
Università Ca’ Foscari di Venezia

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Formal Models for Qualitative and
Quantitative Analysis of Mobile Ad Hoc

and Sensor Networks

Gallina Lucia

Supervisors

Sabina Rossi and Andrea Marin

PhD Coordinator

Riccardo Focardi

December, 2012

Author’s Web Page: http://www.dsi.unive.it/˜ gallina/

Author’s e-mail: lgallina@dais.unive.it

Author’s address:

Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it

A mio marito Emanuele

Abstract

Mobile ad-hoc networks (MANETs) are systems of mobile devices communi-
cating with each other through wireless links without a pre-established networking
infrastructure. The absence of a central infrastructure, together with the hetero-
geneous nature of the devices, make this kind of networks particularly fit to face
critical situations, such as natural disasters or battlefield environments. Connectiv-
ity, energy consumption and communication interference are key aspects in mobile
ad-hoc networks, due to the dynamic characteristics of the devices. In this thesis
we propose a broadcast process algebraic model for the analysis of such aspects
of MANETs. In particular we first introduce a non-deterministic calculus, which
enables us to define and prove some important connectivity properties of ad hoc
networks, and then we introduce two different probabilistic extensions of such cal-
culus, with the aim of providing both a qualitative and quantitative analysis of ad
hoc networks. In particular, we concentrate on the energy consumption and the level
of interference. Using the model checking technique, we finally provide a framework
for automatically evaluate the performances of ad hoc networks, with respects to
the metrics previously defined.

Sommario

Le reti ad hoc (MANETs) sono sistemi di dispositivi mobili che comunicano tra
loro usando collegamenti wireless, senza alcuna infrastruttura prestabilita. L’assenza
di una infrastruttura centrale e la natura eterogenea dei dispositivi rendono questa
rete particolarmente adatta a gestire situazioni critiche, come ad esempio le comu-
nicazioni in caso di disastri naturali, o nei campi di battaglia. La connettività,
il consumo energetico e l’interferenza nelle comunicazioni sono aspetti chiave nella
gestione delle reti ad hoc, date le caratteristiche dinamiche dei dispositivi che le
costituiscono. In questa tesi proponiamo un modello formale per l’analisi di queste
problematiche. In particolare introduciamo un modello non deterministico che ci
permette di definire e provare alcune importanti proprietà legate alla connettività
delle reti. Proponiamo poi due differenti estensioni probabilistiche del calcolo in-
trodotto, volte ad un’analisi sia qualitativa che quantitativa delle reti ad hoc. In
particolare questa tesi si concentra sullo studio del consumo energetico e del livello
di interferenza. Infine, grazie alla tecnica del model checking, viene fornito uno stru-
mento per valutare in modo automatico le prestazioni delle reti ad hoc rispetto alle
metriche proposte.

Acknowledgments

First of all, I would like to thank my PhD adivsor, Sabina Rossi, who introduced
me to the field of Process Algebra and was a great support for my work throughout
my whole thesis. I would like to thank Andrea Marin, assistant professor at Ca’
Foscari University of Venice, who sustained my work especially in the last year of
my PhD thesis. Marta Kwiatowska, professor at the University of Oxford, and Rocco
De Nicola, professor at IMT-Institute for Advanced Studies of Lucca, accepted the
role of reviewers of my thesis: I am very proud of that and I thank them for the time
spent reading and commenting on my work. I want to thank Hamadou Saradouma,
research fellow at INRIA Saclay, LIX Ècole Polytechnique, for his help and his
collaboration. I want to thank Tinting Han, research assistant at the University
of Oxford, who introduced me to the PRISM Model Checker, and spent a lot of
time with me carrying out experiments and studying formulas to find interesting
results. I am grateful to my family who have stood by me all through my life. I
am particularly grateful to my husband Emanuele, who continuously sustains me
and encourages me in my work, and who has made these last three years of my life
special.

Contents

1 Introduction 1
1.1 Key concepts . 1
1.2 Contribution of the thesis . 1

1.2.1 Overview . 3

2 Background 5
2.1 Introduction . 5
2.2 Wireless Ad Hoc Networks . 5

2.2.1 Ad hoc routing protocols . 8
2.3 Process Algebras . 10

2.3.1 Timed Process Algebras . 11
2.3.2 Probabilistic and Stochastic Process Algebras 11

2.4 Model checking and Formal Verification 12
2.5 State of the Art . 13

2.5.1 Process algebras . 13
2.5.2 Probabilistic, Timed and Stochastic Process Calculi 15

3 A calculus for Energy-aware Multicast Communications 19
3.1 Introduction . 19
3.2 The Calculus . 19

3.2.1 Syntax . 19
3.2.2 Reduction Semantics . 23
3.2.3 Observational Semantics. 24

3.3 A Bisimulation-based Proof Technique 26
3.3.1 Label Transition Semantics 26
3.3.2 Simulation and Bisimulation 35
3.3.3 A complete characterisation 38

3.4 Connectivity Properties . 40
3.5 Conclusions . 47

4 Connectivity and Energy-Aware Preorders for Mobile Ad hoc Net-
works 49
4.1 Introduction . 49
4.2 The Calculus . 49

4.2.1 Probability distributions for networks 50
4.2.2 Reduction Semantics . 51
4.2.3 Observational Semantics . 52

ii Contents

4.2.4 Labelled Transition Semantics 55
4.2.5 Probabilistic labelled bisimilarity 61
4.2.6 A complete characterisation 66

4.3 Introduction of a Cost Preorder . 76
4.3.1 Energy Cost Preorder . 76

4.4 Analysing the SW-ARQ and GBN-ARQ Protocols 77
4.4.1 Protocol description . 77
4.4.2 Assumptions on the models 78
4.4.3 Modelling the Protocols . 79
4.4.4 Measuring the Energy Cost of the Protocols. 81

4.5 Analysis of a location based routing protocol 84
4.5.1 Protocol Description . 84
4.5.2 Simple flooding: description 84
4.5.3 Exploiting location data: the LAR policy 85
4.5.4 Modelling the network . 87

4.6 Conclusions . 90

5 Interference-sensitive Preorders for Mobile Ad hoc Networks 93
5.1 Introduction . 93
5.2 The Calculus . 93

5.2.1 Syntax . 93
5.2.2 Reduction Semantics . 94
5.2.3 Observational Semantics . 97

5.3 A Bisimulation-based Proof Technique 99
5.3.1 Labelled Transition Semantics 99
5.3.2 Probabilistic Labelled Bisimilarity 111

5.4 Introduction of a Cost Preorder . 125
5.4.1 Measuring the interference level of the protocols. 126

5.5 The Alternating Bit Protocol . 127
5.5.1 Introduction to the protocol 128
5.5.2 Interference cancellation scheme for CDMA 129

5.6 Resistance to Jamming and Casual Interception 133
5.6.1 Scenario . 133
5.6.2 The HWMP protocol. 134
5.6.3 Modelling the system. 136
5.6.4 Resilience to jamming attacks 137

5.7 Conclusions . 141

6 Automatic Performance Analysis 145
6.1 Introduction . 145
6.2 Introduction to the PRISM language 145

6.2.1 The Property Specification Language of PRISM 146
6.3 A Parser for the Probabilistic EBUM calculus 148

Contents iii

6.3.1 Input file of the parser . 149
6.3.2 The parsing task . 150
6.3.3 Output of the parser: generation of a PRISM MDP 151
6.3.4 Correctness of the translation 152
6.3.5 A simple example . 153

6.4 A case study . 159
6.4.1 The network. 159
6.4.2 Time and Energy Costs. 162

6.5 Conclusions . 166

Conclusions 167

A A Parser for the Probabilistic EBUM Calculus 169
A.1 Development Environment . 169
A.2 Structure of the Parser . 169
A.3 The parsing task: results and performances 177

Bibliography 179

iv Contents

List of Figures

2.1 Structure of Mobile Ad Hoc and Sensor Networks 6
2.2 Equilibrium among different performances indexes 9

3.1 Observability . 25
3.2 Example of simulation of stationary nodes 41
3.3 Example of optimized routers allocation 42
3.4 Example of repeater allocation . 44
3.5 Range repeaters: interactions between the nodes 45

4.1 Topology of the network and mobility of the sender 79
4.2 Description and example of the network communications 80
4.3 Energy cost functions for SW and GBN and their comparison. 83
4.4 Expected and Request Zones in the LAR protocol 86
4.5 Different route request packets of LAR - Scheme 1 86

5.1 Topology of the network and mobility of devices 128
5.2 Description of the protocols . 131
5.3 Interference levels for ABP and SIC ABP and their comparison . . 133
5.4 Topology of a building floor . 134

6.1 Sample . 154
6.2 Transitions graph . 155
6.3 PRISM: Building the model . 156
6.4 PRISM: Verification of properties and rewards 157
6.5 PRISM: Simulations . 158
6.6 The different network schemes . 159
6.7 The time-only and energy-only cost 163
6.8 Cost results for each scheme . 165

vi List of Figures

List of Tables

3.1 Syntax . 20
3.2 Structural Congruence . 23
3.3 Reduction Semantics . 24
3.4 LTS rules for Processes . 26
3.5 LTS ruels for Networks . 27

4.1 Reduction Semantics . 51
4.2 LTS rules for Networks . 55
4.3 Process specifications used in the case study of Section 4.5 89

5.1 Syntax . 94
5.2 Reduction Semantics . 95
5.3 LTS rules for Processes . 100
5.4 LTS rules for Networks . 142
5.5 ABP . 143
5.6 SIC ABP . 143

viii List of Tables

1
Introduction

1.1 Key concepts

This thesis deals with the analysis of ad hoc networks [74], which are wireless
networks constituted of both mobile and static devices, communicating with each
other without a fixed infrastructure.

In Computer Science, the concept of process algebra (or process calculus) [60, 41]
encloses those mathematical approaches modelling concurrent systems. This thesis
presents a process calculus specifically developed to study ad hoc networks.

In particular, we concentrate on the analysis of the main challenging problems
affecting the ad hoc networks, such as the scarce availability of energy resources, the
frequent link breakages due to the topology changes, and the interference caused by
the use of radiofrequency channels for communications.

Model checking [6], is a technique allowing one to automatically verify several
kinds of properties of systems that exhibit random or probabilistic behaviour. Usu-
ally, the specification of the properties is given by temporal logic formulas. This
automatic verification technique has been used to analyse systems of several do-
mains, including communication and security protocols [48], [71], [72].

