

Abstract

Modern software engineering revolves around distributed applications. From IoT net-

works to client-server infrastructures, the application code is increasingly being di-

vided into separate sub-programs interacting with each other. As they are completely

independent of each other, each such program is likely to be developed in a separate

programming language, choosing the best fit for the task at hand.

From a static program analysis perspective, taking on a mixture of languages is

challenging. Traditionally, analyzers targeted a single language, or a family of similar

ones, to accurately tune the analysis to its (or theirs) features. In this context, a whole-

program semantic analysis on software built through multiple languages can only be

achieved by a combination of analyzers, setting up a communication scheme between

the tools to consider inter-language interactions. As multiple analyses are required,

that might also need to get iterated several times to exchange information, this setup

does not permit static analysis to have an appreciable and meaningful impact in real-

world scenarios.

This thesis defines a generic framework where modular multilanguage static anal-

yses can be defined through the abstract interpretation theory. The framework has

been implemented in LiSA (Library for Static Analysis), an open-source Java library

that provides the complete infrastructure necessary for developing static analyzers.

LiSA strives to be modular, ensuring that all components taking part in the analysis

are both easy to develop and highly interchangeable. LiSA also ensures that com-

ponents are parametric to all language-specific features: semantics, execution model

and memory model are not directly encoded within the components themselves. LiSA

analyzes CFGs where the set of possible nodes is not fixed: users of the library can

define language-specific node instances with customized semantics, enabling differ-

ent behaviors for the same construct depending on the programming language it was

written with.

The framework has been instantiated to analyze smart contracts written in Go

and data science notebooks written in Python. As nondeterminism is known to be

troublesome for blockchain ecosystems, GoLiSA (an analyzer for Go based on LiSA)

applies information flow analyses to detect when nondeterministic constructs can

affect the blockchain state. Instead, PyLiSA (an analyzer for Python based on LiSA)

provides an abstraction for software that deals with dataframes, constructing a graph

tracking all the operations that the program performs over them, thus unifying all

syntactic constructs performing the same operation. Further abstractions can be de-

veloped relying on such a graph to derive properties about the original program, such

as data leakages or data provenance. A third proof-of-concept instantiation is also

provided, demonstrating LiSA’s capability to analyze multiple languages in a single

analysis through the discovery of an IoT vulnerability spanning C++ and Java code.

Two additional contributions are part of this thesis to provide a full analysis

i

ecosystem: SARL and Tarsis. SARL is a domain-specific language that can be used

to compactly model how frameworks and libraries interact with the analyzed appli-

cation. Through SARL, one can produce concise specification files that an analyzer

can exploit to automatically annotate a program, such that analysis components can

use the presence (or absence) of specific annotations to agnostically react to the us-

age of a framework. Instead, Tarsis abstracts strings as regular languages, exploiting

finite state automata operating on an alphabet of strings. Using such an alphabet

shrinks the automata, resulting in a noticeable performance improvement w.r.t. ex-

isting automata-based abstractions.

ii

Riassunto

Le tecniche moderne per lo sviluppo software sono ampiamente influenzate dalle

applicazioni distribuite. Dalle reti IoT alle infrastrutture client-server, il codice che

compone l’applicazione è sempre più suddiviso in sottoprogrammi separati che in-

teragiscono tra loro. Poiché questi ultimi sono completamente indipendenti l’uno

dall’altro, ciascuno di questi programmi può essere sviluppato in un linguaggio di

programmazione diverso, scegliendo la soluzione migliore per l’attività da svolgere.

Dal punto di vista dell’analisi statica dei programmi, affrontare una combinazione

di linguaggi è impegnativo. Storicamente, lo sviluppo di un analizzatore ha avuto

come target un singolo linguaggio, o una famiglia di linguaggi simili, in modo da

raffinare l’analisi sulle sue (o loro) caratteristiche. In questa situazione, l’analisi se-

mantica di un’intera applicazione multilinguaggio può essere eseguita solo attraverso

una combinazione di analizzatori, predisponendo un canale di comunicazione tra gli

strumenti in modo da considerare le interazioni tra moduli scritti in linguaggi di-

versi. Poiché sono necessarie più analisi, che potrebbero dover essere iterate nu-

merose volte per permettere lo scambio di informazioni, questa configurazione non

consente all’analisi statica di avere un impatto apprezzabile e significativo in scenari

reali.

Questa tesi definisce un framework generico in cui è possibile definire analisi

statiche multilinguaggio utilizzando la teoria dell’interpretazione astratta. Il frame-

work è stato implementato in LiSA (Library for Static Analysis), una libreria Java

open-source che fornisce l’infrastruttura completa necessaria per lo sviluppo di anal-

izzatori statici. LiSA è modulare, garantendo che tutti i componenti che prendono

parte all’analisi siano facili da sviluppare e facilmente intercambiabili. LiSA garan-

tisce inoltre che i componenti siano parametrici rispetto a tutte le funzionalità speci-

fiche del linguaggio: semantica, modello di esecuzione e modello di memoria non

sono codificati direttamente all’interno dei componenti stessi. Infatti, LiSA analizza

CFGs in cui l’insieme dei possibili nodi non è prefissato: gli utenti della libreria pos-

sono definire istanze di nodi specifiche per ogni linguaggio, definendo una semantica

personalizzata e consentendo comportamenti diversi per lo stesso costrutto a seconda

del linguaggio di programmazione in cui è stato scritto.

Il framework è stato istanziato per analizzare smart contracts scritti in Go e note-

book di data science scritti in Python. Poiché è noto che il non-determinismo è prob-

lematico per gli ecosistemi blockchain, GoLiSA (un analizzatore per Go basato su

LiSA) applica analisi di information flow per rilevare quando i costrutti non determin-

istici possono influenzare lo stato della blockchain. Invece, PyLiSA (un analizzatore

per Python basato su LiSA) fornisce un’astrazione per il software che si occupa di

dataframe, costruendo un grafo che traccia tutte le operazioni che il programma es-

egue su di essi, unificando tutti i costrutti sintattici che eseguono le stesse operazioni.

Ulteriori astrazioni possono essere sviluppate basandosi su tale grafo per derivare

iii

proprietà sul programma originale, come data leakages o analisi della provenienza

dei dati. Viene fornita anche una terza istanza dimostrativa, che evidenzia la ca-

pacità di LiSA di analizzare più linguaggi in un’unica analisi attraverso la scoperta di

una vulnerabilità IoT che coinvolge codice C++ e Java.

Inoltre, questa tesi contiene due contributi aggiuntivi, in modo da fornire un eco-

sistema di analisi completo: SARL e Tarsis. SARL è un linguaggio che può essere

utilizzato per modellare in modo compatto le modalità in cui framework e librerie in-

teragiscono con l’applicazione analizzata. Attraverso SARL, è possibile produrre file di

specifica concisi che un analizzatore può sfruttare per annotare automaticamente un

programma, in modo tale che i componenti dell’analisi possano sfruttare la presenza

(o l’assenza) di annotazioni per reagire in modo agnostico all’uso di un framework.

Tarsis è invece un’astrazione per stringhe che sfrutta linguaggi regolari, modellati

tramite automi a stati finiti che operano su un alfabeto di stringhe. L’uso di un tale

alfabeto riduce le dimensioni gli automi, risultando in un notevole miglioramento

delle prestazioni rispetto ad astrazioni tradizionali basate su automi con alfabeti di

singoli caratteri.

iv

Contents

Abstract i

Riassunto iii

Contents v

List of Figures ix

List of Tables xi

I Introduction 1

1 Introduction 3

1.1 Static analysis . 4

1.2 Multilanguage systems . 4

1.2.1 An illustrative example . 6

1.3 Libraries and frameworks . 7

1.4 Analyzing strings . 8

1.5 Methodology . 9

1.6 Contribution and publications . 12

1.7 Thesis structure . 14

2 Preliminaries 15

2.1 Sets and ordered structures . 15

2.1.1 Sets . 15

2.1.2 Relations and functions . 16

2.1.3 Partitions . 17

2.1.4 Ordered structures . 17

2.2 Abstract interpretation . 19

2.2.1 Fixpoints . 19

2.2.2 Galois connections . 20

2.2.3 Fixpoint abstraction . 21

2.2.4 Convergence acceleration . 21

2.3 Automata and abstractions . 22

2.3.1 Finite state automata notation 22

2.3.2 A finite state automata abstract domain 24

2.4 Related work . 25

2.4.1 Multilanguage analysis . 25

2.4.2 Modeling libraries and frameworks 26

v

2.4.3 String analysis . 28

II Multilanguage analysis 29

3 Towards a multilanguage analyzer: LiSA 31

3.1 Overall architecture . 32

3.2 The language of the analyzer . 35

3.2.1 Control flow graphs . 36

3.2.2 Symbolic expressions . 37

3.3 The analysis state . 39

3.3.1 Lattice . 41

3.3.2 Semantic Domain . 42

3.3.3 Value Domain . 43

3.3.4 Heap Domain . 47

3.3.5 Abstract State . 48

3.3.6 Analysis State . 50

3.4 Interprocedural Analysis . 50

3.4.1 Call Graph . 52

3.5 Frontends . 53

3.6 Modeling library behavior: SARL . 54

3.6.1 Julia . 57

3.6.2 The SARL Language . 58

3.6.3 Experimental Results . 65

3.7 Multilanguage analysis . 71

3.8 LiSA for teaching . 74

3.9 Conclusion . 77

4 Smart contracts analysis 79

4.1 Related Work . 82

4.2 Blockchain frameworks . 83

4.3 Sources and sinks of non-determinism 84

4.3.1 Sources of non-determinism 85

4.3.2 Sinks of non-determinism . 86

4.4 Flow analysis for non-determinism detection 88

4.4.1 An Overview on Information Flow 89

4.4.2 GoLiSA for non-determinism detection 91

4.4.3 Detection of Sources and Sinks in GoLiSA 93

4.5 Experimental Evaluation . 95

4.5.1 Quantitative evaluation . 95

4.5.2 Qualitative evaluation . 97

4.5.3 Limits . 98

4.6 Commercio.network: an industrial case study 98

4.6.1 Commercio.network . 99

4.6.2 Detecting non-determinism on Commercio.network 99

4.7 Conclusion . 101

5 Analysis of data science programs 103

5.1 Related work . 105

5.2 A concrete semantics for transformations 105

5.2.1 Obtaining the semantics of Python code 107

5.3 The dataframe graph domain . 108

5.3.1 Abstract semantics . 112

5.4 A first application: inferring dataframes shape 118

5.5 An early experiment using PyLiSA . 121

5.6 Conclusion . 122

III String analysis 123

6 String analysis 125

6.1 The IMP language . 126

6.2 The Tarsis abstract domain . 126

6.2.1 Abstract domain and widening 126

6.2.2 String abstract semantics of IMP 129

6.3 Experimental Results . 137

6.3.1 Precision of the domains on test cases 138

6.3.2 Evaluation on realistic code samples 139

6.3.3 Efficiency . 141

6.4 Conclusion . 142

IV Conclusion 143

7 Conclusion 145

7.1 Thesis summary . 145

7.2 Future directions . 146

Appendices 149

A Soundness proofs of Tarsis’s semantics 151

A.1 Soundness of Concat . 151

A.2 Soundness of Length . 152

A.3 Soundness of Contains . 152

A.4 Soundness of IndexOf . 153

A.5 Soundness of Replace . 155

A.6 Soundness of Substring . 156

Bibliography 161

List of Figures

1.1 Excerpt of the JoyCar source code . 6

1.2 Program counting the occurrences of a sub in str 9

2.1 Examples of Hasse diagrams for different posets 17

2.2 Properties of 𝛼 and 𝛾 in a GC . 20

2.3 Sound semantic abstraction . 21

2.4 An example automaton . 23

2.5 Example of widening application . 24

3.1 LiSA’s architecture . 33

3.2 Running example for LiSA’s architecture overview 34

3.3 Statements and Edges . 36

3.4 The SymbolicExpression hierarchy 38

3.5 Sequence diagram Analysis State’s assign 40

3.6 The core LiSA interfaces . 41

3.7 The ValueDomain hierarchy . 43

3.8 The NonRelationalDomain hierarchy 44

3.9 The DataflowDomain hierarchy . 46

3.10 The HeapDomain hierarchy . 47

3.11 The AbstractState hierarchy . 48

3.12 The AnalysisState hierarchy . 50

3.13 InterproceduralAnalysis and CallGraph 51

3.14 ASP.NET specification . 56

3.15 Schema of Julia’s architecture with SARL 59

3.16 Windows Forms specification . 60

3.17 SARL syntax . 61

3.18 Disposable objects stored in fields of classes 68

3.19 UI fields generated by Visual Studio 68

3.20 Dispose() pattern of Form classes . 69

3.21 Application_Start method . 70

3.22 UI fields generated by Visual Studio 71

3.23 A simple Taint Analysis implementation 73

3.24 Analysis results on a minimal example 77

4.1 Cosmos SDK code affected by CVE-2021-41135 81

4.2 Cosmos SDK architecture . 83

4.3 Examples of harmless and harmful non-determinism in blockchain . 84

4.4 Non-determinism related to the blockchain response 87

4.5 ABCI methods and consensus flow 88

ix

4.6 Main store of Cosmos SDK . 89

4.7 Example of explicit, implicit, and side channel flows 90

4.8 Commercio.network architecture . 99

4.9 AssignMembership snippet from the commerciokyc module 100

4.10 BurnCCC snippet from the commerciomint module 100

5.1 Expressions added to the Python language 106

5.2 Concrete semantics of the atomic transformations 107

5.3 Example Python DS program and its instrumentation 108

5.4 Example 𝑑# abstracting the code of Figure 5.3b 111

6.1 Imp syntax . 126

6.2 Concrete semantics of Imp string expressions 127

6.3 Example of widening application . 128

6.4 Example automata demonstrating length’s semantics 131

6.5 Example of may-replacement . 133

6.6 Program samples used for domain comparison 138

6.7 Programs used for assessing domain precision 140

List of Tables

3.1 Analyzed applications . 66

3.2 Difference in warnings on Windows Forms analyses 67

3.3 Warnings removed on Windows Forms applications 67

3.4 Difference in warnings on ASP.NET analyses 69

3.5 Warnings removed on ASP.NET applications 70

4.1 Potential non-deterministic behaviors related to Go 86

4.2 Main sinks for blockchain software written in Go 87

4.3 Analysis evaluation . 96

4.4 Warnings triggered by the analyzers on ℍ𝔽 97

6.1 Values of res at the first assert of each program 138

6.2 Values of res and count at the first assert of the respective program 140

6.3 Execution times of the domains on each program 141

xi

Part I

Introduction

1

1 Introduction

Chapter Contents

1.1 Static analysis . 4

1.2 Multilanguage systems . 4

1.2.1 An illustrative example . 6

1.3 Libraries and frameworks . 7

1.4 Analyzing strings . 8

1.5 Methodology . 9

1.6 Contribution and publications . 12

1.7 Thesis structure . 14

Software governs most aspects of everyday life. Almost every human action, re-

gardless of it being for work or leisure, involves at least one device that is running

a program. Proving these programs correct is as important as ever, as they can col-

lect all sorts of sensitive information (for instance, contents of medical records) or

govern critical processes (like driving a car). Proving the correctness and reliability

of such software has also become increasingly difficult: each program might come

with a set of libraries written by others, whose code is not always available or might

execute in some special environments. On top of this layer of complexity, different

portions of the same software ecosystem might be written in separate programming

languages (e.g., in a web application, the frontend running in the user’s browser will

likely be written in JavaScript, while the backend running on the server might have

been developed in Python or Java). The combination of these peculiarities of modern

programs is troublesome for static analyzers. Users typically complain about false

positives that arise from missing knowledge of the analysis w.r.t. the libraries and

frameworks that they use, while often being reluctant in submitting more code to the

analysis (that it will inevitably increase its resource — i.e., time and memory — re-

quirements). Supporting multilanguage analysis not only translates to more libraries

and frameworks to keep track of, but also to the analysis of code modules with dif-

ferent execution models, memory models, and semantics for the same statement.

This thesis aims at presenting a novel framework in which a complete application,

made up of different components potentially written in separate languages, can be

analyzed as a whole through a single analysis, thus achieving seamless multilanguage

analysis. Furthermore, a novel abstract interpretation of string values is presented,

with the intent of covering an area of static analysis that historically received less

attention than others, but that is nonetheless important for multilanguage analysis

as some inter-language interactions happen through string queries.

3

Chapter 1 | Introduction

1.1 Static analysis

Static analysis allows one to verify properties of computer programs at compile time

before they are executed. This is important for proving that programs do not behave

incorrectly at runtime, leading to an exception or computing wrong results. Static

analysis can also provide evidence of illicit information flows, a topic highly appre-

ciated by companies that develop software dealing with sensitive data or that is ex-

posed to external users’ interaction. For these reasons, the initial scientific interest in

static analysis is nowadays coupled with increasing industrial attention, as acknowl-

edged by the growing number of commercial actors in the static analysis market.

Most existing commercial static analyzers are based on simple pattern match-

ing and perform minimal semantic reasoning on the code under analysis. Pattern

matching is fast and scales well with respect to software size. Although the ana-

lyzers implementing pattern matching do not guarantee soundness and are able to

detect very few real bugs, usually producing a high number of false positives, their

scalability is a key ingredient for their commercial success [22].

In the last decades, semantic static analyses have been successfully applied to in-

dustrial software. Here we recall a few notable examples. Historically, scientific effort

focused on safety-critical embedded software, usually written in C or C++. Tools like

CodeSonar1, Polyspace2, AbsInt3, and ASTRÉE [49] have been applied to programs

of several hundred thousand lines of code, performing interprocedural analyses.

A stream of scientific work targeted object-oriented software developing modular

analyses [48], that is, analyses that reason on each method in isolation (i.e., intrapro-

cedurally) producing summaries for each of them that are in turn used when ana-

lyzing other methods. In this context, various analyzers, such as CodeContracts [91]

and Spec# [20], rely on contracts [96] to modularly reason on each method.

Other tools provided global (that is, interprocedural) reasoning on object-oriented

programs. For instance, SOOT [137] and WALA4
build a global abstract call graph

and infer the heap structure, while various analyses apply different checks relying on

similar call graphs (e.g., Julia [123]).

The tools reported in this section focus on a single language (or on a small set of

similar ones), which allowed them to develop very specific and optimized analyses

according to its (or theirs) execution and memory model.

1.2 Multilanguage systems

Software architecture has dramatically evolved in the last decades. The classical

client-server architecture, which was characteristic of web applications, has recently

1https://www.grammatech.com/codesonar-cc.

2https://www.mathworks.com/products/polyspace.html.

3https://www.absint.com.

4http://wala.sourceforge.net.

4

https://www.grammatech.com/codesonar-cc
https://www.mathworks.com/products/polyspace.html
https://www.absint.com
http://wala.sourceforge.net

1.2. Multilanguage systems

seen broader adoption with the advent of mobile applications. Moreover, the com-

mercial drive to the Software as a Service (SaaS) [95], where vendors only distribute

simple clients to customers while keeping all of the application logic remote, led to

a huge increase in cloud computing solutions. In general, the success of the client-

server pattern in all of its flavors consists in the clear cut between what has to be

distributed to users (i.e., the client side, which must run on as many devices as possi-

ble), and what can be maintained on a unique coherent infrastructure (i.e., the server

side, hidden to the final user and running in a controlled environment). This enables

greater modularity, control over data, and protection against tampering of the in-

tellectual property that the program carries. Since the two sides have very different

purposes, the programming languages used to implement them are typically differ-

ent. The client might run in a browser, exploiting languages such as JavaScript for

portability across different systems, or directly on a device, requiring a language that

must be compatible with the host system (e.g., Java in case of an Android application).

On the other hand, the backend typically exploits languages that are most efficient

for the system’s purpose, as any requirement for those languages can be met on the

controlled system: Python, C++, Java, and Rust are just a few of the languages that

are used in the wild.

The backend is also becoming less and less monolithic. Recent years have seen

the rise of microservices infrastructures [33], where the atomic entity that was the

server is split into smaller independent components that communicate with each

other through APIs. Backend logic has also started being implemented through

serverless applications, that is, code that runs in the cloud with (close to) no knowl-

edge about the environment it runs into. Different components of these applica-

tions typically interact with each other through events, exploiting services offered

by the cloud provider. Partitioning the server code into isolated entities also loosens

the requirement of having those entities written in the same language, as different

tasks might exploit different languages’ peculiarities. One more possible segmenta-

tion of the backend comes with blockchain-oriented applications, that interact with

code present on a blockchain [111]. Smart contracts are usually written with specific

DSLs (e.g., Solidity) dedicated to a particular blockchain in order to exploit its ca-

pabilities. Only recently a stream of blockchains adopted general purpose languages

for writing smart contracts [9, 24, 86, 87] such as Go, Java, and JavaScript.

Besides the transformation of client-server architectures, the Internet of Things

(IoT) has also risen in popularity. In an IoT system, things (that is, devices running

embedded software) communicate with each other and with gateways, possibly ac-

cessing the internet. The IoT network can also interact with various backends or other

devices (note that the backends of these networks might overlap, if not even match,

the ones of client-server applications). IoT networks are becoming wildly adopted in

several areas [139]: healthcare, smart homes, and manufacturing are just a few of the

scenarios where they are applied. Once more, different programming languages can

5

Chapter 1 | Introduction

1 c l a s s JoyCar {
2 p u b l i c n a t i v e i n t readUpDown () ;
3 p u b l i c n a t i v e vo id runMotor (i n t v a l u e) ;
4 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
5 JoyCar r c = new JoyCar () ;
6 / / I n i t i a l i z a t i o n
7 . . .
8 whi l e (t r u e){
9 r c . runMotor (r c . readUpDown ()) ;

10 / / Turn based on j o y s t i c k i n p u t
11 . . .
12 }
13 }
14 }

(a) Java code

1 JNIEXPORT j i n t JNICALL Java JoyCar readUpDown (JNIEnv ∗ env , j o b j e c t o){
2 r e t u r n readAnalog (A1) ;
3 }
4 l ong map (long va l , l ong f l , l ong fh , long t l , l ong th){
5 r e t u r n (th − t l) ∗ (v a l − f l) / (fh − f l) + t l ;
6 }
7 vo id motor (i n t ADC){
8 i n t v a l u e = ADC − 1 3 0 ;
9 softPwmWrite (e n a b l e P i n , map (abs (v a l u e) , 0 , 1 3 0 , 0 , 2 5 5)) ;

10 }
11 JNIEXPORT vo id JNICALL Java JoyCar runMotor (JNIEnv ∗ env , j o b j e c t o , j i n t v a l){
12 motor (v a l) ;
13 }

(b) Embedded C++ code

Figure 1.1: Excerpt of the JoyCar source code

(and likely will) be involved in the realization of the system: devices need to host fast

and optimized programs (usually written in C or C++) due to their limited resources, a

requirement that is not in place for the backend that can opt for completely different

languages.

1.2.1 An illustrative example

Consider, for instance, the following minimal example. The code reported in Fig-

ure 1.1
5

has been used to prove the usefulness of static analysis for discovering IoT

vulnerabilities [63]. The code implements a system composed of a joystick and a

robotic car that interact through a gateway. The Java fragment in Figure 1.1a, run-

ning on the gateway, initializes the whole system and then repeatedly queries the

joystick for steer and throttle. The C++ fragment in Figure 1.1b instead, implement-

ing the remaining two components, interacts with the joystick’s sensors and the car’s

motor. The two fragments communicate through the Java Native Interface (JNI). Here,

the authors are interested in detecting the IoT Injection attack that can happen if the

sensors’ outputs, that could be tampered with, can flow into the motor’s input with-

out being sanitized, exposing the car to attacks that could damage it. Authors resort

to Taint analysis [133, 60] for the task, but they require more than one analyzer:

5
Available at https://github.com/amitmandalnitdgp/IOTJoyCar.

6

https://github.com/amitmandalnitdgp/IOTJoyCar

1.3. Libraries and frameworks

since the flow might span between the two codebases, analyses for Java and C++ are

needed. Julia and CodeSonar were selected for the task, as they both were equipped

with configurable Taint analysis engines able to receive a specification of sources and

sinks from the user. The overall analysis presented by the authors proceeds as follows:

1. the value returned by function readAnalog is marked as a source of tainted

information for CodeSonar;

2. the second parameter of function softPwmWrite is marked as a sink for tainted

information for CodeSonar;

3. to detect tainted values flowing from C++ to Java code, the value returned by

Java_JoyCar_readUpDown is marked as a sink for CodeSonar;

4. to detect tainted values flowing from Java to C++ code, the first parameter of

JoyCar.runMotor is marked as a sink for Julia;

5. a first round of Taint analysis is run with both analyzers: Julia does not find

any vulnerability (as no sources were present under Java), but CodeSonar finds

a flow of tainted data going into Java_JoyCar_readUpDown;

6. a second round is run after marking JoyCar.readUpDown’s return value as a

source for the Java analysis, and this time Julia detects a flow of tainted data

going into the first parameter of JoyCar.runMotor;

7. a third and final round was run after marking Java_JoyCar_runMotor’s third

parameter as a source for CodeSonar, that was now able to detect the IoT In-

jection vulnerability with softPwmWrite as the sink.

Despite the successful discovery of a vulnerability that spanned multiple lan-

guages, the limits of this approach are quite evident: since tools need to exchange

information at each iteration, multiple rounds of analysis are needed to reach a fix-

point over the shared information, each composed by one analysis for each tool in-

volved. Moreover, tool communication is hard, even more if those come from different

vendors, as they might not agree on how information is exported and imported. Fur-

thermore, communicating the information might not be an easy task. In this example,

the authors focused on a “binary” property: a value is either tainted or not. However,

with more complex structures (e.g., Polyhedra [50]) finding the appropriate format

to exchange information between analyses might not be trivial.

1.3 Libraries and frameworks

One of the principles of modern software engineering is to exploit reusable code, often

in the form of third-party libraries and frameworks, avoiding re-implementation of

common functionalities in favor of reusable and highly tested code already widely

7

Chapter 1 | Introduction

used. Informally, a library consists of packaged (i.e., versioned, well-documented,

and ready-to-run) code that implements standard functionalities, and that can be

used by programs. Instead, software frameworks represent a wider concept:

“A software framework provides a standard way to build and deploy

applications. (…) Software frameworks may include support programs,

compilers, code libraries, tool sets, and application programming interfaces

(APIs) which bring together all the different components to enable develop-

ment of a project or system.”
6

Frameworks have been applied to various contexts. For instance, ASP.NET7
al-

lows a developer to implement and deploy a web application, while Windows Forms8

is designed to easily build desktop applications with modern UIs. Therefore, each

framework provides a specific execution model.

Static analyzers may raise alarms on generated code or specific framework com-

ponents since these usually follow non-standard patterns that are hardly detectable

and might confuse the analyzers. Moreover, frameworks often offer ad-hoc execution

models, that might rely on specific configuration files. Not being aware of these be-

haviors might lead to unsoundly ignoring relevant portions of the application code,

or to considering too many methods as candidates for the reflective calls to preserve

soundness.

Nowadays, each programming language has dozens of software frameworks (like

Spring and Lombok in Java, or ASP.NET and Windows Forms in C#), each one with

its execution model, with new ones keep emerging. This represents a challenge for

static analyzers since customers expect the analysis to be up-to-date with modern

technologies, while the effort of modeling even a single framework might not be neg-

ligible. Furthermore, to keep amplifying the range of supported frameworks, there

is the need for a flexible mean to model new ones, as well as to improve the knowl-

edge of the analyzer on already-known frameworks. Finally, new versions of the

same framework might require different models. It is therefore essential to document

which parts of a framework are supported and how to keep the models updated when

new versions are released.

1.4 Analyzing strings

Strings play a key role in any programming language due to the many and differ-

ent ways in which they are used, such as to dynamically access object properties,

to hide the program code by using string-to-code statements and reflection, or to

manipulate data-interchange formats such as JSON, just to name a few. Despite the

6https://en.wikipedia.org/wiki/Software_framework.

7https://www.asp.net/.

8https://docs.microsoft.com/it-it/dotnet/framework/winforms/.

8

https://en.wikipedia.org/wiki/Software_framework
https://www.asp.net/
https://docs.microsoft.com/it-it/dotnet/framework/winforms/

1.5. Methodology

1 i n t countMatches (S t r i n g s t r , S t r i n g sub) {
2 i n t count = 0 ;
3 i n t l e n = sub . l e n g t h () ;
4 whi l e (s t r . c o n t a i n s (sub)) {
5 i n t i d x = s t r . indexOf (sub) ;
6 count = count + 1 ;
7 i n t s t a r t = i d x + l e n ;
8 i n t end = s t r . l e n g t h () ;
9 s t r = s t r . s u b s t r i n g (s t a r t , end) ;

10 }
11 r e t u r n count ;
12 }

Figure 1.2: Program counting the occurrences of a sub in str

great effort spent in reasoning about strings, static analysis often failed to manage

programs that heavily manipulate them, mainly due to the inaccuracy of the results

and the prohibitive amount of resources (time, space) required to retrieve useful in-

formation on strings. On the one hand, finite height string abstractions [41] are

computable in a reasonable time, but precision is suddenly lost when using advanced

(but common) string manipulations. On the other hand, more sophisticated abstrac-

tions (e.g., the ones reported in [14, 39]) compute precise results but they require

huge, and sometimes unrealistic, computational resources, making realistic code in-

tractable for them. A good representation of the latter abstractions is the finite state

automata domain [14]. Over-approximating strings as regular languages using finite

state automata has been shown to increase string analysis accuracy in many sce-

narios, but it does not scale to real-world programs dealing with statically unknown

inputs and long text manipulations.

Consider the code of Figure 1.2, that counts the occurrences of string sub inside

string str. This code is a simplification of the StringUtils.countMatches method

from the Apache commons-lang library
9
, one of the most popular Java libraries pro-

viding extra functionalities over the core classes of the java.lang package (that

contains class String as well). Proving properties about the value of count after the

loop is particularly challenging since it requires correct modeling of a set of string op-

erations (length, contains, indexOf, and substring) and their interaction. State-

of-the-art string analyses fail to precisely model most of such operations since their

abstraction of string values is not rigorous enough to deal with these situations. The

loss of precision usually leads to failure in proving string-based properties (also on

non-string values) in real-world software, such as the numerical bounds of the value

returned by countMatches when applied to a given pair of strings.

1.5 Methodology

Statically analyzing software is becoming increasingly difficult. Achieving this means

having an accurate model of the software’s semantics: execution model, memory

9https://commons.apache.org/proper/commons-lang/.

9

https://commons.apache.org/proper/commons-lang/

Chapter 1 | Introduction

model and the effect of each instruction provided by the programming languages

used must be taken into account. On top of this, each language comes in different

versions, and with a whole ecosystem of libraries and frameworks with their separate

versions. This adds more constraints on the features to model for having an effec-

tive analysis. It should be intuitive that the sheer number of programming languages

that exist and are being used to perform safety-critical tasks or to manipulate users’

sensitive data already poses a challenge, as creating and maintaining an analyzer for

each of those is impractical. If inter-language communication is also taken into ac-

count, the picture complicates even more: inside the same application, one might find

portions of code with contrasting memory models, or containing similar instructions

that have completely different semantics.

In this context, cooperation between different analyzers (i.e., the strategy illus-

trated in Section 1.2.1 to detect the IoT Injection attack) is not ideal, since the number

of analyzers involved and the number of analysis rounds needed to reach a fixpoint

will grow with the complexity of the program to analyze (recall that three rounds

were required to analyze less than 100 lines of code). Ad-hoc solutions, that is, ana-

lyzers targeting a specific combination of programming languages, are also not viable:

rewriting an analyzer from scratch each time a new combination arises leads to an

excessive amount of work.

Despite providing an in-depth solution tailored only to the analysis of complete

JEE applications (Java backend and a JSP/JSF front-end), the authors of [121] cor-

rectly identify five common challenges that have to be addressed regardless of the

combination of languages that one wants to analyze:

∙ the analysis should rely on a standard representation that can model all pro-

gramming languages;

∙ the analysis must detect when multi-language code is used and parse it follow-

ing its language;

∙ the analysis must know the communication patterns available in each program-

ming language, and it must also consider the versions of such languages;

∙ the different frameworks used to deploy different components must be ana-

lyzed to understand hidden dependencies, component life cycle and configu-

ration, and callbacks invoked implicitly;

∙ the analysis must identify string literals and parse them following the applica-

tion context.

Starting from these challenges, we lay out the five principles that a multilanguage

static analyzer should, in our opinion, follow. These are not meant to be absolute laws,

but rather architectural guidelines for the development of such analyzer.

10

1.5. Methodology

Separation of syntax and semantics. No predefined semantic meaning should be

attributed to syntactic constructs. This imposes a clear cut between the intermediate

representation used for representing the semantics of a program and the syntactic

constructs that reflect the structure of the source
10

code. While we expect that most

static analyzers follow this principle, it becomes mandatory for multilanguage ones:

when coupling syntax with semantics, analyses will have to change whenever a new

language is added to the analyzer, as its constructs must be handled appropriately.

Instead, the two should be separated and the former must be dynamically rewritten

into the latter.

Parametrization. Components of the analyzer taking part in the evaluation of a

program’s semantics at a specific program point must be parametric to the source

language of the program point. This ensures that no language-specific assumptions

are hardcoded inside the analyzer. Language-dependent semantics can be attached

to program points at parse time. Analysis components can then resort to the attached

information to properly evaluate the semantics of that program point.

Extensibility. There should not be a predefined set of syntactic constructs or se-

mantic operations that the analyzer can support. The endgame is analyzing as many

languages as possible: each of them can bring new instructions, that can have a com-

pletely new semantic meaning. Thus, (i) the intermediate representation used to

model the program structure must be extensible, (ii) the set of semantic operations

that the analyses can interpret must be augmentable, and (iii) all analysis components

should expect the set of operations to be extended (i.e., that no component should

raise errors when new constructs are added to the intermediate representation).

Modularity. Analysis components should be modularly defined, such that imple-

mentations of each component can be swapped with different ones without others

needing modifications. This, other than leading to higher quality code (maintain-

able and testable), allows users to customize the analysis according to their needs:

some might be willing to pay more computationally to get better results, while others

might only require coarser analyses to run. This also enables composition of the anal-

ysis w.r.t. a specific language combination. Moreover, this will also simplify analysis

combinations, as those can as well be defined modularly.

Ease of use. Implementation of analysis components should resemble as closely as

possible their formal definition. This aims at making the implementation as clear as

possible, thus lowering the time needed to learn how to extend the analyzer with new

implementations. An implicit requirement of this principle is that analysis compo-

10
Here, we identify as source code the language in which the program to analyze is written in. This does

not prevent the analysis of compiled code, as it can be seen as a form of source code by itself.

11

Chapter 1 | Introduction

nents should be agnostic of one another: for instance, one should not need to handle

procedure calls when implementing an analysis for numerical values.

1.6 Contribution and publications

Following the five challenges and the five principles reported in Section 1.5, this the-

sis formalizes the structure of LiSA, a Library for Static Analysis aimed at achieving

multilanguage analysis, and that can be used to create static analyzers by abstract

interpretation [43, 45]. Roughly, LiSA provides the full infrastructure of a static ana-

lyzer: starting from an intermediate representation in the form of extensible control

flow graphs (CFGs), LiSA lets users define analysis components and then takes care

of orchestrating the analysis using a unique fixpoint algorithm over CFGs. Moreover,

parsing logic is left to the user, that will define frontends translating source code into

CFGs (modeling the syntax of the input program), while also providing rewriting rules

for each CFG node into symbolic expressions, an internal extensible language repre-

senting atomic semantic operations (thus modeling the semantics of each instruction

of the input program). LiSA comes with several implementations of each component,

and with an example frontend for a simple object-oriented imperative language used

for testing and demonstration. We then provide a proof-of-concept multilanguage

analysis using LiSA on the example reported in Section 1.2.1.

We also show the effectiveness of LiSA in building analyzers for different lan-

guages. First, we show how the GoLiSA analyzer can tackle Go smart contracts,

exploiting information-flow analyses to detect critical usages of non-deterministic

constructs. We employ both Taint analysis and Non-interference to check if non-

determinism can influence updates to the shared blockchain state, successfully an-

alyzing a benchmark of almost 300 contracts pulled from GitHub. Then, we employ

the PyLiSA analyzer to tackle JuPyter Notebooks (that is, Python code) used in data

science. We define an abstraction of such code that extrapolates the transformations

applied to dataframes, unifying syntactic operations performed through various li-

brary functions. This abstraction can be used as a base to perform further analyses

over which properties can be computed, such as inferring the shape of each dataframe

or detecting data leakages.

Furthermore, we define a domain-specific language called SARL, designed to com-

pactly specify the semantics of libraries and frameworks to generate annotations for

a static analyzer. Small SARL files (in the order of tens of lines) can be passed to an en-

gine that uses them to dynamically generate annotations whenever a given condition

is satisfied on a program member, and the analyzer can then adapt its assumptions

relying on these annotations. SARL has been shown to help Julia refine its results

when the program under analysis was meant to be executed with C# frameworks

that Julia had no previous knowledge of.

Lastly, to tackle the last challenge of Section 1.5, we formalize Tarsis, an abstract

12

1.6. Contribution and publications

domain for string properties. Tarsis exploits final state automata to precisely track

string values that can be modeled through regular languages, while also providing

good approximations for others. The key idea of Tarsis is to reduce the computational

requirements typical of automata-based domains by considering alphabets of strings

instead of single characters, thus compacting the resulting automata. Tarsis has been

implemented into a prototypical analyzer, and early evaluations regarding precision

and efficiency have been performed.

Publications. This thesis is partly based on the following published papers:

∙ L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi, P. Ferrara, F.

Spoto, E. Tallin. “Ensuring Determinism in Blockchain Software with GoLiSA:

An Industrial Experience Report”. In: Proceedings of the 11th ACM SIGPLAN

International Workshop on the State Of the Art in Program Analysis (SOAP 2022).

DOI: 10.1145/3520313.3534658

∙ P. Ferrara, L. Negrini, V. Arceri, A. Cortesi. “Static analysis for dummies: ex-

periencing LiSA”. In: Proceedings of the 10𝑡ℎ ACM SIGPLAN International Work-

shop on the State Of the Art in Program Analysis (SOAP 2021). DOI: 10.1145/
3460946.3464316

∙ L. Negrini, V. Arceri, P. Ferrara, A. Cortesi. “Twinning Automata and Regular

Expressions for String Static Analysis”. In: Proceedings of the 22𝑛𝑑 International

Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI

2021). DOI: 10.1007/978-3-030-67067-2_13

∙ P. Ferrara, L. Negrini. “SARL: OO Framework Specification for Static Analysis”.

In: Software verification. Springer, Cham, 2020. PP. 3-20. DOI: 10.1007/978-
3-030-63618-0_1 (VSTTE 2020).

Moreover, portions of the thesis rely on papers that have yet to appear:

∙ Chapter 3 is based on a book chapter to appear in the “Challenges of Software

Verification”
11

;

∙ Chapter 4 is based on a paper under second revision for ECOOP
12

.

Note that, whenever a chapter or section is based on one or more of the listed

works, an explicit note will be made.

11
The book will contain contributions presented at the CSV workshop (https://ssv.dais.unive.

it/events/challenges-of-software-verification-workshop/).

12https://conf.researchr.org/home/ecoop-2023.

13

https://dl.acm.org/doi/10.1145/3520313.3534658
https://dl.acm.org/doi/10.1145/3460946.3464316
https://dl.acm.org/doi/10.1145/3460946.3464316
https://link.springer.com/chapter/10.1007/978-3-030-67067-2_13
https://link.springer.com/chapter/10.1007/978-3-030-63618-0_1
https://link.springer.com/chapter/10.1007/978-3-030-63618-0_1
https://ssv.dais.unive.it/events/challenges-of-software-verification-workshop/
https://ssv.dais.unive.it/events/challenges-of-software-verification-workshop/
https://conf.researchr.org/home/ecoop-2023

Chapter 1 | Introduction

1.7 Thesis structure

Chapter 2 introduces basic notions that will be used throughout the rest of the thesis,

and discusses the related work, most notably Mopsa [83], that is the main alternative

to the approach taken in this thesis.

Chapter 3 illustrates the overall architecture of LiSA. In particular, a high-level

overview is first introduced in 3.1, to give the reader a broad idea of how the com-

ponents discussed in later sections will fit into the complete schema. Then, the CFG

structure that LiSA uses to represent generic programs is first introduced in Sec-

tion 3.2, together with the internal language of symbolic expressions. The following

sections introduce the Analysis State (3.3), Interprocedural Analysis (3.4), and fron-

tends (3.5). Section 3.6 defines SARL, reporting its implementation in Julia that has

been experimented with two popular C# frameworks. The chapter concludes with

a demonstrative example of seamless multilanguage analysis on the IoT network of

Section 1.2.1, followed by a discussion on our teaching experience with LiSA in Master

Courses.

In Chapters 4 and 5, we report the usage of LiSA to develop frontends and analyses

in different contexts. Chapter 4 defines an information-flow based analysis to detect

critical usages of non-deterministic constructs in smart contracts. Experiments on a

benchmark of almost 300 contracts are reported, followed by an industrial case study

on the Commercio.network blockchain in Section 4.6. Instead, Chapter 5 illustrates

an ongoing work targeting JuPyter Notebooks used in data science. An abstraction

for the Python code they contain is defined as a base for determining properties of

such code. The abstraction constructs a graph reporting the transformations applied

to all dataframes used in the notebook, abstracting away the syntactic constructs

used to manipulate them. We implement our abstraction and experiment it as a base

to infer the shape of the dataframes used by the program.

Chapter 6 introduces Tarsis, an abstract domain for string properties. Tarsis has

been defined over a minimalistic Imp language, whose definition can be found in the

same chapter, together with preliminary experimental results.

Finally, Chapter 7 concludes and discusses future work, and Appendix A reports

soundness proofs for the abstract semantics of Chapter 6.

14

2 Preliminaries

Chapter Contents

2.1 Sets and ordered structures . 15

2.1.1 Sets . 15

2.1.2 Relations and functions 16

2.1.3 Partitions . 17

2.1.4 Ordered structures . 17

2.2 Abstract interpretation . 19

2.2.1 Fixpoints . 19

2.2.2 Galois connections . 20

2.2.3 Fixpoint abstraction . 21

2.2.4 Convergence acceleration 21

2.3 Automata and abstractions . 22

2.3.1 Finite state automata notation 22

2.3.2 A finite state automata abstract domain 24

2.4 Related work . 25

2.4.1 Multilanguage analysis 25

2.4.2 Modeling libraries and frameworks 26

2.4.3 String analysis . 28

In this chapter, we report the mathematical notation that will be used throughout

the thesis. We start by recalling notions on sets and ordered structures, followed by

an overview of abstract interpretation. We then discuss finite state automata and an

abstract domain based on them. We conclude the chapter by discussing the related

work.

2.1 Sets and ordered structures

2.1.1 Sets

A set, denoted with a capital letter, is an unordered and possibly infinite collection of

elements, denoted with lowercase letters. We state that element x is part of a set X

with x ∈ X. The cardinality of a set X, denoted by |X| ∈ ℕ, is the number of elements

it contains. A set defined as { x ∈ X | 𝜙(x) } is composed of all elements in X that

satisfy predicate 𝜙. Given two sets X and Y, we define the following:

∙ X ⊆ Y ⟺ ∀x ∈ X . x ∈ Y is the set inclusion (we say that X is a subset of Y);

∙ X ⊂ Y ⟺ X ⊆ Y ∧ ∃y ∈ Y . y ∉ X is the strict set inclusion (we say that X is a

strict subset of Y);

∙ X ∪ Y ≜ { z | z ∈ X ∨ z ∈ Y } is the set union;

15

Chapter 2 | Preliminaries

∙ X ∩ Y ≜ { z | z ∈ X ∧ z ∈ Y } is the set intersection;

∙ X ∖ Y ≜ { x ∈ X | x ∉ Y } is the set difference;

Moreover, ∅ is the set containing no elements. It follows that |∅| = 0 and that, given

any set X, ∅ ⊆ X, ∅ ∪ X = X ∖ ∅ = X, and ∅ ∩ X = ∅ ∖ X = ∅. ℘(X) is the powerset

of X, that is, the set containing all of its subsets, and X∗
is the Kleene-closure of X,

that is, the infinite set of all finite sequences of its elements. The Cartesian product

between X and Y is X × Y ≜ { ⟨x, y⟩ | x ∈ X ∧ y ∈ Y }.

A family of sets, denoted with a calligraphic capital letter, is a set of sets. Given

such a family  , we extend the union and intersection operators to such families as

⋃ ≜ ⋃X∈ ≜ { x | ∃X ∈  . x ∈ X } and ⋂ ≜ ⋂X∈ ≜ { x | ∀X ∈  . x ∈ X },

respectively.

2.1.2 Relations and functions

A relation over sets X and Y is defined as R ⊆ X ×Y. If X = Y, then R is a relation over

X, denoted RX. x R y and ⟨x, y⟩ ∈ R are equivalent notations to state the membership

of a pair of elements to a relation. RX can have various properties; we report here the

ones of interest for this thesis:

∙ reflexivity: ∀x ∈ X . x R x;

∙ symmetry: ∀x, y ∈ X . x R y ⟹ y R x;

∙ antisymmetry: ∀x, y ∈ X . x R y ∧ y R x ⟹ x = y;

∙ transitivity: ∀x, y, z ∈ X . x R y ∧ y R z ⟹ x R z.

A relation RX is a partial order if it is reflexive, antisymmetric, and transitive. It is

an equivalence relation if it is reflexive, symmetric, and transitive. Given a relation

R ⊆ X × Y, we denote as its domain 𝑑𝑜𝑚(R) ⊆ X the set { x ∈ X | ∃y ∈ Y . ⟨x, y⟩ ∈ R },

and as its co-domain 𝑐𝑜𝑑𝑜𝑚(R) ⊆ Y the set { y ∈ Y | ∃x ∈ X . ⟨x, y⟩ ∈ R }. Given

x ∈ 𝑑𝑜𝑚(R), R(x) = { y ∈ 𝑐𝑜𝑑𝑜𝑚(R) | ⟨x, y⟩ ∈ R } is the image of x. The image

notation can be used to define a relation as the application of an expression 𝜌 that

depends on an element of its domain: if R(x) = { y ∈ 𝑐𝑜𝑑𝑜𝑚(R) | y ∈ 𝜌(x) }, then

R = { ⟨x, y⟩ | x ∈ 𝑑𝑜𝑚(R) ∧ y ∈ 𝑐𝑜𝑑𝑜𝑚(R) ∧ y ∈ R(x) }.
A function (also called map) 𝑓 ∶ X → Y is a relation 𝑓 ⊆ X × Y such that

∀x ∈ 𝑑𝑜𝑚(𝑓) . ⟨x, y⟩ ∈ 𝑓 ∧ ⟨x, z⟩ ∈ 𝑓 ⟹ y = z. It follows that ∀x ∈ 𝑑𝑜𝑚(𝑓) . |𝑓 (x)| = 1:

abusing notation, we write 𝑓 (x) = 𝜌(x). We denote with 𝑓 [x ↦ y] a copy of 𝑓 where

𝑓 (x) is set to y. If 𝑓 ∶ X → Y and 𝑔 ∶ Y → Z, 𝑔 ◦ 𝑓 ∶ 𝑋 → 𝑍 is the composition of

𝑔 after 𝑓 , defined as 𝑔 ◦ 𝑓 (x) = 𝑔(𝑓 (x)). We define the iterates 𝑓 𝑛, 𝑛 ∈ ℕ of a function

𝑓 ∶ X → X as 𝑓 0(x) = x, 𝑓 𝑛+1(x) = 𝑓 𝑛 ◦ 𝑓 (x). Visually, such iterates can behave in

one of three possible ways:

16

2.1. Sets and ordered structures

⋮

2

1

0

(a) ⟨ℕ, ≥⟩

⋮

2

1

0

(b) ⟨ℕ, ≤⟩

+∞

⋮

2

1

0

(c) ⟨ℕ∞, ≤̇⟩

Figure 2.1: Examples of Hasse diagrams for different posets

𝑓 𝑛…
𝑓 1𝑓 0

𝑓 𝑛…
𝑓 𝑖…

𝑓 1𝑓 0

…
𝑓 2𝑓 1𝑓 0

2.1.3 Partitions

A partition of a set X, denoted as  ⊆ ℘(X), is a family of subsets of X such that

∀P ∈  . P ≠ ∅, ⋃ = X, and ∀P1, P2 ∈  . P1 ∩ P2 = ∅. An equivalence relation R
over a set X induces a partition R on X by grouping elements that are equivalent to

each other into subsets. Each element of R is called an equivalence class, denoted

as [x]R ≜ { y ∈ 𝑑𝑜𝑚(R) | x R y }, and x is called the representative of the class.

2.1.4 Ordered structures

A set X with a partial ordering relation ⊑X is called poset, denoted by ⟨X, ⊑X⟩. A

poset can be represented as a directed graph, where an edge’s direction represents

the imposed ordering (e.g., x → y ⟺ x ⊑X y). One can also encode such ordering

in the topological structure of the graph. For instance, a Hasse diagram (the de-facto

standard graphical representation of posets), hides self-edges encoding reflexivity

(x → x), represents direct ordering using undirected edges and exploiting vertical

coordinates (x—y ⟹ x ⊑X y if y is higher, y ⊑X x otherwise), and removes edges

that are transitively implied by direct relationships.

Example 2.1.1. Examples of Hasse diagrams are reported in Figure 2.1, that depicts

the posets ⟨ℕ, ≥⟩, ⟨ℕ, ≤⟩, and ⟨ℕ∞, ≤̇⟩, respectively (where ℕ∞ = ℕ ∪ {+∞} and ≤̇

is the regular ≤ extended such that ∀n ∈ ℕ . n ≤̇ + ∞).

Given Y ⊆ X, u ∈ X is an upper bound of Y if ∀y ∈ Y . y ⊑X u. If u ∈ Y, then u is

called maximal. We denote as 𝑢𝑏(Y) the set of all upper bounds of Y. The least upper

bound (lub) of Y is the element ⨆X Y such that ∀u ∈ 𝑢𝑏(Y) . ⨆X Y ⊑X u, if it exists. If

17

Chapter 2 | Preliminaries

⨆X Y ∈ Y, then it is the maximum (or top, denoted as ⊤) element. By duality we can

define the lower bound, minimal, greatest lower bound (or glb, denoted as ⨅X Y), and

minimum (or bottom, denoted as ⊥). Note that, when they exist, ⊤ and ⊥ are unique

thanks to antisymmetry. Given x, y ∈ X, x ⊔X y ≜ ⨆X{x, y} and x ⊓X y ≜ ⨅X{x, y}.

A complete partial order (cpo), denoted as ⟨X, ⊑X, ⊥X, ⊔X⟩, is a poset ⟨X, ⊑X⟩ where

⊥X ∈ X and ∀Y ⊆ X .Y ≠ ∅ ∧ |Y| ∈ ℕ ⟹ ⨆X Y ∈ X.

Given a poset ⟨X, ⊑X⟩, a subset C ⊆ X is called chain if ∀x, y ∈ C . x ⊑X y∨y ⊑X x.

A chain can be ordered: if C = { x𝑘 | 𝑘 ∈ ℕ∞ ∧ x𝑘 ∈ X }, then ∀𝑖, 𝑗 ∈ ℕ, 𝑖, 𝑗 ≤ |C| the

chain is ascending, denoted C↑
, if 𝑖 ≤ 𝑗 ⟹ x𝑖 ⊑X x𝑗 or descending, denoted C↓

, if

𝑖 ≤ 𝑗 ⟹ x𝑗 ⊑X x𝑖. A poset satisfies the ascending chain condition (ACC) if every

infinite ascending chain C↑
is not strictly increasing, that is if ∀C↑ ⊆ X ∃𝑖 ∈ ℕ . ∀𝑗 >

𝑖 . x𝑗 = x𝑖, x𝑖, x𝑗 ∈ C↑
. Conversely, it satisfies the descending chain condition (DCC) if

every infinite descending chain is not strictly decreasing.

A join semi-lattice ⟨X, ⊑X, ⊔X⟩ is a poset ⟨X, ⊑X⟩ such that ∀x, y ∈ X . x ⊔X y ∈ X.

Conversely, a meet semi-lattice ⟨X, ⊑X, ⊓X⟩ is a poset ⟨X, ⊑X⟩ such that ∀x, y ∈ X . x ⊓X

y ∈ X. A lattice ⟨X, ⊑X, ⊔X, ⊓X⟩ is both a join and meet semi-lattice. Moreover, it is

complete if ∀Y ⊆ X . ⨆x Y ∈ X ∧ ⨅x Y ∈ X, denoted by ⟨X, ⊑X, ⊔X, ⊓X, ⊤X, ⊥X⟩. An

alternative (but equivalent) requirement for a poset to be complete is the existence

of top and bottom elements. A complete lattice can always be derived from a set X

by considering its powerset: ⟨℘(X), ⊆, ∪, ∩, ∅,X⟩ is complete since ⊆ is a partial or-

dering relation, ∪ and ∩ are closed w.r.t. ℘(X), and ∀Y ∈ ℘(X) . ∅ ⊆ Y ⊆ X. One

can derive several complete lattices starting from a given one. For instance, given

⟨X, ⊑X, ⊔X, ⊓X, ⊤X, ⊥X⟩ and a set Y, the functional lift [45] of X w.r.t. Y is the com-

plete lattice ⟨Y → X, ⊑̇, ⊔̇, ⊓̇, ⊥̇, ⊤̇⟩ of total functions Y → X, that is, of functions

defined on all elements of Y. Lattice operators are defined as point-wise applications

of operators over X on all y ∈ Y. Furthermore, given a finite set of complete lat-

tices ⟨Y𝑖, ⊑Y𝑖
, ⊔Y𝑖

, ⊓Y𝑖
, ⊥Y𝑖

, ⊤Y𝑖
⟩, 𝑖 ∈ Δ ⊂ ℕ, their Cartesian (or direct) product (Chapter

36 of [42]) is the complete lattice ⟨×𝑖∈Δ Y𝑖,
×

⊆,
×

∪,
×

∩,
×

⊥,
×

⊤⟩, where lattice operators are

component-wise applications of the operators over each Y𝑖.

Example 2.1.2. Posets in Figure 2.1a and 2.1b are both lattices (intuitively, given

any pair of elements, both lub and glb can be uniquely determined in ℕ by using

the ordering relation on the elements themselves), but are not complete: given an

infinite subset of ℕ, no given element exists in ℕ that is a lower bound (or upper

bound) of the whole set. Instead, the poset ⟨ℕ∞, ≤̇⟩ in Figure 2.1c is a complete

lattice since any infinite subset will have, in the worst case, 0 as glb and +∞ as lub.

Given ⟨X, ⊑X⟩ and ⟨Y, ⊑Y⟩, 𝑓 ∶ X → Y is:

∙ monotone, if ∀x1, x2 ∈ X . x1 ⊑X x2 ⟹ 𝑓(x1) ⊑Y 𝑓 (x2);

∙ Scott-continuous, if ∀C↑ ⊆ X . ⨆X{ x | x ∈ C↑ } ∈ X, 𝑓 (⨆X{ x | x ∈ C↑ }) =

⨆Y{ 𝑓 (x) | x ∈ C↑ };

18

2.2. Abstract interpretation

∙ Scott-co-continuous, if ∀C↓ ⊆ X . ⨅X{ x | x ∈ C↓ } ∈ X, 𝑓 (⨅X{ x | x ∈ C↓ }) =

⨅Y{ 𝑓 (x) | x ∈ C↓ };

∙ co-additive, if ∀Z ⊆ X . 𝑓 (⨅X Z) = ⨅Y 𝑓 (Z);

Instead, if 𝑓 ∶ X → X, 𝑓 is:

∙ extensive, if ∀x ∈ X . x ⊑X 𝑓 (x);

∙ reductive, if ∀x ∈ X . 𝑓 (x) ⊑X x.

2.2 Abstract interpretation

Abstract interpretation [43, 45] is a mathematical framework for reasoning about

programs’ semantics. Proving non-trivial properties of such semantics is, in gen-

eral, undecidable [115]. Abstract interpretation overcomes this by reasoning on a

sound over-approximation of the uncomputable real semantics, referred to as con-

crete, transforming it into so-called abstract semantics that is instead computable.

