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Abstract

The problem of sequence identification or matching (i.e. the process of determin-
ing the origin, function, and mutations of a DNA sequence) is relevant for many
important tasks in Computational Biology, such as metagenomics and pangenome
analysis. Due to the complex nature of such analyses and the large scale of the
reference collections, a resource-efficient solution is critical. To solve this prob-
lem, we propose a lossless compressed data structure for colored de Bruijn graphs,
which can be regarded as maps from k-mers to their color sets. The color set of a
k-mer is the collection of all the identifiers of the references in which that k-mer
can be found. The solutions developed in this thesis exploit the repetitiveness of
the color sets when indexing large collections of related genomes, extracting re-
peating patterns and encoding them once, instead of redundantly replicating their
representation. Experimental results show that these representations substantially
improve over the space effectiveness of the best previous solutions while impacting
only marginally the efficiency of the queries.

The work carried out during this thesis led to a publication in the Joural of
Computational Biology [1].
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Chapter 1

Introduction

Bioinformatics is an interdisciplinary field of science that aims to develop software
tools for understanding biological data, particularly when the datasets are mas-
sive. It combines not only Biology and Computer Science but also Mathematics,
Statistics, Physics, and Chemistry to analyze and interpret this type of informa-
tion. Thanks to the advancements made in DNA sequencing technology, this field
of research has gained a lot of interest in recent years, finding an increasing num-
ber of applications as time passes, such as sequence analysis [2, 3], proteomics
(the study of proteins) [4, 5], drug discovery and development [6, 7], personalized
medicine [8, 9], only to name a few. All of these work with many different kinds
of data, like sequences of nucleotides that form DNA and RNA strands, sequences
of amino acids making up proteins, as well as full biochemical pathways.

In this thesis, we will focus on the applications working with genomic data,
specifically with pangenomes: collections of DNA sequences belonging to a par-
ticular species, population, or closely related group [10]. When dealing with this
kind of data, a key operation is to determine the set of references — also called
color set — in which individual nucleotide sequences1 appear. Since these target
sequences are set to have a fixed length k, they are called k-mers. Such operation
can be formalized into the following problem:

Problem 1 (Colored k-mer indexing). Let R = {R1, ..., RN} be a collection
of DNA sequences, called references. Each reference Ri is a string over the
DNA alphabet Σ = {A,C,G,T}. We want to build a data structure that

1Nucleotides are the basic building blocks of DNA. They are composed of a sugar molecule,
a phosphate group, and a nucleobase, which can be one of adenine, cytosine, guanine, and
thymine. In a DNA molecule, they are paired as A-T and C-G. Since individual reads come
from both strands when sequencing genomes, we consider a nucleotide sequence and its reverse
complement equal. The reverse complement is the inverted sequence, with the bases swapped
with its pair complement. For example CACTCG is the reverse complement of CGAGTG.
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allows us to retrieve the set ColorSet(x) = {i|x ∈ Ri} as efficiently as
possible for any k-mer x ∈ Σk. If the k-mer x does not occur in any reference,
ColorSet(x) = ∅.

To solve this problem efficiently, it is essential to rely on the specific properties of
Problem 1. We know that consecutive k-mers share k − 1 long overlaps, obtained
by removing the first or the last character of the k-mer, and that k-mers that
co-occur in the same set of references have the same color sets. A combinatorial
object that elegantly captures these properties is the colored de Bruijn Graph,
which will be the main topic of this document.

1.1 Contributions

The goal of this thesis is to introduce two novel compressed representations for
the colored de Bruijn Graph, as well as provide a comprehensive overview of the
most recent and influential solutions for Problem 1, with particular interest on the
specific case in which R is a pangenome.

To take advantage of the properties of the problem, we exploit recent develop-
ments in indexing de Bruijn graphs that split the data structure into two collabo-
rating entities: a k-mer dictionary and the collection of the color sets. In this work,
we will focus on the representation of the second one. The two new representations
mentioned above are based on partitioning the color sets into patterns that repeat
across the collection of all color sets. These patterns are encoded only once in the
data structure, avoiding unnecessary redundancy for their representation. This
is a completely new approach compared to previous methods in the literature, as
many of them consider color sets individually, or encode such repeating patterns
in different ways that significantly harm query speed.

1.2 Structure

We will look at the basic concepts regarding de Bruijn graphs in Chapter 3: how
they are defined, built, and applied to computational biology problems. Then we
will review related work and the state-of-the-art in Chapter 4. In Chapter 5 we
describe our new representations for the color sets, compare them to the state-of-
the-art, and present a simple framework to build these new data structures. Finally
in Chapter 6 we will draw our conclusions, demonstrating the power of exploiting
the repetitiveness of shared patterns, and discuss some promising future work.
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Chapter 2

Preliminaries

Before starting the conversation on de Bruijn graphs and their implementations,
it is important to introduce some important tools that will be used across the
document.

2.1 Elias Gamma and Delta Codes

Elias δ codes [11] is a variable-length prefix code that maps positive integers into
bit sequences, such that no sequence is a prefix of another.

To define them it is necessary to introduce first unary codes: prefix codes
computed as

u(x) = 0x−1.1

for any x > 0. The notation 0n means that the character 0 repeats n times. For
example, u(1) = 1, u(2) = 0.1, u(3) = 00.1, u(4) = 000.1, and so on. It is easy to
see that these codes take |u(x)| = x bits.

Unary codes can be used as prefixes for gamma (γ) codes, that are more useful
for larger values of x. The γ-code of x is

γ(x) = u(|x|).[x]|x|−1

where [x]ℓ are the ℓ least significant bits of x. This means that the binary length
|x| = ⌊log2(x)⌋ of x is encoded in unary, followed by the binary representation of
x without its highest bit. For example, γ(1) = γ(1) = 1, γ(2) = γ(10) = 01.0,
γ(2) = γ(11) = 01.1, γ(4) = γ(100) = 001.00, and so on. Gamma codes take
|γ(x)| = 2⌊log2 x⌋ − 1 = O(log2 x) bits.

Finally, delta (δ) codes can be obtained similarly to gamma codes, by using
γ(|x|) as the prefix of the representation:

δ(x) = γ(|x|).[x]|x|−1 .
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For example δ(1) = δ(1) = 1, δ(2) = δ(10) = 010.0, δ(2) = δ(11) = 010.1,
δ(4) = δ(100) = 011.00, and so on. Delta codes are shorter than gamma codes for
x ≥ 32 and take |δ(x)| = |x|+ 2⌊log2 |x|⌋ = log2 x+O(log2 log2 x) bits.

2.2 Constant Time Rank and Select Queries over

Bitvectors

Let B[1..n] be a bitvector of length n. When working with bitvectors two of the
most important operations are:

• Rank1(B, i), that returns the number of 1 bits in B[1..i].

• Select1(B, i), that returns the position of the i-th 1 bit in B.

With a space overhead of just o(n) bits, it is possible to execute both operations
in constant time [12, 13, 14].

2.2.1 Rank

A näıve solution to perform Rank in constant time is to simply store a vector R,
such that R[i] = Rank1(B, i). This solution however requires n log2 n additional
bits, much more than o(n).

The same approach can be improved by precomputing some tables that store
parts of the answer to every query, in a way that these parts can be extracted in
O(1) time and the total size of the tables is o(n) bits. First, we divide B into
superblocks of size s = (log2 n)/2 and build a table Rs[0, ⌊n/s⌋] where Rs[i] =
Rank1(B, i · s). Then, each superblock is divided into blocks of size b = (log n)/2
and a new table Rb[0, ⌊n/b⌋] is created, where Rb[i] = Rank1(B, i·b)−Rs[⌊i·b/s⌋].
In other words, Rb[i] is the number of 1s up to the i-th block, from the beginning
of its superblock. To compute Rank1(B, i) we add up:

• Rs[⌊i/s⌋], the number of 1s up to the start of the superblock.

• Rb[⌊i/b⌋], the number of 1s from the start of the superblock up to the start
of the block.

• The number of 1s from the start of the block to i.

The last value can be computed in constant time by precomputing a third table
Rp with the ranks of all possible blocks of b bits. Since the size of all three tables is
o(n), we need Rs+Rb+Rp = o(n) extra bits to perform Rank queries in constant
time.
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2.2.2 Select

A similar partitioning approach can be applied to Select operations to reach
constant time execution with o(n) extra bits.

First, note that Rank can be used to perform a binary search of i: if
Rank1(B, n/2) > i, then the result of the query is in the first half of the
bitvector, otherwise, it is in the second half.

As for Rank, faster queries can be obtained by precomputing some of the
answers. This can be done by splitting the bitvector into blocks of s = log22 n bits;
if a block is larger than s log22 n bits then it is considered long and the result for
each Select inside the block is stored in an array, otherwise, it is short and the
result can be found using binary search. Note that if a block is long then the space
needed to store the Select answers is small compared to its length, whereas if
it is short the binary search will be fast. Short blocks can be further partitioned
into miniblocks that in turn can be short or long. The answers to long miniblocks
can be stored as before, while a precomputed table of results can be used for short
ones.

2.3 Elias-Fano Codes

The Elias-Fano [15, 16] representation is a simple way to represent monotone non-
decreasing sequences in a very compact way, supporting constant time random
access and search operations.

Let A be a non-decreasing sequence of n integers from the universe [0, ...,m).
Each integer is first encoded in binary using ⌈log2m⌉ bits. Then, the binary
representation is split into two parts: the higher part consisting of the first ⌈log2 n⌉
bits and the lower part with the remaining ℓ = ⌈log2m⌉ − ⌈log2 n⌉ ≤ ⌈log2(m/n)⌉
bits. The lower parts of all elements are concatenated in the order they appear and
explicitly stored in a bitvector of ℓn bits. The higher part is constructed starting
from a bitvector containing n 0s, one for each integer that can be represented with
⌈log2 n⌉ bits. Then, before the i-th 0 are added as many 0s as the number of times
i appears as the high part of an integer. Since there are n 0s at the start and n
1s are added (one per element in the list), the high part takes 2n bits, for a total
space of 2n+ ℓn bits.

Example Let A = {2, 3, 5, 7, 11, 13, 24}, so n = |A| = 7 and m = 24 + 1 = 25
(as m is not included in the universe). The binary representation of each integer
is ⌈log2 25⌉ = 5 bits long, of which the high part takes ⌈log2 7⌉ = 3 bits. Thus, A
can be represented as
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A High bits Low bits
2 000 10
3 000 11
5 001 01
7 001 11
11 010 11
13 011 01
24 110 00

The low bits are concatenated into

10.11.01.11.11.01.00

and the high bits are stored as the following bitvector:

110.110.10.10.0.0.10.0

To query the i-th number, where i ∈ [1, n] the high and low parts must be
retrieved separately. Getting the low part is trivial, as it consists of reading ℓ bits
starting from the bit in position (i−1) ·ℓ, as all the elements have the same length.
The high part can be computed by counting the number of 0s before the i-th 1 in
the high part bitvector. This reduces to executing j = Select1(i)− i. The high
part is thus the binary representation of j using ⌈log2 n⌉ bits.

Since both operations can be executed in constant time, as explained in the
previous section, we can state that random access using Elias-Fano encoding takes
O(1) time.

Example To read the number at position i = 5, first we take the low part

10.11.01.11.11.01.00

then we compute the high part as:

110.110.10.10.0.0.10.0

Select1(5)− 5 = 7− 5 = 2.

Since 2 can be expressed in binary as 010 using ⌈log2 7⌉ = 3 bits, the result is

010.112 = 1110

6



Chapter 3

Colored de Bruijn Graphs

The process of determining the exact sequence of nucleotides in a DNA molecule
is called sequencing. Sanger et al. [17] developed the first widespread sequencing
technique in 1977. Said technique works by generating multiple copies of the target
DNA, terminating the duplication reaction with special markers at random points
to create strands of different lengths. These are then sorted by their length and
their tail marker is identified using radioactive or fluorescent labeling. In this way,
it is possible to decode very long DNA sequences with an exceptional accuracy of
99.99%, thus not requiring complex data analysis.

Despite its advantages, Sanger sequencing has two main drawbacks: it is a slow
and costly process. For this reason, Next Generation Sequencing (NGS) technolo-
gies, such as Illumina [18], PacBio [19], and Nanopore [20], have been developed in
recent years. These adopt a very different design with respect to Sanger method,
based on massive parallel processing techniques: instead of processing one DNA
fragment at a time, NGS technologies read millions of DNA fragments simultane-
ously, offering a much higher throughput at the cost of worse accuracy and shorter
sequences. Because of this, NGS methods require highly efficient assembly algo-
rithms to reconstruct the full DNA sequence and correct any errors the process
might introduce, as well as compact data structures to store the results.

