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Abstract
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Master of Science

by Ismail Elezi

Context matters! Nevertheless, there has not been much research in exploiting con-

textual information in deep neural networks. For most part, the entire usage of con-

textual information has been limited to recurrent neural networks. Attention models

and capsule networks are two recent ways of introducing contextual information in non-

recurrent models, however both of these algorithms have been developed after this work

has started.

In this thesis, we show that contextual information can be exploited in 2 fundamentally

different ways: implicitly and explicitly. In the DeepScore project, where the usage

of context is very important for the recognition of many tiny objects, we show that

by carefully crafting convolutional architectures, we can achieve state-of-the-art results,

while also being able to implicitly correctly distinguish between objects which are vir-

tually identical, but have different meanings based on their surrounding. In parallel, we

show that by explicitly designing algorithms (motivated from graph theory and game

theory) that take into considerations the entire structure of the dataset, we can achieve

state-of-the-art results in different topics like semi-supervised learning and similarity

learning.

To the best of our knowledge, we are the first to integrate graph-theoretical modules,

carefully crafted for the problem of similarity learning and that are designed to consider

contextual information, not only outperforming the other models, but also gaining a

speed improvement while using a smaller number of parameters.
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Chapter 1

Introduction

1.1 Introduction

Since the publication of the AlexNet architecture [90], deep learning [94, 167] has been

at the forefront of developments of machine learning, computer vision and artificial

intelligence. The most successful class of deep learning models are undoubtedly the

Convolutional Neural Networks (CNNs) conceived by [42], developed by [95] and re-

vived by [90]. CNN-based models have been responsible for the advancements in image

classification [62], image segmentation [110], image recognition [155] and many other

computer vision applications [48]. The advantage of CNNs compared to more tradi-

tional machine learning techniques (especially applied to the task of computer vision)

is that they are designed to be very good at feature extraction specifically for spatially

correlated information like pixels in natural images. Additionally, CNN models are de-

signed in such a way as to optimize the feature extraction and the task at hand (for

example classification) all-together in an end-to-end fashion.

This thesis is heavily based on CNNs, and each chapter of it involves novel extensions

of CNNs for different tasks of computer vision (classification, segmentation, detection,

recognition, similarity learning, retrieval and clustering). We show the shortcomings of

current usage of CNNs, and improve over them by either incorporating special ’contex-

tual’ modules, or carefully designing CNNs to implicitly exploit the context for the task

at hand.
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1.2 The importance of contextual information

1.2.1 Explicit context

It has been widely known that the usage of contextual information for machine learn-

ing tasks like classification is very important [69]. The decisions on the classification

of objects should not be dependent only in the local features, but also on the global

information of the dataset (the similarity between objects). Nevertheless, the majority

of deep learning algorithms ignore context and process the data observations in isola-

tion. For more than two decades, the only clear usage of context in neural networks

has been limited to Recurrent Neural Networks (RNNs) [36], a type of neural networks

which take into considerations previous (and with modifications, future) samples, mak-

ing them theoretically very suitable for the processing of sequences. However, there was

a misguided belief that RNNs are hard to be trained because of the vanishing gradient

problem which has a mathematical nature [63]. Despite that the problem was partially

solved [64] by designing sub-modules in RNN cells (called gates), the usage of RNNs has

been mostly limited in problems where the nature of the data is not sequential.

There have been attempts at combining CNNs with RNNs [78], however these attempts

have happened mostly when the task at hand had as inputs both images and sequences

(like language). In cases where the input was not sequential (like many computer vision

applications) the entire context is typically provided by the average operator in the

loss function. Training samples do not interect with each other, and the resulting loss

function is purely based on local information.

For completeness, it needs to be said that during the course of this doctorate, there have

been parallel works in integrating non-recurrent based context-aware modules in CNNs.

Three such attempts have been attention mechanisms [193], capsule networks [163] and

graph neural networks [11]. The work there has been done in parallel, and can be seen as

complementary to this research. At the same time, it shows that researchers are giving

more considerations to the usage of context. In this thesis, any time we exploit context

by using a context mechanism, we call it explicit context.
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1.2.2 Implicit context

Initially, it is believed that regular neural networks consider each sample in isolation.

This belief was challenged when researchers started using stochastic gradient descent

instead of gradient descent [98]. For example, shuffling the training set during each

epoch results in a better training performance than setting the order of samples in a

deterministic way, with the worst performance being achieved when the order of the

samples is given by class (first all elements of the first class, then the elements of the

second class and so on). Clearly, despite the neural network having no designed mecha-

nism to consider the contextual information, the network still insists to do so. The only

operation that considers more than a sample in isolation is that of the average (or sum)

applied at the end of the final loss, but even in case of total stochastic gradient descent

(when only one sample is given in each mini-batch), the network still performs better

when there is a stochastic order of samples.

Even more interesting is the behavior of networks in the task of object recognition.

Despite that most object detection models do not have designed mechanisms for context,

they are still able (up to some degree) to give different predictions for the same object.

This was first observed in [159] where the authors made many toy experiments by copy-

pasting an object in different images, and looking for the network predictions. A fridge

in the kitchen gets classified correctly as a fridge, but if you copy and paste it into the

sky, it gets classified as an airplane or a bird. While this might look a simple exciting

but not useful experiments, it has clear consequences and can be exploited in different

fields. For example, in the field of active semi-supervised learning, a similar strategy has

been used to find the most informative samples. In [196] the authors copied and pasted

detected objects in different images that contain other objects. If the prediction for the

same object were the same, then those objects were given a pseudo-label. On the other

hand, if the prediction of the objects did not match, then those objects were considered

hard, and needed a human oracle. In each case, it is clear that the surrounding of the

objects play an important part in the classification score of a detected bounding box.

Despite that the networks have no context mechanism, the convolution and pooling

operators find a way of learning about the context. In this thesis, we call this type of

context as implicit context.
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During the course of the doctorate, I was involved in DeepScore project [34, 187, 188]

with the goal of solving the problem of object detection of musical objects. The problem

is challenging because the number of objects in each musical sheet is orders of magnitudes

higher than the number of objects in natural images. Traditional object detectors simply

do not work. And even more challenging is the fact that different types of symbols

might have an identical appearance (e.g. augmentation dot and staccato). Even if

we have a perfect detector that finds the correct bounding box, it can not classify

correctly the object inside it (in this case it will classify each object either as staccato

or as augmentation dot). Adding contextual blocks is a possibility, but they are both

expensive and it is not clear how they can be used in this problem. We found out that

the easiest solution would be to design a new detector, which is an one stage detector.

By taking into consideration some simple intuition, in a single pass, it will both find

the bounding box that surrounds an object and classify the object. In this way, our

new detector is able to leverage the context in order to do efficient musical symbol

recognition.

1.2.3 Contributions

The main contributions of this thesis are the following:

• Guided by the belief that context is important, we use a graph theoretical inspired

module (which considers the entire structure of the dataset) as a pre-processing

step in the training of CNNs for image classification where there is a lack of labelled

data.

• We show that the mentioned graph theoretical module is differentiable, and inspired

from it, we design a novel loss function for the task of similarity learning (Siamese

Neural Networks). We call this loss function ”Group Loss” and show that it has

better properties than traditional loss functions used in Siamese architectures [18],

while also achieves significantly better results.

• We create one of the largest datasets (called DeepScores [187]), specially tailored for

the task of optical music recognition (OMR).

• Knowing that the OMR problem is very different from the task of natural image

recognition, we design and implement a new CNN-based module which we call
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”Deep Watershed Detector” that achieves state-of-the-art results on DeepScores

and other musical datasets. In the OMR problem, the context is very important

(the objects’ class is dependent in the surroundings, and identically looking objects

might have different classes), so the design of the network architecture and its loss

functions is carefully tailored to incorporate the usage of context.

1.3 Papers of the author

This thesis is mostly based in the following papers done during the course of the doc-

torate. The first two papers contain the part about the explicit usage of contextual

information and are the core of the thesis:

Ismail Elezi*, Alessandro Torcinovich*, Sebastiano Vascon* and Marcello Pelillo;

Transductive label augmentation for improved deep network learning [33] ; In Pro-

ceedings of IAPR International Conference on Pattern Recognition (ICPR 2018)

which deals with label augmentation for convolutional neural networks, performed

by designing a pipeline which combines Graph Transuction Game (GTG) [37] with

CNNs. An extended version of the paper (containing many more experiments and

comparisons) is given in Chapter 3 and we achieve state-of-the-art results in the

task of semi-supervised deep learning in cases where there are only a few labelled

examples. The work can be considered as a first step on combining GTG with

CNNs in an end-to-end manner.

Ismail Elezi, Sebastiano Vascon, Alessandro Torcinovich, Marcello Pelillo and Laura

Leal-Taixé; The Group Loss for Deep Metric Learning [35] ; submitted to European

Conference on Computer Vision (ECCV 2020) which deals with combining a graph

trasduction inspired module in convolutional neural networks in an end-to-end

manner for the task of similarity learning. An extended version of the paper

(containing extra robustness analysis, different backbones, further comparisons

and extra implementation details) is given on Chapter 4 and we achieve state-

of-the-art results in the task of similarity learning (image retrieval). The work

presented there is the most important contribution of the thesis.
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The following four papers contain the part about the implicit usage of contextual infor-

mation, where the author contributed a significant part of the work:

Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber, Marcello Pelillo and Thilo Stadel-

mann; DeepScores-a dataset for segmentation, detection and classification of tiny

objects [187] ; In Proceedings of IAPR International Conference on Pattern Recog-

nition (ICPR 2018) describes the process of creating one of the largest computer

vision datasets, with focus on musical symbols. An extended version of the paper

is given in Chapter 5.

Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber, Thilo Stadelmann; Deep water-

shed detector for music object recognition [188] ; In Proceedings of Conference of

the International Society for Music Information Retrieval (ISMIR 2018) describes

the development of a convolutional-based end-to-end model for the task of optical

music recognition. The work is described in Chapter 6 and is the core work of

the chapter.

Thilo Stadelmann, Mohammadreza Amirian, Ismail Arabaci, Marek Arnold, Gilbert

Franois Duivesteijn, Ismail Elezi, Melanie Geiger, Stefan Lörwald, Benjamin

Bruno Meier, Katharina Rombach, Lukas Tuggener; Deep Learning in the Wild

[179] ; In Proceedings of IAPR TC3 Workshop on Artificial Neural Networks in

Pattern Recognition (ANNPR 2018) describes a collection of industrial projects

where deep learning has been used with the focus on explaining the difficulties of

using deep learning for real world applications. The author contributed to this

paper on the section describing difficulties on the DeepScore project. The work is

described on Chapter 6.

Ismail Elezi*, Lukas Tuggener*, Marcello Pelillo, Thilo Stadelmann; DeepScores and

Deep Watershed Detection: current state and open issues [34] ; in The Interna-

tional Workshop on Reading Music Systems (WoRMS 2018) (ISMIR affiliated),

describes the improvement of both the DeepScores dataset and the Deep Water-

shed Detector. An extended version of the short paper is given in Chapter 6

where among others, it does a comparison with state-of-the-art models, showing

considerable improvement.
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The following paper is thematically related to The Group Loss paper [35], explicitly

using context, however the context is provided via Recurrent Neural Networks. For this

reason, the paper is given in Appendix A:

Benjamin Bruno Meier, Ismail Elezi, Mohammadreza Amirian, Oliver Dürr and Thilo

Stadelmann; Learning neural models for end-to-end clustering [120] ; In Proceed-

ings of IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recogni-

tion (ANNPR 2018) describes an end-to-end clustering framework using residual

bi-directional long short term memory networks.

The following paper was published during the doctorate, and is an extension of the

author’s master thesis:

Marcello Pelillo, Ismail Elezi and Marco Fiorucci; Revealing structure in large graphs:

Szemeredi’s regularity lemma and its use in pattern recognition [147] ; Pattern

Recognition Letters (PRL 2017) describes the usage of the regularity lemma in

the context of graph summarization.

The work is only loosely connected to the work done in the doctorate and so it has been

omitted from this thesis.

The following paper was published after the thesis’ submission, and is not part of the

thesis:

Maxim Maximov*, Ismail Elezi* and and Laura Leal-Taixé; CIAGAN: Conditional

identity anonymization generative adversarial networks [117] ; IEEE/CVF Com-

puter Vision and Pattern Recognition (CVPR 2020) describes a novel algorithm

for face and body anonymization.

1.4 How to read this thesis

The first two chapters of this thesis introduce the problem and give the minimal and

necessary background information in order to be able to read the remaining part of
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this thesis. Then this thesis gets separated into two different branches, which are inde-

pendent from each other. The first and most important branch is that of the usage of

context given in an explicit manner, where the context is given via a graph theoretical

module called Graph Transduction Game (GTG) [37]. We show that using GTG, we

can significantly improve the results of classifications from CNNs where there is a lack

of labelled data. Later, we show that the same algorithm can be put as a building block

on top of the neural network, and combined with cross-entropy we create a new loss

function (called group loss) which outperforms state-of-the-art methods on a wide range

of image retrieval datasets. Thematically related with this problem, we develop a new

clustering algorithm, which shows promising results in relatively simple datasets. The

work there is described in Appendix A.

The second part of the thesis is fundamentally different and deals with the implicit usage

of context in deep neural networks. While in the first part, we needed to give context-

specific blocks, here by carefully designing CNN architectures and loss functions, we

build a new object detector called Deep Watershed Detector, that is able to detect and

recognize tiny symbols for the task of optical music recognition.

We conclude this thesis with Chapter 7, where we briefly summarize the work and show

that the usage of context (be it implicit or explicit) is a very important step in building

modern neural networks, and give directions to future research. A detailed graph of the

structure of the thesis is given in Fig. 1.1, as are given the dependencies of the chapters.
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Figure 1.1: Thesis structure. The first two chapters provide the necessary information
to read the remaining part of the thesis. Chapters 3 and 4 deal with explicit usage of the
context using game and game theoretical models in deep learning, while chapters 5 and
6 deal with implicit usage of the context in convolutional neural networks for object
recognition. Appendix A is related to Chapter 4 as they address similar problems,
however they can be read separately considering that they use totally different ways
of solving the problem. The part on explicit context is independent from the part of

implicit context, and can be read independently.
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Chapter 2

Fundamentals of Deep Learning

This chapter provides a brief description of machine learning and deep learning in order

to make the thesis relatively self-sustainable. For a more thorough and slower-paced

introduction we recommend the Deep Learning book [50].

2.1 Fundamentals of machine learning

There are many problems (i.e image classification, speech recognition etc) where it is

not clear how they can be solved via conventional computer programs. However, at the

same time it is quite straightforward to collect a large number of examples, and to label

them. In these cases, it can be both desirable and useful to use learning in order to

project some mappings between the input (data) and output (labels).

There are several forms of learning, including supervised learning, unsupervised learn-

ing, semi-supervised learning and reinforcement learning. This thesis uses all forms of

learning bar the last one.

Supervised learning is the machine learning task of learning a function that maps an

input to an output based on example input-output pairs. It infers a function from

labeled training data consisting of a set of training examples. It is by far the most

common type of learning in machine learning, and examples of it are image classification,

image recognition, image segmentation, machine translation etc.
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Unsupervised learning is a type of learning that helps find previously unknown patterns

in datasets without pre-existing labels. The most common examples of unsupervised

learning are clustering, dimensionality reduction and image generation.

Semi-supervised learning is the middle ground between supervised and unsupervised

learning. In this type of learning, the majority of data do not have labels, but some of

the data have labels, and the task of the learning is to propagate the labels from the

labeled data to the unlabelled one.

Considering that the majority of the work in machine learning, deep learning and this

thesis is done in supervised learning, we give a more complete description of it.

2.1.1 Supervised Learning

Let X be the data, Y be the set of labels, and D be the data distribution over X × Y
that describes the data that we tend to observe. For every sample (x, y) from D, the

variable x is a typical input and y is the corresponding (possibly noisy) desired output.

The goal of supervised learning is to use a training set consisting of n i.i.d. samples,

S = (xi, yi)
n
i=1 ∼ Dn in order to find a function f : X 7→ Y whose test error

TestD(f) = E(x,y)∼D[L(f(x); y)] (2.1)

is as low as possible. Here L(z; y) is a loss function that measures the loss that we suffer

whenever we predict y as z. Once we find a function whose test error is small enough

for our needs, the learning problem is solved.

Although it would be ideal to find the global minimizer of the test error

f∗ = argminf TestD(f) (2.2)

doing so is fundamentally impossible. We can approximate the test error with the

training error

TrainS(f) = S(x,y)∼D[L(f(x); y)] (2.3)
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(where we define S as the uniform distribution over training cases counting duplicate

cases multiple times) and find a function f with a low training error. Given a model

with large capacity, it is trivial to minimize the training error by memorizing the training

cases, which is very undesirable. Making sure that good performance on the training set

translates into good performance on the test set is known as the generalization problem,

which turns out to be conceptually easy to solve by restricting the allowable functions

f to a relatively small class of functions F :

f∗ = argminf∈F TrainS(f) (2.4)

Restricting f to F essentially solves the generalization problem, because it can be shown

that when log|F | is small relative to the size of the training set (so in particular, |F |
is finite) [191], the training error is close to the test error for all functions f ∈ F

simultaneously. This lets us focus on the algorithmic problem of minimizing the training

error while being reasonably certain that the test error will be approximately minimized

as well. Since the necessary size of the training set grows with F , we want F to be as

small as possible. At the same time, we want F to be as large as possible to improve the

performance of its best function. In practice, it is sensible to choose the largest possible

F that can be supported by the size of the training set and the available computation.

Unfortunately, there is no general recipe for choosing a good F for a given machine

learning problem. Effectively, it is best to experiment with function classes that are

similar to ones that are successful for related problems [180].

2.2 Fundamentals of neural networks

The Feedforward Neural Networks are the most basic and widely used artificial neural

networks. They consist of a number of layers of artificial units that are arranged into

a layered configuration. Of particular interest are deep neural networks, which are

believed to be capable of representing the highly complex functions that achieve high

performance on difficult perceptual problems such as vision, speech and language.
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Figure 2.1: A fully connected feedforward neural network, containing 2 hidden layers,
parametrized by 3 weight matrices.

A feedforward neural network with n hidden layers is parametrized with n + 1 weight

matrices (W0,W1, ...,Wn) and n + 1 vectors of biases (b0, b1, ..., bn). Given an input x,

the feedforward neural network computes the output x given the following algorithm:

z0 ← x

for i from 1 to n+ 1 do

xi ←Wi−1zi−1 + bi−1

zi ← act(xi)

end for

z ← zn

where act() represents a non-linear activation function. There are many possible acti-

vation functions, with the most popular ones coming from the family of rectified linear

units (ReLU) [128].

2.2.1 Backpropagation and Optimization

The learning on deep neural networks typically consists of two procedures, being the

computation of derivatives (gradients) and the adjustment of the weights based on the

computed derivatives.

Backpropagation [161, 202] typically implemented in modern deep learning libraries

as the reverse mode of auto-differentiation [106] is the most used algorithm for the

computation of derivatives in deep neural networks. While in essence it is a smart
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application of the chain rule of calculus, it has several interpretation, with perhaps

the most intuitive one being the calculus graphs. Given a neural network represented

by a computational graph (see Fig. 2.2) first we do a forward pass followed by the

computation of a loss function (eg. cross-entropy for classification or least-mean squared

for regression).

Figure 2.2: A computational graph representing a neural network during the forward
pass.

After it, the derivatives are computed recursively (see Fig. 2.3), where for each edge

of the graph, the final derivative is the derivative of the edge, times the derivative of

the nodes on the next layer which are connected to the edge. By storing the values of

the derivatives in the graph (known as memoization), the derivatives do not need to be

recomputed, making the computation of them linear in the number of edges.

Figure 2.3: A computational graph representing a neural network during the back-
ward pass.
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After the computation of the derivatives, the weights of the network are adjusted. Most

of the algorithms in neural networks use first-order optimizations, based on gradient

descent [81]. Given a function F (θ), gradient descent operates as follows:

for iterations do

θt+1 ← θt − α∇F (θt)
t← t+ 1

end for

where α is a hyperparameter representing the learning rate. On practice, there are a

few considerations to be made. For each iteration, instead of using the entire dataset,

only a small (randomly sampled) partition (called minibatch) of it is used. In these

cases, the algorithm is called stochastic gradient descent (SGD). Perhaps surprisingly,

in neural networks, SGD actually seems to outperform gradient descent, and recent

studies have shown that using a small minibatch is actually desirable and has better

generalization properties [80]. Additionally, the vanilla version of SGD is rarely used in

practice. Instead, modifications of it are used being gradient descent with momentum

[97], accelerated gradient descent (Nesterov’s momentum) [131], RMSProp [184], Adam

[84] etc, which typically reach higher generalization performance at a fraction of the

computational cost.

2.2.2 Convolutional Neural Networks (CNNs)

Fully connected neural networks with hidden layers, a finite number of units and nonlin-

ear activation functions have the ability of approximating any continuous function with

arbitrary precision, making them universal approximators [66]. However, they are com-

putationally costly, and have a large number of weights making them both non efficient

and difficult to train while at the same time having poor generalization performances.

Knowing that on rich-format data like images, speech and language there is structure,

since the discovery of backpropagation, researchers have tried to exploit the structure of

data in order to design more efficient types of feedforward neural networks. By far the

most successful type of them have been the convolutional neural networks [95] which are

loosely inspired from visual cortex.
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The core computational building block of a Convolutional Neural Network is the Convo-

lutional Layer (or the CONV layer) which takes an input tensor and produces an output

tensor by convolving the input with a set of filters. To make things more concrete, we

will take an example with images. Suppose that our input is a color image X (having

3 channels) of size 224 by 224. Now consider a filter w of size 3 by 3 by 3 (see that

the number of channels for the filter must be the same as the number of channels for

the image, in this case 3). We can convolve this filter by sliding it across all spatial

positions of the input tensor and computing a dot product between a small chunk of X

and the filter w at each position. The result will be an activation map, which in this

case would have the dimensions 222 by 222. It is common to pad the images with zeros

in order to not shrink the size of the images, in this case giving us an activation map of

size 224 by 224. In a CONV layer, it is common to apply a set of filters (for example

128) instead of applying a single filter. In this case, it will result with a feature map of

size 224 by 224 by 128. Intuitively, each filter has the capacity to look for certain local

features in the input tensor and the parameters that make up the filters are trained with

backpropagation and SGD.

Figure 2.4: Illustration of convolving a 5 by 5 filter (which we will eventually learn)
over a 3 by 32 by 3 input array with stride 1 and with no input padding. The filters
are always small spatially (5 vs. 32), but always span the full depth of the input array
(3). There are 28 times 28 unique positions for a 5 by 5 filter in a 32 by 32 input, so
the convolution produces a 28 by 28 activation map, where each element is the result
of a dot product between the filter and the input. A convolutional layer has not just
one but a set of different filters (e.g. 64 of them), each applied in the same way and
independently, resulting in their own activation maps. The activation maps are finally
stacked together along depth to produce the output of the layer (e.g. 28 by 28 by 64

array in this case). Figure reproduced from [78].
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More generally, a convolutional layer for images (i.e. assuming input tensors with three

spatial dimensions):

• Accepts a tensor of size W1 ×H1 ×D1

• Requires 4 hyperparameters: The number of filters K, their spatial extent F , the

stride with which they are applied S, and the amount of zero padding on the

borders of the input, P .

• The convolutional layer produces an output volume of size W2 × H2 × D2, where

W2 = (W1 − F + 2P )/S + 1, H2 = (H1 − F + 2P )/S + 1, and D2 = K.

• The number of parameters in each filter is F · F ·D1, for a total of (F · F ·D1) ·K
weights and K biases. In particular, note that the spatial extent of the filters is

small in space (F · F ), but always goes through the full depth of the input tensor

(D1).

• In the output tensor, each d-th slice of the output (of size W2 ×H2) is the result of

performing a valid convolution of the d-th filter over the input tensor with a stride

of S and then offsetting the result by d-th bias.

