsiantis et al., 2007). 

Two major groups of supervised Machine Learning can currently be identified: i) regression 

methods such as Random Forest, and ii) classification methods that include Bayesian Network 

approaches (Deparday et al., 2019). These differ in terms of the output variables given by the 

model. Specifically, classification techniques compute discrete outputs, and can be used, for 

example, for the detection of inundated areas after flooding events through the classification 

of satellite images (Lamovec et al., 2013; Lin et al., 2019); while regression techniques provide 

continuous outputs and find wider application in the prediction of damages (Mayfield et al., 

2018; Menderes et al., 2015; Wagenaar et al., 2017). 

With the main aim of identifying the potential contribution and support of ML methods to 

damage modelling and assessment and better understanding the wider context and trends of 

this field of research, a literature review was performed. The Scopus database3 was searched 

 
3 https://www.scopus.com/home.uri 
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by using two search strings, specifically i) ["flood*"  AND  "damage*"  AND  "machine 

learning"]; and ii) ["flood*"  AND  "risk*"  AND  "machine learning"]. Several potential 

methodological approaches were prevalent, including Bayesian Networks, Decision Trees, 

Random Forest (e.g. application of Random Forest and Decision Tree approaches to damage 

prediction; Sadler et al., 2018; Spekkers et al., 2014; Wang et al., 2015) and Artificial Neural 

Networks (e.g. for flood forecasting; Campolo et al., 2003).   Upon detailed analysis of the 

various searches performed, Bayesian Networks (BN) were identified as an increasingly 

common tool for state-of-the art damage assessments and modelling (e.g. Schröter et al., 

2014; Sperotto et al., 2017; Wagenaar et al., 2017). The graph below shows the growing rate 

of scientific production in this area, and highlights a significant increase in output in the last 

ten years. 

 

 
Figure 1: Annual scientific production referencing Bayesian methods within the context of flood assessment 

 

BN are statistical approaches built in the form of qualitative structures known as directed 

acyclic graphs (DAGs) representing the variables of concern as nodes on the graph, with arcs 

to represent the probabilistic dependencies among variables within the system. 

Parameterization of the network then encodes marginal and conditional probabilities of the 

variables (Furlan et al., 2020; Sperotto et al., 2017). 
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BN have been noted for their ability to integrate heterogeneous data sources, that may 

include some inputs based on quantitative data, but also some that are classified qualitatively 

using expert judgement or by incorporating stakeholders’ perspectives (Sperotto et al., 2017). 

These kind of methods can be designed to tackle complex environmental issues featured by 

non-linear behaviour and hampered by large uncertainties (Sperotto et al., 2017). 

The construction of a BN model follows a stepwise progression (Deparday et al., 2019; Furlan 

et al., 2020; Sperotto et al., 2017).  After the objectives of the model have been defined and 

the application contextualized, the model must then be conceptualized (i.e. BN conceptual 

model design) in order to ascertain the causal relationships between the system’s 

components. This is often aided with the opinion of experts in the relevant fields of 

knowledge. From there, the model is then parametrized by assigning states to each of the 

variables, and the marginal and conditional probabilities of the system components are 

computed. Following this, various forms of model validation can be performed. Comparison 

with a validation dataset is used to check for accuracy; this can be from another subsection 

of the data, selected randomly for the original dataset, or potentially from another dataset 

extracted from a different location that can be used to assess the transferability of the model 

to other events (Wagenaar et al., 2017). Modification of the variables used or of the training 

set can be used to rerun the model and strengthen its learning capability, increasing its 

accuracy for prediction. Sensitivity analysis can then be performed to measure the sensitivity 

of the results to changes in the inputs or parameters (Furlan et al., 2020). Once training, 

calibration, and validation of the BN model have been performed, it is then possible to use 

the designed model for ‘what-if’ scenario analysis, defining representative possible 

alternative scenarios with specific characteristics (e.g. the projected impacts of climate 

change under different Representative Concentration Pathways), assessing the relative 

changes in terms of posterior probabilities (for relevant variables) against the set changes in 

input.  

The specific details of these developmental steps are presented in the Section 3.2 detailing 

the methodological approach underpinning the BN development for the case study of 

concern. 
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1.1 Review of BN application for flood risk and damage assessment  

Building on the results of the previous literature search for BN approaches to flood damage 

assessment and modelling, a detailed review of selected ‘key papers’ was undertaken, in 

order to better understand the latest state-of-the-art techniques and applications of BN for 

flood risk and damage appraisal. 

Specifically, from the original search of ML methods, 59 papers were related to BN 

approaches, and those that were pertinent to the aims of the LODE project were identified, 

eliminating those not properly focusing on damage assessment or presenting datasets that 

were significantly different to those collected for the project. Specifically, as a relatively new 

field of research, few of the papers directly applied BN for damage assessment. Most of the 

research into similar applications in flood modelling for DRM has focused mainly on hazard 

modelling, identifying for example the geographical extent of a flooding event rather than 

investigating the resulting damages across sectors (D’Addabbo et al., 2016; Rosser et al., 

2017).  

Applications to damage modelling emerged as a young but growing branch of research, and 

of these, eight ‘key papers’ representing the current research trends within flood risk and 

damage assessments were selected. The majority of these papers considered the possibility 

of predicting residential damages (either monetarily or as a relative loss to the building), 

training the model using either a random subsection of the wider data for local prediction, or  

data from one flood event to build a model for prediction of events in other locations. Table 

1 reports these ‘key papers’, including an overview of their main objectives and the applied 

methodology, as well as the data used to train the constructed BN models.  

 

 

 

 

 

 

 

 

 

 



14 
 

Table 1 Summary of key papers identified for analysis 

Key 

Paper 

ID 

Reference Objectives Methodology Damage data Data Source 

1 
Schröter et 

al. (2014) 

Predict relative damages 

to residential buildings; 

Spatial and temporal 

transfer to assess 

prediction of other 

flood-related events 

BN models (expert 

driven, and data 

driven); 

Regression trees 

Relative loss to 

residential buildings 

Telephone 

survey 

2 
Notaro et al. 

(2014) 

Retrospective 

assessment of 

mitigation options for 

increased resilience 

BN Decision 

Models 

Relative loss to 

residential buildings 

Insurance 

companies 

3 
Balbi et al. 

(2016) 

Vulnerability model to 

assess benefits of the 

implementation of an 

early-warning system 

BN model N/A 
GIS –based 

data 

4 
Wagenaar et 

al. (2017) 

Prediction of damages 

using a limited dataset 

enriched with additional 

variables  

BN model; 

Random Forest; 

Regression trees 

Household contents 

and structure 

Damage claims 

to government 

5 
Wagenaar et 

al. (2018) 

Regional and temporal 

transferability to assess 

prediction of other 

flood-related events; 

Comparison of multiple 

ML-based models; 

BN model; 

Random forest 

Relative loss to 

residential 

buildings; 

Household contents 

and structure 

Telephone 

survey; 

Damage claims 

to government 

6 

Sairam, 

Schröter, 

Rözer, et al. 

(2019) 

Improve spatio-

temporal transferability 

over previous models to 

assess prediction of 

other flood-related 

events; 

Hierarchical BN 

Model 

Relative loss to 

residential buildings 

Telephone 

survey 

7 

Sairam, 

Schröter, 

Lüdtke, et al. 

(2019) 

Quantify vulnerability 

reduction resulting from 

differing levels of 

private precaution 

BN model; 

Regression trees 

Relative loss to 

residential buildings 

Telephone 

survey 

8 

Paprotny, 

Kreibich, 

Morales-

Nápoles, 

Wagenaar, et 

al. (2020) 

Improved exposure and 

vulnerability estimation 

for residential and 

commercial buildings 

BN model 

Relative losses to 

commercial and 

residential assets 

Telephone 

survey; 

Damage claims 

to government 
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The information necessary for appropriate computation of BN models, with a variety of 

heterogeneous data, is rarely collected for damage modelling purposes. Combined with 

privacy issues and the magnitude of datapoints necessary for data-driven ML techniques, data 

that is detailed enough for these analyses is currently hard to come by. Accordingly, two case 

studies where this data is available form the basis of the assessment for five out of the eight 

‘key papers’, either individually or through combination of the available data for both cases. 