1.2 Contribution of the thesis

We present a process calculus, named EBUM (Energy aware Broadcast Unicast
and Multicast Communications) [26], [25], for formally reasoning about energy-aware
broadcast, unicast and multicast communications of mobile ad hoc and sensor net-
works. Our calculus is built around nodes, representing devices executing a process,
and locations, identifying the position cells across which each device may move in-
side the network. A network is modelled as a parallel composition of nodes. A
device can be static or it can arbitrarily change its position inside the network area.
Moreover, each node can connect and disconnect with the network, capturing the
eventuality of physical damages, or other kinds of problems affecting the devices.
Processes describe the input and output actions that a node can perform. In par-
ticular, each transmission is associated with a channel and a transmission radius,

2 1. Introduction

which has got the double task of defining the physical area where the transmission
will be receivable, and of representing the transmission power used by the sender
node to transmit.

We define an observational congruence in the style of [62] to equate networks
exhibiting the same connectivity behaviour. In particular, the notion of observability
is associated with nodes listening at specific locations in the network, so as to allow
a fine grained analysis of connectivity at different areas within a network. We
give a coinductive characterization of observational congruence based on a labelled
transition semantics. This is a bisimulation-based proof technique in the form of a
labelled bisimilarity which is shown to coincide with the observational equivalence.

This model is useful for the definition and the verification of important prop-
erties concerning the performances of networks, in terms of energy consumption,
connectivity maintenance and interference awareness.

We present also two probabilistic extensions of the EBUM calculus.
The first one [22], [23] extends its predecessor by introducing a probability dis-

tribution to model the node mobility. This choice is due to the consideration that
usually the node movements are not completely casual, but the devices follow some
particular trajectories, due to the presence of physical obstacles in the network area,
or to other reasons, depending on the surrounding environment. Working with a
calculus where both non-deterministic and probabilistic aspects coexist, allow us to
make both qualitative and quantitative analysis of a system performance, in terms
of several indexes, such as energy consumption, throughput, interference level, time
delay, etc. We also introduce a energy-aware preorder over networks to measure
the relative energy costs of different, but behaviourally equivalent, networks. This
preorder is defined in two steps: given two networks we first verify their behavioural
equivalence, and then we compute the energy consumed at each execution step,
calculated looking at the transmission radius used for each communication.

We present another probabilistic extension of the EBUM calculus [24] [11], where
again the mobility of the node is modelled with a probability distribution. The nov-
elty with respect to the previous calculus is that the transmissions are modelled
with non-atomic actions, following [51]. This new model allows us to capture the
collisions occurring when the transmission area of two sender nodes overlap. Again
we define a preorder, allowing us to decide, given two networks having the same ob-
servational behaviour, whether one of them is able to reduce the number of collisions
during the network activity.

Finally, we present a framework [50], based on model checking technique , in order
to make automatic verification on ad hoc networks. We exploit the PRISM tool [49]
to perform quantitative verification and analysis of wireless networks for a range
of performance metrics. Specifically, we develop a parser to translate an EBUM
process term, representing a network, into a Marlov Decision Processes expressed
in the PRISM language. We used the property specification language of PRISM
to formulate the rewards expressing the time and the energy costs of the network
behaviours.

1.2. Contribution of the thesis 3

1.2.1 Overview

This thesis is organised as follows.
Chapter 2 introduces the main concepts and issues which we deal with.
Chapter 3 introduces the EBUM calculus, with the definition of observational

equivalence, bisimulation, and the proof of the complete characterisation of the
bisimulation defined. We also define some properties to show the usefulness of the
calculus introduced.

Chapter 4 introduces the first probabilistic extension of the calculus, with the
definition of probabilistic observational equivalence and of the correspondent prob-
abilsitic bisimulation. We define the energy-aware preorder, and we show its use-
fulness by introducing two case studies: the first one compares the performances of
two ARQ-based communication protocols, with respect to the energy consumption;
in the second case study we analyse how the application of a location-based strategy
can improve the performances of a routing protocol based on the simple flooding
algorithm.

Chapter 5 introduces the second probabilistic extension of the calculus. We
show its capability on the analysis of two case studies: the first one compute the
level of interference caused by the hidden station problem on a toy network using
the alternating bit protocol to communicate, while the second case study analyse
the resistance of two different routing strategies to a jamming attack in a in-door
environment.

Chapter 6 presents a framework, based on the probabilistic calculus presented
in Chapter 4, and on the PRISM Model Checker [49], allowing the automatic veri-
fication of several properties of ad hoc networks, such as connectivity maintenance,
energy conservation and throughput optimization. We show our framework at work
on the analysis of a network communicating using a simple flooding algorithm: in
particular we study how the choice of the transmission radius influences the energy
consumption of the network.

4 1. Introduction

2
Background

2.1 Introduction

This chapter introduces the key aspects that will be discussed in this thesis, and
gives a panoramic of the state of art.

2.2 Wireless Ad Hoc Networks

Wireless ad hoc networks are systems of devices communicating with each other
through wireless links without a pre-established network infrastructure.

Hence the connectivity of the network depends on the collaboration among nodes
to forward information, since there is no any centralized control.

Wireless Ad-Hoc Networks are built using wireless technology, the devices com-
municate with each other via radio transceivers, using the protocol IEEE 802.11
(WiFi). This type of communication has a physical scope, because a radio trans-
mission spans over a limited area. Therefore it necessarily must be applied a routing
protocol, proper to wireless dynamic systems.

Ad hoc networks can be classified in:

• Mobile Ad hoc Networks (Figure 2.1.(a)).

Mobile ad hoc networks (MANETs) are made of different mobile and static
devices, having different battery capacities and a different transmission power.

Due to their dynamic characteristics, these networks are often used to face
critical situations, as the problem of managing the communications during
rescue operations for natural emergencies (e.g., the earthquakes), or in military
battlefields.

A particular case of MANETs are the vehicular networks, which exploits the
vehicles to create a mobile network and to forward information about traffic.

• Wireless Sensor Networks (Figure 2.1.(b)).

A Wireless Sensor Network (WSN) [3] is a collection of spatially distributed
sensors to monitor physical or environmental conditions. Each sensor node

6 2. Background

(a) Mobile Ad Hoc Networks (b) Wireless Sensor Networks

Figure 2.1: Structure of Mobile Ad Hoc and Sensor Networks

has a radio transceiver to communicate with the network, a microcontroller
(for data survey), an electronic circuit for interfacing with the sensors and an
energy source (usually a battery or an embedded form of energy harvesting).

Sensor networks are employed for many different applications as Area Moni-
toring (over region where some particular phenomenon has to be monitored),
Environmental Sensing (e.g., the monitoring of a Volcano’s activity, or other
natural events), Air Pollution Monitoring or Industrial Monitoring (e.g., the
monitoring the machinery’s activity).

The main differences between MANETs and WSN are:

– the density of the network nodes: in wireless sensor network, the number
of nodes in a given region could be hundreds or thousand higher than the
number of devices in a MANET;

– the mobility of the nodes: due to the environmental conditions, the topol-
ogy changes of a wireless sensor network are more frequent than the
topology changes of a mobile ad hoc network (see, e.g., the monitoring of
animal behaviours, or the mobility of sensors placed in the sea to monitor
the drift);

– the identity of nodes: while in mobile ad hoc networks each device is
always univocally identified, e.g., by an IP address, in sensor networks
the devices are not necessarily associated with a global identifier, but they
may be simply anonymous devices lying in a certain location. This is a
consequence of the high number of nodes which can potentially constitute
a WSN.

For further details about ad hoc networks see [74].
As ad hoc networks are usually implemented in precarious environments, they

are vulnerable to many problems concerning the network connectivity, the energy
consumption and the interference, because the nodes only communicate using radio-
frequency channels, which can not be private. The dynamic nature of ad hoc net-

2.2. Wireless Ad Hoc Networks 7

works makes the management of the transmissions and of the routing protocols much
more complicated. The ad hoc networks are self organized, so the good behaviour
of the system depends on the cooperation among the connected nodes: this char-
acteristics can make the network more vulnerable to damages caused, not only by
malicious nodes, but also by “lazy” nodes, that are devices which, for power saving,
do not cooperate with the other nodes; this bad behavior can originate problems
especially in the management of the packets routing. Since ad hoc networks are
used to face critical situations, where the transmitted data are often important and
confidential, we are now going to enumerate the main properties to be preserved in
planning an ad hoc network [95], [9], [78], [3].

Power Conservation : is the property of handling the energy resources of network
devices, i.e., the battery waste avoidance. Ad hoc networks are constituted of
different kinds of devices (notebook, mobile phones...) which may have scarce
energy capacities, and battery with an autonomy of few hours. On the other
hand sensor networks are constituted of small nodes with a limited battery.
The power limits of a device can be a problem for the whole network life-
time, since nodes communicate thanks to the collaboration of the neighbouts
forwarding packets between source and destination. In particular, for sensor
networks the power conservation is a challenging issue since, due to the envi-
ronmental conditions, the battery substitution is not always possible (e.g., the
sea monitoring or other critical environment), network lifetime depends on the
capacity of conserving as much energy as possible.

Network connectivity maintenance : is the property of guaranteeing at least
one path between each pair of nodes in the network. If we consider the neces-
sity of reducing the power consumption of the transmissions, we have always
to consider the connectivity of the network nodes: a device cannot use a
transmission power that is too small to reach the receivers of its messages.
As concerns sensor networks, this property is hard to guarantee, due to the
frequent topology changes occurring after sensor disconnections or movements.

Reduction of Interference : is the property of limiting the collisions due to the
absence of a fixed infrastructure controlling the network transmissions. Ad
hoc networks use radio-frequences to communicate, hence channels are half-
duplex : a node can not transmit and receive at the same time. Using a too large
transmission power will therefore increase the interference level. Interference
is usually the effect of the hidden station problem [88], i.e., the presence of
multiple transmitters whose transmission area overlap, causing the reception
of corrupted messages by the nodes inside the overlapping areas. Interference
can also be caused by malicious nodes, intended to disrupt the network traffic
with continuous meaningless radio signal.

Fault tolerance : is the property of providing all the network services, regardless
of the possible nodes failures and links breakages. Nodes failures can be caused

8 2. Background

by physical damages, or by battery depletion, while links breakages are caused
by the network topology changes, due to the presence of mobile nodes.

Throughput Optimisation : is the property of providing a good exploitation of
the network channel in a given time slot. This property is usually conflicting
with power conservation, since, when nodes reduce their power in order to
conserve energy, the amount of data sent in a time slot is reduced.

