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Abstract

The thesis aims to develop a methodology for solving complex puzzle
problems. In particular, we present a new formulation for general puzzle-
solving tasks and then propose a further extension for a more challenging
case with missing borders.

In the first part of the research, we explore the idea of abstracting the
jigsaw puzzle problem as a consistent labeling problem, a classical concept
for which a solid theory and powerful algorithms are available. A formal
theory of consistency developed by Hummel and Zucker in the 1980s turned
out to have intimate connections with non-cooperative game theory. The
theory generalizes classical (boolean) constraint satisfaction problems to sce-
narios involving “soft” compatibility measures and probabilistic (as opposed
to “hard”) label assignments. The problem amounts to maximizing a well-
known quadratic function over a probability space which we solve using re-
laxation labeling algorithms endowed with matrix balancing mechanisms to
enforce one-to-one correspondence constraints. The preliminary experiments
with square jigsaw puzzles demonstrate the feasibility of the proposed ap-
proach.

The second part addresses the problem of puzzles with eroded borders,
a special challenging case of puzzle-solving. Solving puzzles with eroded
borders is a common situation when dealing with the re-assembly of archae-
ological artifacts or ruined frescoes. In this particular condition, the puzzle’s
pieces do not align perfectly due to the erosion gaps; a direct matching of the
patches is consequently unfeasible due to the lack of color and line contin-
uations. To tackle this issue, we propose JiGAN, a GAN-based method for
solving puzzles with ruined borders. JiGAN is a two-steps procedure: first,
we repair the eroded borders with a GAN-based image extension model and
measure the alignment affinity between pieces; then, we solve the puzzle with
the relaxation labeling puzzle solver. The experiments on commonly used
benchmark datasets demonstrate that our approach can address the problem
of eroded borders and produce plausible reconstruction results.





Abstract

La tesi si propone di sviluppare una metodologia per la risoluzione di com-
plessi problemi puzzle. Nella prima parte della ricerca, esploriamo l’idea di
astrarre il problema del puzzle come un problema di consistent labeling, un
concetto classico introdotto negli anni ’80 da Hummel e Zucker per il quale
esiste una solida teoria e potenti algoritmi. La formale teoria di consistenza
sviluppata da Hummel e Zucker è in stretta connessione con la teoria dei
giochi non cooperativi. La teoria generalizza i problemi di soddisfazione dei
vincoli classici (booleani) in scenari che coinvolgono misure di compatibilità
“soft” e assegnazioni di etichette probabilistiche (al contrario di “hard”). Il
problema consiste nel massimizzare la funzione quadratica su uno spazio di
probabilità; a tal fine si utilizza l’algoritmo di relaxation labeling dotato di
meccanismo di bilanciamento delle matrici per imporre vincoli di corrispon-
denza uno-a-uno. La seconda parte affronta il caso speciale e impegnativo di
risoluzione di puzzle in presenza di bordi erosi, situazione comune in arche-
ologia (ricostruzione dei manufatti antichi, affreschi, ...). In questi particolari
casi, i pezzi del puzzle non si allineano perfettamente a causa dell’erosione;
un abbinamento diretto non è quindi praticabile per la mancanza di con-
tinuazione del colore. Per affrontare questo problema, proponiamo JiGAN,
un metodo basato su GAN per risolvere i puzzle con bordi rovinati. Gli
esperimenti sui set di dati di riferimento comunemente utilizzati dimostrano
che il nostro approccio è in grado di affrontare il problema dei bordi erosi e
produrre plausibili risultati di ricostruzione.
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Chapter 1

Introduction

1.1 Reassembly in Cultural Heritage

The main goal of the thesis is to develop the computational methodology
for solving complex puzzle problems that can be applied to the virtual re-
construction of broken artifacts. In particular, our ambition is to build an
assembling tool able to face situations where adjacency of all fragments is un-
certain and the appearance (ground true) of an original artifact is unknown.
The idea to work on puzzle-solving came due to its intimate relation to the
problem of fresco reconstruction in archeology. In fact, the reconstruction of
archeological ancient artifacts can be seen as a particularly challenging case
of puzzle-solving (that makes the puzzle-solving task a part of the branch of
computer vision for cultural heritage).

Figure 1.1: Two crates of fragments from the Tongeren Vrijthof excavation,
containing 144 fragments. (Copyright Gallo Romeins Museum Tongeren).
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Reconstruction of the ancient artifact is a problem of great interest in
archeology and is important because helps archeologists to better understand
past civilizations and cultures. The artifacts are often found in a fractured
state and must be reassembled before being displayed and studied. Manual
reconstruction is a labor-intensive and time-consuming job. Furthermore, in
some cases, it is infeasible due to the elevated number of fragments or the
fragility of objects (when the excessive handling of pieces is undesirable). For
these reasons, a great amount of archeological material remains in storage
un-examined and unstudied.

To overcome this problem, computer-aided technologies make it possible
to digitize detailed shape, color, and surface information for each fragment,
while computational algorithms can help match fragments and virtually re-
construct the objects, especially in situations where the space of potential
“matches” is large. The problem essentially can be seen as enormous jigsaw
puzzle-solving, where the pieces are often with ruined borders and faded
colors, some pieces may be missing, and the shape of an original artifact is
unknown.

Figure 1.2: Reassembling a fractured head model [37]
.

The problem of reassembling archeological “puzzles” may include ruined
frescoes, fractured pottery, ancient manuscripts, and other types of objects.
The reassembly problem is extensively studied in the computer science com-
munity. The method of computational reassembly of an artifact generally
consists of two main steps: local matching and global assembly [37]. The
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local matching is based on finding matches between pairs of fragments or
searching the most probable neighbors of a given fragment. Global assembly
is looking for a complete solution to the reconstruction problem, taking into
consideration pairwise match hypotheses.

Figure 1.3: The Toreador Fresco illustrates the Minoan fascination with
bulls. Late Bronze Age 1550 1450 BC. Court of the Stone Spout, Knossos,
Crete. (Photo by Werner Forman/Universal Images Group/Getty Images)
The Minoan culture controlled Crete, an island in the Mediterranean Sea
south of Greece from about 2000 to 1600 BCE. Theirs was a sophisticated
and advanced society.

Various techniques are used for finding good matches between fragments,
including comparisons of color, shape, texture. Pictorial methods are usually
based on the colors close to the edges of the fragments or analyses the content
of the entire fragment. Geometric methods focus on the contour of the
fragments, or the surface area of the fragment edges; also, some properties
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of the material [56] can be used for matching fragments. The main difficulty
in global reassembly is a poor scaling of the problem with the number of
fragments, due to the combinatorial explosion of potential solutions. For
this reason, global assembly algorithms tend to use greedy approaches that
iteratively grow and merge clusters while maximizing a scoring function.

The reassembly problem is often modeled as a graph, where nodes repre-
sent fragments and edges represent probable matches between pairs of frag-
ments. In these methods, they try to consider as many matches as possible
(to have more chances to find correct matches); the reassembly process con-
sists in building a connection graph from candidate matches and finding the
most (globally) consistent set of edges [1].

1.2 Cultural Heritage and Machine learning

Certainly, reassembly is not the only area in cultural heritage where Machine
Learning (ML) might be engaged in resolving various challenging problems.
Nevertheless, it seems that ML has still few applications in the fields of
Cultural Heritage and the use of the modern computational technique is
limited. To investigate this problem, we have conducted an overview of the
application of the machine learning technique in cultural heritage. Most
applications in the literature tend to rely on statistical toolboxes applied on
small datasets that moreover, are usually not publicly available. The modern
methods take time to become popular in the fields of cultural heritage and
the limited access to a sufficient amount of data is an additional constraint
on its growth.

Although machine learning is not widely used in cultural heritage, there
are examples of applications in the literature where interesting results were
obtained. In the first part of this research (Chapter 2), we present an
overview of the machine learning methods applied to cultural heritage and
confirm that plenty of cultural heritage issues can be solved with the use of
machine learning techniques.

1.3 Puzzle game

The jigsaw puzzle is a well-known game where small (and often irregular)
pieces must be fitted together to reconstruct the complete image or shape.
Despite its entertaining and educational origins, solving a puzzle has numer-
ous applications in different fields, such as image editing, shredded docu-
ments [19], genome biology [93], reconstruction of broken artifacts [23].
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Figure 1.4: Example of jigsaw puzzle-solving game

Another meaning of the word puzzle is “a complicated or mysterious prob-
lem that can only be solved or explained by connecting several pieces of in-
formation”. In fact, the problem of the puzzle is demonstrated to be NP-
complete. Nevertheless, the automatic puzzle-solving problem puzzles for
years the minds of researchers in fields of computer science, mathematics, en-
gineering, and numerous approaches have been proposed involving different
computational schemes such as functional optimization, greedy algorithm,
machine learning.

There is no standard puzzle-solving task as numerous variations of puzzle
problems are discussed in the literature. These variations mainly differ in
the fragment’s quality and orientation, the presence of missing or irrelevant
pieces, and knowledge about the final image shape. The simplest version of
the puzzle-solving task, known as square jigsaw puzzle, is represented by a set
of perfectly matching and oriented square pieces that must be re-assembled
in a picture of a known shape. Such a puzzle-solving task can be considered
as a starting point for more complex puzzle tasks, i.e. puzzle with missing
fragments, ruined border, unknown orientation, and other characteristics
typical of archaeological puzzles.
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1.4 Main contributions

In this research, we first tackle the puzzle-solving problem in its simplest
version and propose a new formulation of the problem. In the second part of
this work, we address the more complex task of solving puzzles with eroded
borders, which is a common case in archaeology.

1.4.1 Square jigsaw puzzle

The square jigsaw puzzle is the simplest version of puzzle-solving task, where
the square pieces should be reordered on a 2D grid to form a coherent image.
Formally, one should look for a permutation matrix that encodes such re-
ordering and represents the correct solution of the puzzle. Although demon-
strated to be NP-complete [20], the automatic puzzle-solving problem puzzles
the minds of researchers in computer science, mathematics, and engineering
for years. Numerous approaches tackled the problem, involving functional
optimization [14, 2, 40], greedy algorithm [61, 30, 70, 74, 35], and machine
learning [58, 10, 45].

In this research, we take a different route and explore the idea of ab-
stracting the jigsaw puzzle problem as a consistent labeling problem, a class
of problems widely studied in the computer vision and pattern recognition
communities since the 1970s [65, 36]. Attempts at formalizing the notion of
consistent labeling culminated in a seminal paper by Hummel and Zucker [38]
who, motivated by the theory of variational inequalities, developed a formal
theory of consistency that later turned out to have intimate connections with
non-cooperative game theory [52]. The theory generalizes classical (boolean)
constraint satisfaction problems to scenarios involving “soft” compatibility
measures and probabilistic (as opposed to “hard”) label assignments. Within
this framework, under a certain symmetry assumption, consistent labelings
also turn out to be equivalent to local solutions of a linearly constrained
quadratic optimization problem.

In our formulation, the jigsaw puzzle problem is viewed as the problem of
finding a consistent labeling satisfying certain compatibility relations, with
an additional requirement for one-to-one correspondences between the puz-
zle’s tiles and their positions. We solve the problem using classical relaxation
labeling algorithm which enjoys nice theoretical properties [60] and offers the
advantage of avoiding ad hoc projections and problematic step size choices.
To enforce the one-to-one constraints we endow the algorithm with two “ma-
trix balancing” mechanisms, one based on the well-known Sinkhorn-Knopp
procedure and the other inspired by von Neumann’s method of alternating
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projections. Related to our work is the jigsaw puzzle problem formulation
suggested by Andaló et al. [2], where a similar quadratic objective function
is optimized with a different gradient-projection technique.

We conducted some preliminary experiments aimed at testing the plau-
sibility of the proposed approach. We first show that in the presence of an
ideal, or “oracle” compatibility measure, the “plain” relaxation labeling algo-
rithm (that is, without enforcing one-to-one correspondence between pieces
and locations) is always able to return perfect reconstruction results. We
then show how performance deteriorates as we move away from this ideal
setting, thereby demonstrating the necessity of the balancing operation. We
conclude with experiments using real-world compatibility on publicly avail-
able datasets, which show the feasibility of the proposed combined technique.

1.4.2 Puzzle with eroded border

A more complex task concerns finding a solution when pieces are missing or
eroded. Many real-world problems, such as recovering of ancient documents
and broken artifacts [23], can be seen as jigsaw puzzles with missing informa-
tion (boundaries or entire pieces). This task has been only partially explored
in the last year due to its complexity [10, 58], as it requires developing the
compatibility method that takes into account the gaps between the pieces
and the imprecision of the matching bounds.

In the second part of this research we extend our method [40] for the
case where the borders of the patches are ruined. To simulate the erosion
in the puzzle, we create gaps between pieces removing pixels lying on the
borders. The gaps interrupt the color and the line continuation between
patches, making compatibility functions unusable or highly inaccurate.

To alleviate this problem, we adopt an image extension technique; we
extend the patches borders to cover the eroded parts in the picture with
synthetically generated pixels. Image inpainting and extension are broadly
studied in computer vision, and various techniques were proposed [77, 92,
17, 54, 5]. We consider that for our task, the image extension model is
more suitable than the inpainting model, as we want to extend the images
outside the original border rather than filling missing parts inside of each
patch. The GAN-based model for image extension proposed in [77] shows
impressive results, hence we adopt their model for our procedure: first, we
recover the eroded borders of each patch by extending it in all directions and
we compute the pairwise compatibility on repaired patches; then we apply
the relaxation labeling solver [40] to reconstruct the image.