The first case study is set in Germany, where residential damage information for a random 

sample of local residences was collected via telephone interviews, in relation to five flooding 

events in the Elbe and Danube catchment areas (Schröter et al., 2014). Data collected includes 

early warning and precautionary measures, socioeconomic factors, and building 

characteristics, incorporated with hazard models for the investigated flood-related events. 

Residential damage data, given in the form of a loss ratio, is the sole assessment endpoint of 

these studies and related BN model. Specifically, Schröter et al. (2014) examined the German 

case study to evaluate the possible spatial and temporal transferability of various damage 

models. These include a traditional depth damage model, as well as regression trees and four 

different BN models, either data-driven or constructed using expert knowledge, and each 

composed of either 10 or 28 input variables. Each model was trained using data from one 

flooding event that occurred in the Elbe region, then cross-validated using a different event 

located in the same region, and several others in the Danube region. Results showed that 

increasing complexity of the model through additional variables consistently increased the 

prediction capacity of the BN models, particularly in a spatial transfer setting. Moreover, 

among the tested models, BN were the most successful at predicting damages. 

The second case study concerns the Netherlands focusing on a single flooding event: the 1993 

Meuse flood (Wagenaar et al., 2017), in line with the case study of concern of this Thesis, 

focusing on the 2014 Secchia flood event. There are also parallels in how data pertaining to 

damage and exposure was collected, i.e. coming from damage claims submitted to the 

respective local governments. The available variables are therefore also similar to those for 

the Secchia river. However in the Dutch case, data was only available for residential losses (as 

in Germany), and accurate localization was limited as each damage claim could only be 

georeferenced to postal code, which may contain up to 20 buildings. Specifically, for the 

Dutch case study, Wagenaar et al. (2017) hoped to improve upon traditional stage-damage 

curve models (e.g. Jongman et al., 2012; Thieken et al., 2009) by using variables such as flood 
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depth, velocity and duration, as well as household size and building type and age in order to 

construct BN and Regression Tree models. A subsection of the data available was used to train 

the models, and the rest for their validation. In this case, due to the limitations in the input 

dataset presenting an imprecise nature in the localization method, BN prove less successful 

in prediction.  

In the most recent study by Wagenaar et al. (2018), the authors  build on the models trained 

in each of the previous two studies (Schröter et al., 2014; Wagenaar et al., 2017), applying 

them to both the German and Dutch case studies, looking to improve spatial and temporal 

transferability, while comparing the relative strength of BN and Random Forest approaches. 

For BN, the variables were harmonized to be applicable to both datasets, and two models 

were constructed, one from the Dutch dataset and another using the German data. After that, 

they were validated using the opposite datasets. BN, in this case, improve the transferability, 

outperforming the other methods such as Random Forest. The results stress the need to 

collect heterogeneous data, with the quantity of data points being less important for higher 

prediction accuracy in damage evaluation. 

Research into the German case study was continued by Sairam et al. (2019), who constructed 

a Hierarchical Bayesian Model. The study attempts to incorporate a generalized model that is 

capable of modelling various regions and events (e.g. coastal, pluvial and river floods), with a 

localized one, which could be applied to the specific dataset of another chosen event. In doing 

so they were able to create a model that more effectively captured spatio-temporal variability 

in damages. 

Of the selected ‘key papers’, two do not directly address a full prediction of flood damages in 

the same way, instead performing some form of scenario analysis using a simplified BN model. 

Among these, Notaro et al. (2014) used BN to investigate several possible mitigation scenarios 

for a previous flooding event that occurred in Palermo, by retroactively applying different 

water management options. Sairam, Schröter, Lüdtke, et al. (2019) attempted to capture the 

difference in vulnerability of households to flooding damage, relative to their level of private 

precaution (e.g. installation of flood barriers or sealing of exposed areas such as basements). 

Using the German case study, BN were found to be the most effective models for 

understanding this variable.  

Balbi et al. (2016) applied a BN model to assess the difference in flood risk with different 

availability and reliability of early warning measures, with a focus on human risk rather than 
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monetary damages. In contrast to the other studies which simultaneously involved all 

collected variables within the BN, they separately compartmentalized all exposure, hazard, 

and vulnerability variables to produce a risk-based framework for the network. 

Among the ‘key papers’, the most sophisticated model, built from the German and Dutch 

datasets, comes from Paprotny et al. (2020). Specifically, within this study, a more detailed 

estimation of the exposure to buildings is undertaken, and vulnerability is modelled 

separately through two different BN models, one covering residential assets and the other 

considering commercial assets. This framework used both training data concerning pluvial 

and river flood events, with the intention to have a wide range of potential uses. Moreover, 

the application of the models to a further case study addressing a coastal flooding event in 

France, showed good performance, predicting damage losses in the area better than other 

damage models. 

Overall, BN models show a notable added value in this field of research, regularly 

outperforming both traditional models and other ML-based approaches (e.g. Random Forest). 

This has been applied in the majority of cases for prediction of residential damages caused by 

flooding events, trained either on a local scale or to multiple case studies for checking BN 

performance for transferability. 

Among these added values, the biggest factor may be the flexibility of the proposed BN 

models, as their construction can draw from a wide range of knowledge bases and expertise, 

and incorporate a wide variety of input data, also giving an insight into the relative importance 

of the relevant variables. In doing so these BN models can capture uncertainties well, which 

is an important factor when dealing with disaster risk management and climate change 

adaptation. Further, this allows for the modelling of multi-faceted aspects related to hazard, 

exposure and vulnerability patterns, giving a more complete picture of disaster risk and 

damages compared to traditional models. 

 

  



18 
 

1.2 Knowledge gaps 

There are a few overarching themes that are, at present, rarely seen in the current literature 

dealing with BN methods for flood risk and damage assessments.  

In terms of sectoral analysis, BN approaches have been employed so far almost exclusively in 

these contexts for predicting residential damages, with minimal efforts devoted to a wider 

sectoral analysis that could, for instance, incorporate infrastructure, agricultural or industrial 

concerns within their assessment endpoints. At most, there was some consideration of flood-

related impacts to commercial activities (Balbi et al., 2016; Dominik Paprotny, Kreibich, 

Morales-Nápoles, Wagenaar, et al., 2020); However for both of these papers, the picture built 

on the total damages within a case study was incomplete. 

Moreover, across the investigated ‘key papers’ it was also noted that although some forms of 

scenario analysis have been undertaken in this context, these are not common. Compared to 

other applications, these analyses are relatively simplified in the frame of the envisioned 

alternative scenarios, which may be affecting only one of the input variables and not a 

combination of multiple. In the cases where scenario analysis was conducted, it was limited 

to a retrospective investigation into one of the contributing factors of flood damage, most 

clearly in the investigation of mitigation scenarios by Notaro et al. (2014). As such, a common 

theme of these evaluations is the lack of future climate and land-use/cover projections. 

Notably, none of the papers addressed any possible future scenarios where the studied region 

may face an increased occurrence or severity of flooding events, nor with exacerbated 

exposure and vulnerability patterns.  

In conjunction, there is also limited discussion on the impact of climate change on the results 

of the reviewed research. Whilst most papers acknowledged that the studies were important 

for DRM in the context of climate change and increasing natural disasters, there was little 

acknowledgement of how these ML techniques could be used to specifically investigate these 

impacts directly. 

Also missing from the examined literature were any conceptualized approaches for detailed 

sensitivity analysis. Some papers touched upon the relative importance of the variables 

contributing to the training of the models, however this was never a major feature of the 

research, and no frameworks were elaborated for future use. Neither were there any 
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stepwise approaches for variable integration in the BN model, instead each author chose to 

introduce all variables together, thus limiting the frame of model analysis.  
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SECTION B: METHODOLOGICAL DEVELOPMENT 
 

2. Description and characterization of the case study 
 

 2.1 Geographical context: the Po and Secchia river basins 

 

The largest and most economically important river basin in Italy is the Po Valley (Tockner et 

al., 2009), stretching from the Alps in the North of the country to the Adriatic Sea on the East 

coast. It comprises the Po River basin, the eastern lowlands of Veneto and Friuli and the south-

eastern basins of Emilia–Romagna. Nearly half of the national GDP is produced in the basin 

area from one third the country’s industries, including a large agricultural output (Amadio et 

al., 2019). It is also significantly populated, with 17 million people (about 29% of the Italian 

population) living within its eight regions (ISTAT, 2011). 