Scalability : is the property of guaranteeing that the functionalities of a given
network are preserved even increasing the number of nodes and the size of
the network area. This property is particularly relevant for sensor networks,
where the number of nodes may reach very high values. Indeed, if in a given
network, the density and the physical characteristics of nodes are fixed, the
scalability allows one to study some network properties, reducing the analysis
to a smaller region.

Time Delay Reduction : is the property of containing the time delays of the
transmissions. Unfortunately, as for the throughput optimisation, this prop-
erty is opposite to power conservation since, choosing low power level for trans-
missions can critically increase the number of hops to reach a given destination.
Indeed, in critical or emergency situations (e.g., military battlefields or natu-
ral disasters), minimizing the time spent to send a message become the main
goal to pursue. However, due to the scarce power resources of the devices, we
have always to take in consideration the problem of reducing the energy con-
sumption during each communication: the best solution is always a trade-off
between the time and the energy cost.

Data Integrity : is the property of guaranteeing the correct and complete re-
ception of data by the receivers. Since ad hoc networks communications are
realized through multi-hop transmissions, it is important to guarantee that
the messages received by the destination are complete. Corrupted messages
can arrive due to intermediate forwarding failures.

Network Availability : is the ability of a network to ensure communication ser-
vices, despite of the problems caused by interference or other environmental
obstacles to the traffic flow.

2.2.1 Ad hoc routing protocols

Since ad hoc networks are usually self-organized, one of the most challenging
aspects of their implementation is the choice of a routing protocol which preserves
the properties described above.

In particular, many research efforts have been devoted to develop energy-aware
routing protocols, especially in the case of sensor networks where devices have scarce

2.2. Wireless Ad Hoc Networks 9

Figure 2.2: Equilibrium among different performances indexes

battery resources and where, due to the critical environmental conditions, the sub-
stitution of discharged batteries is not always possible. In addition, due to the
rapid evolution of modern technologies, which allow the devices to choose among
different transmission power levels, several protocols have been implemented, which
reduce the total energy consumption by adjusting each node’s transmission power
just enough to reach up the intended recipients only (see, e.g., [94]).

The concept of topology control [81] is the technique used in order to modify the
initial network topology to save energy, and to extend the network lifetime. This can
be then considered as a trade-off between power saving and network connectivity:
when we have to choose the transmission power of each node, we know that, if we
assign a low transmission power to a node, we reduce its connectivity within the
network, but we also reduce its power consumption. Indeed, reducing the transmis-
sion power of the devices will reduce their transmission area, consequently reducing
the possibility of collisions occurrences [12]. On the other hand the throughput and
the time cost of communications depend on the level of connectivity (see Figure
2.2) : having more links among nodes will reduce the number of hops to reach a
destination, reducing the time spent for a transmission, and increasing the through-
put. The main goal of topology control is therefore the choice, for each node, of a
minimum transmission power reducing the energy consumption and the interference
level, but preserving the network connectivity.

Several routing protocols have been specifically developed for ad hoc networks,
taking into account the absence of a centralized control and the dynamic nature of
the network topology.

The choice of the routing protocol strongly depends on the environmental con-
ditions and on the characteristics of the network topology: this is the reason why it
does not exist an algorithm which can be considered the best one, but there will be
different best strategies for each different network implementation.

Routing protocols can be classified in:

Proactive routing protocols : are protocols that continually exchange routing
information about all the nodes, to maintain the routing tables always up-
dated. Among the most used proactive protocols we cite DSDV [75] (Destination-
Seqeunced Distance Vector) and WRP (Wireless Routing Protocol) [65].

Reactive routing protocols : are protocols which update the routing table of
each node only on-demand. Among the most used reactive protocols we

10 2. Background

cite AODV (Ad-Hoc On -Demand Distance Vector) [79], TORA (Temporally-
Ordered Routing Algorithm) [73] and DSR (Dynamic Source Routing) [43].

While proactive routing reduces the latency in sending out packets, due to the
continuous up-to-date of the routing tables, reactive routing is more efficient in
terms of resources usage, since the route tables are updated only on-demand.

Hierarchical routing protocols : are protocols which divide the network in clus-
ters, assigning a manager node for each cluster: in this way the network is no
more completely free from a centralized infrastructure, but each network node
can refer to its cluster manager node in order to find a path to a given des-
tination. Examples of hierarchical protocols are GLS (Global State Routing)
[55], or HSR (Hierarchical State Routing) [28].

Geographical routing protocols : are protocols which exploit the information
about the geographical positions of nodes; this strategy can be used in net-
works where nodes know their locations. Information about geographical po-
sitions are usually recovered by help of some common system, as, e.g., the
GPS (Global Positioning System) [45]. As an example, LAR (Location Aided
Routing) [47] is a protocol which exploits information about the location and
the mobility of nodes, to optimize the routes discovery.

Hybrid routing protocols : are protocols similar to the geographic routing be-
cause they use information about the geographic positions of nodes and adopts
different approaches for the local and for the remote area routing. An exam-
ple is the ZRP (Zone Routing Protocol) [32], which divides the networks in
routing zones, according to the distances between mobile nodes.

2.3 Process Algebras

Process algebras are formal models for concurrent systems. They provide a high
level description of interactions, communications and synchronizations among a set
of independent agents, and also provide algebraic laws allowing formal reasoning
about equivalences of processes.

Among the existing process algebras we cite the Calculus of Communicating Sys-
tems (CCS) [60], Communicating Sequential Processes (CSP) [41], the Algebra of
Communicating Processes (ACP) [7] and the π-calculus [61]. Comparisons between
processes can be made by means of a co-inductive proof methodology called bisimu-
lation [80], associating systems which behave in the same way in the sense that one
system simulates the other one and vice-versa.

A distributed version of the Pi-Calculus A particular attention should be
paid to the language DPI (Distributed Picalculus) [34] [36], introduced by Hennessy

2.3. Process Algebras 11

et al.; DPI is a distributed version of the Pi-calculus where processes may migrate
between dynamically created locations. A system is modelled as the parallel com-
position of processes, denoted with lJP K, where P is the process/agent, and l a
location, meaning that the agents are distributed among different sites where they
can use local resources. These resources are modelled using local communication
channels. The behaviour of the systems, that is the ability of an agent to interact
with other agents, is modelled by means of the definition of capability types, which
describe the channel access control polices, and the relation among channels and
locations. This calculus has been introduced principally to study the behaviour of
client-server systems, in the presence of firewalls or other restrictions on the channel
access: locations have been introduced just to reason about the accessibility of a
resource.

Our work is inspired by the DPI calculus, but locations are used in a different
way. In particular, when dealing with wireless channels, locations are used to model
the fact that wireless channels are strictly dependent on the physical area of the
transmission, and not only on the transmission channel. Moreover, ad hoc networks
are characterized by the possibility to perform broadcast transmissions, while DPI
only supports the peer-to-peer communication.

2.3.1 Timed Process Algebras

Timed process algebras [69] are extensions of process algebras where actions
are associated with time. As an example, SCCS (Synchronous CCS) [59] is a syn-
chronous version of CCS with the addition of clock thicks to control the synchro-
nizations among processes. TCCS (Temporal CCS) [63] is another extension of
CCS where the process actions continue to be instantaneous: the peculiarity of this
calculus is that there are two kinds of transitions: action transitions and time tran-
sitions. Two systems are considered equivalent only if they behave in the same way,
with the same time delays. Another timed version of CCS is presented in [35], where
time is modelled as clock, i.e., by introducing σ actions: when a process executes a
σ action, it means that it is is going to sleep until the next clock time.

2.3.2 Probabilistic and Stochastic Process Algebras

In Process Algebra usually transitions are non-deterministic, meaning that sys-
tems at each step can choose among different actions, and the choice is completely
casual. Probabilistic process algebras are extensions of process algebras which solve
the non-determinism by associating a probability with each possible action a system
can perform. Stochastic process algebras associate rates rather then probabilities to
each action occurrence.

Probabilistic CCS (PCCS) [44] is an extension of CCS, that is similar to the
synchronous CCS but with probabilistic choices replacing non-deterministic ones.
As an example of stochastic extensions of CCS we cite [13].

12 2. Background

As concerns the π-calculus, there are several probabilistic [37, 31] and stochastic
[77] versions that have been proposed in literature.

There are other probabilistic and stochastic process algebras which have gained
success: we will discuss them in Section 2.5, while exploring the state of art.

2.4 Model checking and Formal Verification

The concept of Formal Verification encloses all the techniques aimed at verifying
the correctness of formal methods with respect to certain properties.

One approach is Model Checking [6], which verifies finite models, usually repre-
senting systems as finite automata,where states represent the possible system con-
figurations, while transitions show how the system can evolve. Then, by using a
temporal logic, we can make a qualitative analysis of several properties, expressed
through logic formulas, and we can check if they are are verified for the system under
analysis.

Probabilistic Model Checking, in particular, automatically verifies properties of
probabilistic systems. Due to the presence of probability, a quantitative analysis can
be done, returning the expectation of the formula expressing the probability that
the property under analysis is verified for the system.

Usually Probabilistic Model Checking is based on the following probabilistic
models:

1. Markov Decision Processes (MDP) : model concurrent probabilistic systems,
i.e., systems where both probabilistic and non-deterministic aspect coexists;

2. Discrete Time Markov Chains (DTMC): model fully probabilistic systems;

3. Continuous Time Markov Chains (CTMC): model stochastic systems;

4. Probabilsitic Timed Automata (PTA): model the real time behaviour of sys-
tems.

Temporal logic [42] is used to describe the properties to be verified, since it allows
to express propositions formulated in terms of time. In particular, Computational
Tree Logic (CTL) is a branching-time logic, i.e., its model of time is a tree-like
structure describing all possible ways the future would evolve. Linear Temporal
Logic (LTL) is a fragment of the Computational Tree Logic, encoding formulas
about the future of paths and allowing time-branching and quantifiers.

In the following we cite some of the existing probabilistic model checkers.

MRMC (Markov Reward Model Checker) [46] is a model checker for DTMCs,
CTMCs and CTMDPs (Continuous Time Markov Decision Processes) with re-
wards, supporting probabilistic computation tree logic and continuous stochas-
tic logic. It also supports bisimulation.

2.5. State of the Art 13

The PEPA Plug-in Project [89] is a tool, supporting continuous stochastic logic,
specifically developped for model checking PEPA networks (see Section 2.5).

LiQuor [15] is a model checker for markov decision processes expressed in Probmela
[5] (a probabilistic extension of the SPIN’s Promela language).

PRISM [49] is a probabilistic model checker for discrete time markov chains,
markov decision processes and probabilistic automatas. Models are written in
the PRISM language, which allows to specifies several properties and rewards,
and which supports probabilistic computation tree, continuous stochastic and
linear temporal logics.