While approximation restores computability, it does come with the cost of impreci-

sion, as more executions are considered w.r.t. the actual ones exhibited by the pro-

gram. However, thanks to the over-approximation, properties proven to hold for the

abstract semantics are guaranteed to hold also for the concrete one. The main idea

behind abstract interpretation is to define the concrete semantics as the fixpoint of a

monotone function. Such a function can then be abstracted to a simpler one, gaining

computability, that has to be proven sound. A detailed and accurate description of

the theoretical bases of abstract interpretation can be found in [42].

In this section, we depict Hasse diagrams using ellipses to avoid binding our ex-

amples to particular poset structures. Inside such ellipses, only relevant elements of

the posets and their relations are drawn (an example is visible in Figure 2.2).

2.2.1 Fixpoints

Given ⟨X, ⊑X⟩ and 𝑓 ∶ X → X, an element x ∈ X is a fixpoint of 𝑓 if 𝑓 (x) = x, it is

a pre-fixpoint of 𝑓 if 𝑓 (x) ⊑X x, and it is a post-fixpoint of 𝑓 if x ⊑X 𝑓 (x). FP𝑓 , FP⪯
𝑓
,

FP⪰
𝑓

are the sets of fixpoints, pre-fixpoints, and post-fixpoints of 𝑓 , respectively. An

element x ∈ FP𝑓 is the greatest fixpoint (gfp𝑓) if ∀y ∈ FP𝑓 . y ⊑X x. Conversely, it

is the least fixpoint (lfp𝑓) if ∀y ∈ FP𝑓 . x ⊑X y. Several theorems prove the existence

of gfp and lfp. Here, we report Kleene iterative fixpoint theorem [44] as it provides

a constructive method for calculating them: given ⟨X, ⊑X, ⊥X, ⊔X⟩ and 𝑓 ∶ X →

X, if 𝑓 is Scott-continuous then lfp𝑓 exists and it is the lub of the increasing chain

⊥X ⊑X 𝑓 (⊥X) ⊑X 𝑓 2(⊥X) ⊑X … , that is lfp𝑓 = ⨆X{ 𝑓 𝑛(⊥X) | 𝑛 ∈ ℕ }. By duality,

gfp𝑓 = ⨅X{ 𝑓
𝑛(⊤X) | 𝑛 ∈ ℕ }. Visually:

⨆𝑖 𝑓
𝑖(⊥)…𝑓 1(⊥)𝑓 0(⊥) ⨅𝑖 𝑓

𝑖(⊤)…𝑓 1(⊤)𝑓 0(⊤)

19

Chapter 2 | Preliminaries

x

y

x

𝛾

𝛼

X X

(a) reductiveness of 𝛼 ◦ 𝛾

y

x

x
𝛼

𝛾

X X

(b) extensiveness of 𝛾 ◦ 𝛼

Figure 2.2: Properties of 𝛼 and 𝛾 in a GC

2.2.2 Galois connections

Accordingly to [43, 45], a Galois connection (GC) ⟨X, ⊑X⟩ −−−→←−−−
𝛼

𝛾

⟨X, ⊑X⟩ between two

posets ⟨X, ⊑X⟩ and ⟨X, ⊑X⟩ is formed by a pair of functions 𝛼 ∶ X → X and 𝛾 ∶

X → X such that ∀x ∈ X, x ∈ X . 𝛼(x) ⊑X x ⟹ x ⊑X 𝛾(x). In the context of ab-

stract interpretation, ⟨X, ⊑X⟩ is the concrete poset (or domain), ⟨X, ⊑X⟩ is the abstract

poset (or domain), 𝛼 is the abstraction function and 𝛾 is the concretization function.

Whenever it is not clear from context if an object pertains to the concrete or abstract

world, abstract objects with be over-lined. Given two elements x, y of the same poset,

if x ⊑ y we say that x is more precise than y. GCs have several useful properties, like

the existence of the best abstraction 𝛼(x) for all concrete objects x, composability, and

the ability to determine 𝛼 from 𝛾 and vice versa (Proposition 7 of [46]). Specifically, if

⟨X, ⊑X⟩ and ⟨X, ⊑X⟩ are posets, and 𝛼 ∶ X → X is a complete join-preserving function

(that is, if and only if ∀X′ ⊆ X, 𝛼(⨆X X′) = ⨆X 𝛼(X
′) whenever ⨆X X′

exists), then

⟨X, ⊑X⟩ −−−→←−−−
𝛼

𝛾

⟨X, ⊑X⟩ exists with 𝛾(y) = ⨆X{ x | 𝛼(x) ⊑X y }.

An equivalent characterization of GCs exploits properties of 𝛼 and 𝛾 : ⟨X, ⊑X⟩ −−−→←−−−
𝛼

𝛾

⟨X, ⊑X⟩ holds if and only if 𝛼 and 𝛾 are both monotone, 𝛼 ◦ 𝛾 is reductive, and 𝛾 ◦ 𝛼

is extensive. Figures 2.2a and 2.2b show reductiveness and extensiveness in action.

Being reductive, 𝛼◦𝛾 ensures that concretizing an element x ∈ X and then abstracting

back does not lose precision. Conversely, the extensiveness of 𝛾 ◦ 𝛼 ensures that

abstracting an element x ∈ X and then concretizing back does not gain precision.

Soundness. While a GC is not strictly required within the abstract interpretation

framework [47], its existence ensures soundness and eases soundness proofs for the

semantics abstraction: given ⟨X, ⊑X⟩ −−−→←−−−
𝛼

𝛾

⟨X, ⊑X⟩, 𝑓 ∶ X → X and 𝑓 ∶ X → X,

𝑓 is a sound approximation of 𝑓 in X if ∀x ∈ X . 𝛼(𝑓 (x)) ⊑X 𝑓 (𝛼(x)) (or equivalently

∀x ∈ X . 𝑓 (𝛾(x)) ⊑X 𝛾(𝑓 (x))). Equivalent conditions can be established when a GC is

not present: in fact, it is sufficient to prove one of the following:

∙ ∀x . 𝑓 (x) ⊑X 𝛾 ◦ 𝑓 ◦ 𝛼(x);

∙ ∀x . 𝛼 ◦ 𝑓 ◦ 𝛾(x) ⊑X 𝑓 (x);

20

2.2. Abstract interpretation

x x𝛼

𝛾

𝑓 (x) y

y 𝑓 (x)

𝑓

𝑓

𝛼

𝛾

X X

Figure 2.3: Sound semantic abstraction

∙ ∀x . 𝛼 ◦ 𝑓 (x) ⊑X 𝑓 ◦ 𝛼(x);

∙ ∀x . 𝑓 ◦ 𝛾(x) ⊑X 𝛾 ◦ 𝑓 (x).

The combination of these conditions results in the scheme depicted in Figure 2.3, that

intuitively shows that abstract computations over-approximate concrete ones.

2.2.3 Fixpoint abstraction

As stated at the beginning of this section, abstract interpretation is about defining the

concrete semantics of a program as a fixpoint computation over a monotone function,

and then abstracting it to regain computability. This result is the abstract semantics

of the program, and it has to be proven a sound over-approximation of the concrete

one. Proving the soundness of the abstract semantics can be achieved in a number of

ways [47], depending on the initial hypotheses on the concrete and abstract domains,

and on the concrete and abstract semantics. Here, we report Tarski’s fixpoint trans-

fer theorem, that requires both domains to be complete lattices: given two domains

⟨X, ⊑X, ⊔X, ⊓X, ⊤X, ⊥X⟩ and ⟨X, ⊑X, ⊔X, ⊓X, ⊤X, ⊥X⟩, a pair of functions 𝑓 ∶ X → X and

𝑓 ∶ X → X, and an abstraction 𝛼 ∶ X → X, if (i) 𝑓 and 𝑓 are monotone, (ii) 𝛼 is a co-

additive, and (iii) 𝛼 ◦ 𝑓 ⊑X 𝑓 ◦ 𝛼, then ∀x ∈ FP⪰
𝑓
∃x ∈ FP⪰

𝑓
. 𝛼(x) = x ⟹ 𝛼(lfp𝑓) = lfp𝑓 .

2.2.4 Convergence acceleration

If the abstract domain has finite height or satisfies ACC, termination of fixpoint com-

putations over it is guaranteed by the finiteness of ascending chains: upward itera-

tions using lub traversing the whole chain will converge in a finite number of steps,

corresponding to the chain’s length. When this is not the case, a tool to enforce con-

vergence is required. Such a tool, that must over-approximate the lub to preserve

soundness, is called widening: given ⟨X, ⊑X⟩, a widening operator ∇X ∶ X → X is

an upper bound operator that, given an ascending chain C↑ = {x0, x1, x2, … }, can be

used to construct a new chain C↑
∇ = { w𝑘 | w𝑖 = w𝑖−1∇Xx𝑖,w0 = x0 } that is ultimately

stationary, i.e., ∃𝑖 ∈ ℕ . ∀𝑗 > 𝑖 .w𝑗 = w𝑖. Such an operator can be used to define the

21

Chapter 2 | Preliminaries

sequence of iterations of a function 𝑓 ∶ X → X, with ⊥X ∈ X, as:

x0 ≜ ⊥X

x𝑛+1 ≜

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x𝑛 if 𝑓 (x𝑛) ⊑X x𝑛

x𝑛∇X𝑓 (x𝑛) otherwise

Such sequence is ultimately stationary on element x∇, that is a post-fixpoint of 𝑓

(i.e., a sound over-approximation of lfp𝑓). Note that the widening operator can be

nonetheless used when not explicitly needed to accelerate convergence on long, but

still finite, ascending chains.

2.3 Automata and abstractions

We start this section by recalling notions and notations about finite state automata

that we will use in Chapter 6, followed by an abstract of the finite state automata

string abstraction [14] that we base our work upon.

2.3.1 Finite state automata notation

In the context of automata, a set Σ of symbols is called an alphabet. Here, we avoid

defining what a symbol is since it can take different forms depending on the context.

Σ∗
is the Kleene-closure of Σ, that is, the set of finite strings (i.e., sequences) that can

be built by concatenating symbols of Σ. An element 𝜎 ∈ Σ∗
is called a string and it is

composed of the symbols 𝜎0 …𝜎𝑛 ∈ Σ, with 𝜎𝑖 being the 𝑖-th element of 𝜎. We define

|𝜎| = |𝜎0| + ⋯ + |𝜎𝑛| to be the length of a string (that is, the sum of the lengths of

its symbols), and 𝜎[𝑥/𝑦] to be the string obtained replacing all occurrences of the

symbol 𝑥 in 𝜎 with 𝑦. If 𝜎 = 𝜎0 …𝜎𝑛, 𝜎
′ = 𝜎′

0 …𝜎′
𝑚 ∈ Σ∗

, 𝜎′
is a substring of 𝜎, written

𝜎′ ↷s 𝜎, if ∃𝑖, 𝑗 . 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝜎| . 𝜎 = 𝜎0 …𝜎𝑖𝜎
′
0 …𝜎′

𝑚𝜎𝑗 …𝜎𝑛. Moreover, it is a prefix

of 𝜎′
, written 𝜎′ ↷≺

s 𝜎, if ∃𝑖 . 0 ≤ 𝑖 ≤ |𝜎| . 𝜎 = 𝜎′
0 …𝜎′

𝑚𝜎𝑖 …𝜎𝑛, or a suffix, written

𝜎′ ↷≻
s 𝜎, if ∃𝑖 . 0 ≤ 𝑖 ≤ |𝜎| . 𝜎 = 𝜎0 …𝜎𝑖𝜎

′
0 …𝜎′

𝑚. Furthermore, 𝜎 ⋅ 𝜎′
(or equivalently

𝜎𝜎′
) is the end-to-start concatenation of 𝜎 and 𝜎′

, that is 𝜎0 …𝜎𝑛𝜎
′
0 …𝜎′

𝑚. We define

𝜖 to be the empty string, with |𝜖| = 0. It follows that, for all 𝜎 ∈ Σ∗
, 𝜖 ↷s 𝜎, 𝜖 ↷≺

s 𝜎,

𝜖 ↷≻
s 𝜎, and 𝜖 ⋅ 𝜎 = 𝜎 ⋅ 𝜖 = 𝜎. The 𝑛-times repetition of the string 𝜎 is denoted by

𝜎𝑛, 𝑛 ≥ 0. Note that |Σ∗| = +∞.

A language L is a set of strings over an alphabet Σ. It follows that L ⊆ Σ∗
.

If L = ∅, L is called the empty language. Since languages are effectively sets, all

standard set operators apply also to languages. We extend these operators by writing,

abusing notation, L ⋅ L ′ ≜ { 𝜎 ⋅ 𝜎′ | 𝜎 ∈ L ∧ 𝜎′ ∈ L ′ }. One important operation

over languages that will be used in this thesis is the factorization: given L ∈ Σ∗
,

the factors FA(L) of L is the set of all substrings of L , that is, FA(L) ≜ { 𝜎 ∈

Σ∗ | ∃𝜎′, 𝜎′′ ∈ Σ∗ . 𝜎′𝜎𝜎′′ ∈ L }.

22

2.3. Automata and abstractions

𝑞0 𝑞1 𝑞2
𝑎 𝑏

𝑐

𝑎

Figure 2.4: An example automaton

A finite state automaton (FA) is a tuple A = ⟨Q, Σ, 𝛿, q0, F⟩. where Q is a finite set

of states, q0 ∈ Q is the initial state, Σ is a finite alphabet of symbols, 𝛿 ⊆ Q × Σ × Q is

the transition relation and F ⊆ Q is the set of final states. Intuitively, an automaton

is a weighted directed rooted graph, where Q is the set of nodes, 𝛿 is the set of edges

having a symbol in Σ as weight, and q0 is the root. An example of such a graph is

reported in Figure 2.4, where the automaton is built over a set of single characters,

the initial state is depicted by an incoming arrow with no source, and the only final

state has a double border. We denote by Fa the set of all possible FAs. Given 𝛿, its

transitive closure 𝛿̂ ∶ Q × Σ∗ → Q fully determines the behavior of the automata:

𝛿̂(q, 𝜎) ≜

⎧
⎪
⎪
⎨
⎪
⎪
⎩

q if 𝜎 = 𝜖

𝛿(𝛿̂(q, 𝜎0 …𝜎𝑛−1), 𝜎𝑛) otherwise

A path 𝜋 ∈ 𝛿∗ is a sequence of transitions connecting the initial state q0 to a

final state q𝑛 ∈ F. We denote as paths(A) ∈ ℘(𝛿∗) the set of all possible paths.

When A is cycle-free, the set paths(A) is finite and computable. We denote with

cyclic(A) the predicate that holds if and only if the given automaton contains a cy-

cle. Given 𝜋 = 𝑡0 … 𝑡𝑛 ∈ paths(A), 𝜎𝜋𝑖 is the symbol read by transition 𝑡𝑖, 𝑖 ∈ [0, 𝑛],

and 𝜎𝜋 = 𝜎𝜋0 …𝜎𝜋𝑛 is the string recognized by such path. |𝜋| = |𝜎𝜋 | is the length of

the path. Furthermore, |minPath(A)| ∈ ℕ denotes the (unique) length of a minimum

path. If ¬cyclic(A), |maxPath(A)| ∈ ℕ denotes the (unique) length of a maximum path.

Note that the set of strings recognized by all the paths of an automaton A is the reg-

ular language L (A). For instance, the automaton reported in Figure 2.4 recognizes

the language {𝑎, 𝑎𝑏, 𝑎𝑐𝑎, 𝑎𝑏𝑐𝑎, … }. From the Myhill-Nerode theorem [104], for each

regular language there uniquely exists a minimum FA (w.r.t. the number of states)

recognizing the language. Given a regular language L , Min(A) is the minimum FA A
such that L = L (A). Abusing notation, given a regular language L , Min(L) is the

minimal FA recognizing L .

If 𝛿 ∶ Q×Σ → Q is a function then A is called deterministic finite state automaton.

It can be shown that deterministic and non-deterministic final state automata are

equivalent w.r.t. the languages that they recognize. Moreover, since an algorithm

for determinization of non-deterministic automata [113] is well known, we will only

refer to deterministic ones.

Throughout the thesis, it could be more convenient to refer to a finite state au-

tomaton by its regular expression (regex for short), being equivalent. A regular ex-

23

Chapter 2 | Preliminaries

𝑞0 𝑞1
𝑎

(a) A

𝑞0 𝑞1 𝑞2
𝑎 𝑎

(b) A′

𝑞0 𝑞1 𝑞2
𝑎 𝑎

(c) Min(A ⊔Fa A′)

𝑞0 𝑎

(d) Min(A∇1Fa A′)

Figure 2.5: Example of widening application

pression r identifies a regular language L (r). Given an alphabet Σ, ∅ represents the

empty language ∅, 𝜖 denotes the language {𝜖}, and 𝜎 ∈ Σ is the singleton language

{𝜎}. Moreover, given two regexes r1 and r2, r1 || r2 is the disjunction between r1 and

r2 (L (r1) ∪ L (r2)), r1r2 is the concatenation of r1 with r2 (L (r1) ⋅ L (r2)), and

(r1)
∗

is the Kleene-closure of r1 (L (r1)
∗
). For the sake of clarity, parentheses might

be added to group regular expressions whenever there is ambiguity in the order of

operations. A regex equivalent to the automaton of Figure 2.4 is (𝑎||𝑎𝑏)(𝑐(𝑎||𝑎𝑏))∗.

2.3.2 A finite state automata abstract domain

The FA-based abstract domain presented in [14] over-approximates string properties

as the minimum deterministic finite state automaton recognizing them. Given an al-

phabet Σ of characters (that is, all symbols have length one), the finite state automata

domain is defined as ⟨Fa/≡, ⊑Fa, ⊔Fa, ⊓Fa,Min(∅),Min(Σ∗)⟩. The set Fa/≡ of elements of

the lattice is the quotient set (i.e., partition) of Fa w.r.t. the equivalence relation in-

duced by language equality: here, automata recognizing the same language L are

clustered together. We abuse notation by representing such classes by one of its au-

tomata (usually the minimum): when we write A ∈ Fa/≡ we mean [A]≡. ⊑Fa is the

partial order induced by language inclusion, ⊔Fa and ⊓Fa are the lub and the glb, re-

spectively, implemented as the automata union and intersection. The bottom element

is Min(∅), that is, the minimum automaton recognizing the empty language, and the

top element is Min(Σ∗), that is, the minimum automaton recognizing any possible

string over Σ. Fa/≡ does not satisfy ACC since it contains infinite ascending chains.

For this reason, it is equipped with the parametric widening ∇𝑛
Fa. Intuitively, such

operator is defined in terms of a state equivalence relation, that merges states rec-

ognizing the same language up to a fixed length 𝑛 ∈ ℕ (a parameter used for tuning

the widening precision [21, 57]) into a single one.

Example 2.3.1. Let us consider the automata A, A′ ∈ Fa/≡ in Figure 2.5a and 2.5b

respectively, recognizing languages L = {𝜖, 𝑎} and L ′ = {𝜖, 𝑎, 𝑎𝑎}. The widening

application starts by first applying the lub, obtaining exactly A′
(Figure 2.5c). The

final result is obtained by applying ∇1
Fa to A′

, resulting in A∇1
Fa A′ = A′′

such that

L (A′′) = { 𝑎𝑛 | 𝑛 ∈ ℕ } (Figure 2.5d), where all the states have been merged

together since they all recognize the same 1-language ({𝜖, 𝑎}).

24

2.4. Related work

2.4 Related work

As the field grew and matured over decades, a vast literature about static analysis

and abstract interpretation is available (most notable results are referenced in [42]),

reporting a wide spectrum of techniques and their applications to prove software

correct. Here, we focus on work strictly related to the core contributions of this thesis:

multilanguage analysis, library modeling, and string analysis. Work that is related

to LiSA’s instantiations for Go and Python is instead discussed in Chapter 4 and

Chapter 5, respectively.

2.4.1 Multilanguage analysis

The initial focus on multilanguage analysis targeted combinations of similar lan-

guages. Julia [123] analyzes Java bytecode and has been extended to also analyze CIL

bytecode resulting from the compilation of C# code by means of a semantic trans-

lation into Java bytecode [62]. Infer [56] analyzes Java, C, C++, and Objective-C

programs by statically translating them into a proprietary intermediate representa-

tion, called SIL, composed of only four instructions. However, these approaches are

intrinsically limited by the expressiveness of the intermediate representation (Java

bytecode and SIL in the case of Julia and Infer): since the set of constructs in those

representations is predefined, they might not be enough to represent features of some

languages. For instance, Java bytecode cannot express pointer arithmetic, while SIL

is not suited for dynamic typing.

Another stream of work instead considers a scenario where one central portion

of the application, written in a single programming language, interacts with native

code, that in this context can be considered as a collection of functions written in

different programming languages. [142] performs a summary-based analysis of An-

droid applications as a whole (that is, Java code and JNI-exposed native code), while

[130] compiles C code into an extended Java bytecode that can be analyzed by ex-

isting Java analyzers. [71, 72] perform type inference on so-called foreign function

interfaces, that is, inter-language communication frameworks like JNI, discovering

type errors otherwise visible only at runtime. [90] instead detects mishandling of

exceptions and errors raised in native code and then propagated back to Java. The

work presented in [89] computes semantics summaries from guest programs, to be

used during the analysis of a host program. All of these approaches share the same

underlying idea: to compute summaries among a family of “secondary” programs and

use them to analyze the main one (here, programs are defined as coherent modules

written in the same language). While modular summary-based analyses are powerful

and scalable, not all properties can be proven bottom-up, and often require precise

context-sensitive analyses. Moreover, not all programs can be described as a single

processing entity exploiting auxiliary codebases: for instance, mobile apps contain

logic on both the app and the backend, with back-and-forth communication between

25

Chapter 2 | Preliminaries

the two.

More recently instead, solutions for multilanguage analyses have been proposed.

[28, 27] provide an algebraic framework for multilanguage abstract interpretations

by combining existing language-specific ones through boundary functions that per-

form state conversion when switching context between languages. [131] provides

LARA [109] source-to-source compilation to transform Java, C, C++, and JavaScript

programs towards a common syntax, over which static analyses can be run. Authors

however focus on source-code metrics (that is, syntactic properties), with no reason-

ing on runtime behaviors (that is, semantic properties).

The major alternative to the approach described in this thesis is undoubtedly

Mopsa [83] (Modular Open Platform for Static Analysis), a static analyzer based on

the abstract interpretation theory written in OCaml. Mopsa is designed to compute

fixpoints by induction on a program’s syntax. A program is an extensible abstract

syntax tree (AST) that initially contains the original source code, but that can be syn-

tactically and semantically rewritten during the analysis. Abstract domains share a

common interface, and are thus easy to compose and extend. Moreover, the domains

are responsible for dynamically rewriting fragments of the AST exploiting semantic

information, avoiding static translation towards an internal language. Depending on

both the target programming languages and the properties of interest, Mopsa’s anal-

yses need to be configured by composing a chain of abstract domains that will dy-

namically rewrite portions of the AST until a common syntax is reached, over which

the remaining domains can operate independently from the source language. Mopsa
has been successfully used to analyze C and Python programs [83], showcasing its

ability to target completely different languages, including dynamic ones. Moreover,

analyses on a combination of the two have been performed [100].

2.4.2 Modeling libraries and frameworks

Several static analyzers, like Julia and FindBugs [79] allow a developer to instruct the

analysis about specific runtime behaviors of a framework through annotations. The

goal of our work is to automatically produce such annotations and apply them to the

code under analysis. In this way, we decouple the framework specification from the

program.

Specification languages such as the Java Modeling Language [88] allow to spec-

ify pre- and post-conditions and object invariants following the design-by-contract

methodology. Different verification tools can then check if the program satisfies the

given specification. Therefore, these languages are aimed at specifying the properties

of interests that one might want to check on a program, rather than the behavior of

frameworks (that is instead our goal).

SLIC is a specification language developed about two decades ago “designed to

specify the temporal safety properties of APIs implemented in the C programming

language” [19]. SLIC was designed to specify the behavior of libraries, and in partic-

26

2.4. Related work

ular safety temporal requirements of the APIs. Instead, our work is focused towards

frameworks that might both provide external libraries and modify the runtime exe-

cution model of the program, and it targets various safety and security properties of

such programs. Our approach can straightforwardly be extended to frameworks and

libraries in different contexts.

Previous works [30, 133] relied on hardcoded knowledge of specific framework

features, hence building an a priori model for each framework. However, handling

new frameworks required a modification of the analysis engine, expanding both the

size and complexity of the product and requiring a developer with expertise both in

the framework itself and in static analysis. Moreover, this solution did not provide a

fast and reliable way for supporting new frameworks, and it did not document which

features of a specific framework are taken into account by the analysis and how.

More recent works exploited a framework’s configuration files. These often re-

strict the possible executions, allowing to (almost always) precisely resolve the tar-

gets of reflective calls in the framework. F4F [127] aimed at building an application-

specific model of the framework’s behavior automatically, and this can be used by

the analysis to react accordingly to modifications of the execution model made by

the framework itself. However, building a model generator for each framework does

not keep the actual pace of releases of new frameworks, and each analysis needs

to be modified to be model-aware during its execution. Concerto [132] combined

mostly-concrete interpretations of the framework code and abstract interpretation

of application code, providing sound and accurate analysis on the overall program.

Both of the above approaches targeted frameworks whose behavior depends on some

application-specific configuration files, and that is not the case for any framework.

Moreover, the code from the framework itself needs to be submitted to the analy-

sis, and this will eventually slow down the analyzer due to the significantly larger

amount of code to analyze. Lastly, if the format of the configuration file changes

among different versions of the same framework, a new parser for such a file must be

built, and the logic of the newly introduced constructs must be embedded into the

analyzer.

StubDroid [16] built up data flow summaries of Android libraries for taint ana-

lyzers. If on the one hand such approach is completely automatic, on the other hand

it is specific for taint analysis and it required an ad-hoc static analysis to infer the

data flow summaries. While annotations specifying behaviors of frameworks and

libraries might be automatically inferred with static and dynamic analyses, this is

not the focus of our work and is left as future work. Averroes [4] introduced a new

approach that, starting from the code of application and libraries, built up a place-

holder library that soundly approximates the library behaviors. The construction of

the placeholder library relied on the separate compilation assumption, and it handles

reflection. Such an approach sensibly improved the efficiency of the analysis with-

out affecting its precision and soundness. However, more recent frameworks rely

27

Chapter 2 | Preliminaries

on ad-hoc runtime environments that extend the execution model of the program-

ming languages. These runtime environments are outside the code of the library, and

therefore they cannot be handled with this approach.

2.4.3 String analysis

The original finite state automata abstract domain [14] that our work builds upon was

defined in the context of dynamic languages, providing an automata-based abstract

semantics for common ECMAScript string operations. The same abstract domain

has been integrated also for defining a sound-by-construction analysis for string-to-

code statements [13].

The problem of statically analyzing strings has been also tackled in different con-

texts [39, 14, 108, 36, 93, 2, 41]. The authors of [6] provided an automata abstrac-

tion merged with interval abstractions for analyzing JavaScript arrays and objects.

In [36], the authors proposed a static analysis of Java strings based on the abstrac-

tion of the control-flow graph as a context-free grammar. Regular strings [35] is an

abstraction of the finite state automata domain and approximates strings as a strict

subset of regular expressions. Even if it does not tackle the problem of analyzing

strings, in [97] a lattice-based generalization of regular expressions was proposed,

showing a regular expression-based domain parametric from the lattice of reference.

An interesting automata-based model is symbolic automata [51], that differs from

the standard one having an alphabet of predicates (that can potentially be infinite)

instead of single characters. Examples of applications of symbolic automata in static

analysis are regex processing, sanitizer analysis [138], and their usage as program

model for mixing syntactic and semantic abstractions over the program [112].

Finally, orthogonally to static analysis of strings by abstract interpretation, a big

effort was spent in the context of string constraints verification, focusing on the study

of decidable fragments of the string constraint formulas [3] or proposing new efficient

decidable procedures or string constraints representations [3, 34, 7] also based on

automata, such as [140, 145], or involving type conversion string constraints [1].

28

Part II

Multilanguage analysis

29

3 Towards a multilanguage

analyzer: LiSA

Chapter Contents

3.1 Overall architecture . 32

3.2 The language of the analyzer . 35

3.2.1 Control flow graphs . 36

3.2.2 Symbolic expressions . 37

3.3 The analysis state . 39

3.3.1 Lattice . 41

3.3.2 Semantic Domain . 42

3.3.3 Value Domain . 43

3.3.4 Heap Domain . 47

3.3.5 Abstract State . 48

3.3.6 Analysis State . 50

3.4 Interprocedural Analysis . 50

3.4.1 Call Graph . 52

3.5 Frontends . 53

3.6 Modeling library behavior: SARL 54

3.6.1 Julia . 57

3.6.2 The SARL Language . 58

3.6.3 Experimental Results . 65

3.7 Multilanguage analysis . 71

3.8 LiSA for teaching . 74

3.9 Conclusion . 77

The core contribution of this thesis is the design and implementation of LiSA

(Library for Static Analysis), an open-source library written in Java that eases the

creation of static analyzers by abstract interpretation. LiSA is structured to target as

many programming languages as possible, also enabling the analysis of applications

written in several of them. It puts a lot of emphasis on modularity: analysis compo-

nents are strongly decoupled from one another, making their implementations easily

interchangeable and fast to develop. LiSA is available on GitHub
1

and stable releases

are published on Maven
2
.

In this chapter, we distinguish logical components of the analysis from the classes

and interfaces defining them by using italics instead of typewriter. The core classes

and interfaces are depicted through class diagrams. Whenever one of such diagrams

is parametric to one or more types, they are shown in a dashed rectangle in the top-

right corner. We will use the Java notation to bind type parameters: if classes A, B,

1https://github.com/lisa-analyzer/lisa.

2https://search.maven.org/search?q=g:io.github.lisa-analyzer.

31

https://github.com/lisa-analyzer/lisa
https://search.maven.org/search?q=g:io.github.lisa-analyzer

Chapter 3 | Towards a multilanguage analyzer: LiSA

and C exist, and B is parametric to a type T, we write “A is subtype of B<C>” to state

that A inherits from B and binds its type parameter T to the type C. The binding is

also displayed on the diagram with the label T: B on the inheritance relation.

The remainder of this chapter is structured as follows. A high-level overview is

first introduced in Section 3.1, depicting the role of all the analysis components and

how they cooperate to perform analyses, with the following sections providing an

in-depth description of each. CFGs and symbolic expressions are discussed in Sec-

tion 3.2, defining the languages that LiSA uses for syntax and semantics, respectively.

Section 3.3 provide a bottom-up description of the modular Analysis State used to

represent pre- and post-states. The Interprocedural Analysis that orchestrates LiSA’s

fixpoint is described in Section 3.4. In Section 3.5, we define the role of frontends in

compiling the source programs into LiSA’s CFGs. We conclude the chapter with the

formalization of SARL in Section 3.6, reporting its implementation in Julia, followed

by a proof-of-concept multilanguage analysis on the IoT network of Section 1.2.1 in

Section 3.7, and a discussion on our teaching experience with LiSA in Section 3.8.

It is worth recalling here the five principles reported in Section 1.5: separation of

syntax and semantics (P1), parametrization (P2), extensibility (P3), modularity (P4),

and ease of use (P5). Throughout this chapter, whenever a component is defined

following one or more of such principles, these will be mentioned using the labels

reported inside parentheses.

This chapter is based on a book chapter to appear in “Challenges of Software

Verification”
3
.

3.1 Overall architecture

We begin by providing a high-level overview of the analysis pipeline, that is shown

in Figure 3.1. The analysis starts by logically partitioning the input application P into

programs P
𝑖
, each written in a single programming language L

𝑖
. L

𝑖
-to-CFG compil-

ers, called frontends (top-left corner of Figure 3.1), are invoked on such programs to

obtain a uniform representation of all the code to analyze in the form of a LiSA pro-

gram P
𝑖
𝐿. Frontends are more than compilers, as they also provide logic to the analysis,

such as language-specific semantics of the instructions appearing in CFGs, semantic

models for library code, and language-specific algorithms for common language fea-

tures (e.g., call resolution and inheritance rules). The final version P𝐿 of the translated

program to analyze is the union of all P
𝑖
𝐿. At this point, LiSA can be invoked on P𝐿

with a configuration of the analysis features and the implementations of the various

components that are to be executed, namely:

∙ the Interprocedural Analysis, responsible for the computation of the overall pro-

gram fixpoint and for computing the results of function calls;

3
The book will contain contributions presented at the CSV workshop (https://ssv.dais.unive.

it/events/challenges-of-software-verification-workshop/)

32

https://ssv.dais.unive.it/events/challenges-of-software-verification-workshop/
https://ssv.dais.unive.it/events/challenges-of-software-verification-workshop/

3.1. Overall architecture

Figure 3.1: LiSA’s architecture

∙ the Call Graph, that can be used by the Interprocedural Analysis to find call

targets;

∙ the Abstract State, that computes the abstract values during the analysis;

∙ the set of Checks, that produce warnings for the user based on the result of the

analysis.

P𝐿 is fed to the Interprocedural Analysis (left-most block within LiSA in Figure 3.1),

that will compute a fixpoint over it. When the Interprocedural Analysis needs to an-

alyze an individual CFG, it will invoke a unique fixpoint algorithm defined directly

on CFGs (central portion of LiSA in Figure 3.1). As the language-specific seman-

tics of instructions is embedded in CFG nodes, called Statements, the fixpoint algo-

rithm will use such semantics as transfer function. If the Statement performs calls

as part of its semantics, it will interact back with the Interprocedural Analysis to de-

termine the returned values, as how those are evaluated depends directly on how the

overall fixpoint is computed. If the call’s targets are unknown (for instance, if the

call happens in a language with dynamic method dispatching), the Interprocedural

Analysis can delegate targets resolution to the Call Graph (inner component of Inter-

procedural Analysis in Figure 3.1), that will use type information together with the

language-specific execution model to determine all possible targets. Alternatively,

a non-calling Statement’s semantics can also rewrite the node into a sequence of

symbolic expressions, that is, atomic instructions with precise semantics, that can be

passed to the Analysis State for evaluation. LiSA’s Analysis State (right-most block of

LiSA in Figure 3.1) is composed of an Abstract State modeling the memory state at a

given program point, together with a collection of symbolic expressions that are left

on the stack after evaluating it. An Abstract State is a flexible entity whose main duty

is to make the Value Domain, responsible for tracking values of program variables,

33

Chapter 3 | Towards a multilanguage analyzer: LiSA

1 c l a s s A {
2 i n t f ;
3 i n t g ;
4 vo id main (S t r i n g [] a r g s) {
5 A a = new B () ;
6 a . foo (1 0) ;
7 }
8 i n t foo (i n t w) {
9 r e t u r n w + 2 ;

10 }
11 }
12 c l a s s B {
13 i n t foo (i n t w) {
14 t h i s . f = w + 3 ;
15 t h i s . g = t h i s . f ∗ 2 ;
16 r e t u r n t h i s . g + t h i s . f ;
17 }
18 }

Figure 3.2: Running example for LiSA’s architecture overview

communicate with the Heap Domain, that instead tracks how the dynamic memory

of the program evolves at runtime. Whenever an expression is to be evaluated by an

Abstract State, the latter first passes it to the Heap Domain, that will record all of its

effects on the memory, such as the allocation of new regions or the access to some

object’s fields. Then, the Heap Domain will rewrite all portions of the original expres-

sion that deal with the memory. According to the implementation-specific logic, one

or more instrumented variables will be used to replace such portions, modeling their

resolution to memory addresses that can be treated as regular variables. After the

rewriting has been performed, the resulting expression will be passed to the Value

Domain, that will track values and properties regarding the variables appearing in it.

Note that, with this architecture, each component simplifies the program for the rest

of the analysis pipeline. Interprocedural Analysis abstracts away calls from the pro-

gram to analyze, leaving the Analysis State and its sub-components with non-calling

programs. Successively, the Heap Domain removes every expression that deals with

dynamic memory, substituting it with synthetic variables. At this point, the Value Do-

main has to deal with programs containing only variables, constants, and operators

between them.

When an overall fixpoint is reached, the computed pre- and post-states for each

Statement, together with the Call Graph that has been built up, are passed to the

Checks (top-right corner within LiSA in Figure 3.1) that have been provided to the

analysis. These are simply visitors of the program’s syntax, that can use the informa-

tion computed by the analysis to issue warnings to the user. Since these are standard

components of static analyzers, they will be omitted from this work.

Example 3.1.1. Consider the example Java code from Figure 3.2. To analyze it, a

Java frontend will first parse the code and produce three different CFGs, one for

each method. Supposing that a context-sensitive [120] approach has been se-

lected for the Interprocedural Analysis, the analysis could follow call-chains starting

34

3.2. The language of the analyzer

from the main CFG, analyzing callees are they are invoked. Thus, the first fixpoint

algorithm to be invoked would be the one of the main CFG. Here, when the call to

foo(10) at line 6 is encountered, an entry state for the targets of the call would be

set up by assigning 10 to w. How the call would be resolved to its targets depends

once again on the configuration. Supposing that the Call Graph implementation

uses the runtime types inferred for the receiver [129], the call will be resolved to

B.foo that can be analyzed (that is, whose fixpoint can be executed) using the

prepared state.

The code of B.foo deals with heap structures. The assignment at line 15 could

be rewritten as l_0 = l_1 * 2 if the Heap Domain is precise enough to distin-

guish between different fields of the same object, or as l_0 = l_0 * 2 if it is not.

Nonetheless, the resulting expression will not contain any reference to memory

structures, and can be then processed by the Value Domain (e.g., Intervals [43])

agnostically w.r.t. if and how a rewriting happened.

3.2 The language of the analyzer

Before examining the separate components of LiSA, we introduce and discuss (i) the

CFG structure that LiSA uses for representing programs, and (ii) the symbolic expres-

sion language used as intermediate representation for the analysis.

As programming languages come with wildly different syntaxes, it is important to

find a common ground to model their semantics so that analyses are not required to

handle constructs from all languages. This is a common practice among static analyz-

ers, even ones targeting a single language: moving to a uniform and more convenient

intermediate representation (IR) that is usually enriched with additional information

(e.g., runtime typing) can make writing analyses much easier. Different syntactic

constructs with the same (or similar) meaning can be represented by the analyzer

as a unique IR construct, and complex ones can be decomposed as a sequence of

them. Analyses can then attribute semantic meanings to such IR constructs with no

knowledge of the original syntactic ones they represent.

Rewriting towards the IR can typically be achieved at parse time, after ingesting

the target application, or at analysis time, before passing the code to the abstract

domains. LiSA implements hybrid rewriting: first, source code is compiled to control

flow graphs (CFGs) by frontends, then each CFG node is rewritten into one or more

symbolic expressions during the analysis. The double rewriting is in place to address

P1, asCFGs embed syntactic structures and language-specific constructs within them

(i.e., + is still a syntactic construct that might represent numeric addition, string

concatenation, . . .), while each symbolic expression has a unique semantic meaning.

LiSA’s programs are thus composed of CFGs, that can be logically grouped in

CompilationUnits, a generalization of the concept of classes in object-oriented soft-

ware. As both the structure and meaning of CompilationUnits mirror the one of

35

Chapter 3 | Towards a multilanguage analyzer: LiSA

(a) Statement class hierarchy (b) Edge class hierarchy

Figure 3.3: Statements and Edges

classes (with some additional parametrization for language-specific features like mul-

tiple inheritance), and do not directly influence the infrastructure of LiSA, their def-

inition is omitted in this work. Thus, we will refer to LiSA programs as a collection of

CFGs.

3.2.1 Control flow graphs

Control flow graphs [5] (CFGs) are directed graphs that express the control flow of

functions. In a CFG, nodes contain the instructions of the functions, and edges ex-

press how the execution flows from one node to another. This means that all the

syntactic constructs that form loops, branches, and arbitrary jumps are directly en-

coded in the CFG structure, simplifying the code to analyze. Following P3, LiSA’s

CFGs are extensible: Statement (Figure 3.3a) and Edge (Figure 3.3b) are the base

definitions of what nodes and edges are, respectively, while concrete instances are

defined in frontends.

Figure 3.3a shows a portion of the class hierarchy of the Statement class na-

tively provided by LiSA, that is the base class for CFG nodes. A Statement rep-

resents an instruction appearing in a function, and thus corresponds to a syntactic

construct that does not modify the control flow (that is, it is not a loop, a branch,

or an arbitrary jump). When the evaluation of a Statement leaves a value on the

operand stack, it is called an Expression whose type is the one of the generated

value. Examples of Statements are return and assert, while an Expression can

be a reference to a local variable by its name, an assignment, or a sum. The Call ex-

pression, together with its descendants, plays a central role in LiSA and will be further

discussed in Section 3.4. As advocated by P1, no Statement has predefined seman-

tics: in fact, the class defines a semantics method where implementers can define

language-specific reasoning (thus also fulfilling P2) and interact with entryState
(instance of AnalysisState representing the pre-state) and interproc (instance

of InterproceduralAnalysis offering interprocedural reasoning) to compute the

post-state for the Statement. A further mean to fulfill P2 is the ProgramPoint in-

terface, implemented by the Statement class. This interface provides a simplified

view of an instruction (real or instrumented) that can be given to analysis compo-

36

3.2. The language of the analyzer

nents that need high-level knowledge about syntactic constructs (e.g., knowing if an

instruction is part of a loop’s body).

The Edge class (whose hierarchy is depicted in Figure 3.3b) is the base class for

CFG edges. The traverse method defined by this class expresses how the post-

state of its source node, in the form of an AnalysisState instance, is transformed

when the edge is traversed. LiSA comes with three default implementations for edges:

SequentialEdge, TrueEdge, and FalseEdge. SequentialEdge represents an un-

conditional flow of execution from source to edge, with no modification of the initial

AnalysisState (i.e., its traverse implementation returns its parameter unaltered).

TrueEdge instead models a flow of execution conditional to the evaluation of the ex-

pression at its source: the execution proceeds by reaching the edge’s destination only

if it evaluates to true. Conversely, FalseEdge implements a conditional flow of ex-

ecution that reaches the edge’s destination only if the expression at its source evalu-

ates to false. For both TrueEdge and FalseEdge, the implementation of traverse
relies on methods defined in the SemanticDomain interface (Section 3.3.2) that is im-

plemented by AnalysisState: first, the expression at its source is tested through the

satisfies method, and if the test’s result is UNKNOWN or corresponds to the edge’s

semantics (i.e., SATISFIED for TrueEdge and NOT_SATISFIED for FalseEdge), the

assume method is used to filter the source state accordingly. Otherwise, the return

value of AnalysisState.bottom() (that is defined by the Lattice interface, Sec-

tion 3.3.1) is returned.

Finally, as a mean to model library functions in addition to the one presented

in Section 3.6, LiSA offers native CFGs, that is, CFGs with a single Statement and

no Edges. Whenever a call to one of these CFGs is found, the call’s result can be

evaluated by simply rewriting it into the only statement contained in the native CFG,

and then executing its semantics method. Modeling complex or frequently used

library functions through native CFGs can drastically reduce the complexity of the

analysis, as less code needs to be analyzed, while still providing all the necessary

information about the modeled functions.

3.2.2 Symbolic expressions

A static analyzer’s main duty is to compute program properties by taking into ac-

count the semantic meaning of the instructions appearing in the program. In this

context, an extensible set of syntactic constructs such as the one provided by LiSA

through CFGs comes with an intrinsic problem: instructions (i.e., Statements) do

not have well-defined semantics, as that is parametric to the source language. To

recover well-definedness, LiSA adopts a two-phase rewriting: not only is the source

program compiled toCFGs, but each of their Statements gets rewritten into symbolic

expressions during the analysis.

The SymbolicExpression class, whose partial hierarchy is shown in Figure 3.4,

is the base type for the expressions that LiSA’s analysis components understand and

37

Chapter 3 | Towards a multilanguage analyzer: LiSA

Figure 3.4: The SymbolicExpression hierarchy

analyze. Note that there is a clear distinction between expressions dealing with values

of variables (i.e., ValueExpressions) and ones dealing with memory structures (i.e.,

HeapExpressions). This is a direct consequence of the architecture, introduced in

Section 3.1 and thoroughly discussed in Section 3.3.5, that separates domains dealing

with the two worlds, decoupling their implementations. ValueExpressions model

what can be handled entirely by the Value Domain (Section 3.3.3): constants, vari-

ables, and operators between them. Specifically, Identifiers model program vari-

ables (either actual variables or ones representing memory locations) that can be

weak or not, that is, if expressions assigned to them overwrite existing abstractions

or should be joined with the previous ones (through ⊔) to preserve soundness. Op-

erators instead come in the form of Unary, Binary, or TernaryExpressions, de-

pending on how many values they operate on. On the other side, HeapExpressions

represent operations that change or navigate the structure of the dynamic mem-

ory of the program. For instance, HeapReference references an existing location

in the memory, effectively creating a pointer to it, while HeapDereference derefer-

ences one to get back to the actual location. As for CFGs, Statements, and Edges,

symbolic expressions are also extensible following P3. Note that, as discussed in Sec-

tion 3.1 and deepened in Section 3.4, no symbolic expression is defined for calls, as

those are abstracted away by the Interprocedural Analysis.

Example 3.2.1. To better explain how the second rewriting is carried out, let us

consider the expression new B() at line 5 of Figure 3.2. In Java, object instantia-

tion consists of four operations: (i) allocation of a memory region, (ii) creation of

a pointer to the region, (iii) invocation of the desired constructor using the fresh

pointer as receiver, and (iv) storage of the pointer on the operand stack. Such be-

havior could be mimicked by a Statement instance with the following (simplified)

semantics function:

1 A n a l y s i s S t a t e s e m a n t i c s (
2 A n a l y s i s S t a t e e n t r y S t a t e ,
3 I n t e r p r o c e d u r a l A n a l y s i s i n t e r p r o c) {

38

3.3. The analysis state

4 / / c r e a t e a s y n t h e t i c r e c e i v e r
5 V a r i a b l e R e f r e c = new V a r i a b l e R e f (” $ r e c e i v e r ”) ;
6 A n a l y s i s S t a t e r e c S t a t e = r e c . s e m a n t i c s (e n t r y S t a t e , i n t e r p r o c) ;
7

8 / / a s s i g n the f r e s h memory r e g i o n t o the r e c e i v e r
9 H e a p A l l o c a t i o n c r e a t e d = new H e a p A l l o c a t i o n () ;

10 HeapReference r e f = new HeapReference (c r e a t e d) ;
11 A n a l y s i s S t a t e c a l l S t a t e = e n t r y S t a t e . bottom () ;
12 f o r (S y m b o l i c E x p r e s s i o n v : r e c S t a t e . ge tComputedExpres s ions ())
13 c a l l S t a t e = c a l l S t a t e . l u b (c a l l s t a t e . a s s i g n (v , r e f)) ;
14

15 / / c a l l the c o n s t r u c t o r
16 S t r i n g name = c r e a t e d T y p e . t o S t r i n g () ;
17 E x p r e s s i o n [] params = A r r a y U t i l s . i n s e r t (0 , e x p r e s s i o n s , r e c) ;
18 U n r e s o l v e d C a l l c a l l = new U n r e s o l v e d C a l l (name , name , params) ;
19 A n a l y s i s S t a t e sem = c a l l . s e m a n t i c s (c a l l S t a t e , i n t e r p r o c) ;
20

21 / / l e a v e a r e f e r e n c e on the s t a c k
22 r e t u r n sem . s m a l l S t e p S e m a n t i c s (r e f) ;
23 }

While the methods exploited in this snippet are the subject of the following sec-

tions, we can nonetheless capture the intuition behind them. First, a VariableRef
(that is an instance of Statement and thus modeling the syntactic reference to

a program’s variable by its name) is created at line 5, mimicking the creation of

the constructor call’s receiver. Then its semantics is computed at line 6 starting

from the pre-state entryState, obtaining a new instance of AnalysisState (Sec-

tion 3.3.6) that will contain the Variable (an instance of SymbolicExpression)

corresponding to it. The following five lines are responsible for making such vari-

able point to a newly allocated memory region: line 13 assigns a pointer (line 10)

to a region that is being allocated in-place (line 9) to the Variable corresponding

to the receiver (line 12). Next, the call to the constructor is performed at line 19

by (i) extracting the name of the type created by the expression (line 16, where

createdType is a field containing the Type being instantiated) as both the class

and method name, and (ii) adding the instrumented receiver to the original pa-

rameters of the constructor call (line 17, where expressions is a field containing

the original parameters and ArrayUtils.insert is a method that clones an ar-

ray and adds a new element to it). The semantics of the UnresolvedCall created

at line 18 will defer the resolution and evaluation to the Interprocedural Analysis.

The post-state of the call is then used at line 22 to reprocess the reference to the

memory region through smallStepSemantics, returning the result as the final

post-state of the whole instruction.

3.3 The analysis state

The state of LiSA’s analyses is modularly built (addressing P4) bottom up, ensur-

ing that each component does not have visibility of its parents and siblings. This

also helps achieving P5, as no additional knowledge is needed to implement a com-

39

Chapter 3 | Towards a multilanguage analyzer: LiSA

Figure 3.5: Sequence diagram Analysis State’s assign

ponent other than what is strictly required by it. As discussed in Section 3.8, this

plays an important role in picking up LiSA quickly. We illustrate such structure start-

ing from the Lattice (Section 3.3.1) and SemanticDomain (Section 3.3.2) interfaces,

that define ordered structures and abstract operators, respectively. We then proceed

bottom up, following the state’s natural structure, introducing the Value Domain in

Section 3.3.3, the Heap Domain in Section 3.3.4, and the Abstract State combining

them in Section 3.3.5. Lastly, the Analysis State class in Section 3.3.6 wraps all previ-

ous components, providing the final state used by LiSA’s analyses.

To grasp the intuition of how the Analysis State operates, consider the sequence

diagram of Figure 3.5, depicting how the assign method (one of the semantics oper-

ations that will be introduced with SemanticDomain) behaves. Note that the pattern

shown here is also valid for the other semantic operations, as it follows the overall

communication scheme defined in [61]. When the assign method of the Analysis

State is invoked, the call is immediately forwarded to the Abstract State. The latter

will first compute the effects of the assignment on the dynamic memory through

the Heap Domain’s own assign method. Then, since such an operation might have

caused materialization or merge of heap identifiers (Section 3.3.4), the Abstract State

retrieves a substitution (i.e., a replacement of variables in the pre-state with variables

of the post-state) from the Heap Domain, and uses it to update the Value Domain.

Then, Heap Domain’s rewrite replaces portions of the assigned expression dealing

with dynamic memory (e.g., field accesses) with heap identifiers, rendering the right-

hand of the assignment memory-free (that is, only dealing with variables, constants,

and operations between them). The updated Value Domain instance is then used to

evaluate the effects of the assignment on program variables, using Value Domain’s

assign method on the rewritten expressions. The new Heap and Value Domain in-

stances are then wrapped into a fresh Abstract State object, that is returned to the

40

3.3. The analysis state

(a) The Lattice interface (b) The SemanticDomain interface

Figure 3.6: The core LiSA interfaces

caller as part of the final Analysis State that is built as result of the original call. Note

that, as Abstract State, Heap Domain, and Value Domain are defined modularly, each

computational step might hide additional complexity (for instance, the Value Domain

could be a Cartesian product of several instances, whose assign methods are recur-

sively invoked). Moreover, the Value Domain can optionally rely on an inner Non-

Relational Domain (Section 3.3.3, marked with diagonal stripes in Figure 3.5) instance

to compute the semantics of an expression, exploiting its eval method.

A design choice common to most components illustrated in this section is to be

parametric on a type that must be an instance of the component itself. This is a com-

mon technique used for implementing generic classes in Java: when a class is declared

as class C<T extends C> and defines methods such as void func(T param),

implementers can bind the parameter to themselves with class A extends C<A>
to ensure that inherited methods will only accept instances of themselves as param-

eters, such as void func(A param). For the sake of conciseness, we refer to this

kind of type parameters as instance binders.

3.3.1 Lattice

Ordered structures in LiSA implement the Lattice interface (Figure 3.6a). The latter

has an instance binder L and defines the following methods:

∙ L lub(L other), that returns the least upper bound ⊔ between the receiver

of the call and the element passed as parameter;

∙ L widening(L other), that applies the widening operator ∇ to the receiver

of the call and the element passed as parameter, returning its result;

∙ boolean lessOrEqual(L other), implementing the partial order ⊑, and re-

turning true if and only if this ⊑ other;

∙ L top(), returning the top element ⊤ of the lattice;

∙ L bottom(), yielding the bottom element ⊥ of the lattice.

For the sake of convenience, widening has a default implementation that delegates

to lub. While this is generally correct only for ACC lattices, it minimizes the op-

erators that one is asked to implement while letting non-ACC lattices redefine it.

41

Chapter 3 | Towards a multilanguage analyzer: LiSA

Moreover, while requiring the existence of a top element might seem too restrictive

(as abstract interpretation can work with cpos), an element to use as a worst-case

over-approximation is usually required by static analyzers. Such an element is used

whenever the analyzer cannot precisely compute the semantics of some program fea-

ture, or has to give approximations for unknown values: for instance, user inputs and

results of reflective calls are usually abstracted with such an element. As ⊤ is the less

precise element of an ordered structure, we avoid asking users of LiSA for a custom

worst-case approximation and use ⊤ whenever a worst-case assumption is needed.

To fulfill P4 and P5 more closely, reoccurring features of implementations should

have a unique shared implementation that is parametric to instance-specific logic.

In fact, LiSA provides a base implementation for Lattice in the BaseLattice class.

The latter implements lub, widening, and lessOrEqual by handling common cases

(e.g., ∀e . ⊥ ⊔ e = e) and then delegating each non-trivial computation to the concrete

implementation.

3.3.2 Semantic Domain

LiSA’s SemanticDomain interface (Figure 3.6b) defines the minimum set of opera-

tions that an entity reasoning about a program’s semantics must support. Similarly

to Lattice, SemanticDomain has an instance binder D. Moreover, a second type

parameter E, that must be a subtype of SymbolicExpression, exists to restrict the

type of expressions that a domain is able to handle. Each instance of this interface

represents some abstract information about program variables, and can thus be used

as pre-state for semantic computations and can be obtained by one. The following

methods are defined by the interface:

∙ D assign(Identifier id, E expression), that computes the semantics

of assignments, yielding the post-state of assigning expression to id using

the receiver of the call as pre-state;

∙ D smallStepSemantics(E expression), used to compute the semantics of

a non-assigning expression, and returning the post-state of expression’s se-

mantics starting from the pre-state of the receiver;

∙ Satisfiability satisfies(E expression), determining if expression
is always, never, or sometimes satisfied by the information contained in the

current domain instance (Satisfiability is a predefined lattice used in LiSA

to express the result of Boolean evaluations: possible values are SATISFIED,

NOT_SATISFIED, UNKNOWN, and BOTTOM);

∙ D assume(E expression), that (optionally) refines the receiver of the call by

assuming that expression holds;

∙ D forgetIdentifier(Identifier id), that forgets all abstract informa-

tion regarding a specific identifier.

42

3.3. The analysis state

Figure 3.7: The ValueDomain hierarchy

Following P2, all methods of SemanticDomain must be parametric to the source

language of the program point under semantic evaluation. While statements from

different languages can use their own symbolic expressions, we offer an additional

mechanism to rely on language-specific reasoning by means of the ProgramPoint
interface. All methods of SemanticDomain accept an additional ProgramPoint pa-

rameter (left out of Figure 3.6b and from the earlier discussion for conciseness), en-

abling language-specific reasoning by querying its methods.

