
Scuola Dottorale di Ateneo
Graduate School

Dottorato di ricerca
in Informatica
Ciclo XXV
Anno di discussione 2013

Static Verification and Enforcement of
Authorization Policies

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: INF/01
Tesi di Dottorato di Stefano Calzavara, matricola 801411

Coordinatore del Dottorato Tutore del Dottorando

Prof. Riccardo Focardi Prof. Michele Bugliesi

Università Ca’ Foscari di Venezia

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Static Verification and Enforcement of
Authorization Policies

Stefano Calzavara

Supervisor

Prof. Michele Bugliesi

Referee

Prof. Pierpaolo Degano

Referee

Dr. Cédric Fournet

January 28, 2013

Author’s Web Page: www.dais.unive.it/~calzavara

Author’s e-mail: calzavara@dais.unive.it

Author’s address:

Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it

To my father Angelo (Tito)

Abstract

This thesis addresses the problem of statically verifying and enforcing authorization
policies in a range of different settings.

The problem of policy verification consists in trying to fill in the gap between
a high-level policy specification and its low-level expected security requirements:
this problem can be effectively addressed through static model-checking techniques,
which allow to assess the robustness of a given authorization policy way before its
actual enforcement. The thesis introduces the formal machinery to perform such
analysis on role-based access control policies for grsecurity, an extension for the
Linux kernel aimed at enhancing the operating system security. An implementation
of the analysis is discussed, along with a preliminary investigation about the security
of existing grsecurity access control policies.

Policy enforcement is an orthogonal issue to policy verification: namely, given a
policy specification, the challenge is understanding if a specific system implementa-
tion does comply with the policy. A recently emerging trend consists in developing
static techniques for proving policy compliance of application code. The contribu-
tions of the thesis in such research line are twofold:

• First, a refinement type system aimed at enforcing resource-aware authoriza-
tion policies, expressed in a fragment of intuitionistic affine logic, is developed
for RCF, a concurrent lambda-calculus with message-passing primitives. Ex-
tending existing proposals to such sub-structural setting proves challenging,
but rewarding: affine logic, in fact, accounts for very natural specifications of
complex resourceful policies, which can be enforced with only limited effort by
the programmer.

• Second, a static type-based analysis technique is devised for a simple abstrac-
tion of the widespread Android platform for mobile devices. The goal is en-
forcing a more robust access control policy, by programmatically preventing a
subtle vulnerability related to the interplay of the communication paradigm
with the underlying permission system, which allows malicious components
to escalate privileges. The technique is proved sound. The challenges related
to the implementation of the framework, or any other type-based analysis
technique for Android applications, are discussed in detail.

iv ABSTRACT

Acknowledgments

Many thanks are due to my supervisor Michele Bugliesi. Tough incredibly busy,
Michele always tried his best to be a caring and friendly guide during all these
three years. His deep understanding of the problems proved invaluably helpful in
improving my scientific background.

My gratitude goes to the reviewers of this thesis, prof. Pierpaolo Degano and
dr. Cédric Fournet. I’m very proud of them accepting this role and I thank them
for the time spent in reading this work.

I owe much to many people in Ca’ Foscari. I would like to thank Damiano
Macedonio, who co-supervised my M.Sc. thesis. Damiano is an enthusiastic teacher
and a friend: many discussions with him surely played a prominent role in convincing
me to pursue my Ph.D. I am deeply indebted to Riccardo Focardi, who gave me the
chance to work with him on the interesting and successful research on grsecurity.
I would like also to thank Paolo Modesti, Alvise Spanò and Marco Squarcina for
their precious collaboration, their patience in explaining technological problems, and
many funny moments shared together.

Moving outside from Venice, I’m really grateful to Matteo Maffei: without his
assistance and his optimistic views, all the work on RCF would have never been
possible. I want also to thank Fabienne Eigner for her invaluable help on a number
of technical problems, which arose throughout the proofs of our type system.

Many thanks to my family: my mother Ilva, my brother Riccardo and my father
Angelo, who left just before I started my Ph.D and whom I dedicate this thesis.
Their unconditional support during my studies was a fundamental building block
for my scientific formation.

I want also to mention some friends, in particular: Dario, for our long-standing
friendship; Giacomo, for his enthusiastic approach to life; Daniele, Fabio and Raf-
faele, for too many moments shared together. Finally, a special thought goes to
Valentina: without her, these three years would have been much harder.

vi ACKNOWLEDGMENTS

Contents

Preface xiii

Introduction xv

1 Formal Verification of grsecurity RBAC Policies 1
1.1 Introduction . 1
1.2 Background on grsecurity . 3

1.2.1 grsecurity RBAC . 3
1.2.2 RBAC policies . 4
1.2.3 User and group identifiers . 5

1.3 A formal semantics for grsecurity . 6
1.3.1 Policies . 6
1.3.2 Pathnames and matching . 7
1.3.3 Role assignment . 8
1.3.4 Semantics . 9

1.4 Verification of grsecurity policies . 11
1.4.1 An abstract semantics for grsecurity 11
1.4.2 Correlating the two semantics 14
1.4.3 Security analysis . 15

1.5 Gran: a tool for policy verification . 18
1.6 Case studies . 20

1.6.1 Verification of existing policies 20
1.6.2 Exploits through “setuid” binaries 21
1.6.3 Information leakage analysis 22

1.7 Related work . 24

2 Enforcing Affine Authorization Policies in RCF 25
2.1 Introduction . 25
2.2 Overview of the framework . 26

2.2.1 Refinement types for verification 27
2.2.2 Affine logic for specification 27
2.2.3 Type-checking the example? 28
2.2.4 Exponential serialization to the rescue 28

viii CONTENTS

2.3 Review of affine logic . 30
2.4 Metatheory of exponential serialization 31
2.5 Review of RCF . 33
2.6 The type system . 36

2.6.1 Types, environments, and base judgements 36
2.6.2 Environment rewriting . 38
2.6.3 Kinding and subtyping . 39
2.6.4 Typing values . 41
2.6.5 Typing expressions . 42
2.6.6 Formal results . 44
2.6.7 Encoding affine types . 45
2.6.8 Encoding cryptography . 46
2.6.9 Algorithmic type-checking . 47

2.7 Example: electronic purchase . 48
2.8 Example: Kerberos . 50
2.9 Related work . 52

3 Proofs of Chapter 2 55
3.1 Soundness of exponential serialization 55

3.1.1 Preliminaries . 55
3.1.2 Main results . 56
3.1.3 Auxiliary results . 59

3.2 Soundness of the type system . 68
3.2.1 Properties of the logic . 68
3.2.2 Basic results . 71
3.2.3 Properties of kinding and subtyping 74
3.2.4 Properties of substitution . 84
3.2.5 Proofs of inversion lemmas . 89
3.2.6 Proof of subject reduction . 99
3.2.7 Proof of (robust) safety . 124

4 Secure Access Control for Android Applications 127
4.1 Introduction . 127
4.2 Android overview . 128
4.3 Introducing λ-Perms . 130

4.3.1 Syntax and semantics . 130
4.3.2 λ-Perms vs Android . 132

4.4 Privilege escalation, formally . 135
4.5 Preventing privilege escalation, by typing 139
4.6 Implementation . 143

4.6.1 Architecture . 144
4.6.2 Challenges . 144
4.6.3 Java annotations support . 147

CONTENTS ix

4.6.4 Limitations and extensions . 147
4.7 Related work . 147

5 Proofs of Chapter 4 151
5.1 Basic results . 151
5.2 Proof of subject reduction . 154
5.3 Proof of (robust) safety . 165

Conclusions 167

Bibliography 169

x CONTENTS

List of Tables

1.1 A snippet from a grsecurity policy 4
1.2 Semantics of grsecurity . 10
1.3 Abstract semantics of grsecurity . 13
1.4 A snippet of a flawed grsecurity policy 23

2.1 The entailment relation ∆ ⊢ F . 31
2.2 Syntax of RCF expressions . 33
2.3 Reduction semantics for RCF . 34
2.4 Heating relation for RCF . 35
2.5 Structures and static safety . 35
2.6 Syntax of types . 36
2.7 Domain of Γ . 37
2.8 Well-formed environments . 37
2.9 Kinding . 39
2.10 Subtyping . 40
2.11 Typing rules for values . 42
2.12 Typing rules for expressions . 43
2.13 Extraction . 44
2.14 A variant of the EPMO protocol . 48
2.15 Kerberos protocol . 50

3.1 Alternative rules for typing values . 104

4.1 Syntax of λ-Perms expressions . 131
4.2 Reduction semantics for λ-Perms . 132
4.3 Heating relation for λ-Perms . 133
4.4 Reduction semantics for λ-Perms under IPC Inspection 136
4.5 Equivalence up to granted permissions 136
4.6 Typing rules for λ-Perms . 140

xii LIST OF TABLES

Preface

The work presented in this thesis is based on some published research papers written
during my Ph.D. studies in Computer Science at Università Ca’ Foscari Venezia from
January 2010 to December 2012.

Chapter 1 is a joint work with Michele Bugliesi, Riccardo Focardi and Marco
Squarcina presented at the 25th IEEE Computer Security Foundations Symposium
in June 2012 [22].

Chapter 2 is the outcome of a long research program carried out in collaboration
with Michele Bugliesi, Fabienne Eigner and Matteo Maffei. Preliminary results were
presented at the 24th IEEE Computer Security Foundations Symposium in June
2011 [19] and at the 7th International Symposium on Trustworthy Global Comput-
ing in September 2012 [20]. The contents of the chapter significantly extend such
previous work and have been accepted for publication at the 2nd Conference on
Principles of Security and Trust, to be held in March 2013 [21].

Finally, Chapter 4 is an on-going joint work with Michele Bugliesi and Alvise
Spanò. At the time of writing we are still performing our experiments and comple-
ting some formal details. Hopefully, we should be able to substantiate our claims
with experimental results and submit a paper soon.

xiv PREFACE

Introduction

Authorization policies play a prominent role in the security of computer and software
systems: given an access request to a sensitive resource, an authorization policy
determines whether the request should be actually allowed or not. This simple and
intuitive description yields a surprising number of challenges, which require actions
at very different levels.

First, we need a systematic way to express which resources are sensitive and who
should be entitled to access them. This is a problem of policy specification. Typical
authorization policies discriminate among different access modalities, providing a
fine-grained form of access control: for instance, many configuration files of a stan-
dard Unix/Linux machine are publicly readable, but only the system administrator
is allowed to change their content. Many real-world scenarios additionally require
to state more sophisticated constraints on resource access, defining usage bounds
based, e.g., on access counts, traffic loads, or geolocation. Defining expressive but
convenient policy specification languages is an important issue, which has triggered
the development of many research papers in the past [24].

Assume then given an authorization policy expressed in some formal, unam-
biguous specification language. How do we guarantee that the policy is correctly
enforced? This is a completely different problem, which must necessarily take into
account several low-level, domain-specific details. In a centralized system, for in-
stance, one has to precisely identify all the entry points to each sensitive resource and
define appropriate runtime checks; in a distributed system, instead, policy enforce-
ment typically involves the exchange of cryptographic evidence over an untrusted
network to achieve authentication. In general, filling the gap between a high-level
policy specification and its low-level enforcement is a difficult and error-prone task.

Last but not least, we cannot overlook the problem of policy verification. Let us
take for granted the existence of an appropriate policy specification language and an
effective enforcement mechanism, how do we validate if the authorization policy we
specified is “correct”? Namely, the security properties one has in mind while writing
the policy may be stated at a different level than the policy itself, thus making their
verification difficult. As a real world example, assume we regulate physical access to
our research laboratory by requiring visitors to exhibit a badge before entering. This
should intuitively prevent the malicious Mallory from entering our laboratory... as
long as no badge ever comes under Mallory’s control! Hence, our concrete property

xvi INTRODUCTION

of interest “Mallory does not have access to the lab” is not immediately entailed by
our abstract policy “To get access to the lab, one must exhibit the badge”.

Luckily, formal methods have a long-standing successful tradition in prevent-
ing human mistakes and providing end-users with strong soundness guarantees. In
the present thesis we focus on the development of provably sound static analysis
techniques to tackle the problems of verification and enforcement of authorization
policies, in a range of different settings. Static verification is useful to assess the
robustness of an authorization policy way before adopting it to secure a software
system, hence reducing the risks and the costs connected to the combination of
the logging and auditing mechanisms necessary to retrofit a running authorization
policy. Static enforcement, instead, is helpful to complement standard runtime
authorization decisions: runtime enforcement is flexible and expressive, but static
analysis can greatly improve performance and certify (existing) software as secure.

Summary of contributions

The first part of the thesis is devoted to the verification of Role-Based Access Control
(RBAC) policies. RBAC is one of the most widespread security mechanisms in use
today, and has been the subject of extensive research for more than a decade now.
The central idea in the RBAC model is to factor the assignment of access rights
into two steps, separating the distribution of permissions to system-specific roles,
from the assignment of users to such roles, so as to simplify the overall access
control management task [67]. While convenient for specification, RBAC policies
are challenging for verification, in that system users can dynamically impersonate
different roles at different times, thus making difficult to understand which access
rights are actually granted to each user. In the present thesis we focus our attention
on the formal verification of RBAC policies as implemented in grsecurity [71], an
access control system developed on top of Unix/Linux systems. We carry out our
analysis by developing the first formal semantics for the grsecurity RBAC system
and refining it to an abstract semantics which allows for efficient model-checking
of a number of diverse security properties. We implement our techniques into an
automatic tool for policy verification (gran) and we detail the outcome of a security
review performed on a number of existing grsecurity RBAC policies.

The second part of the thesis addresses the problem of statically enforcing
resource-aware authorization policies in cryptographic protocols implementations.
Namely, given a particular policy written in a fragment of intuitionistic affine logic,
we aim at understanding if a specific protocol implementation correctly enforces
such policy. We devise our framework starting from existing proposals based on
refinement types [10] and extending them to support our sub-structural logic. As it
turns out, designing a sound type discipline is particularly challenging, since trusted
(well-typed) protocol code interacts with a powerful (untyped) Dolev-Yao opponent
which controls the network. Such opponent may intercept, hijack and synthesise

INTRODUCTION xvii

cryptographic messages, and mount replay attacks targeted at fooling well-typed
principals into violating the resource-conscious nature of our authorization policies.
On the technical side, our refinement type system does not include affine types,
but it can still recover the expressiveness they would provide, by taking advantage
of the underlying affine logic for authorization and our novel notion of exponential
serialization. We show the effectiveness of our approach on two example protocols.

The third and last part of the thesis focuses on the static enforcement of an
expected access control policy which is not correctly implemented by the Android
platform. In fact, it is well-known that the Android permission system allows un-
privileged applications to get access to sensitive resources through a transitive per-
missions usage enabled by the underlying message-passing system [29]. Intuitively,
this violates the following (informal) authorization policy: “Access to a resource
protected by a permission P should be allowed only to applications owning the per-
mission P”. We target the problem of programmatically preventing such privilege
escalation attacks inside λ-Perms, a simple formal calculus which captures the es-
sential ingredients of the Android permission and communication system, and we
propose a sound security type system which statically enforces our notion of safety,
despite the best efforts of an unprivileged opponent. We find our static approach
particularly appealing for the Android platform, since it does not require patching
the operating system to introduce additional runtime checks. We briefly discuss the
design of a prototype implementation of Lintent, a type-checker for Android ap-
plications drawing on our formal framework. The implementation is completely due
to the work of Alvise Spanò and its details can be found in the author’s thesis [70].

Structure of the thesis
The thesis is structured in three parts:

• Chapter 1 discusses the formal framework for the verification of grsecurity
RBAC policies and the related results;

• Chapter 2 presents the refinement type system for RCF. A complete soundness
proof is detailed in Chapter 3;

• Chapter 4 discusses the static analysis technique aimed at preventing privilege
escalation attacks on Android. Its soundness is proved in Chapter 5.

xviii INTRODUCTION

Chapter 1

Formal Verification of grsecurity
RBAC Policies

1.1 Introduction

Role-Based Access Control (RBAC) provides a convenient, widely deployed security
mechanism. The central idea in the RBAC model is to factor the assignment of
access rights into two steps, separating the distribution of permissions to system-
specific roles, from the assignment of users to such roles, so as to simplify the
overall access control management task [67]. In fact, many organizations present
a small and fixed set of roles with a well-understood semantics, while the effective
identity of their members, and their assignments to the existing roles, are subject
to frequent changes due to, e.g., hirings, firings, or promotions. The RBAC model
thus supports the idea of shifting most of the effort related to policy specification
inside the definitions of the roles, which are largely invariant over time.

Most of the research work on RBAC (see, e.g., [68, 7, 47]) has focused on pol-
icy verification, a problem of critical importance for system administrators, and a
challenging one due to the complexity of the policies to be verified and to the state
changes that arise in their management. State-change is not specific to RBAC: tra-
ditional access control frameworks such as those studied in the seminal work of [53]
include rules to affect the structure of the access control matrix, defining the per-
missions granted to subjects on objects. Modern administrative RBAC (ARBAC)
systems present similar features by providing system administrators with expres-
sive languages for manipulating RBAC policies by re-assigning users to roles and/or
modifying the assignment of permissions to roles [67].

Policy verification in access control systems has traditionally been stated as a
safety question, answered by means of a reachability analysis: for instance, user-role
reachability in ARBAC systems formalizes the problem of determining whether,
given an initial policy state, a target user and a role, there exists a sequence of state
changes leading to a state in which the target user is impersonating that role. As

2 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

it turns out, this kind of analysis is challenging, as the procedural nature of state
change languages often creates subtle, undesired effects that are hard to anticipate
without the aid of a tool for analysis.

Model checking [28] has emerged as a promising technique for automated policy
verification [47, 83, 56]. The idea is exactly as in program verification, with the set of
state-change rules playing the role of the program to be tested, and the reachability
question as the property of interest: to counter the state explosion that often affect
the analysis, making it unscalable to the point of making the problem intractable
[56], researchers have advocated the usage of abstraction techniques [55].

In the present chapter we continue along this line of research, focusing our at-
tention on the formal verification of grsecurity [71], an access control system
developed on top of Unix/Linux systems. grsecurity is deployed as a patch to the
OS kernel that installs a reference monitor to mediate any access to the underlying
OS resources; it supports the definition and dynamic enforcement of fine-grained
access control policies to let users operate on objects (resources) via the subjects
(executable files) provided by the underlying file system. Users are organized in
roles, which are in turn structured as to identify a subset of privileged roles with
higher capabilities on the system resources, and administrative control of the access
control policies.

The verification problem in grsecurity presents much of the complexity of Ad-
ministrative RBAC systems, due to the presence of policy state changes: these may
arise either from explicit administrative actions for manipulating users and roles, as
well as from the interaction between grsecurity’s access control and the facilities
provided by the underlying operating system for setting user ids, hence dynamically
changing users and associated roles by executing binaries operating in setuid mode
[1]. This dependency from state changes on the executable binaries of the underlying
file system further complicates the model checking problem, as it causes the size of
the search space to grow unbounded in the number of states and transitions.

We tackle the problem by resorting to an abstraction technique, by which the
behavior resulting from the unbounded set of subjects available in the underlying
file system is captured by the finite number of subjects that are listed in the security
policy, which represents the input of the model checker. We prove the abstraction
sound and complete, and employ it to carry out a reachability analysis on RBAC
policies target at unveiling (potential) security leaks, leading to unintended accesses
to sensitive resources.

Contributions In this chapter, we develop a formal semantics for the grsecurity
RBAC system, based on a labeled transition system; besides providing the funda-
mental building block for our analysis, the LTS semantics has proved interesting in
itself, as it made it possible to understand the subtleties of grsecurity’s RBAC
rules, and to unveil a flaw arising from the interplay between the access control
systems supported by Linux and grsecurity. As we discuss in Section 1.3.4, this

1.2. BACKGROUND ON GRSECURITY 3

flaw makes it possible to unexpectedly bypass the imposed grsecurity capability
restrictions when executing a setuid/setgid binary [72].

We then introduce an abstract semantics which provides a bounded, yet sound
and complete, representation of the dynamic evolution of the grsecurity policy
states arising in the formal semantics; based on that, we develop a framework for
reachability analysis aimed at detecting access control leaks in any given policy.

We implement our framework in gran, a tool for the automatic analysis of
grsecurity policies: the tool takes as input an RBAC policy, a user u, a set of
initial states for u (associated with the possible subjects that may impersonate u)
and a target file/object o, and checks whether there is a path of state changes leading
to a state that grants u access to o. We provide a report of experiments we con-
ducted with the analysis of policies in use on existing, commercial servers running
grsecurity to implement their RBAC systems.

Structure of the chapter Section 1.2 reviews the basic concepts and notions
behind grsecurity; Section 1.3 presents our formal semantics of the grsecurity
RBAC system; Section 1.4 describes the abstraction for the verification of grsecurity
policies, and shows its formal correspondence to the previous semantics; Section 1.5
describes gran (grsecurity analyzer), a tool that automatically looks for security
leaks in real grsecurity policies; Section 1.6 illustrates gran at work on some case
studies; Section 1.7 discusses related work.

1.2 Background on grsecurity

grsecurity is a patch for the Linux kernel focused on security at the operating sys-
tem level. It provides many different features on latest stable kernels, implementing
a “detection, prevention, and containment” model [71]. In addition to the role-based
access control (RBAC) system, which is the focus of this chapter, grsecurity offers
protection mechanisms against privilege escalation, malicious code execution and
memory corruption; it also implements an advanced auditing system. grsecurity
is typically adopted by hosting companies to harden web servers and systems pro-
viding services to locally logged users [3].

1.2.1 grsecurity RBAC

grsecurity complements the standard discretionary access control (DAC) mecha-
nism provided by Linux with a form of mandatory RBAC, providing an additional
layer of protection. From now on, we identify grsecurity with its RBAC system.

The specification of the access control requirements is provided by a policy, whose
structure is described in Section 1.2.2. The policy defines the available roles, which
can be of four different types. User roles are an abstraction of standard users in
Linux systems, i.e., they provide a hook to extend the traditional DAC permission

4 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

system with more sophisticated mechanisms, available only in grsecurity. Group
roles provide a similar device for actual groups of the system. Special roles, instead,
are not directly associated to traditional users and groups, and they are intended
to provide extra privileges to normal accounts. A default role applies when no user,
group, or special role can be granted. The mechanism of role assignment is discussed
in Section 1.3.3.

1.2.2 RBAC policies

A policy defines the permissions given to each role for the different objects stored
in the file system. A further level of granularity is introduced through the standard
notion of subject, i.e., an abstraction of a process. Namely, permissions are not
directly assigned to roles, since this would lead to a very coarse form of access control;
rather, permissions are defined for pairs of the form role-subject. For instance, user
alice could be granted read access to the object /var only through the subject
/bin/ls.

role alice u {
role_transitions professor
subject / {

/
/bin x
/boot h
/dev h
/dev/null w
/dev/pts rw
/dev/tty rw
/etc r

}

subject /bin/su {
user_transition_allow root
group_transition_allow root

/ h
/bin h
/bin/su x
/dev/log rw

}

Table 1.1: A snippet from a grsecurity policy

Table 1.1 presents a snippet from a grsecurity policy. Even though it does not
show all the features provided by grsecurity RBAC, it allows us to introduce the
most important elements considered in our formalization. The policy defines a user

1.2. BACKGROUND ON GRSECURITY 5

role (flag ’u’) alice, which is allowed to impersonate the special role professor.
Transitions to specific users and groups of the underlying Linux system can be
allowed or forbidden at the subject level, e.g., by the user_transition_allow at-
tribute.

Permissions are specified in terms of access modalities for the objects in the
policy. In this case, any process executed by alice is assigned the permissions
defined for subject “/”, except for process /bin/su which specifies its own set of
modalities. In general, any process is accredited a set of access rights for any object
in the system, according to a hierarchical matching mechanism. For instance, subject
/bin/su inherits the rights on /etc by the less specific subject “/”, while it overrides
the permissions for /bin with its own. Similarly, accesses to object /dev/log by
subject “/” are resolved in terms of the modalities listed for the less specific object
/dev. Complete details on this mechanism are provided in Section 1.3.2.

The modalities we consider mirror standard Linux permissions for reading ’r’,
writing ’w’ and executing ’x’, plus a hiding mode ’h’. Subjects are completely un-
aware of the presence of any hidden object, e.g., the process /bin/ls does not even
list the directory /boot when it is launched by alice. We ignore other available
modalities, which are either irrelevant for our setting (e.g., ’p’ for ptrace rejection)
or identifiable with one of the previous modalities (e.g., ’a’ for appending).

1.2.3 User and group identifiers

Before digging into the internals of grsecurity, we need to briefly review how users
and groups are identified in Linux systems. At the kernel level, users and groups
are not distinguished by names, but by numbers. We refer to these numbers as
user identifiers (UIDs) and group identifiers (GIDs) respectively. When a process
is started, Linux assigns it a pair of identifiers, set to the UID of the invoking
user. These identifiers are called the effective UID and the real UID of the process,
respectively. The effective UID determines the privileges granted to the process and
is employed, e.g., for standard DAC enforcement; the real UID, instead, affects the
permissions for sending signals.

This apparently simple mechanism is complicated by an important subtlety re-
lated to the execution of particular binaries in the file system. Namely, any file f may
be granted the “setuid” permission, with the following effect: when f is executed, the
effective UID of the process is set to the UID of the owner of f , irrespective of the
UID of the invoking user; the real UID, instead, is set to the UID of the caller. This
allows for temporary acquisition of additional privileges to perform specific tasks.

We conclude by pointing out that changing to a particular UID is considered a
sensitive operation in Linux systems and requires the process to possess the capabil-
ity CAP_SETUID. Capabilities provide finer-grained distribution of privileges among
processes since Linux 2.2. Remarkably, capabilities are bypassed when a “setuid”
binary is executed, i.e., a process spawned by a “setuid” binary is always allowed to
set its effective UID to the UID of the owner. All the previous discussion applies

6 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

similarly to GIDs.

1.3 A formal semantics for grsecurity

We propose a formal semantics for grsecurity in terms of a labelled transition
system. We write f : A → B when f is a total function from A to B, while we
write f : A →→ B when f is partial. We let f(a) ↓ denote that f is defined on a.
Let f : A1 × . . . × An →→ B and let ai range over Ai, for any k ≤ n we stipulate
f(a1, . . . , ak) ↓ if and only if ∃ak+1, . . . ,∃an : f(a1, . . . , an) ↓. Finally, we let P(A)
stand for the power set of A.

1.3.1 Policies

We presuppose denumerable sets U of users and G of groups, ranged over by u and g
respectively. We also let T denote the set of role types {u, g, s} ranged over by t; C
denote the set of capabilities {set_uid, set_gid} and M the set of access modalities
{r, w, x, h}. A policy P is a 8-tuple:

P = (R, S,O, perms, caps, role_trans, usr_trans, grp_trans),

where:

• R is a set of roles, ranged over by r. We let Rt denote the set of roles of type
t and we assume that Rt and Rt′ are disjoint whenever t ̸= t′;

• S is a set of subjects, ranged over by s, and O is a set of objects, ranged over
by o. Both subjects and objects are pathnames, as we discuss below;

• perms : R × S × O →→ P(M) defines the permissions granted by the policy.
Namely, if m ∈ perms(r, s, o), then subject s running on behalf of role r has
permission m on object o;

• caps : R× S →→ P(C) determines the capabilities allowed by the policy, i.e., if
c ∈ caps(r, s), then subject s running on behalf of role r can acquire capability
c;

• role_trans : R → P(Rs) defines which special roles can be impersonated by a
given role;

• usr_trans : R× S →→ P(U) defines which user identities can be assumed by a
subject running on behalf of a given role;

• grp_trans : R × S →→ P(G) defines which group identities can be assumed by
a subject running on behalf of a given role.

1.3. A FORMAL SEMANTICS FOR GRSECURITY 7

We require a number of well-formedness constraints on policies which formalize a
corresponding set of syntactic checks performed by grsecurity. (Recall that we
write perms(r, s)↓ to denote ∃o ∈ O : perms(r, s, o)↓.)

1. ∀r : perms(r, /)↓, i.e., all roles define at least the subject “/”;

2. ∀r,∀s : (perms(r, s) ↓ ⇒ perms(r, s, /) ↓), i.e., every subject in every role
defines at least the object “/”;

3. there exists a default role “−” such that ∀t : − /∈ Rt.

Throughout the chapter, most definitions (notably, the semantic rules in Tables 1.2
and 1.3) and notation are to be understood as parametric with respect to a given
policy. To ease readability, we do not make such dependency explicit, and just
assume P as the underlying policy instead.

1.3.2 Pathnames and matching

Subjects and objects are collectively represented within grsecurity policies as path-
names, and these, in turn, are defined as sequences of “/”-separated names (or wild-
cards) as customary in Unix systems. For ease of presentation, we henceforth dis-
regard wildcards and assume the following simplified structure of pathnames (that
always presupposes a trailing “/”). Let n be a non-empty string not including “/”,
and let “·” note string concatenation. Pathnames are defined by the following pro-
ductions:

p ::= / | / · n · p
Pathnames are ordered according to the standard prefix order, so that p is smaller
(more specific) than, or equal to, p′ whenever p′ is a prefix of p. Formally, the
ordering relation ⊑ is the smallest relation closed under the following rules:

(P-Top)
p ⊑ /

(P-Path)
p ⊑ p′

/ · n · p ⊑ / · n · p′

Clearly, ⊑ is a partial order: this ordering is paramount in grsecurity, as it con-
stitutes the basic building block underlying the mechanisms for associating subjects
to processes, and for checking access rights on objects. Specifically, when a process
spawned by the execution of a file f running on behalf of a role r tries to access a
file f ′, grsecurity matches f against the most specific subject s defined in role r
such that f ⊑ s. Similarly, f ′ is matched against the most specific object o, defined
in subject s of role r, such that f ′ ⊑ o. The permissions of o are then retrieved to
evaluate whether the process can be granted access to f ′. For instance, according
to the policy in Table 1.1, process /bin/cat is granted read access to /etc/fstab,
since /bin/cat matches the subject “/” and /etc/fstab matches the object /etc
defined there.

8 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

We formalize the matching relation as follows. For any set A of path names, we
let min(A) denote the minimum element of A according to the ordering ⊑, whenever
such an element exists. Given a pathname p, we define the matching subject for p
in role r as:

match_subj(p, r) = min({s | p ⊑ s ∧ perms(r, s)↓}).

Analogously, we define the matching object for p in role r under subject s as:

match_obj(p, r, s) = min({o | p ⊑ o ∧ perms(r, s, o)↓}).

Proposition 1.3.1 below and the assumption of well-formedness of the policy imply
that match_subj(p, r) is always defined; instead, match_obj(p, r, s) is defined only
if perms(r, s)↓.

Proposition 1.3.1 (Chain Property). If p ⊑ p′ and p ⊑ p′′, then p′ ⊑ p′′ or p′′ ⊑ p′.

Proof. By induction on the sum of the depths of the derivations of p ⊑ p′. Base
case is p ⊑ / = p′ which by (P-Top) implies p′′ ⊑ p′. Inductive case is when p ⊑ p′

since p = / · n · p̂ and p′ = / · n · p̂′ with p̂ ⊑ p̂′. Now, if p′′ = / we trivially have
p′ ⊑ p′′. Otherwise, since p ⊑ p′′ by (P-Path) it must be p′′ = / ·n · p̂′′ with p̂ ⊑ p̂′′.
By induction we have p̂′ ⊑ p̂′′ or p̂′′ ⊑ p̂′ that, by applying (P-Path), gives the
thesis.

1.3.3 Role assignment

Each process in grsecurity has a role and a subject attached to it. The assignment
of the subject to the process is performed by matching the name of the running
file against the list of subjects of the current role, as discussed in Section 1.3.2.
Roles, instead, are assigned according to the hierarchy “special - user - group -
default”. Special roles are granted through authentication to the gradm utility and
are intended to provide extra privileges to normal user accounts: as such, they
have the highest priority. User roles, instead, are applied when a process either is
executed by a user with a particular UID or changes to that UID. This is possible,
since the name of every user role must match up with the name of an actual user
in the system, i.e., there exists a bijective partial mapping from UIDs to user roles.
It is worth noticing that only the real UID of the process is considered for role
assignment. Group roles behave similarly to user roles, but they are applied to a
given process only if no user role is associated to the process UID. The default role
is chosen when no other role can be given.

A further remark is in order for role assignment: even though user roles are
assigned by just looking at the real UID of the process, the presence of “setuid”
binaries must be considered with care. We recall that a process spawned by a “setuid”
binary sets its effective UID to the UID of the owner; however, even unprivileged
(i.e., without the capability CAP_SETUID) processes can always set their real UID

1.3. A FORMAL SEMANTICS FOR GRSECURITY 9

to their effective UID [1]. Binaries with the “setuid” permission set may then come
into play during the role assignment process. As usual, similar considerations apply
for “setgid” files.

1.3.4 Semantics

We assume an underlying file system, i.e., a subset of a denumerable set of pathnames
F , ranged over by f . (For the sake of simplicity, we do not enforce any well-
formedness condition on this set, since it is not strictly needed by our semantics.)
Let rt range over Rt ∪ {−}, a state is a 4-tuple σ = ⟨rs, u, g, f⟩ describing a process
spawned by the execution of file f . The process may be impersonating a special role
(when rs ̸= −) and is running with real UID set to u and real GID set to g. We
identify UIDs and GIDs with elements from a subset of U and from a subset of G,
respectively. The role associated to σ is determined by the first three components
of the tuple, according to the following function role:

role(rs, u, g) =

rs if rs ∈ Rs

u if rs /∈ Rs, u ∈ Ru

g if rs /∈ Rs, u /∈ Ru, g ∈ Rg

− otherwise

The function formalizes the role assignment process, according to the hierarchy
“special - user - group - default” discussed in Section 1.3.3.

Attacker Model Our semantics tracks all role transitions and subject changes
allowed to a given process. The semantics depends on an underlying Linux system
hosting grsecurity, characterized by a set of users, a set of groups and a file sys-
tem, as it is apparent by the format of the states. However, we do not explicitly
model any change to the previous sets and we just assume them to be denumerable;
we can imagine to pick different sets after each transition, to account for the evo-
lution of the system as a result of background operations. Intuitively, we consider
a worst-case scenario, in which any possible action not conflicting with the RBAC
policy is eventually performed by the process. Of course, the resulting LTS has an
infinite number of states and transitions: this problem will be tackled in Section 1.4,
where we will propose an abstract, finite-state semantics, specifically designed for
automated security analysis.

Transitions The transition rules are presented in Table 1.2.
Rule (SetR) accounts for login operations to special roles: such transitions

must be allowed by the role_trans function. When r′s = −, the rule models a logout
from a special role, which is always permitted. Rule (SetU) describes a change
of the process UID, which must be allowed by the usr_trans function; moreover,

10 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

(SetR)
r̂ = role(rs, u, g) r′s ∈ role_trans(r̂) ∪ {−}

⟨rs, u, g, f⟩
set_role(r′s)−−−−−−→ ⟨r′s, u, g, f⟩

(SetU)
r̂ = role(rs, u, g) s = match_subj(f, r̂)
u′ ∈ usr_trans(r̂, s) set_uid ∈ caps(r̂, s)

⟨rs, u, g, f⟩
set_UID(u′)−−−−−−−→ ⟨rs, u′, g, f⟩

(SetG)
r̂ = role(rs, u, g) s = match_subj(f, r̂)
g′ ∈ grp_trans(r̂, s) set_gid ∈ caps(r̂, s)

⟨rs, u, g, f⟩
set_GID(g′)−−−−−−−→ ⟨rs, u, g′, f⟩

(Exec)
r̂ = role(rs, u, g)

s = match_subj(f, r̂) o = match_obj(f ′, r̂, s)
x ∈ perms(r̂, s, o) h /∈ perms(r̂, s, o)

u′ ∈ usr_trans(r̂, s) ∪ {u} g′ ∈ grp_trans(r̂, s) ∪ {g}

⟨rs, u, g, f⟩
exec(f ′)−−−−→ ⟨rs, u′, g′, f ′⟩

Table 1.2: Semantics of grsecurity

the process must possess the capability set_uid, as we discussed in Section 1.2.3.
Notice that s is the matching subject for file f in the role r̂ associated to the current
state. Rule (SetG) details a similar behavior for changing the process GID. Finally,
rule (Exec) accounts for the execution of files and is the most interesting rule. The
invoked file must indeed be executable and it must not be hidden, since hidden files
are not visible to unauthorized processes. The execution of the file may lead to a
role change, as we explained in Section 1.3.3. Since we do not model which “setuid”
and “setgid” binaries are actually present in the file system and we do not explicitly
keep track of changes to file permissions, we simply assume that the execution of the
file may trigger any user or group transition allowed by the policy for the current
state. Of course, we also consider the possibility that the execution does not alter
the identifiers of the process.

This subtle behavior when executing setuid/setgid programs was unknown be-
fore we started our formalization. In Section 1.6, we will illustrate that it is poten-
tially harmful for security. This has also been reported to the main developer of
grsecurity, who confirmed our findings. A fix has already been implemented in the

1.4. VERIFICATION OF GRSECURITY POLICIES 11

latest stable release of grsecurity [72]. The solution consists in requiring the ca-
pabilities CAP_SETUID/CAP_SETGID to perform role transitions, even upon execution
of setuid/setgid binaries.

1.4 Verification of grsecurity policies

While suitable for describing the operational behavior of grsecurity, the semantics
presented in Section 1.3 is not amenable for security verification, as we discuss below.
We thus propose a different semantics, designed for security analysis, which is an
abstraction of the previous one, while being suitable to be model-checked. We also
outline some properties of grsecurity policies which we consider interesting to
verify and we formalize them in our framework.

1.4.1 An abstract semantics for grsecurity

The main problem with the presented semantics is that it hinges on many elements
specific to the underlying Linux system hosting grsecurity, i.e., users, groups and
files. Remarkably, all these elements are inherently dynamic, so any changes to them
must be accounted for in the semantics to get a sound tool for security analysis. As
a result, the corresponding LTS has infinite states and transitions, making security
verification difficult to perform, inaccurate, or even infeasible. We thus design a
simple abstract semantics for grsecurity, depending only on the content of the
policy, which can be reasonably assumed to be static. If the policy happens to
change during the lifetime of the hosting system, we simply consider a different LTS
and we perform again any relevant analysis.

We start from some simple observations. First, we note that users and groups
are immaterial to grsecurity, as only the role assigned to a process is relevant for
access control. Second, we observe that also the actual content of the file system
is somewhat disposable, since all granted permissions are determined by finding
out a matching subject or object. We thus define an abstract state as a 4-tuple
σa = ⟨rs, ru, rg, s⟩ describing a process spawned by the execution of some file f ⊑ s.
The role assigned to the process is again determined by the first three components
of the tuple and can be retrieved by overloading the type of the function role defined
previously.

We first abstract from impersonation of user identities. The intuition here is
that, in general, only a subset of the users has an associated user role, according to
the definition of the policy, and all other users can be identified by grsecurity to
the special identity “−”. We thus define the abstraction of a user u, denoted by JuK,
as follows:

JuK =

u if u ∈ Ru

− otherwise

We define the abstract version of the usr_trans function, denoted by Jusr_transK,

12 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

as the partial function with the same domain of usr_trans such that for, every r
and s, we have:

Jusr_transK(r, s) = {JuK | u ∈ usr_trans(r, s)}

In other words, transitions to users with no associated user role are collapsed to
transitions to the special identity “−”. We introduce analogous definitions also for
groups and group transitions.

JgK =

g if g ∈ Rg

− otherwise
Jgrp_transK(r, s) = {JgK | g ∈ grp_trans(r, s)}

We still need to address the most challenging task for the definition of the new
semantics, i.e., the approximation of the behaviour of grsecurity upon file exe-
cutions. The idea is to identify the executed file f with its matching object o: as
a consequence of this abstraction, we can only find out an approximation for the
subject to assign to the new process. This is done in terms of a set of possible
matches, elaborating on the following observations:

• since o is the matching object for f , then f must be at least as specific as o
(f ⊑ o). Thus, we can take as an upper bound for the new subject the most
specific subject which is no more specific than o, i.e., the subject min({s′ | o ⊑
s′}). For instance, the execution of the file /bin/ls, matching the object
/bin/ls, may lead to the impersonation of the subject /bin only if the more
specific subject /bin/ls does not exist;

• since we do not know how much specific is f , every subject s′ no more generic
than o (s′ ⊑ o) may be a possible match. However, we can filter out all the
subjects which would be associated to the execution of a more specific object o′
which overrides o, i.e., we consider the set {s′ | match_obj(s′, r, s) = o}, where
r and s identify the current role and subject. For instance, the execution of
a file in /bin, matching the object /bin, may lead to the impersonation of
subject /bin/ls only if there does not exist the object /bin/ls. Indeed, when
object /bin/ls exists, the execution of the file /bin/ls matches /bin/ls and
not the less specific object /bin. Note that the file /bin/ls may even be
non-executable, according to the policy specification for the object /bin/ls.

This reasoning leads to the following definition of image of an object o, given a role
r and a subject s:

img(o, r, s) = {s′ | match_obj(s′, r, s) = o}
∪ {min({s′ | o ⊑ s′})}

Again Proposition 1.3.1 and the well-formation of the policy imply that such a notion
is always well-defined.

1.4. VERIFICATION OF GRSECURITY POLICIES 13

(A-SetR)
r̂ = role(rs, ru, rg) r′s ∈ role_trans(r̂) ∪ {−}

⟨rs, ru, rg, s⟩
set_spec(r′s)−−−−−−−→a ⟨r′s, ru, rg, s⟩

(A-SetU)
r̂ = role(rs, ru, rg) ŝ = match_subj(s, r̂)

r′u ∈ Jusr_transK(r̂, ŝ) set_uid ∈ caps(r̂, ŝ)

⟨rs, ru, rg, s⟩
set_user(r′u)−−−−−−−→a ⟨rs, r′u, rg, s⟩

(A-SetG)
r̂ = role(rs, ru, rg) ŝ = match_subj(s, r̂)

r′g ∈ Jgrp_transK(r̂, ŝ) set_gid ∈ caps(r̂, ŝ)

⟨rs, ru, rg, s⟩
set_group(r′g)−−−−−−−−→a ⟨rs, ru, r′g, s⟩

(A-Exec)
r̂ = role(rs, ru, rg)

ŝ = match_subj(s, r̂) x ∈ perms(r̂, ŝ, o)
h /∈ perms(r̂, ŝ, o) r′u ∈ Jusr_transK(r̂, ŝ) ∪ {ru}
r′g ∈ Jgrp_transK(r̂, ŝ) ∪ {rg} s′ ∈ img(o, r̂, ŝ)

⟨rs, ru, rg, s⟩
exec(s′)−−−−→a ⟨rs, r′u, r′g, s′⟩

Table 1.3: Abstract semantics of grsecurity

We finally present in Table 1.3 the reduction rules for the abstract semantics.
Rule (A-SetR) is identical to rule (SetR), while rule (A-SetU) is the counter-

part of (SetU), abstracting from the users of the system. When r′u = −, the rule
matches a transition to a user with no associated user role. Clearly, rule (A-SetG)
behaves in the same way for group roles. Finally, rule (A-Exec) accounts for the
execution of processes. Again, the choice of the new user and group role assumes a
worst case scenario, in that every user and group transition which is allowed by the
policy is taken into account by the rule. The new subject is drawn from the image
of an executable object, according to the described approximation.

We conclude this subsection with two observations on the abstract semantics.
First we note that, for any finite policy, the resulting LTS has a finite number of
states and any state has a finite number of outgoing transitions, since both states
and labels are built over finite sets. The LTS can then be effectively explored using
standard techniques. We also underline our design choice to include states whose
subject is not defined in the current role. Indeed, in our semantics we enforce an

14 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

explicit match of the current subject against the subjects defined for the role. This
choice leads to an increment of the size of the LTS, since we introduce a number
of somewhat equivalent states; however, such a decision allows for a much more
accurate security analysis, as we discuss below.

1.4.2 Correlating the two semantics

We now prove that the abstract semantics in Table 1.3 is a sound approximation of
the concrete semantics in Table 1.2, in that every transition in the concrete semantics
has a corresponding transition in the abstract semantics.

Formally, we abstract a file f in terms of the most specific subject which is
no more specific than f itself, i.e., we let JfK = min({s | f ⊑ s}). We can now
define the abstraction of a concrete state σ = ⟨rs, u, g, f⟩ as the abstract state
JσK = ⟨rs, JuK, JgK, JfK⟩.

Proposition 1.4.1 (Identity Preservation). The following equalities hold:

(i) role(rs, u, g) = role(rs, JuK, JgK);

(ii) match_subj(f, r) = match_subj(JfK, r).

Proof. For (i) we observe that u = JuK if u ∈ Ru and g = JgK if g ∈ Rg. When,
instead, u ̸∈ Ru and g ̸∈ Rg we have role(rs, u, g) = role(rs,−, g) = role(rs, JuK, g)
and role(rs, u, g) = role(rs, u,−) = role(rs, u, JgK), giving the thesis. Item (ii) holds
since {s | f ⊑ s} = {s | JfK ⊑ s}, by definition of JfK.

Lemma 1.4.2 (Abstract Execution). If match_obj(f, r, s) = o, then JfK ∈ img(o, r, s).

Proof. We first observe few, auxiliary properties. Let p ⊑ p′, then one has:

(a) JpK ⊑ p′ or p′ ⊑ JpK;

(b) JpK ⊑ Jp′K;

(c) match_obj(p, r, s) ⊑ match_obj(p′, r, s).

(a) follows directly by Proposition 1.3.1 from the observation that p ⊑ JpK, while
(b) and (c) follow by noting that {p̂ | p′ ⊑ p̂} ⊆ {p̂ | p ⊑ p̂}, by transitivity of ⊑.

We are now ready to prove the lemma. We must show that we have either
match_obj(JfK, r, s) = o, or JfK = min{s′ | o ⊑ s′} = JoK. Since match_obj(f, r, s) =
o, we have f ⊑ o. Then, by (a) we can distinguish two cases, namely JfK ⊑ o or
o ⊑ JfK:

• let JfK ⊑ o and let us assume by contradiction that match_obj(JfK, r, s) ̸= o.
Since match_obj(f, r, s) = o, we have match_obj(o, r, s) = o, which implies
match_obj(JfK, r, s) @ o by (c) and assumption match_obj(JfK, r, s) ̸= o.
Given that f ⊑ JfK, we then have match_obj(f, r, s) ⊑ match_obj(JfK, r, s)
by (c), which implies match_obj(f, r, s) @ o by transitivity, giving a contra-
diction;

1.4. VERIFICATION OF GRSECURITY POLICIES 15

• let o ⊑ JfK and let us assume by contradiction that JoK @ JfK, i.e., JoK ⊑ JfK
and JoK ̸= JfK. Since f ⊑ o, we have JfK ⊑ JoK by (b), thus we have JfK = JoK
by antisymmetry, giving a contradiction.

Theorem 1.4.3 (Soundness). If σ α−→ σ′, then there exists a label β such that
JσK β−→a Jσ′K.

Proof. By a case analysis on the rule applied to derive σ α−→ σ′. If the rule is (SetR),
the conclusion follows by the first item of Proposition 1.4.1. If the rule is (SetU)
or (SetG), the conclusion relies on both items of Proposition 1.4.1 that imply that
r̂ and ŝ in the abstract semantics are the same as r̂ and s in the concrete semantics
and consequently, Ju′K ∈ Jusr_transK(r̂, ŝ) and JgK ∈ Jgrp_transK(r̂, ŝ). If the rule is
(Exec), we conclude again by Proposition 1.4.1, in combination with Lemma 1.4.2
which additionally implies Jf ′K ∈ img(o, r̂, ŝ).

Interestingly, our formalization enjoys also a completeness result, which states
that every transition in the abstract semantics has a corresponding transition in the
concrete semantics for some Linux system hosting grsecurity, as far as there exist
at least one user and one group that do not have a corresponding role defined in the
policy. This assumption bears no loss of generality for finite policies.

Lemma 1.4.4 (Concrete Execution). If s′ ∈ img(o, r, s) and perms(r, s, o) ↓, then
there exists f such that JfK = s′ and match_obj(f, r, s) = o.

Proof. Since s′ ∈ img(o, r, s), we can distinguish two cases. If s′ = JoK, we let f = o.
Otherwise, if s′ ⊑ o and match_obj(s′, r, s) = o, we let f = s′.

Theorem 1.4.5 (Completeness). Consider a policy such that ∃u, g : u ̸∈ Ru, g ̸∈ Rg.
If σ β−→a σ

′, then there exist a label α and two concrete states σ̂, σ̂′ such that Jσ̂K = σ,
Jσ̂′K = σ′ and σ̂ α−→ σ̂′.

Proof. By a case analysis on the rule applied to derive σ β−→a σ
′. For rules (A-SetR)

(A-SetU) and (A-SetG) the concrete states are the same as the abstract ones apart
from the special identity “−” that is mapped to the u or the g that we have assumed
not to belong to Ru and Rg. We rely on Lemma 1.4.4 for finding a f in concrete
rule (Exec) such that JfK is the same as s′ in the abstract rule (A-Exec).

1.4.3 Security analysis

Policies in grsecurity are much more concise and readable than policies for other
access control systems as, e.g., SELinux [42]. However, the plain syntactic struc-
ture of the policy does not expose a number of unintended harmful behaviors which

16 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

can arise at runtime. Just to mention the simplest possible issue, the system ad-
ministrator may want to prevent user alice from reading the files in bob’s home
directory, but any permission set for role alice may be overlooked, whenever alice
was somehow able to impersonate bob through a number of role transitions.

We now devise a simple formalism for verifying through our semantics if a policy
is “secure”. The usage of the inverted commas is intended to denote the intrinsic
difficulty in answering such a question, due to the lack of an underlying system policy,
stating the desiderata of the system administrator. General approaches to RBAC
policies verification consider a declarative notion of error in terms of satisfiability of
an arbitrary query [56]; more practical works, instead, are tailored around specific
definitions of error, like the impersonation of undesired roles [55]. Here, we adopt the
latter approach and we validate the policy with respect to some simple requirements
on information access, which we consider desirable goals for realistic policies. This
is a precise choice, since our research targets the development of a tool, gran, which
should be effectively usable by system administrators. Of course, our semantics
can easily fit different kind of analyses, possibly extending or generalizing those
presented here.

The basic ingredient for verification consists in defining which permissions are
effectively granted to a given state. Namely, we introduce two judgements σ ⊢
Read(f) and σ ⊢ Write(f) to denote that file f is readable (writeable) in state σ.
The definition of such judgements arises as expected.

(L-Read)
r̂ = role(rs, u, g)

s = match_subj(f, r̂) o = match_obj(f ′, r̂, s)
r ∈ perms(r̂, s, o) h /∈ perms(r̂, s, o)

⟨rs, u, g, f⟩ ⊢ Read(f ′)

(L-Write)
r̂ = role(rs, u, g)

s = match_subj(f, r̂) o = match_obj(f ′, r̂, s)
w ∈ perms(r̂, s, o) h /∈ perms(r̂, s, o)

⟨rs, u, g, f⟩ ⊢ Write(f ′)

We assume to extend such rules to abstract states, in terms of the judgements
σ ⊢a Read(f) and σ ⊢a Write(f).

Lemma 1.4.6 (Simple Safety). Let J be either Read(f) or Write(f):

(i) if σ ⊢ J , then JσK ⊢a J .

(ii) if σ ⊢a J , then there exists a concrete state σ′ such that Jσ′K = σ and σ′ ⊢ J .

Proof. This immediately follows by Proposition 1.4.1.

1.4. VERIFICATION OF GRSECURITY POLICIES 17

All the security analyses we propose below are based on the reachability of a
state with given permissions. Lemma 1.4.6, in combination with Theorem 1.4.3,
guarantees that the properties can be soundly validated on the abstract semantics;
in combination with Theorem 1.4.5, instead, it ensures that any security violation
found in the abstract semantics has a counterpart in some Linux system. Thus,
verification turns out to be decidable and can be effectively performed, as we discuss
in Section 1.5. For readability, we state the analyses only for the concrete semantics.

Specification of the analyses The first analysis we propose focuses on direct
accesses to files, both for reading and for writing. In particular, we want to verify
if a user u can eventually get read (write) access to a given file f . While easy to
specify, we believe that such property fits the needs of many system administrators,
since the operational behaviour of grsecurity is subtler than expected. The for-
mal description of the property we consider is reminiscent of similar specifications
through temporal logics for verification like CTL and LTL [27, 64]. Namely, we
define two judgements σ ⊢ ERead(f, σ′) and σ ⊢ EWrite(f, σ′) to denote that file f
can eventually be read (written) in state σ′, starting from state σ.

(L-ERead)

σ
α1−→ . . .

αn−→ σ′ σ′ ⊢ Read(f)

σ ⊢ ERead(f, σ′)

The rule for σ ⊢ EWrite(f, σ′) arises as expected. We just write σ ⊢ ERead(f)
and σ ⊢ EWrite(f) when σ′ is unimportant.

Given a user u, we denote with S(u) the set of the initial states of u. Any
initial state for u has the form ⟨−, u, g, f⟩, where g is the primary group assigned
to u by the underlying Linux system and f is a possible entry point for u. For
instance, /bin/bash may be the standard entry point for users interfacing to the
system through a “bash” shell. Here, we just assume to be given a set of initial
entry points for any user and we defer the discussion on the definition of such sets
to Section 1.5. Note also that for initial states we are assuming that the user is not
acting under any special role, since impersonation of such roles may happen only
through authentication to the gradm utility, after a standard login operation to the
Linux system.

Definition 1.4.1 (Eventual Read Access). A user u can eventually read file f if
and only if there exists σ ∈ S(u) such that σ ⊢ ERead(f).

Eventual write access is defined accordingly.

We now build on our first analysis to specify a stronger property, inspired by the
literature on information flow control [66]. We note, however, that in our setting
we do not have any explicit notion of security label, so we focus on flows among
different roles. Namely, if a user u1 can read the content of file f and then write

18 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

on an object o readable by u2, then there exists a possible flow of information from
u1 to u2 through o. This is an adaptation to our framework of the well-known
“star-property” [9].

Definition 1.4.2 (Reading Flow). There exists a reading flow on file f from user
u1 to user u2 if and only if:

(i) there exists σ ∈ S(u1) such that σ ⊢ ERead(f, σ′) and σ′ ⊢ EWrite(o) for some
o;

(ii) there exists σ′′ ∈ S(u2) such that σ′′ ⊢ ERead(o).

Writing flows can be dually defined to address integrity issues. Again, this is
just a reformulation into our setting of a standard property [14].

Definition 1.4.3 (Writing Flow). There exists a writing flow on file f from user
u1 to user u2 if and only if:

(i) there exists σ ∈ S(u1) such that σ ⊢ EWrite(o) for some o;

(ii) there exists σ′ ∈ S(u2) such that σ′ ⊢ ERead(o, σ′′) and σ′′ ⊢ EWrite(f).

Note that both previous definitions ignore flows generated by multiple interacting
users through a set of intermediate objects. While there is no technical difficulty
in generalizing the definitions to such cases, we note that the current formulation
already describes very strong properties.

The last analysis we consider accounts for a dangerous combination of permis-
sions over the same object. Namely, if a user can acquire both permissions ’w’ and
’x’ on o, then o can be exploited for malicious code injection. grsecurity identi-
fies this as an important problem, so it prevents the administrator from granting
both said permissions for the same object; however, such a situation can arise at
runtime, so we consider interesting to monitor it. We omit the formal specification
of the analysis, much along the same lines of the previous proposals. We refer to
Section 1.6 for details on our experiments.

1.5 Gran: a tool for policy verification

We present gran, a security analyser for grsecurity policies. The tool is written
in Python and comprises around 1000 lines of code. The source code for a beta
release of gran can be downloaded at http://github.com/secgroup/gran. The
implementation is mostly due to Riccardo Focardi and Marco Squarcina.

Given a grsecurity policy, gran performs a pre-processing, which involves the
expansion of the include and replace directives. These are just syntactic sugar,
used to import fragment of other policies and to define macros, respectively. The tool

1.5. GRAN: A TOOL FOR POLICY VERIFICATION 19

then generates a model of the policy based on our formalization, i.e., it constructs
a tuple (R, S,O, perms, caps, role_trans, usr_trans, grp_trans).

Roles, subjects and objects are retrieved simply by parsing the policy specifica-
tion. The generation of perms involves an unfolding of the pre-processed policy, to
cope with the inheritance mechanism of grsecurity. We recall that, if a subject
s does not specify any permission for object o, but a less specific subject defines
an entry for it, then s inherits the same permissions for o. The only exception to
this rule is when the subject specifies the “override” mode ’o’, which prevents this
behaviour. Thus, the permissions stored in perms correspond to a properly unfolded
version of those specified in the original policy.

Every capability is allowed by default, so for every role r and subject s we
initially let caps(r, s) = C, then we remove any forbidden capability. Addition and
revocation of capabilities is performed through the rules +CAP_NAME and -CAP_NAME,
respectively. The overall result is order-sensitive, i.e., specifying first +CAP_SETUID
and then -CAP_SETUID forbids the capability, while swapping the rules allows it. We
also account for inheritance of capabilities among subjects defined in the same role.

Transitions to special roles are forbidden by default, so for every role r we ini-
tially let role_trans(r) = ∅ and then we introduce in the set only the transitions
explicitly allowed by the attribute role_transitions. Conversely, transitions to
user roles are allowed by default, so we let usr_trans(r, s) = Ru ∪ {−} for any
role r and subject s not providing any further specification. We recall that we ab-
stract users with no associated user role by the distinguished identity “−”. The
attribute user_transition_allow can be used to restrict allowed user transitions
to the ones specified. Conversely, the attribute user_transition_deny can be used
to permit all users transitions except those listed. The two attributes cannot co-
exist. If subject s in role r specifies a set U of allowed user transitions, we let
usr_trans(r, s) = {JuK | u ∈ U}. Conversely, if U is a set of denied user transitions,
we let usr_trans(r, s) = (Ru \U)∪{−}. We apply a similar processing to construct
the function grp_trans.

The tool disregards features that are not modeled in this chapter, such as re-
source restrictions and socket policies. Domains, i.e., sets of user or group roles
sharing a common set of permissions, are handled through unfolding as a set of
user or group roles. Nested subjects are not supported, since the learning system
of grsecurity does not account for them. In fact, grsecurity features the pos-
sibility to automatically generate a policy by inferring the right permissions from
the standard usage of the system, to avoid burdening the user with the necessity
of specifying all the details about access control. Since most users perform a full
system learning and then tweak the generated policy around their own needs, we
think nested subjects can be safely disregarded by our analysis.