To summarize, the contributions of this paper are three-fold:
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1. We formalize the puzzle-solving problem as a problem of finding a
consistent labeling problem, with an additional requirement for one-
to-one correspondences between the puzzle’s tiles and their positions.

2. We develop the puzzle-solving algorithm based on relaxation labeling
process, which we endow with matrix balancing mechanisms to enforce
one-to-one correspondence constraints. We show the feasibility of our
model on a variety of different datasets.

3. We extended the proposed model to handle a more complex task, such
as jigsaw puzzles with eroded borders, proposing a model that exploits
generative adversarial networks and relaxation labeling processes to-
gether. To the best of our knowledge, no such method was proposed
for solving puzzles; hence, here we suggest a novel approach to address
the complexity of puzzle games.

1.5 Thesis structure

The thesis is organized as follows: in Chapter 2 we offer the reader a brief
survey of machine learning applications in Cultural Heritage; in Chapter
3 we discuss the state-of-the-art of puzzle-solving methods, puzzle-solving
problem formulation and compatibility computation methods; in Chapter 4
we recap the basic concepts of consistent labeling problem and relaxation la-
beling process; in Chapter 5 after presenting our approach for puzzle solving
and relaxation labeling puzzle solver, we discuss some preliminary studies
and results; Chapter 6 presents our approach for solving puzzles with eroded
border, where we make use of the GAN-model for image extension to visually
reconstruct the ruined parts of the patches.
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Chapter 2

Machine learning methods and
Cultural Heritage

Before diving into the discussion of puzzle-solving methods and solutions,
here we propose an overview of machine learning methods nowadays applied
in the field of Cultural Heritage. This survey was conducted at the beginning
of this research journey and was useful to determine the direction of the
research project.

The use of Machine Learning (ML) techniques within Cultural Heritage
(CH) are still limited since most of CH literature shows a tendency to rely on
statistical toolboxes, which are commonly applied as a ’black-box’ on small
datasets that are not generally publicly available. Despite this, we look to
reflect on the reciprocal effects of ML on CH and of CH on ML. As usual
in ML surveys, we break the field of ML into three distinctions: Supervised,
Semi-supervised, and Unsupervised.

As state-of-the-art techniques take time to become popular in other fields
such as CH, it is intuitive that more classical classification and regression
techniques, such as Linear and Logistic regression, have a distinct and useful
application within CH. While these can be applied in conservation efforts,
such as historical building integrity prediction [62], there are numerous other
examples of supervised approaches. Interestingly the application of Sup-
port Vector Machines (SVM) [32] refined the hyper-parameter estimation to
support multiple-instance learning for recognizing iconographic elements in
artworks.

With increasing efforts for digitization of CH assets, the progression to
Deep Learning models is natural, where modern data-trained models are
fine-tuned to CH data. This process is generally placed under the umbrella
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Figure 2.1: Distribution of Cultural Heritage papers among the three Ma-
chine Learning categories.

of transfer learning; such approaches are simple to apply when small amounts
of labeled data are available, a common issue in CH and where it is frequently
applied for digital artwork classification [66]. Building on transfer learning is
a useful ability to learn a mapping from real-world imagery, in which we have
many annotated examples, to artwork datasets where there are few available.
Such approaches have received increasing attention as they can naturally be
formulated within a deep learning context. Using high accuracy supervised
Convolutional Neural Networks is desirable if the embedded knowledge can
be transferred, especially where the transfer function can be learned in an
unsupervised manner. While these techniques apply to many problems, they
are predominantly seen on digital artwork as it is mainly a style difference
to be overcome.

The unsupervised techniques are generally applied to clustering of data,
with K-Means being regularly employed within CH [85, 72], and going be-
yond artwork with the clustering of chemical signatures for iron-making com-
plexes [24]. Clustering can be seen to be highly important in CH facilitat-
ing the association of complex representations of assets. Dimensionality re-
duction is extensively used within CH, with Principal Component Analysis
(PCA) being a common technique. Although many of the applications of
CH are applied in the Computer Vision setting, due to the ease of data ac-
quisition, there are also some examples from other fields including chemical
analysis which exploits ML techniques for CH problems.

20



Figure 2.2: (1) Distributions of the Cultural Heritage papers among Unsu-
pervised methods; (2) Distributions of the Cultural Heritage articles among
Supervised methods; (3) Distributions of the Cultural Heritage articles
among Semi-supervised methods
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2.1 Datasets

The presence of different social and technical barriers to the cross-fertilisation
between ML and CH become apparent after reviewing the most recent liter-
ature regarding the interplay between the two disciplines. The major part of
these barriers have been generated by some issues that are strongly related to
the quality and to the access of datasets collected by CH researchers. These
datasets are often small and are not publicly available. However, recently,
CH institutions have worked hard to make available large digital collections
of artworks.

One of the largest museic-centric dataset is OmniArt 1 [75] which is
composed of digitised artworks aggregated from a multiple collection around
the world. The authors provided baseline scores on multiple tasks such
as author, period, gender and style prediction. Another large collection of
digitised artworks is Wikiart paintings2 [39] which is composed of paintings
from 1119 artists ranging from fifteen century to contemporary painters.
Available metadata allow to classify a painting based on its style, gender
and author.

A dataset of contemporary artworks is BAM 3 [87] which was built by
collecting artworks from a portfolio website for professional and commer-
cial artists (Behance 4). Other collections of digital artworks are IconArt
[32] contained painting images ranging from the 11th to the 20th century,
PrintArt [11] composed of artwork prints collected from the Artstor digital
image library 5 and Rijksmuseum the Rijksmuseum dataset [51] contained
photographic reproductions of the artworks exhibited in photographic repro-
ductions of the artworks exhibited in this museum.

2.2 Unsupervised Learning in Cultural Heritage

Unsupervised learning aims to find the structure and the regularity of an
unlabelled dataset to extract useful representations. Among the unsuper-
vised learning methods, clustering algorithms are the most widely used in
CH. Clustering methods assign data points into groups, called clusters so
that the pairwise similarities between points assigned to the same cluster
tend to be higher than those in different clusters. It is worth noting that

1http://www.vistory-omniart.com/
2http://www.wikiart.org/
3https://bam-dataset.org/
4https://www.behance.net/
5https://www.artstor.org/
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dimensionality reduction is heavily used within CH. However, it is mainly
used only as a pre-processing step or as a visualization tool for representing
high-dimensional data in 2-D plots.

Clustering algorithms can be divided into two main groups, namely,
partition-based, where the points can be grouped in disjoint or overlapping
clusters and hierarchical clustering where a nested series of partitions are
produced given a criterion for merging or splitting clusters based on a simi-
larity measure.

Clustering algorithms were reported for several applications in CH, among
which constructing a codebook of visual words to chronologically classify an-
cient paintings [13]; recognizing objects in artistic modalities by unsupervised
style adaptation Thomas; grouping paintings by artistic style using unsu-
pervised feature learning [78]; determining maximum firing temperatures of
ancient ceramics [34]; grouping 3D morphometric data of pounding stones
to infer the intensity of humane use[6]; studying osseous projectiles using ge-
ometric morphometrics [26], and for chemical characterizing of Portuguese
18th-century glasswares [46].

A method for recognizing the modeling style of Dazu Bodhisattva head
images was introduced by Wang et al.[85]. They proposed a two-step ap-
proach where first a pre-trained VGGNet [72] was used to extract prominent
features of resized head images, and then k-means was applied to cluster the
extracted features to verify if statues with similar style came from the same
cave or region. The experimental results showed that statues in the same
cave have a similar modeling style and are also similar for statues on the
same subject even if they came from different regions.

An approach for comparing the chemical signature of iron artifacts to in-
fer the origin of the metal supplied to the building yard of the Metz city was
proposed by Disser et al.[24]. They introduced a multi-step approach, using
PCA to determine the more characteristic element of a given chemical do-
main (since the chemical signatures of iron-making complexes were geomet-
rically represented by multidimensional clusters) and the minimum-variance
hierarchical clustering to group iron-making complexes that are coherent in
terms of chemical composition. The experimental results showed that their
method was able to detect slight modifications of the level of iron ores and
slags, beating the state-of-the-art in comparing artifact chemical signatures.
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2.3 Supervised Learning (Deep Neural Networks)

In this section we chose to review the supervised deep learning methods
used in Cultural heritage. In the last years, Deep Neural Networks (DNNs)
have successfully been used for several computer vision and natural language
processing applications. That is due to the ability of DNNs to learn high-
level features from data replacing the need for handcrafted features, which
requires a great deal of human time and effort. Since for CH, there is often
a lack of large labeled datasets, researchers tackle the feature learning task
following a transfer learning approach, where the last layers of a pre-trained
network are fine-tuned on the target CH dataset. However, only recently,
DNNs have been attracting the interest of CH scholars, who have begun
applying them to digital work analysis and archaeological remote sensing, as
technologies to efficiently collect large datasets are now readily available.

Recent contributions to digital work analysis are the study of similarity
metric learning methods for making aesthetic-related semantic-level judg-
ments, such as predicting the painting’s style, genre, and artist [67]; the de-
tection of fake artworks by stroke analysis [28], and the artistic style transfer
using adversarial networks to regularise the generation of stylized images
[91].

A study of the applicability of Convolutional Neural Networks (CNNs)
for attributing the authorship to different artworks, recognizing the material
which has been used by the artist in their creations, and classifying art-
works into different artistic categories was conducted by Sabatelli et al.[66].
They followed two transfer learning approaches: an off-the-shelf classifica-
tion where only a final soft-max classifier was trained on the target training
set, while the pre-trained CNN weights did not change; and a fine-tuning
approach where the CNN was trained together with the final soft-max clas-
sifier on the target domain by optimizing the last layers of the pre-trained
neural network.

A comparative experimental analysis was conducted using four CNNs
pre-trained on ImageNet: VVGG19 [72], Inception-V3 [76], Xception [15]
and ResNet50 [90]. The experimental evaluations were performed on two
datasets of paintings: the Rijksmuseum Challenge 2014 dataset [51] and a
much smaller dataset obtained by random sampling from the DAMS (Digital
Asset Management System) repository, which aggregates several digital col-
lections come from the city of Antwerpen. The experimental results showed
that the fine-tuning approach outperformed the off-the-shelf one since fine-
tuned CNNs provided novel selective attention mechanisms over the images.
However, the off-the-shelf approach was effective in recognizing materials
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and in classifying artworks, while it failed in attributing the authorship.
Recent applications of DNNs to archaeological remote sensing are the

classification of sub-surface sites using R-CNNs on LiDAR data [81] and the
detection of buried sites on Arc GIS data [68]. Both contributions followed
a transfer learning approach by fine-tuning on LiDAR data a pre-trained
CNN on ImageNet [21]. However, pre-training DNNs on RGB ImageNet
images to identify objects in one channel depth LiDAR images may lead
to performance degradation. Moreover, objects in ImageNet can appear at
different scales but in not many different rotations, while for aerial data the
scale variations are relatively small, but objects can have several different
rotations.

To overcome these limitations, Gallwey et al.[31] proposed a method
to detect industrial heritage sites by employing a pre-trained CNN, called
DeepMoon [71], on a single channel Digital Elevation Model (DEM) images
of the lunar surface [4]. The authors fine-tuned the DeepMoon network on
the Dartmoor dataset for detecting historic mining pits. The experimental
results showed that the proposed approach was able to differentiate between
natural depressions and man-made ones with a false positive rate of less than
20%. Hence, this approach can be employed as a pre-prospecting tool for
helping archaeologists to vastly reduce the area to be manually analyzed.

2.4 Semi-supervised Learning

Semi-Supervised Learning (SSL) aims to leverage both labeled and unlabeled
data to improve learning performance. Most parts of SSL algorithms learn
by jointly optimizing a supervised loss over labeled data and an unsupervised
loss over both labeled and unlabeled data. Among these methods, domain
adaptation is the most widely used in CH. Its goal is to transfer the knowl-
edge learned from a source domain to a target domain, for which labels are
usually not available, by finding a mapping between the data distribution of
these two domains

In recent years, semi-supervised DNNs attracted increasing interest in
the ML community. This arises from the idea of exploiting the powerful
representation-learning ability of DNNs using only a small number of labeled
examples, which are often expensive and difficult to collect. Following this
idea, semi-supervised DNNs have proven to be very effective tools to tackle
the domain adaptation problem [86]. This is of particular interest for the CH
community, since domain adaptation has found applications in visual work
analysis. Recent contributions in this direction are the automatic annotation
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of visual contents in ancient manuscripts [3], and the prediction of painting
style [87].

A semi-supervised visual-semantic model for cross-modal retrieval of im-
ages and captions, in which the pairing between images and captions was
not known at training time, was proposed by Carraggi et al. [12]. In their
approach, two autoencoders were trained, respectively for visual and textual
data of the source domain, producing an intermediate representation used to
create a common embedding space, where both modalities can be projected
and compared.

A semi-supervised visual-semantic alignment was then applied to learn
the relationship between the visual and textual features in the target un-
supervised dataset. To evaluate the method, they introduced a new CH
dataset, called EsteArtworks, which contains 553 artworks and 1278 textual
annotations related to the artwork’s visual contents. The experimental re-
sults showed that the distribution alignment gives a significant contribution
to the final performance if the visual and textual distributions of the target
domain are not like those of the source domain.