The area is traditionally flood-prone (Lombardi et al., 2018), and vulnerability to flooding-

related disasters has further increased in recent years, due to the rapid subsidence of the 

sedimentary Po basin, resulting from both natural and anthropogenic factors such as water 

withdrawal (Carminati & Martinelli, 2002). In combination with increasing flood peaks and 

river discharges (Govi & Maraga, 2005), it is therefore important to ensure that all aspects of 

flood risk management in the area are as effective as possible. 

The Secchia river, one of the main tributaries to the Po, flows through Emilia Romagna region, 

within the south eastern part of the Po basin. The Secchia basin in and of itself covers a 

catchment area of over 2000 km2, with 172 km of river flowing from the Apennines. Emilia 

Romagna has been identified as the most flood prone area of the country (ISPRA, 2014), with 

a flood exposure under a return period of 20 - 50 years for 10% of the population and 25,000 

km2 of land, and under 100 – 200 years for a further 64% of the population and an area of 

10,000 km2 (Hasanzadeh Nafari et al., 2017). The exposed population of 2.7 million is not only 

the highest in relative terms, but also in absolute numbers nationwide (ISPRA, 2018). 

Italian flood adaptation measures, in line with the EU Flood Directive (EC, 2007), are 

mandated by the Ministry of the Environment, Land and Sea. Hydrogeological protection laws 

state that for each hydrological basin, the relevant authorities must detect hazard-prone 

areas that could be flooded during an event and prevent further additional risk. Among other 
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adaptation strategies, the implementation of an integrated early warning system was also 

mandated. 

In this setting, protection in the Po river basin is provided by the likes of embankments, 

hydraulic works, and levees (Zanchettin et al., 2008). Specifically, in the lower part of the Po 

River, flood-prone areas have been protected by a complex system of embankments and 

hydraulic works that are part of the wider flood defense system in the Po Valley, extending 

for almost 3000 km as a result of a tradition of river embanking lasting centuries (Govi & 

Maraga, 2005). However, continued development of these systems upstream, whilst 

increasing protection in Upper Po areas have, according to some models, further exacerbated 

the vulnerability of the lower basin regions by increasing the value of the flood peak at any 

given probability (Zanchettin et al., 2008). Protection measures such as these have also been 

linked to a low risk awareness and heightened false sense of security among residents 

(Amadio et al., 2019). 

 

 2.2 The 2014 Secchia flooding event 
 

In January 2014, the Secchia river basin was hit by a long-lasting stratiform rainfall event, 

which has led to significant stress on the levees of the local rivers. Specifically, on January 

19th, a major flooding event occurred when these conditions led to 1m of water breaching the 

artificial levee protecting the surrounding area from the Secchia river; a portion of this levee 

also collapsed, leading to additional inundation of the surrounding plain. 

This breach occurred by the town of San Matteo, close to the city of Modena with an overall 

population of 184,000. The affected area included the municipalities of Bastiglia and 

Bomporto, as well as a smaller area of the municipality of Modena, at a total of 122 km2, 

bordered to the west by the Secchia river and to the east by the Panaro river (Figure 2). The 

vulnerability of the area is high as the land is mostly flat, with relief coming only from minor 

levees as well as road and railway embankments (Carisi et al., 2018).  

A similar potential levee failure was later spotted on the Panaro and fixed, however the 

situation in Secchia could not be averted (Orlandini et al., 2015). 
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Figure 2: Map of the municipalities affected by the 2014 flood, and their location within the Po Basin 

The impacts of the flood were widespread and devastating for many. Over 50km2 was flooded 

at an average depth of 1m, displacing thousands and causing one fatality (Carisi et al., 2018). 

The towns of Bastiglia and Bomporto felt the impacts hardest, with the duration of flooding 

exceeding two full days and a volume of inundation of over 30 million cubic meters. The 

economic damage was particularly severe, estimated at least €500 million, including €36 

million worth of damage to residential properties, according to damage declaration (Amadio 

et al., 2019; Orlandini et al., 2015). A significant proportion of the flood area was rural 

agricultural land, with crops including wheat, maize and forage, as well as some vineyards. 

Losses to the agricultural sector were fortunately minimized as most of the crops were in a 

vegetative state, however the losses have still been estimated at a value of 343 € / ha (Amadio 

et al., 2016). 
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Figure 3: Aerial image of the 2014 flooding event in the municipality of Bastiglia. 2014; Web reference: 
https://www.lapressa.it/notiziario/la_provincia/alluvione-bastiglia-ecco-lennesimo-ente-inutile 

 

Figure 4: Image of the 2014 flooding event in the municipality of Bomporto 2014; Web reference: 
http://www.sassuolo2000.it/2014/02/07/alluvione-di-bomporto-una-tortellata-di-solidarieta-al-bocciodromo-di-
casalgrande/ 

  



24 
 

2.3 Case study data collection 
 

A significant volume of data relating to the case study has been collected, both in terms of 

the event that occurred around the Secchia river in the 2014, and more notably in terms of 

the damage that was caused and recorded after the event. This includes detailed hazard 

modelling data and reported damage claims for a selection of affected residential, 

agricultural, and industrial properties. This is in line with the interpretation of economic loss 

and damages from climate-related events under the Warsaw International Mechanism 

(UNFCCC, 2020), comprising damages and losses to physical assets (infrastructure and 

property) and income (business operations, agricultural production, tourism). 

Disaster risk, or the possibility of adverse effects from future disasters, derives from the 

vulnerabilities of any elements exposed to a physical hazard (IPCC, 2018). Along the 

framework of the IPCC’s guidelines, hazard information should not be considered as a sole 

proxy for risk. Risk and damage assessments should instead involve the integration of suitable 

hazard, vulnerability, and exposure components, as well as recorded damage information 

where possible (IPCC, 2018). 

As a result, a large quantity of data encompassing all analytical dimensions is required for 

informing risk assessment and modelling. For these purposes, there are several other sources 

of heterogeneous data available to be integrated within the dataset for analysis, particularly 

regarding the microscale exposure and vulnerability of the affected buildings, assets, and 

population.  

The technical details (metadata) regarding the collected data for the case study of concern 

are summarized in the table below. 
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Table 2: Metadata of the dataset available for the implementation of BN approach in the Secchia river basin case study 
area 

Variable Unit 
Data 
format 

Spatial 
domain 

Spatial 
resolution 

Temporal 
reference 

Reference 

Hazard data 

Maximum water depth m Raster Local 5m 
19/1/14-
22/1/14 

Vacondio et al. (2016) 

Maximum flow velocity m s-1 Raster Local 5m 
19/1/14-
22/1/14 

Vacondio et al. (2016) 

Duration of inundation h Raster Local 5m 
19/1/14-
22/1/14 

Vacondio et al. (2016) 

Exposure data 

Structure area m2 Tabular Local 1m2 2014 Damage claims  

Population density person/km2 Raster Europe 1km 2010 
Aurambout & Lavalle (2016); 
https://data.jrc.ec.europa.eu/data
set/jrc-luisa-udp-popden-ref2016 

Vulnerability data 

Number of storeys - Vector National  Sub-municipal 2011 
ISTAT (2011); 
https://www.istat.it/it/archivio/1
04317 

Digital Elevation Model m Raster Europe 10m 2011 
Tarquini et al. (2007); 
http://tinitaly.pi.ingv.it/ 

Property market value € m-2 Vector National Sub-municipal 2019 
https://wwwt.agenziaentrate.gov.
it/geopoi_omi/index.php  

Conservation status - Vector National Sub-municipal 2011 
ISTAT (2011); 
https://www.istat.it/it/archivio/1
04317 