After the parsing of the policy, gran generates all the possible states of the
model and computes the set of the transitions. The tool implements all the analyses
described in Section 1.4.3: the initial states and the sensible objects to consider for
verification can be specified through command-line parameters. As a default choice,

20 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

gran generates an initial state for each non-special role in the policy, assuming “/”
as the subject entry point. If no target is specified for the analysis, gran infers a set
of sensible resources by the specification provided in the configuration files of the
learning system.

1.6 Case studies

We illustrate the outcome of practical experiments with gran and we give general
considerations about possible vulnerabilities found by the tool.

1.6.1 Verification of existing policies

We asked the grsecurity community for policies to be verified using gran. Unfortu-
nately, most system administrators are unwilling to provide their policies, since they
can reveal a number of potentially harmful information about the system. However,
we managed to gather a small set of real policies and we analyzed them with our
tool. Due to privacy reasons, we cannot reveal any detail of such policies, so we
present a properly sanitized outcome of the verification process. Our preliminary
results were favorably welcome by the lead developer of grsecurity, who proposed
us to integrate our tool in the gradm utility for policy management [73]. We consider
this an important opportunity to continue our investigation on a larger scale, since
users are for sure more comfortable to provide us the results of the validation rather
than to disclose their policy.

We performed the verification of five different policies: the first and the second
one from small web servers, the third one from a server running at our department,
the fourth one generated by the learning system of grsecurity, and the fifth one
from a large web server. In all cases, gran performed very effectively, providing the
results of the analysis in less that one minute on a standard commercial machine.
The output of the analysis was manually reviewed, looking for possible vulnerabili-
ties: the process took from 10 to 30 minutes for each policy.

We start by discussing direct accesses to sensitive information. In some cases,
we noticed that critical files like /etc/shadow were readable by untrusted users.
Even though this is not a vulnerability by itself, since the underlying DAC enforced
by Linux does prevent this behavior, we believe that this is a poor specification
at the very least. Indeed, system critical files on a hardened server are better be
protected also by a MAC policy. Interestingly, a similar warning sometimes applies
also for resources which are publicly readable, according to the default settings of
Linux DAC, but are considered highly sensitive by the standard configuration files
of the learning system of grsecurity. Examples of such resources include files as
/proc/slabinfo and /proc/kallsyms, whose content may be potentially exploited
by an attacker. We also noticed a dangerous specification in one of the analyzed
policies: subject /etc/cron.monthly was provided almighty access to the system.

1.6. CASE STUDIES 21

This can have a tremendous impact on security, since cronjobs are usually executed
with root privileges, thus mostly bypassing standard DAC. We argue that such a
dangerous specification was provided for convenience, since scheduled jobs may need
many different access rights and a careful assignment of permissions should feature
very high granularity. Finally, we noticed that at least one of the users was not fully
aware of the workings of the inheritance mechanism and, by manually tweaking the
policy after the learning process, had created some unwanted cascade propagation
of permissions.

We also performed some tests based on the other kinds of analyses described in
Section 1.4.3. In particular, we noticed that unwanted writing accesses are much
less frequent than undesired reading accesses: this is comforting and it was somehow
expected, since the learning system of grsecurity tends to grant really few write
permissions. The analysis also highlighted that usually only “physical” users, i.e.,
users with shell access to the system, have the opportunity to get both write and ex-
ecution permissions over the same object, thus compromised services are unlikely to
execute arbitrary code. Users, instead, probably need such permissions to effectively
work on the system.

We think that the overall security of the analyzed grsecurity policies was fairly
satisfying. We argue that much of the robustness, especially against undesired write
accesses, comes from the sophisticated learning system of grsecurity, which tries
to grant minimal privileges to each user. Indeed, the analyzed auto-generated policy
turned out to be quite resilient to vulnerabilities; unfortunately, most administrators
need to manually tweak the policy to get an usable system for their users and the
overall impact of local changes may be easily overlooked. We think that our tool
helps in getting the big picture on the security of the system.

1.6.2 Exploits through “setuid” binaries

The analysis presented in the previous section was performed using the “-b” option
of gran, which discharges potential attacks due to the “setuid” flaw pointed out
in Section 1.3. We decided to make this choice, since a fix is already going to
be merged in grsecurity, and in our worst-case scenario almost every object of
the policy turns out to be potentially vulnerable. Precisely, the amended abstract
semantics assumes that no role transition can be performed upon execution. Here,
we discuss the impact of the flaw we found out, by describing a realistic scenario
where it can be harmfully exploited by an attacker.

One of the goal of grsecurity is to try to drop many of the privileges normally
granted to root, thus limiting the impact of many known vulnerabilities; however,
during the learning process, some background operations may be overlooked, lead-
ing to undesired assignment of permissions. For instance, let us assume that an
administrator enables full system learning for grsecurity to generate his own poli-
cy. Later, during the learning phase, a scheduled cronjob process performs an access
to a sensitive resource: in this case the learning system would provide root with

22 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

liberal access rights on the resource, since it would consider it as a normal system
behaviour. If the administrator does not take care in manually strengthening the
policy after the learning process, “setuid” binaries can lead to unintended imperson-
ation of a powerful root role, bypassing the capability system. Indeed, although the
learning process tries to forbid as many capabilities as possible to user roles, such
a practice does not offer the expected level of security, due to the subtle interplay
between grsecurity and Linux.

1.6.3 Information leakage analysis

We conclude our experiments by performing an information leakage analysis on a
policy we generated for testing. We agree on the common statement that compart-
mentalization between users is a too strict property for many realistic systems; still,
it can be interesting in some highly sensitive settings [9, 14]. Our sample policy is
shipped with the gran package and a subset of it is depicted in Table 1.4.

When we process the policy with gran, we find out that user alice is able
to share some confidential information in her home directory with her accomplice
bob through a leakage on /tmp. The attack is mounted on top of cron, which
our experiments seem to identify as a subtle subject. The output of gran looks as
follows:

[!!] Indirect flow found for target
/home/alice on object /tmp
Traces for writing:
[1] root:U:/usr/sbin/cron

-set_UID(alice)->
alice:U:/usr/sbin/cron
-exec(/usr/bin)->
alice:U:/usr/bin/python2.7

Traces for reading:
[1] bob:U:/

-exec(/bin)->
bob:U:/bin/bash

We assume that alice can schedule her tasks through cron. The daemon ini-
tially runs as root, changes its identity to alice and selects for execution a Python
script in /home/alice/bin. The subject /usr/bin/python2.7 defined for alice
can read /home/alice/bin and write on /tmp. bob cannot directly read /tmp, but
he can execute /bin/bash and get read access on /tmp. It is worth noticing that
alice cannot directly execute Python to get write access on /tmp, since her default
subject “/” does not allow execution of files under /usr/bin.

Our tool is then able to identify a subtle and unintended flow, which is un-
likely to be noticed by just looking at the policy. We think that gran can help in
strengthening the system against leakage of some particularly sensitive targets.

1.6. CASE STUDIES 23

role root uG
role_transitions admin
...
subject /usr/sbin/cron o {
user_transition_allow alice
group_transition_allow users

/ h
/usr h
/usr/sbin/cron rx

}

role alice u
...
subject / {

/usr/bin
}
subject /usr/sbin/cron {

/usr/bin rx
}
subject /usr/bin/python2.7 o {

/ h
/tmp rw
/home r
/home/alice/bin r
-CAP_ALL

}

role bob u
subject / o {

/ h
/bin x
-CAP_ALL

}
subject /bin/bash {

/tmp rw
/home/bob rw

}

Table 1.4: A snippet of a flawed grsecurity policy

24 CHAPTER 1. FORMAL VERIFICATION OF GRSECURITY RBAC POLICIES

1.7 Related work
To the best of our knowledge, the present work is the first research work focusing
on the verification of grsecurity RBAC policies. However, there exists a huge
literature on the analysis of (A)RBAC policies in general, mainly targeted to the
isolation of restricted classes of policies whose verification is tractable.

Sasturkar et al. [68] show that role reachability is PSPACE-complete for ARBAC
and identify restrictions on the policy language to partially tame this complexity;
similar results are presented by Jha et al. in later work [56]. Li and Tripunitara [57]
perform a security analysis on restricted ARBAC fragments and identify a specific
class of queries which can be answered efficiently. Stoller et al. [75] isolate subsets of
policies of practical interest and develop algorithms to analyze them; their techniques
are implemented in the RBAC-PAT tool [47], which supports also information flow
analysis much in the spirit of the one provided by gran. Jayaraman et al. [55] propose
Mohawk, a model-checker implementing an abstraction-refinement technique aimed
to error finding in complex ARBAC policies.

Contrary to all these works, our framework is not targeted to the analysis of
generic ARBAC policies, but of real, full-fledged grsecurity RBAC policies, which
turn out to be amenable for efficient static verification. A formal comparison with
previous work, however, might be useful to understand how possible extensions of
grsecurity would impact on the complexity of the analysis. We leave this as future
work.

Chapter 2

Enforcing Affine Authorization
Policies in RCF

2.1 Introduction

Verifying the security of modern distributed applications is an important and com-
plex challenge, which has attracted the interest of a growing research community
audience over the last decade. Recent research has shown that it is possible to lever-
age general-purpose theorem proving techniques to develop powerful type systems
for the verification of a wide range of security properties on application code, thus
narrowing the gap between the formal model designed for the analysis and the actual
implementation of the protocols [10, 8, 78]. The integration between type systems
and theorem proving is achieved by resorting to a form of dependent types, known
as refinement types. A refinement type {x : T | F (x)} qualifies the structural infor-
mation of the type T with a property specified by the logical formula F : a value M
of this type is a value of type T such that F (M) holds.

Authorization systems based on refinement types use the refinement formulas to
express (and gain static control of) the credentials associated with the data and the
cryptographic keys involved in the authorization checks. Clearly, the expressiveness
of the resulting analysis hinges on the choice of the underlying logic, and indeed,
several logics have been proposed for the specification and verification of security
properties [24]. Other approaches, instead, have set logic parametricity as a design
goal, to gain modularity and scalability of the resulting systems. Though logic
parametricity is in principle a sound and wise design choice, current attempts in this
direction draw primarily (if not exclusively) on classical (or intuitionistic) logical
frameworks. That, in turn, is a choice that makes the resulting systems largely
ineffective on large classes of resource-aware authorization policies, such as those
based on consumable credentials, or predicating over access counts and/or usage
bounds. The natural choice for expressing and reasoning about such classes of
policies are instead substructural logics, such as linear and affine logic [46, 82].

26 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

On the other hand, integrating substructural logics with existing refinement type
systems for distributed authorization is challenging, as one must build safeguards
against the ability of an attacker to duplicate the data exchanged over the network,
and correspondingly duplicate the associated credentials, thus undermining their
bounded nature [19].

Contributions In this chapter, we present an affine refinement type system for
RCF [10], a concurrent λ-calculus which can be directly mapped to a large subset of
a real functional programming language like F#. The type system guarantees that
well-typed programs comply with any given authorization policy expressed in affine
logic, even in the presence of an active opponent.

This type system draws on the novel concept of exponential serialization, a gen-
eral technique to protect affine formulas from the effect of duplication. This tech-
nique makes it possible to factor the authorization-relevant invariants of the analysis
out of the type system, and to characterize them directly as proof obligations for the
underlying affine logical system. This leads to a rather general, and modular design
of our proposal, and sheds new light on the logical foundations of standard crypto-
graphic patterns underpinning distributed authorization frameworks. Furthermore,
the concept of serialization enhances the expressiveness of the type system, capturing
programming patterns out of the scope of many substructural type systems.

The clean separation between typing and logical entailment has the additional
advantage of enabling the formulation of an algorithmic version of our system, in
which the non-deterministic proof search distinctive of substructural type systems
can be dispensed with. Intuitively, we can shift all the burden related to substruc-
tural resource management into a single proof obligation to be discharged to an
external theorem prover. This proof obligation can be efficiently generated from a
program in a syntax-directed way: this is the key to achieve a practical implemen-
tation of our analysis technique.

We show the effectiveness of our framework on two case studies, namely the
EPMO e-commerce protocol [52] and the Kerberos authentication protocol [74].

Structure of the chapter Section 2.2 overviews the challenges and the most
important aspects of our theory on a simple example. Section 2.3 reviews the most
important aspects of affine logic. Section 2.4 presents the meta-theory of exponential
serialization. Section 2.5 reviews RCF. Section 2.6 outlines the type system and
our treatment of formal cryptography. Sections 2.7-2.8 present the case studies.
Section 2.9 discusses related work. All the proofs are postponed to Chapter 3.

2.2 Overview of the framework
We give an intuitive overview of our approach, based on a simple example of a
distributed protocol involving a streaming service S and a client C that subscribes

2.2. OVERVIEW OF THE FRAMEWORK 27

to the service and pays for watching a movie, chosen from a database of available
contents.

2.2.1 Refinement types for verification

Verifying the protocol with a refinement type system requires to first decorate the
protocol with security annotations, structured as assumptions and assertions. The
former introduce logical formulas which are assumed to hold at a given point, and
express the credentials available at the client side; the latter specify logical formulas
which are expected to be entailed by the previously introduced assumptions, and
are employed as guards for resource delivery at the server end [39, 40].

For our example, we start by assuming the authorization policy encoded by the
formula: ∀x, y.(Paid(x, $1) ⇒ Watch(x, y)). This is a first-order logic formula stating
that each client paying one dollar can watch any movie from the database. We can
then encode C and S in RCF as follows, using some standard syntactic sugar to
enhance readability:

C , λxC . λxaddS . λxm. λxk. assume Paid(xC , $1);

let xmsg = sign (xC , xm) xk in send xaddS xmsg

S , λxaddS . λxvk. let ymsg = recv xaddS in

let (zC , zm) = verify ymsg xvk in assert Watch(zC , zm)

C and S are structured as functions abstracting over the parameters defined by
the protocol specification. Initially, C makes the assumption Paid(xC , $1), invokes
the function sign to produce a signed request for movie xm under her private key
xk, and sends it to S on channel xaddS . When S receives the message, she invokes
the function verify to check the signature using the public key xvk, retrieves the
two components of the request zC and zm, and asserts the formula Watch(zC , zm).
Crucially, the assertion by S is done in terms of the variables zC and zm occurring in
her code, not of the variables xC and xm occurring in the code of C. The specification
will be judged safe if, for all runs, the assertion made at the server side is entailed
by the assumption made at the client and the underlying authorization policy.

Indeed, the specification can be proved safe, but a closer look reveals that the au-
thorization policy is too liberal to enforce the expected access constraints. In fact, we
have: ∀x, y.(Paid(x, $1) ⇒ Watch(x, y)),Paid(C, $1) ⊢ Watch(C,m) ∧Watch(C,m′),
i.e., a single payment by C allows her to arbitrarily access the movie database for
unboundedly many movies. In other words, the policy does not require protection
against replay attacks (to which the protocol is exposed, as can be easily seen).

2.2.2 Affine logic for specification

We can re-express the authorization policy for our example as the following affine
logic formula: !∀x, y.(Paid(x, $1) (Watch(x, y)), where the classical/intuitionistic

28 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

implication (⇒) has been replaced by a multiplicative implication ((), thus stating
that each payment grants access to a single movie. The bang modality (!) is used
to encode the authorization policy as a stable truth, which can be used arbitrarily
many times in the proof.

In affine logic, given the hypotheses !∀x, y.(Paid(x, $1) (Watch(x, y)) and
Paid(C, $1), one can derive Watch(C,m), but not the multiplicative conjunction
Watch(C,m)⊗Watch(C,m′), since proving the latter would require a double usage
of the affine hypothesis Paid(C, $1). As such, affine logic accounts for very natural
specifications of resource-aware authorization policies.

2.2.3 Type-checking the example?

We move on to typing, to illustrate how refinement types are employed to provide
a static account of the transfer of credentials required for authorization. In our
example, this amounts to showing how to statically transfer the payment assumption
Paid(xC , $1) from C to S. That assumption is needed by S to justify (type-check)
her assertion Watch(zC , zm) according to the underlying authorization policy; the
transfer of the assumption, in turn, is achieved by giving xk and xvk suitable types.

More precisely, assuming xC : T1 and xm : T2, the existing refinement type
systems would give xk type SigKey(x : T1 ∗ {y : T2 | Paid(x, $1)}), formalizing that
xk is a private key intended to sign a pair bearing the appropriate formula as a
refinement; xvk would be given the corresponding verification key type1. The type
of xk would thus require C to assume the formula Paid(xC , $1) upon signing, while
the type of xvk would allow S to retrieve the formula Paid(zC , $1) upon verification,
which is enough to entail Watch(zC , zm) and make the protocol type-check.

With affine formulas, however, such solution deserves special care [19], since, if
Paid(zC , $1) is extracted with no additional constraint by the type of xvk, a replay
attack mounted by an opponent could fool S into reusing the formula multiple times.

2.2.4 Exponential serialization to the rescue

There are various possibilities to protect the previous protocol against replay attacks.
Here, we decide to run the protocol on top of a nonce-handshake, leading to the

1In RCF we do not have any primitive notion of cryptography and, therefore, we do not have
types for cryptography in our type system. We still use this notation to simplify the presentation
and we discuss the encoding of these types in Section 2.6.8.

2.2. OVERVIEW OF THE FRAMEWORK 29

following updated RCF encoding:

C , λxC . λxaddC . λxS. λxaddS . λxm. λxk.

let yn = recv xaddC in assume Paid(xC , $1);

let xmsg = sign (xC , xm, yn) xk in send xaddS xmsg

S , λxS. λxaddS . λxC . λxaddC . λxvk. let xn = mkNonce() in send xaddC xn;

let ymsg = recv xaddS in let (zC , zm, zn) = verify ymsg xvk in

if xn = zn then assert Watch(zC , zm)

mkNonce , λ_ : unit. let xf = mkFresh() in assume N(xf);xf

We assume to be given access to a function mkFresh : unit → bytes, which generates
fresh bit-strings. The function mkNonce : unit → {x : bytes | N(x)} is a wrapper
around mkFresh, which additionally assumes the formula N(xf) over the return value
xf of such a function. This new assumption is reflected by the refined return type
of mkNonce. Then, the typing of the key xk may be structured as follows:

xk : SigKey(x : T1 ∗ y : T2 ∗ {z : bytes | ! (N(z)(Paid(x, $1))}),

to protect the affine formula Paid(xC , $1) with the guard N(xn): if N(xn) can be
proved only once, also Paid(xC , $1) can be extracted only once, irrespectively of the
number of signature verifications performed. Remarkably, the guarded version of
Paid(xC , $1) is prefixed by the bang modality: as such, it is a stable truth and can
be safely transmitted over the untrusted network, unaffected by replay attacks.

We can now discuss how the protocol is actually type-checked. When S creates
the fresh nonce xn by invoking mkNonce, she retrieves the affine formula N(xn) by
the return type of the function. We refer to this predicate as a control formula,
since it is intended to play the role of a guard in the subsequent exchange. When
C gets the challenge, bound to yn, she assumes the formula Paid(xC , $1) and signs
the request (xC , xm, yn). The type of the private key xk enforces C to construct
a proof of !(N(yn) (Paid(xC , $1)): this is indeed the most intriguing bit of our
construction and it will be discussed in a moment. When S verifies the signature, she
extracts the formula !(N(zn)(Paid(zC , $1)) proved by C, while the next conditional
check allows her to know that !(zn = xn) holds true when type-checking the “then”
branch. All this information is used in combination with the authorization policy
!∀x, y.(Paid(x, $1)(Watch(x, y)) to justify the assertion Watch(zC , zm).

There is one problem left: the assumption Paid(xC , $1) available at the client C
does not entail the guarded, exponential formula !(N(yn)(Paid(xC , $1)), which C
needs to prove in order to use the key xk to transmit her request. Our choice is to
introduce a serializer for Paid(xC , $1) among the assumptions of C, to automatically
provide for the creation of the guarded version of Paid(xC , $1). The serializer has
the form:

!∀x, y.(Paid(x, $1)(!(N(y)(Paid(x, $1))),

30 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

that is, a universally quantified stable truth, serving for multiple communications of
different predicates built over Paid. Serializers may be generated automatically for
any given affine formula, and introducing them as additional assumptions is sound,
in that it does not affect the set of entailed assertions, as we discuss in Section 2.4.
Furthermore, serializers capture a rather general class of mechanisms for ensuring
timely communications, like session keys or timestamps, which are all based on the
consumption of an affine resource to assess the freshness of an exchange.

2.3 Review of affine logic

In the present chapter we focus on a simple, yet expressive, fragment of intuitionistic
affine logic [82]. The syntax of formulas F is defined by the following productions:

F ::= A | F ⊗ F | F (F | ∀x.F | !F | 0
A ::= p(t1, . . . , tn) | t = t′ p of arity n in Σ
t ::= x | f(t1, . . . , tn) f of arity n in Σ

This is the multiplicative fragment of affine logic with conjunction (⊗) and impli-
cation ((), the universal quantifier (∀), the exponential modality (!) to express
persistent truths, logical falsity (0) to express negation, and syntactic equality.

We presuppose an underlying signature Σ of predicate symbols ranged over by
p, and function symbols, ranged over by f . The set of terms, ranged over by t,
is defined by variables and function symbols as expected. We mention here that
RCF terms can be encoded into the logic using the locally nameless representation
of syntax with binders [30], as shown by Bengtson et al. [10]. The logical truth is
written 1 and encoded as () = (), where () is the nullary function symbol encoding
the RCF “unit” value. The negation of F , written F⊥, is encoded as F (0, while
inequality, written t ̸= t′, is encoded as (t = t′)⊥.

The entailment relation ∆ ⊢ F from multiset of formulas to formulas is displayed
in Table 2.1. In affine logic, rule (Weak) can be liberally applied to disregard
formulas along a proof, while rule (Contr) is restricted to exponential formulas,
to allow their unbounded duplication. Intuitively, the combination of the two rules
enforces the following usage policy for formulas: “every formula must be used at
most once in a proof, with the exception of exponential formulas, which can be used
arbitrarily many times”. This is in contrast with linear logic, where each formula
must be used exactly once [46].

As informally discussed before, affine logic provides multiplicative counterparts
of standard logical connectives: for instance, to prove the multiplicative conjunction
F1⊗F2 from the hypotheses ∆ = ∆1,∆2, we have to prove F1 from ∆1 and F2 from
∆2, thus each hypothesis in ∆ is used either to prove F1 or to prove F2. Analogously,
multiplicative implication F1 (F2 acts as a sort of reaction, which consumes the
resources needed to prove the premise F1 to produce the conclusion F2.

2.4. METATHEORY OF EXPONENTIAL SERIALIZATION 31

In rule (!-Right) the notation !∆ means that every formula in ∆ is of the form
!F . The rules for equality (=-Subst) and (=-Refl) are borrowed from existing
sequent calculi presentations [79]. In rule (=-Subst), if the terms t and t′ are not
unifiable, then we consider the premise as trivially fulfilled.

(Ident)
F ⊢ F

(Weak)
∆ ⊢ F ′

∆, F ⊢ F ′

(Contr)
∆, !F, !F ⊢ F ′

∆, !F ⊢ F ′

(Cut)
∆1 ⊢ F ∆2, F ⊢ F ′

∆1,∆2 ⊢ F ′

(⊗-Left)
∆, F1, F2 ⊢ F ′

∆, F1 ⊗ F2 ⊢ F ′

(⊗-Right)
∆1 ⊢ F1 ∆2 ⊢ F2

∆1,∆2 ⊢ F1 ⊗ F2

((-Left)
∆1 ⊢ F1 ∆2, F2 ⊢ F ′

∆1, F1(F2,∆2 ⊢ F ′

((-Right)
∆, F1 ⊢ F2

∆ ⊢ F1(F2

(∀-Left)
∆, F{t/x} ⊢ F ′

∆,∀x.F ⊢ F ′

(∀-Right)
∆ ⊢ F x /∈ fv(∆)

∆ ⊢ ∀x.F

(!-Left)
∆, F ⊢ F ′

∆, !F ⊢ F ′

(!-Right)
!∆ ⊢ F
!∆ ⊢ !F

(False)
0 ⊢ F

(=-Subst)
∃σ = mgu(t, t′) ⇒ ∆σ ⊢ Fσ

∆, t = t′ ⊢ F

(=-Refl)
∆ ⊢ t = t

Table 2.1: The entailment relation ∆ ⊢ F

2.4 Metatheory of exponential serialization

In principle, the introduction of serializers among the assumed hypotheses could
alter the intended semantics of the authorization policy, due to the subtle interplay
of formulas through the entailment relation in Table 2.1. Here, we isolate suffi-
cient conditions under which exponential serialization leads to a sound protection
mechanism for affine formulas.

We presuppose that the signature Σ of predicate symbols is partitioned in two
sets ΣA and ΣC . Atomic formulas A have the form p(t1, . . . , tn) for some p ∈ ΣA;
control formulas C have the same form, though with p ∈ ΣC . We identify various
categories of formulas defined by the following productions:

B ::= A | B ⊗B | B(B | ∀x.B | !B base formulas
P ::= B | C | P ⊗ P payload formulas
G ::= C (P | !G guarded formulas

Base formulas B are formulas of an authorization policy, built from atomic formu-
las using logical connectives. We use base formulas as security annotations in the

32 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

application code. For simplicity, we dispense in this section with equalities and 0
to ensure consistency: such logical elements are used in our typed analysis, but
we stipulate that they are never directly assumed in the code. (Notice that com-
promised principals can be modelled also without negation [10].) Payload formulas
P are formulas which we want to serialize for communication over the untrusted
network. Importantly, payload formulas comprise both base formulas and control
formulas, which allows, e.g., for the transmission of fresh nonces to remote verifiers:
this pattern is present in several authentication protocols [50]. Finally, guarded for-
mulas G are used to model the serialized version of payload formulas, suitable for
transmission. Notice also that serializers are not generated by any of the previous
productions, so we let S stand for any serializer of the form !∀x̃.(P (!(C (P).
We write ∆ ⊢ F n for ∆ ⊢ F ⊗ . . . ⊗ F (n times), with the proviso that ∆ ⊢ F 0

stands for ∆ 0 F .
Intuitively, given a multiset of assumptions ∆, the extension of ∆ with the seri-

alizers S1, . . . , Sn is sound if ∆ and its extension derive the same payload formulas.
As it turns out, this is only true when ∆ satisfies additional conditions, which we
formalize next.

Definition 2.4.1 (Rank). Let rk : ΣC → N be a total, injective function. Given a
formula F , we define the rank of F with respect to rk, denoted by rk(F), as follows:

rk(p(t1, . . . , tn)) = rk(p) if p ∈ ΣC

rk(F1 ⊗ F2) = min {rk(F1), rk(F2)}
rk(F) = +∞ otherwise

Definition 2.4.2 (Stratification). A formula F is stratified with respect to a rank
function rk if and only if: (i) F = C (P implies rk(C) < rk(P); (ii) F = P (G
implies that G is stratified; (iii) F = ∀x.F ′ implies that F ′ is stratified; (iv) F = !F ′

implies that F ′ is stratified. We assume F to be stratified in all the other cases.
We say that a multiset of formulas ∆ is stratified if and only if there exists a rank
function rk such that each formula in ∆ is stratified with respect to rk.

For instance, the multiset C1(C2, C2(C3 is stratified, given an appropriate
choice of a rank function, while the multiset C1 (C2, C2 (C1 is not stratified.
Stratification is required precisely to disallow such circular dependencies among
control formulas and simplify the proof of our soundness result, Theorem 2.4.1 below.
To prove that result, we need a further definition:

Definition 2.4.3 (Guardedness). Let ∆ = P1, . . . , Pm, S1, . . . , Sn be a stratified
multiset of formulas. We say that ∆ is guarded if and only if ∆ ⊢ Ck implies k ≤ 1
for any control formula C.

The intuition underlying guardedness may be explained as follows. Consider a
multiset ∆, a payload formula P such that ∆ ⊢ P and let S = !∀x̃.(P (!(C (P))
be a serializer for P . Now, the only way that S may affect derivability is by allowing

2.5. REVIEW OF RCF 33

the duplication of the payload formula P via the exponential implication !(C (P),
since the latter can be used arbitrarily often in a proof derivation. However, this
effect is prevented if we are guaranteed that the control formula C guarding P is
derived at most once in ∆: that is precisely what the guardedness condition ensures.

Theorem 2.4.1 (Soundness of Exponential Serialization). Let ∆ = P1, . . . , Pm. If
∆′ = ∆, S1, . . . , Sn is guarded and ∆′ ⊢ P , then ∆ ⊢ P for all payload formulas P .

While guardedness is convenient to use in the proof of Theorem 2.4.1, it is clearly
difficult to check, since it relies on logical entailment. Fortunately, we can isolate a
sufficient criterion to decide whether a multiset of formulas is guarded based on a
simple syntactic check.

Proposition 2.4.2. If ∆ = P1, . . . , Pm, S1, . . . , Sn is stratified and the control for-
mulas occurring in P1, . . . , Pm are pairwise distinct, then ∆ is guarded.

2.5 Review of RCF

We assume collections of names (a, b, c,m, n) and variables (x, y, z). The syntax of
values and expressions of RCF [10] is introduced in Table 2.2 below. The notions
of free names and free variables arise as expected, according to the scope defined in
the table.

M,N ::= values
x variable
() unit
(M,N) pair
λx.E function
h M construction (h ∈ {inl, inr, fold})

D,E ::= expressions
M value
M N application
M = N syntactic equality
let x = E in E′ let (scope of x is E′)
let (x, y) =M in E pair split (scope of x, y is E)
matchM with h x then E else E′ match (scope of x is E)
(νa)E restriction (scope of a is E)
E � E′ fork
a!M message send
a? message receive
assume F assumption
assert F assertion

Table 2.2: Syntax of RCF expressions

34 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

Values include variables, unit, pairs, functions and constructions; constructors
account for the creation of standard sum types and iso-recursive types. We also
encode the boolean values true , inl() and false , inr(). Expressions of RCF include
standard λ-calculus constructs like values, applications, equality checks, lets, pair
splits, and pattern matching, as well as primitives for concurrent, message-passing
computations in the style of process algebras.

The semantics is mostly standard, so we just discuss the most peculiar constructs.
Expression (νa)E generates a globally fresh channel name a and then behaves as
E. Expression E � E ′ evaluates E and E ′ in parallel, and returns the result of E ′.
Expression a!M asynchronously outputs M on channel a and returns (). Expression
a? waits until a term N is available on channel a and returns N . These message-
passing expressions can be used to model the sending and receiving functions send
and recv used in the code of our examples. The formal semantics of RCF expressions
is defined by the reduction rules in Table 2.3.

(λx.E) N → E{N/x} (Red Fun)
let (x, y) = (M,N) in E → E{M/x}{N/y} (Red Split)
matchM with h x then E else E′ → (Red Match)

E{N/x} if M = h N for some N
E′ otherwise

M = N →

true if M = N

false otherwise
(Red Eq)

a!M � a? →M (Red Comm)
let x =M in E → E{M/x} (Red Let Val)
let x = E in E′′ → let x = E′ in E′′ if E → E′ (Red Let)
(νa)E → (νa)E′ if E → E′ (Red Res)
E � E′′ → E′ � E′′ if E → E′ (Red Fork 1)
E′′ � E → E′′ � E′ if E → E′ (Red Fork 2)
E → E′ if E V D,D → D′, D′ V E′ (Red Heat)

Table 2.3: Reduction semantics for RCF

The reduction semantics depends upon the heating relation E V E ′, an asym-
metric version of the standard structural congruence, to perform some syntactic
rearrangements of expressions and allow reductions. We write E ≡ E ′ to denote
that both E V E ′ and E ′ V E. The definition of the heating relation is presented
in Table 2.4, the only difference with respect to the original RCF presentation is the
introduction of the rule (Heat Assert ()), which simplifies our definition of safety
discussed below.

We are now ready to adapt to our resource-aware setting the formal notion of
safety defined for RCF expressions. Intuitively, an expression E is safe when, for
all runs, the multiplicative conjunction of the top-level assertions is entailed by the
top-level assumptions. Giving a precise definition, however, is somewhat tricky,
since we need to introduce structures. Let e denote an elementary expression, e.g.,

2.5. REVIEW OF RCF 35

E V E (Heat Refl)
E V E′′ if E V E′ and E′ V E′′ (Heat Trans)
let x = E in E′′ V let x = E′ in E′′ if E V E′ (Heat Let)
(νa)E V (νa)E′ if E V E′ (Heat Res)
E � E′′ V E′ � E′′ if E V E′ (Heat Fork 1)
E′′ � E V E′′ � E′ if E V E′ (Heat Fork 2)
() � E ≡ E (Heat Fork ())
a!M V a!M � () (Heat Msg ())
assume F V assume F � () (Heat Assume ())
assert F V assert F � () (Heat Assert ())
E′ � (νa)E V (νa)(E′ � E) if a /∈ fn(E′) (Heat Res Fork 1)
(νa)E � E′ V (νa)(E � E′) if a /∈ fn(E′) (Heat Res Fork 2)
let x = (νa)E in E′ V (νa)(let x = E in E′) if a /∈ fn(E′) (Heat Res Let)
(E � E′) � E′′ ≡ E � (E′ � E′′) (Heat Fork Assoc)
(E � E′) � E′′ V (E′ � E) � E′′ (Heat Fork Comm)
let x = (E � E′) in E′′ ≡ E � (let x = E′ in E′′) (Heat Fork Let)

Table 2.4: Heating relation for RCF

any expression that is not an assumption, assertion, restriction, let, fork, or send.
Structures formalize the idea that a computation state has four components:

1. a series of elementary expressions eℓ being evaluated in parallel contexts;

2. a series of messages Mk sent on channels but not yet received;

3. a multiset of assumed formulas Fi;

4. a multiset of asserted formulas F ′
j .

The definition of a structure S is given in Table 2.5 below. Structures are amenable
for their simple notion of static safety, in that their syntactic form already exhibits
all the necessary ingredients to state it.

Πi∈[1,n]Ei , () � E1 � · · · � En

L[e] ::= e | let x = L[e] in E
S ::= (νa)((Πi∈[1,m]assume Fi) � (Πj∈[1,n]assert F

′
j) � (Πk∈[1,o]ck!Mk) � (Πℓ∈[1,p]Lℓ[eℓ]))

The structure S is statically safe if and only if F1, . . . , Fm ⊢ F ′
1 ⊗ . . .⊗ F ′

n.

Table 2.5: Structures and static safety

We can prove that every expression E can be transformed into a structure by
heating, hence we can easily define a suitable notion of safety for any expression.

Lemma 2.5.1 (Structure). For every expression E, there exists a structure S such
that E V S.

36 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

Proof. By induction on the structure of E.

Definition 2.5.1 (Safety). A closed expression E is safe if and only if, for all E ′

and S, if E →∗ E ′ and E ′ V S, then S is statically safe.

The real property of interest, however, is stronger than the previous one: we
desire protection despite the best efforts of an active opponent. We let an opponent
be any closed expression of RCF which does not contain any assertion. The latter is a
standard restriction, since opponents containing arbitrary assertions could vacuously
falsify the property we target; this does not involve any loss of generality, since we
want to verify application code with respect to the annotations placed therein.

Definition 2.5.2 (Robust Safety). A closed expression E is robustly safe if and
only if, for any opponent O, the application O E is safe.

In the previous definition, we use the standard syntactic sugar O E for the
expression let x = O in let y = E in x y.

2.6 The type system
Our refinement type system builds on previous work by Bengtson et al. [10], extend-
ing it to guarantee the correct usage of affine formulas and to enforce our revised
notion of (robust) safety.

2.6.1 Types, environments, and base judgements

The syntax of types is defined in Table 2.6. Again the notions of free names and
free variables arise as expected, according to the scope defined in the table.

T,U, V ::= types
unit unit type
x : T → U dependent function type (scope of x is U)
x : T ∗ U dependent pair type (scope of x is U)
T + U sum type
µα. T iso-recursive type
α type variable
{x : T | F} refinement type (scope of x is F)

Table 2.6: Syntax of types

The unit value () is given type unit. Sum types have the form T+U , iso-recursive
types are denoted by µα. T , and type variables are denoted by α. There exist various
forms of dependent types: a function of type x : T → U takes as an input a value M
of type T and returns a value of type U{M/x}; a pair (M,N) has type x : T ∗U if M
has type T and N has type U{M/x}; a value M has a refinement type {x : T | F}

2.6. THE TYPE SYSTEM 37

if M has type T and the formula F{M/x} holds true. We use type Un , unit to
model data that may come from, or be sent to the opponent, as it is customary
for security type systems. Type bool , unit + unit is inhabited by true , inl() and
false , inr().

Our type system comprises several typing judgements of the form Γ;∆ ⊢ J ,
where Γ;∆ is a typing environment collecting all the information which can be used
to derive J . In particular, Γ contains the type bindings, while ∆ comprises logical
formulas that are supposed to hold at run-time. Formally, we let Γ be an ordered
list of entries µ1, . . . , µn and ∆ be a multiset of affine logic formulas. Each entry
µi in Γ denotes either a type variable (α), a kinding annotation (α :: k), or a type
binding for channels (a ↕ T) or variables (x : T). We let ε denote the empty list and
∅ the empty multiset. The domain of Γ, written dom(Γ), is defined in Table 2.7.

dom(α) = {α}
dom(α :: k) = {α}
dom(a ↕ T) = {a}
dom(x : T) = {x}
dom(µ1, . . . , µn) = dom(µ1), . . . , dom(µn)

Table 2.7: Domain of Γ

We use the judgement Γ;∆ ⊢ � to denote that the typing environment Γ;∆
is well-formed, i.e., it satisfies some standard syntactic conditions (for instance, it
does not contain duplicate type bindings for the same variable). The only remarkable
point in the definition of Γ;∆ ⊢ � is that we forbid variables in Γ to be mapped to
a refinement type: indeed, when extending a typing environment with a new type
binding x : T , we use the function ψ to place the structural type information in
Γ and the function forms to place the associated refinements in ∆. The complete
definition of the judgement Γ;∆ ⊢ � is given in Table 2.8.

ψ(U) =

ψ(T) if U = {x : T | F}
U otherwise

forms(y : U) =

F{y/x}, forms(y : T) if U = {x : T | F}
∅ otherwise

(Env Empty)
ε; ∅ ⊢ �

(Type Env Entry)
Γ;∆ ⊢ � dom(µ) ∩ dom(Γ) = ∅

µ = x : T ⇒ T = ψ(T) ∧ fnfv(T) ⊆ dom(Γ)

Γ, µ; ∆ ⊢ �

(Form Env Entry)
Γ;∆ ⊢ �

fnfv(F) ⊆ dom(Γ)

Γ;∆, F ⊢ �

Table 2.8: Well-formed environments

38 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

We write Γ;∆ ⊢ T to note that type T is well-formed in Γ;∆. The standard
definition of the judgement comprises only rule (Type) below.

(Type)
Γ;∆ ⊢ � fnfv(T) ⊆ dom(Γ)

Γ;∆ ⊢ T

Finally, we use the judgement Γ;∆ ⊢ F to denote that the formulas in ∆ entail
the formula F . The formal definition corresponds to rule (Derive) below.

(Derive)
Γ;∆ ⊢ � fnfv(F) ⊆ dom(Γ) ∆ ⊢ F

Γ;∆ ⊢ F

We often write Γ;∆ ⊢ F1, . . . , Fn to denote that Γ;∆ ⊢ F1 ⊗ . . . ⊗ Fn, with the
proviso that Γ;∆ ⊢ ∅ stands for Γ;∆ ⊢ 1.

2.6.2 Environment rewriting

We stipulate that all the type information stored in Γ can be used arbitrarily often
in the derivation of any judgement of our type system, hence we dispense from affine
types: in Section 2.6.7 we thoroughly discuss how we can recover expressiveness by
encoding them through exponential serialization. The treatment of the formulas in
∆ is subtler, since affine resources must be used at most once during type-checking:
in particular, we need to split the environment ∆ among subderivations to avoid the
unbounded duplication of the formulas therein.

The general structure of the rules of our system then looks as follows:

Γ;∆1 ⊢ J1 . . . Γ;∆n ⊢ Jn Γ;∆ ↩→ Γ;∆1, . . . ,∆n

Γ;∆ ⊢ J

where Γ;∆ ↩→ Γ;∆′ denotes the environment rewriting of Γ;∆ to Γ;∆′. Such
relation is defined by the rule below:

(Rewrite)
∆ ⊢ ∆′ Γ;∆ ⊢ � Γ;∆′ ⊢ �

Γ;∆ ↩→ Γ;∆′

where we write ∆ ⊢ F1, . . . , Fn to denote that ∆ ⊢ F1 ⊗ . . . ⊗ Fn, again with the
proviso that ∆ ⊢ ∅ stands for ∆ ⊢ 1.

The adoption of the environment rewriting relation as an house-keeping device
for the formulas of ∆ greatly improves the expressiveness of the type system in a very
natural way. This idea of extending to the typing environment a number of context
manipulation rules from the underlying sub-structural logic was first proposed by
Mandelbaum et al. [59], even though their solution is technically different from

2.6. THE TYPE SYSTEM 39

ours. Namely, the authors of [59] allow for applications of arbitrary left rules from
the logic inside the typing environment, while our proposal is reminiscent of the
(Cut) rule typical of sequent calculi. We find this solution simpler to present and
more convenient to prove sound.

Interestingly, all the non-determinism introduced by the application of the rewrit-
ing rules and the splitting of the logical formulas among the premises of the type rules
can be effectively tamed by the algorithmic type system discussed in Section 2.6.9.

2.6.3 Kinding and subtyping

Security type systems often rely on a kinding relation to discriminate whether or not
messages of a specific type may be known to the attacker or received from it. The
kinding judgement Γ;∆ ⊢ T :: k denotes that type T is of kind k. We distinguish
between two kinds: kind k = pub denotes that the inhabitants of a given type
are public and may be sent to the attacker, while kind k = tnt denotes that the
inhabitants of a given type are tainted and may come from the attacker. In the
following we let pub , tnt and tnt , pub.

The complete kinding relation is given in Table 2.9. Most of the rules resemble
those presented in other security type systems [10, 8] and only differ in the treatment
of affine formulas, which is similar to the one we employ for typing values and
expressions. We postpone the discussion on this point until the next section, where
it will be easier to provide an intuitive understanding.

(Kind Var)
Γ;∆ ⊢ � (α :: k) ∈ Γ

Γ;∆ ⊢ α :: k

(Kind Unit)
Γ;∆ ⊢ �

Γ;∆ ⊢ unit :: k

(Kind Fun)
Γ; !∆1 ⊢ T :: k

Γ, x : ψ(T); !∆2 ⊢ U :: k
Γ;∆ ↩→ Γ; !∆1, !∆2

Γ;∆ ⊢ x : T → U :: k

(Kind Pair)
Γ; !∆1 ⊢ T :: k

Γ, x : ψ(T); !∆2 ⊢ U :: k
Γ;∆ ↩→ Γ; !∆1, !∆2

Γ;∆ ⊢ x : T ∗ U :: k

(Kind Sum)
Γ; !∆1 ⊢ T :: k
Γ; !∆2 ⊢ U :: k

Γ;∆ ↩→ Γ; !∆1, !∆2

Γ;∆ ⊢ T + U :: k

(Kind Rec)
Γ, α :: k; !∆′ ⊢ T :: k

Γ;∆ ↩→ Γ; !∆′

Γ;∆ ⊢ µα. T :: k

(Kind Refine Public)
Γ;∆ ⊢ {x : T | F} Γ;∆ ⊢ T :: pub

Γ;∆ ⊢ {x : T | F} :: pub

(Kind Refine Tainted)
Γ;∆1 ⊢ ψ(T) :: tnt

Γ, y : ψ(T);∆2 ⊢ forms(y : T)
Γ;∆ ↩→ Γ;∆1,∆2 T refined

Γ;∆ ⊢ T :: tnt

Table 2.9: Kinding

40 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

Here, we just point out some simple observations, which should hopefully guide
the reader in understanding a few important aspects. For instance, a pair type is
public if both its components are public and can be disclosed to the opponent: in
fact, knowing a pair allows to learn both its components by splitting it. Conversely,
a pair is tainted if both its components are tainted, given that, if even a single
component is not tainted, then the pair cannot come from the opponent. A function
type is public only if its return type is public (otherwise λx.Msecret could be public)
and its argument type is tainted (otherwise λx. let y = enc(Msecret, x) in net!y could
be public). A refinement type is public if the structural type it refines is public, while
it is tainted if the structural type it refines is tainted and the associated refinements
can be proved by the current logical environment.

The subtyping judgment Γ;∆ ⊢ T <: U expresses the fact that T is a subtype of
U and, thus, values of type T can be used in place of values of type U . The complete
presentation of the subtyping relation can be found in Table 2.10.

(Sub Refl)
Γ;∆ ⊢ T

Γ;∆ ⊢ T <: T

(Sub Pub Tnt)
Γ;∆1 ⊢ T :: pub Γ;∆2 ⊢ U :: tnt Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢ T <: U

(Sub Fun)
Γ; !∆1 ⊢ T ′ <: T

Γ, x : ψ(T ′); !∆2 ⊢ U <: U ′

Γ;∆ ↩→ Γ; !∆1, !∆2

Γ;∆ ⊢ x : T → U <: x : T ′ → U ′

(Sub Pair)
Γ; !∆1 ⊢ T <: T ′

Γ, x : ψ(T); !∆2 ⊢ U <: U ′

Γ;∆ ↩→ Γ; !∆1, !∆2

Γ;∆ ⊢ x : T ∗ U <: x : T ′ ∗ U ′

(Sub Sum)
Γ; !∆1 ⊢ T <: T ′ Γ; !∆2 ⊢ U <: U ′

Γ;∆ ↩→ Γ; !∆1, !∆2

Γ;∆ ⊢ T + U <: T ′ + U ′

(Sub Pos Rec)
Γ, α; !∆′ ⊢ T <: T ′

α occurs only positively in T and T ′

Γ;∆ ↩→ Γ; !∆′

Γ;∆ ⊢ µα. T <: µα. T ′

(Sub Refine)
Γ;∆1 ⊢ ψ(T) <: ψ(U) Γ, y : ψ(T);∆2, forms(y : T) ⊢ forms(y : U)

Γ;∆ ↩→ Γ;∆1,∆2 T and/or U refined
Γ;∆ ⊢ T <: U

Table 2.10: Subtyping

The subtyping judgment makes public types subtype of tainted types through
rule (Sub Pub Tnt), and further describes standard subtyping relations for types
sharing the same structure: for instance, pair types are covariant, while function
types are contravariant in their argument and covariant in their return types. Intu-
itively, this means that a function can safely replace another function if it is “more

2.6. THE TYPE SYSTEM 41

liberal” in the types it accepts and “more conservative” in the types it returns. The
rule for isorecursive types (Sub Pos Rec) is borrowed from [8] and it differs from
the standard Amber rule proposed in the original presentation of RCF: the rule we
consider here is easier to prove sound and the loss of expressiveness is very mild.
We refer the interested reader to [8] for further discussion on this technical point.

The most interesting subtyping rule in Table 2.10 is (Sub Refine), which sub-
sumes the rules (Sub Refine Left) and (Sub Refine Right) from the original
presentation of RCF, which are shown below.

(Sub Refine Left)
Γ ⊢ {x : T | F} Γ ⊢ T <: U

Γ ⊢ {x : T | F} <: U

(Sub Refine Right)
Γ ⊢ T <: U Γ, x : T ⊢ F

Γ ⊢ T <: {x : U | F}

The first rule allows to discard unneeded logical formulas and conforms to the core
idea of “refinement” typing: values of type {x : T | F} can be safely replaced for val-
ues of type T , since they are just values of type T with the additional information F .
The second rule, instead, generalizes the substitution principle underlying subtyping
to the refinement formulas: for instance, we have {x : T | x = 5} <: {x : T | x > 0},
since the condition x = 5 is stronger than the condition x > 0.

A natural adaptation of (Sub Refine Right) to our affine setting would be:

(Sub Refine Wrong)
Γ;∆1 ⊢ T <: U Γ, x : ψ(T);∆2, forms(x : T) ⊢ F Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢ T <: {x : U | F}

Unfortunately, this rule is unsound, since the affine formulas of T could actually be
used twice and we could prove, for instance:

∅; ε ⊢ {x : Un | F} <: {z : {x : Un | F} | F}.

This cannot happen with our new rule, since F 0 F ⊗ F in affine logic. While
it is in principle possible to find out other sound counterparts of (Sub Refine
Right) in our affine setting, our previous work [19] highlighted that the technical
treatment of these rules is rather complicated, and we find rule (Sub Refine) much
more convenient in our proofs. The previous discussion should have also clarified
the reasons behind a slightly more restrictive treatment for subtyping pairs and
functions with respect to the original RCF paper.

2.6.4 Typing values

The typing judgement Γ;∆ ⊢ M : T denotes that value M is given type T under
environment Γ;∆. The typing rules for values are given in Table 2.11.

Rule (Val Refine) is a natural adaptation to an affine setting of the standard
rule for refinement types: a value M has type {x : T | F} if M has type T and

42 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

(Val Var)
Γ;∆ ⊢ � (x : T) ∈ Γ

Γ;∆ ⊢ x : T

(Val Unit)
Γ;∆ ⊢ �

Γ;∆ ⊢ () : unit

(Val Fun)
Γ, x : ψ(T); !∆′, forms(x : T) ⊢ E : U

Γ;∆ ↩→ Γ; !∆′

Γ;∆ ⊢ λx.E : x : T → U

(Val Pair)
Γ; !∆1 ⊢M : T Γ; !∆2 ⊢ N : U{M/x}

Γ;∆ ↩→ Γ; !∆1, !∆2

Γ;∆ ⊢ (M,N) : x : T ∗ U

(Val Refine)
Γ;∆1 ⊢M : T Γ;∆2 ⊢ F{M/x}

Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢M : {x : T | F}

(Val Inl)
Γ; !∆′ ⊢M : T
Γ; !∆′ ⊢ U

Γ;∆ ↩→ Γ; !∆′

Γ;∆ ⊢ inlM : T + U

(Val Inr)
Γ; !∆′ ⊢M : U
Γ; !∆′ ⊢ T

Γ;∆ ↩→ Γ; !∆′

Γ;∆ ⊢ inr M : T + U

(Val Fold)
Γ; !∆′ ⊢M : T{µa. T/α}

Γ;∆ ↩→ Γ; !∆′

Γ;∆ ⊢ foldM : µα. T

Table 2.11: Typing rules for values

the formula F{M/x} holds true. Rules (Val Fun) and (Val Pair) are more in-
teresting: recall, in fact, that our type system does not incorporate affine types,
since the type information in Γ is propagated to all the premises of a typing rule.
It is then crucial for soundness that both pairs and functions are type-checked in
an exponential environment, i.e., an environment of the form !∆ = !F1, . . . , !Fn.
For instance, using an affine formula F from the typing environment to give a pair
(M,N) type x : T ∗ {y : U | F} would lead to an unbounded usage of F upon
replicated pair splitting operations on (M,N), as we discuss in Section 2.6.7. Similar
restrictions apply also to sum types and iso-recursive types.

Allowing for affine refinements, but forbidding affine types, confines the problem
of resource management to the formula environment, thus simplifying the type sy-
stem. In Section 2.6.7 we explain how the exponential serialization technique can be
leveraged to encode affine types in our framework and enhance the expressiveness
of the type system.

2.6.5 Typing expressions

The typing judgement Γ;∆ ⊢ E : T denotes that expression E is given type T under
environment Γ;∆. The typing rules for expressions are given in Table 2.12.

Rule (Exp Subsum) is a standard subsumption rule for expressions: if E can be
given type T , then it can be conservatively given any supertype of T . In rule (Exp
Split) we exploit the logic to keep track of the performed pair splitting operation
and make type-checking more precise; a similar treatment applies also to (Exp
Match) and (Exp Eq). Rule (Exp Assert) is standard and requires an asserted

2.6. THE TYPE SYSTEM 43

(Exp Subsum)
Γ;∆1 ⊢ E : T Γ;∆2 ⊢ T <: T ′

Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢ E : T ′

(Exp Appl)
Γ;∆1 ⊢M : x : T → U Γ;∆2 ⊢ N : T

Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢M N : U{N/x}

(Exp Let)
E ∅ [∆′ | D] Γ;∆1 ⊢ D : T

Γ, x : ψ(T);∆2, forms(x : T) ⊢ E′ : U x /∈ fv(U)
Γ;∆,∆′ ↩→ Γ;∆1,∆2

Γ;∆ ⊢ let x = E in E′ : U

(Exp Split)
Γ;∆1 ⊢M : x : T ∗ U

Γ, x : ψ(T), y : ψ(U);∆2, forms(x : T), forms(y : U), !((x, y) =M) ⊢ E : V
{x, y} ∩ fv(V) = ∅ Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢ let (x, y) =M in E : V

(Exp Match)
Γ;∆1 ⊢M : T

Γ, x : ψ(H);∆2, forms(x : H), !(h x =M) ⊢ E : U
Γ;∆2 ⊢ E′ : U

(h,H, T) ∈ {(inl, T1, T1 + T2), (inr, T2, T1 + T2), (fold, T
′{µα. T ′/α}, µα. T ′)}

Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢ matchM with h x then E else E′ : U

(Exp Eq)
Γ;∆1 ⊢M : T Γ;∆2 ⊢ N : U x /∈ fv(M) ∪ fv(N))

Γ;∆ ↩→ Γ;∆1,∆2

Γ;∆ ⊢M = N : {x : bool | !(x = true(M = N)}

(Exp Assume)
Γ;∆, F ⊢ assume 1 : T F ̸= 1

Γ;∆ ⊢ assume F : T

(Exp True)
Γ;∆ ⊢ �

Γ;∆ ⊢ assume 1 : unit

(Exp Assert)
Γ;∆ ⊢ F

Γ;∆ ⊢ assert F : unit

(Exp Res)
E a [∆′ | D] Γ, a ↕ T ; ∆,∆′ ⊢ D : U

a /∈ fn(U)

Γ;∆ ⊢ (νa)E : U

(Exp Send)
Γ;∆ ⊢M : T (a ↕ T) ∈ Γ

Γ;∆ ⊢ a!M : unit

(Exp Recv)
Γ;∆ ⊢ � (a ↕ T) ∈ Γ

Γ;∆ ⊢ a? : T

(Exp Fork)
E1

∅ [∆1 | D1] E2
∅ [∆2 | D2]

Γ;∆′
1 ⊢ D1 : T1 Γ;∆′

2 ⊢ D2 : T2
Γ;∆,∆1,∆2 ↩→ Γ;∆′

1,∆
′
2

Γ;∆ ⊢ E1 � E2 : T2

Table 2.12: Typing rules for expressions

44 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

(Extr Fork)
E1

a [∆1 | D1] E2
a [∆2 | D2]

E1 � E2
a [∆1,∆2 | D1 � D2]

(Extr Let)
E1

a [∆ | D1]

let x = E1 in E2
a [∆ | let x = D1 in E2]

(Extr Res)

E a,b [∆ | D]

(νa)E
b [∆ | (νa)D]

(Extr Assume)
F ̸= 1 fn(F) ∩ {a} = ∅
assume F a [F | assume 1]

(Extr Exp)
no other rule applies

E a [∅ | E]

Table 2.13: Extraction

formula F to be derivable from the formulas collected by the typing environment.
The most complex rule is (Exp Fork): intuitively, when type-checking the pa-

rallel expressions E1 � E2, assumptions in E1 can be used to type-check assertions
in E2 and vice-versa. On the other hand, we need to prevent an affine assump-
tion in E1 from being used twice to justify assertions in both E2 and E1. This
is achieved through the extraction relation, i.e., through the premises of the form
Ei [∆i | Di]: the extraction operation destructively collects all the assumptions
from the expression Ei and returns the expression Di obtained by purging Ei of its
assumptions. The typing environment is then extended with the collected assump-
tions and partitioned to type-check the purged expressions D1 and D2 respectively.
For instance, we can show that the expression assume F � assert F is well-typed,
while the expression (assume F � assert F) � assert F is not: in fact, notice that the
latter is not safe according to Definition 2.5.1.

The extraction relation is formally defined in Table 2.13. Notice that we prevent
formulas containing free names from being extracted outside of the scope of the
respective binders to avoid name clashing. The extraction relation is similarly used
to type-check any expression possibly containing “active” assumptions, i.e., lets,
restrictions, and assumptions themselves.

2.6.6 Formal results

The main soundness results of our type system are given below.

Theorem 2.6.1 (Safety). If ε; ∅ ⊢ E : T , then E is safe.

Theorem 2.6.2 (Robust Safety). If ε; ∅ ⊢ E : Un, then E is robustly safe.

Theorem 2.6.2 above and Theorem 2.4.1 (establishing the soundness of exponential
serialization) constitute the two building blocks of our static verification technique,
which we may finally summarize as follows.

Given any expression E, we identify the payload formulas assumed in E, and
construct the corresponding exponential serializers S1, . . . , Sn for those formulas.

2.6. THE TYPE SYSTEM 45

Let then E⋆ = assume S1 ⊗ · · · ⊗ Sn � E. By Theorem 2.6.2, if ε; ∅ ⊢ E⋆ : Un, then
E⋆ is robustly safe. By Theorem 2.4.1, so is the original expression E, provided
that a further invariant holds for E⋆, namely that all multisets of formulas assumed
during the evaluation of E⋆ are guarded.

While this latter invariant is not enforced by our type system, the desired guar-
antees may be achieved by requiring that the assumption of control formulas be
confined within system code packaged into library functions, providing certified
access and management of the capabilities associated with those formulas. The
certification of the system code provided by the library function, in turn, may be
achieved with limited effort, based on the syntactic guardedness condition provided
by Proposition 2.4.2.

2.6.7 Encoding affine types

Here we discuss how we can take advantage of exponential serialization to encode
affine types and, thus, enhance the expressiveness of our type system. For the sake
of simplicity, we focus on the encoding of affine pairs.

Consider the typing environment Γ;∆ , x : Un, y : Un;A(x), B(y). Standard
refinement type systems as [10] allow for the following type judgement:

Γ;∆ ⊢ (x, y) : {x : Un | A(x)} ∗ {y : Un | B(y)}

If the formulas A(x) and B(y) are interpreted as affine resources, however, the
previous type assignment is sound only as long as the pair (x, y) can be split only
once, since every application of rule (Exp Split) for pair destruction introduces
the formulas A(x), B(y) into the typing environment. Since our type system does
not feature affine types and has no way to enforce a single deconstruction of a pair,
it conservatively forbids the previous type judgement, in that the premises of rule
(Val Pair) require an exponential typing environment.