A semi-supervised method to retrieve artworks presenting near-duplicate
visual elements was introduced by Shen et al. [69]. A two-step approach for
learning deep features by leveraging spatial consistency across matches was
proposed. First, hard-positive matching examples were found using spatial
consistency as a supervisory signal, and then the positive matched features
were updated using a single gradient step of the triplet loss. Experimental
results showed the effectiveness of the proposed method in retrieving near-
duplicated elements across different artworks.
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2.5 Conclusion remarks to Chapter 2

The widespread adoption of Machine Learning algorithms within Cultural
Heritage is clear throughout the literature. However, in most cases, it has
been applied within a ‘black box’ setting where there are only a few exam-
ples of changes to the underlying formulation of the algorithm. Only a few
approaches take advantage of more advanced ML.

The ability to access data in sufficient quantities limits the applications
of ML methods in CH. Therefore, it is logical that articles relating to adap-
tion to ML algorithms are predominantly on digital artwork analysis, as
acquisition and data are readily available. The more active areas in ML for
CH relate to archaeological artifacts as well as their chemical analysis. The
trend to increase the joint optimization of features and classification algo-
rithm clearly has had a profound effect on the accuracy and usefulness of
algorithms. It is therefore foreseeable that more CH applications can take
advantage of the developments in deep learning.
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Chapter 3

Puzzle-solving methods

In this chapter we discuss existing puzzle solving methods, compatibility
functions, and formalization of the puzzle-solving problem.

3.1 Solving puzzle with computational methods

In this section, we discuss the puzzle-solving methods that do not rely on
artificial intelligence methods. Usually, these methods operate 2D patches
exploiting the content of each patch, such as colors and patterns. These
characteristics make it possible to solve a puzzle thanks to the identification
of visual continuities. Based on the content, the puzzle-solving algorithm
matches the patches and thus may produce the precise reassembly (solution
of the puzzle). In recent years, the puzzle problem was tackled with different
computational approaches proposing a variety of solutions, involving greedy
algorithms, graphical models, and functional optimization [61, 55, 70, 74, 14,
30, 9, 2, 40].

Pomeranz et al. [61] introduced the first fully automatic puzzle solver
proposing a greedy placer and a novel prediction-based dissimilarity. Their
approach relies on finding pairs of pieces with a very high probability of
being together (“best buddies”).

Cho et al. [14] presented a graphical model based on the patch transform
and proposed an algorithm that minimizes a probability function via loopy
belief propagation.

Paikin et al. [55] extended the work in [61] by solving puzzles with un-
known orientations and with missing pieces, introducing new affinity mea-
sures based on dissimilarity of the patches and the “best buddies” metric
as in [61]. Similarly to [61] they used a greedy placement algorithm that
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iteratively selects the best candidate to be placed, and takes particular care
for selecting the first piece.

Sholomon et al. [70] proposed a solver based on a genetic algorithm that
can solve large puzzles. The algorithm merges two wrongly-solved parents
into a child that minimizes dissimilarity, while the fitness function is based
on the compatibility of the pairs.

Gallagher et al. [30] represented a puzzle as a graph. Their algorithm
considers edges connecting all pieces in all possible geometric combinations
and then trims edges by finding a Minimum Spanning Tree. They also
introduced a new compatibility function based on the Mahalanobis distance,
which considers the local gradients near a patch’s borders.

Brandao et al. [9] extended the work introduced in [30] by modeling the
jigsaw problem as an edge selection problem in a graph, where the nodes
represented the various tile orientations.

Andalo et al. [2] presented a global formulation for jigsaw problems, op-
timizing the affinity between adjacent pieces by numerically solving a con-
strained quadratic program.

Son et al. [74] considerably improved solving puzzles with an unknown
orientation by using loop constraints. In their work, they reduced the de-
pendency on dissimilarity instead of exploiting the consensus. The algorithm
solves puzzles in a bottom-up fashion: starting from pairs of patches, it it-
eratively assembles the pair of pairs and so on, till merge all the structures.

All these works take the approach of local solutions making the problem
more tractable, but fail to include the global information in a satisfactory
manner. Although the graphical model of Cho al. [14] and Andalo et al. [2]
present a more global solutions, the pairwise nature of this problem still per-
sists. In addition all these approaches become increasingly computationally
expensive as all permutations have to be explored. To overcome this limita-
tion, more recent works were introduced using neural networks, which solve
puzzles by unsupervised learning images structures.

3.2 Solving puzzle with neural networks

Most recent works introduce neural networks, which solve puzzles by un-
supervised learning images structures [53, 18, 50, 93]. These approaches
radically differ from the previously discussed ones, as they do not use the
similarity between adjacent tiles; instead, they use the overall structure of
shapes in the environment. The idea is to exploit different libeling that are
available within visual data and to use them as intrinsic signals to learn
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general-purpose features. Such a learning task is known as self-supervised
learning and is very useful to learn rich features, which often require large
amounts of annotated datasets.

Noroozi and Favaro [53] followed the principles of self-supervised learning
and introduced Context-Free Networks for solving a Jigsaw puzzle as a pre-
text task. The network is trained to identify each tile as an object part and
to assemble them in objects.

Cruz et al. [18] proposed a generic data-driven approach for learning
visual permutations. They developed a framework based on the Siamese
type of CNN named DeepPermNet.

Mena et al. [50]proposed a model that can learn permutation implicitly.
Similarly to [18] they presented a model based on approximation of a non-
differentiable permutation in terms of differentiable relaxations (Sinkhorn
Network). The model uses a simple element-wise linear map for each of the
N elements of the set to N positions and normalize by Sinkhorn operator [73].

Zhang et al. [93] improved [50] approach by introducing a new learn-
ing cost function based on pairwise comparisons, that allows to improve the
learning from permutation considering local relations. An alternated opti-
mization process seeks the correct permutation and a suitable cost matrix
assessing pairwise relationships between objects.

Ru Li et al. [45] introduced JigsawGAN, a self-supervised GAN-based
approach, that combines global semantic information and edge information
of each piece, to solve 3x3 puzzle. The output of the model is then a permu-
tation matrix of all the pieces.

3.3 Solving puzzle with missing border

Only few papers [58, 10, 45] addressed solving jigsaw puzzles when borders
are missing.

Paumard et al. [58] tackled the 3x3 puzzle problem with a probabilistic
model; to emulate the erosion, they randomly cropped a fragment inside each
piece; then, given a central fragment, they used a neural network to predict
the relative positions of the remaining fragments and computed the shortest
path in the graph to reassemble the puzzle.

Bridger et al. [10] proposed a method to solve the puzzle with ruined
regions; first, they recovered the missing parts using a GAN-based model
and then reconstructed the image using greedy solver form [55]. Although
the method works nicely, it is computationally intensive since it considers all
the possible combinations of patches pairs and their relations.
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Derech et al. [23] proposed to match overlapping fragments rather than
searching valid continuities. To do so, they extrapolated the fragments and
superposed the extrapolation, looking for a match. Then, they solved the
puzzle one piece after another: they used the current reassembly to place
the next fragment. They also considered a slight erosion of the fragments
borders and tackled it by using inpainting techniques.

3.4 Puzzle-solving task

As we discussed above, several strategies for puzzle-solving have been pro-
posed in the literature in recent years. Although these works approach the
problem in a different way, any puzzle-solver procedure is usually composed
of two components: the compatibility measure, which tackles the relation-
ship among pieces and is the core component of any puzzle solver; the puzzle
problem formulation (how we formulate and tackle the problem), that de-
termines the solving technique.

Following this scheme, we present some popular compatibility measures
used in the literature and two alternative problem formulations for the
puzzle-solving task (quadratic optimization and graph matching problem).

3.4.1 Compatibility measure

Compatibility measure is a key component in any jigsaw puzzle solvers as
it predicts the likelihood of two patches to be neighbors. In most cases the
piece affinity is measured by computing the dissimilarity between the abut-
ting boundary pixels of two adjacent pieces. Even this particular approach
can be implemented in many different ways. The most commonly used com-
patibility measures include the sum of squared distances (SSD) proposed
by Cho et al. [14], the so-called prediction-based compatibility (employing
(Lp) q variants) proposed by Pomerantz et al. [61], the Mahalanobis gradi-
ent compatibility (MGC) proposed by Gallagher et al. [30] and its improved
version proposed by Son [74]. Here we recap some of them.

Sum of square differences (SSD) dissimilarity

Given two pieces xi, xj and a relation R, their dissimilarity is computed by
summing pixel difference of their (relevant to R) edges. For example, for
puzzles with K × K and relation r (xj is right to xi), the measure is as
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follows:

SSDp,q(xi, xj , r) = (
K∑
k=1

3∑
d=1

(|xi(k,K, d)− xj(k, 1, d)|)p)
q
p (3.1)

Prediction based dissimilarity

Given two pieces xi, xj and a relation R, their dissimilarity is computed
by comparing predictions of edges and the actual edges. For example, for
puzzles with K×K and relation r (xj is right to xi), the measure is as follows:

Predp,q(xi, xj , r) = [
K∑
k=1

3∑
d=1

(|2xi(k,K, d)− xi(k,K − 1, d)− xj(k, 1, d)|)p

(|2xj(k, 1, d)− xJ(k, 2, d)− xi(k,K, d)|)p]
q
p ,

Improved Mahalanobis Gradient Compatibility (MGC)

Improved Mahalanobis Gradient Compatibility (MGC) [74] consists of two
components: similarly to MGC, first it considers pixel intensity changes
crossing the border between two pieces; then it considers directional deriva-
tive information along the adjoining boundaries of the pieces. The compati-
bility measure between the right side of the piece xi and the left side of the
piece xj is formulated as:

ΓLR(xi, xj , r) = DLR(xi, xj) +DRL(xj , xi) +D
′
LR(xi, xj) +D

′
RL(xj , xi)

The first two terms penalize larger or smaller changes of the pixel value
across the two pieces than expected

DRL(xj , xi) =

S∑
s=1

(Λij
LR(s)− Eij

LR(s))V
−1
iL (Λij

LR(s)− Eij
LR(s))

T ,

where:

Λi,j
LR(s) = xj(s, 1)− xi(s, S)

is a pixel intensity change across the boundary of the two pieces;

Ei,j
LR(s) =

1

2
xi(s, S)− xi(s, S − 1) + xj(s, 2)− xj(s, 1)
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is an expected change across the boundary of the two pieces, ViL - is sample
the covariance calculated from the following samples

(xi(s, S)− xi(s, S − 1))|s = 1, 2, ...S

D
′
LR is calculated similarly to DLR, but replacing xi(u, v) with directional

derivatives

δ(u, v) = xi(u, v)− xi(u− 1, v)

Comparison of compatibility functions

Figure 3.1: Pairwise compatibility measure performance comparison. The
figures represent precision and recall curves for Sum of Squared Distance
(SSD) [61], MGC [30] and Improved MGC measure [74], and precision and
recall values when each side of the piece possesses a single neighbor which
returns lowest dissimilarity for various datasets [74]
.

Son et al. in [74] evaluated the performance of pairwise compatibility
measures by using precision (ratio of true positives to positives) and recall
(proportion of true positives retrieved). In their analysis, they compared
three popular dissimilarity measures: Sum of Squared Distance (SSD) [61],
Mahalanobis Gradient Compatibility (MGC) [30], and Improved MGC [74]
for three widely used benchmark datasets. Figure 3.1 presents the precision
and recall curves. According to this analysis, the proposed Improved MGC
[74] method reduces the precision and recall errors by 20 percent.
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3.4.2 Problem formulation

Quadratic programming

The puzzle-solving task can be reduced to a quadratic optimization problem[2].
In particular, it consists of finding a permutation of the pieces that maxi-
mizes a global compatibility function.

In this formulation, a puzzle is formulated as a directed graph G =
(V,E), with V = Λ and E = EH ∪ EV , EH and EV denoting horizontally
and vertically neighboring locations, respectively. For each pair of pieces
(b1, bj), i ̸= j, two non-negative compatibilities CHi,j and CVi,j are defined;
these represent the compatibility of the two pieces being associated with
locations connected by any horizontal edge e ∈ EH or vertical edge e ∈ EV ,
regardless of the absolute positions of the pieces. All the compatibilities can
be summarized in two compatibility matrices CH and CV .

Given a permutation represented as a permutation matrix p ∈ P ⊆
[0, 1]n

2×n2 , we evaluate its global compatibility as:

ε(p) =
∑

(i,j)∈EH

(p⊤CHp)ij +
∑

(i,j)∈EV

(p⊤CV p)ij (3.2)

Consider to "stretch" the permutation matrix p to obtain a vector pst =
(pst1 , . . . ,pstn), psti being the i-th column of p, then Equation 3.2 can be
rewritten as:

ε(p) = p⊤
stApst =

n∑
i=1

n∑
k=1

n∑
l=1

n∑
j=1

pkiA(ki)(lj)plj (3.3)

where A(ki)(lj) is element (lj) of block (ki) of matrix A, and A(ki) represent
the compatibilities associated to the edge (i, j) ∈ E, thus it can be CH , CV

or 0 if (i, j) /∈ E.

Graph matching

We can also formulate the puzzle task as a graph matching problem; this
formulation is tightly related to the previous one.