3.3.3 Value Domain

LiSA’s Value Domain is the analysis component responsible for tracking properties

of program variables. As we are presenting LiSA’s infrastructure bottom-up, Value

Domain is the last component taking action to compute a SymbolicExpression’s

semantics. Interface ValueDomain (Figure 3.7), that is parametric only to its in-

stance binder D, defines the operations that a Value Domain must support. It in-

herits both from Lattice<D> and SemanticDomain<D, ValueExpression>. Im-

plementations of ValueDomain thus represent both elements in the ordered struc-

ture they belong to, and abstract transformers able to produce new elements. More-

over, as mentioned in Section 3.1, a Value Domain is only responsible for dealing

with variables, constants, and operators between them. The type parameter E from

SemanticDomain is thus bound to ValueExpression, forcing the domain to only ac-

cept call- and memory-free expressions. In this setup, ValueDomain implementations

can closely resemble their formalization, that typically provides an abstract seman-

tics only for the operations of interest. ValueDomain defines applySubstitution
as a mean to interact with the Heap Domain. While such feature will be thoroughly

discussed in Section 3.3.5, it can be intuitively described as a remapping of abstract

information from a set of variables to another one. Examples Value Domain imple-

mentations are Interval [43], Polyhedra [50], and Tarsis (Chapter 6). Moreover,

combinations of Value Domains are still Value Domains: products [38] and smashed

sums [12] can thus be used to execute different domains concurrently, potentially

enabling cooperation to compute properties.

As for the Lattice interface, reoccurring features of Value Domains such as the

environment that is typical of Cartesian (non-relational) abstractions should have a

unique shared implementation that modularly interacts with domain-specific logic to

address P4 and P5. We therefore identify two common types of Value Domains that

43

Chapter 3 | Towards a multilanguage analyzer: LiSA

Figure 3.8: The NonRelationalDomain hierarchy

fit this situation, and accordingly provide separate infrastructures: Non-Relational

Domains and Dataflow Domains.

Non-Relational Domains

Formalization of domains that reason on each variable independently without track-

ing relations among them usually follows the same pattern. First, an ordered struc-

ture is introduced to model values of individual variables that the domain will track.

Then, an environment (i.e., a map from variables to instances of the ordered struc-

ture) is used to hold separate abstractions for each variable. The environment itself

is an ordered structure: it is effectively a functional lift of domain instances to vari-

ables, and the operators are simply point-wise applications of the original ones from

the ordered structure of the domain. Lastly, the domain is equipped with operators

that, given an environment providing abstractions of each variable, can compute the

abstract value of an expression.

LiSA defines the Non-Relational Domain infrastructure (Figure 3.8) as a mean to

simplify implementations of Cartesian abstractions. At first, the point-wise logic is

implemented into class FunctionalLattice, representing the functional lift of val-

ues of type V to keys of type K, where both are parametric. In addition, the class

also has an instance binder F. V must also be a subtype of Lattice<V>, thus en-

suring that the point-wise implementations can delegate to values of the co-domain.

ValueEnvironment is then defined to obtain a ValueDomain whose ordered struc-

ture is composed of functions. It is parametric to the type V of its values, that

must be an instance of NonRelationalValueDomain<V>, an interface that inherits

from Lattice that will be introduced shortly. ValueEnvironment implements the

ValueDomain interface binding the type parameter D to ValueEnvironment<V> and

extends FunctionalLattice<ValueEnvironment<V>, Identifier, V> (hence

being a function mapping program variables to abstract values).

LiSA then defines the NonRelationalDomain interface to model the domain-

specific logic of Cartesian abstractions. It has three type parameters: an instance

binder T, the type E of SymbolicExpressions that the domain can handle, and the

kind F of FunctionalLattice<F, Identifier, T> that the domain is designed

44

3.3. The analysis state

to work with. NonRelationalDomain inherits from Lattice<T>, and defines three

additional methods:

∙ Satisfiability satisfies(E expression, F env), determining if the

given expression is always, never, or sometimes satisfied when the variables

appearing in it assume the values contained in env;

∙ F assume(E expression, F env), that (optionally) refines env by assum-

ing that expression holds with the variables appearing in it take the values

defined in env;

∙ T eval(E expression, F env), that is responsible for computing an ab-

stract value for the given expression assuming that values of program vari-

ables are the ones in env.

NonRelationalValueDomain specializes NonRelationalDomain by binding F to

ValueEnvironment<T> and E to ValueExpression, while maintaining its instance

binder T. Such interface represents an ordered structure that can compute abstrac-

tions for single expressions given the ones for each program variable, thus modeling

a Cartesian abstraction. In fact, ValueEnvironment implements the semantic op-

erations defined in SemanticDomain by delegating the evaluation of each expres-

sion to the NonRelationalValueDomain that it contains. Similarly to Lattice,

LiSA provides a base implementation for NonRelationalValueDomain, factoring

out common features (P4 and P5), in the BaseNonRelationalValueDomain class.

The latter implements eval and satisfies providing automatic recursive evalua-

tion of sub-expressions, while also extending BaseLattice (Section 3.3.1) to provide

base implementations of lattice operations.

As LiSA provides a full implementation for the ValueEnvironment class, non-

relational domains such as Interval can be implemented by just (i) providing lattice

operations for single intervals, and (ii) defining the logic for expression evaluation.

LiSA then takes care of wrapping the domain inside a ValueEnvironment, providing

a unique functional lifting to all Cartesian abstractions. An example implementation

is presented at the end of Section 3.8 with the Sign domain.

Type Inference. A special case of Cartesian abstractions are type systems, that

compute the possible runtime types of expressions and variables. In fact, LiSA runs

type inference exploiting the Non-Relational Domain infrastructure, with few modifi-

cations. The NonRelationalTypeDomain interface is defined as a base for domain-

specific reasoning about types. Similarly to NonRelationalValueDomain, it has

an instance binder T and it inherits from NonRelationalDomain. Type parame-

ter F is bound to TypeEnvironment<T> (a special instance of ValueEnvironment),

while the parameter E is bound to ValueExpression. It also introduces a new

method Set<Type> getInferredRuntimeTypes() that yields what has been in-

ferred as possible types of the last expression evaluated. This method is used by

45

Chapter 3 | Towards a multilanguage analyzer: LiSA

Figure 3.9: The DataflowDomain hierarchy

TypeEnvironment to store the set of types computed by the domain every time a

new expression is evaluated.

Dataflow Domains

Similarly to Cartesian abstractions, dataflow analyses [70] also have fundamental

features that follow a common pattern coupled with implementation-specific logic.

Their formalization usually starts with a set of elements that represent abstract in-

formation. In terms of abstract interpretation, if the set of all possible dataflow ele-

ments is D, the ordered structure backing the domain is the complete lattice ⟨℘(D), ⊆

, ∪, ∩, ∅,D⟩ if the domain is possible, that is, if it tracks information that holds on

at least a program execution. On the other hand, the complete lattice is ⟨℘(D), ⊇

, ∩, ∪,D, ∅⟩ if the domain is definite, that is, if it tracks information holding along

all program executions. Then, the semantics of each instruction 𝑖 is defined as the

dataflow equation out = in ⧵ 𝑘𝑖𝑙𝑙𝑖(in) ∪ 𝑔𝑒𝑛𝑖(in), where:

∙ in is the pre-state;

∙ out is the post-state;

∙ 𝑘𝑖𝑙𝑙𝑖 is a function that, given a pre-state, yields all of its elements that no longer

hold after 𝑖 is executed;

∙ 𝑔𝑒𝑛𝑖 is a function that, given a pre-state, yields all new elements that start

holding after 𝑖 is executed.

The Dataflow Domain infrastructure in Figure 3.9 factors common components of

dataflow domains, simplifying the implementation process. Class DataflowDomain
implements the base Value Domain to be used when executing dataflow analyses.

It has an instance binder D, matching the one of ValueDomain that it implements,

and it is parametric to the type E of DataflowElements (that will be introduced

briefly) that it contains. Lattice operations are delegated to its two concrete sub-

classes: DefiniteDataflowDomain and PossibleDataflowDomain, implementing

46

3.3. The analysis state

Figure 3.10: The HeapDomain hierarchy

definite and possible lattices respectively. Operations defined in SemanticDomain are

uniquely implemented in DataflowDomain through the dataflow equation, whose

domain- and language-specific 𝑔𝑒𝑛 and 𝑘𝑖𝑙𝑙 functions are delegated to implementa-

tions of the DataflowElement interface. The latter has an instance binder E, and a

type parameter D subtype of DataflowDomain that expresses the kind of domain the

implementation is meant to work with. DataflowElement defines two variations of

the gen and kill functions, one for assignments and one for normal expressions,

where the analysis-specific reasoning can be implemented.

In this infrastructure, dataflow domains (e.g., Reaching Definitions) can be

implemented by simply defining an implementation of DataflowElement with the

gen and kill logic, specifying the type of DataflowDomain that must be used for the

analysis. LiSA will then instantiate such domain and use it to wrap the provided

implementation.

3.3.4 Heap Domain

LiSA’s Heap Domain is the analysis component responsible for tracking how the dy-

namic memory of the program evolves during its execution. As the sole component

having full knowledge of how expressions are resolved to memory locations, the Heap

Domain operates before the Value Domain as it must simplify memory-dealing ex-

pressions that the latter cannot handle. From the implementation point of view, the

two components have similar characteristics: the HeapDomain interface (Figure 3.10)

models the component, and it is parametric to its instance binder D. Moreover, just as

ValueDomain, its instances are both elements in the ordered structure they belong

to (i.e., HeapDomain inherits from Lattice<D>), and transformers that produce new

elements (i.e., it inherits from SemanticDomain<D, SymbolicExpression>). Note

that the type parameter E of SemanticDomain is bound to SymbolicExpression:

in fact, this component must be able to track if program variables refer to memory

regions, and thus needs to handle both ValueExpressions and HeapExpressions.

Moreover, as Section 3.3.5 will depict, one of Heap Domains’ duties is to dynamically

rewrite SymbolicExpressions by replacing all portions that manipulate memory

(i.e., that are instances of HeapExpression) with one or more Identifiers that

represent the regions of dynamic memory the replaced expression could resolve to.

The rewriting happens through the rewrite method offered by HeapDomain, that

recursively visits an expression and its sub-expressions returning the corresponding

47

Chapter 3 | Towards a multilanguage analyzer: LiSA

Figure 3.11: The AbstractState hierarchy

ValueExpressions. Its discussion, together with the one of getSubstitution(),

is postponed to Section 3.3.5. Examples of Heap Domain implementations are An-

dersen’s Pointer Analysis [8] and Shape analysis [119]. Moreover, as for Value

Domains, combinations of Heap Domains are still Heap Domains.

3.3.5 Abstract State

LiSA’s Abstract State wraps both Value and Heap Domains, coordinating their com-

munication. It is designed after the framework presented in [61], where the two com-

municate by means of expression rewriting and variable renaming. Roughly, the se-

mantics of such framework lets the two domains compute properties independently

whenever an expression only deals with values or memory. When one instead re-

quires knowledge about both worlds, the expression is first evaluated by the Heap

Domain that tracks its effects on the memory. Then, abstract locations called heap

identifiers are used to replace memory-dealing sub-expressions, and the Value Do-

main can process this rewritten expression to track properties about those identi-

fiers. Furthermore, as the semantics of the Heap Domain might materialize or merge

heap identifiers, a substitution can be applied to the Value Domain when necessary,

before computing its semantics. A substitution can be described as a sequence of

multi-variable replacements between heap identifiers. Algorithm 1 generates a new

domain instance by applying a substitution [𝐼1 → 𝐼 ′1 , … , 𝐼𝑛 → 𝐼 ′𝑛], where each 𝐼 → 𝐼 ′

represents a single replacement from the variables of 𝐼 to the ones of 𝐼 ′. The intuition

behind this algorithm, where 𝑟𝑒𝑠𝑢𝑙𝑡[𝑖′ = 𝑖] is the evaluation of the assignment 𝑖′ = 𝑖

in the state 𝑟𝑒𝑠𝑢𝑙𝑡, is that each individual replacement assigns all the variables in 𝐼 ′ to

all the variables in 𝐼 , thus replacing the latter with the former in the original domain.

A substitution is then just a sequence of replacements.

The AbstractState interface in Figure 3.11 is modeled after the framework

presented in [61]. It can be seen as the product between the HeapDomain H and

the ValueDomain V (both left generic as type parameters). AbstractState has an

instance binder A and inherits from SemanticDomain<A, SymbolicExpression>
and Lattice<A>. The framework’s implementation is split among all involved com-

ponents, with the Abstract State orchestrating their interaction. Specifically, three

48

3.3. The analysis state

Algorithm 1: Application of a substitution of heap identifiers

Data: 𝑉 domain, [I1 → I
′
1, … , I𝑛 → I

′
𝑛] sub

Result: 𝑉 result

1 result ← domain;

2 foreach I → I’ ∈ sub do

3 v ← ⨆{ v
′ | v

′ = result[i′ = i], i ∈ I, i′ ∈ I
′ };

4 result ← v;

5 return result;

methods are defined between the Heap and Value Domains:

∙ rewrite from HeapDomain replaces memory-dealing expressions with syn-

thetic variables such as HeapIdentifiers and MemoryPointers (both sub-

types of Identifier);

∙ getSubstitution from HeapDomain gets the substitution generated with the

creation of the domain’s instance, that is, with the evaluation of the last expres-

sion;

∙ applySubstitution from ValueDomain yields a copy of the domain where

the substitution has been applied (the method has a default implementation

that encodes Algorithm 1, exploiting both the assign and forgetIdentifier
methods from SemanticDomain).

The concrete implementation of the communication between the Heap Domain

and Value Domain is provided by the SimpleAbstractState class. Abstract State

is left modular and extensible (P4) as further layers of abstraction can be applied

to the entire state. For instance, Trace Partitioning [116] must be applied on

the state as a whole, and can thus be defined as an AbstractState implement-

ing a function from execution traces to AbstractStates. Communication between

Heap Domain and Value Domain in SimpleAbstractState abides to the scheme

of [61], as shown in the following snippet (here, we only report the implementation

of smallStepSemantics, as the one of the other SemanticDomain’s methods can

be derived from it):

1 S i m p l e A b s t r a c t S t a t e s m a l l S t e p S e m a n t i c s (S y m b o l i c E x p r e s s i o n e x p r e s s i o n) {
2 / / l e t the heap p r o c e s s and r e w r i t e the e x p r e s s i o n
3 HeapDomain heap = g e t H e a p S t a t e () . s m a l l S t e p S e m a n t i c s (e x p r e s s i o n) ;
4 Set<V a l u e E x p r e s s i o n> e x p r s = heap . r e w r i t e (e x p r e s s i o n) ;
5 / / app ly s u b s t i t u t i o n s
6 L i s t<HeapReplacement> sub = heap . g e t S u b s t i t u t i o n () ;
7 ValueDomain v a l u e = g e t V a l u e S t a t e () . a p p l y S u b s t i t u t i o n (sub) ;
8 / / l e t the v a l u e p r o c e s s the e x p r e s s i o n s
9 ValueDomain l u b = v a l u e . bottom ()

10 f o r (V a l u e E x p r e s s i o n expr : e x p r s)
11 l u b = l u b . l u b (v a l u e . s m a l l S t e p S e m a n t i c s (expr)) ;
12 / / r e t u r n the updated s t a t e
13 r e t u r n new S i m p l e A b s t r a c t S t a t e (heap , l u b) ;
14 }

49

Chapter 3 | Towards a multilanguage analyzer: LiSA

Figure 3.12: The AnalysisState hierarchy

Note that the choice of employing the framework of [61] is a key aspect for both

P4 and P5, as all three components involved in it are only responsible for an inde-

pendent part of the overall computation. Furthermore, type inference is also run

during the analysis, as a TypeEnvironment is also embedded into the Abstract State,

enabling components that need runtime type information to access it. As such envi-

ronment is handled exactly as ValueDomain, it has been left implicit in this section.

3.3.6 Analysis State

The Analysis State is the outer-most implementation of SemanticDomain, and it is

thus the one explicitly visible to the rest of the analysis. A direct implication of this

is that other components are agnostic w.r.t. how LiSA abstracts memory structures

and values of the program, as advocated by P4. Class AnalysisState (Figure 3.12)

implements both the SemanticDomain<AnalysisState, SymbolicExpression>
and the Lattice<AnalysisState> interfaces, and is parametric to the concrete

types A, H, and V of AbstractState, HeapDomain, and ValueDomain it contains,

respectively. Its main duty is to wrap the Abstract State together with additional se-

mantic information over which the analysis must reach a fixpoint. Here, we identify

as mandatory information only the set of SymbolicExpressions that are left on the

stack after evaluating an arbitrary expression, but more can be added. As a wrapper,

operators from SemanticDomain delegate to the inner Abstract State.

3.4 Interprocedural Analysis

LiSA’s Interprocedural Analysis is responsible for computing both a program-wide fix-

point and the result of calls, as the two features are strictly related. In fact, the com-

putation of the overall program fixpoint is a direct consequence of call evaluation. If a

pre-computed result is to be returned when a call is encountered, call-chains should

be analyzed bottom-up starting from the target of the last call, thus ensuring that

results are already available when needed. Instead, if results are to be freshly gener-

ated, call-chains should be analyzed top-down, starting from the CFG containing the

first call.

InterproceduralAnalysis (Figure 3.13a) is the interface defining the opera-

tions that an Interprocedural Analysis must support. LiSA’s analysis begins by invok-

50

3.4. Interprocedural Analysis

(a) The InterproceduralAnalysis interface

(b) The CallGraph interface

Figure 3.13: InterproceduralAnalysis and CallGraph

ing fixpoint, passing the program to analyze and the AnalysisState that must

be used as entry state for the analysis of CFGs that are reachable from outside the

program (e.g., a main function). Such method must implement a strategy for analyz-

ing the program, reaching a fixpoint on each of its CFGs. Individual CFG fixpoints

are evaluated using Algorithm 2, uniquely implemented in LiSA, that implements the

classical worklist-based fixpoint over graphs. The algorithm takes as input the target

CFG, an AnalysisState instance to use as pre-state for the starting nodes of the

CFG, and a reference to the InterproceduralAnalysis, and yields the post-state

computed for each Statement of the CFG. The algorithm exploits few supporting

functions:

∙ entries(cfg), returning the roots of the CFG;

∙ preds(cfg, st), yielding the predecessors of a given node in the given CFG;

∙ succ(cfg, st), that returns all the successors of a given node in the given CFG;

∙ semantics(st, in, iproc), that computes the post-state of a node given its pre-

state.

Specifically, 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠(st, in, iproc) corresponds to the language-specific semantics
defined in Statements. As discussed in Section 3.2.2, non-calling Statements will

rewrite themselves as a sequence of SymbolicExpressions and will feed them to

the Analysis State to compute the post-state. However, when a call must be evaluated,

the rewriting process is not enough. In fact, the semantics function can resort to its

InterproceduralAnalysis parameter.

As shown in Figure 3.3a, four concrete instances of Call are included in LiSA:

NativeCall, CFGCall, OpenCall, and UnresolvedCall. NativeCalls only tar-

gets native CFGs: as such, the semantics of this class exploits the latter’s rewriting

functionality to transform them into a Statement instance, and then delegates the

computation to its semantics. CFGCalls instead invoke CFGs and thus have to ac-

cess their targets’ fixpoint results. InterproceduralAnalysis provides this ca-

pability through the getResultOf overload accepting a CFGCall. The reasoning

applied by this method depends on implementation-specific logic, and specifically

51

Chapter 3 | Towards a multilanguage analyzer: LiSA

Algorithm 2: Fixpoint algorithm defined over a CFG

Data: CFG cfg, AnalysisState entry, InterproceduralAnalysis iproc

Result: Statement → AnalysisState result

1 result ← { (st, entry) | st ∈ 𝑒𝑛𝑡𝑟𝑖𝑒𝑠(cfg) };

2 ws ← entries(cfg);

3 while ws ≠ ∅ do

4 st ← pop(ws);

5 in ← ⨆{ result(m) | m ∈ 𝑝𝑟𝑒𝑑𝑠(cfg, st) };

6 out ← semantics(st, in, iproc);

7 if not out ⊑ result(st) then

8 if widening threshold reached then

9 result(st) ← result(st) ∇ out;

10 else

11 result(st) ← result(st) ⊔ out;

12 ws ← ws ∪ succ(cfg, st);

13 return result;

on how call chains are analyzed. Instead, the getResultOf’ overload accepting

an OpenCall is used in the latter’s semantics, letting the analysis compute an ab-

straction of an unknown result (for instance, one could conservatively assume that

open calls can natively manipulate memory, thus always return ⊤ as post-state).

Lastly, UnresolvedCalls are calls that only carry signature information, and are

not yet bound to their targets. Target resolution is performed by the Call Graph,

that will be introduced in the following section, but a further degree of modularity

(P4) is added by having the call interact with InterproceduralAnalysis’ resolve
method, as some implementations (i.e., intraprocedural ones) might return fixed over-

approximations when calls are evaluated, bypassing the Call Graph invocation that

otherwise happens here. Regardless, every instance of UnresolvedCall is converted

to one of the other Call instances
4
, and their semantics can be normally applied.

The Interprocedural Analysis can be implemented, among other possibilities, as

a context-sensitive [120, 84] analysis, following call-chains top-down evaluat-

ing each CFG fixpoint as they are called. An alternative approach is to adopt a

modular [48] (also called summary-based) analysis, where call-chains are analyzed

bottom-up accessing pre-computed results.

3.4.1 Call Graph

The Call Graph is tasked with resolving UnresolvedCalls to their targets. As such

calls only come with signature information (i.e., the name of the targetCFG) and their

parameters, the whole program needs to be searched for possible targets. The search

is a complex operation that relies on several features of programming languages, and

4UnresolvedCalls might resolve to both CFGs and native CFGs: here, LiSA instantiates a

MultiCall, whose semantics yields the lub of the internal CFGCall and NativeCalls.

52

3.5. Frontends

it can be logically split into two phases: scanning for possible targets along the pro-

gram and matching the actual parameters to each candidate’s signature.

Candidate scanning depends on the call type. If the call is known to have a re-

ceiver (that is, if it is an instance call), only the receiver’s type hierarchy is to be

searched for targets. Hierarchy traversal is language-specific, as it is influenced by

how the language enables inheritance (e.g., it might be single or multiple, or it might

provide explicit and implicit interface implementations). Instead, choosing the start-

ing point for hierarchy traversal is a feature depending on the implementation of Call

Graph: for instance, a graph implementing Class Hierarchy analysis [54] would

consider all possible subtypes of the receiver’s static type, while one implementing

Rapid Type analysis [17] would restrict such set to the subtypes instantiated by

the program. Regardless, the hierarchy of candidate types must then be searched for

CFGs with a matching name. If the call instead does not have a receiver (i.e., if it is

static), the whole program needs to be searched for CFGs with a matching name.

Once candidates have been selected, the actual parameters of the call must be

matched with the formal ones defined by each target. Once more, this feature is

language-specific: capabilities like optional parameters and named ones, as well as

how types of each parameter are evaluated complicate the matching process to a

point where no unique algorithm can be applied.

To make resolution parametric (P2), LiSA delegates language-specific call resolu-

tion features to each UnresolvedCall instance: when created, users need to specify

both a strategy for traversing a type hierarchy given a starting point and a strategy

for matching a list of Expressions to an arbitrary signature. Note that, once a call

has been resolved, an entry state for the targets has to be prepared by assigning ac-

tual parameters to formal ones. As this process also follows parameter matching, the

Interprocedural Analysis will defer this preparation to the same algorithm.

LiSA’s CallGraph interface defines the entity responsible for providing the call

resolution algorithm through its resolve method. Following P4 and P5, the reso-

lution process is uniquely implemented in an abstract class named BaseCallGraph,

that takes care of invoking UnresolvedCall’s algorithms. Implementers then only

have to specify which types should be considered as receiver types, thus implement-

ing strategies such as Class Hierarchy analysis or Rapid Type analysis.

3.5 Frontends

Frontends are tasked with performing the first rewriting phase, translating a (possi-

bly partial) original program into one made of CFGs that can be analyzed by LiSA.

As mentioned at the beginning of Section 3.2, a component performing a translation

is included in most static analyzers, as moving to a more convenient representation

makes writing analyses simpler. LiSA’s frontends, however, are more than just raw

compilers: as the sole component with deep knowledge about the language they tar-

53

Chapter 3 | Towards a multilanguage analyzer: LiSA

get, they must define Statements with their semantics, types, and language-specific

algorithms that implement the execution model of the language.

Even if they might seem less relevant to the whole analysis process, writing and

maintaining a complete frontend for a language is no easy endeavor. In fact, mature

and widespread programming languages have very complex semantics to model, with

features that might be ambiguous or not formally defined
5
. Moreover, each language

has its own evolution, leading to different versions needing support. This not only

translates to a higher number of instructions to model, but also to a variety of run-

time environments (containing different libraries and software frameworks) whose

semantics has to be taken into account for precise static analysis.

Writing a frontend usually begins with the code parsing logic. Whenever it is not

possible to use official tools (e.g., by plugging into the compilation process), parser

generators such as ANTLR6
can be used to create custom abstract syntax tree visitors.

Statement instances for each instruction must be included as part of the frontend

(potentially using common implementations provided by LiSA), each one providing

its own semantics and bringing language-specific algorithms that are exploited dur-

ing the analysis. Type inference is optional, as the one run by LiSA during the anal-

ysis can be exploited inside semantics functions. This means that constructs such

as +, that in most languages have different semantics depending on the type of its

operands, can be modeled by a single Statement instance. Modeling runtimes and

libraries is achieved through native CFGs or SARL files, as will be shown in Section 3.6.

3.6 Modeling library behavior: SARL

In this section, we define a domain-specific language called SARL, that can be used to

express the semantics of library code and how the execution model of a program may

change when executed through a framework. This section is based on the published

paper [65]. SARL has been developed before LiSA, and has thus been experimented

using the Julia [123] static analyzer, targeting object-oriented languages (specifically

Java andC#). The formalization is however independent from the analyzer, as all algo-

rithms involved are defined as simple iterators over the program’s syntax. SARL’s ex-

tension to LiSA is thus straightforward, as (i) the CFG model presented in Section 3.2

is an extension of the object-oriented definitions used in SARL’s formalization, and

(ii) SARL can be applied to the program’s structure before the analysis begins.

SARL (Static Analysis Refining Language) is a domain-specific language that al-

lows one to easily instruct a static analyzer about the execution model of a framework

to improve the results in terms of both precision and soundness. SARL targets stati-

cally type-safe, object-oriented programming languages (C# and Java in particular).

5
For instance, Python does not have a formal specification of its semantics, while C admits syntactic

constructs whose behavior is undefined.

6https://www.antlr.org/, with several well-tested grammars available at https://github.com/
antlr/grammars-v4.

54

https://www.antlr.org/
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4

3.6. Modeling library behavior: SARL

These languages offer a construct that allows to add metadata to object-oriented

components, describing their characteristics. We will generically refer to it as anno-

tation. SARL adopts annotations as the key mean to instruct a static analyzer about

both the structure and the execution model of the application under analysis. The

goal of SARL is to produce a set of rules, called framework specification, that describes

the behavior of a framework or library. Such description can then be automatically

applied to programs to produce a collection of annotations on them that the analyzer

can interpret and exploit during the analysis (e.g., when building the call graph of the

program or approximating the heap structure).

Since we want to apply SARL specifications and extract the annotations on the

target application before the analysis starts, framework specifications must be eval-

uated syntactically on the analyzed application without any semantic knowledge of

the program. At this stage, no information about the runtime types of the program’s

values is known, as well as the effective targets of method calls. Hence, the content

of framework specifications needs to be designed using static types and call targets.

SARL has been interfaced with Julia, an abstract interpretation-based static ana-

lyzer of Java bytecode whose analyses consider a wide range of annotations. Born as

a Java analyzer, Julia has been extended to analyze .NET (CIL) bytecode as well [62].

We applied SARL to model two popular .NET frameworks (Windows Forms7 and

ASP.NET8
), and we present, for each of these frameworks, the results of Julia’s anal-

yses on the 3 most popular GitHub repositories of projects relying on them. In partic-

ular, we study how the analysis improved in terms of precision and soundness when

using the SARL specification w.r.t. the original Julia analysis. The experimental re-

sults show that for programs widely relying on a framework (Windows Forms) the

improvement is dramatic (SARL specification removed between 35.3% and 74.5% of

false alarms), while when only a small portion of a program exploits a framework

(ASP.NET) the benefit is restricted to that portion (between 1.6% to 4.3%).

This section is structured as follows. Section 3.6 shows a first example of a SARL

specification for ASP.NET. Section 3.6.1 describes Julia, and Section 3.6.2 introduces a

second specification, targeting Windows Forms, and uses it to introduce SARL and its

constructs. Finally, Section 3.6.3 reports the benefits obtained when applying SARL

specifications to six applications using Windows Forms or ASP.NET.

Example SARL specification

ASP.NET is a Microsoft framework used to build web applications written in C#.

It comes in various flavors, like WebForms and MVC. As usually happens with most

web frameworks, applications written with ASP.NET have an execution model fairly

different from the one of a standard application. In fact, a wide variety of methods

are invoked from the external environment, such as page and graphical event han-

7https://docs.microsoft.com/it-it/dotnet/framework/winforms/.

8https://www.asp.net/.

55

https://docs.microsoft.com/it-it/dotnet/framework/winforms/
https://www.asp.net/

Chapter 3 | Towards a multilanguage analyzer: LiSA

1 rule: rte ”.net”
2 rule: superclass HttpApplication
3 predicate: isControl = cls −> subtypeOf:: ”Control”
4 predicate: isNestedComponent = and(fld −> type satisfies isControl, fld −> definingClass satisfies

isControl)
5 predicate: isEventHandler = and(mtd −> basicReturnType:: ”void”, and(mtd −>

numberOfParameters:: 2, and(mtd −> hasParameter and(par −> index:: 0, par −> type::
”Object”), mtd −> parameter and(par −> index:: 1, par −> type.subtypeOf:: ”EventArgs”)))))

6 predicate: isWebViewExecute = and(mtd −> basicReturnType:: ”void”, mtd −> name:: ”Execute”)
7 predicate: isGetAppInstance = and(mtd −> returnType.subtypeOf:: ”HttpApplication”, mtd −>

name:: ”get ApplicationInstance”)
8 specification: annotate mtd with EntryPoint if and(mtd −> definingClass satisfies isControl,

satisfies isEventHandler)
9 specification: annotate fld with ExternallyRead, Injected if satisfies isNestedComponent

10 specification: annotate mtd with EntryPoint if and(mtd −> definingClass.subtypeOf::
”WebPageExecutingBase”, and(mtd −> numberOfParameters:: 0, or(satisfies
isWebViewExecute, satisfies isGetAppInstance)))

11 specification: annotate mtd with EntryPoint if and(mtd −> definingClass::startsWith
” ASP.FastObjectFactory”, and(mtd −> name::startsWith ”Create ASP ”, and(mtd −>
returnType:: ”System.Object”, mtd −> numberOfParameters:: 0)))

Figure 3.14: ASP.NET specification

dlers. These are usually not public, and since no explicit calls to these methods are

found in the code, a static analyzer would consider them (as well as all other methods

invoked directly or indirectly) not reachable, potentially leading to both false posi-

tives (e.g., warnings about unreachable event handlers) and negatives (e.g., missing

warnings on the code implementing of the event handler). Moreover, graphical ob-

jects are usually stored in fields, enabling the runtime environment to access them for

initialization. As these are usually never explicitly assigned within the application, a

semantic static analyzer would consider them as always null, potentially producing

both false positives (e.g., nullness alarms when the object stored in the field is deref-

erenced) and negatives (e.g., on the code of a branch of an if-then-else statement that

is guarded by a nullness check on the field, thus considered as deadcode).

The SARL specification of Figure 3.14, where namespaces have been omitted for

the sake of compactness, describes both these features (as well as marking few other

methods as reachable), providing metadata (as annotations supported by Julia), in

a concise and self-explanatory manner: it is applied when a .NET program contains

at least one HttpApplication (lines 1 and 2), which is the base class for ASP.NET
applications. Then, fields representing runtime-managed objects (subtypes of the

Control class) are identified and marked (line 9) as externally read and written (that

is, injected), while event handlers, web page creation factories, and other standard

framework methods are considered as entry points (lines 10-11) for the analysis. By

annotating methods as entry points, SARL instructs the analyzer (and the call graph

constructor in particular) to consider them as externally called with arbitrary param-

eters. In this way, the analysis will produce alarms on the code directly or indirectly

executed by the method (removing false negatives) and will remove warnings about

unreachable event handlers (removing false positives). Similarly, once these fields are

56

3.6. Modeling library behavior: SARL

annotated as externally written (injected), the analyzer will consider that they might

be assigned with arbitrary values, thus removing the aforementioned false positives.

As one can see from this brief example, SARL allows one to easily specify to which

programs the specification should be applied, a set of predicates (improving the read-

ability and reusability of the specification), and a set of rules to annotate program

components as well as libraries. This specification will later be used in Section 3.6.3

to refine the results of Julia on applications that use ASP.NET.

3.6.1 Julia

Julia’s analyses are interprocedural (that is, they consider the flow of control and

information from callers to callees and vice-versa) and abstract the heap (that is, they

consider the flow of data through heap writes and reads). This is essential to perform

semantic static analyses, such as information flow or sound nullness analysis.

In Julia, the model of the program under analysis is built by a so-called class anal-

ysis, that infers the possible runtime types of the variables and stack elements. Julia
uses the one defined in [107], which has been shown to be a reasonable trade-off

between precision and cost. The construction of such model of the program is called

extraction in Julia, since methods are extracted and then analyzed only if they are

actually called in the program. The extraction starts from a set of entry points, that,

by default, are all the public methods of the analyzed application. However, users

can specify other entry point modes as an input of the analysis, and in particular

(i) only standard entry point methods (e.g., main and servlet methods), (ii) only ex-

plicit entries (that is, methods annotated as @EntryPoint), or (iii) all public and pro-

tected methods. For the sake of simplicity, in the rest of the section we consider only

the default mode. Julia includes various static analyses (e.g., sound nullness analy-

sis [122], taint analysis [60], and data-size analysis [126]), that are logically split into

two groups: Basic, performing simpler and mostly local reasoning, and Advanced,

offering deeper semantic analyses.

Being born as a Java analyzer, Julia acquired knowledge on widespread Java frame-

works over the years. However, behaviors have been hardcoded throughout various

analysis components, making it hard to understand and document which aspects of

each framework have been covered and how. Instead, Julia has no hardcoded model

for C# frameworks. Thus, our initial effort targets this area.

Annotations. As of version 2.7.0.3, Julia defines more than 70 annotations with

various meanings. Some of them are used to provide context about how the applica-

tion interacts with the external environment (e.g., @EntryPoint states that a method

could be called from outside the program, while @Injected states that a field or a

parameter could be written by an external source), while the majority of them are

used to provide information to a specific checker (e.g., @SqlTrusted is used to in-

struct the Injection checker that untrusted data should not flow into that location

57

Chapter 3 | Towards a multilanguage analyzer: LiSA

since it will end up in a database, while @NonNull states that a field or a method’s

return value are never null). Finally, @SuppressJuliaWarnings instructs Julia that

a certain kind of warning should not be reported on the annotated component (either

a field, method, constructor, class, method parameter, or local variable).

Each annotation has a different scope, and thus, a different impact on the analysis:

@EntryPoint will be exploited during the construction of the call graph, but its effect

will be propagated throughout the whole analysis (as additional reachable code will

be considered); @SqlTrusted instead will only be used during the execution of the

taint analysis-based checkers (the Injection checker is the most popular, but other

ones exist). Thus, a framework specification could be logically split into sections, each

one having effects on a different set of checkers.

3.6.2 The SARL Language

The goal of SARL is to allow a user to specify a set of rules (called framework specifi-

cation) representing how the framework affects the runtime behavior of a program.

Such specification will then be exploited by a static analyzer to improve its preci-

sion and soundness. In particular, we rely on annotations to pass this information.

Therefore, these should be expressive enough to represent these runtime behaviors.

Throughout this section, we need annotations to specify: (i) when a method might

be called by the framework runtime (@EntryPoint in Julia), (ii) when a field is read

or written by the framework runtime (@ExternallyRead and @Injected in Julia,

respectively), (iii) when the warnings on a specific component (e.g., method or field)

should be suppressed (@SuppressJuliaWarnings in Julia, @SuppressWarnings in

Java), and (iv) properties related to specific analyses (e.g., @AutoClosedResource of

the CloseResource analysis in Julia).

Building a framework specification can be achieved with two different approaches.

One can acquire knowledge about the framework itself, understanding its model of

execution and how it interacts with the application code. Then, the acquired knowl-

edge needs to be converted into a SARL specification, by understanding how each

framework feature may impact the various analysis modules. While this approach

ensures that every peculiarity of the framework is taken into account, the number

and heterogeneity of software frameworks makes it hard to achieve, since one should

possess knowledge on both the analyzer and the framework. Another approach con-

sists in iteratively analyzing software that relies on the target framework, inspecting

the analysis results searching for evidence of the lack of framework knowledge by the

analyzer (e.g., unreachable methods that are instead invoked by the framework, or no

injection-related warning on a web application) and fixing them in the specification.

This approach is highly dependent on how representative the software is in exploiting

the framework’s functionalities, but can nevertheless be a good starting point. Both

SARL instances presented in this section were built with the latter approach.

Figure 3.15 depicts the overall architecture of our approach, and how SARL in-

58

3.6. Modeling library behavior: SARL

Figure 3.15: Schema of Julia’s architecture with SARL

terfaces with the Julia static analyzer. Given a framework specification and an ap-

plication to be analyzed, the SARL engine (represented inside the dotted rectangle)

produces a set of annotations. These are then serialized to an XML file and passed to-

gether with all the other inputs of the analysis (analyzed code, analysis options, and

checkers to run) to Julia. Further developments will bring the SARL engine inside the

analyzer itself, making the identification of frameworks and the generation of extra

annotations a fixed step of the analysis pipeline.

Example 3.6.1. Before discussing SARL formally, we introduce another SARL spec-

ification targeting Windows Forms, a framework to build GUIs of C# desktop ap-

plications. Usually, these are developed through the UI designer of Visual Studio,

that places a pointer to each graphical component in private fields initialized by

the generated code, causing the analyzer to raise a high number of warnings about

field usage (stating that a field can be replaced by a local variable, or that the value

written inside a field is never read later). Moreover, each graphical component in

Windows Forms implements the IDisposable interface (which represents objects

that should be disposed when no longer needed, since they could hold handles to

non-managed resources that need to be manually released) and it is disposed by

the framework runtime. Figure 3.16 reports the specification of Windows Forms
(as in Figure 3.14, namespaces have been omitted for compactness), that will be

used to explain SARL constructs.

Language Definition. SARL is built over five basic components: rules, implica-

tions, specifications, predicates, and library specifications. Rules embed information to

59

Chapter 3 | Towards a multilanguage analyzer: LiSA

1 rule: rte ”.net”
2 rule: superclass Form
3 predicate: isComponent = cls −> subtypeOf:: ”IComponent”
4 predicate: isDisposable = fld −> type.subtypeOf:: ”IDisposable”
5 predicate: isNestedComponent = and(fld −> type satisfies isComponent, fld −> definingClass

satisfies isComponent)
6 predicate: isGeneratedFormField = and(fld −> definingClass.subtypeOf:: ”ContainerControl”,

and(fld −> hasAccessor:: ”private”, and(fld −> name:: ”components”, fld −>
type.subtypeOf:: ”IContainer”)))

7 specification: annotate fld with ExternallyRead, Injected if satisfies isNestedComponent
8 specification: annotate fld with AutoClosedResource if or(fld −> type.subtypeOf::

”ContainerControl”, and(satisfies isDisposable, fld −> definingClass satisfies
isComponent))

9 specification: annotate fld with NonNull, ExternallyRead, Injected if satisfies
”isGeneratedFormField”;

10 library: annotate mtd with ResourceThatDoesNotNeedToBeClosed if cls Brushes mtd matches
”get .∗()LSystem/Drawing/Brush;”

11 library: annotate mtd with ResourceThatDoesNotNeedToBeClosed if cls Pens mtd matches
”get .∗()LSystem/Drawing/Pen;”

12 library: annotate mtd with ResourceThatDoesNotNeedToBeClosed if cls Process mtd
”GetCurrentProcess()LSystem/Diagnostics/Process;”

Figure 3.16: Windows Forms specification

detect if a given application relies on the framework. The specification is applied if

and only if the conditions specified in the rules hold. Core components (implications,

specifications, and predicates) allow one to define the conditions required to apply

an annotation to a program member. Finally, library specifications allow the genera-

tion of annotations also on non-application classes (that is, classes that come from a

supporting library or the system runtime).

Figure 3.17, where 𝑛 ∈ ℕ is a natural number and 𝜎 ∈ Σ∗
is an arbitrary string,

defines the complete syntax of SARL, while each construct’s semantics is formalized

step-by-step when they are presented. During the formalization, we consider a pro-

gram 𝑝 as a set of classes; each class is a tuple ⟨𝑛, 𝐴, 𝐹 , 𝐶⟩ where 𝑛 is the name of

the class, while 𝐴, 𝑀 , and 𝐹 are the set of annotations, fields, and methods of the

class, respectively. An annotation is a tuple ⟨𝑛, ℘(𝑛 × 𝑠𝑡𝑟)⟩, with 𝑛 being a fully qual-

ified name and ℘(𝑛 × 𝑠𝑡𝑟) being the set of members, represented as a pair of name

and string value. A field is a tuple ⟨𝑛, 𝑡, 𝐴, ℘(𝑠𝑡𝑟)⟩, where 𝑛 is the name, 𝑡 is the type,

𝐴 is the set of annotations, and ℘(𝑠𝑡𝑟) is the set of accessors. A method is a tuple

⟨𝑛, 𝑡, 𝐴, ℘(𝑠𝑡𝑟), 𝑃 , 𝑉 ⟩, where 𝑛 is the name, 𝑡 is the return type, 𝐴 is the set of annota-

tions, ℘(𝑠𝑡𝑟) is the set of accessors, 𝑃 is the set of parameters, and 𝑉 is the set of local

variables. A parameter is a tuple ⟨𝑛, 𝑡, 𝐴, 𝑖⟩, with 𝑛 being the name, 𝑡 being the type,

𝐴 being the set of annotations, and 𝑖 being the index of the parameter. A variable in-

stead is a pair ⟨𝑛, 𝑡⟩ with 𝑛 being the name and 𝑡 being the type. Each element of the

formalization could be subscripted with a letter stating if it refers to a class c, a field

f, a method m, or a parameter p. The semantics relies on a set of standard operators

over the different object-oriented program components. For the sake of simplicity,

from now on we denote with X∗
sequences or sets of X components, and with 𝑖𝑘 the

60

3.6. Modeling library behavior: SARL

v ∈ Val ::= 𝑛 | 𝜎

id ∈ Id ::= [a-zA-Z] | [a-zA-Z]([a-zA-

Z0-9])*

qn ∈ Qname ::= id (. id)*

m ∈ Mem ::= id = str
a ∈ Ann ::= qn ((m (, m)*))

?

op∙ ∈ Op
∙
::= equals | contains | matches

| startsWith | endsWith

op+ ∈ Op
+
::= name | index | type | basic-
Type | hasAnnotation | defining-
Class | returnType | basicReturn-
Type | hasVariable | hasAccessor
| hasOptionValue | hasParame-

ter | subtypeOf | containsMethod

| containsField | numberOfPa-

rameters | definingMethod

op⊲ ∈ Op
⊲
::= equals | contains | starts-

With | endsWith

t∙ ∈ Type∙ ::= str | int

t+ ∈ Type
+
::= cls | ann | par | var | mtd

| fld

tg ∈ Target ::= cls | fld | mtd | par

sig ∈ Sig ::= cls qn (fld op∙ ε𝜎ε | mtd op∙

ε𝜎ε (par 𝑛)
?
)
?

c∙ ∈ Cond
∙
::= (op∙

)
? v

c+ ∈ Cond
+
::= op+

. c+ | t+ [id] :: c∙
| (t+)

?
:: c∙ | t+ c𝑙

c𝑙 ∈ Cond
𝑙
::= not(c≻) | and(c≻, c≻) | or(c≻,

c≻) | satisfies id

c≻ ∈ Cond
≻
::= t+ -> op+

([id])
?
.c+ | t∙ ->

op∙ v | c𝑙

p ∈ Pred ::= predicate: id = c≻

s ∈ Spec ::= specification: annotate tg with

a (, a)* if c≻

l ∈ Lib ::= library: annotate tgwith a (, a)* if

sig
i ∈ Impl ::= implication: a implies a (, a)*

r⋄ ∈ Rule
⋄
::= rte (op⊲

)
? ε𝜎ε

r† ∈ Rule† ::= annotation (op⊲
)
? qn

r∨ ∈ Rule∨ ::= superclass (op⊲
)
? qn

r∧ ∈ Rule∧ ::= uses type (op⊲
)
? qn

r⊙ ∈ Rule
⊙
::= r⋄

r⊘ ∈ Rule
⊘
::= r† | r∨ | r∧

r ∈ Rule ::= rule: (r⊙ | r⊘)

spec ∈ SARL ::= r* (i | p | s | l)*

Figure 3.17: SARL syntax

element 𝑖 of tuple 𝑘 (e.g., 𝑛𝑚 represents the name of method 𝑚 ∈ 𝑀).

Rules. A rule r defines a condition to be satisfied to apply a specification. Rules ex-

press conditions on either the analysis r⊙, or the code r⊘. Analysis rule r⋄ defines the

runtime environment (e.g., .NET or Java) of the framework. Instead, code rules define

what should be found inside the application to apply a specification, in particular

identifying some specific types (either as supertype - r∨, or as type in a member sig-

nature - r∧), or annotations from the library (r†). Rules semantics is defined though

function hold as:

hold((r⊙∗, r⊘∗), 𝑝) ⇔

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

r⊙∗ = ∅ ∨ ∃r⊙ ∈ r⊙∗ ∶ hold(r⊙, 𝑝)

∧

r⊘∗ = ∅ ∨ ∃r⊘ ∈ r⊘∗ ∶ hold(r⊘, 𝑝)

hold(r⋄, 𝑝) ⇔ holdString(extractRTE(𝑝) op⊲ str))

hold(r†, 𝑝) ⇔ ∃𝑛 ∈ extractAnn(𝑝) ∶ holdString(𝑛 op⊲ qn))

61

Chapter 3 | Towards a multilanguage analyzer: LiSA

hold(r∨, 𝑝) ⇔ ∃𝑛 ∈ 𝑝 ∶ 𝑛′ ∈ extOrImpl(𝑛) ∶ holdString(𝑛′ op⊲ qn))

hold(r∧, 𝑝) ⇔ ∃𝑛 ∈ extractType(𝑝) ∶ holdString(𝑛 op⊲ qn))

where holdString checks a condition over strings, extractRTE returns the runtime

environment of the program, and extractAnn, extOrImpl, extractType extract

the names of all annotations, inherited types, and used types, respectively.

Example 3.6.2. The first two lines of the specification of Windows Forms in Fig-

ure 3.16 define multiple r to be applied. In particular, this specifies to apply the

framework to applications whose (i) runtime environment is set to .net (line 1),

and (ii) at least one class inherits from (or implements) Form class (line 2).

Implications. An implication i specifies that an annotation a implies a set of other

annotations. Then, if a program member is annotated with the former, it is automat-

ically annotated with all of the latter. This can be useful when developers have used

annotations from the libraries to get some functionalities in their code, and these an-

notations semantically imply some other annotations supported by the analyzer, or

when a framework searches a program member through reflection by searching all

annotated members. The semantics is defined through functions impl and ann:

impl(i, 𝑝) = ⋃

(𝑛𝑐 ,𝐴𝑐 ,𝐹 ,𝑀)∈𝑝

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(𝑛𝑐 , 𝐴𝑐 ∪ ann(𝐴𝑐 , i), 𝐹
′, 𝑀 ′) ∶

𝐹 ′ = ⋃

𝑓 ∈𝐹

(𝑛𝑓 , 𝑡𝑓 , 𝐴𝑓 ∪ ann(𝐴𝑓 , i), 𝐶𝑓),

𝑀 ′ = ⋃

𝑚∈𝑀

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(𝑛𝑚, 𝑡𝑚, 𝐴𝑚 ∪ ann(𝐴𝑚, i), 𝐶𝑚, 𝑃
′
𝑚, 𝑉𝑚) ∶

𝑃 ′
𝑚 = ⋃

𝑝∈𝑃𝑚

(𝑛𝑝 , 𝑡𝑝 , 𝐴𝑝 ∪ ann(𝐴𝑝 , i), 𝑖𝑝)}

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

ann(𝐴, a implies a∗) = 𝐴 ∪

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∅ if a ∉ 𝐴

a∗ if a ∈ 𝐴

Example 3.6.3. A Java method annotated with JAX-RS’s @javax.ws.rs.GET will

eventually be called from the external environment to handle an HTTP GET re-

quest. Hence, such a method has to be considered an entry point of the analysis.

Thus, relative to Julia, an implication between @GET and @EntryPoint is needed.

Predicates. A predicate p lets one assign an arbitrary name id to a condition c≻

(later defined in this section), to avoid rewriting it multiple times. For example, one

might define predicate isGetter whose condition identifies a getter method. Once

it is defined, its name can be used instead of rewriting the actual condition.

Example 3.6.4. Line 5 of the Windows Forms specification in Figure 3.16 defines

the isNestedComponent predicate. This holds if and only if the type of the given

62

3.6. Modeling library behavior: SARL

field satisfies predicate isComponent (that is, it is a subtype of IComponent as

defined at line 3), and the class defining the field satisfies isComponent as well

(that is, it is a subtype of IComponent).

Specifications. This is the core component of SARL. A specification lets one spec-

ify a condition on a program member that, when satisfied, causes a set of annotations

to be generated on that program member. Thus, all such members have to be iterated

when evaluating a specification. This construct enables one to identify members de-

pending on their structure, as well as that of their related members. This goes beyond

the simple reflective access (e.g., the one offered by library specifications described

below), allowing one to identify members in a very precise manner. A specification

s consists of the type tg of program member we want to annotate, one or more an-

notations a, and a condition c≻ that states when these have to be applied. For exam-

ple, when analyzing a Unity
9

application, each Start method of classes that extend

UnityEngine.MonoBehaviour should be considered as an entry point for the anal-

ysis, since such method will be called by the Unity engine to perform the setup of

the component. This can be achieved using a specification that has mtd as target,

contains @EntryPoint as annotation, and as condition the and of the two afore-

mentioned conditions (method’s name and parent class). The semantics is captured

by function spec, where typeOf returns the type - class, field, method, or parameter

- of a program component, and chain is the function that checks if a condition holds:

spec(s, 𝑝) = ⋃

(𝑛𝑐 ,𝐴𝑐 ,𝐹 ,𝑀)∈𝑝

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(𝑛𝑐 , 𝐴𝑐 ∪ cond(s, (𝑛𝑐 , 𝐴𝑐 , 𝐹 , 𝑀)), 𝐹 ′, 𝑀 ′) ∶

𝐹 ′ = ⋃

𝑓 ∈𝐹

(𝑛𝑓 , 𝑡𝑓 , 𝐴𝑓 ∪ cond(s, 𝑓), 𝐶𝑓),

𝑀 ′ = ⋃

𝑚∈𝑀

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(𝑛𝑚, 𝑡𝑚, 𝐴𝑚 ∪ cond(s, 𝑚), 𝐶𝑚, 𝑃
′
𝑚, 𝑉𝑚) ∶

𝑃 ′
𝑚 = ⋃

𝑝∈𝑃𝑚

(𝑛𝑝 , 𝑡𝑝 , 𝐴𝑝 ∪ cond(s, 𝑝), 𝑖𝑝)}

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

cond(s, 𝑝𝑚) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

a∗ if typeOf(𝑝𝑚) = tg ∧ chain(𝑝𝑚, c≻)

∅ otherwise

Example 3.6.5. Line 9 of Windows Forms specification (Figure 3.16) specifies that

all fields satisfying the isNestedComponent predicate should be annotated with

@ExternallyRead and @Injected.

Conditions. c≻ may be (i) the application of a predicate (via its name - first case

of c𝑙), (ii) a logical operator (and, or, not - remaining cases of c𝑙) applied to other

conditions, (iii) a non-terminal operator followed by a further condition (t+ -> op+
([

id])
?
.c+), or (iv) a terminal operator followed by a constant value (t∙ -> op∙ v) where

9https://unity3d.com/.

63

https://unity3d.com/

Chapter 3 | Towards a multilanguage analyzer: LiSA

str and int represent strings and integers, respectively. Conditions are grouped in

chains, where operators are applied to navigate among the properties of program

members (e.g., starting from a class, one could navigate to a parameter of one of its

supertype’s methods). The ability to navigate through program members enables the

definition of syntactic conditions that correspond to how a framework might search

for a program member to interact with, both by searching instances of particular

types or by retrieving members annotated with a given framework annotation. The

formalization of the check of these conditions is represented by function chain in

specifications’ semantics and left implicit for the sake of simplicity (mostly standard

checks of standard OO properties). Notice that, if one omits an operator, the default

one is applied depending on the program member that is currently under evaluation.

Library specifications. In object-oriented software, most of the code is contained

in libraries providing standard features to the application. However, libraries contain

code that could need SARL-generated annotations, since their methods or fields could

require additional knowledge. However, library code is usually much bigger than the

application code, and iterating over it would lead to a huge overhead. In this context,

SARL does not provide complex conditions, but it simply allows one to check the

signature of a program member and annotate it. Therefore, l consists of the type

tg of program member we want to annotate, one or more annotations a, together

with the signature sig of the target program member. When applied, this leads to

adding the given annotations to all the program members whose signature fulfills

the specified signature. Notice that, even if this component was specifically designed

to operate on library code, it can be nonetheless used to annotate application code,

avoiding the iteration on all program members by loading them through reflective

calls. Functions lib and addLA capture the semantics of library annotations, where

checkSignature checks if two signatures represent the same element, and typeOf
returns the type - class, field, method, or parameter - of a program component:

lib(l, 𝑝) = ⋃

(𝑛𝑐 ,𝐴𝑐 ,𝐹 ,𝑀)∈𝑝

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(𝑛𝑐 , 𝐴𝑐 ∪ addLA(l, 𝑛𝑐), 𝐹 ′, 𝑀 ′) ∶

𝐹 ′ = ⋃

𝑓 ∈𝐹

(𝑛𝑓 , 𝑡𝑓 , 𝐴𝑓 ∪ addLA(l, 𝑓), 𝐶𝑓),

𝑀 ′ = ⋃

𝑚∈𝑀

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(𝑛𝑚, 𝑡𝑚, 𝐴𝑚 ∪ addLA(l, 𝑚), 𝐶𝑚, 𝑃
′
𝑚, 𝑉𝑚) ∶

𝑃 ′
𝑚 = ⋃

𝑝∈𝑃𝑚

(𝑛𝑝 , 𝑡𝑝 , 𝐴𝑝 ∪ addLA(l, 𝑝), 𝑖𝑝)}

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

addLA(l, 𝑝𝑚) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

a∗ if typeOf(𝑝𝑚) = tg ∧ checkSignature(𝑝𝑚, sig)

∅ otherwise

Example 3.6.6. Line 10 of Windows Forms specification (Figure 3.16) specifies to

annotate with @ResourceThatDoesNotNeedToBeClosed all the getter methods

64

3.6. Modeling library behavior: SARL

Algorithm 3: Application of a SARL specification to a program

Data: (app, lib), spec
Result: (app, lib)

1 rte ← { r⊙ | r⊙ ∈ spec };

2 code ← { r⊘ | r⊘ ∈ spec };

3 if hold((rte, code), app) then

4 for s ∈ spec do

5 app ← spec(s, app);

6 for l ∈ spec do

7 app ← lib(l, app);

8 lib ← lib(l, lib);

9 for i ∈ spec do

10 app ← impl(i, app);

11 lib ← impl(i, lib);

12 return (app, lib);

of class Brushes that return a Brush instance, since these are system-wide ob-

jects handled by the runtime, and therefore should not be manually closed by the

program.

SARL application. Algorithm 3 reports the algorithm for applying a SARL speci-

fication to a program. In particular, given a specification spec, and a program com-

posed of an application 𝑎𝑝𝑝 and a library 𝑙𝑖𝑏 (both represented as a set of classes), it

applies the specification if and only if the rules set r∗ is satisfied on the application

𝑎𝑝𝑝 (line 4). If this is the case, it then sequentially applies all the specifications s (lines

5-6), libraries l (lines 7-9), and implications i (lines 10-12) contained in the SARL spec-

ification spec. Note that, while specifications s are applied only to the application,

library specifications l and implications i are applied to both the application and the

library part of the program. In this way, SARL allows adding information about the

libraries of the framework, and not only to model its effects on the application.