Nevertheless, the following type judgement is allowed by our type system:

x : Un, y : Un;A(x), B(y), S1, S2 ⊢ (x, y) : {x : Un | A′(x)} ∗ {y : Un | B′(y)}

where A′(x) , !(P1(x) (A(x)) and B′(y) , !(P2(y) (B(y)) are the serialized
variants of A(x) and B(y) respectively, while S1 , !∀x.(A(x) (A′(x)) and S2 ,
!∀y.(B(y)(B′(y)) are the corresponding serializers. Here, the main idea for type-
checking is to appeal to environment rewriting to consume the affine formulas A(x)
and B(y), and introduce their exponential counterparts A′(x) and B′(y) into the
typing environment before assigning a type to the components of the pair.

The interesting point now is that the pair (x, y) can be split arbitrarily often,
but the affine formulas A(x) and B(y) can be retrieved at most once, as long as the
control formulas P1(x) and P2(y) are assumed at most once in the application code.
In this way, we recover the expressiveness provided by affine types. We actually
even go beyond that, allowing for a liberal usage of the value itself, as opposed to

46 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

enforcing the affine usage of any data structure which contains an affine component,
as dictated by many earlier substructural frameworks.

2.6.8 Encoding cryptography

Formal cryptography can be encoded inside RCF in terms of sealing [61, 76]. A seal
for a type T is a pair of functions: a sealing function T → Un and an unsealing
function Un → T . Intuitively, for symmetric cryptography, these functions model
encryption and decryption operations, respectively. A payload of type T can be
sealed to type Un and sent over the untrusted network; conversely, a message re-
trieved from the network with type Un can be unsealed to its correct type T . This
mechanism is implemented in terms of a list of pairs, which is stored in a global
reference that can only be accessed using the sealing and unsealing functions. Upon
sealing, the payload p is paired with a fresh, public value h (the handle) representing
its sealed version, and the pair (p, h) is stored in the list; conversely, the unsealing
function looks for the handle h in the list and returns the associated payload p.

Since for symmetric cryptography the possession of the key allows to perform
both encryption and decryption operations, for this cryptographic scheme we iden-
tify the key with the seal, i.e., we give access to both the sealing and the unsealing
function to any owner of the key. Different cryptographic primitives, like public
key encryptions and signature schemes, can be encoded following the same recipe:
for instance, a signing key may consist of both the sealing and the unsealing func-
tions, and be given type SigKey(T) , (T → Un) ∗ (Un → T). The corresponding
verification key, instead, comprises only the unsealing function and is given type
VerKey(T) , Un → T . The functions sign and verify introduced in Section 2.2.3 can
then be straightforwardly implemented: signM xk just extracts the first component
of xk and calls it with parameter M , while verify N xvk simply invokes xvk with
parameter N .

One crucial benefit of our exponential serialization technique is that we can
immediately leverage the sealing-based cryptographic library proposed by Bengtson
et al. [10]. The reason is that we never apply cryptographic operations directly on
messages with affine refinements, but we rely on exponentially serialized versions of
such refinements. Without the serialization approach, we would need to define a
different implementation of the sealing/unsealing functions: namely, we would have
to enforce that an affine payload is never extracted more than once from the list
stored in the global reference, and the unsealing function would have to remove the
payload from the secret list. This would complicate the sealing-based abstraction
of cryptography and require additional reasoning to justify its soundness. Instead,
with our approach, the unsealing function does not need to be changed: we can
invoke it an arbitrarily number of times to retrieve the payload, but the associated
refinements will be retrieved at most once through exponential serialization.

2.6. THE TYPE SYSTEM 47

2.6.9 Algorithmic type-checking

Our type system includes several sources of non-determinism, which make it hard
to implement an efficient type-checker. Still, we can devise an algorithmic variant
of our type system, and prove it sound and complete. This contribution is due to
Fabienne Eigner and Matteo Maffei, hence we only summarize the intuition for the
sake of completeness. Additional details, including proofs, can be found in [21].

In the algorithmic system standard sources of non-determinism, like subtyping or
refined value types, are eliminated using type annotations. The rewriting of logical
environments Γ;∆ ↩→ Γ;∆′, which is the distinctive source of non-determinism of
our system, is harder to deal with. The core idea is to dispense altogether with logical
environments and to construct bottom-up a single logical formula that characterizes
all the proof obligations that would normally be introduced along the typing deriva-
tion. In such a way, all the burden due to resource management can be shifted to an
external theorem prover such as llprover [80], which would need to deal with this
issue anyway. Typing an expression algorithmically then constitutes of two steps:

1. The expression (decorated with type annotations whenever needed) is type-
checked using the algorithmic type system. This process is syntax-directed
and in case of success yields one proof obligation.

2. The proof obligation is verified.

If both steps succeed, then the expression is well-typed (see the soundness result
below). More in detail, every typing judgement of the form Γ;∆ ⊢ J is matched by
an algorithmic counterpart of the form Γ ⊢alg J ;F . For instance, the algorithmic
typing rule for pairs looks as follows:

(Val Pair Alg)
Γ ⊢alg M : T ;F1 Γ ⊢alg N : U{M/x};F2

Γ ⊢alg (M,N) : x : T ∗ U ; !F1 ⊗ !F2

The proof obligation associated to a pair is the conjunction of the proof obligations
of its component, under the additional restriction that such formulas must be con-
sidered as exponential: this mirrors the side-condition on (Val Pair) requiring an
exponential environment to type-check the premises of the rule.

The formal correspondence between the two type systems can be summarized as
follows:

1. Soundness: if Γ ⊢alg J ;F and ∆ ⊢ F , then Γ;∆ ⊢ J .

2. Completeness: if Γ;∆ ⊢ J , then there exists F such that Γ ⊢alg J ;F and
∆ ⊢ F .

48 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

2.7 Example: electronic purchase

We consider a variant of EPMO, a nonce-based e-payment protocol proposed by
Guttman et al. [52]. The protocol narration is informally represented in Table 2.14.

B C M
enc((C,nC ,g,p),ek(kM)) //

assume ∀y.(Pay(y, p,M, nM)(Ship(M, g,C))
enc(sign((nC ,nM ,M,g,C,p),k′M),ek(kC))oo

enc((C,nC ,nM ,p),ek(kB))oo

assume ∀y.Pay(B, p, y, nM)
enc(sign((B,C,nC ,nB ,nM ,p),k′B),ek(kC)) //

assert Ship(M, g,C)
enc(sign((B,C,nC ,nB ,nM ,p),k′B),ek(kM)) //

enc(sign((B,M,nB ,nM),k′M),ek(kB))oo

Table 2.14: A variant of the EPMO protocol

Initially, a customer C contacts a merchant M to buy some goods g for a given
price p; the request is encrypted under the public key of the merchant, ek(kM), and
includes a fresh nonce, nC . If M agrees to proceed in the transaction by providing a
signed response, C informs her bank B to authorize the payment. The bank replies
by providing C a receipt of authorization, called the money order, which is then
forwarded to M . Now M can verify that C is entitled to pay for the goods and
complete the transaction by sending a signed request to B to cash the money order.
At the end of the run, the bank transfers the funds and the merchant ships the
goods to the customer.

A peculiarity of the protocol is that the identifier nC is employed by C to au-
thenticate two different messages, namely the replies by M and B. This pattern
cannot be validated by most existing type systems, since the mechanisms hard-
coded therein to deal with nonce-handshakes enforce the freshness of each nonce to
be checked only once. Our framework, instead, allows for a very natural treatment
of such authentication pattern, whose implementation can be written mostly oblivi-
ous of the security verification process based on lightweight logical annotations. For
the sake of simplicity, we focus only on the aspects of the verification connected to
the guarantees provided to C, which are the most interesting to prove.

We define two predicates used in the analysis: Pay(B, p,M, nM) states that B
authorizes the payment p to M in reference to the order identified by nM , while
Ship(M, g, C) formalizes that M can ship the goods g to C. The protocol code for
the customer, enriched with the most relevant type annotations and the serializers, is
shown below. For the sake of readability, we use F#-like syntax and some syntactic
sugar like tuples and pattern matching to present code snippets from our example:
these can be encoded in RCF using standard techniques [10].

2.7. EXAMPLE: ELECTRONIC PURCHASE 49

// Serializer for M (needed to type-check M)
assume !forall xp,xM,xnM,xg,xC,xnC.

(forall y.(Pay(y,xp,xM,xnM) --o Ship(xM,xg,xC)) --o
!(N1(xnC) --o (forall y.(Pay(y,xp,xM,xnM) --o Ship(xM,xg,xC))))

// Serializer for B (needed to type-check B)
assume !forall yB,yp,ynC,ynM.

(forall y.(Pay(yB,yp,y,ynM)) --o
!(N2(ynC) --o (forall y.(Pay(yB,yp,y,ynM))))

// Type of the message from M to C
type MsgMC = MsgMC of (xnC: Un * xnM: Un * xM: Un * xg: Un * xC: Un * xp: Un)

{!(N1(xnC) --o forall y.(Pay(y,xp,xM,xnM) --o Ship(xM,xg,xC))}

// Type of the message from B to C
type MsgBC = MsgBC of (yB: Un * yC: Un * ynC: Un * ynB: Un * ynM: Un * yp: Un)

{!(N2(ynC) --o forall y.(Pay(yB,yp,y,ynM))}

let (mkTid : unit -> {x: bytes | N1(x) times N2(x)}) () =
let xf = mkFresh () in assume (N1(xf) times N2(xf)); xf

let cust C addC M addM B addB g p kC ekM ekB
(vkM: (MsgMC, MsgMB) either VerKey) (vkB: MsgBC VerKey) =

let nC = mkTid () in
let msgCM1 = encrypt (C, nC, g, p) ekM in send addM msgCM1;
let signMC = decrypt (receive addC) kC in
let plainMC = verify signMC vkM in
match plainMC with MsgMC (=nC, xnM, =M, =g, =C, =p) ->

let msgCB = encrypt (C, nC, xnM, p) ekB in send addB msgCB;
let signBC = decrypt (receive addC) kC in
let plainBC = verify signBC vkB in

match plainBC with MsgBC (=B, =C, =nC, xnB, =xnM, =p) ->
assert Ship(M, g, C);
let msgCM2 = encrypt signBC ekM in send addM msgCM2

Initially, we let the customer call the library function mkTid, which generates a
fresh transaction identifier, corresponding to nC in the protocol specification, and
provides via its return type two distinct capabilities N1(nC) and N2(nC), later em-
ployed to authenticate two different messages received by C. Since the signing key of
M is used to certify messages of two different types, at steps 2 and 6 of the protocol,
the corresponding verification key available to the customer through the variable
vkM refers to a sum type. We present only the MsgMC component of such type,
since it is the one needed to type-check the code of C: the corresponding refined
formula in the type definition describes the promise by M to ship the goods as soon
as the requested payment has been authorized by any bank. We then use vkB to

50 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

convey the other formula which is needed to type-check C, namely a statement that
B authorizes the payment to any merchant to whom C wishes to transfer the money
order. The hypotheses collected by C are enough to prove her assertion, i.e., to be
sure that the request by M has been fulfilled and the goods will be shipped, hence
the implementation is well-typed.

The proof obligation assigned to the cust function by the algorithmic formulation
of our type system is shown below:

∀C.∀M.∀B.∀G.∀p.
∀nC.((N1(nC)⊗ N2(nC))(
∀xnM.(!(N1(nC)((∀y.Pay(y,p,M,xnM)(Ship(M,g,C)))(

!(N2(nC)((∀z.Pay(B,p,z,xnM)))(
Ship(M,g,C)))

For the sake of readability we removed all unnecessary occurrences of 1 and unused
quantified variables. In this example, as well as in the other protocol we considered,
the problem of solving equalities is reduced to the unification of variables. This
allows us to use the llprover [80] theorem prover, which at the moment does not
support equality theories. The above formula is discharged in less than 20 ms.

2.8 Example: Kerberos
In the EPMO protocol presented before, the nonce nC is checked twice by the
customer C and plays the role of a transaction identifier. Interestingly, there are
protocols where such identifiers are not just checked multiple times, but also by
different parties. This is exactly the case for the Kerberos protocol [74] shown in
Table 2.15 below.

S A B
A,Boo

senc((tS ,kAB ,B,senc((tS ,kAB ,A),kBS)),kAS) //

senc((tS ,kAB ,A),kBS),senc((A,tA),kAB) //

senc((B,tA+1),kAB)oo

Table 2.15: Kerberos protocol

The protocol establishes a fresh session key kAB between principals A and B
through a trusted server S. Kerberos employs timestamps like tS and tA to prove
session recentness and protect against replay attacks. In this case, the timestamp
tS is checked by both A and B to ensure that kAB is fresh.

In our implementation, we build on a very simple library for timestamp man-
agement, that we allow the principals to access. Of course, we could consider more
realistic implementations, but the following one suffices to convey the intuition.

2.8. EXAMPLE: KERBEROS 51

let get_ts r () =
r := !r + 1; !r

let check_ts r t id =
if (t > !r) then r := t; assume F(id,t)
else failwith "not a fresh timestamp"

let init_ts =
let r = ref 0 in
(get_ts r, check_ts r)

Each principal stores the last received timestamp in the reference r, created
through an invocation to the function init_ts. The goal of the function is to
protect such a reference to guarantee a correct timestamp management: indeed, the
reference is accessible only through the functions get_ts and check_ts returned
by init_ts. The function get_ts: Ref int → unit → int is used to create fresh
timestamps, while the dependent function check_ts: Ref int → x : int → id : int →
{F(id, x)} is used to check whether a received timestamp x is fresh and can be used
to communicate with participant id or not. The code of the function performs a
conditional branch: if the timestamp is new, it assumes the logical formula encoding
such a fact; otherwise, it fails. The function failwith throws an exception, so it
can be safely given the polymorphic type int → α; as a consequence, check_ts
can be given the previous dependent function type, whose return type provides the
necessary freshness assumption.

We let the server S assume the predicates KA(B, kAB) and KB(A, kAB) upon
creation of the session key kAB , to model that kAB is a fresh session key which can
be used by A to communicate with B and vice-versa. The code of the principal A
looks as follows:

// Definition of Payload omitted
type MsgSA = MsgSA of (xtS: int * xkAB: Payload Symkey * xB: Un * y: Un)

{!(F(xB,xtS) --o kA(xB,xkAB))}

// We omit refinements in the next two types for the sake of a simple example
type MsgAB = MsgAB of (A: un * tA: int)
type MsgBA = MsgBA of (B: un * tB: int)

let initiator A addA B addB S addS (kAS: MsgSA SymKey) =
let (get_ts, check_ts) = init_ts () in
send addS (A,B);
let msgSA = receive addA in
let plainSA = sym_decrypt msgSA kAS in
match plainSA with

MsgSA (xtS, xkAB, xB, y) ->
let xtS = check_ts xtS xB in

52 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

assert kA(xB,xkAB);
let tA = get_ts in
let msgAB = sym_encrypt (MsgAB (A, tA)) xkAB in
send addB (y,msgAB);
let msgBA = receive addA in
let plainBA = sym_decrypt msgBA xkAB in
match plainBA with

MsgBA (=B, =tA+1) ->
let _ = check_ts tA+1 B then

... // use the key xkAB

Let TAB = SymKey(Payload) be the type of the session key kAB , then the type of
kAS is SymKey(xt : Un ∗ xk : TAB ∗ xB : Un ∗ {y : Un | !(F(xB, xt)(KA(xB, xk))}).
We use this key to convey the formula KA(B, kAB) from S to A. Since this formula
is affine, it is encapsulated using our serialization technique with the control formula
F(xB, xt) that denotes that a timestamp xt is fresh and can be used in a communi-
cation with xB. We can give kBS a similar type, i.e., SymKey(xt : Un∗xk : TAB ∗xA :
Un∗{y : Un | !(F(xA, xt)(KB(xA, xk))}). Note that, by enriching MsgAB and MsgBA
with suitable refinements, we can statically verify also the authentication guarantees
established between A and B and perform a complete analysis of the protocol.

2.9 Related work
Several papers develop type systems for (variants of) RCF [12, 10, 41, 8, 78] but,
with the exception of F∗ [78], they do not support resource-aware policies: in fact,
even for simple linearity properties like injective agreement they rely on hand-written
proofs [11].

F∗ [78] is a dependently typed functional language for secure distributed pro-
gramming, featuring refinement types to reason about authorization policies and
affine types to reason about stateful computations on affine values. Similarly to
companion proposals for RCF, the type system of F∗ assumes the existence of the
contraction rule in the underlying logic, hence, it does not support authorization
policies built over affine formulas. While some simple authentication patterns (e.g.,
basic nonce handshakes) may certainly be expressed by encoding affine predicates
in terms of affine values, other more complex authentication mechanisms are much
harder to handle in these terms. The EPMO protocol we analyze in Section 2.7
provides one such case, as (i) the nonce it employs may not be construed as an
affine value because it is used twice, and (ii) the logical formulae justified by cryp-
tographic message exchanges are more structured than simple predicates. Though it
might be possible to come up with sophisticated encodings of these authentication
mechanisms in the programming language (by resorting to, e.g., pairs of affine to-
kens to encode a double usage of the same nonce and special functions to eliminate
logical implications), such encodings are hard to formulate in a general manner and,

2.9. RELATED WORK 53

we argue, are much better expressed in terms of policy annotations than in some
ad-hoc programming pattern.

Bhargavan et al. [13] propose a technique for the verification of F# protocol im-
plementations by automatically extracting ProVerif models [16], using an extension
of the functions-as-processes encoding proposed by Milner [60]. Remarkably, the
analysis can deal with injective agreement. On the other hand, the analysis carried
out with ProVerif is not modular and has been shown less robust and scalable than
type-checking [12]. Furthermore, the fragment of F# considered is rather restrictive:
for instance, it does not include higher-order functions and admits only very limited
uses of recursion and state.

A formal account on the integration of refinement types and substructural logics
was first proposed by Mandelbaum et al. [59] with a system for local reasoning
about program state built around a fragment of intuitionistic linear logic. Later,
Bierhoff and Aldrich developed a framework for modular type-state checking of
object-oriented programs [15, 77, 63]. None of these systems deals with the presence
of hostile (or untyped) program components, or attackers, a feature that is instead
distinctive of our system: adapting the previous frameworks to take into account
interactions with an untyped context would require fundamental changes to their
typing rules. The original RCF type-checker [10], for instance, employs a security-
oriented kinding relation to reason about messages sent to and received from the
attacker, which we also adopt in our type system. Recent variants of the RCF
type-checker dispense with the kinding relation and even with concurrency [78], but
they rely on manually proven logical invariants capturing security properties of the
cryptographic library and, in some cases, of the protocol itself.

Tov and Pucella [81] have recently shown how to use behavioral contracts to
link code written in an affine language to code in a conventionally typed language.
The idea is to coerce affine values to non-affine ones that can be shared with the
context, but can still be reasoned about safely using dynamic access counts. There
are intriguing similarities between this approach and the usage of nonces and session
keys to enforce linearity properties in an adversarial setting, which are worth to be
investigated in the future. The two type systems are, however, fundamentally differ-
ent, since our present work deals with an affine refinement logic and an adversarial
setting, which makes a precise comparison hard to formulate.

There exist a number of types and effects systems targeted at the analysis of
authenticity properties of cryptographic protocols [50, 51, 23]. These type systems
incorporate ad-hoc mechanisms to deal with nonce handshakes and, thus, to enforce
injective agreement properties. The exponential serialization technique can be seen
as a logic-based generalization of such mechanisms, independent of the language
and type system. As a consequence, our type system is similarly able to verify
authenticity in terms of injective agreement, while allowing for expressing also a
number of more sophisticated properties involving access counts and usage bounds.
As a downside, the current formulation of our type system does not allow to validate
some specific nonce-handshake idioms, like the SOSH scheme [51]. Still, this can be

54 CHAPTER 2. ENFORCING AFFINE AUTHORIZATION POLICIES IN RCF

recovered by extending our type system with union and intersection types, as shown
in [8].

In a previous work [19, 21], we made initial steps towards the design of a sound
system for resource-sensitive authorization, drawing on techniques from typing sys-
tems for authentication and an affine extension of existing refinement typing systems
for the applied pi-calculus [5]. That work aims at analyzing cryptographic proto-
cols as opposed to their implementations. Furthermore, the type system is there
designed around a specific cryptographic library: the consequence is that extending
the analysis to new primitives requires significant changes in the soundness proof
of the type system. In contrast, the usage of a λ-calculus in this work allows us
to encode cryptography in the language using a standard sealing mechanism (cf.
Section 2.6.8), which makes the analysis technique easily extensible to new crypto-
graphic primitives. Finally, the non-standard nature of our previous type system
makes it difficult to devise an efficient algorithmic variant.

Chapter 3

Proofs of Chapter 2

3.1 Soundness of exponential serialization

3.1.1 Preliminaries

We first introduce some notational conventions. We let:

Ŝ ∈ {!∀x.(P (!(C (P)),∀x.(P (!(C (P))}

for some (possibly empty) x and some P,C. We also write ∆, F n as a short for the
multiset ∆, F, . . . , F (n times).

Definition 3.1.1 (Well-formation). A multiset of formulas ∆ = ∆1,∆2,∆3 is well-
formed if and only if it is stratified and ∆1 = P1, . . . , Pl, ∆2 = G1, . . . , Gm, ∆3 =
Ŝ1, . . . , Ŝn.

We define a partial function guard from formulas to control formulas, defined in
the following cases:

• guard(C (P) = C;

• guard(P (G) = guard(G);

• guard(∀x.F) = guard(F) whenever guard(F) is defined;

• guard(!F) = guard(F) whenever guard(F) is defined.

We extend the notion of rank to a multiset of formulas ∆ as follows:

rk(∆) = min {rk(C) | ∃F ∈ ∆ : guard(F) = C}

If the previous set is empty, we stipulate rk(∆) = +∞.
A control formula C is active in ∆ if and only if rk(C) ≤ rk(∆). We simply say

that C is active whenever ∆ is clear from the context.

56 CHAPTER 3. PROOFS OF CHAPTER 2

Definition 3.1.2 (Weak Guardedness). A well-formed multiset ∆ is weakly guarded
if and only if, for every active control formula C, we have that ∆ ⊢ Ck implies k ≤ 1.

We note as expected that any guarded multiset is also weakly guarded.

Proposition 3.1.1. If ∆ is guarded, then it is weakly guarded.

In the next results we focus without loss of generality on cut-free proofs.

3.1.2 Main results

Lemma 3.1.2. Let ∆ = ∆′, P (!(C (P) be weakly guarded and let C be active
in ∆. If ∆ ⊢ P ′, then ∆′ ⊢ P ′.

Proof. By induction on the derivation of ∆ ⊢ P ′:

Case (Ident): this rule cannot be applied, since P (!(C (P) is not a payload
formula;

Case (Weak): if the principal formula is P (!(C (P), the conclusion is immedi-
ate. Otherwise, let ∆′ = ∆′′, F and let ∆ ⊢ P ′ by the hypothesis ∆′′, P (!(C (
P) ⊢ P ′. By Lemma 3.1.9 we know that the latter multiset is weakly guarded
and C is active by Lemma 3.1.8, so we can apply the inductive hypothesis to get
∆′′ ⊢ P ′ and conclude ∆′ ⊢ P ′ by (Weak);

Case (Contr): let ∆′ = ∆′′, !F and let ∆ ⊢ P ′ by the hypothesis ∆, !F ⊢ P ′. By
Lemma 3.1.9 we know that the latter multiset is weakly guarded and C is active
by Lemma 3.1.8, so we can apply the inductive hypothesis to get ∆′, !F ⊢ P ′ and
conclude ∆′ ⊢ P ′ by (Contr);

Case (⊗-Left): let ∆′ = ∆′′, F1⊗F2 and let ∆ ⊢ P ′ from the hypothesis ∆′′, F1, F2, P (
!(C (P) ⊢ P ′. By Lemma 3.1.9 we know that the latter multiset is weakly
guarded and C is active by Lemma 3.1.8, so we can apply the inductive hypothesis
to get ∆′′, F1, F2 ⊢ P ′ and conclude ∆′ ⊢ P ′ by (⊗-Left);

Case (⊗-Right): let ∆ ⊢ P1 ⊗ P2 by the hypotheses ∆1 ⊢ P1 and ∆2 ⊢ P2 with
∆ = ∆1,∆2. By Lemma 3.1.9 both ∆1 and ∆2 are weakly guarded and C is
active in both by Lemma 3.1.8, so we can apply the inductive hypothesis to either
∆1 ⊢ P1 or ∆2 ⊢ P2, according to whether P (!(C (P) occurs in ∆1 or in ∆2,
and conclude by (⊗-Right);

Case ((-Left): we distinguish two cases, according to the principal formula:

• let ∆′ = ∆′′, F1 (F2 and let ∆ ⊢ P ′ by the hypotheses ∆1 ⊢ F1 and
∆2, F2 ⊢ P ′ with ∆′′, P (!(C (P) = ∆1,∆2. By Lemma 3.1.9 we have
that both ∆1 and ∆2, F2 are weakly guarded and C is active in both by

3.1. SOUNDNESS OF EXPONENTIAL SERIALIZATION 57

Lemma 3.1.8. Moreover, we note that F1 is a payload formula. We are thus
allowed to apply the inductive hypothesis to either ∆1 ⊢ F1 or ∆2, F2 ⊢ P ′,
according to whether P (!(C (P) occurs in ∆1 or in ∆2, and conclude by
((-Left);

• let ∆ ⊢ P ′ by the hypotheses ∆1 ⊢ P and ∆2, !(C (P) ⊢ P ′ with ∆′ =
∆1,∆2. By Lemma 3.1.9 we have that ∆2, !(C (P) is weakly guarded and
C is active there by Lemma 3.1.8, so by Corollary 3.1.17 we have ∆2, P ⊢ P ′.
We can then conclude ∆1,∆2 ⊢ P ′ by a standard Cut Elimination argument;

Case ((-Right): the only possibility is that ∆ ⊢ B1 (B2 by the hypothesis
∆, B1 ⊢ B2. By Lemma 3.1.12 we know that ∆, B1 is weakly guarded and C is
active, so by inductive hypothesis we get ∆′, B1 ⊢ B2 and we conclude ∆′ ⊢ B1(
B2 by ((-Right);

Case (∀-Left): let ∆′ = ∆′′, ∀x.F and let ∆ ⊢ P ′ from ∆′′, F{t/x}, P (!(C (
P) ⊢ P ′ for some t. By Lemma 3.1.9 we know that the latter multiset is weakly
guarded and C is active by Lemma 3.1.8, so we can apply the inductive hypothesis
to get ∆′′, F{t/x} ⊢ P ′ and conclude ∆′ ⊢ P ′ by (∀-Left);

Case (∀-Right): the only possibility is that ∆ ⊢ ∀x.B by ∆ ⊢ B with x /∈ fv(∆).
By inductive hypothesis ∆′ ⊢ B, so we conclude ∆′ ⊢ ∀x.B by (∀-Right);

Case (!-Left): let ∆′ = ∆′′, !F and let ∆ ⊢ P ′ by the hypothesis ∆′′, F, P (
!(C (P) ⊢ P ′. By Lemma 3.1.9 we know that the latter multiset is weakly
guarded and C is active by Lemma 3.1.8, so we can apply the inductive hypothesis
to get ∆′′, F ⊢ P ′ and conclude ∆′ ⊢ P ′ by (!-Left);

Case (!-Right): this rule cannot be applied, since P (!(C (P) is not exponen-
tial.

Lemma 3.1.3. Let ∆ = ∆′,∀x.(P (!(C (P)) be weakly guarded and let C be
active in ∆. If ∆ ⊢ P ′, then ∆′ ⊢ P ′.

Proof. By induction on the derivation of ∆ ⊢ P ′, much as in the proof of Lemma 3.1.2.
We show just the cases which are actually different:

Case ((-Left): if x is empty, we immediately conclude by Lemma 3.1.2. Oth-
erwise, let ∆′ = ∆′′, F1 (F2 and let ∆ ⊢ P ′ by the hypotheses ∆1 ⊢ F1 and
∆2, F2 ⊢ P ′ with ∆′′, ∀x.(P (!(C (P)) = ∆1,∆2. By Lemma 3.1.9 we have that
both ∆1 and ∆2, F2 are weakly guarded and C is active in both by Lemma 3.1.8.
Moreover, we note that F1 is a payload formula. We are thus allowed to apply
the inductive hypothesis to either ∆1 ⊢ F1 or ∆2, F2 ⊢ P ′, according to whether
∀x.(P (!(C (P)) occurs in ∆1 or in ∆2, and conclude by ((-Left);

58 CHAPTER 3. PROOFS OF CHAPTER 2

Case (∀-Left): we have two cases. If the principal formula is ∀x.(P (!(C (P)),
we have again two possibilities: either every quantified variable is instantiated by
the application of the rule or not. In the first case, we conclude by Lemma 3.1.2; in
the second case, the conclusion is immediate by inductive hypothesis. Otherwise,
if the instantiated formula belongs to ∆′, the conclusion follows by applying the
inductive hypothesis and (∀-Left).

Lemma 3.1.4. Let ∆ = ∆′, !∀x.(P (!(C (P)) be weakly guarded and let C be
active in ∆. If ∆ ⊢ P ′, then ∆′ ⊢ P ′.

Proof. We prove a stronger statement, namely:

∀n ≥ 0 : ∆′, (!∀x.(P (!(C (P)))n ⊢ P ′ implies ∆′ ⊢ P ′,

provided that the initial hypotheses are satisfied. We proceed by induction on the
derivation of the judgement in the premise, much as in the proofs of Lemmas 3.1.2
and 3.1.3, and we show just the cases which are actually different:

Case (Ident): if n ≥ 1, the rule cannot be applied, so the conclusion is trivial;

Case (Weak): if the principal formula is !∀x.(P (!(C (P)), the conclusion is
immediate by inductive hypothesis. Otherwise, if the principal formula belongs to
∆′, the conclusion follows by applying the inductive hypothesis and (Weak);

Case (Contr): we have two cases. If the principal formula is !∀x.(P (!(C (P)),
the conclusion is immediate by inductive hypothesis. Otherwise, if the principal
formula belongs to ∆′, the conclusion follows by applying the inductive hypothesis
and (Contr);

Case (⊗-Right): let ∆ ⊢ P1 ⊗ P2 by the hypotheses ∆1 ⊢ P1 and ∆2 ⊢ P2 with
∆ = ∆1,∆2. By Lemma 3.1.9 both ∆1 and ∆2 are weakly guarded and C is active
in both by Lemma 3.1.8, so we can apply the inductive hypothesis to both ∆1 ⊢ P1

and ∆2 ⊢ P2, and conclude by (⊗-Right);

Case (!-Left): we have two cases. If the principal formula is !∀x.(P (!(C (P)),
we first apply the inductive hypothesis and then we conclude by Lemma 3.1.3.
Otherwise, if the principal formula belongs to ∆′, the conclusion follows by first
applying the inductive hypothesis and then using (!-Left);

Case (!-Right): let ∆ ⊢ !B by the hypothesis ∆ ⊢ B with ∆ exponential. By
inductive hypothesis ∆′ ⊢ B, so we conclude ∆′ ⊢ !B by (!-Right).

Lemma 3.1.5. Let ∆′ = P1, . . . , Pm. If ∆ = ∆′, S1, . . . , Sn is weakly guarded and
∆ ⊢ P ′, then ∆′ ⊢ P ′.

3.1. SOUNDNESS OF EXPONENTIAL SERIALIZATION 59

Proof. By an appropriate number of applications of Lemma 3.1.4, using Proposi-
tion 3.1.6 to identify a candidate serializer to remove at each step.

Restatement of Theorem 2.4.1. Let ∆′ = P1, . . . , Pm. If ∆ = ∆′, S1, . . . , Sn is
guarded and ∆ ⊢ P ′, then ∆′ ⊢ P ′.

Proof. Immediate by Lemma 3.1.5, since any guarded multiset is also weakly guarded
by Proposition 3.1.1.

Restatement of Proposition 2.4.2. If ∆ = B1, . . . , Bl, C1, . . . , Cm, S1, . . . , Sn is
stratified and the control formulas in ∆ are pairwise distinct, then ∆ is guarded.

Proof. We first show that ∆ is weakly guarded. Let ∆1 = B1, . . . , Bl, ∆2 =
C1, . . . , Cm and ∆3 = S1, . . . , Sn. Let us assume by contradiction that ∆ ⊢ Ch

with h ≥ 2 for some active control formula C. By Lemma 3.1.10 we have ∆2 ⊢ Ch,
since any formula in ∆1 and ∆3 has an infinite rank, while the rank of C is finite.
By Proposition 3.1.7, C must occur at least h times in ∆2, but this is contradictory
with respect to the initial hypotheses.

Now we know that ∆ is weakly guarded and we can show that it is, in fact,
guarded. Let us assume by contradiction that ∆ ⊢ Ch with h ≥ 2 for some arbitrary
control formula C, then by Lemma 3.1.5 we have ∆1,∆2 ⊢ Ch. By Proposition 3.1.7,
C must occur at least h times in ∆1,∆2, but this is contradictory with respect to
the initial hypotheses.

3.1.3 Auxiliary results

Proposition 3.1.6. Let ∆ = P1, . . . , Pm, S1, . . . , Sn. If n > 0, then there exists
Si ∈ ∆ such that guard(Si) is active in ∆.

Proof. This immediately follows by the definitions of rk(∆) and active control for-
mula.

Proposition 3.1.7. Let ∆ = B1, . . . , Bl, C1, . . . , Cm. If ∆ ⊢ Ck, then C occurs at
least k times in ∆.

Proof. If k = 0, the result is trivial. Otherwise, we proceed by a simple induction
on the derivation of ∆ ⊢ Ck.

Lemma 3.1.8. Let ∆ be well-formed. The following implications hold:

1. if ∆ = ∆′, F , then ∆′ is well-formed and rk(∆) ≤ rk(∆′);

2. if ∆ = ∆′, !F , then ∆, !F is well-formed and rk(∆) = rk(∆, !F);

3. if ∆ = ∆′, F1 ⊗ F2, then ∆′, F1, F2 is well-formed and rk(∆) = rk(∆′, F1, F2);

4. if ∆ = ∆1,∆2, F1(F2, then ∆2, F2 is well-formed and rk(∆) ≤ rk(∆2, F2);

60 CHAPTER 3. PROOFS OF CHAPTER 2

5. if ∆ = ∆′,∀x.F , then for every t we have that ∆′, F{t/x} is well-formed and
rk(∆) = rk(∆′, F{t/x});

6. if ∆ = ∆′, !F , then ∆′, F is well-formed and rk(∆) = rk(∆′, F).

Proof. By simple syntactic checks.

Lemma 3.1.9. Let ∆ be weakly guarded. The following implications hold:

1. if ∆ = ∆′, F , then ∆′ is weakly guarded;

2. if ∆ = ∆′, !F , then ∆, !F is weakly guarded;

3. if ∆ = ∆′, F1 ⊗ F2, then ∆′, F1, F2 is weakly guarded;

4. if ∆ = ∆1,∆2, F1(F2 and ∆1 ⊢ F1, then ∆2, F2 is weakly guarded;

5. if ∆ = ∆′,∀x.F , then ∆′, F{t/x} is weakly guarded for every t;

6. if ∆ = ∆′, !F , then ∆′, F is weakly guarded.

Proof. For all the points of the statement, let ∆c denote the multiset in the conclu-
sion. Lemma 3.1.8 guarantees that ∆c is well-formed. Now we observe that in each
case, for every formula F , we have that ∆c ⊢ F implies ∆ ⊢ F by the application
of a specific rule of the logic. Thus, let us assume by contradiction that ∆c ⊢ Cn

with n > 1 for some active control formula C. By the previous observation, we have
∆ ⊢ Cn, but this is contradictory, since ∆ is weakly guarded by hypothesis.

Lemma 3.1.10 (Stratification). Let ∆ = ∆′, F1, . . . , Fm be well-formed and let C be
active in ∆. If ∆ ⊢ Cn with n ≥ 1 and ∀i ∈ [1,m] : rk(Fi) > rk(C), then ∆′ ⊢ Cn.

Proof. By induction on the derivation of ∆ ⊢ Cn:

Case (Ident): the case is trivial, since the hypothesis on the rank cannot hold;

Case (Weak): let us assume that the principal formula is F1, so we have ∆ ⊢ Cn

by the premise ∆′, F2, . . . , Fm ⊢ Cn. The latter multiset is well-formed and C
is active there by Lemma 3.1.8, so we can apply the inductive hypothesis to get
∆′ ⊢ Cn. Otherwise, let the principal formula belong to ∆′, the conclusion follows
by inductive hypothesis and (Weak);

Case (Contr): let us assume that the principal formula is F1, so we have ∆ ⊢ Cn

by the premise ∆, F1 ⊢ Cn. The latter multiset is well-formed and C is active there
by Lemma 3.1.8, so we can apply the inductive hypothesis to get ∆′ ⊢ Cn. Oth-
erwise, let the principal formula belong to ∆′, the conclusion follows by inductive
hypothesis and (Contr);

3.1. SOUNDNESS OF EXPONENTIAL SERIALIZATION 61

Case (⊗-Left): let us assume that the principal formula is F1 = F ′ ⊗ F ′′, so
we have ∆ ⊢ Cn by the premises ∆′, F ′, F ′′, F2, . . . , Fm ⊢ Cn. The latter multi-
set is well-formed and C is active there by Lemma 3.1.8 . Since rk(F ′ ⊗ F ′′) =
min {rk(F ′), rk(F ′′)} and rk(F ′ ⊗ F ′′) > rk(C), we know that both rk(F ′) > rk(C)
and rk(F ′′) > rk(C). By inductive hypothesis we then get ∆′ ⊢ Cn as desired. Oth-
erwise, let the principal formula belong to ∆′, the conclusion follows by inductive
hypothesis and (⊗-Left);

Case (⊗-Right): let ∆ ⊢ Cn with n ≥ 2 by the premises ∆1 ⊢ Cj and ∆2 ⊢ Ck

with ∆ = ∆1,∆2 and j + k = n. Let us assume without loss of generality that
∆1 = ∆′

1, F1, . . . , Fh and ∆2 = ∆′
2, Fh+1, . . . , Fm. Both ∆1 and ∆2 are well-formed

and C is active there by Lemma 3.1.8. By inductive hypothesis we get ∆′
1 ⊢ Cj

and ∆′
2 ⊢ Ck, so we conclude ∆′ ⊢ Cn by an application of (⊗-Right);

Case ((-Left): let us assume that the principal formula is F1 = F ′(F ′′. Since
∆ is well-formed, we can distinguish three cases:

• F ′ = B1, F
′′ = B2. We have ∆1 ⊢ B1 and ∆2, B2 ⊢ Cn with ∆′, F2, . . . , Fm =

∆1,∆2. Let us assume without loss of generality that ∆1 = ∆′
1, F2, . . . , Fh

and ∆2 = ∆′
2, Fh+1, . . . , Fm. We know that ∆2, B2 is well-formed and C is

active there by Lemma 3.1.8. Moreover, we note that rk(B2) = +∞, while
rk(C) is finite, so we can apply the inductive hypothesis to get ∆′

2 ⊢ Cn. The
conclusion follows by applying (Weak) an appropriate number of times;

• F ′ = Ĉ, F ′′ = P̂ . We have ∆1 ⊢ Ĉ and ∆2, P̂ ⊢ Cn with ∆′, F2, . . . , Fm =
∆1,∆2. Let us assume without loss of generality that ∆1 = ∆′

1, F2, . . . , Fh and
∆2 = ∆′

2, Fh+1, . . . , Fm. We know that ∆2, P̂ is well-formed and C is active
there by Lemma 3.1.8. Moreover, we note that rk(C) ≤ rk(Ĉ) < rk(P̂) by the
hypothesis of stratification, so we can apply the inductive hypothesis to get
∆′

2 ⊢ Cn. The conclusion follows by applying (Weak) an appropriate number
of times;

• F ′ = P̂ , F ′′ = !(Ĉ (P̂). We have ∆1 ⊢ P̂ and ∆2, !(Ĉ (P̂) ⊢ Cn

with ∆′, F2, . . . , Fm = ∆1,∆2. Let us assume without loss of generality that
∆1 = ∆′

1, F2, . . . , Fh and ∆2 = ∆′
2, Fh+1, . . . , Fm. We know that ∆2, !(Ĉ (P̂)

is well-formed and C is active there by Lemma 3.1.8. Moreover, we note that
rk(!(Ĉ (P̂)) = +∞, while rk(C) is finite, so we can apply the inductive
hypothesis to get ∆′

2 ⊢ Cn. The conclusion follows by applying (Weak) an
appropriate number of times.

Otherwise, let the principal formula be F = F ′ (F ′′ with ∆′ = ∆′′, F . Without
loss of generality, we can assume rk(F) ≤ rk(C), but this is contradictory, since
any implication has an infinite rank, which is strictly greater than the finite rank
of C.

62 CHAPTER 3. PROOFS OF CHAPTER 2

Case (∀-Left): let us assume that the principal formula is F1 = ∀x.F ′, so we
have ∆ ⊢ Cn by the premises ∆′, F ′{t/x}, F2, . . . , Fm ⊢ Cn for some t. The latter
multiset is well-formed and C is active there by Lemma 3.1.8. Note that rk(∀x.F ′) =
rk(F ′{t/x}) = +∞, since the multiset is well-formed, hence by inductive hypothesis
we get ∆′ ⊢ Cn as desired. Otherwise, let the principal formula belong to ∆′, the
conclusion follows by inductive hypothesis and (∀-Left);

Case (!-Left): let us assume that the principal formula is F1 = !F ′, so we have
∆ ⊢ Cn by the premises ∆′, F ′, F2, . . . , Fm ⊢ Cn. The latter multiset is well-
formed and C is active there by Lemma 3.1.8. Note that rk(!F ′) = rk(F ′) = +∞,
since the multiset is well-formed, hence by inductive hypothesis we get ∆′ ⊢ Cn as
desired. Otherwise, let the principal formula belong to ∆′, the conclusion follows
by inductive hypothesis and (!-Left).

Corollary 3.1.11. Let ∆ be well-formed. If ∆ ⊢ C and C is active in ∆, then ∆
contains at least an affine formula.

Proof. Let ∆′ be the multiset obtained from ∆ by removing all the formulas F
such that rk(F) > rk(C). By Lemma 3.1.10 we have ∆′ ⊢ C. Clearly, ∆′ must
contain at least a formula F̂ , since ∅ 0 C, and by construction we know that
rk(F̂) ≤ rk(C). Since rk(C) is finite, also rk(F̂) is finite, so this formula must be
affine by Definition 2.4.1.

Lemma 3.1.12. Let ∆ be weakly guarded, then ∆, B is weakly guarded. Moreover,
we have rk(∆) = rk(∆, B).

Proof. It is immediate to note that ∆, B is well-formed and that the introduction of
B does not change the rank of the multiset. As to weak guardedness, let us assume
by contradiction that ∆, B ⊢ Cn with n > 1 for some active control formula C.
Since rk(C) is finite, while rk(B) = +∞, we have that ∆ ⊢ Cn by Lemma 3.1.10.
But this is contradictory, since ∆ is weakly guarded.

Lemma 3.1.13 (Strengthening). Let ∆ = ∆′, C (P be well-formed and let C be
active in ∆. If ∆ ⊢ P ′ and ∆′ 0 C, then ∆′ ⊢ P ′.

Proof. By induction on the derivation of ∆ ⊢ P ′. We show just the most interesting
cases:

Case (Ident): the rule cannot be applied, since C (P is not a payload formula;

Case (⊗-Left): let ∆′ = ∆′′, F1 ⊗ F2 and let ∆ ⊢ P ′ by ∆′′, F1, F2, C (P ⊢ P ′.
By Lemma 3.1.8 we know that the latter multiset is well-formed and C is active.
Moreover, we note that ∆′′, F1, F2 0 C, otherwise we could get ∆′ ⊢ C by an
application of (⊗-Left). Thus, we can apply the inductive hypothesis to get
∆′′, F1, F2 ⊢ P ′ and conclude by (⊗-Left);

3.1. SOUNDNESS OF EXPONENTIAL SERIALIZATION 63

Case (⊗-Right): let ∆ ⊢ P1 ⊗ P2 by the hypotheses ∆1 ⊢ P1 and ∆2 ⊢ P2 with
∆ = ∆1,∆2. By Lemma 3.1.8 both ∆1 and ∆2 are well-formed and C is active
in both. Without loss of generality, let us assume ∆1 = ∆′

1, C (P . We note
that ∆′

1 0 C, otherwise we could get ∆′ ⊢ C by (Weak). Thus, we can apply the
inductive hypothesis to get ∆′

1 ⊢ P1 and conclude by (⊗-Right);

Case ((-Left): we distinguish two cases, according to the principal formula:

• let ∆′ = ∆′′, F1 (F2 and let ∆ ⊢ P ′ by the hypotheses ∆1 ⊢ F1 and
∆2, F2 ⊢ P ′ with ∆′′, C (P = ∆1,∆2. By Lemma 3.1.8 both ∆1 and ∆2, F2

are well-formed and C is active in both. We distinguish two cases, according
to whether C (P belongs to ∆1 or to ∆2.
Let ∆1 = ∆′

1, C (P , we have that F1 is a payload formula. Moreover, since
∆′ 0 C and ∆′

1 ⊆ ∆′, we know that ∆′
1 0 C, otherwise we could deduce ∆′ ⊢ C

by (Weak). Thus, we can apply the inductive hypothesis to get ∆′
1 ⊢ F1 and

conclude by ((-Left).
Otherwise, let ∆2 = ∆′

2, C (P . We know that ∆′
2, F2 0 C, otherwise

we could deduce ∆′ ⊢ C by ((-Left). Thus, we can apply the inductive
hypothesis to get ∆′

2, F2 ⊢ P ′ and conclude by ((-Left);
• let ∆′ ⊢ P ′ by the hypotheses ∆1 ⊢ C and ∆2, P ⊢ P ′ with ∆′ = ∆1,∆2. We

have a contradiction, since ∆1 ⊢ C implies ∆′ ⊢ C by (Weak).

Case ((-Right): the only possibility is that ∆ ⊢ B1 (B2 by the hypothesis
∆, B1 ⊢ B2. It is immediate to note that ∆, B1 is well-formed and that C is active,
since the introduction of B1 cannot change the rank of the multiset. Let us assume
by contradiction that ∆′, B1 ⊢ C. Since rk(C) is finite, while rk(B1) = +∞, we
have that ∆′ ⊢ C by Lemma 3.1.10, but this is contradictory. Thus, we have
∆′, B1 0 C, so we can apply the inductive hypothesis to get ∆′, B1 ⊢ B2 and
conclude by ((-Right);

Case (!-Left): let ∆′ = ∆′′, !F and let ∆ ⊢ P ′ by the hypothesis ∆′′, F, C (P ⊢
P ′. By Lemma 3.1.8 we know that the latter multiset is well-formed and C is active.
Moreover, we note that ∆′′, F 0 C, otherwise we could get ∆′ ⊢ C by (!-Left).
Thus, we can apply the inductive hypothesis to get ∆′′, F ⊢ P ′ and conclude by
(!-Left);

Case (!-Right): the rule cannot be applied, since ∆′, C (P is not exponential.

Lemma 3.1.14. Let ∆ = ∆′, (C (P)n be weakly guarded. If ∆ ⊢ P ′ and C is
active in ∆, then ∆′, C (P ⊢ P ′.

Proof. By induction on the derivation of ∆ ⊢ P ′. Without loss of generality in the
following inductive cases we assume n ≥ 2, since the conclusion follows by (Weak)
for n = 0 and it is trivial for n = 1. We show just the most interesting cases:

64 CHAPTER 3. PROOFS OF CHAPTER 2

Case (Ident): the rule cannot be applied, since we are assuming to have at least
two copies of C (P in the multiset. Moreover, C (P is not a payload formula;

Case (⊗-Left): let ∆′ = ∆′′, F1 ⊗ F2 and let ∆ ⊢ P ′ from ∆′′, F1, F2, (C (P)n ⊢
P ′. The latter multiset is weakly guarded by Lemma 3.1.9 and C is active by
Lemma 3.1.8, so we can apply the inductive hypothesis to get ∆′′, F1, F2, C (P ⊢
P ′ and conclude ∆′, C (P ⊢ P ′ by (⊗-Left);

Case (⊗-Right): let ∆ ⊢ P1 ⊗ P2 by the premises ∆1 ⊢ P1 and ∆2 ⊢ P2 with
∆ = ∆1,∆2. Let ∆1 = ∆′

1, (C (P)h and ∆2 = ∆′
2, (C (P)k with h + k = n.

Both ∆1 and ∆2 are weakly guarded by Lemma 3.1.9 and C is active in both by
Lemma 3.1.8. We apply the inductive hypothesis to both ∆1 ⊢ P1 and ∆2 ⊢ P2

to get ∆′
1, C (P ⊢ P1 and ∆′

2, C (P ⊢ P2. Now we assume by contradiction
that both ∆′

1 ⊢ C and ∆′
2 ⊢ C, then we have ∆ ⊢ C ⊗ C by (⊗-Right) and

an appropriate number of applications of (Weak), but, given that ∆ is weakly
guarded, this is contradictory. Without loss of generality we can then assume that
∆′

1 0 C, so by Lemma 3.1.13 we have ∆′
1 ⊢ P1 and we conclude ∆′

1,∆
′
2, C (P ⊢

P1 ⊗ P2 by (⊗-Right);

Case ((-Left): we distinguish four cases, according to the principal formula:

• let ∆ ⊢ P ′ by the premises ∆1 ⊢ C and ∆2, P ⊢ P ′ with ∆′, (C (P)n−1 =
∆1,∆2. Let ∆1 = ∆′

1, (C (P)h and ∆2 = ∆′
2, (C (P)k with h+k = n− 1.

By Lemma 3.1.9 we have that both ∆1 and ∆2, P are weakly guarded and C
is active in both by Lemma 3.1.8. Moreover, C is a control formula, i.e., it is
a payload formula. We are thus allowed to apply the inductive hypothesis to
both ∆1 ⊢ C and ∆2, P ⊢ P ′ to get ∆′

1, C (P ⊢ C and ∆′
2, P, C (P ⊢ P ′.

Since rk(C (P) = +∞ > rk(C), by Lemma 3.1.10 we have ∆′
1 ⊢ C. Let

us assume by contradiction that ∆′
2, P ⊢ C: since rk(C) < rk(P) by the

stratification hypothesis, by Lemma 3.1.10 we know that ∆′
2 ⊢ C, but this is

contradictory, since we would first get ∆′
1,∆

′
2 ⊢ C ⊗ C by (⊗-Right) and

then ∆ ⊢ C ⊗ C by (Weak). Thus, ∆′
2, P 0 C and we have ∆′

2, P ⊢ P ′ by
Lemma 3.1.13. We can then conclude ∆′

1,∆
′
2, C (P ⊢ P ′ by an application

of ((-Left);

• let ∆′ = ∆′′, B1 (B2 by the premises ∆1 ⊢ B1 and ∆2, B2 ⊢ P ′ with
∆′′, (C (P)n = ∆1,∆2. Let ∆1 = ∆′

1, (C (P)h and ∆2 = ∆′
2, (C (P)k

with h + k = n. By Lemma 3.1.9 we have that both ∆1 and ∆2, B2 are
weakly guarded and C is active in both by Lemma 3.1.8. Moreover, B1 is
a base formula, i.e., it is a payload formula. We are thus allowed to apply
the inductive hypothesis to both ∆1 ⊢ B1 and ∆2, B2 ⊢ P ′ to get ∆′

1, C (
P ⊢ B1 and ∆′

2, B2, C (P ⊢ P ′. Let us assume by contradiction that both
∆′

1 ⊢ C and ∆′
2, B2 ⊢ C: since rk(B2) = +∞ > rk(C), by Lemma 3.1.10

we have ∆′
2 ⊢ C, whence ∆ ⊢ C ⊗ C by (⊗-Right) and (Weak), which is

contradictory. Thus, we can apply Lemma 3.1.13 either on ∆′
1, C (P ⊢ B1

3.1. SOUNDNESS OF EXPONENTIAL SERIALIZATION 65

or on ∆′
2, B2, C (P ⊢ P ′ to remove C (P from the judgement. The

conclusion follows by ((-Left);

• let ∆′ = ∆′′, Ĉ (P̂ by the premises ∆1 ⊢ Ĉ and ∆2, P̂ ⊢ P ′ with ∆′′, (C (
P)n = ∆1,∆2. Let ∆1 = ∆′

1, (C (P)h and ∆2 = ∆′
2, (C (P)k with h+k =

n. By Lemma 3.1.9 we have that both ∆1 and ∆2, P̂ are weakly guarded and
C is active in both by Lemma 3.1.8. Moreover, Ĉ is a control formula, i.e., it is
a payload formula. We are thus allowed to apply the inductive hypothesis to
both ∆1 ⊢ Ĉ and ∆2, P̂ ⊢ P ′ to get ∆′

1, C (P ⊢ Ĉ and ∆′
2, P̂ , C (P ⊢ P ′.

Let us assume by contradiction that both ∆′
1 ⊢ C and ∆′

2, P̂ ⊢ C: since
rk(C) ≤ rk(Ĉ) < rk(P̂) by the stratification hypothesis, by Lemma 3.1.10
we have ∆′

2 ⊢ C, whence ∆ ⊢ C ⊗ C by (⊗-Right) and (Weak), which is
contradictory. Thus, we can apply Lemma 3.1.13 either on ∆′

1, C (P ⊢ Ĉ or
on ∆′

2, P̂ , C (P ⊢ P ′ to remove C (P from the judgement. The conclusion
follows by ((-Left);

• let ∆′ = ∆′′, P̂ (!(Ĉ (P̂) by the premises ∆1 ⊢ P̂ and ∆2, !(Ĉ (P̂) ⊢ P ′

with ∆′′, (C (P)n = ∆1,∆2. Let ∆1 = ∆′
1, (C (P)h and ∆2 = ∆′

2, (C (
P)k with h+k = n. By Lemma 3.1.9 we have that both ∆1 and ∆2, !(Ĉ (P̂)
are weakly guarded and C is active in both by Lemma 3.1.8. Moreover, P̂ is
a payload formula. We are thus allowed to apply the inductive hypothesis to
both ∆1 ⊢ P̂ and ∆2, !(Ĉ (P̂) ⊢ P ′ to get ∆′

1, C (P ⊢ P̂ and ∆′
2, !(Ĉ (

P̂), C (P ⊢ P ′. Let us assume by contradiction that both ∆′
1 ⊢ C and

∆′
2, !(Ĉ (P̂) ⊢ C: since rk(!(Ĉ (P̂)) = +∞ > rk(C), by Lemma 3.1.10

we have ∆′
2 ⊢ C, whence ∆ ⊢ C ⊗ C by (⊗-Right) and (Weak), which is

contradictory. Thus, we can apply Lemma 3.1.13 either on ∆′
1, C (P ⊢ P̂

or on ∆′
2, !(Ĉ (P̂), C (P ⊢ P ′ to remove C (P from the judgement.

The conclusion follows by ((-Left);

Case ((-Right): let ∆ ⊢ B1(B2 by the hypothesis ∆, B1 ⊢ B2. By Lemma 3.1.12
we know that ∆, B1 is weakly guarded and C is active, so by inductive hypothesis
we get ∆′, B1, C (P ⊢ B2 and we conclude by ((-Right);

Case (!-Left): let ∆′ = ∆′′, !F and let ∆ ⊢ P ′ by the hypothesis ∆′′, F, (C (
P)n ⊢ P ′. The latter multiset is weakly guarded by Lemma 3.1.9 and C is active
by Lemma 3.1.8, so we can apply the inductive hypothesis to get ∆′′, F, C (P ⊢ P ′

and we conclude by (!-Left);

Case (!-Right): the rule cannot be applied, since we are assuming to have at least
two copies of C (P in the multiset, i.e., the multiset is not exponential.

Lemma 3.1.15 (Dereliction). Let ∆ = ∆′, !(C (P) be weakly guarded. If ∆ ⊢ P ′

and C is active in ∆, then ∆′, C (P ⊢ P ′.

66 CHAPTER 3. PROOFS OF CHAPTER 2

Proof. We prove a stronger statement, namely:

∀n ≥ 0 : ∆′, (!(C (P))n ⊢ P ′ implies ∆′, C (P ⊢ P ′,

provided that the initial hypotheses are satisfied. We proceed by induction on the
derivation of the judgement in the premise, we show just the most interesting cases:

Case (Ident): if n > 0, this rule cannot be applied, since !(C (P) is not a payload
formula. If n = 0, we have P ′ ⊢ P ′ by hypothesis and we conclude P ′, C (P ⊢ P ′

by (Weak);

Case (Weak): we have two cases. If the principal formula is !(C (P), the
conclusion is immediate by inductive hypothesis. Otherwise, if the principal formula
belongs to ∆′, the conclusion follows by applying the inductive hypothesis and
(Weak);

Case (Contr): we have two cases. If the principal formula is !(C (P), the
conclusion is immediate by inductive hypothesis. Otherwise, if the principal formula
belongs to ∆′, the conclusion follows by applying the inductive hypothesis and
(Contr);

Case (⊗-Left): ∆′ = ∆′′, F1 ⊗ F2 and let ∆ ⊢ P ′ from ∆′′, F1, F2, (!(C (P))n ⊢
P ′. The latter multiset is weakly guarded by Lemma 3.1.9 and C is active by
Lemma 3.1.8, so we can apply the inductive hypothesis to get ∆′′, F1, F2, C (P ⊢
P ′ and conclude ∆′, C (P ⊢ P ′ by (⊗-Left);

Case (⊗-Right): let ∆ ⊢ P1 ⊗ P2 by the hypotheses ∆1 ⊢ P1 and ∆2 ⊢ P2 with
∆ = ∆1,∆2. Let ∆1 = ∆′

1, (!(C (P))h and ∆2 = ∆′
2, (!(C (P))k with h+k = n.