Building age years Vector National Sub-municipal 2011 
ISTAT (2011); 
https://www.istat.it/it/archivio/1
04317 

Land use - Raster Europe 100m 2010 
Lavalle (2014); 
https://data.jrc.ec.europa.eu/data
set/jrc-luisa-land-use-ref-2014 

Population age years Vector National Sub-municipal 2011 
ISTAT (2011); 
https://www.istat.it/it/archivio/1
04317 

Damage data 

Residential damage € Tabular Local Building level 
19/1/14-
22/1/14 

Damage claims 

Agricultural damage € Tabular Local Building level 
19/1/14-
22/1/14 

Damage claims  

Industrial damage € Tabular Local Building level 
19/1/14-
22/1/14 

Damage claims  

Future scenario data 

Land use - Raster Europe 1km 2020-2050 
Lavalle (2014); 
https://data.jrc.ec.europa.eu/data
set/jrc-luisa-land-use-ref-2014 

Flood depth at different 
return period 

m Raster Europe 100m 10-500 years 
Dottori et al. (2016); 
https://data.jrc.ec.europa.eu/coll
ection/id-0054 

 

 

https://wwwt.agenziaentrate.gov.it/geopoi_omi/index.php
https://wwwt.agenziaentrate.gov.it/geopoi_omi/index.php
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2.3.1 Hazard Data 

Hazard modelling for the 2014 Secchia flooding event provides information on the extent, 

depth and duration of the flood, as well as the flow velocity. This modelling has been 

performed through a combination of 2D hydraulic models and observational data to produce 

and validate flood hazard maps (Renato Vacondio et al., 2016). The hydraulic simulations 

were performed using a GPU-parallelized model for the solution of shallow-water equations, 

that combined topographic and bathymetric floodplain characteristics with numerical river 

discharge modelling (R Vacondio et al., 2014). 

This dataset has been validated against field data and observations, including a high-

resolution radar image acquired during the flood event. The output of this modelling as 

available for use are three 5m spatially resolved hazard metrics, depicting the flood velocity, 

depth, and duration of inundation respectively, pictured below. 

 

Figure 5: Hazard model outputs for the 2014 Secchia river flooding event 

 

 



27 
 

2.3.2 Exposure and Vulnerability Data 

As seen in Section 1 additional data on the vulnerability and exposure of hazard-prone people 

and properties can be used to enhance the predictive capacity of BN models (Dominik 

Paprotny, Kreibich, Morales-Nápoles, Castellarin, et al., 2020). In the context of disaster risk 

assessment and management, exposed elements (generally considered as human beings, 

their livelihoods and assets (IPCC, 2018)) are those placed within an area and that could face 

some form of hazardous events. The level of exposure of an area where a hazardous event 

may occur, is thus a necessary component of risk computation. 

However, this alone is not enough to fully understand the magnitude of risk. The vulnerability 

of the exposed elements, or their propensity to suffer adverse impacts from a particular 

hazardous event, will determine the observed losses and damages (IPCC, 2018). As such, a 

range of variables for exposed buildings, assets, and population for the residential, industrial, 

and agricultural sectors in the case study area has been collected, in order to better inform 

the BN model. 

In this setting, the ISTAT 2011 building and population census data (ISTAT, 2011) contains 

information on building characteristics and population statistics, available at a sub municipal 

level (i.e. census area). Specifically, extracted for these purposes were building age 

(constructed before or after 1990), number of storeys, and conservation status (qualitatively 

categorized as good or bad condition), as well as  the number of children under 5 and elderly 

over 65 per census area, characterizing the coping capacity of potentially affected people. 

For each property affected, damage claims collected for the purpose of this study (and the 

connected LODE project), provide information on the area of the building structure. 

Additional data were collected pertaining to the geographical characteristics of the case study 

area. Specifically, land use/cover data was taken from JRC4 (Lavalle, 2014); while the Italian 

National Institute of Geophysics and Volcanology (INGV) provided detailed digital elevation 

modelling to provide topographical information.  

 

 

 

 
4 https://ec.europa.eu/jrc/en/luisa 
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2.3.3 Damage Data 

Empirical damage-related information for residential buildings affected, as well as agricultural 

and industrial properties, has been collected by the local municipalities following the 2014 

Secchia flooding event. This was organized in order to gain information pertaining to the 

restoration needs of public and private properties and goods (Carisi et al., 2018). A total of 

2313 claims were collected, of which 85% related to residential damages, with 8% and 7% 

coming from the industrial and agricultural sectors respectively. In total the damage claims 

across all three sectors are equal to €71.5 million.  The data is structured as represented in 

the Tables below: 

 
Table 3: Structure of data concerning damage claims to residential buildings   

 Building characteristics Damage claimed (€) 

Address Area (m2) Use Structure Shared 
structure 

Content Vehicles 

Via X, 1, Bastiglia 154 Primary 19200 0 2500 1400 

 

Table 4: Structure of the data concerning damage claims for the agricultural and industrial sectors 

 Building characteristics Damage claimed (€) 

Address Area (m2) Sector Structure Land Machinery Stock 

Via X, 1, Bomporto 385 Agriculture 1200 3000 500 2100 

 

All data was collected from three local municipalities, these being the hardest hit 

municipalities of Bastiglia and Bomporto, as well as the largest city affected, Modena. As some 

of the claims were incomplete, a total of 1738 data points were used, of which 65% are from 

Bastiglia, 31% from Bomporto, and the remaining 4% from Modena.  
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Figure 6: Visualization of multi-sectoral damage claims against the 2014 Secchia flooding event 

Address data, though it must remain anonymized otherwise, is available for analysis within 

the context of this thesis and the LODE project itself. This allows for a microscale and precise 

geographical mapping by locating the addresses as points on the map that can be spatially 

matched to the other variables collected. For residential properties, these damage claims are 

recorded separately under four categories, individually detailing claims on building structures 

(both shared and private), household contents, and registered vehicles.  

In fact, in terms of what damages could be claimed, building damage refers  not only to 

structural parts such as roofs, foundations and supporting structures, but also non-structural 

parts including flooring, plastering and painting, as well as installations such as those for 

electricity, heating, and water. 

The data collected for agriculture and industry is similarly formatted, categorized by the two 

sectors, with information available again regarding the address, building type, and area. In 

this case, damage claims are more geared towards business losses, capturing damages to 

structures and land used for agricultural purposes, as well as machinery and stock. 

A disadvantage of the damage data available for all the three sectors, is presented by the 

nature of the data collection itself, as not all premises submitted damage claims. Specifically, 
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depending on each individual claimant, this may be because there were negligible damages, 

or because of a deliberate choice not to submit a claim. This means that there will be some 

level of data gap across the investigated hazard-prone area. 

 

2.3.4 Data for future scenarios analysis 

In order to examine any ‘what-if’ future scenarios through the BN model,  it is necessary to 

have projected datasets that are consistent with the kind of data (variables) originally used to 

inform the training of the model under the reference scenario. For this reason, data has been 

collected at varying time ranges from the JRC LUISA platform5, which models various dynamic 

functions pertaining to land, land use, and population across Europe, as well as from the JRC 

LISFLOOD6 hydrological flood-simulation model. 

Among their projections, flood depth simulations covering flood prone areas, such as the case 

study area, are available at return periods of 10, 20, 50, 100, 200, and 500 years (Dottori et 

al., 2016), reflecting the increasing intensity of potential future river flooding events. 

Also available are projections of the land use cover for the years 2020, 2030, 2040, and 2050, 

which can be used in direct comparison to the 2010 data used for training and validation of 

the BN model (Aurambout & Lavalle, 2016; Lavalle, 2014). These indicators can then be used 

to further elaborate the BN-based scenario analysis for prediction of future changes in the 

probability of flood-related damages, in line with EU recognized projections.   