3.6.3 Experimental Results

SARL has been interfaced with the Julia static analyzer, version 2.7.0.3, as specified in

Figure 3.15. The SARL specification parser relies on JavaCC10
, while the semantics has

been natively implemented in Java and passed to Julia through external (i.e., specified

in an XML file rather than the application code) annotations.

In this section, we analyze, for both Windows Forms and ASP.NET, the 3 most

popular applications publicly available in GitHub that rely on these frameworks. We

adopt as a metric of the popularity of a repository its number of stars. For each

application, we took the last stable release in the repository. All the statistics refer to

the status of GitHub on June 28
th

, 2020. Each application has been analyzed with and

10https://javacc.org/.

65

https://javacc.org/

Chapter 3 | Towards a multilanguage analyzer: LiSA

Framework Application Version LOCs TW TW/O

WinForms Shadowsocks12 4.1.6 12788 2’23” 2’14”

WinForms ShareX13
12.4.1 99191 5’24” 5’24”

WinForms CefSharp14
73.1.130 17863 2’01” 1’59”

ASP.NET SignalR15
2.4.1 49182 4’24” 4’36”

ASP.NET AspnetBoilerplate16 4.5.0 87288 6’15” 6’08”

ASP.NET Umbraco17
8.0.2 130384 11’09” 11’03”

Table 3.1: Analyzed applications

without the framework specification. We report as lines of code (LOC) the number

of physical lines of code reported by Locmetrics11 on the C# source files (with cs file

extension) of the different applications in GitHub. Therefore, we consider only the

code of the application and not the libraries. For each application, we compared the

results of the analyses with and without SARL, investigating the number of warnings

added or removed by the latter analysis. Each of such warnings has been manually

investigated to ensure that no true positives were lost with our approach, and that

new warnings can be accounted on the introduction of new entry points causing the

analysis of previously unreachable code.

Table 3.1 reports the applications we selected, where column Framework re-

ports the framework it uses (here, WinForms is a shorthand for Windows Forms),

Application is the name of the analyzed application, Version is the analyzed ver-

sion (taken from GitHub, thus directly associated with a commit that can be used for

reproducibility), TW and TW/O the analysis time with and without the application

of the framework specification (considering also the time needed for applying the

specification to the application), respectively
18

. All the analyses were executed on an

r5.xlarge Amazon Web Services machine. These instances featured a Xeon Platinum

8000 series (Skylake-SP) processor with a sustained all-core Turbo CPU clock speed

of up to 3.1 GHz and 32 GB of RAM.

Windows Forms

Table 3.2 reports, for each application, the number of warnings with Basic checkers

without the SARL specification, and the number of common, added, and removed

warnings when applying the specifications presented in Figure 3.16 of Section 3.6.2.

The results highlight that even small specifications can have a major impact on the

results of the analyses, removing a huge portion of false alarms issued due to the

11https://www.cheonghyun.com/blog/120.

12https://github.com/shadowsocks/shadowsocks-windows.

13https://github.com/ShareX/ShareX.

14https://github.com/cefsharp/CefSharp.

15https://github.com/SignalR/SignalR.

16https://github.com/aspnetboilerplate/aspnetboilerplate.

17https://github.com/umbraco/Umbraco-CMS.

18
Stars and ranking of each project have been omitted here, but can be found in the original paper.

66

https://www.cheonghyun.com/blog/120
https://github.com/shadowsocks/shadowsocks-windows
https://github.com/ShareX/ShareX
https://github.com/cefsharp/CefSharp
https://github.com/SignalR/SignalR
https://github.com/aspnetboilerplate/aspnetboilerplate
https://github.com/umbraco/Umbraco-CMS

3.6. Modeling library behavior: SARL

Shadow. ShareX CefSharp

Warn. w/o spec. 730 5471 465

Common (%) 473 (64.8%) 1397 (25.5%) 241 (51.8%)

Added (%) 0 (0%) 6 (0.1%) 0 (0%)

Removed (%) 257 (35.2%) 4074 (74.5%) 224 (48.2%)

Table 3.2: Difference in warnings on Windows Forms analyses

Warning

SS SX CS

A R A R A R

ResourceNotClosedAtEndOfMethod 0 8 0 98 0 32

CloseableNotStoredIntoLocal 0 202 0 2802 0 124

FieldShouldBeReplacedByLocals 0 32 0 958 0 50

FieldIsOnlyUsedInConstructors 0 0 0 1 0 0

UselessAssignmentToDefaultValue 0 7 0 83 0 6

TestIsPredetermined 0 4 0 66 0 6

UnreachableInstruction 0 4 0 66 0 6

SetStaticInNonStaticWarning 0 0 6 0 0 0

Table 3.3: Warnings removed on Windows Forms applications

lack of framework knowledge by the analyzer. We will focus on the removed warnings

only since the 6 ones added in ShareX analysis are all real alarms residing in methods

that were previously considered deadcode and thus not analyzed.

Table 3.3 reports the warnings removed (R) and added (A) when applying the

Windows Forms specification to Shadowsocks (SS), ShareX (SX), and CefSharp (CS),

grouped by type. The specification targeted mostly disposable objects stored into

fields: the majority of the warnings (4403 out of 4556, that is, 96%) refer to them.

Warnings about closable resources, such as CloseableNotStoredIntoLocal and Re-

sourceNotClosedAtEndOfMethod are issued whenever objects inheriting from Closea-

ble (Java) or IDisposable (C#) might not get closed/disposed: such an object should

be stored in (i) a final/readonly field on which a call to close()/Dispose() happens

in reachable code, or (ii) a local variable on which a call to close()/Dispose() happens

before the end of the method. Figure 3.18 shows a snippet of code from ShareX.

In method UpdateTrayMenu, a new ToolStripMenuItem is created and added to

another ToolStripMenuItem retrieved from a field of MainForm. Since (i) class

ToolStripMenuItem implements IComponent, (ii) MainForm inherits from Form
which implements IComponent, and (iii) the newly created ToolStripMenuItem
will be reachable from MainForm after the execution of the if-else block, such object

will be automatically disposed from the runtime environment when the instance of

MainForm will be disposed by the Windows Forms runtime. When analyzing ShareX
without the Windows Forms specification, Julia raises the following warning:

CloseResource: This instance of class ToolStripMenuItem does not seem to be

always closed by the end of this method. It seems leaked at line 156 [at Recent-

67

Chapter 3 | Towards a multilanguage analyzer: LiSA

1 c l a s s MainForm : Form {
2 Too lS t r ipMenuI tem t s m i T r a y R e c e n t I t e m s ;
3 }
4 c l a s s RecentTaskManager {
5 vo id UpdateTrayMenu () {
6 Too lS t r ipMenuI tem t s m i = MainForm . t s m i T r a y R e c e n t I t e m s ;
7 Too lS t r ipMenuI tem t s m i L i n k = new Too lS t r ipMenuI tem () ;
8 i f (. . .) t s m i . DropDownItems . I n s e r t (2 , t s m i L i n k) ;
9 e l s e t s m i . DropDownItems . Add (t s m i L i n k) ;

10 }
11 }

Figure 3.18: Disposable objects stored in fields of classes

1 c l a s s S t a t i s t i c s S t r a t e g y C o n f i g u r a t i o n F o r m : Form {
2 But ton OKButton ;
3 vo id I n i t i a l i z e C o m p o n e n t () {
4 OKButton = But ton () ;
5 / / i n i t code
6 s p l i t C o n t a i n e r 1 . P a n e l 2 . C o n t r o l s . Add (OKButton) ;
7 }
8 }

Figure 3.19: UI fields generated by Visual Studio

TaskManager.cs:156]

When we apply the Windows Forms specification in Figure 3.16 to this code, line 8 an-

notates field tsmiTrayRecentItems as@AutoClosedResource, and this informs Julia
that every resource reachable from that field will be automatically disposed. Hence,

the above warning is no longer issued, as the newly created ToolStripMenuItem
tsmiLink will end up being reachable from such field.

Warnings FieldShouldBeReplacedByLocals and FieldIsOnlyUsedInConstructors are

instead issued when a field could be replaced by a local variable inside the only

method (FieldShouldBeReplacedByLocals) or constructor (FieldIsOnlyUsedInConstruc-

tors) that references them. Figure 3.19 shows a simplification of code generated by

Windows Forms to represent a UI component in Shadowsocks. Field OKButton is

initialized and added to a container inside InitializeComponent(), but the field

is never used later in the code. The initialization is inside the Visual Studio designer-

generated file, and the user has no control over this. Julia raises the following warning

on this code:

ImproperField: Field OKButton should be replaced by local variables [at Statis-

ticsStrategyConfigurationForm.cs]

When we apply the Windows Forms specification in Figure 3.16 to this snippet of

code, line 7 annotates field OKButton as @ExternallyRead and @Injected, and

Julia does not produce the above warning anymore.

Finally, Julia’s analysis is able to detect when a test always evaluates to true
or false. In this situation, two warnings are issued: a TestIsPredetermined warning

stating that the test is useless since it always evaluates to the same Boolean value, and

a UnreachableInstruction warning to explicitly mark the unreachable branch (if this

68

3.6. Modeling library behavior: SARL

1 c l a s s BrowserTabUserContro l {
2 I C o n t a i n e r components = n u l l ;
3 o v e r r i d e vo id Di spose (b o o l d i s p o s i n g) {
4 i f (d i s p o s i n g)
5 i f (components != n u l l) {
6 components . D i spose () ;
7 components = n u l l ;
8 }
9 base . D i spose (d i s p o s i n g) ;

10 }
11 }

Figure 3.20: Dispose() pattern of Form classes

SignalR ANB Umbraco

Warn. w/o spec. 681 552 1729

Common (%) 658 (96.6%) 544 (98.6%) 1658 (95.9%)

Added (%) 1 (0.1%) 0 (0%) 0 (0%)

Removed (%) 23 (3.4%) 8 (1.4%) 71 (4.1%)

Table 3.4: Difference in warnings on ASP.NET analyses

contains some code). In addition, when a field or a local variable gets initialized with

its default value Julia raises anUselessAssignmentToDefaultValue warning. Figure 3.20

shows a pattern generated by Visual Studio for handling the disposal of resources

of Form classes in CefSharp. The components field is non-null only if the form

contains some resources that are not UI objects but needs to be disposed (e.g., a

Timer instance). However, the field is initialized and managed by the framework

runtime, and the code of the application never assigns it. The code of the designer

declares the field, initializes it to null, and then disposes it if it is not null. On this

piece of code, Julia raises the following three warnings:

UselessAssigment: Useless assignment of field components to its default value

[at BrowserTabUserControl.cs:8]

UselessTest: The result of this test is fixed: you are comparing null against null
[at BrowserTabUserControl.cs:103]

Deadcode: This instruction seems unreachable [at BrowserTabUserControl.cs:105]

When we apply the Windows Forms specification in Figure 3.16 to this snippet of

code, line 9 annotates field components as externally injected (as it effectively hap-

pens in the framework runtime), and therefore Julia analyses do not produce anymore

these warnings.

ASP.NET

Table 3.4 reports, for each analyzed application, the number of warnings with a stan-

dard analysis (without the SARL specification) executing Basic checkers altogether,

and the number of common, added, and removed warnings when performing the

same analyses with the specifications presented in Figure 3.14 of Section 3.6 (ANB

69

Chapter 3 | Towards a multilanguage analyzer: LiSA

Warning

SR AB UM

A R A R A R

FieldNeverUsed 0 6 0 0 0 1

FieldReadWritten 0 0 2 0 0 0

Uncalled 0 17 0 10 0 70

PossibleInsecureCookieCreation 1 0 0 0 0 0

Table 3.5: Warnings removed on ASP.NET applications

1 a b s t r a c t c l a s s AbpWebApplicat ion : H t t p A p p l i c a t i o n {
2 vo id A p p l i c a t i o n S t a r t (o b j e c t sender , EventArgs e v a r g s) {
3 / / s t a r t u p code
4 }
5 }
6 c l a s s MvcApp l i ca t ion : UmbracoApp l i ca t ionBase { }

Figure 3.21: Application_Start method

is a shortcut for AspnetBoilerplate). It is noticeable that the results on ASP.NET ap-

plications are less pervasive than the ones on desktop applications: this is due to the

nature of those projects that are libraries (SignalR and AspnetBoilerplate) or content

providers (Umbraco), and they contain very few web pages based on ASP.NET.

Table 3.5 reports the warnings removed (R) and added (A) when applying the

ASP.NET specification to SignalR (SR), AspnetBoilerplate (AB), and Umbraco (UM)

grouped by warning type. As for Windows Forms results, we will not discuss the

added warnings since they are true alarms on methods that were previously consid-

ered dead code.

Julia issues an Uncalled warning on each method that is not reachable from the

entry points of the application, and the code from these methods is never analyzed.

Figure 3.21 shows an Application_Start method in AspnetBoilerplate. While this

is never actually used within the application code, it is indeed invoked by the frame-

work runtime at the first startup of MvcApplication. Hence, even if its access is

restricted (i.e., it is not public), it must be considered an entry point. Besides, the

compilation of the web views of the application results in an assembly containing

one class file per view (named ASP._Page_namespace_.viewName) with only a con-

structor, a getter for the current application instance and an Execute method, and

an object factory (named _ASP.FastObject-Factory_.applicationName) that is

used by ASP.NET to instantiate the web views. These methods are both (i) gener-

ated code, and (ii) invoked by the runtime. When analyzing Umbraco, Julia raises the

below warnings:

Deadcode: Method Application_Start is unreachable [at UmbracoApplication-

Base.cs:72]

Deadcode: Method Create_ASP__Page_Umbraco_Install_Views_Index_c-
shtml is unreachable [at ASP.FastObjectFactory umbraco.cs]

Deadcode: Method get_ApplicationInstance is unreachable [at ASP. Page-

70

3.7. Multilanguage analysis

1 c l a s s Defau l t : Page {
2 TextBox userName ;
3 TextBox r o l e s ;
4 But ton l o g i n ;
5 vo id Login (o b j e c t sender , EventArgs e) {
6 var i d e n t i t y = new G e n e r i c I d e n t i t y (userName . Text) ;
7 var p r i n c i p a l = new G e n e r i c P r i n c i p a l (i d e n t i t y ,
8 S p l i t S t r i n g (r o l e s . Text)) ;
9 }

10 }

Figure 3.22: UI fields generated by Visual Studio

Umbraco Install Views Index cshtml.cs]

When we apply the ASP.NET specification in Figure 3.14 to this snippet of code, line 8

annotates Application_Start as an entry point, while lines 10 and 11 do the same

for the latter methods, removing all three warnings from the results.

A FieldNeverUsed warning is issued whenever a field is never read or written inside

the whole reachable application code. Figure 3.22 shows a snippet of ASP.NET code

from SignalR. Method Login is an event handler, and hence never explicitly called in

the reachable code. In addition, fields userName and roles are never explicitly ini-

tialized: they represent an alias for the web view component declared in the cshtml
file, and their values will be injected from the runtime environment. When analyzing

SignalR without the SARL specification, Julia raises the following warnings:

FieldAccess: Field userName is never used [at Default.cs]

FieldAccess: Field roles is never used [at Default.cs]

FieldAccess: Field login is never used [at Default.cs]

Deadcode: Method Login is unreachable [at Default.cs]

When we apply the ASP.NET specification in Figure 3.14 to this code, line 8 annotates

method Login as an entry point, while line 9 annotates fields userName, roles, and

login as externally read and injected, thus removing the four warnings reported

above.

3.7 Multilanguage analysis

We now instantiate LiSA and its components to showcase how multilanguage anal-

yses can be easily performed. We demonstrate the effectiveness of our approach on

the JoyCar IoT system of Figure 1.1 (Section 1.2.1). Code snippets reported in this

section are available on GitHub
19

, where the full implementation of this analysis is

published.

As the codebase is composed of two languages, a frontend for each has to be

built. These have been developed using ANTLR for parser generation, and mostly

19https://github.com/lisa-analyzer/lisa-joycar-example.

71

https://github.com/lisa-analyzer/lisa-joycar-example

Chapter 3 | Towards a multilanguage analyzer: LiSA

exploit Statements and Edges provided out-of-the-box from LiSA. The key aspect

w.r.t. multilanguage analysis is the handling of constructs that enable inter-language

communication, offered here by the Java Native Interface (JNI). At runtime, the Java

VM tries to resolve calls to native methods using the name-mangling scheme reported

in the JNI specification
20

. We thus proceeded by providing an implementation for

native methods found in Java code using the following (simplified) snippet:

1 vo id p a r s e A s N a t i v e (CFG cfg , S t r i n g className , S t r i n g name ,
2 Parameter [] fo rma l s , Type re turnType) {
3 S t r i n g mangled = nameMangling (className , name , f o r m a l s) ;
4 E x p r e s s i o n [] a r g s = bui ldArguments (f o r m a l s) ;
5 U n r e s o l v e d C a l l c a l l = new U n r e s o l v e d C a l l (mangled , a r g s) ;
6 i f (! r e turnType . i sVo idType ())
7 c f g . addNode (new Return (c a l l)) ;
8 e l s e {
9 Ret r e t = new Ret () ;

10 c f g . addNode (c a l l) ;
11 c f g . addNode (r e t) ;
12 c f g . addEdge (new S e q u e n t i a l E d g e (c a l l , r e t)) ;
13 }
14 }

The code above bridges the two codebases by creating an UnresolvedCall, where

(i) the target’s name is built with the mangling scheme from the specification, (ii) the

arguments for the call correspond to the ones passed to the native method preceded

by the pointer to an instance of JNIEnv (an object required by JNI to hold pointers to

native functions), and (iii) the value returned by the call is also returned by the native

method, if any. With this setup, not only can theC++ code be parsed regularly, but the

analysis components are also agnostic to the presence of JNI, as the call to the native

method is treated exactly as any other call. Note that, while this specific example did

not require it, the generated call can be preceded by arbitrary instrumentations (e.g.,

the state conversion typical of boundary functions).

The next step is to select the analysis components. We mostly rely on analyses

natively provided by LiSA:

∙ the Interprocedural Analysis is set to a context-sensitive implementation

that follows call-chains top-down, thus starting from the main method and

traversing them until a recursion is encountered (and thus enabling LiSA to

follow every call in our target application);

∙ the Call Graph implementation uses inferred runtime types of variables and

expressions;

∙ the Abstract State used is SimpleAbstractState;

∙ as the program properties do not rely on dynamic memory, we use a fast but

imprecise Heap Domain called MonolithicHeap, that abstracts each memory

location to a unique synthetic one.

20https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html,

paragraph “Resolving Native Method Names”.

72

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html

3.7. Multilanguage analysis

1 p u b l i c c l a s s T a i n t e x t e n d s BaseNonRela t iona lVa lueDomain<Taint> {
2 s t a t i c f i n a l Annota t ion TAINT ANNOT = new Annota t ion (” l i s a . t a i n t . T a i n t e d ”) ;
3 s t a t i c f i n a l Annota t ion CLEAN ANNOT = new Annota t ion (” l i s a . t a i n t . Clean ”) ;
4

5 s t a t i c f i n a l T a i n t TAINTED = new T a i n t (t r u e) ;
6 s t a t i c f i n a l T a i n t CLEAN = new T a i n t (f a l s e) ;
7 s t a t i c f i n a l T a i n t BOTTOM = new T a i n t (n u l l) ;
8

9 f i n a l Boolean t a i n t ;
10 T a i n t (Boolean t a i n t) {
11 t h i s . t a i n t = t a i n t ;
12 }
13

14 T a i n t e v a l I d e n t i f i e r (I d e n t i f i e r id , ValueEnvironment<Taint> env) {
15 A n n o t a t i o n s annot s = i d . g e t A n n o t a t i o n s () ;
16 i f (annot s . c o n t a i n s (TAINT ANNOT))
17 r e t u r n TAINTED ;
18 i f (annot s . c o n t a i n s (CLEAN ANNOT))
19 r e t u r n CLEAN ;
20 r e t u r n env . g e t S t a t e (i d) ;
21 }
22

23 T a i n t e v a l C o n s t a n t () {
24 r e t u r n CLEAN ;
25 }
26

27 T a i n t e v a l U n a r y E x p r e s s i o n (UnaryOperator o p e r a t o r , T a i n t arg) {
28 r e t u r n arg ;
29 }
30

31 T a i n t e v a l B i n a r y E x p r e s s i o n (B i n a r y O p e r a t o r o p e r a t o r ,
32 T a i n t l e f t , T a i n t r i g h t) {
33 r e t u r n l e f t . l u b (r i g h t) ;
34 }
35

36 T a i n t e v a l T e r n a r y E x p r e s s i o n (Te rn ar y Op er a t o r o p e r a t o r ,
37 T a i n t l e f t , T a i n t middle , T a i n t r i g h t) {
38 r e t u r n l e f t . l u b (midd le) . l u b (r i g h t) ;
39 }
40 }

Figure 3.23: A simple Taint Analysis implementation

As Value Domain, we implemented a Taint analysis [133, 60] as a Non-Relational Do-

main, whose simplified source code is reported in Figure 3.23. The domain is based

on the poset ⟨{⊥, 𝑐𝑙𝑒𝑎𝑛, 𝑡𝑎𝑖𝑛𝑡𝑒𝑑}, {(⊥, 𝑐𝑙𝑒𝑎𝑛), (𝑐𝑙𝑒𝑎𝑛, 𝑡𝑎𝑖𝑛𝑡𝑒𝑑)}⟩, that forms a finite (and

thus complete) lattice using trivial ⊔ and ⊓ operators that, given a pair of elements,

return the greater and smaller of the two, respectively. Implementation-wise, the su-

perclass BaseNonRelationalValueDomain handles base cases of lattice operations,

that is, when one of the operands involved is either ⊤ (𝑡𝑎𝑖𝑛𝑡𝑒𝑑) or ⊥, or when the two

operands are the same element. Hence, no additional logic needs to be implemented

for ⊔, ∇ and ⊑. Recursive expression evaluation is also provided out-of-the-box by

BaseNonRelationalValueDomain, and the concrete implementation only has to

provide evaluation of individual expressions. Specifically, we consider all constants

as 𝑐𝑙𝑒𝑎𝑛, while evaluation of unary, binary, and ternary expressions is carried out by

computing the ⊔ of their arguments. Tainted values are generated only when eval-

uating variables, relying on their annotations: as LiSA assigns the result of Calls

to temporary variables, transferring all annotations from the call’s targets, this en-

ables uniform identification of both sources (i.e., annotated with TAINT_ANNOT) and

73

Chapter 3 | Towards a multilanguage analyzer: LiSA

sanitizers (i.e., annotated with CLEAN_ANNOT). Variables are thus considered always

𝑡𝑎𝑖𝑛𝑡𝑒𝑑 or always 𝑐𝑙𝑒𝑎𝑛 relying on such annotations, defaulting otherwise to the ab-

straction stored inside the environment.

To exploit our analysis results, we defined a Check instance that iterates over the

application under analysis to scan for method parameters that are annotated with

@lisa.taint.Sink, a third kind of annotation that identifies places where tainted

information should not flow. When one such parameter is found, the check inspects

all call sites where the corresponding method is invoked, and checks if the post-state

of the Expression passed for the annotated parameter contains a tainted expression

on the stack, according to our Taint domain. If it is, a warning is issued. We then pro-

ceed by annotating as source (i.e., with @lisa.taint.Tainted) the value returned

by readAnalog, and as sink (i.e., with @lisa.taint.Sink) the second parameter of

softPwmWrite. The analysis can then be executed, obtaining the following warning

on the softPwmWrite call:

The value passed for the 2nd parameter of this call is tainted, and it reaches the

sink at parameter ’value’ of softPwmWrite [at JoyCar.cpp:124:55]

thus showcasing that cross-language vulnerabilities can be discovered in a single

analysis run. Also note that, with the same setup, domains computing complex struc-

tures (e.g., automata) can still operate cross-language without incurring in expensive

serializations and deserializations needed to communicate information across ana-

lyzers.

3.8 LiSA for teaching

In this section, we report our experience in using LiSA to let master level students

experiment with static analysis. Several techniques are often taught in bachelor or

master courses, in response to the increasing need for software verification skills.

However, they require a relevant theoretical background and several preliminary no-

tions that must be taught to students before they can move on to the implementa-

tion aspects that are equally challenging. Based on our teaching experience
21

, the

theoretical background and notions needed to teach static analysis by abstract in-

terpretation take most of the available time, allowing professors to only show few

popular abstractions (e.g., Sign and Interval domains). Hence, issues related to

the actual design of new analyses and the experimental evaluation of the trade-off

between accuracy and computational cost of the analysis on different domains risk

being neglected. This also limits the involvement of brilliant students in this research

area. We present here the implementation of some simple value analyses that are

usually formalized and taught in static analysis courses. In particular, we present the

21
Prof. Cortesi and the Software and System Verification group at Ca’ Foscari University (https://

ssv.dais.unive.it/) taught a course on static analysis in the master in Computer Science during the

last 2 decades. Full details at https://www.unive.it/data/course/332756.

74

https://ssv.dais.unive.it/
https://ssv.dais.unive.it/
https://www.unive.it/data/course/332756

3.8. LiSA for teaching

Available Expressions dataflow analysis and the Sign abstract domain. These

are just two possible instances of the LiSA infrastructure, while slightly different anal-

yses (e.g., Constant Propagation, Intervals, . . .) might easily be implemented

in a similar way. The reported implementations can be easily employed as guiding

examples to enable students to experiment with practical static analysis. This section

is based on the published paper [66].

How to Run LiSA. The following fragment shows how to run LiSA using the Imp

frontend (a frontend for a toy imperative language that is used in LiSA for testing

purposes) and how to obtain the analysis results that we will show in this section.

1 Program program = IMPFrontend . p r o c e s s F i l e (f i l e P a t h) ;
2 L i S A C o n f i g u r a t i o n con f = new L i S A C o n f i g u r a t i o n () ;
3 con f . s e t A b s t r a c t S t a t e (g e t D e f a u l t F o r (A b s t r a c t S t a t e . c l a s s ,
4 new Monol i th i cHeap () ,
5 new Sign ())) ;
6 con f . se tDumpAnalys i s (GraphType . DOT) ;
7 con f . s e tWorkd i r (o u t D i r) ;
8 LiSA l i s a = new LiSA (con f) ;
9 l i s a . run (program) ;

The first line invokes the Imp front-end in order to process the Imp program located

at filePath, returning a LiSA program that contains the CFGs corresponding to the

functions contained in the source program. Line 2 creates a configuration for LiSA

and the following lines proceed to initialize it: lines 3-5 set the Abstract State, and in

turn the Heap Domain and Value Domain. In this case, we use the default implemen-

tation for the abstract state but we set the MonolithicHeap used also in Section 3.7

and the Sign abstractions for Heap and Value Domains, respectively. Then, line 6

tells to LiSA to dump the analysis results in dot format inside the output directory

outDir specified at line 7. Finally, a LiSA instance is created at line 8 starting from

the configuration, and the analysis is executed at line 9 on the program.

Dataflow Analyses. As discussed in Section 3.3.3, LiSA provides suitable inter-

faces for dataflow analyses, both possible and definite. In the following, we show

the LiSA interface for forward and definite dataflow analyses. Dually, LiSA provides

the interface for possible and forward dataflow analyses. These are parametric to an

implementation of interface DataflowElement that must provide the classical kill
and gen methods of the dataflow analyses. Let us focus on the assign method:

1 c l a s s DataflowDomain<
2 D e x t e n d s DataflowDomain<D, E>,
3 E e x t e n d s Dataf lowElement<D, E>>
4 e x t e n d s B a s e L a t t i c e<D> implements ValueDomain<D> {
5

6 Set<E> e l e m e n t s ;
7 E domain ;
8 D a s s i g n (I d e n t i f i e r id , V a l u e E x p r e s s i o n exp) {
9 Set<E> updated = new HashSet<>(e l e m e n t s) ;

10 f o r (E k i l l e d : domain . k i l l (id , exp , (D) t h i s))
11 updated . remove (k i l l e d) ;

75

Chapter 3 | Towards a multilanguage analyzer: LiSA

12 f o r (E g e n e r a t e d : domain . gen (id , exp , (D) t h i s))
13 updated . add (g e n e r a t e d) ;
14 r e t u r n mk(domain , updated) ;
15 }
16 }

The implementation provided by LiSA implements the generic dataflow equation

out = in ⧵ 𝑘𝑖𝑙𝑙𝑖(in) ∪ 𝑔𝑒𝑛𝑖(in): first, the kill method is applied to the current instance

to remove the killed dataflow elements (lines 10-11), followed by the application of

the gen method to add the dataflow elements that are generated by the assignment

(lines 12-13). In this way, the effects of the gen and kill methods are internally

handled by the above class and they do not need to be implemented by the specific

instance of dataflow analysis. Indeed, it is enough for the dataflow element concrete

implementation E to implement the kill and gen methods. For instance, the class

AvailableExps is just a few lines of code, as reported below
22

(getIdentifiers is

a helper function that returns all variables appearing in the given expression).

1 c l a s s A v a i l a b l e E x p s implements Dataf lowElement<
2 Def in i t eData f lowDomain<A v a i l a b l e E x p r e s s i o n s >,
3 A v a i l a b l e E x p r e s s i o n s> {
4

5 S y m b o l i c E x p r e s s i o n exp ;
6 C o l l e c t i o n<A v a i l a b l e E x p s> gen (I d e n t i f i e r id , V a l u e E x p r e s s i o n exp ,
7 Def in i t eData f lowDomain<A v a i l a b l e E x p s> domain) {
8 C o l l e c t i o n<A v a i l a b l e E x p r s> r e s u l t = new HashSet <>() ;
9 r e s u l t . add (new A v a i l a b l e E x p s (exp)) ;

10 r e t u r n r e s u l t ;
11 }
12

13 C o l l e c t i o n<I d e n t i f i e r > k i l l (I d e n t i f i e r id , V a l u e E x p r e s s i o n exp ,
14 Def in i t eData f lowDomain<A v a i l a b l e E x p s> domain) {
15 C o l l e c t i o n<A v a i l a b l e E x p r s> r e s u l t = new HashSet <>() ;
16 f o r (A v a i l a b l e E x p r e s s i o n s ae : domain . e l e m e n t s)
17 i f (g e t I d e n t i f i e r s (ae . exp) . c o n t a i n s (i d))
18 r e s u l t . add (ae) ;
19 r e t u r n r e s u l t ;
20 }
21 }

To perform an analysis, it is enough to feed DefiniteDataflowDomain with

AvailableExps, set it as Value Domain, and run LiSA as we have shown at the begin-

ning of this section. Figure 3.24b depicts the analysis results for a minimal example

(Figure 3.24a), where each node reports the computed available expressions
23

.

Non-Relational Abstract Domains. One of the first numerical analyses that are

usually introduced in static analysis courses is the Sign analysis, tracking if each vari-

able is zero, positive or negative. LiSA offers the BaseNonRelationalValueDomain
to easily develop Non-Relational Domains (Section 3.3.3), requiring the concrete class

to only implement symbolic expressions evaluation methods on non-bottom elements,

22
Here, we report only the kill/gen overloads for assignments, as the others can be simply derived

by these.

23
The LiSA implementation has an internal optimization that avoids generating elements for constants.

76

3.9. Conclusion

1 d e f a = −7 ;
2 d e f b = 1 0 ;
3 d e f x = a + b ;
4 d e f y = a ∗ b ;
5 whi l e (y > a) {
6 a = a + 1 ;
7 x = a + b ;
8 }
9 r e t u r n x ;

(a) Minimal example (b) Available Expressions (c) Sign

Figure 3.24: Analysis results on a minimal example

together with Lattice operations. In the following, we report the Sign class with

an excerpt of its evalBinaryExpression method, a callback that is invoked by

BaseNonRelationalValueDomain to compute an abstract value for a binary expres-

sion once its arguments have been evaluated. Similarly, it implements the evaluation

methods for the other symbolic expressions types (e.g., unary, ternary, constant, . . .)

that are similar to the one presented here.

1 c l a s s S ign e x t e n d s BaseNonRela t iona lVa lueDomain<Sign> {
2 s t a t i c f i n a l S ign POS = new Sign () ;
3 s t a t i c f i n a l S ign NEG = new Sign () ;
4 s t a t i c f i n a l S ign ZERO = new Sign () ;
5 s t a t i c f i n a l S ign TOP = new Sign () ;
6 s t a t i c f i n a l S ign BOTTOM = new Sign () ;
7 . . .
8 S ign e v a l B i n a r y E x p r e s s i o n (BinaryOp op , S ign l e f t , S ign r i g h t) {
9 s w i t c h (op) {

10 . . .
11 c a s e NUMERIC ADD :
12 i f (l e f t == ZERO) r e t u r n r i g h t ;
13 e l s e i f (r i g h t == ZERO) r e t u r n l e f t ;
14 e l s e i f (l e f t == r i g h t) r e t u r n l e f t ;
15 e l s e r e t u r n TOP ;
16 . . .
17 }
18 }
19 }

Lines 2-6 define the five abstract points that compose the Sign lattice. Then, at

lines 10-17, method evalBinaryExpression switches on the binary operator op,

defining the corresponding sign abstract semantics. We report only the case for the

binary operator NUMERIC_ADD, implementing the classical signs rules.

At this point, we can feed ValueEnvironment with Sign and run LiSA. The anal-

ysis results for the minimal example of Figure 3.24a are reported in Figure 3.24c.

3.9 Conclusion

In this chapter, we thoroughly described LiSA, a modular framework for multilan-

guage static analysis with an open-source Java implementation. LiSA operates by an-

alyzing an extensible language of CFGs, whose nodes contain user-defined language-

77

Chapter 3 | Towards a multilanguage analyzer: LiSA

specific semantics that translates them into symbolic expressions. These are atomic

constructs with precise semantics, that abstract domains can analyze. LiSA’s infras-

tructure modularly decomposes semantics evaluation into separate tasks, each car-

ried out by a different analysis component. Each such component performs agnos-

tically w.r.t. the concrete implementations of other ones, and is responsible for ab-

stracting specific program features. The Interprocedural Analysis, in cooperation with

the Call Graph, abstracts calls and call-chains, leaving the rest of the analysis with

call-free programs. Then, the modular Analysis State orchestrates memory and value

abstraction. The former is performed by the Heap Domain, that abstracts all heap op-

erations by rewriting them with synthetic variables representing heap locations they

resolve to, leaving the Value Domain with call- and memory-free programs. Individ-

ual library functions can be modeled as native CFGs, that is, as special CFGs with a

unique node that expresses the semantics of the whole function. We also reported our

teaching experience with LiSA, which emphasizes how the modular structure enables

experimenting with LiSA achievable by Master level students.

Furthermore, we presented SARL as a mean to structurally model software frame-

works. Through SARL, one can write concise framework specifications expressing how

a given framework modifies a program’s execution model. Specifications are com-

posed of syntactic rules identifying program members, with each specifying one or

more annotations. Then, the program can be syntactically visited to apply such rules,

and every member matched by one of these is annotated with the respective anno-

tations. Analysis components can then react to the presence of annotations, thus

taking into account the framework’s non-standard semantics.

Finally, we demonstrated LiSA’s capability of analyzing software written in multi-

ple programming languages, identifying a vulnerability that spanned Java and C++ in

a proof-of-concept case study. Instead, in the following chapters, we present two LiSA

applications to individual programming languages having widely different seman-

tics: Go (Chapter 4), a statically typed and compiled language, and Python (Chap-

ter 5), a dynamically typed and interpreted language. These are studied in the context

of blockchain and data science, respectively, providing static analysis techniques to

prove programs correct.

78

4 Smart contracts analysis

Chapter Contents

4.1 Related Work . 82

4.2 Blockchain frameworks . 83

4.3 Sources and sinks of non-determinism 84

4.3.1 Sources of non-determinism 85

4.3.2 Sinks of non-determinism 86

4.4 Flow analysis for non-determinism detection 88

4.4.1 An Overview on Information Flow 89

4.4.2 GoLiSA for non-determinism detection 91

4.4.3 Detection of Sources and Sinks in GoLiSA 93

4.5 Experimental Evaluation . 95

4.5.1 Quantitative evaluation 95

4.5.2 Qualitative evaluation . 97

4.5.3 Limits . 98

4.6 Commercio.network: an industrial case study 98

4.6.1 Commercio.network . 99

4.6.2 Detecting non-determinism on Commercio.network . . . 99

4.7 Conclusion . 101

In this chapter, we define a novel technique based on information flow to detect

usages of non-deterministic constructs in software running on a blockchain. This

chapter is based on [106] and a paper under second revision for ECOOP
1
.

In the last decade, blockchain software has undergone a notable evolution. In

2008, Bitcoin [101] introduced a Turing-incomplete low-level language to specify

locking conditions that must hold for a transaction to be accepted by the network

[11]. In 2013, Ethereum [29, 10] provided a Turing-complete bytecode where smart

contract rules are enforced by the blockchain consensus. Code execution happens on

the Ethereum Virtual Machine (EVM), resulting in software identified as decentral-

ized applications (DApps). EVM bytecode is supported by high-level domain-specific

languages (DSLs), such as Solidity and Vyper, that have been designed from scratch

for the purpose of being executed in the restricted environment of blockchain. Subse-

quently, thanks to frameworks such as Hyperledger Fabric [9], Tendermint [24, 86],

and Cosmos SDK [87], general-purpose programming languages (GPLs) such as Go,

Java, and JavaScript began being used to develop smart contracts and DApps, with

Go being the most popular in industrial blockchains.

The popularity of GPLs for writing smart contracts and DApps is steadily increas-

ing. Their success is mostly due to the maturity of the languages themselves, directly

resulting in wide communities, consolidated tools (such as IDEs and debuggers),

1https://conf.researchr.org/home/ecoop-2023.

79

https://conf.researchr.org/home/ecoop-2023

Chapter 4 | Smart contracts analysis

and most importantly a pool of expert and knowledgeable developers that can write

highly efficient smart contracts. Yet, GPLs were not conceived solely for blockchain

ecosystems: code that is harmless and bug-free in other contexts may result in vul-

nerabilities and errors. Among these, one of the most insidious is non-determinism.

When the result of an operation on a blockchain is non-deterministic, there is no

guarantee that a common state can be reached by the network’s nodes, possibly pre-

venting it from reaching consensus. This can manifest, among other possibilities,

as transaction failures or denial of service. Nevertheless, not all instances of non-

determinism are intrinsically dangerous: logging the time of a transaction can result

in different timestamps appearing in each node’s logs, but it does not endanger con-

sensus as it is not observable by other nodes. In fact, non-deterministic instructions

are problematic only if they can affect the shared blockchain state. GPLs also offer

constructs and features that drive their adoption in specific contexts, and these add

to the existing challenges that program analysis already faces. In Go, the language

tackled in this chapter, examples of such peculiar features are the composition-driven

type embedding
2
, innate concurrency constructs

3
, and block-based variable scoping

4
.

As an example, consider the code in Figure 4.1, reporting an excerpt of method

ValidateBasic from the module x/authz (part of the Cosmos SDK versions 0.43.x

and 0.44.{0,1} and affected by CVE-2021-41135
5
). The code is meant to fail the valida-

tion of expired grants. Note that the guard at line 2 involves the local clock of nodes

(time.Now()) rather than leveraging the timestamp included in the Block header

provided by the Byzantine Fault Tolerant clock, that is agreed upon by the consen-

sus. As reported in the official Cosmos forum [58]:

Local clock times are subjective and thus non-deterministic. An attacker

could craft many Grants, with different but close expiration times (e.g., sep-

arated by a few seconds), and try to exercise the granted functionality for

all of them close to their expiration time. It is likely in such a scenario that

some nodes would consider a grant to have expired while others would not,

leading to a consensus halt.

The code was then fixed in version 0.44.2, but is still a clear example of a vulnera-

bility arising from non-deterministic constructs. The problem tackled of blockchain

non-determinism is clearly felt by the communities of the blockchain frameworks

treated in this chapter. As a representative example, the Tendermint Core documen-

tation [81], while discussing non-determinism, reports:

While programmers can avoid non-determinism by being careful, it is

also possible to create a special linter or static analyzer for each language

2https://go.dev/doc/effective_go#embedding.

3https://go.dev/doc/effective_go#concurrency.

4https://go.dev/ref/spec#Declarations_and_scope.

5https://nvd.nist.gov/vuln/detail/CVE-2021-41135.

80

https://go.dev/doc/effective_go#embedding
https://go.dev/doc/effective_go#concurrency
https://go.dev/ref/spec#Declarations_and_scope
https://nvd.nist.gov/vuln/detail/CVE-2021-41135

1 func (g Grant) V a l i d a t e B a s i c () e r r o r {
2 i f g . E x p i r a t i o n . Unix () < t ime . Now () . Unix () {
3 r e t u r n s d k e r r o r s . Wrap (E r r I n v a l i d E x p i r a t i o n T i m e , ” Time can ’ t be i n the

p a s t ”)
4 }
5 / / [. . .]
6 }

Figure 4.1: Cosmos SDK code affected by CVE-2021-41135

to check for determinism. In the future we may work with partners to create

such tools.

This chapter presents a software verification approach based on static analysis for

the detection of non-deterministic vulnerabilities in blockchain ecosystems, covering

the most popular frameworks for developing this kind of software, such as Hyper-
ledger Fabric, Tendermint Core, and Cosmos SDK. We shift the classical focus that has

been applied in this context beyond the mere syntactic absence of non-deterministic

constructs. In fact, we aim at distinguishing harmful usages of non-determinism, that

is, constructs affecting the blockchain state and response, from harmless ones. As a

consequence, the set of alarms issued to the user sensibly shrinks, as shifting from a

syntactic approach towards a semantic one leads to a sensible reduction in false pos-

itives. We propose a semantic flow-based static analysis for detecting flows from

non-deterministic constructs to blockchain state modifiers and response builders.

The choice of a flow-based analysis seems natural when the problem is phrased as

“is there an execution where a non-deterministic value affects the blockchain state or the

contract’s response?”. We thus exploit the well-consolidated literature in this area to

adopt scalable solutions that soundly over-approximate all program executions.

We provide a static analyzer implementing our approach: GoLiSA, a sound static

analyzer based on abstract interpretation for Go applications. Intuitively, we use

our analyzer’s fixpoint engine to mark all program variables (local variables, ob-

jects’ fields, . . .) that can contain values affected, directly or indirectly, by a non-

deterministic construct or computation. Specifically, we can perform a shallower

analysis detecting only explicit flows using Taint [133, 60] analysis, where non-deter-

ministic constructs and blockchain state modifiers are modeled as sources and sinks,

respectively. Alternatively, we can perform a deeper analysis able to also detect im-

plicit flows by means of the Non-interference [73, 74] analysis, where problematic

constructs and blockchain state modifiers are instead modeled as low and high vari-

ables, respectively. Both solutions are implemented in GoLiSA, whose analysis starts

by syntactically visiting the input application to annotate all sources and sinks. The

annotations are dynamically generated depending on the kind of application of inter-

est (i.e., targeting Hyperledger Fabric, Cosmos SDK, or Tendermint Core). Since there

is no predefined set of sources in the target program, both Taint analysis and Non-

interference are parametric: they consider as harmful (i.e., tainted or low integrity,

depending on the analysis that is to be executed) only variables that are annotated

81

Chapter 4 | Smart contracts analysis

as sources. The fixpoint engine then takes care of propagating values coming from

sources on the entirety of the program, exploiting our analyses implementations. Af-

ter the fixpoint converges, a mapping stating if each program variable is the result of

a non-deterministic computation is available at each program point. These are then

used by our non-deterministic Checks, that visit the whole application searching for

statements annotated with the sink annotation. Whenever one is found, the map-

pings are used to determine if the values used as parameters of the call are critical

or, in the case of Non-interference, if the call happens in a critical state.

Our approach, as highlighted by our evaluation, shows a significant decrease in

false positives on real-world blockchain applications compared to other analyzers for

blockchain non-determinism. The solution has been experimented on a benchmark

of more than 600 real-world blockchain programs written in Go. These show that

GoLiSA is able to analyze almost the totality of the benchmark, detecting all the re-

ported non-determinism vulnerabilities. The analyses are then evaluated in terms of

precision of the results (true positive, false positive, and true negative alarms), show-

ing that GoLiSA outperforms existing open-source static analyzers for Go blockchain

software. Moreover, the evaluation shows that the execution time of the analyses is

not impractical for real use cases. To the best of our knowledge, GoLiSA is the first

sound semantic-based static analyzer for blockchain software able to precisely detect

critical non-determinism behaviors while scaling to real-world programs.

4.1 Related Work

The non-determinism of smart contracts written in GPLs is a well-known issue [92,

143]. Takamaka [124, 125] enforces determinism by limiting the set of instructions

and APIs of the target language, avoiding unsafe statements that might lead to non-

deterministic behaviors through white-listing fully deterministic APIs. This approach

ensures safe development while preventing API extensions coming with new lan-

guage versions to bypass the check. However, it also severely limits the exploitable

features of the GPL. On the other hand, black-listing undesired APIs is a much harder

approach to maintain, but it seems the most widespread technique in Go analyz-

ers. For instance, ChainCode Analyzer6 and ReviveˆCC7
detect mainly black-listed

imports related non-deterministic APIs using a syntactical approach. Besides, they

can detect non-deterministic map iterations by AST traversal with minimal syntactic

reasoning. Signature of invoked functions can also be black-listed instead of im-

ports [92]. These tools and frameworks inherently limit API usage, sensibly reducing

the benefits of adopting a GPL even when the code poses no harm to the blockchain.

Non-determinism detection has also been covered for concurrent applications, sug-

gesting that it is “most often the result of a mistake on the part of the programmer” [59].

6https://github.com/hyperledger-labs/chaincode-analyzerc.

7https://github.com/sivachokkapu/revive-cc.

82

https://github.com/hyperledger-labs/chaincode-analyzerc
https://github.com/sivachokkapu/revive-cc

4.2. Blockchain frameworks

Figure 4.2: Cosmos SDK architecture

4.2 Blockchain frameworks

Here, we briefly describe the three most popular blockchain frameworks for Go: Hy-
perledger Fabric8, Tendermint

9
, and Cosmos SDK10

.

Hyperledger Fabric. Hyperledger Fabric (HF) is a permissioned blockchain frame-

work designed to be adopted in enterprise contexts, supported by the Linux Foun-

dation and other contributors such as IBM, Cisco, and Intel. In HF, smart contracts

and DApps are written in chaincode that can be implemented in several GPLs such as

Go, JavaScript, and Java. In most cases, the chaincode interacts only with the world

state database component of the ledger, and not with the transaction log [80]. Go is

currently the most popular language on GitHub related to chaincode
11

, as Go smart

contracts are the best performing ones [69].

Tendermint Core and Cosmos SDK. Tendermint Core, recently rebranded as Ig-
nite, is a platform for building blockchain nodes, supporting both public and permis-

sioned proof-of-stake (PoS) networks. It is a Byzantine Fault Tolerant (BFT) middle-

ware that separates the application logic from the consensus and networking layers,

allowing one to develop blockchain applications written in any programming lan-

guage, including Go, and replicate them on many machines [25].

Cosmos SDK is an open-source Go framework that eases the development of

blockchain applications while optimizing their execution by running them on Ten-
dermint Core. As shown in Figure 4.2, Cosmos SDK abstracts all the boilerplate code

needed to set up a Tendermint Core node, allowing for customized protocol config-

urations. The programming style follows the object-capability model, where the se-

curity of subcomponents is imperative, especially those belonging to the core library.

8https://www.hyperledger.org/use/fabric.

9https://tendermint.com/.

10https://v1.cosmos.network/sdk.

11
Querying the keyword chaincode on GitHub (https://github.com/search?q=chaincode)

results in more than 1900 repositories, about half of which are written in Go. Accessed 02/2022.

83

https://www.hyperledger.org/use/fabric
https://tendermint.com/
https://v1.cosmos.network/sdk
https://github.com/search?q=chaincode

Chapter 4 | Smart contracts analysis

1 func t r a n s f e r (from , t o Address , v a l u e i n t 6 4 , s t u b ∗ shim . Cha incodeStub) {
2 s t a r t : = t ime . Now ()
3 / / o p e r a t i o n s t h a t t a k e few m i l l i s e c o n d s
4 e l a p s e d : = t ime . Now () . Sub (s t a r t)
5 l o g . P r i n t l n (” Time e l a p s e d f o r the t r a n s f e r o p e r a t i o n s : ” , e l a p s e d)
6 }

(a) Safe usage of the time API

1 func t r a n s f e r (from , t o Address , v a l u e i n t 6 4 , s t u b ∗ shim . Cha incodeStub) {
2 t : = t ime . Now ()
3 / / o p e r a t i o n s t h a t t a k e few m i l l i s e c o n d s
4 e r r : = shim . P u t S t a t e (” t r a n s a c t i o n − t ime ” , t)
5 / / r e s t o f the c h a i n c o d e
6 }

(b) Unsafe usage of the time API

Figure 4.3: Examples of harmless and harmful non-determinism in blockchain

Cosmos SDK is a framework for DApps, supporting different functionalities through

highly customizable modules, that can also manage smart contracts.

Consensus in blockchain frameworks

Consensus protocols ensure the validity and authenticity of transactions performed

in the blockchain, as they check results of smart contracts or DApps computations

through the state of the network’s nodes. If a given number of nodes agree on the

final state, consensus is reached and the transaction is validated. Otherwise, it is

discarded and the nodes proposing spurious states are excluded from the network.

When consensus cannot be reached, the blockchain either forks or halts. Determin-

istic execution is thus required for software that runs in a blockchain, as it guar-

antees that, when starting from a common state, the same result is reached in any

distinct blockchain node, avoiding inconsistencies among peers and consensus fail-

ures. Nevertheless, GPLs provide several components that can explicitly lead to non-

determinism, such as (pseudo-)random values generators or external computations.

Furthermore, even methods that are explicitly sequential and deterministic pose a

threat when executed on different nodes, such as the time.Now() call from Fig-

ure 4.1. Despite these threats, popular blockchain frameworks such as HF and Cos-
mos SDK do not enforce particular restrictions on the usage of non-deterministic

methods and components.

4.3 Sources and sinks of non-determinism

Example 4.3.1. When trying to prevent non-deterministic vulnerabilities, a first

solution is to limit the expressiveness of the GPL by either black- or white-listing

APIs and constructs. Consider the Go snippets reported in Figure 4.3. Both frag-

84

4.3. Sources and sinks of non-determinism

ments rely on the time API to retrieve a timestamp from the host system. In

general, the results of calls to the time API are subjective to the node executing

them, and they might lead to blockchain non-determinism due to different system

settings (e.g., time, date, time zones, . . .) or due to nodes executing the code at

slightly different times. Specifically, Figure 4.3a shows a safe usage of the time
API: the timestamp is only used for logging with no observable consequences on

the blockchain state or the execution result. Instead, Figure 4.3b reports a problem-

atic usage of the API, as the timestamp is stored in the blockchain using PutState,

an HF-specific function that updates the shared network state. Since timestamps

could differ on each node, this potentially leads to inconsistent executions (i.e.,

different blockchain states or execution results), causing transaction failure
12

.

It should thus be evident that identifying sources of non-determinism and pre-

venting their usage is not enough when we aim at discerning between harmful and

harmless non-deterministic constructs. In fact, one should also recognize how these

are used, determining if they can influence the shared blockchain state. In the rest

of this section we discuss, for each blockchain framework presented in Section 4.2,

(i) the constructs that generate potentially harmful non-determinism (that is, sources

of non-deterministic values), and (ii) the blockchain state modifiers and response

builders (i.e., statements that make a transaction succeed or fail), namely sinks that

are sensitive to non-determinism
13

. This will prepare the ground for the core contri-

bution of this chapter: a static approach to detect critical usages of non-determinism

in blockchain software, reported in Section 4.4.

4.3.1 Sources of non-determinism

The sources of non-determinism can be logically split into two families, the first being

related to the combination of framework and GPL adopted to develop the software.

This family comprises a set of constructs and APIs allowed by the framework that

may break the consensus during the execution of smart contracts or DApps. In Go,

these are:

∙ iteration over maps that, being the iteration order unspecified
14

, is not guaran-

teed to be deterministic;

∙ parallelization and concurrency, that can lead to race conditions on shared re-

sources, thus creating non-determinism on the computed values;

∙ global variables, that may change innately and cause inconsistencies in the re-

sults, since they depend on the application state of a peer and not on that of

the blockchain [92, 23].

12
In this case, the GetTxTimestamp method from the HF API should have been used instead of

time.Now.

13
The complete list of sources and sinks of non-determinism is available at https://github.com/

lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md.

14https://golang.org/ref/spec#For_statements

85

https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md
https://golang.org/ref/spec#For_statements

Chapter 4 | Smart contracts analysis

Level Category Package Statements/Methods
Framework/Language Map iteration - range on map

Parallelization/concurrency - go (Go routine), <- (channel)

Random value generation APIs math/rand, crypto/rand *

Global variables - -

Environment File system APIs io, embed, archive, compress *

OS APIs os, syscall, internal, time *

Database APIs database *

Internet APIs net *

Table 4.1: Potential non-deterministic behaviors related to Go

∙ random value generators, that can potentially be allowed in smart contracts [31]

to employ custom logic while being non-deterministic by definition.

The second family instead involves statements related to the underlying envi-

ronment. While these are not intrinsically non-deterministic, their result cannot be

expected to remain consistent on different nodes. These comprise APIs handling:

∙ file systems, as the program might rely on files that are not present on all nodes,

as they might have been deleted, edited, moved, or there might be insufficient

disk space causing any operation to fail;

∙ operating systems (OS), since the blockchain might operate on various hosts

and language APIs could return different results on each OS (e.g., time and

date methods could return different values if nodes are not synchronized);

∙ databases, where records might be deleted, edited, or contain different data;

∙ Internet connections, as networking setup or errors could cause some addresses

to be unreachable on few nodes of the network.

Table 4.1 summarizes the instructions and libraries of Go
15

that we consider as

possible causes of non-determinism, where ∗ represents the entirety of the package.

For the sake of simplicity, the table reports instructions and packages omitting the

full signatures of each method. Note that only few methods within those packages

lead to non-deterministic behaviors: for instance, most methods from package time
handling dates and times do not pose a threat in smart contracts and DApps, and are

in fact quite common. However, operations such as retrieving the current time of the

OS (i.e., methods Since, Now, Until) are potentially dangerous.

4.3.2 Sinks of non-determinism

Sinks of non-determinism comprise constructs and APIs with the ability to both

modify the common state of the blockchain, or have an impact on the response of

15
The full list of Go APIs sources considered in our analyses is available at https:

//github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-
analysis/nondeterm_sources.txt.

86

https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt

4.3. Sources and sinks of non-determinism

1 func (s ∗ S m a r t C o n t r a c t) t r a n s a c t i o n (APIs tub shim . C h a i n c o d e S t u b I n t e r f a c e)
s c . Response {

2 i f rand . I n t () % 2 == 0 {
3 r e t u r n shim . E r r o r (” F a i l ”)
4 } e l s e {
5 r e t u r n shim . S u c c e s s (n i l)
6 }
7 }

Figure 4.4: Non-determinism related to the blockchain response

Framework Package Type/Interface Statements/Methods Sink

HyperLedger Fabric shim ChaincodeStubInterface PutState, DelState parameters

PutPrivateData,

DelPrivateData
Success, Error statement

Tendermint Core abci/types Application ResponseBeginBlock, instance returned

ResponseDeliverTx,

ResponseEndBlock,

ResponseCommit,

ResponseCheckTx
Cosmos SDK types KVStore Set, Delete parameters

kv, dbadapter, gaskv, Store Set, Delete parameters

listenkv, prefix,

iavl, tracekv
types/errors ABCIError, Redact statement

ResponseDeliverTx,

ResponseCheckTx,

WithType, Wrap, Wrapf

Table 4.2: Main sinks for blockchain software written in Go

blockchain networks. While the former is inherently involved in consensus proto-

cols, the execution of code within the blockchain does not necessarily change the

shared state (e.g., functions that simply read a value). However, the execution may

lead to non-deterministic responses, compromising the consensus of the network, as

in the trivial example of Figure 4.4. Table 4.2, where the Sink column identifies what

part of the API should not receive non-deterministic values, summarizes the main

instructions and components that we consider as sinks for non-determinism.