Pooling layers. In addition to convolutional layers, it is very common in CNNs to also

have pooling layers that decrease the size of the representation with a fixed downsampling

transformation (i.e. without any parameters). In particular, the pooling layers operate

on each channel (activation map) independently and downsample them spatially. A

commonly used setting is to use 2× 2 filters with stride of 2, where each filter computes

the max operation (i.e. over 4 numbers). The result is that an input tensor is downscaled

exactly by a factor of 2 in both width and height and the representation size is reduced

by a factor of 4, at the cost of losing some local spatial information. The most common

types of pooling layers are max-pooling where the highest value in the region is chosen,

and average pooling where the average value in a region is computed.

CNNs. CNNs are neural networks which contain (typically many) convolutional layers

and a few pooling layers, followed by an output layer. Nowadays, it is common to

have CNNs which contain tens to hundreds of convolutional layers (though researchers

have trained CNNs which contain up to 10 thousand layers) and millions to hundreds

of billions of weights. During the last decade, CNNs have been at the forefront of not
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only deep learning, but artificial intelligence in general. Since the AlexNet architecture

[90], researchers have developed many efficient CNNs architectures. This thesis contain

a heavy use of CNNs in all of the following chapters. On particular, we use ResNets

[62], DenseNets [68] and GoogleNet [181].

Figure 2.5: AlexNet [90] - the most famous CNN, which started the deep learning
wave.

2.2.3 Recurrent Neural Networks (RNNs)

There are many applications where the input and output are sequences. For example,

in machine translation, it is desirable to not consider each word in isolation but to

consider them as part of the sequences, and so instead of translating words, to trans-

late the sequences. A recurrent neural network (RNN) is a connectivity pattern that

processes a sequence of vectors {x1, x2, ..., xn} using a recurrence formula of the form

ht = fθ(ht−1, xt), where f is a function and the same parameters θ are used at every

time step, allowing us to process sequences with an arbitrary number of vectors. The

hidden vector ht can be interpreted as a running summary of all vectors x until that

time step and the recurrence formula updates the summary based on the next vector.

It is common to either use h0 = [0, ..., 0], or to treat h0 as parameters and learn the

starting hidden state.

Figure 2.6: An unrolled recurrent neural network. Figure adapted from [136].
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Vanilla recurrent neural networks implement the following equation:

ht = tanh(Wxhxt +Whhht−1) (2.5)

where Wxh and Whh represent the transitional matrices from input to hidden state, and

hidden state to hidden state respectively, h represents the hidden state and the bias has

been omitted for brevity. While theoretically RNNs are program approximators, in the

form given above they tend to be very hard to train, with the gradients either vanishing

or exploding [12, 63].

2.2.3.1 Long Short Term Memory Networks (LSTMs)

In order to solve the above-mentioned problem, [64] modified the vanilla RNN to have

extra gates which would allow the network to remember long-term dependencies, while

at the same time to forget the irrelevant information. These networks which are called

”Long Short Term Memory” networks have been widely used in machine translation,

speech recognition and many other domains where long term dependencies are impor-

tant. They can be implemented via the following equations:

ht = tanh(Whhht1 +Whvvt +Whmmt1) (2.6)

igt = sigmoid(Wighht +Wigvvt +Wigmmt−1 (2.7)

it = tanh(Wihht +Wivvt +Wimmt−1 (2.8)

ot = sigmoid(Wohht +Wovvt +Wommt−1 (2.9)

ft = sigmoid(bf +Wfhht +Wfvvt +Wfmmt−1) (2.10)

mt = mt−1 ⊗ ft + it ⊗ Igt (2.11)

mt = mt ⊗ ot (2.12)

ot = g(Wyhht +Wymmt) (2.13)

where ⊗ represents the Haddamard product and i, o and f stand for input, output and

forget gates.

The only part of this thesis which depends on recurrent neural networks is Appendix A,

the rest of the thesis can be read without any knowledge on RNNs.
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Figure 2.7: The LSTM module. Figure adapted from [136].

2.2.4 Regularization

Deep neural networks have a massive number of parameters and so are prone to overfit-

ting. In order to mitigate the problem, different types of regularization are used. Perhaps

the most used form of regularization is the l2 regularization (at times wrongly called

weight decay [111]) where the large parameters are penalized. This can be achieved by

augmenting the loss function with a new regularization term, as shown in the following

equation:

L(w) = L0(w) + λ||w||22 (2.14)

where L0(w) is the previous loss function and λ is a hyperparameter. Consequently, the

gradients become:

∇wL(w) = ∇w[L0(w) + λ||w||22] = ∇wL0(w) + 2λw (2.15)

.

Another widely used deep learning-specific form of regularization is dropout [177]. Dropout

in forward pass simply drops units with probability p, making every unit less dependent

in its neighbors. Additionally, by applying a different dropout mask (dropping differ-

ent units) in each iteration, the resulted trained net can be considered as an ensemble.

Dropout is widely used in fully connected neural networks, but is less used in CNNs.

However, there exist usages of it in large CNNs, and with a slight modification, it can

be used for probability calibration [43].
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Another omnipresent form of regularization in neural networks is batch normalization

[71]. When trained with batch normalization each feature map (layer) of a neural net-

work is normalized using the mean and standard deviation. Then the features are

scaled and shifted via 2 learnable (by backpropagation) parameters γ and β. Batch-

normalization has shown to both improve the generalization performance and the speed

of convergence for a neural network.

Finally, when working with images, it is extremely common to augment the training

set by applying simple transformations to the images (horizontal and vertical shifting,

rotation, random cropping etc). This type of regularization is called data augmentation

and is used in almost every computer vision application.

In this thesis, we have aggressively used all forms of regularization mentioned in this sec-

tion, in many cases combining multiple forms of regularization (like batch normalization,

data augmentation and l2 regularization).

Figure 2.8: Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped. Figure adapted from [177].

2.2.5 Graphs in Neural Networks

A large part of the thesis tries to combine game-theoretical approaches (or graph-

theoretical inspired approaches) in the context of the neural networks. While our meth-

ods are not related to the other methods presented here, we need to acknowledge that
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the idea of using graph-like structures in neural networks is hardly new. For historical

context, we describe a few methods in the following section.

2.2.5.1 A General Framework for Adaptive Processing of Data Structures

The work of [41] is one of the first works that uses neural networks for arbitrary struc-

tured data. The work is mostly a theoretical work that gives directions on extending the

concept of neural networks to other types of data, proposing a framework that attempts

to unify adaptive models like artificial neural nets and belief nets for the problem of

processing structured information. In particular, relations between data variables are

expressed by directed acyclic graphs, where both numerical and categorical values co-

exist. This is very different to most types of neural networks, that typically do not use

categorical attributes. The general framework proposed in [41] can be regarded as an

extension of both recurrent neural networks and hidden Markov models to the case of

acyclic graphs. In particular, the authors study the supervised learning problem as the

problem of learning transductions from an input structured space to an output struc-

tured space, where transductions are assumed to admit a recursive hidden statespace

representation. The authors introduce a graphical formalism for representing this class of

adaptive transductions by means of recursive networks, i.e., cyclic graphs where nodes

are labeled by variables and edges are labeled by generalized delay elements, making

possible to incorporate the symbolic and subsymbolic nature of data.

Figure 2.9: A directed acyclic graph representing the logical term
φ(α, ψ(γ)), ψ(γ, φ(α, β)) Figure reproduced from [41].
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2.2.5.2 The graph neural network model

An interesting work is that of [166] which explicitly uses graphs in the context of neural

networks. Knowing that many underlying relationships among data in several areas of

science and engineering, e.g., computer vision, molecular chemistry, molecular biology,

pattern recognition, and data mining, can be represented in terms of graphs, the authors

propose a new neural network model, called graph neural network (GNN) model, that

extends existing neural network methods for processing the data represented in graph

domains. This GNN model, which can directly process most of the practically useful

types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function

τ(G,n) ∈ Rm that maps a graph and one of its nodes n into an m-dimensional Euclidean

space.

The main strength of the work is that perhaps for the first time, the authors proposed a

learning rule that can be combined with gradient-based methods. In particular, learning

in GNNs consists of estimating the parameter ω such that ϕω approximates the data in

the learning data set:

L = {(gi, ni,j , ti,j)|gi = (Ni, Ei) ∈ G;ni,j ∈ Ni; ti,j ∈ Rm, 1 < i < p, 1 < i < qi} (2.16)

.

where qi is the number of supervised nodes in gi.

The learning task is posed as the minimization of a quadratic cost function:

ew =

p
∑

i=1

qi
∑

j=1

(ti,j − ϕw(gi, ni,j) (2.17)

.

which can be easily combined with gradient-based methods. Note, the method reminds

to backpropagation-through-time (used in recurrent neural networks). The method

showed success in various problems, including subgraph matching problem, inductive

logic programming or web-page ranking. The method was introduced before the rise

of the deep learning era, nevertheless showed that graphs can be combined with neural
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networks, reached good experimental results and might have served as an inspiration for

the more recent methods [6, 11, 86].

2.2.5.3 Semi-supervised classification with graph convolutional networks

Arguably the most famous method that combines graphs with CNNs is that of Kipf

and Welling [86]. The authors start from the framework of spectral graph convolutions

[19], yet introduce simplifications that in many cases allow both for significantly faster

training times and higher predictive accuracy, reaching state-of-the-art classification

results on a number of benchmark graph datasets.

For this model, the goal is then to learn a function of signals/features on a graph

G = (V,E) which takes as input:

• A feature description xi for every node i; summarized in a N ×D feature matrix

X (N : number of nodes, D: number of input features).

• A representative description of the graph structure in matrix form; typically in the

form of an adjacency matrix A (or some function thereof).

and produces a node-level output Z (an N × F feature matrix, where F is the number

of output features per node). Graph-level outputs can be modeled by introducing some

form of pooling operation [32].

Every neural network layer can then be written as a non-linear function

H(l + 1) = f(H l, A) (2.18)

.

with H(0) = X and H(L) = Z, L being the number of layers. The specific models then

differ only in how f(·, ·) is chosen and parameterized.

As an example, they consider the following very simple form of a layer-wise propagation

rule:

f(H l, A) = σ(AH lW l) (2.19)
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.

where W (l) is a weight matrix for the l-th neural network layer and σ(·) is a non-linear

activation function like the ReLU.

But first, the authors address two limitations of this simple model: multiplication with

A means that, for every node, they sum up all the feature vectors of all neighboring

nodes but not the node itself (unless there are self-loops in the graph). This can be fixed

by enforcing self-loops in the graph by simply adding the identity matrix to A.

The second major limitation is that A is typically not normalized and therefore the

multiplication with A will completely change the scale of the feature vectors. Normal-

izing A such that all rows sum to one, i.e. D−1A, where D is the diagonal node degree

matrix, gets rid of this problem. Multiplying with D−1A now corresponds to taking the

average of neighboring node features. In practice, dynamics get more interesting when

a symmetric normalization is used, i.e. D
−1

2 AD
−1

2 (as this no longer amounts to mere

averaging of neighboring nodes). By combining these two tricks, the authors reach the

propagation rule defined as:

f(H l, A) = σ(D̂
−1

2 ÂD̂
−1

2 H lW l) (2.20)

.

where Â = A+ I, I is the identity matrix and D̂ is the diagonal node degree matrix of

Â.

2.2.5.4 Discussion

Graphs have been one of the main data-structures of computer science and machine

learning, but they have hardly been used in deep learning. Despite that they were

introduced in neural networks [166] before the latest wave of neural network research

[90], until recently they have found a limited usage in deep learning. The work of

[86] brought Graph CNNs at the front of the deep learning research, and since then

many novel works and applications of graph CNNs followed. Recently, graphs in neural

networks have been combined with message-passing techniques to solve many problems.

The work of [47] focuses on using graph networks that can be useful in chemistry or
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drug discovery. The work of [197] proposes a novel attentive graph neural network for

zero-shot video object segmentation. The recent work of [17] achieves state-of-the-art

multi-object tracking by leveraging the power of message-passing networks (implemented

as graph CNNs). The reader is recommended to read the excellent survey of [11] for

more directions in the field.

The next two chapters of this thesis heavily use graphs in combinations with CNNs.

In the next chapter we use a label-propagation method (based on graphs) [37] to solve

the problem of label-augmentation for CNNs. The fourth chapter is inspired from the

same method to develop a brand novel loss function for Siamese networks. The work

presented in this thesis was developed independently from the cited work, and is only

loosely connected with them. Nevertheless, some similarities exist (especially with [86]).

The choice of our model was based on it working on probability space (which makes it

very suitable to be combined with softmax cross-entropy in neural networks), and being

very efficient and easy to work with a large number of samples (unlike [86]). We describe

the graph-transduction method [37] in detail in the next chapter, use it to achieve label

augmentation, and then in the following chapter use a graph-transduction based method

for the problem of metric learning. We present in detail similarities and differences with

the other graph methods in the conclusions.
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Chapter 3

Transductive Label Augmentation

for Improved Deep Network

Learning

3.1 Disclaimer

The work presented in this chapter is based on the following paper:

Ismail Elezi, Alessandro Torcinovich, Sebastiano Vascon and Marcello Pelillo; Trans-

ductive label augmentation for improved deep network learning [33] ; In Proceedings

of IAPR International Conference on Pattern Recognition (ICPR 2018)

The contributions of the author are the following:

• Coming up with the pipeline of the algorithm.

• Writing the vast majority of the code.

• Performing the majority of the experiments.

• Writing a considerable part of the paper.
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3.2 Introduction

Deep neural networks (DNNs) have met with success multiple tasks, and testified a

constantly increasing popularity, being able to deal with the vast heterogeneity of data

and to provide state-of-the-art results across many different fields and domains [94,

167]. Convolutional Neural Networks (CNNs) [42, 95] are one of the protagonists of

this success. Starting from AlexNet [90], until the most recent convolutional-based

architectures [62, 68, 181] CNNs have proved to be especially useful in the field of

computer vision, improving the classification accuracy in many datasets [30, 89].

However, a common caveat of large CNNs is that they require a lot of training data in or-

der to work well. In the presence of classification tasks on small datasets, typically those

networks are pre-trained in a very large dataset like ImageNet [30], and then finetuned

on the dataset the problem is set on. The idea is that the pre-trained network has stored

a decent amount of information regarding features which are common to the majority of

images, and in many cases this knowledge can be transferred to different datasets or to

solve different problems (image segmentation, localization, detection, etc.). This tech-

nique is referred as transfer learning [212] and has been an important ingredient in the

success and popularization of CNNs. Another important technique – very often paired

with the previous one – is data augmentation, through which small transformations are

directly applied on the images. A nice characteristic of data augmentation is its agnosti-

cism toward algorithms and datasets. [28] used this technique to achieve state-of-the-art

results in MNIST dataset [99], while [90] used the method almost without any changes

to improve the accuracy of their CNN in the ImageNet dataset [30]. Since then, data

augmentation has been used in virtually every implementation of CNNs in the field of

computer vision.

Despite the practicality of the above-mentioned techniques, when the number of images

per class is extremely small, the performances of CNNs rapidly degrade and leave much

to be desired. The high availability of unlabeled data only solves half of the problem,

since the manual labeling process is usually costly, tedious and prone to human error.

Under these assumptions, we propose a new method to perform an automatic labeling,

called transductive label augmentation. Starting from a very small labeled dataset, we set

an automatic label propagation procedure, that relies on graph transduction techniques,

to label a large unlabeled set of data. This method takes advantage of second-order
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similarity information among the data objects, a source of information which is not

directly exploited by traditional techniques. To assess our statements, we perform a

series of experiments with different CNN architectures and datasets, comparing the

results with a first-order “label propagator” in addition to competing label propagation

techniques and purely deep learning based methods.

In summary, our contributions of this chapter are as follows: a) by using graph transduc-

tive approaches, we propose and develop the aforementioned label augmentation method

and use it to improve the accuracy of state-of-the-art CNNs in datasets where the num-

ber of labels is limited; b) by gradually increasing the number of labeled objects, we

give detailed results in four standard computer vision datasets and compare the results

with the results of CNNs; c) we replace our transductive algorithm with linear support

vector machines (SVM) [29] to perform label augmentation and compare the results; d)

we replace our method with other label propagation techniques and compare the results;

e) we compare our method with other deep learning methods; f) we give directions for

future work and how the method can be used on other domains.

Figure 3.1: The pipeline of our method. The dataset consists of labeled and unlabeled
images. First, we extract features from the images, and then we feed the features (and
the labels of the labeled images) to graph transduction games. For the unlabeled
images, we use a uniform probability distribution as ’soft-labeling’. The final result is
that the unlabeled points get labeled, thus the entire dataset can be used to train a

convolutional neural network.
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3.3 Related Work

Semi-supervised label propagation has a long history of usage in the field of machine

learning. Starting from an initial large dataset, with a small portion of labeled obser-

vations the traditional way of using semi-supervised learning is to train a classifier only

in the labeled part, and then use the classifier to predict labels for the unlabeled part.

The labels predicted in this way are called pseudo-labels. The classifier is then trained

in the entire dataset, considering the pseudo-labels as if they were real labels.

Different methods with the same intent have been previously proposed. In deep learning

in particular, there have been devised algorithms to use data with a small number of

labeled observations. [70] trained the network jointly in both the labeled and unlabeled

points. The final loss function is a weighted loss of both labeled and unlabeled points,

where in the case of the unlabeled points, the pseudo-label is determined by the highest

score proposed by the model. [58] optimized a CNN on such a way as to produce

embeddings that have high similarities for the observations that belong to the same

class. [85] used a totally different approach, developing a generative model that allows

for effective generalization from small labeled datasets to large unlabeled ones. Recently,

new methods have been developed [91, 124, 183]. The reader is encouraged to read [137]

for a realistic evaluation and comparison of the most common forms of deep learning-

based semi-supervised learning.

In all the mentioned methods, the way how the unlabeled data has been used can be

considered as an intrinsic property of their engineered neural networks. Our choice

of CNNs as the algorithm used for the experiments was motivated because CNNs are

state-of-the-art models in computer vision, but the approach is more general than that.

The method presented in this chapter does not even require a neural network and in

principle, non-feature based observations (i.e graphs) can be considered, as long as a

similarity measure can be derived for them. At the same time, the method shows good

results in relatively complex image datasets, improving over the results of state-of-the-art

CNNs.
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3.3.1 Graph Transduction Game

Graph Transduction (GT) is a subfamily of semi-supervised learning that aims to classify

unlabeled objects starting from a small set of labeled ones. In particular, in GT the

data is modeled as a graph whose vertices are the objects in a dataset. The provided

label information is then propagated all over the unlabeled objects through the edges,

weighted according to the consistency of object pairs. The reader is encouraged to refer

to [224] for a detailed description of algorithms and applications on graph transduction.

In [224], GT takes in input W along with initial probability distributions for every

objects – one-hot labels for (fi, yi) ∈ L, soft labels for fi ∈ U – and iteratively applies

a function P : ∆m → ∆m where ∆m is the standard simplex. At each iteration, if

the distributions of labeled objects have changed, they are reset. Once the algorithm

reaches the convergence, the resulting final probabilities give a labeling over the entire

set of objects.

In this chapter, we follow the approach proposed in [37] called Graph Transduction Game

(GTG), where the authors interpret the graph transduction task as a non-cooperative

multiplayer game. The same methodology has been successfully applied in different

context, e.g. bioinformatics [192] and matrix factorization [186].

In GTG the transduction task is modeled as a non-cooperative game in which the players

represent the observations and the pure strategies represent the possible labels. The

players (observations) play a game in which they choose strategies (labels) such that

their payoff is maximized by progressively modifying their preferences over the labels

proportionally to the similarities among the players and their own preferences. During

every round of the game, each player updates its probability of choosing a particular

strategy according to the received payoff. The more similar the players are, the more

they will affect each other in choosing the same strategy. The game is performed until

a point of convergence is reached, the so-called Nash equilibrium [129]. At equilibrium

condition all the players have chosen the strategy that provides them the highest payoff.

At this point, no one has any incentive to deviate from their choices, thus a consistent

labeling [123] is reached.

More formally, we define a set of players I = {1, . . . , n} and a set of pure strategies

S = {1, . . . ,m} shared among all players (here n is the number of the observations in
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the mini-batch and m the number of labels). The set of players is divided into labeled

(denoted by L, in this work we also refer to them as anchors) and unlabeled (denoted by

U), with I = L∪U being their union set. Each player i is associated with amixed strategy

xi, which is a probability distribution over S, modeling the uncertainty in picking one

label over another. Each mixed strategy lies in the m-dimensional standard simplex

∆m defined as ∆m = {xi ∈ R
m| ∑m

h=1 xih = 1, xih ≥ 0}. The union of all the mixed

strategies of the players composes a mixed strategy profile x ∈ ∆n×m which corresponds

to a particular step of the game. The matrix x evolves at each iteration of the game.

We denote with x(t) the situation of the game at the t-th iteration, while with xih(t)

we point to the probability of picking the h-strategy adopted by player i at time t. In

the following, we denote the pure strategy h for player i with the mixed strategy e
(h)
i , a

vector of size m with 1 at position h and 0 elsewhere (one-hot labeling).

Game initialization The starting point of the game (t = 0) is encoded into the

initial mixed strategy profile x(0). Prior knowledge on the strategies of the players can

be injected in each mixed strategy, drifting the starting point. The mixed strategies

of each labeled players xi(0) ∈ L are simply set to their one-hot labeling. This choice,

along with an appropriate update rule, ensures that the labeled players never change

their strategy during the process. As for the unlabeled players, their strategies can be

set to either some prior distribution (coming, for example, from a neural network) or to

an uniform distribution, i.e. xih(0) = 1/m, ∀h ∈ S.

Payoff definition The game updates are driven by the player choices of a strategy

towards another, which in turn is based on their mixed strategies and pairwise simi-

larities among the players. To quantify the best choices, a tuple of payoff functions

u = (u1, . . . , un) s.t. u : ∆n×m → R
n
≥0 is defined. Each payoff function ui quantifies the

gain that player i obtains given the actual configuration of the mixed strategy profile. It

is worth stressing the fact that the payoff functions take into account the mixed strategy

of every player, fitting gracefully within the context of this chapter. Let (e
(h)
i , x−i) define

a mixed strategy profile where all players j ∈ I \ {i} play their mixed strategy xj while

player i plays the mixed strategy e
(h)
i , instead. Then:

ui(e
(h)
i , x−i) =

∑

j∈U

(Aijxj)h +

m
∑

k=1

∑

j∈Lk

Aij(h, k) (3.1)
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ui(x) =
∑

j∈U

xTi Aijxj +

m
∑

k=1

∑

j∈Lk

xTi (Aij)k (3.2)

where Aij ∈ R
m×m is the partial payoff matrix between the pair of players (i, j). In

particular, Aij = ωij · Im with ωij being the similarity of players i and j while Im is an

identity matrix of size m×m. The Equation 3.1 quantifies the payoff obtained by player

i when it plays the pure strategy h, while Equation 3.2 compute the overall payoff of

player i considering the entire strategy profile x.

Iterative procedure The goal of GTG is to reach an equilibrium condition in which

the players are satisfied with their chosen strategy and have no incentives to change

them. This condition is known as Nash Equilibrium [129], and corresponds to the so-

called consistent labeling.

The evolution of the game towards an equilibrium point is computed through a dynam-

ical system, namely the Replicator Dynamics (RD) [118, 200]. In our case, we adopted

the discrete version of the dynamics:

xih(t+ 1) = xih(t)
ui(e

(h)
i , x−i(t))

ui(x(t))
(3.3)

where t defines the current iteration of the process. The dynamics are typically run until

two consecutive steps do not differ significantly or a maximum number of iterations is

reached. Finally, it is worth mentioning that Equation 3.3 can be written in a more

compact way allowing a fast GPU implementation:

xi(t+ 1) =
xi(t)⊙ (Wx(t))i

xi(t)(Wx(t))Ti
(3.4)

where ⊙ represents the Hadamard (element-wise) product.

3.4 Label Generation

The previously explained framework can be applied to a dataset with many unlabeled

objects to perform an automatic labeling and thus increase the availability of training
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Figure 3.2: The dynamics of the GTG. The algorithm takes in input similarities
between objects and hard/soft labelings of the object themselves. After three iterations,

the algorithm has converged, generating a pseudo-label with 100% confidence.

objects. In this chapter we deal with datasets for image classification, but our approach

can be applied in other domains too.

