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Chapter 1

Introduction

One of the main topics of Computer Vision and Computer Graphics is 3D object
reconstruction. The problem can be formalized as: given a target object, build
a method to obtain its virtual representation starting from some data or features
of itself. This task can be solved in various ways, involving di�erent technologies
together with both traditional Computer Vision techniques and Machine Learning
based ones.

In general, traditional approaches o�er a greater level of stability, their pipeline
relies on the extraction of a point cloud to then perform the triangulation of those
point to derive a mesh and the corresponding surface. Given the approximations
of the triangulation process, the result may not support certain type of accurate
measurements.

Other approaches instead, rely on machine learning models, in particular Multi
Layer Perceptrons (a type of Neural Networks) to represent the object surface im-
plicitly. However, most of those focus on realistic renders rather than on providing
an accurate and coherent reconstruction of the object’s surface and shape. One of
the current state of the art models in this model class is Neural Radiance Fields
(sections 3.4 and 3.5).

In this thesis we propose a novel approach (chapter 4) to bypass the limitations
of the point cloud approaches training an implicit neural representation directly
on the points extracted from a line laser scanner. We will show how, by leveraging
the presence of a laser plane, it is possible to train a model that embeds the true
object surface as “occupancy”, thus not focusing on the generation of novel renders
of the object. After the network has learnt the object shape, it will be possible to
extract and derive the shape of the acquired object using techniques like Marching
Cubes[LC87]. Since the model domain is represented as a continuous space, it
will also be possible to increase the mesh detail on specific regions, going beyond
the standard point cloud precision. A virtual scanner environment (chapter 5)
has also been developed to generate synthetic data in a controlled setting starting

5



CHAPTER 1. INTRODUCTION 6

from a dedicated dataset. All the code developed for this project is open source
and available at this GitHub repository1.

Finally, some evaluation metrics were developed to asses the resulting model
against the Poisson surface reconstruction algorithm. We also tested the model
performances under challenging conditions like the lack of images.

1GitHub project repo: https://github.com/Gotti27/line-laser-inr

https://github.com/Gotti27/line-laser-inr


Chapter 2

Background

2.1 Camera Geometry and the Pinhole Camera
Model

The pinhole camera model describes the mathematical layer and the geometric
relations in conventional camera systems. This model is essential to understand
and map points across the world reference system, the camera reference system
and the projective image plane, making possible to establish relations between
what appears on an image and what was captured by the camera.

Capturing an image means capturing light intensities of light rays reflected by
the objects in a scene and storing them. However, since objects reflect light in
every direction, in order to obtain a sharp and meaningful image, a tool to isolate
light rays is required. The component capable of achieving this is the aperture,
a tiny hole that can be used to filter light rays, and be sure that ideally one ray
per “point” passes through. The light rays converge inside the aperture and get
projected onto the sensor, which in analog cameras is a film, while in digital ones
is a sensor like the CMOS. An example of how light rays interact with the aperture
is shown in figure 2.1.

In real cameras, instead of a pinhole, the aperture mechanism is controlled
using lens, which make possible to focus the light rays onto the sensors, granting
more control and precision, at the cost of introducing some radial and tangent
distortion which will be handled later. From a mathematical perspective, we can
treat lens cameras as the pinhole ones after solving the distortion.

The light rays are captured onto the image plane, which is located behind the
optical center in real pinhole cameras, leading the image to appear upside down
(figure 2.1). Abstracting this projection, we can consider a virtual image plane
to be located at the same distance as the real one, but in front of the pinhole.
Due to this we can leverage the geometry of similar triangles and establish a

7
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Figure 2.1: Light rays in pinhole cameras

Figure 2.2: Side detail of similar triangle in pinhole camera model from Multiple
View Geometry in Computer Vision[HZ04]

transformation between the world points and the image plane as in figure 2.2.
Moving to the theoretical side of what said so far, a camera system defines a

coordinate reference system and is internally described by its intrinsic parameters,
i.e. its focal length and its principal point location. The origin of this reference
system is placed at the pinhole and the axes are pointing in the following way: the
x horizontally, the y vertically and lastly the z (principal ray) is pointing to the
front. The focal length f is defined as the distance in pixels between the pinhole
and the image plane and determines the field of view of the camera.

The principal point is located at the orthogonal intersection between the prin-
cipal ray and the image plane, usually at the image plane center. Its coordinates
are used to map the points lying on the image plane, but expressed in camera
coordinate into image coordinates. Since the image plane is placed at a distance
equal to f from the pinhole point, it follows that all the pixels, when considered
in the camera coordinates, have a z value equal to f itself.

When mapping the points laying on the image plane to image coordinate, i.e.
pixels, the points must be translated by the principal point coordinate. Since by
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convention, the image reference system has its origin placed on the top-left corner.
This brings a simpler handling when dealing with images as matrices, since a
matrix element cannot have negative indices.

A full representation of the pinhole camera geometry can be observed in figure
2.3, taken from the OpenCV library documentation[Bra00], a popular computer
vision library for C/C++ and Python languages.

In order to perform mathematical computations, the camera intrinsic parame-
ters are placed in a matrix as follows:

K =

S

WU
fx 0 px

0 fy py

0 0 1

T

XV (2.1)

In this formulation, the K matrix has two di�erent values for the focal length,
i.e. vertical and horizontal. As reported in Learning OpenCV [BK08], this is
necessary to support rectangular pixels, since the focal lengths are estimated and
expressed in terms of pixel dimensions, using the following equations:

fx = f · sx fy = f · sy

When dealing with the outside world, the camera gets its full description by
adding its extrinsic parameters. These latter depends on its pose with respect
to the world reference system. In general, the camera pose is described using a
rotation matrix R and a translation vector t.

R =

S

WU
r1 r2 r3
r4 r5 r6
r7 r8 r9

T

XV t =

S

WU
t1
t2
t3

T

XV (2.2)

Figure 2.3: Pinhole camera model from OpenCV library
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This brings to the complete camera projection matrix:

P = K [R t] =

S

WU
fx 0 px

0 fy py

0 0 1

T

XV

S

WU
r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

T

XV (2.3)

Homogeneous Coordinates

Looking at the complete projection matrix (2.3), a wise reader may be puzzled,
since it is supposed to take world points (which are three dimensional) and map
them to the image plane coordinates (which are two dimensional). But it actually
requires a four dimensional input vector and will output a three dimensional vector.

The reason behind this is that the projection matrix is working with homo-
geneous coordinate rather than in cartesian ones. Projective geometry, whose
coordinates are known as homogeneous, is defined by adding an extra dimension
to its euclidean counterpart. This extra dimension is called projective space and is
referred using the letter W . To clarity with an example, the homogeneous version
of an euclidean two dimensional vector will have three dimensions. Homogeneous
coordinates bring two key advantages:

1. Rotation and translation transformations are joint in one joint matrix, grant-
ing order disambiguation and computing optimization in graphical engines

2. Points at infinity are handled by setting their projective coordinate to 0, still
preserving their direction information

When applying homogeneous coordinates to computer vision we are able to rep-
resent mathematically the concept of perspective that is what we aim to achieve
when projecting points onto the image plane. Indeed, given two equal lines placed
at di�erent distances from the camera, we want the closer one to appear larger on
the image, compared to the further one. For a deeper explanation of projective
geometry refer to Computer Graphics: Principles and Practice[Fol96].

To convert an euclidean vector to homogeneous coordinates, we just need to
add an extra dimension and set its value to 1:

C
X

Y

D

≠æ

S

WU
X

Y

1

T

XV

Conversely, to convert an homogeneous vector to euclidean coordinates, we have
to divide the euclidean dimension by the projective coordinate value:

S

WU
X

Y

W

T

XV ≠æ

S

WU

X
W

Y
W

T

XV
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2.1.1 Camera calibration
To estimate the intrinsic matrix K and the distortion coe�cients a process known
as camera calibration is used. Usually it is done using a well defined pattern, for
instance a chessboard pattern, like in the OpenCV library documentation1.

The symptoms of radial distortion are the curved appearance of straight lines,
and appear to be more evident around the borders. It is modelled as follows:

Y
]

[
xdist = x (1 + k1r

2 + k2r
4 + k3r

4)
ydist = y (1 + k1r

2 + k2r
4 + k3r

4)
(2.4)

r
2 = x

2 + y
2

Tangential distortion instead, happens when the lens is not parallel to the image
plane and it causes some regions of the image to look nearer than expected. It is
modelled using the following equations:

Y
]

[
xdist = x + [2p1xy + p2 (r2 + 2x

2)]
ydist = y + [p1 (r2 + 2y

2) + 2p2xy]
(2.5)

By labelling the undistorted point location (as if the pinhole camera were perfect)
as [xp, yp]T and the distorted point location as [xd, yd]T , it is possible to define the
polynomial distortion model:

C
xp

yp

D

=
1
1 + k1r

2 + k2r
4 + k3r

6
2 C

xd

yd

D

+
C
2p1xdyd + p2 (r2 + 2x

2
d)

p1 (r2 + 2y
2
d) + 2p2xdyd

D

(2.6)

Which gives a better formulation when applying or reverting the distortion e�ects.
It follows that the distortions is controlled by 5 parameters that can be represented
as the following vector:

dist =
1
k1 k2 p1 p2 k3

2
(2.7)

In order to estimate these coe�cients, the 3D coordinates of the marker dots
must be put in relation with their corresponding 2D coordinates on the image.
The standard approach is to use the inner corners of the chessboard pattern as
marker dots, since they are easily detectable with traditional image processing
operations. While the 2D coordinates for the image points are detected from the
image itself (figure 2.4), the 3D coordinates for the object points, i.e. the corners
of the chessboard, are known a priori.

OpenCV implements the full set of utility functions to find the corners of the
chessboard pattern together with their corresponding image coordinates and to

1OpenCV camera calibration: https://docs.opencv.org/4.x/dc/dbb/tutorial py calibration.html

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
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estimate the camera parameters from those points. This implementation is based
on the paper: A Flexible New Technique for Camera Calibration[Zha00]. Once
obtained, the next images can be undistorted in order to obtain coherent measures
from them.

Figure 2.4: An example of camera calibration process using a chessboard pattern

2.1.2 Pose estimation
Consider now the external world outside the camera system, given a world reference
system, it is possible to estimate the pose of the camera, i.e. where the camera
is located with respect to the origin of the world reference system in terms of a
rotation matrix and a translation vector.

This can be done manually, by defining a custom virtual reference system,
like in the virtual scanner environment explained in section 5.1, or using fiducial
markers. A fiducial marker is an object of well known dimensions, easily detectable
on the image thanks to its features and patterns. The most common fiducial
markers are the ArUco ones (figure 2.5).

The pose is computed with a process similar to camera calibration, estab-
lishing the relation between some 3D object points in correspondence with 2D
image points. Formally, this problem is addresses as the pose computation prob-
lem[MUS16], and it is solved by finding the rototranslation that minimizes the
re-projection error of the projection of 3D points onto the image plane. One of the
most common approaches is the Perspective-n-Point pose computation.
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Figure 2.5: Some examples of ArUco markers

OpenCV provides various methods to solve this problem2, such as the iterative
method, which is based on Levenberg-Marquardt optimization for least-squares
problems[Lev44] [Mar63] and computes the error as the sum of squared distances
between projected 3D points and the observed projections. In case the 3D points
are non-planar, i.e. they do not all belong to the same three dimensional plane, at
least six points are required to derive the pose. Another well known method is P3P,
which is based on the paper Complete Solution Classification for the Perspective-
Three-Point Problem[Gao+03]. As the algorithm name suggests, just n = 3 points
are required (the minimal setup), however, since it will bring four possible solution,
a fourth point is frequently used for disambiguation.

One last to cite is the RANSAC based method, which applies the name-
sake algorithm for outliers handling. For reference, RANSAC (RANdom SAm-
ple Consensus), introduced by Fischler and Bolles in Random sample consensus:
a paradigm for model fitting with applications to image analysis and automated
cartography[FB81], is a common strategy to solve model parameters fitting and
in particular curve fitting in the geometric computer vision field. Where given a
bunch of points, we aim to retrieve the equation of the curve to which they belong,
knowing the curve kind (either a line, an ellipse, etc). Indeed, this approach is
used in the traditional line laser scanner explained in section 3.1. Starting from a
set of points P partitioned in two subset, i.e. the inliers I and the outliers O such
that I fi O = P and I fl O = ÿ, the goal is to derive a model that fits the inliers,
without being influenced by the outliers. The algorithm works in this way:

1 for round from 0 to k:
2 sample n random assumed inliers from the set of points

2OpenCV solvePnP: https://docs.opencv.org/4.x/d5/d1f/calib3d solvePnP.html

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
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3 fit a candidate model on those inliers
4

5 create a consensus set and add all the inliers
6 for each point not sampled :
7 if distance (candidate , point) is lower than a

threshold T:
8 add the point to consensus set
9

10 save the candidate and its consensus set cardinality
11

12 return the candidate model with highest consensus set
cardinality

Each round creates a candidate model from a random subset of points and its
fitness is measured against the other points. Finally, the candidate with the highest
score is returned.

Back to pose estimation, the usage of a world reference system is particular
useful when dealing with multiple cameras, since it makes possible to put in relation
the image points of both cameras, mapping them to the common world coordinates.
This equations framework is also the backbone of augmented reality applications,
in which virtual objects are rendered on the screen as if they were present in
the real world. Those objects are placed in world coordinates, usually defined
by a marker, and get projected onto the image plane using the complete camera
projection matrix explained in equation 2.3.

Once the camera pose has been estimated in terms of a rototranslation (equa-
tion 2.2), it is possible to invert the location of the camera center in world coordi-
nates with the following equation:

O = ≠R
T
t = ≠

S

WU
r1 r4 r7
r2 r5 r8
r3 r6 r9

T

XV

S

WU
t1
t2
t3

T

XV (2.8)

2.2 Acquisition methods
A multitude of real world applications frequently require to generate a virtual
clone of an existing object, think for instance at quality inspection pipelines in
industrial environments or to heritage preservation[Lev+23].

2.2.1 Structured light
Focusing on industrial application examples, 3D object reconstruction is used to
perform quality inspection procedures, by comparing the produced item scan with
the initial virtual model. The comparison will compute a measure or degree of
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object deformation to evaluate its compliance with the production requirements.
If the requirements are not matched, the product will then be discarded.

To derive a virtual representation of the target, we can rely on many techniques
that have been developed during the years, the main ones are explained in this
comprehensive survey[Dan+18]. An implementation of this kind of technique is

Figure 2.6: Line laser scanner setting

explained in section 3.1.
Regarding lasers, there are two possible approaches to leverage their presence,

the first one relies on computing the light travel time, while the second one relies on
pure computational geometry equations, in combination with the aforementioned
pinhole camera equation (section 2.1).