Hyperledger Fabric APIs for Go. In HF, chaincode executes transaction propos-

als against world state data that may change its state. Programmatically, interface

ChaincodeStubInterface from the HF Go APIs enables access and modification

of the blockchain state. Table 4.2 reports the current components (as of version 2.4)

involved in the data-write proposal. Their semantics does not affect the blockchain

state until the transaction is validated and successfully committed. Hence, if these

components lead to different results due to non-determinism, consensus will not val-

idate the transaction and no new state will be committed. HF provides Success and

Error to yield successful and failed transaction responses, respectively.

Tendermint Core APIs for Go. Tendermint Core is a middleware with no explicit

access to the application state by design, enabling communication through the Ap-

87

Chapter 4 | Smart contracts analysis

Figure 4.5: ABCI methods and consensus flow

plication BlockChain Interface (ABCI
16

). Figure 4.5 depicts the consensus process used

to validate and store a transaction using the ABCI methods. As reported in the

official documentation of Tendermint Core v0.35.1, only BeginBlock, DeliverTx,

EndBlock, and Commit must be strictly deterministic to ensure consensus. Although

the logic of these methods is different, they possess similar structure: they all ac-

cept a request and return a response (ResponseBeginBlock, ResponseDeliverTx,

ResponseEndBlock, ResponseCom-mit), with the latter that must be deterministic.

Cosmos SDK APIs. Cosmos SDK handles both the application and the blockchain

state through the store
17

. At a high level, the store is a set of key-value pairs used

to store and retrieve data, implemented by default as a multistore (i.e., a store of

stores), as shown in Figure 4.6. The multistore encapsulation enables modularity of

the Cosmos SDK, as each module declares and manages its own subset of the state

using specific keys. Keys are typically held by keepers, a Cosmos SDK abstraction

with the role of managing access to the multistore’s subset defined by each module.

All Store definitions implement the KVStore interface. The latter provides common

APIs to access and modify the state of the blockchain using methods such as Set and

Del. As for responses, Cosmos provides several methods (such as ABCIError, Wrap,

ResponseDeliverTx) in package types/errors to fail transactions.

4.4 Flow analysis for non-determinism detection

In this section, we introduce and discuss our approach for detecting non-deterministic

behaviors in blockchain software. In particular, we consider non-determinism as crit-

ical only if a non-deterministic value can affect the blockchain state, either directly

(i.e., being stored inside the state) or indirectly (e.g., guarding the execution of state

updates). Any other usage of non-determinism is considered safe, as it does not affect

16https://github.com/tendermint/spec/blob/master/spec/abci/abci.md.

17https://docs.cosmos.network/master/core/store.html.

88

https://github.com/tendermint/spec/blob/master/spec/abci/abci.md
https://docs.cosmos.network/master/core/store.html

4.4. Flow analysis for non-determinism detection

Figure 4.6: Main store of Cosmos SDK

the blockchain state or response. As such, when mentioning non-determinism in the

remainder of the chapter, we implicitly refer to its critical version. We rely on informa-

tion flow analysis for detecting values originating from sources of non-determinism

that can affect the state of the blockchain. We only focus on static analyses, since

they soundly over-approximate all possible behaviors of target programs and can

thus give guarantees about the absence of such behaviors. We instantiate two types

of analyses: a Taint analysis, able to capture the so-called explicit flows, and a Non-

interference analysis, that can also detect implicit flows.

4.4.1 An Overview on Information Flow

Information flow analyses [55, 118] address the problem of understanding how in-

formation flows from one variable to another during a program’s execution. These

analyses usually partition the space of program variables into private (or secret) and

public, with the latter being accessible to — and in some cases also modifiable by — an

external attacker. The goal of these analyses is then to find program executions where

information flows from one partition to the other, that is, where values of variables

from one partition can affect the values of variables from the other one. Figure 4.7

reports examples
18

of the three main types of flows, namely:

∙ explicit flow : a secret variable is assigned to a value obtained using public ones;

∙ implicit flow : an assignment to a secret variable is conditionally executed de-

pending on values of public ones;

∙ side channel: observable properties of the execution, e.g., the amount of com-

putational resources used, depends on the values of some secret variables.

In general, the term source is traditionally used for variables holding values that

one wants to track along program executions, while sink is used to describe locations

where values coming from sources should not flow. Using this terminology, when

18https://en.wikipedia.org/wiki/Information_flow_(information_theory).

89

https://en.wikipedia.org/wiki/Information_flow_(information_theory)

Chapter 4 | Smart contracts analysis

1 var l1 , l 2 , l 3 (∗ p u b l i c v a r i a b l e s ∗)
2 var h1 , h2 , h3 (∗ p r i v a t e v a r i a b l e s ∗)
3 h1 : = l 1 (∗ e x p l i c i t f low from l 1 t o h1 ∗)
4 i f l 2 = t r u e then
5 h2 : = 3 (∗ i m p l i c i t f low from l 2 t o h2 ∗)
6 i f l 3 = 1 then
7 (∗ e x p e n s i v e long − running work ∗)
8 h3 : = 0 (∗ s i d e channe l from l 3 t o h3 ∗)

Figure 4.7: Example of explicit, implicit, and side channel flows

the property of interest ensures the integrity of secret variables, information flow

analyses can be instantiated using public variables as sources and private ones as

sinks, exactly as in Figure 4.7 and the list above. These can detect situations where

(i) a possibly corrupted value provided by a malicious attacker could be stored into

variables whose content is supposed to be reliable, or (ii) such a value governs the

update to private variables. If, however, one wants to ensure the confidentiality of

secret variables, the same analyses can be recasted with private variables acting as

sources and public ones as sinks, thus searching for flows in the opposite direction.

The target of the analysis is then to find disclosures of private data to external entities.

In the context of non-deterministic behaviors in blockchain environments, in-

formation flow analyses can be used to detect when non-deterministic values end

up or affect the blockchain’s state, thus checking the integrity of that state w.r.t.

non-deterministic values. As such, we are interested in information flowing from

public to private variables, and we will use sources to identify ones that are ini-

tialized to non-deterministic values and sinks to identify all variables that have an

effect on the blockchain’s state. Moreover, we will focus on explicit and implicit

flows. In fact, side channels are typically studied to detect secret information leaking

through, for instance, execution time, thus violating the confidentiality of that infor-

mation instead of its integrity. On the other hand, explicit and implicit flows iden-

tify non-deterministic values that are either used to update the blockchain’s state

or a transaction’s result, or that govern their execution. As a concrete example, re-

call the code from Figure 4.1: the vulnerability presented there is an implicit flow

since the blockchain’s state is not directly updated with non-deterministic values,

but the execution of the update (i.e., the return statement) is conditional to some

non-deterministic value (i.e., g.Expiration.Unix()<time.Now().Unix()).

In the following, we introduce two well-established information flow analyses

that we will use for non-determinism detection.

Non-interference

Non-interference [73, 74] is a notion of security capturing the idea that if compu-

tations over private information are independent from public information, then no

leakage of the former can happen. In simple terms, after partitioning the space of

inputs of a program P into low (private or secret, denoted by 𝕃), and high (public

90

4.4. Flow analysis for non-determinism detection

or available to anyone, denoted by ℍ), Non-interference is satisfied if changes in the

high input do not affect the observable (i.e., low) output of the program:

∀𝑖𝕃 ∈ 𝕃, ∀𝑖ℍ, 𝑖
′
ℍ ∈ ℍ . P(𝑖𝕃, 𝑖ℍ)𝕃 = P(𝑖𝕃, 𝑖′ℍ)𝕃

This notion is often instantiated in language-based security by partitioning the space

of program variables between 𝕃 and ℍ, and finding instances of explicit or implicit

flows between these partitions. Such analysis computes, for each program point, a

mapping from variables to the information level they hold (low or high), while also

keeping track of an execution state depending on the information level of the Boolean

conditions that guard the program point. Violations of Non-interference for integrity

can then be detected whenever an assignment to a variable in ℍ either (i) assigns a

low value (that is, an expression involving variables in 𝕃), or (ii) happens with a low

execution state (that is, guarded by at least a Boolean condition that involves vari-

ables in 𝕃), thus identifying both explicit and implicit flows. This can be formalized

as a type system for security [118].

Taint Analysis

Taint analysis [133, 60] is an instance of information flow analysis that can be seen

as a simplification of Non-interference considering only explicit flows. In this context,

variables are partitioned into tainted and untainted (or clean), with the former repre-

senting variables that can be tampered with by an attacker and the latter representing

variables that should not contain tainted values across all possible program execu-

tions. Roughly, Taint analysis corresponds to the language-based Non-interference

instantiation without the execution state, thus unable to detect implicit flows. Taint

has been instantiated to detect many defects in real-world software, such as web-

application vulnerabilities [26], privacy issues [68] (also related to GDPR compli-

ance [67]), and vulnerabilities of IoT software [64].

4.4.2 GoLiSA for non-determinism detection

At this point, we are in position to instantiate GoLiSA
19

, a Go frontend for LiSA,

for the static detection of non-deterministic behaviors in blockchain software. The

core idea of our solution is to track the values generated by the hotspots (that is, the

sources) identified in Section 4.3.1 during the execution of a program using either

Taint analysis or Non-interference. Similarly, after the analysis completes, we can use

a Check to exploit the abstract information provided by the domain of choice, check-

ing if any of the sinks specified in Section 4.3.2 receives one such non-deterministic

value as parameter or, in the case of Non-interference, if the sink is found in a low

execution state.

GoLiSA’s analysis is instantiated as follows:

19https://github.com/lisa-analyzer/go-lisa.

91

https://github.com/lisa-analyzer/go-lisa

Chapter 4 | Smart contracts analysis

∙ Taint analysis and Non-interference are implemented as Value Domains, both

of them being Non-Relational Domains (i.e., mapping from variables to abstract

values — taintedness and integrity level respectively — with no relations be-

tween different variables), with Non-interference exploiting a special instance

of ValueEnvironment that also keeps track of abstractions for each guard,

evaluating them through the domain’s own eval method;

∙ field-insensitive program point-based Heap Domain (Section 8.3.4 of [117]),

where any concrete heap location allocated at a specific program point is ab-

stracted to a single abstract heap identifier;

∙ context-sensitive Interprocedural Analysis, abstracting full call-chain re-

sults until a recursion is found;

∙ runtime types-based Call Graph, using the runtime types of call receivers to

determine their targets;

∙ twoChecks, for Taint analysis andNon-interference, that scan the code in search

for sinks, checking the taintedness or integrity level of each sink.

The analysis begins by visiting the input program to detect the statements anno-

tated as sources and propagating the information from them. The analyses produce,

for each program point, a mapping stating if each variable is the result of a non-

deterministic computation. These mappings are then used by our Checks, that visit

the program in search of statements annotated as sinks. When one is found, the

mappings are used to determine if values used as parameters of the call are critical

or, in the case of Non-interference, if the call happens on a critical state. The choice

of the analysis to run (and thus of the Check to execute) is left to the user.

Example 4.4.1. For instance, let us consider the fragment reported in Figure 4.3a.

At line 5, despite variable elapsed being marked as tainted, no warning is raised

by GoLiSA regardless of the chosen analysis, as it does not reach any sensitive sink.

Instead, analyzing the fragment from Figure 4.3b results in the following alarm:

The value passed for the 2nd parameter of this call is tainted, and it reaches the

sink at parameter ’value’

The warning is issued with both analyses, since variable t is marked as tainted and

reaches a blockchain state modifier through an explicit flow.

Consider now the example reported in Figure 4.1. Here, no explicit flow hap-

pens at line 3, that contains the blockchain state modifier Wrap, but its execution

depends on the non-deterministic value used in the condition at line 2, that is,

time.Now().Unix(). As this is an implicit flow, the Taint analysis is not able

the detect it. GoLiSA will however discover it with Non-interference, raising the

following alarm:

92

4.4. Flow analysis for non-determinism detection

The execution of this call is guarded by a tainted condition, resulting in an im-

plicit flow

4.4.3 Detection of Sources and Sinks in GoLiSA

To exploit information flow analyses, the analyzer must know which are the sources

and sinks of the program. GoLiSA provides a solution based on annotations, marking

the corresponding statements as sources and sinks. In the following, we describe how

GoLiSA annotates sources (Table 4.1) and sinks (Table 4.2).

Methods and functions. As shown in Tables 4.1 and 4.2, all sinks and several

sources correspond to functions and methods of APIs from either the Go runtime or

the blockchain frameworks. GoLiSA contains a list of the signature of these functions

and methods and it automatically annotates the corresponding calls in the program

by syntactically matching them. This process does not rely on SARL (Section 3.6) yet,

and we plan to transition to using it as future work.

Example 4.4.2. For instance, when GoLiSA iterates over the following snippet, it

is able to discover the call to time.Now, that gets annotated as source, and the one

to PutState, whose parameters get annotated as sinks:

1 key : = ” key ”
2 tm : = t ime . Now ()
3 s t u b . P u t S t a t e (key , [] b y te (tm))

Then, the analysis propagates taintedness from the return value of time.Now() to

the second parameter of PutState, thus issuing an alarm at line 3.

Map Iterations. To detect iterations over maps, one needs to reason about typing.

GoLiSA exploits runtime types inferred by LiSA to identify range statements hap-

pening over maps. If a map iteration occurs, that is, if the object in a range statement

is inferred to be a map, then GoLiSA marks as sources the variables used to store keys

and values of the map.

Example 4.4.3. Consider the following code snippet:

1 s : = ” ”
2 kvs : = map [s t r i n g] s t r i n g { ” a ” : ” h e l l o ” , ” b ” : ” world ! ”}
3 f o r k , v : = range kvs {
4 s += v
5 }
6 s t u b . P u t S t a t e (” key ” , [] b y te (s))

While analyzing the code, range statements are checked for the types of their

parameter. GoLiSA annotates as sources both k and v, as kvs is inferred to be a

map, while the sink at line 6 is detected through already discussed annotations.

93

Chapter 4 | Smart contracts analysis

Information flow analyses can then propagate the taintedness from v to s, that in

turn flows to the second parameter of PutState, issuing an alarm at line 6.

Global variables. GoLiSA syntactically annotates all global variables as a source

of non-determinism, as their value could be modified independently on each peer.

Example 4.4.4. In the following code, the value of global variable glob could differ

from peer to peer depending on the number of times function inc has been exe-

cuted. This can happen as not all peers simulate the same transaction, for instance

due to differences in the endorsement policy of each peer [92].

1 var g l o b s t r i n g
2 func i n c () {
3 g l o b += ” a ”
4 }
5 func (s ∗ S m a r t C o n t r a c t) t r a n s a c t i o n (s t u b shim . C h a i n c o d e S t u b I n t e r f a c e)

s c . Response {
6 s t u b . P u t S t a t e (” key ” , [] b y te (g l o b))
7 }

Before the analysis, GoLiSA iterates over all program components, annotating

glob as a source. The sink at line 6 is annotated as sink as previously discussed.

Then, the information flow analysis propagates taintedness from glob to the sec-

ond parameter of the call to PutState, raising an alarm at line 6.

Go routines. GoLiSA inspects the code of Go routines, checking the scope of vari-

ables they use. If these are defined outside the routine using them, they are effectively

shared among threads, potentially leading to race conditions or non-deterministic

behaviors. Hence, GoLiSA annotates such variables as sources.

Example 4.4.5. The following snippet defines and invokes a simple Go routine

that modifies a variable defined in an enclosing scope:

1 s : = ” ”
2 go func () {
3 f o r i : = 1 ; i <= 1 0 0 0 0 ; i ++ {
4 s += ” 0 ”
5 }
6 }
7 s t u b . P u t S t a t e (” key ” , [] b y te (s))

When GoLiSA finds the Go routine, it checks the scopes of each variable, inferring

that s is declared outside the routine itself. Hence, GoLiSA annotates s at line 1

as source, while the sink at line 7 is annotated as previously discussed. Then, the

information flow analysis propagates taintedness from s to the second parameter

of PutState, issuing an alarm at line 7 since the value of s depends on how many

times the Go routine has executed the loop body.

Go channels. Channels are pipes that connect concurrent Go routines. Operator

<- allows interaction with channels to retrieve a value from them, blocking until

94

4.5. Experimental Evaluation

one is available. GoLiSA annotates as sources the instructions reading values from

channels, as the order in which these are written to is intrinsically non-deterministic.

Example 4.4.6. Consider the following example:

1 c : = make (chan i n t)
2 go myrout ine1 (c)
3 go myrout ine2 (c)
4 x , y : = <− c , <− c
5 s t u b . P u t S t a t e (” key ” , [] b y te (x))

GoLiSA iterates over the program searching for occurrences of operator <-. It then

annotates variables x and y as sources, as they receive a value from c. The sink at

line 5 is detected as previously discussed. The analysis then propagates taintedness

from x to the second parameter of PutState, resulting in an alarm at line 5.

4.5 Experimental Evaluation

In this section, we experimentally evaluate the analyses implemented in GoLiSA to

detect non-determinism issues in blockchain software. First, we study them quanti-

tatively, on a set of 651 real-world HF smart contracts retrieved from public GitHub

repositories. The HF framework was chosen for the quantitative evaluation as, to the

best of our knowledge, it is the only framework supported by several static analyzers

detecting non-determinism issues, and in particular by the ones involved in our com-

parison with GoLiSA. Furthermore, HF is currently the most popular and widespread

blockchain framework among public GitHub repositories, with most chaincodes writ-

ten in Go. We then evaluate the quality of our results on two applications, to show

how the analyses work and how the information is propagated in programs. In par-

ticular, we selected the first application from the HF benchmark, while the second

one is the Cosmos SDK code reported in Figure 4.1.

All the experiments have been performed on an HP EliteBook 850 G4 equipped

with an Intel Core i7-7500U at 2,70/2,90 GHz and 16 GB of RAM memory running

Windows 10 Pro 64bit, Oracle JDK version 13, and Go version 1.17.

4.5.1 Quantitative evaluation

The experimental artifact set has been retrieved from 954 GitHub repositories, by

querying for the chaincode keyword, as smart contracts are called in HF, and select-

ing ones from unforked Go repositories only
20

, and that include the Invoke and Init
methods: these are the transaction requests’ entry points for chaincodes

21
. Then, we

filtered out files unrelated to smart contracts and removed chaincodes not analyz-

able due to failures of either GoLiSA or the tools discussed in Section 4.5.1. Failures

20https://api.github.com/search/repositories?q=chaincode+fork:false+language:
Go+archived:false&sort=stars&order=desc. Accessed: 17-10-2022.

21
See https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim.

95

https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim

Chapter 4 | Smart contracts analysis

Analysis #A #U ET AT #W #TP #FP #FN

Taint 59 592 2h:14m:21s 12.38s 155 117 38 7

Non-interference 60 591 2h:24m:24s 13.29s 175 124 51 0

Table 4.3: Analysis evaluation

of GoLiSA on such chaincodes are due to missing support of high-order functions,

recursion, and C code invocation via the built-in Go cmd/go package
22

. This resulted

in a benchmark consisting of 651 files (∼167391 LoCs), that, from here on, we refer

to as ℍ𝔽.

Table 4.3 reports the results of the experimental evaluation of GoLiSA over ℍ𝔽,

where #A is the number of affected chaincodes (i.e., chaincodes where at least a warn-

ing was issued), #U is the number of unaffected chaincodes (i.e., chaincodes where

no warning was raised), ET is the total execution time, AT is the average execution

time, #W is the total number of warnings issued, #TP is the number of true positives

among the raised warnings, #FP is the number of false positives among the raised

warnings, and #FN is the number of false negatives, namely warnings that were not

issued. In terms of execution time, the analyses performed on average in around 15

seconds per chaincode. The experiments show that Non-interference performs better

than Taint in terms of precision, being able to detect all the true positives contained

in ℍ𝔽, with a low false positives rate (29.14%). This was expected since, as we have al-

ready discussed in Section 4.4 and unlike Non-interference, Taint is only able to track

explicit information flows. In fact, the 7 false negatives (column #FN of Table 4.3)

produced by Taint correspond to implicit non-deterministic behaviors. To confirm

our experimental results, all chaincodes contained in ℍ𝔽 were manually checked to

ensure that no critical non-determinism behavior was missed by GoLiSA.

Comparison

We compared GoLiSA with the open-source static analyzers for Go chaincode de-

scribed in Section 4.1, namely ChainCode Analyzer and ReviveˆCC. Table 4.4 reports

the comparison between GoLiSA and these tools over ℍ𝔽.

The comparison shows that GoLiSA - Non-interference finds all the true issues

contained in the benchmark, achieving the best and most accurate result in terms

of precision with a 29.14% false positives ratio. Instead, although it has some false

negatives, GoLiSA - Taint is the analysis with the lowest percentage of false positives

with a ratio of 24.52%.

ReviveˆCC triggers 351 warnings out of which 77.49% are false positives. The only

non-deterministic behavior missed by ReviveˆCC (last column of Table 4.3) is due to it

considering the ioutil.ReadFile API as safe, although reading a file should be con-

sidered non-deterministic in blockchains. Finally, ChainCode Analyzer is more pre-

22
We decided not to implement those standard features since this would have required a relevant effort

to support only a few more chaincodes.

96

4.5. Experimental Evaluation

Tools # Warning # TP # FP # TN

GoLiSA - Taint 155 117 38 7

GoLiSA - Non-interference 175 124 51 0

ChainCode Analyzer 203 68 135 53

ReviveˆCC 351 79 272 1

Table 4.4: Warnings triggered by the analyzers on ℍ𝔽

cise w.r.t. ReviveˆCC, with 66.50% of false positives, but it also has the highest num-

ber of false negatives, failing to detect a huge number of critical non-deterministic

behaviors. This can be attributed to the fact that ChainCode Analyzer does not con-

sider several APIs leading to non-determinism as critical and it fails to soundly detect

iteration over maps.

Note that the amount of true positives discovered byGoLiSA analyses differs from

the ones of other tools. In fact, GoLiSA is the only tool involved in our comparison

that issues warnings on sinks rather than sources. This translates to fewer alarms

being issued whenever values of multiple sources flow to the same sink (here, GoLiSA

issues a single warning, while other tools issue one for each source), and to more

alarms being raised whenever the value of a single source flows to multiple sinks

(here instead, other tools issue a single warning, while GoLiSA issues one for each

sink).

4.5.2 Qualitative evaluation

Explicit Flow: the Boleto contract. The boleto
23

contract, taken from ℍ𝔽, comes

with a real non-determinism issue that can be found with explicit flows, and that

was also detected by other tools during the comparison of Section 4.5.1. The boleto

contract seems to be a proof of concept application handling tickets in an e-commerce

store, with the method registrarBoleto used to register a ticket:

1 func (s ∗ S m a r t C o n t r a c t) r e g i s t r a r B o l e t o (APIs tub shim . C h a i n c o d e S t u b I n t e r f a c e ,
a r g s [] s t r i n g) s c . Response {

2 / / [. . .]
3 o b j B o l e t o . Cod igoBarra = s t r c o n v . I t o a ((rand . I n t n (5) + 10000000 + / / [. . .]
4 var n o t E x p i r e d D a t e = t ime . Now ()
5 o b j B o l e t o . DataVencimento = n o t E x p i r e d D a t e . Format (” 0 2 / 0 1 / 2 0 0 6 ”)
6 / / [. . .]
7 b o l e t o A s B y t e s , : = j s o n . Marsha l (o b j B o l e t o)
8 APIs tub . P u t S t a t e (a r g s [0] , b o l e t o A s B y t e s)
9 / / [. . .]

10 }

Analyzing boleto, GoLiSA detects the explicit flow leading to a non-deterministic

behavior with both Taint and Non-interference. Method registrarBoleto contains

two different sources of non-determinism that directly flow into the same sink: the

Random API used to generate a barcode at line 3, and the OS API that retrieves the

23https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go

97

https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go

Chapter 4 | Smart contracts analysis

local machine’s time to set a date at line 4. As values from both sources are used to

update fields of objBoleto, the latter is marked as tainted by the analysis, resulting

in boletoAsBytes being tainted as well. PutState’s parameters are considered as

sinks by GoLiSA’s analyses (Table 4.2). According to the official documentation of

HF
24

, the PutState method does not affect the ledger until the transaction is vali-

dated and successfully committed. However, a transaction needs to produce the same

results among different peers to be validated: as passing non-deterministic values to

PutState will cause the transaction to fail, GoLiSA raises a warning on line 8.

Implicit Flow: Cosmos SDK v.43. Analyzing the code in Figure 4.1, GoLiSA is

able to detect an implicit flow that leads to a non-deterministic behavior, that can

only be detected using Non-interference. The ValidateBasic method of Cosmos
SDK v. 0.43.x and v. 0.44.{0,1} was designed to validate a grant to ensure it has not

yet expired. In this case, the source detected by GoLiSA is the OS API used to retrieve

the local machine time involved in the expiration check of the grant time at line 2 of

Figure 4.1. By propagating the information, GoLiSA detects that the expiration check

governs the execution of the return statement. Since the Wrap method is annotated

as a sink, GoLiSA triggers an alarm at line 3 of Figure 4.1 as the sink is contained in

a block whose guard depends on non-deterministic values.

4.5.3 Limits

Unlike some frameworks and GPLs used in other blockchains, the frameworks tar-

geted in this chapter are used to develop permissioned, and often private, blockchains,

meaning that the related software is not publicly available. This is the reason why

the benchmark ℍ𝔽 crawled from GitHub consists of 651 chaincodes, a number that is

not comparable with smart contract benchmarks obtained investigating other (pub-

lic and permissioned) blockchains. For instance, [141] collects 3075 distinct smart

contracts from the Ethereum blockchain, resulting in a wider benchmark.

The proposed solution for detecting non-deterministic behaviors is fully static. It

is well known that static analysis is intrinsically conservative and may produce false

positives. Even if none have been raised by GoLiSA on the selected benchmark, one

should expect false positives when applying our approach to arbitrary DApps.

4.6 Commercio.network: an industrial case study

The approach presented in this chapter has been applied, in a joint work with Com-

mercio.network
25

, to analyze their homonymous blockchain on version 2.2.0
26

, com-

24https://github.com/hyperledger/fabric-chaincode-go/blob/
1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go.

25https://commercio.network/.

26https://github.com/commercionetwork/commercionetwork/tree/v2.2.0.

98

https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go
https://commercio.network/
https://github.com/commercionetwork/commercionetwork/tree/v2.2.0

4.6. Commercio.network: an industrial case study

Figure 4.8: Commercio.network architecture

posed by 248Go files (14961 LoCs). This section is based on the published paper [106].

4.6.1 Commercio.network

Commercio.network [37] is an open-source decentralized application framework pro-

vided by the homonymous company. As a blockchain, it can be described as a permis-

sioned Proof-Of-Stake network, where a validator must join a consortium for being

able to participate in the consensus. It can be also described as public, since any-

one can set up a node and synchronize it with the Commercio.network main-net.

The main purpose of this blockchain is to exchange electronic documents in a legally

binding way thanks to the eIDAS Compliance
27

, while following the principles of

Self-Sovereign Identity
28

. As shown in Figure 4.8, Commercio.network is based on

Cosmos SDK. We recall here that Cosmos SDK is a framework for DApps built over

Tendermint Core. In this context, the architecture of a module conventionally re-

volves around the keeper, a package and entity implementing its core functionalities.

For example, the Commercio.network module commerciokyc uses the keeper of an-

other custom module, commerciomint, along with other modules coming from the

library of Cosmos SDK.

4.6.2 Detecting non-determinism on Commercio.network

We applied GoLiSA and our information flow approach to investigate possible bugs in

the Commercio.network blockchain. The result of the analyses performed by GoLiSA

highlighted two problems related to a single issue, that follows the same pattern

as the Cosmos SDK bug discussed at the beginning of this chapter, and shown in

Figure 4.1.

27https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation.

28http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-
identity.html.

99

https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html

Chapter 4 | Smart contracts analysis

1 func (k Keeper) AssignMembership (c t x sdk . Context , / ∗ [. . .] ∗ / , e x p i t e d a t
t ime . Time) e r r o r {

2 / ∗ [. . .] ∗ /
3 i f e x p i t e d a t . B e f o r e (t ime . Now ()) {
4 r e t u r n s d k E r r . Wrap (s d k E r r . ErrUnknownRequest , fmt . S p r i n t f (” I n v a l i d e x p i r y

d a t e : %s ” , e x p i t e d a t))
5 }
6 / ∗ [. . .] ∗ /
7 }

Figure 4.9: AssignMembership snippet from the commerciokyc module

1 func (k Keeper) BurnCCC (c t x sdk . Context , u s e r sdk . AccAddress , i d s t r i n g ,
burnAmount sdk . Coin) e r r o r {

2 pos , found : = k . G e t P o s i t i o n (c tx , user , i d)
3 i f ! found { / ∗ [. . .] ∗ / }
4 / / C o n t r o l i f p o s i t i o n i s a lm o s t i n f r e e z i n g p e r i o d
5 f r e e z e P e r i o d : = k . G e t F r e e z e P e r i o d (c t x)
6 i f t ime . Now () . Sub (pos . Crea tedAt) <= f r e e z e P e r i o d {
7 r e t u r n s d k E r r . Wrap (s d k E r r . E r r I n v a l i d R e q u e s t , ” cannot burn p o s i t i o n y e t i n

the f r e e z e p e r i o d ”)
8 }
9 / ∗ [. . .] ∗ /

10 }

Figure 4.10: BurnCCC snippet from the commerciomint module

Bug #1

The bug appears in the keeper package of module commerciokyc, in method

Membership. It is located at line 89 of keeper.go29
. In a nutshell, the method en-

ables the assignment of a Commercio.network membership of a given type to the

specified user. As shown in Figure 4.9, the issue involves two main components:

method time.Now() and the return of a wrapped error. The latter returns an error

(wrapped using the Wrap() method of Cosmos SDK) to the caller, leading to a trans-

action failure. As discussed in previous sections, the time provided by time.Now()
could differ on each node of the network, resulting in a consensus break.

Bug #2

The bug appears in the keeper package of the commerciomint module, inside

method BurnCCC. It is located at line 174 of file keeper.go30
. In a nutshell, this

method allows burning (i.e., removing) an amount of currency at the conversion rate

stored in a position, retrievable from the keeper’s store with a user account address

and an id. If successful, BurnCCC gives back to the user the collateral amount, then

updates or deletes the considered position but only if enough time, called freeze

period, has passed since its creation. Similarly to Bug #1, this issue also involves

two main components: the non-deterministic method time.Now() and the return

of a wrapped error. The relevant code introducing the vulnerability is shown in Fig-

29
Source code available at: https://github.com/commercionetwork/commercionetwork/blob/

3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89.

30
Source code available at: https://github.com/commercionetwork/commercionetwork/blob/

3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174.

100

https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174

4.7. Conclusion

ure 4.10. BurnCCC may return an error depending on the value assumed by guard

time.Now().Sub(pos.CreatedAt)<= freezePeriod, that once more may evalu-

ate differently on each node of the network, thus breaking consensus.

Patching and testing considerations

After a deep investigation, the company reports that no incidents or transaction fail-

ures happened because of these bugs during the live period of the release V2.2.0. Both

bugs were patched in the major release v3.0.0. A repeated analysis of the latter did not

find the aforementioned problems. The issue has been resolved by getting the time

directly from the current Tendermint block header, a source that is both determin-

istic and supported by consensus. More precisely, the Cosmos SDK context method

ctx.BlockTime() has been used instead of time.Now().

Packages containing the bugs were tested with the standard Go testing frame-

work and the libraries supported by Cosmos SDK, obtaining a satisfying level of code

coverage. In particular, the keeper packages of commerciomint and commerciokyc
in version v2.2.0 had a test coverage of 83.9% and 91.9%, respectively. However, both

defects could not be detected by the test cases, due to incorrect initialization of test-

ware. First, the Cosmos SDK blockchain Context passed to the keeper methods is set

to the current time, invoking WithBlockTime(time.Now()). Furthermore, a differ-

ent usage of time.Now() has been leveraged for the initialization of testing variables

and struct fields regarding time. These are definitely some testing anti-patterns, since

not only blockchain code involved in consensus but also tests should be determinis-

tic. Therefore, it is recommended to use a fixed timestamp in tests, wherever some

logic depends on the use of time.

4.7 Conclusion

In this chapter, we proposed a flow-based approach for detecting non-deterministic

behaviors that are harmful for blockchains, as they might break consensus. Our pro-

posal has been implemented in GoLiSA, a LiSA frontend for Go applications. To

the best of our knowledge, GoLiSA is the first semantic-based static analyzer for

blockchain software that is able to detect non-deterministic behaviors, with an low

false positive rate. In the context of smart contracts, the proposed approach is placed

in an off-chain architecture, i.e., the analysis is done before smart contracts are de-

ployed in the blockchain, and it is not mandatory.

This work thus constitutes a first in-depth application of LiSA, targeting a stat-

ically typed and compiled language. In the next chapter, we present a second ap-

plication of LiSA, targeting a dynamically typed and interpreted language, namely

Python, that demonstrates the applicability of LiSA’s framework to a widely different

programming language.

101

5 Analysis of data science

programs

Chapter Contents

5.1 Related work . 105

5.2 A concrete semantics for transformations 105

5.2.1 Obtaining the semantics of Python code 107

5.3 The dataframe graph domain . 108

5.3.1 Abstract semantics . 112

5.4 A first application: inferring dataframes shape 118

5.5 An early experiment using PyLiSA 121

5.6 Conclusion . 122

A second application of LiSA is presented in this chapter, where we employ the

PyLiSA frontend to analyze JuPyter
1

notebooks used in data science. The ever-increa-

sing usage of data-driven decision processes led to data science (DS) and machine

learning (ML) permeating several areas of everyday life, reaching outside the bound-

aries of computer science and software engineering. Ensuring correctness of these

processes is particularly important when they are employed in critical areas like

medicine, public policy, or finance. The work presented in this chapter is still on-

going: the following is thus meant as an early report.

In contrast to robustness verification of trained ML models, a widespread and

appreciated research topic in recent years [135], the data pre-processing stage of the

ML pipeline has received little attention. As raw data is often inconsistent or incom-

plete, DS and ML pre-processing programs apply transformations to polish it to the

point where it can be visualized or used for training. This is a tedious and often trial-

by-error procedure, and as a result, such code is often seen as a rarely tested one-

off script, weakening the ML pipeline. Errors and inconsistencies at this stage can

silently propagate downwards in the ML chain, leading to incorrect conclusions and

below-par models [32]. As an example, “Growth in a Time of Debt” [114] by Reinhart

and Rogoff has received notable attention in political discussions regarding the effec-

tiveness of austerity policies w.r.t. the public debt of the country applying them. The

paper was then criticized as the “selective exclusion of available data, coding errors

and inappropriate weighting of summary statistics led to serious miscalculations that

inaccurately represent the relationship between public debt and GDP growth among

20 advanced economies” [78].

Verification of DS and ML pre-processing notebooks can take different directions.

A first axis is the inference of input data usage, that is deducing what portions of the

1https://jupyter.org/.

103

https://jupyter.org/

Chapter 5 | Analysis of data science programs

input data are used by the program to produce a specific result. This is crucial to

ensure that no bias is introduced in the analysis of the input data. Equivalently,

such information can be used to check if unwanted data was used while producing

a result. For instance, some studies might need to be independent of features such

as gender or ethnicity. Furthermore, ML data leakages (i.e., sharing of information

between the training and test datasets, one of the problems tackled in [128]) could

be derived from the same results. Lastly, input data usage could also be used to

automate data provenance reports [102]. A second line of work aims at highlighting

data transformations introducing bias or skews [144]. Transformations like filter,

concatenation, or value replacement can introduce bias and skew within the data.

Concretely, consider the simple example of the dataset containing age and salary

demographics. If a correlation exists between the two, filtering the data by salary

introduces a bias w.r.t. the age. A third objective is inferring the shape of input data.

DS notebooks are modeled after the structure of input data, and each transformation

implicitly assumes that such structure is valid (e.g., that a column with a given name

exists). As some of these notebooks are executed periodically to gain insights from

aggregated data sources with ever-changing formats, preemptive analyses can run

on the fetched data to ensure that the execution will not fail due to a format change.

Regardless of the verification direction, JuPyter notebooks are challenging to ana-

lyze. For starters, code comes in blocks that can be executed in any order with repeti-

tions. Furthermore, transformations are performed through calls to library functions:

a large number of them exist, each with complex and possibly overlapping seman-

tics, and whose code is not always available. These add to the already challenging

features of Python, that shares most of the characteristics of dynamic languages:

dynamic typing and evaluation, mutable and runtime-modifiable program structure,

and high-level syntax with complex semantics that introduces innate data structures

and operators over them. This chapter proposes an abstract interpretation approach

to simplify the implementation of verification techniques for JuPyter notebooks con-

taining DS programs. We propose an abstract domain that tracks transformations

made to dataframes, that is, the in-memory tables containing the input data, in a

unique graph. The latter contains atomic transformations, such as column access or

filtering, as nodes that are linked by edges encoding the order in which they are ap-

plied. The final graph produced as post-state of the last instruction of the notebook

is effectively a control flow graph containing only dataframe transformations. As a

consequence, analyses that aim at determining properties of such transformations,

such as the ones discussed earlier in this chapter, can be implemented as fixpoint

algorithms over this control flow graph. As this is an ongoing work, we focus on a

subset of the transformations offered by pandas2
, the de-facto standard for process-

ing raw data in DS and ML, providing concrete and abstract semantics for them.

This chapter is structured as follows. Section 5.1 discusses related work, and is fol-

2https://pandas.pydata.org/.

104

https://pandas.pydata.org/

5.1. Related work

lowed by the definition of the concrete domain we aim to abstract in Section 5.2. Sec-

tion 5.3 defines the abstraction for dataframe values, presenting the domain with con-

cretization, and abstraction functions, with a focus on its semantics in Section 5.3.1.

We then explore a first use-case in Section 5.4, where we use our abstraction for in-

ferring the shape of the dataframes used by a program. We then conclude with a

preliminary experiment on a real DS notebook in Section 5.5.

5.1 Related work

Obtaining formal guarantees on the safety and fairness of ML models has been a

subject of recent widespread interest [135]. Our work builds upon this large ecosys-

tem and proposes a verification framework for the data pre-processing stage of the

ML pipeline. The closest body of work is [128] which also analyzes DS notebooks

along with their peculiar execution semantics and proposes an abstraction to detect

data leakage. Our approach towards the shape inference of input data follows the

work of [134] and extends it to support inputs to programs which contain datasets.

Similarly, our objective of inferring input data usage directly derives from the com-

pound data structure usage analysis presented in [136] and adds the ability to track

the usage of selections of datasets. The objective of detecting bias/skew introduc-

tion is inspired by the mlinspect tool proposed in [75]. This tool builds a directed

acyclic graph (DAG) of operations (like filters or projections) applied to the data by

analyzing the code and using framework-specific backends (like scikit-learn). Af-

ter analyzing the DAG, it suggests potential sources of bias/skew. Although this is

promising, it only places syntactic checks and cannot concretely detect which oper-

ations cause these problems. Lastly, [102] is an automated data provenance tracking

system for Python scripts. However, this tool requires executing the code which

might not always be feasible when large datasets are involved, or if those are not

statically available.

5.2 A concrete semantics for transformations

Transformations of dataframes are performed by invoking library functions. Hence,

no Python constructs inherently require special semantics. Still, taking into account

the effects of these functions on the program state is challenging: their code (when

available) can be complex and confusing for a static analyzer. We thus indirectly

model their semantics through auxiliary constructs. These represent atomic transfor-

mations that can be composed to obtain the semantics of several functions, providing

support for libraries beyond pandas.

We thus extend the Python syntax with expressions corresponding to atomic

transformations. A list of the added expressions is visible in Figure 5.1, where 𝑜𝑝

is a comparison operator (==, ! =, >, >=, <, or <=), and 𝑓 is a function that trans-

105

Chapter 5 | Analysis of data science programs

e ∈ e ::= … | df read(e) | df access(e, e) | df concat(e) | df transform(e,
𝑓) | df filter(e, e 𝑜𝑝, e) | df assign(e, e, e)

Figure 5.1: Expressions added to the Python language

forms the values contained in the dataframe. Concrete semantics for Python have

already been studied [99, 110, 77, 85]. We assume such semantics to be defined as a

collecting semantics of the form:

𝕊JstK ∶ ℘( × ) → ℘( × )

where the state is, for the sake of convenience, split into an environment  mapping

identifiers
3

to dataframes and the remaining state  . Such function relies on the

semantics of expressions:

𝔼JeK ∶ ℘( × ) → ℘( ×  × 𝕍)

We thus assume expressions to possibly lead to side effects, and to evaluate to any

possible value in 𝕍 (that is, either a memory address or a primitive value). As the

atomic transformations are (i) side effect-free, and (ii) evaluated on one state at a

time, we define their semantics as:

𝔼JeK({(1,1), … (𝑛,𝑛)}) = ⋃

𝑖

{ (𝑖,𝑖, ∙) | 𝔼JeK(𝑖,𝑖) = ∙, 1 ≤ 𝑖 ≤ 𝑛 }, 𝑛 ∈ ℕ
∞

where 𝔼JeK ∶  × → 𝕍 evaluates the side effect-free semantics of the expression e.

We then define a concrete dataframe as the tuple:

𝑑 ∈ 𝔻 = (𝑆 = 𝜎, 𝐶 = ⟨𝜎1, … , 𝜎𝑛⟩, 𝑅 = ⟨⟨𝑣
1
1 , … , 𝑣

1
𝑛⟩, … , ⟨𝑣

𝑚
1 , … , 𝑣

𝑚
𝑛 ⟩⟩) 𝑛, 𝑚 ∈ ℕ, 𝜎, 𝜎𝑖 ∈ Σ

∗

𝐶 is thus the sequence of column names and 𝑅 is the sequence of rows, with a value

in 𝕍 for each column. Individual values on the 𝑖-th row can be indexed using both

column names (𝑣𝑖𝜎) or column indexes (𝑣𝑖𝑗). Moreover, 𝑆 represents the source (file, url,

. . .) of the data (for dataframes constructed programmatically, 𝑆 = 𝜖). The concrete

semantics of the atomic transformations is captured in Figure 5.2, where:

∙ ⊥ is the error state;

∙ the error state generated when an expression evaluates to an unexpected value

(for instance, if 𝔼JsK(,) ∉ Σ∗
) is omitted;

∙ 𝑑𝜎 is the dataframe containing the data from the source (file, URL, . . .) 𝜎;

3
Identifiers can be either program variables or memory addresses, depending on how the semantics is

formalized.

106

5.2. A concrete semantics for transformations

𝔼Jdf read(s)K(,) = 𝑑𝜎

𝔼Jdf access(df, cl)K(,) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(𝑆, ⟨𝜎′
1, … , 𝜎′

𝑐⟩, ⌊𝑅⌋𝜎′
1 ,…,𝜎

′
𝑐
) if ∀𝜎′

𝑖 ∈ ⟨𝜎′
1, … , 𝜎′

𝑐⟩

. 𝜎′
𝑖 ∈ 𝐶

⊥ otherwise

𝔼Jdf transform(df, 𝑓)K(,) = (𝑆, ⟨𝜎
′
1, … , 𝜎

′
𝑐⟩, 𝑅

′
= ⟨𝑣

′𝑖

𝑗 = 𝑓 (𝑣
𝑖
𝑗)⟩)

𝔼Jdf concat(dl)K(,) = (𝜖, 𝐶𝑐 = 𝐶1 ⋄ ⋯ ⋄ 𝐶𝑙 , 𝑅1 ∙𝐶𝑐
⋯ ∙𝐶𝑐

𝑅𝑙)

𝔼Jdf filter(df, s, 𝑜𝑝, e)K(,) = (𝑆, 𝐶, ⟨⟨𝑣1, … , 𝑣𝑛⟩ ∈ 𝑅 | 𝑣𝜎 𝑜𝑝 𝑣⟩)

𝔼Jdf assign(df, cl, df′)K(,) =

{

(𝑆, 𝐶, 𝑅′′) if ∀𝜎′
𝑖 ∈ ⟨𝜎′

1, … , 𝜎′
𝑐⟩ . 𝜎

′
𝑖 ∈ 𝐶

⊥ otherwise

𝑣
′′𝑖

𝜎 =

{

𝑣𝑖𝜎 if ∀𝜎 ∉ ⟨𝜎′
1, … , 𝜎′

𝑐⟩

𝑣′𝑖𝜎 otherwise

where 𝔼JsK(,) = 𝜎 ∈ Σ
∗

𝔼JeK(,) = 𝑣 ∈ 𝕍

𝔼JdfK(,) = 𝑑 = (𝑆, 𝐶, 𝑅) ∈ 𝔻

𝔼JclK(,) = ⟨𝜎
′
1, … , 𝜎

′
𝑐⟩, 𝑐 ∈ ℕ, 𝜎𝑖 ∈ Σ

∗

𝔼JdlK(,) = ⟨𝑑1, … , 𝑑𝑙⟩, 𝑙 ∈ ℕ, 𝑑𝑖 ∈ 𝔻

Figure 5.2: Concrete semantics of the atomic transformations

∙ ⌊𝑅⌋𝜎′
1 ,…,𝜎

′
𝑐

is a projection of each row in 𝑅 on the columns 𝜎′
1, … , 𝜎′

𝑐 ;

∙ the ⋄ operator performs list concatenation removing duplicates;

∙ the ∙𝐶 operator performs rows concatenation after padding the rows w.r.t. the

column set 𝐶: if a row does not have a value for column 𝜎, a NaN is inserted.

5.2.1 Obtaining the semantics of Python code

Our atomic transformations are not directly part of the language: they serve as

a mean to express the semantics of library functions in terms of smaller atomic con-

structs. Hence, when analyzing calls to target libraries, the appropriate set of trans-

formations must be identified and their abstract semantics can be composed to pro-

duce the post-state of the call. Figure 5.3 depicts an example of how calls to pandas
functions that manipulate dataframes can be mimicked using our atomic constructs,

where the original Python code manipulating two dataframes is shown in Figure 5.3a.

Each individual call has its counterpart in the list of atomic transformations we de-

fined, and the program is thus intuitively equivalent to the one in Figure 5.3b. Specif-

ically, the program starts by reading file italy.csv through pandas.read_csv
method (mimicked using df_read), storing the resulting dataframe into variable

107

Chapter 5 | Analysis of data science programs

1 impor t pandas as pd
2 d f 1 = pd . read csv (’ i t a l y . c sv ’)
3 d f 1 [’ b i r t h ’] = pd . t o d a t e t i m e (d f 1 [’ b i r t h ’])
4 d f 2 = pd . read csv (’ f r a n c e . c sv ’)
5 d f 2 = d f 2 [’ age ’ < 5 0]
6 d f 3 = pd . c o n c a t ([df1 , d f 2])

(a) Minimal Python DS program

1 impor t pandas as pd
2 d f 1 = d f r e a d f i l e (’ i t a l y . c sv ’)
3 d f a s s i g n (df1 , [’ b i r t h ’] , d f t r ans fo rm (d f a c c e s s (df1 , [’ b i r t h ’]) ,

t o d a t e t i m e))
4 d f 2 = d f r e a d f i l e (’ f r a n c e . c sv ’)
5 d f 2 = d f f i l t e r (df2 , ’ age ’ , <, 5 0)
6 d f 3 = df conca t ([df1 , d f 2])

(b) Instrumentation of the Python program

Figure 5.3: Example Python DS program and its instrumentation

df1 at line 2. Next, the contents of column birth (whose access is substituted with

df_access) are transformed into datetime objects exploiting pandas.to_dataframe
(rewritten into df_transform) and stored back into the column through the assign-

ment (modeled with df_assign) at line 3. After reading france.csv at line 4, all of

its rows whose age columns contain values greater than or equal to 50 are discarded

(through the conditional expression used inside square brackets, instrumented with

df_filter) at line 5. Finally, the two dataframes are joined together along the rows

axis using pandas.concat (replaced by df_concat) at line 6.

Note that this approach perfectly fits LiSA’s infrastructure: implementations of

library functions can be provided through native CFGs, and the semantics of its only

node will rewrite them into symbolic expressions representing the atomic transfor-

mations. The code of Figure 5.3b will be used as a running example to explain our

domain.

5.3 The dataframe graph domain

We present here an abstraction able to capture the structure of the dataframes ma-

nipulated in Python code. Intuitively, we employ a graph structure to keep track of

all operations that involve dataframes, with edges encoding the order in which they

are performed. The graph thus represents the state of each dataframe at a given pro-

gram point. Nodes of this graph can be pointed by variables of the program. The

latter thus refers to the dataframe corresponding to the sub-graph obtained with a

backward DFS starting from the node. We adopt a two-level mapping: instead of

directly pointing to nodes of the graph, program variables point to labels, and the

latter are mapped to the nodes. This enables simple handling of dataframe aliasing

(i.e., two variables will be mapped to the same label) and updates (i.e., by changing

the nodes pointed by a label, we indirectly update all variables pointing to the label).

As our domain is meant to be an abstraction of  (that is, ℘(𝕍𝑎𝑟 → 𝔻)), we

108

5.3. The dataframe graph domain

denote it with #
and we define it w.r.t. an auxiliary domain #

, providing an ab-

straction □ for the remaining portion  of the concrete state. The abstract state is

thus a pair (□, 𝑑#), with 𝑑# ∈ #
. Hence, our definition is parametric to #

, that is

only required to provide the following abstract transformers:

∙ 𝔼#
#JsK(□, 𝑑#) = (□1, 𝑑

#
1 , {𝜎1, … , 𝜎𝑘}), 𝑘 ∈ ℕ, evaluating a string expression s to a

set of abstract elements {𝜎1, … , 𝜎𝑘};

∙ 𝔼#
#JclK(□, 𝑑#) = (□1, 𝑑

#
1 , {⟨𝜎

1
1 , … , 𝜎1

𝑚⟩, … , ⟨𝜎𝑘
1 , … , 𝜎𝑘

𝑚⟩}), 𝑚, 𝑘 ∈ ℕ, that evalu-

ates a list of string expressions cl to {⟨𝜎1
1 , … , 𝜎1

𝑚⟩, … , ⟨𝜎𝑘
1 , … , 𝜎𝑘

𝑚⟩}, where each

⟨𝜎𝑖
1, … , 𝜎𝑖

𝑚⟩, 1 ≤ 𝑖 ≤ 𝑘 is a possible abstraction for the elements of the list;

∙ 𝔼#
#JdlK(□, 𝑑#) = (□1, 𝑑

#
1 , {⟨𝓁

1
1, … , 𝓁1𝑚⟩, … , ⟨𝓁𝑘1 , … , 𝓁𝑘𝑚⟩}), 𝑚, 𝑘 ∈ ℕ, providing the

abstraction of a list of dataframe expressions dl as {⟨𝓁11, … , 𝓁1𝑚⟩, … , ⟨𝓁𝑘1 , … , 𝓁𝑘𝑚⟩},

where each ⟨𝓁𝑖1, … , 𝓁𝑖𝑚⟩, 1 ≤ 𝑖 ≤ 𝑘 is a possible abstraction for the elements of

the list;

∙ 𝔼#
#JxK(□, 𝑑#) = (□1, 𝑑

#
1 , {x1, … , x𝑛}), 𝑛 ∈ ℕ evaluating the left-hand side of an

assignment x to a set of identifiers {x1, … , x𝑛}.

We begin defining #
by introducing the building blocks for our domain. We start

from the graph structure, where a graph 𝑔# = (𝑁 , 𝐸) is composed of a set of nodes

𝑁 ⊆ N and a set of edges 𝐸 ⊆ E . Elements of N are:

∙ read(𝜎), representing the initialization of a dataframe with the contents of

file 𝜎;

∙ access(𝜎1, … , 𝜎𝑘), symbolizing the access to columns 𝜎1, … , 𝜎𝑘 , 𝑘 ∈ ℕ;

∙ transform(𝑓), transforming values through an auxiliary function 𝑓 ;

∙ concat, representing a concatenation of multiple dataframes;

∙ filter(𝜎, 𝑜𝑝, 𝑣), portraying the selection of rows where 𝑣𝜎 𝑜𝑝 𝑣 holds;

∙ assign(𝜎1, … , 𝜎𝑘), corresponding to the assignment of columns 𝜎1, … , 𝜎𝑘 , 𝑘 ∈

ℕ to a new value.

where 𝜎 and 𝑣 are string and value abstractions in #
, 𝑜𝑝 ∈ {=, ≠, >, ≥, <, ≤} and 𝑓 is

the signature of a Python function. Instead, elements of E are (with 𝑛, 𝑛′ ∈ N , 𝑖 ∈ ℕ):

∙ 𝑛 → 𝑛′ is a simple edge, encoding the sequential order of operations;

∙ 𝑛⇝𝑖 𝑛
′

is a concatenation edge, indicating that 𝑛 is the 𝑖-th dataframe taking

part in the concatenation that builds 𝑛′ (note that 𝑛′ can have more incoming

concatenation edges using the same 𝑖, indicating multiple candidates for the

same index);

109

Chapter 5 | Analysis of data science programs

∙ 𝑛 ↠ 𝑛′ is an assign edge, portraying the usage of 𝑛 as the right-hand side of

the assignment depicted in 𝑛′ (once more, 𝑛′ can have more incoming assign

edges, indicating multiple candidates for the right-hand side).

Note that, as ⟨℘(N), ⊆, ∪, ∩, ∅,N ⟩ and ⟨℘(E), ⊆, ∪, ∩, ∅,E ⟩ are complete lattices

built over powersets, each graph 𝑔# is an element of the Cartesian product # =

⟨℘(N) × ℘(E),
×

⊆,
×

∪,
×

∩, ∅ × ∅,N × E ⟩, that is a complete lattice itself.

We now proceed defining the mapping from labels to graph nodes. A label 𝓁 ∈ L

is an arbitrary synthetic identifier that serves as an abstract name for a set of nodes

in N , where L is the finite set of all possible labels. While we do not impose any

specific structure on L , a common characterization of labels is to have one for each

program point. We denote as 𝓁̄ a fresh and unused label. #
contains a function

L → ℘(N) from labels to sets of nodes. As the co-domain is composed by elements

of the complete lattice of nodes, each map 𝑙# is an element of the functional lift # =

⟨L → ℘(N), ⊆̇, ∪̇, ∩̇, ⊥, ⊤⟩, that is still a complete lattice.

Lastly, we define the mapping from variables to labels. A map 𝕍𝑎𝑟 → ℘(L)

is part of #
, keeping track of which possible labels a variable can refer to. No-

tice that, depending on the analyzer’s infrastructure, variables can correspond to

abstract memory locations or program variables. Similarly to #
, the co-domain is

composed of elements of the complete lattice ⟨℘(L), ⊆, ∪, ∩, ∅,L ⟩: each function 𝑣#

is thus an element of the functional lift (and hence complete lattice) # = ⟨𝕍𝑎𝑟 →

℘(L), ⊆̇, ∪̇, ∩̇, ⊥, ⊤⟩.

We can now define #
as the Cartesian product ⟨# × # × #,

×

⊆,
×

∪,
×

∩, ⊥, ⊤⟩ that,

once more, is a complete lattice. In the following, we will denote elements of #
as

either 𝑑# or (𝑣#, 𝑙#, 𝑔#), depending on what is more convenient.

One concern with infinite lattices such as #
is the convergence of fixpoint it-

erations over them. As #
intuitively does not satisfy ACC

4
, a widening operator is

required. As, in our experience, the DS notebooks that this domain targets mostly

contain sequential code with very few loops that stabilize in few iterations, we em-

ploy the naive widening 𝑑#1 ∇ 𝑑#2 = ⊤, ∀ 𝑑#1 , 𝑑
#
2 ∈ #

. With such an operator we ensure

termination of the analysis, and we leave the study of a more precise widening oper-

ator as future work.

Example 5.3.1. Figure 5.4 reports the 𝑑# instance abstracting the code of Fig-

ure 5.3b when a simple constant propagation abstraction is chosen as auxiliary

domain #
. For the sake of clarity, nodes of 𝑔# are enriched with a numerical iden-

tifier on the top-left corner to easily identify them. Such identifiers are used in the

co-domain of 𝑙# to represent them. We show how this graph is constructed step by

step in Section 5.3.1.

The connection between  and #
is established by the abstraction function 𝛼

4
As N and E are infinite sets, one can keep adding new nodes and edges without the graph ever

stabilizing.