Preliminary step: both the labeled and unlabeled sets can be refined to obtain more

informative feature vectors. In this chapter, we used fc7 features of CNNs trained on

ImageNet, but in principle, any type of features can be considered. Our particular choice

was motivated because fc7 features work significantly better than traditional computer

vision features (SIFT [112] and its variations). While this might seem counter-intuitive

(using pre-trained CNNs on ImageNet, while we are solving the problem of limited

labeled data), we need to consider that our datasets are different from ImageNet (they

come from different distributions), and by using some other dataset to pre-train our

networks, we are not going against the spirit of our idea.

Step 1: the objects are assigned to initial probability distributions, needed to start

the GTG. The labeled ones use their respective one-hot label representations, while the

unlabeled ones can be set to a uniform distribution among all the labels. In presence of
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previous possessed information, some labels can be directly excluded in order to start

from a multi-peaked distribution, which if chosen wisely, can improve the final results.

Step 2: the extracted features are used to compute the similarity matrix W . The

literature [216] presents multiple methods to obtain a W matrix and extra care should

be taken when performing this step, since an incorrect choice in its computation can

determine a failure in the transductive labeling.

Step 3: once W is computed, graph transduction game can be played (up to conver-

gence) among the objects to obtain the final probabilities which determine the label for

the unlabeled objects.

The resulting labeled dataset can then be used to train a classification model. This

is very convenient for several reasons: 1) CNNs are fully parametric models, so we do

not need to store the training set in memory like in the case of graph transduction.

In some aspect, the CNN is approximating in a parametric way the GTG algorithm;

2) the inference stage on CNNs is extremely fast (real-time); 3) CNN features can be

used for other problems, like image segmentation, detection and classification, something

that we cannot do with graph-transduction or with classical machine learning methods

(like SVM). In the next section we will report the results obtained from state-of-the-art

CNNs, and compare those results with the same CNNs trained only on the labeled part

of the dataset.

3.5 Experiments

In order to assess the quality of the algorithm, we used it to automatically label three

known realistic datasets, namely Caltech-256 [54], Indoor Scene Recognition [149] and

SceneNet-100 [76]. Caltech-256 contains 30607 images belonging to 256 different cate-

gories and it is used for object recognition tasks. Indoor Scene Recognition is a dataset

containing 15620 images of different common places (restaurants, bedrooms, etc.), di-

vided in 67 categories and, as the name says, it is used for scene recognition. SceneNet-

100 database is a publicly available online ontology for scene understanding that orga-

nizes scene categories according to their perceptual relationships. The dataset contains

10000 real-world images, separated into 100 different classes.
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accuracy
2% labeled

caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.529 0.588 0.478 0.506 0.46 0.455

LS + CNN 0.459 0.517 0.434 0.486 0.359 0.435
LH + CNN 0.393 0.463 0.372 0.438 0.312 0.319
LP + CNN 0.397 0.462 0.373 0.425 0.293 0.357

CNN 0.193 0.216 0.315 0.302 0.08 0.18

F score
2% labeled

caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.471 0.534 0.336 0.393 0.439 0.435

LS + CNN 0.392 0.462 0.352 0.403 0.342 0.417
LH + CNN 0.367 0.446 0.262 0.335 0.331 0.342
LP + CNN 0.321 0.381 0.29 0.111 0.278 0.344

CNN 0.091 0.108 0.151 0.131 0.076 0.18

Table 3.1: The results of our algorithm, compared with the results of Label Spreading
(LS), Label Harmonic (LH), Label Propagation (LP) and CNN, when only 2% of the
dataset is labeled. We see that in all three datasets and two different neural networks,

our approach gives significantly better results than the competing approaches.

accuracy
5% labeled

caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.667 0.71 0.552 0.585 0.628 0.626

LS + CNN 0.589 0.647 0.496 0.561 0.523 0.4562
LH + CNN 0.589 0.665 0.527 0.555 0.549 0.588
LP + CNN 0.532 0.60 0.454 0.502 0.442 0.513

CNN 0.44 0.526 0.425 0.438 0.381 0.456

F score
5% labeled

caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.624 0.674 0.44 0.476 0.606 0.62

LS + CNN 0.544 0.601 0.428 0.503 0.511 0.557
LH + CNN 0.542 0.636 0.444 0.482 0.531 0.574
LP + CNN 0.477 0.551 0.394 0.432 0.43 0.506

CNN 0.37 0.467 0.279 0.291 0.376 0.448

Table 3.2: The results of our algorithm, compared with the results of Label Spreading
(LS), Label Harmonic (LH), Label Propagation (LP) and CNN, when only 5% of the
dataset is labeled. We see that in all three datasets and two different neural networks,

our approach gives significantly better results than the competing approaches.

Each dataset was split in a training (70%) and a testing (30%) set. In addition, we

further randomly split the training set in a small labeled part and a large unlabeled

one, according to three different percentages for labeled objects (2%, 5%, 10%). For

feature representation, we used two models belonging to state-of-the-art CNN families of

architectures, ResNet and DenseNet. In particular we used the smallest models offered

in PyTorch library, the choice motivated by the fact that our datasets are relatively

small, and so models with smaller number of parameters are expected to work better.

The features were combined to generate the similarity matrix W . The matrix for GTG
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accuracy
10% labeled

caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.714 0.746 0.577 0.628 0.675 0.681

LS + CNN 0.636 0.702 0.541 0.592 0.631 0.608
LH + CNN 0.646 0.716 0.548 0.595 0.578 0.643
LP + CNN 0.594 0.672 0.49 0.553 0.499 0.565

CNN 0.599 0.655 0.527 0.563 0.544 0.599

F score
10% labeled

caltech indoors scenenet

RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.681 0.717 0.49 0.558 0.646 0.665

LS + CNN 0.601 0.675 0.465 0.549 0.62 0.601
LH + CNN 0.607 0.689 0.466 0.523 0.568 0.634
LP + CNN 0.545 0.635 0.411 0.48 0.488 0.554

CNN 0.554 0.615 0.414 0.466 0.538 0.589

Table 3.3: The results of our algorithm, compared with the results of Label Spreading
(LS), Label Harmonic (LH), Label Propagation (LP) and CNN, when only 10% of the
dataset is labeled. We see that in all three datasets and two different neural networks,

our approach gives significantly better results than the competing approaches.

model was initialized as described in the previous section. We ran the GTG algorithm

up to convergence, with the pseudo-labels being computed by doing an argmax over the

final probability vectors.

We then trained ResNet18 (RN18) and DenseNet121 (DN121) in the entire dataset,

by not having a distinction between labels and pseudo-labels, using Adam optimizer

[84] with 3 ∗ 10−4 learning rate. We think that the results reported in this section are

conservative, and can be improved with a more careful training of the networks, and by

doing an exhaustive search over the space of hyper-parameters.

For comparison, we performed an alternative approach, by replacing GTG with a first-

order information algorithm, namely linear SVM, in addition to other well-known label-

propagation algorithms (namely label propagation [225], label spreading [222], label

harmonic [226]. While we experimented also with kernel SVM, we saw that its results

are significantly worse than those of linear SVM, most likely because the features were

generated from a CNN and so they are already quite good, having transformed the

feature space in order to solve the classification problem linearly.

On Table 3.1 we give the results of the accuracy and F score on the testing set, in all three

datasets, while the number of labels is only 2% for each of the datasets (400 observations

for Caltech-256, 200 observations for Indoor, and 140 observations for Scenenet). In all

three datasets, and both CNNs, our results are significantly better than those of CNNs

trained only in the labeled data, or the results of the competing second-order label
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Figure 3.3: Results obtained on different datasets and CNNs. Here the relative
improvements with respect to the CNN accuracy is reported. As can be seen, the
biggest advantage of our method compared to the other two approaches, is when the
number of labeled points is extremely small (2%). When the number of labeled points
increases, the difference on accuracy becomes smaller, but nevertheless our approach
continues being significantly better than CNN, and in most cases, it gives better results

than the alternative approach.

augmenters. Table 3.2 and Table 3.3 give the results of the accuracy and F score while the

number of labeled images is 5%, respectively 10%. It can be seen that with the number

of labeled points increasing, the performance boost of our model becomes smaller, but

our performance still gives better (or equal) results to the alternative approaches in all

cases, and it gives significantly better results than CNN in all cases.

Figure 3.3 shows the results of our approach compared with the linear SVM and with the

results of CNN. We plotted the relative improvement of our model and the alternative

approach over CNN. When the number of labels is very small (2%), in all three datasets
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we have significantly better improvements compared with the alternative approach. In-

creasing the number of labels to 5% and 10%, this trend persists. In all cases, our

method gives significant improvements compared to CNN trained on only the labeled

part of the dataset, with the most interesting case (only 2% of labeled observations), our

model gives 36.24% relative improvement over CNN for ResNet18 and 50.29% relative

improvement for DenseNet121.

3.5.1 Comparison with Deep Learning models

We also compared our approach with purely deep-learning models. Specifically, we

compared our model with Π-model [91], Mean-Teacher [183], Pseudo-Label [70] and

VAT [124], methods which have been intensively evaluated in [137], from whom we

also got the code. We were particularly interested in the case where the number of

labels was extremely small (from 1 to 25 for class). As in [137], we used the CIFAR-10

[89] dataset, and we used the exact pre-processing and training scheme as given on the

paper. Table 3.4 shows the results of our method in comparison with other deep learning

based, label propagation based and transfer learning methods. We see that our method

significantly outperforms all the other methods, with the difference becoming smaller

while the number of labelled points increases. However, deep learning methods perform

better when the number of labels is higher than 500, suggesting that a common ground

can be reached with our method being used when the number of labels is extremely

small, while deep learning methods should be used when the number of labels increases.

We also did the same experiment as [137], where the network instead of being pre-

trained on ImageNet dataset, it was pre-trained in a subset of ImageNet, which does not

contain any similar classes to the classes of CIFAR-10. The omitted classes can be found

in Appendix F of [137]. We see in Table 3.5 that the performances of all algorithms bar

Label Harmonic suffer for a few percentage points, with our method still being by far

the best method where the number of labelled points is 10, 50 and 100, but it gets

massively outperformed from Pseudo-Label [70] method where the number of labelled

points is 250. Nevertheless, the extremely good performance of our model where the

number of labelled points is extremelly small shows a relative robustness over the choice

of the dataset the network has been pre-trained.
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Method 10 50 100 250

Pi Model 0.1 0.1 0.362 0.741
Mean Teacher 0.1 0.1 0.266 0.734
Pseudo-Labels 0.13 0.335 0.603 0.778
VAT 0.119 0.227 0.321 0.705
Transfer Learning 0.289 0.518 0.605 0.711
LS + CNN 0.534 0.666 0.714 0.758
HF + CNN 0.113 0.232 0.352 0.659

GTG + CNN 0.575 0.733 0.764 0.791

Table 3.4: The results of our method in CIFAR-10 dataset, compared with the results
of other deep learning approaches, where the network has been pre-trained in ImageNet
dataset. 10, 50, 100, and 250 represent the total number of labeled points in the dataset.

Method 10 50 100 250

Pi Model 0.1 0.1 0.11 0.681
Mean Teacher 0.1 0.1 0.12 0.695
Pseudo-Labels 0.132 0.236 0.498 0.764
VAT 0.118 0.193 0.323 0.641
Transfer Learning 0.271 0.506 0.589 0.689
LS + CNN 0.484 0.621 0.684 0.703
HF + CNN 0.113 0.309 0.556 0.642

GTG + CNN 0.514 0.656 0.713 0.719

Table 3.5: The results of our method in CIFAR-10 dataset, compared with the results
of other deep learning approaches, where the network has been pre-trained in a subset
of ImageNet dataset, which does not contain any class which is similar to classes of
CIFAR-10. 10, 50, 100, and 250 represent the total number of labeled points in the

dataset.

3.6 Conclusions and Future Work

In this section, we proposed and developed a game-theoretic model which can be used

as a semi-supervised learning algorithm in order to label the unlabeled observations and

so augment datasets. Different types of algorithms (including state-of-the-art CNNs)

can then be trained on the extended dataset, where the “pseudo-labels” can be treated

as normal labels.
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Our method massively outperforms the other non deep learning based methods, and in

the cases of datasets which have only a few labelled points, it massively outperforms

deep learning methods where the semi-supervision is intrinsic part of the model itself.

Additionally, we offer a different perspective, developing a model which is algorithm-

agnostic, and which doesn’t even need the data to be on feature-based format, while

also being competitive with state-of-the-art methods.

Part of the future work will consist on tailoring our model specifically towards convo-

lutional neural networks and to study if it complements the other deep-learning semi-

supervised models. Additionally, we are working on making the model end-to-end, where

the GTG algorithm will be part of the neural network, instead of being used as a pre-

processing sete. Finally, we believe that the true potential of the model can be unleashed

when the data is in some non-traditional format. In particular, we plan to use our model

in the fields of bio-informatics and natural language processing, where non-conventional

learning algorithms need to be developed. A direct extension of this work is to embed

into the model the similarity between classes which has been proven to significantly

boost the performances of learning algorithms.
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Chapter 4

The Group Loss for Deep Metric

Embedding

4.1 Disclaimer

The work presented in this chapter is based on the following paper:

Ismail Elezi, Sebastiano Vascon, Alessandro Torcinovich, Marcello Pelillo and Laura

Leal-Taixé; The Group Loss for Deep Metric Learning [35] ; submitted to European

Conference on Computer Vision (ECCV 2020)

The contributions of the author are the following:

• Coming up with the pipeline and the modifications of the algorithm.

• Writing the code.

• Performing all the experiments.

• Writing the majority of the paper.

4.2 Introduction

Measuring object similarity is at the core of many important machine learning problems

like clustering and object retrieval. For visual tasks, this means learning a distance
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function over images. With the rise of deep neural networks, the focus has rather shifted

towards learning a feature embedding that is easily separable using a simple distance

function, such as the Euclidean distance. In essence, objects of the same class (similar)

should be close by in the learned manifold, while objects of a different class (dissimilar)

should be far away.

Historically, the best performing approaches get deep feature embeddings from the so-

called siamese networks [18], which are typically trained using the contrastive loss [18]

or the triplet loss [169, 201]. A clear drawback of these losses is that they only consider

pairs or triplets of data points, missing key information about the relationships between

all members of the mini-batch. On a mini-batch of size n, despite that the number of

pairwise relations between samples is O(n2), contrastive loss uses only O(n/2) pairwise
relations, while triplet loss uses O(2n/3) relations. Additionally, these methods consider

only the relations between objects of the same class (positives) and objects of other

classes (negatives), without making any distinction that negatives belong to different

classes. This leads to not taking into consideration the global structure of the embed-

ding space, and consequently results in lower clustering and retrieval performance. To

compensate for that, researchers rely on other tricks to train neural networks for deep

metric learning: intelligent sampling [116], multi-task learning [219] or hard-negative

mining [168]. Recently, researchers have been increasingly working towards exploiting in

a principled way the global structure of the embedding space [20, 59, 156, 199], typically

by designing ranking loss functions instead of following the classic triplet formulations.

In a similar spirit, we propose Group Loss, a novel loss function for deep metric learning

that considers the similarity between all samples in a mini-batch. To create the mini-

batch, we sample from a fixed number of classes, with samples coming from a class

forming a group. Thus, each mini-batch consists of several randomly chosen groups,

and each group has a fixed number of samples. An iterative, fully-differentiable label

propagation algorithm is then used to build feature embeddings which are similar for

samples belonging to the same group, and dissimilar otherwise.

At the core of our method lies an iterative process called replicator dynamics [37, 200],

that refines the local information, given by the softmax layer of a neural network, with

the global information of the mini-batch given by the similarity between embeddings.

The driving rationale is that the more similar two samples are, the more they affect each
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other in choosing their final label and tend to be grouped together in the same group,

while dissimilar samples do not affect each other on their choices. Neural networks

optimized with the Group Loss learn to provide similar features for samples belonging

to the same class, making clustering and image retrieval easier.

Our contribution in this work is four-fold:

• We propose a novel loss function to train neural networks for deep metric embed-

ding that takes into account the local information of the samples, as well as their

similarity.

• We propose a differentiable label-propagation iterative model to embed the simi-

larity computation within backpropagation, allowing end-to-end training with our

new loss function.

• We perform a comprehensive robustness analysis showing the stability of our mod-

ule with respect to the choice of hyperparameters.

• We show state-of-the-art qualitative and quantitative results in several standard

clustering and retrieval datasets.
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Figure 4.1: A comparison between a neural model trained with the Group Loss
(left) and the triplet loss (right). Given a mini-batch of images belonging to different
classes, their embeddings are computed through a convolutional neural network. Such
embeddings are then used to generate a similarity matrix that is fed to the Group Loss
along with prior distributions of the images on the possible classes. The green contours
around some mini-batch images refer to anchors. It is worth noting that, differently
from the triplet loss, the Group Loss considers multiple classes and the pairwise relations
between all the samples. Numbers from 1© to 3© refer to the Group Loss steps, see Sec

4.4.1 for the details.
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4.3 Related Work

Classical metric learning losses. The first attempt at using a neural network for fea-

ture embedding was done in the seminal work of Siamese Networks [18]. A cost function

called contrastive loss was designed in such a way as to minimize the distance between

pairs of images belonging to the same cluster, and maximize the distance between pairs

of images coming from different clusters. In [26], researchers used the principle to suc-

cessfully address the problem of face verification. Another line of research on convex

approaches for metric learning led to the triplet loss [169, 201], which was later combined

with the expressive power of neural networks [168]. The main difference from the orig-

inal Siamese network is that the loss is computed using triplets (an anchor, a positive

and a negative data point). The loss is defined to make the distance between features

of the anchor and the positive sample smaller than the distance between the anchor

and the negative sample. The approach was so successful in the field of face recognition

and clustering, that soon many works followed. The majority of works on the Siamese

architecture consist of finding better cost functions, resulting in better performances

on clustering and retrieval. In [174], the authors generalized the concept of triplet by

allowing a joint comparison among N − 1 negative examples instead of just one. [176]

designed an algorithm for taking advantage of the mini-batches during the training pro-

cess by lifting the vector of pairwise distances within the batch to the matrix of pairwise

distances, thus enabling the algorithm to learn feature embedding by optimizing a novel

structured prediction objective on the lifted problem. The work was later extended in

[175], proposing a new metric learning scheme based on structured prediction that is de-

signed to optimize a clustering quality metric, i.e., the normalized mutual information

[119]. Better results were achieved on [195], where the authors proposed a novel angular

loss, which takes angle relationship into account. A very different problem formulation

was given by [92], where the authors used a spectral clustering-inspired approach to

achieve deep embedding. A recent work presents several extensions of the triplet loss

that reduce the bias in triplet selection by adaptively correcting the distribution shift

on the selected triplets [213].

Sampling and ensemble methods. Knowing that the number of possible triplets is

extremely large even for moderately-sized datasets, and having found that the majority

of triplets are not informative [168], researchers also investigated sampling. In the
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original triplet loss paper [168], it was found that using semi-hard negative mining,

the network can be trained to a good performance, but the training is computationally

inefficient. The work of [116] found out that while the majority of research is focused

on designing new loss functions, selecting training examples plays an equally important

role. The authors proposed a distance-weighted sampling procedure, which selects more

informative and stable examples than traditional approaches, achieving excellent results

in the process. A similar work was that of [45] where the authors proposed a hierarchical

version of triplet loss that learns the sampling all-together with the feature embedding.

The majority of recent works has been focused on complementary research directions

such as intelligent sampling [31, 45, 116, 198, 209] or ensemble methods [82, 138, 164,

210, 214]. As we will show in the experimental section, these can be combined with our

novel loss.

Other related problems. In order to have a focused and concise paper, we mostly dis-

cuss methods which tackle image ranking/clustering in standard datasets. Nevertheless,

we acknowledge related research on specific applications such as person re-identification

or landmark recognition, where researchers are also gravitating towards considering the

global structure of the mini-batch. In [59] the authors propose a new hashing method for

learning binary embeddings of data by optimizing Average Precision metric. In [61, 156]

authors study novel metric learning functions for local descriptor matching on landmark

datasets. [20] designs a novel ranking loss function for the purpose of few-shot learning.

Similar works that focus on the global structure have shown impressive results in the

field of person re-identification [2, 220].

Classification-based losses. The authors of [126] proposed to optimize the triplet loss

on a different space of triplets than the original samples, consisting of an anchor data

point and similar and dissimilar learned proxy data points. These proxies approximate

the original data points so that a triplet loss over the proxies is a tight upper bound

of the original loss. The final formulation of the loss is shown to be similar to that

of softmax cross-entropy loss, challenging the long-hold belief that classification losses

are not suitable for the task of metric learning. Recently, the work of [218] showed

that a carefully tuned normalized softmax cross-entropy loss function combined with a

balanced sampling strategy can achieve competitive results. A similar line of research

is that of [221], where the authors use a combination of normalized-scale layers and

Gram-Schmidt optimization to achieve efficient usage of the softmax cross-entropy loss
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for metric learning. The work of [148] goes a step further by taking into consideration

the similarity between classes. Furthermore, the authors use multiple centers for class,

allowing them to reach state-of-the-art results, at a cost of significantly increasing the

number of parameters of the model. In contrast, we propose a novel loss that achieves

state-of-the-art results without increasing the number of parameters of the model.

4.4 Group Loss

Most loss functions used for deep metric learning [45, 92, 116, 168, 174–176, 195, 198, 199]

do not use a classification loss function, e.g., cross-entropy, but rather a loss function

based on embedding distances. The rationale behind it, is that what matters for a

classification network is that the output is correct, which does not necessarily mean

that the embeddings of samples belonging to the same class are similar. Since each

sample is classified independently, it is entirely possible that two images of the same

class have two distant embeddings that both allow for a correct classification. We argue

that a classification loss can still be used for deep metric learning if the decisions do not

happen independently for each sample, but rather jointly for a whole group, i.e., the set

of images of the same class in a mini-batch. In this way, the method pushes for images

belonging to the same class to have similar embeddings.

Towards this end, we propose Group Loss, an iterative procedure that uses the global

information of the mini-batch to refine the local information provided by the softmax

layer of a neural network. This iterative procedure categorizes samples into different

groups, and enforces consistent labelling among the samples of a group. While softmax

cross-entropy loss judges each sample in isolation, the Group Loss allows us to judge

the overall class separation for all samples. In section 4.4.3, we show the differences

between the softmax cross-entropy loss and Group Loss, and highlight the mathematical

properties of our new loss.

4.4.1 Overview of Group Loss

Given a mini-batch B consisting of n images, consider the problem of assigning a class

label λ ∈ Λ = {1, . . . ,m} to each image in B. In the remainder of the manuscript,

X = (xiλ) represents a n × m (non-negative) matrix of image-label soft assignments.
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In other words, each row of X represents a probability distribution over the label set Λ

(
∑

λ xiλ = 1 for all i = 1 . . . n).

The proposed model consists of the following steps (see also Fig. 4.1 and Algorithm 1):

1. Initialization: InitializeX, the image-label assignment using the softmax outputs

of the neural network. Compute the n× n pairwise similarity matrix W using the

neural network embedding.

2. Refinement: Iteratively, refine X considering the similarities between all the

mini-batch images, as encoded in W , as well as their labeling preferences.

3. Loss computation: Compute the cross-entropy loss of the refined probabilities

and update the weights of the neural network using backpropagation.

We now provide a more detailed description of the three steps of our method.

4.4.2 Initialization

Image-label assignment matrix. The initial assignment matrix denoted X(0), comes

from the softmax output of the neural network. We can replace some of the initial

assignments in matrixX with one-hot labelings of those samples. We call these randomly

chosen samples anchors, as their assignments do not change during the iterative refine

process and consequently do not directly affect the loss function. However, by using

their correct label instead of the predicted label (coming from the softmax output of the

NN), they guide the remaining samples towards their correct label.