Let π : [n] → [n] be a permutation function, with [n] = {1, . . . n}. Fur-
thermore, let S ∈ Rn×n be a similarity/compatibility matrix. Then the
function to maximize is the following:

max
π

n−1∑
i=1

Sπ(i),π(i+1) (3.4)

35



which in turn becomes:

max
p∈P

tr(Lp⊤Sp) (3.5)

With L = U⊤ being a lower shift matrix, namely uij = 1 if j = i+ 1, 0
otherwise.

The program can be rewritten in the following form:

min
p∈P

∥U− pSp∥2F (3.6)

where it is made clear that we want our permutation to be as similar as
possible as the graph represented by U; the problem can be seen as a the
graph matching problem.

Program 3.5 and 3.6 can be relaxed by searching in the multi-simplex
D ⊆ (0, 1)n×n, transforming them respectively in an indefinite and a convex
optimization problem. In [47] it is pointed out that, in general, while the
indefinite formulation seems more difficult to solve, actually the found so-
lution is nearer to that of the unrelaxed problem than that found with the
convex formulation.

3.5 Our methods

In our paper Khoroshiltseva at al. [40] we propose to tackle the puzzle-solving
problem as a problem of finding a consistent labeling that satisfies certain
compatibility relations. The problem is solved using the classical relaxation
labeling algorithm coupled with the Sinkhorn-Knop matrix normalization
procedure [73], while adopting the Mahalanobis gradient compatibility func-
tion [30] to calculate the affinity of the parts.

In the second part of this research we extend our method [40] for the
case of puzzle with eroded borders. Similarly to Bridger et al. [10], we tackle
the puzzle problem with ruined regions; however, their work differs from
ours in two crucial points: i) [10] fills in the gaps in the image by applying
inpainting algorithm to each pair of patches for all possible transformations;
instead, we recover the damaged borders of each single patch using image
extension algorithm. That is more convenient from a computational point of
view. ii) [10] uses a solver based on naive greedy placer; instead, we cast the
problem as a consistent labeling problem [38], and solve the puzzle using the
relaxation labeling algorithm that enjoys excellent theoretical properties [60].
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Chapter 4

Consistent Labeling Problem

Consistent labeling problem is a class of problems widely studied in the com-
puter vision and pattern recognition communities since the 1970s [65, 36].
The notion of a consistent labeling was formalized and culminated in a sem-
inal paper by Hummel and Zucker [38] who, motivated by the theory of vari-
ational inequalities, developed a formal theory of consistency. The theory
generalizes classical (boolean) constraint satisfaction problems to scenarios
involving “soft” compatibility measures and probabilistic label assignments.
Within this framework, under a certain symmetry assumption, consistent
labelings also turn out to be equivalent to local solutions of a linearly con-
strained quadratic optimization problem.

The relaxation labeling procedure was derived heuristically by Rosen-
feld, Hummel and Zucker [38] to solve certain constraint satisfaction prob-
lems. Although successfully applied in a variety of practical tasks, the lack
of a satisfactory definition of consistency and of a justified relation with
their model, inspired and motivated researchers to solve these severe draw-
backs. To this scope, two main approaches have been used: on one hand
probabilistic methods based on Bayesian analysis [59, 41, 16], on the other
deterministic ones [80, 29]. While the firsts provided undoubtedly much
insight into the understanding of the model, at the same time they suffered
from some strong limitations in understanding its dynamical properties.

Deterministic approaches have better served to this scope, and thanks to
the standard theory of consistency in labelling problems defined in [38] many
advances have been achieved over years [41, 88]. In this context, inspired
by [43, 27], Pelillo [60] definitively explained that, under certain symmetry
restriction of the compatibility matrix, Rosenfeld et al.’s relaxation scheme
monotonically increases the consistency function defined in [38]; moreover he
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showed that most of the main dynamic properties of the algorithm continue
to hold even if such requirement is relaxed.

4.1 Nonlinear Relaxation Labeling

In this section we recap some basic concepts of relaxation labeling processes.

Problem

Suppose we are given a set of objects B = {b1, . . . , bn} and a set of labels
Λ = {λ1, . . . , λm}, the task is to assign a label to each object in B. Numerous
real-world problems, typically discrete in nature, can be abstracted in this
way.

"Soft" labeling assignment

Label assignments for object bi can be represented by a probability distribu-
tion pi over all possible labels. Formally, pi ∈ ∆m, where

∆m =

{
x ∈ Rm | xλ ≥ 0 ∧

m∑
λ=1

xλ = 1

}
(4.1)

is the standard m-dimensional simplex and piλ is the probability of object
bi to “choose” label λ. Every vertex of ∆m represents the case in which
every object is exactly assigned to one label; the set ∆∗ of all unambiguous
labelling, is defined as:

∆∗ = {x ∈ ∆m | xiλ = 0 or 1, i = 1, ..., n, λ ∈ Λ} (4.2)

Aggregating all pi vectors, the matrix

P =

p
′
1

...
p′

n

 (4.3)

is a “soft” labeling assignment for all objects, residing in the multidi-
mensional standard simplex ∆n×m = ∆m × · · · × ∆m, and thus may be
represented as a labeling matrix of n rows and m columns.
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Compatibility coefficients

An initial labeling assignment can originate from local measurements that
capture the relevant features of individual objects when considered in isola-
tion. Such local measurements typically provide imperfect labeling assign-
ments, a state of affairs that relaxation labeling processes seek to improve
progressively.

A major source of information that is utilized in such processes is contex-
tual information, a prior that reflects the structure of the problem through
compatibility relations about the assignment of labels in different objects.
Contextual information is quantitatively expressed with a matrix of compat-
ibility coefficients

R = [rijλµ], (4.4)

where rijλµ measures the strength of compatibility between the hypothe-
ses “bi has label λ” and “bj has label µ”.

Contextual support

The compatibility model R is considered “contextual” because it naturally
leads to measures of contextual support, i.e., how much the context supports
the assignment of a particular label λ to object bi. The “context” in this
case is considered the labels assigned to all other objects, and following the
classic relaxation labeling theory [38] it is defined as

qiλ =
∑
j,µ

rijλµpjµ. (4.5)

where a high value of qiλ indicates that high-confidence neighbouring is "com-
patible" with λ on bi, while a low value indicates that the high-confidence
neighbouring is "incompatible" with λ. It is worth noting that low-confidence
labels have low influence on the support measure.

Consistency

The consistent labeling assignments should be the “desired” goal of relaxation
labeling processes. To this end, Hummel and Zucker [38] gave a formal
definition of consistancy: a weighted labeling assignment p is said to be
consistent if for all v ∈ ∆n×m

m∑
λ

piλqiλ ≥
m∑
λ

viλqiλ ∀i = 1, . . . , n (4.6)
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Furthermore, if in 4.6 there is strict inequality, then p is said to be strictly
consistent. Derived from the above definition the following theorem provides
a useful characterization of consistent labeling, and an operation criterion to
test the consistency of a labeling (see [60] for a proof.):

Theorem 1 A labeling p ∈ ∆mn is consistent if and only if for all i = 1...n
the following conditions hold:

1) qiλ = ci, whenever piλ > 0

2) qiλ ≤ ci, whenever piλ = 0

for some nonnegative constants c1, ..., cn.

Average local consistency

By properly weighting and combining the support of all labels to all objects,
one can also quantify the average (or total) support of the assignment by
the following formula:

A(p) =
∑
i,j

∑
λ,µ

rijλµpiλpjµ, (4.7)

Hummel and Zucher defined this measure as Average local consistency in [38],
where also proved that:

Theorem 2 Suppose that the compatibility matrix R is symmetric (i.e.,
rijλµ = rjiµλ for all i, j, λ, µ). Then any local maximum p ∈ ∆m of A is
consistent.

Put differently, a labeling assignment p that maximizes the average local
consistency A(p) represents a consistent labeling.

Update rule

The discussed above definition of consistency suggests us a way to adjust the
labeling p: a process that relaxes a given inconsistent assignment towards a
more consistent one (and thus maximizes the average local consistency A)
will intuitively care to increase piλ when qiλ is high and decrease it when qiλ
is low. Indeed, one of the best known update rules is defined by the following
iterative procedure [65, 60]:

piλ(t+ 1) =
piλ(t)qiλ(t)∑
µ piµ(t)qiµ(t)

∀i, λ (4.8)
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where the nominator formalizes this intuition and the denominator projects
the result to the multi-simplex and guarantees that the updated vector still
belongs to a probability space.

The relaxation algorithm can be viewed as a continuous mapping T of the
assignment space onto itself. It starts out with p(0) and iteratively produces
a sequence of points p(0), p(1), p(2), ... ∈ ∆m, where p(t+1) = T (p(t)), t ≥ 0
The process continues until an equilibrium point is reached. This means
that T (p(t)) = p(t), for some t, or, equivalently,

qiλ = ci whenever piλ > 0, i = 1...n, λ ∈ Λ, (4.9)

for some nonnegative constants ci, ..., cn
Importantly, this update rule does not require the problematic choice

of a step size and theoretical analysis has proven that under non-negativity
and symmetry conditions on R, it is guaranteed to converge to a consistent
labeling and thus locally maximizes the A(p). These important results de-
rived from the Baum-Eagon Theorem and demonstrated by Pelillo in [60] as
reported in the following.

4.2 The dynamics of nonlinear relaxation labelling
process

To demonstrate that the relaxation labeling process converges to a consis-
tent optimal solution Pelillo [60] offered a unified treatment of the algorithm
and proved a list of proprieties that are strongly linked to the theory of con-
sistency developed by Hummel and Zucker. More specifically, based on the
Baum and Eagon theorem, he showed that, given a symmetric compatibility
matrix, the algorithm possesses a Liaponov function which is precisely the
measure of consistency defined by Hummel and Zucker.

Theorem 3 Baum-Eagon Let P (x) be a homogeneous polynomial in the
variables xi(λ) with nonnegative coefficients, and let x be a point of the
domain K. Define the mapping M as follows:

(M(x))iλ = xiλ
∂P (x)

∂xiλ
/
∑
µ

xiµ
∂P (x)

∂xiµ
(4.10)

Then P (M(x)) > P (x), unless M(x) = x.

For a real-valued function f , a continuous mapping ϕ for which f(ϕ(x)) ≥ (x)
is called a growth transformation for ϕ.
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Moreover Baum and Sell [ref 26] showed that M increases homotopically,
that is:

P (ηM(x)) + (1− η)x) ≥ P (x), 0 ≤ η ≤ 1 (4.11)

The theorem and this important result imply that an increment of the
objective function is always guaranteed unless x(t + 1) = x(t); moreover,
any points lying on the segment joining x(t + 1) to x(t) is sufficient for its
increment, independently from the step size.

Since the average local consistency is a homogeneous quadratic polyno-
mial in the variables piλ with non-negative, symmetric coefficients rijλµ

∂A(p)

∂piλ
= 2qiλ (4.12)

the Baum-Eagon theorem can be directly applied to the non linear real-
ization operator T , leading to the following result [60]:

Theorem 4 The nonlinear relaxation operator T is a growth transformation
for the average local consistency A, provided that compatibility coefficients are
non-negative and symmetric.

Put differently, the theorem 4 states that the nonlinear relaxation scheme
strictly increases the average local consistency on each iteration:

A(pt+1) > A(pt), t = 0, 1, ... (4.13)

until a fixed point is reached. Pelillo [60] also showed that the average local
consistency can be viewed as a strict Liaponov function for the nonlinear
operator T , implying the following result:

Theorem 5 Supposing that R is symmetric, the unambiguous labeling as-
signment e is a stable equilibrium point for the nonlinear operator T and a
local attractor consequently.

In other words, the dynamic system converges to e whenever we start suffi-
ciently close to it.

Although for puzzle-solving applications the compatibility matrix is al-
ways symmetric, for the sake of completeness, it is worth underlying that
[60] showed that all the fundamental dynamic proprieties of relaxation la-
belling are retained even if such condition is relaxed, i.e. the unambiguous
labelling is still an asymptotically stable equilibrium point for the nonlinear
relaxation scheme T .

42



Chapter 5

Solving puzzle as Consistent
Labeling problem

This chapter presents our approach to puzzle solving. In our formulation,
the puzzle pieces are considered as a set of players (objects) and their possi-
ble positions as a set of strategies (labels); the puzzle problem is viewed as
the problem of finding consistent labeling that satisfies certain compatibil-
ity relations, with an additional requirement for one-to-one correspondences
between the puzzle’s tiles and their positions. We solve the puzzle using
classical relaxation labeling algorithm [60] that, starting from the uniform
probability (barycentre point) distribution, progressively updates the assign-
ment matrix till it converges to the consistent labeling, which in our case
corresponds to a permutation matrix.

The chapter is organized as follows: in the first section 5.1, we review
some background topics used in building up our puzzle-solving method. Sec-
tion 5.2 presents our approach, more specifically the compatibility function,
the Relaxation labeling puzzle solver; it then discusses the matrix balancing
step and the method for approximation to the final permutation matrix. In
section 5.3 we present some preliminary experiments to test the plausibility
of the method, including experiments with oracle compatibility matrix and
perturbation test. Finally, in section 5.4, we present the results of experi-
ments with benchmark data sets, testing our method on puzzles of increasing
size (256, 432, 810 pieces).
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5.1 Preliminaries - terminology

In this section, we review some background topics that are used to build
up our puzzle-solving approach: permutation matrix, doubly stochastic ma-
trix, Sinkhorn-Knopp algorithm, Alternated projection method, Hungarian
Algorithm.