PRISM model checker is particularly useful for model checking process calculi,
since its language supports process algebra operators.

2.5 State of the Art

2.5.1 Process algebras

Probabilistic models are nowadays widely used in the design and verification of
complex systems. In the following we give an overview of the systems specifically
aimed at modelling mobile ad hoc and sensor networks.

CMN (Calculus of Mobile Ad Hoc Networks) Merro introduced CMN [58]:
a value-passing calculus in CCS style [60], where an ad hoc network is represented as
a collection of nodes, running in parallel, and using channels to broadcast messages.
The peculiarity of this calculus is that the connectivity is defined by a physical
transmission area: each node is associated with a location and a transmission radius
which determine the circular area where the message could be received (the author
considers omni-directional antennas, abstracting from the fact that the quality of
the signal decreases proportionally with the distance from the transmission source).
In addition, this calculus models both mobile and stationary nodes: mobile nodes
can move arbitrarily within the networks, while stationary nodes occupy a fixed
location.

This calculus presents some limitations: it gives a way of representing mobility
of nodes, but the arbitrary connections and disconnections of nodes in the network,
due to physical damages, or to intentional switching on/off of the devices, are not
allowed. Another limitation is the impossibility of representing multicast and unicast
communication: even though mobile ad hoc networks use only radio-frequencies,
which do not allow one to make a channel private, in some cases it is necessary to
specify a particular set of network locations: one may want to know if a message is
receivable at some specific locations, e.g., in case of routing packets exchange.

14 2. Background

ω-calculus ω-calculus [84] has been designed by Singh, Ramakrishnan e Smolka
and it is a conservative extension of the π-calculus [61]. The key feature of this
calculus is the separation of a node’s communication and computational behavior
from the description of its physical transmission range. The latter is modelled
annotating a process with the set of group names which it belongs to. Since the
ω-calculus is a conservative extension of the π-calculus, scope extrusion is defined
(nodes can create new names and privately share them with other devices).

The peculiarity of this calculus is that not only broadcast transmissions are
permitted, but also multicast and unicast communications.

Calculus for Broadcasting Systems (CBS#) CBS# [66] has been introduced
by Nanz and Hankin: it is an extension of CBS (Calculus of Broadcasting Systems)
[76]; the peculiarity of this calculus is the choice of representing a node as a pair
composed of a process and a store associated to a location. This solution allows the
representation in detail of a network, that is usually constituted of devices having
an own store.

Nevertheless, the actions executed on the store are internal to the node, so they
are not observable actions: their representation make the calculus heavy without
a real optimization. The other important peculiarity characterizing the CBS# is
that transmissions are not considered as atomic actions but, when a node executes
an output action, the topology of the network may change arbitrarily before the
reception of the message by the neighbors of the sender.

A Calculus for Mobile Ad Hoc Networks Jens Chr. Godskesen has proposed
CMAN (Calculus for Mobile Ad Hoc Networks) [30], where connections between
the nodes of the network is expressed using bidirectional links. A tag is associated
to each node, containing the logical locations of the nodes it is connected with.
Rules of CMAN allow scope extrusion. Contrarily to the other calculi we found
in literature, here the network topology has been represented with bidirectional
links between the logical locations of the devices (nodes are not associated to a
transmission radius nor a physical location). The author had chosen this solution
believing that, dealing with the node’s behaviour in its intentions with the network
and its neighbours, separately from its physical position, could simplify the model.

AWN (A process algebra for Wireless Mesh Networks) van Glabbeek et al.
introduced AWN [19]: a process algebra that has been implemented with the specific
aim of modelling wireless mesh routing protocols: it supports the representation
of data structures, broadcast and unicast communications, and network topology
changes. Since this calculus is specifically aimed at formalising mesh networks, in
order to provide a rigorous analysis of routing protocols (see, e.g. , [20]), it is able
to provide strongly precise and detailed networks representations.

2.5. State of the Art 15

However, the introduction of data structures and other specific information, make
the calculus heavy and not flexible to model other kinds of systems. Moreover, the
possibility of topology changes is modelled with connections and disconnections of
nodes from each other, meaning that it does not exist any notion of distance or
physical location.

CWS (A Calculus for Wireless Systems) CWS [51], introduced by Sangiorgi
and Lanese, is a process calculus aimed at studying the problem of interference in
mobile ad hoc networks. As in CMN [58], the connectivity of a node is expressed
by its location and transmission radius. However, mobility is not modelled. The
peculiarity of this calculus is the non-atomic nature of the transmissions, which
allows one to capture the collisions which may occur during multiple transmissions
by different nodes using the same channel.

The limitation of this calculus is the absence of primitives to deal with mobility.

KLAIM (Kernel Language for Agents Interaction andMobility) De Nicola
et al. presented KLAIM [68]: a process calculus aimed at modelling interactions
among mobile agents in any distributed system.

The language consists of a core Linda with multiple tuple spaces and of a set of
operators for building processes. It supports the modeling of explicit localities.

The most interesting aspect of this calculus is the concept of coordination : the
coordination language defines the primitives to model configuration and interaction
protocols of sets of software agents. Types are used to express polices of access
control [67], and to study the possible access rights violations of mobile agents.

2.5.2 Probabilistic, Timed and Stochastic Process Calculi

Probabilistic extensions of Process Calculi are used to solve the non-determinism,
given a quantification to the multiple choices of a systems.

Probabilistic Applied π-calculus Palamidessi et al. introduced the Probabilis-
tic Applied π-calculus [31]: a probabilistic extension of Applied π-calculus [1], where
both non-deterministic and probabilistic choices are modelled. The authors define
both a static equivalence, and an obervational congruence based on the notion of
probabilistic barb, which describes the probability, for a given system, to perform
a certain observable action. In order to solve the non-determinism, schedulers (also
called polices, or adversaries) have been introduced. They are modelled as functions
mapping states into probability distributions.

Moreover, [70] an implementation of both probabilistic and stochastic versions
of applied π-calculus has been provided, based on the MMC Model Checker [92] (a
logic-programming based model checker for π-calculus), and on the PRISM Model

16 2. Background

Checker [49]. The framework has been used to perform analysis of the semantic
models derived from both the probabilistic and the stochastic calculus.

aTCWS (Applied Timed Calculus for Wireless Systems) Merro et al. in-
troduced aTCWS [56]: a timed broadcasting process calculus for security analysis of
wireless networks, with the assumption that the topology is fixed (it does not model
the mobility of nodes), and that all nodes use the same fixed transmission radius
(i.e., the same transmission power) and the same channel for their transmissions.
The connectivity of the network is expressed by associating with each node a tag
containing the list of all its neighbours. The timed model adopted by this calculus
is known as the fictitious clock approach, and it is based on clock synchronization
of nodes.

In [52] the authors propose a probabilistic version of TCWS, aimed at analysing
communication protocols in wireless sensor networks. The main peculiarity of this
calculus is the definition of a simulation up to probability which allows one to com-
pare networks which exhibit the same behaviour up to a certain probability. This is
an interesting result with respect, e.g., to the probabilstic applied π-calculus, pre-
sented in [31], where two networks can be compared only if they have exactly the
same probability of performing observable actions.

The first limitation of the calculus is the absence of mobility, while the dynamic
nature of the network topology is one of the most challenging issues of both MANETs
and WSNs. The other limitation concerns the absence of channel specifications,
while both mobile ad hoc and sensor networks often use radio-frequencies for their
communication, which usually allows to choose among different channels.

A Probabilistic Calculus to model Distributed Wireless Networks In [14]
Hennessy and Cerone propose a calculus aimed at modelling the high-level behviour
of Wireless Systems (i.e., the MAC-layer protocols).

This calculus has been defined with a two-level structure: on one hand, it models
both probabilistic and non-deterministic processes behaviour, and communications
through a fixed set of channels, on the other hand, the topology is expressed through
an undirected graph where each edge represents the direct link between a pair of
network nodes. Neither a notion of distance, nor of transmission radius has been
introduced. Moreover, modelling the links with an undirected graph presupposes the
assumption that all the nodes use the same fixed radius to communicate: this is true
for sensor networks, which are constituted of devices with the same characteristics,
but it is not true for MANETs, which are constituted of different kinds of devices,
having a different physical structure, and different power resources.

Probabilsitic Models for Mobile and Wireless Networks Song and Godske-
sen [85] propose a probabilistic broadcast calculus for mobile and wireless networks
with unreliable connections. The peculiarity of this calculus is the introduction of a

2.5. State of the Art 17

probabilistic mobility function to model the mobility of nodes. Recently, in [86] the
same authors propose a new version of their calculus built upon a stochastic mobility
function to model the stochastic changes of connectivity. As in our works [26, 22, 27]
broadcast actions are associated with the locations of the intended recipients of the
message. However, differently from our calculus, in [86] any notion of transmission
radius is introduced and any performance analysis is considered.

PEPA (Performance Evaluation Process Algebra) Hillston introduced PEPA
[40]: the most famous stochastic process calculus: it extends the standard process
algebras such as CCS [60] or CSP [41] by associating each action with a rate. It
has been developed in order to join the properties of process algebras to model
communication and concurrency of networks, with the powerful of the stochastic
models such as the continuous-time markov processes, which allows to verify both
qualitative and quantitative properties of communication systems.

The main problem of stochastic process algebras is the assignment of a rate to
the synchronizing actions. In PEPA a shared activity is enabled only when it is
enabled for all its components, and its rate is the minimum among the enabled
activities of its type in the syncronizing components.

The authors provided also a tool, the PEPA Workbench [29], which allows a
practical use of this process algebra in many applications concerning software archi-
tecture and communication protocols.

An interesting modification of PEPA, bio-PEPA [16], has been introduced with
the specific aim of studying biological models.

TIPP (Timed Processes and Performability Evaluation) Hermanns et al.
introduced TIPP [38]: a process algebra enriched with stochastic timing information.
TIPP is similar to PEPA, except for the fact that the rates for the synchronizations
are the product of the individual rates. Moreover no assumptions are made about
the nature of the distributions.

EMPAgr (Extended Markovian Process Algebra with generative-reactive
synchronizations) Bernardo introduced EMPAgr[8], inspired by the TIPP calcu-
lus of Hermanns et al. and by the Hillston’s PEPA calculus. It is aimed at modelling
the fact that there are events whose duration influence the system, but also events
whose duration is negligible.