These motivations led to the rise in popularity of the de Bruijn Graph data
structure, which is now widely used to address the problems of genome assembly,
correction, and storage [21, 22, 23, 24]. In the following sections, we will see why
de Bruijn Graphs became so important in the field of computational biology. We
will focus on how their definition, properties, applications, and which software
tools can be used to build them.
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3.1 Definitions

A de Bruijn Graph (dBG for short) is a special type of directed graph, named
after the mathematician Nicolaas Govert de Bruijn, who first described it.

Definition 1 (de Bruijn Graph). Let Σ be an alphabet, and K =
{
x ∈ Σk

}
be a set of k-mers. The de Bruijn Graph of K is a directed graph G(K, E)
whose nodes are the k-mers in K and edges (u, v) ∈ E connect two nodes if
and only if the last k − 1 symbols of the source u are equal to the first k − 1
symbols of the destination v (Figures 1a, 1b).

Note that the edge set E is implicitly defined by the set of nodes, and can
therefore be omitted from subsequent definitions. Likewise, a path in the dBG
spells the string obtained by concatenating all k-mers along said path, without
repeating the overlaps. In particular, unary (i.e. non-branching) paths can be
collapsed into single nodes spelling strings referred to as unitigs, as it can be seen
in Figure 1c. The dBG arising from this step is called compacted dBG and is
indicated with G(U), where U = {u1, . . . , um} is the set of unitigs. Henceforth,
whenever a dBG is mentioned, we assume it is already compacted unless otherwise
specified. Note that, if |K| = n, it holds that m ≤ n. In practice, the number of
unitigs is much smaller than the number of k-mers.

It’s easy to see that, by setting Σ = {A,C,G,T} and building the sets K and
U starting from a DNA reference R, the dBG is a very suited data structure for
performing sequence analysis operations and a variety of other applications.

De Bruijn Graphs can also be augmented by storing various types of addi-
tional data, to perform more complex tasks or to produce better results on simpler
operations. Some types of metadata are:

• abundances: the number of times k-mers appear in one or multiple genomes

• positions: where each k-mer appears in the genomes

• colors: given a set of references, in which subset of them each k-mer appears

Among these, we will focus our attention on the last modification.

Definition 2 (colored de Bruijn Graph). Let R be the collection of the refer-
ences {R1, ..., RN}. We will use the terms reference and color interchangeably.
A colored de Bruijn Graph (c-dBG) is a dBG that stores, for each k-mer x,
the value ColorSet(x), which is the set {i|x ∈ Ri} of all references where
the k-mer x is present.

8



(a) Edge in a dBG

(b) An example dBG

(c) A compacted dBG

Figure 1: In panel (a), an edge in a dBG for k = 5. Notice that the end of the source
node is equal to the start of the destination node. In panel (b), an example dBG for
k = 3. Panel (c) represents a dBG collapsed by using unitigs. The part highlighted in
red is the graph in panel (b).

Figure 2: An example c-dBG for k = 3, with three colors highlighted (1, 5, 8)

The compaction step performed on the classical dBG can also be applied to the
c-dBG. This time, however, only non-branching paths with nodes having the same
color set are collapsed into unitigs. We refer to a compacted c-dBG as G(U , C).
Figure 2 shows the same dBG as Figure 1b with some of the color sets highlighted.

From now on, we will focus only on the compacted variants of the dBG.

Table 1 summarizes all the notation introduced in this Section that will be
used throughout this document.

3.2 Properties

Unitigs in a c-dBG have the following properties:

1. Unitigs spell references in R. Each distinct k-mer of R appears once,
as a substring of some unitig. By construction, each reference Ri ∈ R
can be spelled out by some concatenation of the unitigs (accounting for the

9



Symbol Meaning
K set of all k-mers
U set of all unitigs
R set of all references
C set of all color sets

G(U) compacted de Bruijn Graph
G(U , C) compacted colored de Bruijn Graph

n number of distinct k-mers
m number of unitigs
N number of colors
z number of distinct color sets

Table 1: dBG essential notation

overlaps). Joining k-mers into unitigs reduces their storage requirements,
as fewer overlaps need to be saved, and accelerates the lookup of k-mers in
consecutive order.

2. Unitigs are monochromatic. The k-mers belonging to the same unitig
share the same color set. We write x ∈ ui to indicate that k-mer x is a
substring of unitig ui. This means that ColorSet(ui) denotes the color set
of each k-mer x ∈ ui, thus a single color set should be represented for each
unitig rather than for each k-mer, further reducing the c-dBG size.

3. Unitigs co-occur. Distinct unitigs often have the same color set, meaning
that they appear in the same set of references. We indicate with z the
number of distinct color sets C = {C1, ..., Cz}. Note that z ≤ m and that, in
practice, there are always many more unitigs than color sets.

It follows that exploiting all three properties could be highly beneficial to query
efficiency and space effectiveness.

3.3 Construction

In the last decade, many algorithms for the construction of compacted dBGs were
developed. Computing the unitigs might seem trivial, as it can be performed with
a linear time algorithm: first, all k-mers are inserted in a hash table, where they
are mapped to all of their successor and predecessor characters. Then, each k-mer
is extended left or right if and only if there is exactly one predecessor or successor,
respectively. Despite the algorithm’s simplicity, the problem’s practical difficulty
comes from the potential size of the input reads, which may not fit in the machine’s

10



main memory. For this reason, efficient dBG compaction algorithms are heavily
engineered to use external memory and multithreading.

We will now present some of the most recent and influential solutions to this
problem.

3.3.1 TwoPaCO

TwoPaCo [25] is a scalable, low-memory algorithm for the direct construction of
compacted dBG from a set of complete genomes.

It works by splitting the k-mers into ℓ partitions and searching for junctions,
nodes in the graph that have an in-degree or an out-degree greater than one, or
k-mers that are the start or the end of an input string. Each round considers one of
the partitions and proceeds as follows. It starts by marking each node as a junction,
using a bit-vector, and then performs two passes to unmark non-junction nodes.
The first pass uses a Bloom filter [26] to store the edges of candidate junction
k-mers and unmarks nodes that do not satisfy the definition of junction.

Definition 3 (Bloom filter). A Bloom filter (BF) is an approximate data
structure representing a set S, supporting insertion and membership oper-
ations. It guarantees a bounded one-sided error on membership queries: if
x ∈ S, the query returns YES with probability 1, otherwise if x /∈ S it returns
NO with probability 1− p, for some user-defined parameter p ∈ [0, 1].

It is implemented as a bitvector B[0, w] of length w, together with t inde-
pendent and uniform hash functions h1, ..., ht, mapping values to [0..w]. The
length w is computed based on the maximum capacity of the filter and false
positive rate p. To insert a value x, we set B[hi(x)] ← 1 for all i = 1, ..., t.
To answer a membership query for the value x, we return YES if and only if∧k

i=1B[hi(x)] is 1.

Bloom filters take very little space, but can generate false positives on mem-
bership queries. This does not affect the correctness of the TwoPaCo algorithm, as
all correct junctions will never be unmarked, but leaves some non-junction nodes
marked. A second pass is thus performed using a hash table to eliminate the ex-
cess junctions, which will take considerably less space than it would have done in
a single pass, thanks to the filtering of the first one.

This algorithm is highly parallelizable, as each split can be processed simulta-
neously, and each pass can be made multithreaded by using data structures that
support concurrent writes.
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3.3.2 BCALM2

BCALM2 [27] is a parallel algorithm that distributes the input based on a min-
imizer hashing technique. Minimizers [28, 29] are substrings of k-mers of fixed
length g < k — essentially g-mers of k-mers — that are increasingly being used in
various fields of Information Retrieval, such as text or genomic data search. These
g-mers are used as a compacted representation of sequences, and they are chosen
so that they minimize a certain value, be it the lexicographic order or the result
of a hash function.

BCALM2 takes in input a set of k-mers and compacts them in three stages.
First, k-mers are distributed into one or two buckets each, then each bucket is
compacted separately, and finally k-mers that were put into two buckets are glued
together. In the distribution phase, the left and right minimizers of each k-mer
are computed using multiple threads. The left minimizer is the minimizer of the
first k − 1 characters of the k-mer; conversely, the right minimizer only considers
its last k−1 characters. Then, k-mers are put inside the buckets (files on the disk)
corresponding to the minimizers’ identifiers; k-mers having the same left and right
minimizers are written on a single bucket. The second step follows, where buckets
are concurrently compacted, such that if two k-mers share exactly one edge, they
are joined in a single string. In the last step, strings in different buckets that share
a k-mer on opposite ends are glued together using a union-find set. The final result
corresponds to the set of unitigs of the dBG.

3.3.3 Cuttlefish2

Cuttlefish2 [30] is a dBG construction algorithm applicable on raw sequencing
of short reads and assembled references, based on the modeling of vertices as
Deterministic Finite Automata (DFA).

It works by first enumerating the set of edges of the graph, from which the
set of vertices is extracted. Next, a Minimal Perfect Hash Function (MPHF) [31]
over the vertices is constructed, mapping vertices to [1, n]. The MPHF is a space-
efficient way to associate information to the vertices. Each vertex is then modeled
as a DFA, where its state is the number of left/right neighbors (zero, one, or more
than one). In this way, just enough information to build the unitigs is stored
per vertex. With a final traversal on the vertices and the DFA states, k-mers are
stitched together if the current k-mer does not branch forward and if the following
k-mer does not branch backward, constructing the maximal unitigs.

Cuttlefish2 performs many I/O operations to store the intermediate results to
disk to keep the working memory low. Like BCALM2 it does not compress data
on disk, further increasing the time required by writing and reading from the disk.
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3.3.4 GGCAT

GGCAT [32] is the latest and fastest algorithm for compacting dBGs, achieving
great speedups compared to BCALM2 and Cuttlefish2.

Contrary to its predecessors, GGCAT merges the k-mer counting step with
unitig construction, by computing them inside each bucket. In this way, not all
k-mers have to be stored, as only the unitigs are written in a compressed format
to disk, further reducing the space requirements. It works by splitting references
into substrings of consecutive k-mers that share the same minimizer and keeping
track of the characters immediately preceding and succeeding the substring (called
linking characters). Then, each substring is stored in a group based on its mini-
mizer. For each group, a list of unique k-mers is computed, and for each unused
k-mer x a new string z := x is initialized. z will be extended left or right as long
as it is a unitig: for the first and last (k−1)-mer each possible extension (either A,
C, G or T) is looked for inside the group, using a hashmap. If exactly one match
y is found, y is marked as used, z is extended left or right, respectively, and the
process is repeated until a match is not unique or a linking character is found, in
both directions. In the former case, the unitig is considered complete, otherwise
in the latter, intermediate unitigs from different groups are merged together into
maximal unitigs, based on their left and right ending k-mers.

In this way, GGCAT manages to outspeed all other compaction algorithms
being 3× to 21× faster than Cuttlefish2.

3.4 Layout

To solve Problem 1, the goal is to implement the map x→ ColorSet(x) as effi-
ciently as possible for any k-mer x, in terms of both memory usage and query time.
The efficiency of any solution using a c-dBG is directly related to its encoding.

As many information retrieval problems, also Problem 1 can be solved using an
inverted index [33], a data structure that stores the association between terms
(k-mers) and the sorted lists of the identifiers of the documents that contain such
terms (color sets). These sorted lists are called inverted list and in the context
of this problem, each ColorSet(x) ∈ C is the inverted list of the k-mer x.

Let L be the inverted index for R. L stores the ColorSet(x) for each k-mer
x ∈ R. In order to implement the map from k-mers to color sets efficiently, all the
distinct k-mers are stored losslessly in a dictionary D. To be useful to this problem,
D must be associative, meaning that it has to support the operation Lookup(x),
which returns ⊥ if k-mer x /∈ D or a unique identifier in [n] = {1, ..., n} otherwise,
where n = |K| is the number of distinct k-mers in R.

Problem 1 can thus be solved thanks to the interplay between Lookup(x) and
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Figure 3: A representation of the modular index layout, assuming the c-dBG was built
from N = 16 references, showing the dictionary D and the inverted index L. Note that
unitigs mapping to the same color set are consecutive in the dictionary.

ColorSet(x): the index stores the color sets in some compressed form, sorted
by the value returned by Lookup(x).

See Figure 3 for a schematic index representation.