Similarity matrix. A measure of similarity is computed among all pairs of embeddings

(computed via a CNN) in B to generate a similarity matrix W ∈ R
n×n. In this work,

we compute the similarity measure using the Pearson’s correlation coefficient [145]:

ω(i, j) =
Cov[φ(Ii), φ(Ij)]

√

Var[φ(Ii)]Var[φ(Ij)]
(4.1)

for i 6= j, and set ω(i, i) to 0. The choice of this measure over other options such as

cosine layer, Gaussian kernels, or learned similarities, is motivated by the observation

that the correlation coefficient uses data standardization, thus providing invariance to
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Figure 4.2: A toy example of the refinement procedure, where the goal is to classify
sample C based on the similarity with samples A and B. From left to right: (1) The
Affinity matrix used to update the soft assignments. (2) The initial labeling of the
matrix. (3-4) The process iteratively refines the soft assignment of the unlabeled sample
C. (5) At the end of the process, sample C gets the same label of A, (A, C) being more

similar than (B, C).

scaling and translation – unlike the cosine similarity, which is invariant to scaling only

– and it does not require additional hyperparameters, unlike Gaussian kernels [33]. The

fact that a measure of the linear relationship among features provides a good similarity

measure can be explained by the fact that the computed features are actually a highly

non-linear function of the inputs. Thus, the linear correlation among the embeddings

actually captures a non-linear relationship among the original images.

4.4.3 Refinement

In this core step of the proposed algorithm, the initial assignment matrix X(0) is refined

in an iterative manner, taking into account the similarity information provided by matrix

W . X is updated in accordance with the smoothness assumption, which prescribes that

similar objects should share the same label.

To this end, let us define the support matrix Π = (πiλ) ∈ Rn×m as

Π =WX (4.2)

whose (i, λ)-component

πiλ =
n
∑

j=1

wijxjλ (4.3)

represents the support that the current mini-batch gives to the hypothesis that the i-th

image in B belongs to class λ. Intuitively, in obedience to the smoothness principle, πiλ

is expected to be high if images similar to i are likely to belong to class λ.
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Given the initial assignment matrix X(0), our algorithm refines it using the following

update rule:

xiλ(t+ 1) =
xiλ(t)πiλ(t)

∑m
µ=1 xiµ(t)πiµ(t)

(4.4)

where the denominator represents a normalization factor which guarantees that the rows

of the updated matrix sum up to one. This is known as multi-population replicator

dynamics in evolutionary game theory [200] and is equivalent to nonlinear relaxation

labeling processes [146, 158].

In matrix notation, the update rule (4.4) can be written as:

X(t+ 1) = Q−1(t) [X(t)⊙Π(t)] (4.5)

where

Q(t) = diag([X(t)⊙Π(t)]1) (4.6)

and 1 is the all-one m-dimensional vector. Π(t) = WX(t) as defined in (4.2), and ⊙
denotes the Hadamard (element-wise) matrix product. In other words, the diagonal ele-

ments of Q(t) represent the normalization factors in (4.4), which can also be interpreted

as the average support that object i obtains from the current mini-batch at iteration t.

Intuitively, the motivation behind our update rule is that at each step of the refinement

process, for each image i, a label λ will increase its probability xiλ if and only if its sup-

port πiλ is higher than the average support among all the competing label hypothesis

Qii.
1

Thanks to the Baum-Eagon inequality [146], it is easy to show that the dynamical system

defined by (4.4) has very nice convergence properties. In particular, it strictly increases

at each step the following functional:

F (X) =
n
∑

i=1

n
∑

j=1

m
∑

λ=1

wijxiλxjλ (4.7)

which represents a measure of “consistency” of the assignment matrix X, in accordance

to the smoothness assumption (F rewards assignments where highly similar objects are

1This can be motivated by a Darwinian survival-of-the-fittest selection principle, see e.g. [200].
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likely to be assigned the same label). In other words:

F (X(t+ 1)) ≥ F (X(t)) (4.8)

with equality if and only if X(t) is a stationary point. Hence, our update rule (4.4) is, in

fact, an algorithm for maximizing the functional F over the space of row-stochastic ma-

trices. Note, that this contrasts with classical gradient methods, for which an increase in

the objective function is guaranteed only when infinitesimal steps are taken, and deter-

mining the optimal step size entails computing higher-order derivatives. Here, instead,

the step size is implicit and yet, at each step, the value of the functional increases.

4.4.4 Loss computation

Once the labeling assignments converge (or in practice, a maximum number of iter-

ations is reached), we apply the cross-entropy loss to quantify the classification error

and backpropagate the gradients. Recall, the refinement procedure is optimized via

replicator dynamics, as shown in the previous section. By studying Equation (4.5), it

is straightforward to see that it is composed of fully differentiable operations (matrix-

vector and scalar products), and so it can be easily integrated within backpropagation.

Although the refining procedure has no parameters to be learned, its gradients can be

backpropagated to the previous layers of the neural network, producing, in turn, better

embeddings for similarity computation.

4.4.5 Summary of the Group Loss

In this section, we proposed the Group Loss function for deep metric learning. During

training, the Group Loss works by grouping together similar samples based on both

the similarity between the samples in the mini-batch and the local information of the

samples. The similarity between samples is computed by the correlation between the

embeddings obtained from a CNN, while the local information is computed with a soft-

max layer on the same CNN embeddings. Using an iterative procedure, we combine

both sources of information and effectively bring together embeddings of samples that

belong to the same class.
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Algorithm 1: The Group Loss

input : Set of pre-processed images in the mini-batch B, set of labels y, neural network
φ with learnable parameters θ, similarity function ω, number of iterations T
1) Compute feature embeddings φ(B, θ) via the forward pass
2) Compute the similarity matrix W = [ω(i, j)]ij
3) Initialize the matrix of priors X(0) from the softmax layer
4) for t = 0, . . . , T-1 do

Q(t) = diag([X(t)⊙Π(t)]1)
X(t+ 1) = Q−1(t) [X(t)⊙Π(t)]

5) Compute the cross-entropy J(X(T ), y)
6) Compute the derivatives ∂J/∂θ via backpropagation, and update the weights θ

During inference, we simply forward pass the images through the neural network to

compute their embeddings, which are directly used for image retrieval within a nearest

neighbor search scheme. The iterative procedure is not used during inference, thus

making the feature extraction as fast as that of any other competing method.

4.4.6 Alternative loss formulation

In the main paper, we formulated the loss as an iterative dynamical system, followed by

the cross-entropy loss function. In this way, we encourage the network to predict the

same label for samples coming from the same class. One might argue that this is not

necessarily the best loss for metric learning, in the end, we are interested in bringing

similar samples closer together in the embedding space, without the need of having

them classified correctly. Even though several works have shown that a classification

loss can be used for metric learning [126, 148, 218], we test whether this is also the best

formulation for our loss function.

We therefore experiment with a different loss function which encourages the network to

produce similar label distributions (soft labels) for the samples coming from the same

class. We first define Kullback-Leibler divergence for two distributions P and Q as:

DKL(P ||Q) =
∑

x∈X

P (x)log
P (x)

Q(x)
. (4.9)

We then minimize the divergence between the predicted probability (after the iterative

procedure) of samples coming from the same class. Unfortunately, this loss formulation
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results in lower performances on both CUB-200-2011 [194] (3pp) and Cars 196 [87]

(1.5pp). Thus, we report the experiments in only with the original loss formulation.

4.4.7 Dealing with negative similarities

Equation (4) in the paper assumes that the matrix of similarity is non-negative. However,

for similarity computation, we use a correlation metric (see Equation (1)) which produces

values in the range [−1, 1]. In similar situations, different authors propose different

methods to deal with the negative outputs. The most common approach is to shift the

matrix of similarity towards the positive regime by subtracting the biggest negative value

from every entry in the matrix [37]. Nonetheless, this shift has a side effect: If a sample

of class k1 has very low similarities to the elements of a large group of samples of class

k2, these similarity values (which after being shifted are all positive) will be summed

up. If the cardinality of class k2 is very large, then summing up all these small values

lead to a large value, and consequently affect the solution of the algorithm. What we

want instead, is to ignore these negative similarities, hence we propose clamping. More

concretely, we use a ReLU activation function over the output of Equation (1).

We compare the results of shifting vs clamping. On the CARS 196 dataset, we do not

see a significant difference between the two approaches. However, on the CUBS-200-

2011 dataset, the Recall@1 metric is 51 with shifting, much below the 64.3 obtained

when using clamping. We investigate the matrix of similarities for the two datasets, and

we see that the number of entries with negative values for the CUBS-200-2011 dataset

is higher than for the CARS 196 dataset. This explains the difference in behavior, and

also verifies our hypothesis that clamping is a better strategy to use within Group Loss.

4.4.8 Temperature scaling

We mentioned that as input to the Group Loss (step 3 of the algorithm) we initialize

the matrix of priors X(0) from the softmax layer of the neural network. Following the

works of [14, 55, 218], we apply a sharpening function to reduce the entropy of the

softmax distribution. We use the common approach of adjusting the temperature of

this categorical distribution, known as temperature scaling. Intuitively, this procedure

calibrates our network and in turn, provides more informative prior to the dynamical
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system. Additionally, this calibration allows the dynamical system to be more effective

in adjusting the predictions, i.e, it is easier to change the probability of a class if its

initial value is 0.6 rather than 0.95. The function is implemented using the following

equation:

Tsoftmax(zi) =
ezi/T

∑

i e
zi/T

, (4.10)

which can be efficiently implemented by simply dividing the prediction logits by a con-

stant T .

4.5 Experiments

In this section, we compare the Group Loss with state-of-the-art deep metric learning

models on both image retrieval and clustering tasks. Our method achieves state-of-the-

art results in three public benchmark datasets.

4.5.1 Implementation details

We use the PyTorch [144] library for the implementation of the Group Loss. We choose

GoogleNet [181] with batch-normalization [71] as the backbone feature extraction net-

work. We pretrain the network on ILSVRC 2012-CLS dataset [162]. For pre-processing,

in order to get a fair comparison, we follow the implementation details of [175]. The

inputs are resized to 256 × 256 pixels, and then randomly cropped to 227 × 227. Like

other methods except for [174], we use only a center crop during testing time. We train

all networks in the classification task for 10 epochs. We then train the network in the

Group Loss task for 60 epochs using Adam optimizer [83] with learning rate 0.0002

set for all networks and all datasets. After 30 epochs, we lower the learning rate by

multiplying it by 0.1. We find the hyperparameters using random search [13]. We use

small mini-batches of size 30− 100. As sampling strategy, on each mini-batch, we first

randomly sample a fixed number of classes, and then for each of the chosen classes, we

sample a fixed number of samples. For the weight decay (L2-regularization) parameter,

we search over the interval [0.1, 10−16], while for learning rate we search over the interval

[0.1, 10−5], choosing 0.0002 as the learning rate for all networks and all datasets.
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4.5.2 Benchmark datasets

We perform experiments on 3 publicly available datasets, evaluating our algorithm on

both clustering and retrieval metrics. For training and testing, we follow the conventional

splitting procedure [176].

CUB-200-2011 [194] is a dataset containing 200 species of birds with 11, 788 images,

where the first 100 species (5, 864 images) are used for training and the remaining 100

species (5, 924 images) are used for testing.

Cars 196 [87] dataset is composed of 16, 185 images belonging to 196 classes. We use

the first 98 classes (8, 054 images) for training and the other 98 classes (8, 131 images)

for testing.

Stanford Online Products dataset, as introduced in [176], contains 22, 634 classes

with 120, 053 product images in total, where 11, 318 classes (59, 551 images) are used

for training and the remaining 11, 316 classes (60, 502 images) are used for testing.

4.5.3 Evaluation metrics

Based on the experimental protocol detailed above, we evaluate retrieval performance

and clustering quality on data from unseen classes of the 3 aforementioned datasets. For

the retrieval task, we calculate the percentage of the testing examples whose K nearest

neighbors contain at least one example of the same class. This quantity is also known

as Recall@K [73] and is the most used metric for image retrieval evaluation.

Similar to all other approaches, we perform clustering using K-means algorithm [115]

on the embedded features. Like in other works, we evaluate the clustering quality using

the Normalized Mutual Information measure (NMI) [119]. The choice of NMI measure

is motivated by the fact that it is invariant to label permutation, a desirable property

for cluster evaluation.
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4.5.4 Main Results

We now show the results of our model and comparison to state-of-the-art methods.

Our main comparison is with other loss functions, e.g., triplet loss. To compare with

perpendicular research on intelligent sampling strategies or ensembles, and show the

power of the Group Loss, we propose a simple ensemble version of our method. Our

ensemble network is built by training l independent neural networks with the same

hyperparameter configuration. During inference, their embeddings are concatenated.

Note, that this type of ensemble is much simpler than the works of [82, 139, 164, 210, 214],

and is given only to show that, when optimized for performance, our method can be

extended to ensembles giving higher clustering and retrieval performance than other

methods in the literature. Finally, in the interest of space, we only present results for

Inception network [181], as this is the most popular backbone for the metric learning

task, which enables fair comparison among methods. In supplementary material, we

present results for other backbones, and include a discussion about the methods that

work by increasing the number of parameters (capacity of the network) [148], or use

more expressive network architectures.

Loss comparison. In Table 4.1 we present the results of our method and compare them

with the results of other approaches. On the CUB-200-2011 dataset, we outperform the

other approaches by a large margin, with the second-best model (Classification [218])

having circa 5 percentage points(pp) lower absolute accuracy in Recall@1 metric. On the

NMI metric, our method achieves a score of 67.9 which is 1.7pp higher than the second-

best method. Similarly, on Cars 196, our method achieves best results on Recall@1, with

Classification [218] coming second with a 2pp lower score. On Stanford Online Products,

our method reaches the best results on the Recall@1 metric, around 1.5pp higher than

Classification [218] and Proxy-NCA [126]. On the same dataset, when evaluated on

the NMI score, our loss outperforms any other method, be those methods that exploit

advanced sampling, or ensemble methods.

Loss with ensembles. In Table 4.2 we present the results of our ensemble, and com-

pare them with the results of other ensemble and sampling approaches. Our ensemble

method (using 5 neural networks) is the highest performing model in CUB-200-2011,

outperforming the second-best method (Divide and Conquer [164]) by 1pp in Recall@1
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CUB-200-2011 CARS 196 Stanford Online Products

Loss R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 NMI

Triplet [168] 42.5 55 66.4 77.2 55.3 51.5 63.8 73.5 82.4 53.4 66.7 82.4 91.9 89.5
Lifted Structure [176] 43.5 56.5 68.5 79.6 56.5 53.0 65.7 76.0 84.3 56.9 62.5 80.8 91.9 88.7
Npairs [174] 51.9 64.3 74.9 83.2 60.2 68.9 78.9 85.8 90.9 62.7 66.4 82.9 92.1 87.9
Facility Location [175] 48.1 61.4 71.8 81.9 59.2 58.1 70.6 80.3 87.8 59.0 67.0 83.7 93.2 89.5
Angular Loss [195] 54.7 66.3 76 83.9 61.1 71.4 81.4 87.5 92.1 63.2 70.9 85.0 93.5 88.6
Proxy-NCA [126] 49.2 61.9 67.9 72.4 59.5 73.2 82.4 86.4 88.7 64.9 73.7 - - 90.6
Deep Spectral [92] 53.2 66.1 76.7 85.2 59.2 73.1 82.2 89.0 93.0 64.3 67.6 83.7 93.3 89.4
Classification [218] 59.6 72 81.2 88.4 66.2 81.7 88.9 93.4 96 70.5 73.8 88.1 95 89.8
Bias Triplet [213] 46.6 58.6 70.0 - - 79.2 86.7 91.4 - - 63.0 79.8 90.7 -

Ours 64.3 75.8 84.1 90.5 67.9 83.7 89.9 93.7 96.3 70.7 75.1 87.5 94.2 90.8

Table 4.1: Retrieval and Clustering performance on CUB-200-2011, CARS 196 and
Stanford Online Products datasets. Bold indicates best results.

CUB-200-2011 CARS 196 Stanford Online Products

Loss+Sampling R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 NMI

Samp. Matt. [116] 63.6 74.4 83.1 90.0 69.0 79.6 86.5 91.9 95.1 69.1 72.7 86.2 93.8 90.7
Hier. triplet [45] 57.1 68.8 78.7 86.5 - 81.4 88.0 92.7 95.7 - 74.8 88.3 94.8 -
DAMLRRM [209] 55.1 66.5 76.8 85.3 61.7 73.5 82.6 89.1 93.5 64.2 69.7 85.2 93.2 88.2
DE-DSP [31] 53.6 65.5 76.9 61.7 - 72.9 81.6 88.8 - 64.4 68.9 84.0 92.6 89.2
RLL 1 [199] 57.4 69.7 79.2 86.9 63.6 74 83.6 90.1 94.1 65.4 76.1 89.1 95.4 89.7
GPW [198] 65.7 77.0 86.3 91.2 - 84.1 90.4 94.0 96.5 - 78.2 90.5 96.0 -

Teacher-Student

RKD [143] 61.4 73.0 81.9 89.0 - 82.3 89.8 94.2 96.6 - 75.1 88.3 95.2 -

Loss+Ensembles

BIER 6 [138] 55.3 67.2 76.9 85.1 - 75.0 83.9 90.3 94.3 - 72.7 86.5 94.0 -
HDC 3 [214] 54.6 66.8 77.6 85.9 - 78.0 85.8 91.1 95.1 - 70.1 84.9 93.2 -
ABE 2 [82] 55.7 67.9 78.3 85.5 - 76.8 84.9 90.2 94.0 - 75.4 88.0 94.7 -
ABE 8 [82] 60.6 71.5 79.8 87.4 - 85.2 90.5 94.0 96.1 - 76.3 88.4 94.8 -
A-BIER 6 [139] 57.5 68.7 78.3 86.2 - 82.0 89.0 93.2 96.1 - 74.2 86.9 94.0 -
D and C 8 [164] 65.9 76.6 84.4 90.6 69.6 84.6 90.7 94.1 96.5 70.3 75.9 88.4 94.9 90.2
RLL 3 [199] 61.3 72.7 82.7 89.4 66.1 82.1 89.3 93.7 96.7 71.8 79.8 91.3 96.3 90.4

Ours 2-ensemble 65.8 76.7 85.2 91.2 68.5 86.2 91.6 95.0 97.1 91.1 75.9 88.0 94.5 72.6
Ours 5-ensemble 66.9 77.1 85.4 91.5 70.0 88.0 92.5 95.7 97.5 74.2 76.3 88.3 94.6 91.1

Table 4.2: Retrieval and Clustering performance of our ensemble compared with other
ensemble and sampling methods. Bold indicates best results.

and by 0.4pp in NMI. In Cars 196 our method outperforms the second best method

(ABE 8 [82]) by 2.8pp in Recall@1. The second best method in NMI metric is the en-

semble version of RLL [199] which gets outperformed by 2.4pp from the Group Loss.

In Stanford Online Products, our ensemble reaches the third-highest result on the Re-

call@1 metric (after RLL [199] and GPW [198]) while increasing the gap with the other

methods in NMI metric.

4.5.4.1 Qualitative results

In Fig. 4.3 we present qualitative results on the retrieval task in all three datasets. In all

cases, the query image is given on the left, with the four nearest neighbors given on the

right. Green boxes indicate the cases where the retrieved image is of the same class as

the query image, and red boxes indicate a different class. As we can see, our model is able
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to perform well even in cases where the images suffer from occlusion and rotation. On

the Cars 196 dataset, we see a successful retrieval even when the query image is taken

indoors and the retrieved image outdoors, and vice-versa. The first example of Cars 196

dataset is of particular interest. Despite the fact that the query image contains 2 cars, all

four nearest neighbors which have been retrieved have the same class as the query image,

showing the robustness of the algorithm to uncommon input image configurations. We

provide the results of t-SNE [189] projection in the supplementary material.

Query Rank 1 Rank 2 Rank 3 Rank 4Retrieval Query Rank 1 Rank 2 Rank 3 Rank 4Retrieval Query Retrieval

Figure 4.3: Retrieval results on a set of images from the CUB-200-2011 (left), Cars
196 (middle), and Stanford Online Products (right) datasets using our Group Loss
model. Left column contains query images. The results are ranked by distance. Green
square indicates that the retrieved image is from the same class as query image, while

the red box indicate that the retrieved image is from a different class.

4.5.5 Robustness analysis

Number of anchors. In Fig. 4.4, we show the effect of the number of anchors with

respect to the number of samples per class. We do the analysis on CUB-200-2011 dataset

and give a similar analysis for CARS dataset in the supplementary material. The results

reported are the percentage point differences in terms of Recall@1 with respect to the

best performing set of parameters (see Recall@1 = 64.3 in Tab. 4.1). The number of

anchors ranges from 0 to 4, while the number of samples per class varies from 5 to 10. It

is worth noting that our best setting considers 1 or 2 anchors over 9 samples. Moreover,

even when we do not use any anchor, the difference in Recall@1 is no more than 2pp.

We report the same analysis for the Cars 196 [87] dataset, leading us to the same

conclusions. We increase the number of elements per class from 5 to 10, and in each

case, we vary the number of anchors from 0 to 4. We show the results in Fig. 4.5. Note,

the results decrease mainly when we do not have any labeled sample, i.e., when we use

zero anchors. The method shows the same robustness as on the CUB-200-2011 [194]
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Figure 4.4: The effect of the number
of anchors and the number of samples

per class.

Figure 4.5: The effect of the number
of anchors and the number of samples

per class.

Figure 4.6: The effect of the number
of classes per mini-batch.

Figure 4.7: Recall@1 as a function
of training epochs on Cars196 dataset.

Figure adapted from [126].

dataset, with the best result being only 2.1 percentage points better at the Recall@1

metric than the worst result.

Number of classes per mini-batch. In Fig. 4.6, we present the change in Recall@1

on the CUB-200-2011 dataset if we increase the number of classes we sample at each

iteration. The best results are reached when the number of classes is not too large. This

is a welcome property, as we are able to train on small mini-batches, known to achieve

better generalization performance [80].

Convergence rate. In Fig. 4.7, we present the convergence rate of the model on

the Cars 196 dataset. Within the first 30 epochs, our model achieves state-of-the-art

results, making our model significantly faster than other approaches. Note, that other

models, with the exception of Proxy-NCA [126], need hundreds of epochs to converge.

Additionally, we compare the training time with Proxy-NCA [126]. On a single Volta
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V100 GPU, the average running time of our method per epoch is 23.59 seconds on CUB-

200-2011 and 39.35 seconds on Cars 196, compared to 27.43 and 42.56 of Proxy-NCA

[126]. Hence, our method is faster than one of the fastest methods in the literature.

Note, the inference time of every method is the same because the network is used only

for feature embedding extraction during inference.

Implicit regularization and less overfitting. In Figures 4.8 and 4.9, we compare

the results of training vs. testing on Cars 196 [87] and Stanford Online Products [176]

datasets. We see that the difference between Recall@1 at train and test time is small,

especially on Stanford Online Products dataset. On Cars 196 the best results we get

for the training set are circa 93% in the Recall@1 measure, only 9 percentage points

(pp) better than what we reach in the testing set. From the works we compared the

results with, the only one which reports the results on the training set is Deep Spectral

Clustering Learning [92]. They reported results of over 90% in all metrics for all three

datasets (for the training sets), much above the test set accuracy which lies at 73.1% on

Cars 196 and 67.6% on Stanford Online Products dataset. This clearly shows that our

method is much less prone to overfitting.

We further implement the P-NCA [126] loss function and perform a similar experiment,

in order to be able to compare training and test accuracies directly with our method.

In Figure 4.8, we show the training and testing curves of P-NCA on the Cars 196 [87]

dataset. We see that while in the training set, P-NCA reaches results of 3pp higher

than our method, in the testing set, our method outperforms P-NCA by around 10pp.

Unfortunately, we were unable to reproduce the results of the paper [126] on Stanford

Online Products dataset.

Furthermore, even when we turn off L2-regularization, the generalization performance

of our method does not drop at all. Our intuition is that by taking into account the

structure of the entire manifold of the dataset, our method introduces a form of reg-

ularization. We can clearly see a smaller gap between training and test results when

compared to competing methods, indicating less overfitting. We plan to further investi-

gate this phenomenon in future work.
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Figure 4.8: Training vs testing Re-
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Products dataset.