5.1.1 Permutation matrix

In matrix theory, a permutation matrix is a binary square matrix that has
exactly a single unit value in every row and column, and zeros elsewhere.
These matrices are used to compactly represent permutations of elements in
an ordered sequence. For instance, given an ordered sequence of n elements
S = ⟨1, ..., an⟩, any permutation π : {1, ..., n} can be uniquely represented
by a permutation matrix Pπ.

These matrices have some useful properties: (1) permutation matrices are
closed under multiplication, that is, the product of two permutation matrices
is again a permutation matrix representing the combined permutation; (2)
the inverse of a permutation matrix is equal to its transpose, P−1 = P T

(orthogonality).

5.1.2 Doubly stochastic matrix

A non-negative matrix in which all its rows/columns sum to one, is said to
be a row/column stochastic matrix. A matrix, that is simultaneously rows
stochastic and column stochastic, is said to be doubly stochastic. Formally,
an n×n matrix A ∈ Rnxn is said to be doubly stochastic if A = (aij) such
that aij ≥ 0 and

∑
j aij =

∑
i aij = 1 ∀i, j = 1, ..., n.

The permutation matrices are also doubly stochastic matrices. Further-
more, according to the Birkhoff-von Neumann theorem [7, 83] any doubly
stochastic matrix is a convex combination of finitely many permutation ma-
trices; in another words the set of n×n doubly stochastic matrices forms a
convex hull of m n×n permutation matrices, with m ≥ (n − 1)2 + 1 (also
known as the Birkhoff polytope Bn).

Thus, it is natural to see the doubly stochastic matrices as convex relax-
ations of permutation matrices. Approximating doubly stochastic matrices is
a key problem in many applications as well as an crucial element of puzzle-
solving algorithm proposed in this research. Next, we briefly present an
efficient approach to carry out this task.
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5.1.3 Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp [73] theorem states that if A is a real nonnegative
squared matrix, then there exist diagonal matrices D1 and D2 with strictly
positive diagonal elements such that D1AD2 is doubly stochastic. Sinkhorn-
Knopp algorithm (also known as Sinkhorn Normalization) is a simple it-
erative procedure that takes as input a non-negative square matrix A and
alternately normalizes all rows and all columns to sum to 1; the sequence of
matrices obtained from this process converges to a doubly stochastic matrix:

S0(A) = exp(A)

St(A) = Tc(Tr(S
t−1(A))

S(A) = lim
t→+∞

St(A)

(5.1)

where A is a n-dimensional square matrix and Tc and Tr are respectively
column- and row-wise normalization matrix operators.

Sinkhorn [73] presented the algorithm (1964) and proved that S(A)
must belong to the Birkhoff polytope, the set of doubly stochastic matri-
ces. Knight [42] analysed the convergence of Sinkhorn-Knopp algorithm and
stated that, for a matrix A with entries in [1, V ], O(V | logϵ |) iterations suffice
to reach ϵ-near doubly stochasticity.

5.1.4 Alternating projection method

Alternating projection (also known as projections onto convex sets) is a
method to find a point in the intersection of two closed convex sets. The
Alternating projection algorithm solves the following problem: find x ∈ Rn

such that x ∈ C ∩D , where C and D are closed convex sets.
The algorithm starts with an arbitrary value for xk and then generates

the sequence

xk+1 = PC(PD(xk)) (5.2)

where PC and PD denote projection on C and D respectively. If the intersec-
tion of C and D is non-empty, then the sequence generated by the algorithm
will converge to some point in this intersection.

The Alternating projection was analysed by John von Neumann [82] for
the special case when the sets are affine spaces; in this simplest case, assum-
ing the intersection is non-empty, the iterates not only converge to a point
in the intersection, but to the orthogonal projection of the point onto the
intersection.
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Figure 5.1: first few iterations of alternating projection algorithm; the se-
quences are converging to the point x∗ ∈ C ∩D [8].

5.1.5 Hungarian Algorithm

The Hungarian matching algorithm (sometimes called the Kuhn-Munkres
algorithm), is used to find maximum-weight matchings in bipartite graphs,
which is also known as the assignment problem.

Assignment problem. The problem instance has a number of agents (n)
and a number of tasks (n). Any agent can be assigned to perform any task,
incurring some cost. It is required to perform all tasks by assigning at most
one agent to each task and at most one task to each agent. C is a non-
negative matrix of size n×n (cost matrix), where the element in the ith row
and jth column corresponds to the cost of performing the jth type of task by
the ith agent. The goal is to match the tasks to the workers in such a way
that the total labor input is minimized.

Algorithm. The Hungarian algorithm operates on the following two ideas:

• if the same number y is added to, or is subtracted from, all elements
of any row or column of a cost matrix, the total cost will decrease by
y, and an optimal assignment for the resulting cost matrix is also an
optimal assignment for the original cost matrix.

• if there is a zero-cost solution, then it is optimal.
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The algorithm looks for values to be subtracted from all elements of each row
and each column such that all elements of the matrix remain non-negative,
but a zero solution appears.

Assuming C is the n×n cost matrix the algorithm performs as follows:
1. Subtract a minimum value of every row
2. Subtract a minimum value of every column
3. Cover all zeroes with a minimum number of horizontal and vertical

lines.
4. Check for optimality: if the min number of covering lines is n, the

optimal assignment is found, else (the number of lines less than n) an optimal
assignment is not found

5. (If an optimal assignment is not found). Find the smallest element
not covered by any line; subtract this number from each uncovered line and
add it to each covered column. Return to step 3.
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Figure 5.2: Pipeline of the algorithm. (1) We compute pairwise compat-
ibility between all the patches using Mahalanobis Gradient Compatibility
(MGC) [30]. (2) We use Relaxation Labeling to find a consistent labeling
(positioning) of each piece.

5.2 Model

Here we present our method for puzzle-solving based on the Relaxation la-
beling algorithm. The pipeline of the procedure is presented in figure 5.2

We first calculate the compatibility map that is the core component of
our puzzle-solving method, using Mahalanobis gradient compatibility (see
subsection 5.2.1 for details). Then we solve the puzzle as a consistent labeling
problem with additional one-to-one correspondence constraints, adopting, for
this particular case, the classical relaxation labeling algorithm. Subsection
5.2.2 presents the details of the algorithm and matrix balancing methods.
Last, we discuss the method for approximating the permutation matrix, that
encodes the reordering of the pieces and represents a final solution of a puzzle.
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5.2.1 Compatibility measure

The pairwise compatibility measure CR(i, j) quantifies the affinity between
pieces i and j when placed adjacent to each other in one of the spatial re-
lationships R ∈ {left, up, right, down}. This notion of compatibility can
be extended naturally into a relaxation labeling compatibility after defining
non-neighbor positions and self-comparison cases properly. We thus formal-
ize R as follows:

rijλµ =

{
CR(i, j) (i ̸= j) ∧ (λ, µ are adjacent locations in relation R)

0 otherwise
.

(5.3)
As already mentioned, CR(i, j) can be measured in numerous different

ways. Similar to others [74, 61, 30, 55] we measure piece’s affinity by comput-
ing the dissimilarity between the abutting boundary pixels of two adjacent
pieces.

Dissimilarity score

The dissimilarity score of two pieces can be implemented in many differ-
ent ways, here we adopt the improved Mahalanobis Gradient Compatibility
(MGC) originally developed by Gallagher [30] and further improved by Son
et al. [74], that considers both the color differences across pieces borders and
the directional derivative differences along the borders. (see section 3.4.1
for details). The dissimilarity measure that we choose for our procedure is
empirically demonstrated to be more reliable with respect to other measures
proposed in the literature [74].

Form dissimilarity score to compatibility measure

With the dissimilarities obtained, we next convert them to normalized com-
patibility values by (a) dividing them by the K smallest dissimilarity and
reflecting about 1, and (b) rectifying at zero as only positive scores are con-
sidered useful. Formally,

CR(i, j) = max

(
1− ΓR(i, j)

KminR(i)
, 0

)
(5.4)

where ΓR(i, j) is a dissimilarity score between two candidate pieces i and i
placed adjacent to each other in spatial relationship R ∈ {left, up, right, down}.
KminR(i) is the K-min value of the dissimilarity between all other pieces in
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relation R to piece i. The smaller the value of K, the more sparse CR(i, j)
becomes, leading to a sparser R matrix and, generally speaking, a more
efficient relaxation labeling process.

Figure 5.3: Sparsification effect of the compatibility matrix with K=50 and
K=10 for puzzle of 100 pieces.

Best bodies sparsification

To further sparsify the compatibility matrix, we adopt the best buddies con-
cept from Pomeranz et al. [61]. The procedure allows us to find the perfect
pairwise matching by considering the ordinal position of the candidate in a
ranking of other pieces. The Best Buddies relation is defined as the follow-
ing [61]: two pieces are best buddies if both agree that the other piece is their
most likely neighbor in a certain spatial relation. Two pieces i and j relation
R1 and opposite relation R2 are best buddies if both hold:{

CR1(i, j) > CR1(i, k) ∀k ̸= j

CR2(j, i) > CR2(j, k) ∀k ̸= i
(5.5)

We set the compatibility of any two best buddies to perfect compatibil-
ity (i.e., 1), and zero the compatibility values of all other non-best-buddy
matches concerning each of the two best buddies. We term this step the spar-
sification of the compatibility matrix and experiment both with and without
it.

We observe that sparsification contributes to the computational efficiency
of the solver, thus, high sparsification can seem encouraging. On another
side, applying sparsification we risk cutting off true candidates: the BB
sparsification is a rigid neighboring assignment and, in the case of false BB,
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there is no way for the errors to be corrected by the algorithm, thus leading
to the wrong solution.

5.2.2 Puzzle Solver

We cast jigsaw puzzle solving as a consistent labeling problem defined as
above. Here, the set of objects B represents the puzzle pieces, the labels
Λ are the relevant positions in the reconstruction plane, and the task is to
assign a different position from Λ to each puzzle piece from B.

Note that in such an abstraction, the label-object representation can be
easily exchanged to seek an assignment of a different piece to each possible
position. In either case, not every assignment is admissible for puzzle solving,
as one must seek a permutation matrix p that reorders the pieces to the
correct positions.

Formally, the P is a soft assignment matrix, where each row pi represents
a probability distribution of the positions for a piece i and each column pλ

represents a probability distribution of the pieces for a position λ. Thus,
piλ ∈ ∆n×m is the probability of piece i to choose position λ, and ∆n×m is
the multi-simplex with

∆m = {pi | piλ ≥ 0 ∧
∑
λ

piλ = 1} (5.6)

and
∆n = {pλ | piλ ≥ 0 ∧

∑
i

piλ = 1} (5.7)

where piλ is the probability of piece i to choose position λ. Thus the soft
assignment matrix P = [piλ] is required to be a doubly stochastic matrix
such that

∑
λ piλ =

∑
i piλ = 1.

Indeed, the relaxation labeling update rule from Eq. (4.8) guarantees that
P is a stochastic matrix (i.e., rows sum to 1) but does not enforce the same
constraint for its columns. Therefore, the optimization process can converge
to a labeling that does not represent a permutation (producing an infeasible
solution where the multiple pieces are assigned to the same position and vice
versa).

To alleviate the problem and enforce one-to-one correspondence con-
straints, we endow the relaxation process with a matrix balancing step that
encourages convergence into a permutation matrix. Two such steps are ex-
plored: Sinkhorn-Knopp (SK) normalization [73] and alternated projection
algorithm [82].
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Figure 5.4: Relaxation Labeling Puzzle solver. The initial assignment is
represented by an uniform distribution; on each step of solver the updated
assignment (stochastic) matrix is normalised to its doubly stochastic version;
in the last iteration the obtained doubly stochastic matrix is approximated
to its closest permutation matrix that encodes the final solution.
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Sinkhorn normalization

SK algorithm transforms a given non-negative square matrix to its related
doubly stochastic version. This is done by alternately normalizing the rows
and columns. Starting from an initial point P(0), the balancing is performed
according to:

P(t) = Tc(Tr(P(t− 1)) (5.8)

where P is a n-dimensional square matrix and Tc and Tr are respectively
column- and row-wise normalization matrix operators; the process converges
to a doubly stochastic matrix. SK is incorporated in our algorithm as an
additional balancing step applied after the update rule in each iteration. By
this we encourage the relaxation labeling process to move in a space of dou-
bly stochastic matrices (instead of stochastic) that pushes the convergence
towards a permutation matrix.

As an alternative, we could apply the balancing step with different fre-
quencies (i.e every 5 steps, 10 steps, etc). Intuitively, this would allow the
algorithm to take its natural course, and the balancing step would only serve
to correct the direction every now and then. Nevertheless, our experiments
show that periodic balancing is not sufficient, and in most cases, the algo-
rithm converges to a local minimum; figure 5.5 illustrates the behavior of the
algorithm with different frequencies of balancing step in terms of average lo-
cal consistency and related accuracy (defined as the "intermediate solution"
produced by the permutation matrix approximated to a current assignment
matrix).