The language models both exponentially timed, immediate and passive actions.
The choice among immediate or exponentially timed actions is carried out genera-
tively according to their priorities/probabilities or exponentially distributed dura-
tions, while the choice among passive actions is carried out reactively, by imposing
that an immediate or exponentially timed action can synchronize with passive ac-
tions only: actions with the same name can partecipate, but there can be only one

18 2. Background

immediate or exponentially timed action, while all the other participating actions
must be passive.

Based on EMPAgr, an open source software tool has been developped, called
TwoTowers [2], modelled in the Æmilia Architecture Description Language [4], which
can be used to make functional verification, security analysis and performance eval-
uation of communication and software systems.

3
A calculus for Energy-aware
Multicast Communications

3.1 Introduction

We present a calculus for Energy-aware Broadcast, Unicast and Multicast com-
munications of mobile ad hoc and sensor networks (EBUM) [25, 26, 27]. It allows
us to model the ability of a node to broadcast a message to any other node within
its physical transmission range, and to move in and out of the transmission range of
other nodes in the network. The connectivity of a node is represented by a location
and a transmission radius. Broadcast communications are limited to the transmis-
sion cell of the sender, while unicast and multicast communications are modelled
by specifying, for each output action, the addresses of the intended recipients of the
message.

We use the model to define some useful connectivity properties of Wireless Sensor
Networks which can be exploited to control the energy consumption of the sensor
nodes, increasing the network lifetime.

3.2 The Calculus

We introduce the EBUM calculus, which models mobile ad hoc networks as a
collection of nodes, running in parallel, and using channels to broadcast messages.
Our calculus supports multicast and unicast communications and it allows one to
model the arbitrary and unexpected connections and disconnections of nodes in a
network as well as the possibility for a node to administrate the energy consump-
tion by choosing the optimal transmission radius to communicate with the desired
recipients.

3.2.1 Syntax

In Table 3.1 we define the syntax of EBUM. This is defined in a two-level struc-
ture: the lower one for processes, the upper one for networks. The channel names

20 3. A calculus for Energy-aware Multicast Communications

Table 3.1: Syntax

Networks
M,N ::= 0 Empty network

|M1|M2 Parallel composition
| (νc)M Channel restriction
| n[P]l Node (or device)

Processes
P,Q,R ::= 0 Inactive process

| c(x̃).P Input
| c̄L,r⟨w̃⟩.P Output
| [w1 = w2]P,Q Matching
| A⟨w̃⟩ Recursion

Channels’ description tags
L ::= {l1, l2, l3, ...} Multicast/unicast channel

| Loc Broadcast channel
| ϵ Empty channel

3.2. The Calculus 21

set is separated from the names set.

C = channels, d, c ∈ C;

N = names; m,n are used for nodes and r for transmission radii;

Loc = locations, l, k, h ∈ Loc;

X = variables, x, y, z;

V = values (X ∪N ∪ Loc ∈ V);

Values set includes names, variables and in general, any basic value (integers,
booleans, etc.). Letters u, v are used for closed values, and w for open values. A
tuple a1, ..., ak of names is represented by ã.

Networks are collections of nodes (which represent devices), running in parallel,
using channels to communicate messages. As usual, 0 denotes the empty network
and M1|M2 represents the parallel composition of two networks. In (νc)M the
channel c is private with scope M . We remark that channels are not values, hence
they may not be transmitted: furthermore, given the structure of the syntactic
productions, channels may not be dynamically created and thus (νc)M simply plays
the role of a CCS-style hiding operator 1. We denote by N the set of all networks.

Processes are sequential and live within the nodes. Process 0 denotes the inactive
process. Process c(x̃).P can receive a tuple w̃ of (closed) values via channel c and
continue as P{w̃/x̃}, i.e., as P with w̃ substituted for x̃ (where |x̃| = |w̃|). Process
c̄L,r⟨w̃⟩.P can send a tuple of (closed) values w̃ via channel c and continue as P.

The tag L is used to list the observation locations of the message transmitted;
mobile ad hoc networks use radiofrequences for communications, hence it is not pos-
sible to restrict channels. Moreover we would like to observe the behaviour of each
transmission with respect to the specific locations it is addressed to. In particular
L = Loc means a broadcast transmission (the message has got no intended recipi-
ents), otherwise the message is transmitted with multicast communication (unicast
if the set L has only one member). We remark that L is not a set of names, but it
is a set of locations. This is due to the fact that one of the main aims of our model
is the analysis of protocols for mobile ad hoc networks management (as, e.g. ad hoc
routing protocols), where messages are often addressed to a set of physical locations
within the network area, rather than to specific devices. The tag r associated to
an output action represents the radius (and then the power) used to transmit: we
consider that in managing ad hoc networks the choice of the transmission power of
each device may depend on precise strategies which are implemented in the com-
munication protocols; then it is reasonable considering transmission range as an

1Of course, since channels represent radio frequencies, they may not be hidden in practice.
Indeed, the use of the hiding operator is only meant to specialize the verification method to some
specific class of contexts as we will see later.

22 3. A calculus for Energy-aware Multicast Communications

information given by the process running in the sender node. Syntactically, the tags
L and r associated to the channel c in an output action may be variables, but they
must be instantiated when the output prefix is ready to fire. Note that a node n
will never execute any process P requiring transmission radius r > rn.

Process [w1 = w2]P,Q behaves as P if w1 = w2, and as Q otherwise. We write

A⟨w̃⟩ to denote a process defined via a (possibly recursive) definition A(x̃)
def
= P ,

with |x̃| = |w̃|, where x̃ contains all channels and variables that appear free in P .
Nodes cannot be created or destroyed. We write n[P]l for a node named n (this

is the logical location of the device in the network), located at l (this is the physical
location of the node), and executing a process P . We associate to each node identifier
n a pair ⟨rn, δn⟩ where rn represents the maximum transmission radius for n, while
δn denotes the maximum distance that n can cover in a computational step. We
say that n[P]l is unpowered when rn = 0; we say that n[P]l is static when δn = 0.
The possibility that nodes communicate with each other is verified by looking at
the physical locations and the transmission radius of the sender, in other words if a
node broadcasts a message, this information will be received only by the nodes that
lie in the area delimited by the transmission radius of the sender. In the definition
of the operational semantics we then assume the possibility of comparing locations
so to determine whether a node lies or not within the transmission cell of another
node. We do so by means of a function d(·, ·) which takes two locations and returns
their distance.

In the process c(x̃).P variables x̃ are bound in P , giving rise to the standard
notions of α-conversion and free and bound variables, denoted by fv(·) and fb(·)
respectively. Similarly, in a network of the form (νc)M , the channel name c is bound
in M and the notions of α-conversion and free and bound channels, fc(·) and bc(·),
are defined accordingly.

Processes and networks are then identified up to α-conversion. More formally
terms are considered as representatives of their equivalence class with respect to ≡α,
and these representatives will always be chosen so that bound names are distinct
from free names. A context C[·] is defined as a network term with a hole, denoted
by [·]. Contexts are generated by the following grammar:

C[·] ::= [·] | [·]|M | M |[·] | (νc)[·] (3.1)

A number of conventions are used to simplify the notation. Parallel composition
of networks has lower precedence with respect to restriction.


i∈IMi means the

parallel composition of all the networks Mi, ∀i ∈ I. We write (νc̃)M as an abbre-
viation for (νc1)...(νck)M . To denote unicast communication we write cl for c{l}.
We write c̄L,r⟨w⟩ for c̄L,r⟨w⟩.0, 0 for n[0]l and [w1 = w2]P as an abbreviation of
[w1 = w2]P,0. We assume that there are no free variables in a network (while there
can be free channels). The absence of free variables is trivially maintained as the
network evolves. Moreover, we assume that in any network each node identifier is

3.2. The Calculus 23

n[0]l ≡ 0 (Struct Zero)
n[[v = v]P,Q]l ≡ n[P]l (Struct Then)
n[[v1 = v2]P,Q]l ≡ n[Q]l if v1 ̸= v2 (Struct Else)

n[A⟨ṽ⟩]l ≡ n[P{ṽ/x̃}]l if A(x̃)
def
= P ∧ |x̃| = |ṽ| (Struct Rec)

M |N ≡ N |M (Struct Par Comm)
(M |N)|M ′ ≡M |(N |M ′) (Struct Par Assoc)
M |0 ≡M (Struct Zero Par)
(νc)0 ≡ 0 (Struct Zero Res)
(νc)(νd)M ≡ (νd)(νc)M (Struct Res Res)
(νc)(M |N) ≡M |(νc)N If c /∈ fc(M) (Struct Res Par)
M ≡M (Struct Refl)
N ≡M if M ≡ N (Struct Symm)
M ≡M ′′ if M ≡M ′ ∧M ′ ≡M ′′ (Struct Trans)
M |M ′ ≡ N |M ′ ∀M ′ if M ≡ N (Struct Cxt Par)
(νc)M ≡ (νc)N ∀c if M ≡ N (Struct Cxt Res)

Table 3.2: Structural Congruence

unique.

3.2.2 Reduction Semantics

The dynamics of the calculus is specified by the reduction relation over networks
(−→), described in Table 3.3. As usual, it relies on an auxiliary relation, called struc-
tural congruence (≡), which is the least contextual equivalence relation satisfying
the rules defined in Table 3.2.

Rule (R-Bcast) models the transmission of a tuple ṽ through a channel cL,r.
The set L associated to channel c indicates the set of the receivers lying within
the observation locations. Indeed, nodes communicate using radio frequencies that
enable only broadcast messages (monopolizing channels is not permitted). However,
a node may decide to communicate with a specific node (or group of nodes), this is
the reason why we decided to associate to each output action a set of observation
recipients. The cardinality of this set indicates the kind of communication that
is used: if L = Loc then the recipient set is the whole network and a broadcast
transmission is performed, while if L is a finite set (respectively, a singleton) then
a multicast (respectively, a unicast) communication is realized. A radius r is also
associated to the channel c, indicating the transmission radius required for that
communications which may depend on the power consumption strategy adopted by
the surrounding protocol.

Transmissions are defined as non-blocking actions : a transmission proceeds even

24 3. A calculus for Energy-aware Multicast Communications

(R-Bcast)
r ≤ rn ∀i ∈ I.d(l, li) ≤ r, ri ̸= 0, |x̃i| = |ṽ|

n[c̄L,r⟨ṽ⟩.P]l |


i∈Ini[c(x̃i).Pi]li −→ n[P]l |


i∈Ini[Pi{ṽ/x̃i}]li

(R-Move)
d(l, k) ≤ δn

n[P]l −→ n[P]k
(R-Par)

M −→M ′

M |N −→M ′|N

(R-Res)
M −→M ′

(νc)M −→ (νc)M ′
(R-Struct)

M ≡ N N −→ N ′ N ′ ≡M ′

M −→M ′

Table 3.3: Reduction Semantics

if there are no nodes listening for messages. The messages transmitted will be
received only by those nodes which lie in the transmission area of the sender. It
may occur that some recipients within the range of the transmitter do not receive
the message. This may be due to several reasons that concern the instability and
dynamism of the network. In terms of observation this corresponds to a local activity
of the network that is not captured by any external observer.