4.5.6 Other backbones

In the previous section, we perform all experiments using a GoogleNet backbone with

batch normalization. This choice is motivated by the fact that most methods use this

backbone, making comparisons fair. In this section, we explore the performance of our

method for other backbone architectures, to show the generality of our proposed loss

formulation. We choose to train a few networks from Densenet family [68]. Densenets

are a modern CNN architecture which show similar classification accuracy to GoogleNet

in most tasks (so they are a similarly strong classification baseline 2). Furthermore, by

training multiple networks of the same family, we can study the effect of the capacity

of the network, i.e., how much can we gain from using a larger network? Finally, we

are interested in studying if the choice of hyperparameters can be transferred from one

backbone to another.

We present the results of our method using Densenet backbones in Tab. 4.3. We use the

same hyperparameters as the ones used for the GoogleNet experiments, reaching state-of-

the-art results on both CARS 196 [87] and Stanford Online Products [176] datasets, even

compared to ensemble and sampling methods. The results in Stanford Online Products

[176] are particularly impressive considering that this is the first time any method in

the literature has broken the 80 point barrier in Recall@1 metric. We also reach state-

of-the-art results on the CUB-200-2011 [194] dataset when we consider only methods

that do not use ensembles (with the Group Loss ensemble reaching the highest results

2The classification accuracy of different backbones can be found in the following link: https:

//pytorch.org/docs/stable/torchvision/models.html. BN-Inception’s top 1/top 5 error is
7.8%/25.2%, very similar to those of Densenet121 (7.8%/25.4%).
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Model CUB CARS SOP

Params R@1 NMI Params R@1 NMI Params R@1 NMI

GL Densenet121 7056356 65.5 69.4 7054306 88.1 74.2 18554806 78.2 91.5
GL Densenet161 26692900 64.7 68.7 26688482 88.7 74.6 51473462 80.3 92.3
GL Densenet169 12650980 65.4 69.5 12647650 88.4 75.2 31328950 79.4 92.0
GL Densenet201 18285028 63.7 68.4 18281186 88.6 75.8 39834806 79.8 92.1

GL Inception v2 10845216 64.3 67.9 10846240 83.7 70.7 16589856 75.1 90.8

SofTriple 10 [148] 11307040 65.4 69.3 11296800 84.5 70.1 68743200 78.3 92

Table 4.3: The results of Group Loss in Densenet backbones and comparisons with
SoftTriple loss [148]

in this dataset). We observe a clear trend when increasing the number of parameters

(weights), with the best results on both CARS 196 [87] and Stanford Online Products

[176] datasets being achieved by the largest network, Densenet161 (whom has a lower

number of convolutional layers than Densenet169 and Densenet201, but it has a higher

number of weights/parameters).

Finally, we study the effects of hyperparameter optimization. Despite that the networks

reached state-of-the-art results even without any hyperparameter tuning, we expect a

minimum amount of hyperparameters tuning to help. To this end, we used random

search [13] to optimize the hyperparameters of our best network on the CARS 196 [87]

dataset. We reach a 90.7 score (2pp higher score than the network with default hyper-

parameters) in Recall@1, and 77.6 score (3pp higher score than the network with default

hyperparameters) in NMI metric, showing that individual hyperparameter optimization

can boost the performance. The score of 90.7 in Recall@1 is not only by far the highest

score ever achieved, but also the first time any method has broken the 90 point barrier

in Recall@1 metric when evaluated on the CARS 196 [87] dataset.

4.5.7 Comparisons with SoftTriple loss [148]

A recent paper (SoftTriple loss [148], ICCV 2019) explores another type of classifica-

tion loss for the problem of metric learning. The main difference between our method

and [148] is that our method checks the similarity between samples, and then refines

the predicted probabilities (via a dynamical system) based on that information. [148]

instead deals with the intra-class variability, but does not explicitly take into account
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the similarity between the samples in the mini-batch. They propose to add a new layer

with 10 units per class.

We compare the results of [148] with our method in Tab. 4.3. SoftTriple loss [148]

reaches a higher result than our method in all three datasets in Recall@1 metric, and

higher results than the Group Loss on the CUB-200-2011 and Stanford Online Products

datasets in NMI metric. However, this comes at a cost of significantly increasing the

number of parameters. On the Stanford Online Products dataset in particular, the

number of parameters of [148] is 68.7 million. In comparison, we (and the other methods

we compare the results with in the main paper) use only 16.6 million parameters. In

effect, their increase in performance comes at the cost of using a neural network which

is 4 times larger as ours, making results not directly comparable. Furthermore, using

multiple centres is crucial for the performance of [148]. Fig. 4 of the work [148] shows

that when they use only 1 centre per class, the performance drops by 3pp, effectively

making [148] perform worse than the Group Loss by 2pp.

We further used the official code implementation to train their network using only one

center on the CARS 196 [87] dataset, reaching 83.1 score in Recall@1, and 70.1 score

in NMI metric, with each score being 0.6pp lower than the score of The Group Loss.

Essentially, when using the same backbone, SoftTriple loss [148] reaches lower results

than our method.

As we have shown in the previous section, increasing the number of parameters improves

the performances of the network, but it is not a property of the loss function. In fact,

a similarly sized network to theirs (Densenet 169) consistently outperforms SoftTriple

loss, as can be seen in Tab. 4.3. For this reason, we keep this comparison in the

supplementary material, while we leave for the main paper the comparisons with more

than 20 methods that use the same backbone.

4.6 t-SNE on CUB-200-2011 dataset

Fig. 4.10 visualizes the t-distributed stochastic neighbor embedding (t-SNE) [189] of the

embedding vectors obtained by our method on the CUB-200-2011 [194] dataset. The

plot is best viewed on a high-resolution monitor when zoomed in. We highlight several

representative groups by enlarging the corresponding regions in the corners. Despite the
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large pose and appearance variation, our method efficiently generates a compact feature

mapping that preserves semantic similarity.

Figure 4.10: t-SNE [189] visualization of our embedding on the CUB-200-2011 [194]
dataset, with some clusters highlighted. Best viewed on a monitor when zoomed in.

4.7 Conclusions and Future Work

In this work, we proposed the Group Loss, a new loss function for deep metric learning

that goes beyond triplets. By considering the content of a mini-batch, it promotes

embedding similarity across all samples of the same class, while enforcing dissimilarity

for elements of different classes. This is achieved with a fully-differentiable layer that
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is used to train a convolutional network in an end-to-end fashion. We show that our

model outperforms state-of-the-art methods on several datasets, and at the same time

shows fast convergence.

In our work, we did not consider any advanced and intelligent sampling strategy. Instead,

we randomly sample objects from a few classes at each iteration. Sampling has shown

to have a very important role in feature embedding [116], therefore, we will explore in

future work sampling techniques which can be suitable for our module. Additionally,

we are going to investigate the applicability of Group Loss to other problems, such as

person re-identification, landmark matching and deep semi-supervised learning.
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Chapter 5

DeepScores - a Dataset for

Segmentation, Detection and

Classification of Tiny Objects

5.1 Disclaimer

The work presented in this chapter is based on the following paper:

Lukas Tuggener, Ismail Elezi, Jurgen Schmidhuber, Marcello Pelillo and Thilo Stadel-

mann; DeepScores-a dataset for segmentation, detection and classification of tiny

objects [187] ; In Proceedings of IAPR International Conference on Pattern Recog-

nition (ICPR 2018)

The contributions of the author are the following:

• Building the ground truth for the segmentation task.

• Experimenting with SOTA detectors in the dataset.

• Writing a part of the paper.
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5.2 Introduction

Increased availability of data and computational power has been often followed by

progress in computer vision and machine learning. The recent rise of deep learning in

computer vision for instance has been promoted by availability of large image datasets

[30] and increased computational power provided by GPUs [135, 150].

Optical music recognition (OMR) [152] is a classical and challenging area of computer

vision that aims at converting scans of written music to machine-readable form, much

like optical character recognition (OCR) [125] does it for printed text. To the best of our

knowledge, there are no OMR systems yet that fully leverage the power of deep learning.

We conjecture that this is caused in part by the lack of publicly available datasets of

written music, big enough to train deep neural networks. The DeepScores dataset has

been collected with OMR in mind, but addresses important aspects of next generation

computer vision research that pertain to the size and number of objects per image.

Although there is already a number of clean, large datasets available to the computer

vision community [30, 39, 105], those datasets are similar to each other in the sense that

for each image there are a few large objects of interest. Object detection approaches that

have shown state-of-the-art performance under these circumstances, such as Faster R-

CNN [155], SSD [109] and YOLO [153], demonstrate very poor off-the-shelf performances

when applied to environments with large input images containing multiple small objects

(see Section 5.5).

Sheets of written music, on the other hand, usually have dozens to hundreds of small

salient objects. The class distribution of musical symbols is strongly skewed and the

symbols have a large variability in size. Additionally, the OMR problem is very different

from modern OCR [51, 100]: while in classical OCR, the text is basically a 1D signal

(symbols to be recognized are organized in lines of fixed height, in which they extend

from left to right or vice versa), musical notation can additionally be stacked arbitrarily

also on the vertical axis, thus becoming a 2D signal. This superposition property would

exponentially increase the number of symbols to be recognized, if approached the usual

way (which is intractable from a computational as well as from a classification point of

view). It also makes segmentation very hard and does not imply a natural ordering of

the symbols as for example in the SVHN dataset [132].

67



Figure 5.1: A typical image and ground truth from the DeepScores dataset (left), next
to examples from the MS-COCO (3 images, top right) and PASCAL VOC (2 images,
bottom right) datasets. Even though the music page is rendered at a much higher
resolution, the objects are still smaller; the size ratio between the images is realistic

despite all images being downscaled.

In this work, we present the DeepScores dataset with the following contributions: a)

a curated and publicly available collection of hundreds of thousands of musical scores,

containing tens of millions of objects to construct a high quality dataset of written music;

b) available ground truth for the tasks of object detection, semantic segmentation, and

classification; c) comprehensive comparisons with other computer vision datasets (see

Section 5.3) and a quantitative and qualitative analysis of DeepScores (see Section 5.4);

d) computation of an object classification baseline (see Section 5.5) together with an

outlook on how to facilitate next generation computer vision research using DeepScores

(see Section 5.6).
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5.3 DeepScores in the context of other datasets

DeepScores is a high quality dataset consisting of pages of written music, rendered

at 400 dots per inch (dpi). It has 300′000 full pages as images, containing tens of

millions of objects, separated in 118 classes. The aim of the dataset is to facilitate

general research on small object recognition, with direct applicability to the recognition

of musical symbols. We provide the dataset with three different kinds of ground truths

(in the order of progressively increasing task complexity): object classification, semantic

segmentation, and object detection.

Object classification in the context of computer vision is the procedure of labeling an

image with a single label. Its recent history is closely linked to the success of deep con-

volutional learning models [96], leading to superhuman performance [28] and subsequent

ImageNet object classification breakthroughs [90]. Shortly afterwards, similar systems

achieved human-level accuracy also on ImageNet [62, 173, 181]. Generally speaking,

the ImageNet dataset [30] was a key ingredient to the success of image classification

algorithms.

In DeepScores, we provide data for the classification task even though classifying musical

symbols in isolation is not a challenging problem compared to classifying ImageNet

images. But providing the dataset for classification, in addition to a neural network

implementation that achieves high accuracy (see Section 5.5), might help to address the

other two tasks. In fact, the first step in many computer vision models is to use a deep

convolutional neural network pre-trained on ImageNet, and alter it for the task of image

segmentation or image detection [110, 155]. We expect that the same technique can be

used when it comes to detecting very small objects.

Semantic segmentation is the task of labeling each pixel of the image with one of

the possible classes. State-of-the-art models are typically based on fully convolutional

architectures [27, 110]. The task arguably is a significantly more difficult problem than

image classification, with the recent success being largely attributed to the release of

high quality datasets like PASCAL VOC [39] and MS-COCO [105].

In DeepScores, we provide ground truth for each pixel in all the images, having roughly

1012 labeled pixels in the dataset. In the next section, we compare these figures with

existing datasets.
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[Snippet of an input image.]

[Bounding boxes over single objects from previous snippet for object detection.]

[Color-based pixel level labels (the differences can be hard to see, but there is a
distinct color per symbol class) for semantic segmentation.]

[Patches centered around specific symbols for object classification.]

Figure 5.2: Examples for the different flavors of ground truth available in DeepScores.
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Object detection is the by far most interesting and challenging task: to classify all

the objects in the image, and at the same time to find their precise position in the

image. State-of-the-art algorithms are pipeline convolutional models, typically having

combined cost functions for detection and classification [109, 154, 155]. The task can

be combined with segmentation, which means that the algorithm is required to provide

masks (instead of bounding boxes) for each of the objects in the image [60]. It differs

from mere segmentation in the fact that the result shows which pixels together form

an object. Similar to the case of semantic segmentation above, the PASCAL VOC and

especially MS-COCO datasets have played an important part on the recent success of

object detection algorithms.

In DeepScores, we provide bounding boxes and labels for each of the musical symbols

in the dataset. With around 80 million objects, this makes our dataset the largest one

released so far, and highly challenging: the above-mentioned algorithms did not work

well on our dataset in preliminary comprehensive experiments. We attribute this to the

fact that most of the models used for object detection are fitted to datasets which have

few but large objects. On the contrary, our dataset contains a lot of very small objects,

which means that new models might need to be created in order to deal with it.

5.3.1 Comparisons with computer vision datasets

Compared with some of the most used datasets in the field of computer vision, Deep-

Scores has by far the largest number of objects, in addition of having the highest res-

olution. In particular, images of DeepScores have a resolution of 1′894 x 2′668 pixels,

which is at least four times higher than the resolutions of datasets we compare with.

Table 5.1 contains quantitative comparisons of DeepScores with other datasets, while

the following paragraphs bring in also qualitative aspects.

SVHN, the street view house numbers dataset [132], contains 600′000 labeled digits

cropped from street view images. Compared to DeepScores, the number of objects in

SVHN is two orders of magnitude lower, and the number of objects per image is two to

three orders of magnitude lower.

ImageNet [30] contains a large number of images and (as a competition) different

tracks (classification, detection and segmentation) that together have proven to be a
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solid foundation for many computer vision projects. However, the objects in ImageNet

are quite large, while the number of objects per image is very small. Unlike ImageNet,

DeepScores tries to address this issue by going to the other extreme, providing a very

large number of very small objects, with images having significantly higher resolution

than all the other mentioned datasets.

PASCAL VOC [39] is a dataset which has been assembled mostly for the tasks of

detection and segmentation. Compared to ImageNet, the dataset has slightly more

objects per image, but the number of images is comparatively small: our dataset is one

order of magnitude bigger in the number of images, and three orders of magnitude bigger

in the number of objects.

MS-COCO [105] is a large upgrade over PASCAL VOC on both the number of images

and number of objects per image. With more than 300K images containing more than

3 millions of objects, the dataset is very useful for various tasks in computer vision.

However, like ImageNet, the number of objects per image is still more than one order of

magnitude lower than in our dataset, while the objects are relatively large.

Other datasets

A number of other datasets have been released during the years, which have helped

the progress of the field, and some of them have been used for different competitions.

MNIST [99] is the first “large” dataset in the fields of machine learning and computer

vision. It has tens of thousands of 28x28 pixels grayscale images, each containing a

handwritten digit. The dataset is a solved classification problem and during the last

decade has been used mostly for prototyping new models. Nowadays, this is changing,

with more challenging datasets like CIFAR-10/CIFAR-100 [89] being preferred. Sim-

ilar to MNIST, those datasets contain an object per image (32x32 color pixels), which

do not make them ideal for more challenging problems like detection and segmentation.

Caltech-101/Caltech-256 [53] are more interesting datasets considering that both the

resolution and the number of images are larger. Still, the images contain only a single

object, making them only useful for the process of image classification. SUN [206] is

a scene understanding dataset, containing over 100k images, each labeled with a single

class.
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Dataset #classes #images #objects #pixels

MNIST 10 70k 70k 55m

CIFAR-10 10 60k 60k 61m

CIFAR-100 100 60k 60k 61m

Caltech-101 101 9k 9k 700m

Caltech-256 256 31k 31k 2b

SUN 397 17k 17k 6b

PASCAL VOC 21 10k 30k 2.5b

MS COCO 91 330k 3.5m 100b

ImageNet 200 500k 600k 125b

SVHN 10 200k 630k 4b

CASIA online 7356 5090 1.35 nn

CASIA offline 7356 5090 1.35m nn

GTSRB 43 50k 50k nn

DeepScores 118 300k 80m 1.5t

Table 5.1: Information about the number of classes, images and objects for some of
the most common used datasets in computer vision. The number of pixels is estimated
due to most datasets not having fixed image sizes. We used the SUN 2012 object
detection specifications for SUN, and the statistics of ILSVRC 2014 [30] detection task

for ImageNet.

The online and offline Chinese handwriting databases,CASIA-OLHWDB andCASIA-

HWDB [107], were produced by 1′020 writers using a digital pen on paper, such that

both online and offline data were obtained. The samples include both isolated characters

and handwritten texts (continuous scripts). Both datasets have millions of samples, sep-

arated into 7′356 classes, making them far more interesting and challenging than digit

datasets.

The German traffic sign recognition benchmark (GTSRB) is a multi-category classi-

fication competition held at IJCNN 2011 [72]. The corresponding dataset comprises a

comprehensive collection of more than 50′000 lifelike traffic sign images, reflecting the

strong variations in visual appearance of signs due to distance, illumination, weather

conditions, partial occlusions, and rotations. The dataset has 43 classes with unbal-

anced class frequencies.

5.3.2 Comparisons with OMR datasets

A number of OMR datasets have been released in the past with a specific focus on the

computer music community. DeepScores will be of use both for general computer vision

as well as to the OMR community (compare Section 5.5).
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Handwritten scores

The Handwritten Online Musical Symbols dataset HOMS [21] is a reference corpus

with around 15′000 samples for research on the recognition of online handwritten music

notation. For each sample, the individual strokes that the musician wrote on a Samsung

Tablet using a stylus were recorded and can be used in online and offline scenarios.

The CVC-MUSCIMA database [40] contains handwritten music images, which have

been specially designed for writer identification and staff removal tasks. The database

contains 1′000 music sheets written by 50 different musicians with characteristic hand-

writing styles.

MUSICMA++ [56] is a dataset of handwritten music for musical symbol detection

that is based on the MUSCIMA dataset. It contains 91′255 written symbols, consisting

of both notation primitives and higher-level notation objects, such as key signatures

or time signatures. There are 23′352 notes in the dataset, of which 21′356 have a full

notehead, 1′648 have an empty notehead, and 348 are grace notes.

The Capitan Collection [22] is a corpus collected via an electronic pen while tracing

isolated music symbols from early manuscripts. The dataset contains information on

both the sequence followed by the pen (capitan stroke) as well as the patch of the source

under the tracing itself (capitan score). In total, the dataset contains 10′230 samples

unevenly spread over 30 classes.

Further OMR datasets of printed scores are reviewed by the OMR-Datasets project1.

DeepScores is by far larger than any of these or the above-mentioned dataset, containing

more images and musical symbols than all the other datasets combined. In addition,

DeepScores contains only real-world scores (i.e., symbols in context as they appear in

real written music), while the other datasets are either synthetic or reduced (containing

only symbols in isolation or just a line per image). The sheer scale of DeepScores makes

it highly usable for the modern deep learning algorithms. While convolutional neural

networks have been used before for OMR [190], DeepScores for the first time enables

the training of very large and deep models.
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Figure 5.3: Examples for each of the 118 classes present in DeepScores, ordered by
their frequency of occurrence. Even though the resolution is reduced for this plot, some
of the larger symbols like brace (row 2, column 6) or gClef (row 1, column 7) are only
shown partially to keep a fixed size for each patch. The symbols’ full resolution in the
dataset is such that the inter-line distance between two staff lines amounts to 20 pixels.

5.4 The DeepScores dataset

5.4.1 Quantitative properties

DeepScores contains around 300′000 pages of digitally rendered music scores and has

ground truth for 118 different symbol classes. The number of labeled music symbol

instances is roughly 80 million (4-5 orders of magnitudes higher than in the other music

datasets; when speaking of symbols, we mean labeled musical symbols that are to be

recognized as objects in the task at hand). The number of symbols on one page can

vary from as low as 4 to as high as 7′664 symbols. On average, a sheet (i.e., an image)

contains around 243 symbols. Table 5.2 gives the mean, standard deviation, median,

maximum and minimum number of symbols per page in the second column.

1See https://apacha.github.io/OMR-Datasets/.
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Statistic Symbols per sheet Symbols per class

Mean 243 650k

Std. dev. 203 4m

Maximum 7’664 44m

Minimum 4 18

Median 212 20k

Table 5.2: Statistical measures for the occurrences of symbols per musical sheet and
per class (rounded).

Another interesting aspect of DeepScores is the class distribution (see Figure 5.4). Obvi-

ously, some classes contain more symbols than other classes (see also Table 5.2, column

3). It can be seen that the average number of elements per class is 600k but the standard

deviation is 4m, illustrating that the distribution of symbols per class is very skewed.

Figure 5.3 visualizes the symbol classes together with their occurrence probability. The

most common class is noteheadBlack, which provides slightly more than half of the

symbols in the dataset. The top 10 classes are responsible for 86% of the musical

symbols found.

Figure 5.4: Histogram for the distribution of symbols over all images (logarithmic
scale on abscissa, ordinate weighted to give unit area). The majority of images contain

from 100 to 1000 objects.

5.4.2 Flavors of ground truth

In order for DeepScores to be useful for as many applications as possible, we offer ground

truth for three different tasks. For object classification, there are up to 5′000 labeled

image patches per class. This means we do not provide each of the 80m symbols as a

single patch for classification purposes, but constrain the dataset for this simpler task

to a random subset of reasonable size (see Section 5.5). The patches have a size of 45
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x 170 and contain the full original context of the symbol (i.e., they are cropped out of

real world musical scores). Each patch is centered around the symbol’s bounding box

(see Figure 5.2).

For object detection, there is an accompanying XML file for each image in DeepScores.

The XML file has an object node for each symbol instance present on the page, which

contains class and bounding box coordinates.

For semantic segmentation, there is an accompanying PNG file for each image. This

PNG has identical size as the initial image, but each pixel has been recolored to represent

the symbol class it is part of. As in Figure 5.2, the background is white, with the

published images using grayscale colors from 0 to 118 for ease of use in the softmax

layer of potential models.

5.4.3 Dataset construction

DeepScores is constructed by synthesizing from a large collection of written music in a

digital format: crowd-sourced MusicXML files publicly available from MuseScore2 and

used by permission. The rendering of MuscXML with accompanying ground truth for

the three flavors of granularity is done by a custom software using the SVG back-end of

the open-source music engraving software LilyPond. The rendered SVG files not only

contain all the musical symbols, but also additional tags that allow for identifying what

musical symbol each SVG path belongs to.

To achieve a realistic variety in the data even though all images are digitally rendered

and therefore have perfect image quality, five different music fonts have been used for

rendering (see Figure 5.5). Python scripts finally extract the three types of ground truth

from this basis of SVG data and save the images as PNG using the CairoSVG library.

A key feature of a dataset is the definition of the classes to be included. Due to their

compositional nature, there are many ways to define classes of music symbols: is it

for example a “c” note with duration 8 (noteheadBlack) or is it a black notehead

(noteheadBlack) and a flag (flag8thUp or flag8thDown)? Adding to this complexity,

there is a huge number of special and thus infrequent symbols in music notation. The

selected set is the result of many discussions with music experts and contains the most

2https://musescore.com
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Figure 5.5: The same patch, rendered using five different fonts.

important symbols. We decided to use atomic symbol parts as classes which makes it

possible for everyone to define composite symbols in an application-dependent way.