To measure the light travel time, which formally goes under the name of time
of flight or ToF, specific hardware is required, even if nowadays it is common to
have LiDAR sensors mounted on everyday devices like smartphones. These type
of scanners are applied on medium and long distances applications where a full
but not highly precise depthmap of the scene is required, like in the autonomous
driving context[LI20]. To give a brief description of the underlying mechanism
of ToF cameras, a laser source emits a signal with fixed time delta, the signal is
reflected by the scene objects and comes back towards the camera direction where
a sensor records its arrival. Since the time delta between the source emission
and the sensor gathering is equal to the travel time, it is possible to compute the
distance straightforwardly as follows:

�t = 2 · D

c
≠æ D = c · �t

2
where c is the speed of light.
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Purely geometric line laser scanners are instead applied on short range applica-
tion, where high precision is required over real time acquisition and generalization.
They required a controlled environment in which lasers could interact as geometric
elements - i.e. planes, lines and points - with the scene. Indeed, returning back
to industrial applications, line laser scanners are one of the current standards to
achieve detailed 3D reconstruction. They require the presence of a camera and a
laser plane to estimate the coordinates of the laser points. An abstract example
of this type of setting is shown in figure 2.6.

This approach requires to know the position of the camera with respect to the
axes origin, and can be achieved using markers and pose computation, obtainable
by solving the Perspective-n-Point (PnP) problem.

2.2.2 Stereo Vision
Another popular technique to achieve 3D reconstruction, scene understanding and
depthmaps in particular, is stereo vision[SS02], which combines the view of two
di�erent cameras to interpolate the rays and estimate the coordinate (x, y, z) in
the 3D space. For static scenes the two images could potential be taken by the
same camera after a position shift, while for real time applications two di�erent
cameras are required.

Figure 2.7: Stereo vision diagram

The line connecting the two cameras, labeled as b in figure 2.7, is known as
the baseline. To model the system in geometric terms, the so called epipolar
geometry is used. Once the two images are available, the true challenge is to find
the corresponding point, also known as features. In other words, given a points
p which is present in the world, we aim to identify the corresponding points p1
and p2 that represent the original point projected onto the two images as pixel
coordinates. The di�erence between p1 and p2 is referred as disparity, and by
joining all the features disparity together the disparity map is created.
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Using the disparities it is possible to calculate the depth (i.e. the distance
between the camera and the reference point p) using the formula:

Dp = f · b

� (p1, p2)

where f is the cameras focal length, b is the baseline length and the denominator
is the disparity between the two projection coordinates.

By computing the depth for each feature in the images it is possible to even-
tually compute a depth map of the entire scene. A depth map is defined as an
image where each pixel contains the distance of that point in the 3D space rather
than a color combination, i.e. the length of the camera ray that starting from the
pinhole camera passes through that pixel coordinate and eventually hits the scene
object. It is possible to venture saying that stereo vision is a form of emulation
of biological viewing systems, indeed animals are able to perceive depth thanks to
multiple eyes.

2.3 Three dimensional representations
There are several ways to represent 3D objects and spaces that can either be voxel
based, point based or mesh based. A voxel is defined as the tree dimensional
counterpart of the pixel, so, if a pixel is a minimal cell that joint with others
forms an image matrix, a voxel is a cube that joint together in a three dimensional
matrix form a voxel grid. However, a common downside of voxel grids is their
computational complexity cubic growth.

Each voxel is associated with some properties like color, density or reflectance
of the simulated material. Alternatively from cubes, a voxel grid can also be
composed by the vertexes of the grid. Point clouds instead are sets of 3d points in
the format of (x, y, z). Lastly, using point clouds elements as vertexes, we can try
to generate a surface by triangulating some polygons from those vertexes. Indeed,
a mesh is composed of a set of vertexes and a set of polygons, usually triangles.

In figure 2.8 it is shown the popular Stanford Bunny using the di�erent 3D
representations.

2.3.1 Mesh Triangulation
As just introduced, starting from a point cloud it is possible to derive a mesh, in
other words, an approximation of the surface. This task can be achieved using
algorithms like Poisson surface reconstruction (PSR section 2.3.2) and Delaunay
triangulation[Del34][Els+24]. In this thesis, the first one has been chosen as a
benchmark to evaluate our model performance.
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Figure 2.8: The Stanford Bunny respectively as a pointcloud, voxel grid and
mesh

Figure 2.9: Result of Delaunay algorithm on point cloud output of section 3.1

When it comes to traditional surface reconstruction, i.e. starting from a set of
well defined points that we assume to belong to the object surface itself, the main
challenges that we could face are:

• nonuniform point sampling

• noisy point positions and normals because of accessibility constraints

So, to achieve a coherent reconstruction of the surface, the chosen algorithm, has
to infer the unmapped regions of the surface.

In many cases, like in PSR algorithm itself, it is required to associate each
point p (belonging to a given point cloud P ) to a normal vector ≠æ

N . Where those
vectors are pointing inward or outward the point cloud. Normals are also required
to simulate shadings and other visual e�ects.
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Although several improvements were developed for challenging settings, like the
Boulch and Marlet[BM12] approach for sharp edges, the common approach is based
on the K-nearest neighbors. For each point p œ P , its k nearest neighbors points
are extracted from the point cloud P . Then, a plane is fitted on those Nk(p) points
in terms of a least-square minimization problems using Principal Point Analysis
(PCA) by analyzing the eigenvalues and eigenvectors of the following covariance
matrix C:

C = 1
k

kÿ

i=1
(pi ≠ p) · (pi ≠ p)T (2.9)

Where p is the neighborhood three dimensional centroid, i.e. the mean position of
the Nk(p) set. From which follows the eigendecomposition:

C · ≠æ
vj = ⁄j · ≠æ

vj j œ {1, 2, 3} (2.10)

where ⁄j and ≠æ
vj are the j≠th eigenvalues and eigenvectors respectively. The

eigenvector associated with the smallest eigenvalue will correspond to the surface
normal vector.

Regarding the normal vector orientation, it could be either inward or outward,
usually we aim to ensure orientation consistency among the point cloud elements.
Normals can be re-oriented using a global or a local criteria. The first one is
used when dealing with a single viewpoint, thus all the normals are faced towards
the viewpoint itself that will act as a reference direction. In the latter instead, a
given normal is re-oriented based on the neighbors normals, and thus flipped if its
direction is pointing in the opposite direction with respect to the average normal
direction of the neighborhood.

2.3.2 Poisson surface reconstruction
The Poisson surface reconstruction algorithm[KBH06] is the current standard to
derive watertight meshes and smooth surfaces from an initial set of points. The
main feature of this approach, developed by Kazhdan et al., is to reformulate the
surface reconstruction problem as a Poisson equation. These equations are applied
in various fields, especially in physics to model phenomena like heat transfer.

The algorithm takes in input a set of points S together with their normals, so
for each point s œ S, we define:

• s.p: the point position

• s.
≠æ
N : the associated normal vector (inward facing)

Moreover, we assume that each point s is lying nearby the surface of the unknown
target model M , which surface is defined as ˆM . The algorithm is articulated
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Figure 2.10: Poisson surface reconstruction steps

around four stages, as shown in figure 2.10. Where the main one is the estimation
of the indicator function XM starting from the indicator gradient ÒXM , which is
computed using the initial set of oriented points. Once the indicator function XM

has been estimated, the surface extraction becomes trivially achievable using the
marching cubes algorithm[LC87], in a similar fashion as our solution.

The indicator function is piece-wise constant, indeed its value is equal to 0
for all the points outside the bounded shape, and 1 for all the points inside. To
avoid its gradient to have unbounded values on the boundary points, a Gaussian
smoothing filter (variance depends on sampling resolution) is applied to XM and
its gradient is considered:

Ò
1
XM ◊ F̃

2
(q0) =

⁄

ˆM
F̃p (q0)

≠æ
N ˆM (p) dp (2.11)

Where:
• ≠æ

N ˆM (p) is the inward-facing normal of p

• F̃ (q) is the smoothing filter

• F̃p (q) = F̃ (q ≠ p) is the translation of point q using the filter T̃ , which moves
q to p.

The initial set of points S provides a discretization of the equation 2.11, in terms
of patches Ps of the surface ˆM .

Ò
1
XM ◊ F̃

2
(q0) =

ÿ

sœS

⁄

Ps

F̃p (q) ≠æ
N ˆM (p) dp

≥
ÿ

sœS

|Ps|F̃s.p (q) s.
≠æ
N

© ≠æ
V (q)

(2.12)

Now that equation 2.12 has provided an approximation for the gradient field ≠æ
V ,

it is possible to regress the function X̃ by using the divergence operation to create
the following Poisson equation in terms of least-squares approximation:

�X̃ = Ò · ≠æ
V (2.13)
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When dealing with the practical implementation of what theoretically introduced
so far, the authors leveraged that since the sampling density has to be higher
nearby the surface ˆM and can be lower in the other regions, it is possible to
rely on an octree data structure to represent both the indicator function and solve
the Poisson problem. An octree[Mea80] (example in figure 2.11) is defined as a

Figure 2.11: Octree data structure for computer graphics

traditional tree structure where each node that is not a leaf, has exactly eight
children, so they can represent the recursive partitioning of a three-dimensional
space into eight octants. Indeed, each three-dimensional octant is recursively split
into 8 inner octants. In Poisson surface reconstruction, the octree O is composed
by the positions of the sampled points, and a function Fo for each node o œ O,
such that the vector field ≠æ

V can be represented as linear sum of those Fo functions.
Given an input maximum depth D, the octree O is built as the minimal octree

such that all the samples s œ S belong to a leaf octet at depth D. The octree
depth will determine the capability of the indicator function to capture fine details
and so to achieve an higher resolution. Being o.c the center and o.w the width of
every tree node o.

All the Fo functions are defined as alterations of a base unit function F : R3 æ
R that will be defined in equation 2.15:

Fo (q) © F

3
q ≠ o.c

o.w

4
· 1

o.w3 (2.14)

An interesting feature to notice is how the node dimension influences the function
structure and its frequency in particular. Granting higher frequency functions on
smaller nodes, thus bringing an higher precision nearby the surface ˆM .

These considerations, leaded to the definition of the base function F as the
n≠th convolution of a box filter B with itself:

F (x, y, z) © (B (x) · B (y) · B (z))ún
B (t) =

Y
]

[
1 if |t| < 0.5
0 otherwise

(2.15)
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The usage of the octree structure and trilinear interpolation to di�use samples
among neighbor nodes makes possible to redefine the gradient field in terms of
sample neighbors ND (s) and trilinear interpolation weights –o,s:

≠æ
V (q) ©

ÿ

sœS

ÿ

oœND(s)
–o,sFo (q) s.

≠æ
N (2.16)

With this latter new approximation of the vector field, it is possible to solve the
Poisson equation 2.13 and find and X̃ whose gradient is close to the gradient field≠æ
V .

Now that the vector field has been defined, the objective is to find X̃ œ FO,F

such that its gradient is as close as possible to the aforementioned gradient field≠æ
V . This statement is equivalent to find a solution to the Poisson equation:

�X̃ = Ò≠æ
V (2.17)

Since �X̃ and Ò≠æ
V do not belong to the same space as X̃ and ≠æ

V , i.e. FO,F , the
problem is casted to the minimization of the distance between the projections of
�X̃ and Ò≠æ

V onto FO,F , simplified as:
ÿ

oœO

||È�X̃ ≠ Ò · ≠æ
V , FoÍ||2 =

ÿ

oœO

||È�X̃ , FoÍ ≠ ÈÒ · ≠æ
V , FoÍ||2 (2.18)

Which can eventually be rewritten into a matrix form by considering X̃ = q
o xoFo

and building the matrix L, such that every (o, o
Õ) entry is:

Lo,oÕ ©
K

ˆ
2
Fo

ˆx2 , FoÕ

L

+
K

ˆ
2
Fo

ˆy2 , FoÕ

L

+
K

ˆ
2
Fo

ˆz2 , FoÕ

L

(2.19)

where L is defined in such a way that Lx is equal to the dot product of the Lapla-
cian matrix with each Fo. Leading to the final formulation of the minimization
problem as:

min
xœR|O|

||Lx ≠ v||2 (2.20)

Once the indicator function X̃ has been estimated, it is possible to retrieve the
isosurface for a given isovalue “. To choose the best “ a common practice is to
evaluate the indicator function on sample positions and use the average of those
values as isovalue, in mathematic terms:

“ = 1
|S|

ÿ

sœS

X̃ (s.p)

With “ defined, the isosurface can be extracted using the Marching Cubes algo-
rithm[LC87].
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2.4 A brief introduction to Machine Learning
Many problems in Computer Science turn out to be hardly solvable using tradi-
tional algorithms, in which the programmer comes up with a sequence of instruc-
tions that are able to solve the initial problem. Think for instance at the task of
face detection: starting from an image, the algorithm has to output the bounding
boxes of all the faces in the input picture. Initially, some algorithms were de-
signed to solve this problem using the intensity histogram of the image to match
the known intensities patterns corresponding to facial features. However, those
solutions were extremely di�cult to implement, not much accurate and su�er of
poor generalization, i.e. they worked only on specific known settings, like a single
face frontally oriented towards the camera.

Back to the problem we are trying to solve in this thesis, the programmer would
have to first write the whole function that describes the space occupancy, embed-
ding the surface shape of the target object. Then, if the target object changes,
discard all previous work and restart from the beginning. Quite an impossible task
for a human being indeed.

A much better approach would be to have a common adaptive model that,
using some data, adapts itself to solve the initial problem. This approach goes
under the popular name of Machine Learning and considers the process of solution
finding from another perspective. Depending on how the dataset is composed,
the field splits into several sub-approaches, like supervised learning, in which the
dataset elements are pairs < features, class >, and unsupervised learning, in
which the model is trained from unlabeled raw features.

Every machine learning model can su�er of either underfitting or overfitting.
The first means that the model is “too simple” or in other words is not capable of
correctly classify the data, while the latter means the model has learnt spurious
patterns from the training set and is now unable to generalize when applied to yet
unseen data from the validation set.

Summing up, the core components of machine learning based approaches are
the model, the training algorithm and finally the dataset. The training algorithm
will take in input the data, embedding its pattern in the model and output it, with
the goal of finding the learnt patterns also on unseen data. In general, there are
many models, learning algorithms and loss functions, in this thesis neural networks
and K -Nearest Neighbors will be used.

Learning as optimization

How can learning be formally defined in the mathematical layer? Usually we learn
something when we do not commit errors on it and conversely we have not learnt
something when we commit lots of errors. For computers it is quite similar, in
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mathematical terms the training algorithm optimizes the model weights on the
loss function evaluated on the dataset. Optimizing means finding the weights
configuration that is able to achieve the lowest loss function error.

Two common loss functions are the Mean Square Error (equation 2.21) and
the Binary Cross Entropy Loss (equation 2.22). The first one, for each sample in
the training set, takes the square of the di�erence between the model output on
that sample and the expected output (i.e. the known class from the training set).
The single errors are then summed together and normalized for the training set
cardinality.

MSE = 1
N

Nÿ

i=1
(yi ≠ ŷi)2 (2.21)

While the latter is common used for binary classification task, i. e. problems
where the dataset is split in just two classes. In this thesis model, both losses were
tried, but the latter has been shown to have better performances with respect to
the MSE loss.