 
5 https://data.jrc.ec.europa.eu/collection/luisa 
6 https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-
reports/lisflood-distributed-water-balance-and-flood-simulation-model-revised-user-
manual-2013#:~:text=%C2%A9EU,JRC)%20of%20the%20European%20Commission. 
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2.4 Data processing methods 
 

One advantage of BN models lies in their ability to incorporate a variety of variables, with 

different formats, units, and temporal or spatial resolutions. However, following the 

collection of the raw data for the training and validation of the BN model, it was necessary to 

pre-process the abovementioned datasets, transforming them to a consistent spatial 

reference system (i.e. WGS84/UTM zone 32N) for extracting the table of data then feeding 

the BN model.  

Hazard data (i.e. flood depth, inundation time, and flood velocity) was available in raster 

format at 5m spatial resolution, showing the flooding extent and its severity. In order to best 

represent the maximum potential impact at each location, the maximum levels were captured 

for each of the variables of concern, these being flood depth, velocity, and duration. 

Damage data points were automatically geolocated using the “Geocode” tool in “MMQGIS” 

plugin7 in QGIS, by matching their address to the address as listed in Open Street Map8 (OSM; 

www.openstreetmap.org). The  identification from OSM was not able to geolocate all the 

points due to missing information in the geodatabase, and thus the missing points were 

manually localized using Google Earth9, by matching the address of the reported damage and 

to the equivalent in Google Earth. The final outputs are three vector layers, one each for 

agricultural, residential, and industrial damages. 

The rest of the vector and raster-based variables  for exposure and vulnerability were then 

converted into the same spatial reference system, so that data for each variable considered 

could be correctly extracted at the exact location of the respective damaged property. In 

vector forms, shapefiles containing sub-municipal information were geocoded with the data 

for each variable being joint to the respective polygons. 

Raster layers were taken at the highest spatial resolutions possible for data such as land use 

cover and population density. Moreover, the land use/cover layer was used as a reference 

point for the BN-based scenario analysis, with the collection of the equivalent projected data 

as far as 2050, allowing for a fair comparison for future scenarios. Similarly, projected flood 

maps under different return periods were geolocated as raster layers for future scenario 

 
7 https://github.com/michaelminn/mmqgis/ 
8 https://www.openstreetmap.org/ 
9 https://www.google.com/earth/ 

https://github.com/michaelminn/mmqgis/
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analysis, from the JRC LISFLOOD platform, with the increase in depth between the 10-year 

and 200-year return periods being calculated for analysis. 

Finally, to provide the data in the suitable for to train the BN model, the values of these layers 

were extracted at the coordinates of the location of each damage report, using the “extract” 

function in the “raster” package10 in R. The final output of this process is a matrix of 1738*19, 

where the number of rows indicate the number of reported damage points and the numbers 

of columns represent the numbers of considered variables. The list of variables and their 

notations are reported in Figure 8 (Section 3.1). 

  

 
10 https://www.rdocumentation.org/packages/raster/versions/3.3-13 
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3. Methodology for multi-sectoral flooding damage assessment and scenario analysis 

The design of a BN model follows a stepwise approach as initially detailed in section 1.1. Here, 

these methods are described more specifically for application to this Thesis and the case study 

area, beginning with the definition of the BN conceptual model. It then follows through the 

necessary operative steps for the subsequent model parametrization, calibration, validation, 

and sensitivity analysis, as well as detailing the scenarios developed for ‘what-if’ analysis. 

 

3.1 Risk-based conceptual framework 

In the design of a BN model, the characterization of a conceptual framework is an important 

step in the formalization of the issue being studied (Furlan et al., 2020). As such, a conceptual 

framework is built, systematically identifying pathways of interaction between 

environmental, physical and socio-economic damages on the exposed sectors, and the drivers 

of those damages. Specifically, a properly constructed conceptual framework should give a 

comprehensive schematic representation of the cause and effect relationships within the 

system, encompassing all necessary sources of data, as well as their relative interactions 

(Defra, 2011). With the identification of these cause-effect relationships between the system 

variables, a ‘roadmap’ is laid for the training of the BN model from the observed data 

(Sperotto et al., 2017). 

For this project, the IPCC’s risk framework (IPCC, 2018), was selected as the basis for the 

construction of the conceptual framework, as depicted in Figure7. This framework has been 

applied for a wide range of risk assessments in the context of climate change adaptation and 

disaster risk management and reduction (Das et al., 2020; Sharma & Ravindranath, 2019; 

Tangney, 2019). 
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Figure 7: Framework for Disaster Risk (Field et al., 2014) 

 

In this setting, it follows that when combined, the elements that contribute to hazard, 

exposure and vulnerability directly affect the disaster risk, and hence its impacts in terms of 

multi-sectoral damages for the case study of concern. In turn, changes in the hazard patterns 

and potentially exposed targets can be driven through anthropogenic and natural factors 

(Connelly et al., 2018). 

The data collected for this project were chosen to best represent the factors that may 

contribute to the risk of flooding damages, under the separate categories of hazard, 

vulnerability and exposure. 

An adapted version of the IPCC’s framework that forms the basis of the conceptual model for 

training of the BN, designed specifically to consider the scope of the work, i.e. a multi-sectoral 

assessment of fluvial flooding damages. The data as identified and collected in section 2 will 

be used to evaluate multi-sectoral damages through the exposure of buildings and structures 

to river flood-related hazard across the residential, agricultural, and industrial sectors, 

together with the varying influence of different physical and socioeconomic vulnerability 

variables (e.g. the age and conservation status of the structures). In turn impacts against river-

flood events is reported in terms of damage probabilities under the three investigated 

sectors.  
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This framework is  translated into a box-and-arrow diagram (Figure 8) ready for BN structure 

definition, capturing all the variables collected for input into the BN model. Connections are 

made between the input variables and the endpoint values they are expected to have an 

impact upon (i.e. damages for each sector).  

 

 

Figure 8: Risk-based BN Conceptual Framework. List of acronyms used for hazard variables: FDU: Flood duration; FDE: 
Maximum flood depth; FVE: Maximum flood velocity; Exposure variables: ARE: Area of reported damage; POP: Population 
density; Vulnerability variables: LU: Land Use Cover; POP_5: Population under 5; POP_65: Population over 65; FLO_1: 
Number of houses with 1 storey; FLO_N: Number of houses with greater than 1 storey; STA_90: Number of houses constructed 
before 1990; STA_N: Number of houses constructed 1990 and later; CON_G: Number of houses with good conservation status; 
CON_B: Number of houses with bad conservation status; MV_MIN: Minimum residential market value; MV_MAX: Maximum 
residential market value; DEM: Digital Elevation Model 
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3.2 BN development 

3.2.1 Model design and configuration testing 

The practical implementation of the BN requires a multi-stage approach, as initially described 

under the Review of the state-of-the-art BN application for damage assessment in section 1. 

This begins with the design of the BN model and the subsequent parametrization of necessary 

variables. 

As seen in the risk-based conceptual framework, the chosen variables have been selected, 

through expert judgment and literature review (Merz et al., 2010; Dominik Paprotny, 

Kreibich, Morales-Nápoles, Wagenaar, et al., 2020), according to their potential influence on 

the overall flooding risk and as such their likely contribution to the multi-sectoral damages. 

This causal relationship has been depicted in Figure 8 with a box-and-arrow diagram that 

represents the relevant influential relationships; this graphical depiction can be used to 

define the BN model, incorporating all of the identified variables. The boxes of the diagram 

are equivalent to the nodes that represent the system variables, with unidirectional arrows 

between the boxes depicting the arcs that determine the causal relationships between 

variables in the model, eventually terminating at the assessment endpoints (Sperotto et al., 

2019).  

An alternative approach to understanding the optimal model performance is by analyzing 

various configurations of the model, as defined through expert judgement and pertinent 

literature. By setting these different configurations and observing the respective model 

outputs (also in terms of model prediction performance), it is possible to identify which 

models perform best in comparison to one another (Poelhekke et al., 2016). 

Within this study a two-tiered approach was developed to define and test different BN model 

configurations. Specifically, the first stage involves starting with a simple model that initially 

only integrates the core variables for training, and then performing a stepwise integration of 

further variables one by one; in this way, it is possible to track improvements in performance 

of the model over time. This would be particularly useful in the case of a model constrained 

by limitations in the input data, where the introduction of too many variables may provide 

too many boundary conditions and restrict the performance of the model. 