5.5 Anticipated use and impact

5.5.1 Unique challenges

One of the key challenges this dataset poses upon modeling approaches is the sheer

amount of objects on a single image. Two other properties of music notation impose

challenges: First, there is a big variability in object size as can be seen for example in

Figure 5.6. Second, music notation has the special feature that context matters: two

objects having identical appearance can belong to a different class depending on the

local surroundings (see Figure 5.7). To our knowledge there is no other freely available

large scale dataset that shares this trait.

Moreover, datasets like ImageNet are close to being perfectly balanced, with the number

of images/objects per class being a constant. This clearly isn’t the case with the Deep-

Scores dataset, where the most common class contains more than half of the symbols

in the dataset, and the top 10% of classes contain more than 85% of the symbols in the

entire dataset. This extremely skewed distribution resembles many real-world cases for

example in anomaly detection and industrial quality control.
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Figure 5.6: The possible size difference of objects in music notation, illustrated by
brace and augmentationDot.

5.5.2 Towards next-generation computer vision

Classifying the musical symbols in DeepScores should nevertheless not be a problem: all

these symbols have very clear black and white borders, their shape has limited variability

and they are rendered at very high resolution (see Figure 5.3). Due to these reasons we

assumed that classification on DeepScores should be a relatively easy task, given CNNs

usually deal well with these kinds of objects. To support this assumption, we fitted

a simple residual-CNN [62] with 25 convolutional layers and about 8 million trainable

parameters. Using the Adam optimizer [84] with the hyper-parameters proposed by

the authors, we reached an accuracy of over 0.98 in just ten epochs. This shows that

classification will indeed not be a big issue and CNNs are able to deal with labels that

not only depend on an object but also its surroundings.

Detection, however, is more challenging: we evaluated SSD’s and YOLO’s fitness for the

detection task on DeepScores and applied Faster R-CNN - with very little success. We

conjecture that one of the main problems is that these region proposal-based systems

seem to become computationally overwhelmed for this type of data, due to the sheer

number of proposals necessary to find the many small objects.

Both observations - easy classification but challenging detection - lie at the heart of what

we think makes DeepScores very useful: it offers the challenging scenario of many tiny

objects that cannot be approached using current datasets (see Section 5.3). On the other

hand, DeepScores is probably the easiest scenario of that kind, because classifying single

musical objects is relatively easy and the dataset contains a vast amount of training
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Figure 5.7: Examples for the importance of context for classifying musical symbols:
in both rows, the class of otherwise similar looking objects changes depending on the

surrounding objects.

data. DeepScores thus is a prime candidate to develop next generation computer vision

methods that scale to many tiny objects on large images: many real-world problems

deal with high-resolution images, with images containing hundreds objects and with

images containing very small objects in them. This might be automated driving and

other robotics use cases, medical applications with full-resolution imaging techniques as

data sources, or surveillance tasks e.g. in sports arenas and other public places.

Finally, DeepScores will be a valuable source for pre-training models: transfer learning

has been one of the most important ingredients in the advancement of computer vision.

The first step in many computer vision models [110, 155] is to use a deep convolutional

neural network pre-trained on ImageNet, and alter it for the task of image segmentation

or object detection, or use it on considerably smaller, task-dependent final training sets.

DeepScores will be of value specifically in the area of OMR, but more generally to allow

the development of algorithms that focus on the fine-grained structure of smaller objects

while simultaneously being able to scale to many objects of that nature.
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5.6 Conclusions

We have presented the conception and creation of DeepScores - the largest publicly

and freely available dataset for computer vision applications in terms of image size and

contained objects. Compared to other well-known datasets, DeepScores has large images

(more than four times larger than the average) containing many (one to two orders of

magnitude more) very small (down to a few pixels, but varying by several orders of

magnitude) objects that change their class belonging depending on the visual context.

The dataset is made up of sheets of written music, synthesized from the largest public

corpus of MusicXML. It comprises ground truth for the tasks of object classification,

semantic segmentation and object detection.

We have argued that the unique properties of DeepScores make the dataset suitable for

use in the development of general next generation computer vision methods that are able

to work on large images with tiny objects. This ability is crucial for real-world appli-

cations like robotics, automated driving, medical image analysis or surveillance, besides

OMR. We have motivated that object classification is relatively easy on DeepScores,

making it therefore the potentially cheapest way to work on a challenging detection

task. We thus expect impact on general object detection algorithms.

A weakness of the DeepScores dataset is that all the data is digitally rendered. Linear

models (or piecewise linear models like neural networks) have been shown to not gen-

eralize well when the distribution of the real-world data is far from the distribution of

the dataset the model has been trained on [182, 185]. Future work on the dataset will

include developing and publishing scripts to perturb the data in order to make it look

more like real (scanned) written music, and evaluation of the transfer performance of

models trained on DeepScores.

Future work with the dataset will - besides the general impact predicted above - directly

impact OMR: the full potential of deep neural networks is still to be realized on musical

scores.
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Chapter 6

Deep Watershed Detector for

Music Object Recognition

6.1 Disclaimer

The work presented in this chapter is based on the following papers:

Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber, Thilo Stadelmann; Deep water-

shed detector for music object recognition [188] ; In Proceedings of Conference of

the International Society for Music Information Retrieval (ISMIR 2018)

Thilo Stadelmann, Mohammadreza Amirian, Ismail Arabaci, Marek Arnold, Gilbert

Franois Duivesteijn, Ismail Elezi, Melanie Geiger, Stefan Lörwald, Benjamin

Bruno Meier, Katharina Rombach, Lukas Tuggener; Deep Learning in the Wild

[179] ; In Proceedings of IAPR TC3 Workshop on Artificial Neural Networks in

Pattern Recognition (ANNPR 2018)

Ismail Elezi, Lukas Tuggener, Marcello Pelillo, Thilo Stadelmann; DeepScores and

Deep Watershed Detection: current state and open issues [34] ; in in The Interna-

tional Workshop on Reading Music Systems (WoRMS 2018) (ISMIR affiliated).

The contributions of the author are the following:

• Writing code for the dataset preparation.
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• Writing a part of the paper. [188].

• Writing a part of the paper [179].

• Writing a considerable part of the paper [34].

• Performing many experiments in all the mentioned datasets.

• Improving the results of DWD (in mAP score) by more than 100%.

• Leading the work on the creation of the scanned dataset.

• Doing preliminary investigations on domain transfer.

6.2 Introduction and Problem Statement

The goal of Optical Music Recognition (OMR) is to transform images of printed or hand-

written music scores into machine readable form, thereby understanding the semantic

meaning of music notation [8]. It is an important and actively researched area within

the music information retrieval community. The two main challenges of OMR are: first

the accurate detection and classification of music objects in digital images; and second,

the reconstruction of valid music in some digital format. This work is focusing solely on

the first task, meaning that we recover position and class (based on the shape only) of

every object without inferring any higher level information.

Recent progress in computer vision [48] thanks to the adaptation of convolutional neu-

ral networks (CNNs) [42, 95] provide a solid foundation for the assumption that OMR

systems can be drastically improved by using CNNs as well. Initial results of applying

deep learning [167] to heavily restricted settings such as staffline removal [165], sym-

bol classification [141] or end-to-end OMR for monophonic scores [23], support such

expectations.

In this work, we introduce a novel general object detection method called Deep Water-

shed Detector (DWD) motivated by the following two hypotheses: a) deep learning can

be used to overcome the classical OMR approach of having hand-crafted pipelines of

many preprocessing steps [151] by being able to operate in a fully data-driven fashion;

b) deep learning can cope with larger, more complex inputs than simple glyphs, thereby

learning to recognize musical symbols in their context. This will disambiguate meanings

83



Figure 6.1: Schematic of the Deep Watershed Detector model with three distinct
output heads. N and M are the height and width of the input image, #classes denotes

the number of symbols and #energy levels is a hyperparameter of the system.

(e.g., between staccato and augmentation dots) and allow the system to directly detect

a complex alphabet.

DWD operates on full pages of music scores in one pass without any preprocessing

besides interline normalization and detects handwritten and digitally rendered music

symbols without any restriction on the alphabet of symbols to be detected. We further

show that it learns meaningful representation of music notation and achieves state-of-the

art detection rates on common symbols.

6.3 Related Work

The visual detection and recognition of objects is one of the most central problems in

the field of computer vision. With the recent developments of CNNs, many competing

CNN-based approaches have been proposed to solve the problem. R-CNNs [49], and in

particular their successors [155], are generally considered to be state-of-the-art models

in object recognition, and many developed recognition systems are based on R-CNN.

On the other hand, researchers have also proposed models which are tailored towards

computational efficiency instead of detection accuracy. YOLO systems [154] and Single-

Shot Detectors [109] while slightly compromising on accuracy, are significantly faster

than R-CNN models, and can even achieve super real-time performance.
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A common aspect of the above-mentioned methods is that they are specifically developed

to work on cases where the images are relatively small, and where images contain a small

number of relatively large objects [39, 105]. On the contrary, musical sheets usually

have high-resolution, and contain a very large number of very small objects, making the

mentioned methods not suitable for the task.

The watershed transform is a well understood method that has been applied to seg-

mentation for decades [15]. Bai and Urtasun [7] were first to propose combining the

strengths of deep learning with the power of this classical method. They proposed to

directly learn the energy (in our application the distance to an object center) for the wa-

tershed transform such that all dividing ridges are at the same height. As a consequence,

the components can be extracted by a cut at a single energy level without leading to

over-segmentation. The model has been shown to achieve state of the art performance

on object segmentation.

For the most part, OMR detectors have been rule-based systems working well only

within a hard set of constraints [151]. Typically, they require domain knowledge, and

work well only on simple typeset music scores with a known music font, and a relatively

small number of classes [160]. When faced with low-quality images, complex or even

handwritten scores [9], the performance of these models quickly degrades, to some degree

because errors propagate from one step to another [141]. Additionally, it is not clear

what to do when the classes change, and in many cases, this requires building the new

model from scratch.

In response to the above mentioned issues some deep learning based, data driven ap-

proaches have been developed. Hajic and Pecina [75] proposed an adaptation of Faster

R-CNN with a custom region proposal mechanism based on the morphological skeleton

to accurately detect noteheads, while Choi et al. [25] were able to detect accidentals

in dense piano scores with high accuracy, given previously detected noteheads, that are

being used as input-features to the network. A big limitation of both approaches is that

the experiments have been done only on a tiny vocabulary of the musical symbols, and

therefore their scalability remains an open question.

To our knowledge, the best results so far has been reported in the work of Pacha and

Choi [140] where they explored many models on the MUSCIMA++ [57] dataset of

handwritten music notation. They got the best results with a Faster R-CNN model,
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achieving an impressive score on the standard mAP metric. A serious limitation of that

work is that the system was not designed in an end-to-end fashion and needs heavy pre-

and post-processing. In particular, they cropped the images in a context-sensitive way,

by cutting images first vertically and then horizontally, such that each image contains

exactly one staff and has a width-to-height-ratio of no more than 2 :1, with about 15%

horizontal overlap to adjacent slices. In practice, this means that all objects significantly

exceeding the size of such a cropped region will neither appear in the training nor testing

data, as only annotations that have an intersection-over-area of 0.8 or higher between

the object and the cropped region are considered part of the ground truth. Furthermore,

all the intermediate results must be combined to one concise final prediction, which is a

non-trivial task.

6.4 Deep Watershed Detection

In this section we present the Deep Watershed Detector (DWD) as a novel object de-

tection system, built on the idea of the deep watershed transform [7]. The watershed

transform [15] is a mathematically well understood method with a simple core idea that

can be applied to any topological surface. The algorithm starts filling up the surface from

all the local minima, with all the resulting basins corresponding to connected regions.

When applied to image gradients, the basins correspond to homogeneous regions of said

image (see Fig. 6.2a). One key drawback of the watershed transform is its tendency

to over segment. This issue can be addressed by using the deep watershed transform.

It combines the classical method with deep learning by training a deep neural network

to create an energy surface based on an input image. This has the advantage that one

can design the energy surface to have certain properties. When designed in a way that

all segmentation boundaries have energy zero, the watershed transform is reduced to a

simple cutoff at a fixed energy level (see Fig. 6.2b). An objectness energy of this fashion

has been used by Bai and Urtasun for instance segmentation [7]. Since we want to do

object detection, we further simplify the desired energy surface to having small conical

energy peaks of radius n pixels at the center of each object and be zero everywhere else

(see Fig. 6.2c).

More formally, we define our energy surface (or: energy map) M e as follows:
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Figure 6.2: Illustration of the watershed transform applied to different one-
dimensional functions.

M e
(i,j) = max















argmax
c∈C

[Emax · (1−
√

(i−ci)2+(j−cj)2

r )]

0

(6.1)

where M e
(i,j) is the value of M e at position (i, j), C is the set of all object centers and

ci, cj are the center coordinates of a given center c. Emax corresponds to the maximum

energy and r is the radius of the center marking.

At first glance this definition might lead to the misinterpretation that object centers

that are closer together than r cannot be disambiguated using the watershed transform

on M e. This is not the case since we can cut the energy map at any given energy level

between 1 and Emax. However, using this method it is not possible to detect multiple

bounding boxes that share the exact same center.
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6.4.1 Retrieving Object Centers

After computing an estimate M̂ e of the energy map, we retrieve the coordinates of

detected objects by the following steps:

1. Cut the energy map at a certain fixed energy level and then binarize the result.

2. Label the resulting connected components, using the two-pass algorithm [203].

Every component receives a label l in 1...n, for every component ol we define Ol
ind

as the set of all tuples (i, j) for which the pixel with coordinates j and i is part of

ol.

3. The center ĉl of any component ol is given by its center of gravity:

ĉl = olcenter = |Ol
ind|−1 ·

∑

(i,j)∈Ol
ind

(i, j) (6.2)

We use these component centers ĉ as estimates for the object centers c.

6.4.2 Object Class and Bounding Box

In order to recover bounding boxes we do not only need the object centers, but also the

object classes and bounding box dimensions. To achieve this we output two additional

maps M c and M b as predictions of our network. M c is defined as:

M c
(i,j) =











Λ(i,j), if M e
(i,j) > 0

Λbackground, otherwise

(6.3)

where Λbackgroud is the class label indicating background and Λ(i,j) is the class label

associated with the center c that is closest to (i, j). We define our estimate for the class

of component ol by a majority vote of all values M̂ c
(i,j) for all (i, j) ∈ Ol

ind, where M̂
c is

the estimate of M c. Finally, we define the bounding box map M b as follows:

M b
(i,j) =











(yl, xl), if M e
(i,j) > 0

(0, 0), otherwise

(6.4)
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Figure 6.3: Detection results for DeepScores and MUSCIMA++ examples, drawn on
crops from corresponding input images.

where yl and xl are the width and height of the bounding box for component ol. Based

on this we define our bounding box estimation as the average of all estimations for label

l:

(ŷl, x̂l) = |Ol
ind|−1 ·

∑

(i,j)∈Ol
ind

M̂ b
(i,j) (6.5)

6.4.3 Network Architecture and Losses

As mentioned above we use a deep neural network to predict the dense output maps

M e, M c and M b (see Fig. 6.1). The base neural network for this prediction can be

any fully convolutional network with the same input and output dimensions. We use a

ResNet-101 [62] (a special case of a Highway Net [178]) in conjunction with the elaborate

RefineNet [103] upsampling architecture. For the estimators defined above it is crucial

to have the highest spacial prediction resolution possible. Our network has three output

layers, all of which are an 1 by 1 convolution applied to the last feature map of the

RefineNet.

6.4.3.1 Energy prediction

We predict a quantized and one-hot encoded version of M e, called M eo, by applying a

1 by 1 convolution of depth Emax to the last feature map of the base network. The loss

of the prediction M̂ eo, losse, is defined as the cross-entropy between M eo and M̂ eo.
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6.4.3.2 Class prediction

We again use the corresponding one-hot encoded version M co and predict it using an 1

by 1 convolution, with the depth equal to the number of classes, on the last feature map

of the base network. The cross-entropy lossc is calculated between M co and M̂ co. Since

it is not the goal of this prediction to distinguish between foreground and background,

all the loss stemming from locations with M e = 0 will get masked out.

6.4.3.3 Bounding box prediction

M b is predicted in its initial form using an 1 by 1 convolution of depth 2 on the last

feature map of the base network. The bounding box loss lossb is the mean-squared

difference between M b and M̂ b. For lossb, the components stemming from background

locations will be masked out analogous to lossc.

6.4.3.4 Combined prediction

We want to jointly train in all tasks, therefore we define a total loss losstot as:

losstot = w1 ∗
losse

ve
+ w2 ∗

lossc

vc
+ w3 ∗

lossb

vb
(6.6)

where the v. are running means of the corresponding losses and the scalars w. are hyper-

parameters of the DWD network. We purposefully use very short extraction heads of

one convolutional layer; by doing so we force the base network to do all three tasks

simultaneously. We expect this leads to the base network learning a meaningful repre-

sentation of music notation, from which it can extract the solutions of the three above

defined tasks.

6.5 Experiments and Results

6.5.1 Used Datasets

For our experiments we use two datasets: DeepScores [187] and MUSCIMA++ [57].
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DeepScores is currently the largest publicly available dataset of musical sheets with

ground truth for various machine learning tasks, consisting of high-quality pages of

written music, rendered at 400 dots per inch. The dataset has 300, 000 full pages as

images, containing tens of millions of objects, separated in 123 classes. We randomly

split the set into training and testing, using 200k images for training and 50k images

each for testing and validation. The dataset being so large allows efficient training of

large convolutional neural networks, in addition to being suitable for transfer learning

[212].

MUSCIMA++ is a dataset of handwritten music notation for musical symbol detection.

It contains 91, 255 symbols spread into 140 pages, consisting of both notation primitives

and higher-level notation objects, such as key signatures or time signatures. It features

105 object classes. There are 23, 352 notes in the dataset, of which 21, 356 have a full

notehead, 1, 648 have an empty notehead, and 348 are grace notes. We randomly split

the dataset into training, validation, and testing, with the training set consisting of 110

pages, while validation and testing each consists of 15 pages.

6.5.2 Network Training and Experimental Setup

We pre-train our network in two stages in order to achieve reasonable results. First

we train the ResNet on music symbol classification using the DeepScores classification

dataset [187]. Then, we train the ResNet and RefineNet jointly on semantic segmentation

data also available from DeepScores. After this pre-training stage we are able to use the

network on the tasks defined above in Sec. 6.4.3.

Since music notation is composed of hierarchically organized sub-symbols, there does not

exist a canonical way to define a set of atomic symbols to be detected (e.g., individual

numbers in time signatures vs. complete time signatures). We address this issue using a

fully data-driven approach by detecting atomic classes as they are provided by the two

datasets.

We rescale every input image to the desired interline value. We use 10 pixels for Deep-

Scores and 20 pixels for MUSCIMA++. Other than that we apply no preprocessing.

We do not define a subset of target objects for our experiments, but attempt to detect

all classes for which there is ground truth available. We always feed single images to the
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Class AP@ 1

2
Class AP@ 1

4

rest16th 0.8773 tuplet6 0.9252
noteheadBlack 0.8619 keySharp 0.9240

keySharp 0.8185 rest16th 0.9233
tuplet6 0.8028 noteheadBlack 0.9200

restQuarter 0.7942 accidentalSharp 0.8897
rest8th 0.7803 rest32nd 0.8658

noteheadHalf 0.7474 noteheadHalf 0.8593
flag8thUp 0.7325 rest8th 0.8544

flag8thDown 0.6634 restQuarter 0.8462
accidentalSharp 0.6626 accidentalNatural 0.8417

accidentalNatural 0.6559 flag8thUp 0.8279
tuplet3 0.6298 keyFlat 0.8134

noteheadWhole 0.6265 flag8thDown 0.7917
dynamicMF 0.5563 tuplet3 0.7601

rest32nd 0.5420 noteheadWhole 0.7523
flag16thUp 0.5320 fClef 0.7184
restWhole 0.5180 restWhole 0.7183
timeSig8 0.5180 dynamicPiano 0.7069

accidentalFlat 0.4949 accidentalFlat 0.6759
keyFlat 0.4685 flag16thUp 0.6621

Table 6.1: AP with overlap 0.5 and overlap 0.25 for the twenty best detected classes
of the DeepScores dataset.

network, i.e. we only use batch size = 1. During training we crop the full page input

(and the ground truth) to patches of 960 by 960 pixels using randomized coordinates.

This serves two purposes: it saves GPU memory and performs efficient data augmenta-

tion. This way the network never sees the exact same input twice, even if we train for

many epochs. For all of the results described below we train individually on losse, lossc

and lossb and then refine the training using losstot. It turns out that the prediction of

M e is the most fragile to effects introduced by training on the other losses, therefore we

retrain on losse again after training on the individual losses in the order defined above,

before moving on to losstot. All the training is done using the RMSProp optimizer [184]

with a learning rate of 0.001 and a decay rate of 0.995.

Since our design is invariant to how many objects are present on the input (as long as

their centers do not overlap) and we want to obtain bounding boxes for full pages at

once, we feed whole pages to the network at inference time. The maximum input size is

only bounded by the memory of the GPU. For typical pieces of sheet music this is not an

issue, but pieces that use very small interline values (e.g. pieces written for conductors)

result in very large inputs due to the interline normalization. At about 10.5 million

pixels even a Tesla P40 with 24 gigabytes runs out of memory.
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Class AP@ 1

2
Class AP@ 1

4

half-rest 0.8981 whole-rest 0.9762
flat 0.8752 ledger-line 0.9163

natural 0.8531 half-rest 0.8981
whole-rest 0.8226 flat 0.8752

notehead-full 0.8044 natural 0.8711
sharp 0.8033 stem 0.8377

notehead-empty 0.7475 staccato-dot 0.8302
stem 0.7426 notehead-full 0.8298

quarter-rest 0.6699 sharp 0.8121
8th-rest 0.6432 tenuto 0.7903

f-clef 0.6395 notehead-empty 0.7475
numeral-4 0.6391 duration-dot 0.7285

letter-c 0.6313 numeral-4 0.7158
letter-c 0.6313 8th-flag 0.7055
8th-flag 0.6051 quarter-rest 0.6849

slur 0.5699 letter-c 0.6643
beam 0.5188 letter-c 0.6643

time-signature 0.4940 8th-rest 0.6432
staccato-dot 0.4793 beam 0.6412

letter-o 0.4793 f-clef 0.6395

Table 6.2: AP with overlap 0.5 and overlap 0.25 for the twenty best detected classes
from MUSCIMA++.

6.5.3 Initial Results

Table 6.1 shows the average precision (AP) for the twenty best detected classes with an

overlap of the detected bounding box and ground truth of 50% and 25%, respectively.

We observe that in both cases there are common symbol classes that get detected very

well, but there is also a steep fall off. The detection rate outside the top twenty continues

to drop and is almost zero for most of the rare classes. We further observe that there

is a significant performance gain for the lower overlap threshold, indicating that the

bounding-box regression is not very accurate.

Fig. 6.3 shows an example detection for qualitative analysis. It confirms the conclusions

drawn above. The rarest symbol present, an arpeggio, is not detected at all, while

the bounding boxes are sometimes inaccurate, especially for large objects (note that

stems, bar-lines and beams are not part of the DeepScores alphabet and hence do not

constitute missed detections). On the other hand, staccato dots are detected very well.

This is surprising since they are typically hard to detect due to their small size and the

context-dependent interpretation of the symbol shape (compare the dots in dotted notes

or F-clefs). We attribute this to the opportunity of detecting objects in context, enabled

93



Figure 6.4: Estimate of a class map M̂ c for every input pixel with the corresponding
MUSCIMA++ input overlayed.

by training on larger parts of full raw pages of sheet music in contrast to the classical

processing of tiny, pre-processed image patches or glyphs.

The results for the experiments on MUSCIMA++ in Tab. 6.2 and Fig. 6.3b show

a very similar outcome. This is intriguing because it suggests that the difficulty in

detecting digitally rendered and handwritten scores might be smaller than anticipated.

We attribute this to the fully data-driven approach enabled by deep learning instead of

hand-crafted rules for handling individual symbols. It is worth noting that ledger-lines

are detected with very high performance (see AP@1
4). This explains the relatively poor

detection of note-heads on MUSCIMA++, since they tend to overlap.