3.5 Applications

With the advancements in NGS techniques, genome assembly [21] became one
of the most important tasks in genome biology. Its objective is to obtain a com-
plete genome sequence given a set of DNA fragments, called reads, generated by
the sequencing technologies. The algorithm used in conjunction with Sanger se-
quencing, the Overlap-Layout-Consensus, is too complex, as it requires solving
a Hamiltonian path problem — known to be NP-hard — followed by an align-
ment step. On the other hand, when using a dBG, the same problem becomes
much easier. The first step is splitting the reads into k-mers and building a dBG
with them. After that, assembling a complete genome requires finding a path
that traverses each edge exactly once, thus considering all possible overlaps. This
is the well-known Eulerian path problem, solvable with a polynomial time algo-
rithm. Moreover, given the dBG overlapping properties, the alignment step can
be skipped completely, as it is intrinsic in the graph construction.

Another operation that can be easily performed using a dBG is read cor-
rection [34]. Sequencing technology is not perfect, so it is possible for DNA
reads to have some errors, like missing or misread nucleotides. To prevent these
inaccuracies from impacting other operations, many dBG construction algorithms
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filter out or correct k-mers that are considered wrong. This is mostly done using
a consensus method: all k-mers that appear less than a set threshold are removed
or corrected, as k-mers generated by sequencing errors appear much rarer than
correct ones.

A fundamental challenge of NGS techniques is the alignment of sequencing
reads to one or more reference genomes. Read alignment is among the most
resource-consuming steps of high throughput sequencing analysis, and thanks to
the rapid increase of available full DNA sequences, many new applications re-
quire aligning reads to one or more reference genomes. For example, species and
pathogens can be identified or characterized by aligning reads to some reference
genomes [35]. Similarly, it can be used in microbiome research to determine the
composition of microbial communities [36]. If the reference genome is missing, the
alignment is called de novo assembly [37, 38], a process in which k-mers are
joined without prior knowledge of the correct sequence or order. Most state-of-
the-art generic aligners are based on a seed-and-extend approach, which works in
two steps:

1. Seeding: the k-mers of the reads to align are chosen as starting points of the
research.

2. Extension: the reads are aligned to the regions surrounding each seed, to
determine the most likely read positions.

Seeding, despite accelerating the process, induces a trade-off between speed and
accuracy: the generation of a large number of seeds will most likely yield the best
alignment, but using an exact alignment algorithm will take a significant amount
of time to compute. On the other hand, using fewer seeds, the alignment process
will be faster, but with a higher probability of missing the target [39].

To avoid this compromise, newer approaches focus on the pseudoalignment of
reads. Contrary to classical alignment, the result of a pseudoalignment operation is
a color set without specific coordinates mapping each base in the read to particular
positions in each of the transcripts [40]. In other words, it reports only whether
a read matches a reference sequence or not, without necessarily returning the
genomic coordinates of the match [41]. Pseudoalignment algorithms mainly fall
into two categories: exhaustive methods, that retrieve the color set of every k-mer
on a given read, or skipping heuristics, that can jump over k-mers that are likely
to be uninformative.
As the definition of pseudoalignment is essentially the same as Problem 1, when
discussing and evaluating the querying capabilities of the indexes described in
Chapters 4 and 5, we will focus on this operation.
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One important use of alignment techniques is pangenome analysis, the study
of the complete set of genes belonging to the same species, rather than focusing on
a single individual. Pangenomes have revolutionized DNA analysis by providing
a more comprehensive understanding of genetic diversity within a species. This is
particularly valuable as it can express a wide range of genetic variations, including
rare and unique sequences that may be absent from a particular reference genome.

When performing this kind of analysis, the first step is aligning all genes with
each other. Then, the aligned sequences are compared to find similarities and
discrepancies. In this way, it is possible to find useful genomic data of a species,
like core genomes — the set of genes that are present in all individuals of the species
— and dispensable genomes —made of genes shared by only a subset of the strains.
While the first ones are typically involved in essential cellular functions, the others
often contribute to multiple variations, such as antibiotic resistance, environment
adaptations, etc. To perform pangenome analysis, it is not sufficient to rely on
color sets alone, but it is also necessary to store the position of each k-mer relative
to its reference. Since the main topic of this work are colored de Bruijn graphs,
we leave the discussion on positional dBGs as a possibility for future work.
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Chapter 4

Related Work

In the last few years, many solutions based on c-dBGs have been proposed to solve
the colored k-mer indexing problem (Problem 1). While all of them share the same
dictionary and inverted lists structure, their approaches to encoding these two data
structures are very different. However, in the majority of the cases, none exploits
the unitig properties described in Section 3.2

In this chapter, we will describe and compare some of these solutions, with
particular attention to whether or not they follow the three c-dBG properties,
their space effectiveness, and query efficiency.

4.1 Mantis

Mantis [42, 43] is a de Bruijn Graph index based on Counting Quotient Filters [44]
(CQF). A CQF is a compact representation of a multiset — in the same way a
Bloom Filter is a compact representation of a set — that can answer counting
queries with a one-sided error, i.e. the count returned by a CQF is never smaller
than the correct one.

Mantis follows the modular layout described in Section 3.4, where the CQF is
the dictionary mapping k-mers to color sets, and the inverted index is a table of
bitvectors. In particular, the CQF is repurposed to store not how many times a
k-mer is repeated inside the input, but to store its color set identifier. In other
words, to map a k-mer x to the color set with id c, x has to be inserted c times in
the CQF (this operation can be done with a single instruction).
In its first implementation, the bitvectors encoding the color sets were compressed
using RRR compression [45], but in its most space-efficient variant, the color sets
are expressed differentially as edits performed on the branches of an approximate
minimum spanning tree over the color sets.

Regarding the properties of the c-dBG, Properties 1 and 2 are not exploited, as
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the individual k-mers are stored and mapped to their color sets through the CQF.
Property 3, is followed, as color sets are stored only once in the inverted index.
However, looking up consecutive k-mers has no locality due to the employment of
hash functions in the CQF.

4.2 COBS

COBS [46] is an inverted index designed for compressing the k-mers of DNA sam-
ples. Additionally, it works with any text document and allows for approximate
pattern-matching queries, achieved through the usage of Bloom filters.

Internally, COBS is just a collection of |R| = N Bloom filters, where the i-
th one represents the approximate membership of the k-mers to Ri. However,
since the false positive probability depends on the reference size, where larger
references lead to denser — and thus more error-prone — bitvectors, the COBS
index adapts the size of the BFs to the references to keep the false positive rate
constant. This is obtained by sorting and partitioning the input collections into
shards of approximately the same size to build sub-indices of different sizes.

COBS does not exploit any specific property among the ones stated in the
previous section, so it is not optimized for any particular dataset. Unitigs are
broken into their constituent k-mers and indexed separately, and because of the
usage of Bloom filters, COBS suffers the same locality problem of Mantis.

4.3 Bifrost

Bifrost [47] is a c-dBG implementation that offers a broad range of functions, such
as indexing, editing, and querying. The dictionary D comprises a unitig array and
a dynamic hash table, mapping the minimizers of the k-mers to their positions in
the unitigs. Color sets are stored for each unitig u in a |u| × N binary matrix,
where rows represent k-mers and columns represent colors. To limit their memory
usage, these matrices are stored in different compressed indexes based on their
sparseness: 64-bit words for tuples or very small matrices, Roaring bitmaps [48]
otherwise.

Only the first property is utilized among the previously mentioned ones, as
unitigs are stored in the unitig array. The other two are ignored because of the
way colors are stored: the color set of each k-mer is stored individually in the bit
matrix, possibly being repeated multiple times. It is also immediate to see that,
if unitigs were monochromatic, a simple array would suffice to store the colors.
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4.4 MetaGraph

MetaGraph [49] provides several data structures for storing k-mer sets (D) and
many general schemes to compress metadata associated with k-mers (L). Among
the different dictionary structures, the default one is the BOSS table [50], a data
structure very similar to an XBWT [51], that is an extension of the Burrows-
Wheeler transform [52]. Colors are represented in an n × N matrix, that can be
compressed in multiple ways, row or column-wise. The best-performing inverted
index uses a Multi-BRWT representation, an n-ary Wavelet Tree [53] that allows
vertical splitting of matrices into more than two sub-matrices.

Being based on a BWT, the BOSS data structure does not exploit Property
1, since the k-mers are arranged in colexicographical order and not in the order of
appearance in the unitigs.

4.5 Themisto

Themisto [41] is one of the latest proposed indices to represent c-dBGs.
The index structure is divided into two parts, as depicted in Figure 3. The set

of k-mers D is stored in a Spectral Burrows-Wheeler Transform [54] (SBWT), a
variant of the BOSS data structure, while the inverted index L stores the color
sets of some “key k-mers” using different encodings based on the sparseness of the
color sets (i.e. the ratio |Ci|/N). In particular:

• sparse sets are stored as sorted sequences of color identifiers, where each
identifier uses ⌈log2 z⌉ bits;

• dense sets are encoded with bit maps of length z, where a 1 in position i
denoted the presence of color i, or its absence otherwise.

As for the BOSS data structure, the SBWT disregards Property 1. This trans-
lates to an overhead of log2(z) bits per key k-mer to associate its color set. Note
however that this requires dedicated storage per-k-mer, thus also failing to exploit
Property 2.

Table 2 visually summarizes the properties of the indexes discussed in this
section.

4.6 State of the Art

To the best of our knowledge, the only solution that exploits all three properties
is the Fulgor index. It first maps k-mers to unitigs in a dictionary, implemented
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Index Property 1 Property 2 Property 3
Mantis ✓
COBS
Bifrost ✓
MetaGraph ✓
Themisto ✓
Fulgor ✓ ✓ ✓

Table 2: Comparison of the c-dBG implementations properties. Fulgor will be described
in Section 4.6

using SSHash, then maps unitigs to their color sets, compressing them using a
density-based approach.

4.6.1 Dictionary: Sparse and Skew Hashing (SSHash)

SSHash [55] is a dictionary specifically tailored for k-mers, based on minimizers.
In particular, it exploits two statistical properties of k-mer minimizers, precisely
those of being sparse and skewly distributed (hence the name).

Given a set K of all distinct k-mers from a large DNA string (or collection of
strings), it supports two operations:

• Lookup(x), that returns an unique integer 0 ≤ i < n if x ∈ K or i = −1
otherwise;

• Access(i), that extracts the k-mer x for which Lookup(x) = i.

SSHash is also optimized for streaming queries, which are Lookup queries for
multiple consecutive k-mers. As stated in Section 3.1, the set of K can be com-
pacted into a set of U , from which it is possible to construct the compacted cdBG
G(U). The strings in U form the natural basis for a space-efficient dictionary, as
|U| ≤ |K|, and because we are guaranteed that there are no duplicate k-mers in
U .

Given a k-mer x, an integer g ≤ k, and a total order relation on all g-mers,
the first step is to compute the minimizer of x. Typically — for efficiency reasons
— the total order is given by a (pseudo) random hash function h. In other words,
the minimizer of x is its substring of length g that minimizes the value of h.

The popularity of minimizers in sequence analysis is given by the fact that
consecutive k-mers tend to have the same minimizer. This means there are far
fewer minimizers than k-mers if g is not too small. Given a string of any length,
be it a path in the dBG or a query sequence, a super-k-mer is a maximal sequence
of consecutive k-mers sharing the same minimizer. There are approximately (k −
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g + 2)/2 times less super-k-mers than k-mers. This means that a super-k-mer of
length K is a space-efficient representation of its constituent K − k + 1 k-mers
since it takes 2K/(K − k + 1) bits/k-mer.

The dictionary data structure has the following layout:

• The input strings (the unitigs) are written one after the other in a vector,
using ⌈log2Σ⌉ = 2 bits per base.

• We also store the endpoints of the strings to avoid the detection of alien k-
mers in a sorted integer sequence of length m. This sequence is compressed
using Elias-Fano and takes m ⌈log2(

∑m
i |ui|/m)⌉+ 2m+ o(m) bits.

• Let Z be the set of all minimizers and K the number of super-k-mers. Since
a minimizer can appear more than once, we have that |Z| ≤ K. Given a
minimizer r, Br is the bucket of the minimizer r, i.e. the set of all super-k-
mers with the same minimizer r.

We build a minimal perfect hash function (MPHF) f for Z, for which
f(r) ∈ [0, |Z|): given a minimizer r, the function returns a unique integer,
representing its ‘bucket identifier’. We then keep an array Sizes [0, |Z| + 1),
where Sizes [f(r)] is the number of super-k-mers before bucket Br (i.e. the
array contains the prefix-sums of the sizes of the buckets). The Sizes array
is also compressed using Elias-Fano.