We have that both ∆1 and ∆2 are weakly guarded by Lemma 3.1.9 and C is active
in both by Lemma 3.1.8. We apply the inductive hypothesis to both ∆1 ⊢ P1 and
∆2 ⊢ P2 to get ∆′

1, C (P ⊢ P1 and ∆′
2, C (P ⊢ P2. Thus, we have ∆′

1,∆
′
2, C (

P,C (P ⊢ P1 ⊗ P2 by (⊗-Right) and we conclude ∆′
1,∆

′
2, C (P ⊢ P1 ⊗ P2 by

Lemma 3.1.14;

Case ((-Left): let ∆′ = ∆′′, F1 (F2 and let ∆ ⊢ P ′ by the hypotheses ∆1 ⊢ F1

and ∆2, F2 ⊢ P ′ with ∆′′, (!(C (P))n = ∆1,∆2. Let ∆1 = ∆′
1, (!(C (P))h and

∆2 = ∆′
2, (!(C (P))k with h + k = n. By Lemma 3.1.9 we have that both ∆1

and ∆2, F2 are weakly guarded and C is active in both by Lemma 3.1.8. Moreover,
we note that F1 is a payload formula. We are thus allowed to apply the inductive
hypothesis to both ∆1 ⊢ F1 and ∆2, F2 ⊢ P ′ to get respectively ∆′

1, C (P ⊢ F1

and ∆′
2, F2, C (P ⊢ P ′. Thus, we get ∆′, C (P,C (P ⊢ P ′ by ((-Left)

and we conclude ∆′, C (P ⊢ P ′ by Lemma 3.1.14;

Case ((-Right): let ∆ ⊢ B1(B2 by the hypothesis ∆, B1 ⊢ B2. By Lemma 3.1.12
we know that ∆, B1 is weakly guarded and C is active, so by inductive hypothesis
we get ∆′, B1, C (P ⊢ B2 and we conclude by ((-Right);

3.1. SOUNDNESS OF EXPONENTIAL SERIALIZATION 67

Case (!-Left): if the principal formula is !(C (P), we have ∆′, C (P, !(C (
P)n−1 ⊢ P ′. If n−1 = 0, we are done, otherwise we apply the inductive hypothesis
to get ∆′, C (P,C (P ⊢ P ′ and we conclude by Lemma 3.1.14. Otherwise,
if the principal formula belongs to ∆′, the conclusion follows by first applying the
inductive hypothesis and then using (!-Left);

Case (!-Right): we have ∆′, (!(C (P))n ⊢ !B by the hypothesis ∆′, (!(C (
P))n ⊢ B with ∆′ exponential. By inductive hypothesis ∆′, C (P ⊢ B. Let us
assume by contradiction that ∆′ ⊢ C: then, by Corollary 3.1.11, there exists an
affine formula in ∆′, but this is contradictory. Thus, we have ∆′ 0 C, which implies
∆′ ⊢ B by Lemma 3.1.13. We can then apply (!-Right) to derive ∆′ ⊢ !B and we
conclude ∆′, C (P ⊢ !B by (Weak).

Lemma 3.1.16. Let ∆ = ∆′, C (P be well-formed. If ∆ ⊢ P ′, then ∆′, P ⊢ P ′.

Proof. By induction on the derivation of ∆ ⊢ P ′. The proof strongly resembles those
of the previous results, but it is actually easier. We just show the most interesting
cases:

Case (Ident): the rule cannot be applied, since C (P is not a payload formula;

Case (Weak): if the principal formula is C (P , the conclusion follows by (Weak).
Otherwise, if the principal formula belongs to ∆′, the conclusion follows by first
applying the inductive hypothesis and then using (Weak);

Case (⊗-Left): let ∆′ = ∆′′, F1 ⊗ F2 and let ∆ ⊢ P ′ from ∆′′, F1, F2, C (P ⊢ P ′.
The latter multiset is well-formed by Lemma 3.1.8, so we can apply the inductive
hypothesis to get ∆′′, F1, F2, P ⊢ P ′ and conclude ∆′, P ⊢ P ′ by (⊗-Left);

Case (⊗-Right): let ∆ ⊢ P1 ⊗ P2 by the hypotheses ∆1 ⊢ P1 and ∆2 ⊢ P2 with
∆ = ∆1,∆2. By Lemma 3.1.8 both ∆1 and ∆2 are well-formed, so we are allowed to
apply the inductive hypothesis to either ∆1 ⊢ P1 or ∆2 ⊢ P2, according to whether
C (P occurs in ∆1 or in ∆2, and conclude by (⊗-Right);

Case ((-Left): we distinguish two cases, according to the principal formula:

• let ∆′ = ∆′′, F1 (F2 and let ∆ ⊢ P ′ by the hypotheses ∆1 ⊢ F1 and
∆2, F2 ⊢ P ′ with ∆′′, C (P = ∆1,∆2. By Lemma 3.1.8 we have that
both ∆1 and ∆2, F2 are well-formed. Moreover, we note that F1 is a payload
formula. We are thus allowed to apply the inductive hypothesis to either
∆1 ⊢ F1 or ∆2, F2 ⊢ P ′, according to whether C (P occurs in ∆1 or in ∆2,
and conclude by ((-Left);

• let ∆ ⊢ P ′ by the hypotheses ∆1 ⊢ C and ∆2, P ⊢ P ′ with ∆′ = ∆1,∆2. We
conclude ∆′, P ⊢ P ′ by applying (Weak) for an appropriate number of times.

68 CHAPTER 3. PROOFS OF CHAPTER 2

Case ((-Right): let ∆ ⊢ B1(B2 by the hypothesis ∆, B1 ⊢ B2. It is immediate
to note that ∆, B1 is well-formed, so by inductive hypothesis we get ∆′, B1, P ⊢ B2

and we conclude ∆′, P ⊢ B1(B2 by ((-Right);

Case (!-Left): let ∆′ = ∆′′, !F and let ∆ ⊢ P ′ by the hypothesis ∆′′, F, C (
P ⊢ P ′. The latter multiset is well-formed by Lemma 3.1.8, so we can apply the
inductive hypothesis to get ∆′′, F, P ⊢ P ′ and we conclude ∆′, P ⊢ P ′ by (!-Left);

Case (!-Right): the rule cannot be applied, since C (P is not exponential.

Corollary 3.1.17 (Bounded Usage). Let ∆ = ∆′, !(C (P) be weakly guarded. If
∆ ⊢ P ′ and C is active in ∆, then ∆′, P ⊢ P ′.

Proof. By Lemma 3.1.15 we have ∆′, C (P ⊢ P ′. By Lemma 3.1.9 we know that
∆′, C (P is weakly guarded, i.e., it is well-formed, thus the conclusion follows by
Lemma 3.1.16.

3.2 Soundness of the type system

3.2.1 Properties of the logic

Lemma 3.2.1 (Substitution for the Logic). For all ∆, F and all substitutions σ of
variables with closed terms, it holds that ∆ ⊢ F implies ∆σ ⊢ Fσ.

Proof. By induction on the derivation of ∆ ⊢ F .

Case (Ident): we can immediately conclude by (Ident).

Case (∀-Right): we know that F = ∀x.F ′ and:

∆ ⊢ F ′ x /∈ fv(∆)

∆ ⊢ ∀x.F ′

We define the slightly modified substitution σ′ as follows:

yσ′ :=

yσ if x ̸= y

y if x = y

It follows that (∀x.F ′)σ = ∀x.(F ′σ′). Since x /∈ fv(∆), we know that ∆σ = ∆σ′.
We apply the induction hypothesis to ∆ ⊢ F ′ and σ′, so we get ∆σ′ ⊢ F ′σ′. Using
the previous observations, we conclude ∆σ ⊢ (∀x.F ′)σ by an application of (∀-
Right). Notice that the rule can be applied, since x /∈ fv(∆σ) by the assumption
that σ does not introduce variables.

3.2. SOUNDNESS OF THE TYPE SYSTEM 69

Case (∀-Left): we know that ∆ , ∆′,∀x.F ′ and:

∆′, F ′{t/x} ⊢ F
∆′,∀x.F ′ ⊢ F

We define the slightly modified substitution σ′ as follows:

yσ′ :=

yσ if x ̸= y

y if x = y

By the induction hypothesis we know that (∆′, F ′{t/x})σ ⊢ Fσ. This is equivalent
to ∆′σ, (F ′{t/x})σ ⊢ Fσ, which is equivalent to ∆′σ, (F ′σ′){tσ/x} ⊢ Fσ by the
definition of σ and σ′ and the fact that both σ and σ′ do not introduce variables.
We can apply (∀-Left) to derive:

∆′σ, (F ′σ′){tσ/x} ⊢ Fσ
∆′σ,∀x.(F ′σ′) ⊢ Fσ

We know that by definition of σ, σ′ it holds that ∆′σ, ∀x.(F ′σ′) ⊢ Fσ is equivalent
to ∆′σ, (∀x.F ′)σ ⊢ Fσ and thus to (∆′,∀x.F ′)σ ⊢ Fσ, which is the conclusion.

Case (=-Subst): we know that ∆ , ∆′, t = t′ and:

∃σ′ = mgu(t, t′) ⇒ ∆′σ′ ⊢ Fσ′

∆′, t = t′ ⊢ F

We need to show that (∆′, t = t′)σ ⊢ Fσ, which by definition of substitution is
equivalent to showing that ∆′σ, tσ = t′σ ⊢ Fσ. We distinguish two cases: if there
does not exist a most general unifier σ′′ = mgu(tσ, t′σ), the premise for concluding
by an application of (=-Subst) is immediately met and we are done.

Otherwise, we know that there exists σ′′ = mgu(tσ, t′σ). By definition of most
general unifier, we know that (tσ)σ′′ and (t′σ)σ′′ are identical, which in particular
means that σ ◦ σ′′ is a unifier for t and t′; this also implies the existence of a most
general unifier σ′ = mgu(t, t′) and a (potentially empty) substitution σ′′′ such that
σ ◦ σ′′ = σ′ ◦ σ′′′. We can apply the induction hypothesis to ∆′σ′ ⊢ Fσ′ and σ′′′

and derive that (∆′σ′)σ′′′ ⊢ (Fσ′)σ′′′. As we have seen above, this is equivalent to
(∆′σ)σ′′ ⊢ (Fσ)σ′′. We can then apply (=-Subst) to conclude that:

σ′′ = mgu(tσ, t′σ) (∆′σ)σ′′ ⊢ (Fσ)σ′′

∆′σ, tσ = t′σ ⊢ Fσ

Case (=-Refl): we can immediately conclude by (=-Refl).

70 CHAPTER 3. PROOFS OF CHAPTER 2

Case (False): we can immediately conclude by (False).

In all other cases we apply the induction hypothesis to the premises of the rule and
conclude by applying the rule again.

Lemma 3.2.2 (Properties of Conjunction). The following properties hold:

1. For all n ≥ 0, we have ∆, F1, . . . , Fn ⊢ F iff ∆, F1 ⊗ . . .⊗ Fn ⊢ F .

2. For all ∆,∆′ it holds that ∆′ ⊆ ∆ implies ∆ ⊢ ∆′.

Proof. We proceed as follows:

1. We show both directions separately:

• ∆, F1 ⊗ . . .⊗ Fn ⊢ F ⇒ ∆, F1, . . . , Fn ⊢ F : by induction on n.
– The case for n = 1 is trivial.
– We show the case for n = 2 in detail.

We know that ∆, F1 ⊗ F2 ⊢ F and need to show that ∆, F1, F2 ⊢ F .
We know that:

Ident
F1 ⊢ F1 F2 ⊢ F2

Ident

F1, F2 ⊢ F1 ⊗ F2

⊗-Right

Since F1, F2 ⊢ F1 ⊗ F2 and ∆, F1 ⊗ F2 ⊢ F we can apply (Cut) to
derive that ∆, F1, F2 ⊢ F .

– In the remaining cases n > 2 we know that F1 ⊗ . . . ⊗ Fn actually
denotes a formula of the form (F1 ⊗ . . . ⊗ Fi) ⊗ (Fi+1 ⊗ . . . ⊗ Fn),
where F1 ⊗ . . .⊗ Fi and Fi+1 ⊗ . . .⊗ Fn also contain disambiguating
parentheses, for i ∈ {1, . . . , n− 1}. We apply the induction hypoth-
esis (for 2 < n) to the top-level conjunction, which lets us derive
that ∆, (F1 ⊗ . . . ⊗ Fi), (Fi+1 ⊗ . . . ⊗ Fn) ⊢ F . We then apply the
induction hypothesis (for i < n) to F1 ⊗ . . . ⊗ Fi and derive that
∆, F1, . . . , Fi, (Fi+1 ⊗ . . .⊗Fn) ⊢ F . Applying the induction hypoth-
esis (for n− i < n) to Fi+1 ⊗ . . .⊗ Fn lets us conclude.

• ∆, F1, . . . , Fn ⊢ F ⇒ ∆, F1 ⊗ . . .⊗ Fn ⊢ F : by induction on n.
The case n = 1 is trivial, the case for n = 2 follows by (⊗-Left). The
remaining cases n > 2 follow by applying the induction hypothesis three
times, similar to the previous direction.

2. Let ∆′ = ∅. We interpret ∆ ⊢ ∅ as ∆ ⊢ 1, which is defined as ∆ ⊢ () = ().
This immediately follows by (=-Refl).

Let ∆′ = F1, . . . , Fn for some F1, . . . , Fn. By (Ident) we know that F1⊗ . . .⊗
Fn ⊢ F1⊗. . .⊗Fn. Using property (1) it follows that F1, . . . , Fn ⊢ F1⊗. . .⊗Fn,
which is equivalent to ∆′ ⊢ ∆′ using our standard notation. We can conclude
using (Weak) repeatedly.

3.2. SOUNDNESS OF THE TYPE SYSTEM 71

Lemma 3.2.3 (Cut for Sets). If ∆ ⊢ ∆′ and ∆′,∆′′ ⊢ ∆′′′, then ∆,∆′′ ⊢ ∆′′′.

Proof. Let ∆′ = ∅. We know that ∆′′ ⊢ ∆′′′ and can immediately conclude by
repeated applications of (Weak). Let then ∆′ = F1, . . . , Fn for some F1, . . . , Fn.
We know that ∆ ⊢ F1, . . . , Fn, which denotes ∆ ⊢ F1⊗ . . .⊗Fn. Using Lemma 3.2.2
we also know that F1 ⊗ . . .⊗ Fn,∆

′′ ⊢ ∆′′′. We can conclude by (Cut).

Lemma 3.2.4 (Properties of Contraction). The following properties hold:

1. For all ∆ it holds that !∆ ⊢ !∆, !∆.

2. For all ∆,∆′ it holds that if ∆ ⊢ !∆′, then ∆ ⊢ !∆′, !∆′.

Proof. We proceed as follows:

1. We know that !∆, !∆ ⊢ !∆, !∆ by Lemma 3.2.2. We can conclude by applying
(Contr) to each element in !∆.

2. Using property (1) we know that !∆′ ⊢ !∆′, !∆′. Since ∆ ⊢ !∆′, we can conclude
using Lemma 3.2.3.

3.2.2 Basic results

Lemma 3.2.5 (Derived Judgements). It holds that:

1. If Γ;∆ ⊢ �, then fnfv(∆) ⊆ dom(Γ) and ∀∆′ ⊆ ∆ : Γ;∆′ ⊢ � .

2. If Γ;∆ ⊢ � and (x : T) ∈ Γ, then T = ψ(T).

3. If Γ;∆ ⊢ T , then Γ; ∅ ⊢ ψ(T).

4. If Γ;∆ ⊢ T , then Γ;∆ ⊢ � and fnfv(T) ⊆ dom(Γ).

5. If Γ;∆ ⊢ F , then Γ;∆ ⊢ � and fnfv(F) ⊆ dom(Γ).

6. If Γ;∆ ↩→ Γ;∆′, then Γ;∆ ⊢ � and Γ;∆′ ⊢ �.

7. If Γ;∆ ⊢ T :: k, then Γ;∆ ⊢ T .

8. If Γ;∆ ⊢ T <: T ′, then Γ;∆ ⊢ T and Γ;∆ ⊢ T ′.

9. If Γ;∆ ⊢ E : T , then Γ;∆ ⊢ T and fnfv(E) ⊆ dom(Γ).

Proof. By induction on the depth of the derivation of the judgements.

Lemma 3.2.6 (Joining Environments). If Γ;∆ ⊢ � and Γ;∆′ ⊢ �, then Γ;∆,∆′ ⊢ �.

72 CHAPTER 3. PROOFS OF CHAPTER 2

Proof. By induction on the size of ∆′, using Lemma 3.2.5 (point 1).

Notation 3.2.1 (Environment Entry η). We define an environment entry η to be
either a type environment entry µ or a formula F .

Notation 3.2.2 (Environment Join •). We introduce the following notation for
environment join:

(Γ;∆) • µ ,

Γ, x : ψ(T);∆, forms(x : T) if µ = x : T

Γ, µ; ∆ otherwise

(Γ;∆) • F , Γ;∆, F

(Γ;∆) • (Γ′; ∆′) , Γ,Γ′; ∆,∆′

Lemma 3.2.7 (Weakening). If (Γ;∆) • (Γ′; ∆′) ⊢ J and (Γ;∆) • η • (Γ′; ∆′) ⊢ �,
then (Γ;∆) • η • (Γ′; ∆′) ⊢ J .

Proof. By induction on the derivation of (Γ;∆) • (Γ′; ∆′) ⊢ J .

Lemma 3.2.8 (Properties of Rewriting). The following statements hold true:

1. If Γ;∆ ⊢ � and ∆′ ⊆ ∆, then Γ;∆ ↩→ Γ;∆′.

2. If Γ;∆1 ↩→ Γ;∆′
1 and Γ;∆2 ↩→ Γ;∆′

2, then Γ;∆1,∆2 ↩→ Γ;∆′
1,∆

′
2.

3. If Γ;∆ ↩→ Γ;∆′ and Γ;∆′ ↩→ Γ;∆′′, then Γ;∆ ↩→ Γ;∆′′.

4. If Γ;∆ ↩→ Γ; !∆′, then Γ;∆ ↩→ Γ; !∆′, !∆′.

Proof. We proceed as follows:

1. Since ∆′ ⊆ ∆, we know that Γ;∆′ ⊢ � by Lemma 3.2.5. By Lemma 3.2.2 we
know that ∆ ⊢ ∆′, hence Γ;∆ ↩→ Γ;∆′ by (Rewrite).

2. By inverting (Rewrite) we know that Γ;∆1 ⊢ �, Γ;∆′
1 ⊢ �, Γ;∆2 ⊢ �,

Γ;∆′
2 ⊢ �, ∆1 ⊢ ∆′

1 and ∆2 ⊢ ∆′
2. By Lemma 3.2.6 we have Γ;∆1,∆2 ⊢ �

and Γ;∆′
1,∆

′
2 ⊢ �. By (⊗-Right) we get ∆1,∆2 ⊢ ∆′

1,∆
′
2 from ∆1 ⊢ ∆′

1 and
∆2 ⊢ ∆′

2, hence we conclude Γ;∆1,∆2 ↩→ Γ;∆′
1,∆

′
2 by (Rewrite).

3. By inverting (Rewrite) we know that Γ;∆ ⊢ �, Γ;∆′ ⊢ �, Γ;∆′′ ⊢ �, ∆ ⊢ ∆′

and ∆′ ⊢ ∆′′. By Lemma 3.2.3 we know that ∆ ⊢ ∆′ and ∆′ ⊢ ∆′′ imply
∆ ⊢ ∆′′, hence we conclude Γ;∆ ↩→ Γ;∆′′ by (Rewrite).

4. By inverting (Rewrite) we know that Γ;∆ ⊢ �, Γ; !∆′ ⊢ � and ∆ ⊢ !∆′. Since
Γ; !∆′ ⊢ � implies fnfv(!∆′) ⊆ dom(Γ) by Lemma 3.2.5, we get Γ; !∆′, !∆′ ⊢ �
by multiple applications of (Form Env Entry). By Lemma 3.2.4 we know
that ∆ ⊢ !∆′ implies ∆ ⊢ !∆′, !∆′, hence we conclude Γ;∆ ↩→ Γ; !∆′, !∆′ by
using (Rewrite).

3.2. SOUNDNESS OF THE TYPE SYSTEM 73

Lemma 3.2.9 (Rewrite Weak). If Γ;∆′ ⊢ J and Γ;∆ ↩→ Γ;∆′, then Γ;∆ ⊢ J .

Proof. We distinguish on J :

1. J = �: This case follows immediately by the definition of (Rewrite).

2. J = T : By definition of rule (Type) we know that Γ;∆′ ⊢ � and fnfv(T) ⊆
dom(Γ). We also know that Γ;∆ ↩→ Γ;∆′, which by (Rewrite) implies
Γ;∆ ⊢ �. Since Γ;∆ ⊢ � and fnfv(T) ⊆ dom(Γ), we conclude Γ;∆ ⊢ T by
using (Type).

3. J = F : By definition of rule (Derive) we know that Γ;∆′ ⊢ �, fnfv(F) ⊆
dom(Γ) and ∆′ ⊢ F . We also know that Γ;∆ ↩→ Γ;∆′, which by (Rewrite)
implies Γ;∆ ⊢ � and ∆ ⊢ ∆′. We can apply Lemma 3.2.3 to ∆ ⊢ ∆′ and
∆′ ⊢ F , and get ∆ ⊢ F . Since Γ;∆ ⊢ �, fnfv(F) ⊆ dom(Γ) and ∆ ⊢ F , we
conclude Γ;∆ ⊢ F by (Derive).

4. J = T :: k: We proceed by induction on the derivation of Γ;∆′ ⊢ T :: k. The
cases (Kind Var) and (Kind Unit) follow immediately by proof part (1).
The case (Kind Refine Public) follows by proof part (2) and an application
of the induction hypothesis. All other cases contain a rewriting statement of
the form Γ;∆′ ↩→ Γ;∆′′ among their hypotheses. By Lemma 3.2.8 (point 3)
it follows that Γ;∆ ↩→ Γ;∆′′, thus allowing us to immediately conclude by
applying the original rule.

5. J = T <: U : By induction on the derivation of Γ;∆′ ⊢ T <: U , using the
same reasoning as in the previous case.

6. J = E : T : By induction on the derivation of Γ;∆′ ⊢ E : T , using the same
reasoning as in the previous cases.

Lemma 3.2.10 (Rewriting and Variables). If x /∈ dom(Γ) and Γ;∆ ↩→ Γ;∆′, then
x /∈ fv(∆′).

Proof. Immediate by Lemma 3.2.5 (point 1), since Γ;∆ ↩→ Γ;∆′ implies Γ;∆′ ⊢ �
by inverting rule (Rewrite).

Lemma 3.2.11 (Soundness of ψ). For every type T , we have forms(x : ψ(T)) = ∅.

Proof. By induction on the structure of T .

Lemma 3.2.12 (Idempotent ψ). For every type T , we have ψ(ψ(T)) = ψ(T).

Proof. By induction on the structure of T .

74 CHAPTER 3. PROOFS OF CHAPTER 2

3.2.3 Properties of kinding and subtyping

Lemma 3.2.13 (Bare Kinds). If Γ;∆ ⊢ T :: k, then there exist !∆′ and ∆′′ such
that Γ;∆ ↩→ Γ; !∆′,∆′′ and Γ; !∆′ ⊢ ψ(T) :: k. Moreover, if k = tnt, we can also
require ∆′′ ⊢ forms(x : T) for any x /∈ dom(Γ).

Proof. By induction on the derivation of Γ;∆ ⊢ T :: k:

Case (Kind Var): assume that Γ;∆ ⊢ α :: k by the premise (α :: k) ∈ Γ with
Γ;∆ ⊢ �. Since forms(x : α) = ∅ and ψ(α) = α, we just need to show that
Γ;∆ ↩→ Γ; !∆′ for some !∆′ such that Γ; !∆′ ⊢ α :: k. We note that Γ;∆ ⊢ � implies
Γ; ∅ ⊢ � by Lemma 3.2.5 (point 1), hence Γ; ∅ ⊢ α :: k by (Kind Var). Since
Γ;∆ ↩→ Γ; ∅ by Lemma 3.2.8 (point 1), this is the desired conclusion.

Case (Kind Unit): assume that Γ;∆ ⊢ unit :: k by the premise Γ;∆ ⊢ �. Since
forms(x : unit) = ∅ and ψ(unit) = unit, we just need to show that Γ;∆ ↩→ Γ; !∆′

for some !∆′ such that Γ; !∆′ ⊢ unit :: k. We note that Γ;∆ ⊢ � implies Γ; ∅ ⊢ � by
Lemma 3.2.5 (point 1), hence Γ; ∅ ⊢ unit :: k by (Kind Unit). Since Γ;∆ ↩→ Γ; ∅
by Lemma 3.2.8 (point 1), this is the desired conclusion.

Case (Kind Fun): assume that Γ;∆ ⊢ x : T → U :: k by the premises Γ; !∆1 ⊢ T ::
k and Γ, x : ψ(T); !∆2 ⊢ U :: k with Γ;∆ ↩→ Γ; !∆1, !∆2. Since ψ(x : T → U) = x :
T → U and forms(x : (x : T → U)) = ∅, the conclusion is immediate.

Case (Kind Refine Public): assume that Γ;∆ ⊢ {x : T | F} :: pub by the
premises Γ;∆ ⊢ {x : T | F} and Γ;∆ ⊢ T :: pub. By inductive hypothesis
Γ;∆ ↩→ Γ; !∆1,∆2 for some !∆1,∆2 such that Γ; !∆1 ⊢ ψ(T) :: pub. Since ψ({x :
T | F}) = ψ(T) by definition, we can conclude.

Case (Kind Refine Tainted): We know that Γ;∆ ⊢ {x : T | F} :: tnt by the
premises Γ;∆1 ⊢ ψ({x : T | F}) :: tnt and Γ, x : ψ({x : T | F});∆2 ⊢ forms(x : {x :
T | F}) with Γ;∆ ↩→ Γ;∆1,∆2. We apply the inductive hypothesis to get Γ;∆1 ↩→
Γ; !∆11,∆12 for some !∆11 and ∆12 such that Γ; !∆11 ⊢ ψ(ψ({x : T | F})) :: tnt and
∆12 ⊢ forms(x : ψ({x : T | F})). Note that the former judgement is equivalent to
Γ; !∆11 ⊢ ψ({x : T | F}) :: tnt by Lemma 3.2.12. By inverting (Derive) we have
∆2 ⊢ forms(x : {x : T | F}). Since Γ;∆ ↩→ Γ; !∆11,∆2 by Lemma 3.2.8, we can
conclude.

The cases for rules (Kind Pair), (Kind Sum) and (Kind Rec) are identical to
the case for (Kind Fun).

Lemma 3.2.14 (Bare Kinds Reverse). If Γ;∆ ⊢ ψ(T) :: pub and Γ;∆ ⊢ T , then
Γ;∆ ⊢ T :: pub.

Proof. By induction on the structure of T . In most cases T = ψ(T), allowing
us to immediately conclude. In the case where T = {x : U | F}, assume that

3.2. SOUNDNESS OF THE TYPE SYSTEM 75

Γ;∆ ⊢ ψ({x : U | F}) :: pub and Γ;∆ ⊢ {x : U | F}. We observe that the
latter implies Γ;∆ ⊢ U . By definition we have ψ({x : U | F}) = ψ(U), hence by
inductive hypothesis we get Γ;∆ ⊢ U :: pub. Since Γ;∆ ⊢ {x : U | F} by hypothesis
and Γ;∆ ⊢ U :: pub, we conclude Γ;∆ ⊢ {x : U | F} :: pub by (Kind Refine
Public).

Lemma 3.2.15 (Bare Subtypes). If Γ;∆ ⊢ T <: U , then there exist !∆′ and ∆′′

such that Γ;∆ ↩→ Γ; !∆′,∆′′ and Γ; !∆′ ⊢ ψ(T) <: ψ(U) and ∆′′, forms(x : T) ⊢
forms(x : U) for any x /∈ dom(Γ).

Proof. By induction on the derivation of Γ;∆ ⊢ T <: U :

Case (Sub Refl): assume that Γ;∆ ⊢ T <: T by the premise Γ;∆ ⊢ T . Since
Γ; ∅ ⊢ ψ(T) by Lemma 3.2.5 (point 3), we have Γ; ∅ ⊢ ψ(T) <: ψ(T) by (Sub
Refl). Moreover, we note that forms(x : T) ⊢ forms(x : T). This leads to the
desired conclusion, since Γ;∆ ↩→ Γ; ∅ by Lemma 3.2.8 (point 1).

Case (Sub Pub Tnt): assume that Γ;∆ ⊢ T <: U by the premises Γ;∆1 ⊢ T ::
pub and Γ;∆2 ⊢ U :: tnt with Γ;∆ ↩→ Γ;∆1,∆2. We apply Lemma 3.2.13 to
Γ;∆1 ⊢ T :: pub and we get Γ;∆1 ↩→ Γ; !∆11,∆12 for some !∆11,∆12 such that
Γ; !∆11 ⊢ ψ(T) :: pub. Then we apply Lemma 3.2.13 to Γ;∆2 ⊢ U :: tnt and
we get Γ;∆2 ↩→ Γ; !∆21,∆22 for some !∆21,∆22 such that Γ; !∆21 ⊢ ψ(U) :: tnt
and Γ;∆22 ⊢ forms(x : U). By an application of (Sub Pub Tnt) we then get
Γ; !∆11, !∆21 ⊢ ψ(T) <: ψ(U). Now we notice that Γ;∆ ↩→ Γ; !∆11,∆12, !∆21,∆22

by Lemma 3.2.8, which implies Γ;∆ ↩→ Γ; (!∆11, !∆21),∆22 again by Lemma 3.2.8,
hence we conclude.

Case (Sub Fun): assume that Γ;∆ ⊢ y : U1 → U2 <: y : U3 → U4 by the premises
Γ; !∆1 ⊢ U3 <: U1 and Γ, y : ψ(U3); !∆2 ⊢ U2 <: U4 with Γ;∆ ↩→ Γ; !∆1, !∆2.
Since ψ(y : U1 → U2) = y : U1 → U2 and ψ(y : U3 → U4) = y : U3 → U4 and
forms(x : (y : U1 → U2)) = forms(x : (y : U3 → U4)) = ∅, the conclusion is
immediate.

Case (Sub Refine): assume that Γ;∆ ⊢ T <: U by the premises Γ;∆1 ⊢ ψ(T) <:
ψ(U) and Γ, y : ψ(T);∆2, forms(y : T) ⊢ forms(y : U) with Γ;∆ ↩→ Γ;∆1,∆2. We
apply the inductive hypothesis to Γ;∆1 ⊢ ψ(T) <: ψ(U) and we get that there
exist !∆11,∆12 such that Γ; !∆11 ⊢ ψ(ψ(T)) <: ψ(ψ(U)) and Γ;∆1 ↩→ Γ; !∆11,∆12.
The former judgement is equivalent to Γ; !∆11 ⊢ ψ(T) <: ψ(U) by Lemma 3.2.12,
while by inverting rule (Derive) we have ∆2, forms(y : T) ⊢ forms(y : U); hence,
to conclude we just note that Γ;∆ ↩→ Γ; !∆11,∆2 by Lemma 3.2.8.

The cases for rules (Sub Pair), (Sub Sum) and (Sub Pos Rec) are identical
to the case for (Sub Fun).

Lemma 3.2.16 (Replacing Unrefined Bindings). For all J ∈ {�, U, F, U :: k, U <:
U ′} it holds that if Γ, x : ψ(T),Γ′; ∆ ⊢ J and Γ; ∅ ⊢ ψ(T ′), then Γ, x : ψ(T ′),Γ′; ∆ ⊢
J . Moreover, the depth of the two derivations is the same.

76 CHAPTER 3. PROOFS OF CHAPTER 2

Proof. We prove all statements separately by induction on the derivation of Γ, x :
ψ(T),Γ′; ∆ ⊢ J , making use of Lemma 3.2.5 when needed.

Definition 3.2.3 (Compartmental Notation for Environments). Let Γ[(µi)
i∈{1,...,n}]

denote the environment obtained by inserting the entries µ1, . . . , µn at fixed positions
between the entries of the environment Γ.

Lemma 3.2.17 (Type Variables and Kinding). For all Γ = Γ0[(αi)
i∈{1,...,n}] and

Γ̂ = Γ0[(αi :: ki)
i∈{1,...,n}] it holds that:

1. dom(Γ) = dom(Γ̂);

2. Γ;∆ ⊢ � if and only if Γ̂; ∆ ⊢ �;

3. Γ;∆ ↩→ Γ;∆′ if and only if Γ̂; ∆ ↩→ Γ̂; ∆′;

4. Γ;∆ ⊢ T if and only if Γ̂; ∆ ⊢ T ;

5. Γ;∆ ⊢ F if and only if Γ̂; ∆ ⊢ F ;

6. If Γ;∆ ⊢ T :: k, then Γ̂; ∆ ⊢ T :: k.

Proof. We proceed as follows:

1. We note that dom(αi) = dom(αi :: ki) by the definition of dom and we easily
conclude.

2. Γ;∆ and Γ̂; ∆ only differ in αi and αi :: ki respectively. The statement follows
noting that dom(αi) = {αi} = dom(αi :: ki).

3. By definition of (Rewrite), using (2).

4. By definition of (Type), using (1) and (2).

5. By definition of (Derive), using (1) and (2).

6. By induction on the derivation of Γ;∆ ⊢ T :: k, using the previous statements.

Lemma 3.2.18 (Public Down/Tainted Up). For all environments Γ;∆ and types
T, T ′ it holds that:

1. If Γ;∆ ⊢ T <: T ′ and Γ;∆′ ⊢ T ′ :: pub, then Γ;∆,∆′ ⊢ T :: pub.

2. If Γ;∆ ⊢ T <: T ′ and Γ;∆′ ⊢ T :: tnt, then Γ;∆,∆′ ⊢ T ′ :: tnt.

Proof. The lemma is an instance (for n = 0) of the following more general statement:
For all environments Γ;∆ and types T, T ′ such that Γ = Γ0[(αi)

i∈{1,...,n}] and Γ̂ =
Γ0[(αi :: ki)

i∈{1,...,n}] it holds:

3.2. SOUNDNESS OF THE TYPE SYSTEM 77

1. If Γ;∆ ⊢ T <: T ′ and Γ̂; ∆′ ⊢ T ′ :: pub, then Γ̂; ∆,∆′ ⊢ T :: pub.

2. If Γ;∆ ⊢ T <: T ′ and Γ̂; ∆′ ⊢ T :: tnt, then Γ̂; ∆,∆′ ⊢ T ′ :: tnt.

Both statements are proved by simultaneous induction on the derivation of Γ;∆ ⊢
T <: T ′. We distinguish the last applied subtyping rule and we often implicitly
appeal to Lemma 3.2.5 and Lemma 3.2.17. Notice in particular that, by using
Lemma 3.2.5 and Lemma 3.2.17, we can derive both Γ;∆,∆′ ⊢ � and Γ̂; ∆,∆′ ⊢ �.

Case (Sub Refl): In this case T = T ′, hence we know in the two cases that:

1. Γ̂; ∆′ ⊢ T :: pub. As seen above, we know that Γ̂; ∆,∆′ ⊢ �, hence Γ̂; ∆,∆′ ⊢
T :: pub follows by Lemma 3.2.7.

2. Γ̂; ∆′ ⊢ T ′ :: tnt. Using the same reasoning as in the previous case we can
conclude that Γ̂; ∆,∆′ ⊢ T ′ :: tnt follows by Lemma 3.2.7.

Case (Sub Pub Tnt): In this case it holds that Γ;∆ ↩→ Γ;∆1,∆2 such that Γ;∆1 ⊢
T :: pub and Γ;∆2 ⊢ T ′ :: tnt. Notice again that Γ;∆,∆′ ⊢ � as before.

In the proof of statement (1) we need to show that Γ̂; ∆,∆′ ⊢ T :: pub. By
Lemma 3.2.8 we know that Γ;∆,∆′ ↩→ Γ;∆1. We derive that Γ;∆,∆′ ⊢ T ::
pub by an application of Lemma 3.2.9. We apply Lemma 3.2.17 to conclude that
Γ̂; ∆,∆′ ⊢ T :: pub.

In the proof of statement (2) we need to show that Γ;∆,∆′ ⊢ T ′ :: tnt. By
Lemma 3.2.8 we know that Γ;∆,∆′ ↩→ Γ;∆2. We conclude by an application of
Lemma 3.2.9 that Γ;∆,∆′ ⊢ T ′ :: tnt. Using Lemma 3.2.17 we can conclude that
Γ̂; ∆,∆′ ⊢ T ′ :: tnt.

Case (Sub Refine): In this case we know that Γ;∆ ↩→ Γ;∆1,∆2 such that Γ;∆1 ⊢
ψ(T) <: ψ(T ′) and Γ, y : ψ(T);∆2, forms(y : T) ⊢ forms(y : T ′).

We show both statements separately. We first note that by Lemma 3.2.5 we know
that Γ; ∅ ⊢ T and Γ; ∅ ⊢ T ′ and thus by Lemma 3.2.17 Γ̂; ∅ ⊢ T and Γ̂; ∅ ⊢ T ′.

1. By Lemma 3.2.13 we know that there exist ∆′
1,∆

′
2 such that:

• Γ̂; ∆′ ↩→ Γ̂; !∆′
1,∆

′
2,

• Γ̂; !∆′
1 ⊢ ψ(T ′) :: pub.

We can apply the induction hypothesis to derive that:

Γ̂; ∆1, !∆
′
1 ⊢ ψ(T) :: pub.

By Lemma 3.2.14 we can immediately derive that:

Γ̂; ∆1, !∆
′
1 ⊢ T :: pub.

We can derive that Γ̂; ∆,∆′ ↩→ Γ̂; ∆1, !∆
′
1 using Lemma 3.2.8 in combination

with Lemma 3.2.17, hence we conclude Γ̂; ∆,∆′ ⊢ T :: pub by Lemma 3.2.9.

78 CHAPTER 3. PROOFS OF CHAPTER 2

2. By Lemma 3.2.13 we know that there exist ∆′
1,∆

′
2 such that:

• Γ̂; ∆′ ↩→ Γ̂; !∆′
1,∆

′
2,

• Γ̂; !∆′
1 ⊢ ψ(T) :: tnt, and

• ∆′
2 ⊢ forms(y : T) for some y /∈ dom(Γ).

We can apply the induction hypothesis to derive that:

Γ̂; ∆1, !∆
′
1 ⊢ ψ(T ′) :: tnt.

If ψ(T ′) = T ′, we observe that Γ̂; ∆,∆′ ↩→ Γ̂; ∆1, !∆
′
1 by Lemma 3.2.8 in

combination with Lemma 3.2.17, hence we conclude Γ̂; ∆,∆′ ⊢ T :: tnt by
Lemma 3.2.9.
Otherwise, we know that T ′ is refined. We stated that Γ, y : ψ(T);∆2, forms(y :
T) ⊢ forms(y : T ′), thus, by inverting (Derive), we know that ∆2, forms(y :
T) ⊢ forms(y : T ′). Using Lemma 3.2.3 we get:

∆′
2,∆2 ⊢ forms(y : T ′),

hence, by applying (Derive) and some simple observations, we know that
Γ̂, y : ψ(T ′);∆′

2,∆2 ⊢ forms(y : T ′). By (Kind Refine Tainted) we then
get:

Γ̂; ∆1, !∆
′
1 ⊢ ψ(T ′) :: tnt Γ̂, y : ψ(T ′);∆′

2,∆2 ⊢ forms(y : T ′)

Γ̂; !∆′
1,∆

′
2,∆2 ⊢ T ′ :: tnt

By Lemma 3.2.8 in combination with Lemma 3.2.17, we know that Γ̂; ∆,∆′ ↩→
Γ̂; ∆1,∆2, !∆

′
1,∆

′
2, hence we conclude Γ̂; ∆,∆′ ⊢ T ′ :: tnt by Lemma 3.2.9.

Case (Sub Sum): In this case we know that T = T1 + T2 and T ′ = T ′
1 + T ′

2 and
Γ;∆ ↩→ Γ; !∆1, !∆2 such that Γ; !∆i ⊢ Ti <: T ′

i for i ∈ {1, 2}.

1. By the definition of the only applicable kinding rule (Kind Sum) we also
know that Γ̂; ∆′ ↩→ Γ̂; !∆′

1, !∆
′
2 such that Γ̂; !∆′

i ⊢ T ′
i :: pub for i ∈ {1, 2}. We

apply the induction hypothesis twice and derive that Γ̂; !∆i, !∆
′
i ⊢ Ti :: pub.

Since we know that Γ̂; ∆,∆′ ↩→ Γ̂; !∆1, !∆2, !∆
′
1, !∆

′
2 = Γ̂; !∆1, !∆

′
1, !∆2, !∆

′
2

by Lemma 3.2.8 and Lemma 3.2.17, we conclude Γ̂; ∆,∆′ ⊢ T :: pub by an
application of (Kind Sum).

2. Analogous to the case for statement (1).

Case (Sub Pos Rec): We know that T = µα. U and T ′ = µα. U ′ and Γ;∆ ↩→ Γ; !∆1

such that Γ, α; !∆1 ⊢ U <: U ′ and α occurs only positively in U and U ′.

1. By the definition of the only applicable kinding rule (Kind Rec) we also know
that Γ̂; ∆′ ↩→ Γ̂; !∆′

1 such that Γ̂, α :: pub; !∆′
1 ⊢ U ′ :: pub. We define αn+1 , α

3.2. SOUNDNESS OF THE TYPE SYSTEM 79

and Γ′ , Γ, α = Γ0[(αi)
i∈{1,...,n+1}]. Furthermore, we define kn+1 , pub and

Γ̂′ , Γ̂, α :: pub = Γ0[(αi :: ki)
i∈{1,...,n+1}]. We can thus apply the induction

hypothesis and derive that Γ̂′; !∆1, !∆
′
1 ⊢ U :: pub, which is equivalent to

Γ̂, α :: pub; !∆1, !∆
′
1 ⊢ U :: pub. Since we know that Γ̂; ∆,∆′ ↩→ Γ̂; !∆1, !∆

′
1 by

Lemma 3.2.8 and Lemma 3.2.17, we conclude Γ̂; ∆,∆′ ⊢ µα. U :: pub by an
application of (Kind Rec).

2. Analogous to the case for statement (1).

Case (Sub Pair): In this case T = x : T1 ∗ T2 and T ′ = x : T ′
1 ∗ T ′

2. We know that
Γ;∆ ↩→ Γ; !∆1, !∆2 such that Γ; !∆1 ⊢ T1 <: T ′

1 and Γ, x : ψ(T1); !∆2 ⊢ T2 <: T ′
2.

1. By the only applicable kinding rule (Kind Pair), we have Γ̂; ∆′ ↩→ Γ̂; !∆′
1, !∆

′
2

such that Γ̂; !∆′
1 ⊢ T ′

1 :: pub and Γ̂, x : ψ(T ′
1); !∆

′
2 ⊢ T ′

2 :: pub.
We apply the induction hypothesis to derive that:

Γ̂; !∆1, !∆
′
1 ⊢ T1 :: pub.

We apply Lemma 3.2.16 to transform Γ̂, x : ψ(T ′
1); !∆

′
2 ⊢ T ′

2 :: pub into:

Γ̂, x : ψ(T1); !∆
′
2 ⊢ T ′

2 :: pub,

allowing us to apply the induction hypothesis a second time to derive that:

Γ̂, x : ψ(T1); !∆2, !∆
′
2 ⊢ T2 :: pub.

We conclude Γ̂; ∆,∆′ ⊢ T :: pub by an application of (Kind Pair), since we
know that Γ̂; ∆,∆′ ↩→ Γ̂; !∆1, !∆

′
1, !∆2, !∆

′
2 by Lemma 3.2.8 and Lemma 3.2.17.

2. Analogous to the case for statement (1).

Case (Sub Fun): In this case T = x : T1 → T2 and T ′ = x : T ′
1 → T ′

2. We know that
Γ;∆ ↩→ Γ; !∆1, !∆2 such that Γ; !∆1 ⊢ T ′

1 <: T1 and Γ, x : ψ(T ′
1); !∆2 ⊢ T2 <: T ′

2.

1. By the only applicable kinding rule (Kind Fun), we have Γ̂; ∆′ ↩→ Γ̂; !∆′
1, !∆

′
2

such that Γ̂; !∆′
1 ⊢ T ′

1 :: tnt and Γ̂, x : ψ(T ′
1); !∆

′
2 ⊢ T ′

2 :: pub.
We apply the induction hypothesis (2) to derive that:

Γ̂; !∆1, !∆
′
1 ⊢ T1 :: tnt.

We apply the induction hypothesis (1) to derive that:

Γ̂, x : ψ(T ′
1); !∆2, !∆

′
2 ⊢ T2 :: pub.

We apply Lemma 3.2.16 to transform Γ̂, x : ψ(T ′
1); !∆2, !∆

′
2 ⊢ T2 :: pub into:

Γ̂, x : ψ(T1); !∆2, !∆
′
2 ⊢ T2 :: pub.

We conclude Γ̂; ∆,∆′ ⊢ T :: pub by an application of (Kind Fun), using the
fact that Γ̂; ∆,∆′ ↩→ Γ̂; !∆1, !∆

′
1, !∆2, !∆

′
2 by Lemma 3.2.8 and Lemma 3.2.17.

80 CHAPTER 3. PROOFS OF CHAPTER 2

2. Analogous to the case for statement (1).

Lemma 3.2.19 (Public Tainted). For all environments Γ;∆ and types T we have:

1. Γ;∆ ⊢ T :: pub if and only if Γ;∆ ⊢ T <: Un.

2. Γ;∆ ⊢ T :: tnt if and only if Γ;∆ ⊢ Un <: T .

Proof. By definition Un , unit and thus by (Kind Unit) it holds that Γ; ∅ ⊢ Un ::
pub and Γ; ∅ ⊢ Un :: tnt. We can immediately prove the forward implication by
applying the subtyping rule (Sub Pub Tnt), since Γ;∆ ↩→ Γ;∆ by Lemma 3.2.8.
The reverse implication follows immediately by Lemma 3.2.18.

Lemma 3.2.20 (Subtyping and ψ). The following statements hold true:

1. If Γ; ∅ ⊢ T , then Γ; ∅ ⊢ T <: ψ(T).

2. If Γ;∆ ⊢ ψ(T) <: U and Γ; ∅ ⊢ T , then Γ;∆ ⊢ T <: U .

Proof. We proceed as follows:

1. By induction on the structure of T :

• Whenever T = ψ(T), we can conclude by an application of (Sub Refl).

• Otherwise, we know that T = {x : U | F}. We know that Γ; ∅ ⊢ T ,
hence Γ; ∅ ⊢ ψ(T) by Lemma 3.2.5 (point 3). Applying (Sub Refl)
lets us derive that Γ; ∅ ⊢ ψ(T) <: ψ(T), which is equivalent to Γ; ∅ ⊢
ψ(T) <: ψ(ψ(T)) by Lemma 3.2.12. Furthermore, we know that forms(y :
ψ(T)) = ∅ by Lemma 3.2.11, hence we have Γ, x : ψ(T); forms(y : T) ⊢
forms(y : ψ(T)). We thus conclude Γ; ∅ ⊢ T <: ψ(T) by an application
of (Sub Refine).

2. By induction on the derivation of Γ;∆ ⊢ ψ(T) <: U . We distinguish upon the
last applied subtyping rule:

• In the case where the last applied rule was (Sub Fun), (Sub Pair),
(Sub Sum), or (Sub Pos Rec) we know that T = ψ(T) and we can
immediately conclude.

• (Sub Refl): In this case we know that U = ψ(T). We can thus conclude
by an application of statement (1) and Lemma 3.2.7.

• (Sub Pub Tnt): In this case we know that there exist ∆1,∆2 such
that Γ;∆ ↩→ Γ;∆1,∆2 and Γ;∆1 ⊢ ψ(T) :: pub and Γ;∆2 ⊢ U :: tnt.
By Lemma 3.2.14 we thus know that Γ;∆1 ⊢ T :: pub, allowing us to
conclude by an application of (Sub Pub Tnt).

3.2. SOUNDNESS OF THE TYPE SYSTEM 81

• (Sub Refine): In this case we know that U must be refined. Further-
more, we know that there must exist ∆1,∆2 such that Γ;∆ ↩→ Γ;∆1,∆2

and Γ;∆1 ⊢ ψ(ψ(T)) <: ψ(U) and Γ, x : ψ(ψ(T));∆2, forms(x : ψ(T)) ⊢
forms(x : U). Note that by Lemma 3.2.12 we know that ψ(ψ(T)) = ψ(T)
and by Lemma 3.2.11 we know that forms(x : ψ(T)) = ∅. Thus, it fol-
lows that Γ;∆1 ⊢ ψ(T) <: ψ(U) and Γ, x : ψ(T);∆2 ⊢ forms(x : U).
We can apply Lemma 3.2.7 to derive that Γ, x : ψ(T);∆2, forms(x : T) ⊢
forms(x : U). This allows us to conclude by an application of (Sub
Refine).

Lemma 3.2.21 (Transitivity). If Γ;∆ ⊢ T <: T ′ and Γ;∆′ ⊢ T ′ <: T ′′, then
Γ;∆,∆′ ⊢ T <: T ′′.

Proof. By induction on the sum of the depth of the derivations of the antecedent
judgements. We proceed by case analysis on the last subtyping rule R1 applied in
the derivation Γ;∆ ⊢ T <: T ′ and the last applied rule R2 in the derivation of
Γ;∆′ ⊢ T ′ <: T ′′. We first note that by Lemma 3.2.5 it must be the case that
Γ;∆ ⊢ � and Γ;∆′ ⊢ � and thus by Lemma 3.2.6 it holds that Γ;∆,∆′ ⊢ �.

Case R1 = (Sub Refl): Since in this case T = T ′, we can immediately conclude
by applying Lemma 3.2.7 to Γ;∆′ ⊢ T ′ <: T ′′.

Case R2 = (Sub Refl): Since in this case T ′ = T ′′, we can immediately conclude
by applying Lemma 3.2.7 to Γ;∆ ⊢ T <: T ′.

Case R1 = (Sub Pub Tnt): By definition of (Sub Pub Tnt) it follows that
Γ;∆1 ⊢ T :: pub, Γ;∆2 ⊢ T ′ :: tnt, where Γ;∆ ↩→ Γ;∆1,∆2. We can apply
Lemma 3.2.18 to derive that Γ;∆′,∆2 ⊢ T ′′ :: tnt and since we know that Γ;∆,∆′ ⊢
� and Γ;∆,∆′ ↩→ Γ;∆1,∆2,∆

′ by Lemma 3.2.8 we apply rule (Sub Pub Tnt) to
conclude.

Case R2 = (Sub Pub Tnt): By definition of (Sub Pub Tnt) it follows that
Γ;∆′

1 ⊢ T ′ :: pub, Γ;∆′
2 ⊢ T ′′ :: tnt, where Γ;∆′ ↩→ Γ;∆′

1,∆
′
2. We can apply

Lemma 3.2.18 to derive that Γ;∆,∆′
1 ⊢ T :: pub and since we know that Γ;∆,∆′ ⊢ �

and Γ;∆,∆′ ↩→ Γ;∆,∆′
1,∆

′
2 we apply rule (Sub Pub Tnt) to conclude.

Case R1 = R2 = (Sub Sum): Follows immediately by applying the induction hy-
pothesis twice to the premises of the applied rule (Sub Sum) and then applying
(Sub Sum) to the resulting statements.

Case R1 = R2 = (Sub Pos Rec): Follows immediately by applying the induction
hypothesis to the premise of the applied rule (Sub Pos Rec) and then applying
(Sub Pos Rec) to the resulting statement.

82 CHAPTER 3. PROOFS OF CHAPTER 2

Case R1 = (Sub Refine): In this case we know that Γ;∆ ↩→ Γ;∆1,∆2 such that
Γ;∆1 ⊢ ψ(T) <: ψ(T ′) and (Γ;∆2) • y : T ⊢ forms(y : T ′).

We distinguish all possible rules R2, that are not captured by previous cases:

• R2 is either (Sub Fun), (Sub Pair), (Sub Sum), or (Sub Pos Rec): In this
case we know that ψ(T ′) = T ′ and we can immediately apply the induction
hypothesis to derive that:

Γ;∆1,∆
′ ⊢ ψ(T) <: T ′′.

By Lemma 3.2.20 it follows that:

Γ;∆1,∆
′ ⊢ T <: T ′′.

By Lemma 3.2.8 we know that Γ;∆,∆′ ↩→ Γ;∆1,∆
′, allowing us to conclude

by an application of Lemma 3.2.9.

• R2 = (Sub Refine): In this case we know that Γ;∆′ ↩→ Γ;∆′
1,∆

′
2 such that

Γ;∆′
1 ⊢ ψ(T ′) <: ψ(T ′′) and (Γ;∆′

2) • y : T ′ ⊢ forms(y : T ′′).
We can apply the induction hypothesis to Γ;∆1 ⊢ ψ(T) <: ψ(T ′) and Γ;∆′

1 ⊢
ψ(T ′) <: ψ(T ′′), leading to:

Γ;∆1,∆
′
1 ⊢ ψ(T) <: ψ(T ′′).

By the definition of “•”, inverting rule (Derive), we know that ∆2, forms(y :
T) ⊢ forms(y : T ′) and ∆′

2, forms(y : T ′) ⊢ forms(y : T ′′). Using Lemma 3.2.3
we can derive that ∆2,∆

′
2, forms(y : T) ⊢ forms(y : T ′′). By applying rule

(Derive) and Lemma 3.2.16, we can then get:

(Γ;∆2,∆
′
2) • y : T ⊢ forms(y : T ′′).

We also know by definition of (Sub Refine) that T and/or T ′ refined and
T ′ and/or T ′′ refined. This implies that either T ′ is the only refined type or
at least one type in {T, T ′′} is refined. In the latter case we can immediately
conclude by an application of (Sub Refine). In the former case we know
that ψ(T) = T and ψ(T ′′) = T ′′. Since Γ;∆,∆′ ↩→ Γ;∆1,∆

′
1 by Lemma 3.2.8

and Γ;∆1,∆
′
1 ⊢ ψ(T) <: ψ(T ′′) = T <: T ′′, we conclude Γ;∆,∆′ ⊢ T <: T ′′

by Lemma 3.2.9.

Case R2 = (Sub Refine): In this case we know that Γ;∆′ ↩→ Γ;∆′
1,∆

′
2 such that

Γ;∆′
1 ⊢ ψ(T ′) <: ψ(T ′′) and (Γ;∆′

2) • y : T ′ ⊢ forms(y : T ′′).

Note that all possible rules R1 that are not captured by previous cases (Sub Fun),
(Sub Pair), (Sub Sum), or (Sub Pos Rec) entail that T = ψ(T) and T ′ = ψ(T ′),
and T ′′ must be refined by definition of (Sub Refine).

3.2. SOUNDNESS OF THE TYPE SYSTEM 83

In particular, this means that we can apply the induction hypothesis to Γ;∆ ⊢
T <: T ′ and Γ;∆′

1 ⊢ ψ(T ′) <: ψ(T ′′), yielding:

Γ;∆,∆′
1 ⊢ ψ(T) <: ψ(T ′′).

By inverting (Derive) we have ∆′
2, forms(y : T ′) ⊢ forms(y : T ′′). By Lemma 3.2.11

we know that forms(y : T ′) = forms(y : T) = ∅, hence ∆′
2, forms(y : T) ⊢ forms(y :

T ′′). By applying rule (Derive) and Lemma 3.2.16, we can then get:

Γ, y : ψ(T);∆′
2, forms(y : T) ⊢ forms(y : T ′′).

We conclude by an application of (Sub Refine).

Case R1 = R2 = (Sub Fun): In this case T = x : U → V , T ′ = x : U ′ → V ′, and
T ′′ = x : U ′′ → V ′′.

Furthermore, there must exist ∆1,∆2,∆
′
1,∆

′
2 such that:

• Γ;∆ ⊢ Γ; !∆1, !∆2,

• Γ; !∆1 ⊢ U ′ <: U ,

• Γ, x : ψ(U ′); !∆2 ⊢ V <: V ′,

• Γ;∆′ ⊢ Γ; !∆′
1, !∆

′
2,

• Γ; !∆′
1 ⊢ U ′′ <: U ′, and

• Γ, x : ψ(U ′′); !∆′
2 ⊢ V ′ <: V ′′.

We note that by applying Lemma 3.2.16 to the third statement we get Γ, x :
ψ(U ′′); !∆2 ⊢ V <: V ′, where the depth of the derivation has not changed. We
apply the inductive hypothesis to Γ; !∆′

1 ⊢ U ′′ <: U ′ and Γ; !∆1 ⊢ U ′ <: U , and we
get:

Γ; !∆′
1, !∆1 ⊢ U ′′ <: U.

We apply the inductive hypothesis to Γ, x : ψ(U ′′); !∆2 ⊢ V <: V ′ and Γ, x :
ψ(U ′′); !∆′

2 ⊢ V ′ <: V ′′, and we get:

Γ, x : ψ(U ′′); !∆2, !∆
′
2 ⊢ V <: V ′′.

The conclusions Γ;∆ ⊢ T <: T ′′ follows by (Sub Fun).

Case R1 = R2 = (Sub Pair): Completely analogous to the previous case.

No other combination of rules is possible.

84 CHAPTER 3. PROOFS OF CHAPTER 2

3.2.4 Properties of substitution

Lemma 3.2.22 (Bare Types). Let fv(M) = ∅. If Γ;∆ ⊢ M : T , then there exist
!∆′ and ∆′′ such that Γ;∆ ↩→ Γ; !∆′,∆′′ and Γ; !∆′ ⊢ M : ψ(T) and ∆′′ ⊢ forms(x :
T){M/x} for any x /∈ dom(Γ).

Proof. By induction on the derivation of Γ;∆ ⊢M : T :

Case (Val Var): assume that Γ;∆ ⊢ y : T by the premise (y : T) ∈ Γ with Γ;∆ ⊢ �.
We have T = ψ(T) by Lemma 3.2.5, hence forms(x : T) = ∅ by Lemma 3.2.11 and
we just need to show that Γ;∆ ↩→ Γ; !∆′ for some !∆′ such that Γ; !∆′ ⊢ y : T . Now
we note that Γ;∆ ⊢ � implies Γ; ∅ ⊢ � by Lemma 3.2.5, hence Γ; ∅ ⊢ y : T by (Val
Var). This leads to the desired conclusion, since Γ;∆ ↩→ Γ; ∅ by Lemma 3.2.8.

Case (Val Unit): assume that Γ;∆ ⊢ () : unit by the premise Γ;∆ ⊢ �. Since
ψ(unit) = unit and forms(x : unit) = ∅, we just need to show that Γ;∆ ↩→ Γ; !∆′

for some !∆′ such that Γ; !∆′ ⊢ () : unit. By Lemma 3.2.5 we have Γ; ∅ ⊢ �,
hence Γ; ∅ ⊢ () : unit by (Val Unit). This leads to the desired conclusion, since
Γ;∆ ↩→ Γ; ∅ by Lemma 3.2.8.