The second stage looks at reconfiguring the model (to improve its performance) by 

identifying, through expert judgment, new possible connections between the explanatory 
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(parent) nodes and related child nodes, thus incorporating new layers of hierarchy within the 

BN structure.  

Following the process of BN multiple configurations testing, for the training of the model, all 

the variables must each be assigned a state in the form of either a value or a condition. These 

variable states can be defined in three different ways, namely i) into qualitative categories 

such as high, moderate or low quality, ii) as true or false states (i.e. Boolean functions), or iii) 

quantitatively, as a range or in discrete intervals (De Santa Olalla et al., 2005).  

After this input definition is complete, two computations are necessary as part of the 

parametrization process (Sperotto et al., 2019). Firstly, this involves the calculation of the 

associated prior probability of each state of the node, i.e. the relative likelihood of each 

possible state without any other knowledge of the variable relationships, based on the 

distribution of the input data. Secondly, the conditional probabilities of any child nodes must 

be calculated as dependent on all possible combinations of the associated parent nodes 

(Sperotto et al., 2017). Finally, a Conditional Probability Table (CPT) is developed to display 

the relative strengths of the causal relationship between all connected variables. 

 

3.2.2 Model calibration and validation 

Where the predicted probabilities of each variable and the strength of their relative 

relationship has been calculated, the next phase of the process is to thoroughly evaluate the 

output of the BN model, in order to fairly assess both the accuracy and the reliability of the 

results. This is important to understand the potential for use of the designed BN as a 

predictive model for new observations under scenario analysis (Furlan et al., 2020). 

Validation of the various BN model configurations can take the form of a data-based 

evaluation, where errors in the model output are identified through the use of a statistical 

test, or in relation to a set of independent observational data. Alternatively, expert judgment 

can be utilized to form a qualitative evaluation of the results, or similarly through comparison 

of the model outputs to those of similar models found in the literature, however this is 

generally performed when there is insufficient data for statistical testing (Kragt, 2009). 

For the estimation of the model predictive error, possible techniques range from Re-

substitution and Hold-out methods, to the more complicated Bootstrap and Bolstered options 

(Furlan et al., 2020). One such data-based method for evaluating the accuracy of the model is 
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k-fold cross validation (k-cv), where the data is split into k sets (or folds) of equal size and the 

model is trained on all but one of these folds, with the errors then calculated for the final set 

of observed data. This process is then repeated with all possible combinations of k-1 folds, 

and the average error of these different combinations is calculated to reflect the overall 

accuracy of the model (Yadav & Shukla, 2016). 

 

3.2.3 Scenario analysis 

The next phase of analysis of the BN approach concerns the scenario analysis, in which various 

potential scenarios are studied in order to predict their respective impacts. The conditions of 

these scenarios are simulated by ‘setting’ different evidence for one or more nodes within 

the BN model, and then propagating that information through the system, thus inferring the 

behaviour of the variables in order to observe the changes in posterior probability resulting 

from each scenario (Sperotto et al., 2017). 

In order to infer this information, the direction of propagation must first be determined. A 

downward propagation of probability is known as prognostic inference, where the values of 

one or more input (or parent) nodes are set, and the impact to the posterior probabilities of 

the respective child nodes is observed, usually as far as the endpoints of the BN. Opposingly, 

the probability of a child node can be set to a fixed value as a form of diagnostic inference, 

where the change in probability is propagated upwards through the model towards the 

parent nodes (McNaught & Zagorecki, 2009). 

Following the identified literature knowledge gaps (Section 1.2) the definition of potential 

future ‘what-if’ scenarios was determined to be a key component in the context of this Thesis. 

To achieve this, variables have been identified to reflect possible future changes in flood risk. 

The specific simulation of these changes was defined by setting the values of the selected 

variables under the following scenarios: 

Scenario 1, (SC_LU): Understanding the change in damages under changing land use patterns, 

as determined by comparison of the 2010 land cover training dataset from the JRC LUISA 

model, against the expected land cover changes up to 2050 from the same model projection. 

This involves classification of the land into three main categories, as shown in Figure 5. 

Specifically, the aggregated changes mostly concern a loss of agricultural land, replaced by 
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urban areas. There are changes in some areas to and from industrial zoning within the case 

study area, however the overall share of industrial land remains roughly equal. 

 

Table 5: Distribution of land use cover types within the case study area 

Land use % coverage in 2010 % coverage in 2050 

Urban fabric 1 4 

Industry/commercial/services 21 21 

Agriculture 78 75 

 

Scenario 2, (SC_FDE): Understanding the change in damages at different flood-related return 

periods. The flood depth data for the BN training was obtained from a high-resolution floods 

model, based on an explicit shock–capturing finite volume method for the solution of the 2D 

shallow-water equations, evaluated as a 5-year return period event (Vacondio et al., 2016). 

Then, to model the scenario SC_FDE, we compared the distribution of flood depth of a flood 

event under a 200-year return period, versus a 10-year return period flood event, comparable 

to that which occurred in the Secchia river in January 2014 (Shustikova et al., 2020). 

This comparative analysis was used to find the changes in each of the flood-depth related 

classes, the relative changes then being used to set evidence for the scenario related to the 

flood depth. Figure 6 shows the comparative frequency of flood depths between the two 

return periods as parametrized into three classes for use in the BN model. 

 

Table 6: Relative frequency of flooding depth within the case study area 

Depth (m) % frequency, 10-

year return period 

% frequency, 200-

year return period 

[0,0.87] 82 76 

(0.87,1.21] 14 12 

(1.21,3] 4 12 
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3.2.4 Sensitivity analysis 

A further phase of analysis identified as mostly absent within the context of the recent 

literature was a detailed sensitivity analysis. This evaluation should provide information on 

the sensitivity of the assessment endpoints of the BN model (i.e. damages to the residential, 

agricultural, and industrial sectors), in relation to changes in their various explanatory nodes. 

This analysis can be completed through two phases (Kragt, 2009; Pollino et al., 2007). Firstly, 

the relative impacts of each parameter on the output are determined, thus allowing for the 

identification of the most influential set of variables. Further to this, the stepwise modification 

of individual input parameters can then be used to observe changes in the damage 

assessment endpoint probabilities. As such, it would also be possible to interpret how the 

various input nodes impact the model outcome,  and understand their relative importance in 

determining the highest class of flood damages (Furlan et al., 2020).  
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SECTION C: APPLICATION TO THE CASE STUDY AREA 

4. Application of the BN approach for multi-sectoral damage assessment. 

4.1 Model design and configurations testing 

As described in Section 3.1, an initial risk-based conceptual framework was established that 

attempted to highlight the cause-effect relationships between the various components of 

disaster risk (i.e. hazard, exposure, and vulnerability), and the resulting disaster damages. 

According to the data available and the aims of the LODE project itself, this framework was 

then translated into an expert-based BN conceptual model, as seen in figure 8, that provided 

the basis of the practical BN model. This was composed of a multifaceted set of explanatory 

(parent) nodes representing the hazard, exposure, and vulnerability characteristics of the 

case study as collected, each connected to the child nodes, i.e. the multi-sectoral damages. 

In order to introduce the data to the model, variables were assigned states, according to the 

characteristics of their values (i.e. continuous, discrete, or Boolean). Specifically, all 

continuous variables, e.g. structure area or flood depth, were classified using the 

discretization function in R into three intervals with similar frequencies of data. Other 

qualitative variables were categorized by the intrinsic characteristics of the data, such as land 

use cover into urban, agriculture, and infrastructure classes, and in these cases states were 

assigned to each category instead. The endpoint nodes were also classified into three 

separate continuous classes, representing the magnitude of monetary damages to the 

agricultural, industrial, and residential sectors. 