• The absolute offsets of the super-k-mers, used to identify them, are stored
in an array Offsets [0, K), in the order given by f . For a minimizer r such
that Sizes [f(r)] = s, its |Br| offsets are written consecutively, in order, in
Offsets [s, s+ |Br|).

Figure 4 shows the different components just described.

Remember that a k-mer and its reverse complement are considered to be iden-
tical. This means that if a k-mer x is not found by the Lookup algorithm, there
is still the possibility to find its reverse complement x̂. Therefore, the algorithm
should search first for x and then for x̂, doubling the query time in the worst case.
To overcome this issue, a different minimizer computation is used to make sure
that only one bucket is inspected: select the minimum between the minimizer of
x and x̂. In this way, it is guaranteed that a k-mer and its reverse complement
belong to the same bucket. This solution leads to a greater number of distinct
minimizers used, thus a higher space usage but faster query time.

Example (Figure 4) In this example, the input of the dictionary is made up of
N = 4 strings, visually separated by a ‘.’ for the sake of clarity. In total, there are
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Figure 4: A schematic representation of an SSHash dictionary, for k = 31 and g = 8.
Reproduced, with permission, from [55].

405 bases and 405−N(k − 1) = 405− 4 · (31− 1) = 285 k-mers for k = 31, since
the last k − 1 bases of a string (grey characters) are not addressable as they are
too short to form a k-mer. There are |Z| = 24 minimizers for g = 8 and K = 28
super-k-mers, thus the Sizes array has a length of |Z|+ 1 = 25 and Offsets has a
size of K = 28.

The figure also shows the lookup for a k-mer x, whose minimizer r is highlighted
in bold font. The function f returns the identifier of r as f(r) = 5. Knowing this,
the bucket size is computed: |Br| = e − s = Sizes [5 + 1] − Sizes [5] = 9 − 7 = 2,
meaning that there are two super-k-mers to consider. The offsets of those two
super-k-mers are Offsets [s] = Offsets [7] = 9 and Offsets [s+ 1] = Offsets [8] = 255
respectively. To find the k-mer x we must scan the 2 super-k-mers starting at
Strings [9] and Strings [255]. The k-mer x is ultimately found in the second super-k-
mer at position w = 8, so starting at the character with offset 255+8 = 263. Since
we are in the third string, we have to remove the non-addressable characters of the
first two strings to obtain the identifier of the k-mer, that is 263−(31−1)·(3−1) =
263− 60 = 203.

The efficiency of the Lookup query depends on the size |Br| of the bucket
of a minimizer. For this reason, it would be best if the number of super-k-mers
inspected was a constant amount. This can be done by exploiting the skew prop-
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erty of k-mers: most minimizers appear just once, and relatively few repeat many
times.

To do so, two fixed quantities are introduced, ℓ and L, with 0 ≤ ℓ < L. We
have that the number of buckets whose size is larger than 2ℓ is small for a proper
choice of ℓ. Also, assume, without loss of generality, that 2L is smaller or equal to
the largest bucket size. For each i ∈ [ℓ, L], let Si be the set of all k-mers belonging
to buckets of size s ∈ [2i, 2i+1). For each set Si we build an MPHF fi. Given a
k-mer x ∈ Si, we can store the identifier of the super-k-mer containing it in an
integer vector V [0, |Si|) — where |Si| ≤ 2i+1 — at position fi(x). Note that thanks
to the skew distribution, these additional components take very little space, while
granting constant time searches. In this way, Lookup(x) works as follows:

1. Compute the minimizer r of x and the values of s = Sizes[f(r)] and e =
Size[f(r) + 1]. Bucket r has thus size |Br| = e− s.

2. Let b = ⌈log2(e− s)⌉. If b ≤ ℓ the bucket is small, so the process follows as
explained earlier. Otherwise, we know that x (if present) belongs to some
partition i.

3. In the second case, retrieve the super-k-mer identifier q = Vi[fi(g)] and search
for x in the super-k-mer whose offset is Offsets [s+ q].

In this way, the number of accesses made to Strings is limited to 2ℓ.

4.6.2 Fulgor

Fulgor [56] is a colored de Bruijn graph index powered by SSHash and GGCAT. It
follows the same structure described in Section 3.1: a k-mer dictionary D and an
inverted index L for the colors. The dictionary is implemented using SSHash for
two main reasons: firstly, it exploits both unitig Properties 1 and 2, and secondly,
because a query returns (among other values) the UnitigID(x) = i of the queried
k-mer x.

The map from unitigs to color sets exploits another key property of SSHash:
the unitigs it stores internally can be permuted in any order, without impacting
the dictionary’s correctness or efficiency. In particular, unitigs are sorted by their
ColorSetID(ui), so that all unitigs having the same color set are stored con-
secutively in SSHash. To compute the ColorSetID(ui) all that is required is a
Rank1 query over a bitvector B[1..m], where:

B[i] =


1 if i < m ∧ColorSetID(ui) ̸= ColorSetID(ui+1)

1 if i = m

0 otherwise

.
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Figure 5: Schematic Fulgor representation of the cdBG in Figure 3. Reproduced, with
permission, from [56]

In other words, the bitvector has |C| = z bits set, each on the last unitig be-
longing to the same color set. Since the Rank1 operation can be implemented
in O(1) time (see Section 2.2.1), we can compute the color id of the unitig as
ColorSetID(ui) = Rank1(i, B)+1 in constant time (see Section 2.2). The pro-
cess of finding the color set of a k-mer x is represented in Figure 5 and explained
in the following example.

Example (Figure 5). First, the query Lookup(x) is performed on SSHash,
which returns the id of the k-mer together with UnitigID(x) = 7. Then,
Rank1(7, B) + 1 is computed to find the id of the color set. There are five 1s in
B[1, 7), so ColorSetID(x) = 5 + 1 = 6.

The inverted index L is a collection of sorted integer sequences {C1, ..., Cz}.
These are compressed using different strategies based on the density of the sequence
Ci to be compressed, similarly to how it was done for Themisto (Section 4.5):

1. Sparse color set (|Ci|/N < 1/4): the differences between consecutive integers
are computed and represented via the universal Elias δ code (see Section 2.1).

2. Very Dense color set (|Ci|/N > 3/4): the complementary set of Ci, Ci =
{j ∈ [1..N ] | j /∈ Ci} is computed. The density of Ci is certainly less than
1/4, so it can be compressed as a sparse color set.
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3. Dense color sets, that do not belong to the previous categories, are stored
as a bitvector b[1..N ], where b[j] = 1 if j ∈ Ci, and b[j] = 0 otherwise.

Theorem 1: The selected thresholds for the density-based encoding strategy de-
scribed above minimize the number of bits required to store the sets using the
chosen encodings.

Proof. We start by calculating the upper limit of the sizes of the different encod-
ings. Let Coste(Ci) be the number of bits of the color set Ci, with the subscript
e being either S or VD, for sparse and very dense sets respectively.

The size taken by dense sets is trivial, as there are exactly N bits in the
bitvector, one for each color.

Let G = {g1, ..., g|Ci|} be the the gaps of the sparse set Ci = {c1, ..., c|Ci|}, with
gi = ci − ci−1 and g1 = c1. Using Elias δ-codes is possible to store each gap gi
using ⌈log2(gi + 1)⌉+ 2⌈log2 log2(gi + 1)⌉ bits, so

CostS(Ci) =

|Ci|∑
i=1

(⌈log2(gi + 1)⌉+ 2⌈log2 log2(gi + 1)⌉) .

We know that — using Jensen’s inequality [57] — for a concave function f and
x1 + . . .+ xn = x, the sum

∑
i f(xi) is maximized when each xi = x/n. Since the

sum of all gaps is at most N and the logarithm function is concave, we can apply
Jensen’s inequality to both left and right operands of the sum, obtaining

CostS(Ci) <

|Ci|∑
i=1

(⌈log2(N/|Ci|)⌉+ 2⌈log2 log2(N/|Ci|)⌉)

= |Ci| log2
(

N

|Ci|

)
+ 2|Ci| log2 log2

(
N

|Ci|

)
.

The same reasoning can be made for very dense sets, changing the number of
elements in the set to N − |Ci|:

CostVD(Ci) < (N − |Ci|) log2
(

N

N − |Ci|

)
+ 2(N − |Ci|) log2 log2

(
N

N − |Ci|

)
.

Since |Ci|/N < 1/4 for a sparse set, its maximum cost becomes:

CostS(Ci) = |Ci| log2
(

N

|Ci|

)
+ 2|Ci| log2 log2

(
N

|Ci|

)
<

N

4
log2 (4) +

N

2
log2 log2 (4)

=
N

2
+

N

2
= N.
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Thus the cost of a sparse color set encoded with δ-codes is strictly smaller than
N , so it is better than just using a bitvector.

The same process can be applied to very dense sets to obtain the same result,
by noticing that if |Ci|/N > 3/4, then N − |Ci| < N/4.

The compressed representations are then concatenated into a single bitvector,
and an additional sequence, offsets [1..z], is used to store where each sequence
begins. This sequence is compressed using Elias-Fano encoding (Section 2.3).

Up to date, Fulgor is the only cdBG index that takes advantage of all unitig
properties (Section 3.2). k-mers are stored in the order they appear in the unitigs
inside SSHash, with k-mers having different colors belonging to different unitigs
(Properties 1 and 2). Color sets are stored only once, without ever repeating
(Property 3), and are mapped to their relative unitigs through the bitvector B.

As we will see in the following section, this really makes the difference in
experimental results, both in terms of space efficiency and query time.

4.7 Experimental Results

In this section, we will show and compare the experimental results of COBS,
MetaGraph, Themisto, and Fulgor. We fixed the k-mer length to k = 31. All
experiments were run on a machine equipped with Intel Xeon Platinum 8276L
CPUs (2.20GHz), 500 GB of RAM, and running on Linux 4.15.0.

Both Themisto and COBS were built using the default parameters as suggested
by their authors: with option -d 20 for Themisto for better space effectiveness,
using shards of at most 1024 references having Bloom filters with a false positive
rate of 0.3 and one hash function to accelerate lookup for COBS. MetaGraph
indexes were built with the relaxed row-diff BRWT data structure.

Datasets Experiments were run using the following pangenomes of bacteria:

• 3,682 Escherichia Coli (EC) genomes from NCBI [58]

• different collections of Salmonella Enterica (SE) from the “661K” collection
by Blackwell et al. [59]

• 30,691 Gut Bacteria (GB) genomes, assembled from human gut samples,
published by Hiseni et al. [60]

Table 3 outlines some statistics about these collections.
Note how the GB dataset has the highest number of k-mers and the smallest

average color set size (≈ 44 integers). This is because the dataset is much more
diverse than the others, being composed of different bacterial species.
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Genomes EC SE GB
Number of colors (N) 3,682 5,000 10,000 50,000 100,000 150,000 30,691
Distinct color sets (z) ×106 5.59 2.69 4.24 13.92 19.36 23.61 227.80
Integers in color sets ×109 5.74 5.77 15.68 133.49 303.53 490.04 10.04
Average color set size ×103 1.03 2.14 3.70 9.69 15.68 20.76 0.04
k-mers in dBG (n) ×106 170.65 104.69 239.88 806.23 1,018.69 1,194.44 13,936.86
Unitigs in dBG (m) ×106 9.31 4.95 8.24 30.64 41.16 49.60 566.39

Table 3: Statistics for the tested collections, with k = 31

Dataset
COBS MetaGraph Themisto Fulgor
Total dBG Color sets Total dBG Color sets Total dBG Color sets Total

EC 7.53 0.10 0.23 0.33 0.22 1.85 2.08 0.29 1.36 1.65
SE-5k 9.11 0.07 0.19 0.26 0.14 1.29 1.43 0.16 0.59 0.75
SE-10k 18.68 0.13 0.38 0.51 0.32 3.50 3.81 0.35 1.66 2.01
SE-50k 88.61 0.36 1.95 2.31 1.07 32.42 33.48 1.25 17.03 18.29
SE-100k 173.58 0.45 3.50 3.95 1.35 75.94 77.28 1.71 40.71 42.43
SE-150k 265.49 NA NA NA 1.58 125.16 126.74 2.02 68.61 70.65
GB 21.23 5.23 4.77 10.00 18.33 30.88 49.21 21.29 15.54 36.83

Table 4: Index spaces in GB, broken down to space required for indexing the k-mers in
the dBG (in order, BOSS for MetaGraph, SBWT for Themisto, and SSHash for Fulgor),
and the data structures needed to encode the color sets and map them to the k-mers.