Case (Val Fun): assume that Γ;∆ ⊢ λy.E : y : U1 → U2 by the premise (Γ; !∆′) •
y : U1 ⊢ E : U2 with Γ;∆ ↩→ Γ; !∆′. Since ψ(y : U1 → U2) = y : U1 → U2 and
forms(x : (y : U1 → U2)) = ∅, the conclusion is immediate.

Case (Val Refine): assume that Γ;∆ ⊢ M : {x : U | F} by the premises Γ;∆1 ⊢
M : U and Γ;∆2 ⊢ F{M/x} with Γ;∆ ↩→ Γ;∆1,∆2. Notice that Γ;∆2 ⊢ F{M/x}
implies ∆2 ⊢ F{M/x} by inverting rule (Derive). By inductive hypothesis
Γ;∆1 ↩→ Γ; !∆11,∆12 with Γ; !∆11 ⊢ M : ψ(U) and ∆12 ⊢ forms(x : U){M/x}.
Notice that the former is equivalent to Γ; !∆11 ⊢ M : ψ({x : U | F}) by definition.
Now by applying (⊗-Right) we get ∆12,∆2 ⊢ forms(x : U){M/x} ⊗ F{M/x},
which is equivalent to ∆12,∆2 ⊢ forms(x : {x : U | F}){M/x}. Since Γ;∆ ↩→
Γ; !∆11, (∆12,∆2) by Lemma 3.2.8, we can conclude.

Case (Exp Subsum): assume that Γ;∆ ⊢ M : T by the premises Γ;∆1 ⊢ M : U
and Γ;∆2 ⊢ U <: T with Γ;∆ ↩→ Γ;∆1,∆2. By inductive hypothesis Γ;∆1 ↩→
Γ; !∆11,∆12 with Γ; !∆11 ⊢ M : ψ(U) and ∆12 ⊢ forms(x : U){M/x}. By the
premise Γ;∆2 ⊢ U <: T and Lemma 3.2.15, we have Γ;∆2 ↩→ Γ; !∆21,∆22 with
Γ; !∆21 ⊢ ψ(U) <: ψ(T) and ∆22, forms(x : U) ⊢ forms(x : T). Now we note that
x /∈ dom(Γ) implies x /∈ fv(∆22) by Lemma 3.2.10. Given that logical entailment is
closed under substitution of closed values for variables by Lemma 3.2.1, we get:

∆22, forms(x : U){M/x} ⊢ forms(x : T){M/x},

hence by Lemma 3.2.3 we have:

∆12,∆22 ⊢ forms(x : T){M/x}.

3.2. SOUNDNESS OF THE TYPE SYSTEM 85

Moreover, by (Exp Subsum) we get Γ; !∆11, !∆21 ⊢ M : ψ(T), hence we conclude,
since Γ;∆ ↩→ Γ; (!∆11, !∆21), (∆12,∆22) by Lemma 3.2.8.

The cases for rules (Val Pair), (Val Inl), (Val Inr) and (Val Fold) are
identical to the case for (Val Fun).

Lemma 3.2.23 (⊗ Sub). If Γ;∆ ⊢ {x : T | C1 ⊗ C2}, then Γ; ∅ ⊢ {x : T | C1 ⊗
C2} <:> {x : {x : T | C1} | C2}.

Proof. By applying (Sub Refine), using simple observations.

Lemma 3.2.24 (Affine Typing). If Γ;∆ ⊢M : T , then there exist !∆′ and ∆′′ such
that Γ;∆ ↩→ Γ; !∆′,∆′′ and Γ; !∆′ ⊢M : ψ(T) and Γ;∆′′ ⊢M : T .

Proof. Let Γ;∆ ⊢ M : T and consider any x /∈ dom(Γ). By Lemma 3.2.22 there
exist !∆′ and ∆′′ such that Γ;∆ ↩→ Γ; !∆′,∆′′ and Γ; !∆′ ⊢ M : ψ(T) and ∆′′ ⊢
forms(x : T){M/x}. By Lemma 3.2.8 we have Γ;∆ ↩→ Γ; !∆′, !∆′,∆′′. Now we
note that Γ; !∆′,∆′′ ⊢ M : {x : ψ(T) | forms(x : T)} by (Val Refine), hence
Γ; !∆′,∆′′ ⊢ M : T by using (Exp Subsum) in combination with Lemma 3.2.23.
Hence, we proved Γ;∆ ↩→ Γ; !∆′, (!∆′,∆′′) with Γ; !∆′ ⊢ M : ψ(T) and Γ; !∆′,∆′′ ⊢
M : T .

Lemma 3.2.25 (Formulas). If Γ;∆ ⊢ M : T and x /∈ dom(Γ), then ∆ ⊢ forms(x :
T){M/x}.

Proof. Since Γ;∆ ⊢ M : T and x /∈ dom(Γ), we apply Lemma 3.2.22 and we get
that there exist !∆′,∆′′ such that Γ;∆ ↩→ Γ; !∆′,∆′′ and ∆′′ ⊢ forms(x : T){M/x}.
By inverting (Rewrite) we know that ∆ ⊢ !∆′,∆′′. By multiple applications of
(Weak) we get !∆′,∆′′ ⊢ forms(x : T){M/x}, hence ∆ ⊢ forms(x : T){M/x} by
Lemma 3.2.3.

Lemma 3.2.26 (Basic Substitution). The following statements hold true:

1. For every type T , we have ψ(T){M/x} = ψ(T{M/x}).

2. If x ̸= y, then forms(y : T){M/x} = forms(y : T{M/x}).

Proof. Point (1) is proved by induction on the structure of T , while point (2) follows
by definition of forms and standard syntactic properties of substitution.

Lemma 3.2.27 (Substitution). Suppose that Γ;∆ ⊢ M : U and fv(M) = ∅. The
following statements hold true:

1. If (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ �, then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ �.

2. If (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ F , then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ F{M/x}.

86 CHAPTER 3. PROOFS OF CHAPTER 2

3. If (Γ;∆′) • x : U • (Γ′; ∆′′) ↩→ Γ, x : ψ(U),Γ′; ∆∗, then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ↩→ Γ,Γ′{M/x}; ∆∗{M/x}.

4. If (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ T , then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ T{M/x}.

5. If (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ T :: k, then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ T{M/x} :: k.

6. If (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ T <: T ′, then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ T{M/x} <: T ′{M/x}.

7. If (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ E : T , then
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ E{M/x} : T{M/x}.

Proof. The proof is by simultaneous induction on the derivation of the antecedent
judgements:

1. Rule (Env Empty) cannot be applied. For the other two rules the conclusion
follows by inductive hypothesis, using Lemma 3.2.5 and standard syntactic
properties of substitution.

2. Let (Γ;∆′)•x : U•(Γ′; ∆′′) ⊢ F . The previous typing environment is equivalent
to Γ, x : ψ(U),Γ′; ∆′, forms(x : U),∆′′, thus by inverting rule (Derive) we
have (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ � and fnfv(F) ⊆ dom(Γ, x : ψ(U),Γ′) and
∆′, forms(x : U),∆′′ ⊢ F .

By inductive hypothesis we have Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ �. Since
Γ;∆ ⊢M : U implies fnfv(M) ⊆ dom(Γ) by Lemma 3.2.5, it is easy to observe
that fnfv(F{M/x}) ⊆ dom(Γ,Γ′{M/x}). Given that logical entailment is
closed under substitution of closed values for variables by Lemma 3.2.1, we
have:

(∆′, forms(x : U),∆′′){M/x} ⊢ F{M/x}.

Now we note that by Lemma 3.2.25 we have ∆ ⊢ forms(x : U){M/x}, hence
∆, (∆′,∆′′){M/x} ⊢ F{M/x} by Lemma 3.2.3.

The conclusion Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ F{M/x} then follows by ap-
plying (Derive).

3. Let (Γ;∆′)•x : U • (Γ′; ∆′′) ↩→ Γ, x : ψ(U),Γ′; ∆∗. We first note that the envi-
ronment (Γ;∆′) • x : U • (Γ′; ∆′′) is equivalent to Γ, x : ψ(U),Γ′; ∆′, forms(x :
U),∆′′, thus by inverting rule (Rewrite) we have (Γ;∆′)•x : U • (Γ′; ∆′′) ⊢ �
and ∆′, forms(x : U),∆′′ ⊢ ∆∗ and (Γ; ∅) • x : ψ(U) • (Γ′; ∆∗) ⊢ �.
We apply the inductive hypothesis to (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ � and we get
Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ⊢ �.

3.2. SOUNDNESS OF THE TYPE SYSTEM 87

Given that logical entailment is closed under substitution of closed values for
variables by Lemma 3.2.1, we have:

(∆′, forms(x : U),∆′′){M/x} ⊢ ∆∗{M/x},

Now we note that by Lemma 3.2.25 we have ∆ ⊢ forms(x : U){M/x}, hence
∆, (∆′,∆′′){M/x} ⊢ ∆∗{M/x} by Lemma 3.2.3.

By Lemma 3.2.24 we have Γ;∆ ↩→ Γ; !∆1,∆2 for some !∆1,∆2 such that
Γ; !∆1 ⊢M : ψ(U) and Γ;∆2 ⊢M : U . We then apply the inductive hypothesis
to (Γ; ∅) • x : ψ(U) • (Γ′; ∆∗) ⊢ � and we get Γ,Γ′{M/x}; !∆1,∆

∗{M/x} ⊢ �.
By Lemma 3.2.5 this implies Γ,Γ′{M/x}; ∆∗{M/x} ⊢ �, hence we conclude
by applying (Rewrite).

4. We just need to consider rule (Type). The conclusion follows by inverting
the rule, using point (1), Lemma 3.2.5 and standard syntactic properties of
substitution.

5. Rules (Kind Var) and (Kind Unit) use point (1). Rule (Kind Refine
Public) uses point (3) and the inductive hypothesis. The rules involving
both logical rewriting and splitting are the most interesting, we show (Kind
Pair) as an example.

Assume then that (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ y : T1 ∗ T2 :: k by the premises
Γ, x : ψ(U),Γ′; !∆1 ⊢ T1 :: k and Γ, x : ψ(U),Γ′, y : ψ(T1); !∆2 ⊢ T2 :: k with
(Γ;∆′) • x : U • (Γ′; ∆′′) ↩→ Γ, x : ψ(U),Γ′; !∆1, !∆2.

We note that we can state the two premises as (Γ; !∆1) • x : ψ(U) • (Γ′; ∅) ⊢
T1 :: k and (Γ; !∆2) • x : ψ(U) • (Γ′, y : ψ(T1); ∅) ⊢ T2 :: k. By Lemma 3.2.24
in combination with Lemma 3.2.8 we have that Γ;∆ ⊢M : U implies Γ;∆ ↩→
Γ; !∆′

1, !∆
′
1,∆

′
2 for some !∆′

1 and ∆′
2 such that Γ; !∆′

1 ⊢M : ψ(U) and Γ;∆′
2 ⊢

M : U .

We now apply the inductive hypothesis twice, and get:

Γ,Γ′{M/x}; !∆′
1, !∆1{M/x} ⊢ T1{M/x} :: k,

and:

Γ,Γ′{M/x}, y : ψ(T1){M/x}; !∆′
1, !∆2{M/x} ⊢ T2{M/x} :: k.

Notice that, by Lemma 3.2.26, the latter is equivalent to:

Γ,Γ′{M/x}, y : ψ(T1{M/x}); !∆′
1, !∆2{M/x} ⊢ T2{M/x} :: k.

We then proceed by considering the premise (Γ;∆′) • x : U • (Γ′; ∆′′) ↩→ Γ, x :
ψ(U),Γ′; !∆1, !∆2. We apply the inductive hypothesis (point 3) there and we
get Γ,Γ′{M/x}; ∆′

2, (∆
′,∆′′){M/x} ↩→ Γ,Γ′{M/x}; (!∆1, !∆2){M/x}.

88 CHAPTER 3. PROOFS OF CHAPTER 2

Now we note that:

Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ↩→ Γ,Γ′{M/x}; (!∆′
1, !∆1{M/x}), (!∆′

1, !∆2{M/x}),

hence we can conclude by applying (Kind Pair).

6. Rule (Sub Refl) uses point (4). Rule (Sub Pub Tnt) uses point (5). The
remaining cases mostly rely on the same arguments applied to prove the case
(Kind Pair) of the previous point. We show (Sub Refine) as an example
case.

Assume then that (Γ;∆′) • x : U • (Γ′; ∆′′) ⊢ T1 <: T2 by the premises Γ, x :
ψ(U),Γ′; ∆1 ⊢ ψ(T1) <: ψ(T2) and (Γ, x : ψ(U),Γ′; ∆2) • y : T1 ⊢ forms(y : T2)
with (Γ;∆′) • x : U • (Γ′; ∆′′) ↩→ Γ, x : ψ(U),Γ′; ∆1,∆2.

We note that we can state the two premises as (Γ;∆1) • x : ψ(U) • (Γ′; ∅) ⊢
ψ(T1) <: ψ(T2) and (Γ;∆2)•x : ψ(U)•(Γ′, y : ψ(T1); forms(y : T1)) ⊢ forms(y :
T2). By Lemma 3.2.24 in combination with Lemma 3.2.8 we have that Γ;∆ ⊢
M : U implies Γ;∆ ↩→ Γ; !∆′

1, !∆
′
1,∆

′
2 for some !∆′

1 and ∆′
2 such that Γ; !∆′

1 ⊢
M : ψ(U) and Γ;∆′

2 ⊢M : U .

We now apply the inductive hypothesis twice, and get:

Γ,Γ′{M/x}; !∆′
1,∆1{M/x} ⊢ ψ(T1){M/x} <: ψ(T2){M/x},

and:

Γ,Γ′{M/x}, y : ψ(T1){M/x}; !∆′
1, (∆2, forms(y : T1)){M/x} ⊢ forms(y : T2){M/x}.

By Lemma 3.2.26, the former is equivalent to:

Γ,Γ′; !∆′
1,∆1{M/x} ⊢ ψ(T1{M/x}) <: ψ(T2{M/x}),

while the latter is equivalent to:

Γ,Γ′, y : ψ(T1{M/x}); !∆′
1,∆2{M/x}, forms(y : T1{M/x}) ⊢ forms(y : T2{M/x}).

We then proceed by considering the premise (Γ;∆′) • x : U • (Γ′; ∆′′) ↩→ Γ, x :
ψ(U),Γ′; ∆1,∆2. We apply the inductive hypothesis (point 3) there and we
get Γ,Γ′{M/x}; ∆′

2, (∆
′,∆′′){M/x} ↩→ Γ,Γ′{M/x}; (∆1,∆2){M/x}.

Now we note that:

Γ,Γ′{M/x}; ∆, (∆′,∆′′){M/x} ↩→ Γ,Γ′{M/x}; (!∆′
1,∆1{M/x}), (!∆′

1,∆2{M/x}),

hence we can conclude by applying (Sub Refine).

7. All cases follow by the previous points and the inductive hypothesis, using
standard syntactic properties of substitution and replicating the same argu-
ments as before.

3.2. SOUNDNESS OF THE TYPE SYSTEM 89

3.2.5 Proofs of inversion lemmas

Lemma 3.2.28 (Bound Weak). Let Γ;∆ ⊢ T ′ <: T . If Γ, x : ψ(T),Γ′; ∆′, forms(x :
T) ⊢ J , then Γ, x : ψ(T ′),Γ′; ∆,∆′, forms(x : T ′) ⊢ J .

Proof. For each judgement J the proof proceeds by induction on the derivation of
Γ, x : ψ(T),Γ′; ∆′, forms(x : T) ⊢ J . We frequently use the fact that dom(Γ, x :
ψ(T),Γ′) = dom(Γ, x : ψ(T ′),Γ′). Furthermore, we often use Lemma 3.2.7 implicitly.

1. J = �: The induction proof uses the fact that by Lemma 3.2.5 we know that
fnfv(T ′) ⊆ dom(Γ) and fnfv(∆) ⊆ dom(Γ).

2. J = U : By Lemma 3.2.5 we know that fnfv(U) ⊆ dom(Γ, x : ψ(T),Γ′), which
means that also fnfv(U) ⊆ dom(Γ, x : ψ(T ′),Γ′). We conclude by applying
statement (1) and rule (type).

3. J = F : The proof makes use of statement (1), Lemma 3.2.5, and the fact
that dom(Γ, x : ψ(T),Γ′) = dom(Γ, x : ψ(T ′),Γ′). Furthermore, it applies
Lemma 3.2.15 to Γ;∆ ⊢ T ′ <: T (showing that formulas in ∆ and T ′ entail
those in T) in combination with Lemma 3.2.3 to conclude.

4. J = U :: k: The proof makes uses of the previous statements. It also uses
Lemma 3.2.16 to show that replacing x : ψ(T) by x : ψ(T ′) is safe. It applies
Lemma 3.2.15 to Γ;∆ ⊢ T ′ <: T (showing that formulas in ∆ and T ′ entail
those in T) in combination with Lemma 3.2.3 to conclude.

5. J = U <: U ′: The proof uses similar reasoning as the proof of statement (4)
and makes use of the previous statements.

6. J = E : U : The proof makes use of the previous statements and relies on
Lemma 3.2.15 and Lemma 3.2.3.

Lemma 3.2.29 (Type Variables and Kinding). If Γ, α,Γ′; ∆ ⊢ T :: k, then α /∈
fnfv(T).

Proof. By induction on the derivation of Γ, α,Γ′; ∆ ⊢ T :: k.
The case (Kind Unit) follows immediately, since fnfv(unit) = ∅. The case

(Kind Var) implies that T = β for some type variable β and β :: k ∈ (Γ, α,Γ′).
It must be the case that β ̸= α, since Γ, α,Γ′; ∆ ⊢ T :: k implies Γ, α,Γ′; ∆ ⊢ �
by Lemma 3.2.5 and having both α and α :: k in the same environment would
violate the well-formedness conditions enforced by (Type Env Entry), given that
dom(α) = dom(α :: k). The case (Kind Refine Tainted) follows by an application
of the induction hypothesis to the first premise of the kinding rule, using the fact
that α ∈ fnfv(T) if and only if α ∈ fnfv(ψ(T)). The remaining cases follow by the
induction hypothesis.

90 CHAPTER 3. PROOFS OF CHAPTER 2

Lemma 3.2.30 (Type Substitution). For all T, T ′ such that T = ψ(T) and T ′ =
ψ(T ′) it holds that:

1. If Γ, α,Γ′; ∆ ⊢ J and Γ;∆′ ⊢ T , then Γ, (Γ′{T/α});∆,∆′ ⊢ J {T/α}.

2. If Γ, α :: k,Γ′; ∆ ⊢ � and Γ;∆′ ⊢ T :: k, then Γ, (Γ′{T/α});∆,∆′ ⊢ �.

3. If Γ, α :: k,Γ′; ∆ ⊢ U and Γ;∆′ ⊢ T :: k, then Γ, (Γ′{T/α});∆,∆′ ⊢ U{T/α}.

4. If Γ, α :: k,Γ′; ∆ ⊢ U :: k′ and Γ;∆′ ⊢ T :: k, then Γ, (Γ′{T/α});∆,∆′ ⊢
U{T/α} :: k′.

5. We have:

• If Γ, α,Γ′; ∅ ⊢ U and α only occurs positively in U and Γ; !∆ ⊢ T <: T ′,
then Γ, (Γ′{T/α}); !∆ ⊢ U{T/α} <: U{T ′/α}.

• If Γ, α,Γ′; ∅ ⊢ U and α only occurs negatively in U and Γ; !∆ ⊢ T <: T ′,
then Γ, (Γ′{T/α}); !∆ ⊢ U{T ′/α} <: U{T/α}.

6. If Γ, α,Γ′; ∆ ⊢ U <: U ′ and α only occurs positively in U,U ′ and Γ;∆′ ⊢ T <:
T ′, then Γ, (Γ′{T/α});∆,∆′ ⊢ U{T/α} <: U ′{T ′/α}.

Proof. We would like to note that the core statements of this lemma are points (4)
and (6), the other points are just needed to prove them. In particular, point (1) is
often used in the proof of the later statements; point (2) is used in the proof of point
(3), which in turn is used in the proof of point (4); point (5) is used in the proof of
point (6). We provide a proof sketch below.

1. By induction on the derivation of Γ, α,Γ′; ∆ ⊢ J , making use of Lemma 3.2.5
and Lemma 3.2.6.

2. By induction on the derivation of Γ, α :: k,Γ′; ∆ ⊢ �, making use of Lemma 3.2.5
and Lemma 3.2.6.

3. By the definition of (Type), using point (2), Lemma 3.2.5 and Lemma 3.2.6.

4. Since we know that T = ψ(T), we can apply Lemma 3.2.13 in combination
with Lemma 3.2.8 to show that there exists a ∆′′ such that Γ;∆′ ↩→ Γ; !∆′′

and Γ; !∆′′ ⊢ T :: k.

We now prove the following modified statement: if Γ, α :: k,Γ′; ∆ ⊢ U :: k′

and Γ; !∆′′ ⊢ T :: k, then Γ, (Γ′{T/α});∆, !∆′′ ⊢ U{T/α} :: k′.

The proof proceeds by induction on the derivation of Γ, α :: k,Γ′; ∆ ⊢ U :: k′,
using point (3) and making use of Lemma 3.2.8 whenever needed to perform
the rewriting Γ; !∆′′ ↩→ Γ; !∆′′, !∆′′ and apply the inductive hypothesis twice.

The conclusion then follows by Lemma 3.2.9.

3.2. SOUNDNESS OF THE TYPE SYSTEM 91

5. We prove both points simultaneously by induction on the structure of U .

6. Since we know that T = ψ(T) and T ′ = ψ(T ′), we can apply Lemma 3.2.15
in combination with Lemma 3.2.8 to show that there exists a ∆′′ such that
Γ;∆′ ↩→ Γ; !∆′′ and Γ; !∆′′ ⊢ T <: T ′.

We now prove the following modified statement: if Γ, α,Γ′; ∆ ⊢ U <: U ′ and α
only occurs positively in U,U ′ and Γ; !∆′′ ⊢ T <: T ′, then Γ, (Γ′{T/α});∆, !∆′′ ⊢
U{T/α} <: U ′{T ′/α}.
The proof proceeds by induction on the derivation of Γ, α,Γ′; ∆ ⊢ U <: U ′,
using point (5) and making use of Lemma 3.2.8 whenever needed to perform
the rewriting Γ; !∆′′ ↩→ Γ; !∆′′, !∆′′ and apply the inductive hypothesis twice.

The conclusion then follows by Lemma 3.2.9.

Lemma 3.2.31 (Inversion for Functions). The following statements hold:

1. If Γ;∆ ⊢ λx.E : V , then there exist ∆1,∆2, T, U such that Γ;∆ ↩→ Γ;∆1,∆2

and Γ;∆1 ⊢ λx.E : x : T → U (by a top-level application of Val Fun) and
Γ;∆2 ⊢ x : T → U <: ψ(V).

2. If Γ;∆ ⊢ x : T → U <: x : T ′ → U ′, then there exist ∆1,∆2 such that
Γ;∆ ↩→ Γ; !∆1, !∆2 and Γ; !∆1 ⊢ T ′ <: T and Γ, x : ψ(T ′); !∆2 ⊢ U <: U ′.

3. If Γ;∆ ⊢ λx.E : x : T → U , then there exists a ∆′ such that Γ;∆ ↩→ Γ; !∆′

and (Γ; !∆′) • x : T ⊢ E : U .

4. If Γ;∆ ⊢ λx.E : x : T → U , then (Γ;∆) • x : T ⊢ E : U .

Proof. We show the four statements separately, using the first two results in the
proof of the third.

1. By induction on the derivation of Γ;∆ ⊢ λx.E : V . We know that Γ;∆ ⊢
λx.E : V . We distinguish three cases, depending on the last applied typing
rule:

Case (Val Fun): In this case we know that V = x : T → U for some T, U ,
hence ψ(V) = V . Since ∆; ∅ ⊢ ψ(V) by Lemma 3.2.5, we immediately
derive Γ; ∅ ⊢ x : T → U <: ψ(V) by (Sub Refl). Since Γ;∆ ↩→ Γ;∆ by
Lemma 3.2.8, we can conclude.

Case (Val Refine): In this case we know that V = {y : V ′ | F} and Γ;∆ ↩→
Γ;∆1,∆2 for some ∆1,∆2 such that Γ;∆1 ⊢ λx.E : V ′ and Γ;∆2 ⊢ F{λx.E/y}.
We can apply the induction hypothesis to Γ;∆1 ⊢ λx.E : V ′, letting us derive
that there exist ∆11,∆12, T, U such that:

92 CHAPTER 3. PROOFS OF CHAPTER 2

• Γ;∆1 ↩→ Γ;∆11,∆12,
• Γ;∆11 ⊢ λx.E : x : T → U by a top-level application of (Val Fun), and
• Γ;∆12 ⊢ x : T → U <: ψ(V ′).

By the definition of ψ we know that ψ(V) = ψ(V ′), thus we know that:

• Γ;∆11 ⊢ λx.E : x : T → U by a top-level application of (Val Fun), and
• Γ;∆12 ⊢ x : T → U <: ψ(V).

Since Γ;∆ ↩→ Γ;∆11,∆12 by Lemma 3.2.8, we can conclude.

Case (Exp Subsum): In this case we know that there exist ∆1,∆2 such that
Γ;∆ ↩→ Γ;∆1,∆2 and Γ;∆1 ⊢ λx.E : V ′ and Γ;∆2 ⊢ V ′ <: V .
We can apply the induction hypothesis to Γ;∆1 ⊢ λx.E : V ′, letting us derive
that there exist ∆11,∆12, T, U such that:

• Γ;∆1 ↩→ Γ;∆11,∆12,
• Γ;∆11 ⊢ λx.E : x : T → U by a top-level application of (Val Fun), and
• Γ;∆12 ⊢ x : T → U <: ψ(V ′).

We apply Lemma 3.2.15 to Γ;∆2 ⊢ V ′ <: V and we get that there exist
!∆21,∆22 such that Γ;∆2 ↩→ Γ; !∆21,∆22 and Γ; !∆21 ⊢ ψ(V ′) <: ψ(V). Since
Γ;∆2 ↩→ Γ; !∆21 by Lemma 3.2.8 point 1, we have Γ;∆2 ⊢ ψ(V ′) <: ψ(V) by
Lemma 3.2.9. By transitivity of the subtyping relation (Lemma 3.2.21) we
thus have:

Γ;∆12,∆2 ⊢ x : T → U <: ψ(V),

which allows us to conclude.

2. By induction on the derivation of Γ;∆ ⊢ x : T → U <: x : T ′ → U ′. We
implicitly use Lemma 3.2.5 whenever needed. We distinguish three cases,
depending on the last applied subtyping rule:

Case (Sub Refl): In this case we know that T = T ′ and U = U ′ and conclude
by two applications of (Sub Refl) that Γ; ∅ ⊢ T ′ <: T and Γ; ∅ ⊢ U <: U ′.
Using suitable alpha-renaming and Lemma 3.2.7 to extend Γ with x : ψ(T ′) in
the second judgement, we can conclude, since Γ;∆ ↩→ Γ; ∅ by Lemma 3.2.8.

Case (Sub Fun): The statement follows immediately by the premises of the sub-
typing rule.

Case (Sub Pub Tnt): In this case we know that Γ;∆ ↩→ Γ;∆1,∆2 for some
∆1,∆2 such that Γ;∆1 ⊢ x : T → U :: pub and Γ;∆2 ⊢ x : T ′ → U ′ :: tnt.
By the only applicable kinding rule (Kind Fun) it follows that there exist
∆11,∆12 and ∆21,∆22 such that Γ;∆1 ↩→ Γ;∆11,∆12 and Γ;∆2 ↩→ Γ;∆21,∆22

such that Γ; !∆11 ⊢ T :: tnt and Γ; !∆21 ⊢ T ′ :: pub and Γ, x : ψ(T); !∆12 ⊢
U :: pub and Γ, x : ψ(T ′); !∆22 ⊢ U ′ :: tnt.

3.2. SOUNDNESS OF THE TYPE SYSTEM 93

Applying (Sub Pub Tnt) to Γ; !∆11 ⊢ T :: tnt and Γ; !∆21 ⊢ T ′ :: pub yields:

Γ; !∆11, !∆21 ⊢ T ′ <: T.

We apply Lemma 3.2.16 to Γ, x : ψ(T); !∆12 ⊢ U :: pub and we get:

Γ, x : ψ(T ′); !∆12 ⊢ U :: pub.

Applying (Sub Pub Tnt) to Γ, x : ψ(T ′); !∆12 ⊢ U :: pub and Γ, x :
ψ(T ′); !∆22 ⊢ U ′ :: tnt yields:

Γ, x : ψ(T ′); !∆12, !∆22 ⊢ U <: U ′,

thus allowing us to conclude.

3. We know that Γ;∆ ⊢ λx.E : x : T → U and ψ(x : T → U) = x : T → U by
definition. We apply part (1) and derive that there exist ∆1,∆2, T

′, U ′ such
that:

• Γ;∆ ↩→ Γ;∆1,∆2,
• Γ;∆1 ⊢ λx.E : x : T ′ → U ′ by a top-level application of (Val Fun), and
• Γ;∆2 ⊢ x : T ′ → U ′ <: x : T → U .

By the definition of (Val Fun) the second statement lets us derive that:

Γ, x : ψ(T ′); !∆′
1, forms(x : T ′) ⊢ E : U ′,

for some ∆′
1 such that Γ;∆1 ↩→ Γ; !∆′

1, which is equivalent to (Γ; !∆′
1) • x :

T ′ ⊢ E : U ′.
Applying part (2) to the third statement yields that there exist ∆21,∆22 such
that:

• Γ;∆2 ↩→ Γ; !∆21, !∆22,
• Γ; !∆21 ⊢ T <: T ′, and
• Γ, x : ψ(T); !∆22 ⊢ U ′ <: U .

Applying Lemma 3.2.16 to the latter yields:

Γ, x : ψ(T ′); !∆22 ⊢ U ′ <: U.

We apply (Exp Subsum) to (Γ; !∆′
1) • x : T ′ ⊢ E : U ′ and Γ, x : ψ(T ′); !∆22 ⊢

U ′ <: U , which leads to:

(Γ; !∆′
1, !∆22) • x : T ′ ⊢ E : U.

Applying Lemma 3.2.28 to the latter statement and Γ; !∆21 ⊢ T <: T ′ lets us
derive:

(Γ; !∆′
1, !∆22, !∆21) • x : T ⊢ E : U.

Since Γ;∆ ↩→ Γ; !∆′
1, !∆22, !∆21 by Lemma 3.2.8, we can conclude.

94 CHAPTER 3. PROOFS OF CHAPTER 2

4. Follows immediately from statement (3) by an application of Lemma 3.2.9.

Lemma 3.2.32 (Inversion for Pairs). The following statements hold:

1. If Γ;∆ ⊢ (M,N) : V , then there exist ∆1,∆2, T, U such that Γ;∆ ↩→ Γ;∆1,∆2

and Γ;∆1 ⊢ (M,N) : x : T ∗ U (by a top-level application of Val Pair) and
Γ;∆2 ⊢ x : T ∗ U <: ψ(V).

2. If Γ;∆ ⊢ x : T ∗ U <: x : T ′ ∗ U ′, then there exist ∆1,∆2 such that Γ;∆ ↩→
Γ; !∆1, !∆2 and Γ; !∆1 ⊢ T <: T ′ and Γ, x : ψ(T); !∆2 ⊢ U <: U ′.

3. If Γ;∆ ⊢ (M,N) : x : T ∗ U , then there exist ∆1,∆2 such that Γ;∆ ↩→
Γ; !∆1, !∆2 and Γ; !∆1 ⊢M : T and Γ; !∆2 ⊢ N : U{M/x}.

Proof. We show the three statements separately, using the first two results in the
proof of the third.

1. By induction on the derivation of Γ;∆ ⊢ (M,N) : V . The proof is analogous
to that of Lemma 3.2.31, part (1).

2. By induction on the derivation of Γ;∆ ⊢ x : T ∗ U <: x : T ′ ∗ U ′. The proof is
analogous to that of Lemma 3.2.31, part (2).

3. We know that Γ;∆ ⊢ (M,N) : x : T ∗ U and that ψ(x : T ∗ U) = x : T ∗ U .
We apply part (1) and derive that there exist ∆1,∆2, T

′, U ′ such that:

• Γ;∆ ↩→ Γ;∆1,∆2,

• Γ;∆1 ⊢ (M,N) : x : T ′ ∗U ′ by a top-level application of (Val Pair), and

• Γ;∆2 ⊢ x : T ′ ∗ U ′ <: x : T ∗ U .

By the definition of (Val Pair) the second statement lets us derive:

Γ; !∆11 ⊢M : T ′,

and:
Γ; !∆12 ⊢ N : U ′{M/x},

for some ∆11,∆12 such that Γ;∆1 ↩→ Γ; !∆11, !∆12.

We can also apply part (2) to the third statement, which let us derive that
there exist ∆21,∆22 such that:

• Γ;∆2 ↩→ Γ; !∆21, !∆22,

• Γ; !∆21 ⊢ T ′ <: T , and

• Γ, x : ψ(T ′); !∆22 ⊢ U ′ <: U .

3.2. SOUNDNESS OF THE TYPE SYSTEM 95

We apply (Exp Subsum) to Γ; !∆11 ⊢ M : T ′ and Γ; !∆21 ⊢ T ′ <: T , which
yields:

Γ; !∆11, !∆21 ⊢M : T.

We know that Γ, x : ψ(T ′); !∆22 ⊢ U ′ <: U , which by applying Lemma 3.2.7
implies that (Γ; !∆22) • x : T ′ ⊢ U ′ <: U (we implicitly use the definition of
“•”).
Since Γ; !∆11 ⊢ M : T ′, we can apply Lemma 3.2.27 to the latter statement
and derive:

Γ; !∆11, (!∆22{M/x}) ⊢ U ′{M/x} <: U{M/x}.

Note, however, that since x /∈ dom(Γ) and Γ;∆2 ↩→ Γ; !∆21, !∆22, we know that
x /∈ fv(∆22) by Lemma 3.2.10. Thus, the previous judgement is equivalent to:

Γ; !∆11, !∆22 ⊢ U ′{M/x} <: U{M/x}.

We apply (Exp Subsum) to Γ; !∆12 ⊢ N : U ′{M/x} and Γ; !∆11, !∆22 ⊢
U ′{M/x} <: U{M/x}, which leads to:

Γ; !∆12, !∆11, !∆22 ⊢ N : U{M/x}.

Using Lemma 3.2.8 we know that:

Γ;∆ ↩→ Γ; (!∆11, !∆21), (!∆12, !∆11, !∆22),

which allows us to conclude.

Lemma 3.2.33 (Inversion for Sum Constructors). The following statements hold:

1. Let h ∈ {inl, inr}. If Γ;∆ ⊢ h M : V , then there exist ∆1,∆2, T, U such that
Γ;∆ ↩→ Γ;∆1,∆2 and Γ;∆1 ⊢ h M : T + U (by a top-level application of Val
H) and Γ;∆2 ⊢ T + U <: ψ(V).

2. If Γ;∆ ⊢ T+U <: T ′+U ′, then there exist ∆1,∆2 such that Γ;∆ ↩→ Γ; !∆1, !∆2

and Γ; !∆1 ⊢ T <: T ′ and Γ; !∆2 ⊢ U <: U ′.

3. If Γ;∆ ⊢ inl M : T + U , then there exist !∆ such that Γ;∆ ↩→ Γ; !∆ and
Γ; !∆ ⊢M : T and Γ; !∆ ⊢ U .

4. If Γ;∆ ⊢ inr M : T + U , then there exist ∆′ such that Γ;∆ ↩→ Γ; !∆′ and
Γ; !∆′ ⊢M : U and Γ; !∆′ ⊢ T .

5. If Γ;∆ ⊢ inlM : T + U , then Γ;∆ ⊢M : T .

96 CHAPTER 3. PROOFS OF CHAPTER 2

6. If Γ;∆ ⊢ inr M : T + U , then Γ;∆ ⊢M : U .

Proof. We show the six statements separately, using the first results in the proof of
the later ones.

1. By induction on the derivation of Γ;∆ ⊢ h M : V . The proof is analogous to
that of Lemma 3.2.31, part (1).

2. By induction on the derivation of Γ;∆ ⊢ T + U <: T ′ + U ′. The proof is
analogous to that of Lemma 3.2.31, part (2).

3. We know that Γ;∆ ⊢ inl M : T + U and that ψ(T + U) = T + U . We apply
part (1) and derive that there exist ∆1,∆2, T

′, U ′ such that:

• Γ;∆ ↩→ Γ;∆1,∆2,
• Γ;∆1 ⊢ inlM : T ′ + U ′ by a top-level application of (Val Inl), and
• Γ;∆2 ⊢ T ′ + U ′ <: T + U .

By the definition of (Val Inl) the second statement lets us derive that:

Γ; !∆′
1 ⊢M : T ′,

and:
Γ; !∆′

1 ⊢ U ′,

for some ∆′
1 such that Γ;∆1 ↩→ Γ; !∆′

1.
Applying part (2) to the third statement yields that there exist ∆21,∆22 such
that:

• Γ;∆2 ↩→ Γ; !∆21, !∆22,
• Γ; !∆21 ⊢ T ′ <: T , and
• Γ; !∆22 ⊢ U ′ <: U .

We apply (Exp Subsum) to Γ; !∆′
1 ⊢ M : T ′ and Γ;∆21 ⊢ T ′ <: T , which

leads to:
Γ; !∆′

1, !∆21 ⊢M : T.

Furthermore, by Lemma 3.2.5 we know that:

Γ; !∆22 ⊢ U.

Using Lemma 3.2.7 we can derive that:

Γ; !∆′
1, !∆21, !∆22 ⊢M : T,

and:
Γ; !∆′

1, !∆21, !∆22 ⊢ U.
Since Γ;∆ ↩→ Γ; !∆′

1, !∆21, !∆22 by Lemma 3.2.8, we can conclude.

3.2. SOUNDNESS OF THE TYPE SYSTEM 97

4. The proof follows analogously to that of statement (3).

5. The statement follows immediately by an application of statement (3) and
Lemma 3.2.9.

6. The statement follows immediately by an application of statement (4) and
Lemma 3.2.9.

Lemma 3.2.34 (Inversion for Recursive Constructors). The following statements
hold:

1. If Γ;∆ ⊢ fold M : V , then there exist ∆1,∆2, T such that Γ;∆ ↩→ Γ;∆1,∆2

and Γ;∆1 ⊢ fold M : µα. T (by a top-level application of Val Fold) and
Γ;∆2 ⊢ µα. T <: ψ(V).

2. If Γ;∆ ⊢ µα. T <: µα. T ′, then there exists ∆′ such that Γ;∆ ↩→ Γ; !∆′ and
Γ; !∆′ ⊢ T{µα. T/α} <: T ′{µα. T ′/α}.

3. If Γ;∆ ⊢ fold M : µα. T , then there exist ∆′ such that Γ;∆ ↩→ Γ; !∆′ and
Γ; !∆′ ⊢M : T{µα. T/α}.

4. If Γ;∆ ⊢ foldM : µα. T , then Γ;∆ ⊢M : T{µα. T/α}.

Proof. We show the four statements separately, using the first two results in the
proof of the third.

1. By induction on the derivation of Γ;∆ ⊢ fold M : V . The proof is analogous
to that of Lemma 3.2.31, part (1).

2. By induction on the derivation of Γ;∆ ⊢ µα. T <: µα. T ′. We implicitly use
Lemma 3.2.5 whenever needed. We distinguish three cases, depending on the
last applied subtyping rule:

Case (Sub Refl): In this case we know that T = T ′ and thus we have T{µα. T/α} =
T ′{µα. T ′/α}. By an application of (Sub Refl) we have Γ; ∅ ⊢ T{µα. T/α} <:
T ′{µα. T ′/α}. Since Γ;∆ ↩→ Γ; ∅ by Lemma 3.2.8, we can conclude.

Case (Sub Pos Rec): By the premises of the subtyping rule we know that:

Γ, α; !∆′ ⊢ T <: T ′

for some ∆′ such that Γ;∆ ↩→ Γ; !∆′. Moreover, we know that α occurs only
positively in T, T ′. Since Γ; !∆′ ↩→ Γ; !∆′ by Lemma 3.2.8, we can apply (Sub
Pos Rec) to derive that:

Γ; !∆′ ⊢ µα. T <: µα. T ′.

98 CHAPTER 3. PROOFS OF CHAPTER 2

By point (6) of Lemma 3.2.30, we then get:

Γ; !∆′, !∆′ ⊢ T{µα. T/α} <: T ′{µα. T ′/α}.

Since Γ;∆ ↩→ Γ; !∆′, !∆′ by Lemma 3.2.8, we can conclude.
Case (Sub Pub Tnt): In this case we know that Γ;∆ ↩→ Γ;∆1,∆2 for some

∆1,∆2 such that Γ;∆1 ⊢ µα. T :: pub and Γ;∆2 ⊢ µα. T ′ :: tnt.
By the only applicable kinding rule (Kind Rec) it follows that there exist
∆′

1,∆
′
2 such that Γ;∆1 ↩→ Γ; !∆′

1 and Γ;∆2 ↩→ Γ; !∆′
2 with Γ, α :: pub; !∆′

1 ⊢
T :: pub and Γ, α :: tnt; !∆′

2 ⊢ T ′ :: tnt.
Since Γ; !∆′

1 ↩→ Γ; !∆′
1 and Γ; !∆′

2 ↩→ Γ; !∆′
2 by Lemma 3.2.8, we can apply

(Kind Rec) to derive that Γ; !∆′
1 ⊢ µα. T :: pub and Γ; !∆′

2 ⊢ µα. T ′ :: tnt.
By part (4) of Lemma 3.2.30 we then get Γ; !∆′

1, !∆
′
1 ⊢ T{µα. T/α} :: pub

and Γ; !∆′
2!, !∆

′
2 ⊢ T ′{µα. T ′/α} :: tnt, hence we can apply (Sub Pub Tnt)

to get:
Γ; !∆′

1, !∆
′
1, !∆

′
2, !∆

′
2 ⊢ T{µα. T/α} <: T ′{µα. T ′/α}.

Since Γ;∆ ↩→ Γ; !∆′
1, !∆

′
1, !∆

′
2, !∆

′
2 by Lemma 3.2.8, we can conclude.

3. We know that Γ;∆ ⊢ fold M : µα. T and that ψ(µα. T) = µα. T . We apply
part (1) and derive that there exist ∆1,∆2, T

′ such that:

• Γ;∆ ↩→ Γ;∆1,∆2,
• Γ;∆1 ⊢ foldM : µα. T ′ by a top-level application of (Val Fold), and
• Γ;∆2 ⊢ µα. T ′ <: µα. T .

By the definition of (Val Fold) the second statement lets us derive that:

Γ; !∆′
1 ⊢M : T ′{µα. T ′/α},

for some ∆′
1 such that Γ;∆1 ↩→ Γ; !∆′

1.

Applying part (2) to the third statement yields that there exists ∆′
2 such that:

• Γ;∆2 ↩→ Γ; !∆′
2,

• Γ; !∆′
2 ⊢ T ′{µα. T ′/α} <: T{µα. T/α}.

We apply (Exp Subsum) to Γ; !∆′
1 ⊢M : T ′{µα. T ′/α} and Γ; !∆′

2 ⊢ T ′{µα. T ′/α} <:
T{µα. T/α}, which leads to:

Γ; !∆′
1, !∆

′
2 ⊢M : T{µα. T/α},

Since Γ;∆ ↩→ Γ; !∆′
1, !∆

′
2 by Lemma 3.2.8, we can conclude.

4. We can immediately conclude by an application of statement (3) and Lemma 3.2.9.

3.2. SOUNDNESS OF THE TYPE SYSTEM 99

3.2.6 Proof of subject reduction

In the following we often write E [∆ | D] whenever E a [∆ | D] for some
immaterial a clear from the context.

Lemma 3.2.35 (Extraction and Free Values). If E a [∆ | D], then fnfv(∆) ∪
fnfv(D) ⊆ fnfv(E).

Proof. By induction on the derivation of E [∆ | D].

Lemma 3.2.36 (Extending Extraction). If E b [∆ | D] and a /∈ fn(E), then
E a,b [∆ | D].

Proof. By induction on the derivation of E b [∆ | D].

Lemma 3.2.37 (Heating Preserves Logic). If E V E ′ and E a [∆ | D], then
E ′ a [∆ | D′] for some D′ such that D V D′. Moreover, the depth of the derivation
of D V D′ equals that of E V E ′.

Proof. By induction on the derivation of E V E ′:

Case (Heat Refl): the case is trivial.

Case (Heat Trans): assume E V E ′′ by the premises E V E ′ and E ′ V E ′′.
Assume further E [∆ | D]. We apply the induction hypothesis on E V E ′ and
we get E ′ [∆ | D′] with D V D′. We then apply the induction hypothesis on
E ′ V E ′′ and we get E ′′ [∆ | D′′] with D′ V D′′. Since D V D′′ by (Heat
Trans), we can conclude.

Case (Heat Let): assume let x = E in E ′′ V let x = E ′ in E ′′ by the premise
E V E ′. Assume further let x = E in E ′′ [∆ | let x = D in E ′′], which
must be derived by the premise E [∆ | D]. We apply the induction hypothesis
and we get E ′ [∆ | D′] with D V D′. Hence, we have let x = E ′ in E ′′
[∆ | let x = D′ in E ′′] by (Extr Let) and the conclusion follows by observing that
let x = D in E ′′ V let x = D′ in E ′′ by (Heat Let).

Case (Heat Res): assume (νa)E V (νa)E ′ by the premise E V E ′. Assume
further (νa)E b [∆ | (νa)D], which must be derived by the premise E a,b
[∆ | D]. We apply the induction hypothesis and we get E ′ a,b [∆ | D′] with D V
D′. Hence, we have (νa)E ′ b [∆ | (νa)D′] by (Extr Res) and the conclusion
follows by observing that (νa)D V (νa)D′ by (Heat Res).

Case (Heat Fork 1): assume E � E ′′ V E ′ � E ′′ by the premise E V E ′. Assume
further E � E ′′ [∆,∆′′ | D � D′′], which must be derived by the premises
E [∆ | D] and E ′′ [∆′′ | D′′]. By inductive hypothesis E ′ [∆ | D′] with
D V D′. Hence, we have E ′ � E ′′ [∆,∆′′ | D′ � D′′] and the conclusion follows
by observing that D � D′′ V D′ � D′′ by (Heat Fork 1).

100 CHAPTER 3. PROOFS OF CHAPTER 2

Case (Heat Fork 2): the case is analogous to (Heat Fork 1).

Case (Heat Fork ()): assume () � E V E. Let E [∆ | D], we have () � E
[∆ | () � D]. Since () � D V D by (Heat Fork ()), we can conclude. The other
direction is analogous.

Case (Heat Msg ()): assume a!M V a!M � (). We have a!M [∅ | a!M] and
a!M � () [∅ | a!M � ()], hence the conclusion follows by (Heat Msg ()).

Case (Heat Assume ()): let assume F V assume F � (). We have two possibilities:
either assume F [F | assume 1] or assume F [∅ | assume F]. In the first case
we also have assume F � () [F | assume 1 � ()], while in the second case we have
assume F � () [∅ | assume F � ()]. In both cases we can conclude by (Heat
Assume ()).

Case (Heat Assert ()): let assert F V assert F � (). We have assert F
[∅ | assert F] and assert F � () [∅ | assert F � ()], hence the conclusion follows
by (Heat Assert ()).

Case (Heat Res Fork 1): assume E � (νa)E ′ V (νa)(E � E ′) with a /∈ fn(E).
The only possible extraction derivation is the following:

Extr Fork
E

b [∆ | D]

E ′ a,b [∆′ | D′]

(νa)E ′
b [∆′ | (νa)D′]

Extr Res

E � (νa)E ′
b [∆,∆′ | D � (νa)D′]

Since a /∈ fn(E), we can apply Lemma 3.2.36 and get E a,b [∆ | D]. Hence, we
can construct the following derivation:

Extr Fork
E a,b [∆ | D] E ′ a,b [∆′ | D′]

E � E ′ a,b [∆,∆′ | D � D′]

(νa)(E � E ′)
b [∆,∆′ | (νa)(D � D′)]

Extr Res

Since a /∈ fn(E) implies a /∈ fn(D) by Lemma 3.2.35, we have D � (νa)D′ V
(νa)(D � D′) by (Heat Res Fork 1) and we conclude.

Case (Heat Res Fork 2): the case is analogous to (Heat Res Fork 1).

Case (Heat Res Let): assume let x = (νa)E in E ′ V (νa)(let x = E in E ′) with
a /∈ fn(E ′). The only possible extraction derivation is the following:

Extr Let

E a,b [∆ | D]

(νa)E
b [∆ | (νa)D]

Extr Res

let x = (νa)E in E ′
b [∆ | let x = (νa)D in E ′]

3.2. SOUNDNESS OF THE TYPE SYSTEM 101

Hence, we can construct the following derivation:

Extr Let
E a,b [∆ | D]

let x = E in E ′ a,b [∆ | let x = D in E ′]

(νa)(let x = E in E ′)
b [∆ | (νa)(let x = D in E ′)]

Extr Res

Since a /∈ fn(E ′) implies a /∈ fn(D) by Lemma 3.2.35, we have let x = (νa)D in E ′ V
(νa)(let x = D in E ′) by (Heat Res Let) and we conclude.

Case (Heat Fork Assoc): assume (E � E ′) � E ′′ V E � (E ′ � E ′′). The only
possible extraction derivation is the following:

Exp Fork

Exp Fork
E [∆ | D] E ′ [∆′ | D′]

E � E ′ [∆,∆′ | D � D′] E ′′ [∆′′ | D′′]

(E � E ′) � E ′′ [∆,∆′,∆′′ | (D � D′) � D′′]

Hence, we can construct the following derivation:

Exp Fork
E [∆ | D]

E ′ [∆′ | D′] E ′′ [∆′′ | D′′]

E ′ � E ′′ [∆′,∆′′ | D′ � D′′]
Exp Fork

E � (E ′ � E ′′) [∆,∆′,∆′′ | D � (D′ � D′′)]

We observe that (D � D′) � D′′ V D � (D′ � D′′) by (Heat Fork Assoc) to
conclude. The other direction is analogous.

Case (Heat Fork Comm): assume (E � E ′) � E ′′ V (E ′ � E) � E ′′. The only
possible extraction derivation is the following:

Exp Fork

Exp Fork
E [∆ | D] E ′ [∆′ | D′]

E � E ′ [∆,∆′ | D � D′] E ′′ [∆′′ | D′′]

(E � E ′) � E ′′ [∆,∆′,∆′′ | (D � D′) � D′′]

Hence, we can construct the following derivation:

Exp Fork

Exp Fork
E ′ [∆′ | D′] E [∆ | D]

E ′ � E [∆,∆′ | D′ � D] E ′′ [∆′′ | D′′]

(E ′ � E) � E ′′ [∆,∆′,∆′′ | (D′ � D) � D′′]

where we note that the order of the formulas is immaterial, since we interpret the
∆’s as multisets. We observe that (D � D′) � D′′ V (D′ � D) � D′′ by (Heat
Fork Comm) to conclude. The other direction is analogous.

102 CHAPTER 3. PROOFS OF CHAPTER 2

Case (Heat Fork Let): assume let x = (E1 � E2) in E3 V E1 � (let x =
E2 in E3). We have let x = (E1 � E2) in E3 [∆1,∆2 | let x = (D1 � D2) in E3]
with E1 [∆1 | D1] and E2 [∆2 | D2]. In fact, the only possible extraction
derivation is the following:

Extr Let

Extr Fork
E1 [∆1 | D1] E2 [∆2 | D2]

E1 � E2 [∆1,∆2 | D1 � D2]

let x = (E1 � E2) in E3 [∆1,∆2 | let x = (D1 � D2) in E3]

Hence, we can construct the following derivation:

Extr Fork
E1 [∆1 | D1]

E2 [∆2 | D2]

let x = E2 in E3 [∆2 | let x = D2 in E3]
Extr Let

E1 � (let x = E2 in E3) [∆1,∆2 | D1 � (let x = D2 in E3)]

Since let x = (D1 � D2) in E3 V D1 � (let x = D2 in E3) by (Heat Fork Let), we
can conclude. The other direction is analogous, since we can invert the construction
and transform the second derivation, which is the only possible one, into the first
one.

Lemma 3.2.38 (Total Extraction). If E a [∆ | D], then D a [∅ | D].

Proof. By induction on the derivation of E a [∆ | D].

Lemma 3.2.39 (Reduction Preserves Logic). If E → E ′ and E a [∆ | D], then
D → D′ and E ′ a [∆,∆′ | D′′] for some D′, D′′,∆′ such that D′ a [∆′ | D∗] with
D∗ V D′′. Moreover, the depth of the derivation of D → D′ equals that of E → E ′.

Proof. By induction on the derivation of E → E ′. We note that, whenever E
[∅ | E], the conclusion is trivial, hence we focus on the remaining cases:

Case (Red Let): assume let x = E1 in E2 → let x = E ′
1 in E2 with E1 → E ′

1

and let x = E1 in E2 [∆1 | let x = D1 in E2] with E1 [∆1 | D1]. By
induction hypothesis D1 → D′

1 and E ′
1 [∆1,∆

′
1 | D′] with D′

1 [∆′
1 | D′′

1]
and D′′

1 V D′. We then have let x = D1 in E2 → let x = D′
1 in E2 by (Red

Let). Now we observe that let x = E ′
1 in E2 [∆1,∆

′
1 | let x = D′ in E2] and

let x = D′
1 in E2 [∆′

1 | let x = D′′
1 in E2], so we conclude by (Heat Let).

Case (Red Res): assume (νa)E → (νa)E ′ with E → E ′ and (νa)E b [∆1 | (νa)D1]

with E a,b [∆1 | D1]. By induction hypothesis D1 → D′
1 and E ′ a,b [∆1,∆

′
1 | D′]

with D′
1

a,b [∆′
1 | D′′

1] and D′′
1 V D′. We then have (νa)D1 → (νa)D′

1 by
(Red Res). Now we observe that (νa)E ′ b [∆1,∆

′
1 | (νa)D′] and (νa)D′

1
b

[∆′
1 | (νa)D′′

1], so we conclude by (Heat Res).

3.2. SOUNDNESS OF THE TYPE SYSTEM 103

Case (Red Fork 1): assume E1 � E2 → E ′
1 � E2 with E1 → E ′

1 and E1 � E2
[∆1,∆2 | D1 � D2] with E1 [∆1 | D1], E2 [∆2 | D2]. By induction hypothesis
D1 → D′

1 and E ′
1 [∆1,∆

′
1 | D′] with D′

1 [∆′
1 | D′′

1] and D′′
1 V D′. We then

have D1 � D2 → D′
1 � D2 by (Red Fork 1). Now we observe that E ′

1 � E2
[∆1,∆

′
1,∆2 | D′ � D2] and D′

1 � D2 [∆′
1 | D′′

1 � D2], since D2 [∅ | D2] by
Lemma 3.2.38. Thus, we conclude by (Heat Fork 1).

Case (Red Fork 2): analogous to the previous case.

Case (Red Heat): assume E → E ′ by the premises E V EA, EA → EB, EB V E ′.
Assume further E [∆1 | E1]. By Lemma 3.2.37 we have EA [∆1 | E ′

A] with
E1 V E ′

A. By inductive hypothesis we get E ′
A → E ′

B and EB [∆1,∆
′
1 | DB]

with E ′
B [∆′

1 | E ′′
B] and E ′′

B V DB. Again by Lemma 3.2.37 we have E ′
[∆1,∆

′
1 | E ′′] with DB V E ′′. Since we can derive E1 → E ′

B by (Red Heat) and
E ′′

B V E ′′ by (Heat Trans), we can conclude.

In the proof of Lemmas 3.2.42, 3.2.44, 3.2.45 and Theorem 3.2.47 below we
rely on an observation about the structure of the type derivations to simplify the
formal reasoning. First, we consider an alternative formulation of typing for values,
presented in Table 3.1, which removes the non-structural rule (Val Refine). We
also keep the original rules for expressions.

We can show that the original and the alternative formulation coincide.

Lemma 3.2.40 (Alternative Typing). Γ;∆ ⊢ E : T if and only if Γ;∆ ⊢alt E : T .