Figure5.12 illustrates the "snapshot" of assignment matrix (P) after 1,
2, 6, 11 and 17 iteration of RL solver comparing 4 versions of the algorithm:
1 - RL-solver without balancing, 2 - RL solver with balancing applied every
10 steps, 3 - with balancing applied every 5 steps; and 4 - RL solver with
balancing applied every step.

Alternating projection

As we mention before the label-object (player-strategies) representations can
be exchanged; thus, the assignment process can be seen from two points of
view: assigning the position to the pieces and assigning the pieces to the
position; these two processes occur contemporary and are expected to con-
verge to a shared optimal point. This property suggests using Alternating
projection method : sequential re-projection from piece-to-position assign-
ment space to position-to-pieces assignment and vice-versa at every step of
the relaxation labeling algorithm; doing this the algorithm converges to the
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Sinkhorn normalization applied on every step 

  

 

Sinkhorn normalization applied on every  5 steps 

      

 

Sinkhorn normalization applied on every  10 steps 

        

Figure 5.5: Comparison of the behaviour of the algorithm with different fre-
quencies of matrix balancing, in terms of Average local consistency and direct
accuracy; columns from left to right: (1) Sinkhorn balancing applied every
step of Relaxation labeling puzzle solver, (2) Sinkhorn balancing applied ev-
ery 5 steps, (3) Sinkhorn balancing applied every 10 steps. The experiment
are done for a puzzle of 25 pieces.
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point in the intersection of two spaces (that corresponds to the solution with
respected one-to-one correspondence constraint).

Since the native relaxation labeling update rule normalizes the rows of
the assignment matrix but not the columns, and since objects and labels in
the puzzle solving abstraction are interchangeable, it is tempting to switch
the role of pieces (objects, rows) and positions (labels, columns), thereby
switching between row and column normalization every step of the process.

Computationally, this is done by alternately switching between two up-
date rules, Eq. (4.8) and the following update rule:

piλ(t+ 1) =
piλ(t)qiλ(t)∑
j pjλ(t)qjλ(t)

∀i, λ (5.9)

and keep doing so until convergence. Similarly to the case with Sinkhorn
normalization, one can be tempted to vary the frequency of the alternation
(i.e. every 5, 10 steps instead of every step), thus allowing the algorithm
to run several steps between the switching from one normalization mode
to another. Figure 5.6 illustrates the results of the experiments varying the
frequency of alternated projection (every step, every 5 steps, every 10 steps);
the plots illustrate the behaviour of the algorithm in terms of average local
consistency and related accuracy, for a puzzle of 25 pieces. Similarly to the
same experiment with Sinkhorn normalization we observe better convergence
of the algorithm when normalization is applied on every step.

Figure 5.13 illustrates the convergence of an assignment matrix to a per-
mutation one, comparing the relaxation labeling algorithm without balancing
with the one equipped with alternated projection (applied every 10, 5 steps
and every step of the solver).
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Alternated projection applied on every step 

        

 

Alternated projection applied on every  5 steps 

       

 

Alternated projection applied on every  10 steps 

      

Figure 5.6: Comparison of the behaviour of the algorithm with different
frequencies of matrix balancing, in terms of Average local consistency and
direct accuracy; columns from left to right: (1) Alternated projection applied
every step of Relaxation labeling puzzle solver, (2) Alternated projection
applied every 5 steps, (3) Alternated projection applied every 10 steps. The
experiment are done for a puzzle of 25 pieces.
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algorithm

1 Approximated permutation matrix

Final reconstruction2 22

Figure 5.7: (1) Approximation of final solution to the closest permutation
matrix by means of Hungarian algorithm; (2) final reconstruction of the
puzzle from obtained permutation matrix.

5.2.3 Final reconstruction

In most cases we cannot expect that the algorithm converges to the permu-
tation matrix. More often the output of the relaxation labeling algorithm
is a doubly stochastic matrix that only partially represents the desired solu-
tion. In order to obtain the final solution that encodes the position of each
piece on the assembling plane we have to approximate the predicted doubly
stochastic matrix P to its closest permutation matrix Pfinal.

We solved the problem of the approximation of the permutation ma-
trix as an assignment problem, using the Hungarian algorithm. In terms
of Hungarian algorithm, the input cost matrix is represented by the final
soft assignment matrix P of RL solver, while its output (optimal assign-
ment) corresponds to the desired permutation matrix, which represents the
final solution of the puzzle Pfinal (that assigns the puzzle pieces to their
positions).

Figure 5.7 illustrates the procedure: (1) output of the relaxation label-
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ing process, that represents "incomplete" solution, and closest permutation
matrix obtained with of Hungarian algorithm, (2) results of assembling from
obtained permutation matrix.

5.3 Preliminary study

5.3.1 Oracle compatibility

In order to explore the effectiveness of our solver, we first tested the proposed
algorithm using a synthetically generated and ideal compatibility, dubbed
oracle compatibility ; it is defined as follows:

C
(oracle)
R (i, j) =

{
1 if i, j are the correct neighbors in relation R
0 otherwise

(5.10)

We tested the relaxation labeling algorithm with this oracle compatibility
on a puzzle of 540 pieces and examined its performance with and without
balancing. All solvers have been executed with no-prior knowledge, i.e., using
the barycenter of the standard multidimensional simplex as initial point.
When balancing is used, we started the balancing algorithm after t = 10
iteration of relaxation labeling, to let the latter process first propagate the
information without any constraint. The solvers always converged before
reaching the maximum number of iterations set to T = 200.

Fig. 5.8 shows the behavior of the average local consistency function along
the iterations. The experiment demonstrates that each proposed strategy
reached a maximum and therefore a consistent labeling, corresponding to the
correct permutation and the desired synthetic puzzle. As can be observed,
endowing the procedure with either balancing components, significantly ex-
pedited the convergence by forcing the optimization process towards doubly
stochastic matrix.

5.3.2 Perturbation test

In real-world puzzles, however, it is of course difficult to guarantee an ideal
oracle compatibility, so we verified the robustness of the proposed solvers
by perturbing all coefficients with additive Gaussian noise ϵ ∼ N (0, σ2).
Different experiments has been done with increasing values of σ, ranging in
(0, 0.2] for the experiments with and without sparsification technique. We
applied the sparsification technique described in the previous section, setting
K = 5.
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Figure 5.8: Average local consistency over the relaxation labeling iterations
with oracle compatibilities (solid lines - ideal oracle compatibility; dashed
lines - “noisy” oracle compatibility with σ = 0.02).

We assessed the performance of the three solvers using the Direct Com-
parison metric [14] which measures the ratio of pieces placed in correct po-
sition compared to the ground-truth. As Figure 5.9 shows, the performance
drops immediately unless balancing is incorporated. Moreover, with sparsifi-
cation, the performance persists even in the case of high levels of noise. This
signifies the importance of this computational component. Such experiments
show that the relaxation labeling scheme for consistent labeling is able to ad-
dress the puzzle solving task quite effectively, and that the reliability of the
compatibility function is a crucial aspect for the correctness of the solution.

5.4 Experiments with Natural Images

The quality of the compatibility computed for natural images depends on
several factors that can be divided into two categories: the image content,
that might make the assembling process particularly challenging, like the
presence of repetitive patterns or large regions with homogeneous color; the
puzzle size that, when large, may lead to less informative pieces increasing
the ambiguity in the compatibility computation. For these reasons, the com-
patibility measure should be sensitive enough to capture small differences be-
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Figure 5.9: Drop in accuracy of our solvers due to the perturbation of oracle
compatibility (solid lines - results with sparsification; dashed lines - results
without sparsification).

tween pieces. The dissimilarity measure that we chose for our procedure (cf.
Section 3.4.1) is empirically demonstrated to be more reliable with respect
to other measures proposed in the literature [74].

As dissimilarity measures incorporate more pictorial information for larger
piece sizes, we tested the algorithm on the up-scaled versions of widely used
datasets. Scaling was done by applying bicubic interpolation with a scale
factor of 2, resulting in doubling the number of pixels involved in each dis-
similarity computation, without changing the puzzle size.

Datasets

We tested the algorithm on three datasets, each contains 20 images: 20
puzzles of 432 pieces from the MIT dataset presented by Cho et al. [14], 20
puzzles of 540 pieces from the McGill dataset and 20 puzzles of 805 pieces
from Pomeranz805 dataset, proposed by Pomeranz et al. [61].

All these datasets are widely used as benchmark to measure the perfor-
mance of puzzle solver algorithms and contain several "problematic" images
for which a good reconstruction is challenging. Some of the images con-
tain horizontal and vertical lines that may be aligned with pieces edges and
distort the compatibility; other images contain repetitive texture patterns
(e.g., wall, grass) or homogeneous regions (e.g., sky, water) that may gen-
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"Direct" accuracy RL without RL with RL with
balancing SK balancing alt. projections

432 pieces (MIT) 7.3% 89.9% 90.7 %
540 pieces (McGill) 11.7% 98.6% 98.1%
805 pieces (Pomeranz805) 13.7% 96.8% 96.7%
Mean 10.9% 95.0% 95.2%

Table 5.1: Reconstruction performance of puzzles from the MIT, McGill and
Pomeranz805 datasets. "Direct accuracy" metrics.

erate numerous false positive compatibilities. In all datasets, piece size was
scaled from 28× 28 to 56× 56 pixels, and the RGB color space was used in
dissimilarity computations and all experiments refer to puzzles with known
piece orientation.

Accuracy metrics

Aside from the Direct Comparison metric, we adopted two other measures
to assess solvers performance: the Neighbor Comparison metric [14] that
measures the ratio of correctly assigned neighbors in the solution, and the
Perfect Reconstruction metric [30] that is a binary indicator of whether all
pieces are in the correct position.

Results

As the results show in Tables 5.1, 5.2 and 5.3, the relaxation labeling algo-
rithm (with balancing) can handle real-world compatibilities and solve real
puzzles in most cases. At the same time, the datasets contain some images
(such as images 1, 2, 4, 13, 15 in the MIT dataset) that generate multiple
false compatibilities and for which, due to the presence of homogeneous tiles,
the desired reconstruction is a challenging task. Such compatibilities then
lead to ambiguous assignments with equal probability, hence affecting the
quality of the solution obtained.

Analyzing the different versions of the puzzle solver it is evident that
consistent labeling via relaxation labeling is a viable substrate for solving
natural image jigsaw puzzles. However this requires either highly predictive
compatibility, or more realistically, the incorporation of balancing in the
update rule.
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Figure 5.10: Qualitative reconstruction performance of five images: (left)
results without balancing, (middle) results by SK balancing, (right) results
by alternating projections.
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"Neighbour" accuracy RL without RL with RL with
balancing SK balancing alt. projections

432 pieces (MIT) 7.3% 89.9% 90.7 %
540 pieces (McGill) 11.7% 98.6% 98.1%
805 pieces (Pomeranz805) 13.7% 96.8% 96.7%
Mean 15.5% 96.9% 96.5%

Table 5.2: Reconstruction performance of puzzles from the MIT, McGill and
Pomeranz805 datasets. "Neighbour accuracy" metrics

"Perfect" accuracy RL without RL with RL with
balancing SK balancing alt. projections

432 pieces (MIT) 0% 75% 70%
540 pieces (McGill) 0% 75% 75%
805 pieces (Pomeranz805) 0% 80% 65%
Mean 0% 77% 70%

Table 5.3: Reconstruction performance of puzzles from the MIT, McGill and
Pomeranz805 datasets. "Perfect" accuracy metrics - percentage of perfectly
reconstructed puzzles in each of the datasets.

Analyzing the two versions of the algorithm (that differ in the balancing
strategies) we can conclude that both versions are reliable and doing well for
most of the datasets images
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Figure 5.11: Qualitative reconstruction performance of three images from
McGill dataset: (left) results without balancing, (middle) results by SK
balancing, (right) results by alternating projections.
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Figure 5.12: Comparison of the behaviour of the algorithm with different fre-
quencies of matrix balancing, in terms of Assignment matrix; rows from top
to down: the "snapshots" of assignment matrix after 1th, 2nd, 6th, 11th, 17th

iterations of the puzzle-solving algorithm; columns from left to right: (1)
relaxation labeling algorithm without balancing, (2) Sinkhorn balancing
applied every 10 steps, (3) Sinkhorn balancing applied every 5 steps, (4)
Sinkhorn balancing applied every step of the puzzle-solver. The experiment
are done for a puzzle of 25 pieces.
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Figure 5.13: Comparison of the behaviour of the algorithm with different
frequencies of matrix balancing, in terms Assignment matrix; in rows: the
"snapshots" of assignment matrix after 1th, 2nd, 6th, 11th, 17th iterations of
the puzzle-solving algorithm; columns from left to right: (1) relaxation la-
beling algorithm without balancing; (2) Alternated projection applied every
10 steps; (3) Alternated projection applied every 5 step; (4) Alternated pro-
jection applied every step of the puzzle-solver. The experiment are done for
a puzzle of 25 pieces.

66



Chapter 6

Solving Jigsaw Puzzles with
Eroded Boundaries

6.1 Introduction

This chapter presents the extension of our relaxation labeling puzzle-solving
approach for a more complex task, namely finding a solution when pieces
are missing or eroded. Many real-world problems, such as recovering ancient
documents and broken artifacts [23], can be seen as jigsaw puzzles with
missing information (boundaries or entire pieces). This task has been only
partially explored in the last year due to its complexity [10, 58].