Rule (R-Move) models arbitrary and unpredictable movements of mobile nodes.
As said above, δn denotes the maximum distance that node n can cover in a com-
putational step. Movements are atomic actions: while moving, a node cannot do
anything else. In our model, due to the interleaving nature of the calculus, only one
node can move at each reduction but this does not mean that only one node can
move at a time.

Rules (R-Res) and (R-Par) describe the contextuality of the reduction relation.
Finally, (R-Struct) models the reduction closure under the structural congruence

(following the rules introduced in Table 3.2).
We denote by →∗ the reflexive and transitive closure of −→.

3.2.3 Observational Semantics.

In observational semantics two terms are deemed equivalent if they have the
same observational behavior in all possible contexts.

The central actions of our calculus are transmission and reception of messages.
However, only the transmission of messages can be observed. An observer cannot be
sure whether a recipient actually receives a given value. Instead, if a node receives
a message, then surely someone must have sent it. Following [62], we use the term
barb as a synonymous of observable.

In our definition of barb a transmission is observable only if at least one of the
observation locations is inside the transmission area.

3.2. The Calculus 25

Definition 3.1 (Barb) Let M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|M ′), with c /∈ d̃.
If ∃K ⊆ L ∧ d(l, k) 6 r ∀k ∈ K ∧K ̸= ∅ then M ↓c@K

If M −→∗ M ′ ↓c@K then M ⇓c@K.

Notice that, if M ≡ n[c̄L,r⟨ṽ⟩.P]l|M ′ and M ↓c@K then at least one of the
recipients in L is actually able to receive the message.

The concept of observable action is illustrated in Figure 3.1. Consider a node n
(the red node in the picture) broadcasting a message which is destined to a specific
set L of observation locations. The black circles in the picture represent the network
locations not included in L, while the light blue circles represent the locations in
L, i.e., the observation locations of the message. Figure 3.1(a) depicts the situation
in which there is at least one location in L where a receiver could be reached by
the transmission, while Figure 3.1(b) illustrates the case of a non-observable action,
where none of the nodes in L is able to receive the message.

To define our observation equivalence we will ask for the largest relation which
satisfies the following properties.

Definition 3.2 A relation R is barb preserving if M RN and M ↓c@K implies
N ⇓c@K

Definition 3.3 A relation R is reduction closed if M RN and M −→M ′ implies
the existence of some N ′ such that N−→∗N ′ and M ′RN ′

Definition 3.4 A relation R is contextual if M RN implies C[M]RC[N] for all
contexts C[·].

Definition 3.5 (Reduction barbed congruence) Reduction barbed congruence,
written ∼=, is the largest symmetric relation over networks, which is reduction closed,
barb preserving, and contextual.

(a) Observable action (b) Non-observable action

Figure 3.1: Observability

26 3. A calculus for Energy-aware Multicast Communications

(Output)
−

c̄L,r⟨ṽ⟩.P
c̄L,r ṽ−−−→ P

(Input)
−

c(x̃).P
cṽ−→ P{ṽ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′

[ṽ1 = ṽ2]P,Q
η−→ Q′

ṽ1 ̸= ṽ2

(Rec)
P{ṽ/x̃} η−→ P ′

A⟨ṽ⟩ η−→ P ′
A(x̃)

def
= P

Table 3.4: LTS rules for Processes

Two networks are related by ∼= if they exhibit the same behaviour relative to
the corresponding sets of intended recipients. Hereafter we develop a bisimulation-
based proof technique for ∼=. It provides an efficient method to check whether two
networks are related by ∼=.

3.3 A Bisimulation-based Proof Technique

We develop a co-inductive proof technique for the relation ∼=.

3.3.1 Label Transition Semantics

In this section we describe the LTS (Label Transition System) semantics of
EBUM. LTS has two sets of rules: one for processes and one for networks.

Table 3.4 presents the LTS for processes. Transitions are of the form P
η−→ P ′,

where η ranges over input and output actions. More precisely cṽ and c̄L,rṽ denote,
respectively, input and output of a tuple ṽ of values at channel c. The grammar for
η is:

η ::= cṽ | c̄L,rṽ. (3.2)

Rules for processes are simple and they do not need deeper explanations.
Table 3.5 contains the LTS for networks. Transitions are of the form M

γ−→ M ′,
where the grammar for γ is:

γ ::= c?ṽ@l | cL!ṽ[l, r] | c!ṽ@K ▹ R | τ. (3.3)

Rule (Snd) models the sending, with transmission radius r, of the tuple ṽ of
values via channel c to the set L of receivers.

Rule (Rcv) models the reception of ṽ at l via channel c.

3.3. A Bisimulation-based Proof Technique 27

(Snd)
P

c̄L,r ṽ−−−→ P ′

n[P]l
cL!ṽ[l,r]−−−−→ n[P ′]l

r ≤ rn (Rcv)
P

cṽ−→ P ′

n[P]l
c?ṽ@l−−−→ n[P ′]l

rn ̸= 0

(Bcast)
M

cL!ṽ[l,r]−−−−→M ′ N
c?ṽ@l′−−−→ N ′ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−→M ′|N ′

N |M
cL!ṽ[l,r]−−−−→N ′|M ′

(Obs)
M

cL!ṽ[l,r]−−−−→M ′ R ⊆ {k : d(l, k) ≤ r}, K = R ∩ L,K ̸= ∅
M

c!ṽ@K▹R−−−−−→M ′

(Lose)
M

cL!ṽ[l,r]−−−−→M ′

M
τ−→M ′

(Move)
d(l, k) ≤ δn

n[P]l
τ−→ n[P]k

(Par)
M

γ−→M ′

M |N γ−→M ′|N
N |M

γ−→N |M ′

(Res)
M

γ−→M ′ c /∈ fc(γ)

(νc)M
γ−→ (νc)M ′

Table 3.5: LTS ruels for Networks

Rule (Bcast) models the propagation of broadcast. All the nodes lying within
the transmission cell of the transmitter may hear the communication, regardless of
the fact that the node hearing the communication is a member of L.

Rule (Obs) models the observability of a transmission: every output action may
be detected by any receiver located within the transmission cell of the sender, but
it will be observed only by that lying in the observation locations. The action
c!ṽ@K ▹ R represents the transmission of tuple ṽ of messages via c to the set of
recipients of L whose locations lie within the transmission cell of the transmitter
(R ⊆ {k : d(k, l) 6 r} and K = R ∩ L, where l and r are respectively the location
and the transmission radius of the message sender). If K ̸= ∅ this is an observable
action corresponding to the barb ↓c@K .

Rule (Lose) models both message loss and a local activity of the network which
an observer is not party to. τ -actions are used, as commonly in process calculi, to
denote non-observable actions.

Rule (Move) models migration of a mobile node from a location k to a new
location l; again δn represents the maximum distance that a node can cover in a
single computational step.

In the following we prove that the LTS-based semantics coincides with the re-

28 3. A calculus for Energy-aware Multicast Communications

duction semantics and the notion of observability given in the previous section.

Lemma 3.1 Let M be a network.

1. If M
c?ṽ@l−−−→M ′, then there exist n, x̃, a (possibly empty) sequence d̃ such that

c /∈ d̃, a process P and a (possibly empty) network M1 such that

M ≡ (νd̃)(n[c(x̃).P]l|M1)

and
M ′ ≡ (νd̃)(n[P{ṽ/x̃}]l|M1).

2. If M
cL!ṽ[l,r]−−−−→ M ′, then there exist n, a (possibly empty) sequence d̃ such that

c /∈ d̃, a process P , a (possibly empty) network M1 and a (possibly empty) set
I, such that ∀i ∈ I with d(l, li) ≤ r, such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i).Pi]li |M1)

and
M ′ ≡ (νd̃)(n[P]l|


i∈I

ni[Pi{ṽ/x̃i}]li |M1).

Proof.
By induction on the transition rules of Table 3.5.

Case 1 : M
c?ṽ@l−−−→M ′.

(Rcv) Let M
c?ṽ@l−−−→ M ′ inferred by rule (Rcv), then there exist n, P, x̃, l, r

such that
M ≡ n[c(x̃).P]l and
M ′ ≡ n[P{ṽ/x̃}]l.
The Lemma is proved by considering the empty network M1 and the empty
sequence d̃.

(Par) Let M
c?ṽ@l−−−→M inferred by rule (Par), where M ≡M1 |M2, M

′ ≡M ′
1 |

M2 and M1
c?ṽ@l−−−→M ′

1. By induction hypothesis we have:

M1 ≡ (νd̃)(n[c(x̃).P]l|N)

and
M ′

1 ≡ (νd̃)(n[P{ṽ/x̃}]l|N),

for some n, some x̃, some (possibly empty) sequence d̃ with c /∈ d̃, some process
P and some (possibly empty) network N . By applying rule (Struct Cxt Par),
(Struct Par Assoc) and (Struct Res Par) we obtain

M1 |M2 ≡ (νd̃)(n[c(x̃).P]l|(N |M2))

and
M ′

1 |M2 ≡ (νd̃)(n[P{ṽ/x̃}]l|(N |M2)).

3.3. A Bisimulation-based Proof Technique 29

(Res) Let M
c?ṽ@l−−−→M ′ inferred by rule (Res), where M ≡ (νc′)M1, M ′ ≡

(νc′)M ′
1 and M1

c?ṽ@l−−−→M ′
1 and c ̸= c′. By induction hypothesis we have

M1 ≡ (νd̃)(n[c(x̃).P]l|N)

and
M ′

1 ≡ (νd̃)(n[P{ṽ/x̃}]l|N),

for some n, some x̃, some (possibly empty) sequence d̃ with c /∈ d̃, some process
P and some (possibly empty) network N .

If we consider d̃′ = d̃ ∪ c′, since c /∈ d̃′

M ≡ (νd̃′)(n[c(x̃).P]l|N)

and
M ′ ≡ (νd̃′)(n[P{ṽ/x̃}]l|N).

Case 2 : M
cL!ṽ[l,r]−−−−→M ′.