Proof. We show both directions independently:

(⇒) By induction on the derivation of Γ;∆ ⊢ E : T :

Case (Val Var): let Γ;∆ ⊢ x : T by the premises Γ;∆ ⊢ � and (x : T) ∈ Γ. We
can construct the following type derivation:

Val Var Refine
(x : T) ∈ Γ Γ;∆ ⊢ 1

Γ;∆ ⊢alt x : {y : T | 1}
Γ; ∅ ⊢ ψ(T) <: ψ(T) Γ, y : ψ(T);1 ⊢ 1

Γ; ∅ ⊢ {y : T | 1} <: T
Sub Refine

Γ;∆ ⊢alt x : T
Exp Subsum

Case (Val Refine): let Γ;∆ ⊢ M : {x : T | F} by the premises Γ;∆1 ⊢ M : T
and Γ;∆2 ⊢ F{M/x}. By inductive hypothesis Γ;∆1 ⊢alt M : T . By in-
spection of the alternative typing rules, this judgement can be derived only
though an application of a structural rule after an arbitrary number of ap-
plications of (Exp Subsum), hence in the type derivation there must be an
instance of one of the alternative type rules R of the form:

R
(. . .) Γ;∆∗ ⊢ F ′{M/x} Γ;∆′ ↩→ Γ; (. . .),∆∗

Γ;∆′ ⊢alt M : {x : U | F ′}

104 CHAPTER 3. PROOFS OF CHAPTER 2

Val Var Refine
(x : T) ∈ Γ Γ;∆ ⊢ F{x/y}

Γ;∆ ⊢alt x : {y : T | F}

Val Unit Refine
Γ;∆ ⊢ F{()/y}

Γ;∆ ⊢alt () : {y : unit | F}

Val Fun Refine
(Γ; !∆1) • x : T ⊢alt E : U

Γ;∆2 ⊢ F{λx.E/y}
Γ;∆ ↩→ Γ; !∆1,∆2

Γ;∆ ⊢alt λx.E : {y : x : T → U | F}

Val Pair Refine
Γ; !∆1 ⊢alt M : T

Γ; !∆2 ⊢alt N : U{M/x}
Γ;∆3 ⊢ F{(M,N)/y}
Γ;∆ ↩→ Γ; !∆1, !∆2,∆3

Γ;∆ ⊢alt (M,N) : {y : x : T ∗ U | F}

Val Inl Refine
Γ; !∆1 ⊢alt M : T Γ; !∆1 ⊢ U

Γ;∆2 ⊢ F{inlM/y} Γ;∆ ↩→ Γ; !∆1,∆2

Γ;∆ ⊢alt inlM : {y : T + U | F}

Val Inr Refine
Γ; !∆1 ⊢alt M : U Γ; !∆1 ⊢ T

Γ;∆2 ⊢ F{inr M/y} Γ;∆ ↩→ Γ; !∆1,∆2

Γ;∆ ⊢alt inr M : {y : T + U | F}

Val Fold Refine
Γ; !∆1 ⊢alt M : T{µa. T/α}

Γ;∆2 ⊢ F{foldM/y} Γ;∆ ↩→ Γ; !∆1,∆2

Γ;∆ ⊢alt foldM : {y : µα. T | F}

Table 3.1: Alternative rules for typing values

where Γ;∆1 ↩→ Γ;∆′,∆′′ and Γ;∆′′ ⊢ {x : U | F ′} <: T . (Notice that
in this process we appeal to the transitivity of both the subtyping relation,
proved in Lemma 3.2.21, and the environment rewriting relation, proved in
Lemma 3.2.8.) Since Γ;∆∗ ⊢ F ′{M/x} and Γ;∆2 ⊢ F{M/x}, we know that
Γ;∆∗,∆2 ⊢ (F ′ ⊗ F){M/x} by (⊗-Right), so we have:

R
(. . .) Γ;∆∗,∆2 ⊢ (F ′ ⊗ F){M/x} Γ;∆′,∆2 ↩→ Γ; (. . .),∆∗,∆2

Γ;∆′,∆2 ⊢alt M : {x : U | F ′ ⊗ F}

Now we note that Γ;∆′′ ⊢ {x : U | F ′} <: T implies Γ;∆′′ ⊢ ψ(U) <: ψ(T)
by Lemma 3.2.15 in combination with Lemma 3.2.9. Hence, we also have:

Sub Refine
Γ;∆′′ ⊢ ψ(U) <: ψ(T) Γ, x : ψ(U);F ′ ⊗ F ⊢ F

Γ;∆′′ ⊢ {x : U | F ′ ⊗ F} <: {x : T | F}

3.2. SOUNDNESS OF THE TYPE SYSTEM 105

Hence, Γ;∆′,∆2,∆
′′ ⊢alt M : {x : T | F} by (Exp Subsum). Since we have

Γ;∆ ↩→ Γ;∆′,∆′′,∆2 by Lemma 3.2.8, we conclude Γ;∆ ⊢alt M : {x : T | F}
by a variant of Lemma 3.2.9 predicating over the alternative typing relation.

For all the other rules for values, the proof strategy is similar to the case of
(Val Var). The cases for expressions which are not values are immediate,
since the two formulations share the same rules.

(⇐) By induction on the derivation of Γ;∆ ⊢alt E : T :

Case (Val Var Refine): let Γ;∆ ⊢alt x : {y : T | F} by the premises (x : T) ∈ Γ
and Γ;∆ ⊢ F{x/y}. The latter implies Γ;∆ ⊢ � by Lemma 3.2.5, hence
Γ; ∅ ⊢ � again by Lemma 3.2.5 and we can conclude as follows:

Val Refine

Val Var
Γ; ∅ ⊢ � (x : T) ∈ Γ

Γ; ∅ ⊢ x : T Γ;∆ ⊢ F{x/y}
Γ;∆ ⊢ x : {y : T | F}

Case (Val Fun Refine): let Γ;∆ ⊢alt λx.E : {y : x : T → U | F} by the premises
(Γ; !∆1) • x : T ⊢alt E : U and Γ;∆2 ⊢ F{λx.E/y} with Γ;∆ ↩→ Γ; !∆1,∆2.
By inductive hypothesis (Γ; !∆1) • x : T ⊢ E : U , hence we can conclude as
follows:

Val Refine

Val Fun
(Γ; !∆1) • x : T ⊢ E : U Γ; !∆1 ↩→ Γ; !∆1

Γ; !∆1 ⊢ λx.E : x : T → U Γ;∆2 ⊢ F{λx.E/y}
Γ;∆ ⊢ λx.E : {y : x : T → U | F}

The case for (Val Unit Refine) is similar to the case for (Val Var Refine).
For all the other rules for values, the proof strategy is similar to the case
of (Val Fun Refine). The cases for expressions which are not values are
immediate, since the two formulations share the same rules.

Now the idea is to appeal to the transitivity of both the subtyping relation
(Lemma 3.2.21) and the environment rewriting relation (Lemma 3.2.8) to rearrange
the structure of any type derivation constructed under the alternative typing rules.
Namely, we observe that for any expression E the general form of such a type
derivation is as follows:

Γ;∆1 ⊢alt E : T1 Γ;∆2 ⊢ T1 <: T2 Γ;∆3 ↩→ Γ;∆1,∆2

...
Γ;∆2n−1 ⊢alt E : T2n−1 Γ;∆2n ⊢ T2n−1 <: T Γ;∆ ↩→ Γ;∆2n−1,∆2n

Γ;∆ ⊢alt E : T

106 CHAPTER 3. PROOFS OF CHAPTER 2

where the last rule applied to derive Γ;∆1 ⊢alt E : T1 is not (Exp Subsum). Without
loss of generality, we reorganize the derivation as follows:

Γ;∆1 ⊢alt E : T1 Γ;∆∗ ⊢ T1 <: T Γ;∆ ↩→ Γ;∆1,∆
∗

Γ;∆ ⊢alt E : T

with ∆∗ = ∆2,∆4, . . . ,∆2n. Notice that also derivations which do not use rule
(Exp Subsum) can be rearranged as detailed, since the subtyping relation is re-
flexive. Moreover, given that original typing and alternative typing coincide by
Lemma 3.2.40, we note that the previous transformation can be applied to any type
derivation.

Lemma 3.2.41 (Restricting Extraction). If E a [∆ | D] and E b [∆′ | D′] with
{b} ⊆ {a}, then D b [∆′′ | D′], where ∆′ = ∆,∆′′.

Proof. By induction on the structure of E:

Case E = assume F with F ̸= 1 and fn(F)∩{a} = ∅: we have E a [F | assume 1]

by (Extr Assume). Since {b} ⊆ {a}, we know that fn(F)∩{b} = ∅, hence we have
E b [F | assume 1] by (Extr Assume). We know that assume 1 b [∅ | assume 1]
by (Extr Exp), which allows us to conclude.

Case E = assume F with F ̸= 1 and fn(F)∩{a} ̸= ∅: we have E a [∅ | assume F]

by (Extr Exp). Now we distinguish two cases: if fn(F)∩{b} ̸= ∅, then we also have
E b [∅ | assume F] by (Extr Exp), i.e., we have assume F b [∅ | assume F] and
we conclude. Otherwise, whenever fn(F) ∩ {b} = ∅, we have E b [F | assume 1]

by (Extr Assume), i.e., we have assume F b [F | assume 1] and we conclude
again.

Case E = E1 � E2: we know by the definition of the only applicable extraction rule
(Extr Fork) that:

• E a [∆1,∆2 | D1 � D2] and

• E b [∆′
1,∆

′
2 | D′

1 � D
′
2], where

• Ei a [∆i | Di] and

• Ei
b [∆′

i | D′
i] for i ∈ {1, 2}.

By applying the induction hypothesis to the latter two statements we know that
there exist ∆′′

1,∆
′′
2 such that:

Di
b [∆′′

i | D′
i],

where ∆′
i = ∆i,∆

′′
i for i ∈ {1, 2}. By (Exp Fork) we can conclude that:

D1 � D2
b [∆′′

1,∆
′′
2 | D′

1 � D
′
2],

where ∆′
1,∆

′
2 = ∆1,∆

′′
1,∆2,∆

′′
1 = ∆1,∆2,∆

′′
1,∆

′′
2.

3.2. SOUNDNESS OF THE TYPE SYSTEM 107

Case E is a restriction or let: in this case both E a [∆ | D] and E b [∆′ | D′]
must have been derived by a top-level application of the same extraction rule R.
We apply the induction hypothesis to the premise of the extraction rule R and
conclude by applying R to the result, similarly to the previous case of forks.

Case E has a different form: in this case both E a [∅ | E] and E b [∅ | E] by
(Extr Exp), so we immediately conclude.

Lemma 3.2.42 (Extraction Preserves Typing). If Γ;∆ ⊢ E : T and E a [∆′ | E ′],
then Γ;∆,∆′ ⊢ E ′ : T .

Proof. By a case analysis on the structure of E:

Case E is any expression such that E [∅ | E]: the conclusion is trivial.

Case E = assume F with F ̸= 1 and fn(F)∩{a} = ∅: we have E a [F | assume 1]
and Γ;∆ ⊢ assume F : T . The typing judgement must follow by an instance of
(Exp Assume) after an instance of (Exp Subsum), hence it must be the case
that Γ;∆A ⊢ assume F : U and Γ;∆B ⊢ U <: T with Γ;∆ ↩→ Γ;∆A,∆B and
Γ;∆A, F ⊢ assume 1 : U . The conclusion Γ;∆, F ⊢ assume 1 : T follows by (Exp
Subsum).

Case E = (νa)D: we have E b [∆′ | (νa)D′] with D a,b [∆′ | D′] and Γ;∆ ⊢
(νa)D : T . The typing judgement must follow by an instance of (Exp Res) after
an instance of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ (νa)D : V
and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• D a [∆′′ | D′′]

• Γ, a ↕ T ′; ∆A,∆
′′ ⊢ D′′ : V

By Lemma 3.2.41 we know that D′ a [∆′′′ | D′′], for some ∆′′′ such that ∆′′ =
∆′,∆′′′. We can then construct the following type derivation:

Exp Res
D′ a [∆′′′ | D′′] Γ, a ↕ T ′; ∆A,

∆′′
∆′,∆′′′ ⊢ D′′ : V

Γ;∆A,∆
′ ⊢ (νa)D′ : V Γ;∆B ⊢ V <: T

Γ;∆,∆′ ⊢ (νa)D′ : T
Exp Subsum

Case E = let x = E1 in E2: we have E a [∆′ | let x = D′ in E2] with E1 a
[∆′ | D′] and Γ;∆ ⊢ let x = E1 in E2 : T . The typing judgement must follow by an
instance of (Exp Let) after an instance of (Exp Subsum), hence it must be the
case that Γ;∆A ⊢ let x = E1 in E2 : V and Γ;∆B ⊢ V <: T with:

108 CHAPTER 3. PROOFS OF CHAPTER 2

• Γ;∆ ↩→ Γ;∆A,∆B

• E1 ∅ [∆′′ | D′′]

• Γ;∆A,∆
′′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ D′′ : U

• (Γ;∆2) • x : U ⊢ E2 : V

By Lemma 3.2.41 we know that D′ ∅ [∆′′′ | D′′], for some ∆′′′ such that ∆′′ =
∆′,∆′′′. Hence, we have Γ;∆A,∆

′,∆′′′ ↩→ Γ;∆1,∆2 and we can then construct the
following type derivation:

Exp Let
D′ ∅ [∆′′′ | D′′] Γ;∆1 ⊢ D′′ : U (Γ;∆2) • x : U ⊢ E2 : V

Γ;∆A,∆
′ ⊢ let x = D′ in E2 : V Γ;∆B ⊢ V <: T

Γ;∆,∆′ ⊢ let x = D′ in E2 : T
Exp Subsum

Case E = E1 � E2: similar to the previous case.

Lemma 3.2.43 (Transitivity of Extraction). Let E b [∆′ | E ′] and E ′ c
[∆′′ | E ′′], where {c} ⊆ {b}, then E c [∆′,∆′′ | E ′′].

Proof. By induction on the structure of E:

Case E = assume F , where F ̸= 1 and fn(F) ∩ {b} = ∅. In this case we know,
by definition of the only applicable extraction rule (Extr Assume), that E b
[∆′ | E ′] with ∆′ = F and E ′ = assume 1. It immediately follows by the only
applicable extraction rule (Extr Exp) that E ′ c [∆′′ | E ′′] with ∆′′ = ∅ and
E ′′ = assume 1. Since we know that {c} ⊆ {b} and fn(F) ∩ {b} = ∅, we know that
fn(F)∩{c} = ∅. We can thus apply (Extr Assume) to derive E c [F | assume 1]
and conclude.

Case E is a restriction, fork, or let: in this case both E b [∆′ | E ′] and E ′ c
[∆′′ | E ′′] must have been derived by a top-level application of the same extraction
rule R. We apply the induction hypothesis to the premise(s) of the extraction rule
R and conclude by applying R to the result(s).

Case E has a different form: In this case we know that E b [∅ | E ′] with E ′ = E.
Since we know that E ′ c [∆′ | E ′′], it immediately follows that E c [∆′ | E ′′]
and we conclude.

Lemma 3.2.44 (Inverting Extraction Preserves Typing). Let E b [∆′ | E ′]. If
Γ;∆,∆′ ⊢ E ′ : T , then Γ;∆ ⊢ E : T .

3.2. SOUNDNESS OF THE TYPE SYSTEM 109

Proof. By a case analysis on the structure of E:

Case E is any expression such that E [∅ | E]: the conclusion is trivial.

Case E = assume F with F ̸= 1 and fn(F) ∩ {b} = ∅: we know that E b
[F | assume 1] and Γ;∆, F ⊢ assume 1 : T . The conclusion Γ;∆ ⊢ assume F : T
immediately follows by (Exp Assume).

Case E = (νa)D: we have E b [∆′ | (νa)D′] with D a,b [∆′ | D′] and Γ;∆,∆′ ⊢
(νa)D′ : T . The typing judgement must follow by an instance of (Exp Res) after
an instance of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ (νa)D′ : V
by a top-level application of (Exp Res) and Γ;∆B ⊢ V <: T with Γ;∆,∆′ ↩→
Γ;∆A,∆B.

Since we know that Γ;∆A ⊢ (νa)D′ : V by (Exp Res), it must be the case that
D′ a [∆′′ | D′′] and Γ, a ↕ W ; ∆A,∆

′′ ⊢ D′′ : V with a /∈ fn(V).

By Lemma 3.2.43 we know that D a,b [∆′ | D′] and D′ a [∆′′ | D′′] imply:

D a [∆′,∆′′ | D′′].

By Lemma 3.2.7 we know that Γ;∆B ⊢ V <: T implies:

Γ, a ↕ W ; ∆B ⊢ V <: T.

Applying (Exp Subsum) to the latter and Γ, a ↕ W ; ∆A,∆
′′ ⊢ D′′ : V , we get:

Γ, a ↕ W ; ∆A,∆
′′,∆B ⊢ D′′ : T.

We observe that Γ, a ↕ W ; ∆,∆′,∆′′ ↩→ Γ, a ↕ W ; ∆A,∆
′′,∆B, so we can apply

Lemma 3.2.9 and get:
Γ, a ↕ W ; ∆,∆′,∆′′ ⊢ D′′ : T.

Finally, we note that a /∈ fn(T) by applying Lemma 3.2.5 to Γ;∆B ⊢ V <: T , hence
we conclude Γ;∆ ⊢ (νa)D : T by an application of (Exp Res).

Case E = let x = E1 in E2: We know that E b [∆′ | let x = D1 in E2], where
E1

b [∆′ | D1] and Γ;∆,∆′ ⊢ let x = D1 in E2 : T .

The typing judgement must follow by an instance of (Exp Let) after an instance
of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ let x = D1 in E2 : V
by a top-level application of (Exp Let) and Γ;∆B ⊢ V <: T with Γ;∆,∆′ ↩→
Γ;∆A,∆B.

Since we know that Γ;∆A ⊢ let x = D1 in E2 : V by (Exp Let), it must be the
case that D1 ∅ [∆′′ | D′

1] and Γ;∆1 ⊢ D′
1 : W and (Γ;∆2) • x : W ⊢ E2 : V , for

some ∆1,∆2 such that Γ;∆A,∆
′′ ↩→ Γ;∆1,∆2.

110 CHAPTER 3. PROOFS OF CHAPTER 2

By Lemma 3.2.43 we know that E1
b [∆′ | D1] and D1 ∅ [∆′′ | D′

1] imply:

E1
∅ [∆′,∆′′ | D′

1].

By Lemma 3.2.7 we know that Γ;∆B ⊢ V <: T implies:

Γ, x : ψ(W);∆B ⊢ V <: T.

Applying (Exp Subsum) to the latter and (Γ;∆2) • x : W ⊢ E2 : V , we get:

(Γ;∆2,∆B) • x : W ⊢ E2 : T.

We conclude Γ;∆ ⊢ let x = E1 in E2 : T by applying (Exp Let) to the collected
statements:

• E1 ∅ [∆′,∆′′ | D′
1]

• Γ;∆1 ⊢ D′
1 : W

• (Γ;∆2,∆B) • x : W ⊢ E2 : T , and

• Γ;∆,∆′,∆′′ ↩→ Γ;∆1, (∆2,∆B), which holds by Lemma 3.2.8.

Case E = E1 � E2: similar to the previous case.

Lemma 3.2.45 (Heating Preserves Typing). If Γ;∆ ⊢ E : T and E V E ′, then
Γ;∆ ⊢ E ′ : T .

Proof. By induction on the derivation of E V E ′:

Case (Heat Refl): the case is trivial.

Case (Heat Trans): assume E V E ′′ by the premises E V E ′ and E ′ V E ′′.
Assume further that Γ;∆ ⊢ E : T . We apply the inductive hypothesis twice and
we conclude Γ;∆ ⊢ E ′′ : T .

Case (Heat Let): assume let x = E in E ′′ V let x = E ′ in E ′′ by the premise
E V E ′. Assume further that Γ;∆ ⊢ let x = E in E ′′ : T , which must follow by an
instance of (Exp Let) after an instance of (Exp Subsum), hence it must be the
case that Γ;∆A ⊢ let x = E in E ′′ : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E [∆′ | D]

• Γ;∆,∆′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ D : U

3.2. SOUNDNESS OF THE TYPE SYSTEM 111

• (Γ;∆2) • x : U ⊢ E ′′ : V

By Lemma 3.2.37 we know that E V E ′ implies E ′ [∆′ | D′] with D V D′.
Since Lemma 3.2.37 is depth-preserving, we can apply the inductive hypothesis and
get Γ;∆1 ⊢ D′ : U , hence the conclusion Γ;∆ ⊢ let x = E ′ in E ′′ : T follows by
applying (Exp Let) and (Exp Subsum).

Case (Heat Res): assume (νa)E V (νa)E ′ by the premise E V E ′. Assume
further that Γ;∆ ⊢ (νa)E : T . The typing judgement must follow by an instance
of (Exp Res) after an instance of (Exp Subsum), hence it must be the case that
Γ;∆A ⊢ (νa)E : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E a [∆′ | D]

• Γ, a ↕ T ′; ∆,∆′ ⊢ D : V

By Lemma 3.2.37 we know that E V E ′ implies E ′ a [∆′ | D′] with D V D′.
Since Lemma 3.2.37 is depth-preserving, we can apply the inductive hypothesis and
get Γ, a ↕ T ′; ∆,∆′ ⊢ D′ : V , hence the conclusion Γ;∆ ⊢ (νa)E ′ : T follows by
applying (Exp Res) and (Exp Subsum).

Case (Heat Fork 1): assume E � E ′′ V E ′ � E ′′ by the premise E V E ′. Assume
further that Γ;∆ ⊢ E � E ′′ : T . The judgement must follow by an instance of
(Exp Fork) after an instance of (Exp Subsum), hence it must be the case that
Γ;∆A ⊢ E � E ′′ : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E [∆′ | D]

• E ′′ [∆′′ | D′′]

• Γ;∆A,∆
′,∆′′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ D : U

• Γ;∆2 ⊢ D′′ : V

By Lemma 3.2.37 we know that E V E ′ implies E ′ [∆′ | D′] with D V D′.
Since Lemma 3.2.37 is depth-preserving, we can apply the inductive hypothesis and
get Γ;∆1 ⊢ D′ : U , hence the conclusion Γ;∆ ⊢ E ′ � E ′′ : T follows by applying
(Exp Fork) and (Exp Subsum).

Case (Heat Fork 2): the case is analogous to Heat Fork 1.

Case (Heat Fork ()): assume () � E V E with Γ;∆ ⊢ () � E : T . The judgement
must follow by an instance of (Exp Fork) after an instance of (Exp Subsum),
hence it must be the case that Γ;∆A ⊢ () � E : V and Γ;∆B ⊢ V <: T with:

112 CHAPTER 3. PROOFS OF CHAPTER 2

• Γ;∆ ↩→ Γ;∆A,∆B

• () [∅ | ()]
• E [∆′ | E ′]

• Γ;∆A,∆
′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ () : U

• Γ;∆2 ⊢ E ′ : V

Notice that both Γ;∆1 ⊢ � and Γ;∆2 ⊢ � by Lemma 3.2.5, thus Γ;∆1,∆2 ⊢ �
by Lemma 3.2.6. By Lemma 3.2.7 we then know that Γ;∆2 ⊢ E ′ : V implies
Γ;∆1,∆2 ⊢ E ′ : V , hence we have Γ;∆A,∆

′ ⊢ E ′ : V by Lemma 3.2.9 and this
implies Γ;∆A ⊢ E : V by Lemma 3.2.44. The conclusion Γ;∆ ⊢ E : T follows by
(Exp Subsum).

Assume now E V () � E with Γ;∆ ⊢ E : T . The judgement must follow by an
instance of a structural rule after an instance of (Exp Subsum), hence it must be
the case that Γ;∆A ⊢ E : V and Γ;∆B ⊢ V <: T with Γ;∆ ↩→ Γ;∆A,∆B. By
Lemma 3.2.5 we know that Γ;∆A ⊢ E : V implies Γ;∆A ⊢ �, hence Γ; ∅ ⊢ � again
by Lemma 3.2.5 and Γ; ∅ ⊢ () : unit by (Val Unit). Let then E [∆′ | E ′]: since
Γ;∆A ⊢ E : V , we have Γ;∆A,∆

′ ⊢ E ′ : V by Lemma 3.2.42. Hence, we have:

• () [∅ | ()]
• E [∆′ | E ′]

• Γ; ∅ ⊢ () : unit

• Γ;∆A,∆
′ ⊢ E ′ : V

which imply Γ;∆A ⊢ () � E : V by (Exp Fork). The conclusion Γ;∆ ⊢ () � E : T
follows by (Exp Subsum).

Case (Heat Msg ()): let a!M V a!M � () with Γ;∆ ⊢ a!M : T . The judgement
must follow by an instance of (Exp Send) after an instance of (Exp Subsum),
hence it must be the case that Γ;∆A ⊢ a!M : unit and Γ;∆B ⊢ unit <: T with
Γ;∆ ↩→ Γ;∆A,∆B. By Lemma 3.2.5 we know that Γ;∆A ⊢ a!M : unit implies
Γ;∆A ⊢ �, hence Γ; ∅ ⊢ � again by Lemma 3.2.5 and Γ; ∅ ⊢ () : unit by (Val
Unit). Thus, we have:

• a!M [∅ | a!M]

• () [∅ | ()]
• Γ;∆A ⊢ a!M : unit

• Γ; ∅ ⊢ () : unit

which imply Γ;∆A ⊢ a!M � () : unit by (Exp Fork). Hence, the conclusion
Γ;∆ ⊢ a!M � () : T follows by (Exp Subsum).

3.2. SOUNDNESS OF THE TYPE SYSTEM 113

Case (Heat Assume ()): let assume F V assume F � () with Γ;∆ ⊢ assume F : T .
We distinguish two cases. Let F = 1, then Γ;∆ ⊢ assume 1 : T must follow by an
instance of (Exp True) after an instance of (Exp Subsum), hence it must be the
case that Γ;∆A ⊢ assume 1 : unit and Γ;∆B ⊢ unit <: T with Γ;∆ ↩→ Γ;∆A,∆B.
Now notice that assume 1 [∅ | assume 1] and () [∅ | ()], hence we can construct
the following type derivation:

Exp Fork
Γ;∆A ⊢ assume 1 : unit

Γ; ∅ ⊢ �
Γ; ∅ ⊢ () : unit

Val Unit

Γ;∆A ⊢ assume 1 � () : unit Γ;∆B ⊢ unit <: T

Γ;∆ ⊢ assume 1 � () : T
Exp Subsum

Let now F ̸= 1, then Γ;∆ ⊢ assume F : T must follow by an instance of (Exp
Assume) after an instance of (Exp Subsum), hence it must be the case that
Γ;∆A ⊢ assume F : V and Γ;∆B ⊢ V <: T with Γ;∆ ↩→ Γ;∆A,∆B and
Γ;∆A, F ⊢ assume 1 : V . The latter must have been derived by an instance of (Exp
True) after an instance of (Exp Subsum), hence we have Γ;∆1 ⊢ assume 1 : unit
and Γ;∆2 : unit <: V with Γ;∆A, F ↩→ Γ;∆1,∆2. Now notice that assume F
[F | assume 1] and () [∅ | ()], hence we can construct the following type deriva-
tion:

Exp Fork

Exp True
Γ; ∅ ⊢ �

Γ; ∅ ⊢ assume 1 : unit

Val Unit
Γ;∆1 ⊢ �

Γ;∆1 ⊢ () : unit Γ;∆2 ⊢ unit <: V

Γ;∆A, F ⊢ () : V
Exp Subsum

Γ;∆A ⊢ assume F � () : V Γ;∆B ⊢ V <: T

Γ;∆ ⊢ assume F � () : T
Exp Subsum

Case (Heat Assert ()): the case is analogous to (Heat Msg ()).

Case (Heat Res Fork 1): let E ′ � (νa)E V (νa)(E ′ � E) with a /∈ fn(E ′).
Assume further Γ;∆ ⊢ E ′ � (νa)E : T . The judgement must follow by an instance
of (Exp Fork) after an instance of (Exp Subsum), hence it must be the case that
Γ;∆A ⊢ E ′ � (νa)E : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E ′ ∅ [∆′ | D′]

• (νa)E ∅ [∆′′ | (νa)D] with E a [∆′′ | D]

• Γ;∆A,∆
′,∆′′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ D′ : U

• Γ;∆2 ⊢ (νa)D : V

114 CHAPTER 3. PROOFS OF CHAPTER 2

The latter judgement must follow by an instance of (Exp Res) after an instance of
(Exp Subsum). Notice that E a [∆′′ | D] implies D a [∅ | D] by Lemma 3.2.38,
hence we simply have Γ, a ↕ T ′; ∆21 ⊢ D : U and Γ;∆22 ⊢ U <: V with Γ;∆2 ↩→
Γ;∆21,∆22. We also notice that E ′ ∅ [∆′ | D′] and a /∈ fn(E ′) imply E ′ a

[∆′ | D′] by Lemma 3.2.36, hence E ′ � E a [∆′,∆′′ | D′ � D] by (Extr Fork).
Moreover, we know that E ′ ∅ [∆′ | D′] implies D′ ∅ [∅ | D′] by Lemma 3.2.38,
hence we can construct the following type derivation:

Exp Res

Exp Fork
D ∅ [∆′′′ | D′′]

Γ;∆1 ⊢ D′ : U

Γ, a ↕ T ′; ∆1 ⊢ D′ : U

(1)

Γ, a ↕ T ′; ∆2,∆
′′′ ⊢ D′′ : V

Γ, a ↕ T ′; ∆A,∆
′,∆′′ ⊢ D′ � D : V

Γ;∆A ⊢ (νa)(E′ � E) : V

where (1) is constructed as follows:

Exp Subsum

(2)

Γ, a ↕ T ′; ∆21,∆
′′′ ⊢ D′′ : U

Γ;∆22 ⊢ U <: V

Γ, a ↕ T ′; ∆22 ⊢ U <: V

Γ, a ↕ T ′; ∆2,∆
′′′ ⊢ D′′ : V

and (2) is derived from Γ, a ↕ T ′; ∆21 ⊢ D : U and D ∅ [∆′′′ | D′′] using
Lemma 3.2.42. We conclude Γ;∆ ⊢ (νa)(E ′ � E) : T by (Exp Subsum).

Case (Heat Res Fork 2): the case is analogous to (Heat Res Fork 1).

Case (Heat Res Let): assume let x = (νa)E in E ′ V (νa)(let x = E in E ′) with
a /∈ fn(E ′). Assume further Γ;∆ ⊢ let x = (νa)E in E ′ : T . The judgement must
follow by an instance of (Exp Let) after an instance of (Exp Subsum), hence it
must be the case that Γ;∆A ⊢ let x = (νa)E in E ′ : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• (νa)E ∅ [∆′ | (νa)D] with E a [∆′ | D]

• Γ;∆A,∆
′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ (νa)D : U

• (Γ;∆2) • x : U ⊢ E ′ : V

Now we note that Γ;∆1 ⊢ (νa)D : U must follow by an instance of (Exp Res)
after an instance of (Exp Subsum). Since E a [∆′ | D] implies D a [∅ | D]
by Lemma 3.2.38, we note that we simply have Γ, a ↕ T ′; ∆11 ⊢ D : U ′ and
Γ;∆12 ⊢ U ′ <: U with Γ;∆1 ↩→ Γ;∆11,∆12. Notice also that E a [∆′ | D] implies
let x = E in E ′ a [∆′ | let x = D in E ′] by (Extr Let). We can then construct
the following type derivation:

Exp Res

Exp Let
D ∅ [∆′′ | D′]

(1)

Γ, a ↕ T ′; ∆1,∆
′′ ⊢ D′ : U

(Γ;∆2) • x : U ⊢ E′ : V

(Γ, a ↕ T ′; ∆2) • x : U ⊢ E′ : V

Γ, a ↕ T ′; ∆A,∆
′ ⊢ let x = D in E′ : V

Γ;∆A ⊢ (νa)(let x = E in E′) : V

3.2. SOUNDNESS OF THE TYPE SYSTEM 115

where (1) is constructed as follows:

Exp Subsum

(2)

Γ, a ↕ T ′; ∆11,∆
′′ ⊢ D′ : U ′

Γ;∆12 ⊢ U ′ <: U

Γ, a ↕ T ′; ∆12 ⊢ U ′ <: U

Γ, a ↕ T ′; ∆1,∆
′′ ⊢ D′ : U

and (2) is derived from Γ, a ↕ T ′; ∆11 ⊢ D : U ′ and D ∅ [∆′′ | D′] using
Lemma 3.2.42. We conclude Γ;∆ ⊢ (νa)(let x = E in E ′) : T by (Exp Sub-
sum).

Case (Heat Fork Comm): assume (E � E ′) � E ′′ V (E ′ � E) � E ′′ with Γ;∆ ⊢
(E � E ′) � E ′′ : T . The judgement must follow by an instance of (Exp Fork)
after an instance of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ (E �
E ′) � E ′′ : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E � E ′ [∆1,∆2 | D1 � D2] with E [∆1 | D1] and E ′ [∆2 | D2]

• E ′′ [∆3 | D3]

• Γ;∆A,∆1,∆2,∆3 ↩→ Γ;∆′
1,∆

′
2

• Γ;∆′
1 ⊢ D1 � D2 : U

• Γ;∆′
2 ⊢ D3 : V

Now we notice that Γ;∆′
1 ⊢ D1 � D2 : U must have been derived by an instance

of (Exp Fork) after an instance of (Exp Subsum). Since D1 [∅ | D1] and
D2 [∅ | D2] by Lemma 3.2.38, it must be the case that Γ;∆′

11 ⊢ D1 � D2 : U2

and Γ;∆′
12 ⊢ U2 <: U with:

• Γ;∆′
1 ↩→ Γ;∆′

11,∆
′
12

• Γ;∆′
11 ↩→ Γ;∆′

A,∆
′
B

• Γ;∆′
A ⊢ D1 : U1

• Γ;∆′
B ⊢ D2 : U2

We have E ′ � E [∆1,∆2 | D2 � D1] by applying (Extr Fork) to E [∆1 | D1]
and E ′ [∆2 | D2], hence we can construct the following type derivation:

Exp Fork

Exp Fork
Γ;∆′

B ⊢ D2 : U2 Γ;∆′
A ⊢ D1 : U1

Γ;∆′
B,∆

′
A ⊢ D2 � D1 : U1 Γ;∆′

2 ⊢ D3 : V

Γ;∆A ⊢ (E′ � E) � E′′ : V

since Γ;∆A,∆1,∆2,∆3 ↩→ Γ; (∆′
B,∆

′
A),∆

′
2 can be derived by Lemma 3.2.8. Finally,

we conclude Γ;∆ ⊢ (E ′ � E) � E ′′ : T by (Exp Subsum).

116 CHAPTER 3. PROOFS OF CHAPTER 2

Case (Heat Fork Assoc): assume (E � E ′) � E ′′ V E � (E ′ � E ′′) with Γ;∆ ⊢
(E � E ′) � E ′′ : T . The judgement must follow by an instance of (Exp Fork)
after an instance of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ (E �
E ′) � E ′′ : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E � E ′ [∆1,∆2 | D1 � D2] with E [∆1 | D1] and E ′ [∆2 | D2]

• E ′′ [∆3 | D3]

• Γ;∆A,∆1,∆2,∆3 ↩→ Γ;∆′
1,∆

′
2

• Γ;∆′
1 ⊢ D1 � D2 : U

• Γ;∆′
2 ⊢ D3 : V

Now we notice that Γ;∆′
1 ⊢ D1 � D2 : U must have been derived by an instance

of (Exp Fork) after an instance of (Exp Subsum). Since D1 [∅ | D1] and
D2 [∅ | D2] by Lemma 3.2.38, it must be the case that Γ;∆′

11 ⊢ D1 � D2 : U2

and Γ;∆′
12 ⊢ U2 <: U with:

• Γ;∆′
1 ↩→ Γ;∆′

11,∆
′
12

• Γ;∆′
11 ↩→ Γ;∆′

A,∆
′
B

• Γ;∆′
A ⊢ D1 : U1

• Γ;∆′
B ⊢ D2 : U2

We have E ′ � E ′′ [∆2,∆3 | D2 � D3] by applying (Extr Fork) to E ′
[∆2 | D2] and E ′′ [∆3 | D3]. Moreover, we know that E ′′ [∆3 | D3] im-
plies D3 [∅ | D3] by Lemma 3.2.38, hence we can construct the following type
derivation:

Exp Fork
Γ;∆′

A ⊢ D1 : U1

Γ;∆′
B ⊢ D2 : U2 Γ;∆′

2 ⊢ D3 : V

Γ;∆′
B,∆

′
2 ⊢ D2 � D3 : V

Exp Fork

Γ;∆A ⊢ E � (E′ � E′′) : V

since Γ;∆A,∆1,∆2,∆3 ↩→ Γ;∆′
A, (∆

′
B,∆

′
2) can be derived by Lemma 3.2.8. Finally,

we conclude Γ;∆ ⊢ E � (E ′ � E ′′) : T by (Exp Subsum).

Case (Heat Fork Let): assume let x = (E � E ′) in E ′′ V E � (let x = E ′ in E ′′)
with Γ;∆ ⊢ let x = (E � E ′) in E ′′ : T . The judgement must follow by an instance
of (Exp Let) after an instance of (Exp Subsum), hence it must be the case that
Γ;∆A ⊢ let x = (E � E ′) in E ′′ : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E � E ′ [∆1,∆2 | D1 � D2] with E [∆1 | D1] and E ′ [∆2 | D2]

• Γ;∆A,∆1,∆2 ↩→ Γ;∆′
1,∆

′
2

3.2. SOUNDNESS OF THE TYPE SYSTEM 117

• Γ;∆′
1 ⊢ D1 � D2 : U

• (Γ;∆′
2) • x : U ⊢ E ′′ : V

Now we notice that Γ;∆′
1 ⊢ D1 � D2 : U must have been derived by an instance

of (Exp Fork) after an instance of (Exp Subsum). Since D1 [∅ | D1] and
D2 [∅ | D2] by Lemma 3.2.38, it must be the case that Γ;∆′

11 ⊢ D1 � D2 : U2

and Γ;∆′
12 ⊢ U2 <: U with:

• Γ;∆′
1 ↩→ Γ;∆′

11,∆
′
12

• Γ;∆′
11 ↩→ Γ;∆′

A,∆
′
B

• Γ;∆′
A ⊢ D1 : U1

• Γ;∆′
B ⊢ D2 : U2

We have let x = E ′ in E ′′ [∆2 | let x = D2 in E
′′] by (Extr Let), hence we can

construct the following type derivation:

Exp Fork
Γ;∆′

A ⊢ D1 : U1

Exp Subsum
Γ;∆′

B ⊢ D2 : U2 Γ;∆′
12 ⊢ U2 <: U

Γ;∆′
B,∆

′
12 ⊢ D2 : U (Γ;∆′

2) • x : U ⊢ E′′ : V

Γ;∆′
B,∆

′
12,∆

′
2 ⊢ let x = D2 in E

′′ : V
Exp Let

Γ;∆A ⊢ E � (let x = E′ in E′′) : V

since Γ;∆A,∆1,∆2 ↩→ Γ;∆′
A, (∆

′
B,∆

′
12,∆

′
2) can be derived by Lemma 3.2.8. We

conclude Γ;∆ ⊢ E � (let x = E ′ in E ′′) : T by (Exp Subsum).

Assume now E � (let x = E ′ in E ′′) V let x = (E � E ′) in E ′′ with Γ;∆ ⊢ E �
(let x = E ′ in E ′′) : T . The judgement must follow by an instance of (Exp Fork)
after an instance of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ E �
(let x = E ′ in E ′′) : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E [∆1 | D1]

• let x = E ′ in E ′′ [∆2 | let x = D2 in E
′′] with E ′ [∆2 | D2]

• Γ;∆A,∆1,∆2 ↩→ Γ;∆′
1,∆

′
2

• Γ;∆′
1 ⊢ D1 : U1

• Γ;∆′
2 ⊢ let x = D2 in E

′′ : V

Now we notice that Γ;∆′
2 ⊢ let x = D2 in E ′′ : V must have been derived by an

instance of (Exp Let) after an instance of (Exp Subsum). Since E ′ [∆2 | D2]
implies D2 [∅ | D2] by Lemma 3.2.38, it must be the case that Γ;∆′

21 ⊢ let x =
D2 in E

′′ : U3 and Γ;∆′
22 ⊢ U3 <: V with:

• Γ;∆′
2 ↩→ Γ;∆′

21,∆
′
22

118 CHAPTER 3. PROOFS OF CHAPTER 2

• Γ;∆′
21 ↩→ Γ;∆′

A,∆
′
B

• Γ;∆′
A ⊢ D2 : U2

• (Γ;∆′
B) • x : U2 ⊢ E ′′ : U3

We have E � E ′ [∆1,∆2 | D1 � D2] by (Extr Fork). Moreover, we know that
E [∆1 | D1] implies D1 [∅ | D1] by Lemma 3.2.38, hence we can construct
the following type derivation:

Exp Let

Exp Fork
Γ;∆′

1 ⊢ D1 : U1 Γ;∆′
A ⊢ D2 : U2

Γ;∆′
1,∆

′
A ⊢ D1 � D2 : U2

(1)

(Γ;∆′
B,∆

′
22) • x : U2 ⊢ E′′ : V

Γ;∆A ⊢ let x = (E � E′) in E′′ : V

where Γ;∆A,∆1,∆2 ↩→ Γ; (∆′
1,∆

′
A), (∆

′
B,∆

′
22) can be derived by Lemma 3.2.8, and

the derivation (1) is constructed as follows:

Exp Subsum
(Γ;∆′

B) • x : U2 ⊢ E′′ : U3

Γ;∆′
22 ⊢ U3 <: V

Γ, x : ψ(U2);∆
′
22 ⊢ U3 <: V

(Γ;∆′
B,∆

′
22) • x : U2 ⊢ E′′ : V

We conclude Γ;∆ ⊢ let x = (E � E ′) in E ′′ : T by (Exp Subsum).

Lemma 3.2.46 (Removing Tautologies). If Γ;∆, F ⊢ E : T and ∅ ⊢ F , then
Γ;∆ ⊢ E : T .

Proof. We know that Γ;∆, F ⊢ E : T implies Γ;∆, F ⊢ � by Lemma 3.2.5. More-
over, the latter implies Γ;∆ ⊢ � again by Lemma 3.2.5. Since ∆, F ⊢ ∆, F by
Lemma 3.2.2, we can derive Γ;∆ ↩→ Γ;∆, F as follows:

Rewrite
Γ;∆ ⊢ �

Cut
∅ ⊢ F ∆, F ⊢ ∆, F

∆ ⊢ ∆, F Γ;∆, F ⊢ �
Γ;∆ ↩→ Γ;∆, F

Since Γ;∆, F ⊢ E : T , the conclusion Γ;∆ ⊢ E : T follows by Lemma 3.2.9.

Theorem 3.2.47 (Subject Reduction). Let fv(E) = ∅. If Γ;∆ ⊢ E : T and E → E ′,
then Γ;∆ ⊢ E ′ : T .

Proof. By induction on the derivation of E → E ′. In the proof we implicitly appeal
to Lemma 3.2.5 and Lemma 3.2.8 several times:

Case (Red Fun): assume (λx.E) N → E{N/x} and Γ;∆ ⊢ (λx.E) N : T . The
typing judgement must follow by an instance of (Exp Appl) after an instance of
(Exp Subsum), hence it must be the case that Γ;∆A ⊢ (λx.E) N : U ′{N/x} and
Γ;∆B ⊢ U ′{N/x} <: T with:

3.2. SOUNDNESS OF THE TYPE SYSTEM 119

• Γ;∆ ↩→ Γ;∆A,∆B

• Γ;∆A ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ λx.E : x : T ′ → U ′

• Γ;∆2 ⊢ N : T ′

By Lemma 3.2.31 we know that Γ;∆1 ⊢ λx.E : x : T ′ → U ′ implies (Γ;∆1) • x :
T ′ ⊢ E : U ′. Now notice that x /∈ dom(Γ) by Lemma 3.2.5, hence x /∈ fv(∆1)
by Lemma 3.2.10. By applying Lemma 3.2.27, we then get Γ;∆1,∆2 ⊢ E{N/x} :
U ′{N/x}. Since Γ;∆ ↩→ Γ; (∆1,∆2),∆B, the conclusion Γ;∆ ⊢ E{N/x} : T follows
by an application of (Exp Subsum).

Case (Red Split): assume let (x, y) = (M,N) in E → E{M/x}{N/y} and Γ;∆ ⊢
let (x, y) = (M,N) in E : T . The typing judgement must follow by an instance of
(Exp Split) after an instance of (Exp Subsum), hence it must be the case that
Γ;∆A ⊢ let (x, y) = (M,N) in E : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• Γ;∆A ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ (M,N) : x : T ′ ∗ U ′

• (Γ;∆2) • x : T ′ • y : U ′ • !((x, y) = (M,N)) ⊢ E : V

• {x, y} ∩ fv(V) = ∅

By Lemma 3.2.32 we know that Γ;∆1 ⊢ (M,N) : x : T ′ ∗ U ′ implies:

• Γ;∆1 ↩→ Γ;∆11,∆12

• Γ;∆11 ⊢M : T ′

• Γ;∆12 ⊢ N : U ′{M/x}

Now notice that x /∈ dom(Γ) by Lemma 3.2.5, hence x /∈ fv(∆2) by Lemma 3.2.10.
By applying Lemma 3.2.27 twice and noting that {x, y} ∩ fv(V) = ∅, we then get
Γ;∆11,∆12,∆2, !((M,N) = (M,N)) ⊢ E : V . Since ∅ ⊢ !((M,N) = (M,N)), the
latter judgement implies Γ;∆11,∆12,∆2 ⊢ E : V by Lemma 3.2.46. Since Γ;∆ ↩→
Γ; (∆11,∆12,∆2),∆B, the conclusion Γ;∆ ⊢ E : T follows by (Exp Subsum).

Case (Red Match): assume match h N with h x then E else E ′ → E{N/x} and
Γ;∆ ⊢ match h N with h x then E else E ′ : T . The typing judgement must
follow by an instance of (Exp Match) after an instance of (Exp Subsum), hence
it must be the case that Γ;∆A ⊢ match h N with h x then E else E ′ : V and
Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• Γ;∆A ↩→ Γ;∆1,∆2

120 CHAPTER 3. PROOFS OF CHAPTER 2

• Γ;∆1 ⊢ h N : T ′

• (Γ;∆2) • x : U ′ • !(h x = h N) ⊢ E : V

• Γ;∆2 ⊢ E ′ : V

• (h, T ′, U ′) ∈ {(inl, T1 + T2, T1), (inr, T1 + T2, T2), (fold, µα. T1, T1{µα. T1/α})}

According to the form of h, we invoke either Lemma 3.2.33 or Lemma 3.2.34. and we
get Γ;∆1 ⊢ N : U ′. Now we notice that Γ;∆2 ⊢ E ′ : V implies fnfv(V) ⊆ dom(Γ)
by Lemma 3.2.5, hence the fact that x /∈ dom(Γ) implies x /∈ fv(V). Moreover,
x /∈ dom(Γ) implies x /∈ fv(∆2) by Lemma 3.2.10. By applying Lemma 3.2.27
we then get Γ;∆1,∆2, !(h N = h N) ⊢ E{N/x} : V . Since ∅ ⊢ !(h N = h N),
the latter judgement implies Γ;∆1,∆2 ⊢ E{N/x} : V by Lemma 3.2.46. Since
Γ;∆ ↩→ Γ; (∆1,∆2),∆B, the conclusion Γ;∆ ⊢ E{N/x} : T follows by (Exp
Subsum).

Assume now match M with h x then E else E ′ → E ′ with M ̸= h N for all N .
The type derivation has the same structure as before, but for the obvious changes.
Since Γ;∆2 ⊢ E ′ : V and Γ;∆ ↩→ Γ;∆2,∆B, the conclusion Γ;∆ ⊢ E ′ : T follows
by (Exp Subsum).

Case (Red Eq): assume we have M = M → true and Γ;∆ ⊢ M = M : T . The
typing judgement must follow by an instance of (Exp Eq) after an instance of
(Exp Subsum), hence it must be the case that:

Γ;∆A ⊢M =M : {x : bool | !(x = true(M =M)}

and:
Γ;∆B ⊢ {x : bool | !(x = true(M =M)} <: T.

with Γ;∆ ↩→ Γ;∆A,∆B. Recall now that true , inl() and bool , unit + unit, so it
is easy to show that we have Γ;∆A ⊢ true : bool. Now we note that:

Γ; ∅ ⊢ !(true = true(M =M),

thus we get Γ;∆A ⊢ true : {x : bool | !(x = true (M = M)} by (Val Refine)
and the conclusion Γ;∆ ⊢ true : T follows by an application of (Exp Subsum).

Assume, instead, that M = N → false with M ̸= N and Γ;∆ ⊢ M = N : T .
The typing judgement must follow by an instance of (Exp Eq) after an instance
of (Exp Subsum), hence it must be the case that:

Γ;∆A ⊢M = N : {x : bool | !(x = true(M = N)}

and:
Γ;∆B ⊢ {x : bool | !(x = true(M = N)} <: T.

with Γ;∆ ↩→ Γ;∆A,∆B. Now we note that:

Γ; ∅ ⊢ !(false = true(M = N),

3.2. SOUNDNESS OF THE TYPE SYSTEM 121

thus we get Γ;∆A ⊢ false : {x : bool | !(x = true (M = N)} by (Val Refine)
and the conclusion Γ;∆ ⊢ false : T follows by an application of (Exp Subsum).

Case (Red Comm): assume a!M � a? → M and Γ;∆ ⊢ a!M � a? : T . The typing
judgement must follow by an instance of (Exp Fork) after an instance of (Exp
Subsum), hence it must be the case that Γ;∆A ⊢ a!M � a? : V and Γ;∆B ⊢ V <: T
with:

• Γ;∆ ↩→ Γ;∆A,∆B

• a!M [∅ | a!M]

• a? [∅ | a?]
• Γ;∆A ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ a!M : U

• Γ;∆2 ⊢ a? : V

We notice that Γ;∆1 ⊢ a!M : U must follow by an instance of (Exp Send) after
an instance of (Exp Subsum), hence:

• Γ;∆1 ↩→ Γ;∆11,∆12

• Γ;∆11 ⊢ a!M : unit

• Γ;∆12 ⊢ unit <: U

• (a ↕ T ′) ∈ Γ

• Γ;∆11 ⊢M : T ′

We also notice that Γ;∆2 ⊢ a? : V must follow by an instance of (Exp Recv) after
an instance of (Exp Subsum), hence:

• Γ;∆2 ↩→ Γ;∆21,∆22

• Γ;∆21 ⊢ a? : T ′, since (a ↕ T ′) ∈ Γ

• Γ;∆22 ⊢ T ′ <: V

Thus we get Γ;∆11,∆22 ⊢M : V by (Exp Subsum). Since Γ;∆ ↩→ Γ;∆11,∆22,∆B,
the conclusion Γ;∆ ⊢M : T follows by an application of (Exp Subsum).

Case (Red Let Val): assume let x = M in E → E{M/x} and Γ;∆ ⊢ let x =
M in E : T . The typing judgement must follow by an instance of (Exp Let) after
an instance of (Exp Subsum). Notice that M [∅ | M], hence it must be the
case that Γ;∆A ⊢ let x =M in E : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• Γ;∆A ↩→ Γ;∆1,∆2

122 CHAPTER 3. PROOFS OF CHAPTER 2

• Γ;∆1 ⊢M : U

• (Γ;∆2) • x : U ⊢ E : V

• x /∈ fv(V)

Now notice that x /∈ dom(Γ) by Lemma 3.2.5, hence x /∈ fv(∆2) by Lemma 3.2.10.
By applying Lemma 3.2.27 and noting that x /∈ fv(V), we then get Γ;∆1,∆2 ⊢
E{M/x} : V . Since Γ;∆ ↩→ Γ; (∆1,∆2),∆B, the conclusion Γ;∆ ⊢ E{M/x} : T
follows by an application of (Exp Subsum).

Case (Red Let): assume let x = E in E ′′ → let x = E ′ in E ′′ with E → E ′ and
Γ;∆ ⊢ let x = E in E ′′ : T . The typing judgement must follow by an instance of
(Exp Let) after an instance of (Exp Subsum), hence it must be the case that
Γ;∆A ⊢ let x = E in E ′′ : V and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E [∆′ | D]

• Γ;∆A,∆
′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ D : U

• (Γ;∆2) • x : U ⊢ E ′′ : V

By Lemma 3.2.39 we know that E → E ′ and E [∆′ | D] imply that there exist
D′,∆′′, D′′, D∗ such that D → D′ and E ′ [∆′,∆′′ | D′′] with D′ [∆′′ | D∗] and
D∗ V D′′. Since Lemma 3.2.39 is depth-preserving, we can apply the inductive
hypothesis and get Γ;∆1 ⊢ D′ : U . Given that D′ [∆′′ | D∗] and Γ;∆1 ⊢ D′ : U ,
we get Γ;∆1,∆

′′ ⊢ D∗ : U by Lemma 3.2.42. Since D∗ V D′′ and Γ;∆1,∆
′′ ⊢ D∗ :

U , we get Γ;∆1,∆
′′ ⊢ D′′ : U by Lemma 3.2.45. Hence, we have:

• E ′ [∆′,∆′′ | D′′]

• Γ;∆A,∆
′,∆′′ ↩→ Γ; (∆1,∆

′′),∆2

• Γ;∆1,∆
′′ ⊢ D′′ : U

• (Γ;∆2) • x : U ⊢ E ′′ : V

We can then apply rule (Exp Let) to get Γ;∆A ⊢ let x = E ′ in E ′′ : V . The
conclusion Γ;∆ ⊢ let x = E ′ in E ′′ : T follows by (Exp Subsum).

Case (Red Res): assume (νa)E → (νa)E ′ with E → E ′ and Γ;∆ ⊢ (νa)E : T .
The typing judgement must follow by an instance of (Exp Res) after an instance
of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ (νa)E : V and Γ;∆B ⊢
V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E a [∆′ | D]

3.2. SOUNDNESS OF THE TYPE SYSTEM 123

• Γ, a ↕ U ; ∆A,∆
′ ⊢ D : V

By Lemma 3.2.39 we know that E → E ′ and E a [∆′ | D] imply that there exist
D′,∆′′, D′′, D∗ such that D → D′ and E ′ a [∆′,∆′′ | D′′] with D′ a [∆′′ | D∗]
and D∗ V D′′. Since Lemma 3.2.39 is depth-preserving, we can apply the inductive
hypothesis and get Γ, a ↕ U ; ∆A,∆

′ ⊢ D′ : V . Given that D′ a [∆′′ | D∗] and
Γ, a ↕ U ; ∆A,∆

′ ⊢ D′ : V , we get Γ, a ↕ U ; ∆A,∆
′,∆′′ ⊢ D∗ : V by Lemma 3.2.42.

By Lemma 3.2.45 we get Γ, a ↕ U ; ∆A,∆
′,∆′′ ⊢ D′′ : V . Hence, we have:

• E ′ a [∆′,∆′′ | D′′]

• Γ, a ↕ U ; ∆A,∆
′,∆′′ ⊢ D′′ : V

We can then apply rule (Exp Res) to get Γ;∆A ⊢ (νa)E ′ : V . The conclusion
Γ;∆ ⊢ (νa)E ′ : T follows by (Exp Subsum).

Case (Red Fork 1): assume E � E ′′ → E ′ � E ′′ with E → E ′ and Γ;∆ ⊢ E �
E ′′ : T . The typing judgement must follow by an instance of (Exp Fork) after
an instance of (Exp Subsum), hence it must be the case that Γ;∆A ⊢ E � E ′′ : V
and Γ;∆B ⊢ V <: T with:

• Γ;∆ ↩→ Γ;∆A,∆B

• E [∆′ | D1]

• E ′′ [∆′′ | D2]

• Γ;∆A,∆
′,∆′′ ↩→ Γ;∆1,∆2

• Γ;∆1 ⊢ D1 : U

• Γ;∆2 ⊢ D2 : V

By Lemma 3.2.39 we know that E → E ′ and E [∆′ | D1] imply that there exist
D′

1,∆
∗, D′′, D∗ such that D1 → D′

1 and E ′ [∆′,∆∗ | D′′] with D′
1 [∆∗ | D∗]

and D∗ V D′′. Since Lemma 3.2.39 is depth-preserving, we can apply the inductive
hypothesis and get Γ;∆1 ⊢ D′

1 : U . Given that D′
1 [∆∗ | D∗] and Γ;∆1 ⊢ D′

1 : U ,
we get Γ;∆1,∆

∗ ⊢ D∗ : U by Lemma 3.2.42. By Lemma 3.2.45 we get Γ;∆1,∆
∗ ⊢

D′′ : U . Hence, we have:

• E ′ [∆′,∆∗ | D′′]

• E ′′ [∆′′ | D2]

• Γ;∆A,∆
′,∆∗,∆′′ ↩→ Γ; (∆1,∆

∗),∆2

• Γ;∆1,∆
∗ ⊢ D′′ : U

• Γ;∆2 ⊢ D2 : V

We can then apply rule (Exp Fork) to get Γ;∆A ⊢ E ′ � E ′′ : V . The conclusion
Γ;∆ ⊢ E ′ � E ′′ : T follows by (Exp Subsum).

124 CHAPTER 3. PROOFS OF CHAPTER 2

Case (Red Fork 2): analogous to the previous case.

Case (Red Heat): assume E → E ′ with E V D, D → D′ and D′ → E ′. Assume
further that Γ;∆ ⊢ E : T . By Lemma 3.2.45 we have Γ;∆ ⊢ D : T . By inductive
hypothesis Γ;∆ ⊢ D′ : T , hence Γ;∆ ⊢ E ′ : T again by Lemma 3.2.45.

3.2.7 Proof of (robust) safety

Lemma 3.2.48 (Static Safety). If ε; ∅ ⊢ S : T , then S is statically safe.

Proof. Consider an arbitrary structure:

(νa1) . . . (νar)((E1 � E2) � E3) � E4,

where:

• E1 = Πi∈[1,m]assume Fi,

• E2 = Πj∈[1,n]assert F
′
j ,

• E3 = Πk∈[1,o]ck!Mk, and

• E4 = Πℓ∈[1,p]Lℓ[eℓ].

We need to show that F1, . . . , Fm ⊢ F ′
1 ⊗ . . .⊗ F ′

n.
We know that ε; ∅ ⊢ S : T . This must have been derived by r applications

of (Exp Res) followed by three applications of (Exp Fork), possibly interleav-
ing with multiple applications of (Exp Subsum). Note that each application of
(Exp Res) and (Exp Fork) will make use of extraction, but by Lemma 3.2.43
we can simplify an arbitrary chain of extraction steps with decreasing index sets
{a1, . . . , ar}, . . . , {ar}, ∅ into a single extraction step with index set ∅. Note that,
by definition, extraction does not affect E2, E3, and E4, since they do not contain
assumptions, but extracts all the assumed formulas Fi ̸= 1 from E1. Also note that
repeatedly extracting with the same index set ∅ does not yield any new result, as
can be seen using Lemma 3.2.38. By transitivity of subtyping and rewriting, using
the previous facts, without loss of generality we have:

• ((E1 � E2) � E3) � E4 ∅ [∆1 | ((D1 � E2) � E3) � E4],

• where E1 ∅ [∆1 | D1] with ∆1 = {Fi | Fi ̸= 1} and D1 = Πi∈[1,m]assume 1.

• Γ;∆1 ↩→ Γ; (∆A1 ,∆A2 ,∆A3 ,∆A4),∆B with Γ = a1 ↕ T1, . . . , ar ↕ Tr

• Γ;∆A1 ⊢ D1 : U1 and Γ;∆Ai
⊢ Ei : Ui for all i ∈ {2, 3, 4}

• Γ;∆B ⊢ U4 <: T .