The first generation of the model was built by following the risk-based conceptual framework 

(with the same structure and variables as Figure 8), in the R environment using the package 

“bnlearn” version 4.4.1 (Scutari, 2010). Unfortunately, the performance of this model, as 

shown in Figure 9, was hampered by limitations in the available data, together with the 

constraints set by the full set of input variables. The outcome represents the trade-off 

between the number of training datapoints and the number of variables and classes and, 

consequently, the exponential number of their conditional probabilities. Due to this poor data 

condition, especially for the agriculture sector, the model could not define the conditional 

distribution of the final assessment endpoints, leading the assignment of a normal 

distribution as a default mode of the model. 
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Figure 9: First generation conceptual risk-based BN model for multi-sectoral flooding damages assessment, with associated 
variable marginal distributions 

 

As a result, a new two-tiered approach to the model configuration was conceptualized as 

discussed in section 3.2.2, in order to exploit the available training data while also 

incorporating a range of the collected variables to inform the model as best as possible. 

Beginning with a limited number of explanatory nodes, more variables were integrated step-

by-step into the model until the stage at which the model performance was deemed to be 

unreliable. Specifically, the first iteration of this new model under the first tier of model 

reconfiguration utilized only the hazard variables (i.e. maximum flood depth (FDE), velocity 

(FVE), and duration (FDU)) as explanatory metrics of multi-sectoral damages (hereafter 

CONF_1A). Compared to the first-generation risk-based conceptual model, the impacts of the 

input variables were much more evident, showing a reliable distribution of conditional 

probabilities for each sector-based endpoint for flooding damages. This was most successful 

for the residential sector (D_RES), followed by the industrial (D_IND) and then the agricultural 

sectors (D_AGR), reflecting the relative volume of available observational data. 

One by one, more explanatory nodes were added to further iterations of the model, with 

the aim of improving the model performance, i.e. reducing the classification errors of the 
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final assessment endpoints, and terminating the process when no significant improvement 

was observed in the model’s performance (as discussed in the next section 4.2). Firstly land 

use cover (LU) was chosen (hereafter CONF_1B), which also allowed for the planned future 

scenario analysis. To introduce an indicator of potential exposure, the area of reported 

damages (ARE) was the next selected variable (CONF_1C). 

Several further iterations of the model were also tested, introducing other explanatory 

nodes e.g. the population density (CONF_1D). However, with the introduction of each new 

variable, the conditional probabilities of the utility nodes flattened, tending towards the 

output observed from the risk-based conceptual model (These configurations were also 

tested in the validation stage, with the results reported in Annex I). This evolution was 

particularly pronounced for the agricultural sector, again due to the data-poor condition. 

The decision was made to limit the model to five explanatory nodes (CONF 1C) so as to 

sufficiently balance the assessment of different variables with the performance of the 

model. The results of the continuous iterations of Configuration 1 of the BN model are 

shown in Figure 10. 

 

 



 

 

  

Figure 10: Outputs for the definition of the BN model from CONF 1A to CONF 1D. List of acronyms used for Explanatory nodes: FDU: Flood duration; FDE: Maximum flood depth; FVE: Maximum flood velocity; ARE: 
Area of reported damage; POP: Population density; LU: Land Use Cover; Damage nodes: D_AGR: Agricultural; D_IND: Industrial; D_RES: Residential 

CONF 1A CONF 1B 

CONF 1C CONF 1D 
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Then, the second tier of model configuration involved investigation of the structure of the 

model, by rearranging the input nodes to form a new layer of hierarchy within the model 

(CONF 2). In this instance, it was decided to treat the variable concerning the area of reported 

damages as not only an exposure-related variable, but specifically to define it as a receptor of 

the flooding hazard. As such, instead of being connected directly to the endpoint nodes, the 

hazard variables (FDE, FDU, FVE) are first connected to the area node, which then leads to the 

multi-sectoral damages (as also developed in D Paprotny, Kreibich, Morales-Nápoles, 

Terefenko, et al., 2020; Sayers et al., 2002). Figure 11 shows the new CONF 2 as selected for 

analysis in the validation stage (Section 4.2). This parameter training process was 

implemented under the bn.fit function on the “bnlearn” package in R (Scutari, 2010). 

 

Figure 11: CONF 2 - BN model for multi-sectoral flooding damages assessment with associated variable marginal 
distributions 
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4.2 Model calibration and validation 

Once the different configurations of the BN model have been set, with the appropriate 

parametrization of the chosen variables, the models could then be validated in order to give 

an estimation of their prediction error and then select the model the highest performance in 

the multi-sectoral damages estimation. As explained in Section 3.2.2, data-based evaluation 

was performed in order to determine the probability of observational data being misclassified 

in the three damage-related assessment endpoints. 

K-fold validation, was applied for this analysis, and carried through the bn.cv function in R 

with the “k-fold” method (Scutari, 2010). Should one fold of the training data not contain 

enough datapoints for each sector, the prediction of damages for the missing sector would 

be impossible. As such, due to the limited amount of observational data available for the 

agricultural sector for training of the model, the number of folds used for the validation 

process was limited to five, in order to minimize the probability of this adverse outcome, with 

the results of this analysis for CONF 1C illustrated in Figure 12. 

 

Figure 12: Boxplots representing the probability of misclassification of damages for the i) agricultural (D_AGR), ii) industrial 
(D_IND), and iii) residential (D_RES) sectors from CONF 1C of the BN model 
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The median classification errors were calculated as 45% for the agricultural sector, 34% for 

the industrial sector, and 44 % for the residential sector, showing a correctly classified output 

in the majority of cases. With increasing data points, the range of errors among folds 

narrowed, and with the most data available, error estimation showed the least uncertainty 

for the residential sector with less than 10% of variance. 

The analysis was then repeated for CONF 2 of the BN model in order to compare the 

respective predictive capability, with the results shown in Figure 13 below. 

 

Figure 13: Boxplots representing the probability of misclassification of damages for the i) agricultural (D_AGR), ii) industrial 
(D_IND), and iii) residential (D_RES) sectors from CONF 2 of the BN model 

 

As can be seen, for this new configuration the average performance of the model showed no 

significant improvement for any of the sectors in comparison to CONF 1C, and moreover the 

variance in the model output noticeably increased for the agricultural sector. As such, the 

decision was made to proceed with the CONF 1C as the final version of the BN model for 

application.  
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4.3 Scenario analysis 

After validation of the model, it was then possible to apply it for inferential purposes, 

including the analysis of two future scenarios as identified in section 3.2.3. For each scenario, 

evidences were set based on the projected dataset for the variables of concern (i.e. land 

use/cover, flood depth), and the changes were propagated downward, with the output 

recorded for comparison with the original conditional probabilities 

For Scenario 1 (SC_LU), the model was trained with the land use/cover data for the 2010 

timeframe, and then compared to the 2050 scenario exploiting the JRC LUISA dataset. For 

Scenario 2 (SC_FDE), the comparative changes in flood depth classes between the JRC 

LISFLOOD model 10-year and 200-year return period flooding event projections were used to 

build the future scenario. The impacts of these evidences were then propagated through the 

BN to each damage-related assessment endpoint as a form of prognostic inference. 

The resulting model outputs for the agricultural, industrial and residential sectors are shown 

in Figure 14 with sub-index (i), (ii), and (iii), respectively. Particularly, the coloured boxes 

represent the frequency of labels classed under the three classifications of monetary damage 

under the different scenarios, with the value of damages increasing from blue to red. 
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Figure 14: Outputs of the BN model, comparing the prior probability  of the BN model against the two simulated scenarios 
(SC_LU) and (SC_FDE), for the evaluation of potential damages in the i) agricultural, ii) industrial, and iii) residential sectors 

iii) 

ii) 

i) 

Damages (€) 

Damages (€) 

Damages (€) 
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Scenario 1: Changing land use (SC_LU) 

In this scenario, in comparison to the prior probability, there is a decrease in the probability 

of damages within the lowest class (indicated by the blue segments) for all sectors, with 

consequently a noticeable increase in the highest damage class for the agricultural and 

residential sectors. For these two sectors in particular, these results indicate that there is an 

expected increase in damages to be seen over the next few decades under the projected 

changes in the land use. The industrial sector does not conform to these patterns in the same 

way, mainly due to the very small change in total industrial area, as evidenced in Table 5 

(section 3.2.3). 