(Snd) Let M
cL!ṽ[l,r]−−−−→ M ′ inferred by rule (Snd), then M ≡ n[c̄L,r⟨ṽ⟩.P]l and

M ′ ≡ n[P]l for some name n, and some process P . Since c̄L,r⟨ṽ⟩.P
¯cL,r−−→ P , if

we suppose I, d̃ and M1 empty, the lemma is proved because

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i)Pi]li |M1)

and
M ′ ≡ (νd̃)(n[P]l|


i∈I

ni[Pi{ṽ/x̃i}]li |M1).

(Bcast) Let M
cL!ṽ[l,r]−−−−→M ′ because M ≡M1 |M2, M

′ ≡M ′
1 |M ′

2, M1
cL!ṽ[l,r]−−−−→

M ′
1 and M2

c?ṽ@l′−−−→M ′
2, with d(l, l′) ≤ r. By induction hypothesis:

M1 ≡ (νd̃1)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i)Pi]li | N1)

and
M ′

1 ≡ (νd̃1)(n[P]l|

i∈I

ni[Pi{ṽ/x̃i}]li | N1),

for some n, P , ṽ, l, some (possibly empty) sequence d̃1 such that c /∈ d̃1, some
(possibly empty) set I such that d(l, li) ≤ r ∀i ∈ I and some (possibly empty)
network N1, and

M2 ≡ (νd̃2)(m[c(x̃).Q]l′ |N2)

30 3. A calculus for Energy-aware Multicast Communications

and
M2 ≡ (νd̃2)(m[Q{ṽ/x̃}]l′|N2),

for some m, some process Q, some (possibly empty) sequence d̃2 such that
c /∈ d̃2 and some (possibly empty) network N2 . By applying rules (Struct Cxt
Par), (Struct Par Assoc) and (Struct Res Par), if we consider d̃ = d̃1 ∪ d̃2, we
can assume that d̃1 ̸∈ fc(M2) and d̃2 ̸∈ fc(M1) and we get:

M | N ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|m[c(x̃).Q]l′ |

i∈I

ni[c(x̃i)Pi]li | (M1 | N1))

and

M ′ | N ′ ≡ (νd̃)(n[P]l|m[Q{ṽ/x̃}]l′ |

i∈I

ni[Pi{ṽ/x̃}]li | (M1 | N1)).

The proof of the other cases is analogous to the Case 1.

We also show that structural congruence respects the transitions of Table 3.5.

Lemma 3.2 If M
γ−→ M ′ and M ≡ N , then there exists N ′ such that N

γ−→ N ′ and
M ′ ≡ N ′.

Proof.
By induction on the depth of the inference M

γ−→M ′.
There are a lot of cases to consider, following we give only some example.

(Par) Let us consider M
γ−→M ′ where M ≡M1 |M2, M

′ ≡M ′
1 |M2 and M1

γ−→M ′
1.

There are several rules for structural congruence that can be applied.

Let us consider M1 | M2 ≡ M1 | M3 because M2 ≡ M3, by (Struct Cxt

Par). By hypothesis M1
γ−→ M ′

1 and, by an application of rule (Par) we get

M1 | M3
γ−→ M ′

1 | M3. But, since M2 ≡ M3, by applying (Struct Cxt Par) we
have that M ′

1 |M3 ≡M ′
1 |M2, as required.

Let us consider now M1 | M2 ≡ M2 | M1 by (Struct Par Com). Again, since

M1
γ−→ M ′

1, by applying rule (Par) we get M2 | M1
γ−→ M2 | M ′

1, and, by
applying again rule (Struct Par Com), M2 |M ′

1 ≡M ′
1 |M2, as required.

(Bcast) Let consider M
cL!ṽ[l,r]−−−−→ M , where M ≡ M1 | M2, M

′ ≡ M ′
1 | M ′

2, M1
cL!ṽ[l,r]−−−−→

M ′
1, M2

c?ṽ@l′−−−→M ′
2 and d(l, l′) ≤ r.

Again several rules for structural congruence can be applied.

Let us consider, e.g. M1 | M2 ≡ M2 | M1 by (Struct Par Comm). Since

M1
cL!ṽ[l,r]−−−−→ M ′

1, M2
c?ṽ@l′−−−→ M ′

2, and d(l, l′) ≤ r, we can apply rule (Bcast),

3.3. A Bisimulation-based Proof Technique 31

obtaining M2 | M1
cL!ṽ[l,r]−−−−→ M ′

2 | M ′
1, and, by applying again (Struct Par

Comm) we get M ′
2 |M ′

1 ≡M ′
1 |M ′

2 as required.

Let us consider now M3 | M2 ≡ M1 | M2 because M3 ≡ M1, by (Struct Cxt

Par). By induction hypothesis M3
cL!ṽ[l,r]−−−−→ M ′

3, and M ′
3 ≡ M ′

1. But since

d(l, l′) ≤ r we can apply rule (Bcast), obtaining M3 | M2
cL!ṽ[l,r]−−−−→ M ′

3 | M ′
2.

Now, by applying (Struct Cxt Par) we get M ′
3 |M ′

2 ≡M ′
1 |M ′

2, as required.

The proof of the other cases is similar.
The following theorem establishes the relationship between the reduction seman-

tics and the LTS one.

Theorem 3.1 (Harmony) Let M be a network.

1. M ↓c@K if and only if there exist ṽ, R ⊇ K and N ≡M such that N
c!ṽ@K▹R−−−−−→.

2. If M
τ−→M ′ then M −→M ′.

3. If M −→M ′ then ∃N ≡M and N ′ ≡M ′ such that N −→ N ′.

Proof.

1. The first part of the theorem follows straightforwardly from Lemma 3.1 and
the definition of Barb.

⇒ If M ↓c@K , by the definition of Barb:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l |M1), for some n, ṽ, L, r, some (possibly empty)
sequence d̃ with c /∈ d̃, some process P and some (possibly empty) network
M1, with K ⊆ {k ∈ L s.t. d(l, k) ≤ r} and K ̸= ∅.
By applying the rules (Snd), (Par) and (Res) (since c ̸∈ d̃) we obtain:

n[c̄L,r⟨ṽ⟩.P]l
cL!ṽ[l,r]−−−−→ n[P]l

(νd̃)(n[c̄L,r⟨ṽ⟩.P]l |M1)
cL!ṽ[l,r]−−−−→ (νd̃)(n[P]l |M1)

;

then we can apply rule (Obs):

(νd̃)(n[c̄L,r⟨ṽ⟩.P]l |M1)
c!ṽ@K▹R−−−−−→ (νd̃)(n[P]l |M1),

where R ⊆ {l′ ∈ Loc : d(l, l′) ≤ r}, as required.

⇐ IfM
c!ṽ@K▹R−−−−−→M ′, we can apply rule (Obs) backwardly and we getM

cL!ṽ![l,r]−−−−−→
M ′, for some set L of locations, some location l, some radius r and, by
applying lemma 3.1 then there exists n, some (possibly empty) sequence

32 3. A calculus for Energy-aware Multicast Communications

d̃ such that c /∈ d̃, some process P , some (possibly empty) network M1

and a (possibly empty) set I, such that ∀i ∈ I d(l, li) ≤ r and we get:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i).Pi]li |M1)

and

M ′ ≡ (νd̃)(n[P]l|

i∈I

ni[Pi{ṽ/x̃i}]li |M1).

Since K ̸= ∅, by applying the definition of barb we conclude M ↓c@K .

2. The second part of the theorem is proved by induction on the derivation M
τ−→

M ′.
Suppose that M

τ−→M ′ is due to an application of the rule (Move), that means
M ≡ n[P]l, M

′ ≡ n[P]k for some name n, some process P , and some locations
l and k such that d(l, k) ≤ δn, and:

d(l, k) ≤ δn

n[P]l
τ−→ n[P]l

.

Hence , by applying (R-Move) we get:

d(l, k) ≤ δn

n[P]l −→ n[P]l
,

If M
τ−→M ′ is due to an application of (Lose):

M
cL!ṽ[l,r]−−−−→M ′

M
τ−→M ′

.

By applying Lemma 3.1, there exist n, ṽ, a (possibly empty) sequence d̃ such
that c /∈ d̃, a process P , a (possibly empty) networkM1 and a (possibly empty)
set I such that ∀i ∈ I d(l, li) ≤ r, such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i).Pi]li |M1)

and

M ′ ≡ (νd̃)(n[P]l|

i∈i

ni[Pi{ṽ/x̃i}]li |M1).

Finally, by applying rule (R-Bcast), (R-Res) and (R-Struct) we get M −→M ′.

3.3. A Bisimulation-based Proof Technique 33

Suppose that M
τ−→ M ′ is due to the application of (Res), that means M ≡

(νc)M1, M
′ ≡ (νc)M ′

1 and:

M1
τ−→M ′

1

(νc)M1
τ−→ (νc)M ′

1

.

By induction hypothesis M1 −→ M ′
1, hence, by applying rule (R-Res) we get

(νc)M1 −→ (νc)M ′
1, and by applying rule (R-Struct) we finally get M −→M ′.

Finally, suppose that M
τ−→M ′ is due to the application of (Par), that means

M ≡M1 |M2, M
′ ≡M ′

1 |M2 and:

M1
τ−→M ′

1

M1|M2
τ−→M ′

1|M2

.

By induction hypothesis M1 −→ M ′
1, hence, by applying rule (R-Par) we get

M1|M2 −→M ′
1|M2, and by applying rule (R-Struct) we finally get M −→M ′.

3. The third part is proved by induction on the reduction M −→M ′.

Suppose that M −→M ′ is due to the application of the rule (R-Move), meaning
M ≡ n[P]l, M

′ ≡ n[P]k for some name n, some process P and some locations
l and k such that d(l, k) ≤ δn, and:

d(l, k) ≤ δn

n[P]l −→ n[P]l
.

We simply apply rule (Move) to obtain:

d(l, k) ≤ δn

n[P]l
τ−→ n[P]l

,

Suppose that M −→M ′ is due to the application of the rule (R-Par), meaning
that M ≡M1 |M2, M

′ ≡M ′
1 |M2 and:

M1 −→M ′
1

M1 |M2 −→M ′
1 |M2

.

By induction hypothesis ∃N ≡ M1 and N ′ ≡ M ′
1 such that N

τ−→ N ′, then by
applying rule (Par) we get:

N
τ−→ N ′

N |M2
τ−→ N ′ |M2

,

34 3. A calculus for Energy-aware Multicast Communications

and, by applying (Struct Cxt Par) N |M2 ≡M1 |M2 and N ′ |M2 ≡M ′
1 |M2,

as required.