BCE = 1
N

Nÿ

i=1
yi · log (p (yi)) + (1 ≠ yi) · log (1 ≠ p (yi)) (2.22)

Now that the Loss functions are defined, an algorithm is required to adapt the
model weights. The most common technique to achieve this is Stochastic Gradient
Descent, in modern libraries, like PyTorch, it is used together with an optimizer,
like Adam[KB14]. The idea behind SGD, is to use the gradient vector information
to search for a better solution. As it is known, the gradient vector of a given
di�erentiable function f , is composed by its partial derivatives:

Òf (p) =

S

WWWWWWWWWWWU

ˆf
ˆx1

(p)
ˆf
ˆx2

(p)

...
ˆf

ˆxn
(p)

T

XXXXXXXXXXXV

and points towards the direction in which f increases its value, so to minimize the
target function we just need to investigate towards the opposite direction of its
gradient vector. This operation is straightforward if f is a convex function, i.e. it
has no local minima.
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Unfortunately, Loss functions are not convex unless in trivial settings, this means
that when we find a minimum point, it could just be a local minima, hiding the
presence of other solutions with lower loss values.

Since the gradient descent is slow to compute because it has as many terms as
samples in the training set, the approach that is applied in real world scenarios is
Stochastic Gradient Descent (SGD). The core feature of this approach is that only
a constant number of elements are used to compute the actual gradient of the loss
function. These elements are extracted randomly, in a stochastic way indeed.

So, for each iteration, the algorithm picks constant number of terms and uses
that batch to compute a noisy gradient approximation of the loss function with
respect to them. The so computed approximation is used to perform one descent
step by applying the update rule in equation 2.23.

◊ Ω≠ ◊ ≠ ÷Òf (◊) (2.23)

Where ◊ is the model weights configuration and ÷ is the learning rate, in other
words, how much the weights configuration will be altered by the model error.
If the learning rate is low, the model will require a huge number of epochs to
converge to a solution, while with a large learning rate, the model will be subject
to a large weights change for each iteration. This will eventually cause the model
to overshot the local minima and oscillate, being unable to converge to a solution.
Usually, instead of using directly the SGD, an optimizer (like the Adaptive Moment
Estimation[KB14]) is used as a proxy to abstracts the complex handling of the
learning rate and other hyper parameters.

An alternative view on why SGD is able to escape from local minima was given
by Kleinberg, Li and Yuang in [KLY18]. They noticed that SGD is equivalent to
a gradient descent applied to a smoothed version of the original function f .

◊t+1 = ◊t ≠ ÷Òf (◊t) ≠ ÷Át (2.24)
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which means that small changes will not be present in the smoother version of the
function and thus the optimization will be focused on larger loss function changes

2.4.1 Neural Networks
Neural Networks[Ros58] are a class of supervised machine learning models, in-
troduced by Rosenblatt in 1958 with the paper “The Perceptron: A Probabilistic
Model for Information Storage and Organization in the Brain” [Ros58]. They con-
sist in a set of units (called neurons) grouped in layers and connected between each
other with an associated connection weight. The learning comes from the auto-
matic adjustment of those connection weights during the backpropagation of the
error made by the model on the traing set, using gradient descent. Starting from
that single neuron (i.e. the Perceptron), many other networks and architectures
have been developed during the years. Like the Convolutional Neural Networks
(CNNs) which are the current standard for machine learning based image process-
ing for tasks like object recognition.

If a network is fully connected, i. e. for each layer, each neuron is connected to
all the neurons of the next layer, we call that network a Multi Layer Perceptron
(MLP). Otherwise, they are referred as not fully connected neural networks, like
the convolutional ones.

Figure 2.12: Single neuron schema

Each neuron (figure 2.12) is a base unit composed by a weighted sum of its
inputs plus a bias, i.e an input unit always clapped at ≠1 which is used to remove
the activation function threshold. As a matter of fact, the neuron should “fire”
when the weighted sum reaches a threshold value, by using the clapped bias input
instead, we can make this threshold a learnable parameter.
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The result of the weighted sum is then used as input for the activation function,
which maps that value to the output domain of the neuron. Famous activation
functions are the sigmoid (equation 2.25), the hyperbolic tangent (equation 2.26),
the Rectified Linear Unit (equation 2.27) and the Softmax (equation 2.28).

‡ (x) = 1
1 + e≠x

(2.25)

tanh (x) = e
x ≠ e

≠x

ex + e≠x
(2.26)

ReLU (x) = max(0, x) (2.27)

SoftMax (zi) = e
zi

qK
j=1 ezj

for i = 1, 2, . . . , K (2.28)

Sigmoid and hyperbolic tangent ones are traditional activation functions used in
non-deep neural networks, they mainly di�er on the codomain, as can be seen is
figure 2.13. Indeed the first one codomain is [0, 1], while the latter one codomain is
[≠1, 1], this makes the hyperbolic tangent centered on the origin and thus symmet-
ric with respect to it. The hyperbolic tangent comes also with a stronger gradient,
but still not su�cient to not be subject to the vanishing gradient issue, that will
be introduced later and that is the reason why Rectified Linear Unit function was
introduced for hidden layers in deep neural networks.

Regarding Softmax instead, it is the standard for multi class classification
problems, since it returns a probability distribution where the value of the output
unit oi is indeed the probability of the input of belonging to class i.
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Figure 2.13: Common activation functions plots

When a network is composed by more than two hidden layers, it is common
referred as a deep neural network. Such models, are much more powerful when
compared to shallow networks, since a greater number of layers allows a greater
number of intra-layer connections and thus an higher number of trainable param-
eters. The term powerful in this case refers to the capability of the model to learn
complex pattern, even ones associated with abstract concepts, like human faces.

Indeed one of the main benefits is that deep neural networks start from raw
data, without requiring the developers to perform a feature engineering process,
at the cost of loosing model interpretability. A subclass of deep neural networks,
applied to image processing are convolutional neural networks, the core concept of
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these networks is to learn the parameters of convolution filters, which are used to
extract features from images and vectors.

However, the presence of many layers introduces some problems, like the van-
ishing gradient. To give a cursory overview of what vanishing gradient is, when a
deep neural network uses traditional activation functions (like sigmoid and hyper-
bolic tangent), the gradient values tend to zero in the first layers. As discuss earlier,
the gradients are essential to update the model weights during the backpropaga-
tion step and thus to converge to a solution. But, using traditional activation
function, the gradient becomes less significant, making the first layers impossible
to train consistently.

Common techniques to mitigate the vanishing gradient problem are the Rec-
tified Linear Unit activation function (to be used in hidden layers) and ad-hoc
model architectures like the residual network[He+15].

Figure 2.14: ResNet base block

In each ResNet block (shown in figure 2.14), the input vector is duplicated
and one copy is mapped using the block layers, while the other one is instead left
untouched (identity mapping). By introducing the so called shortcut connections,
the gradient is able to flow easier during backpropagation. Moreover the training
is shifted to residual learning, in other words, instead of having to learn the direct
mapping input-output, the network is learning the di�erence between the input
and the output. Which is often a smaller change with respect to the full mapping,
and so easier to learn.

2.4.2 Positive Unlabeled Learning
Among the various possible settings for Machine Learning problems, let’s consider
the case in which the dataset is partially labeled and it is known that the samples
can be split into two classes. This setting goes under the name of positive unlabeled
learning, as said, the samples can either belong to positive or negative class, but the
class is known only for some positive samples. It follows that the unlabeled slice
is composed by both positive and negative samples. Positive unlabeled learning
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falls under the semi-supervised learning category. The most common task to fall
into this standing is anomaly detection, which for instance applies to both network
intrusion detection systems and fraud detection systems.

Positive unlabeled learning focuses on finding valid approaches to extract mean-
ingful knowledge from the unlabeled data leveraging the labeled samples, in Learn-
ing from positive and unlabeled data: a survey[BD20], Bekker et al. did a survey on
various techniques. Most common approaches are two-steps ones, like first using
a custom version of K-nearest neighbors to isolate some reliable negative sam-
ples[ZW09] and then training a Support Vector Machine[CV95] (SVM) to classify
the rest of the data. In particular, the reliable negatives samples are extracted as
follows:

1 RN = {}
2 for u in U
3 for p in P
4 sim(u,p)
5

6 if w(u) < 0:
7 RN. insert (u)

Where:

• U is the set of unlabeled points.

• P is the set of the positive-labeled points.

• sim(u, p) is a custom and codomain-specific similarity function between two
samples. The larger the value, the larger the similarity between the samples.

• w(u):
w(u) =

ÿ

dœNk,u

sim(u, p) ≠ T

• Nk,u is the set containing the K nearest neighbors of u.

• T is a custom and manually adaptable threshold.

Another approach is the so called Spy, it consists of unlabelling a subset of
the positive points, thus adding a set of positive spies inside the unlabeled set.
Then a model is trained using unlabeled plus spies as negative class and positive as
positive class. This model is used to return the likelihood on the relaxed unlabeled
set and based of the distribution on the spies a threshold is derived such that the
spies are separated from the others. This last step generates two sets, the first
one containing the likely negative samples plus some spies and the still unlabeled,
which should contain most of the spies (thanks to the threshold). Finally, a final
model is trained on the likely negative as negative class and original positive as
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positive class. A core feature of this approach is its agnosticism regarding the
model choice, indeed any kind of model can be used.

In this thesis, as it will be better explained later, a point can either be external
or internal, however, after the sampling steps, a point can only be surely external
or unknown. It is easy to recognize a parallelism of what just said with Positive
Unlabeled learning, and so to leverage its theory to derive a valid approach to par-
tition unknown points into internal and external subsets. Of course, the external
points will be merged with the surely external ones.

2.5 Implicit Neural Representation
A recent line of research in Computer Vision and Graphics has started to replace
discrete representations like voxel grids and meshes (section 2.3) with continuous
ones. Currently, the most solid and explored way to achieve this is to use a
coordinate-based MLP as a function regressor. In this sense, we are using a neural
network to embed a low dimensional signal, starting from a set of points with the
corresponding labels, to fit a function that represent the target signal.

Regarding the Computer Vision field, this approach has been exploited both for
two dimensional signals (i.e. images) and three dimensional ones (i.e. scenes), with
di�erent applications in many subfields, like medical imaging[Mol+23]. Where
leveraging implicit neural representations makes possible to achieve better results
on image reconstruction, segmentation, registration, view synthesis and lossy com-
pression. These type of models are also often referred as Coordinate based
MLP, since the input corresponds to a spatial coordinate in Rd, with d = 2 for
images and d = 3 for scenes.

The usage of continuous implicit neural representations instead of traditional
discrete ones, brings many advantages, like the following ones:

• Continuous and di�erentiable:
neural models have naturally a mainly smooth output and are di�erentiable,
thus can be used in tasks where the gradient analysis is required. The
smoothness becomes useful also when dealing with a limited number of initial
samples or views.

• Space optimization and compression:
as explained in section 2.3, traditional representations require lots of storage
space and most importantly, the size scales with the resolution. Using INRs
instead, we just need to store the network weights. This compression side-
e�ect could lead to a significant improvement when applied to even more
complex signals.



CHAPTER 2. BACKGROUND 32

• Resolution independence:
Once the model has been trained, it can be queried at any resolution, de-
pending on the task or the requirements, without any change on the model
structure.

• Flexibility and generalization:
The generalization properties of neural networks guarantee them to be uni-
versal function approximators, making possible to learn any type of signal
without having to tune or change the structure.

Most models that operate on images and scene rendering, use three neurons on
the output layer in order to represent the Red, Green and Blue image channels.
By blending the intensities of those three colors, it is possible to generate the fi-
nal output color. Taking for instance Neural Radiance Fields[Mil+21], which is
explained in detail in section 3.4, the model outputs the RGB together with the
density ‡ which is required to achieve 3D surface reconstruction and volumetric
render. These four outputs are calculated starting from a five-dimensional coor-
dinate, representing the queried three-dimensional point together with two angle
identifying the viewing direction of the camera ray.

However, one main problem arises when using MLP for implicit representations,
the so called spectral bias. This latter issue causes Multi Layer Perceptrons to
struggle learning high frequency functions from low dimensional domains, and as
it is easily noticeable, coordinate domains are indeed low dimensional.

The spectral bias issue has been deeply analyzed by Rahman et al in.[Rah+19]
and its e�ect are observable in figure 2.15. On that same figure, it is also shown
one of the two common mitigations to it, i.e, Fourier features encoding. Indeed,
the standard solutions to spectral bias is to either use encodings like positional or
gaussian ones (section 2.5.1) or periodic activation functions (section 3.3).

2.5.1 Fourier Features and Positional Encoding
In machine learning, it is frequently useful and necessary to perform an encoding
of the input feature vector before feeding it to the model. The reasoning behind
encodings and embeddings is that the same problem can be either simpler or harder
to solve depending on the hyperspace in which it relies. For instance, a dataset
that is not linearly separable in a feature space, can become linear separable in an
higher dimensional space. So, an encoding is just a function “ : Rn æ Rm (with
n < m) that takes elements of the dataset as input and returns a more complex
featurized version of it.

For coordinate based tasks, characterized by dense, low dimensional dataset
and high frequency target signals, it has been shown that standard MLPs show
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bad performances, which can mitigated using Fourier features based encodings.
In our case (3D shape regression), without a Fourier feature encoding the output
would be blurred, since fine details are indeed high frequency function fluctuations.

The motivation behind the e�ectiveness of frequency based encoders to over-
come the spectral bias[Bas+20] in low dimensional neural networks learning high
frequency signals, relies on the equivalence between neural networks training and
kernel regression. So, a cursory introduction to kernel regression and its duality
with neural networks is required.

2.5.2 Kernel regression
Kernel regression is a non parametric function estimation algorithm that starting
from a training set of n points:

{(xi, yi)}, ’xi : f(xi) = yi

estimates the underlying continuous function f as a linear combination of a base
kernel function k centered around the training instances xi, as follows:

f̂w (x) =
nÿ

i=1
wi · k (x ≠ xi) (2.29)

using least-squares as evaluation criteria:

min
w

ÿ

i

||yi ≠ f̂w (xi) ||2 (2.30)

As it is observable in equation 2.29, the core components are the learnable pa-
rameters w and the a priori defined base kernel function k. Thus, choosing the
best width of the kernel function k plays a crucial role, indeed a too wide kernel
function will cause an excessively smooth reconstruction. In contrast, a too tight
kernel will prevent the correct interpolation of the reconstruction. To reconduct to
previously introduced machine learning models issues, a wide kernel will underfit,
while a tight kernel will overfit. In general, a good choice is to bound it to the
average distance between the training samples xi.

2.5.3 Neural Networks training as kernel regression
Let’s now consider a deep neural network f◊ whose initial weights have been gen-
erate from a Gaussian distribution N , it has been shown by Jacot et. al [JGH20]
that when layers number (i.e. degrees of freedom) tend to infinity and learning rate
÷ of Stochastic Gradient Descent tends to zero, it converges after training to the
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kernel regression solution using the following kernel, labelled as Neural Tangent
Kernel:

kNT K (xi, xj) = E◊≥N

K
ˆf◊(xi)

ˆ◊
,
ˆf◊(xj)

ˆ◊

L

(2.31)

In the particular case in which all the inputs are restricted to a given hyper-
sphere, it has been shown that the NTK can be rewritten as the dot product
kernel hNT K(xT

i xj) for a scalar function hNT K : R ≠æ R. This last result can be
interpreted as a linear system that approximates the training of a MLP. By con-
sidering an L2 loss training at learning rate ÷, the network output after t training
iterations is approximated as:

f◊(Xtest) = ŷ
(t) ≥ KtestK

≠1
1
I ≠ e

≠÷Kt
2

y

Where:

• K is the NTK kernel matrix composed by all the pairs of points X in the
training set

• Ktest is the NTK matrix between Xtest and all points in X.