However, while the results do show signs of changes in future damages, they are of limited 

magnitude; this is a result of the magnitude of change in the land cover over the 40 year 

period, where approximately 80% of the case study area does not change land use 

classification, of which the majority remains agricultural. In fact, as seen in Table 5, the 

aggregated changes show a slight increase in residential land over agricultural. Should there 

be a period of more intense development, it could be expected that the effect on flooding 

damages would be much more severe.  

 

Scenario 2: Changing flood depth (SC_FDE)  

Similarly to the land use case, this scenario shows a limited but consistent increase in flooding 

damages across the multiple sectors, showing the expected impacts of more severe future 

river flooding events. While this effect is most pronounced for the agricultural sector, the 

changes are smaller for the residential and industrial damages. 

These limited changes are again likely a result of the input training dataset, where the flood 

depth does not increase too significantly between the 10-year and 200-year return periods. 

Specifically, there is an approximately 8% increase in the probability of the highest flood 

depth (specifically over 1.21m), as evidenced in Table 6 (Section 3.2.3). Further, while the 

flood depth at different return periods has been projected, equivalent datasets for the other 

components of flooding hazard (i.e. duration and velocity) are not made available, limiting 

the scope of the analysis to solely considering the flooding depth. As such, while flooding 

depth is the key variable used within damage modelling and assessment, it is more difficult 

to capture the changes in hazard characteristics.   
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4.4 Sensitivity analysis  

As the last stage of the process, a sensitivity analysis was performed in order to provide 

information on the sensitivity of the assessment endpoints of the BN model (i.e. damages to 

the residential, agricultural, and industrial sectors), in relation to changes in their various 

explanatory nodes, based on the methodological approach detailed in Section 3.2.4. 

This was performed individually for each of the explanatory nodes in the model, by setting a 

100% probability of the highest state (e.g. highest flood depth, largest area of reported 

damages), while keeping all other nodes constant. In doing so, it is possible to see the 

relative impact of each variable in context with the other explanatory nodes. 

The results of this analysis are shown in the rose charts reported in Figure 15 below, with 

the relative probability of each damage class given for the simulation that changed  each of 

the five explanatory nodes (FDU, FDE, FVE, LU, ARE), with the prior probability (PrP) shown 

for comparison. As with the scenario analysis, the red, yellow and blue sections represent 

the highest, moderate, and lowest class of damages respectively. 
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Figure 15: Sensitivity analysis for the explanatory nodes of the constructed BN model for the i) agricultural, ii) industrial, and iii) residential sectors. 
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The results indicate that the importance of each variable in terms of contributing to the 

potential damages varies by sector. Specifically, changes in the posterior probability for 

damages compared to the prior probability indicate that for the agricultural and residential 

sectors, the damages are particularly sensitive to changes in the variables concerning the area 

of reported damages (ARE) and flood depth (FDE), in line with the results found in the 

corresponding key literature (Kreibich et al., 2009; Merz et al., 2010). The probability of an 

output in the highest damage classification increases significantly for these sectors with 

increasing area or flood depth, although similar results are not seen for the industrial sector. 

Instead these damages are more susceptible to land use changes, as well as flood duration 

and velocity, which may go some way to explaining the unexpected response of the industrial 

sector to the identified future scenarios. 
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CONCLUSIONS 

This thesis presented a GIS-based Bayesian Network (BN) approach capable of capturing and 

modelling multi-sectoral flooding damages, by exploiting damage data collected from the 

2014 Secchia river flooding event. With the aim of providing support for Disaster Risk 

Management and Reduction against extreme river flooding events, the developed BN-based 

methodology represents a novel approach for better understanding flooding damages for 

the agricultural, residential, and industrial sectors, and the prediction of future damages 

under possible changes in hazard and exposure patterns. 

Building on the state-of-the-art research in the field of Machine Learning, the work aimed to 

expand upon the current literature by addressing several identified knowledge gaps. 

Specifically, the methodology as presented offers a more complete picture on multi-sectoral 

damages by including not only residential damage prediction as an assessment endpoint, 

but also the industrial and agricultural sectors. It also provides an analysis of two ‘what-if’ 

scenarios for the examination of potential future damages. Further, various approaches for 

the design and configuration of the BN model are deeply explained, alongside a sensitivity 

analysis, providing greater insight into the optimal design of BN models for multi-sectoral 

damage assessment. Specifically, the final model, as constructed, showed good capability of 

damage prediction for all three sectors studied within the case study area and under two 

different scenarios (i.e. changing patterns in land use and flood depth).  

The analysis of two future scenarios envisioning on one side land use/cover change in the 

case study area, and on the other greater flood depths resulting from more severe river 

flood events, showed good promise in the capacity of the BN model to better understand 

possible future damages. 

Moreover, the stepwise model configuration also provided insight on how to optimise these 

results through both expert- and data-driven procedures, while the sensitivity analysis 

highlighted the relative value of the integration in the BN model of each chosen explanatory 

variable. 

These results, in combination with the inherent flexibility of the proposed BN model, allows 

for the potential integration of diverse heterogeneous datasets. Thus, it is possible to 

assimilate as much information and expert knowledge as is available during the training of 

the model and testing of other ‘what-if’ scenarios. As such, the model also has the ability to 
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be further improved through targeted data collection, where increasing the quality and 

quantity of the data will provide additional insight into the results, also improving the BN 

model reliability.  

However, while the obtained results showed high capability for damage prediction, they 

also highlighted some potential limitations in the methodological approach and its 

application, particularly where the necessary data is limited. In fact, limitations in terms of 

the availability of a large amount of data for the case study caused constraints on the 

capability of the model performance. Resultingly, the integration of many of the variables 

collected for training the model was not possible, and as such it was more difficult to gain 

insight into the full extent of the various contributing factors of flooding damages. These 

results stress the need for the collection of sufficient damage data post-flooding events, in 

order to best enable a successful model training and then scenarios analysis, particularly for 

the agricultural and industrial sectors where model prediction accuracy showed higher 

uncertainty. 

As a cascading effect, the scenario analysis identified the potential impacts of expected 

future changes in flood depth and land use cover in the case study area, however the 

magnitude of these impacts were lower than might have been expected, as a result of 

limitations linked to the input training datasets. As highlighted under the sensitivity analysis, 

the difficulty in incorporating variables such as those related to the flooding hazard may 

have a large impact on the assessment of flooding damages, particularly under the 

consideration of their different multi-sectoral impacts. 

The construction of the BN model does however allow for many possible future 

developments, building on strong results to either elaborate or improve upon the resulting 

outputs. The consideration of other possible ‘what-if’ scenarios would allow for a better 

understanding of the likely damages of the increasing frequency and severity of flooding 

events, and how expected changes in hazard, exposure and vulnerability patterns will likely 

play into these impacts. 

To this aim, the integration of data concerning other flooding events occurring in the same 

area at different times would provide greater heterogeneity in the training dataset of the 

model, and thus improve the overall understanding (and then modelling under scenario 

analysis)  of potential damages. 
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Moreover, a more ambitious development could involve the spatialisation of the output of 

the model, building on the GIS-based structure of the training dataset, in order to capture 

damages should the flood extent increase in future events. This would allow for a larger 

picture on potential damages and provide further support to the management of disaster 

risk under changing hazard patterns, by widening the scope of potential damages that can 

be captured. 

Overall, despite limitations inherent in the data available for the construction of the 

presented BN model, the results that were achieved show high promise in the prediction of 

multi-sectoral flooding damages, and insight into their contributing factors. Building on the 

previous literature, this work provides a novel approach that improves the understanding of 

multi-sectoral flooding damages, and in doing so, will add to the state-of-the-art knowledge 

in the fields of Disaster Risk Management and Climate Change Adaptation. This will provide 

valuable support for policy- and decision-makers who can use the results of this study to 

prioritize efficient collection, organization and application of post-disaster damage data, and 

more efficiently plan ahead for the management of potential future flooding events. 
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Annex I – Validation of BN model configurations 1A-1D 
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