4.7.1 Index size

Table 4 reports the total on disk index size of the different methods evaluated.
COBS, despite being approximate, performs considerably worse than all of the

others, except for the GB collection. This is likely because of the great diversity
of that data, which causes the exact indexes to spend a considerable fraction of
their total size on the representation of the k-mer dictionary. On the other hand,
COBS does not utilize a dictionary structure, so, in this particular case, it can
outperform Themisto and Fulgor.

Metagraph is consistently the smallest index, most of the time taking more than
an order of magnitude less space than its competitors. Despite this remarkable
achievement, its on-disk size does not reflect the working memory required for
performing queries, as it will be shown in Section 4.7.2. Notice also how we were
not able to construct the index for SE-150k since the construction required more
resources than the ones offered by the machine it was run on.

Finally, we can see that Fulgor improves on the space usage of Themisto in
all the inputs considered, bringing a 1.3× reduction on the GB case and a 1.8×
reduction on the SE pangenomes.
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Dataset Hit rate
COBS MetaGraph-B MetaGraph-NB Themisto Fulgor

h:mm:ss GB mm:ss GB h:mm:ss GB h:mm:ss GB mm:ss GB

EC 98.99% 45:11 34.93 22:00 30.44 1:05:41 0.40 3:40 2.46 2:10 1.67
SE-5k 89.49% 38:34 41.93 14:14 36.54 20:32 0.33 3:50 1.82 1:10 0.80
SE-10k 89.71% 1:01:14 84.20 28:15 92.18 43:40 0.61 7:35 4.16 2:20 2.06
SE-50k 91.25% 3:54:18 408.82 NA NA 4:40:03 2.72 42:02 33.14 12:00 18.24
SE-100k 91.41% 8:07:29 522.56 NA NA 9:40:06 4.82 1:22:00 75.93 24:00 42.20
SE-150k 91.52% 7:47:14 522.63 NA NA NA NA 2:00:13 124.27 37:00 70.55
GB 92.91% 34:45 225.57 28:55 15.86 22:05 9.91 1:20 48.47 1:10 36.01

Table 5: Total query time and memory used by the process (maximum RSS) as reported
by /usr/bin/time -v, using 16 threads. For this experiment, the output is written to
/dev/null, to avoid recording I/O overhead.
The “B” query mode of MetaGraph corresponds to the batch mode (with default batch
size), while “NB” corresponds to the non-batch query mode.

4.7.2 Query efficiency

Table 5 reports the query times of the indexes on a high-hit workload, i.e. when
more than 90% of the queries have a non-empty result. Specifically, the measured
times are for performing a pseudoalignment operation and are relative to a second
run of each experiment, where indexes are loaded from the disk cache. There are
various pseudoalignment algorithms, such as full-intersection or threshold-union.
This experiment will focus on the former: given a query string Q, we consider it as
a set of k-mers. Let K(Q) = {x ∈ Q|ColorSet(x) ̸= ∅} be the set of all query k-
mers also present in the index. The full intersection method computes the intersec-
tion between the color sets of all the k-mers in K(Q), i.e.

⋂
x∈K(Q) ColorSet(x).

The queries consist of all FASTQ records in the first read file of the following
accessions: SRR1928200 for EC, SRR801268 for SE, and ERR321482 for GB, each
file containing many millions of reads.

COBS is generally much slower than the other indexes, except for MetaGraph
in non-batch mode. This is likely because the input collections are partitioned into
shards of references, in order to build Bloom filters of different sizes and thus save
space. At query time, however, a k-mer lookup has to be resolved by every shard
and individual results combined.

As stated in the previous section, it is not the case with all indexes that the size
of the index on disk is a good metric for the memory required to actually query the
index. Specifically, for MetaGraph in batch mode (B), the required memory can
exceed the index size by up to 2 orders of magnitude, resulting in the exhaustion
of available memory in several tests and the inability to complete the queries. On
the other hand, Fulgor, Themisto, and MetaGraph when not executed in batch
mode (NB) require only a small constant amount of working memory beyond the
size of the index present on the disk.
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Dataset
COBS MetaGraph Themisto Fulgor

h:mm GB h:mm GB h:mm GB h:mm GB

EC 0:03 6 0:46 149 0:19 17 0:06 17
SE-5k 0:09 8 0:47 191 0:11 13 0:04 13
SE-10k 0:17 16 1:50 219 0:25 24 0:09 24
SE-50k 1:41 82 14:16 120 2:32 96 1:13 44
SE-100k 2:37 84 26:40 104 6:25 202 2:56 74
SE-150k 4:54 159 NA NA 10:00 323 4:36 137
GB 0:22 17 10:50 100 6:21 184 2:27 115

Table 6: Total index construction time and GB of memory used during construction
(maximum RSS), as reported by /usr/bin/time -v, using 48 threads. The times include
the time to serialize the index on the disk.
In red font: the constructions exceeding the available memory (> 500GB) for which it
was necessary to cap the maximum memory usage to 100GB.

Finally, we note that Fulgor is the fastest index after Themisto, being almost
4× faster in all SE datasets.

4.7.3 Construction time and space

In Table 6 we consider the resources needed to build the indexes.
The fastest indexes to build are Fulgor and COBS, the latter being even faster

on the GB collection, since — as already explained — it does not build an exact
dictionary for the k-mers. The tested MetaGraph configuration is significantly
slower. We were unable to build the index for SE-150K within 3 days and using 48
parallel threads. Also, its construction produced more than 1TB of intermediate
files.
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Chapter 5

Repetition Aware Compression

When indexing large pangenomes, the space taken by the color sets C =
{C1, ..., Cz} dominates the index space (Table 4, “Color sets” column). As a
consequence, improving the memory usage of c-dBGs translates to devising better
compression algorithms for the color sets. In the following sections, we will focus
on exploiting the following key property:

“The genomes in a pangenome are very similar”

which in turn implies that the color sets are also very similar. This property, closely
related to the setting of the problem, enables substantially better compression
effectiveness. Color sets are similar in the sense that they share many, potentially
very long, identical integer sub-sequences, that we will call patterns.

Consider Figure 6 for some examples. The pattern [3, 5, 9, 11] repeats in
C1, C3, C4, hence it is represented redundantly three times. Similarly, the longer
pattern [1, 3, 11, 12, 13, 14, 16] is repeated twice. These simple examples suggest
that such patterns can repeat in many sets, hence increasing the redundancy and
aggravating the memory usage of the index.

To address this issue, we developed two solutions based on partitioning the
color sets to factor out repetitive patterns. Encoding repetitive patterns once
clearly reduces the amount of redundancy in the inverted index, improving the
space of data structures. In particular, we investigate how two different parti-
tioning paradigms affect the compression and query speed of the color sets. We
refer to them as horizontal partitioning (Section 5.2) and vertical partitioning
(Section 5.3), based on whether the data is grouped by color sets or by reference,
respectively. Figure 7 shows an example of these paradigms: intuitively, partitions
of similar rows are created by horizontal partitioning, while partitions of similar
columns are created by vertical partitioning.

Before presenting the details of the solutions, we establish the following fact.
Given an integer q > 0, let N = {N1, ...,Nr} be a partition of [q] = {1, ..., q} of
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Figure 6: Color sets from Figure 3 where repeating patterns are highlighted in different
shades

(a) Three horizontal partitions (b) Four vertical partitions

Figure 7: Color sets from Figure 3 partitioned (a) horizontally and (b) vertically.

size r. Let an order between the elements {eij} of each Ni be fixed, e.g. by sorting
the elements in increasing order.

Fact 1. Any partition N induces a permutation π : [q] → [q] defined as π(eij) :
j + Bi−1, where Bi :=

∑i
t=1 |Nt| for i > 0 and B0 := 0, for i = 1, ..., r and

j = 1, ..., |Ni|

Example (Figure 7a). We have q = z = 8 and r = 3. The partitions are
defined as N1 = {1, 3, 4}, N2 = {2, 6}, and N3 = {5, 7, 8}. The boundaries Bi

are therefore B0 = 0, B1 = 3, B2 = 5, B3 = 8. The permutation π can be visually
obtained by concatenating the sets Ni and assigning consecutive integers from 1
to q to the elements:
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e11 e12 e13 e21 e22 e31 e32 e33
N = { 1 3 4 } { 2 6 } { 5 7 8 }

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
π(eij) = 1 2 3 4 5 6 7 8

This means that π(1) = 1, π(3) = 2, π(4) = 3, and so on, that is
π = [1, 4, 2, 3, 6, 5, 7, 8].

To better understand some implementation details described in the following
sections, we will now illustrate a framework for the construction of the partitioned
indexes.

5.1 The SCPO Framework

This framework is based on the intuition that similar objects (color sets in C for
horizontal partitioning, references inR for vertical partitioning) should be grouped
in the same partition to increase the likeliness of having shared patterns. It consists
of four steps: Sketching, Clustering, Partitioning, and Ordering.

Sketching. Before the actual partitioning, the objects are pre-processed to make
the process ƒaster and less memory intensive. This is carried out by computing the
sketches of the input objects, which, besides being much smaller than the original
data, should also preserve similarity: if two sketches are similar, then the original
objects should be also similar.

For the horizontal partitioning, it’s sufficient to build one sketch per color
set. For the vertical partitioning, recall from Property 1 (Section 3.2) that each
reference Ri ∈ R can be spelled by a concatenation of unitigs having i in their
color set. If these unitigs are assigned a unique identifier, as in SSHash, each Ri

can be seen as a list of unitig identifiers, i.e. an integer list. Sketches are thus
built for each such list.

Clustering. The sketches are passed as input to a clustering algorithm

Partitioning. Once the clustering is completed, each object is labeled with the
cluster identifier of the corresponding sketch, so that N = {N1, ...,Nr} is uniquely
determined.

Ordering. This step is optional, depending on the type of partitioning. While
it is completely superfluous for the horizontal partitioning, it is decisive for the
compression of the vertical partitioned index, as it will be shown in Section 5.3.
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For the experiments in this work, we set up the framework as follows:

• Sketches are built using the hyper-log-log algorithm [61], with a size of W =
210 bytes each.

• As for the clustering algorithm, we used a divisive K-means approach, that
dynamically computes the number of clusters to generate based on the input
sketches, without requiring it as a parameter. At the beginning, all input
data forms a single cluster, that is recursively split until the mean square
error (MSE) between the sketches in the cluster and its centroid is not below
a certain threshold, in our case 10% of the MSE at the start of the algorithm.
The complexity of the algorithm depends on the topology of the binary tree
representing the cluster splits. Let Z be the number of sketches. In the
worst case, the tree is completely unbalanced and the complexity is O(WZr),
while in the best case, the tree is perfectly balanced and the complexity is
O(WZ log r). Since z ≫ N , we expect the horizontal clustering step to
require more resources than vertical clustering.

5.2 Horizontal Partitioning: Representative and

Differential Color Sets

The general idea of horizontal partitioning is to organize the sets in C into groups
of similar sets (Figure 7a). Then, for each group, a representative color set is
computed and all sets in the group are encoded using a differential set, with respect
to the representative.

Definition 4 (Horizontal partitioning). Let N = {N1, ...,Nr} be a partition
of [z], of size r > 0, and let π be its corresponding permutation. For each Ni,
we build a set Ai so that each color set Cj can be represented as (Ai∆Cj), for all
j ∈ Ni. Notation (X∆Y ) stands for the symmetric difference between the sets
X and Y , that is (X ∪Y )\(X ∩Y ). The idea is that the set Ai should include
the most repetitive colors that occur in the color sets of partition Ni so that
each difference (Ai∆Cj) is small. Since Ai expresses the repetitiveness of Ni, it
is named representative color set of Ni. The symmetric difference (Ai∆Cj)
is instead called differential color set of Cj. We then define A = {A1, ..., Ar}
as the set of all representative color sets, one per partition. Similarly, we
indicate with ∆ the set of all differential color sets, where |∆| = z as we have
one differential color set for each original color set in C.

Compared to a c-dBG G(U , C), its differential c-dBG (Dfc-dBG) variant is the
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graph G(U ,N , π,A,∆), where the set of nodes U is the same, but the color sets
C are split into A and ∆.