• ŷ
(t) are the network predictions at training iteration t

As any machine learning model, the network will commit an error on the training
set depending on the epoch. The network will commit a certain error while train-
ing, this error can be expressed as ŷ

(t)
train ≠ y and since K is a positive semidefinite

matrix, it can be decomposed as Q�Q
T where � is the diagonal matrix containing

the eigenvalues (all non negative) of K, and so it is possible to rewrite part of last
equation as:

Y
]

[
e

≠÷Kt = Qe
≠÷�t

Q
T

Q
T

1
ŷ

(t)
train ≠ y

2
¥ Q

T
11

I ≠ e
≠÷Kt

2
y ≠ y

2
= e

≠÷�t
Q

T
y

Considering the i component of the error, it will consequently have an exponential
decay at a rate equal to ÷⁄i, where ⁄i is the i-th eigenvalue. Thus, the components
of the target function associated to kernel eigenvectors with larger eigenvalues will
eventually be learnt faster, leading to the proof that high frequencies components
will never be converge.

2.5.4 Fourier features
Tanik et al. in Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains[Tan+20] highlighted two main considerations when
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leveraging this duality on dense and low dimensional (coordinate based) deep neu-
ral network. First, the composed NTK should be shift-invariant, in this sense a
Fourier feature mapping over coordinates will act as a convolution kernel over the
input domain. Secondly, the bandwidth of the NTK should be tunable, to make
the kernel neither too wide nor too narrow and balance it between underfit and
overfit.

Based on these two observation, they eventually introduced the mapping func-
tion “ (equation 2.32) to featurize the input coordinates, using a set of sinusoids
to map them to a higher dimensional hypersphere surface.

“(v) =
Ë
a1 cos(2fib

T
1 v), a1 sin(2fib

T
1 v), . . . , am cos(2fib

T
mv), am sin(2fib

T
mv)

ÈT
(2.32)

Since cos(–≠—) = cos(–) cos(—)+sin(–) cos(—), the kernel function can be rewrit-
ten as:

k“(v1, v2) = “(v1)T
“(v2) =

mÿ

i=1
a

2
i cos(2fib

T
i (v1 ≠ v2))

That could eventually be cleaned as:

k“(v1, v2) = h“(v1 ≠ v2)

Where:
h“(v�) =

mÿ

i=1
a

2
i cos(2fib

T
i v�), v� = v1 ≠ v2

It is fundamental to observe that the kernel depends solely on the points di�erence
and is hence stationary. Embedding this last results in the starting problem, the
model f◊ (x) becomes f◊ (“ (x)), and consistently the composed kernel becomes:

Y
]

[
x = “ (v)
hNT K

1
x

T
i xj

2 ∆ hNT K

1
“ (vi)T

, (vj)
2

= hNT K (h“ (vi ≠ vj)) (2.33)

In other words, the training of this perceptron becomes the kernel regression of
the composition hNT K ¶ h“. And finally the perceptron equation can be rewritten
as:

f̂ = (hNT K ¶ h“) ú
nÿ

i=1
wi · ”vi

where vi are the input training point and the vector composed by each wi is
w = K

≠1
y.

The result of what said so far is that by remapping coordinated to a Fourier
frequency space, it is possible to give a higher priority to high frequencies function
features during the training process, eventually leading to their convergence. Such
encodings, will be in the form of randomly scaled and rotate sine and cosines
controlling the working frequencies of the network. In particular, the authors
proposed the following three encodings:
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Figure 2.15: Some examples of the enhancement given by Fourier Feature map-
pings taken from [Tan+20]

• Basic:
“ (v) = [cos (2fiv) , sin (2fiv)]T (2.34)

Wraps the coordinate around a circle

• Positional Encoding:

“ (v) =
Ë
. . . , cos

1
2fi‡

j/mv
2

, sin

1
2fi‡

j/mv
2

, . . .

ÈT
(2.35)

Parametric over ‡, still deterministic and requires manual tuning for each
task.

• Gaussian:

“ (v) = [cos (2fiBv) , sin (2fiBv)]T

B = [bij] œ Rm◊d
, bij ≥ N

1
0, ‡

2
2 (2.36)

A matrix B of coe�cients is used. Each coe�cient b œ B is sampled from a
Gaussian distribution with mean 0 and standard deviation ‡. Like for posi-
tional encoding, ‡ will be manually set depending on the task by performing
the so call hyperparameter sweep.

The e�ectiveness of these encodings is shown in figure 2.15. For our experiments,
we decided to apply the Gaussian variant before feeding the feature vector to the
network, as it will be shown in chapter 4.



Chapter 3

Related Works

During recent years, many approaches using implicit neural representations have
been developed to represent 3D objects, scenes and other type of coordinate bases
signals. In this chapter it is going to be presented the current state of art and
related works of line laser scanners and implicit neural representations, especially
when applied to objects and scenes, like in the case of occupancy networks, NeRF
and PixelNeRF. Lastly, it will also be discussed SIREN, an alternative to positional
and gaussian encodings which replaces traditional activation functions with newly
defined, periodic ones.

3.1 A traditional line laser scanner
An example of a traditional line laser scanner for 3D reconstruction can be found
in one of my previous projects and is currently hosted on GitHub1. In that project,
the input was a video taken from a scene involving:

• A rectangular marker on the back of known size.

• A rotating plate with another marker on top of it.

• The target object on top of the plate.

• A laser plane projected onto the object and the markers.

Outputting the object surface, represented as a point cloud of (x, y, z) points, in
the rotating plate reference system. As it is shown in figure 3.1, the laser plane
projects an edge on the object surface so, for each frame, it is possible to triangulate
the location of those points.

1Project repository on GitHub: https://github.com/Gotti27/3d-scanner
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Figure 3.1: A representation of the line laser schema

This can be achieved by finding the intersection between the laser plane and
the ray that starts from the camera optic center and passes through one of the
image pixels with a laser point. In order to compute these intersections, obviously,
the plane and line equations are required. The line equation can be computed
by knowing the location in rotating plate coordinates of the optic center (achiev-
able with equation 2.8) and the location of the pixel back-projected to camera
coordinates and then on plate coordinates.

The plane equation instead, can be computed from three points belonging to
it, the first one can be extracted from the rotating plate, while the other two
from the back-marker. This bring a total of three reference systems: the back-
marker one, the rotating plane one and finally the camera system. The camera
rototranslations with respect to those markers are computed as explained in sec-
tion 2.1.2, by minimizing the re-projection error of some object points with their
corresponding ones on the image plane. The markers features on the image plane
are found using traditional computer vision techniques like thresholding, morpho-
logical transformations and curve fitting. Finding the rotating plate requires also
to solve the string alignment problem, since its features are a list of colored points.
An example of the scanner output can be observed in figure 3.2.

3.2 Occupancy networks
In Occupancy Networks: Learning 3D Reconstruction in Function Space[Mes+18],
Mescheder et al. explored the opportunity and the advantages of encoding a 3D
surface inside a multi layer perceptron, based on learning a continuous 3D mapping
to overcome the discretize resolution of traditional 3D representations. As for our
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Figure 3.2: Two examples of traditional point cloud 3D reconstruction output

approach, the object surface is encoded as the classifier decision boundary, indeed
their classifier would return a value in the interval [0, 1] representing the occupancy
probability of the input coordinates in R3. The goal of their work was to create
an implicit neural representation starting from point clouds, single images and low
resolution voxels, reversing on an abstract occupancy function o:

o : R3 ≠æ {0, 1}

to derive an Occupancy Network f◊:

f◊ : R3 ◊ X ≠æ [0, 1]

where the reconstruction is conditioned by the observation x œ X of the object
and ◊ are the learnable weights of the model. To train their occupancy network,
the process was to sample points in the 3D bounding volume. For each i-th sample
in the batch, K points pij are computed. where L is the binary cross entropy loss.
Evaluating this loss function for each batch B:

LB (◊) = 1
|B|

|B|ÿ

i=1

Kÿ

j=1
L (f◊ (pij, xi) , oij)

An occupancy network, returns 1 for outside points and 0 for internal ones. When
it comes to point clouds training, their approach was fully supervised, i.e. the
points were all labeled either as external or internal a priori.

Regarding the model implementation, their approach was to use a fully con-
nected network with 5 ResNet (Residual Nets, section2.4.1) blocks conditioning it
to di�erent encoders based on the input type. For instance, on point clouds inputs
they used the PointNet encoder[Cha+17].
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To infer the model they introduced the Multiresolution IsoSurface Extraction
(MISE). This tree-base approach consists in first evaluating the classifier f◊ a low
resolution grid. If one of the vertexes values of the grid is greater or equal than a
threshold · , these cubes are resampled using an higher resolution. These latter two
steps are iterated for N times. After the loop, the marching cubes algorithm[LC87]
is applied on the grid vertexes and lastly smooth using the classifier gradient of
the first order and second order derivative.

The approach of Mescheder et al. has been further developed by Peng et al. in
Convolutional occupancy networks[Pen+20], by blending occupancy networks with
convolutional feature extractor.

3.3 Implicit Neural Representations with Peri-
odic Activation Functions

In Implicit Neural Representations with Periodic Activation Functions[Sit+20],
Sitzmann et al., introduced the power of leveraging periodic activation functions
when dealing with implicit neural representations. Their work is extended to all
the signal encodings, such as audio signals, images, videos and complex 3D scenes
with fine details where the common baseline is the low-dimensional initial feature
vector and a high frequency target signal.

Their main contribution, as it can be easily deducted from the paper title itself,
was to substitute traditional activation function (section 2.4.1), which are clearly
non-periodic, with periodic ones. A periodic function can be intuitively defined as
f : A æ B where given a period t œ A, ’a œ A : f(a+t) = f(a). In particular they
choose the sine function as base function to be tuned and called this new neural
network architecture SIREN. This architecture can be expressed in mathematical
terms as follows:

�(x) = Wn(„n≠1 ¶ „n≠2 ¶ . . . ¶ „0)(x) + bn

xi ‘æ „i(xi) = sin (Wixi + bi)
(3.1)

Where each „i : RMi ‘æ RNi is the i-th layer of the network and consist of an
a�ne transformation applied to the input vector xi œ RMi and defined by:

• Weight matrix Wi œ RNi◊Mi

• Biases vector bi œ RNi

To eventually apply the sine activation to each resulting vector component. An-
other interesting feature to notice of SIREN is the fact that a SIREN derivative
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is a SIREN itself, indeed the sine derivative is a cosine, and a cosine is just a
phase-shifted sine:

cos(◊) = sin
3

fi

2 ≠ ◊

4

Knowing the importance of implicit functions derivatives, in our case it corresponds
to the object surface, this feature assumes a great relevance when dealing with
target object measurements.

However, as the authors highlighted, layers with sinusoidal activation functions,
are highly dependent on the weight initialization, hence a wrong initialization lead
to poor results. The optimal configuration proposed by the authors is a uniform
distribution dependent on the number of input connections:

W ≥ U
Q

a≠
Û

6
fan in ,

Û
6

fan in

R

b

Such distribution leads the input of each sine to be a Gaussian distribution, and
hence their output approximates an arcsine with a standard deviation close to 0.5.
The proof is available in the original paper[Sit+20].

In all tasks, SIREN showed better performances when compared to ReLU func-
tions together with positional encoding both in error and training time. As dis-
played in figure 3.3, when learning signed distance functions (from well defined
test data) SIREN is able to achieve very smooth surfaces, but keeping sharp detail
over the object edges. For these reasons, adopting SIREN in our model will be
surely taken into consideration for future developments of the project.

Figure 3.3: Visual benchmark of SIREN (left) and ReLU with positional encod-
ing (right) when embedding signed distance function
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3.4 NeRF - Neural Radiance Fields
The Neural Radiance Field model[Mil+21] focuses on photorealistic renders, in
other words, starting from a set of sparse images with a known pose, it derives a
continuous fully connected deep network representing the color. On the inference
phase, the model is able to generate novel views of the target scene.

The NeRF model is a five-dimensional multi player perceptron, taking in input
the coordinates x, y, z plus the view direction expressed as (◊, „), and it outputs
the volume density ‡ plus the RGB color. To enforce consistence among multiple
views, the volume density ‡ is predicted using only the position x = (x, y, z), while
the RGB color c is conditioned also by the viewing direction, this allows to achieve
consistent light reflectance. Removing the viewing direction angle, will cause the
model to not be able to recreate specular reflections. The authors showed how
without enforcing this two-steps inference the model cannot represented specular-
ities.

As introduced in the previous chapter, we can identify one ray for each pixel
on the camera image plane, since for each of those points there will be a vector
that starting from the camera origin will intercept the pixel itself and continue
towards the external world. NeRF uses volumetric render along each ray to derive
the corresponding pixel data. So, for each ray r expressed as:

r (t) = o + td

we can derive an expected color C(r) by integrating between the near bound tn

and the far bound tf as:

C(r) =
⁄ tf

tn

T (t) ‡ (r (t)) c (r (t) , d) dt (3.2)

where T (t):
T (t) = exp

3
≠

⁄ t

tn

‡ (r (s)) ds

4
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is equal to the accumulated transmittance along the ray from tn to t. To estimate
the continuous integral 3.2, NeRF relies on the quadrature approach, by first
partitioning the tn, tf interval into N equal chunks and then sampling uniformly
a ti for each one of those chunks as follows:

ti ≥ U
5
tn + i ≠ 1

N
· �t , tn + i

N
· �t

6
�t = (tf ≠ tn)

This sampling approach prevents the voxelization that a classical discrete estima-
tion would instead cause. Indeed the scene is sampled on a continuous domain
during the training phase. The integral introduced in equation 3.2 is consequently
discretize using sums like follows:

Ĉ (r) =
Nÿ

i=1

S

Uexp

Q

a≠
i≠1ÿ

j=1
‡j”j

R

b · (1 ≠ exp (≠‡i”i)) ci

T

V

Where ”i is equal to the distance between two adjacent samples ti and ti+1. It is
essential to note that this equation is di�erentiable and its gradient corresponds
to the alpha composting, in particular:

–i = 1 ≠ exp(≠‡i”i)

In the field of computer graphics, images are composed of various channels, black
and white images, for instance, have just one channel, which represents the in-
tensity at each pixel. Colored images are instead represented by more channels,
depending on the color space, like RGB. In this color space, colors are represented
by combining the intensities of the Red, Green and Blue colors. Is is common to
add a fourth channels to images, the – channel, representing the transparency,
this allows to blend two images together by interpolating the colors of each one.
Alpha values are in the interval [0, 1], where 0 means full transparency and 1 full
opacity, and using compositing algebra it is possible to express multiple compost-
ing images. For instance, give two images A and B, the simplest interpolation
goes by the name “A over B”, simulates the addition of A as a foreground of B as
a background. Generating the resulting image C as follows:

C = –A + (1 ≠ –) B

More complex compositing operators are available, to simulate other types of in-
terpolation.