110

5.3. The dataframe graph domain

𝑔# = read(’italy.csv’)

access(’birth’)

transform(to datetime)

assign(’birth’)

read(’france.csv’)

filter(’age’, <, 50)

concat

1

2

3

4

5

6

7

1
2

𝑣# = {(df1, {𝓁1}), (df2, {𝓁4}), (df3, {𝓁5})}
𝑙# = {(𝓁1, {4}), (𝓁2, {3}), (𝓁3, {5}), (𝓁4, {6}), (𝓁5, {7})}

Figure 5.4: Example 𝑑# abstracting the code of Figure 5.3b

and the concretization function 𝛾 . A set {𝑑̄1, … , 𝑑̄𝑚}, 𝑑̄𝑖 ∈ , 1 ≤ 𝑖 ≤ 𝑚,𝑚 ∈ ℕ∞
can

be abstracted to an element 𝑑# ∈ #
through function 𝛼 ∶ ℘() → # ≡ ℘(𝕍𝑎𝑟 →

𝔻) → (# × # × #). Such function is defined as the lub of the abstractions of each

individual 𝑑̄:

𝛼({𝑑̄1, … , 𝑑̄𝑚}) =

×

⋃

𝑑̄∈{𝑑̄1 ,…,𝑑̄𝑚}

𝛼̄(𝑑̄)

where 𝛼 ∶  → #
is defined as follows:

𝛼̄(𝑑̄) = (𝑣#, 𝑙#, 𝑔#), where 𝑑̄ = {(𝑣1, 𝑑1), … , (𝑣𝑘 , 𝑑𝑘)}, 1 ≤ 𝑖 ≤ 𝑘, 𝑘 ∈ ℕ

(𝑔#𝑖 , 𝑛𝑖) = shape(𝑑𝑖), 𝑔# =
×

⋃𝑖𝑔
#
𝑖 ,

𝑙# = {(𝓁1, {𝑛1}), … , (𝓁𝑘 , {𝑛𝑘})},

𝑣# = {(𝑣1, {𝓁1}), … , (𝑣𝑘 , {𝓁𝑘})}

The abstraction of a single dataframe map exploits shape ∶ 𝔻 → #×N , an auxiliary

function that extracts the shape of a concrete dataframe into a single-path graph,

returning the graph itself and its unique leaf:

shape(𝑑) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

({𝑛, 𝑛′}, {𝑛 → 𝑛′}), 𝑛′ if 𝑆 ≠ 𝜖

({𝑛′}, ∅), 𝑛′ otherwise

where 𝑛 = read(𝛼#(𝑆)), 𝑛′ = access(𝛼#(𝐶))

The abstraction of a set of states is thus the union of the abstraction of each indi-

vidual state, generated by creating the graph 𝑔# containing the shape (that is, the

access to all columns 𝐶 optionally preceded by the reading of source 𝑆) of all existing

dataframes, having each variable refer to the corresponding node in 𝑔#.

111

Chapter 5 | Analysis of data science programs

Theorem 1. 𝛼 is a complete join-preserving function. Formally:

∀′
⊆  . 𝛼(⋃′

) =

×

⋃𝛼(′
)

Proof.

𝛼(⋃′
)

= 𝛼(⋃ {{𝑑̄
1
1 , … , 𝑑̄

1
𝑚1
}, … , {𝑑̄

𝑘
1 , … , 𝑑̄

𝑘
𝑚𝑘
}}) Hdef. ′I

= 𝛼({𝑑̄
1
1 , … , 𝑑̄

1
𝑚1
, … , 𝑑̄

𝑘
1 , … , 𝑑̄

𝑘
𝑚𝑘
}) Hdef. ∪I

= 𝛼̄(𝑑̄
1
1)

×

∪ …
×

∪ 𝛼̄(𝑑̄
1
𝑚1
)

×

∪ …
×

∪ 𝛼̄(𝑑̄
𝑘
1)

×

∪ …
×

∪ 𝛼̄(𝑑̄
𝑘
𝑚𝑘
) Hdef. 𝛼I

= 𝛼({𝑑̄
1
1 , … , 𝑑̄

1
𝑚1
})

×

∪ …
×

∪ 𝛼({𝑑̄
𝑘
1 , … , 𝑑̄

𝑘
𝑚𝑘
}) Hdef. 𝛼I

=

×

⋃ 𝛼(′
) Hdef. ′I

An abstract element #
can instead be concretized to a set {𝑑̄1, … , 𝑑̄𝑚}, 𝑑̄𝑖 ∈ 

through function 𝛾 ∶ # → ℘() ≡ (# × # × #) → ℘(𝕍𝑎𝑟 → 𝔻), defined as:

𝛾(𝑑
#
) =

×

⋃{ ′
∈ ℘() | 𝛼(′

)
×

⊑ 𝑑
#
}

since 𝛼 is a complete join-preserving function. Note that, as reported in Section 2.2.2,

this also induces the Galois connection ⟨℘(), ⊆⟩ −−−→←−−−
𝛼

𝛾

⟨#,
×

⊑⟩.

5.3.1 Abstract semantics

As mentioned earlier in this section, we define #
w.r.t. an auxiliary domain #

that

is exploited for the evaluation of non-dataframe expressions, and the program state

is modeled as the pair (□, 𝑑#). The abstract semantics can then be defined as:

𝕊
#JstK ∶ □ ×#

→ □ ×#

that in turn relies on the abstract semantics of expressions:

𝔼
#JeK ∶ □ ×#

→ □ ×#
× †

where † is the abstract value resulting from the evaluation of e, if any. As for the

concrete case, we let the abstract expression semantics return a new state (□, 𝑑#) to

model possible side effects of the expression’s evaluation. When e = df, † = ℘(L),

otherwise it is an abstraction produced by #
. A dataframe expression thus evaluates

to a set of labels, identifying nodes representing the dataframes that correspond to

e. In the following, we define the semantics of expressions that involve dataframes,

and we rely on the abstract semantics of #
for the remaining ones.

112

5.3. The dataframe graph domain

Note that, thanks to the GC ⟨℘(), ⊆⟩ −−−→←−−−
𝛼

𝛾

⟨#,
×

⊑⟩, soundness of the abstract

semantics can be proven by showing that ∀x ∈ X . 𝛼(𝑓 (x)) ⊑X 𝑓 (𝛼(x)). As the ab-

stractions presented here are meant as an early draft, we leave the soundness proofs

as future work.

Assignment. Whenever the right-hand side of an assignment is a dataframe ex-

pression df, 𝑣# must be updated for the corresponding variable. The assignment’s

semantics is thus defined as:

𝔼
#Jx = dfK(□, 𝑑#) ≜ (□2, (𝑣

#
3 , 𝑙

#
2 , 𝑔

#
2), {𝓁1, … , 𝓁𝑤})

where:

∙ the right-hand side is first evaluated, producing the set of labels corresponding

to the dataframe to be assigned: 𝔼#JdfK(□, 𝑑#) = (□1, 𝑑
#
1 , {𝓁1, … , 𝓁𝑤});

∙ the left-hand side is evaluated using #
’s semantics, resulting in a set of vari-

ables that must be assigned: 𝔼#
#JxK(□1, 𝑑

#
1) = (□2, (𝑣

#
2 , 𝑙

#
2 , 𝑔

#
2), {x1, … , x𝑛});

∙ finally, we store the new mapping for each variable of the left-hand side eval-

uation: 𝑣#3 = 𝑣#2[x𝑖 ↦ {𝓁1, … , 𝓁𝑤}, ∀x𝑖 ∈ {x1, … , x𝑛}].

Example 5.3.2. When evaluating the assignment at line 1 of Figure 5.3b, the se-

mantics stores the label pointing to the read node (whose creation is dictated by

the abstract semantics of df read). 𝑣# is thus extended with the pair (df1, {𝓁1}),
where {𝓁1} is the label returned by the semantics of df read.

Variable evaluation. Whenever a variable is referenced throughout the program,

our semantics must evaluate it to the corresponding labels if it refers to a dataframe.

The remaining variables are instead handled by #
. Thus, when x resolves to a

dataframe, the semantics is formalized as:

𝔼
#JxK(□, 𝑑#) ≜ (□, 𝑑

#
, 𝑣

#
(x))

Example 5.3.3. When evaluating the concatenation at line 8 of Figure 5.3b, df1
and df2 must be first resolved to the dataframes they represent before proceeding

with the evaluation. 𝔼#Jdf1K(□, 𝑑#) thus returns (□, 𝑑#, {𝓁1}) while 𝔼#Jdf2K(□, 𝑑#)
returns (□, 𝑑#, {𝓁4}) instead, as the two variables are mapped to {𝓁1} and {𝓁4} in 𝑣#,

respectively.

Dataframe initialization. When dataframes are initialized with the contents of

an external resource through df read, the operation cannot be precisely modeled

113

Chapter 5 | Analysis of data science programs

statically as the contents of the resource are unknown at analysis time. We thus sym-

bolically record the source of the data by adding read nodes to the graph. Instead, as

this is an initialization of a new dataframe, no edges are added. The semantics then

returns a unique label that points to the freshly added nodes. Formally:

𝔼
#Jdf read(s)K(□, 𝑑#) ≜ (□1, (𝑣

#
1 , 𝑙

#
2 , 𝑔

#
2), {𝓁̄})

where:

∙ the resource identifier is abstracted through #
’s semantics, yielding a set of

abstract strings: 𝔼#
#JsK(□, 𝑑#) = (□1, (𝑣

#
1 , 𝑙

#
1 , 𝑔

#
1), {𝜎1, … , 𝜎𝑘});

∙ we instantiate a node for each abstract string: 𝑛𝑖 = read(𝜎𝑖), ∀𝜎𝑖 ∈ {𝜎1, … , 𝜎𝑘};

∙ all new nodes are stored as the image of a fresh label: 𝑙#2 = 𝑙#1 ∪ {(𝓁̄, {𝑛1, … , 𝑛𝑘})};

∙ the graph is extended with the new nodes: 𝑔#2 = 𝑔#1
×

∪ ({𝑛1, … , 𝑛𝑘}, ∅).

Example 5.3.4. When the df read at line 1 of Figure 5.3b is evaluated, 𝑔# is still

empty. As #
is set to constant propagation, there is a unique abstraction of the re-

source to be read, and thus a single read(’italy.csv’) node is added to 𝑔#. The

semantics then extends 𝑙# with a fresh label 𝓁1, that is mapped to a set containing

the node itself, and is used as the only label in the result of the evaluation.

Column access. The df access transformation accesses a set of columns of the tar-

get dataframe. As this operation does not create a new dataframe, it is modeled as

an in-place operation, directly affecting the nodes pointed by the labels of its argu-

ment. The semantics adds a new node for each possible abstraction of the column

list, connecting it to the nodes pointed by the first argument. It is defined as follows:

𝔼
#Jdf access(df, cl)K(□, 𝑑#) ≜ (□2, (𝑣

#
2 , 𝑙

#
3 , 𝑔

#
3), {𝓁1, … , 𝓁𝑤})

where:

∙ the dataframe that receives the access is first evaluated, determining the set of

labels that correspond to it: 𝔼#JdfK(□, 𝑑#) = (□1, 𝑑
#
1 , {𝓁1, … , 𝓁𝑤});

∙ the column list is evaluated by #
, producing a set of abstractions for the

names: 𝔼#
#JclK(□1, 𝑑

#
1) = (□2, (𝑣

#
2 , 𝑙

#
2 , 𝑔

#
2), {⟨𝜎

1
1 , … , 𝜎1

𝑚⟩, … , ⟨𝜎𝑘
1 , … , 𝜎𝑘

𝑚⟩});

∙ an access node is created for each possible abstraction of the list of column

names: 𝑛𝑖 = access(𝜎𝑖
1, … , 𝜎𝑖

𝑚), ∀⟨𝜎𝑖
1, … , 𝜎𝑖

𝑚⟩ ∈ {⟨𝜎1
1 , … , 𝜎1

𝑚⟩, … , ⟨𝜎𝑘
1 , … , 𝜎𝑘

𝑚⟩};

∙ all labels resulting from the evaluation of df are remapped to the new nodes,

symbolizing the side effect: 𝑙#3 = 𝑙#2[𝓁𝑗 ↦ {𝑛1, … , 𝑛𝑘}, ∀𝓁𝑗 ∈ {𝓁1, … , 𝓁𝑤}];

114

5.3. The dataframe graph domain

∙ the graph is extended with the new nodes, each connected those of df with

normal edges: 𝑔#3 = 𝑔#2
×

∪ ({𝑛1, … , 𝑛𝑘}, {𝑛
′ → 𝑛𝑖 | 𝑛

′ ∈ 𝑙#2(𝓁𝑗), ∀𝓁𝑗 ∈ {𝓁1, … , 𝓁𝑤}, ∀𝑛𝑖 ∈

{𝑛1, … , 𝑛𝑘}}).

Example 5.3.5. When the df access at line 4 of Figure 5.3b is evaluated, df1 is first

processed, producing {𝓁1} as abstract value. Then, the evaluation of the column

names yields a unique constant list ⟨′birth′⟩, resulting in the creation of a single

node access(’birth’). The graph is then extended adding (i) the newly created

node with id 2, and (ii) a normal edge connecting nodes 1 and 2. Furthermore, 𝓁1

is remapped to {2} inside the resulting 𝑙# (the mapping is not visible in Figure 5.4

as evaluation of following statements overwrites it).

Value transformation. Tracking transformations of dataframe values can be prob-

lematic, as the functions carrying the transformation must be summarized somehow.

Instead, we provide a lightweight semantics that records the signature of the used

function inside a node of the graph, deferring further reasoning to successive ab-

stractions. As this is not an in-place operation, the semantics creates a new label

that is mapped to the transformation node, and the latter is connected to nodes rep-

resenting the target dataframe. The label is then returned as the unique result of the

evaluation. Formally:

𝔼
#Jdf transform(df, 𝑓)K(□, 𝑑#) ≜ (□1, (𝑣

#
1 , 𝑙

#
2 , 𝑔

#
2), {𝓁̄})

where:

∙ the dataframe that is being transformed is evaluated first, producing the set of

labels to be targeted: 𝔼#JdfK(□, 𝑑#) = (□1, (𝑣
#
1 , 𝑙

#
1 , 𝑔

#
1), {𝓁1, … , 𝓁𝑤});

∙ a unique transformation node is created, embedding the function’s signature

in it: 𝑛 = transform(𝑓);

∙ the new node is used as the image of a fresh label: 𝑙#2 = 𝑙#1 ∪ {(𝓁̄, {𝑛})};

∙ the graph is extended, adding the new node together with normal edges be-

tween every node pointed by a label of df and the transformation node itself:

𝑔#2 = 𝑔#1
×

∪ ({𝑛}, {𝑛′ → 𝑛 | 𝑛′ ∈ 𝑙#1(𝓁𝑗), ∀𝓁𝑗 ∈ {𝓁1, … , 𝓁𝑤}}).

Example 5.3.6. When the df transform at line 4 of Figure 5.3b is evaluated, our

semantics first evaluates the column access, producing {𝓁1} as shown earlier. The

semantics then (i) creates a unique transform(to datetime) node, (ii) adds it

to the graph with id 3, and (iii) connects it to node 2 with a normal edge. The

mapping between 𝓁2, a fresh and unused label, and the singleton set containing

115

Chapter 5 | Analysis of data science programs

node 3 is also introduced in 𝑙#, and {𝓁2} is returned as the evaluation’s result.

Dataframe assignment. When a portion of a dataframe is overwritten with new

values, the semantics of variable assignment cannot be employed, as no variable

changes value. Instead, the semantics of df assign records the assignment as a node

in the graph, connected to both the dataframe receiving it and the value being stored:

𝔼
#Jdf assign(df, cl, df′)K(□, 𝑑#) ≜ (□3, (𝑣

#
3 , 𝑙

#
4 , 𝑔

#
4)), {𝓁1, … , 𝓁𝑤})

where:

∙ the assigned dataframe is evaluated: 𝔼#JdfK(□, 𝑑#) = (□1, 𝑑
#
1 , {𝓁1, … , 𝓁𝑤});

∙ the names of the columns to be assigned are evaluated by #
, producing their

set of abstractions: 𝔼#
#JclK(□1, 𝑑

#
1) = (□2, 𝑑

#
2 , {⟨𝜎

1
1 , … , 𝜎1

𝑚⟩, … , ⟨𝜎𝑘
1 , … , 𝜎𝑘

𝑚⟩});

∙ the dataframe used as right-hand in the assignment is then evaluated, resulting

in a second set of labels: 𝔼#Jdf′K(□2, 𝑑
#
2) = (□3, (𝑣

#
3 , 𝑙

#
3 , 𝑔

#
3), {𝓁

′
1, … , 𝓁′𝑝});

∙ an assign node is created for each abstraction of the column names: 𝑛𝑖 =

assign(𝜎𝑖
1, … , 𝜎𝑖

𝑚), ∀⟨𝜎𝑖
1, … , 𝜎𝑖

𝑚⟩ ∈ {⟨𝜎1
1 , … , 𝜎1

𝑚⟩, … , ⟨𝜎𝑘
1 , … , 𝜎𝑘

𝑚⟩};

∙ labels identifying df are remapped to the new nodes, as the assignment has

side effects: 𝑙#4 = 𝑙#3[𝓁𝑗 ↦ {𝑛1, … , 𝑛𝑘}, ∀𝓁𝑗 ∈ {𝓁1, … , 𝓁𝑤}];

∙ the graph is extended with the new nodes, connecting each of them with (i)

each node pointed by a label of df with a normal edge, and (ii) each node

pointed by labels of df′ through an assign edge: 𝑔#4 = 𝑔#3
×

∪ ({𝑛1, … , 𝑛𝑘}, {𝑛
′ ↠

𝑛𝑖 | 𝑛
′ ∈ 𝑙#3(𝓁

′
𝑗), ∀𝓁

′
𝑗 ∈ {𝓁′1, … , 𝓁′𝑝}, ∀𝑛𝑖 ∈ {𝑛1, … , 𝑛𝑘}} ∪ {𝑛′ → 𝑛𝑖 | 𝑛

′ ∈ 𝑙#3(𝓁𝑗), ∀𝓁𝑗 ∈

{𝓁1, … , 𝓁𝑤}, ∀𝑛𝑖 ∈ {𝑛1, … , 𝑛𝑘}}).

Example 5.3.7. When the df assign at line 3 of Figure 5.3b is analyzed, df1 is

evaluated to {𝓁1}, the column names evaluate to the constant list ⟨′birth′⟩, and

the df transform expression is resolved to {𝓁2}. The semantics proceeds by (i) cre-

ating a unique assign(’birth’) node, (ii) adding it to the graph with id 4, (iii)

connecting it to node 3 (image of 𝓁2 in 𝑙#) with an assign edge, and finally (iv)

connecting it to node 2 (image of 𝓁1 in 𝑙#) with a normal edge. To conclude, 𝓁1 is

remapped to a set containing node 4 in 𝑙#, as the assignment has side effects.

Rows filtering. Similarly to value transformations, abstracting row filters can be

problematic, as different facts about the filtering conditions can be of interest de-

pending on the target analysis. We thus record the condition as-is within a node,

delegating its interpretation to successive abstractions. Note that this is not an in-

place operation: original dataframes are not modified, but a filtered view of them is

116

5.3. The dataframe graph domain

returned by the operation. We reflect this in our formalization by yielding a fresh

label pointing to the filtering node. Formally:

𝔼
#Jdf filter(df, s, 𝑜𝑝, e)K(□, 𝑑#) ≜ (□3, (𝑣

#
3 , 𝑙

#
4 , 𝑔

#
4), {𝓁̄})

where:

∙ the filtered dataframe is first evaluated: 𝔼#JdfK(□, 𝑑#) = (□1, 𝑑
#
1 , {𝓁1, … , 𝓁𝑤});

∙ the name of the column targeted by the filtering is abstracted through #
’s se-

mantics, yielding a set of abstract strings: 𝔼#
#JsK(□1, 𝑑

#
1) = (□2, 𝑑

#
2 , {𝜎1, … , 𝜎𝑘});

∙ similarly, the value used in the comparison with the column’s values is pro-

cessed by #
, computing a set of generic abstract values: 𝔼#

#JeK(□2, 𝑑
#
2) =

(□3, (𝑣
#
3 , 𝑙

#
3 , 𝑔

#
3), {𝑣1, … , 𝑣𝑚});

∙ a filter node is then created for each possible column-value combination:

𝑛𝑖𝑗 = filter(𝜎𝑖, 𝑜𝑝, 𝑣𝑗), ∀𝜎𝑖 ∈ {𝜎1, … , 𝜎𝑘}, ∀𝑣𝑗 ∈ {𝑣1, … , 𝑣𝑚};

∙ the nodes are used as images of a fresh new label: 𝑙#4 = 𝑙#3 ∪ {(𝓁̄, {𝑛11, … , 𝑛𝑘𝑚})};

∙ the graph is extended, adding all new nodes and connecting them with each

node pointed by a label of df through a normal edge: 𝑔#4 = 𝑔#3
×

∪ ({𝑛11, … , 𝑛𝑘𝑚}, {𝑛
′ →

𝑛𝑖𝑗 | 𝑛
′ ∈ 𝑙#3(𝓁𝑗), ∀𝓁𝑗 ∈ {𝓁1, … , 𝓁𝑤}, ∀𝑛

𝑖
𝑗 ∈ {𝑛11, … , 𝑛𝑘𝑚}}).

Example 5.3.8. When the df filter at line 7 of Figure 5.3b is analyzed, the seman-

tics first evaluates its arguments: df2 is evaluated to {𝓁3}, the column name evalu-

ates to ’age’, and the value used for the comparison to the constant 50. A unique

filter(’age’, <, 50) node is then created, and it is added the graph with id

6. A normal edge connecting it to node 5 (image of 𝓁3 in 𝑙#) is also introduced, and

the label 𝓁4 is created and mapped to a set containing node 6 in 𝑙#.

Concatenation. The semantics of the concatenation must create a new dataframe

with the contents of all of its arguments, that come compacted into a list. For of our

domain, this means connecting all nodes of each argument to a concatenation node,

that will be the image of a new label. The semantics is defined as follows:

𝔼
#Jdf concat(dl)K(□, 𝑑#) ≜ (□1, (𝑣

#
1 , 𝑙

#
2 , 𝑔

#
2), {𝓁̄})

where:

∙ the list of dataframes to be concatenated evaluates to a set of abstractions

(i.e., combinations of labels, each composed by one label for each dataframe

involved): 𝔼#
#JdlK(□, 𝑑#) = (□1, (𝑣

#
1 , 𝑙

#
1 , 𝑔

#
1), {⟨𝓁

1
1, … , 𝓁1𝑚⟩, … , ⟨𝓁𝑘1 , … , 𝓁𝑘𝑚⟩});

∙ a unique concatenation node is created: 𝑛 = concat;

117

Chapter 5 | Analysis of data science programs

∙ the new node is used as the image of a fresh label: 𝑙#2 = 𝑙#1 ∪ {(𝓁̄, {𝑛})};

∙ the graph is extended adding the new node, connecting it with each node of the

source dataframes through concatenation nodes indexed with the argument

position: 𝑔#2 = 𝑔#1
×

∪ ({𝑛}, {𝑛′ ⇝𝑗 𝑛 | 𝑛
′ ∈ 𝑙#1(𝓁

𝑖
𝑗), ∀𝑖 ∈ [1..𝑘], ∀𝑗 ∈ [1..𝑚]}).

Example 5.3.9. When the df concat at line 8 of Figure 5.3b is evaluated, the se-

mantics first evaluates the list of target dataframes, producing ⟨𝓁1, 𝓁4⟩ as unique

possible abstraction for the elements of the list. The semantics then (i) creates the

concat node, (ii) adds it to the graph with id 7, and (iii) connects it to nodes 4 and

6 (images of 𝓁1 and 𝓁4 in 𝑙#, respectively) with concatenation edges indexed with 1

and 2. A fresh label 𝓁5 is generated, and is mapped to a singleton set containing

node 7 in 𝑙#.

5.4 A first application: inferring dataframes shape

Tracking dataframe transformations through#
is just the beginning. As#

provides

a simplified and coherent view of the DS code manipulating the data, exploring the

transformation and writing analyses over them becomes much simpler. In general,

successive analyses targeting #
instead of starting from the Python code can still be

formalized and implemented as abstract interpretations. In fact, fixpoint algorithms

can be applied over instances of #
, treating the nodes as code. In this context, one

has to define the abstract semantics w.r.t. each node’s meaning, possibly taking into

account the edges attached to them. In this section, we explore one of the possible

objectives in the analysis of DS programs, as we aim at inferring the shape of each

dataframe read from an external source.

We start by defining the domain #
of columns, that is still parametric to the same

auxiliary domain#
used to build#

. Denoting asΣ the set of possible string abstrac-

tions of #
, #

is defined as the complete lattice ⟨℘(Σ) → (℘(Σ) ×℘(Σ)), ⊆̇, ∪̇, ∩̇, ⊥, ⊤⟩

obtained by functional lifting of the Cartesian product℘(Σ)×℘(Σ). Elements of #
are

functions whose domain is composed by sets abstract strings {𝜎1, … , 𝜎𝑝} representing

sources of data, and its co-domain is built over pairs of sets ({𝜎̇1, … , 𝜎̇𝑛}, {𝜎̂1, … , 𝜎̂𝑚}).

Each 𝜎̇𝑖 is a column that is accessed before being assigned (and thus must be part

of the original dataframe to prevent runtime errors), and each 𝜎̂𝑖 is a column that is

assigned during the execution (and thus might not exist in the original dataframe).

The columns domain thus aims at inferring, for each external source of data, what

columns must exist for the program to not crash. In our abstraction, we consider sets

of sources as function keys since dataframes can be created through concatenation,

and can thus have multiple sources. In this case, each accessed columns must exist

in at least one source.

We define the semantics of #
w.r.t. nodes of #

, as this kind of analysis does

not need variable information stored in #
and #

. The semantics is captured by

118

5.4. A first application: inferring dataframes shape

function:

𝕊
#

J𝑛K ∶ #
× #

→ #

that, given a node, a graph, and a pre-state, computes a post-state with updated

column information. We require the graph as input of the semantics as, in general,

reasoning about the neighborhood of the node might be required. In the following,

we define 𝕊
#

for each of the possible nodes appearing in #
. The definitions rely

on the auxiliary function sources ∶ # × N → ℘(Σ) that extracts all sources that

influence the dataframe identified by the given node:

sources(𝑔#, 𝑛) = { 𝜎 | ∃ 𝑟 ∈ roots(bDFS(𝑔#, 𝑛)) . 𝑟 = read(𝜎) }

The latter in turn exploits two helper functions whose definition is left implicit: bDFS ∶

#×N → #
, that yields the portion of 𝑔# extracted through a backward DFS starting

from one of its nodes, and roots ∶ # → ℘(N) that given a graph yields its roots

(that is, its nodes with no predecessors).

Read. When reading data from an external resource, no particular column is ac-

cessed. Instead, we define an entry in our state corresponding to the possible ab-

stractions of the resource identifier:

𝕊
#

Jread(𝜎)K(𝑔#, 𝑐#) ≜ 𝑐
#
∪ {({𝜎}, (∅, ∅))}

Concat. Similarly to read, concat does not access any column, but instead intro-

duces a new entry in the post-state corresponding to the union of its sources:

𝕊
#

JconcatK(𝑔#, 𝑐#) ≜ 𝑐
#
∪ {(sources(𝑔#, concat), (∅, ∅))}

Transform. A transformation does not access any column explicitly, as it operates

on the entirety of the dataframe that receives the transformation. As such, its se-

mantics is defined as the identity function:

𝕊
#

Jtransform(𝑓)K(𝑔#, 𝑐#) ≜ 𝑐
#

Access. The column access is the main vector for referencing columns by-name.

This is reflected by its semantics, that adds every column name to the left-most set

of the corresponding sources if we have no evidence of it being defined earlier:

𝕊
#Jaccess(𝜎1, … , 𝜎𝑚)K(𝑔#, 𝑐#) ≜ 𝑐#[𝑘 ↦ (𝑎̇ ∪ { 𝜎 ∈ {𝜎1, … , 𝜎𝑚} | 𝜎 ∉ 𝑎̂ }, 𝑎̂)],

𝑘 = sources(𝑔#, access(𝜎1, … , 𝜎𝑚)), 𝑐#(𝑘) = (𝑎̇, 𝑎̂)

Note that names of columns that have already been assigned are ignored, as they are

guaranteed to exist in the sources.

119

Chapter 5 | Analysis of data science programs

Filter. As row filtering is expressed as a condition over the value of a specific col-

umn, it indirectly represents a column access. This is once more reflected as the

addition of the column name to the left-most set of the corresponding sources if it

was not defined before:

𝕊
#Jfilter(𝜎, 𝑜𝑝, 𝑣)K(𝑔#, 𝑐#) ≜ 𝑐#[𝑘 ↦ (𝑎̇ ∪ ({𝜎} ⧵ 𝑎̂), 𝑎̂)],

𝑘 = sources(𝑔#, filter(𝜎, 𝑜𝑝, 𝑣)), 𝑐#(𝑘) = (𝑎̇, 𝑎̂)

Assign. The dataframe assignment is the only node kind that can safely define

non-existing columns. The semantics of this node adds the abstract column names

to the right-most set of the corresponding sources:

𝕊
#Jassign(𝜎1, … , 𝜎𝑚)K(𝑔#, 𝑐#) ≜ 𝑐#[𝑘 ↦ (𝑎̇, 𝑎̂ ∪ {𝜎1, … , 𝜎𝑚})],

𝑘 = sources(𝑔#, assign(𝜎1, … , 𝜎𝑚)), 𝑐#(𝑘) = (𝑎̇, 𝑎̂)

Example 5.4.1. We now use #
to infer the shape of the dataframes abstracted by

the graph in Figure 5.4. For the sake of clarity, we first analyze the left-most branch

of the graph as a whole, followed by the right-most one, and conclude the analysis

with the concat node. Note that, as the example uses constant propagation as

auxiliary domain #
, sources and column names appearing inside instances of #

will be constant strings. The analysis begins by applying the semantics of read to

node 1, using an empty #
instance 𝑐#0 = {} as pre-state, and producing the entry

for the read resource:

𝕊
#

Jread(’italy.csv’)K(𝑔#, 𝑐#0) = 𝑐
#
1 = {({’italy.csv’}, (∅, ∅))}

This is in turn used as pre-state for the evaluation of node 2, where the semantics

of access populates the function with the accessed column:

𝕊
#

Jaccess(’birth’)K(𝑔#, 𝑐#1) = 𝑐
#
2 = {({’italy.csv’}, ({’birth’}, ∅))}

As the semantics of transform is the identity function, the pre-state of node 4 is

the join of the post-state of both predecessors: 𝑐#2 ∪̇ 𝑐
#
2 = 𝑐#2 . This is then used as

argument for the assign semantics, that produces the following post-state:

𝕊
#

Jassign(’birth’)K(𝑔#, 𝑐#2) = 𝑐
#
3 = {({’italy.csv’}, ({’birth’}, {’birth’}))}

Equivalently, the analysis starts with the same empty pre-state 𝑐#0 at node 5, ap-

plying the read semantics and producing the following post-state:

𝕊
#

Jread(’france.csv’)K(𝑔#, 𝑐#0) = 𝑐
#
4 = {({’france.csv’}, (∅, ∅))}

120

5.5. An early experiment using PyLiSA

Then, 𝑐#4 is used to compute the result of the filter semantics at node 6:

𝕊
#

Jfilter(’age’, <, 50)K(𝑔#, 𝑐#4) = 𝑐
#
5 = {({’france.csv’}, ({’age’}, ∅))}

Lastly, at node 7, the pre-state is built as the lub of the predecessors’ post-states:

𝑐
#
6 = 𝑐

#
3 ∪̇ 𝑐

#
5 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

({’italy.csv’}, ({’birth’}, {’birth’})),

({’france.csv’}, ({’age’}, ∅))

⎫
⎪
⎪
⎬
⎪
⎪
⎭

The semantics of concat can then be applied to 𝑐#6 , producing the final state of the

analysis:

𝕊
#

JconcatK(𝑔#, 𝑐#6) = 𝑐
#
7 =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

({’italy.csv’}, ({’birth’}, {’birth’})),

({’france.csv’}, ({’age’}, ∅)),

({’italy.csv’, ’france.csv’}, (∅, ∅))

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

5.5 An early experiment using PyLiSA

Both #
and #

have been implemented in PyLiSA
5
, a Python frontend for LiSA.

PyLiSA analyzes JuPyter notebooks by extracting the Python code from the cells that

contain it. Cells are analyzed according to a specific user-defined execution sequence,

defaulting to the order in which cells are defined in the notebook.

As our initial focus is on pandas, we provide the semantics of the library’s func-

tions through LiSA’s native CFGs, whose explicit semantics rewrites them into atomic

transformations as suggested in Section 5.2.1. This means that the code is only in-

strumented at a semantic level, when the analysis resolves calls to pandas functions,

and the original program is not syntactically modified. We also fix the auxiliary do-

main #
to a simple constant propagation tracking strings, integers, and floats, as

well as constant lists of these types and constant dictionaries using them as keys.

The choice was guided by experience, as most DS notebooks we found used explicit

column names and row numbers whenever manipulating dataframes. #
has been

implemented as a Value Domain (Section 3.3.3) that embeds a constant propagation

domain, implemented as a Non-Relational Domain. At the end of the analysis, a sim-

ple Check visits the program and extracts the #
instance from the post-state of the

last instruction. The check then executes a fixpoint over the graph using #
. In the

end, warnings are issued to inform the user about columns accessed and assigned for

each data source.

As a first experiment, we selected the “Coronavirus (COVID-19) Visualization &

Prediction”
6

dataframe, one of the most popular notebooks aggregating data from

5https://github.com/lisa-analyzer/pylisa.

6https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-

121

https://github.com/lisa-analyzer/pylisa
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction

Chapter 5 | Analysis of data science programs

different sources on Kaggle, a public repository of JuPyter notebooks for DS. The

graph produced when analyzing such code is published on a GitHub Gist
7

as it is too

large for this manuscript. Note that the implemented analysis supports additional

pandas constructs w.r.t. the ones presented in this chapter, that have been omitted

as they do not contribute further to the intuition behind the domain. In the graph,

these take the form of additional node kinds, whose intuitive meaning is explained in

the Gist’s introduction. The analysis generates the following warnings (where URL of

csv files have been trimmed for compactness), correctly identifying all column names

that appear in the notebook:

[File: daily reports/08-23-2022.csv] Columns accessed before being assigned: ’Con-

firmed’, ’Province State’, ’Country Region’, ’Incident Rate’, ’Deaths’

[File: daily reports us/08-23-2022.csv] Columns accessed before being assigned:

’Province State’, ’Testing Rate’, ’Total Test Results’

[File: time series covid19 confirmed global.csv] Columns accessed before being

assigned: ’Country/Region’

[File: time series covid19 deaths global.csv] Columns accessed before being as-

signed: ’Country/Region’

5.6 Conclusion

This chapter presents an abstract interpretation approach to analyze Python pro-

grams employed in data science and machine learning. Such programs manipulate

dataframes, that is, complex in-memory tables collecting data that can be used to

guide decision processes or train machine learning models. We designed an abstract

domain that extracts the operations performed over dataframes, building a graph

that encodes the order in which they are performed. Such a graph can be the subject

of further analyses, inferring several properties such as the shape of the dataframes

read by the program, or the absence of data leakages between training and testing

phases of a machine learning process. As a guiding example of how to exploit our

domain, we defined a simple abstract interpretation that computes, for each file read

by the source program (and thus present inside the graph), the set of columns that

are either accessed before being assigned or defined through an assignment. We pro-

vided an early implementation of both domains in PyLiSA, a LiSA frontend for Python

programs.

This work demonstrates the applicability of LiSA to dynamically typed and inter-

preted languages. Combined with the work presented in Chapter 4, we have given a

preliminary demonstration of the wide spectrum of languages that LiSA’s framework

is able to analyze, providing the foundations for an in-depth study of multilanguage

static analyses of real-world programs.

visualization-prediction, version 722, accessed on August 26
𝑡ℎ

, 2022.

7https://gist.github.com/lucaneg/9621f3296b7b47b12c5ee1c52066b3d1.

122

https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://www.kaggle.com/code/therealcyberlord/coronavirus-covid-19-visualization-prediction
https://gist.github.com/lucaneg/9621f3296b7b47b12c5ee1c52066b3d1

Part III

String analysis

123

6 String analysis

Chapter Contents

6.1 The IMP language . 126

6.2 The Tarsis abstract domain . 126

6.2.1 Abstract domain and widening 126

6.2.2 String abstract semantics of IMP 129

6.3 Experimental Results . 137

6.3.1 Precision of the domains on test cases 138

6.3.2 Evaluation on realistic code samples 139

6.3.3 Efficiency . 141

6.4 Conclusion . 142

In this chapter, we formalize Tarsis, a new abstract domain for string values based

on finite state automata (FSA). Standard FSA has been shown to provide precise ab-

stractions of string values when all the components of such strings are known, but

with high computational cost. Instead of considering standard finite automata built

over an alphabet of single characters, Tarsis considers automata that are built over

an alphabet of strings. The alphabet comprises a special value to represent statically

unknown strings. This avoids the creation of self-loops with any possible charac-

ter as input, that would otherwise significantly degrade performance. We define the

abstract semantics of mainstream string operations, namely substring, length,

indexOf, replace, concat, and contains, either defined directly on the automa-

ton or its equivalent regular expression.

As Tarsis was developed before LiSA, it has been implemented into a prototypical

static analyzer supporting a subset of Java. By comparing Tarsis with other cutting-

edge domains for string analysis, results show that (i) when applied to simple code

that causes a precision loss in simpler domains, Tarsis correctly approximates string

values within a comparable execution time, (ii) on code that makes the standard

automata domain unusable due to the complexity of the analysis, Tarsis is in position

to perform in a limited amount of time, making it a viable domain for complex and

real codebases, and (iii) Tarsis is able to precisely abstract complex string operations

that have not been addressed by state-of-the-art domains. In LiSA’s infrastructure,

Tarsis can be implemented as aNon-Relational Domain (Section 3.3.3), thus exploiting

the factorization of the mapping from variables to its instances.

This chapter is based on the published paper [103], and it is structured as follows.

Section 6.1 introduces a small Imp language that will be used to formalize abstract

operations. Section 6.2 defines Tarsis, with all lattice operators and the semantics of

six popular string manipulations. Finally, Section 6.3 reports experiments and com-

parisons with other domains.

125

Chapter 6 | String analysis

a ∈ ae ::= 𝑥 ∈ Id | 𝑛 ∈ ℤ | a + a | a - a | a * a | a / a
| length(s) | indexOf(s,s)

b ∈ be ::= 𝑥 ∈ Id | true | false | b && b | b || b | ! b
| e < e | e == e | contains(s1,s2)

s ∈ se ::= 𝑥 ∈ Id | ε𝜎ε | substr(s,a,a)
| concat(s,s) | replace(s,s,s) (𝜎 ∈ Σ∗)

e ∈ e ::= a | b | s

st ∈ stmt ::= st ; st | skip | 𝑥 = e | if (b) { st } else { st }
| while (b) { st }

P ∈ Imp ::= st ;

Figure 6.1: Imp syntax

6.1 The IMP language

We introduce a minimal core language Imp, whose syntax is reported in Figure 6.1,

that will be used for the formalization of the domain. Such language supports the

main operators over strings. In particular, Imp supports arithmetic expressions (ae),

Boolean expressions (be), and string expressions (se). Primitive values are Val = ℤ ∪

Σ∗ ∪ {true, false}, namely integers, strings, and Booleans. Program states 𝕄 ∶

Id → Val map identifiers to primitive values, ranged over the meta-variable m. The

concrete semantics of Imp statements is captured by the function 𝕊JstK ∶ 𝕄 → 𝕄

that is defined in a classical way and has thus been omitted. Such semantics relies

on the one of expressions, that we capture as 𝔼JeK ∶ 𝕄 → Val. While the semantics

concerning arithmetic and Boolean expressions is straightforward (and not of interest

of this chapter), we define the part concerning strings in Figure 6.2.

6.2 The Tarsis abstract domain

In this section, we recast the original finite state automata abstract domain working

over an alphabet of characters Σ, reported in Section 2.3.2, to an augmented abstract

domain based on finite state automata over an alphabet of strings.

6.2.1 Abstract domain and widening

The key idea of Tarsis is to adopt the same abstract domain of [14], changing the

alphabet on which finite state automata are defined to a set of strings, namely Σ∗
.

Clearly, the main concern here is that Σ∗
is infinite and this would not permit us to

adopt the finite state automata model, that requires the alphabet to be finite. Thus, in

126

6.2. The Tarsis abstract domain

𝔼Jsubstr(s, a, a′)Km = 𝜎𝑖 …𝜎𝑗 if 𝑖 ≤ 𝑗 < |𝜎|, 𝑖 = 𝔼JaKm, 𝑗 = 𝔼Ja′Km
𝔼Jlength(s)Km = |𝜎|

𝔼JindexOf(s, s′)Km =

{

min{ 𝑖 | 𝜎𝑖 …𝜎𝑗 = 𝜎′ } if ∃𝑖, 𝑗 ∈ ℕ . 𝜎𝑖 …𝜎𝑗 = 𝜎′

−1 otherwise

𝔼Jreplace(s, s′, s′′)Km =

{

𝜎[𝜎′/𝜎′′] if 𝜎′ ↷s 𝜎

𝜎 otherwise

𝔼Jconcat(s, s′)Km = 𝜎 ⋅ 𝜎
′

𝔼Jcontains(s, s′)Km =

{

true if ∃𝑖, 𝑗 ∈ ℕ . 𝜎𝑖 …𝜎𝑗 = 𝜎′

false otherwise

where 𝜎 = 𝔼JsKm, 𝜎
′
= 𝔼Js′Km, 𝜎

′′
= 𝔼Js′′Km

Figure 6.2: Concrete semantics of Imp string expressions

order to solve this problem, we make this abstract domain parametric to the program

we aim to analyze and in particular to its strings. Given an Imp program P, we denote

by Σ∗
P any substring of strings appearing in P1, delimiting the space of string properties

we aim to check only on P.

At this point, we can instantiate the automata-based framework proposed in [14]

with the new alphabet as

⟨ Fa/≡, ⊑ , ⊔ , ⊓ ,Min(∅),Min(𝔸∗
P)⟩

The alphabet on which finite state automata are defined is 𝔸P ≜ Σ∗
P ∪ {T}, where T

is a special symbol that we intend as ”any possible string”. Let  Fa be the set of all

deterministic finite state automata over the alphabet 𝔸P . Since we can have more

automata recognizing a given language,  Fa/≡ is the quotient set of  Fa w.r.t. the

equivalence relation induced by language equality, that is, the elements of the do-

main are equivalence classes. For simplicity, when we write A ∈  Fa/≡, we intend

the equivalence class of A. ⊑ is the partial order induced by language inclusion, ⊔

and ⊓ are the lub and the glb over elements of  Fa/≡, computing the equivalence

class of the union and the intersection of the two automata representing the corre-

sponding classes, respectively. The bottom element is Min(∅), corresponding to the

automaton recognizing the empty language, and the maximum is Min(𝔸∗
P), namely

the automaton recognizing any string over 𝔸P .

As the change in the alphabet of automata does not modify the lattice structure

(recall that all lattice operators are defined w.r.t. language equivalence), properties

proved in in [14] still hold on  Fa/≡. Briefly, ⟨Fa/≡, ⊑Fa, ⊔Fa, ⊓Fa,Min(∅),Min(Σ∗)⟩ is a

1
The set Σ∗P can be easily computed collecting the constant strings in P by visiting its abstract syntax

tree and then computing their substrings.

127

Chapter 6 | String analysis

𝑞0 𝑞1 𝑞2
id = T

(a) res (A) before 2𝑛𝑑 loop iteration

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4
id = T id = T

(b) res (A′) after 2𝑛𝑑 loop iteration

𝑞0, 𝑞2 𝑞1 𝑞3 𝑞4
id =

T

id =

T

(c) The result of A∇2 A′

𝑞0 𝑞1
id =

T

(d) Minimized version of A∇2 A′

Figure 6.3: Example of widening application

lattice, but it is not complete. This is due to, in general, the union of an infinite set of

regular languages being potentially context-free. Consider, for instance, the family

of regular languages L𝑖 = {𝑎𝑖𝑏𝑖}, 𝑖 ∈ ℕ. Being regular implies that an automaton A𝑖 ∈

Fa/≡ exist for each of them. As the union of these languages L ′ = ⋃𝑖 L𝑖 = { 𝑎𝑖𝑏𝑖 | 𝑖 ∈

ℕ } is context-free, an automaton A ∈ Fa/≡ such that L (A) = L ′
cannot exist. Such

result also holds for  Fa/≡, resulting in the absence of a Galois Connection with the

concrete string domain ℘(Σ∗). Nevertheless, this is not a concern since weaker forms

of abstract interpretation are still possible [47] still guaranteeing soundness relations

between concrete and abstract elements (e.g., polyhedra [50]). In particular, we can

still ensure soundness by comparing the concretizations of our abstract elements (cf.

Section 8 of [47]). Hence, we define the concretization function 𝛾 ∶  Fa/≡ → ℘(Σ∗)

as 𝛾 (A) ≜ ⋃𝜎∈L (A) Flat(𝜎), where Flat converts a string over 𝔸P into a set of strings

over Σ∗
. For instance, Flat(𝑎 TT 𝑏𝑏 𝑐) = { 𝑎𝜎𝑏𝑏𝑐 | 𝜎 ∈ Σ∗ }. Note that, the language

of strings (over the alphabet Σ) recognized by A corresponds to the concretization

function reported above, namely L (A) = 𝛾 (A).

Widening. Similarly to the standard automata domain Fa/≡, also  Fa/≡ does not

satisfy ACC, meaning that fixpoint computations over  Fa/≡ may not converge in a

finite time. Hence, we need to equip  Fa/≡ with a widening operator to ensure the

convergence of the analysis. We define the widening operator ∇𝑛
 ∶  Fa/≡× Fa/≡ →

 Fa/≡, parametric to 𝑛 ∈ ℕ, taking two automata as input and returning an over-

approximation of the least upper bounds between them, as required by widening

definition. We rely on the standard automata widening reported in Section 2.3.2,

that, informally speaking, can be seen as a subset construction algorithm [52] up to

languages of strings of length 𝑛.

Example 6.2.1. To better explain the widening ∇𝑛
 , consider the following function

manipulating strings
2
.

1 f u n c t i o n f (v) {

2
For the sake of readability, in the program examples presented in this chapter the+ operation between

strings corresponds to the string concatenation.

128

6.2. The Tarsis abstract domain

2 r e s = ” ” ;
3 whi l e (?)
4 r e s = r e s + ” i d = ” + v ;
5 r e t u r n r e s ;
6 }

Function f takes as input parameter v and returns variable res. Let us suppose

that v is a statically unknown string, corresponding to the automaton recognizing

T (i.e., Min({T})). The result of function f is a string of the form id = T, repeated

zero or more times. Since the while guard is unknown, the number of iterations

is statically unknown, and in turn, also the number of concatenations performed

inside the loop body. The goal here is to over-approximate the value returned by

function f, i.e., the value of res at the end of the function.

Let A, reported in Figure 6.3a, be the automaton abstracting the value of res
before starting the second iteration of the loop, and let A′

, reported in Figure 6.3b

be the automaton abstracting the value of res at the end of the second iteration.

At this point, we want to apply the widening operator ∇𝑛
 to A and A′

, proceeding

as follows. We first compute A ⊔ A′
(corresponding to the automaton reported in

Figure 6.3b except that 𝑞0 is also a final state). On this automaton, we merge all

states that recognize the same 𝔸P-strings of length 𝑛, with 𝑛 ∈ ℕ. In our example,

let 𝑛 be 2. The resulting automaton is reported in Figure 6.3c, where 𝑞0 and 𝑞2

are put together, and the other states are left as singletons since they cannot be

merged with other ones. Figure 6.3d depicts the minimized version of Figure 6.3c.

The parametric widening ∇𝑛
 has been proved to meet the widening requirements

(i.e., over-approximation of the least upper bound and convergence on infinite as-

cending chains) in [57]. The parameter 𝑛, tuning the widening precision, is arbitrary

and can be chosen by the user. As highlighted in [14], higher values of 𝑛 result in

greater precision in over-approximating lubs of infinite ascending chains (i.e., in fix-

point computations).

A classical improvement on widening-based fixpoint computations is to integrate

a threshold [40], namely widening is applied to over-approximate lub when a certain

threshold (usually over some property of abstract values) is overcome. In fixpoint

computations, we decide to apply the previously defined widening ∇𝑛
 only when the

number of the states of the lubbed automata becomes greater than some threshold

𝜏 ∈ ℕ. This permits us to postpone the widening application, getting more precise

abstractions when the automata sizes are below the threshold. At the moment, the

threshold 𝜏 is not automatically inferred and is left as future work.

6.2.2 String abstract semantics of IMP

In this section, we define the abstract semantics of the string operators defined in

Figure 6.2 over the new string domain  Fa/≡. Since Imp supports strings, integers,

and Booleans values, we need a way to merge the corresponding abstract domains. In

129

Chapter 6 | String analysis

particular, we abstract integers with the well-known Interval abstract domain [43]

defined as Intv ≜ { [𝑎, 𝑏] | 𝑎 ∈ ℤ ∪ {−∞}, 𝑏 ∈ ℤ ∪ {+∞}, 𝑎 ⊑ 𝑏 } ∪ {⊥Intv} and Booleans

withBool ≜ ℘({true, false}). As usual, we denote by⊔Intv and⊔Bool the lubs between

intervals and Booleans, respectively. We merge such abstract domains in Val
♯

by the

smashed sum abstract domain [12] as Val
♯ ≜  Fa/≡ ⊕ Intv ⊕ Bool. Informally, the

smashed sum abstract domain introduces a top element, and it smashes (i.e., joins) the

bottom elements of the involved domains. The abstract program state is represented

through abstract program memories 𝕄♯ ∶ Id → Val
♯

from identifiers to abstract

values. The abstract semantics is captured by the function 𝕊#JstK ∶ 𝕄♯ → 𝕄♯
, relying

on the abstract semantics of expressions defined as 𝔼#JeK ∶ 𝕄♯ → Val
♯
. We focus

on the abstract semantics of string operations, as the semantics of the remaining

ones are standard and do not involve strings. We provide soundness proofs for our

semantics in Appendix A.

To define the abstract semantics of Imp over Tarsis, it is worth highlighting that

one can think to reuse the transformers adopted in the standard finite state automata

abstract domain [14]: unfortunately, this is not possible since those deal with au-

tomata defined on an alphabet of single characters, and do not handle the character

T used in Tarsis that must be treated as a special symbol.

Concat. Given A, A′ ∈  Fa/≡, the abstract semantics of concat returns a new au-

tomaton recognizing the language { 𝜎 ⋅ 𝜎′ | 𝜎 ∈ L (A), 𝜎′ ∈ L (A′) }, that is, the

concatenation between the strings of L (A) with the strings of L (A′). This is eas-

ily achievable relying on the standard automata concatenation [52]. Let s, s′ ∈ se

and suppose that 𝔼#JsKm♯ = ⟨𝑄,𝔸, 𝛿, 𝑞0, 𝐹 ⟩ ∈  Fa/≡, 𝔼#Js′Km♯ = ⟨𝑄′, 𝔸, 𝛿′, 𝑞′0, 𝐹
′⟩ ∈

 Fa/≡. Then, the abstract semantics of concat is defined as:

𝔼
#Jconcat(s, s′)Km♯

≜ Min(⟨𝑄 ∪ 𝑄
′
, 𝔸, 𝛿 ∪ 𝛿

′
∪ { (𝑞𝑓 , 𝜖, 𝑞

′
0) | 𝑞𝑓 ∈ 𝐹 }, 𝑞0, 𝐹

′
⟩)

Following the standard automata concatenation, the semantics of concat between

A with A′
merges the automata introducing an 𝜖-transition from each final state of A

to the initial state of A′
. The result’s initial state is the initial state of A, while its final

states are the ones of A′
. Soundness of concat is proven in Appendix A.1.

Length. Given A ∈  Fa/≡, the abstract semantics of length returns an interval

[𝑐1, 𝑐2] such that ∀𝜎 ∈ L (A) . 𝑐1 ≤ |𝜎| ≤ 𝑐2. Let s ∈ se, supposing that 𝔼#JsKm♯ = A ∈

 Fa/≡. The length abstract semantics is:

𝔼
#Jlength(s)Km♯

≜

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[|minPath(A)|, +∞] if cyclic(A) ∨ readsTop(A)

[|minPath(A)|, |maxPath(A)|] otherwise

where readsTop(A) ⇔ ∃𝑞, 𝑞′ ∈ 𝑄 . (𝑞,T, 𝑞′) ∈ 𝛿. Note that, when evaluating the length

of the minimum path, T is considered to have a length of 0. Soundness of length is

130

6.2. The Tarsis abstract domain

𝑞0

𝑞1 𝑞2

𝑞3 𝑞4

𝑎𝑎

T
𝑏𝑏

𝑏𝑏𝑏 𝑏𝑏𝑏

(a) A s.t. L (A) = {𝑏𝑏𝑏 𝑏𝑏𝑏, 𝑎𝑎 T 𝑏𝑏}

𝑞0 𝑞1 𝑞2

𝑞4 𝑞3

𝑞5
𝑎𝑎 𝑏𝑏𝑏 𝑐𝑐

𝑎 𝑏 𝑐

(b) A′ s.t. L (A′) = {𝑎 𝑏 𝑐, 𝑎𝑎 𝑏𝑏𝑏 𝑐𝑐}

Figure 6.4: Example automata demonstrating length’s semantics

proven in Appendix A.2.

Example 6.2.2. Consider the automaton A reported in Figure 6.4a. The minimum

path of A is (𝑞0, 𝑎𝑎, 𝑞1), (𝑞1,T, 𝑞2), (𝑞2, 𝑏𝑏, 𝑞4) and its length is 4. Since a transition

labeled with T is in A (and its length cannot be statically determined), the abstract

length of A is [4, +∞]. Consider now the automaton A′
reported in Figure 6.4b. In

this case, A′
has no cycles and has no transitions labeled with T and the length of

all strings recognized by A′
can be determined. The length of the minimum path

of A′
is 3 (lower path of A′

), the length of the maximum path of A′
is 7 (upper path

of A′
) and consequently the abstract length of A′

is [3, 7].

Contains. Given A, A′ ∈  Fa/≡, the abstract semantics of contains should return

true if all strings of A′
are surely contained into all strings of A, false if no string of

A′
is contained in any string of A, and {true, false} in the other cases. Our semantics

exploits the definition of single-path automaton [15], that is, an automaton such that

all strings in its language are prefixes of the longest string in the language. If A′
is

a single-path automaton, the containment of the longest string of A′
on each path

of A is enough to yield true. Note that a single-path automaton cannot read the

symbol T. We rely on the predicate singlePath(A) to test if A is a non-cyclic single-

path automaton, and we denote by 𝜎sp its longest string. Let s, s′ ∈ se, supposing that

𝔼#JsKm♯ = A ∈  Fa/≡, 𝔼#Js′Km♯ = A′ ∈  Fa/≡. The contains abstract semantics is:

𝔼
#Jcontains(s, s′)Km♯

≜

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

false if A′ ⊓ FA(A) = Min(∅)

true if singlePath(A′)

∧∀𝜋 ∈ paths(A𝑎𝑐) . 𝜎sp ↷s 𝜎𝜋

{true, false} otherwise

In the first case, we denote by FA(A) the factor automaton of A, i.e., the automaton

recognizing all substrings of A. If A does not share any of its substrings with A′
, the

abstract semantics safely returns false (checking the emptiness of the greatest lower

bound between FA(A) and A′
). Then, if A′

is a single path automaton, the abstract

semantics returns true if all paths of A𝑎𝑐
read the longest string of A′

, with A𝑎𝑐
being

a copy of A where all the cycles have been removed. Here, we abuse notation denoting

with 𝜎sp ↷s 𝜎𝜋 the fact that 𝜎sp is a substring of each string in Flat(𝜎𝜋). Otherwise,

131

Chapter 6 | String analysis

{true, false} is returned. Soundness of contains is proven in Appendix A.3.