Example. Consider the r = 3 partitions from Figure 7a, and assume the follow-
ing representative color sets are built:

A1 = [1, 3, 5, 7, 9, 10, 11, 13]

A2 = [2, 3, 6, 8, 15]

A3 = [1, 3, 11, 12, 13, 14, 16]

Then, we can compute the differential color sets:

(A1∆C1) = [1, 4, 7, 15] (A2∆C2) = [6, 8] (A3∆C5) = [6, 7, 9]

(A1∆C3) = [13] (A2∆C6) = [2, 3, 15] (A3∆C7) = [8]

(A1∆C4) = [10] (A3∆C8) = [1, 3, 11, 13, 14]

We can see that the pattern [3, 9, 11], shared by the sets C1, C3, and C4 is now
encoded only once in the set A1, and implicitly encoded in each differential set
(A1∆C1), (A1∆C3), and (A1∆C4). The same is true for C5 and C7, where the
whole representative set is present in both color sets. Unfortunately, it is not
always the case that the differential set is shorter than the original color set. C8,
for example, is only 2 integers long, whereas its differential set (A3∆C8) has
a length of 5 since we must “remove” many colors from the representative set.
However, inside the third partition, we still had a net gain on the required integers
to encode all the color sets.

Figure 8: The Dfc-dBG built from the color sets in Figure 3.
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Figure 8 is a schematic representation of all the components of the Dfc-dBG
just described. Note that the color sets have been permuted according to π =
[1, 4, 2, 3, 6, 5, 7, 8] and that the unitigs in D are sorted following the permuted
order of the color sets.

5.2.1 The Optimization Problem

The effectiveness of the Dfc-dBG clearly depends on the choice of the partition
N and how the representative for each partition Ni is built. The main idea is
to group similar color sets in the same cluster and construct their representative
based on their most repetitive patterns. Having fewer partitions, thus a small r,
amortizes the cost of the representative color sets, but leads to bigger — and con-
sequently more varied — partitions. Conversely, smaller partitions better highlight
the repetitiveness of the patterns in the collection, albeit requiring more space to
store the many representative colors that must be created.

Let Cost(L) be the encoding cost of the sorted list L. The optimization
problem faced by the Dfc-dBG, called minimum-cost partition arrangement
(MPA), can be stated as follows:

Problem 2 (MPA for Dfc-dBG). Let G(U , C) be the compacted c-dBG built
from the reference collection R = {R1, ..., RN}, where |C| = z. Determine the
partition N = {N1, ...,Nr} of [z] for some r > 0 and the sets A1, ..., Ar, such
that

r∑
i=1

Cost(Ai) +
r∑

i=1

∑
j∈Ni

Cost(Ai ∆Cj)

is minimum.

We suspect that this problem is hard depending on the chosen encoding
method. Instead, we prove the following theorem for the construction of
representative colors.

Theorem 2: Given a partition N = {Ni, ...,Nr} of [z] of size r > 0, let
Cost(L) = |L| and

Ai =

{
c ∈ Cj | j ∈ Ni ∧ occi(c) ≥

⌈
|Ni|
2

⌉}
, for i = 1, ..., r

where occi(c) ∈ [1, |Ni|] is the number of occurrences of the integer c in the color
sets of Ni. Then the cost

∑r
i=1

∑
j∈Ni
|(Ai ∆Cj)| is minimum.

Posed in simpler terms, the representative set Ai that minimizes the size of the
differential sets consists of all integers appearing in at least half the color sets of
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the partition Ni. In this case, it was chosen to define Cost(L) = |L| to minimize
the number of integers being encoded in the differential color sets, as it is the most
expensive component in the index.

Proof. (By contradiction) Assume that Ai is optimal and there exist an integer
c ∈ Ai such that occi(c) < ⌈|Ni|/2⌉. This means that there are |Ni| − occi(c)
differential color sets containing x since it must be “removed” from all color sets
where it is not present. Let Cost(Ai) =

∑
j∈Ni
|(Ai ∆Cj)|. We can therefore

remove c from Ai to obtain a new solution A′
i = Ai\{c} such that

Cost(A′
i) = Cost(Ai)− (|Ni| − occi(c)) + occi(c)

= Cost(Ai)− |Ni|+ 2 · occi(c)
< Cost(Ai)− |Ni|+ 2 · ⌈|Ni|/2⌉
< Cost(Ai)

Hence, solution A′
i has a lower cost than Ai, contradicting the initial assumption

that Ai is optimal.

All representative color sets in the previous examples are built with this strat-
egy. Consider the color sets in the partition N3 = {C5, C7, C8} from Figure 7a. In
this case N3 = 3 and ⌈|N3|/2⌉ = 2, so any integer appearing at least twice among
C5, C7, and C8 is included in A3. It is easy to see that the integers appearing more
than once are [1, 3, 11, 12, 13, 14, 16].

The number of occurrences occi(c) of each color c can be computed by iterating
all color sets C once and, since there are at most N distinct integers in each
partitionNi, the sets A1, ..., Ar are computed in a total time of O(

∑z
i=1 |Ci|+r·N).

5.2.2 Analysis and Implementation Details

Both sets A and ∆ consist of sequences of increasing integers, that can be com-
pressed efficiently using many different methods. In our case, representative and
differential sets are stored as the differences between consecutive integers encoded
with Elias δ codes, plus O(|δ(N)|) bits to store their sizes.

The order in which differential color sets are stored is crucial to efficiently
determine the partition a color belongs to. Color sets are stored in the order
given by the permutation π so that sets belonging to the same partition are placed
consecutively. Then, a bitvector b[1..z] can be used to define the last color set
i of each partition, by setting the value b[i] = 1. Continuing from the previous
example:

C1 C3 C4 C2 C6 C5 C7 C8

b = 0 0 1 0 1 0 0 1
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In this way, by using just 1+o(1) extra bits per color set, it is possible to compute
the partition p ∈ [1, r] of color Cj as p = Rank1(b, π(j)) + 1 in constant time.

Decoding Cj from (Ai ∆Cj) is efficient. By definition of the symmetric set
difference, Cj = (Ai∆(Ai∆Cj)), which can be implemented in linear time in
the size of the two sets. Also note that |Cj| ≤ |Ai| + |(Ai ∆Cj)|, with equality
holding only when Ai = ∅ or (Ai ∆Cj) = ∅. Thus, decoding takes more time
than just scanning the original color Cj, imposing some overhead compared to
other representations that encode sets individually.

Recall that the complexity of the clustering algorithm is O(WKr), where W
is the size of the sketches and K = z is the number of input objects. Also note
that r is strictly related to K, as a greater number of data points will most likely
increase the number of clusters. Since z is in the order of 106 (see Table 3), it
takes a considerable amount of time to cluster the sketches altogether, in some
cases even days. To overcome this issue and improve the cluster’s locality as
well, sketches are first grouped in slices based on their density, then each slice is
clustered independently from the others, and the results are combined. This tweak
led to a significant reduction in the build times, together with a slight improvement
in the index size.

In our implementation of the index, the slicing method has not been thoroughly
explored yet and has been implemented as a series of predefined density thresholds:
[0, 0.25), [0.25, 0.50), [0.50, 0.75), [0.75, 1]. We leave the investigation of better
strategies as an opportunity for future work.

5.2.3 Experimental Results

Refer to Section 4.7 for a rundown on the modality of the experiments.
To determine the compression capabilities of horizontal partitioning, we applied

the techniques just described to the state-of-the-art Fulgor index. We called this
new index variant d-Fulgor (i.e. differential Fulgor).

We will now focus on comparing Fulgor and d-Fulgor, particularly regarding
their space effectiveness, query efficiency, and build time.

Index size

Table 7 reports the total index size of Fulgor compared to d-Fulgor. We pose our
attention on the space taken by the compressed color sets rather than the total
size, given that the partitioning only regards the color sets and not the dBG part
of the index (i.e. SSHash).

The results show that horizontal partitioning has a great improvement over the
space required to store the color sets, up to 4.3× smaller space for the SE-150k
dataset.
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Dataset dBG
Fulgor d-Fulgor

Color sets Total Color sets Total

EC 0.29 1.36 (83%) 1.65 0.45 (61%) 0.74
SE-5k 0.16 0.59 (79%) 0.75 0.20 (56%) 0.36
SE-10k 0.35 1.66 (83%) 2.01 0.48 (58%) 0.83
SE-50k 1.25 17.03 (93%) 18.29 4.31 (77%) 5.57
SE-100k 1.71 40.71 (96%) 42.43 9.37 (84%) 11.10
SE-150k 2.02 68.61 (97%) 70.65 15.73 (89%) 17.77
GB 21.29 15.54 (42%) 36.83 7.51 (26%) 28.81

Table 7: Index spaces in GB, broken down to space required for indexing the k-mers in
the dBG (equal for both Fulgor and d-Fulgor), and the data structures needed to encode
the color sets and map them to the k-mers. In gray the percentage of space taken by
the color sets with respect to the total.

Dataset Hit rate
Fulgor d-Fulgor

mm:ss GB h:mm:ss GB

EC 98.99% 2:10 1.67 5:20 0.78
SE-5k 89.49% 1:10 0.80 2:00 0.41
SE-10k 89.71% 2:20 2.06 4:30 0.90
SE-50k 91.25% 12:00 18.24 29:00 5.82
SE-100k 91.41% 24:00 42.20 1:02:00 11.58
SE-150k 91.52% 37:00 70.55 1:38:00 18.51
GB 92.91% 1:10 36.01 1:00 28.17

Table 8: Total query time and memory used by the process as reported by
/usr/bin/time -v, using 16 threads. For this experiment, the output is written to
/dev/null to avoid recording I/O overhead.

Query efficiency

As predicted earlier, Table 8 shows that d-Fulgor is slower at querying the results
compared to the original Fulgor, taking around 2.5× more time. This slowdown
is caused by the fact that to decode each color set, d-Fulgor has to iterate both
the representative and the differential set once, whose combined length is (almost
always) greater than the original color set.

Construction time and space

For these experiments, the d-Fulgor index was built from an existing Fulgor index.
Indeed, to obtain the real time taken to construct the differential index, one must
sum the times of the two indices reported in Table 9, as hinted by the + sign on
the fourth column.

We can see how the partitioning step is relatively fast compared to the con-
struction of the original index, except for the GB dataset, where the number of
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Dataset
Fulgor d-Fulgor

h:mm GB h:mm GB

EC 0:06 17 +0:12 11
SE-5k 0:04 13 +0:06 8
SE-10k 0:09 24 +0:09 14
SE-50k 1:13 44 +0:43 105
SE-100k 2:56 74 +1:20 207
SE-150k 4:36 137 +1:55 305
GB* 2:27 115 +10:00 182

Table 9: Total index construction time and GB of memory used during construction,
as reported by /usr/bin/time -v, using 48 threads. The times include the time to
serialize the index on the disk.
*Given the peculiarity of the data, GB was built using different clustering parameters,
significantly improving build time and process memory, without impacting the index
quality.

distinct color sets (227.8 × 106) is one order of magnitude greater than SE-150k.
Consequently, also considering that GB is a highly varied collection of data, the
clustering process takes a considerable amount of time (around 8 hours) to com-
plete.

Nonetheless, memory usage is extremely high, taking more than half of the
available RAM for the biggest datasets. This arises from the fact that the number
of sketches that are being clustered is very high, proportional to the number of
distinct color sets.

5.3 Vertical Partitioning: Partial and Meta

Color Sets

The other solution, based on vertical partitioning (Figure 7b), works by creating
a color set hierarchy. Each color set Ci is spelled by a list of references — called
meta colors — to smaller repetitive patterns, referred to as partial color sets.

Definition 5 (Vertical partitioning). Let N = {N1, ...,Nr} be a partition of
[N ], of size r > 0, and let π be its induced permutation. Assume that the
N reference identifiers and the integers in the sets of C have been permuted
according to π. After the permutation, N determines a partition of R into r
disjoint sets:

R1 = {Ri | 0 = B0 < i ≤ B1}, ...,Rr = {Ri | Br−1 < i ≤ Br = N}
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Let Pi be the set

Pi = {{c−Bi−1 | c ∈ Ct ∩ {Bi−1 + 1, Bi−1 + 2, ..., Bi − 1, Bi}},∀Ct ∈ C}

for i = 1, ..., r. The elements Pij of the set Pi are the partial color sets
induced by the partition Ni. We indicate with P = {P1, ...,Pr} the set of all
partial color sets. In simpler terms, Pi is the set obtained by considering the
distinct color sets only for the references in the i-th partition Ri, noting that
they comprise integers c such that Bi−1 < c ≤ Bi.