To simulate the erosion in the puzzle we create gaps between pieces. The
gaps produce interruption in the color and the line continuation between
patches, and make the color gradient-based compatibility function unusable
or, anyway, highly inaccurate. To alleviate this problem, we adopt an image
extension technique; the idea is to extend the patches borders to cover the
eroded parts in the picture with synthetically generated pixels. Image in-
painting and extension are broadly studied in computer vision, and various
techniques were proposed [77, 92, 17, 54, 5]. We consider that the image ex-
tension model is more suitable for our task, as we want to extend the images
outside the original border rather than filling missing parts inside of each
patch. The GAN-based model for image extension proposed in [77] shows
impressive results, hence we adopt their model for our procedure. First, we
recover the eroded borders of each patch by extending it in all directions,
then we compute the pairwise compatibility on repaired patches; finally, we
apply the solver [40] to reconstruct the image.
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Related works

Only few papers addressed the task of solving jigsaw puzzles when border
are missing. Paumard et al. [58] tackled the 3x3 puzzle problem with a
probabilistic model; given a central fragment, they used a neural network
to predict the relative positions of remaining fragments and computed the
shortest path in the graph to reassemble the puzzle. Bridger et al [10] pro-
posed efficient method to solve the puzzle with ruined regions; first they
recovered the missing parts using GAN-based model and then reconstructed
the image using greedy solver form [55]. Although the method works nicely,
it uses a lot of information to generate the missing border, since it considers
all the possible combinations of pairs and their location. Ru Li et al [45]
introduced JigsawGAN, a self-supervised GAN-based approach, that com-
bines global semantic information and edge information of each piece; the
output of the model is then a permutation matrix of all the pieces. They
applied such approach to solve 3x3 puzzle problems.

In this research, similarly to Bridger et al. [10], we tackle the problem
of the puzzle with ruined regions; however their method differs from ours in
two crucial points: 1) Bridger [10] filled in the gaps in the image by applying
inpainting algorithm to each pair of patches for all possible transformations;
we, instead, propose recovering the damaged borders by generating the miss-
ing pixels all around the patch; hence we apply the image extension algorithm
to each single patch, that is lighter from a computational point of view. 2)
Differently from [10] who used a naive greedy placer, we cast the problem
as a consistent labeling problem, formalized by Hummel and Zucker in [38],
and solve the puzzle using relaxation labelling algorithm, that enjoys nice
theoretical properties [60].

The chapter is organized as follow: in section 6.2 we preset a short
overview of generative adversarial net and in particular Boundless model
for image extension; section 6.3 describes our model and sections 6.3.1, 6.3.2
discus the image extension model and the compatibility computation respec-
tively; in section 6.3.3 we recipe our puzzle solver. Finally, in section 6.5, we
discuss the experiments and present our results.
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6.2 Generative Adversarial Net (GAN)

Generative Adversarial Networks (GANs) [33, 94], are an approach to gen-
erative modeling using deep learning methods, such as convolutional neural
networks. Generative modeling is an unsupervised learning task in machine
learning trained for automatically discovering and learning the regularities
in input data. GANs are a smart way to train a generative model by framing
the problem as a supervised learning problem. It consists of two sub-models:
the generator model that we train to generate new examples, and the dis-
criminator model that classifies examples as either real (because drawn from
the domain) or fake (because generated). The two models are trained to-
gether in a zero-sum adversarial game, until the discriminator model is fooled
(in 1 times), meaning the generator model is generating plausible examples.

GANs are a rapidly changing field, they attract much attention due to
their ability to generate realistic examples across a range of problem domains,
such as image-to-image translation tasks (translating photos of summer to
winter or day to night, etc) and generating photorealistic photos of objects,
scenes, and people in such realistic way, that even humans cannot tell are
fake. Generative Adversarial Networks have achieved impressive results in
image generation [22, 63], image editing [96], and representation learning
[22, 49]. Recent methods adopt the same idea for conditional image genera-
tion applications, such as text2image [64], image inpainting [57], and future
prediction[48], as well as to other domains like videos[84] and 3D models
[89]. The key to GANs’ success is the idea of an adversarial loss that forces
the generated images to be, in principle, indistinguishable from real images.

The GAN model architecture involves two models: a generator model
that generates new examples and a discriminator model that classifies whether
generated examples are real or fake. Generative adversarial networks are
based on a game-theoretic scenario where the generator network competes
against an adversary (discriminator). The generator network is generating
samples, while its adversary (the discriminator network) tempting to distin-
guish between examples drawn from the training data and examples drawn
from the generator. Figure 6.1 schematically illustrates the typical architec-
ture of GAN.
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Figure 6.1: Schematic architecture of GAN

The GANs are formulated as a minimax game, where the Discriminator
is trying to minimize its reward V (D,G) and the Generator is trying to
minimize the Discriminator’s reward or in other words, maximize its loss. It
can be mathematically described by the formula below:

min
G

max
D

V (D,G) (6.1)

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (6.2)

where G is Generator, D is discriminator, pdata(x) is the distribution of
real data, P (z) is the distribution of the generator, x is sample from pdata(x),
z is sample from P (z), D(x) Discriminator network, G(z) Generator network.
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Boundless GAN model for image extension

Figure 6.2: Boundless Model Architecture: this architecture is used for all
our models.From Teterwak et al. [77]

The Boundless model [77] is developed for image extension task, that is,
to fill in the image content outside the original boundaries. Unlike other
inpainting algorithms [77, 92, 17, 54, 5], the extension region is expected
to match the original area on structural, textual, and semantic levels. The
model has the Wasserstein GAN framework composed of a generator network
and a simultaneously trained discriminator.

Generator has the fully convolutional encoder-decoder architecture from
[92] with additional skip connections between the non-dilated layers and
instance normalization after each generator level. All the layers use gated
convolutions and an ELU activation function; the final layer clips its outputs
to the range [1, 1].

The generator takes as input the image to be extended with the unknown
region masked in the image; the output is a fully generated image. Before
switching to the discriminator, the known region in the generated image is
replaced with the original pixels from the input image.

Discriminator is a deep network, which transforms a generated sample
into a single scalar that determines whether the generator’s output is a plau-
sible extension of its input. The overrating of the known part of the generated
image with the original pixels creates a "seam" between the original and the
generated parts of the image; if there is any abrupt change along the seam,
the image is classified as false. The discriminator is designed “to be condi-
tioned on the specific generator input”; the discriminator output is defined
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as:
D(x∗,M, x) = fϕ(ϕ(x

∗,M)) + ⟨ϕ(x∗,M), f(C(x))⟩ (6.3)

The model is trained via combination of reconstruction loss and adver-
sarial loss. The reconstruction loss optimizes for image agreement; it is
implemented as an l1 loss imposed on the full output of G and defined as
following:

Lrec = ∥x−G(z,M)∥1 (6.4)

The adversarial loss refines the coarse prediction; here the Wasserstein
GAN hinge loss is used [79] and defined as:

Ladv,G = Ex∼PX(x)[−D(x̂,M,x)] (6.5)

The total loss on the generator is defined:

Ltotal = Lrec + λLadv,G (6.6)

Boundless is the first model where the GANs are effectively used to learn
image extensions. The model is endowed with a stabilization scheme, based
on using semantic information from a pre-trained deep network, to modu-
late the behavior of the discriminator of GAN. This semantic conditioning
encourages the generated content to semantically match the target image.

The authors [77] demonstrate that the model achieves strong results
on image extension with coherent semantics, plausible textures and colors.
Moreover, the model also produces promising results for large extrapolations
(up to 3 times the width of the original image).
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Figure 6.3: Pipeline of the algorithm. (1) Given a patch, we extend its bor-
ders using Boundless GAN [77]. (2) We exploited the generated borders and
compute pairwise compatibility between all the patches using Mahalanobis
Gradient Compatibility (MGC) [30]. (3) Relaxation Labeling is then used
to find a consistent labeling (positioning) of each piece.

6.3 JiGAN Model for puzzle-solving

In this section, we introduce JiGAN, our GAN-based approach to solve jigsaw
puzzles. Suppose we are given N images, that represent the patches of the
puzzle; the borders of the patches are eroded implying gaps between parts in
the puzzle. The goal is to reassemble the original image or, saying differently,
assign a position in a 2-dimensional grid assemble plane to each patch of the
puzzle. As in previous works, we assume that the patches are of the same
size, the orientation is known, and the gaps created by eroded borders are
of the same regular size.

Our model is illustrated in Figure 6.3 and is based on the three following
key ideas: 1) extending the eroded patches border using a GAN model;
2) computing dissimilarity score for each pair of patches and transforming
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dissimilarity scores into the matrix of compatibility coefficients; 3) given
the compatibility map, running the relaxation labeling puzzle solver and
reconstructing the image.

6.3.1 Border Extension

The various methods for compatibility computation, discussed in previous
works [14, 61, 74, 55], are normally based on the color gradient and the con-
tinuation of the edge, and perform well for puzzles without erosion. However,
the gaps created by erosion make any of these functions inaccurate and un-
reliable. In order to compute pairwise similarities between patches, hence
reconstructing the final puzzle, we need to fill in the gap resulting from the
eroded borders. For this reason we first repair the eroded edges by generat-
ing the band of new pixels all around the given patch. To do this we use an
image extension technique called Boundless [77]. The idea is to extrapolate
the image of the patch in all directions, to cover the void created by the
erosion.

The Boundless is a GAN-based model tailored to extend the image con-
tent along any direction, i.e. to fill the image content outside the original
boundaries. For our task, we use the pre-trained model on Places [95] pro-
vided by Google1. The limitation of the model is that it is trained to extend
the image in one direction (right). In order to extend the images of the puz-
zle pieces all around, we pass each piece through the generator four times
rotating it by 90° sequentially.

Formally, given the ĩ-th piece of a puzzle, its extended version is denoted
by

i = Φ(̃i, β, θ) (6.7)

where β is the percentage of image extension, and Φ(...) is the Boundless
model parametrized by θ. Once the damaged borders get repaired, we can
use the reconstructed patches to calculate the patch compatibility.

6.3.2 Compatibility of patches

The compatibility measure quantifies the affinity between pieces and predicts
the likelihood of two patches to be neighbors. We measure the piece affinity
by computing the dissimilarity between the abutting boundary pixels of two

1Pretrained model from TensowrflowHub https://www.tensorflow.org/hub/tutorials/boundless
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Figure 6.4: Border extension procedure: we rotate the patch in order to
extend the image in all directions (right, up, left and down)

adjacent pieces; to this end, we adopt the Mahalanobis Gradient Compati-
bility (MGC) developed by Gallagher [30] and further improved by Son et
al. [74]. MGC considers both the color differences across pieces borders and
the directional derivative differences along the borders.

Once the pairwise dissimilarity scores are calculated for each pair of pieces
in all possible neighboring relationships (right, up, left, down), we convert
them to normalized compatibility values, as follows:

CR(i, j) = max

(
1− ΓR(i, j)

KminR(i)
, 0

)
(6.8)

where KminR(i) is the K-min value of the dissimilarity between all other
pieces in relation R to piece i. The smaller the value of K, the more sparse
CR(i, j) becomes, leading to a more efficient relaxation labeling process.

6.3.3 Puzzle Solver

We cast jigsaw puzzle solving as a consistent labeling problem, the detailed
explanation is given in Section 4. In our formulation, the puzzle pieces
are considered as a set of objects and their possible positions as a set of
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labels. The puzzle problem is hence viewed as the problem of finding consis-
tent labeling that satisfies certain compatibility relations, with an additional
requirement for one-to-one correspondences between the puzzle’s tiles and
their positions. We solve the puzzle using classical relaxation labeling al-
gorithm [60] that, starting from the uniform probability (barycentre point)
distribution, progressively updates the assignment matrix till it converges
to the consistent labeling, which in our case corresponds to a permutation
matrix.

The set of objects B represents the puzzle pieces, the labels Λ are the
positions in the reconstruction plane (hence m = n), and the task is to assign
a different position from Λ to each puzzle piece from B.

The P ∈ ∆n×m is a soft assignment matrix (where each row represents
a probability distribution of the positions for a piece and each column rep-
resents a probability distribution of the pieces for a position), ∆n×m is the
multi-simplex with

∆m = {pi | piλ ≥ 0∧
∑

λ piλ = 1} and ∆n = {pλ | piλ ≥ 0∧
∑

i piλ = 1},
where piλ is the probability of piece i to choose position λ. Thus P = piλ

is doubly stochastic matrix such that
∑

λ piλ =
∑

i piλ = 1.
The relaxation labeling update rule guarantees that P is a stochastic

matrix (i.e., rows sum to 1) but does not enforce the same constraint for
its columns. Therefore, the optimization process can converge to a labeling
that does not represent a permutation (producing a solution with multiple
pieces assigned the same position and vice versa).

To alleviate this problem and enforce one-to-one correspondence con-
straints, we endow the relaxation process with matrix balancing algorithm,
adopting Sinkhorn-Knopp (SK) normalization [73]. SK algorithm transforms
a given non-negative square matrix to its related doubly stochastic version,
by alternately normalizing the rows and columns. SK is incorporated in our
algorithm as an additional balancing step in each iteration.
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6.4 Experiments & Results

6.4.1 Datasets

We assess the validity of our approach considering two benchmarks. First,
we test our method on a large dataset of small (synthetic) images. Following
JigsawGAN [45] we create our collection of 1600 images randomly picked up
from PACS dataset [44]. Our collection is divided into 4 object categories
(elephant, guitar, person, house), each of which covers 4 image styles (paint-
ings, photos, cartoons, and sketches). Each of 1600 images is cut into 72x72
pixels size pieces generating a 9-pieces puzzle (3x3).