IndexOf. Given A, A′ ∈  Fa/≡, the indexOf abstract semantics returns the interval

of the first indexes of the strings of L (A′) inside strings of L (A), recalling that when

there exists a string of L (A′) that is not a substring of at least one string of L (A′),

the resulting interval must take into account -1 as well. Let s, s′ ∈ se and suppose

𝔼#JsKm♯ = A and 𝔼#Js′Km♯ = A′
. The abstract semantics of indexOf is defined as:

𝔼
#JindexOf(s, s′)Km♯

≜

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

[−1, +∞] if cyclic(A) ∨ cyclic(A′) ∨ readsTop(A′)

[−1, −1] if ∀𝜎′ ∈ L (A′) ∄𝜎 ∈ L (A) . 𝜎′ ↷s 𝜎

Intv

⨆

𝜎∈L (A′
)

IO(A, 𝜎) otherwise

If one of the automata has cycles or the automaton abstracting strings we aim to

search for (A′
) has a T-transition, we return [−1, +∞]. Moreover, if none of the strings

recognized by A′
is contained in a string recognized by A, we can safely return the

precise interval [−1, −1] since any string recognized by A′
is never a substring of a

string recognized by A3
. If none of the aforementioned conditions are met, we rely

on the auxiliary function IO ∶  Fa/≡ × Σ∗ → Intv, that, given an automaton A and

a string 𝜎 ∈ Σ∗
, returns an interval corresponding to the possible first positions of

𝜎 in strings recognized by A. Since A′
surely recognizes a finite language (i.e., has

no cycles or top transitions), the idea is to apply IO(A, 𝜎) to each 𝜎 ∈ L (A′) and to

return the lub of the resulting intervals. In particular, the function IO(A, 𝜎) returns

an interval [𝑖, 𝑗] ∈ Intv where 𝑖 and 𝑗 are computed as follows:

𝑖 =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

−1 if ∃𝜋 ∈ paths(A) . 𝜎 ̸↷s 𝜎𝜋

min
𝜋∈paths(A)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝑖

|
|
|
|
|
|

𝜎𝑓 ∈ Flat(𝜎𝜋)

∧ 𝜎𝑓𝑖 …𝜎𝑓𝑖+𝑛 = 𝜎

⎫
⎪
⎪
⎬
⎪
⎪
⎭

otherwise

𝑗 =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−1 if ∀𝜋 ∈ paths(A) . 𝜎 ̸↷s 𝜎𝜋

+∞ if ∃𝜋 ∈ paths(A) . 𝜎 ↷s 𝜎𝜋

∧ 𝜋 reads T before 𝜎

max
𝜋∈paths(A)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝑖

|
|
|
|
|
|
|
|
|

𝜎𝑓 ∈ Flat(𝜎𝜋)

∧ 𝜎𝑓𝑖 …𝜎𝑓𝑖+𝑛 = 𝜎

∧𝜎 ̸↷s 𝜎𝑓0 …𝜎𝑓𝑖+𝑛−1

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

otherwise

As for the abstract semantics of contains, we abuse notation denoting with 𝜎 ↷s

𝜎𝜋 the fact that𝜎 is a substring of each string in Flat(𝜎𝜋). Given IO(A, 𝜎) = [𝑖, 𝑗] ∈ Intv,

𝑖 corresponds to the minimal position where the first occurrence of 𝜎 can be found in

3
Note that this is a decidable check since A and A′ are cycle-free, otherwise the interval [−1, +∞] would

be returned in the first case.

132

6.2. The Tarsis abstract domain

𝑞0 𝑞1 𝑞2

𝑞4 𝑞3

𝑞5
𝑎𝑎𝑎 𝑏𝑏𝑏 𝑐𝑐

𝑎𝑎 𝑏 𝑐

(a)

𝑞0

𝑞1 𝑞2

𝑞4 𝑞3

𝑞5

𝑎𝑎𝑎
𝑏𝑏𝑏

𝑐𝑐

𝑎𝑎
𝑏

𝑐

𝑟𝑟

𝑟𝑟

(b)

Figure 6.5: Example of may-replacement

A, while 𝑗 to the maximal one. Let us first focus on the computation of the minimal

position. If there exists a path 𝜋 of A s.t. 𝜎 is not recognized by 𝜎𝜋 , then the minimal

position where 𝜎 can be found in A does not exist and -1 is returned. Otherwise, the

minimal position where 𝜎 begins across all possible 𝜋 is returned. Let us consider

now the computation of the maximal position. If all paths of the automaton do not

recognize 𝜎, then -1 is returned. If there exists a path where 𝜎 is recognized but the

character T appears earlier in the path, then +∞ is returned. Otherwise, the maximal

index of the first occurrences of 𝜎 across the paths of A is returned. Soundness of

indexOf is proven in Appendix A.4.

Replace. To give the intuition about how the abstract semantics of replace will

work, consider three automata A, A𝑠 , A𝑟 ∈  Fa/≡. Roughly speaking, the abstract

semantics of replace substitutes strings of A𝑠 with strings of A𝑟 inside strings of A.

Let us refer to A𝑠 as the search automaton and to A𝑟 as the replace automaton. We need

to specify two types of possible replacements, by means of the following example.

Example 6.2.3. Consider A ∈  Fa/≡ that is depicted in Figure 6.5a and suppose

that the search automaton A𝑠 is the one recognizing the string 𝑏𝑏𝑏 and the replace

automaton A𝑟 is a random automaton. In this case, the replace abstract semantics

performs a must-replace over A, namely substituting the sub-automaton composed

by 𝑞1 and 𝑞2 with the replace automaton A𝑟 . Instead, let us suppose that the search

automaton A𝑠 is the one recognizing 𝑏𝑏𝑏 or 𝑐𝑐. Since it is unknown which string

must be replaced (between 𝑏𝑏𝑏 and 𝑐𝑐), the replace abstract semantics needs to

perform a may-replace: when a string recognized by the search automaton is met

inside a path of A, it is left unaltered in the automaton and, in the same position

where the string is met, the abstract replace only extends A with the replace

automaton. An example of may replacement is reported in Figure 6.5, where A is

the one reported in Figure 6.5a, the search automaton A𝑠 is the one recognizing the

language {𝑏𝑏𝑏, 𝑐𝑐} and the replace automaton A𝑟 recognizes the string 𝑟𝑟 .

Before introducing the abstract semantics of replace, we define how to replace a

string into an automaton’s path. In particular, we define algorithm RP in Algorithm 4,

that given a path 𝜋 of an arbitrary automaton, a replace automaton A𝑟
, and 𝜎𝑠 ∈

Σ∗ ∪ {T} returns a new automaton built starting from the path, but where portions of

the path that recognize 𝜎𝑠
have been replaced with A𝑟

.

133

Chapter 6 | String analysis

Algorithm 4: RP algorithm

Data: 𝜋 = (𝑞0, 𝜎0, 𝑞1), … , (𝑞𝑛−1, 𝜎𝑛−1, 𝑞𝑛), A𝑟 = ⟨𝑄𝑟 , 𝔸, 𝛿𝑟 , 𝑞𝑟0, 𝐹
𝑟 ⟩ ∈  Fa/≡, 𝜎

𝑠 ∈

Σ∗ ∪ {T}
Result: A ∈  Fa/≡

1 𝑄𝑟𝑒𝑠𝑢𝑙𝑡 ← { 𝑞 | (𝑞, 𝜎, 𝑞′) ∈ 𝜋 ∨ (𝑞′, 𝜎, 𝑞) ∈ 𝜋 };

2 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝜋;

3 foreach (𝑞𝑖, 𝜎
𝑠
0, 𝑞𝑖+1), … , (𝑞𝑖+𝑛−1, 𝜎

𝑠
𝑛, 𝑞𝑖+𝑛) ∈ 𝜋 do

4 ⟨𝑄′, 𝔸, 𝛿′, 𝑞′0, 𝐹
′⟩ ← clone(A𝑟);

5 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 ∪ (𝑞𝑖, 𝜖, 𝑞
′
0);

6 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 ∪ { (𝑞𝑓 , 𝜖, 𝑞𝑖+𝑛) | 𝑞𝑓 ∈ 𝐹 ′ };

7 𝑄𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑄𝑟𝑒𝑠𝑢𝑙𝑡 ⧵ {𝑞𝑖+1, … , 𝑞𝑖+𝑛−1};

8 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 ⧵ {(𝑞𝑖+1, 𝜎
𝑠
1, 𝑞𝑖+2), … , (𝑞𝑖+𝑛−2, 𝜎

𝑠
𝑛−1, 𝑞𝑖+𝑛−1)};

9 return ⟨𝑄𝑟𝑒𝑠𝑢𝑙𝑡 , 𝔸, 𝛿𝑟𝑒𝑠𝑢𝑙𝑡 , 𝑞𝑜0 , 𝐹
𝑜⟩;

Algorithm 4 searches the given string 𝜎𝑠
across path 𝜋, collecting the sequences

of transitions that recognize the search string 𝜎𝑠
and extracting them from 𝜋 (line 3).

Whenever a matching sequence is found, A𝑟
is cloned to A′

to ensure that all additions

target a different set of nodes (line 4). Then, an 𝜖-transition is introduced going from

the first state of the sequence to the initial state of A′
, and one such transition is also

introduced for each final state of A′
, connecting that state with the ending state of

the sequence (lines 5-6). The list of states composing the sequence of transitions is

then removed from the result (line 7), together with the transitions connecting them

(line 8), since those were needed only to recognize the string that has been replaced.

Note that RP corresponds to a must-replace. At this point, we are ready to define the

replace abstract semantics. In particular, if either A or A𝑠 have cycles or if one of

them has a T-transition, we return Min({T}), namely the automaton recognizing T.

Otherwise, the replace abstract semantics is:

𝔼
#Jreplace(s, s𝑠 , s𝑟)Km♯

≜

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

A if ∀𝜎𝑠 ∈ L (A𝑠)

∄𝜎 ∈ L (A) .

𝜎𝑠 ↷s 𝜎

⨆
𝜋∈paths(A)

RP(𝜋, 𝜎𝑠 , A𝑟) if L (A𝑠) = {𝜎𝑠}

⨆ 𝜎∈L (A𝑠)

𝜋∈paths(A)

RP(𝜋, 𝜎, A𝑟 ⊔ Min({𝜎})) otherwise

In the first case, if none of the strings recognized by the search automaton A𝑠 is

contained in strings recognized by A, we can safely return the original automaton

A without any replacement. In the special case where L (A𝑠) = {𝜎𝑠}, we return the

automaton obtained by replacing 𝜎𝑠 across all paths of A using function RP(𝜋, 𝜎𝑠 , A𝑟).

In the last case, for each string 𝜎 ∈ L (A𝑠) and for each path 𝜋 ∈ paths(A), we perform

a may replace of 𝜎 with A𝑟 : note that, this exactly corresponds to a call RP where the

replace automaton is A𝑟 ⊔ Min({𝜎}). The so far obtained automata are finally lubbed

together. Soundness of replace is proven in Appendix A.5.

134

6.2. The Tarsis abstract domain

Algorithm 5: Sb algorithm

Data: r regex over 𝔸, 𝑖, 𝑗 ∈ ℕ

Result: { (𝜎, 𝑛1, 𝑛2) | 𝜎 ∈ Σ∗, 𝑛1, 𝑛2 ∈ ℕ }

1 if 𝑗 = 0 ∨ r = ∅ then

2 return ∅;

3 else if r = 𝜎 ∈ Σ∗
then

4 if 𝑖 > |𝜎| then return {(𝜖, 𝑖 − |𝜎|, 𝑗)} ;

5 else if 𝑖 + 𝑗 > |𝜎| then return {(𝜎𝑖 …𝜎|𝜎|−1, 0, 𝑗 − |𝜎| + 𝑖)} ;

6 else return {(𝜎𝑖 …𝜎𝑖+𝑗 , 0, 0)} ;

7 else if r = T then

8 result ← {(𝜖, 𝑖 − 𝑘, 𝑗) ∶ 0 ≤ 𝑘 ≤ 𝑖, 𝑘 ∈ ℕ};

9 result ← result ∪ { (∙𝑘 , 0, 𝑗 − 𝑘) | 0 ≤ 𝑘 ≤ 𝑗, 𝑘 ∈ ℕ };

10 return result;

11 else if r = r1r2 then

12 result ← ∅;

13 subs1 ← Sb(r1, 𝑖, 𝑗);

14 foreach (𝜎1, 𝑖1, 𝑗1) ∈ subs1 do
15 if 𝑗1 = 0 then

16 result ← result ∪ {(𝜎1, 𝑖1, 𝑗1)};

17 else

18 result ← result ∪ { (𝜎1 ⋅ 𝜎2, 𝑖2, 𝑗2) | (𝜎2, 𝑖2, 𝑗2) ∈ Sb(r2, 𝑖1, 𝑗1) };

19 return result;

20 else if r = r1||r2 then

21 return Sb(r1, 𝑖, 𝑗) ∪ Sb(r2, 𝑖, 𝑗);

22 else if r = (r1)
∗
then

23 result ← {(𝜖, 𝑖, 𝑗)}; partial ← ∅;

24 repeat

25 result ← result ∪ partial; partial ← ∅;

26 foreach (𝜎𝑛, 𝑖𝑛, 𝑗𝑛) ∈ result do
27 foreach (suff, 𝑖𝑠 , 𝑗𝑠) ∈ Sb(r1, 𝑖𝑛, 𝑖𝑛 + 𝑗𝑛) do

28 if ∄(𝜎′, 𝑘, 𝑤) ∈ result . 𝜎′ = 𝜎𝑛 ⋅ suff ∧ 𝑘 = 𝑖𝑠 ∧ 𝑤 = 𝑗𝑠 then

29 partial ← partial ∪ {(𝜎𝑛 ⋅ suff, 𝑖𝑠 , 𝑗𝑠)};

30 until partial ≠ ∅;

31 return result;

Substring. Given A ∈  Fa/≡ and two intervals i, j ∈ Intv, the abstract semantics of

substring returns a new automaton A′
soundly approximating any substring from

𝑖 to 𝑗 of strings recognized by A, for any 𝑖 ∈ i, 𝑗 ∈ j s.t. 𝑖 ⊑ 𝑗 .

Given A ∈  Fa/≡, in the definition of the substring semantics, we rely on the

corresponding regex r since the two representations are equivalent and regexes allow

us to define a more intuitive formalization of such semantics. Let us suppose that

𝔼#JsKm♯ = A ∈  Fa/≡ and let us denote by r the regex corresponding to the language

recognized by A. At the moment, let us consider exact intervals representing one

integer value, namely 𝔼#Ja1Km♯ = [𝑖, 𝑖] and 𝔼#Ja2Km♯ = [𝑗, 𝑗], with 𝑖, 𝑗 ∈ ℕ. In this

case, the abstract semantics is defined as:

𝔼
#Jsubstr(s, a1, a2)Km♯

≜ Min({ 𝜎 | (𝜎, 0, 0) ∈ Sb(r, 𝑖, 𝑗 − 𝑖) })

where Sb takes as input a regex r, two indexes 𝑖, 𝑗 ∈ ℕ, and computes the set of

substrings from 𝑖 to 𝑗 of all the strings recognized by r. In particular, Sb is defined by

135

Chapter 6 | String analysis

Algorithm 5 and, given a regex r and 𝑖, 𝑗 ∈ ℕ, it returns a set of triples of the form

(𝜎, 𝑛1, 𝑛2), such that 𝜎 is the partial substring that Algorithm 5 has computed up to

now, 𝑛1 ∈ ℕ tracks how many characters have still to be skipped before the substring

can be computed and 𝑛2 ∈ ℕ is the number of characters Algorithm 5 needs still to

look for to successfully compute a substring. Hence, given Sb(r, 𝑖, 𝑗), the result is a

set of such triples; note that given an element of the resulting set (𝜎, 𝑛1, 𝑛2), 𝑛2 = 0

means that no more characters are needed and 𝜎 corresponds to a proper substring

of r from 𝑖 to 𝑗 . Thus, from the resulting set, we can filter out the partial substrings,

and retrieve only proper substrings of r from 𝑖 to 𝑗 by only considering the value of

𝑛2. Algorithm 5 is defined by structural induction on the input regex r:

1. 𝑗 = 0 or r = ∅ (lines 1-2): ∅ is returned since we either completed the substring

or we have no more characters to add;

2. r = 𝜎 ∈ Σ∗
(lines 3-6): if 𝑖 > |𝜎|, the requested substring happens after this

atom, and we return a singleton set {𝜖, 𝑖 − |𝜎|, 𝑗}, thus tracking the consumed

characters before the start of the requested substring; if 𝑖 + 𝑗 > |𝜎|, the sub-

string begins in 𝜎 but ends in subsequent regexes, and we return a singleton

set containing the substring of 𝜎 from 𝑖 to its end, with 𝑛1 = 0 since we began

collecting characters, and 𝑛2 = 𝑗 − |𝜎| + 𝑖 since we collected |𝜎| − 𝑖 characters;

otherwise, the substring is fully inside 𝜎, and we return the substring of 𝜎 from

𝑖 to 𝑖 + 𝑗 , setting both 𝑛1 and 𝑛2 to 0;

3. r = T (lines 7-10): since r might have any length, we generate substrings that

(a) gradually consume all the missing characters before the substring can begin

(line 8) and (b) gradually consume all the characters that make up the substring,

adding the unknown character ∙ (line 9);

4. r = r1r2 (lines 11-20): the desired substring can either be fully found in r1 or

r2, or could overlap them; thus, we compute all the partial substrings of r1,

recursively calling Sb (line 13); for all {𝜎1, 𝑖1, 𝑗1} returned, substrings that are

fully contained in r1 (i.e., when 𝑗1 = 0) are added to the result (line 16) while

the remaining ones are joined with ones computed by recursively calling Sb on

r2 with 𝑛1 = 𝑗1 and 𝑛2 = 𝑗2;

5. r = r1||r2 (lines 20-21): we return the partial substring of r1 and the ones of r2,

recursively calling Sb on both of them;

6. r = (r1)
∗

(lines 22-31): we construct the set of substrings through fixpoint

iteration, starting by generating {𝜖, 𝑖, 𝑗} (corresponding to r1 repeated 0 times

- line 23) and then, at each iteration, by joining all the partial results obtained

until now with the ones generated by a further recursive call to Sb, keeping

only the joined results that are new (lines 24-30).

136

6.3. Experimental Results

Above, we have defined the abstract semantics of substring when intervals are

constant. When 𝔼#Ja1Km♯ = [𝑖, 𝑗] and 𝔼#Ja2Km♯ = [𝑙, 𝑘], with 𝑖, 𝑗 , 𝑙, 𝑘 ∈ ℕ, the ab-

stract semantics of substring is

𝔼
#Jsubstr(s, a1, a2)Km♯

≜ ⨆

𝑎∈[𝑖,𝑗],𝑏∈[𝑙,𝑘],𝑎⊑𝑏

Min({ 𝜎 | (𝜎, 0, 0) ∈ Sb(r, 𝑎, 𝑏 − 𝑎) })

We do not precisely handle the cases when the intervals are unbounded (e.g.,

[1, +∞]). These have been already considered in [14] with ad-hoc treatment, and one

may recast the same proposed idea in our context. Nevertheless, when these cases

are met, our analysis returns the automaton recognizing any possible substring of

the input automaton, still guaranteeing soundness (proven in Appendix A.6).

6.3 Experimental Results

Tarsis has been compared with five other domains, namely the prefix (Pr), suffix (Su),

char inclusion (Ci), bricks (Br) domains (all defined in [41]), and Fa/≡ (defined in [14],

adapting their abstract semantics to Java, without altering their precision).

All domains have been implemented in a prototype static analyzer for a subset

of the Java language, similar to Imp (Section 6.1), with the addition of the assert
statement. In particular, our analyzer raises a definite alarm (DA for short) when a

failing assert (i.e., whose condition is definitely false) is met, while it raises a possible

alarm (PA for short) when the assertionmight fail (i.e., the assertion’s condition evalu-

ates to TBool). Comparisons have been performed by analyzing the code through the

smashed sum domain specified in Section 6.2.2 with trace partitioning [116] (note

that all traces are merged when evaluating an assertion), plugging in the various

string domains. All experiments have been performed on an HP EliteBook G6 ma-

chine, with an Intel Core i7-8565U @ 1.8GHz processor and 16 GB of RAM memory.

To achieve fair comparison with the other string domains, the subjects of our

evaluation are small hand-crafted code fragments that represent standard string ma-

nipulations occurring regularly in software. Pr, Su, Ci, and Br have been built to

model simple properties and to work with integers instead of intervals, and have

been evaluated on small programs: Section 6.3.1 compares them to Tarsis and Fa/≡

without expanding the scope of such evaluations. Section 6.3.2 instead focuses on

slightly more advanced and complex string manipulations that are not modeled by

the aforementioned domains, but that Fa/≡ and Tarsis can indeed tackle, highlight-

ing differences between them.

It is important to notice that performances of programs relying on automata

(highlighted in Section 6.3.3) are heavily dependent on their implementation. Both

Fa/≡ and Tarsis (whose sources are available on GitHub
4 ,5

) come as non-optimized

4Fa/≡ source code: https://github.com/SPY-Lab/fsa.

5
Tarsis source code: https://github.com/UniVE-SSV/tarsis.

137

https://github.com/SPY-Lab/fsa
https://github.com/UniVE-SSV/tarsis

Chapter 6 | String analysis

1 vo id s u b s t r i n g () {
2 S t r i n g r e s = ” s u b s t r i n g t e s t ” ;
3 i f (nondet)
4 r e s = r e s + ” p a s s e d ” ;
5 e l s e
6 r e s = r e s + ” f a i l e d ” ;
7 r e s u l t = r e s . s u b s t r i n g (5 , 1 8) ;
8 a s s e r t (r e s . c o n t a i n s (” g ”)) ;
9 a s s e r t (r e s . c o n t a i n s (” p ”)) ;

10 a s s e r t (r e s . c o n t a i n s (” f ”)) ;
11 a s s e r t (r e s . c o n t a i n s (” d ”)) ;
12 }

(a) Program subs

1 vo id loop () {
2 S t r i n g v a l u e = read () ;
3 S t r i n g r e s = ” Repea t : ” ;
4 whi l e (nondet)
5 r e s = r e s + v a l u e + ” ! ” ;
6 a s s e r t (r e s . c o n t a i n s (” t ”)) ;
7 a s s e r t (r e s . c o n t a i n s (” ! ”)) ;
8 a s s e r t (r e s . c o n t a i n s (” f ”)) ;
9 }

(b) Program loop

Figure 6.6: Program samples used for domain comparison

Program subs Program loop

Pr ring test ✗ Repeat: ✗

Su 𝜖 ✗ 𝜖 ✗

Ci [] [abdefgilnprstu] ✗ [:aepRt] [!:aepRtT] ✔

Br [
{

ring test fai,ring test pas
}
] (1, 1) ✔ [{T}] (0, +∞) ✗

Fa/≡ ring test(pas||fai) ✔ Repeat:(T)∗ ✔

 Fa/≡ (ring test pas||ring test fai) ✔ Repeat:(T!)∗ ✔

Table 6.1: Values of res at the first assert of each program

proof-of-concept libraries (specifically, Tarsis has been built following the structure

of Fa/≡ to ensure a fair performance comparison) whose performances can be greatly

improved.

6.3.1 Precision of the domains on test cases

We start by considering programs subs (Figure 6.6a) and loop (Figure 6.6b). subs calls

substring on the concatenation between two strings, where the first one is constant

and the second one is chosen in a non-deterministic way (i.e., nondet condition is

statically unknown, lines 3-6). loop builds a string by repeatedly appending a suffix,

which contains a user input (i.e., an unknown string), to a constant value. Table 6.1

reports the value approximation for res for each abstract domain and analyzed pro-

gram when the first assertion of each program is met, as well as if the abstract domain

precisely dealt with the program assertions. For the sake of readability, Tarsis and

Fa/≡ approximations are both expressed as regexes.

When analyzing subs, both Pr and Su lose precision since the string to append to

res is statically unknown. This leads, at line 7, to a partial substring of the concrete

one with Pr, and to an empty string with Su. Instead, the substring semantics of

Ci moves every character of the receiver in the set of possibly contained ones, thus

the abstract value at line 7 is composed of an empty set of included characters, and

a set of possibly included characters containing the ones of both strings. Finally, Br,

Fa/≡, and Tarsis are expressive enough to track any string produced by any concrete

138

6.3. Experimental Results

execution of subs.

When evaluating the assertions of subs, PAs should be raised on lines 9 and 10,

since "p" or "f" might be in res, together with a DA alarm on line 11, since "d" is

surely not contained in res. No alarm should be raised on line 8 instead, since "g" is

part of the common prefix of both branches and thus will be included in the substring.

Such behavior is achieved when using Br, Fa/≡, or Tarsis. Since the substring se-

mantics of Ci moves all characters to the set of possibly contained ones, PAs are

raised on all four assertions. As Su loses all information about res, PAs are raised on

lines 7-10 when using such domain. Pr instead tracks the definite prefix of res, thus

the PA at line 7 is avoided.

When analyzing loop, we expect to obtain no alarm at line 6 (since character "t"
is always contained in the resulting string value), and PAs at lines 7 and 8. Pr infers

as prefix of res the string "Repeat: ", keeping such value for the whole analysis of

the program. This allows the analyzer to prove the assertion at line 6, but it raises

PAs when it checks the ones at lines 7 and 8. Again, Su loses all information about

res since the lub operation occurring at line 3 cannot find a common suffix between

"Repeat: " and "!", hence PAs are raised on lines 6-8. Since the set of possible

characters contains T, Ci can correctly state that any character might appear in the

string. For this reason, two PAs are reported on lines 7 and 8, while no alarm is

raised on line 6 (again, this is possible since the string used in the contains call has

length 1). The alternation of T and "!" prevents Br normalization algorithm from

merging similar bricks. This will eventually lead to overcoming the length threshold

k𝐿, hence resulting in the [{T}] (0, +∞) abstract value. In such a situation, Br returns

TBool on all contains calls, resulting in PAs on lines 6-8. The parametric widening

of Fa/≡ collapses the colon into T. In Tarsis, since the automaton representing res
grows by two states each iteration, the parametric widening defined in Section 6.2.1

can collapse the whole content of the loop into a 2-states loop recognizing T!. The

precise approximation of res of both domains enables the analyzer to detect that the

assertion at line 6 always holds, while PAs are raised on lines 7 and 8.

In summary, Pr and Su failed to produce the expected results on both subs and

loop, while Ci and Br produced exact results in one case (loop and subs, respec-

tively), but not in the other. Hence, Fa/≡ and Tarsis were the two only domains that

produced the desired behavior in these rather simple test cases.

6.3.2 Evaluation on realistic code samples

In this section, we explore two real-world code samples. Method toString (Fig-

ure 6.7a) transforms an array of names that come as string values into a single string.

While it resembles the code of loop in Figure 6.6b (thus, results of all the anal-

yses show the same strengths and weaknesses), now assertions check contains
predicates with a multi-character string. Method count (Figure 6.7b) makes use of

countMatches (reported in Section 1.4) to prove properties about its return value.

139

Chapter 6 | String analysis

1 vo id t o S t r i n g (S t r i n g [] names) {
2 S t r i n g r e s = ” P eo p l e : { ” ;
3 i n t i = 0 ;
4 whi l e (i < names . l e n g t h){
5 r e s = r e s + names [i] ;
6 i f (i != names . l e n g t h − 1)
7 r e s = r e s + ” , ” ;
8 i = i + 1 ;
9 }

10 r e s = r e s + ”} ” ;
11 a s s e r t

(r e s . c o n t a i n s (” Peo p l e ”)) ;
12 a s s e r t (r e s . c o n t a i n s (” , ”)) ;
13 a s s e r t (r e s . c o n t a i n s (” not ”)) ;
14 }

(a) Program toString

1 vo id count (boo l ean nondet) {
2 S t r i n g s t r ;
3 i f (nondet) s t r = ” t h i s i s the

t h i n g ” ;
4 e l s e s t r = ” the t h r o a t ” ;
5 i n t count = countMatches (s t r ,

” th ”)
6 a s s e r t (count > 0) ;
7 a s s e r t (count == 0) ;
8 a s s e r t (count == 3) ;
9 }

(b) Program count

Figure 6.7: Programs used for assessing domain precision

Program toString Program count

Pr People:{ ✗ [0, +∞] ✗

Su 𝜖 ✗ [0, +∞] ✗

Ci [{}:Peopl] [{}:,PeoplT] ✗ [0, +∞] ✗

Br [{T}] (0, +∞) ✗ [0, +∞] ✗

Fa/≡ People:{(T)∗T} ✔ [2, 3] ✔

 Fa/≡ People:{}||People:{(T,)∗T} ✔ [2, 3] ✔

Table 6.2: Values of res and count at the first assert of the respective program

Since the analyzer is not interprocedural, we inlined countMatches inside count.

Table 6.2 reports the results of both methods (stored in res and count, respectively)

evaluated by each analysis at the first assertion, as well as if the abstract domain

precisely dealt with the program assertions.

As expected, when analyzing toString, each domain showed results similar to

those of loop. In particular, we expect to obtain no alarm at line 11 (since "People"
is surely contained in the resulting string), and two PAs at lines 12 and 13. Pr, Su,

Ci, and Br raise PAs on all three assert statements. Fa/≡ and Tarsis detect that the

assertion at line 11 always holds. Thus, when using them, the analyzer raises PAs on

lines 12 and 13 since the comma character is part of res if the loop is iterated at least

once, and T might match "not".

If count (with the inlined code from countMatches) was to be executed, count
would be either 2 or 3 when the first assertion is reached, depending on the choice

of str. Thus, no alarm should be raised at line 6, while a DA should be raised on

line 7, and a PA on line 8. Since Pr, Su, Ci, and Br do not define most of the op-

erations used in the code, the analyzer does not have information about the string

on which countMatches is executed, and it thus abstracts count with the interval

[0, +∞]. Thus, PAs are raised on lines 6-8. Instead, Fa/≡ and Tarsis are able to de-

tect that sub is present in all the possible strings represented by str. Thus, thanks

to trace partitioning, the trace where the loop is skipped and count remains 0 gets

140

6.3. Experimental Results

Domain subs loop toString count

Pr 11 ms 3 ms 78 ms 29 ms

Su 10 ms 2 ms 92 ms 29 ms

Ci 10 ms 3 ms 90 ms 29 ms

Br 13 ms 3 ms 190 ms 28 ms

Fa/≡ 10 ms 52013 ms 226769 ms 4235 ms

Tarsis 34 ms 38 ms 299 ms 39 ms

Table 6.3: Execution times of the domains on each program

discarded. Then, when the first indexOf call happens, [0, 0] is stored into idx, since

all possible values of str start with sub. Since the call to length yields [10, 17], all

possible substrings from [2, 2] (idx plus the length of sub) to [10, 17] are computed

(namely, "e throat", "is is th", "is is the", . . . , "is is the thing"), and

the resulting automaton is the one that recognizes all of them. Since the value of sub
is still contained in every path of such automaton, the loop guard still holds and the

second iteration is analyzed, repeating the same operations. When the loop guard

is reached for the third time, the remaining substring of the shorter starting string

(namely "roat") recognized by the automaton representing str will no longer con-

tain sub: a trace where count equals [2, 2] will leave the loop. A further iteration

is then analyzed, after which sub is no longer contained in any of the strings that

str might hold. Thus, a second and final trace where count equals [3, 3] will reach

the assertions, and will be merged by interval lub, obtaining [2, 3] as final value for

count. This allows Tarsis and Fa/≡ to identify that the assertion at line 7 never holds,

raising a DA, while the one at line 8 might not hold, raising a PA.

6.3.3 Efficiency

The detailed analysis of two test cases and two examples taken from real-world code

underlined that Tarsis and Fa/≡ are the only domains able to obtain precise results

on them. We now discuss the efficiency of the analyses. Table 6.3 reports the execu-

tion times for all the domains on the case studies analyzed in this section. Overall,

Pr, Su, Ci, and Br are the fastest domains with execution times usually below 100

msecs. Thus, if on the one hand, these domains failed to prove some of the prop-

erties of interest, they are quite efficient and they might be helpful to prove simple

properties. Tarsis execution times are higher but still comparable with them (about

50% overhead on average). Instead, Fa/≡ blows up on three out of the four test cases

(and in particular on toString). Hence, Tarsis is the only domain that executes the

analysis in a limited time while being able to prove all the properties of interest in

these four case studies.

The reason behind the performance gap between Tarsis and Fa/≡ can be ac-

counted on the alphabets underlying the automata. In Fa/≡, automata are built over

141

Chapter 6 | String analysis

an alphabet of single characters. While this simplifies the semantic operations, it also

causes state and transition blow up w.r.t. the size of the string that needs to be repre-

sented. This does not happen in Tarsis, since atomic strings (not built through con-

catenation or other string manipulations) are part of the alphabet and can be used as

transition symbols. Having fewer states and transitions to operate upon drastically

lowers the time and memory requirements of automata operations, making Tarsis

faster than Fa/≡.

Tarsis’s alphabet has another peculiarity w.r.t. Fa/≡’s: it has a special symbol for

representing an unknown string. Having such a symbol requires some fine-tuning of

the algorithms to have them behave differently when the symbol is encountered, but

without additional tolls on their performances. Fa/≡’s alphabet does not have such a

symbol, thus representing the unknown string is achieved through a state having one

self-loop for each character in the alphabet (including 𝜖). This requires significantly

more resources for automata algorithms, leading to higher execution times.

6.4 Conclusion

In this chapter, we introduced Tarsis, an abstract domain for sound abstraction of

string values. Tarsis models strings as regular languages, thus using finite state au-

tomata to represent them. The novelty behind Tarsis is twofold. At first, the equiv-

alent regular expression form is used in place of automata to better model strings

semantics. Moreover, the alphabet backing the automata is defined over strings in-

stead of single characters: this leads to a direct reduction in the number of states

and transitions necessary to model string values, a result that is emphasized by our

preliminary yet meaningful experimental evaluation.

With such a powerful string abstraction, one can empower multilanguage anal-

ysis to precisely model runtime configurations that exploit strings, a pattern widely

used in multilanguage systems such as IoT networks.

142

Part IV

Conclusion

143

7 Conclusion

In this chapter, we draw the conclusions of our work, summarizing the results we

achieved and their limitations, and suggesting the future work that could arise from

them.

7.1 Thesis summary

In this thesis, we presented LiSA, a framework for modular multilanguage analysis

with a focus on modularity and ease of use, with an open-source implementation

available under MIT license. LiSA operates on a program composed of extensible

control flow graphs (CFGs), that are built by language-specific frontends to uniformly

represent syntactic structures. Each CFG node defines its own language-specific se-

mantics in terms of atomic semantic constructs, called symbolic expressions, that ab-

stract domain can interpret. The state of the analysis is modularly built to let each

component be agnostic and independent, enabling effortless reconfiguration of the

analysis to tune precision and performances.

LiSA provides support for modeling library functions through native CFGs and

SARL. A native CFG is a special CFG whose code can replace its call sites, as it only

contains one node that expresses the semantics of the whole function. SARL is a

domain-specific language that allows one to specify the execution model of libraries

and frameworks to instruct a static analyzer about their execution model. This ap-

proach enables the support of new frameworks through a readable and documentable

model without modifying the analysis engine, as it is applied to a program to produce

annotations that agnostically instruct the analyzer about the runtime environment.

We instantiated LiSA to demonstrate its effectiveness in multilanguage contexts

by analyzing an IoT network whose codebase is composed of Java and C++, success-

fully discovering a vulnerability that spanned across the two languages. Moreover,

we used GoLiSA, a static analyzer for Go applications based on LiSA, to detect criti-

cal non-deterministic behaviors in smart contracts relying on a flow-based approach.

Our analyses are able to discern usages of non-determinism that might endanger the

consensus from ones that are innocuous and can be allowed. We also used PyLiSA, a

static analyzer for Python programs based on LiSA, to perform early experiments on

an abstraction that tracks operations performed on data science dataframes, building

a graph where properties about them can be easily computed.

Finally, we defined Tarsis, an abstract domain for sound abstraction of string val-

ues, aiming at providing powerful approximations of strings that can be used to set

up multilanguage communication. Tarsis is based on finite state automata paired

with their equivalent regular expression: a representation that allows precise model-

ing of complex string values. Experiments show that Tarsis achieves great precision

also on code that heavily manipulates string values, while the time needed for the

145

Chapter 7 | Conclusion

analysis is comparable with the one of other simpler domains.

7.2 Future directions

Contributions presented in this work still have relevant margins for improvement

and extension, as our long-term goal is to provide easy-to-use techniques with wide

applicability spectrum, even outside of academia. In the following, we emphasize

the first lines of work that will move us closer to our ultimate goal, identifying three

different axes: applicability and ease of use, modularization of new features, and

analyses evolution.

Applicability and ease of use

As a multilanguage analyzer, one of our objectives is to target as many programming

languages as possible. This not only means having frontends for each of them, but

also ensuring that the internal LiSA program model is flexible and parametric enough

to represent syntactic structures, semantics, execution model, inheritance, and all

of their other peculiarities. Currently, other than GoLiSA and PyLiSA, frontends for

Java, Java bytecode, Rust, and Michelson bytecode are in development, but this is

undoubtedly a long-term effort.

One additional vision for LiSA’s future is to not only provide users with an easy-

to-use tool where new analysis can be implemented quickly and tested on several

languages, but where they can also easily compare different implementations with

their own. As such, we plan on extending LiSA to ship with several well-known com-

ponent implementations, from numerical and string domains (e.g., Octagons [98]

and Bricks [41]), to property domains (e.g., Information Flow [118, 55]), to inter-

faces with widely accepted static analysis libraries (e.g., Apron [82] and PPL [18]).

Modularization of new features

In its current state, LiSA is missing some functionalities that hinder development of

some analyses. We identify here three separate axes aimed at widening the spectrum

of components that can take part in LiSA’s analyses.

The abstract state presented in [61] entails decoupling of memory and values.

However, it was explicitly designed for object-oriented languages, focusing on field

accesses only. This means that, whenever an access to a nested location happens

(e.g., accessing a field of an object or an array element), the expression identifying it

(e.g., the field’s name or the array element’s index) must be statically known. Hence,

evaluating dynamic accesses like the dereference of an arithmetic expression between

pointers is not possible within this framework. We intend to extend the latter to

enable these.

146

7.2. Future directions

A second line of work targets modular communication between abstract domains.

Notice that communication here is not a synonym for refinement, as two domains

refine each other (e.g., through reduced or Granger product [38]) when they track

the same kind of information (e.g., numerical values). Instead, we want to focus on

finding a modular alternative to smashed sums [12]. Smashed sums are flexible com-

binations of domains tracking different properties, but their downside resides in the

absence of modularity. For instance, when evaluating a substring expression, the do-

main tracking string values has to extract information about the numerical bounds of

the operation from the respective domain. Logical predicates [94, 76] can be derived

by abstract domain elements to over-approximate their values, but have been shown

to lose precision and their extension to non-numerical values is not trivial.

Finally, LiSA currently supports forward analyses only. While providing the in-

frastructure for backward analyses is trivial (as it would resemble what has been

presented in this thesis), we intend to formalize a wider modular framework where

backward and forward analyses can cooperate together.

Analyses evolution

Here we lay out our next steps to improve on the analyses and abstract domains

presented in this thesis.

In our presentation of Tarsis, we did not investigate completeness properties w.r.t.

the considered operations of interest. This would ensure that no loss of information

is related to  Fa/≡ due to the input abstraction process [15]. Moreover, Tarsis’s pre-

cision could be greatly improved by tracking relations between T elements appearing

inside (possibly separate) automata, and we intend to work in this direction to design

an extension of the domain.

There are plenty of future directions that our work on JuPyter notebooks can take.

As this work is still ongoing, the obvious first line of work is to prove the soundness of

the proposed semantics abstractions, followed by an investigation of their complete-

ness to further improve the domain. Besides, inferring the shape of dataframes is not

the only useful analysis one can employ for DS software. In fact, after strengthening

shape inference to incorporate rows and cell properties, we aim at providing abstrac-

tions to detect data leakages and biases. Lastly, we aim at extending the abstraction

to more pandas functions, and to further libraries other than pandas itself.

In the context of smart contracts, we will first extend GoLiSA to detect more

blockchain-related vulnerabilities, such as numerical overflow, to provide an efficient

analyzer to use in on-chain architectures [105], incorporating the verification of smart

contracts in the consensus protocol. We also aim at expanding our benchmark to

cover Tendermint Core and Cosmos SDK, tweaking the analysis to also be efficient

on such frameworks.

147

Appendices

149

A Soundness proofs of Tarsis’s

semantics

We prove the soundness of Tarsis’s abstract semantics by showing that its concretiza-

tion is an over-approximation of the concrete one. As we formalized our transfer func-

tions w.r.t. the smashed sum Val
♯ ≜  Fa/≡⊕ Intv⊕Bool, we compare concretizations

of its elements with a concrete smashed sum Val ≜ ℘(Σ∗)∪℘(ℤ)∪℘({true, false}),
that is defined as a collecting semantics. We abuse notation denoting with 𝕄 ∶

Id → Val the set of collecting memories, ranging over meta-variable m, that asso-

ciate each identifier to a collecting value. The concrete expression semantics of such

domain is defined as 𝔼JeK ∶ 𝕄 → Val, evaluating e and returning its possible val-

ues. Such semantics is defined as the additive lift of the one in Figure 6.2. Function

𝛾
Val

♯ ∶ Val
♯ → Val is the smashed sum concretization and it is defined as:

𝛾
Val

♯(𝑎) ≜

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∅ if 𝑎 = ⊥

𝛾Intv(𝑎) if 𝑎 ∈ Intv

𝛾Bool(𝑎) if 𝑎 ∈ Bool

𝛾 (𝑎) if 𝑎 ∈  Fa/≡

Val otherwise

where 𝛾Intv ∶ Intv → ℘(ℤ) and 𝛾Bool ∶ Bool → ℘({true, false}) correspond to the

concretization functions of intervals and Booleans, respectively. We can now define

the abstract memories concretization 𝛾 ∶ 𝕄♯ → 𝕄 as 𝛾(m♯) ≜ { (𝑥, 𝛾
Val

♯(m♯(𝑥))) | 𝑥 ∈

𝑑𝑜𝑚(m♯) }. With this setup, we prove the abstract semantics to be sound by proving:

∀m
♯
∈ 𝕄

♯
. 𝔼JeK𝛾(m♯

) ⊆ 𝛾
Val

♯(𝔼
#JeK(m♯

))

In the following, we remove the subscript from 𝛾 to avoid cluttering the notation,

since it is clear from the context which concretization function applies. Moreover, we

mark proof steps as automata lift if they represent the transition from a condition

over languages (that is, sets of strings) to its equivalent condition over automata.

A.1 Soundness of Concat

Theorem 2. 𝔼#Jconcat(s, s′)K is a sound abstraction of 𝔼Jconcat(s, s′)K. For-

mally:

∀m
♯
∈ 𝕄

♯
, ∀s, s′ ∈ se . 𝔼Jconcat(s, s′)K𝛾(m♯

) ⊆ 𝛾(𝔼
#Jconcat(s, s′)Km♯

)

151

Chapter A | Soundness proofs of Tarsis’s semantics

Proof. Soundness follows from the fact that finite state automata and regular lan-

guages are closed under finite concatenation [53].

A.2 Soundness of Length

Theorem 3. 𝔼#Jlength(s)K is a sound abstraction of 𝔼Jlength(s)K. Formally:

∀m
♯
∈ 𝕄

♯
, ∀s ∈ se . 𝔼Jlength(s)K𝛾(m♯

) ⊆ 𝛾(𝔼
#Jlength(s)Km♯

)

Proof. The collecting semantics of length is defined as the additive lift of the con-

crete one reported in Figure 6.2, namely 𝔼Jlength(s)Km = { |𝜎| | 𝜎 ∈ L }, where

𝔼JsKm = L ∈ ℘(Σ∗). Let us suppose that 𝔼#JsKm♯ = A ∈  Fa/≡ and 𝛾(A) =

L ∈ ℘(Σ∗), and let 𝐿 = { |𝜎| | 𝜎 ∈ L }. Following the semantics definition, if

cyclic(A) ∨ readsTop(A), we prove the soundness as:

𝔼Jlength(s)K𝛾(m♯
)

= 𝐿 Hdef. 𝔼I

⊆ 𝛾([min 𝐿, +∞]) Hdef. min, 𝛾I

= 𝛾([|minPath(A)|, +∞]) Hdef. minPathI

= 𝛾(𝔼
#Jlength(s)Km♯

) Hdef. 𝔼
#
, 1

𝑠𝑡
caseI

Otherwise, as L is a finite language, the soundness is proven as:

𝔼Jlength(s)K𝛾(m♯
)

= 𝐿 Hdef. 𝔼I

⊆ 𝛾([min 𝐿,max 𝐿]) Hdef. max, 𝛾I

= 𝛾([|minPath(A)|, |maxPath(A)|]) Hdef. minPath,maxPathI

= 𝛾(𝔼
#Jlength(s)Km♯

) Hdef. 𝔼
#
, 2

𝑛𝑑
caseI

Soundness is thus proven since the interval computed by the abstract semantics is

always an over-approximation of the concrete set of lengths.

A.3 Soundness of Contains

Theorem4. 𝔼#Jcontains(s, s′)K is a sound abstraction of𝔼Jcontains(s, s′)K. For-

mally:

∀m
♯
∈ 𝕄

♯
, ∀s, s′ ∈ se . 𝔼Jcontains(s, s′)K𝛾(m♯

) ⊆ 𝛾(𝔼
#Jcontains(s, s′)Km♯

)

Proof. The collecting semantics of contains is defined as the additive lift of the

152

A.4. Soundness of IndexOf

concrete one, that is 𝔼Jcontains(s, s′)Km = { 𝑏 | 𝑏 = contains(𝜎, 𝜎′), 𝜎 ∈ L , 𝜎′ ∈

L ′ }, where 𝔼JsKm = L ∈ ℘(Σ∗), 𝔼Js′Km = L ′ ∈ ℘(Σ∗) and contains ∶ Σ∗ × Σ∗ →

{true, false} corresponds to the concrete semantics of Figure 6.2. Let us suppose

that 𝔼#JsKm♯ = A . 𝛾(A) = L and 𝔼#Js′Km♯ = A′ . 𝛾(A′) = L ′
, where A, A′ ∈  Fa/≡

and L ,L ′ ∈ ℘(Σ∗). We split the proof following possible values produced by the

concrete semantics.

If 𝔼Jcontains(s, s′)K𝛾(m♯) = {false}, no substring of the strings in L is in L ′
:

𝔼Jcontains(s, s′)K𝛾(m♯
) = {false}

⟺ ∀𝜎 ∈ L ∀𝜎
′
∈ L ′

. 𝜎
′
̸↷s 𝜎 Hdef. 𝔼I

⟺ L (FA(A)) ∩ L ′
= ∅ Hdef. FAI

⟺ FA(A) ⊓ A′
= Min(∅) Hautomata liftI

⟺ 𝔼
#Jcontains(s, s′)Km♯

= false Hdef. 𝔼
#
, 1

𝑠𝑡
caseI

Hence, under our starting hypothesis, 𝛾(𝔼#Jcontains(s, s′)Km♯) = {false}, proving

soundness.

Instead, when 𝔼Jcontains(s, s′)K𝛾(m♯) = {true}, all strings in L contain all

the strings of L ′
. This invalidates the first case of our abstract semantics, as ∃𝜎 ∈

L (FA(A)) . 𝜎 ∈ L ′
. If singlePath(A′) holds, our semantics matches the concrete one:

𝔼Jcontains(s, s′)K𝛾(m♯
) = {true} ∧ singlePath(A′

)

⟺ ∀𝜎 ∈ L . 𝜎sp ↷s 𝜎 Hdef. 𝔼, singlePathI

⟺ ∀𝜎 ∈ L (A𝑎𝑐
) . 𝜎sp ↷s 𝜎 HL (A𝑎𝑐

) ⊆ L I

⟺ ∀𝜋 ∈ paths(A𝑎𝑐
) . 𝜎sp ↷s 𝜎𝜋 Hautomata liftI

⟺ 𝔼
#Jcontains(s, s′)Km♯

= true Hdef. 𝔼
#
, 2

𝑛𝑑
caseI

Instead, when A′
is not a single-path automaton, the semantics returns {true, false},

and soundness is trivially met.

Finally, when 𝔼Jcontains(s, s′)Km♯ = {true, false}, soundness is trivially satis-

fied as none of the conditions appearing in the definition of 𝔼#Jcontains(s, s′)K are

satisfied, and the latter returns {true, false} (3𝑟𝑑 case) as well.

A.4 Soundness of IndexOf

Theorem 5. 𝔼#JindexOf(s, s′)K is a sound abstraction of 𝔼JindexOf(s, s′)K. For-

mally:

∀m
♯
∈ 𝕄

♯
, ∀s, s′ ∈ se . 𝔼JindexOf(s, s′)K𝛾(m♯

) ⊆ 𝛾(𝔼
#JindexOf(s, s′)Km♯

)

Proof. The collecting semantics of indexOf is defined as the additive lift of the con-

153

Chapter A | Soundness proofs of Tarsis’s semantics

crete one: 𝔼JindexOf(s, s′)Km = { 𝑖 | 𝑖 = indexOf(𝜎, 𝜎′), 𝜎 ∈ L , 𝜎′ ∈ L ′ }, where

𝔼JsKm = L ∈ ℘(Σ∗), 𝔼Js′Km = L ′ ∈ ℘(Σ∗) and indexOf ∶ Σ∗×Σ∗ → ℕ corresponds

to the concrete semantics of Figure 6.2. Let us suppose that 𝔼#JsKm♯ = A . 𝛾(A) = L

and 𝔼#Js′Km♯ = A′ . 𝛾(A′) = L ′
, where A, A′ ∈  Fa/≡ and L ,L ′ ∈ ℘(Σ∗). Note

that, by definition of the concrete semantics, we have that 𝔼JindexOf(s, s′)K𝛾(m♯) ⊆

𝛾([−1, +∞]). When A or A′
are cyclic or A′

has aT transition, the abstract semantics re-

turns the interval [−1, +∞], guaranteeing soundness. We thus continue by assuming

that A and A′
are not cyclic and A′

has no T transitions (i.e., L ′
is finite). We split the

proof following the possible concrete values. When 𝔼JindexOf(s, s′)K𝛾(m♯) = {−1},

no string of L ′
is contained in any string of L . Formally:

𝔼JindexOf(s, s′)K𝛾(m♯
) = {−1}

⟺ ∀𝜎
′
∈ L ′

∄𝜎 ∈ L . 𝜎
′ ↷s 𝜎 Hnecessary conditionI

⟺ 𝔼
#JindexOf(s, s′)Km♯

= [−1, −1] Hdef. 𝔼
#
, 2

𝑛𝑑
caseI

As 𝛾Intv([−1, −1]) = {−1}, soundness is met. Otherwise, 𝔼JindexOf(s, s′)K𝛾(m♯) = 𝐼 ⊆

{ 𝑛 ∈ ℤ | 𝑛 ≥ −1 } . ∃𝑖 ∈ 𝐼 . 𝑖 ≥ 0. This implies ∃𝜎 ∈ L (A), 𝜎′ ∈ L (A′) . 𝜎′ ↷s 𝜎, as

the collecting semantics returns at least one value that is not −1. Here, the abstract

semantics relies on function IO that computes an interval for each string 𝜎′ ∈ L (A′),

lubbing the results together. Hence, it is enough to prove the correctness of IO. Given

𝜎′ ∈ L ′
, let us define the set 𝐼𝜎′ ⊆ 𝐼 = { 𝑖 | 𝑖 = indexOf(𝜎, 𝜎′), 𝜎 ∈ L } of positions

where 𝜎′
can be found in L and let 𝑚,𝑀 ∈ 𝐼𝜎′ be the minimal and the maximal

elements of 𝐼𝜎′ . Therefore, it is sufficient to prove that 𝛾Intv([𝑚,𝑀]) ⊆ 𝛾Intv([𝑖, 𝑗]),

where [𝑖, 𝑗] = IO(A, 𝜎′). For soundness to hold, 𝑖 ≤ 𝑚 and 𝑀 ≤ 𝑗 must be true,

according to 𝛾Intv. We first prove 𝑖 ≤ 𝑚, identifying two cases. If 𝑚 = −1:

− 1 ∈ 𝐼𝜎′

⟺ ∃𝜎 ∈ L . 𝜎
′
̸↷s 𝜎 Hnecessary conditionI

⟺ ∃𝜋 ∈ paths(A) . 𝜎′
̸↷s 𝜎𝜋 Hautomata liftI

⟺ 𝑖 = −1 Hdef. 𝑖, 1
𝑠𝑡

caseI

Instead, if 𝑚 > −1:

𝑚 = min 𝐼𝜎′ , 𝑚 ≠ −1

⟺ ∃𝜎 ∈ L . 𝜎𝑚 …𝜎𝑚+|𝜎′ | = 𝜎
′

∧ ∀𝜎 ∈ L ∄𝑛 < 𝑚 . 𝜎𝑛 …𝜎𝑛+|𝜎′ | = 𝜎
′ Hnecessary cond.I

⟺ ∃𝜋 ∈ paths(A) . ∃𝜎𝑓 ∈ Flat(𝜎𝜋) . 𝜎𝑓𝑚 …𝜎𝑓𝑚+|𝜎′ |
= 𝜎

′

∧ ∀𝜋 ∈ paths(A) ∀𝜎𝑓 ∈ Flat(𝜎𝜋) . 𝜎𝑓𝑘 …𝜎𝑓𝑘+|𝜎′ |
= 𝜎

′
⇒ 𝑘 ≥ 𝑚 Hautomata liftI

⟺ 𝑖 = min 𝑘 = 𝑚 Hdef. 𝑖, 2
𝑛𝑑

caseI

154

A.5. Soundness of Replace

We now prove that 𝑀 ≤ 𝑗 , identifying three cases. If 𝑀 = −1:

𝐼𝜎′ = {−1}

⟺ ∀𝜎 ∈ L . 𝜎
′
̸↷s 𝜎 Hnecessary conditionI

⟺ ∀𝜋 ∈ paths(A) . 𝜎′
̸↷s 𝜎𝜋 Hautomata liftI

⟺ 𝑗 = 1 Hdef. 𝑗 , 1
𝑠𝑡

caseI

Instead, if 𝑀 > −1 and ∀𝜋 ∈ paths(A) . 𝜋 reads 𝜎 ⟹ 𝜋 does not read T before 𝜎:

𝑀 = max 𝐼𝜎′

⟺ ∃𝜎 ∈ L . 𝜎𝑀 …𝜎𝑀+|𝜎′ | = 𝜎
′

∧ ∀𝜎 ∈ L ∄𝑛 > 𝑀 . 𝜎𝑛 …𝜎𝑛+|𝜎′ | = 𝜎
′ Hnecessary cond.I

⟺ ∃𝜋 ∈ paths(A) . ∃𝜎𝑓 ∈ Flat(𝜎𝜋) . 𝜎𝑓𝑀 …𝜎𝑓𝑀+|𝜎′ |
= 𝜎

′

∧ ∀𝜋 ∈ paths(A) ∀𝜎𝑓 ∈ Flat(𝜎𝜋) . 𝜎𝑓𝑘 …𝜎𝑓𝑘+|𝜎′ |
= 𝜎

′
⇒ 𝑘 ≤ 𝑀 Hautomata liftI

⟺ 𝑗 = max 𝑘 = 𝑀 Hdef. 𝑗 , 3
𝑟𝑑

caseI

Finally, if 𝑀 > −1 and ∃𝜋 ∈ paths(A) . 𝜋 reads T before 𝜎, 𝑗 = +∞ by the 2𝑛𝑑 case

of the definition of 𝑗 , that is thus greater than 𝑀 . As both inequalities are always

satisfied, we can conclude that soundness is met in all cases.

A.5 Soundness of Replace

Theorem 6. 𝔼#Jreplace(s, s𝑠 , s𝑟)K is a sound abstraction of 𝔼Jreplace(s, s𝑠 , s𝑟)K.