NeRF included two main optimization techniques for being more accurate on
high frequency scenes: positional encoding, and hierarchy sampling. As explained
in section 2.5.1, neural networks struggles learning high frequency signals in low
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dimensional domains, to mitigate this bad feature, Mildenhall et al. applied a (not
learnt) positional encoding “:

“ (p) =
1
sin

1
20

fip

2
, cos

1
20

fip

2
, . . . , sin

1
2L≠1

fip

2
, cos

1
2L≠1

fip

22

to each input in isolation, with L = 10 for the position coordinates and L = 4 for
the viewing direction. As expected, the encoding brought a significant improve-
ment in model benchmarks.

Since the pure NeRF network rendering process requires to perform a dense
evaluation over each camera ray, its ine�ciency is very clear. Especially during
training, when the rendering process is iterated a huge number of times to optimize
the NeRF loss function (equation 3.3). Aiming to optimize the sample extraction,
the authors targeted the fact that occluded regions and free space from the scene
do not provide much information to the output. Thus, it would be better to have
more samples from dense regions, and less samples from the others.

In order to achieve this, they decided to train two models in parallel, the first
one denoted as “coarse”, while the second one denoted as “fine”. First, a set of
Nc locations are sampled using stratified sampling and evaluated using the coarse
model. The volumetric data of this Nc samples are used to produce an informed
sampling for the fine model by rewriting the alpha composite color Ĉc (r) of the
coarse model as the weighted sum of the sampled colors along the current ray:

Ĉc (r) =
Ncÿ

i=1
wici =

=
Ncÿ

i=1
[Ti (1 ≠ exp(≠‡i”i))] ci

Finally, to produce the required probability distribution, the following normaliza-
tion is applied:

ŵi = wi

Ncq
j=1

wj

Biasing the samples extraction accordingly to their expected contribution. Sum-
ming up, the ray is now mapped to a probability density function, from which Nf

points are sampled. The union of the two sets is then used to train the fine network
leading to the estimation of color Ĉf (r) on Nc + Nf samples. This approach goes
under the name of hierarchical sampling optimization.

Model training

Starting from a set of RGB images, associated with the corresponding camera
poses and camera intrinsic parameters, the training happens as an optimization
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of the rendering loss against the ground truth views. First, a batch of camera
rays are sampled from the set of all pixels in the dataset, applying hierarchical
sampling on these rays. The colors are rendered using volumetric render and the
loss is computed as follows:

L =
ÿ

rœR

S

U
-----

-----Ĉc (r) ≠ C (r)
-----

-----

2

2
+

-----

-----Ĉf (r) ≠ C (r)
-----

-----

2

2

T

V (3.3)

where:

• R is the rays set

• C(r) is the ground truth color

• Ĉc(r) is the coarse predicted volume

• Ĉf (r) is the fine volume predicted colors

NeRF Inference

To generate a novel view, it is su�cient to integrate along each camera ray in
the image, from a near point tn to a far point tf . The integral output will then
be equal to the color on the corresponding pixel. As explained so far, the model
focuses on the generation of coherent novel views, so a weakness of the model is
the representation of the volumetric density of concave surfaces, which is simulated
as a consequence of the consistent light reflectance on the objects. Although this
downside, it still reaches an outstanding precision on the photorealistic side.

3.5 PixelNeRF
Yu et al. improved the work of Mildenhall et al. combining convolutional ap-
proaches in PixelNeRF[Yu+21]. This approach allows the network to require only
a few sparse image as training set, even just one single image, leading to a huge
decrease of the training time and required resources.

As the authors of this paper noticed, traditional Neural Radiance Field, requires
a myriad of images, together with each pose, focuses only on geometric consistency
and finally does not support knowledge transfer across di�erent scenes.

To overcome these limitations, the proposal was to use spatial image features to
condition the Neural Radiance Field representation by adding a fully convolutional
image encoder E. This encoder will produce a pixel-aligned feature grid starting
from an input image I and will be labeled as feature volume W = E(I).
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Figure 3.4: PixelNeRF model architecture

Starting from single image tasks, as for traditional NeRF, to train and query the
model, volumetric rendering (equation 3.2) is used on each set of points extracted
from the required camera rays. Each point x is projected onto each image plane
to retrieve the corresponding image feature on the image coordinates of x, noted
as fi(x). These projections can be achieved using the traditional camera equations
discussed in section 2.1. Leading to the formal definition of the PixelNeRF model
f as the following equation:

f (“ (x) , d; W (fi(x))) = (c, ‡) (3.4)

Where “ is one of the well known positional encodings discussed both in section
2.5.1 and 3.4 and the image features W is added as a residual (ResNets explained
in 2.4.1) after each layer.

Generalizing the model to support multi view scenarios, the authors’ strategy
is to first process each view in isolation to then merge the intermediate feature
vectors and complete the evaluation. Pragmatically, the network layers are split
into two partition, f1 and f2 respectively. To better understand this full version of
the architecture, refer to figure 3.5. The first batch of layers is used to process each
view independently, while the second one is applied after the merge to produce
the color and the density.

So, given n input images and their corresponding fully convolutional generated
feature volume W s, n versions of the f1 will be evaluated on the corresponding
i-th projection of x on the i-th image using the associated feature volume. Leading
to the production of n intermediate vectors Vi defined as:

Vi = f1
1
“ (x) , d; W

i
1
fi

i (x)
22

The set of intermediate vectors {V1
, . . . , Vn} is interpolated using the average

pooling operator Â[BSC21] to obtain one single vector with the same dimension
to be fed to the second model section f2:

f2
1
Â

1
V1

, . . . , Vn
22

= (c, ‡)
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Which will eventually output the tuple containing the color and the density.
The results on ShapeNet dataset[Cha+15] showed a huge improvement in both

quality, consistency and data requirements (i.e. number of views) with respect to
the standard NeRF model. Refer to the original paper for the original numeric
results and their deep analysis.

Figure 3.5: PixelNeRF model complete architecture
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The proposed method

Our goal is to build a multi layer perceptron which represents coherently the
occupancy of a fixed-size 3D volume. The model should embed the target object
surface, starting from just a set of images taken from a line laser scanner. For each
image we require:

• Camera intrinsic parameters

• Camera extrinsic parameters

• Laser plane equation

The camera intrinsic parameters will be equal for all images as long as they were
captured by the same camera. We chose to represent the laser plane using a center
point and the plane normal vector since it was the best representation both when
exporting the data from our virtual scanner environment and for changing the
frame of reference. The camera parameters will be represented with the notation
described in section 2.1 (equation 2.3).

With this initial data, it is only possible to determine whenever a point is
surely external, as it will be explained in section 4.3. We used two approaches to
sample training points: silhouette sampling (section 4.3.1) and laser plane sampling
(section 4.3.2), which exploit the camera pose and the structured light properties
to tell if a point is external.

Thus, after having sampled a batch of points, some of them will be labeled as
externals, while the others will be unlabeled. It is not di�cult to recognize this
setting as an instance of the Positive Unlabeled learning pattern (section 2.4.2),
which we decided to tackle using k nearest neighbors. These considerations lead
to the definition of our pipeline (represented in figure 4.1), which consists of the
following steps:

1. Perform silhouette sampling of N points

48
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2. Perform laser plane sampling of M π N points for each laser plane

3. Label the unknown points using k nearest neighbors

4. Train the model

M and N should be chosen such that, given the image set I: N ¥ M · |I|, or
in other words the total number of points sampled from lasers planes should be
similar to the amount of points sampled using silhouette sampling. The pipeline
is iterated many times to refine the model and decrease its evaluation error, for
reference, in our tests we did twenty training iterations.

The technique was first developed as a two dimensional representation variant,
in order to test the approach in a more transparent environment. The usage
of a two dimensional variant both served as a first milestone and simplified bug
detection and the observation of hyperparameter tuning e�ects.

Figure 4.1: Data pipeline representation

4.1 2-Dimensional Implicit Neural Representa-
tion

As just introduced, the first milestone of the development of this novel approach
has been building a 2-Dimensional Implicit Neural Representation which will be
later expanded to a 3D version in section 4.2.

For the two dimensional model, the input will not be an image set, but we would
rather consider an oracle which given a target shape will tell if a query point falls
either insider or outside the shape. As target, we chose to use an approximated
gear shape, defined as a sinusoid function in polar coordinates:

radius = gear(–) = a + (b · sin(c · –)) (4.1)
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Where a, b, c are params to control the base size, and working depth. The function
simply maps an angle to the corresponding radius length with respect to the gear
center. In figure 4.2 there is an example of the gears that the function 4.1 is able
to generate.

Figure 4.2: An example of a 2D gear generated using equation 4.1

Based on this mapping function, it is possible to define an oracle to tell when-
ever a 2D point (x, y) is inside or outside the gear. In particular, it will return +1
if the point is outside the shape, otherwise ≠1. First, the cartesian point has to
be convert into polar coordinates:

Y
]

[
r =

Ô
x2 + y2

◊ = atan2 (y, x)

Then, the oracle function computes the sign of the di�erence between the point
radius r and the output of the gear function, i.e. the radius distance of the gear sur-
face for input angle ◊. If the di�erence is negative, the point is internal, otherwise
the point is external.

The model for the 2D implicit neural representation is a Multi Layer Perceptron
with the following architecture:

• Input layer: 2 neurons

• Gaussian encoding layer: 128 neurons

• First fully connected layer: 64 neurons

• Second fully connected layer: 32 neurons

• Output layer: 1 neuron
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As explained previously in section 2.5.1, when dealing with coordinate based Multi
Layer Perceptron, a Fourier feature based encoding is required in order to obtain
reliable results. So, we decided to apply a Gaussian encoding (equation 2.36) with:

B = [bij] œ R64◊2
bij ≥ N

1
0, ‡

2
2

In other words, B is a 64 ◊ 2 matrix of values sampled from a Normal distribution
with mean µ = 0 and standard deviation ‡. After the Gaussian encoding, the
activation function for the next two fully connected layers is the Rectified Linear
Unit function (ReLU) reported in equation 2.27 and figure 2.13, while for the
output layer is used the Hyperbolic Tangent function. A full schema of this network
can be seen in figure 4.3.

Figure 4.3: The 2D INR model schema

4.1.1 Point sampling for 2D model
Unlike other machine learning problems, in this problem setting, we do not have a
well defined dataset - i.e. a set of tuples < features, class > - to train our model.
Instead, we require to generate points by sampling the coordinate space and feed
the neural network with those points. The training loop can be either uniform or
gradient based, these concepts will be explored in detail later in section 4.3.

For simulating laser rays, a polar coordinates based model has been introduced,
since we are working on a two dimensional projection of the original problem, a
laser ray will be represented just by a line on the plane. Each laser ray is identified
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by a reference point that surely belongs to the ray and an angle, leveraging polar
coordinates we can generate all the points on that laser line straightforwardly
by iterating over an interval for the radius values while keeping the input angle
constant. The resulting points are then converted to the global cartesian reference
system. While traversing the radius range, all the points before hitting the surface
will be labeled as external, while the others as unknown.

4.1.2 2D model training
The model has been trained for 30 epochs, resampling the point set for each epoch
and dividing them in batches of size 64. As loss function, the Mean Square Error
(MSE, equation 2.21) has been used, with default mean reduction, so the sum
of the output is divided by the number of elements in the output. Finally, to
optimize the stochastic gradient descent process, the Adam optimizer[KB14] has
been added to the model, with a learning rate equal to 0.001. In this phase of
the project we aimed to test two main issues: the first one being the robustness
of our implicit neural representation to embed the target function and secondly
the intuition of performing positive unlabeled learning on a set of laser dependent
points.

For the first issue, we just sampled n points inside a bounding box, recovered
the label from the oracle which tells if the point is either inside or outside the gear
shape and lastly trained the network. As shown in table 4.5, with no encoding
the task is simply impossible, while by tuning the standard deviation it is possible
to achieve a noisier or smoother result. In particular, for a ‡ = 0.05 the model
is very noisy, while for very low sigmas the model is extremely smooth, making
impossible to spot shape details.

For the second issue, we generated m random points for each of n laser rays
using random laser angles in the range [0, 360) and the image center as reference
point. Each point is labeled either as “external” or “unknown”, in this phase we
also add to the experiment the euristic of considering the first points in a little
span after hitting the shape as “internals”. This euristic was not used for the 3D
model counterpart, for which we keept the pure positive unlabeled learning setting.

After all points were generated, the k-NN algorithm with k = 5 was used to
extend the external and internal labelling to unknown points. At the end of this
step, each point is labeled and thus they can be fed as a tensor to the model to
then compute the loss and backward it to train the model. Since same-class points
are likely to be near in the coordinate space, assigning the same labeled shared by
point neighbors turns out to be a valid though simple approach to the problem.

Figure 4.4 shows the steps of this pipeline, starting from left, the first image
contains all laser points, the second one shows the unlabeled and probably internal
points. Lastly, the third image shows the points labeled as internals by our k-NN
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algorithm.

Figure 4.4: 2D laser generation algorithm. On the left side the raw laser rays,
external sections are plotted in white, while after-hitting sections in grey. In the
middle image, all the unknown and near-surface points and lastly on the right side,
the points classified as internals.

4.1.3 Benchmarks for the 2D-model
After training the model as explained in last section, it is possible to infer it
by generating a pixel matrix and feeding its coordinates to the model in order to
obtain the occupancy value [≠1, +1] for each pixel. To convert the occupancy value
fl to a viewable unsigned 8-bit intensity in range [0, 255], the following mapping is
applied:

S (x, y) æ fl : R2 æ R
i(x,y) = (S (x, y) + 1) · 127.5

(4.2)

The benchmarks are showed in figure 4.5. Accordingly to what introduced earlier,
each column corresponds to a di�erent Gaussian encoding parameter value, except
for the first which corresponds to a straightforward identity mapping. The first row
infers the whole target, while the second performs a resolution-preserving zoom on
the bottom-right quarter of the target.

Two considerations emerge clearly from this figure. First the importance of the
encoding presence, indeed without it the neural network is not able to learn any
meaningful pattern. Secondly, how the hyperparameter ‡ a�ects the model. A
higher ‡ leads to a noisier model, with an unstable decision boundary that creates
artifacts along the edges. Contrariwise a lower ‡ value leads to a smoother model,
which loses the original shape details. It is hence essential to find a good tradeo�.
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No mapping fl = 0.5 fl = 0.05 fl = 0.005 fl = 0.0005

Figure 4.5: 2D model benchmarks for di�erent values of gaussian encoding stan-
dard deviation hyperparameter ‡ after learning the ground truth (figure 4.2). The
first row contains the full target and the second row a resolution-preserving zoom
on a quarter of the gear.

4.2 3-Dimensional Implicit Neural Representa-
tion

After the two-dimensional proof of concept for both the Multi Layer Perceptron
with gaussian encoding and the laser rays sampling strategy bounded with neigh-
bor based PU classification, it is time to discuss the three dimensional variant.

To recall the problem statement, given a set of images I taken from a line
laser scanner containing a target object T , our goal is to derive an implicit neural
representation fT that is able to determine for any point p = (x, y, z) in the
sampling box if p is inside or outside T . This leads to f embedding T surface as
its decision boundary.