For the second test, we apply our method to three datasets [14, 61], widely
used as performance benchmarks; each contains 20 images of increasing size.
We cut the images into equal size pieces, generating puzzles of 70, 88, and
150 pieces (for the 1st, 2nd, and 3rd data sets respectively).

6.4.2 Accuracy metrics

To evaluate the performance of the algorithm we adopt three accuracy mea-
sures, widely used in literature: Direct Comparison metric, which measures
the ratio of pieces placed in the correct position; the Neighbor Compari-
son metric that measures the ratio of correctly assigned neighbors in the
solution; the Perfect Reconstruction metric represents the ratio of perfectly
solved puzzles, where perfectly solved means that all pieces are placed in the
correct position.

6.4.3 Experiments

We performed experiments on the two aforementioned benchmarks consid-
ering the three different metrics and an increasing level of border erosion,
β ∈ {0%, 7%, 14%}. We compare the results of our JiGAN approach to
our previous model without GAN, namely Relaxation labeling puzzle-solver
(RL) [40]. Concerning [10], although the idea is similar to ours, their model
involves much more information (all possible pairing and rotation of puzzle’s
pieces), thus a direct comparison would not be fair. We do not report the
performances of JiGAN when there is no border erosion (β = 0%) since the
result are the same as the one of RL [40].
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Experiments with PACS dataset (small puzzles)

Using the PACs dataset, we conduct two types of experiments: first, we
generate 3x3 puzzles without any gap between pieces and run the relaxation
labeling (RL) solver [40]; second, to simulate the erosion of the boards, we
generate the puzzles with gaps between pieces with two different levels of
erosion 7% and 14% gaps. We compare two methods: the RL algorithm
without the image extension step, and our JiGAN procedure that involves
the completion of the eroded border. Both procedures are applied for two-
levels of border erosion, 7%, and 14% of the size of the piece.

"Direct" accuracy no gap no gap 7% gap 7% gap 14% gap 14% gap
RL JiGAN RL JiGAN RL JiGAN

house 92% - 57% 74% 41% 60%
elephant 88% - 51% 74% 30% 54%
guitar 83% - 42% 65% 26% 48%
person 90% - 56% 72% 40% 58%
Mean 88% - 50% 70% 32% 53%

Table 6.1: Reconstruction performance of puzzles from the PACS datasets.
"Direct accuracy" metrics.

"Perfect" accuracy no gap no gap 7% gap 7% gap 14% gap 14% gap
RL JiGAN RL JiGAN RL JiGAN

house 90% - 46% 64% 26% 42%
elephant 86% - 41% 64% 16% 36%
guitar 77% - 33% 49% 13% 27%
person 89% - 51% 65% 28% 43%
Mean 85% - 41% 60% 19% 35%

Table 6.2: Reconstruction performance of puzzles from the PACS datasets.
"Perfect accuracy" metrics.

Table 6.1 and table 6.2 show the results of puzzle reconstruction in terms
of direct comparison accuracy measure and perfect reconstruction ratio. Fig-
ures 6.6, 6.7 and 6.8 illustrate some qualitative results for reconstruction of
small puzzles with different levels of erosion. It can be seen that, for the
case without gaps, our solver performs well in all categories. While in the
cases with erosion, the performance of the solver algorithm decreases as the
level of erosion increases. However, the image extension step is beneficial to
puzzle reconstruction with respect to the algorithm without extension.

78



Figure 6.5: JiGAN (blue) vs RL (red) models: average Direct (a) and Perfect
(b) accuracy then increasing the erosion gaps β.

Nevertheless, the performance of the model degrades with larger gaps
and negatively influences the accuracy of the solver. To further investigate
this degradation effect, we perform additional experiments by gradually in-
creasing the erosion gaps (1%, 3%, ..., 14%) and observing the accuracy of
the algorithm with and without extension steps. Figure 6.5 illustrates the
performance of the solver applied to 400 randomly selected puzzles with dif-
ferent levels of erosion. As expected, the larger the erosion, the less accurate
the results.

It is also worth noticing that the performance of the solver could be
enhanced in absence of sketch images in a dataset. The puzzles generated
from sketch images are particularly challenging to solve as they contain scarce
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lines and no color information, leading to false high compatibility scores
between all parts of the puzzle. In fact, we notice that 60% of the puzzles
from the sketch category fail to be reconstructed (with a direct accuracy
score equal to 0); this negatively influences the final results, in terms of
averages.
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Figure 6.6: Qualitative results for small puzzles from Pacs dataset (elephant,
guitar) with 0%, 7%, 14% erosion of piece size
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Figure 6.7: Qualitative results for small puzzles from Pacs dataset (house)
with 0%, 7%, 14% erosion of piece size
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Figure 6.8: Qualitative results for small puzzles from Pacs dataset (person)
with 0%, 7%, 14% erosion of piece size
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Experiments with Benchmark datasets

For further evaluation, we apply our method to the large puzzles generated
from the three benchmark datasets. As before, we conduct two experiments
applying erosion of 7% and 14% of piece size. Tables 6.3 and 6.4 shows the
results of the RL solver run without reconstruction of the eroded border and
the results of the puzzle solver after the GAN image extension algorithm is
applied.

Similarly to the case with small puzzles, the larger the erosion gaps, the
lower the accuracy of the puzzle solution. The performance of the GAN
model gradually degrades with the larger area of generated pixels. How-
ever, applying the inpainting algorithm significantly increases the accuracy
of puzzle reconstruction concerning the results of the solver without image
extension.

"Direct" accuracy no gap no gap 7% gap 7% gap 14% gap 14% gap
RL JiGAN RL JiGAN RL JiGAN

70 pieces (MIT) 97% - 22% 51% 11% 32%
88 pieces (McGill) 99% - 23% 59% 7% 31%
150 pieces (Pomeranz805) 99% - 12% 38% 6% 15%
Mean 98% - 19% 49% 8% 26%

Table 6.3: Reconstruction performance of puzzles from the MIT, McGill and
Pomeranz805 datasets. "Direct accuracy" metrics.

"Neighbour" accuracy no gap no gap 7% gap 7% gap 14% gap 14% gap
RL JiGAN RL JiGAN RL JiGAN

70 pieces (MIT) 97% - 46% 66% 35% 45%
88 pieces (McGill) 99% - 46% 65% 30% 40%
150 pieces (Pomeranz805) 99% - 41% 54% 28% 33%
Mean 98% - 45% 62% 31% 39%

Table 6.4: Reconstruction performance of puzzles from the MIT, McGill and
Pomeranz805 datasets. "Neighbour accuracy" metrics.

Figures 6.11 and 6.12 illustrate some qualitative results for reconstruction
of big puzzles with different levels of erosion. It can be seen that without
erosion we obtain the perfect reconstruction in most of the cases; for images
with 7% of erosion gap, the overall result is good, however, the images have
some errors most of which are minor and negligible to human eyes.
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Figure 6.9: Qualitative results for big puzzles from Benchmark dataset (0%,
7%, 14% erosion of piece size)

As it can be expected, the results of reconstruction of images with 14%
of erosion are less accurate than those with 7% of erosion. Though in some
examples the misplaced patches make it difficult the perception the image;
in other cases, the reconstruction results are acceptable for the human eye.
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Figure 6.10: Qualitative results for big puzzles from Benchmark dataset (0%,
7%, 14% erosion of piece size)
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6.5 Experiments with Fresco dataset

The motivation of this thesis is the reconstruction of the broken archaeolog-
ical artifacts and in particular re-paring the ruined frescoes. For this reason,
we also wanted to test our methods on a syntactical dataset of wall-painted
images.

The texture of such images is different from the natural photos. When
the images are hand-painted, the same color nuance and same brushstroke
patterns can be presented all over the picture. That creates difficulties in
extrapolating the patches in the case of a ruined border. Moreover, the
spurious colors presented in some paintings are difficult to foresee, and the
image extension model can fail in extrapolating these parts. Ideally, the
GAN model must be retrained for every particular painting style. But,
beyond being time-consuming, it is often infeasible, as the authorship of
the ruined fresco is unknown and the data is not available.

However it is, we decided to test our Gan-based model and puzzle-solving
method on a syntactical dataset of wall-painted images. To this end, we cre-
ate our fresco puzzle dataset by selecting 20 examples from the DAFNE
dataset of famous frescos [25]. The chosen artworks have been painted by
famous Italian artists such as Giotto, Masaccio, Piero Della Francesca, and
Michelangelo (14th - 18th century). For each selected fresco we cropped a
fragment of size 1000x1000 pixels and shuffled each image into 100 patches
(100x100 pixels). As previously, for each image we generate 3 types of puz-
zles: first without erosion and two with gaps between pieces, emulating two
different levels of erosion 7% and 14%. We conduct two experiments: first,
we test our relaxation labeling puzzle solver without the image extension
step; second, we test the JiGan method (which first extrapolates the eroded
border and then applies the RL solver on the repaired patches).

Table 6.5 and 6.6 present the result of the experiments in terms of the
"Direct" and "Neighbour" accuracy.

It can be seen that the quality of reconstruction of images drops signifi-
cantly with the level of degradation of the border: 43% of accuracy (for 7%
of erosion) vs 17% of accuracy (for 14% of erosion). That basically confirms
that the image extension model can be highly inaccurate for these types of
images in extrapolating further from the border. Interestingly, the results of
the reconstruction without gaps are perfect for all images in the dataset.

The figure 6.11 and 6.12 present some qualitative results of reconstruc-
tion of the fresco image with different levels of the erosion of the border. It
can be seen that images with 14% of erosion often contain numerous mis-
placed patches. However, even if the accuracy of final reconstruction is not
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high, the partially reconstructed segments of the fresco can be helpful as ini-
tial input for further reconstruction in human-computer interaction mode.
Partially reconstructed elements of fresco can give to the archaeologists the
idea of the whole composition of the painting, and after fixing some cor-
rectly reconstructed sectors, those can be used as anchors for the further run
of puzzle-solving algorithm.

"Direct" accuracy no gap 7% gap 14% gap
RL puzzle solve 100% 29% 10%
JiGAN puzzle solver 100% 43% 17%

Table 6.5: Reconstruction performance of puzzles from the Fresco dataset.
"Direct accuracy" metrics.

"Neighbour" accuracy no gap 7% gap 14% gap
RL puzzle solver 100% 47% 28%
JiGAN puzzle solver 100% 56% 33%

Table 6.6: Reconstruction performance of puzzles from the Fresco dataset.
"Neighbour accuracy" metrics.
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Figure 6.11: Qualitative results for puzzles from Fresco dataset (0%, 7%,
14% erosion of piece size)
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Figure 6.12: Qualitative results for puzzles from Fresco dataset (0%, 7%,
14% erosion of piece size)
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Chapter 7

Conclusions

The idea to work on puzzle-solving comes thanks to its intimate relation to 
the problem of fresco reconstruction in archeology, as the reconstruction of 
fractured artifacts can be seen as a particularly challenging case of puzzle-
solving.

In the first s tage o f t he p uzzle-solving p roject, w e d evise a  n ovel and 
theoretically robust method to solve jigsaw puzzles. In our formulation, 
the puzzle problem is abstracted as a consistent labeling problem and is 
solved using a relaxation labeling algorithm, endowed with matrix balancing 
mechanisms to enforce one-to-one correspondence. The results of preliminary 
experiments attest the validity of the approach.

In the second stage of the research project, we extend our previous puzzle-
solving method to handle the challenging task of solving puzzles with ruined 
borders. We see indeed that the previous methods, based on the compati-
bility calculated on the color gradient across the edges, solve effectively the 
puzzles without gaps, but their performance immediately drops in the pres-
ence of erosion gaps.

To overcome such problem, we introduce the idea of repairing the dam-
aged patches using the GAN model for image extension. We apply the 
extension procedure on each patch separately, thus avoiding computation-
ally expensive inpainting for all combinations in pairs. We use a GAN-based 
image extension model to generate the missing pieces around each patch, 
then we calculate the compatibility between the repaired patch and apply 
the puzzle-solving algorithm.

We show that the combination of solving algorithm and deep learning 
model can be a viable solution to reconstruct a puzzle with ruined regions. 
Our two-steps procedure produces better results compared to the previous
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method. However, the quality of the final reconstruction depends on the level
of degradation: the larger the erosion gap, the worse the result. Nevertheless,
the overall results with a moderate level of erosion are generally acceptable
to human eyes.

Although, the theory and proprieties of relaxation labeling have been
deeply studied for the case of stochastic labeling only, its application on
puzzle-solving confirms its validity also in the case of double stochastic ma-
trix. However, it would be useful and interesting further research in this
direction, especially to understand deterministically the behavioral propri-
eties of relaxation labeling in the presence of doubly stochastic constraint.
Moreover, a natural extension enforces the balancing step by directly em-
bedding it in the update rule, devising optimization and relaxation labeling
schemes that are more suitable for puzzle solving.

Furthermore in light of our empirical results, it appears clear that the
compatibility measure, being the crucial point of the solver, must be im-
proved. To this end, we believe that the use of automatic feature extractors
such as neural networks, with the recent advent of self-training techniques,
represents an interesting branch of research to be explored.
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