Let Ct ∈ C be a color set. A meta color is an integer pair (i, j) indicating
the sub-list L := Ct = [b.. b + |Pij|] if there exists a value b ∈ (0, |Ct| − |Pij|]
such that L[l] = Pij[l]+Bi−1, for each l = 1, ..., |Pij|. In other words, the tuple
refers to a sub-list of Ct of size |Pij| such that each element in L is equal to
each element in Pij, accounting for the Bi−1 shift applied in the definition of
Pi. It follows that Ct can be modeled as a list Mt of at most r meta colors.
We indicate withM = {M1, ...,Mz} the set of all meta color sets.

We have obtained a representation of C that consists of the setsM and P , which
are made up of integer sequences that can be further compressed. Thus, given
G(U , C), the meta-colored c-dBG (or Mac-dBG) is the graph G(U ,N , π,P ,M),
where the set of nodes U is the same, but the color sets are split into P andM

Example. Consider the r = 4 partitions from figure 7b, with N1 =
{1, 12, 13, 14, 16}, N2 = {3, 5, 9}, N3 = {7, 11}, and N4 = {2, 4, 6, 8, 10, 15}.
Thus we have B1 = 5, B2 = 8, B3 = 10, B4 = 16, and the corresponding
permutation π = [1, 11, 6, 12, 7, 13, 9, 14, 8, 15, 10, 2, 3, 4, 16, 5]. After applying the
permutation to each color set, we obtain the permuted color sets as in Figure
9a. Notice how the color sets are shaded in the same way as in Figure 7b, but
integers belonging to the same partition are now consecutive. For example C1,
that before was [3, 4, 5, 9, 10, 11, 13, 15], now is

[π(3), π(4), π(5), π(9), π(10), π(11), π(13), π(15)] = [6, 12, 7, 8, 15, 10, 3, 16]

or [3, 6, 7, 8, 10, 12, 15, 16] once sorted.
The partial color sets are the distinct subsequences in each partition of the

permuted color sets. For example, P2 is the set of the distinct subsequences in
partition 2, i.e. those comprising the integers c such that 6 ≤ c ≤ 8. Looking
again at Figure 9a, the subsequences shaded in blue are [6, 7, 8], [6], and [6, 8].
From each integer in these lists is then subtracted B2−1 = 5, obtaining [1, 2, 3], [1],
and [1, 3].

Figure 9b shows all partial sets obtained in this way, as well as the color sets
C = {C1, ..., C8} expressed as meta color lists.
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(a) Vertical partitioning with permuted colors

(b) The Mac-dBG built from the color sets in Figure 3.

Figure 9: An example application of vertical partitioning. (a) The color sets after
the colors are assigned their new identifiers, with the partitions highlighted in different
colors. (b) The resulting Mac-dBG.

5.3.1 The Optimization Problem

As already noted in Section 5.2.1 for the Dfc-dBG, the effectiveness of the Mac-
dBG also strongly depends on the choice of the partition N , and the order of the
references as given by π. Indeed, there is a trade-off between the encoding cost of
the partial and meta color sets. Let Nm = |M| be the number of meta color sets
and Np =

∑r
i=1 |Pi| the number of partial color sets. Since each meta color can

be indicated with log2(Np), the meta color sets cost in total Nm log2(Np) bits. Let
Cost(Pij, π) be the cost in bits of the partial color set Pij. On one hand, we would
like to select a large value of r (a greater number of partitions) so that Np becomes
small, as each color is partitioned into small partial color sets, thus increasing the
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chances that each partition has many repeated patterns. This helps in reducing
the encoding cost for the partial color sets

∑r
i=1

∑|Pi|
j=1Cost(Pij, π), but, at the

same time, increases the number of meta color sets Nm, possibly nullifying the
benefits encoding shared patterns.

The minimum-cost partition arrangement (MPA) problem for the Mac-dBG is
therefore as follows:

Problem 3 (MPA for Mac-dBG). Let G(U , C) be the compacted c-dBG built
from the reference collection R = {R1, ..., RN}. Determine the partition N =
{N1, ...,Nr} of [N ] for some r > 0 and permutation π : [N ]→ [N ] such that

Nm log2(Np) +
r∑

i=1

|Pi|∑
j=1

Cost(Pij, π)

is minimum.

Depending on the chosen encoding, smaller values of Cost(Pij, π) may be
obtained when the gaps between subsequent reference identifiers are minimized.
Finding the permutation π that minimizes the gaps between the identifiers, over
all partial color sets, is an instance of the bipartite minimum logarithmic ar-
rangement (BIMLOGA) problem [62]. In short, the objective of the BIMLOGA
problem is to find a permutation π of some vertices in a bipartite graph, such that
the sum of the logarithm of the gaps between consecutive integers is minimum.
This problem is NP-hard. It can be easily seen that BIMLOGA is a special case
of the MPA, for r = 1 and with Cost(Pij, π) being the objective function of the
problem. Since a polynomial solution to the MPA would provide a polynomial
solution for the BIMLOGA problem, it follows that also the MPA is NP-hard un-
der these constraints, meaning that it is unlikely that polynomial-time algorithms
exist for solving the MPA.

5.3.2 Analysis and Implementation Details

If Np =
∑r

i=1 |Pi| is the total number of partial color sets, then each meta
color (i, j) can be indicated with just log2(Np) bits. In particular, in the cur-
rent implementation of the meta-partial index, each meta color (i, j) is stored as
mij =

∑i−1
t=1 |Pt|+ j, with 1 ≤ mij ≤ Np. In this way, potentially long patterns are

encoded once in P and referenced with only log2(Np) bits, instead of replicating
the representation. Since partial color sets are encoded once, the total number of
integers in P is at most that in the original C, but in practice it is much smaller.

Each color set Pij can be encoded more succinctly thanks to the permutation
π. By placing the colors belonging to the same partition consecutively, the integers
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in Ni are lower-bounded by Bi−1 + 1 and upper-bounded by Bi. Therefore, only
log2(Bi − Bi−1) bits per color are sufficient. Since the partial sets are encoded
using the original Fulgor encoding (Section 4.6.2), the actual space required on
average for each integer is much lower.

It is efficient to recover the original color set Ct from the meta color set Mt: for
each meta color (i, j) ∈Mt, sum Bi−1 back to each decoded integer of Pij. Hence,
we decode strictly increasing integers, again thanks to the permutation π. Note
that the representation of partial and meta color sets could be described without
the permutation π, but this would sacrifice space, as explained above, and query
time, since decoding a set would eventually require sorting the decoded integers.

Vertical partitioning opens the possibility to achieve even faster query times
than a traditional c-dBG, by using a two-level intersection algorithm for pseu-
doalignment. First, only meta color sets are intersected, without accessing the
partial color sets, to determine the common partitions. Then, only the common
partitions are considered, where there are two cases. If the meta color is the same
for all color sets being intersected the result is implicit, as it is the partial color
sets. Otherwise, if the meta color is not the same, the intersection between partial
color sets must be computed. It follows that the optimization is beneficial if the
color sets being intersected have very few partitions in common or share many
meta colors.

5.3.3 Experimental Results

Similarly to Section 5.2.3, we applied these vertical partitioning techniques to
Fulgor, to create m-Fulgor (i.e. meta Fulgor). In this section, we will compare
m-Fulgor against Fulgor and d-Fulgor, to better understand the advantages and
disadvantages of both representations.

Index size

Table 10 reports the total index size of Fulgor compared to m-Fulgor. The results
show that vertical partitioning has an even greater improvement than horizontal
partitioning over the space required to store the color sets. SE-150k only takes
5.27GB, for a remarkable space reduction of 13×. Observe that m-Fulgor, despite
offering the best compression on all EC and SE datasets over d-Fulgor, actually
performs worse on the GB pangenome (9.16GB vs. 7.51GB). This suggests that
vertical partitioning works better when the sets being represented are big, while
the opposite is true for horizontal partitioning.
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Dataset dBG
Fulgor d-Fulgor m-Fulgor

Color sets Total Color sets Total Color sets Total

EC 0.29 1.36 (83%) 1.65 0.45 (61%) 0.74 0.40 (58%) 0.69
SE-5k 0.16 0.59 (79%) 0.75 0.20 (56%) 0.36 0.16 (50%) 0.32
SE-10k 0.35 1.66 (83%) 2.01 0.48 (58%) 0.83 0.34 (49%) 0.70
SE-50k 1.25 17.03 (93%) 18.29 4.31 (77%) 5.57 2.08 (62%) 3.34
SE-100k 1.71 40.71 (96%) 42.43 9.37 (84%) 11.10 3.75 (68%) 5.47
SE-150k 2.02 68.61 (97%) 70.65 15.73 (89%) 17.77 5.27 (72%) 7.31
GB 21.29 15.54 (42%) 36.83 7.51 (26%) 28.81 9.16 (30%) 30.46

Table 10: Index spaces in GB, broken down to space required for indexing the k-mers
in the dBG (equal for both Fulgor and m-Fulgor), and the data structures needed to
encode the color sets and map them to the k-mers. In gray the percentage of space taken
by the color sets with respect to the total.

Dataset Hit rate
Fulgor d-Fulgor m-Fulgor

mm:ss GB h:mm:ss GB mm:ss GB

EC 98.99% 2:10 1.67 5:20 0.78 2:30 0.73
SE-5k 89.49% 1:10 0.80 2:00 0.41 1:16 0.37
SE-10k 89.71% 2:20 2.06 4:30 0.90 2:28 0.77
SE-50k 91.25% 12:00 18.24 29:00 5.82 13:10 3.64
SE-100k 91.41% 24:00 42.20 1:02:00 11.58 27:00 6.08
SE-150k 91.52% 37:00 70.55 1:38:00 18.51 41:30 8.29
GB 92.91% 1:10 36.01 1:00 28.17 1:09 29.79

Table 11: Total query time and memory used by the process as reported by
/usr/bin/time -v, using 16 threads. For this experiment, the output is written to
/dev/null to avoid recording I/O overhead.

Query efficiency

Table 11 shows that, using the intersection algorithm described in section 5.3.2, m-
Fulgor does not sacrifice query efficiency compared to Fulgor, despite the significant
reduction in space.

Therefore, it can be confidently stated that m-Fulgor completely dominates the
original Fulgor index, being much more space-efficient but equally fast to query.

Construction time and space

As for the representative/differential variant, the m-Fulgor index was built from
an existing Fulgor index. Hence, the times in the fourth column of Table 12 must
be summed to the second column to obtain the total construction time.

Construction time may be the biggest flaw of vertical partitioning, taking al-
most 8 hours to build the SE-150k index, which is 4× slower than its horizontal
counterpart. The issue arises from the clustering algorithm used to partition the
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Dataset
Fulgor d-Fulgor m-Fulgor

h:mm GB h:mm GB h:mm GB

EC 0:06 17 +0:12 11 +0:05 3
SE-5k 0:04 13 +0:06 8 +0:04 1
SE-10k 0:09 24 +0:09 14 +0:10 3
SE-50k 1:13 44 +0:43 105 +1:50 22
SE-100k 2:56 74 +1:20 207 +4:37 48
SE-150k 4:36 137 +1:55 305 +7:41 77
GB 2:27 115 +10:00 182 +0:31 69

Table 12: Total index construction time and GB of memory used during construction,
as reported by /usr/bin/time -v, using 48 threads. The times include the time to
serialize the index on the disk.

color sets, even if the amount of points (the number of colors N) is orders of mag-
nitude smaller compared to the quantity needed to construct d-Fulgor (i.e. the
number of color sets z). Indeed, following the reasoning of Section 5.3.1, having
arbitrarily small partitions could result in worse effectiveness, both in terms of
space and query time. Thus, the tested implementation imposes a lower bound
to the size of the partitions (contrary to d-Fulgor), which makes the clustering
algorithm attempt to greedily reassign elements in small clusters to big clusters.

5.4 Combined Partitioning: Meta-Differential

Color Sets

In the previous sections, we discussed two solutions to the same problem: repre-
senting a collection of sorted integer sets, taking into account repeating patterns
of integers. These two solutions are very different, as they are based on orthogonal
partitioning paradigms, both with their advantages and disadvantages:

• The representative/differential approach captures patterns formed by colors
not necessarily appearing in consecutive positions. Partial/meta color sets,
on the other hand, need to permute the reference identifiers to be effective,
reducing the number of bits to encode the integers.

• Both methods add an extra layer of indirection when decoding a color set Ci,
compared to a representation that encodes each set individually. Representa-
tive/differential color sets must be read in parallel to decode the color set Ci,
possibly reading more than |Ci| integers in the process, while partial/meta
color sets decode exactly |Ci|.