3.2. SOUNDNESS OF THE TYPE SYSTEM 125

Hence, we know that Γ;∆A2 ⊢ E2 : U2, where E2 is the parallel composition of the
top-level assertions of S. Such a typing derivation must contain n− 1 applications
of (Exp-Fork) and n applications of (Exp Assert), possibly interleaved with
multiple applications of (Exp Subsum). Again without loss of generality we have:

• Γ;∆A2 ↩→ Γ; (∆C1 , . . . ,∆Cn),∆D

• for all j ∈ {1, . . . , n}: Γ;∆Cj
⊢ assert F ′

j : Vj

• for all j ∈ {1, . . . , n}: Γ;∆Cj
↩→ Γ;∆′

Cj
,∆′′

Cj
for some ∆′

Cj
,∆′′

Cj
such that:

– Γ;∆′
Cj

⊢ F ′
j , and

– Γ;∆′′
Cj

⊢ unit <: Vj

• Γ;∆D ⊢ Vn <: U2.

By applying (⊗-Right) and rule (Derive), it follows that:

Γ;∆′
C1
, . . . ,∆′

Cn
⊢ F ′

1 ⊗ . . .⊗ F ′
n.

Using Lemma 3.2.8 we get Γ;∆1 ↩→ Γ;∆′
C1
, . . . ,∆′

Cn
. By Lemma 3.2.9 it follows

that Γ;∆1 ⊢ F ′
1 ⊗ . . . ⊗ F ′

n. Since ∆1 = {Fi | Fi ̸= 1}, we get Γ;F1, . . . , Fm ⊢
F ′
1 ⊗ . . .⊗ F ′

n by Lemma 3.2.7. By inverting rule (Derive) this implies:

F1, . . . , Fm ⊢ F ′
1 ⊗ . . .⊗ F ′

n.

Restatement of Theorem 2.6.1. If ε; ∅ ⊢ E : T , then E is safe.

Proof. In order to prove that E is safe it suffices to show that, for all expressions E ′

and structures S such that E →∗ E ′ and E ′ V S, it holds that S is statically safe.
By Theorem 3.2.47, ε; ∅ ⊢ E : T implies ε; ∅ ⊢ E ′ : T . By Lemma 3.2.45, E ′ V S

implies ε; ∅ ⊢ S : T . We can conclude that S is statically safe by Lemma 3.2.48.

Lemma 3.2.49 (Universal Type). If Γ; ∅ ⊢ �, then Γ; ∅ ⊢ T <:> Un for all T ∈
{unit, x : Un → Un, x : Un ∗ Un,Un + Un, µα.Un}.

Proof. By inspection of the syntax-driven kinding rules it follows immediately that
Γ; ∅ ⊢ T :: k for all T ∈ {unit, x : Un → Un, x : Un ∗ Un,Un + Un, µα.Un} and
k ∈ {pub, tnt}. We can then conclude by applying Lemma 3.2.19.

Lemma 3.2.50 (Opponent Typability). Let Γ; ∅ ⊢ �. Let O be an expression that
does not contain any assumption or assertion such that (a ↕ Un) ∈ Γ for each
a ∈ fn(O) and (x : Un) ∈ Γ for each x ∈ fv(O), then Γ; ∅ ⊢ O : Un.

126 CHAPTER 3. PROOFS OF CHAPTER 2

Proof. By induction on the structure ofO. In each case we apply the value/expression
typing rule corresponding to the structure of O (applying the induction hypothesis
to the premises of the typing rule whenever needed). This allows us to derive that
Γ;∆ ⊢ O : T for some T ∈ {unit, x : Un → Un, x : Un∗Un,Un+Un, µα.Un} by using
the following strategies:

• We first note that O a [∅ | O] for any a, since by definition O does not
contain any assumption.

• In the case of typing a constructor h ∈ {inl, inr}, we choose the “free” type to
be Un.

• If O is of the form M = N , we additionally apply (Exp Subsum) with sub-
typing rule (Sub Refine).

• If O is a split or a match operation, we appeal to Lemma 3.2.7.

• We can easily switch between T ∈ {unit, x : Un → Un, x : Un ∗ Un,Un +
Un, µα.Un} and Un by Lemma 3.2.49, using (Exp Subsum) whenever needed.

We conclude by an application of (Exp Subsum), using Lemma 3.2.49.

Restatement of Theorem 2.6.2. If ε; ∅ ⊢ E : Un, then E is robustly safe.

Proof. Consider an arbitrary opponent O, we need to show that the application O E
is safe. Recall that:

O E , let f = O in let x = E in f x.

Let Γ = a1 ↕ Un, . . . , an ↕ Un with fn(O) = {a1, . . . , an}. Since the opponent O
is closed by definition, by Lemma 3.2.50 we know that Γ; ∅ ⊢ O : Un. We can apply
(Exp Subsum) and Lemma 3.2.49 to derive:

Γ; ∅ ⊢ O : Un → Un. (3.1)

We can apply Lemma 3.2.7 to ε; ∅ ⊢ E : Un and get Γ; ∅ ⊢ E : Un. Assume now
E [∆ | D], by Lemma 3.2.42 we have Γ;∆ ⊢ D : Un. By Lemma 3.2.7 we then
get:

Γ, f : Un → Un; ∆ ⊢ D : Un. (3.2)
Since O ∅ [∅ | O], we can construct the following type derivation:

(3.1)
. . .

Γ; ∅ ⊢ O : Un → Un

(3.2)
. . .

Γ, f : Un → Un; ∆ ⊢ D : Un
. . .

Γ, f : Un → Un, x : Un; ∅ ⊢ f x : Un
Exp Appl

Γ, f : Un → Un; ∅ ⊢ let x = E in f x : Un
Exp Let

Γ; ∅ ⊢ let f = O in let x = E in f x : Un
Exp Let

Since O E b [∅ | O E] for all b, we can get ε; ∅ ⊢ (νa1) . . . (νan)(O E) : Un by
applying n times rule (Exp Res) to the conclusion of the derivation above. By
Theorem 2.6.1, we then know that (νa1) . . . (νan)(O E) is safe. Since restrictions do
not affect safety, we can conclude.

Chapter 4

Secure Access Control for Android
Applications

4.1 Introduction

Mobile phones have quickly evolved, over the past few years, from simple devices
intended for phone calls and text messaging, to powerful handheld PDAs, hosting
sophisticated applications that manage personal data and interact on-line to share
information and access (security-sensitive) services.

This evolution has attracted the interest of a growing community of researchers
on mobile phone security, and on Android security in particular. Fundamental weak-
nesses and subtle design flaws of the Android architecture have been identified,
studied and fixed. Originated with the seminal work in [34], a series of papers have
developed techniques to ensure various system-level information-flow properties, by
means of data-flow analysis [44], runtime detection mechanisms [32] and changes to
the operating system [43]. Other papers have applied those same techniques in the
study of application-level properties associated with Android’s intent-based commu-
nication model and its interaction with the underlying permission system [29, 18].
Somewhat surprisingly, typing techniques have instead received very limited atten-
tion, with few notable exceptions to date ([25], and more recently [6]). Thus, the
potential extent and scope of type-based analysis has been left largely unexplored.

In the present chapter, we make a step towards filling this gap, by developing
a calculus to reason on the Android inter-component communication API, and a
type system to statically analyze and control the interaction between intent-based
communication and the underlying permission system. Our analysis of the Android
platform is targeted at the static detection of privilege escalation attacks, a vul-
nerability which exposes the risk of unauthorized permission usage by malicious
Android applications. Our goal is enforcing a more secure access control policy
for well-typed Android applications, providing the expected security invariant that
a component protected by a permission P can be influenced only by applications

128 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

owning the permission P.

Contributions Though the problem of privilege escalation attacks on Android has
been studied before [37, 18], we are the first to devise a static detection technique.
To carry out our study, we introduce λ-Perms, a simple formal calculus for reasoning
about the Android inter-component interaction. Albeit small and abstract, λ-Perms
captures all the relevant aspects of the Android message passing architecture and
its relationships with the underlying permission system. Interestingly, our approach
pays off, as it allows us to unveil subtle attack surfaces to the current Android
implementation that had not been observed by previous work.

We tackle the problem of programmatically preventing privilege escalation at-
tacks inside λ-Perms, by spelling out a formal definition of safety and proposing a
sound security type system which statically enforces such notion, despite the best
efforts of an active opponent. Our safety definition is inspired by run-time mech-
anisms proposed in earlier work [37], but more compact and effective for formal
reasoning. Enforcing the desired protection turns out to be challenging, because the
inadvertent disclosure of sensitive data may enable some typically overlooked privi-
lege escalation scenarios. Given that an opponent may actively try to fool well-typed
components into revealing secret data, our type system must deal with both secrecy
and authenticity issues to be proven sound. Our type discipline then provides formal
assurance about some secure communication guidelines proposed in [26].

Based on our formal framework, we then develop a prototype implementation
of Lintent, a type-based analyzer integrated with the Android Development Tools
suite (ADT). Lintent integrates our typing technique for privilege escalation detec-
tion within a full-fledged static analysis framework that includes intent type recon-
struction, manifest permission analysis, and a suite of other actions directed towards
assisting the programmer in writing more robust and reliable applications. Enhanc-
ing the Android development process is increasingly being recognized as an urgent
need [26, 36, 33, 58, 31]: Lintent represents a first step in that direction.

Structure of the chapter Section 4.2 reviews the basics of the Android archi-
tecture. Section 4.3 introduces λ-Perms and discusses its relationships with An-
droid. Section 4.4 describes privilege escalation attacks. Section 4.5 presents a type-
and-effect system to enforce protection against such attacks. Section 4.6 describes
Lintent and details practical remarks. Section 4.7 discusses related work. All the
proofs are presented in Chapter 5.

4.2 Android overview
We review the most important aspects of the Android architecture and its security
model, thus providing the necessary ingredients to understand the technical contents
of the chapter.

4.2. ANDROID OVERVIEW 129

Intents Once installed on a device, Android applications run isolated from each
other in their own security sandbox. Data and functionality sharing among different
applications is implemented through a message-passing paradigm built on top of
intents, i.e., passive data structures providing an abstract description of an operation
to be performed and the associated parameters. For instance, an application can send
an intent to an image viewer, requesting to display a given JPEG file, to avoid the
need of internally reimplementing such functionality.

The most interesting aspect of intents is that they can be used for both explicit
and implicit communication. Explicit intents specify their intended receiver by name
and are always securely delivered to it; since the identity of the recipient is typically
unknown to developers of third-party applications, explicit intents are particularly
useful for intra-application communication. Implicit intents, instead, do not mention
any specific receiver and just require delivery to any application that declares to
support a given operation by registering over a public “action string”. Elaborating
on the previous example, a developer may specify the string ACTION_VIEW as the
recipient of an implicit intent, thus enabling any image viewer registered on that
string to get the message and perform the task. Implicit intents facilitate runtime
binding among different applications, but are more difficult to secure [26].

Components Intents are delivered to application components, the essential build-
ing blocks of Android applications. There are four different types of components,
serving different purposes:

• An activity represents a screen with a user interface. Activities are started
with an intent and possibly return a result upon termination;

• A service runs in the background to perform long-running computations and
does not provide a user interface. Services can either be started with an intent
or expose a remote method invocation interface to a client upon establishment
of a long-standing connection;

• A broadcast receiver waits for intents sent to multiple applications. Broadcast
receivers typically act as forwarders of system-wide broadcast messages to
specific application components;

• A content provider manages a shared set of persistent application data. Con-
tent providers are not accessed through intents, but through a CRUD (Create-
Read-Update-Delete) interface reminiscent of SQL databases.

We refer to the first three component types as “intent-based” components. Any com-
munication among such components can employ either explicit or implicit intents.

Protection Mechanisms The Android security model implements isolation and
privilege separation on top of a simple permission system. Permissions are used

130 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

both to secure (implicit) inter-component communication and to access privileged
methods of the API.

Android permissions are identified by strings and can be defined by either the
operating system or the applications. Permissions are granted at installation time,
application-wise, and are thus shared by all the components of the same application.
All permissions are assigned a protection level:

• A normal permission is granted to any requesting application;

• A dangerous permission is granted to any requesting application, provided
that the user provides explicit consent;

• A signature permission is granted only if the requesting application is signed
with the same key as the application defining the permission;

• A signature-or-system permission lifts the previous restriction, by also allowing
a limited set of system applications to acquire the permission.

If any of the requested permissions is not assigned, the application is not installed.
Permission checks may fail at runtime, whenever the granted permissions do not
suffice to perform a privileged operation, leading to security exceptions.

The Android communication API offers various protection mechanisms to the
different component types. In particular, all components may declare permissions
which must be owned by other components requesting access; on the other hand,
only by broadcasting a request one may specify permissions which a receiver must
hold to handle the intent. This implies, for instance, that a programmer cannot
restrict the set of possible receivers when invoking the method startActivity with
an implicit intent: any activity registered over the string associated to the intent
may be started to handle the task.

4.3 Introducing λ-Perms

We describe λ-Perms, a simple formal calculus which captures the essence of inter-
component communication in Android. We detail the connections between λ-Perms
and the Android platform in Section 4.3.2.

4.3.1 Syntax and semantics

We presuppose disjoint collections of names m,n and variables x, y, z, and use the
meta-variables u, v to range over values, i.e., both names and variables. We denote
permissions with typewriter capital letters, as in PERMS, and assume they form a
complete lattice with partial order ⊑, top and bottom elements ⊤ and ⊥ respectively,
and join and meet operators ⊔ and ⊓.

4.3. INTRODUCING λ-PERMS 131

An expression represents a sequential program, which runs with a given set
of assigned permissions and may return a value. As part of its computation, an
expression may perform function calls from a pool of function definitions, i.e., named
expressions ready to input an argument and run. The syntax of expressions is defined
in Table 4.1.

D ::= definitions
def u = λ(x ▹ CALL).E function definition (scope of x is E)
D ∧D conjunction

E ::= expressions
D \E evaluation
u⟨v ◃ RECV⟩ function invocation
let x = E in E ′ let (scope of x is E ′)
(νn)E restriction (scope of n is E)
[PERMS]E permissions assignment
v value

Table 4.1: Syntax of λ-Perms expressions

The expression D \E runs E in the pool of function definitions D. An invocation
u⟨v ◃ RECV⟩ tries to call function u, supplying v as an argument; the invocation
succeeds only if the callee has at least permissions RECV. A let expression let x =
E in E ′ evaluates E to a name n and then behaves as E ′ with x substituted by n.
A restriction (νn)E creates a fresh name n and then behaves as E. The expression
[PERMS]E represents E running with permissions PERMS. A definition def u = λ(x ▹
CALL).E introduces a function u: only callers with at least permissions CALL can
invoke this function, supplying an argument for x. Multiple function definitions can
be combined into a pool with the ∧ operator. Function definitions, “let” and ν are
binding operators for variables and names, respectively: the notions of free names fn
and free variables fv arise as expected, according to the scope defined in Table 4.1.

The formal semantics of λ-Perms is given by the small-step reduction relation
E → E ′ defined in Table 4.2. Reduction contexts C[·] are defined as follows:

C[·] ::= · | let x = C[·] in E | (νn) C[·] | D \ C[·]

Notice that permission assignments do not constitute a reduction context: indeed,
although the syntax of expressions is liberal, such constructs are not intended to be
nested.

Rule (R-Call) implements the security “cross-check” between caller and callee,
which we discussed earlier: if either the caller is not assigned permissions CALL,
or the callee is not granted permissions RECV, then the function invocation fails.

132 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

(R-Call)
CALL ⊑ PERMS RECV ⊑ PERMS′

def n = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩ → [PERMS′]E{m/x}

(R-Return)
let x = [PERMS]n in E → E{n/x}

(R-Context)
E → E ′

C[E] → C[E ′]

(R-Struct)
E WE1 E1 → E2 E2

WE ′

E → E ′

Table 4.2: Reduction semantics for λ-Perms

Whenever the invocation is successful, the expression runs with the permissions of
the callee. The other rules are essentially standard: (R-Return) allows the exe-
cution to proceed after complete evaluation to a name n of an expression [PERMS]E
inside the reduction context of a let; (R-Context) states that the reduction rela-
tion is contextual; (R-Struct) closes reduction under heating, which we define as
the smallest preorder closed under the rules in Table 4.3. We write E ≡ E ′ if and
only if E W

E ′ and E ′ W

E.
We briefly discuss some aspects of the heating relation: rules (H-Extr-1) and

(H-Extr-2) formalize scope extrusion, much in the same spirit as in the pi-calculus,
where dynamically created names can be communicated and their scope extended
to include the recipient. Rules (H-Flip-1) and (H-Flip-2) perform some house-
keeping needed to export new names and functions dynamically created by a running
expression: these rules are important again to enlarge the scope of these new entities.
Rules (H-Comm) and (H-Assoc) are used in combination with (H-Conj) to liberal-
ly rearrange a pool of function definitions, by ignoring their order. Rule (H-Move) is
needed both to perform function calls inside the reduction context of a let expression
(when read from left to right) and to export new function definitions (when read from
right to left). Rule (H-Distr) is borrowed from [25] and it distributes permission
assignments over a let expression. Rules (H-Extr-1) and (H-Move) are adapted
from the concurrent object calculus [49].

4.3.2 λ-Perms vs Android

Though λ-Perms is a small calculus, it is expressive enough to capture all the most
important aspects of the Android platform of interest for our present concerns.

4.3. INTRODUCING λ-PERMS 133

(H-Context)
E WE ′

C[E] WC[E ′]

(H-Extr-1)
n /∈ fn(E ′)

let x = (νn)E in E ′ W(νn) (let x = E in E ′)

(H-Extr-2)
n /∈ fn(D)

D \ (νn)E W(νn) (D \E)

(H-Flip-1)
[PERMS] (νn)E W(νn) [PERMS]E

(H-Flip-2)
[PERMS] (D \E) WD \ [PERMS]E

(H-Comm)
(D1 ∧D2) \E ≡ (D2 ∧D1) \E

(H-Assoc)
(D1 ∧D2) ∧D3 \E ≡ D1 ∧ (D2 ∧D3) \E

(H-Conj)
D1 \ (D2 \E) ≡ (D1 ∧D2) \E

(H-Move)
D \ (let x = E in E ′) ≡ let x = (D \E) in E ′

(H-Distr)
[PERMS] let x = E in E ′ Wlet x = [PERMS]E in [PERMS]E ′

Table 4.3: Heating relation for λ-Perms

Intents λ-Perms can encode both implicit and explicit intents. Communication
in λ-Perms is non-deterministic, in that a function invocation n⟨m◃ RECV⟩ can trig-
ger any function definition def n = λ(x ▹ CALL).E in the same scope, provided that
all permission checks are satisfied. Technically, this non-determinism is enforced by
the heating relation in Table 4.3, hence communication in λ-Perms naturally ac-
counts for implicit intents, which represent the most interesting aspect of Android
communication. Explicit intents can be recovered by univocally assigning each func-
tion definition with a distinct, unique permission: explicit communication is then
encoded by requiring the callee to possess at least such permission.

Components All of Android’s intent-based active component types are repre-
sented in λ-Perms by means of function abstractions. Activities may be started
through invocations to either startActivity or startActivityForResult; in our
calculus we treat the two cases uniformly, by having functions always return a re-
sult, which may simply be discarded by the caller. Services may either be started by
startService or become the end-point of a long-running connection with a client
through an invocation to bindService. The former behaviour is modelled directly
in λ-Perms by a function call, while the latter is subtler and its encoding leads to
some interesting findings (see below). Broadcast communication can be captured

134 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

by a sequence of function invocations: this simple treatment suffices for our security
analysis. Finally, there is no λ-Perms counterpart of content providers, as they are
passive entities, which are not accessed through a message-passing paradigm, but
through a sophisticated CRUD interface reminiscent of SQL; hence, their security
verification is orthogonal to our setting.

Protection mechanisms λ-Perms is defined around a generic complete lattice of
permissions. In Android this lattice is built over permission sets, with set inclusion as
the underlying partial order. As to permission checking, the Android communication
API only allows broadcast transmissions to be protected by permissions, namely
requiring receivers to be granted specific privileges to get the message. Function
invocation in λ-Perms just accounts for the more general behaviour available to
broadcast transmissions, since unprotected communication can be simply encoded
by specifying ⊥ as the permission required to the callee, as in n⟨m ◃⊥⟩.

Binders In Android a component can invoke bindService to establish a connec-
tion with a service and retrieve an IBinder object, which transparently dispatches
method calls from the client to the remote service. This behavior is captured in
λ-Perms by relying on its provision for dynamic component creation. To illustrate,
let D contain the following service definition:

D , def s = λ(x ▹ C).[P] (νb) (def b = λ(y ▹⊥).[P] . . . \ b) (4.1)

and consider the λ-Perms encoding of a component binding to service s:

D \ [C] let z = s⟨n ◃⊥⟩ in . . .

Service s runs with permissions P and requires permissions C to establish a con-
nection. When a connection is successfully established, the service returns a fresh
binder b, encoded as a function granted the same permissions P as s. The example
unveils a subtle, and potentially dangerous, behaviour of the current Android im-
plementation of IBinder’s: notice in particular that the function b may be invoked
with no constraint, even though binding to s was protected by permissions C. In An-
droid’s current implementation, in fact, the permissions checks made when binding
to a service are not repeated upon method invocations over the returned IBinder
object; we find this implementation potentially dangerous, since it is exposed to
privilege escalation attacks when binders are inadvertently disclosed.

Pending intents and delegation Android introduces a form of delegation to re-
lax the tight restrictions imposed by permissions checking. The mechanism is imple-
mented using special objects known as pending intents : “by giving a PendingIntent
to another application, you are granting it the right to perform the operation you
have specified as if the other application was yourself (with the same permissions

4.4. PRIVILEGE ESCALATION, FORMALLY 135

and identity)” [48]. This informal description perfectly fits the previous encoding
of binders in λ-Perms, in that any component exposed to the binder b is allowed
to invoke the corresponding function running with permissions P, hence pending
intents can be modelled in the very same way as binders, and are exposed to the
same weaknesses whenever they are improperly disclosed.

4.4 Privilege escalation, formally

Davi et al. first pointed out a conceptual weakness in the Android permission
system, showing that it is vulnerable to privilege escalation attacks [29]. The problem
is best illustrated with an example. Consider three applications A, B and C, each
consisting of a single component. Application A is granted no permission; application
B, instead, is granted permission P, which is needed to access C. Apparently, data
and requests from A should not be able to reach C; on the other hand, since B can
freely be accessed from A, then it may possibly act as a proxy between A and C
(see Figure 4.1 below).

App A

Granted: -
ToAccess: -

yes //

no

77

App B

Granted: P
ToAccess: -

yes //

App C

Granted: P
ToAccess: P

Figure 4.1: Example of privilege escalation

Defining a formal notion of safety against privilege escalation attacks is an inte-
resting task. We start from the IPC Inspection mechanism proposed by Felt et al. to
dynamically prevent privilege escalation attacks on Android [37]. The idea behind
IPC Inspection is remarkably simple and strongly reminiscent of Java stack inspec-
tion: when an application receives a message from another application, a centralized
runtime reference monitor lowers the privileges of the recipient to the intersection of
the privileges of the two interacting applications. Since a patched Android system
implementing IPC Inspection is protected against privilege escalation attacks “by
design”, in that function invocations may only restrict the permissions of the caller,
our proposal is to consider such a system as a reference specification and state an
equivalence-based notion of safety on top of it. Intuitively, an expression E is safe
against privilege escalation attacks when its execution is completely oblivious of the
fact that IPC Inspection is enabled or not.

Formally, we extend the syntax and we assume that each function definition
occurring in a given expression is annotated with a distinct label ℓ drawn from a
denumerable set H disjoint from the set of values. Let α range uniformly over the
set of such labels and the distinguished symbol · /∈ H, we let E α−→ipc E

′ denote

136 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

the labelled reduction relation in Table 4.4. The new reduction relation α−→ipc for-
malizes inter-component communication in an Android system patched to support
IPC Inspection. The semantics is instrumented with labels to track the dynamics
of the call chains, but note that these labels do not have any import at runtime:
in fact, function invocations do not mention labels at all and the semantics is still
non-deterministic. We similarly label the original semantics in Table 4.2.

(R-Call-IPC)
RECV ⊑ PERMS′ CALL ⊑ PERMS

def nℓ = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩ ℓ−→ipc [PERMS ⊓ PERMS′]E{m/x}

(R-Return-IPC)

let x = [PERMS]n in E
·−→ipc E{n/x}

(R-Context-IPC)

E
α−→ipc E

′

C[E] α−→ipc C[E ′]

(R-Struct-IPC)

E WE1 E1
α−→ipc E2 E2

WE ′

E
α−→ipc E

′

Table 4.4: Reduction semantics for λ-Perms under IPC Inspection

We now introduce the symbol ≍ to relate two expressions, with the following
meaning: E1 ≍ E2 if and only if E1 and E2 are syntactically equal, but for their
granted permissions. More precisely, we define ≍ as the smallest equivalence relation
on expressions closed under the rules in Table 4.5.

[P]E ≍ [Q]E
E ≍ E ′

(νn)E ≍ (νn)E ′
E ≍ E ′

D \E ≍ D \E ′

E1 ≍ E ′
1 E2 ≍ E ′

2

let x = E1 in E2 ≍ let x = E ′
1 in E ′

2

Table 4.5: Equivalence up to granted permissions

We finally have all the ingredients to adapt and recast in our setting a standard
notion of simulation. The requirement E1 ≍ E2 in the next definition is needed to
guarantee that the labels placed on the function definitions occurring in the two
expressions are consistent (i.e., the same function bears the same label in E1 and
E2) while dispensing from any difference in the permissions assignment introduced
upon reduction (cf. (R-Call) against (R-Call-IPC)).

4.4. PRIVILEGE ESCALATION, FORMALLY 137

Definition 4.4.1 (Simulation). A binary relation R is a simulation if and only if,
for any pair of expressions E1, E2 such that E1RE2, we have E1 ≍ E2 and, whenever
E1

α−→ E ′
1, we have E2

α−→ipc E
′
2 with E ′

1RE ′
2. We say that E1 is simulated by E2

(written E1 4 E2) if and only if there exists a simulation R such that E1RE2.

Given the previous definition, our notion of safety is immediate: an expression
E is safe if and only if all its possible executions are oblivious of IPC Inspection
being enabled or not.

Definition 4.4.2 (Safety). An expression E is safe against privilege escalation
attacks if and only if E 4 E.

Although our definition draws inspiration from IPC Inspection, it clarifies an im-
portant aspect which was never discussed before. Namely, we acknowledge that im-
proper disclosure of some specific data, such as binders or pending intents, may lead
to the development of applications which are unsafe according to Definition 4.4.2.
Consider for instance the following adaptation of example (4.1):

D , def s = λ(x ▹⊥).[P] (νb) (def b = λ(y ▹⊥).[P] a⟨y ◃⊥⟩ \ b) (4.2)

and consider an unprivileged component interacting with s:

(def a = λ(x ▹ P).[P]E) ∧D \ [⊥] let z = s⟨n ◃⊥⟩ in z⟨n ◃⊥⟩

Service s can be freely invoked by the unprivileged component, but it returns a
pending intent b, which grants access to the component a protected by permissions
P. As such, the system does allow to escalate privileges and maliciously supply
arguments to the privileged component a through the pending intent b.

Being simulation-based, our notion of safety is already a very strong property,
but we target a more ambitious goal: as we discussed for RCF in Section 2.5, we
desire protection despite the best efforts of an arbitrary opponent. In our model
an opponent is a malicious, but unprivileged, Android application installed on the
same device. Notice that the term “unprivileged” is used here in a somewhat loose
sense: we are not assuming that the opponent is granted no permission at all, but
rather that it is not assigned any sensitive permission beforehand (in that case, it
would have no reason in escalating privileges). In a typical security analysis, one can
identify all the permissions which can be acquired by the opponent (e.g., INTERNET)
and identify the set of these permissions with ⊥. This is feasible, since our framework
is parametric with respect to a generic complete lattice of permissions.

Definition 4.4.3 (Opponent). A definition O is an opponent if and only if each
permission assignment in O is ⊥.

Definition 4.4.4 (Robust Safety). An expression E is robustly safe against privilege
escalation attacks if and only if O \E is safe for all opponents O.

138 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

We conclude this section by observing that a very recent paper by Fragkaki et
al. [43] proposes a formal definition of safety against privilege escalation attacks
inspired by the classic notion of non-interference for information flow control. Their
definition essentially demands that any call chain ending in a “high” (permission-
protected) component exists in a system only if it exists in a variant of same system,
where the “low” (unprivileged) components have been pruned away. We can rephrase
their notion in our setting and prove that our definition of safety implies theirs.

Let |E|ℓ denote the expression obtained from E by erasing all the function de-
finitions labelled with ℓ′ ̸= ℓ and which are granted permissions P @ CALL, where
CALL stands for the permissions required to invoke the function identified by ℓ.

Definition 4.4.5 (Alternative Safety). An expression E is safe if and only if, for
every ℓ occurring in E, we have that:

E
α1−→ E1

α2−→ . . .
αn−→ En

ℓ−→ En+1

implies:

|E|ℓ
α1−→ E ′

1
α2−→ . . .

αn−→ E ′
n

ℓ−→ E ′
n+1

for some E ′
1, . . . , E

′
n+1.

Lemma 4.4.1 (Soundness of IPC Inspection). Safety implies alternative safety.

Proof. Let E ≼ E and assume E α1−→ E1
α2−→ . . .

αn−→ En
ℓ−→ En+1. Since E ≼ E,

we know that E α1−→ipc E
′
1

α2−→ipc . . .
αn−→ipc E

′
n

ℓ−→ipc E
′
n+1 for some E ′

1, . . . , E
′
n+1 such

that E1 ≍ E ′
1, . . . , En+1 ≍ E ′

n+1. By definition of the semantics α−→ipc, we know that
all the functions invoked in the call chain identified by α1, . . . , αn must be granted
at least the permissions CALL needed to invoke ℓ. Hence, such function definitions
are present also in |E|ℓ and we can mimic the very same trace there.

Thus, we can formally confirm that the IPC Inspection mechanism enforces a
reasonable semantic security property and justify our choice of taking it as the
building block for our notion of safety. With respect to the alternative definition,
our notion is somewhat less intuitive, but it has the important advantage of enabling
a powerful form of coinductive reasoning, which is central to proving our main result
(Theorem 4.5.3 below).

A still open question is if the alternative notion of safety is actually equivalent to
ours. We notice that for non-deterministic transition systems (bi)simulation-based
equivalences are typically finer than trace equivalences, but at the time of writing
we were not able to identify a counterexample showing that the alternative notion
of safety is weaker than our definition in the present setting.

4.5. PREVENTING PRIVILEGE ESCALATION, BY TYPING 139

4.5 Preventing privilege escalation, by typing

We present a static type-and-effect system which allows us to enforce robust pro-
tection against privilege escalation attacks. Designing a sound type discipline is
subtle, mainly due to the presence of sensitive data like binders and pending in-
tents, which the opponent may actively try to get under its control by deceiving
well-typed components.

Types and typing environments We consider a minimal syntax for types, given
below.

τ ::= Un | Fun(CALL, τ → τ ′)SECR

Type Un is the base type, which is used both as a building block for function types
and to encompass all the data which are under the control of the opponent. Types
of the form Fun(CALL, τ → τ ′)SECR are inhabited by functions which input arguments
of type τ and return results of type τ ′. Functions with this type can be invoked only
by callers which are granted at least permissions CALL, and should only be disclosed
to components running with at least permissions SECR.

We define the secrecy level of a type τ , written L(τ), as expected, by having
L(Un) = ⊥ and L(Fun(CALL, τ → τ ′)SECR) = SECR. A typing environment Γ is a
finite map from values to types. The domain of a typing environment Γ, written
dom(Γ), is the set of the values on which Γ is defined.

Typing values The typing rules for values are simple, and given below.

(T-Proj)
Γ(v) = τ

Γ ⊢ v : τ

(T-Pub)
Γ ⊢ v : τ L(τ) = ⊥

Γ ⊢ v : Un

(T-Proj) is standard, while (T-Pub) makes it possible to treat all public data as
“untyped”, since they may possibly be disclosed to the opponent. We discuss the
type rules for opponent code in the next section.

Typing expressions The typing rules for expressions are in Table 4.6. The main
judgement Γ ⊢PERMS E : τ I PERMS′ is read as “expression E, running with permis-
sions PERMS, has type τ in Γ and exercises at most permissions PERMS′ throughout
its execution”. We also define an auxiliary judgement Γ ⊢ D to be read as “definition
D is well-formed in Γ”. The two judgement forms are mutually dependent.

We first note that our effect system discriminates between granted permissions
and exercised permissions. For instance, the expression:

def a = λ(x ▹⊥).[P] b⟨n ◃⊥⟩ \ ...

140 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

(T-Def)
Γ ⊢ u : Fun(CALL, τ → τ ′)SECR

Γ, x : τ ⊢⊤ E : τ ′ I PERMS′ PERMS′ ⊑ CALL ⊔ SECR

CALL ⊔ SECR = ⊥ ⇒ Γ, x : Un ⊢⊤ E : Un I ⊥ x /∈ dom(Γ)

Γ ⊢ def u = λ(x ▹ CALL).E

(T-Conj)
Γ ⊢ D1 Γ ⊢ D2

Γ ⊢ D1 ∧D2

(T-Eval)
Γ ⊢ D Γ ⊢PERMS E : τ I PERMS′

Γ ⊢PERMS D \E : τ I PERMS′

(T-Call)
Γ ⊢ u : Fun(CALL, τ → τ ′)SECR Γ ⊢ v : τ
⊥ @ RECV ⊔ SECR CALL ⊔ SECR ⊑ PERMS

Γ ⊢PERMS u⟨v ◃ RECV⟩ : τ ′ I CALL ⊔ SECR

(T-Val)
Γ ⊢ v : τ

Γ ⊢PERMS v : τ I ⊥

(T-Fail)
Γ ⊢ u : Fun(CALL, τ → τ ′)SECR Γ ⊢ v : τ ′′

RECV ⊔ SECR = ⊥ ⇒ L(τ ′′) = ⊥ CALL ̸⊑ PERMS

Γ ⊢PERMS u⟨v ◃ RECV⟩ : Un I PERMS

(T-Perms)
Γ ⊢PERMS′ E : τ I PERMS′′

PERMS′ ⊑ PERMS

Γ ⊢PERMS [PERMS
′]E : τ I PERMS′′

(T-Let)
Γ ⊢PERMS E : τ I PERMS′

Γ, x : τ ⊢PERMS E
′ : τ ′ I PERMS′′ x /∈ dom(Γ)

Γ ⊢PERMS let x = E in E ′ : τ ′ I PERMS′ ⊔ PERMS′′

(T-Restr)
Γ, n : τ ⊢PERMS E : τ ′ I PERMS′

n /∈ dom(Γ)

Γ ⊢PERMS (νn)E : τ ′ I PERMS′

(T-Def-Un)
Γ ⊢ u : Un

Γ, x : Un ⊢⊥ E : Un I ⊥
x /∈ dom(Γ)

Γ ⊢ def u = λ(x ▹ CALL).E

(T-Call-Un)
Γ ⊢ u : Un Γ ⊢ v : Un
Γ ⊢⊥ u⟨v ◃ RECV⟩ : Un I ⊥

Table 4.6: Typing rules for λ-Perms

4.5. PREVENTING PRIVILEGE ESCALATION, BY TYPING 141

could either be well-typed or not, even though the function a is publicly available,
but runs with strong permissions P A ⊥. The crux here is if the permissions P are
indeed necessary to perform the invocation to b or not. We take advantage of the
information tracked by our effect system in a number of type rules, as well as to
perform additional helpful checks in our tool (see Section 4.6). Below, we comment
on the most interesting (aspects of the) rules.

We consider rule (T-Def) first. The third condition is central to enforce protec-
tion against privilege escalation. Namely, invoking a function of type Fun(CALL, τ →
τ ′)SECR requires both permissions CALL, to pass the security runtime checks, and per-
missions SECR, to learn the name of the function; this implies that CALL ⊔ SECR is a
lower bound for the permissions granted to any caller of the function. Therefore, if
the permissions exercised by the function itself are bounded above by CALL ⊔ SECR,
no caller can escalate privileges upon invocation. As a practical remark, recall that
in Android both binders and pending intents enable indiscriminate access to a given
application component c upon disclosure. Hence, our type system forces to assign
to such values a secrecy level which is at least as high as the permissions exercised
by the component c. For instance, in example (4.2), we would give b a type of the
form Fun(⊥, τb → τ ′b)

P for some τb, τ ′b.
Continuing with rule (T-Def), the fourth condition is needed to account for

interactions with the opponent. Since a function of type Fun(⊥, τ → τ ′)⊥ is public
and can be invoked by anyone, the body of such function must be type-checked also
under the assumption that the input parameter is provided by the opponent (with
type Un). Of course, in such case no privilege must be exercised by the function.
A similar treatment is enforced by security type systems including cryptography to
handle asymmetric decryption, since messages encrypted under a public key may
actually come from the opponent [38, 4].

We now focus on rule (T-Call). Its first two conditions are standard, while
the third one is needed to rule out as ill-typed the invocation u⟨v ◃ ⊥⟩ when u is
public. This is a very subtle case, since function invocation is non-deterministic
in λ-Perms, hence the previous call, which does not constrain at all the choice of
the callee, may run either a function defined by the opponent or a piece of trusted
code. In the first case we should consider Un as the return type, while in the second
case we should expect some value of type τ ′. It turns out that both choices are
unsound: the first one could break the secrecy of the return value upon interaction
with trusted code; the second one would give the strong type τ ′ to some tainted data
returned by the opponent. The implication for the Android platform is that any
call to startActivityForResult or to bindService should employ explicit intents
to be deemed as well-typed.

The last condition of rule (T-Call) is specifically designed to prevent privilege
escalation attacks. Indeed, recall that a function of type Fun(CALL, τ → τ ′)SECR can
exercise at most privileges CALL ⊔ SECR by rule (T-Def), hence it can be safely
invoked only by a caller granted with at least permissions PERMS ⊒ CALL ⊔ SECR.
This interplay between rules (T-Call) and (T-Def) implements a rely-guarantee

142 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

mechanism common to the modular analysis performed by most type systems.
The opponent counterparts for rules (T-Def) and (T-Call) are rules (T-Def-

Un) and (T-Call-Un) respectively. By using these rules, the opponent can define
arbitrary new functions and invoke existing ones, completely disregarding the re-
strictions enforced by typing. These rules are needed only for technical reasons,
namely allowing us to prove Theorem 4.5.3 below; as such, they are not included in
our implementation.

Finally, we discuss rule (T-Fail). This rule is tricky and it is not strictly needed
for soundness, but just to make type-checking more precise. To illustrate, consider
the invocation u⟨v◃RECV⟩ performed by a caller endowed with permissions PERMS and
assume that u has type Fun(CALL, τ → τ ′)SECR. We can distinguish two cases: either
u is defined by trusted code through rule (T-Def), or u is defined by the opponent
using rule (T-Def-Un). In the first case, the information CALL annotated on the
function type is consistent with the runtime permission enforcement, thus, since
CALL ̸⊑ PERMS, we are guaranteed that the invocation will actually fail at runtime
and we can give an arbitrary type τ ′′ to the argument v. Otherwise, suppose that u
was defined by the opponent: in this case the invocation might actually take place,
since the opponent can disregard the type of u. Anyway, if the invocation happens,
we are guaranteed that RECV ⊔ SECR ⊑ ⊥, since the opponent has no privileges and
learns only public data; we must then enforce the condition L(τ ′′) ⊑ ⊥ to protect
the secrecy of the argument v. Note that, due to such a possible interaction with
the opponent, the exercised permissions are conservatively assumed as PERMS, i.e.,
all the permissions granted to the caller.

We conclude the description of the type system with an important remark on ex-
pressiveness. Some of the constraints imposed by our typing rules are rather restric-
tive for practical use, but are central to enforcing the conditions of Definition 4.4.2
and its robust variant. Our implementation, however, features a number of escape
hatches based on Java annotations to keep programming practical, much in spirit
of the declassification/endorsement constructs customary to the information-flow
literature [62]. We discuss this point further in Section 4.6.3.

Formal results We can prove that the previous type discipline enforces the ex-
pected security properties. The safety result below follows by a “simulation-aware”
variant of a standard Subject Reduction theorem for our type system, which cap-
tures the step-by-step relationships between the standard semantics and our refer-
ence semantics based on IPC Inspection. The proof relies on a co-inductive argument
enabled by the Subject Reduction theorem, full details can be found in Chapter 5.

Theorem 4.5.1 (Type Safety). If Γ ⊢⊤ E : τ I P, then E 4 E.

The next result states that our type system does not constrain the opponent.

Lemma 4.5.2 (Opponent Typability). Let O be an opponent and let Γ ⊢ u : Un for
all u ∈ fnfv(O), then Γ ⊢ O.

4.6. IMPLEMENTATION 143

By combining the two previous results, we can prove our main theorem.

Theorem 4.5.3 (Robust Safety). Let L(τ) = ⊥ for every u such that Γ(u) = τ . If
Γ ⊢⊤ E : τ I P, then E is robustly safe against privilege escalation attacks.

4.6 Implementation
Our implementation is a tool (Lintent) designed as a plug-in for Android Lint,
the official static analysis utility distributed within the Android Development Tools
(ADT). The design of the tool was conducted in collaboration with Alvise Spanò
and many challenges and solutions have been discussed together, but the actual
implementation is entirely due to him. A more thorough description of Lintent can
be found in Alvise’s thesis [70].

Lintent analyzes Java source code rather than bytecode, since it has been de-
veloped within a larger research project aimed at devising type-based verification
techniques for Android applications. In principle, the same analysis could be per-
formed on the bytecode, though reasoning about types at the bytecode level is
arguably more demanding than at source level [45].

The main highlights of Lintent may be summarized as follows.

ADT Lint integration Android Lint is a very useful ADT component, as it can
detect a wide range of anomalies and defects within the source code and related
meta-data (manifest file, resource files, etc.) that the Java compiler alone would
not be able to spot out. Lint is very popular within the development community,
therefore deploying our tool as a Lint plug-in appears to be the natural choice to
ease a wide adoption.

Security verification The Java compiler is completely oblivious of the Android
permission system, since all permission information is encoded in terms of string
literals used within the Java code and declared in the manifest. At the time of
writing, even Android Lint does not perform any static check on permissions usage,
thus leaving developers exposed, for instance, to run-time failures once the Android
operating system detects a permission violation on some component interaction.
Lintent performs a number of static checks over permissions usage, analyzing the
application source code and the manifest permission declarations, and eventually
warning the developer in case of potential attack surfaces for privilege escalation
scenarios. As a byproduct of its analysis, Lintent is able to detect over-privileged
or under-privileged applications, and suggest fixes.

Intent and component type reconstruction The typing of intents and com-
ponent supported by the Java compiler is rather loose and uninformative: in fact,
the Java type system does not keep track of any type information about either the

144 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

contents of Intent objects, or the data a component sends and expects to receive.
This seriously hinders any form of type-based analysis, including the one discussed
in this chapter, and makes Android programming very error-prone. Lintent infers
and records the types of data injected into and extracted out of intents, while track-
ing the flow of inter-component message passing for reconstructing the incoming
requests and outgoing results of each component. This is needed to prevent im-
proper disclosure of binders or pending intents, but it proves helpful also to detect
common programming errors related to misuse of intents [58].

4.6.1 Architecture

The Lintent architecture is described in Figure 4.2 below.

Android Java Code // Lint/Plug-in
parse //

spawn process

))TTTTTTTTTTTTTTT Lombok AST

AST pipe
��

Lintent Enginewarn pipe

]]

Figure 4.2: Lintent architecture

As anticipated, the tool is a Lint plug-in acting as a front-end for an engine
program running as a separate process. The plug-in is written in Java and takes
advantage of the built-in Java parser offered by Lint, which produces an Abstract
Syntax Tree (AST) based on Lombok JavaC AST [65]. Once parsing ends success-
fully, the engine process is spawned and starts receiving data from a pipe formerly
created by the plug-in itself for interprocess communication. Our plug-in AST visi-
tor simply serializes the program tree through the pipe and then waits for feedback
from the engine process, hanging on a second pipe aimed at receiving warnings and
messages to be eventually shown as issues by the Lint UI. The engine program
is written in F# and does the real job: after deserializing the input program tree
acquired from the AST pipe, it creates its own custom representation of the AST
and performs the analysis.

The first phase consists in reconstructing the types of intents and components
by means of a hybrid type-inference/partial-evaluation algorithm; the second pass
eventually checks permissions usage and validates security-related properties of the
input program. Throughout the analysis, the engine communicates back with the
Lint plug-in through the warn pipe, feeding back any issue worth to be prompted
to the user.

4.6.2 Challenges

Analyzing Android applications is a complex and demanding activity, which involves
a number of non-trivial inter-related tasks.

4.6. IMPLEMENTATION 145

Detecting API patterns Implementing the rules from the abstract type system
for λ-Perms requires a preliminary analysis to detect the corresponding patterns in
the Android source code. The analysis is far from trivial, given the complexity of
the Android communication API, which offers various different patterns to imple-
ment inter-component communication. For example, the developer guide describes
at least three different ways to implement bound services, with different degrees of
complexity, and a local inspection of the instructions in isolation does not suffice
to reconstruct enough information to support verification. Partial evaluation tech-
niques combined with type inference are needed where syntactic pattern matching
of code templates would be too naive.

Delocalized information Permissions in Android are meta-information which
are not included in Java sources, but in the application Manifest file. This is an
XML file containing, among other information, the permissions each application
component requires for being accessed and what permissions are requested by the
application itself. Several Android API calls require non-empty permission sets and
must be detected and tracked by our tool. Lintent retrieves a set of mappings
between API method signatures and permissions from a set of external files1, which
are thus updatable with no need to rebuild the tool. All this information is needed
to implement our effect system and is central to type-checking.

Type reconstruction Arguably the hardest challenge arising during the imple-
mentation is related to a number of “untyped” programming conventions which are
enabled by the current Android API. Consider, for instance, a simple scenario of
intent usage with multiple data types:

class MySenderActivity extends Activity {
static class MySer implements Serializable { ... }

void mySenderMethod() {
Intent i = new Intent(this, TargetActivity.class);
i.putExtra("k1", 3);
i.putExtra("k2", "some_string");
i.putExtra("k3", new MySer());
startActivityForResult(i, 0);

}
}

Since the putExtra method is overloaded to different types, the type of the
second argument of each call must be reconstructed in order to keep track of the
actual type of the value bound to each key. On the recipient side, intent “extras” are
retrieved by freely accessing the intent as if it was a dictionary, so the receiver may
actually retrieve data of unexpected type and fail at runtime, or disregard altogether
some fields provided by the sender.

1Currently such permission map files are those distributed along with Stowaway [35].

146 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

class MyRecipientActivity extends Activity {
static class WrongSer implements Serializable { ... }

void onCreate(Bundle savedInstanceState) {
Intent i = getIntent()
// run-time type error: k1 was an int!
String k1 = i.getStringExtra("k1");
// dynamic cast fails!
WrongSer o = (WrongSer)i.getSerializableExtra("k3");
// forgets to extract "k2": might be unwanted!

}
}

The example highlights a total lack of static control over standard intents ma-
nipulation operations: with these premises, no type-based analysis can be soundly
performed. For this reason, intents are treated in Lintent as record types of the
form {k1 : T1, . . . , kn : Tn}, where ki is a string constant and Ti is a Java type.
This enforces a much stronger discipline on data passing between components, i.e.,
on the injection and extraction of “extras” into and from intents. Notably, the
same type reconstruction applies to objects of type Bundle as well, and Bundle
objects possibly put within Intents or other Bundle’s are recursively typed as sub-
records. Our treatment is consistent with our type system, in that a function type
Fun(CALL, τ → τ ′)SECR constrains the caller in providing an argument (i.e., an in-
tent) of type τ and the callee in returning a result of type τ ′. Enforcing the same
discipline for Android applications is crucial to protect the secrecy of binders and
pending intents. As a byproduct of this analysis, our tool is able to warn the user
in case of ill-typed or dangerous manipulations of the intent.

Partial evaluation Recall from the previous discussion that every data an user
puts into an intent must be bound to a key, hence an intent object can be thought
as a dictionary of the form {k1 →→ v1, . . . , kn →→ vn}. Unfortunately, the dictionary
keys are run-time string objects and therefore plain expressions in Java – they are
not first-class language identifiers. Whether they happen to be string literals or
complex method calls computing a string object is irrelevant: in any case they
belong to the run-time world. The very same problem arises for result codes and
Intent constructor invocation: both the sender component and the recipient class
object supplied as arguments could be results of computations, and the same holds
true for action strings in case of implicit intent construction. Partial evaluation
during type-checking is required for reconstructing the intent record type labels
described above.

Interaction with third party libraries Typically applications rely on external
libraries offering a number of services to the programmer. From the point of view
of Java code, such libraries are collections of compiled classes linked into one or
more jar files: their source code is therefore not available at analysis time. Import

4.7. RELATED WORK 147

declarations on top of compilation units simply carry information on package names
and class paths, but do not specify class member signatures or other details. Type
resolution is a tricky task for a tool that does not have the same information the
compiler is given by command line arguments, therefore types that are inferred as
external must be treated in some special way: access to jar files must be granted
to Lintent to let it inspect the contents of imported packages and classes.

4.6.3 Java annotations support

We rely on Java annotations to provide a number of escape hatches from the tight
discipline imposed by our type rules. Several privileged components intentionally
expose functionalities, hence we define annotations of the form @priv{endorse="P"}
to mark methods such as onCreate() with a set of permissions P which can be
dispensed by the type-checker. Namely, if the method exercises the permissions set
Q, its containing component is deemed as well-typed if it is protected with at least
permissions Q \ P. A similar treatment is implemented for pending intents through
the usage of the annotation @priv{declassify="P"}, which allows to reduce the
secrecy level of these objects computed by our type-checker, and enables a more
controlled form of delegation.

4.6.4 Limitations and extensions

At the moment the tool supports only activities and started services, while support
for bound services is still under heavy development and in a very preliminary stage.
We plan to identify calls to API methods as checkCallingPermissions() to make
our static analysis more precise. We are also investigating the possibility of devel-
oping a frontend to a decompiler as smali [2] or ded [33] to support the analysis of
third-party applications.

4.7 Related work

There exists a huge literature on Android application security, as recently reported
in an interesting survey by Enck [31].

Android permissions The deficiencies of the Android permission system with
respect to privilege escalation attacks were first pointed out by Davi et al. [29]. The
paper presents a proof of concept attack, but does not discuss any possible solution to
the problem. Felt et al. instead propose a runtime mechanism called IPC inspection
to provide protection against privilege escalation attacks on Android [37]. The solu-
tion is reminiscent of Java stack inspection and it inspired our definition of safety, as
we discussed in Section 4.4. We find the implementation design very competent, but
we also notice that IPC inspection may induce substantial performance overhead,

148 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

since it requires keeping track of different application instances to make the protec-
tion mechanism precise, and avoid impacting heavily on the user’s experience. In a
more recent work, Bugiel et al. describe a fairly sophisticated runtime framework for
enforcing protection against privilege escalation attacks on Android [18]. Notably,
their solution comprises countermeasures also against colluding applications, which
maliciously collaborate to escalate privileges, an aspect which is neglected by both
IPC inspection and our type system. Providing such guarantees, however, requires
a centralized solution built over low-level operating system mechanisms. We aim
at being complementary to such proposal: enforcing runtime protection is funda-
mental against malicious applications which reach the market, while static analysis
techniques can be helpful for well-meaning developers who desire to validate, and
possibly certify, their code. Finally, Felt et al. propose Stowaway, a static analysis
tool for detecting overprivilege in Android applications [36]. In our implementation
we take advantage of their permission map, which relates API method calls to their
required permissions.

Android communication The threats related to the Android message-passing
system were first studied by Chin et al. [26]. Their paper provides an interest-
ing overview of the intent-based attack surfaces and discusses guidelines for secure
communication. The authors provide also a tool, ComDroid, which is able to detect
potential vulnerabilities in the usage of intents. However, the paper does not provide
any formal guarantee about the effectiveness of the proposed secure communication
guidelines; in our work, instead, we reason about intents usage in a formal calculus,
hence we are able to confirm many of their findings as sound programming practices.
ComDroid does not address the problem of detecting privilege escalation attacks.
The robustness of inter-component communication in Android has been studied also
by Maji et al. through the usage of fuzzy testing techniques, exposing some inter-
esting findings [58]. Their empirical methodology, however, does not provide a clear
understanding of the correct programming patterns for communication.

Formal models λ-Perms is partially inspired by a core formal language proposed
by Chaudhuri [25]. With respect to such formalism, however, λ-Perms provides a
more thorough treatment of a number of Android peculiarities. First, it provides
support for implicit communication and runtime registration of new components
over action strings, which are arguably among the most interesting features from a
security point of view. Second, it introduces a scoping construct, which is useful to
model both service binding and pending intents; in general, a restriction operator
in the style of process algebras typically proves useful for formal security reasoning.
In later work, Fuchs et al. build on the calculus proposed by Chaudhuri to imple-
ment SCanDroid, a provably sound static checker of information-flow properties of
Android applications [44]. Another work by Fragkaki et al. discusses a number of
enhancements over the Android permission system and validates their effectiveness

4.7. RELATED WORK 149

in an abstract model [43]. Most notably, as we mentioned, the paper proposes a
formal definition of protection against privilege escalation attacks inspired to the
classic notion of non-interference. The paper also discusses some issues related to
controlled delegation, but it does it independently from privilege escalation. The
focus of the work is on runtime protection mechanisms. Shin et al. introduce a
mechanized model of the Android permission system and validate some expected
security properties using Coq [69]. Language support for privilege-based software
systems has been studied by Jagadeesan et al. [54] and Braghin et al. [17].

150 CHAPTER 4. SECURE ACCESS CONTROL FOR ANDROID APPLICATIONS

Chapter 5

Proofs of Chapter 4

We detail a full proof of soundness for the type-and-effect system of Section 4.5. In
the next results we unfold the (R-Context)/(H-Context) rule from Table 4.2/
4.3 into a number of different reduction/heating rules, one for each possible context.

5.1 Basic results
Notation 5.1.1. We adopt the following notational conventions:

(i) We often write Γ ⊢ E : τ I P when Γ ⊢Q E : τ I P for some Q.

(ii) We write Γ ⊢ξ
Q E : τ I P if ξ is a type derivation ending with Γ ⊢Q E : τ I P.

(iii) We write Γ ⊢Q J to stand for any of the following judgements:

– Γ ⊢ u : τ for some u and τ

– Γ ⊢ D for some D

– Γ ⊢Q E : τ I P for some E, τ and P.

Proposition 5.1.1 (Uniqueness of Function Types). If Γ ⊢ u : Fun(CALL, τ1 →
τ2)

SECR and Γ ⊢ u : Fun(CALL′, τ ′1 → τ ′2)
SECR′, then CALL = CALL′, τ1 = τ ′1, τ2 = τ ′2 and

SECR = SECR′.

Proof. Immediate by inspection of the type rules, since the only rule which can
derive function types is (T-Proj) and Γ is a map from values to types.

Proposition 5.1.2 (Soundness of Secrecy Levels). If Γ ⊢ u : τ and Γ ⊢ u : τ ′, then
L(τ) = L(τ ′).

Proof. By induction on the sum of the depth of the derivations of Γ ⊢ u : τ and
Γ ⊢ u : τ ′. The only interesting case is when Γ ⊢ u : τ was derived by (T-Proj)
and Γ ⊢ u : τ ′ was derived by (T-Pub), or vice-versa. Without loss of generality,

152 CHAPTER 5. PROOFS OF CHAPTER 4

consider the first possibility: in this case we know that Γ ⊢ u : τ by the premise
Γ(u) = τ and Γ ⊢ u : τ ′ with τ ′ = Un by the premise Γ ⊢ u : τ ′′ for some τ ′′ such
that L(τ ′′) = ⊥. By inductive hypothesis we then have L(τ) = L(τ ′′) = ⊥. We
conclude by noting that L(τ ′) = L(Un) = ⊥ = L(τ).

Lemma 5.1.3 (Weakening). If Γ ⊢Q J and u /∈ dom(Γ), then Γ, u : τ ⊢Q J .
(Moreover, the effects computed throughout the entire type derivation do not change.)

Proof. By a standard induction on the derivation of Γ ⊢Q J .

Lemma 5.1.4 (Substitution). Let Γ, x : τ ⊢Q J with x /∈ dom(Γ). If Γ ⊢ n : τ , then
Γ ⊢Q J {n/x}. (Moreover, the effects computed throughout the entire type derivation
do not change.)

Proof. By a standard induction on the derivation of Γ, x : τ ⊢Q J .

Lemma 5.1.5 (Heating Preserves Typing). If Γ ⊢Q E : τ I P and E WE ′, then
Γ ⊢Q E

′ : τ I P.

Proof. By induction on the derivation of E W

E ′. The reflexivity case is trivial and
the transitivity case immediately follows by inductive hypothesis, so we focus on the
remaining rules:

Case (H-Eval): let D \E W

D \E ′ by the premise E W

E ′. Since Γ ⊢Q D \E :
τ I P, we have Γ ⊢ D and Γ ⊢Q E : τ I P by (T-Eval). By inductive hypothesis
Γ ⊢Q E

′ : τ I P, hence Γ ⊢Q D \E ′ : τ I P by (T-Eval);

Case (H-Let): assume let x = E in E ′′ Wlet x = E ′ in E ′′ by the premise E W

E ′. Since Γ ⊢R let x = E in E ′′ : τ I PERMS, we have Γ ⊢R E : τ ′ I P and
Γ, x : τ ′ ⊢R E

′′ : τ I Q with P ⊔ Q = PERMS by (T-Let). By inductive hypothesis
Γ ⊢R E

′ : τ ′ I P, hence Γ ⊢R let x = E ′ in E ′′ : τ I PERMS by (T-Let);

Case (H-Restr): let (νn)E W(νn)E ′ by the premise E

W

E ′. Since Γ ⊢Q

(νn)E : τ ′ I PERMS, we have Γ, n : τ ⊢Q E : τ ′ I PERMS by (T-Restr). By
inductive hypothesis Γ, n : τ ⊢Q E

′ : τ ′ I PERMS, hence Γ ⊢Q (νn)E ′ : τ ′ I PERMS

by (T-Restr).