Assume that for each target object T , the training procedure starts from the
corresponding set of images I together with the related data, namely:

’i œ I :

Y
________]

________[

Ki : camera intrinsic parameters
Ri : camera rotation matrix
ti : camera translation vector
Ci : laser center coordinates
ni : laser plane normal vector

The tree dimensional model architecture is shown in figure 4.6 and is quite similar
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to the two dimensional counterpart explained in last section, it can be indeed
considered an extension of the two dimensional variant. It is made of the following
layers:

• Input layer: 3 neurons

• Gaussian encoding layer: 256 neurons

• First fully connected layer: 128 neurons

• Second fully connected layer: 64 neurons

• Third fully connected layer: 32 neurons

• Output layer: 1 neuron

Both models were implemented and trained using the PyTorch[Pas+19] library:
one of the most common libraries for machine learning tasks together with Tensor-
Flow[Mar+15]. We chose to use PyTorch since it provides a more straightforward
complete control over the training loop, which is more suited for research purposes.

Figure 4.6: The 3D INR model schema
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4.3 Training process
As explained in section 2.4, to train a model, a training set is required, i.e. a set
of pairs < features, class >. Since the model maps three dimensional coordinates
to an occupancy value, the training set must be in the shape of a vector of vectors
[x, y, z] and corresponding classes d where d = 0 if the [x, y, z] point is internal or
d = +1 if it is external. To derive this set, two techniques have been implemented:
the silhouette sampling and the laser ray sampling, both in the uniform version
and in the gradient based one. For both approaches, the training set is created
by merging the points sampled from the 3D space together with the points sam-
pled from the laser planes, after the unknown points have been labeled using the
neighbors.

Before discussing the point extraction strategies it is necessary to explain the
di�erences between uniform sampling and gradient based. Just to recollect, a
probability distribution P is a function that describes the likelihood of di�erent
outcomes to happen with the following two fundamental properties:

1. non negativity: a probability cannot be negative

’x : P [X = x] Ø 0

2. normalization: all the probabilities must sum to 1
ÿ

i

P [X = xi] = 1

So, a uniform probability distribution simply returns the same value for any do-
main value, which will be equal to 1

N where N is the domain cardinality. It is
easy to convince ourselves that each input is associated to a non negative values
and that their probability sum will be equal to 1. So, when we create our training
set uniformly, we are just sampling completely at random (i.e. without any bias)
points from our sampling space. In our case, the uniform distribution is continu-
ous rather than discrete, but for the considerations just made it does not change
much.

As it is easily noticeable, uniform sampling causes a great lost potential. Given
that for each iteration we sample a fixed number of points, it would be charming
to concentrate those points on interesting parts of our volume - i.e. where the
object surface is located - instead of sampling and re-sampling regions that are
surely classified since located away from the surface.

Since our model changes values exactly on the surface, its gradient will be
higher where the model assumes the surface to be located. Hence, we decided to
use the model gradient itself to create a custom probability distribution to bias the
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point extraction towards the gradient. Iteration after iteration, the model itself
will hint its next generation where to look for valuable samples.

To use the gradient as multi-dimensional probability mass function, we first
defined a three-dimensional discretization grid and evaluated the network on those
points and eventually computed the gradient of each one of those points using the
torch.autograd module of PyTorch. Each point three-dimensional gradient is
remapped to one single value as follows:

g =
Ò

x2 + y2 + z2

At this stage the challenge becomes turning this three-dimensional vector into
a probability distribution and sample it. Although many approaches like Gibbs
sampling[GG84] are available, which is an iterative approach based on Markov
Chains, we decided for a more fast and straightforward approach. First the multi-
dimensional matrix is flatten in a one-dimensional array and then normalized by
dividing each element by the sum of all the elements. The result of this last step is
a vector of size length ◊ width ◊ height which can be sampled using the inversion
method. Therefore, to sample an element, first a value p is sampled uniformly
in the interval [0, 1], then p is used to retrieve the corresponding element of the
reversed cumulative distribution function, and this last value will be our result.
To prevent aliasing, at each iteration the grid is shifted of a random o�set on each
dimension to guarantee sampling variance.

Although biasing the point sampling with the model gradient is an optimal
approach to focus the training on the target surface, we noticed that leaving some
regions of the space unmapped causes artifacts since the model is free from any
constraint on those regions. A positive side is that these regions will be removed by
the next iteration and other regions will become unmapped. The aforementioned
artifacts manifests in the output as “flying bubbles” in the space, which are anyway
removable with some post-processing cleaning.

To mitigate this phenomena at training time we introduced a relaxation of
the distribution using a parameter Á which is added to all the values before the
normalization. For Á = 0 nothing changes, while for a large Á the distribution
tends to a uniform distribution. By Setting a balanced Á it is possible to preserve
the bias towards the surface while granting some points to be placed in far regions
of the space. This was proven to stabilize the gradient-based training.

4.3.1 Silhouette sampling
It is possible to summarize the concept behind silhouette sampling with the fol-
lowing statement: a 3D point is surely external if in at least one projection falls
outside the object silhouette, otherwise it could be both external or internal and
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thus will be unknown. When a point falls into the object silhouette, it might ei-
ther be truly internal, or placed between the camera and the object surface itself,
especially if the object has a concave shape. Indeed there might exist a possible
image in which the point is proven to be external. In other words, we can only
surely tell when a point is external, not the opposite.

Given a requirement of N points to sample from the bounding volume B,
the algorithm performs N iteration, where in each one a new point p œ B is
sampled either uniformly or using the gradient as density function. The point is
then projected onto each image i œ I until one proves the point to be external,
if this does not happen at the end of the loop, then the p is labeled as unknown.
Obviously, if p is classified as external, the loop is early-stopped to optimize the
runtime performances.

In order to tell if p is external in image i, it is su�cient to check the corre-
sponding pixel values in p

Õ
i, i.e. the projection of p onto the image i as follows:

p
Õ
i = K [Ri|ti] pw
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This equation returns the corresponding pixel coordinate of the point in homoge-
neous coordinates, the inhomogeneous version can be easily extracted by dividing
the first and the second dimension by the third.

As will be explained in section 5.1.1, our images are augmented with the ray
depth in the fourth channel of each pixel, so to determine if the ray does not
intercept the object is su�cient to check if p

Õ
i[3] is equal to 0. In a real world

application, in which a depth value will not be available, it would be necessary to
segment the target image from the background. The easiest way to achieve this
would be to use a chromatic threshold, creating a background with a color not
present on the object surface.

4.3.2 Laser plane sampling
The projection of the laser edge onto the object surface, provides valuable infor-
mation about the shape of the object as explained in section 3.1

Assuming each image to contain a laser plane, like in our dataset, it follows
that we |I| lasers available. For each laser plane, we extract M points, setting M

such that |I| ·M ¥ N to guarantee a balance between the two sampling strategies.
It will explained in chapter 5 how the plane equation is retrieved for each image
and stored in the corresponding data file for each image.
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The laser plane, defines a reference system on his own, from which the M

point are sampled. Starting from the laser plane reference system origin and the
normal vector, which is orthogonal to the plane and hence defines the z axis of that
system, it is possible to derive its pose with respect to the world frame. While the
translation vector is the straightforward location coordinate, the rotation matrix
is composed as follows:

Rp =
Ë
û, v̂, n

È

u =

S

WU
≠ny

nx

0

T

XV

v = n ◊ u

(4.3)

With this rototranslation matrix it is possible to bring points express in laser
plane coordinates pp is world frame coordinates pw. Now the challenge is how
telling whenever pw is external with respect to the target object. Since the laser
line is propagated as a set of rays from its source (Ci), it is su�cient to identity this
rays and determine if p

Õ
i is intercepted earlier than the object. Precisely, the laser

Figure 4.7: Example of laser rays sampling with Bresenham’s lines. With uniform
sampling on the left side and gradient based sampling on the right one

origin Ci is projected onto the image plane, which in our scanner will fall outside
the image boundary either on the right or left side, C

Õ
i and p

Õ
i are then used to

obtain the equation of the ray rp. The next step will be to continue forward rp

starting from p
Õ
i until it reaches a far point (F ), which is surely outside on the

other side of the object. To generate the pixel coordinates of the points belonging
to rp between two points, namely C

Õ
i and F , we can rely on a basic custom version

of the Bresenham’s line algorithm[Bre65].
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One of first challenges in computer graphics was drawing lines on monitors,
since a monitor is discrete pixel matrix but a line equation is instead continuous,
it is not straightforward to determine which pixels will need to be used to draw
the line. The Bresenham’s line algorithm solves this problem by converting a line
equation to a pixel array give, two boundary points. To explain the basics of this
algorithm, let us consider the base case. Starting from the slope-intercept line
equation:

y = mx + q = �y

�x
x + q

0 = (�y) x ≠ (�x) y + (�x) q

Which can be intersect with the standard line equation:
Y
]

[
Ax + By + C = 0
(�y) x ≠ (�x) y + (�x) q = 0

≠æ

Y
]

[
A = �y

B = ≠�x

Eventually leading to the following indicator function:

fl (x, y) := (�y) x ≠ (�x) y + (�x) q (4.4)

Which given an input point a = (xa, ya) can have the following outcomes:

fl(xa, ya) =

Y
__]

__[

< 0 if a is above the line
= 0 if a belongs to the line
> 0 if a is below the line

Being the origin of the image placed at the top left corner, with the x axis going
from left to right and the y axis from top to bottom, the algorithm proceeds along
the x axis and checks the indicator on the candidate point:

fl

3
x0 + 1, y0 + 1

2

4

If the result is greater than 0 then the beneath pixel will be used, conversely if
the result is less or equal than 0, we ordinate will not change. A result of this
algorithm is shown in figure 4.8.

Further optimization are available and implemented nowadays in low level
primitives of modern GPU, like the removal of the division operation (which is
time expensive on hardware level) and anti-aliasing strategies to make the result
smooth and more natural.

Our Python3 implementation of the Bresenham’s line algorithm relies on the
generator pattern to return pixel coordinates in a stream-line fashion. Using tra-
ditional thresholding our algorithm detects if the current pixel belongs to the
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Figure 4.8: Example of Bresenham’s line algorithm execution

projected laser edge and it such case labels the point as external, otherwise the
loop continues. Indeed, the presence of a point belonging to the laser edge among
the ray points after the probe point will indicate that it is surely external, since it
comes before the object surface when traversing the laser ray. If either the image
bounds or the far point projection are reached the point is labeled as unknown.

Figures like 4.7 were generated during the development for debug purposes, the
blue points are the ones sampled uniformly, while the green lines are the segment
of the laser rays identified by the sampled point and the ray intersection with the
laser edge on the object. If no intersection is found, the line is not plotted.

Unknown points are then refined using silhouette sampling to extract further
external points from the unknown set. Indeed while the laser ray sampling shows
its potential with points close to the surface, especially when it comes to concave
surfaces, the silhouette sampling performs better on points far from the surface.
The opposite cannot be performed since silhouette sampled points do not belong
to any plane.

4.4 Point classification
After the sampling procedures described in last sections, the true challenge be-
comes the point classification strategy. Starting from the surely external set E

and the unknown set U , this step will generate two sets, one of external points
E and one of internal points I, such that a label will correspond to each point in
the training set. This means that the unknown points set will be partitioned into
externals and internals, which formally can be addressed as a positive unlabeled
learning problem (section 2.4.2).

Based on the observation that is likely for a point to share the same class of
its neighbors, i.e. an unknown point whose neighbors are mostly external will
probably be external too, otherwise internal and also his neighbors, we decided
to rely on a k Nearest Neighbor approach (k-NN) for this thesis with k = 5. For
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the purpose of evaluating di�erent strategies in future works, a point classification
evaluator has been implemented, see section 6.1 for details.

Our method, leverages the K-d Tree data structure[Ben90] to achieve e�cient
neighbors querying. After populating the tree, the algorithm iterates over each un-
known point u œ U and queries the K nearest neighbors generating Nu. Since each
point n œ Nu will belong either to U or E, the algorithm derives two corresponding
scores:

SU = |{n œ Nu s.t. n œ U}|
SE = |{n œ Nu s.t. n œ E}|

(4.5)

In other words, each score will be equal to the number of neighbors in the cor-
responding class. Then, if SU > SE then the probe is classified as internal
(I = I fi {u}), otherwise as external (E = E fi {u}). At the end of this stage, all
points in the training set will be labeled and thus the learning process can start.

4.5 Model training
Since we want our model to return negative values for internal coordinates and
positive values for external ones, we require a mapping function M to use the
Binary Cross Entropy loss. Recall that the BCE loss (equation 2.22) is well suited
for binary classification task like this one: indeed a point can either be internal or
external. However the BCE loss takes as input the values belonging to the interval
[0, 1], and thus the dataset labels were encoded as 1 for internal as 0 for external.
These last considerations let us introduce the output training mapping M (f is
our INR model):

M : [≠1, 1] æ [0, 1]

M (f (x)) = f (x) + 1
2

(4.6)

Using this loss the Adam optimizer performs the training optimization steps. The
training was performed on batches of size 64, created after the training set sam-
pling.

A final feature of our implementation that is valuable to discuss is the sam-
pling runtime performance optimization. When it comes to silhouette sampling,
especially in the gradient based variant, it is fair to expect a large number of steps.
Since points are sampled nearby the surface, it would probably be necessary to
inspect a larger number of images to find one in which the point is proven to be
external. This observation translates in a longer algorithm runtime.

We mitigated this issue using a Python multiprocess pool, which splits the work
load across the multiple logical CPU of the machine. Python allows us to rely on
this kind of optimizations in a very high level fashion, without having to concern
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about process synchronization and race conditions. For this reason the multi-
processing mechanisms will not be discussed being considered out of this thesis
scope. What is worth to take in account is just the presence of this optimization
which given an input array and a lambda function to execute, distributes the
computation load on all the computational resources of the running machines and
resumes the execution once the output array has been populated with the results.

4.6 Model inference
After the training procedure, it is possible as for any other machine learning model,
to use it in inference mode, i.e. to query the model and gather knowledge from
the model output.

The most straightforward way to extract the implicit surface from a function
with the same interface as ours is the Marching Cubes algorithm[LC87]. In this
sense, we are extracting a discretization of our continuous model to render it as a
mesh and our strength is the freedom to choose any resolution and any sub-box of
the original sampling box. For instance we might just query the entire sampling
volume box with a low resolution or query a detail box at an high resolution, this
task would not be achieavable with traditional discrete approaches, as discussed
in section 2.5.

Hence, a procedure has been defined to extract a mesh representation from
our model. Starting from an input three dimensional querying size and the cor-
responding axis resolution, the first step is to generate the corresponding voxel
grid and then to evaluate the model f on all of those vertexes. At this point,
each grid vertex will have a value associated and the Marching Cubes algorithm
is applied. In particular we relied on implementation of Lewiner et al. E�cient
Implementation of Marching Cubes’ Cases with Topological Guarantees[Lew+03]
included in scikit-image[Wal+14], which returns:

• vertexes spatial coordinates

• triangular faces as vertexes indexes

• vertexes normal vectors

For each grid cube, the marching cubes algorithm considers the possible value
configuration of the eight cube vertexes. Given an iso surface level (in our case 0),
every corner can have two possible states (Æ 0 for internal and > 0 for external)
and thus 28 = 256 possible configurations. Each configuration corresponds to
a possible face using both the cube corners and the median points of the cube
edges as vertexes. These sub-meshes are known and stored in a lockup table
from which they are indexed and extracted to be part of the final output mesh.
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Besides other optimizations, the Lewiner method improves the output topological
and orientation coherency, guaranteeing the surface to be continuous in ambiguous
cases.