Fig. 6.4 shows an estimate for a class map with its corresponding input overlayed. Each

color corresponds to one class. This figure proofs that the network is learning a sensible

representation of music notation: even though it is only trained to mark the centers of

each object with the correct colors, it learns a primitive segmentation mask. This is

best illustrated by the (purple) segmentation of the beams.

6.6 Deep Watershed Detector in the Wild

We highlight four typical issues when applying deep learning techniques to practical

OMR: (a) the absence of a comprehensive dataset; (b) the extreme class imbalance

present in written music with respect to symbols; (c) the issues of state-of-the-art object
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detectors with music notation (many tiny and compound symbols on large images); and

(d) the transfer from synthetic data to real world examples.

6.6.1 Dealing with imbalanced data

While typical academic training datasets are nicely balanced [30, 39], this is rarely the

case in datasets sourced from real world tasks. Music notation (and therefore Deep-

Scores) shows an extreme class imbalance (see Figure 5.3). For example, the most

common class (note head black) contains more than 55% of the symbols in the entire

dataset, and the top 10 classes contain more than 85% of the symbols. At the other

extreme, there is a class which is present only once in the entire dataset, making its

detection by pattern recognition methods nearly impossible (a “black swan” is no pat-

tern). However, symbols that are rare are often of high importance in the specific pieces

of music where they appear, so simply ignoring the rare symbols in the training data is

not an option. A common way to address such imbalance is the use of a weighted loss

function.

This is not enough in our case: first, the imbalance is so extreme that naively reweighing

loss components leads to numerical instability; second, the signal of these rare symbols

is so sparse that it will get lost in the noise of the stochastic gradient descent method

[188], as many symbols will only be present in a tiny fraction of the mini batches.

Our current answer to this problem is data synthesis [133], using a three-fold approach

to synthesize image patches with rare symbols: (a) we locate rare symbols which are

present at least 300 times in the dataset, and crop the parts containing those symbols

including their local context (other symbols, staff lines etc.); (b) for rarer symbols, we

locate a semantically similar but more common symbol in the dataset (based on some

expert-devised notion of symbol similarity), replace this common symbol with the rare

symbol and add the resulting page to the dataset. This way, synthesized sheets still have

semantic sense, and the network can learn from syntactically correct context symbols.

We then crop patches around the rare symbols similar to the previous approach; (c)

for rare symbols without similar common symbols, we automatically “compose” music

containing those symbols.

Then, during training, we augment each input page in a mini batch with 12 randomly

selected synthesized crops of rare symbols (of size 130 × 80 pixels) by putting them in
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the margins at the top of the page. This way, the neural network (on expectation) does

not need to wait for more than 10 iterations to see every class which is present in the

dataset. Preliminary results show improvement, though more investigation is needed:

overfitting on extreme rare symbols is still likely, and questions remain regarding how

to integrate the concept of patches (in the margins) with the idea of a full page classifier

that considers all context.

6.6.2 Generalizing to real-world data

The basic assumption in machine learning for training and test data to stem from the

same distribution is often violated in field applications. In the present case, domain

adaptation is crucial: our training set consists of synthetic sheets created by LilyPond

scripts [187], while the final product will work on scans or photographs of printed sheet

music. These test pictures can have a wide variety of impairments, such as bad printer

quality, torn or stained paper etc. While some work has been published on the topic

of domain transfer [46], the results are non-satisfactory. The core idea to address this

problem here is transfer learning [212]: the neural network shall learn the core task of the

full complexity of music notation from the synthetic dataset (symbols in context due to

full page input), and use a much smaller dataset to adapt to the real world distributions

of lighting, printing and defect.

We construct this post-training dataset by carefully choosing several hundred represen-

tative musical sheets, printing them with different types of printers on different types

of paper, and finally scanning or photographing them. We then use the BFMatcher

function from OpenCV to align these images with the original musical sheets to use all

the ground truth annotation of the original musical sheet for the real-world images (see

Figure 6.5). This way, we get annotated real-looking images “for free” that have much

closer statistics to real-world images than images from DeepScores. With careful tuning

of the hyperparameters (especially the regularization coefficient), we get promising - but

not perfect - results during the inference stage.
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Figure 6.5: Top: part of a synthesized image from DeepScores; middle: the same
part, printed on old paper and photographed using a cell phone; bottom: the same
image, automatically retrofitted (based on the dark green lines) to the original image
coordinates for ground truth matching (ground truth overlayed in neon green boxes).

6.7 Improvements on the dataset and the detector

6.7.1 Shortcomings of the initial release

At its initial release, DeepScores had two main weaknesses: first, it was fully geared to-

wards our application in conjunction with Audiveris; many common symbols that were

not interesting in that context have been omitted, which severely limited the usabil-

ity of DeepScores in other contexts. Second, DeepScores consist only of synthetically

rendered music sheets, since labelling hundreds of thousands of music sheets by hand

is prohibitively expensive. However, the common use case for OMR is scans or even

photos of music sheets. This discrepancy can lead to severe performance drops between

model training and actual use.

6.7.2 Enhanced character set

In an effort to make DeepScores more universally usable we created a new version—

called DeepScores-extended—containing annotations for a far greater number of symbols.

According to our knowledge and discussions with other members of the community, no
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crucial symbols are missing from the DeepScores-extended annotations. The full list of

supported symbols is available online1.

6.7.3 Richer musical information

While the interest of the authors lies in the detection of musical symbols, this task

is not the full problem of OMR. The reconstruction of semantically valid music from

detected symbols is at least as challenging as the detection. To enable research focused

on reconstructing higher-level information, we have added additional information to the

DeepScores annotations. Every labeled object now has an onset tag that tells the start

beat of the the given object. All noteheads additionally have their relative position on

the staff as well as their duration in their annotation (see Figure 6.6).

Figure 6.6: Small piece of music notation with DeepScores-extended
annotations overlayed. The naming is either classname.onset or class-

name.onset.relativecoordinate.duration, depending on availability.

6.7.4 Planned improvements

A drawback of the DeepScores dataset is that it is synthetic. We are currently working

on a much smaller dataset, meant for transfer-learning, that consists of pages originally

taken from DeepScores that are printed and then digitized again. Then, through a global

centering and orientation alignment of the scan, the original annotations are made valid

again for the scanned version. We use different printers, scanners, cell-phone cameras,

and paper qualities to make the noise introduced by this process resemble the real world

use case as much as possible. Naively training a Deep Watershed Detector on this new

dataset, we observed that the detector was unable to find anything on the testing set

despite that the loss function converged. This led us to believe that severe overfitting is

going on, and we were able to get promising results by simply adding l2-regularization

and performing more careful training (see Figure 6.7 for a qualitative result of the

detector on the new dataset).

1tuggeluk.github.io/deepscores syms list
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Figure 6.7: Preliminary results of our model (grey boxes) on a photo of a printed
sheet. While not perfect (for example, our model misses the clef in the first row), they

already look promising.
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6.8 Further Research on Deep Watershed Detection

6.8.1 Augmenting inputs

DeepScores, unlike many academic datasets, is extremely unbalanced. In fact, the most

common class (notehead black) contains more symbols than the rest of the classes com-

bined, while the top 10 classes contain more than 85% of the symbols. However, some

of the rare symbols are important and simply dismissing them might lead to seman-

tic problems during the reconstruction of valid music in some digital format. Initially,

we tried to solve the problem by using a weighted loss function which penalizes more

severely the mistakes on the rare symbols, but to no avail. In [188] we conjecture that

the inbalance is so extreme that simply weighting the loss function leads to numerical

instability, while at the same time the signal from these rare symbols is so sparse that

it will get lost in the noise of stochastic gradient descent during the training: many

symbols will be present only in a tiny fraction of mini batches. Both of these problems

do not get solved by a weighted loss function.

Our current answer to this problem is oversampling rare classes by data synthesis, where

we locate rare symbols in the dataset, and during training, we append these symbols

at the top of the musical sheets (see Figure 6.8). More specifically, we augment each

input page in a mini-batch with with 12 randomly selected synthesized crops of rare

symbols (of size 130 × 80 pixels) by putting them in the margins at the top of the

page. Directions on the choice of the creation of augmented symbols are given on [179].

This way, the neural network (on expectation) does not need to wait for more than

10 iterations to see every class which is present in the dataset. At the same time, we

have been experimenting with pre-training the net with fully synthetic scores where the

classes are fully balanced and then retraining it on the full DeepScores dataset. The

two approaches are complementary and preliminary results show improvement, though

more investigation is needed: overfitting on extremely rare symbols is still likely, and

questions remain regarding how to integrate the concept of patches (in the margins)

with the idea of a full page classifier that considers all context.
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Figure 6.8: A musical score where 12 small images have been augmented at the top
of 7 regular staves. The bounding boxes are marked in green.

6.8.2 Cached bounding boxes

The biggest problem of the Deep Watershed Detector (DWD) on a fundamental level

is that the bounding box regression is inaccurate. This is possibly due to the fact that

convolutional networks produce smooth outputs, but the bounding box map can be very

non-smooth. This ”smoothing-bias” creates an averaging over all bounding boxes and

leads to an overestimation of small bounding boxes and an underestimating of large ones.

We currently address this issue by using cached bounding boxes per class as a prediction,

being quite accurate for most classes but completely unusable for others. This is a not

a satisfactory solution and has to be improved. We are considering multiple approaches
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including different bounding box encoding in the output layer or usage of the DWD

localization as an object proposal system in an R-CNN style detection scheme.

6.9 Final results

After we implemented the mentioned improvement in our detector, we compared our

results with state-of-the-art OMR detectors. We compared the results of our detector

with the results reported on [142], where the authors reported numbers of Faster R-

CNN [155], RetinaNet [104] and a custom net based on U-Net [157] on DeepScores and

MUSCIMA++ datasets. Additionally, we reported the results of our detector in the

scanned version of DeepScores. All results are given on MS-COCO mAP [105], where

the mAP score is computed at [0.5, 0.55, ..., 0.95] and then averaged.

map % DeepScores (synthetic) Musicma++ (handwritten) DeepScores (scans)

Faster R-CNN 19.6 3.9 -
RetinaNet 9.8 7.7 -
U-Net 24.8 16.6 -

DWDNet 41.4 19.9 47.3

Table 6.3: Results of our detector in DeepScores, Musicma++ and DeepScores-scans
and the comparison with Faster R-CNN, RetinaNet and U-Net

As can be seen in Table 6.3, our method massively outperforms the other 3 detectors.

In case of DeepScores our method reaches almost twice as high score as the next best

method. Similarly, in MUSCIMA++ our method outperforms the other three method

by a large margin.

Being a single-stage detector, our method is as fast as RetinaNet, and around an order

of magnitude faster than Faster R-CNN detector. The U-Net detector presented in

[142] is inspired from U-Net segmentation network [157], with the caveat being that the

segmentation happens sequentially for every class. This makes the method at the very

best case slow (around two orders of magnitude slower than our method and RetinaNet),

if not totally unscalable when the number of classes increase. So, not only our detector

reaches the best results in mAP score, but it is also as fast as the fastest competitive

detector.
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6.10 Conclusions and Future Work

We have presented a novel method for object detection that is specifically tailored to

detect many tiny objects on large inputs. We have shown that it is able to detect common

symbols of music notation with high precision, both in digitally rendered music as well

as in handwritten music, without a drop in performance when moving to the ”more

complicate” handwritten input. This suggests that deep learning based approaches

are able to deal with handwritten sheets just as well as with digitally rendered ones,

additionally to their benefit of recognizing objects in their context and with minimal

preprocessing as compared to classical OMR pipelines. Pacha et al.[140] show that higher

detection rates, especially for uncommon symbols, are possible when using R-CNN on

small snippets (cp. Fig. 6.9). Despite their higher scores, it is unclear how recognition

performance is affected when results of overlapping and potentially disagreeing snippets

are aggregated to full page results. A big advantage of our end-to-end system is the

complete avoidance of error propagation in longer recognition pipeline of independent

components like classifiers, aggregators, etc [97]. Moreover, our full-page end-to-end

approach has the advantages of speed (compared to a sliding window patch classifier),

change of domain (we use the same architecture for both the digital and handwritten

datasets) and is easily integrated into complete OMR frameworks.

Arguably the biggest problem we faced is that symbol classes in the dataset are heavily

unbalanced. Considering that originally we did not do any class-balancing, this imbal-

ance had its effect in training. We observed that in cases where the symbol is common,

we get a very high average precision, but it quickly drops when symbols become less

common. Furthermore, it is interesting to observe that the neural network actually for-

gets about the existence of these rarer symbols: Fig. 6.10 depicts the evolution of lossb

of a network that is already trained and gets further trained for another 8, 000 iterations.

When faced with an image containing rare symbols, the initial loss is larger than the loss

on more common images. But to our surprise, later during the training process, the loss

actually increases when the net encounters rare symbols again, giving the impression

that the network is actually treating these symbols as outliers and ignoring them.

We solved the problem by a combination of better training (weighted loss functions, l2

regularization and better hyperparamter search) and a series of data augmentations. In
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Figure 6.9: Typical input snippet used by Pacha et al. [140]

Figure 6.10: Evolution of lossb (on the ordinate) of a sufficiently trained network,
when training for another 8000 iterations (on the abscissa).

the end this resulted with our detector reaching almost twice as high results in mAP

metric, while at the same time being as fast as one-stage competing detectors.

As future work, we plan to investigate the ability of our method beyond OMR on nat-

ural images. Initially we will approach canonical datasets like PASCAL VOC [39] and

MS-COCO [105] that have been at the front-line of object recognition tasks. However,

images in those datasets are not exactly natural, and for the most part they are simplistic

(small images, containing a few large objects). Recently, researchers have been inves-

tigating the ability of state-of-the-art recognition systems on more challenging natural

datasets, like DOTA [205], and unsurprisingly, the results leave much to be desired. The

DOTA dataset shares a lot of similarities with musical datasets, with images being high

resolution and containing hundreds of small objects, making it a suitable benchmark for

our DWD method to recognize tiny objects.
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Chapter 7

Discussion and Conclusions

In this thesis, we studied the effect of contextual information in deep neural networks.

Loosely speaking, the contextual information can be given to a CNN either explicitly

(by incorporating special building blocks that take into consideration the structure of

the dataset) or implicitly (by carefully constraining the CNN to take into consideration

the surrounding objects. We investigated both approaches, finding out that in either

case, giving contextual information helps neural networks in many different tasks like

classification, recognition or similarity learning.

7.1 Implicit Context

There has been a long-standing belief in the community of machine learning that CNNs

make local decisions if they are not augmented by building blocks that take into con-

sideration the global information. This belief was challenged by [159] where the authors

found out that for the tasks of object detection and recognition, not only that context

matters a lot, but CNNs with large receptive fields use context in an implicit manner.

Fig. 7.1 shows how the surroundings of an image directly effect the results of a state-of-

the-art object detector, despite that there is no explicit way of looking for the context

in the image. Motivated by similar beliefs, we designed and developed a state-of-the-art

object detector for the task of optical music recognition, called DWDNet [188]. DWDNet

is an one-stage object detector, meaning that it finds all objects in an image in one go

(unlike two-stage detectors which initially find interesting regions and then classify those
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regions by taking into consideration only the pixels of that region), and by doing so, it

is forced to consider the contextual information. By carefully training it and improving

over the dataset it is trained on, we managed to not only outperform the current best

object detectors, but also to be able to correctly distinguish between symbols which look

visually identical, but have totally different meaning, as shown in Fig. 7.2(a) and Fig.

7.2(b).

Figure 7.1: Detecting an elephant in a room. A state-of-the-art object detector
detects multiple images in a living-room (a). A transplanted object (elephant) can
remain undetected in many situations and arbitrary locations (b,d,e,g,i). It can assume
incorrect identities such as a chair (f). The object has a non-local effect, causing other
objects to disappear (cup, d,f, book, e-i ) or switch identity (chair switches to couch in

e). It is recommended to view this image in color online. Figure taken from [159]
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(a) Augmentation dot (b) Stacatto

Figure 7.2: Two symbols which look the same, but have totally different meanings
(and so classes). By carefully designing our CNN to implicitly consider contextual
information, we are able to distinguish between ”Augmentation dot” and ”Stacatto”.

7.2 Explicit Context

Even more interesting to us is the explicit usage of context, which has been a relatively

non-studied topic until recently. We used the graph theoretical well-known algorithm

called ”Graph Transduction Game (GTG)” to initially do a label augmentation of the

dataset, which would allow us to train CNNs even in cases where there is a sparsity of

labelled data. In extreme cases - where the number of labelled data is only 10 to 250,

we were able to massively outperform the previously best deep semi-supervised learning

models. Later on, inspired from GTG we designed a differentiable module which we

called ”The Group Loss”, put it on top of CNN, allowing us to get state-of-the-art

results in the task of similarity learning, clustering and image retrieval.

Among the possible graph-based label propagation algorithms [222, 223, 225, 226], we

choose Graph Transduction Game (GTG) [37]. The motivations that drive our choice

are the following:

• GTG takes into account the similarity between objects and the relation between

all objects in the mini-batch, ensuring that similar objects belong to the same

group and dissimilar objects belong to different groups;

• it is differentiable, hence perfectly fit for an end-to-end learning;

• it can be implemented in a vectorized format as product of matrices, making it

computationally efficient;
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• it allows the injection of prior knowledge, which we can get for free from the same

neural model used to compute the embedding;

• it can be applied in small mini-batches (of size 30-100), unlike Deep Spectral Em-

bedding [92] which uses large mini-batches in the size of thousands. Training with

small batches was empirically showed to achieve higher generalization performance

[80], thus making the usage of small mini-batches very desirable.

• by working in the standard simplex, it outputs probability distributions instead of

hard cluster assignments, thus allowing the usage of the cross-entropy loss function

and establishing a natural link between supervised learning (classes) and unsuper-

vised learning (clusters).

Nevertheless, on chapter 3 the model could have been replaced with any of the other

models [222, 223, 225, 226]. In fact, we keep the same framework but replace the GTG

with other models in order to show the superior performance of GTG. On the other hand,

the work on chapter 4 is not GTG-based, but more GTG-inspired and has evolved on its

own thing. The combination of an iterative-procedure that works in standard simplex

(probability-space) with the softmax-layer of neural network is very strong, and makes

it very natural. While we do not see a way of using some other propagation model

[222, 223, 225, 226] for the task of similarity learning, it needs to be said that in principle,

a graph neural network based method could be used for the same task. In particular,

our work can be extended in something that looks like [86] where the propagation rule

is learned (instead of using replicator dynamics). However, for practical purposes, this

is extremely hard to be achieved because it is difficult to make graph neural network

models work with mini-batches. Not surprisingly, the biggest success of [86] has come in

citation network datasets when the number of samples is not too high, and the samples

are represented by low-dimensional features. Training such networks in high-dimensional

datasets (for example large-image datasets) comes with extreme memory requirements,

and with the current technology is not easily achievable. Mini-batch stochastic gradient

descent can potentially alleviate this issue. The procedure of generating mini-batches,

however, should take into account the number of layers in the Graph Convolutional

Network model, as the Kth-order neighborhood for a Graph Convolutional Network

with K layers has to be stored in memory for an exact procedure. For very large and

densely connected graph datasets are needed. So, while extending our framework to a
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purely Graph Convolutional Network model is desirable and would allow to learn the

propagation rule (instead of pre-determining it like in The Group Loss [35] work) doing

so is not straight-forward. Not surprisingly, there are not many clear successes of Graph

Convolutional Networks in the field of computer vision, especially when dealing with

large datasets. Nevertheless, this remains as something to be done as part of future

work.

7.3 Discussion

Regardless if the contextual information is provided implicitly in neural networks, or

contextual modules are added in neural networks, it is important to carefully consider

and involve context when the network is making decisions. While for many decades, the

only way to provide context in a network was assumed to be via recurrent connections,

recently the investigators have developed new methods of doing so [159, 163, 193]. This

thesis is a step in the same direction, where we investigated ways of both implicitly and

explicitly using context to help convolutional neural networks make informed and global

decisions. We found that in both cases, the context plays a very important role and

modern neural networks suited to complicated problems need to carefully consider ways

of involving context.
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Appendix A

Learning Neural Models for

End-to-End Clustering

A.1 Disclaimer

The work presented in this chapter is based on the following paper:

Benjamin Bruno Meier, Ismail Elezi, Mohammadreza Amirian, Oliver Dürr and Thilo

Stadelmann; Learning neural models for end-to-end clustering [120] ; In Proceed-

ings of IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition

(ANNPR 2018)

The contributions of the author are the following:

• Doing some limited experiments.

• Writing a part of the paper.

A.2 Introduction

Consider the illustrative task of grouping images of cats and dogs by perceived similarity:

depending on the intention of the user behind the task, the similarity could be defined by
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animal type (foreground object), environmental nativeness (background landscape, cp.

Fig. A.1) etc. This is characteristic of clustering perceptual, high-dimensional data like

images [77] or sound [114]: a user typically has some similarity criterion in mind when

thinking about naturally arising groups (e.g., pictures by holiday destination, or persons

appearing; songs by mood, or use of solo instrument). As defining such a similarity for

every case is difficult, it is desirable to learn it. At the same time, the learned model will

in many cases not be a classifier—the task will not be solved by classification—since the

number and specific type of groups present at application time are not known in advance

(e.g., speakers in TV recordings; persons in front of a surveillance camera; object types

in the picture gallery of a large web shop).

Grouping objects with machine learning is usually approached with clustering algorithms

[79]. Typical ones like K-means [115], EM [74], hierarchical clustering [127] with chosen

distance measure, or DBSCAN [38] each have a specific inductive bias towards certain

similarity structures present in the data (e.g., K-means: Euclidean distance from a

central point; DBSCAN: common point density). Hence, to be applicable to above-

mentioned tasks, they need high-level features that already encode the aspired similarity

measure. This may be solved by learning salient embeddings [122] with a deep metric

learning approach [65], followed by an off-line clustering phase using one of the above-

mentioned algorithm.

However, it is desirable to combine these distinct phases (learning salient features, and

subsequent clustering) into an end-to-end approach that can be trained globally [97]:

it has the advantage of each phase being perfectly adjusted to the other by optimiz-

ing a global criterion, and removes the need of manually fitting parts of the pipeline.

Numerous examples have demonstrated the success of neural networks for end-to-end

approaches on such diverse tasks as speech recognition [4], robot control [102], scene

text recognition [171], interactive segmentation [121], image retrieval [1, 35, 217], person

re-identification [2] or music transcription [172].

In this work, we present a conceptually novel approach that we call “learning to cluster”

in the above-mentioned sense of grouping high-dimensional data by some perceptually

motivated similarity criterion. For this purpose, we define a novel neural network archi-

tecture with the following properties: (a) during training, it receives pairs of similar or

dissimilar examples to learn the intended similarity function implicitly or explicitly; (b)
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Figure A.1: Images of cats (top) and dogs (bottom) in urban (left) and natural (right)
environments.

during application, it is able to group objects of groups never encountered before; (c)

it is trained end-to-end in a supervised way to produce a tailor-made clustering model

and (d) is applied like a clustering algorithm to find both the number of clusters as well

as the cluster membership of test-time objects in a fully probabilistic way.

Our approach builds upon ideas from deep metric embedding, namely to learn an em-

bedding of the data into a representational space that allows for specific perceptual

similarity evaluation via simple distance computation on feature vectors. However, it

goes beyond this by adding the actual clustering step—grouping by similarity—directly

to the same model, making it trainable end-to-end. Our approach is also different from

semi-supervised clustering [10], which uses labels for some of the data points in the in-

ference phase to guide the creation of groups. In contrast, our method uses absolutely

no labels during inference, and moreover doesn’t expect to have seen any of the groups

it encounters during inference already during training (cp. Fig. A.2). Its training stage

may be compared to creating K-means, DBSCAN etc. in the first place: it creates a

specific clustering model, applicable to data with certain similarity structure, and once

created/trained, the model performs “unsupervised learning” in the sense of finding

groups. Finally, our approach differs from traditional cluster analysis [79] in how the

clustering algorithm is applied: instead of looking for patterns in the data in an unbiased

and exploratory way, as is typically the case in unsupervised learning, our approach is

geared towards the use case where users know perceptually what they are looking for,

and can make this explicit using examples. We then learn appropriate features and the

similarity function simultaneously, taking full advantage of end-to-end learning.