Case (H-Extr-1): assume let x = (νn)E1 in E2

W(νn) (let x = E1 in E2) with
n /∈ fn(E2). Since Γ ⊢R let x = (νn)E1 in E2 : τ2 I PERMS, we have Γ ⊢R (νn)E1 :
τ1 I P and Γ, x : τ1 ⊢R E2 : τ2 I Q with P ⊔ Q = PERMS and x /∈ dom(Γ) by (T-
Let). The former judgement can be derived only by (T-Restr), hence we have
Γ, n : τ ⊢R E1 : τ1 I P with n /∈ dom(Γ). Now we apply Lemma 5.1.3 (Weakening)
to derive Γ, n : τ, x : τ1 ⊢R E2 : τ2 I Q from Γ, x : τ1 ⊢R E2 : τ2 I Q, hence
we have Γ, n : τ ⊢R let x = E1 in E2 : τ2 I PERMS by (T-Let) and we conclude
Γ ⊢R (νn) (let x = E1 in E2) : τ2 I PERMS by (T-Restr);

5.1. BASIC RESULTS 153

Case (H-Extr-2): let D \ (νn)E W(νn) (D \E) with n /∈ fn(D). Given that
Γ ⊢Q D \ (νn)E : τ ′ I PERMS, we have Γ ⊢ D and Γ ⊢Q (νn)E : τ ′ I PERMS by
(T-Eval). The latter judgement can be derived only by (T-Restr), hence we
have Γ, n : τ ⊢Q E : τ ′ I PERMS with n /∈ dom(Γ). Now we apply Lemma 5.1.3
(Weakening) to derive Γ, n : τ ⊢ D from Γ ⊢ D, hence we have Γ, n : τ ⊢Q D \E :
τ ′ I PERMS by (T-Eval) and we conclude Γ ⊢Q (νn) (D \E) : τ ′ I PERMS by
(T-Restr);

Case (H-Flip-1): let [PERMS] (νn)E W(νn) [PERMS]E. Since Γ ⊢Q [PERMS] (νn)E :
τ ′ I PERMS′, we have Γ ⊢PERMS (νn : τ)E : τ ′ I PERMS′ and PERMS ⊑ Q by (T-
Perms). The latter judgement can be derived only by (T-Restr), hence we have
Γ, n : τ ⊢PERMS E : τ ′ I PERMS′ with n /∈ dom(Γ). We then get Γ, n : τ ⊢Q [PERMS]E :
τ ′ I PERMS′ by (T-Perms) and we conclude Γ ⊢Q (νn) [PERMS]E : τ ′ I PERMS′ by
(T-Restr);

Case (H-Flip-2): let [PERMS] (D \E) W

D \ [PERMS]E. Since Γ ⊢Q [PERMS] (D \E) :
τ I PERMS′, we have Γ ⊢PERMS D \E : τ I PERMS′ and PERMS ⊑ Q by (T-Perms).
The latter judgement can be derived only by (T-Eval), hence we have Γ ⊢ D and
Γ ⊢PERMS E : τ I PERMS′. We then get Γ ⊢Q [PERMS]E : τ I PERMS′ by (T-Perms)
and we conclude Γ ⊢Q D \ [PERMS]E : τ I PERMS′ by (T-Eval);

Case (H-Comm): let (D1∧D2) \E W(D2∧D1) \E. Since Γ ⊢Q (D1∧D2) \E : τ I
PERMS, we have Γ ⊢ D1 ∧ D2 and Γ ⊢Q E : τ I PERMS by (T-Eval). The former
judgement can be derived only by (T-Conj), hence we have Γ ⊢ D1 and Γ ⊢ D2.
We then get Γ ⊢ D2 ∧D1 by (T-Conj) and we conclude Γ ⊢Q (D2 ∧D1) \E : τ I
PERMS by (T-Eval). The other direction is analogous.

Case (H-Assoc): let (D1 ∧D2) ∧D3 \E WD1 ∧ (D2 ∧D3) \E. Since Γ ⊢Q (D1 ∧
D2) ∧ D3 \E : τ I PERMS, we have Γ ⊢ (D1 ∧ D2) ∧ D3 and Γ ⊢Q E : τ I PERMS

by (T-Eval). The former judgement can be derived only by (T-Conj), hence we
have Γ ⊢ D1 ∧ D2 and Γ ⊢ D3. Again the former judgement can be derived only
by (T-Conj), hence we have Γ ⊢ D1 and Γ ⊢ D2. We then get Γ ⊢ D2 ∧ D3

by (T-Conj) and Γ ⊢ D1 ∧ (D2 ∧ D3) again by (T-Conj), so we conclude Γ ⊢Q

D1 ∧ (D2 ∧D3) \E : τ I PERMS by (T-Eval). The other direction is analogous.

Case (H-Move): assume D \ (let x = E in E ′) Wlet x = (D \E) in E ′. Since
Γ ⊢R D \ (let x = E in E ′) : τ I PERMS, we have Γ ⊢ D and Γ ⊢R let x = E in E ′ :
τ I PERMS by (T-Eval). The latter judgement can be derived only by (T-Let),
hence we have Γ ⊢R E : τ ′ I P and Γ, x : τ ′ ⊢R E

′ : τ I Q with P ⊔ Q = PERMS

and x /∈ dom(Γ). We then get Γ ⊢R D \E : τ ′ I P by (T-Eval) and we conclude
Γ ⊢R let x = (D \E) in E ′ : τ I PERMS by (T-Let).

Assume now let x = (D \E) in E ′ W

D \ (let x = E in E ′). Since Γ ⊢R let x =
(D \E) in E ′ : τ I PERMS, we have Γ ⊢R D \E : τ ′ I P and Γ, x : τ ′ ⊢R E

′ : τ I Q

with P ⊔ Q = PERMS and x /∈ dom(Γ) by (T-Let).The former judgement can be

154 CHAPTER 5. PROOFS OF CHAPTER 4

derived only by (T-Eval), hence we have Γ ⊢ D and Γ ⊢R E : τ ′ I P. We then get
Γ ⊢R let x = E in E ′ : τ I PERMS by (T-Let) and we conclude Γ ⊢R D \ (let x =
E in E ′) : τ I PERMS by (T-Eval).

Case (H-Conj): let D1 \ (D2 \E) W(D1 ∧ D2) \E. Since Γ ⊢Q D1 \ (D2 \E) :
τ I PERMS, we have Γ ⊢ D1 and Γ ⊢Q D2 \E : τ I PERMS by (T-Eval). The
latter judgement can be derived only by (T-Eval), hence we have Γ ⊢ D2 and
Γ ⊢Q E : τ I PERMS. We then get Γ ⊢ D1 ∧ D2 by (T-Conj) and we conclude
Γ ⊢Q (D1 ∧D2) \E : τ I PERMS by (T-Eval).

Assume now (D1∧D2) \E W

D1 \ (D2 \E). Since Γ ⊢Q (D1∧D2) \E : τ I PERMS,
we have Γ ⊢ D1∧D2 and Γ ⊢Q E : τ I PERMS by (T-Eval). The former judgement
can be derived only by (T-Conj), hence we have Γ ⊢ D1 and Γ ⊢ D2. We then get
Γ ⊢Q D2 \E : τ I PERMS by (T-Eval) and we conclude Γ ⊢Q D1 \ (D2 \E) : τ I
PERMS again by (T-Eval).

Case (H-Distr): assume [PERMS] let x = E1 in E2

Wlet x = [PERMS]E1 in [PERMS]E2.
Since Γ ⊢R [PERMS] let x = E1 in E2 : τ2 I PERMS′, we have Γ ⊢PERMS let x =
E1 in E2 : τ2 I PERMS′ and PERMS ⊑ R by (T-Perms). The latter judgement can
be derived only by (T-Let), hence we have Γ ⊢PERMS E1 : τ1 I P and Γ, x : τ1 ⊢PERMS

E2 : τ2 I Q with P ⊔ Q = PERMS′. We then have Γ ⊢R [PERMS]E1 : τ1 I P and
Γ, x : τ1 ⊢R [PERMS]E2 : τ2 I Q by (T-Perms), hence we conclude Γ ⊢R let x =
[PERMS]E1 in [PERMS]E2 : τ2 I PERMS′ by (T-Let).

5.2 Proof of subject reduction

Definition 5.2.1 (Permission Lowering). Let Γ ⊢ξ
Q E : τ I P. We define the

permission lowering of the expression E with respect to the type derivation ξ, written
ξ · E, by induction on the structure of E:

• E = [PERMS]E ′ ⇒ ξ · E , [P ⊓ PERMS]E ′;

• E = (νn)E ′ ⇒ ξ · E , (νn) (ξ′ · E ′);

• E = D \E ′ ⇒ ξ · E , D \ (ξ′ · E ′);

• E = (let x = E1 in E2) ⇒ ξ · E , let x = (ξ1 · E1) in (ξ2 · E2),

where ξ′, ξ1 and ξ2 denote the sub-derivations of ξ assigning types to the sub-
expressions E ′, E1 and E2, respectively. In all the other cases, we let ξ · E , E.

Lemma 5.2.1 (Deterministic Lowering). If Γ ⊢ξ
Q E : τ I P and Γ ⊢ξ′

Q′ E : τ ′ I P′,
then ξ · E = ξ′ · E.

5.2. PROOF OF SUBJECT REDUCTION 155

Proof. We first prove the following statement:

If Γ ⊢ξ
Q E : τ I P and Γ ⊢ξ′

Q E : τ ′ I P′, then P = P′.

The proof is by induction on the structure of E. The only interesting case is when
E is an invocation, i.e., when E = u⟨v ◃ RECV⟩. Assume then that Γ ⊢ξ

Q u⟨v ◃ RECV⟩ :
τ I P and Γ ⊢ξ′

Q u⟨v ◃ RECV⟩ : τ ′ I P′, we perform a case analysis on the last typing
rule applied in ξ and ξ′:

Case (T-Call)/(T-Call): let Γ ⊢ u : Fun(CALL, τ1 → τ2)
SECR among the premises

of ξ and Γ ⊢ u : Fun(CALL′, τ ′1 → τ ′2)
SECR′ among the premises of ξ′, then we have P =

CALL ⊔ SECR and P′ = CALL′ ⊔ SECR′. The conclusion follows by Proposition 5.1.1
(Uniqueness of Function Types);

Case (T-Call-Un)/(T-Call-Un): the case is immediate, since P = P′ = ⊥;

Case (T-Fail)/(T-Fail): the case is immediate, since P = P′ = Q;

Case (T-Call)/(T-Fail): let Γ ⊢ u : Fun(CALL, τ1 → τ2)
SECR among the premises of

ξ and let Γ ⊢ u : Fun(CALL′, τ ′1 → τ ′2)
SECR′ among the premises of ξ′. Since we have

CALL ⊔ SECR ⊑ Q in ξ, we know that CALL ⊑ Q by transitivity; however, we also
have CALL′ ̸⊑ Q in ξ′, so we get a contradiction by Proposition 5.1.1 (Uniqueness of
Function Types);

Case (T-Call)/(T-Call-Un): let Γ ⊢ u : Fun(CALL, τ1 → τ2)
SECR among the

premises of ξ, we have P = CALL ⊔ SECR ⊑ Q. But note that Q = ⊥, otherwise
we could not apply rule (T-Call-Un), hence P = ⊥ by anti-symmetry. Since
P′ = ⊥, we conclude;

Case (T-Fail)/(T-Call-Un): in this case we have P = Q. But note that Q = ⊥,
otherwise we could not apply rule (T-Call-Un). Since P′ = ⊥, we conclude.

The symmetric cases are analogous.
The main statement is proved again by induction on the structure of E. The only

interesting case is when E is a permission assignment, i.e., when E = [PERMS]E ′.
Assume then Γ ⊢ξ

Q [PERMS]E
′ : τ I P and Γ ⊢ξ′

Q′ [PERMS]E
′ : τ ′ I P′, in this case both

ξ and ξ′ are concluded by an application of rule (T-Perms), hence we know that
Γ ⊢PERMS E

′ : τ I P among the premises of ξ and Γ ⊢PERMS E
′ : τ ′ I P′ among the

premises of ξ′. By the previous result we have P = P′, thus ξ ·E = [P ⊓ PERMS]E ′ =
[P′ ⊓ PERMS]E ′ = ξ′ · E.

Notation 5.2.2. By Lemma 5.2.1 (Deterministic Lowering), for any well-typed
expression E we can write Γ · E to stand for ξ · E for an arbitrarily chosen type
derivation ξ such that Γ ⊢ξ

Q E : τ I P for some P, Q and τ .

156 CHAPTER 5. PROOFS OF CHAPTER 4

Definition 5.2.3 (Expression Ordering). We overload the symbol ⊑ to denote the
smallest pre-order on expressions closed under the following inference rules:

PERMS1 ⊑ PERMS2

[PERMS1]E ⊑ [PERMS2]E

E ⊑ E ′

(νn)E ⊑ (νn)E ′
E ⊑ E ′

D \E ⊑ D \E ′

E1 ⊑ E ′
1 E2 ⊑ E ′

2

let x = E1 in E2 ⊑ let x = E ′
1 in E ′

2

Proposition 5.2.2 (Soundness of Lowering). For any E such that Γ ⊢ E : τ I P,
we have E ⊒ Γ · E.

Proof. By induction on the structure of E.

Lemma 5.2.3 (Lowering Respects Heating). Let Γ ⊢ E : τ I P. If E W

E ′, then
Γ · E ′ is defined and Γ · E W

E ′′ for some E ′′ ⊒ Γ · E ′.

Proof. First of all, we note that Γ ⊢ E ′ : τ I P by Lemma 5.1.5 (Heating Preserves
Typing), hence Γ ·E ′ is defined. We then proceed by induction on the derivation of
E

W

E ′:

Case (H-Eval): let D \E WD \E ′ by the premise E WE ′. Since Γ ⊢ D \E :
τ I P, we have Γ ⊢ D and Γ ⊢ E : τ I P by (T-Eval). By inductive hypothesis
Γ · E W

E ′′ for some E ′′ ⊒ Γ · E ′, hence we have:

Γ · (D \E) , D \ (Γ · E)

W

D \E ′′

⊒ D \ (Γ · E ′)

, Γ · (D \E ′).

Case (H-Let): assume let x = E in E ′′ Wlet x = E ′ in E ′′ by the premise E W

E ′.
Since Γ ⊢ let x = E in E ′′ : τ I PERMS, we have Γ ⊢ E : τ ′ I P and Γ, x : τ ′ ⊢
E ′′ : τ I Q with P ⊔ Q = PERMS by (T-Let). By inductive hypothesis Γ · E W

Ê
for some Ê ⊒ Γ · E ′, hence we have:

Γ · (let x = E in E ′′) , let x = (Γ · E) in (Γ, x : τ) · E ′′

Wlet x = Ê in (Γ, x : τ) · E ′′

⊒ let x = (Γ · E ′) in (Γ, x : τ) · E ′′

, Γ · (let x = E ′ in E ′′).

Case (H-Restr): let (νn)E W(νn)E ′ by the premise E W

E ′. Since Γ ⊢ (νn)E :
τ ′ I PERMS, we have Γ, n : τ ⊢ E : τ ′ I PERMS by (T-Restr). By inductive

5.2. PROOF OF SUBJECT REDUCTION 157

hypothesis (Γ, n : τ) · E W

E ′′ for some E ′′ ⊒ (Γ, n : τ) · E ′, hence we have:

Γ · ((νn)E) , (νn) ((Γ, n : τ) · E)

W(νn)E ′′

⊒ (νn) ((Γ, n : τ) · E ′)

, Γ · ((νn)E ′).

Case (H-Extr-1): assume let x = (νn)E1 in E2

W(νn) (let x = E1 in E2) with
n /∈ fn(E2). Since Γ ⊢ let x = (νn)E1 in E2 : τ2 I R, we have Γ ⊢ (νn)E1 : τ1 I P

and Γ, x : τ1 ⊢ E2 : τ2 I Q with P ⊔ Q = R and x /∈ dom(Γ) by (T-Let). The former
judgement can be derived only by (T-Restr), hence we have Γ, n : τ ⊢ E1 : τ1 I P

with n /∈ dom(Γ). Now we apply Lemma 5.1.3 (Weakening) to derive Γ, n : τ, x :
τ1 ⊢ E2 : τ2 I Q from Γ, x : τ1 ⊢ E2 : τ2 I Q. Notice that the lemma also implies
that (Γ, x : τ1) · E2 = (Γ, n : τ, x : τ1) · E2, hence we have:

Γ · (let x = (νn)E1 in E2) , let x = (Γ · (νn)E1) in (Γ, x : τ1) · E2

, let x = (νn) ((Γ, n : τ) · E1) in (Γ, x : τ1) · E2

W(νn) (let x = ((Γ, n : τ) · E1) in (Γ, x : τ1) · E2)

= (νn) (let x = ((Γ, n : τ) · E1) in (Γ, n : τ, x : τ1) · E2)

, Γ · ((νn) (let x = E1 in E2)).

Case (H-Extr-2): let D \ (νn)E W(νn) (D \E) with n /∈ fn(D). Given that
Γ ⊢ D \ (νn)E : τ ′ I PERMS, we have Γ ⊢ D and Γ ⊢ (νn)E : τ ′ I PERMS by
(T-Eval). The latter judgement can be derived only by (T-Restr), hence we
have Γ, n : τ ⊢ E : τ ′ I PERMS with n /∈ dom(Γ). Hence, we have:

Γ · (D \ (νn)E) , D \ (Γ · (νn)E)
, D \ (νn) ((Γ, n : τ) · E)

W(νn) (D \ ((Γ, n : τ) · E))
, Γ · ((νn) (D \E))

Case (H-Flip-1): let [PERMS] (νn)E W(νn) [PERMS]E. Since Γ ⊢R [PERMS] (νn)E :
τ ′ I Q, we have Γ ⊢PERMS (νn : τ)E : τ ′ I Q and PERMS ⊑ R by (T-Perms). The
latter judgement can be derived only by (T-Restr), hence we have Γ, n : τ ⊢PERMS

E : τ ′ I Q with n /∈ dom(Γ). We then get Γ, n : τ ⊢R [PERMS]E : τ ′ I Q by
(T-Perms). Hence, we have:

Γ · ([PERMS] (νn)E) , [PERMS ⊓ Q] (νn)E

W(νn) [PERMS ⊓ Q]E

, (νn) ((Γ, n : τ) · [PERMS]E)
, Γ · ((νn) [PERMS]E).

158 CHAPTER 5. PROOFS OF CHAPTER 4

Case (H-Flip-2): let [PERMS] (D \E) W

D \ [PERMS]E. Since Γ ⊢R [PERMS] (D \E) :
τ I Q, we have Γ ⊢PERMS D \E : τ I Q and PERMS ⊑ R by (T-Perms). The
latter judgement can be derived only by (T-Eval), hence we have Γ ⊢ D and
Γ ⊢PERMS E : τ I Q. We then get Γ ⊢R [PERMS]E : τ I Q by (T-Perms). Hence, we
have:

Γ · ([PERMS] (D \E)) , [Q ⊓ PERMS] (D \E)

W

D \ [Q ⊓ PERMS]E

, D \ (Γ · ([PERMS]E))
, Γ · (D \ [PERMS]E).

Case (H-Comm): let (D1∧D2) \E W(D2∧D1) \E. Since Γ ⊢ (D1∧D2) \E : τ I
PERMS, we have Γ ⊢ D1∧D2 and Γ ⊢ E : τ I PERMS by (T-Eval). Hence, we have:

Γ · ((D1 ∧D2) \E) , (D1 ∧D2) \ (Γ · E)

W(D2 ∧D1) \ (Γ · E)
, Γ · ((D2 ∧D1) \E).

The other direction is analogous.

Case (H-Assoc): let (D1 ∧D2) ∧D3 \E W
D1 ∧ (D2 ∧D3) \E. Since Γ ⊢ (D1 ∧

D2) ∧D3 \E : τ I PERMS, we have Γ ⊢ (D1 ∧D2) ∧D3 and Γ ⊢ E : τ I PERMS by
(T-Eval). Hence, we have:

Γ · ((D1 ∧D2) ∧D3 \E) , (D1 ∧D2) ∧D3 \ (Γ · E)

WD1 ∧ (D2 ∧D3) \ (Γ · E)
, Γ · (D1 ∧ (D2 ∧D3) \E).

The other direction is analogous.

Case (H-Conj): let D1 \ (D2 \E) W(D1 ∧ D2) \E. Since Γ ⊢ D1 \ (D2 \E) :
τ I PERMS, we have Γ ⊢ D1 and Γ ⊢ D2 \E : τ I PERMS by (T-Eval). The
latter judgement can be derived only by (T-Eval), hence we have Γ ⊢ D2 and
Γ ⊢ E : τ I PERMS. Hence, we have:

Γ · (D1 \ (D2 \E)) , D1 \D2 \ (Γ · E)

W

D1 ∧D2 \ (Γ · E)
, Γ · ((D1 ∧D2) \E).

The other direction is similar.

Case (H-Move): assume D \ (let x = E in E ′) Wlet x = (D \E) in E ′. Since
Γ ⊢ D \ (let x = E in E ′) : τ I R, we have Γ ⊢ D and Γ ⊢ let x = E in E ′ : τ I R by

5.2. PROOF OF SUBJECT REDUCTION 159

(T-Eval). The latter judgement can be derived only by (T-Let), hence we have
Γ ⊢ E : τ ′ I P and Γ, x : τ ′ ⊢ E ′ : τ I Q with P ⊔ Q = R and x /∈ dom(Γ). Hence,
we have:

Γ · (D \ (let x = E in E ′)) , D \ (Γ · (let x = E in E ′))

, D \ let x = (Γ · E) in (Γ, x : τ ′) · E ′

Wlet x = D \ (Γ · E) in (Γ, x : τ ′) · E ′

, let x = Γ · (D \E) in (Γ, x : τ ′) · E ′

, Γ · (let x = (D \E) in E ′).

The other direction is similar.

Case (H-Distr): assume [PERMS] let x = E1 in E2

Wlet x = [PERMS]E1 in [PERMS]E2

with Γ ⊢ [PERMS] let x = E1 in E2 : τ2 I PERMS′. The judgement must have been
derived by (T-Perms), hence we know Γ ⊢PERMS let x = E1 in E2 : τ2 I PERMS′.
This can be derived only by (T-Let), so we have Γ ⊢PERMS E1 : τ1 I P and Γ, x :
τ1 ⊢PERMS E2 : τ2 I Q with P ⊔ Q = PERMS′. We can then apply (T-Perms) to derive
Γ ⊢PERMS [PERMS]E1 : τ1 I P and Γ, x : τ1 ⊢PERMS [PERMS]E2 : τ2 I Q.

Now we notice that we have:

Γ · ([PERMS] let x = E1 in E2) , [(P ⊔ Q) ⊓ PERMS] let x = E1 in E2

Wlet x = [(P ⊔ Q) ⊓ PERMS]E1 in [(P ⊔ Q) ⊓ PERMS]E2

⊒ let x = [P ⊓ PERMS]E1 in [Q ⊓ PERMS]E2

, let x = (Γ · [PERMS]E1) in ((Γ, x : τ1) · [PERMS]E2)

, Γ · (let x = [PERMS]E1 in [PERMS]E2).

Lemma 5.2.4 (Monotonicity of Heating). If E1

W

E2 and E1 ⊑ E ′
1, then E ′

1

W

E ′
2

for some E ′
2 ⊒ E2.

Proof. By a straightforward induction on the derivation of E1

W

E2.

Lemma 5.2.5 (Monotonicity of Reduction). If E1
α−→ipc E2 and E1 ⊑ E ′

1, then
E ′

1
α−→ipc E

′
2 for some E ′

2 ⊒ E2.

Proof. By a straightforward induction on the derivation of E1
α−→ipc E2.

Proposition 5.2.6 (Monotonicity of Typing). If Γ ⊢Q [PERMS]E : τ I P and Q ⊑ R,
then Γ ⊢R [PERMS]E : τ I P.

Proof. Since Γ ⊢Q [PERMS]E : τ I P can be derived only by (T-Perms), we know
that Γ ⊢PERMS E : τ I P and PERMS ⊑ Q. Hence, PERMS ⊑ R by transitivity and we
get Γ ⊢R [PERMS]E : τ I P again by (T-Perms).

160 CHAPTER 5. PROOFS OF CHAPTER 4

Theorem 5.2.7 (Simulation-Aware Subject Reduction). If Γ ⊢⊤ E : τ I PERMS

and E α−→ E ′, then Γ ⊢⊤ E
′ : τ I PERMS′ for some PERMS′ ⊑ PERMS. Moreover, there

exists E ′′ such that Γ · E α−→ipc E
′′ and E ′′ ⊒ Γ · E ′.

Proof. By induction on the derivation of E α−→ E ′:

Case (R-Call): assume def nℓ = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩ ℓ−→
[PERMS′]E{m/x} with:

(1) CALL ⊑ PERMS

(2) RECV ⊑ PERMS′.

By hypothesis we know that:

Γ ⊢⊤ def n = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩ : τ I P,

which must follow by an instance of (T-Eval). Hence, we know that Γ ⊢ def nℓ =
λ(x▹CALL).[PERMS′]E and Γ ⊢⊤ [PERMS]n⟨m◃RECV⟩ : τ I P must hold. We perform
a case analysis on how these latter two judgements are derived.

If Γ ⊢ def nℓ = λ(x ▹ CALL).[PERMS′]E was derived by (T-Def), we know that:

(3) Γ ⊢ n : Fun(CALL, τn → τ ′n)
SECR

(4) Γ, x : τn ⊢⊤ [PERMS′]E : τ ′n I Q′ with x /∈ dom(Γ)

(5) Q′ ⊑ CALL ⊔ SECR

(6) CALL ⊔ SECR = ⊥ ⇒ Γ, x : Un ⊢⊤ [PERMS′]E : Un I ⊥ with x /∈ dom(Γ).

We distinguish three cases, according to the rule used to derive Γ ⊢⊤ [PERMS]n⟨m◃
RECV⟩ : τ I P. If the latter judgement was derived by (T-Call) after an application
of (T-Perms), then we know that:

(7) Γ ⊢ n : Fun(CALL′, τ̂n → τ̂ ′n)
SECR′

(8) Γ ⊢ m : τ̂n

(9) CALL′ ⊔ SECR′ ⊑ PERMS

(10) P = CALL′ ⊔ SECR′.

By Proposition 5.1.1 (Uniqueness of Function Types), we know that τ̂n = τn,
τ̂ ′n = τ ′n = τ , CALL = CALL′ and SECR = SECR′. By (4) and (8), using Lemma 5.1.4
(Substitution), we then get Γ ⊢⊤ [PERMS′]E{m/x} : τ I Q′. Notice also that Q′ ⊑ P

5.2. PROOF OF SUBJECT REDUCTION 161

by (5) and (10). Now we note that:

Γ · (def nℓ = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩)
, def nℓ = λ(x ▹ CALL).[PERMS′]E \ [(CALL ⊔ SECR) ⊓ PERMS]n⟨m ◃ RECV⟩
= def nℓ = λ(x ▹ CALL).[PERMS′]E \ [CALL ⊔ SECR]n⟨m ◃ RECV⟩ by (9)
ℓ−→ipc [(CALL ⊔ SECR) ⊓ PERMS′]E{m/x}
⊒ [Q′ ⊓ PERMS′]E{m/x} by Q′ ⊑ P

, Γ · ([PERMS′]E{m/x}),

where the reduction step can be performed, since CALL ⊑ CALL ⊔ SECR.

Assume then that Γ ⊢⊤ [PERMS]n⟨m ◃ RECV⟩ : τ I P was derived by (T-Call-Un)
after an application of (T-Perms), then we know that:

(11) Γ ⊢ n : Un

(12) Γ ⊢ m : Un

(13) τ = Un

(14) P = ⊥
(15) PERMS = ⊥.

Since (3) and (11) hold, by Proposition 5.1.2 (Soundness of Secrecy Levels) we know
that SECR = ⊥. Since hypothesis (1) states CALL ⊑ PERMS and (15) holds true, we
know that CALL = ⊥ by anti-symmetry, so we have CALL ⊔ SECR = ⊥. By (6) we
can then get Γ, x : Un ⊢⊤ [PERMS′]E : Un I ⊥, hence, by (12) and Lemma 5.1.4
(Substitution), we get Γ ⊢⊤ [PERMS′]E{m/x} : τ I ⊥. Now we note that:

Γ · (def nℓ = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩)
= Γ · (def nℓ = λ(x ▹ CALL).[PERMS′]E \ [⊥]n⟨m ◃ RECV⟩) by (15)

, def nℓ = λ(x ▹ CALL).[PERMS′]E \ [⊥]n⟨m ◃ RECV⟩
ℓ−→ipc [⊥ ⊓ PERMS′]E{m/x}
= [⊥]E{m/x}
, Γ · ([PERMS′]E{m/x}),

where the reduction step can be performed, since we showed that CALL = ⊥.

Finally, assume that Γ ⊢⊤ [PERMS]n⟨m ◃ RECV⟩ : τ I P was derived by (T-Fail)
after an application of (T-Perms), then we know that:

(16) Γ ⊢ n : Fun(CALL′, τ̂n → τ̂ ′n)
SECR′

(17) CALL′ ̸⊑ PERMS.

162 CHAPTER 5. PROOFS OF CHAPTER 4

Since (3) and (16) hold, by Proposition 5.1.1 (Uniqueness of Function Types) we
know that CALL ̸⊑ PERMS, but this is in contradiction with CALL ⊑ PERMS from
hypothesis (1), hence the case is trivial.

Let us now consider the case when Γ ⊢ def nℓ = λ(x ▹ CALL).[PERMS′]E was derived
by (T-Def-Un). In this case we know that:

(18) Γ ⊢ n : Un

(19) Γ, x : Un ⊢⊥ [PERMS′]E : Un I ⊥ with x /∈ dom(Γ).

Note that (19) can be derived only after an application of (T-Perms), which implies
PERMS′ ⊑ ⊥. By anti-symmetry, we then get:

(20) PERMS′ = ⊥.

We distinguish three cases, according to the rule used to derive Γ ⊢⊤ [PERMS]n⟨m◃
RECV⟩ : τ I P. If the latter judgement was derived by (T-Call-Un) after an
application of (T-Perms), then we know that:

(21) Γ ⊢ m : Un

(22) τ = Un

(23) P = ⊥
(24) PERMS = ⊥.

By (19) and (21), using Lemma 5.1.4 (Substitution), we get Γ ⊢⊥ [PERMS′]E{m/x} :
τ I ⊥, hence we get Γ ⊢⊤ [PERMS′]E{m/x} : τ I ⊥ by Proposition 5.2.6 (Mono-
tonicity of Typing). Now we note that:

Γ · (def nℓ = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩)
= Γ · (def nℓ = λ(x ▹ CALL).[PERMS′]E \ [⊥]n⟨m ◃ RECV⟩) by (24)

, def nℓ = λ(x ▹ CALL).[PERMS′]E \ [⊥]n⟨m ◃ RECV⟩
ℓ−→ipc [⊥ ⊓ PERMS′]E{m/x}
= [⊥]E{m/x}
, Γ · ([PERMS′]E{m/x}),

where the reduction step can be performed. In fact, CALL ⊑ PERMS by hypothesis
(1) and PERMS = ⊥ by (24), i.e., CALL = ⊥ by anti-symmetry.

Assume then that Γ ⊢⊤ [PERMS]n⟨m◃RECV⟩ : τ I P was derived by (T-Call) after
an application of (T-Perms), then we know that:

(25) Γ ⊢ n : Fun(CALL′, τn → τ ′n)
SECR

(26) ⊥ @ RECV ⊔ SECR.

5.2. PROOF OF SUBJECT REDUCTION 163

Since (18) and (25) hold, by Proposition 5.1.2 (Soundness of Secrecy Levels) we
know that SECR = ⊥. Since RECV ⊑ PERMS′ by hypothesis (2) and (20) holds,
we know that RECV = ⊥ by anti-symmetry, thus RECV ⊔ SECR = ⊥ and we get a
contradiction by (26), i.e., the rule could not be applied and the case is trivial.
Finally, assume that Γ ⊢⊤ [PERMS]n⟨m ◃ RECV⟩ : τ I P was derived by (T-Fail)
after an application of (T-Perms), then we know that:

(27) Γ ⊢ n : Fun(CALL′, τn → τ ′n)
SECR

(28) Γ ⊢ m : τ ′′n
(29) RECV ⊔ SECR = ⊥ ⇒ L(τ ′′n) = ⊥
(30) τ = Un
(31) P = PERMS.

Since (18) and (27) hold, by Proposition 5.1.2 (Soundness of Secrecy Levels) we
know that SECR = ⊥. Since RECV ⊑ PERMS′ by hypothesis (2) and (20) holds,
we know that RECV = ⊥ by anti-symmetry, thus RECV ⊔ SECR = ⊥ and we get
L(τ ′′n) = ⊥ by (29). This implies, using (28) and (T-Pub), that Γ ⊢ m : Un, hence
by (19) and Lemma 5.1.4 (Substitution) we get Γ ⊢⊥ [PERMS′]E{m/x} : τ I ⊥,
hence we get Γ ⊢⊤ [PERMS′]E{m/x} : τ I ⊥ by Proposition 5.2.6 (Monotonicity of
Typing). Now we note that:

Γ · (def nℓ = λ(x ▹ CALL).[PERMS′]E \ [PERMS]n⟨m ◃ RECV⟩)
= Γ · (def nℓ = λ(x ▹ CALL).[⊥]E \ [PERMS]n⟨m ◃ RECV⟩) by (20)

, def nℓ = λ(x ▹ CALL).[⊥]E \ [PERMS]n⟨m ◃ RECV⟩ by (31)
ℓ−→ipc [PERMS ⊓ ⊥]E{m/x}
= [⊥]E{m/x}
, Γ · ([PERMS′]E{m/x}),

where the reduction step can be performed, since CALL ⊑ PERMS by (1).

Case (R-Let): assume let x = E1 in E2
α−→ let x = E ′

1 in E2 by the premise
E1

α−→ E ′
1. By hypothesis we know that Γ ⊢⊤ let x = E1 in E2 : τ ′ I P ⊔ Q, which

must follow by an instance of (T-Let). Hence, we have Γ ⊢⊤ E1 : τ I P and
Γ, x : τ ⊢⊤ E2 : τ ′ I Q. By inductive hypothesis we have Γ ⊢⊤ E ′

1 : τ I P′ with
P′ ⊑ P, hence Γ ⊢⊤ let x = E ′

1 in E2 : τ I P′ ⊔ Q by (T-Let).
Again by inductive hypothesis, we also know that Γ ·E1

α−→ipc E
′′
1 with E ′′

1 ⊒ Γ ·E ′
1,

hence we have:

Γ · (let x = E1 in E2) , let x = (Γ · E1) in ((Γ, x : τ) · E2)
α−→ipc let x = E ′′

1 in ((Γ, x : τ) · E2)

⊒ let x = (Γ · E ′
1) in ((Γ, x : τ) · E2)

, Γ · (let x = E ′
1 in E2).

164 CHAPTER 5. PROOFS OF CHAPTER 4

Case (R-Return): assume let x = [PERMS]n in E
·−→ E{n/x}. By hypothesis we

know that Γ ⊢⊤ let x = [PERMS]n in E : τ ′ I P ⊔ Q, which must follow by an instance
of (T-Let). Hence, we have Γ ⊢⊤ [PERMS]n : τ I P and Γ, x : τ ⊢⊤ E : τ ′ I Q

with x /∈ dom(Γ). The former judgement must have been derived by an application
of (T-Val) after an instance of (T-Perms), thus we know that Γ ⊢ n : τ and by
Lemma 5.1.4 (Substitution) we have Γ ⊢⊤ E{n/x} : τ ′ I Q.

Now we note that:

Γ · (let x = [PERMS]n in E) , let x = [P ⊓ PERMS]n in ((Γ, x : τ) · E)
·−→ipc ((Γ, x : τ) · E){n/x}
= Γ · (E{n/x}).

The last step uses Lemma 5.1.4 (Substitution) and some simple syntactic observa-
tions to conclude.

Case (R-Restr): assume (νn)E α−→ (νn)E ′ by the premise E α−→ E ′. By hypothesis
we know that Γ ⊢⊤ (νn)E : τ ′ I PERMS, which must follow by an instance of (T-
Restr), hence we have Γ, n : τ ⊢⊤ E : τ ′ I PERMS with n /∈ dom(Γ). By inductive
hypothesis we have Γ, n : τ ⊢⊤ E ′ : τ ′ I PERMS′ for some PERMS′ ⊑ PERMS, hence
Γ ⊢⊤ (νn)E ′ : τ ′ I PERMS′ by (T-Restr).

Again by inductive hypothesis, we also know that (Γ, n : τ) · E α−→ipc E ′′ with
E ′′ ⊒ (Γ, n : τ) · E ′, hence we have:

Γ · (νn)E , (νn) ((Γ, n : τ) · E)
α−→ipc (νn)E

′′

⊒ (νn) ((Γ, n : τ) · E ′)

, Γ · (νn)E ′.

Case (R-Eval): assume D \E α−→ D \E ′ by the premise E α−→ E ′. By hypothesis we
know that Γ ⊢⊤ D \E : τ I PERMS, which must follow by an instance of (T-Eval),
hence we have Γ ⊢ D and Γ ⊢⊤ E : τ I PERMS. By inductive hypothesis we have
Γ ⊢⊤ E

′ : τ ′ I PERMS′ for some PERMS′ ⊑ PERMS, hence Γ ⊢⊤ D \E : τ I PERMS′ by
(T-Store).

Again by inductive hypothesis, we also know that Γ · E α−→ipc E
′′ with E ′′ ⊒ Γ · E ′,

hence we have:

Γ · (D \E) , D \ (Γ · E)
α−→ipc D \E ′′

⊒ D \ (Γ · E ′)

, Γ · (D \E ′).

5.3. PROOF OF (ROBUST) SAFETY 165

Case (R-Struct): assume E
α−→ E ′ by the premises E W

E1, E1
α−→ E2 and

E2

W

E ′. By hypothesis we know that Γ ⊢⊤ E : τ I PERMS, hence Γ ⊢⊤ E1 :
τ I PERMS by Lemma 5.1.5 (Heating Preserves Typing). By inductive hypothesis
we then have Γ ⊢⊤ E2 : τ I PERMS′ for some PERMS′ ⊑ PERMS, hence we have
Γ ⊢⊤ E

′ : τ I PERMS′ again by Lemma 5.1.5 (Heating Preserves Typing).

Now we show the second part of the statement. Using Lemma 5.2.3 (Lowering
Respects Heating), by E

W

E1 we have Γ · E W

E ′′ ⊒ Γ · E1 for some E ′′. By
inductive hypothesis, we know that Γ · E1

α−→ipc E
′
1 ⊒ Γ · E2 for some E ′

1, hence by
Lemma 5.2.5 (Monotonicity of Reduction) we get E ′′ α−→ipc E

′′
1 ⊒ E ′

1 ⊒ Γ · E2 for
some E ′′

1 . Using again Lemma 5.2.3 (Lowering Respects Heating), by E2

WE ′ we
have Γ ·E2

WE ′′
2 ⊒ Γ ·E ′ for some E ′′

2 . By Lemma 5.2.4 (Monotonicity of Heating)
we then have E ′′

1

W

E ′
2 ⊒ E ′′

2 for some E ′
2 and we conclude Γ · E α−→ipc E

′
2 ⊒ Γ · E ′

by an application of (R-Struct).

5.3 Proof of (robust) safety

Proposition 5.3.1 (Equivalence up to Permissions). The following statements hold:

(i) for every pair of expressions E1, E2 such that E1 ⊑ E2, we have E1 ≍ E2;

(ii) for every expression E such that Γ · E is defined, we have Γ · E ≍ E.

Proof. Point (i) follows by induction on the derivation of E1 ⊑ E2, while point (ii)
follows by Proposition 5.2.2 (Soundness of Lowering) and point (i).

Restatement of Theorem 4.5.1. If Γ ⊢⊤ E : τ I P, then E 4 E.

Proof. Let R = {(E1, E2) | Γ ⊢⊤ E1 : τ I P1 ∧ E2 ⊒ Γ · E1}. We show that R
is a simulation. Notice first that for every E1, E2 such that (E1, E2) ∈ R we have
E1 ≍ E2 by Proposition 5.3.1 (Equivalence up to Permissions) and the transitivity of
the ≍ relation, hence we just need to show that the transitions match as prescribed.

Let (E1, E2) ∈ R, then we know that Γ ⊢⊤ E1 : τ I P1 and E2 ⊒ Γ · E1.
Assume E1

α−→ E ′
1, then by Theorem 5.2.7 (Simulation-Aware Subject Reduction)

we have Γ ⊢⊤ E ′
1 : τ I P′1 with P′1 ⊑ P1 and Γ · E1

α−→ipc E
′′
1 for some E ′′

1 ⊒ Γ · E ′
1.

By Lemma 5.2.5 (Monotonicity of Reduction) we then have E2
α−→ipc E

′
2 for some

E ′
2 ⊒ E ′′

1 ⊒ Γ · E ′
1, hence (E ′

1, E
′
2) ∈ R and we conclude that R is a simulation.

Finally, we note that by Proposition 5.2.2 (Soundness of Lowering) we have
E ⊒ Γ · E, hence (E,E) ∈ R and we conclude E 4 E as desired.

Restatement of Lemma 4.5.2. Let O be an opponent and let Γ ⊢ u : Un for all
u ∈ fnfv(O), then Γ ⊢ O.

166 CHAPTER 5. PROOFS OF CHAPTER 4

Proof. Let E be any expression such that each permission assignment occurring
within E is ⊥. Since the structure of definitions and expressions is given by mutually
inductive productions, we simultaneously prove the following statements:

(i) ∀u ∈ fnfv(E) : Γ ⊢ u : Un ⇒ Γ ⊢⊥ E : Un I ⊥

(ii) ∀u ∈ fnfv(O) : Γ ⊢ u : Un ⇒ Γ ⊢ O.

The proof of point (i) is by induction on the structure of E, while the proof of point
(ii) is by induction on the structure of O.

Restatement of Theorem 4.5.3. Let L(τ) = ⊥ for every u such that Γ(u) = τ .
If Γ ⊢⊤ E : τ I P, then E is robustly safe against privilege escalation attacks.

Proof. Let O be an arbitrary opponent. Let Γ∗ be the typing environment defined
as follows:

Γ∗(u) =

Γ(u) if u ∈ dom(Γ)

Un if u /∈ dom(Γ) ∧ u ∈ fnfv(O)

We let Γ∗(u) be undefined for any u such that u /∈ dom(Γ) ∪ fnfv(O).
Now we note that ∀u ∈ dom(Γ∗) : Γ∗ ⊢ u : Un, hence Γ∗ ⊢ O by Lemma 4.5.2

(Opponent Typability). By Lemma 5.1.3 (Weakening) we also have Γ∗ ⊢⊤ E : τ I P,
thus Γ∗ ⊢⊤ O \E : τ I P by rule (T-Eval). Hence, the conclusion follows by
Theorem 4.5.1 (Type Safety).

Conclusions

Authorization policies are a well-understood, successful and widespread security
mechanism, whose applicability and generality have been proved in a number of dif-
ferent settings. Despite this popularity and a long-standing research tradition, as-
sessing the effectiveness of a given authorization policy is still a challenging problem:
first, the actual security implications underlying the policy must be clearly identified
and understood, which already is a non-trivial task, since the policy specification and
the intended security requirements are typically expressed at very different levels;
second, proving that a system or an implementation comply with a specific autho-
rization policy requires significant domain-specific expertise and careful reasoning
about the attacker model.

The present thesis contributes to the research line of policy verification with the
first formal semantics for grsecurity, a fundamental building block for any rigorous
verification procedure for the role-based access control system of grsecurity. The
thesis addresses also the problem of policy enforcement, which is tackled specifically
on application code: for F# applications, a more expressive policy language is con-
sidered with respect to the original proposal in [10]; for Android applications, the
problem of statically enforcing a more robust access control policy is addressed.

A thorough validation of the presented analysis techniques on existing code-
bases is an important research task, which will require substantial engineering effort
in the next future. At the time of writing, the importance of integrating the ana-
lysis performed by gran with information from the underlying file system has been
recognised as a feature of fundamental importance to simplify the process of policy
verification and make the analysis more precise. Additionally, we are carrying out
several case studies on Android security through the usage of Lintent.

168 CONCLUSIONS

Bibliography

[1] man page for function setreuid.

[2] Smali: An assembler/disassembler for android’s dex format. http://code.
google.com/p/smali/.

[3] Sponsor page of grsecurity.

[4] Martín Abadi and Bruno Blanchet. Secrecy types for asymmetric communica-
tion. Theor. Comput. Sci., 3(298):387–415, 2003.

[5] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In Proc. 28th Symposium on Principles of Programming Languages
(POPL), pages 104–115. ACM, 2001.

[6] Alessandro Armando, Gabriele Costa, and Alessio Merlo. Formal modeling and
verification of the android security framework. In TGC2012, pages xx–xx, 2012.
To Appear.

[7] Alessandro Armando and Silvio Ranise. Automated symbolic analysis of
arbac-policies. In Jorge Cuéllar, Javier Lopez, Gilles Barthe, and Alexander
Pretschner, editors, STM, volume 6710 of Lecture Notes in Computer Science,
pages 17–34. Springer, 2010.

[8] Michael Backes, Catalin Hriţcu, and Matteo Maffei. Union and Intersec-
tion Types for Secure Protocol Implementations. In Proc. Theory of Security
and Applications (TOSCA), Lecture Notes in Computer Science, pages 1–28.
Springer-Verlag, 2011.

[9] David E. Bell and Leonard J. LaPadula. Secure computer systems: Mathemat-
ical foundations. Technical report, MITRE Corporation, 1973.

[10] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
and Sergio Maffeis. Refinement types for secure implementations. ACM Trans.
Program. Lang. Syst., 33(2), 2011.

http://code.google.com/p/smali/
http://code.google.com/p/smali/

170 BIBLIOGRAPHY

[11] Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet,
and James J. Leifer. Cryptographic Protocol Synthesis and Verification for
Multiparty Sessions. In Proc. 22nd IEEE Symposium on Computer Security
Foundations (CSF), pages 124–140. IEEE Computer Society Press, 2009.

[12] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Modular
Verification of Security Protocol Code by Typing. In Proc. 37th Symposium
on Principles of Programming Languages (POPL), pages 445–456. ACM Press,
2010.

[13] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Stephen Tse.
Verified Interoperable Implementations of Security Protocols. ACM Transac-
tions on Programming Languages and Systems, 31(1), 2008.

[14] Kenneth J. Biba. Integrity Considerations for Secure Computer Systems. Tech-
nical report, USAF Electronic Systems Division, 1977.

[15] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased
objects. In Proc. 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA), pages 301–320. ACM
Press, 2007.

[16] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In CSFW’01, pages 82–96. IEEE, 2001.

[17] Chiara Braghin, Daniele Gorla, and Vladimiro Sassone. A distributed calculus
for role-based access control. In CSFW, pages 48–60, 2004.

[18] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation attacks on
Android. In NDSS, 2012. To appear.

[19] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei.
Resource-Aware Authorization Policies for Statically Typed Cryptographic Pro-
tocols. In Proc. 24th IEEE Symposium on Computer Security Foundations
(CSF), pages 83–98. IEEE Computer Society Press, 2011.

[20] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei.
Affine Refinement Types for Authentication and Authorization. In Proc. 7th
Symposium on Trustworthly Global Computing (TGC), 2012.

[21] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Log-
ical Foundations of Secure Resource Management in Protocol Implementations.
In Proc. 2nd International Conference on Principles of Security and Trust
(POST), 2012. To appear.

BIBLIOGRAPHY 171

[22] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Marco Squarcina.
Gran: Model checking grsecurity rbac policies. In Stephen Chong, editor, CSF,
pages 126–138. IEEE, 2012.

[23] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Dynamic Types for
Authentication. Journal of Computer Security, 15(6):563–617, 2007.

[24] Peter C. Chapin, Christian Skalka, and Xiaoyang Sean Wang. Authorization
in Trust Management: Features and Foundations. ACM Computing Surveys,
40(3), 2008.

[25] Avik Chaudhuri. Language-based security on Android. In PLAS, pages 1–7,
2009.

[26] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Ana-
lyzing inter-application communication in Android. In MobiSys, pages 239–252,
2011.

[27] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[28] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, 1999.

[29] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel
Winandy. Privilege escalation attacks on Android. In ISC, pages 346–360,
2010.

[30] Nicholaas G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the church-rosser
theorem. Indagationes Mathematicae (Proceedings), 75(5):381 – 392, 1972.

[31] William Enck. Defending users against smartphone apps: Techniques and fu-
ture directions. In ICISS, pages 49–70, 2011.

[32] William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In OSDI, pages 393–
407, 2010.

[33] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A
study of Android application security. In USENIX Security Symposium, 2011.

[34] William Enck, Machigar Ongtang, and Patrick Drew McDaniel. Understanding
android security. IEEE Security & Privacy, 7(1):50–57, 2009.

172 BIBLIOGRAPHY

[35] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Stowaway - android permissions demystified. http://www.
android-permissions.org/.

[36] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-
ner. Android permissions demystified. In ACM Conference on Computer and
Communications Security, pages 627–638, 2011.

[37] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. Permission re-delegation: Attacks and defenses. In USENIX Secu-
rity Symposium, 2011.

[38] Riccardo Focardi and Matteo Maffei. Types for Security Protocols. Technical
Report CS-2010-3, University of Venice, 2010. Available at http://www.lbs.
cs.uni-saarland.de/resources/types-security.pdf.

[39] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A Type Discipline for
Authorization Policies. In ESOP’05, LNCS, pages 141–156. Springer, 2005.

[40] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A Type Discipline for
Authorization in Distributed Systems. In CSF’07, pages 31–45. IEEE, 2007.

[41] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular Code-
Based Cryptographic Verification. In Proc. 18th ACM Conference on Computer
and Communications Security (CCS), pages 341–350. ACM Press, 2011.

[42] Michael Fox, John Giordano, Lori Stotler, and Arun Thomas. SELinux and
grsecurity: A case study comparing linux security kernel enhancements. Uni-
versity of Virginia.

[43] Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. Modeling and enhanc-
ing Android’s permission system. In ESORICS, volume 7459 of Lecture Notes
in Computer Science, pages 1–18, 2012. To appear.

[44] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. Scandroid: Automated
security certification of android applications, 2009. Technical report, University
of Maryland.

[45] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference
of static types for java bytecode. In SAS, pages 199–219, 2000.

[46] Jean-Yves Girard. Linear Logic: Its Syntax and Semantics. In Advances in
Linear Logic, volume 22 of London Mathematical Society LNS, pages 1–42.
Cambridge University Press, 1995.

http://www.android-permissions.org/
http://www.android-permissions.org/
http://www.lbs.cs.uni-saarland.de/resources/types-security.pdf
http://www.lbs.cs.uni-saarland.de/resources/types-security.pdf

BIBLIOGRAPHY 173

[47] Mikhail I. Gofman, Ruiqi Luo, Ayla C. Solomon, Yingbin Zhang, Ping Yang,
and Scott D. Stoller. Rbac-pat: A policy analysis tool for role based access
control. In Stefan Kowalewski and Anna Philippou, editors, TACAS, volume
5505 of Lecture Notes in Computer Science, pages 46–49. Springer, 2009.

[48] Google Inc. Reference documentation for android.app.PendingIntent. http:
//developer.android.com/reference/android/app/PendingIntent.html.

[49] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: Reduc-
tion and typing. Electr. Notes Theor. Comput. Sci., 16(3):248–264, 1998.

[50] Andrew D. Gordon and Alan Jeffrey. Authenticity by Typing for Security
Protocols. JCS, 11(4):451–519, 2003.

[51] Andrew D. Gordon and Alan Jeffrey. Types and Effects for Asymmetric Cryp-
tographic Protocols. JCS, 12(3):435–484, 2004.

[52] Joshua D. Guttman, F. Javier Thayer, Jay A. Carlson, Jonathan C. Herzog,
John D. Ramsdell, and Brian T. Sniffen. Trust Management in Strand Spaces:
A Rely-Guarantee Method. In Proc. 13th European Symposium on Program-
ming (ESOP), Lecture Notes in Computer Science, pages 325–339. Springer-
Verlag, 2004.

[53] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in
operating systems. Commun. ACM, 19(8):461–471, 1976.

[54] Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. Lambda-rbac:
Programming with role-based access control. Logical Methods in Computer
Science, 4(1), 2008.

[55] Karthick Jayaraman, Vijay Ganesh, Mahesh V. Tripunitara, Martin C. Rinard,
and Steve J. Chapin. Automatic error finding in access-control policies. In
Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM Conference
on Computer and Communications Security, pages 163–174. ACM, 2011.

[56] Somesh Jha, Ninghui Li, Mahesh V. Tripunitara, Qihua Wang, and William H.
Winsborough. Towards formal verification of role-based access control policies.
IEEE Trans. Dependable Sec. Comput., 5(4):242–255, 2008.

[57] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. ACM Trans. Inf. Syst. Secur., 9(4):391–420, 2006.

[58] Amiya Kumar Maji, Fahad A. Arshad, Saurabh Bagchi, and Jan S. Rellermeyer.
An empirical study of the robustness of inter-component communication in
android. In DSN, pages 1–12, 2012.

http://developer.android.com/reference/android/app/PendingIntent.html
http://developer.android.com/reference/android/app/PendingIntent.html

174 BIBLIOGRAPHY

[59] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory
of type refinements. In ICFP’03, pages 213–225. ACM Press, 2003.

[60] Robin Milner. Functions as Processes. MSCS, 2(2):119–141, 1992.

[61] James H. Morris. Protection in Programming Languages. Communications of
the ACM, 16(1):15–21, 1973.

[62] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In
POPL, pages 228–241, 1999.

[63] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A Type
System for Borrowing Permissions. In POPL’12, pages 557–570. ACM Press,
2012.

[64] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[65] Project Lombok. Reference documentation for lombok.javac abstract syntax
tree. http://projectlombok.org/api/lombok/javac/package-summary.
html.

[66] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow se-
curity. IEEE Journal on Selected Areas in Communications, 21, 2003.

[67] Ravi S. Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97
model for role-based administration of roles. ACM Trans. Inf. Syst. Secur.,
2(1):105–135, 1999.

[68] Amit Sasturkar, Ping Yang, Scott D. Stoller, and C. R. Ramakrishnan. Policy
analysis for administrative role based access control. In CSFW, pages 124–138.
IEEE Computer Society, 2006.

[69] Wook Shin, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki Tanaka.
A formal model to analyze the permission authorization and enforcement in the
android framework. In SocialCom/PASSAT, pages 944–951, 2010.

[70] Alvise Spanò. Information extraction from weakly-typed code by typing. Ph.D.
Thesis (Under review), Università Ca’ Foscari Venezia.

[71] Brad Spengler. Increasing performance and granularity in role-based access
control systems, 2004.

[72] Brad Spengler. Changelog of grsecurity, February 2012. commit
3981059c35e8463002517935c28f3d74b8e3703c.

[73] Brad Spengler. Private communication, February 2012.

http://projectlombok.org/api/lombok/javac/package-summary.html
http://projectlombok.org/api/lombok/javac/package-summary.html

BIBLIOGRAPHY 175

[74] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An
Authentication Service for Open Network Systems. In USENIX’88, pages 191–
202. USENIX Association, 1988.

[75] Scott D. Stoller, Ping Yang, C. R. Ramakrishnan, and Mikhail I. Gofman.
Efficient policy analysis for administrative role based access control. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
Conference on Computer and Communications Security, pages 445–455. ACM,
2007.

[76] Eijiro Sumii and Benjamin C. Pierce. A Bisimulation for Dynamic Sealing.
Theoretical Computer Science, 375(1-3):169–192, 2007.

[77] Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter.
First-Class State Change in Plaid. In OOPSLA’11, pages 713–732. ACM Press,
2011.

[78] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan
Bhargavan, and Jean Yang. Secure Distributed Programming with Value-
Dependent Types. In Proc. 16th ACM SIGPLAN International Conference
on Functional Programming (ICFP), pages 266–278. ACM Press, 2011.

[79] Alwen Tiu and Alberto Momigliano. Induction and co-induction in sequent
calculus. CoRR, abs/0812.4727, 2008.

[80] Naoyuki Tomura. llprover - A Linear Logic Prover. http://bach.istc.
kobe-u.ac.jp/llprover/.

[81] Jesse Tov and Riccardo Pucella. Stateful Contracts for Affine Types. In Proc.
19th European Symposium on Programming (ESOP), Lecture Notes in Com-
puter Science, pages 550–569. Springer-Verlag, 2010.

[82] Anne S. Troelstra. Lectures on Linear Logic. CSLI Stanford, LNS, vol. 29,
1992.

[83] Nan Zhang, Mark Ryan, and Dimitar P. Guelev. Synthesising verified ac-
cess control systems through model checking. Journal of Computer Security,
16(1):1–61, 2008.

http://bach.istc.kobe-u.ac.jp/llprover/
http://bach.istc.kobe-u.ac.jp/llprover/

	frontespizio_pdfa
	main-pdfa
	Preface
	Introduction
	Formal Verification of grsecurity RBAC Policies
	Introduction
	Background on grsecurity
	grsecurity RBAC
	RBAC policies
	User and group identifiers

	A formal semantics for grsecurity
	Policies
	Pathnames and matching
	Role assignment
	Semantics

	Verification of grsecurity policies
	An abstract semantics for grsecurity
	Correlating the two semantics
	Security analysis

	Gran: a tool for policy verification
	Case studies
	Verification of existing policies
	Exploits through ``setuid'' binaries
	Information leakage analysis

	Related work

	Enforcing Affine Authorization Policies in RCF
	Introduction
	Overview of the framework
	Refinement types for verification
	Affine logic for specification
	Type-checking the example?
	Exponential serialization to the rescue

	Review of affine logic
	Metatheory of exponential serialization
	Review of RCF
	The type system
	Types, environments, and base judgements
	Environment rewriting
	Kinding and subtyping
	Typing values
	Typing expressions
	Formal results
	Encoding affine types
	Encoding cryptography
	Algorithmic type-checking

	Example: electronic purchase
	Example: Kerberos
	Related work

	Proofs of Chapter 2
	Soundness of exponential serialization
	Preliminaries
	Main results
	Auxiliary results

	Soundness of the type system
	Properties of the logic
	Basic results
	Properties of kinding and subtyping
	Properties of substitution
	Proofs of inversion lemmas
	Proof of subject reduction
	Proof of (robust) safety

	Secure Access Control for Android Applications
	Introduction
	Android overview
	Introducing -Perms
	Syntax and semantics
	-Perms vs Android

	Privilege escalation, formally
	Preventing privilege escalation, by typing
	Implementation
	Architecture
	Challenges
	Java annotations support
	Limitations and extensions

	Related work

	Proofs of Chapter 4
	Basic results
	Proof of subject reduction
	Proof of (robust) safety

	Conclusions
	Bibliography