To further improve the result, we implemented a smoothing algorithm for the
marching cubes output, which leverages the vertexes normals to smooth the result
and achieve sub-grid precision. The procedure is theoretical similar to our model
evaluation ones, which will be discussed in chapter 6. We can define an optimal
point o to be a point in which the implicit function value is less than a very low
constant Á æ 0+.

For each vertex, our algorithm searches an optimal point along its normal
vector. Formally, given the vertex v œ V and its normal ≠æ

nv, we search for the
point ov such that: Y

]

[
ov = v + t · ≠æ

nv, t œ R
f(ov) Æ Á

(4.7)

If the optimal point is found, the surface vertex is shifted at the optimal coor-
dinates. This ensures a smoother output iso surface by exploring the coordinate
sub-space of the starting voxel grid.

Our experiments, benchmarks and evaluation measurements on this architec-
ture and pipeline will be presented in chapter 6. While chapter 5 will unravel our
mesh dataset and virtual scanner for data generation.



Chapter 5

Dataset creation

In chapter 4 we explained the proposed method, the sampling strategy and the
model pipeline, in spite of that, as illustrated in section 2.4 a dataset is required
to train the model and evaluate our proposal.

While in a production environment, namely a calibrate industrial scanner, the
target object pictures and laser data are extracted straightforwardly from the
scanner itself, we decided to rely on a simulated environment for the developing
phase. This choice will grant us a complete control over every aspect outside our
model, allowing various double-check and validation data that would otherwise be
impossible on non-synthetic data.

Thus, we decided to create a virtual scanner environment using the Mitsuba3
render engine and selected the five following meshes, four from the Stanford 3D
scanning repository[Lab03] and one from ShapeNet [Cha+15] to be part of our
dataset:

• Stanford Bunny

• Dragon (Stanford)

• Armadillo (Stanford)

• Igea (Stanford)

• Teapot (ShapeNet)

5.1 Virtual scanner environment
As introduced, in order to acquire the input images of our training process, a
virtual scanner environment has been created using the Mitsuba3 engine[Jak+22].
Rendering is one of the major fields of 3D computer graphics, the target problem

65
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can be stated as: given the description of 3D scene and an observation pose,
produce a realistic image of the 3D scene viewed by the given position. This
simple statement - however - hides an abyss of complex mathematical problems
that needs to be solve or at least approximated, like light reflection on various
di�erent materials.

A render engine like Mitsuba3 does exactly this, i.e. starting from a scene
description, produces a photo-realistic image of it. Such engines, can either be
online or o�ine. Online engines are applied when real time rendering is required,
like in video games and similar applications, while o�ine render engines are used
in engineering and architecture contexts.

Each Mitsuba3 scene is defined using an XML file, specifying the objects present
in the scene and their properties, like their coordinates in the space, how their
surface reflects the light or if themselves are light emitters too. Our virtual scanner
is described as a scene composed of:

• A camera sensor

• The target object

• A light emitter on the left side

• A light emitter on the right side

• The laser plane emitter

Im order to enhance the image variance, two di�erent scenes were actually defined.
In The first one, referred as Right the laser plane origin is placed on the right
side of the camera, while in the second one, referred as Left, the laser plane
origin is placed on the left side. Moreover, the camera sensor is placed in a lower
position with respect to the camera sensor in the right scene. Apart from these
di�erences, the two scenes represent the same environment and thus would be
described together, figure 5.1 shows how the two sides di�er. A final note: Further
cameras and poses can be freely added to improve the quality of the scan.

Apart from the target object, the whole scanner structure will rotate around
the origin on axis y in other to produce renders from di�erent viewing angles ◊.
Indeed, every image will be identified by the side and the rotation angle.

Knowing the poses of the camera and the laser plane in terms of a rotation
matrix R and a rotation vector t, a .pkl file is generated for each rendered image,
containing the:

• camera intrinsic parameters matrix K

• camera rotation matrix R
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Figure 5.1: Examples renders of Left and Right configuration sides in Mitsuba3
engine

• camera translation vector t

• center of the laser plane C

• vector normal to the laser plane n

Even if the camera intrinsic parameter matrix should not and will not change
among the renders, it has been included in each .pkl dump file for better repro-
ducibility.

5.1.1 Camera sensor
Mitsuba3 o�ers multiple camera sensor types, like orthographic, perspective, ra-
diance and irradiance meters and batch. We chose to use the perspective camera
sensor since it is the one that simulates the geometry of a pinhole camera, making
possible to interpret the geometry of the scene leveraging the well known equations
reported in section 2.1. Mitsuba3 o�ers di�erent rendering techniques, which are
referred as integrators in the engine documentation. Each di�erent integrator rep-
resents a di�erent approach for solving the light transport equation, i.e. a di�erent
rendering output.

Our camera, in addition of direct integrator, is augmented with a depth inte-
grator. The direct integrator produces the traditional render, i.e. an RGB color
corresponding to the color that would be observed in the real world by taking a
picture in that corresponding location. The depth integrator instead, produces a
two dimensional matrix containing in each pixel the distance between the camera



CHAPTER 5. DATASET CREATION 68

and the scene objects, 0 if there the camera ray does not touch any scene element.
This distance is computed as the length of the ray connecting the optic center of
the camera sensor to the first intersection with an object on the scene. We decided
to rely on this depth integrator to achieve silhouette sampling straightforwardly
in this simulated scanner as explained in section 4.3.1.

Putting in a nutshell what said so far, each image will be composed by four
channels, three for the color channels and the last one for the dept value, which
moreover could not fall into the 8-bit range [0, 255]. Due to these facts, the render
output cannot be saved in common formats like Portable Network Graphic (PNG)
or Joint Photographic Experts Group (JPEG), but will be saved in the OpenEXR
file format.

Regarding position in world coordinates, in the Left scene the camera is lo-
cated at a distance of 7 units horizontally from the world origin. In the Right
scene instead, the camera is positioned at a distance of 7 units horizontally too, 2
vertically and finally a rotation of 20 degrees around the origin on the x-axis.

It is hence possible to define the translation vector for the Right side as:

tr =
Ë
0 2 7

ÈT
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S

WU
cos(◊) 0 sin(◊)

0 1 0
≠ sin(◊) 0 cos(◊)
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and for the Left one as:
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ÈT

Rl =

S

WU
cos(◊) 0 sin(◊)

0 1 0
≠ sin(◊) 0 cos(◊)

T

XV
(5.2)

Where ◊ is the global rotation angle of the scanner. Regarding the camera intrinsic
parameter instead, setting the camera field of view (fov) to 60 degrees and the
image width (w) equal to the image height (h) equal to 256 pixels, it is possible
to derive them using like follows:

center of projection:

Y
]

[
Ox = w

2 = 256
2 = 128

Oy = h
2 = 128

focal length (pixels): fx = fy = w

2 · tan
1

1
2 · dfi

180

2
(5.3)

Eventually leading to the camera intrinsic parameters matrix defined in the same
format as equation 2.1.
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5.1.2 Target object
The target object is placed at the origin of the Mitsuba3 reference system. Each
mesh in the dataset is stored as a binary PLY1 (Polygon File Format or Stanford
Triangle Format) file, containing both vertexes 3D position and vertexes indexes
for each face. The dataset has been pre-processed using MeshLab[Cig+08] to
ensure that all the faces are triangles since is the only format accepted by the
corresponding Mitsuba3 plugin for PLY meshes.

The object requires a surface scattering model, among the ones supported by
Mitsuba3 (shown in picture 5.2) we chose to use the most ideal one, i.e. the smooth
di�use material, generally referred as Lambertian. This means that as shown in

Figure 5.2: Mitsuba3 surface scattering models

the first box in figure 5.2, any received illumination is scattered uniformly around
the ray collision point. Causing the surface to look the same with no dissimilarity
when observed from di�erent angles. As reflectance values, we applied a constant
vector [1, 1, 1], the three values refers to the three color space channels RGB. To
given an example, putting di�erent values, will cause the object to absorb some
components of the light and thus to look of a particular color. Alternatively to
reflectance vector values, it is possible to import a texture file, we decided to not
follow this way and instead treat each object in the most agnostic and common
condition.

1PLY file description: https://paulbourke.net/dataformats/ply/

https://paulbourke.net/dataformats/ply/
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5.1.3 Light sources
A light emitter irradiates the scene with light rays and as for any entity, Mitsuba3
provides di�erent types of emitters. An area light emitter is applied to shapes and
it causes the object to di�use illumination from its exterior surface in a di�use
fashion. This kind of emitter was mainly used to find the target object in the
scene for debug purposes.

A Point light source emulates a source that starting from a single point in the
space radiates uniformly to all directions. This type of emitter is used for the two
light sources that provide illumination to the scene. Specifically, these two are
placed one on the left side and the other one on the right side of the camera sensor
to light up the target object.

The last type of emitter that is about the described is spot light source, which
is used to emulate the laser plane.

5.1.4 Laser plane
As introduced, the laser plane is emulated using a spot light emitter. Since Mit-
suba3 was not o�ering a straight out of the box emulation of a laser line emitter,
it was necessary to search a work around to emulate it using the light emitters
provided by the engine.

The spot light source emulates a light with a linear fall-of and is possible to
apply a custom texture to project. Thus, a squared black image with a red one-
pixel vertical line in the middle is created. Finally, our laser emitter source is
placed at the same camera coordinates, plus a rotation of – for Right (and ≠–

for Left) around the vertical axis centered at the origin. – is adjusted depending
on the target object, but in general a value around 30 has been used.

Thus we can define the laser plane equation in terms of a laser point (center)
and the plane normal starting from the camera position (equation 2.8) in the same
scene, for Right:

Camera position: Pc = ≠R
T
t

C =

S

WU
cos(–) 0 sin(–)

0 1 0
≠ sin(–) 0 cos(–)

T

XV ◊ (Pc)T

n =

S

WU
cos(–) 0 sin(–)

0 1 0
≠ sin(–) 0 cos(–)

T

XV ◊

S

WU
cos(◊) 0 sin(◊)

0 1 0
≠ sin(◊) 0 cos(◊)

T

XV ◊

◊

S

WU
1 0 0
0 cos(20) ≠ sin(20)
0 sin(20) cos(20)

T

XV ◊

S

WU
1
0
0

T

XV

(5.4)
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Figure 5.3: Example 3D scanner scene containing Dragon mesh, for the sake of
printing, the dark background has been remapped to white.

And for Left:
Camera position: Pc = ≠R

T
t

C =

S

WU
cos(≠–) 0 sin(≠–)

0 1 0
≠ sin(≠–) 0 cos(≠–)

T
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cos(≠–) 0 sin(≠–)
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cos(◊) 0 sin(◊)

0 1 0
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T
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S

WU
1
0
0
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(5.5)
Figure 5.3 shows the outcome of the configuration described so far and 5.4 the

full scheme of the scanner. In addition, the world reference system axes are being
re-projected onto the image using the camera pose, plus the laser plane normal
vector (colored in cyan). It is appreciable to see how the laser line emitter is well
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emulated and indeed creates a projected red edge onto the object surface.

5.2 Rendering procedure
What described so far represents the static scanner scene, in order to extract a
complete image set, it is necessary to iterate over the desired viewing angles. Aim-
ing to create a parametric and reusable virtual scanner environment, a rendering
script has been created to iterate over all the desired viewing angles and scene
variant. During the script execution, the scanner is rotate around the origin by
changing the scene parameter ◊ as described earlier.

For this thesis, the script generates 360 views (one for each angle) for both
Left and Right sides. The script is executed for each target mesh, changing the
laser delta angle – when required, generating the corresponding render and data
(camera pose and laser plane equation).

Both the scene environment and the rendering procedure script are very generic
and reusable for many other experiment, including ones outside the scope of this
thesis, this fact should be considered a strength of our virtual scanner environment.

Figure 5.4: Virtual scanner environment full scheme - Right variant



Chapter 6

Experimental results

Given an instance of the model architectures f presented in section 4.2, we per-
formed experiments on both the point classification strategy (section 6.1), the
training iterations and lastly the number of available views (section 6.2) to assess
the quality of our solution.

As a comparison baseline for our method we used the Poisson surface recon-
struction algorithm applied to pointclouds triangulated in a similar fashion as a
traditional line laser scanner (section 3.1), starting from the same data used by
our model. We compared Poisson surface reconstruction against both sampling
variants of our method, i.e. uniform and gradient-based.

For each mesh in our dataset (chapter 5), we used the renderer script to create a
render on each side for each integer degree, leading to a total number of 360·2 = 720
available renders. The evaluation of our trained models is based on three metrics
that adapted and implemented (section 6.2.1): the first one relies solely on the
model itself, while the others use the initial mesh as a ground truth to compute
the error. Since they are error functions, the lower their value, the better.

6.1 Point classification evaluation
A model performances in directly linked to the goodness of the input data, indeed
flawed input will inevitably produce a flawed output. Acknowledging the impor-
tance of a correct classification of the unlabeled data, the goal of this benchmark
is to evaluate numerically the ability of our algorithm to correctly classify the
unlabeled points in the training set.

Open3D library [ZPK18] o�ers raycasting scenes1, thanks to which it is pos-
sible to compute distances between meshes and points. So, for each mesh in the
dataset, a raycasting scene and a training set have been created as described in

1https://www.open3d.org/docs/latest/tutorial/geometry/distance_queries.html
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section 4.3, testing di�erent k values for our nearest neighbors approach. Then,
the label of each point has been checked using the output sign of the raycasting
scene compute signed distance method, which will be negative is the point is
inside the mesh and positive otherwise.

Obtaining the true positives, false positives and true negatives, we computed
the precision and recall plot considering the internal as the positive class. In this
sense, an internal point correctly labeled counts as a true positive, an internal
point labeled as external counts as a false negative and an external point labeled
as internal counts as a false positive.

Precision = tp

tp + fp
Recall = tp

tp + fn
(6.1)

where:

• tp = number of true positives

• fp = number of false positives

• fn = number of false negatives

An high precision means that each elements labeled as internal is truly a internal,
while an high recall means that each internal element has been labeled as inter-
nal. We conducted this experiment varying the number of k neighbors taken into
consideration when deciding the labelling, testing the following values 3, 5, 7, 15,
23, 35, 53, 75, 93, 127.

As it appears clear in the plots (figure 6.1), by increasing k the precision in-
creases a bit but it appears to be more dependent on the mesh itself. The recall
instead, heavily decreases at the increasing of k, which means that a large number
of internal points were labeled as externals.
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Figure 6.1: Mean and standard deviation of Precision and Recall progress for
point classification algorithm on di�erent values of K
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6.2 Surface reconstruction quality
In this section, we will first introduce our metrics, how the single errors are com-
puted and aggregated using common error functions, then we will discuss our
experiments and comment the obtained results. We defined a training iteration as
the sequence of training set creation and twenty epochs of model training. After
each iteration, the model is evaluated using our error metrics.