Our main contribution in this work is the creation of a neural network architecture that

learns to group data, i.e., that outputs the same “label” for “similar” objects regardless

of (a) it has ever seen this group before; (b) regardless of the actual value of the label

(it is hence not a “class”); and (c) regardless of the number of groups it will encounter

112



Training

Testing

Proposed Model:
Training

Proposed Model:
Training

Proposed Model:
Evaluation

switch to a disjunct set of classes

P(k=1)=0.20 P(k=2)=0.75 P(k=3)=0.05

P(k=1)=0.05 P(k=2)=0.15 P(k=3)=0.80

P(k=1)=0.10 P(k=2)=0.80 P(k=3)=0.10

Figure A.2: Training vs. testing: cluster types encountered during application/infer-
ence are never seen in training. Exemplary outputs (right-hand side) contain a partition

for each k (1–3 here) and a corresponding probability (best highlighted blue).

during a single application run, up to a predefined maximum. This is novel in its concept

and generality (i.e., learn to cluster previously unseen groups end-to-end for arbitrary,

high-dimensional input without any optimization on test data). Due to this novelty

in approach, we focus here on the general idea and experimental demonstration of the

principal workings, and leave comprehensive hyperparameter studies and optimizations

for future work. In Sec. A.3, we compare our approach to related work, before presenting

the model and training procedure in detail in Sec. A.4. We evaluate our approach

on different datasets in Sec A.5, showing promising performance and a high degree of

generality for data types ranging from 2D points to audio snippets and images, and

discuss these results with conclusions for future work in Sec. A.6.

A.3 Related Work

Learning to cluster based on neural networks has been approached mostly as a supervised

learning problem to extract embeddings for a subsequent off-line clustering phase. The

core of all deep metric embedding models is the choice of the loss function. Motivated by

the fact that the softmax-cross entropy loss function has been designed as a classification

loss and is not suitable for the clustering problem per se, Chopra et al. [26] developed a

“Siamese” architecture, where the loss function is optimized in a way to generate similar

features for objects belonging to the same class, and dissimilar features for objects

belonging to different classes. A closely related loss function called “triplet loss” has

been used by Schroff et al. [168] to get state-of-the-art accuracy in face detection. The
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main difference from the Siamese architecture is that in the latter case, the network sees

same and different class objects with every example. It is then optimized to jointly learn

their feature representation. A problem of both approaches is that they are typically

difficult to train compared to a standard cross entropy loss.

Song et al. [176] developed an algorithm for taking full advantage of all the information

available in training batches. They later refined the work [175] by proposing a new

metric learning scheme based on structured prediction, which is designed to optimize

a clustering quality metric (normalized mutual information [119]). Even better results

were achieved by Wong et al. [195], where the authors proposed a novel angular loss,

and achieved state-of-the-art results on the challenging real-world datasets Stanford Cars

[88] and Caltech Birds [16]. On the other hand, Lukic et al. [113] showed that for certain

problems, a carefully chosen deep neural network can simply be trained with softmax-

cross entropy loss and still achieve state-of-the-art performance in challenging problems

like speaker clustering. Alternatively, Wu et al. [116] showed that state-of-the-art results

can be achieved simply by using a traditional margin loss function and being careful on

how sampling is performed during the creation of mini-batches.

On the other hand, attempts have been made recently that are more similar to ours in

spirit, using deep neural networks only and performing clustering end-to-end [3]. They

are trained in a fully unsupervised fashion, hence solve a different task then the one

we motivated above (that is inspired by speaker- or image clustering based on some

human notion of similarity). Perhaps first to group objects together in an unsupervised

deep learning based manner where Le et al. [93], detecting high-level concepts like cats

or humans. Xie et al. [207] used an autoencoder architecture to do clustering, but

experimental evaluated it only simplistic datasets like MNIST. CNN-based approaches

followed, e.g. by Yang et al. [211], where clustering and feature representation are

optimized together. Greff et al. [52] performed perceptual grouping (of pixels within

an image into the objects constituting the complete image, hence a different task than

ours) fully unsupervised using a neural expectation maximization algorithm. Our work

differs from above-mentioned works in several respects: it has no assumption on the

type of data, and solves the different task of grouping whole input objects.
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Figure A.3: Our complete model, consisting of (a) the embedding network, (b) clus-
tering network (including an optional metric learning part, see Sec. A.4.3), (c) cluster-

assignment network and (d) cluster-count estimating network.

A.4 A model for end-to-end clustering of arbitrary data

Our method learns to cluster end-to-end purely ab initio, without the need to explicitly

specify a notion of similarity, only providing the information whether two examples

belong together. It uses as input n ≥ 2 examples xi, where n may be different during

training and application and constitutes the number of objects that can be clustered at

a time, i.e. the maximum number of objects in a partition. The network’s output is two-

fold: a probability distribution P (k) over the cluster count 1 ≤ k ≤ kmax; and probability

distributions P (· | xi, k) over all possible cluster indexes for each input example xi and

for each k.

A.4.1 Network architecture

The network architecture (see Fig. A.3) allows the flexible use of different input types,

e.g. images, audio or 2D points. An input xi is first processed by an embedding network

(a) that produces a lower-dimensional representation zi = z(xi). The dimension of zi

may vary depending on the data type. For example, 2D points do not require any

embedding network. A fully connected layer (FC) with LeakyReLU activation at the

beginning of the clustering network (b) is then used to bring all embeddings to the same

size. This approach allows to use the identical subnetworks (b)–(d) and only change the

subnet (a) for any data type. The goal of the subnet (b) is to compare each input z(xi)

with all other z(xj 6=i), in order to learn an abstract grouping which is then concretized
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Figure A.4: RBDLSTM-layer: A BDLSTM with residual connections (dashed lines).
The variables xi and yi are named independently from the notation in Fig. A.4.

into an estimation of the number of clusters (subnet (d)) and a cluster assignment

(subnet (c)).

To be able to process a non-fixed number of examples n as input, we use a recur-

rent neural network. Specifically, we use stacked residual bi-directional LSTM-layers

(RBDLSTM), which are similar to the cells described in [204] and visualized in Fig.

A.4. The residual connections allow a much more effective gradient flow during training

and mitigate the problem of vanishing gradients. Additionally, the network can learn

to use or bypass certain layers using the residual connections, thus reducing the ar-

chitectural decision on the number of recurrent layers to the simpler one of finding a

reasonable upper bound.

The first of overall two outputs is modeled by the cluster assignment network (c). It

contains a softmax-layer to produce P (ℓ | xi, k), which assigns a cluster index ℓ to each

input xi, given k clusters (i.e., we get a distribution over possible cluster assignments for

each input and every possible number of clusters). The second output, produced by the

cluster-count estimating network (d), is built from another BDLSTM-layer. Due to the

bi-directionality of the network, we concatenate its first and the last output vector into

a fully connected layer of twice as many units using again LeakyReLUs. The subsequent

softmax-activation finally models the distribution P (k) for 1 ≤ k ≤ kmax. The next

subsection shows how this neural network learns to approximate these two complicated

probability distributions [101] purely from pairwise constraints on data that is completely

separate from any dataset to be clustered. No labels for clustering are needed.
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A.4.2 Training and loss

In order to define a suitable loss-function, we first define an approximation (assuming

independence) of the probability that xi and xj are assigned to the same cluster for a

given k as

Pij(k) =

k
∑

ℓ=1

P (ℓ | xi, k)P (ℓ | xj , k). (A.1)

By marginalizing over k, we obtain Pij , the probability that xi and xj belong to the

same cluster:

Pij =

kmax
∑

k=1

P (k)

k
∑

ℓ=1

P (ℓ | xi, k)P (ℓ | xj , k). (A.2)

Let yij = 1 if xi and xj are from the same cluster (e.g., have the same group label)

and 0 otherwise. The loss component for cluster assignments, Lca, is then given by the

weighted binary cross entropy as

Lca =
−2

n(n− 1)

∑

i<j

(ϕ1yij log(Pij) + ϕ2(1− yij) log(1− Pij)) (A.3)

with weights ϕ1 and ϕ2. The idea behind the weighting is to account for the imbal-

ance in the data due to there being more dissimilar than similar pairs (xi, xj) as the

number of clusters in the mini batch exceeds 2. Hence, the weighting is computed us-

ing ϕ1 = c
√
1− ϕ and ϕ2 = c

√
ϕ, with ϕ being the expected value of yij (i.e., the a

priori probability of any two samples in a mini batch coming from the same cluster),

and c a normalization factor so that ϕ1 + ϕ2 = 2. The value ϕ is computed over all

possible cluster counts for a fixed input example count n, as during training, the cluster

count is randomly chosen for each mini batch according to a uniform distribution. The

weighting of the cross entropy given by ϕ is then used to make sure that the network

does not converge to a sub-optimal and trivial minimum. Intuitively, we thus account

for permutations in the sequence of examples by checking rather for pairwise correctness

(probability of same/different cluster) than specific indices.

The second loss term, Lcc, penalizes a wrong number of clusters and is given by the

categorical cross entropy of P (k) for the true number of clusters k in the current mini

batch:

Lcc = − log(P (k)). (A.4)
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The complete loss is given by Ltot = Lcc + λLca. During training, we prepare each mini

batch with N sets of n input examples, each set with k = 1 . . . kmax clusters chosen

uniformly. Note that this training procedure requires only the knowledge of yij and is

thus also possible for weakly labeled data. All input examples are randomly shuffled for

training and testing to avoid that the network learns a bias w.r.t. the input order. To

demonstrate that the network really learns an intra-class distance and not just classifies

objects of a fixed set of classes, it is applied on totally different clusters at evaluation

time than seen during training.

A.4.3 Implicit vs. explicit distance learning

To elucidate the importance and validity of the implicit learning of distances in our

subnetwork (b), we also provide a modified version of our network architecture for com-

parison, in which the calculation of the distances is done explicitly. Therefore, we add

an extra component to the network before the RBDLSTM layers, as can be seen in

Figure A.3: the optional metric learning block receives the fixed-size embeddings from

the fully connected layer after the embedding network (a) as input and outputs the pair-

wise distances of the data points. The recurrent layers in block (b) then subsequently

cluster the data points based on this pairwise distance information [5, 24] provided by

the metric learning block.

We construct a novel metric learning block inspired by the work of Xing et al. [208].

In contrast to their work, we optimize it end-to-end with backpropagation. This has

been proposed in [170] for classification alone; we do it here for a clustering task, for

the whole covariance matrix, and jointly with the rest of our network. We construct the

non-symmetric, non-negative dissimilarity measure d2A between two data points xi and

xj as

d2A(xi, xj) = (xi − xj)TA(xi − xj) (A.5)

and let the neural network training optimize A through Ltot without intermediate losses.

The matrix A as used in d2A can be thought of as a trainable distance metric. In every

training step, it is projected into the space of positive semidefinite matrices.
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A.5 Experimental results

To assess the quality of our model, we perform clustering on three different datasets:

for a proof of concept, we test on a set of generated 2D points with a high variety of

shapes, coming from different distributions. For speaker clustering, we use the TIMIT

[44] corpus, a dataset of studio-quality speech recordings frequently used for pure speaker

clustering in related work. For image clustering, we test on the COIL-100 [130] dataset,

a collection of different isolated objects in various orientations. To compare to related

work, we measure the performance with the standard evaluation scores misclassification

rate (MR) [108] and normalized mutual information (NMI) [119]. Architecturally, we

choose m = 14 BDLSTM layers and 288 units in the FC layer of subnetwork (b),

128 units for the BDLSTM in subnetwork (d), and α = 0.3 for all LeakyReLUs in the

experiments below. All hyperparameters where chosen based on preliminary experiments

to achieve reasonable performance, but not tested nor tweaked extensively.

We set kmax = 5 and λ = 5 for all experiments. For the 2D point data, we use n = 72

inputs and a batch-size of N = 200 (We used the batch size of N = 50 for metric learning

with 2D points). For TIMIT, the network input consists of n = 20 audio snippets with

a length of 1.28 seconds, encoded as mel-spectrograms with 128 × 128 pixels (identical

to [114]). For COIL-100, we use n = 20 inputs with a dimension of 128 × 128 × 3.

For TIMIT and COIL-100, a simple CNN with 3 conv/max-pooling layers is used as

subnetwork (a). For TIMIT, we use 430 of the 630 available speakers for training (and

100 of the remaining ones each for validation and evaluation). For COIL-100, we train

on 80 of the 100 classes (10 for validation, 10 for evaluation). For all runs, we optimize

using Adadelta [215] with a learning rate of 5.0. Example of clustering are shown in Fig.

A.5. For all configurations, the used hardware set the limit on parameter values: we

used the maximum possible batch size and values for n and kmax that allow reasonable

training times. However, values of n ≥ 1000 where tested and lead to a large decrease

in model accuracy. This is a major issue for future work.

The results on 2D data as presented in Fig. A.5 demonstrate that our method is able

to learn specific and diverse characteristics of intuitive groupings. This is superior to

any single traditional method, which only detects a certain class of cluster structure

(e.g., defined by distance from a central point). Although [114] reach moderately better

scores for the speaker clustering task and [211] reach a superior NMI for COIL-100, our
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Figure A.5: Clustering results for (a) 2D point data, (b) COIL-100 objects, and
(c)faces from FaceScrub (for illustrative purposes). The color of points / colored borders

of images depict true cluster membership.

Table A.1: NMI ∈ [0, 1] and MR ∈ [0, 1] averaged over 300 evaluations of a trained
network. We abbreviate our “learning to cluster” method as “L2C”.

2D Points (self generated) TIMIT COIL-100
MR NMI MR NMI MR NMI

L2C (=our method) 0.004 0.993 0.060 0.928 0.116 0.867
L2C + Euclidean 0.177 0.730 0.093 0.883 0.123 0.884
L2C + Mahalanobis 0.185 0.725 0.104 0.882 0.093 0.890
L2C + Metric Learning 0.165 0.740 0.101 0.880 0.100 0.880
Random cluster assignment 0.485 0.232 0.435 0.346 0.435 0.346
K-Means 0.178 0.796 - - - -
DBSCAN 0.265 0.676 - - - -
Lukic et al. [114] - - 0 - - -
Yang et al. [211] - - - - - 0.985

method finds reasonable clusterings, is more flexible through end-to-end training and

is not tuned to a specific kind of data. Hence, we assume, backed by the additional

experiments to be found online, that our model works well also for other data types and

datasets, given a suitable embedding network. Tab. A.1 gives the numerical results for

said datasets in the row called “L2C” without using the explicit metric learning block.

Extensive preliminary experiments on other public datasets like e.g. FaceScrub [134]

confirm these results: learning to cluster reaches promising performance while not yet

being on par with tailor-made state-of-the-art approaches.

We compare the performance of our implicit distance metric learning method to ver-

sions enhanced by different explicit schemes for pairwise similarity computation prior

to clustering. Specifically, three implementations of the optional metric learning block

in subnetwork (b) are evaluated: using a fixed diagonal matrix A (resembling the Eu-

clidean distance), training a diagonal A (resembling Mahalanobis distance), and learning

the entire coefficients of the distance matrix A. Since we argue above that our approach

combines implicit deep metric embedding with clustering in an end-to-end architecture,

one would not expect that adding explicit metric computation changes the results by a
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large extend. This assumption is largely confirmed by the results in the “L2C+. . . ” rows

in Tab. A.1: for COIL-100, Euclidean gives slightly worse, and the other two slightly

better results than L2C alone; for TIMIT, all results are worse but still reasonable.

We attribute the considerable performance drop on 2D points using all three explicit

schemes to the fact that in this case much more instances are to be compared with each

other (as each instance is smaller than e.g. an image, n is larger). This might have

needed further adaptations like e.g. larger batch sizes (reduced here to N = 50 for

computational reasons) and longer training times.

A.6 Discussion and conclusions

We have presented a novel approach to learn neural models that directly output a

probabilistic clustering on previously unseen groups of data; this includes a solution to

the problem of outputting similar but unspecific “labels” for similar objects of unseen

“classes”. A trained model is able to cluster different data types with promising re-

sults. This is a complete end-to-end approach to clustering that learns both the relevant

features and the “algorithm” by which to produce the clustering itself. It outputs prob-

abilities for cluster membership of all inputs as well as the number of clusters in test

data. The learning phase only requires pairwise labels between examples from a separate

training set, and no explicit similarity measure needs to be provided. This is especially

useful for high-dimensional, perceptual data like images and audio, where similarity is

usually semantically defined by humans. Our experiments confirm that our algorithm

is able to implicitly learn a metric and directly use it for the included clustering. This

is similar in spirit to the very recent work of Hsu et al. [67], but does not need and op-

timization on the test (clustering) set and finds k autonomously. It is a novel approach

to learn to cluster, introducing a novel architecture and loss design.

We observe that the clustering accuracy depends on the availability of a large number

of different classes during training. We attribute this to the fact that the network needs

to learn intra-class distances, a task inherently more difficult than just to distinguish

between objects of a fixed amount of classes like in classification problems. We under-

stand the presented work as an early investigation into the new paradigm of learning

to cluster by perceptual similarity specified through examples. It is inspired by our

work on speaker clustering with deep neural networks, where we increasingly observe
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the need to go beyond surrogate tasks for learning, training end-to-end specifically for

clustering to close a performance leak. While this works satisfactory for initial results,

points for improvement revolve around scaling the approach to practical applicability,

which foremost means to get rid of the dependency on n for the partition size.

The number n of input examples to assess simultaneously is very relevant in practice: if

an input data set has thousands of examples, incoherent single clusterings of subsets of

n points would be required to be merged to produce a clustering of the whole dataset

based on our model. As the (RBD)LSTM layers responsible for assessing points simulta-

neously in principle have a long, but still local (short-term) horizon, they are not apt to

grasp similarities of thousands of objects. Several ideas exist to change the architecture,

including to replace recurrent layers with temporal convolutions, or using our approach

to seed some sort of differentiable K-means or EM layer on top of it. Increasing n is a

prerequisite to also increase the maximum number of clusters k, as k ≪ n. For practical

applicability, k needs to be increased by an order of magnitude; we plan to do this in

the future. This might open up novel applications of our model in the area of transfer

learning and domain adaptation.
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Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash,

C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals,

O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep learning, and

graph networks. CoRR, abs/1806.01261.

[12] Bengio, Y., Simard, P. Y., and Frasconi, P. (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE Trans. Neural Networks, 5(2):157–166.

[13] Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimiza-

tion. Journal of Machine Learning Research, 13:281–305.

[14] Berthelot, D., Carlini, N., Goodfellow, I. J., Papernot, N., Oliver, A., and Raffel,

C. (2019). Mixmatch: A holistic approach to semi-supervised learning. In Advances

in Neural Information Processing Systems, NeurIPS, pages 5050–5060.

[15] Beucher, S. et al. (1992). The watershed transformation applied to image segmen-

tation. SCANNING MICROSCOPY-SUPPLEMENT-, pages 299–299.

[16] Branson, S., Horn, G. V., Wah, C., Perona, P., and Belongie, S. J. (2014). The

ignorant led by the blind: A hybrid human-machine vision system for fine-grained

categorization. IJCV, pages 3–29.
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Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. (2015). Convolutional networks on

graphs for learning molecular fingerprints. In Cortes, C., Lawrence, N. D., Lee, D. D.,

Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing

Systems 28: Annual Conference on Neural Information Processing Systems 2015,

December 7-12, 2015, Montreal, Quebec, Canada, pages 2224–2232.

[33] Elezi, I., Torcinovich, A., Vascon, S., and Pelillo, M. (2018a). Transductive label

augmentation for improved deep network learning. In 24th International Conference

on Pattern Recognition, ICPR 2018, Beijing, China, August 20-24, 2018, pages 1432–

1437.

[34] Elezi, I., Tuggener, L., Pelillo, M., and Stadelmann, T. (2018b). Deepscores and

deep watershed detection: current state and open issues. CoRR, abs/1810.05423.

[35] Elezi, I., Vascon, S., Torcinovich, A., Pelillo, M., and Leal-Taixé, L. (2019). The

group loss for deep metric learning. CoRR, abs/1912.00385.

[36] Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

[37] Erdem, A. and Pelillo, M. (2012). Graph transduction as a noncooperative game.

Neural Computation, 24(3):700–723.

[38] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm

for discovering clusters in large spatial databases with noise. In KDD, pages 226–231.

[39] Everingham, M., Gool, L. J. V., Williams, C. K. I., Winn, J. M., and Zisserman,

A. (2010). The pascal visual object classes (VOC) challenge. International Journal

of Computer Vision, 88(2):303–338.

126



[40] Fornes, A., Dutta, A., Gordo, A., and Llados, J. (2012). A ground-truth of hand-

written music score images for writer identification and staff removal. International

Journal on Document Analysis and Recognition, Volume 15, Issue 3, pp 243-251.

[41] Frasconi, P., Gori, M., and Sperduti, A. (1998). A general framework for adaptive

processing of data structures. IEEE Trans. Neural Networks, 9(5):768–786.

[42] Fukushima, K. and Miyake, S. (1982). Neocognitron: A new algorithm for pat-

tern recognition tolerant of deformations and shifts in position. Pattern Recognition,

15(6):455–469.

[43] Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning. In ICML.

[44] Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., and

Dahlgren, N. L. (1993). DARPA TIMIT acoustic phonetic continuous speech corpus

CDROM.

[45] Ge, W., Huang, W., Dong, D., and Scott, M. R. (2018). Deep metric learning

with hierarchical triplet loss. In Computer Vision - ECCV 2018 - 15th European

Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VI, pages

272–288.

[46] Gebru, T., Hoffman, J., and Fei-Fei, L. (2017). Fine-grained recognition in the

wild: A multi-task domain adaptation approach. In IEEE International Conference

on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 1358–

1367.

[47] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).

Neural message passing for quantum chemistry. In Precup, D. and Teh, Y. W., editors,

Proceedings of the 34th International Conference on Machine Learning, ICML 2017,

Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine

Learning Research, pages 1263–1272. PMLR.

[48] Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., and He, K. (2018). Detectron.

https://github.com/facebookresearch/detectron.

[49] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hi-

erarchies for accurate object detection and semantic segmentation. In 2014 IEEE

127

https://github.com/facebookresearch/detectron


Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus,

OH, USA, June 23-28, 2014, pages 580–587.

[50] Goodfellow, I. J., Bengio, Y., and Courville, A. C. (2016). Deep Learning. Adaptive

computation and machine learning. MIT Press.

[51] Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2013). Multi-

digit number recognition from street view imagery using deep convolutional neural

networks. arXiv preprint arXiv:1312.6082.

[52] Greff, K., van Steenkiste, S., and Schmidhuber, J. (2017). Neural expectation

maximization. In NIPS, pages 6694–6704.

[53] Gregory, G., Alex, H., and Pietro, P. (2007). Caltech-256 object category dataset.

Technical Report - California Institute of Technology.

[54] Griffin, G., Holub, A., and Perona, P. (2007). Caltech-256 object category dataset.

Technical report, California Institute of Technology.

[55] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of mod-

ern neural networks. In Precup, D. and Teh, Y. W., editors, International Conference

on Machine Learning, ICML.

[56] Hajic, J. and Pecina, P. (2017a). In search of a dataset for handwritten optical

music recognition: Introducing muscima++. arXiv:1703.04824.

[57] Hajic, J. and Pecina, P. (2017b). The MUSCIMA++ dataset for handwritten opti-

cal music recognition. In 14th IAPR International Conference on Document Analysis

and Recognition, ICDAR 2017, Kyoto, Japan, November 9-15, 2017, pages 39–46.
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[114] Lukic, Y., Vogt, C., Dürr, O., and Stadelmann, T. (2017). Learning embeddings for

speaker clustering based on voice equality. In Machine Learning for Signal Processing

(MLSP), 2017 IEEE 27th International Workshop on.

[115] MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., Vol. 1, pages

281–297.

[116] Manmatha, R., Wu, C., Smola, A. J., and Krähenbühl, P. (2017). Sampling
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