• As reported in Sections 5.2.3 and 5.3.3, partial/meta indices are generally
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best in space effectiveness and query efficiency, but their construction is much
slower than representative/differential indices.

These observations suggest that vertical partitioning has a net advantage over
horizontal partitioning. It might argued that, since partial/meta color sets are
so effective, a recursive approach could yield even better results. However, such
reasoning is fundamentally incorrect, as the hypothetical benefits should have been
obtained during the “outer” partitioning step.

Proof. Let N = {N1, ...,Nr} be a partition of [q] = {1, ..., q} obtained using the
clustering algorithm A. Let N ′ = {N ′

1, ...,N ′
r} be the result of a recursive parti-

tion step, where each Ni is further split into N ′
i = {Ni1, ...,Niri}, and such that

Cost(N ′) < Cost(N ). The sub-partitions N ′
i can be concatenated together,

yielding a new partition N ′ = {N11,N12, ...,Nij, ...} of [q], with size
∑r

i=1 ri. This
new representation, however, can be obtained directly from [q] using another clus-
tering algorithm A′, meaning that the result of any recursive partitioning step can
always be obtained with a different clustering algorithm.

Nonetheless, an even improved representation can still be achieved when the
two models are combined. In fact, both the set ∆ of differential color sets and the
set P of partial color sets are collections of sorted integer sets, in the same way as
C. We consider the two following scenarios:

1. the set ∆ is encoded with meta/partial color sets;

2. the set P is encoded with representative/differential color sets.

The former combination is not promising, as the differential color sets in each
partition are expected to be very different from each other since shared patterns
are captured in the representative color sets. This is apparent in the example from
Figure 8, where the intersection of any two sets in the same partition is always
empty. The latter, instead, has good potential as the partial color sets belonging
to the same partition tend to be very similar. This is also true in the example in
Figure 9b.

5.4.1 Analysis and Implementation Details

The meta-differential index is structured as an m-Fulgor index, where the par-
tial color sets are compressed using the representative/differential approach. See
Figure 10 for an example.

Also, since this representation focuses most on space efficiency, we devised a
different representation of the meta-colors to improve compression even further.
Recall that each meta color is a pair (i, j), where i determines the partition and j
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Figure 10: The meta-differential dBG built from the color sets in Figure 3

the offset of the partial color set Pij. A list of meta colors Mt = [(i1, j1), (i2, j2), ...]
can therefore be decomposed into two integer lists, [i1, i2, ...] and [j1, j2, ...]. We
will refer to the lists as first and second components of the meta color, respectively.
For example, the meta color list M3 = [(1, 2), (2, 1), (3, 2), (4, 3)] can be split into
its first component [1, 2, 3, 4] and second component [2, 1, 2, 3]. Note that, by
construction, the first list is always sorted in strictly increasing order, while the
second is not necessarily ordered and might contain duplicates.

The first observation is that — especially when the number of partitions is
small — the number f of the distinct first component lists is small compared to
the total number of color sets z. For example, in Figure 9b, meta color sets M1,
M3, M5, and M7 all share the same first component list. Hence, it is possible to
store the distinct first components in an array A[1..f ] and, for each meta color set,
specify the index of the array entry corresponding to the first component. This
can be done efficiently by sorting the lists inM according to their first component
and implementing the map M → [1..f ] using a bitvector b[1..z] and the Rank
query as explained in Fact 1. The first component of the meta color Mt is thus
A[p], with p = Rank1(b, t) + 1.

The second components are instead less repetitive, and their integers do not
follow any particular pattern. For this reason, we use the following variable-length
encoding: given the meta color (i, j) we encode the integer j using log2(|Pi|) bits1.
The size of each partition is stored in an integer array for easy and fast access.
Completing the example, the second component of M3, [2, 1, 2, 3] is encoded using

1For ease of notation we write log2(x) instead of ⌊log2(x− 1)⌋+ 1 for x ≥ 1 and assume that
log2(0) = 0.
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Dataset dBG
Fulgor d-Fulgor m-Fulgor md-Fulgor

Color sets Total Color sets Total Color sets Total Color sets Total

EC 0.29 1.36 (83%) 1.65 0.45 (61%) 0.74 0.40 (58%) 0.69 0.24 (45%) 0.52
SE-5k 0.16 0.59 (79%) 0.75 0.20 (56%) 0.36 0.16 (50%) 0.32 0.11 (40%) 0.27
SE-10k 0.35 1.66 (83%) 2.01 0.48 (58%) 0.83 0.34 (49%) 0.70 0.22 (39%) 0.57
SE-50k 1.25 17.03 (93%) 18.29 4.31 (77%) 5.57 2.08 (62%) 3.34 1.38 (52%) 2.64
SE-100k 1.71 40.71 (96%) 42.43 9.37 (84%) 11.10 3.75 (68%) 5.47 2.26 (57%) 3.98
SE-150k 2.02 68.61 (97%) 70.65 5.73 (89%) 17.77 5.27 (72%) 7.31 3.22 (61%) 5.26
GB 21.29 15.54 (42%) 36.83 7.51 (26%) 28.81 9.16 (30%) 30.46 6.19 (23%) 27.48

Table 13: Index spaces in GB, broken down to space required for indexing the k-mers
in the dBG (equal for both Fulgor and md-Fulgor), and the data structures needed to
encode the color sets and map them to the k-mers. In gray the percentage of space taken
by the color sets with respect to the total.

log2(|P1|) + log2(|P2|) + log2(|P2|) + log2(|P4|) bits, that is log2(5) + log2(3) +
log2(2) + log2(6) = 3 + 2 + 1 + 3 = 9 bits. Thus, [2, 1, 2, 3] is encoded as

2 1 2 3
1 0 1 10
001 00 1 010

↓

001.00.1.010

Note that the binary representation of each integer x (second row) is actually x−1.

5.4.2 Experimental results

Index size

Table 13 reports the total index size of Fulgor compared to md-Fulgor. The results
show that combining the two schemes leads to a massive improvement in the color
sets space effectiveness. For SE-150k, the size of the color sets in the original Fulgor
is almost 69GB, while it only takes a little more than 3GB in the meta-differential
encoding, translating to a space reduction of more than 21.3×. Figure 11 also
visually shows the relative sizes of the various index parts (i.e. dictionary and
color sets) for each Fulgor variant on this dataset.

The GB dataset is also smaller than the d-Fulgor variant (6.19GB vs. 7.51GB),
further proving that the combination of vertical and horizontal partitioning ex-
ploits the advantages of both paradigms.

It can be confidently said that the md-Fulgor variant is the most succinct
representation of a de Bruijn Graph up to date.
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Figure 11: Index space breakdown of the SE-150k dataset for every Fulgor variant.
Note that the space taken by the dictionary (in yellow) is constant, but its percentage
increases as the space taken by the colors is progressively smaller.

Dataset Hit rate
Fulgor d-Fulgor m-Fulgor md-Fulgor

mm:ss GB h:mm:ss GB mm:ss GB h:mm:ss GB

EC 98.99% 2:10 1.67 5:20 0.78 2:30 0.73 5:00 0.57
SE-5k 89.49% 1:10 0.80 2:00 0.41 1:16 0.37 1:48 0.32
SE-10k 89.71% 2:20 2.06 4:30 0.90 2:28 0.77 3:34 0.65
SE-50k 91.25% 12:00 18.24 29:00 5.82 13:10 3.64 22:25 2.95
SE-100k 91.41% 24:00 42.20 1:02:00 11.58 27:00 6.08 50:00 4.62
SE-150k 91.52% 37:00 70.55 1:38:00 18.51 41:30 8.29 1:15:00 6.28
GB 92.91% 1:10 36.01 1:00 28.17 1:09 29.79 1:03 26.88

Table 14: Total query time and memory used by the process as reported by
/usr/bin/time -v, using 16 threads. For this experiment, the output is written to
/dev/null to avoid recording I/O overhead.

Query efficiency

Table 14 shows that the combination of vertical and horizontal partitioning par-
tially mitigates the slowdown given by d-Fulgor. Overall, the md-Fulgor index
is more than an order of magnitude smaller than the original Fulgor, while only
being about 2× slower. We consider this space/time trade-off to be more than
acceptable for the sake of indexing larger c-dBGs in internal memory. Also note
that md-Fulgor is still 1.7× faster than Themisto (e.g. for SE-150k, 1.25 hours vs.
2 hours), that is the next fastest index in the literature.
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Dataset
Fulgor d-Fulgor m-Fulgor md-Fulgor

h:mm GB h:mm GB h:mm GB h:mm GB

EC 0:06 17 +0:12 11 +0:05 3 +0:19 (0:14) 4
SE-5k 0:04 13 +0:06 8 +0:04 1 +0:09 (0:05) 3
SE-10k 0:09 24 +0:09 14 +0:10 3 +0:21 (0:11) 4
SE-50k 1:13 44 +0:43 105 +1:50 22 +2:20 (0:30) 13
SE-100k 2:56 74 +1:20 207 +4:37 48 +5:20 (0:43) 20
SE-150k 4:36 137 +1:55 305 +7:41 77 +8:36 (0:55) 25
GB 2:27 115 +10:00 182 +0:31 69 +7:43 (7:12) 127

Table 15: Total index construction time and GB of memory used during construction,
as reported by /usr/bin/time -v, using 48 threads. The times include the time to
serialize the index on the disk. Inside the parentheses, the time taken by the horizontal
partitioning step.

Construction time

For these experiments, md-Fulgor was built from an already existing m-Fulgor
index. The times reported in Table 15 are the total times to build the indices
— starting from Fulgor — while the ones between parentheses represent the time
only of the horizontal partitioning step for md-Fulgor.

Compared to the other indices (Section 4.7), the construction times of the
Fulgor variants are competitive to the ones of Themisto and much faster than
MetaGraph.
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Chapter 6

Conclusions and Future Work

In this work, we introduced new compressed representations for the colored de
Bruijn graph, in which repetitive patterns within color sets are encoded once to
improve the memory usage of pseudoalignment queries. The resulting compres-
sion algorithms have been applied to the recently proposed Fulgor index, as it
possesses the best space vs. time trade-off. In particular, these representations
focus on two distinct and essentially opposite approaches for factorizing and com-
pressing redundant patterns in the color sets: d-Fulgor is a horizontal compression
method that encodes color sets into representative and differential sets, conversely,
m-Fulgor is a vertical compression method that creates a two-layered set repre-
sentation through meta and partial color sets. These methods exploit different
characteristics for compression, so they can be combined to achieve an even better
compression of the color sets. This combination is represented by the md-Fulgor
index.

After extensive experimental analyses across multiple and varied datasets to
evaluate the different schemes, we compared the results against alternative c-dBG
representations. From this, we conclude that:

• m-Fulgor does not introduce any tradeoffs compared to the original Fulgor
index and can simply replace it, as it is equally fast but significantly smaller.

• md-Fulgor is even more compact, with a relatively minor query overhead
over Fulgor, especially considering the space reduction it provides.

These new representations provide a new reference point for the problem of in-
dexing c-dBGs, as shown in Figure 12. md-Fulgor is competitive with the smallest
variant of MetaGraph while still being more than an order of magnitude faster. It
is also up to 20× smaller than Themisto, but still faster on the great majority of
the datasets.

We believe that this improved performance has the potential to enable large-
scale color set queries across multiple applications.
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Figure 12: Data from Tables 5 and 14 combined and shown as space/time plots, for
the EC and SE-150k datasets. Note that the horizontal axis (Size) is logarithmic.

Future work

Future work will focus on improving the index space effectiveness and the time
efficiency of its relevant operations:

• Accelerate pseudoalignment queries, in particular for d-Fulgor and md-
Fulgor.

• Provide a better build pipeline. At the moment the building process is not
deeply engineered, but we believe that some speedups and usability refine-
ments are still possible.
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• Improve d-Fulgor construction. When performing horizontal partitioning the
size of the sketches and the slicing thresholds are predefined values. Finding
a way to dynamically determine both values based on the properties of the
input dataset could lead to better compression and faster build times.

• Explore the effects of approximately optimal ordering within partial and
differential color sets, that is, the last step of the SCPO framework. Indeed,
reassigning the color identifiers so that repeating patterns are made up of
integers whose difference is very small, can significantly reduce color sets
size.

• Extend the indexing capabilities of Fulgor by annotating the graph with more
information, like k-mer abundances and their positions in the references.
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