6.2.1 Error metrics
ABS - Absolute value error

Given the model f and the vertices returned by the marching cubes algorithm.
The value of f on those points should be as close as zero, since accordingly to
marching cubes they should belong to the surface. This error function simply
sums all the absolute values of the value of f evaluated on the marching cubes
vertexes. The result is then normalized by the number of vertexes.

Eabs(f, V ) = 1
||V ||

ÿ

vœV

abs(f(v)) (6.2)

MAE - Mean Absolute Error

Given the model f and the set of vertexes belonging to the ground truth mesh
V together with their corresponding normal vector, the error function sums the
euclidean distance between the ground truth vertex and the nearest optimal point
along its normal vector.

An optimal point is defined as the zero crossing location of the model along the
given direction, i.e. where the implicit function claims the surface to be. Thus,
we are evaluating the distance between the ground truth and the evaluated model.
The function O has been implemented to find optimal points searching from a
vertex along a direction vector and considers as zero crossing values that are lower
than a parameter Á close to zero. Practically, the zero crossing is found using
a binary search strategy by comparing the signs of the model on probe points
along the vector with the sign of the function evaluated at the middle point. In
the real implementation, the algorithm leverages the GPU parallelism to compute
each step simultaneously for all the vertex using the NVIDIA CUDA drivers. This
techniques optimizes the code and grants lower execution times.

Once optimal points are found, the error function is calculated by summing
the absolute values of the distances between marching cubes vertexes and corre-
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sponding optimal points, eventually normalized by the number of vertexes.

Emae(f, V ) = 1
||V ||

ÿ

v,nœV

abs (v ≠ O (f, v, n)) (6.3)

RMSE - Root Mean Square Error

Very similar to the Mean absolute error, this error function is a standard in model
evaluation when combining the single errors of a model. It’s implemented by
summing up the squares of each single error (again the euclidean distance between
the vertex and the corresponding optimal point), normalized by diving for the
cardinality of the vertexes set and then performing the square root:

Ermse(f, V ) =
ı̂ıÙ 1

||V ||
ÿ

v,nœV

(v ≠ O (f, v, n))2 (6.4)

6.2.2 Results
As introduced at the beginning of this chapter, we conducted two main exper-
iments on our model architecture and data pipeline, the first one assessing the
model error in an ideal situation, while for the second one we assessed the model
performances when less images are available. In all experiments, both versions of
our model (uniform and gradient based) were compared with the Poisson surface
reconstruction algorithm ran on the surface pointcloud (from now on referred as
the baseline), extracted using traditional methodologies as in section 3.1.

Regarding the first experiment, we trained a copy of our model on each mesh
image set both with uniform and gradient-biased sampling and compared with the
baseline built from the same image set. Table 6.1 shows the evaluations of the three
metrics for each object after ten training iterations and the RMSE for baseline.
Following pages show the detailed evaluations values for each dataset mesh, namely
the error values for each iteration, the training curves and the visual benchmarks.
The visual benchmark tables contain the visual outputs (i.e. the marching cubes
output for our model) in the first row and the error heatmaps in the second one.
Those are composed by coloring each vertex of the ground truth image with the
error value on that specific point, allowing us to visualize threedimensionaly where
the model is performing better or worse. The green color identifies a missing detail,
where it was not possible to clearly identity the decision boundary location along
the point normal. A better implementation of our optimal point finder procedure
may lower the number of non-converged points.

From the benchmarks some considerations arises. Firstly, in an ideal situation,
our model is globally comparable to the baseline, achieving better results on some
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objects (like Dragon) and worse on others (like Igea). It is possible to state that
when laser planes provide a large number of details, the baseline is able to capture
a higher number of features. Our solution instead, is able to provide at a coherent
approximation where data is lossy or incomplete. Since what presented is still a
first implementation of the method, we consider our results to be acceptable with
respect to the baseline. However, a possible improvement on this side could be to
include the laser edge point to the training set.

Regarding the comparison between the two model variants, as appears clear
in figure 6.2, where the learning curves were compared, the superiority of the
gradient informed variant emerges over the uniform counterpart. The plot shows
the mean and the standard error of the aggregated RMSE values over the meshes
in the dataset. At the first iteration, since the network is initialized with gaussian-
sampled weights, the gradient-informed variant performs slightly worse than the
uniform version. But, after the first iteration, the superiority of the gradient-based
variant is clear and stable over the next iterations. A drawback is a higher noise,
which is still manageable using laplacian smoothing[VMM99] and the chance of
some regions to contain artifacts in the form of “flying bubbles” given by the lack
of sampled points in that particular space region.

Moving to the second experiment, we aimed to test the model performances
under more challenging conditions, when less images are available. In other words,
we highlighted the relation between the number of input images and the result
quality. Figure 6.13 shows that our approach is able to achieve an acceptable
result even from a limited set of images, in those scenarios the baseline inevitably
produces a less precise output. We can hence state that the baseline is highly
dependent on data quality, while our solution manages to deal even with tougher
scenarios, proving the right intuition behind our approach.

6.3 Limitations
Resembling any other machine learning model, our method is dependent on the
the input data quality, which in our case were very small and sub-optimal 256x256
images. Other factors concurring to the input data quality are laser line width,
the surface-camera distance and lastly the completeness of surface mapping.

For these causes, it is reasonable and fair to look at our results and benchmarks
under a potential lens. By improving the image quality, both for resolution and
variance perspectives, we do not expect a trend change but rather a shift towards
lower losses and a better visual outcomes, validating our approach and intuitions.

Another critical aspect to take into account is the point classification strategy,
which could almost be considered a standalone research topic. In this sense, we
decided to apply a very basic but decently e�ective approach that performed ac-
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ceptable results. A future work of this thesis topic would surely require a deeper
exploration of these issues, in particular addressing the initial dataset quality and
the encoding hyperparameters tuning.

object uniform gradient poisson
ABS MAE RMSE ABS MAE RMSE RMSE

Armadillo 0.7754 0.2954 0.4508 0.8628 0.1928 0.3241 0.3594
Bunny 0.7833 0.3023 0.4503 0.8876 0.2059 0.3307 0.8469
Dragon 0.7990 0.3671 0.5825 0.8658 0.2850 0.4530 0.7609

Igea 0.7789 0.1892 0.2546 0.8136 0.1366 0.1920 0.1071
Teapot 0.8008 0.4328 0.6220 0.8786 0.3417 0.5681 0.6578

Table 6.1: Summary of uniform, gradient based (after 20 iterations) and Poisson
methods on our dataset

Figure 6.2: Mean and standard error of RMSE training approaches
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Armadillo

Armadillo Uniform
iteration ABS MAE RMSE converged

1 0.7419 0.3691 0.5250 0.9186
2 0.7318 0.3136 0.4778 0.8977
3 0.7962 0.3330 0.4914 0.9209
4 0.8233 0.3110 0.4413 0.9302
5 0.8449 0.3262 0.4581 0.9276
6 0.8229 0.3235 0.4709 0.9274
7 0.8260 0.2989 0.4242 0.9421
8 0.7402 0.2814 0.4104 0.9372
9 0.8532 0.2892 0.4190 0.9226
10 0.7754 0.2954 0.4508 0.9305

Table 6.2: Armadillo uniform training

Armadillo Gradient
iteration ABS MAE RMSE converged

1 0.7487 0.3837 0.5559 0.8968
2 0.7808 0.2256 0.3653 0.9460
3 0.7777 0.2045 0.3378 0.9517
4 0.8248 0.2055 0.3288 0.9566
5 0.8175 0.1976 0.3294 0.9572
6 0.8193 0.1975 0.3195 0.9589
7 0.8403 0.1961 0.3217 0.9642
8 0.8488 0.1958 0.3222 0.9651
9 0.8564 0.1973 0.3185 0.9661
10 0.8628 0.1928 0.3241 0.9594

Table 6.3: Armadillo gradient training
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Uniform Gradient Poisson

Figure 6.3: Armadillo visual benchmark

Figure 6.4: Training curves of both methods over iterations
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Stanford Bunny

Bunny Uniform
iteration ABS MAE RMSE converged

1 0.7253 0.3553 0.5013 0.9423
2 0.7476 0.3506 0.4939 0.9411
3 0.6667 0.3455 0.5153 0.9473
4 0.7701 0.3106 0.4550 0.9353
5 0.7504 0.3090 0.4649 0.9263
6 0.8137 0.3174 0.4499 0.9362
7 0.8065 0.2973 0.4369 0.9318
8 0.8227 0.2964 0.4283 0.9392
9 0.7721 0.2924 0.4135 0.9446
10 0.7833 0.3023 0.4503 0.9336

Table 6.4: Bunny uniform training

Bunny Gradient
iteration ABS MAE RMSE converged

1 0.7475 0.3704 0.5190 0.9209
2 0.7356 0.2078 0.3366 0.95946
3 0.7592 0.2059 0.320 0.96194
4 0.7973 0.2029 0.3258 0.96233
5 0.8152 0.2073 0.3316 0.9628
6 0.8327 0.2077 0.336 0.96266
7 0.8479 0.2015 0.3298 0.96263
8 0.8736 0.2025 0.3277 0.9586
9 0.8765 0.1947 0.3190 0.9631
10 0.8876 0.2059 0.3307 0.96116

Table 6.5: Bunny gradient training
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Uniform Gradient Poisson

Figure 6.5: Bunny visual benchmark

Figure 6.6: Training curves of both methods over iterations
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Dragon

Dragon Uniform
iteration ABS MAE RMSE converged

1 0.7153 0.4559 0.7210 0.8764
2 0.7629 0.4068 0.6476 0.8907
3 0.8179 0.4038 0.6380 0.8810
4 0.8267 0.3760 0.5953 0.8749
5 0.8472 0.3739 0.5757 0.8838
6 0.8226 0.3748 0.5751 0.8941
7 0.8057 0.3792 0.5968 0.8953
8 0.8280 0.3839 0.5993 0.8837
9 0.8759 0.3537 0.5506 0.8859
10 0.7990 0.3671 0.5825 0.9044

Table 6.6: Dragon uniform training

Dragon Gradient
iteration ABS MAE RMSE converged

1 0.8000 0.4531 0.7106 0.8564
2 0.8161 0.3199 0.5132 0.9043
3 0.7925 0.3085 0.4930 0.9256
4 0.8244 0.2980 0.4784 0.9257
5 0.8167 0.3012 0.4832 0.9286
6 0.8419 0.2906 0.4602 0.9309
7 0.8445 0.2901 0.4588 0.9371
8 0.8563 0.2847 0.4554 0.9351
9 0.8601 0.2862 0.4540 0.9333
10 0.8658 0.2850 0.4530 0.9341

Table 6.7: Dragon gradient training
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Uniform Gradient Poisson

Figure 6.7: Dragon visual benchmark

Figure 6.8: Training curves of both methods over iterations
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Igea

Igea Uniform
iteration ABS MAE RMSE converged

1 0.6408 0.2466 0.3254 0.9985
2 0.7086 0.2616 0.3347 0.9985
3 0.6635 0.2479 0.3285 0.9990
4 0.7671 0.2184 0.2927 0.9993
5 0.7142 0.2020 0.2692 0.9994
6 0.7945 0.2190 0.2905 0.9992
7 0.8171 0.1992 0.2590 0.9994
8 0.7416 0.2364 0.3079 0.9992
9 0.7792 0.2037 0.2756 0.9992
10 0.7789 0.1892 0.2546 0.9990

Table 6.8: Igea uniform training

Igea Gradient
iteration ABS MAE RMSE converged

1 0.7532 0.2852 0.3718 0.9980
2 0.7090 0.1361 0.2045 0.9995
3 0.7460 0.1424 0.2055 0.9992
4 0.7656 0.1342 0.1864 0.9997
5 0.7839 0.1348 0.1874 0.9997
6 0.7808 0.1313 0.1810 0.9997
7 0.7808 0.1291 0.1793 0.9996
8 0.7881 0.1290 0.1759 0.9994
9 0.7923 0.1419 0.1952 0.9991
10 0.8136 0.1366 0.1920 0.9982

Table 6.9: Igea gradient training
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Uniform Gradient Poisson

Figure 6.9: Igea visual benchmark

Figure 6.10: Training curves of both methods over iterations
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Teapot

Teapot Uniform
iteration ABS MAE RMSE converged

1 0.8267 0.4908 0.6487 0.9209
2 0.7699 0.4588 0.688 0.9532
3 0.8361 0.4211 0.615 0.9260
4 0.8378 0.4544 0.663 0.9209
5 0.8428 0.4203 0.6108 0.9175
6 0.7876 0.4687 0.6864 0.9515
7 0.8455 0.4605 0.670 0.9422
8 0.8492 0.4399 0.643 0.9337
9 0.8203 0.4399 0.6458 0.9311
10 0.8008 0.4328 0.622 0.9490

Table 6.10: Teapot uniform training

Teapot Gradient
iteration ABS MAE RMSE converged

1 0.7672 0.5092 0.6909 0.9609
2 0.7992 0.3846 0.6110 0.9592
3 0.8116 0.4459 0.6711 0.9532
4 0.8258 0.3822 0.6025 0.9498
5 0.8464 0.3747 0.5871 0.9473
6 0.8387 0.3585 0.5623 0.9388
7 0.8599 0.3538 0.5807 0.9354
8 0.8416 0.3484 0.5566 0.9320
9 0.8762 0.3584 0.5648 0.9396
10 0.8786 0.3417 0.5681 0.9303

Table 6.11: Teapot gradient training
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Uniform Gradient Poisson

Figure 6.11: Teapot visual benchmark

Figure 6.12: Training curves of both methods over iterations
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Number of views dependendency

Figure 6.13: Mean and standard error of RMSE varying the number of available
views



Chapter 7

Conclusions and Future work

In conclusion, the goal of our work was to developed a model architecture and
training pipeline to produce an occupancy-coherent implicit neural representation
using a multi-layer-perceptron starting from the images taken from a traditional
line laser scanner.

First we analyzed and provided a deep explanation of the required background
and related works in the field, which gave the foundations for our approach. Then
we introduced our model architecture, training pipeline and our algorithm design
choices, demonstrating how it is possible to embed line lasers knowledge inside a
multi layer perceptron using computational geometry methods. Our virtual scan-
ner environment, which will be probably improved and reutilized in future works,
provided a convenient sandbox to generate data in a transparent environment.

Still, much work requires to be done in the future to improve this approach,
which has been proven by the benchmarks to be still suboptimal. The main com-
ponents that can be the subject of future analysis are the:

• Input data quality

• Point sampling strategy

• Network architecture

• Encoding hyperparameters

• PU classification step

• Training loss function

Lastly, the pipeline will require to be adapted to existent production scanners
in order to be used in the wild. Other paths that would be worth exploring to
improve our results are SIREN activation functions [Sit+20] and Kolmogorov-
Arnold Networks[Liu+24]. The first ones to blend together the encoding step with

91
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the hidden layers activation functions, while the second one is a very recent model
architecture that was proven to have better performances in fine tuning processes
like ours. KAN networks[Liu+24] might solve the artifacts issue in the gradient
based variant by making previous iteration patterns harder for the model to forget,
granting their enforcement also in subsequent training steps.

Despite of our suboptimal results, we believe this approach has room for im-
provement and could in the future lead to the production of truly occupancy-
coherent implicit neural representation from line laser scanners data.
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