Formally:

∀m
♯
∈ 𝕄

♯
, ∀s, s𝑠 , s𝑟 ∈ se . 𝔼Jreplace(s, s𝑠 , s𝑟)K𝛾(m♯

) ⊆ 𝛾(𝔼
#Jreplace(s, s𝑠 , s𝑟)Km♯

)

Proof. The collecting semantics of replace is defined as the additive lift of the con-

crete one, that is 𝔼Jreplace(s, s𝑠 , s𝑟)Km = { 𝜎′ | 𝜎′ = replace(𝜎, 𝜎𝑠 , 𝜎𝑟), 𝜎 ∈

L , 𝜎𝑠 ∈ L𝑠 , 𝜎𝑟 ∈ L𝑟 }, where 𝔼JsKm = L ∈ ℘(Σ∗), 𝔼Js𝑠Km = L𝑠 ∈ ℘(Σ∗),

𝔼Js𝑟Km = L𝑟 ∈ ℘(Σ∗) and replace ∶ Σ∗ × Σ∗ × Σ∗ → Σ∗
corresponds to the

concrete semantics of Figure 6.2. Let us suppose that 𝔼#JsKm♯ = A . 𝛾(A) = L ,

𝔼#Js𝑠Km♯ = A𝑠 . 𝛾(A𝑠) = L𝑠 , and 𝔼#Js𝑟Km♯ = A𝑟 . 𝛾(A𝑟) = L𝑟 , where A, A𝑠 , A𝑟 ∈  Fa/≡

and L ,L𝑠 ,L𝑟 ∈ ℘(Σ∗). When A or A𝑠 have a cycle or have a T-transition, our se-

mantics returns Min(T) and is thus trivially sound. Otherwise, when no replacement

happens, (i.e., 𝔼Jreplace(L ,L𝑠 ,L𝑟)Km = L):

𝔼Jreplace(L ,L𝑠 ,L𝑟)K = L

⟺ ∀𝜎𝑠 ∈ L𝑠 ∄𝜎 ∈ L . 𝜎𝑠 ̸↷s 𝜎 Hnecessary conditionI

⟺ 𝔼Jreplace(A, A𝑠 , A𝑟)K = A Hdef. 𝔼
#
, 1

𝑠𝑡
caseI

155

Chapter A | Soundness proofs of Tarsis’s semantics

Instead, when at least one replacement happens, the semantics returns the lub

of several applications of RP ranging over all possible combinations of strings in L

and L𝑠 , that can be thoroughly explored since L and L𝑠 are finite sets. Once RP has

been proven correct, soundness naturally follows according to the properties of lub.

We thus prove that ∀𝜎 ∈ L , ∀𝜎𝑠 ∈ L𝑠 , ∀𝜋 ∈ paths(A) . 𝜎𝜋 = 𝜎:

𝔼Jreplace({𝜎}, {𝜎𝑠},L𝑟)K ⊆ 𝛾(RP(𝜋, 𝜎𝑠 , A𝑟))

Specifically, RP removes every occurrence of 𝜎𝑠 in 𝜋 (lines 7 and 8, where states and

transitions composing 𝜎𝑠 are removed from the resulting automaton), substituting

them with a copy of the replace automaton (line 4) that is connected to the path

with 𝜖−transitions. This means that all 𝜎′ ↷s 𝜎𝜋 . 𝜎
′ = 𝜎𝑠 are substituted with all

the strings recognized by A𝑟 . We can then characterize the language of the automaton

returned by RP as { 𝜎𝜋[𝜎𝑠/𝜎𝑟] | 𝜎𝑟 ∈ L (A𝑟) }. Soundness is thus ensured:

𝔼Jreplace({𝜎}, {𝜎𝑠},L𝑟)K = { 𝜎[𝜎𝑠/𝜎𝑟] | 𝜎𝑟 ∈ L𝑟 }

⊆ { 𝜎𝜋[𝜎𝑠/𝜎𝑟] | 𝜎𝑟 ∈ L (A𝑟) } Hautomata liftI

= 𝛾(RP(𝜋, 𝜎𝑠 , A𝑟)) Hdef. RPI

Soundness is thus proven as the result on individual strings can be lifted to languages,

and since the A𝑟 passed to RP is an over-approximation of the concrete strings it

represents (as the semantics performs a may-replacement whenever |L𝑠 | > 1).

A.6 Soundness of Substring

Theorem 7. 𝔼#Jsubstr(s, a1, a2)K is a sound abstraction of 𝔼Jsubstr(s, a1, a2)K.

Formally:

∀m♯ ∈ 𝕄♯, ∀s ∈ se, ∀a1, a2 ∈ ae .

𝔼Jsubstr(s, a1, a2)K𝛾(m♯) ⊆ 𝛾(𝔼#Jsubstr(s, a1, a2)Km♯)

Proof. The collecting semantics of substring is defined as the additive lift of the

concrete one, that is 𝔼Jsubstr(s, a1, a2)Km = { 𝜎 | 𝜎 = substr(𝜎, 𝑖, 𝑗), 𝜎 ∈ L , 𝑖 ∈

𝐼 , 𝑗 ∈ 𝐽 }, where 𝔼JsKm = L ∈ ℘(Σ∗), 𝐼 = 𝔼JaKm, 𝐽 = 𝔼Ja′Km and substr ∶

Σ∗ × ℕ × ℕ → Σ∗
corresponds to the concrete semantics of Figure 6.2. Without loss

of generality, we can prove the semantics to be sound when 𝔼#Ja1Km♯ = [𝑖, 𝑖] and

𝔼#Ja2Km♯ = [𝑗, 𝑗], with 𝑖, 𝑗 ∈ ℕ, 0 ≤ 𝑖 ≤ 𝑗 , as the abstract semantics lifts such result

to non-singleton intervals applying lub. Let us suppose that 𝔼#JsKm♯ = A . 𝛾(A) = L ,

and that 𝔼#Ja1Km♯ = [𝑖, 𝑖] and 𝔼#Ja2Km♯ = [𝑗, 𝑗], with 𝑖, 𝑗 ∈ ℕ. Furthermore, let

r ≡ A be the regular expression equivalent to A. We can thus prove soundness of the

156

A.6. Soundness of Substring

semantics by proving the following:

𝔼Jsubstr(L , {𝑖}, {𝑗})K𝛾(m♯
) ⊆ 𝛾(Min({ 𝜎 | (𝜎, 0, 0) ∈ Sb(r, 𝑖, 𝑗 − 𝑖) })).

Soundness is proven by structural induction over the structure of the regular

expression, referencing the lines of Algorithm 5 that are involved in the computa-

tion as §𝑥 , where 𝑥 is the line number. Moreover, when Sb(r, 𝑖, 𝑗) produces the set

𝑆 = {(𝜎1, 𝑖1, 𝑗1), … , (𝜎𝑛, 𝑖𝑛, 𝑗𝑛)}, we denote the automaton Min({ 𝜎 | (𝜎, 0, 0) ∈ 𝑆 }) as

either, abusing notation, Min(Sb(r, 𝑖, 𝑗)) or Min({(𝜎1, 𝑖1, 𝑗1), … , (𝜎𝑛, 𝑖𝑛, 𝑗𝑛)}). With the

latter notation, we abuse notation writing 𝜎𝑖 ∉ Sb to denote that (𝜎𝑖, 𝑖𝑖, 𝑗𝑖) is not in

the final result of Sb.

Base cases

⊳ r = ∅ (L (r) = ∅):

𝔼Jsubstr(∅, {𝑖}, {𝑗})K = ∅

= 𝛾(Min(∅)) Hautomata liftI

= 𝛾(Min(Sb(∅, 𝑖, 𝑗 − 𝑖))) H§2I

⊳ r = 𝜎 ∈ Σ∗
: here, we identify three cases. If 𝑖 ≤ 𝑗 < |𝜎|:

𝔼Jsubstr({𝜎}, {𝑖}, {𝑗})K = {𝜎𝑖 …𝜎𝑗 }

= 𝛾(Min({𝜎𝑖 …𝜎𝑗 })) Hautomata liftI

= 𝛾(Min(Sb({𝜎}, 𝑖, 𝑗 − 𝑖))) H§6I

Instead, when 𝑖 > |𝜎|:

𝔼Jsubstr({𝜎}, {𝑖}, {𝑗})K = ∅

= 𝛾(Min({(𝜖, 𝑖 − |𝜎|, 𝑗 − 𝑖)})) H𝑖 − |𝜎| > 0 ⟹ 𝜖 ∉ SbI

= 𝛾(Min(Sb({𝜎}, 𝑖, 𝑗 − 𝑖))) H§4I

computing an empty partial substring (that is still concretized as the empty set of

strings), but taking into account that 𝜎 has been read (𝑖 − |𝜎|) and no character from

𝜎 has been taken (𝑗 − 𝑖). Finally, if 𝑖 < |𝜎| and 𝑗 > |𝜎| (where 𝑘 = 𝑗 − |𝜎| + 𝑖):

𝔼Jsubstr({𝜎}, {𝑖}, {𝑗})K = ∅

= 𝛾(Min({(𝜎𝑖 …𝜎|𝜎|−1, 0, 𝑘)})) H𝑘 > 0 ⟹ 𝜎𝑖 …𝜎|𝜎|−1 ∉ SbI

= 𝛾(Min(Sb({𝜎}, 𝑖, 𝑗 − 𝑖))) H§5I

computing an partial substring (that is still concretized as the empty set of strings)

157

Chapter A | Soundness proofs of Tarsis’s semantics

that is a suffix of 𝜎, and noting that 𝑗 − (𝑖 − |𝜎𝑖 …𝜎|𝜎|−1|) characters still have to be

read before completing the substring.

⊳ r = T:

𝔼Jsubstr(Σ∗
, {𝑖}, {𝑗})K = { 𝜎 | |𝜎| = 𝑗 − 𝑖 }

= 𝛾(Min({(∙𝑗−𝑖, 0, 0)})) Hautomata liftI

∪ 𝛾(Min({(∙𝑙 , 0, 𝑗 − 𝑙)})), 𝑙 < 𝑗 − 𝑖 H𝑗 − 𝑙 > 0 ⟹ ∙
𝑙
∉ SbI

∪ 𝛾(Min({(𝜖, 𝑖 − 𝑙, 𝑗)})), 0 ≤ 𝑙 ≤ 𝑖 H𝑖 − 𝑙 > 0 ⟹ 𝜖 ∉ SbI

= 𝛾(Min(Sb(T, 𝑖, 𝑗 − 𝑖))) H§8, §9I

where, for the sake of clarity, strings returned by Sb are split into three sets, the

first ({(∙𝑗−𝑖, 0, 0)}) simulating substrings generated when 𝑖, 𝑗 ≤ |𝜎|, the second one

((∙𝑙 , 0, 𝑗 − 𝑙)) representing partial substrings when 𝑖 ≥ |𝜎|, and the third symbolizing

partial substrings generated when 𝑖 < |𝜎| ∧ 𝑗 ≥ |𝜎|. Note that only strings from the

first set are part of the final concretization, while partial substrings from the second

and third automata only serve in computations of successive substrings.

Inductive steps

⊳ r = r1||r2: let L ,L1,L2 ∈ ℘(Σ∗) be the languages recognized by r, r1 and r2,

respectively. It is easy to see that 𝔼Jsubstr(L , {𝑖}, {𝑗})K = 𝔼Jsubstr(L1, {𝑖}, {𝑗})K ∪
𝔼Jsubstr(L2, {𝑖}, {𝑗})K. We assume 𝔼Jsubstr(L1, {𝑖}, {𝑗})K ⊆ 𝛾(Min(Sb(r1, 𝑖, 𝑗 − 𝑖)))

and 𝔼Jsubstr(L2, {𝑖}, {𝑗})K ⊆ 𝛾(Min(Sb(r2, 𝑖, 𝑗 − 𝑖))) to hold for inductive hypothesis.

We then prove soundness with the following:

𝔼Jsubstr(L , {𝑖}, {𝑗})K = 𝔼Jsubstr(L1, {𝑖}, {𝑗})K

∪ 𝔼Jsubstr(L2, {𝑖}, {𝑗})K

⊆ 𝛾(Min(Sb(r1, 𝑖, 𝑗 − 𝑖))) Hind. hp.I

∪ 𝛾(Min(Sb(r2, 𝑖, 𝑗 − 𝑖))) Hind. hp.I

= 𝛾(Min(Sb(r1||r2, 𝑖, 𝑗 − 𝑖))) H§21I

⊳ r = r1r2: let L ,L1,L2 ∈ ℘(Σ∗) be the languages recognized by r, r1 and r2,

respectively. The concrete semantics is the union of two sets: 𝔼Jsubstr(L1, {𝑖}, {𝑗})K
(i.e., substrings that are fully contained in L1), and 𝔼Jsubstr(L1 ⋅ L2, {𝑖}, {𝑗})K (i.e.,

substrings that straddle L1 and L2). We prove soundness assuming the inductive hy-

potheses𝔼Jsubstr(L1, {𝑖}, {𝑗})K ⊆ 𝛾(Min(Sb(r1, 𝑖, 𝑗−𝑖))) and𝔼Jsubstr(L2, {𝑖}, {𝑗})K ⊆
𝛾(Min(Sb(r2, 𝑖, 𝑗 − 𝑖))):

𝔼Jsubstr(L , {𝑖}, {𝑗})K = 𝔼Jsubstr(L1, {𝑖}, {𝑗})K

∪ 𝔼Jsubstr(L1 ⋅ L2, {𝑖}, {𝑗})K

⊆ 𝛾(Min(Sb(r1, 𝑖, 𝑗 − 𝑖))) Hind. hp.I

158

A.6. Soundness of Substring

∪ 𝛾(Min({(𝜎1
1 ⋅ 𝜎

1
2 , 𝑖

1
2, 𝑗

1
2), … , (𝜎

𝑛
1 ⋅ 𝜎

𝑛
2 , 𝑖

𝑛
2 , 𝑗

𝑛
2)}) Hind. hp.I

= 𝛾(Min(Sb(r1r2, 𝑖, 𝑗 − 𝑖))) H§1, §16, §18I

where, for the sake of clarity, strings returned by Sb are split in two sets, the first

(Sb(r1, 𝑖, 𝑗 −𝑖)) corresponding to substrings that entirely contained into r1, the second

one ({(𝜎1
1 ⋅ 𝜎

1
2 , 𝑖

1
2, 𝑗

1
2), … , (𝜎𝑛

1 ⋅ 𝜎
𝑛
2 , 𝑖

𝑛
2 , 𝑗

𝑛
2)}) that models substrings straddling r1 and r2,

where ∀𝑖 . (𝜎𝑖
1, 𝑖

𝑖
1, 𝑗

𝑖
1) ∈ Sb(r1, 𝑖, 𝑗 − 𝑖), 𝑗 𝑖1 ≠ 0 ∧ (𝜎𝑖

2, 𝑖
𝑖
2, 𝑗

𝑖
2) ∈ Sb(r2, 𝑖

𝑖
1, 𝑗

𝑖
1). Strings in the

latter set are built by offsetting substrings of r2 by the length of the substrings of r1.

⊳ r = (r1)
∗
. The proof of this case is similar to the one for concatenation, since (r1)

∗

can be seen as an (undefined) concatenation of the regular expression r1, and is thus

left implicit.

159

Bibliography

[1] Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Dolby, J., Janku, P., Lin, H.,

Hoĺık, L., Wu, W.: Efficient handling of string-number conversion. In: Don-

aldson, A.F., Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN In-

ternational Conference on Programming Language Design and Implementa-

tion, PLDI 2020, London, UK, June 15-20, 2020. pp. 943–957. ACM (2020).

https://doi.org/10.1145/3385412.3386034

[2] Abdulla, P.A., Atig, M.F., Chen, Y., Hoĺık, L., Rezine, A., Rümmer, P., Stenman,

J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) Computer

Aided Verification - 26th International Conference, CAV 2014, Held as Part of

the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Pro-

ceedings. Lecture Notes in Computer Science, vol. 8559, pp. 150–166. Springer

(2014). https://doi.org/10.1007/978-3-319-08867-9 10

[3] Abdulla, P.A., Atig, M.F., Diep, B.P., Hoĺık, L., Janku, P.: Chain-free string

constraints. In: Chen, Y., Cheng, C., Esparza, J. (eds.) Automated Technol-

ogy for Verification and Analysis - 17th International Symposium, ATVA 2019,

Taipei, Taiwan, October 28-31, 2019, Proceedings. Lecture Notes in Computer

Science, vol. 11781, pp. 277–293. Springer (2019). https://doi.org/10.1007/978-3-

030-31784-3 16

[4] Ali, K., Lhoták, O.: Averroes: Whole-program analysis without the whole

program. In: Castagna, G. (ed.) ECOOP 2013 – Object-Oriented Program-

ming. pp. 378–400. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).

https://doi.org/10.1007/978-3-642-39038-8 16

[5] Allen, F.E.: Control flow analysis. In: Proceedings of a Symposium on Compiler

Optimization. p. 1–19. Association for Computing Machinery, New York, NY,

USA (1970). https://doi.org/10.1145/800028.808479

[6] Almashfi, N., Lu, L.: Precise string domain for analyzing javascript

arrays and objects. In: 2020 3rd International Conference on In-

formation and Computer Technologies (ICICT). pp. 17–23 (2020).

https://doi.org/10.1109/ICICT50521.2020.00011

[7] Amadini, R., Gange, G., Stuckey, P.J.: Dashed strings for string

constraint solving. Artificial Intelligence 289, 103368 (2020).

https://doi.org/10.1016/j.artint.2020.103368

[8] Andersen, L.O.: Program analysis and specialization for the C program-

ming language. Ph.D. thesis, DIKU, University of Copenhagen (1994),

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
109.6502&rep=rep1&type=pdf

161

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6502&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6502&rep=rep1&type=pdf

Chapter A | BIBLIOGRAPHY

[9] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro,

A.D., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan,

S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A.,

Stathakopoulou, C., Vukolic, M., Cocco, S.W., Yellick, J.: Hyperledger fabric:

A distributed operating system for permissioned blockchains. In: Oliveira, R.,

Felber, P., Hu, Y.C. (eds.) Proceedings of the Thirteenth EuroSys Conference,

EuroSys 2018, Porto, Portugal, April 23-26, 2018. pp. 30:1–30:15. ACM (2018).

https://doi.org/10.1145/3190508.3190538

[10] Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Con-

tracts and Dapps. O’Reilly (2018)

[11] Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain.

O’Reilly Media, Inc., 2nd edn. (2017)

[12] Arceri, V., Maffeis, S.: Abstract domains for type jug-

gling. Electron. Notes Theor. Comput. Sci. 331, 41–55 (2017).

https://doi.org/10.1016/j.entcs.2017.02.003

[13] Arceri, V., Mastroeni, I.: A sound abstract interpreter for dynamic code.

In: Hung, C., Cerný, T., Shin, D., Bechini, A. (eds.) SAC ’20: The 35th

ACM/SIGAPP Symposium on Applied Computing, online event, [Brno,

Czech Republic], March 30 - April 3, 2020. pp. 1979–1988. ACM (2020).

https://doi.org/10.1145/3341105.3373964

[14] Arceri, V., Mastroeni, I., Xu, S.: Static analysis for ecmascript string manipula-

tion programs. Appl. Sci. 10, 3525 (2020). https://doi.org/10.3390/app10103525

[15] Arceri, V., Olliaro, M., Cortesi, A., Mastroeni, I.: Completeness of abstract do-

mains for string analysis of javascript programs. In: Hierons, R.M., Mosbah, M.

(eds.) Theoretical Aspects of Computing - ICTAC 2019 - 16th International Col-

loquium, Hammamet, Tunisia, October 31 - November 4, 2019, Proceedings.

Lecture Notes in Computer Science, vol. 11884, pp. 255–272. Springer (2019).

https://doi.org/10.1007/978-3-030-32505-3 15

[16] Arzt, S., Bodden, E.: Stubdroid: Automatic inference of precise data-flow

summaries for the android framework. In: 2016 IEEE/ACM 38th Inter-

national Conference on Software Engineering (ICSE). pp. 725–735 (2016).

https://doi.org/10.1145/2884781.2884816

[17] Bacon, D.F., Sweeney, P.F.: Fast static analysis of c++ virtual function calls.

In: Proceedings of the 11th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications. p. 324–341. OOPSLA

’96, Association for Computing Machinery, New York, NY, USA (1996).

https://doi.org/10.1145/236337.236371

162

Bibliography

[18] Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: Toward

a complete set of numerical abstractions for the analysis and verification of

hardware and software systems. Science of Computer Programming 72(1), 3–

21 (2008). https://doi.org/10.1016/j.scico.2007.08.001, special Issue on Second is-

sue of experimental software and toolkits (EST)

[19] Ball, T., Rajamani, S.K.: Slic: A specification language for interface checking (of

c). Tech. rep., Technical Report MSR-TR-2001-21, Microsoft Research (2001)

[20] Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An

overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T.

(eds.) Construction and Analysis of Safe, Secure, and Interoperable Smart

Devices. pp. 49–69. Springer Berlin Heidelberg, Berlin, Heidelberg (2005).

https://doi.org/10.1007/978-3-540-30569-9 3

[21] Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A.

(eds.) Computer Aided Verification, 16th International Conference, CAV 2004,

Boston, MA, USA, July 13-17, 2004, Proceedings. Lecture Notes in Computer

Science, vol. 3114, pp. 321–333. Springer (2004). https://doi.org/10.1007/978-3-

540-27813-9 25

[22] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,

C., Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: Using

static analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (feb

2010). https://doi.org/10.1145/1646353.1646374

[23] Brotsis, S., Kolokotronis, N., Limniotis, K., Bendiab, G., Shiaeles, S.: On

the security and privacy of hyperledger fabric: Challenges and open issues.

In: 2020 IEEE World Congress on Services (SERVICES). pp. 197–204 (2020).

https://doi.org/10.1109/SERVICES48979.2020.00049

[24] Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.

Ph.D. thesis, University of Guelph (2016), https://atrium.lib.uoguelph.
ca/xmlui/handle/10214/9769

[25] Buchman, E.: Byzantine fault tolerant state machine replication in any pro-

gramming language. In: Proceedings of the 2019 ACM Symposium on Princi-

ples of Distributed Computing. p. 546. PODC ’19, Association for Computing

Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3293611.3338023

[26] Burato, E., Ferrara, P., Spoto, F.: Security analysis of the owasp benchmark

with julia. Proceedings of ITASEC 17 (2017)

[27] Buro, S., Crole, R.L., Mastroeni, I.: On multi-language abstraction. In:

Pichardie, D., Sighireanu, M. (eds.) Static Analysis. pp. 310–332. Springer In-

ternational Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-65474-

0 14

163

https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9769

Chapter A | BIBLIOGRAPHY

[28] Buro, S., Mastroeni, I.: On the multi-language construction. In: Caires, L. (ed.)

Programming Languages and Systems. pp. 293–321. Springer International

Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 11

[29] Buterin, V.: Ethereum whitepaper (2013), available at https://ethereum.
org/en/whitepaper/

[30] Centonze, P., Naumovich, G., Fink, S.J., Pistoia, M.: Role-based ac-

cess control consistency validation. In: Proceedings of the 2006 Interna-

tional Symposium on Software Testing and Analysis. p. 121–132. ISSTA

’06, Association for Computing Machinery, New York, NY, USA (2006).

https://doi.org/10.1145/1146238.1146253

[31] Chatterjee, K., Goharshady, A.K., Pourdamghani, A.: Probabilistic

smart contracts: Secure randomness on the blockchain. In: IEEE In-

ternational Conference on Blockchain and Cryptocurrency, ICBC

2019, Seoul, Korea (South), May 14-17, 2019. pp. 403–412. IEEE (2019).

https://doi.org/10.1109/BLOC.2019.8751326

[32] Chen, I.Y., Johansson, F.D., Sontag, D.: Why is my classifier discriminatory?

In: Proceedings of the 32nd International Conference on Neural Information

Processing Systems. p. 3543–3554. NIPS’18, Curran Associates Inc., Red Hook,

NY, USA (2018), https://proceedings.neurips.cc/paper/2018/file/
1f1baa5b8edac74eb4eaa329f14a0361-Paper.pdf

[33] Chen, L.: Microservices: Architecting for continuous delivery and devops. In:

2018 IEEE International Conference on Software Architecture (ICSA). pp. 39–

397 (2018). https://doi.org/10.1109/ICSA.2018.00013

[34] Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision pro-

cedures for path feasibility of string-manipulating programs with com-

plex operations. Proc. ACM Program. Lang. 3(POPL), 49:1–49:30 (2019).

https://doi.org/10.1145/3290362

[35] Choi, T., Lee, O., Kim, H., Doh, K.: A practical string analyzer by the widening

approach. In: Kobayashi, N. (ed.) Programming Languages and Systems, 4th

Asian Symposium, APLAS 2006, Sydney, Australia, November 8-10, 2006, Pro-

ceedings. Lecture Notes in Computer Science, vol. 4279, pp. 374–388. Springer

(2006). https://doi.org/10.1007/11924661 23

[36] Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string

expressions. In: Cousot, R. (ed.) Static Analysis, 10th International Sym-

posium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings.

Lecture Notes in Computer Science, vol. 2694, pp. 1–18. Springer (2003).

https://doi.org/10.1007/3-540-44898-5 1

164

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://proceedings.neurips.cc/paper/2018/file/1f1baa5b8edac74eb4eaa329f14a0361-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1f1baa5b8edac74eb4eaa329f14a0361-Paper.pdf

Bibliography

[37] Commercio.network: Commercio.network - white paper (2022), https://
commercio.network/project/, accessed: March 9 2022

[38] Cortesi, A., Costantini, G., Ferrara, P.: A survey on product operators in ab-

stract interpretation. Electronic Proceedings in Theoretical Computer Science

129, 325–336 (sep 2013). https://doi.org/10.4204/eptcs.129.19

[39] Cortesi, A., Olliaro, M.: M-string segmentation: A refined abstract domain for

string analysis in c programs. In: Pang, J., Zhang, C., He, J., Weng, J. (eds.)

2018 International Symposium on Theoretical Aspects of Software Engineering,

TASE 2018, Guangzhou, China, August 29-31, 2018. pp. 1–8. IEEE Computer

Society (2018). https://doi.org/10.1109/TASE.2018.00009

[40] Cortesi, A., Zanioli, M.: Widening and narrowing operators for abstract in-

terpretation. Computer Languages, Systems & Structures 37(1), 24–42 (2011).

https://doi.org/10.1016/j.cl.2010.09.001

[41] Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static

analysis of string values. Software: Practice and Experience 45(2), 245–287

(2015). https://doi.org/10.1002/spe.2218

[42] Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)

[43] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fix-

points. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) Conference

Record of the Fourth ACM Symposium on Principles of Programming Lan-

guages, Los Angeles, California, USA, January 1977. pp. 238–252. ACM (1977).

https://doi.org/10.1145/512950.512973

[44] Cousot, P., Cousot, R.: Constructive versions of tarski’s fixed

point theorems. Pacific journal of Mathematics 82(1), 43–57 (1979).

https://doi.org/10.2140/pjm.1979.82.43

[45] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks.

In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the

Sixth Annual ACM Symposium on Principles of Programming Languages,

San Antonio, Texas, USA, January 1979. pp. 269–282. ACM Press (1979).

https://doi.org/10.1145/567752.567778

[46] Cousot, P., Cousot, R.: Abstract interpretation and application to logic

programs. The Journal of Logic Programming 13(2), 103–179 (1992).

https://doi.org/https://doi.org/10.1016/0743-1066(92)90030-7

[47] Cousot, P., Cousot, R.: Abstract interpretation frameworks.

Journal of Logic and Computation 2(4), 511–547 (08 1992).

https://doi.org/10.1093/logcom/2.4.511

165

https://commercio.network/project/
https://commercio.network/project/

Chapter A | BIBLIOGRAPHY

[48] Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N.

(ed.) Compiler Construction. pp. 159–179. Springer Berlin Heidelberg, Berlin,

Heidelberg (2002). https://doi.org/10.1007/3-540-45937-5 13

[49] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,

Rival, X.: The astreé analyzer. In: Sagiv, M. (ed.) Programming Languages

and Systems. pp. 21–30. Springer Berlin Heidelberg, Berlin, Heidelberg (2005).

https://doi.org/10.1007/978-3-540-31987-0 3

[50] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-

ables of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Conference

Record of the Fifth Annual ACM Symposium on Principles of Programming

Languages, Tucson, Arizona, USA, January 1978. pp. 84–96. ACM Press (1978).

https://doi.org/10.1145/512760.512770

[51] D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: Jagannathan,

S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January

20-21, 2014. pp. 541–554. ACM (2014). https://doi.org/10.1145/2535838.2535849

[52] Davis, M., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Lan-

guages: Fundamentals of Theoretical Computer Science. Elsevier (1994).

https://doi.org/10.1016/C2013-0-10567-3

[53] Davis, M., Sigal, R., Weyuker, E.J.: Computability, complexity, and languages:

fundamentals of theoretical computer science. Elsevier (1994)

[54] Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented pro-

grams using static class hierarchy analysis. In: Tokoro, M., Pareschi, R.

(eds.) ECOOP’95 — Object-Oriented Programming, 9th European Conference,

Åarhus, Denmark, August 7–11, 1995. pp. 77–101. Springer Berlin Heidelberg,

Berlin, Heidelberg (1995). https://doi.org/10.1007/3-540-49538-X 5

[55] Denning, D.E.: A lattice model of secure information flow. Commun. ACM

19(5), 236–243 (may 1976). https://doi.org/10.1145/360051.360056

[56] Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static

analyses at facebook. Communications of the ACM 62(8), 62–70 (2019).

https://doi.org/10.1145/3338112

[57] D’Silva, V.: Widening for Automata. Master’s thesis, Institut Für In-

formatik, Universität Zürich (2006), https://www.merlin.uzh.ch/
contributionDocument/download/2374

[58] ebuchman: Cosmos-sdk vulnerability retrospective: Security advisory jack-

fruit, october 12, 2021 (2021), https://forum.cosmos.network/t/cosmos-

166

https://www.merlin.uzh.ch/contributionDocument/download/2374
https://www.merlin.uzh.ch/contributionDocument/download/2374
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349

Bibliography

sdk-vulnerability-retrospective-security-advisory-jackfruit-
october-12-2021/5349, accessed: 23-12-2021

[59] Emrath, P.A., Padua, D.A.: Automatic detection of nondeterminacy in

parallel programs. In: Proceedings of the 1988 ACM SIGPLAN and

SIGOPS Workshop on Parallel and Distributed Debugging. p. 89–99. PADD

’88, Association for Computing Machinery, New York, NY, USA (1988).

https://doi.org/10.1145/68210.69224

[60] Ernst, M.D., Lovato, A., Macedonio, D., Spiridon, C., Spoto, F.: Boolean for-

mulas for the static identification of injection attacks in java. In: Davis, M.,

Fehnker, A., McIver, A., Voronkov, A. (eds.) Logic for Programming, Artificial

Intelligence, and Reasoning. pp. 130–145. Springer Berlin Heidelberg, Berlin,

Heidelberg (2015). https://doi.org/978-3-662-48899-7 10

[61] Ferrara, P.: A generic framework for heap and value analyses of object-oriented

programming languages. Theoretical Computer Science 631, 43–72 (2016).

https://doi.org/10.1016/j.tcs.2016.04.001

[62] Ferrara, P., Cortesi, A., Spoto, F.: Cil to java-bytecode translation for static

analysis leveraging. In: Proceedings of the 6th Conference on Formal Methods

in Software Engineering. p. 40–49. FormaliSE ’18, Association for Computing

Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3193992.3193994

[63] Ferrara, P., Mandal, A.K., Cortesi, A., Spoto, F.: Cross-programming language

taint analysis for the iot ecosystem. Electronic Communications of the EASST

77 (2019). https://doi.org/10.14279/tuj.eceasst.77.1104

[64] Ferrara, P., Mandal, A.K., Cortesi, A., Spoto, F.: Static analysis for discover-

ing iot vulnerabilities. Int. J. Softw. Tools Technol. Transf. 23(1), 71–88 (2021).

https://doi.org/10.1007/s10009-020-00592-x

[65] Ferrara, P., Negrini, L.: Sarl: Oo framework specification for static analysis.

In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.) Soft-

ware Verification. pp. 3–20. Springer International Publishing, Cham (2020).

https://doi.org/10.1007/978-3-030-63618-0 1

[66] Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for dum-

mies: Experiencing lisa. In: Proceedings of the 10th ACM SIGPLAN Inter-

national Workshop on the State Of the Art in Program Analysis. p. 1–6.

SOAP 2021, Association for Computing Machinery, New York, NY, USA (2021).

https://doi.org/10.1145/3460946.3464316

[67] Ferrara, P., Olivieri, L., Spoto, F.: Tailoring taint analysis to gdpr. In: Medina,

M., Mitrakas, A., Rannenberg, K., Schweighofer, E., Tsouroulas, N. (eds.) Pri-

vacy Technologies and Policy - 6th Annual Privacy Forum, APF 2018, Barcelona,

167

https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349

Chapter A | BIBLIOGRAPHY

Spain, June 13-14, 2018, Revised Selected Papers. Lecture Notes in Computer

Science, vol. 11079, pp. 63–76. Springer (2018). https://doi.org/10.1007/978-3-

030-02547-2 4

[68] Ferrara, P., Olivieri, L., Spoto, F.: Static privacy analysis by flow reconstruc-

tion of tainted data. Int. J. Softw. Eng. Knowl. Eng. 31(7), 973–1016 (2021).

https://doi.org/10.1142/S0218194021500303

[69] Foschini, L., Gavagna, A., Martuscelli, G., Montanari, R.: Hyperledger fabric

blockchain: Chaincode performance analysis. In: 2020 IEEE International Con-

ference on Communications, ICC 2020, Dublin, Ireland, June 7-11, 2020. pp. 1–

6. IEEE (2020). https://doi.org/10.1109/ICC40277.2020.9149080

[70] Fosdick, L.D., Osterweil, L.J.: Data flow analysis in software reliability. ACM

Comput. Surv. 8(3), 305–330 (sep 1976). https://doi.org/10.1145/356674.356676

[71] Furr, M., Foster, J.S.: Polymorphic type inference for the jni. In: Sestoft, P. (ed.)

Programming Languages and Systems. pp. 309–324. Springer Berlin Heidel-

berg, Berlin, Heidelberg (2006). https://doi.org/10.1007/11693024 21

[72] Furr, M., Foster, J.S.: Checking type safety of foreign function calls. ACM Trans.

Program. Lang. Syst. 30(4) (aug 2008). https://doi.org/10.1145/1377492.1377493

[73] Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982. pp.

11–20. IEEE Computer Society (1982). https://doi.org/10.1109/SP.1982.10014

[74] Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceed-

ings of the 1984 IEEE Symposium on Security and Privacy, Oakland, Califor-

nia, USA, April 29 - May 2, 1984. pp. 75–87. IEEE Computer Society (1984).

https://doi.org/10.1109/SP.1984.10019

[75] Grafberger, S., Guha, S., Stoyanovich, J., Schelter, S.: Mlinspect: A data dis-

tribution debugger for machine learning pipelines. In: Proceedings of the

2021 International Conference on Management of Data. p. 2736–2739. SIG-

MOD ’21, Association for Computing Machinery, New York, NY, USA (2021).

https://doi.org/10.1145/3448016.3452759

[76] Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Proceedings of

the 27th ACM SIGPLAN Conference on Programming Language Design and

Implementation. p. 376–386. PLDI ’06, Association for Computing Machinery,

New York, NY, USA (2006). https://doi.org/10.1145/1133981.1134026

[77] Guth, D.: A formal semantics of Python 3.3. Master’s thesis, University of Illi-

nois at Urbana-Champaign (2013), https://hdl.handle.net/2142/45275

168

https://hdl.handle.net/2142/45275

Bibliography

[78] Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle eco-

nomic growth? a critique of reinhart and rogoff. Cambridge Journal of Eco-

nomics 38(2), 257–279 (12 2013). https://doi.org/10.1093/cje/bet075

[79] Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39(12), 92–106

(dec 2004). https://doi.org/10.1145/1052883.1052895

[80] Hyperledger: Hyperledger fabric documentation, https://hyperledger-
fabric.readthedocs.io/en/release-2.2/blockchain.html#what-
is-hyperledger-fabric, accessed: 27-01-2022

[81] Inc, T.: What is tendermint: A note on determinism (2022),

https://docs.tendermint.com/master/introduction/what-is-
tendermint.html#a-note-on-determinism, accessed: 27-01-2022

[82] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for

static analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verifi-

cation. pp. 661–667. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).

https://doi.org/10.1007/978-3-642-02658-4 52

[83] Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of reusable

abstract domains for a multilingual static analyzer. In: Chakraborty, S.,

Navas, J.A. (eds.) Verified Software. Theories, Tools, and Experiments. pp. 1–18.

Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-

030-41600-3 1

[84] Khedker, U.P., Karkare, B.: Efficiency, precision, simplicity, and generality

in interprocedural data flow analysis: Resurrecting the classical call strings

method. In: Hendren, L. (ed.) Compiler Construction. pp. 213–228. Springer

Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-

78791-4 15

[85] Köhl, M.A.: An executable structural operational formal semantics for python.

CoRR abs/2109.03139 (2021), https://arxiv.org/abs/2109.03139

[86] Kwon, J.: Tendermint: Consensus without mining (2014), available at https:
//tendermint.com/static/docs/tendermint.pdf

[87] Kwon, J., Buchman, E.: Cosmos whitepaper (2019), available at https://v1.
cosmos.network/resources/whitepaper

[88] Leavens, G.T., Baker, A.L., Ruby, C.: Jml: a java modeling language. In: In For-

mal Underpinnings of Java Workshop ’98 (1998)

[89] Lee, S., Lee, H., Ryu, S.: Broadening horizons of multilingual static analysis:

Semantic summary extraction from c code for jni program analysis. In: Pro-

ceedings of the 35th IEEE/ACM International Conference on Automated Soft-

169

https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://docs.tendermint.com/master/introduction/what-is-tendermint.html#a-note-on-determinism
https://docs.tendermint.com/master/introduction/what-is-tendermint.html#a-note-on-determinism
https://arxiv.org/abs/2109.03139
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper

Chapter A | BIBLIOGRAPHY

ware Engineering. p. 127–137. ASE ’20, Association for Computing Machinery,

New York, NY, USA (2020). https://doi.org/10.1145/3324884.3416558

[90] Li, S., Tan, G.: Finding bugs in exceptional situations of jni programs. In: Pro-

ceedings of the 16th ACM Conference on Computer and Communications Se-

curity. p. 442–452. CCS ’09, Association for Computing Machinery, New York,

NY, USA (2009). https://doi.org/10.1145/1653662.1653716

[91] Logozzo, F.: Practical verification for the working programmer with codecon-

tracts and abstract interpretation. In: Jhala, R., Schmidt, D. (eds.) Verification,

Model Checking, and Abstract Interpretation. pp. 19–22. Springer Berlin Hei-

delberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 3

[92] Lv, P., Wang, Y., Wang, Y., Zhou, Q.: Potential risk detection system of hyper-

ledger fabric smart contract based on static analysis. In: IEEE Symposium on

Computers and Communications, ISCC 2021, Athens, Greece, September 5-8,

2021. pp. 1–7. IEEE (2021). https://doi.org/10.1109/ISCC53001.2021.9631249

[93] Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Co-

hen, A. (ed.) Compiler Construction - 23rd International Conference, CC

2014, Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings.

Lecture Notes in Computer Science, vol. 8409, pp. 197–217. Springer (2014).

https://doi.org/10.1007/978-3-642-54807-9 12

[94] McCloskey, B., Reps, T., Sagiv, M.: Statically inferring complex heap,

array, and numeric invariants. In: Cousot, R., Martel, M. (eds.) Static

Analysis. pp. 71–99. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).

https://doi.org/10.1007/978-3-642-15769-1 6

[95] Mell, P., Grance, T., et al.: The nist definition of cloud computing. National

Institute of Science and Technology, Special Publication 800(2011), 145 (2011)

[96] Meyer, B.: Object-oriented software construction, vol. 2. Prentice hall Engle-

wood Cliffs (1997)

[97] Midtgaard, J., Nielson, F., Nielson, H.R.: A parametric abstract domain for

lattice-valued regular expressions. In: Rival, X. (ed.) Static Analysis - 23rd In-

ternational Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Pro-

ceedings. Lecture Notes in Computer Science, vol. 9837, pp. 338–360. Springer

(2016). https://doi.org/10.1007/978-3-662-53413-7 17

[98] Miné, A.: The octagon abstract domain. Higher-order and symbolic computa-

tion 19(1), 31–100 (2006). https://doi.org/10.1007/s10990-006-8609-1

170

Bibliography

[99] Monat, R.: Static type and value analysis by abstract interpretation of Python

programs with native C libraries. Ph.D. thesis, Sorbonne Université (2021),

https://tel.archives-ouvertes.fr/tel-03533030

[100] Monat, R., Ouadjaout, A., Miné, A.: A multilanguage static analysis of python

programs with native c extensions. In: Drăgoi, C., Mukherjee, S., Namjoshi,

K. (eds.) Static Analysis. pp. 323–345. Springer International Publishing, Cham

(2021). https://doi.org/10.1007/978-3-030-88806-0 16

[101] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), available

at https://bitcoin.org/bitcoin.pdf

[102] Namaki, M.H., Floratou, A., Psallidas, F., Krishnan, S., Agrawal, A., Wu,

Y., Zhu, Y., Weimer, M.: Vamsa: Automated provenance tracking in data

science scripts. In: Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. p. 1542–1551. KDD

’20, Association for Computing Machinery, New York, NY, USA (2020).

https://doi.org/10.1145/3394486.3403205

[103] Negrini, L., Arceri, V., Ferrara, P., Cortesi, A.: Twinning automata and regu-

lar expressions for string static analysis. In: Verification, Model Checking, and

Abstract Interpretation: 22nd International Conference, VMCAI 2021, Copen-

hagen, Denmark, January 17–19, 2021, Proceedings. p. 267–290. Springer-

Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/978-3-030-67067-2 13

[104] Nerode, A.: Linear automaton transformations. Proceedings of the American

Mathematical Society 9(4), 541–544 (1958). https://doi.org/10.2307/2033204

[105] Olivieri, L., Spoto, F., Tagliaferro, F.: On-Chain Smart Contract Verification

over Tendermint. In: Bernhard, M., Bracciali, A., Gudgeon, L., Haines, T.,

Klages-Mundt, A., Matsuo, S., Perez, D., Sala, M., Werner, S. (eds.) Finan-

cial Cryptography and Data Security. FC 2021 International Workshops -

CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5, 2021, Revised

Selected Papers. Lecture Notes in Computer Science, vol. 12676, pp. 333–347.

Springer (2021). https://doi.org/10.1007/978-3-662-63958-0 28

[106] Olivieri, L., Tagliaferro, F., Arceri, V., Ruaro, M., Negrini, L., Cortesi, A., Ferrara,

P., Spoto, F., Talin, E.: Ensuring determinism in blockchain software with golisa:

An industrial experience report. In: Proceedings of the 11th ACM SIGPLAN

International Workshop on the State Of the Art in Program Analysis. p. 23–29.

SOAP 2022, Association for Computing Machinery, New York, NY, USA (2022).

https://doi.org/10.1145/3520313.3534658

[107] Palsberg, J., Schwartzbach, M.I.: Object-oriented type inference. In: Confer-

ence Proceedings on Object-Oriented Programming Systems, Languages, and

171

https://tel.archives-ouvertes.fr/tel-03533030
https://bitcoin.org/bitcoin.pdf

Chapter A | BIBLIOGRAPHY

Applications. p. 146–161. OOPSLA ’91, Association for Computing Machinery,

New York, NY, USA (1991). https://doi.org/10.1145/117954.117965

[108] Park, C., Im, H., Ryu, S.: Precise and scalable static analysis of jquery

using a regular expression domain. In: Ierusalimschy, R. (ed.) Proceed-

ings of the 12th Symposium on Dynamic Languages, DLS 2016, Am-

sterdam, The Netherlands, November 1, 2016. pp. 25–36. ACM (2016).

https://doi.org/10.1145/2989225.2989228

[109] Pinto, P., Carvalho, T., ao Bispo, J., Ramalho, M.A., ao M.P. Cardoso, J.: Aspect

composition for multiple target languages using lara. Computer Languages,

Systems & Structures 53, 1–26 (2018). https://doi.org/10.1016/j.cl.2017.12.003

[110] Politz, J.G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J.,

Chitipothu, A., Krishnamurthi, S.: Python: The full monty. In: Proceed-

ings of the 2013 ACM SIGPLAN International Conference on Object Ori-

ented Programming Systems Languages & Applications. p. 217–232. OOP-

SLA ’13, Association for Computing Machinery, New York, NY, USA (2013).

https://doi.org/10.1145/2509136.2509536

[111] Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software

engineering: Challenges and new directions. In: 2017 IEEE/ACM 39th Interna-

tional Conference on Software Engineering Companion (ICSE-C). pp. 169–171

(2017). https://doi.org/10.1109/ICSE-C.2017.142

[112] Preda, M.D., Giacobazzi, R., Lakhotia, A., Mastroeni, I.: Abstract symbolic

automata: Mixed syntactic/semantic similarity analysis of executables. In:

Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2015, Mumbai, India, January 15-17, 2015. pp. 329–341. ACM (2015).

https://doi.org/10.1145/2676726.2676986

[113] Rabin, M.O., Scott, D.: Finite automata and their decision prob-

lems. IBM Journal of Research and Development 3(2), 114–125 (1959).

https://doi.org/10.1147/rd.32.0114

[114] Reinhart, C.M., Rogoff, K.S.: Growth in a time of debt. American Economic

Review 100(2), 573–78 (May 2010). https://doi.org/10.1257/aer.100.2.573

[115] Rice, H.G.: Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical society 74(2), 358–366 (1953).

https://doi.org/10.2307/1990888

[116] Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans-

actions on Programming Languages and Systems (TOPLAS) 29(5), 26—-es (08

2007). https://doi.org/10.1145/1275497.1275501

172

Bibliography

[117] Rival, X., Yi, K.: Introduction to static analysis: an abstract interpretation per-

spective. Mit Press (2020)

[118] Sabelfeld, A., Myers, A.: Language-based information-flow security.

IEEE Journal on Selected Areas in Communications 21(1), 5–19 (2003).

https://doi.org/10.1109/JSAC.2002.806121

[119] Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-

valued logic. ACM Trans. Program. Lang. Syst. 24(3), 217–298 (may 2002).

https://doi.org/10.1145/514188.514190

[120] Sharir, M., Pnueli, A., et al.: Two approaches to interprocedural data flow analy-

sis. New York University. Courant Institute of Mathematical Sciences . . . (1978)

[121] Shatnawi, A., Mili, H., Abdellatif, M., Guéhéneuc, Y.G., Moha, N., Hecht, G.,

Boussaidi, G.E., Privat, J.: Static code analysis of multilanguage software sys-

tems. ArXiv (2019). https://doi.org/10.48550/ARXIV.1906.00815

[122] Spoto, F.: Nullness analysis in boolean form. In: 2008 Sixth IEEE International

Conference on Software Engineering and Formal Methods. pp. 21–30 (2008).

https://doi.org/10.1109/SEFM.2008.8

[123] Spoto, F.: The julia static analyzer for java. In: Rival, X. (ed.) Static

Analysis. pp. 39–57. Springer Berlin Heidelberg, Berlin, Heidelberg (2016).

https://doi.org/10.1007/978-3-662-53413-7 3

[124] Spoto, F.: A java framework for smart contracts. In: Bracciali, A., Clark, J.,

Pintore, F., Rønne, P.B., Sala, M. (eds.) Financial Cryptography and Data

Security - FC 2019 International Workshops, VOTING and WTSC, St. Kitts,

St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers. Lec-

ture Notes in Computer Science, vol. 11599, pp. 122–137. Springer (2019).

https://doi.org/10.1007/978-3-030-43725-1 10

[125] Spoto, F.: Enforcing determinism of java smart contracts. In: Bernhard, M.,

Bracciali, A., Camp, L.J., Matsuo, S., Maurushat, A., Rønne, P.B., Sala, M. (eds.)

Financial Cryptography and Data Security - FC 2020 International Workshops,

AsiaUSEC, CoDeFi, VOTING, and WTSC, Kota Kinabalu, Malaysia, February

14, 2020, Revised Selected Papers. Lecture Notes in Computer Science, vol.

12063, pp. 568–583. Springer (2020). https://doi.org/10.1007/978-3-030-54455-

3 40

[126] Spoto, F., Mesnard, F., Payet, E.: A termination analyzer for java bytecode

based on path-length. ACM Trans. Program. Lang. Syst. 32(3) (mar 2010).

https://doi.org/10.1145/1709093.1709095

173

Chapter A | BIBLIOGRAPHY

[127] Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S., Tripp, O., Berg, R.:

F4f: Taint analysis of framework-based web applications. In: Proceed-

ings of the 2011 ACM International Conference on Object Oriented Pro-

gramming Systems Languages and Applications. p. 1053–1068. OOPSLA

’11, Association for Computing Machinery, New York, NY, USA (2011).

https://doi.org/10.1145/2048066.2048145

[128] Subotić, P., Milikić, L., Stojić, M.: A static analysis framework for data sci-

ence notebooks. In: 2022 IEEE/ACM 44th International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP). pp. 13–22 (2022).

https://doi.org/10.1145/3510457.3513032

[129] Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P.,

Gagnon, E., Godin, C.: Practical virtual method call resolution for java.

In: Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications. p. 264–280. OOPSLA

’00, Association for Computing Machinery, New York, NY, USA (2000).

https://doi.org/10.1145/353171.353189

[130] Tan, G., Morrisett, G.: Ilea: Inter-language analysis across java and c. In:

Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages and Applications. p. 39–56. OOP-

SLA ’07, Association for Computing Machinery, New York, NY, USA (2007).

https://doi.org/10.1145/1297027.1297031

[131] Teixeira, G., Bispo, J.a., Correia, F.F.: Multi-language static code analysis

on the lara framework. In: Proceedings of the 10th ACM SIGPLAN Inter-

national Workshop on the State Of the Art in Program Analysis. p. 31–36.

SOAP 2021, Association for Computing Machinery, New York, NY, USA (2021).

https://doi.org/10.1145/3460946.3464317

[132] Toman, J., Grossman, D.: Concerto: A framework for combined con-

crete and abstract interpretation. In: Proc. ACM Program. Lang. vol. 3.

Association for Computing Machinery, New York, NY, USA (jan 2019).

https://doi.org/10.1145/3290356

[133] Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint

analysis of web applications. In: Hind, M., Diwan, A. (eds.) Proceedings of the

2009 ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. pp. 87–97. ACM

(2009). https://doi.org/10.1145/1542476.1542486

[134] Urban, C.: What programs want: Automatic inference of input data specifica-

tions. CoRR abs/2007.10688 (2020), https://arxiv.org/abs/2007.10688

174

https://arxiv.org/abs/2007.10688

Bibliography

[135] Urban, C., Miné, A.: A review of formal methods applied to machine learning.

ArXiv abs/2104.02466 (2021). https://doi.org/10.48550/arXiv.2104.02466

[136] Urban, C., Müller, P.: An abstract interpretation framework for input data us-

age. In: Ahmed, A. (ed.) Programming Languages and Systems. pp. 683–710.

Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-

319-89884-1 24

[137] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.:

Soot: A java bytecode optimization framework. In: CASCON First Decade

High Impact Papers. p. 214–224. CASCON ’10, IBM Corp., USA (2010).

https://doi.org/10.1145/1925805.1925818

[138] Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis,

S. (ed.) Implementation and Application of Automata - 18th International

Conference, CIAA 2013, Halifax, NS, Canada, July 16-19, 2013. Proceedings.

Lecture Notes in Computer Science, vol. 7982, pp. 16–23. Springer (2013).

https://doi.org/10.1007/978-3-642-39274-0 3

[139] Vongsingthong, S., Smanchat, S.: Internet of things: a review of applications

and technologies. Suranaree Journal of Science and Technology 21(4), 359–374

(2014)

[140] Wang, H., Chen, S., Yu, F., Jiang, J.R.: A symbolic model checking ap-

proach to the analysis of string and length constraints. In: Huchard,

M., Kästner, C., Fraser, G. (eds.) Proceedings of the 33rd ACM/IEEE In-

ternational Conference on Automated Software Engineering, ASE 2018,

Montpellier, France, September 3-7, 2018. pp. 623–633. ACM (2018).

https://doi.org/10.1145/3238147.3238189

[141] Wang, S., Zhang, C., Su, Z.: Detecting nondeterministic payment bugs in

ethereum smart contracts. Proc. ACM Program. Lang. 3(OOPSLA) (oct 2019).

https://doi.org/10.1145/3360615

[142] Wei, F., Lin, X., Ou, X., Chen, T., Zhang, X.: Jn-saf: Precise and effi-

cient ndk/jni-aware inter-language static analysis framework for security vet-

ting of android applications with native code. In: Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security. p.

1137–1150. CCS ’18, Association for Computing Machinery, New York, NY,

USA (2018). https://doi.org/10.1145/3243734.3243835

[143] Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential risks of

hyperledger fabric smart contracts. In: 2019 IEEE International Workshop

on Blockchain Oriented Software Engineering (IWBOSE). pp. 1–10 (2019).

https://doi.org/10.1109/IWBOSE.2019.8666486

175

[144] Yang, K., Huang, B., Stoyanovich, J., Schelter, S.: Fairness-aware in-

strumentation of preprocessing˜pipelines for machine learning. In:

Workshop on Human-In-the-Loop Data Analytics (HILDA’20) (2020).

https://doi.org/10.1145/3398730.3399194

[145] Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string

analysis for vulnerability detection. Formal Methods Syst. Des. 44(1), 44–70

(2014). https://doi.org/10.1007/s10703-013-0189-1

	Abstract
	Riassunto
	Contents
	List of Figures
	List of Tables
	I Introduction
	Introduction
	Static analysis
	Multilanguage systems
	An illustrative example

	Libraries and frameworks
	Analyzing strings
	Methodology
	Contribution and publications
	Thesis structure

	Preliminaries
	Sets and ordered structures
	Sets
	Relations and functions
	Partitions
	Ordered structures

	Abstract interpretation
	Fixpoints
	Galois connections
	Fixpoint abstraction
	Convergence acceleration

	Automata and abstractions
	Finite state automata notation
	A finite state automata abstract domain

	Related work
	Multilanguage analysis
	Modeling libraries and frameworks
	String analysis

	II Multilanguage analysis
	Towards a multilanguage analyzer: LiSA
	Overall architecture
	The language of the analyzer
	Control flow graphs
	Symbolic expressions

	The analysis state
	Lattice
	Semantic Domain
	Value Domain
	Heap Domain
	Abstract State
	Analysis State

	Interprocedural Analysis
	Call Graph

	Frontends
	Modeling library behavior: SARL
	Julia
	The SARL Language
	Experimental Results

	Multilanguage analysis
	LiSA for teaching
	Conclusion

	Smart contracts analysis
	Related Work
	Blockchain frameworks
	Sources and sinks of non-determinism
	Sources of non-determinism
	Sinks of non-determinism

	Flow analysis for non-determinism detection
	An Overview on Information Flow
	GoLiSA for non-determinism detection
	Detection of Sources and Sinks in GoLiSA

	Experimental Evaluation
	Quantitative evaluation
	Qualitative evaluation
	Limits

	Commercio.network: an industrial case study
	Commercio.network
	Detecting non-determinism on Commercio.network

	Conclusion

	Analysis of data science programs
	Related work
	A concrete semantics for transformations
	Obtaining the semantics of Python code

	The dataframe graph domain
	Abstract semantics

	A first application: inferring dataframes shape
	An early experiment using PyLiSA
	Conclusion

	III String analysis
	String analysis
	The IMP language
	The Tarsis abstract domain
	Abstract domain and widening
	String abstract semantics of IMP

	Experimental Results
	Precision of the domains on test cases
	Evaluation on realistic code samples
	Efficiency

	Conclusion

	IV Conclusion
	Conclusion
	Thesis summary
	Future directions

	Appendices
	Soundness proofs of Tarsis's semantics
	Soundness of Concat
	Soundness of Length
	Soundness of Contains
	Soundness of IndexOf
	Soundness of Replace
	Soundness of Substring

	Bibliography