Suppose that M −→M ′ is due to the application of the rule (R-Res), meaning
M ≡ (νc)M1, M

′ ≡ (νc)M ′
1 and:

M1 −→M ′
1

(νc)M1 −→ (νc)M ′
1

.

By induction hypothesis ∃N ≡ M1 and N ′ ≡ M ′
1 such that N

τ−→ N ′ with
N ′ ≡M ′

1, then by applying rule (Res), since Chan(τ) ̸= c we get:

N
τ−→ N ′

(νc)N
τ−→ (νc)N ′

,

and, by applying (Struct Cxt Res) and (Struct-Trans) (νc)N ≡M and (νc)N ′ ≡
M ′ as required.

Suppose that M −→M ′ is due to the application of the rule (Bcast). It means
M ≡ n[c̄L,r⟨ṽ⟩.P]l |


i∈I ni[c(x̃i).Pi]li , M ′ ≡ n[P]l |


i∈I ni[Pi{ṽ/x̃i}]li , for

some name n, some channel c, some set L of locations, some radius r, some
tuple ṽ of messages, some process P , some location l and some (possibly empty)
set I such that d(l, li) ≤ r, ∀i ∈ I, and:

∀i ∈ I.d(l, li) ≤ r

n[c̄L,r⟨ṽ⟩.P]l |


i∈I ni[c(x̃i).Pi]li−→n[P]l |


i∈I ni[Pi{ṽ/x̃i}]li
.

By applying rule (Snd), (Rcv), | I | times rule (Bcast) and, finally rule (Lose),
we get

n[c̄L,r⟨ṽ⟩.P]l |

i∈I

ni[c(x̃i).Pi]li
τ−→n[P]l |


i∈I

ni[Pi{ṽ/x̃i}]li ,

as required.

Finally let suppose that the reduction M −→ M ′ is due to an application of
rule (R-Struct):

M ≡ N N−→N ′ N ′ ≡M ′

M−→M ′
.

By induction hypothesis there exists N1 ≡ N andN2 ≡ N ′ such thatN1
τ−→ N2.

Then, by applying the rule for structural congruence (Struct Trans) we get
M ≡ N ≡ N1 and M ′ ≡ N ′ ≡ N2, as required.

3.3. A Bisimulation-based Proof Technique 35

3.3.2 Simulation and Bisimulation

In this section, using our LTS, we define notions of simulation and bisimulation.
Then we prove that bisimulation is a complete characterisation of reduction barbed
congruence, and hence represents a valid method to prove that two networks are
reduction barbed congruent. This property let us deal with all issues that do not
permit the correct behaviour of mobile ad hoc networks. We then have to prove
both that ∼=⊆≈ and that ≈⊆∼=.

For convenience we use metavariable α to range over those actions that will be
used in the definition of bisimulation.

α ::= c?ṽ@l | c!ṽ@K ▹ R | τ .

Since we are interested in weak behavioural equivalences, that abstract over τ -
actions, we introduce the notion of weak action.

Definition 3.6 (Weak Action) The definition of weak action is the following:

• =⇒ is the transitive and reflexive closure of
τ−→.

• c?ṽ@k
=⇒ denotes =⇒ c?ṽ@k−−−→=⇒

• c!ṽ@K▹R
=⇒ denotes =⇒ c!ṽ@K▹R−−−−−→=⇒.

We denote by
α̂

=⇒ the weak action
α

=⇒ if α ̸= τ , and =⇒ otherwise.
In the following we give the definition of labelled bisimilarity. Two conditions

are necessary in our definition: the first for output and silent actions and the second
for the input ones, since input in our model is not an observable action (if someone
receives a message then surely a node must have sent it, while, after a message
transmission it is not sure that someone will be able to receive it), hence two systems
are considered equivalent even if they do not have the same behavior in terms of
transmissions receptions.

Definition 3.7 (Bisimilarity) A binary relation R over networks is a simulation
if MRN implies:

• If M
α−→M ′, α ̸= c?ṽ@l, then there exists N ′ such that N

α̂
=⇒ N ′ and M ′RN ′

• If M
c?ṽ@l−−−→M ′ then there exists N ′ such that:

– either N
c?ṽ@l
=⇒ N ′ and M ′RN ′

– or N ⇒ N ′ and M ′RN ′.

We say that N simulates M if there is some simulation R such that MRN . A
relation R is a bisimulation if both R and its converse are simulations. We say that
M and N are bisimilar, written M ≈ N , if there exists some bisimulation R such
that MRN .

36 3. A calculus for Energy-aware Multicast Communications

It is easy now to prove that bisimulation is an equivalence relation, because

reflexivity and symmetry are trivial, and transitivity follows from definition of
α̂

=⇒.
There are other important properties of bisimulation; here we will prove closure
under contexts.

Lemma 3.3 (≈ is contextual) Let M and N be two networks such that M ≈ N ,
then:

1. M |O ≈ N |O, for all networks O;

2. (νc)M ≈ (νc)N , for all channels c.

Proof.
As regards the first item we have to prove that the relation

R = {(M |O,N |O) | ∀O,M ≈ N}

is a bisimulation. To prove it we do a case analysis on the transition M |O α−→ M̂ .
The interesting cases are when the transition is due to an interaction between M

and O, and this happens by an application of rule (Bcast). Let M |O c!ṽ@K▹R−−−−−→ M̂

because M |O cL!ṽ[l,r]−−−−→ M̂ for some r, l, with d(l, k) ≤ r, ∀k ∈ R and K = L∩R, due
to an application of (Bcast). There are then two possibilities:

1. M |O cL!ṽ[l,r]−−−−→ M̂ because M
cL!ṽ[l,r]−−−−→ M ′ and O

c?ṽ@l′−−−→ O′ with d(l, l′) ≤ r and
M̂ = M ′|O′

2. M |O cL!ṽ[l,r]−−−−→ M̂ because M
c?ṽ@l′−−−→ M ′ and O

cL!ṽ[l,r]−−−−→ O′, with d(l, l′) ≤ r and
M̂ = M ′|O′

Case 1.
By applying rule (Obs) we have M

c!ṽ@K▹R−−−−−→M ′, and since by induction hypoth-

esis M ≈ N , N
c!ṽ@K▹R
=⇒ N ′ and N ′ ≈M ′.

By aplying rule (Bcast) backwardly we have

N =⇒ N ′′ cL′′ !ṽ[l′′,r′′]−−−−−−→ N ′′′ =⇒ N ′

with d(l′′, k) ≤ r′′ ∀k ∈ R and K ⊆ R ∩ L′′. Since l′ ∈ R, d(l′′, l′) ≤ r′′ and we
can apply rule (Bcast):

N ′′ | O cL′′ !ṽ[l′′,r′′]−−−−−−→ N ′′′ | O′.
Hence, by application of the rule (Par) we get

N | O =⇒ N ′′ | O cL′′ !ṽ[l′′,r′′]−−−−−−→ N ′′′ | O′ =⇒ N ′ | O′.

Finally, by applying rule (Obs) we can turn again the transitionN ′′ | O cL′′ !ṽ[l′′,r′′]−−−−−−→
N ′′′ | O into N ′′ | O c!ṽ@K▹R−−−−−→ N ′′′ | O′. This implies N | O c!ṽ@K▹R

=⇒ N ′ | O′, with
(M ′ | O′, N ′ | O′) ∈ R as required.

3.3. A Bisimulation-based Proof Technique 37

Case 2.

M |O cL!ṽ[l,r]−−−−→ M̂ because M
c?ṽ@l′−−−→ M ′ and O

cL!ṽ[l,r]−−−−→ O′, with d(l, l′) ≤ r and
M̂ = M ′|O′. As M ≈ N then there exists N ′ such that:

• N
c?ṽ@l′
=⇒ N ′, with M ′ ≈ N ′; in this case

N |O ⇒ cL!ṽ[l,r]−−−−→⇒ N ′|O′

and, by an application of rule (Obs), alsoN |O c!ṽ@K▹R
=⇒ N ′|O′, with (M ′|O′, N ′|O′) ∈

R, as required.

• or N =⇒ N ′, with M ′ ≈ N ′; in this case by applying rule (Par) and (Obs) to

O
cL!ṽ[l,r]−−−−→ O′ we obtain

N |O c!ṽ@K▹R−−−−−→ N |O′

and, by applying rule (Par) to N =⇒ N ′ we get N | O c!ṽ@K▹R−−−−−→ N | O′ =⇒
N ′ | O′, meaning N |O c!ṽ@K▹R

=⇒ N ′|O′, with (M ′|O′, N ′|O′) ∈ R, as required.

Let M | O τ−→ M̂ because M | O cL!ṽ[l,r]−−−−→ M ′ | O. The proof is analogous to the
previous case.

The cases where there is no interaction between M and O are easy to deal with.
For example if we suppose M | O γ−→ M̂ due to an application of the rule (Par) we
have two cases to consider:

1. M |O γ−→ M̂ because M
γ−→M ′ and M̂ = M ′ | O. Since N ≈M we know that

• if γ ̸= c?ṽ@l for some channel c, some tuple ṽ of messages and some

locationl, N
γ̂

=⇒ N ′ and M ′ ≈ N ′. Hence, by applying rule (Par) we get

N | O γ
=⇒ N ′ | O and (M ′ | O,N ′ | O) ∈ R as required.

• if γ = c?ṽ@l for some channel c, some tuple ṽ of messages and some
location l, N

γ
=⇒ N ′ or N =⇒ N ′, and M ′ ≈ N ′. Again, by applying

rule (Par) we get N | O γ
=⇒ N ′ | O, or N | O =⇒ N ′ | O, with

(M ′ | O,N ′ | O) ∈ R as required.

2. M |O γ−→ M̂ because O
γ−→ O′ and M̂ = M | O′. Since M ≈ N , (M | O′, N |

O′) ∈ R, as required.

In order to prove the second item of the lemma it suffices to show that the
relation

S def
= {((νc)M, (νc)N) : M ≈ N,∀c}

is a bisimulation. The proof follows by a case analysis on the transition (νc)M
α−→ O.

The proof is straightforward as channels cannot be transmitted, i.e. there is no scope
extrusion.

38 3. A calculus for Energy-aware Multicast Communications

3.3.3 A complete characterisation

We can now demonstrate that our bisimulation is a valid proof method for re-
duction barbed congruence.

Theorem 3.2 (Soundness) Let M and N be two arbitrary networks, such that
M ≈ N . Then M ∼= N

Proof.
We have to prove that the relation ≈ is:

1. reduction closed

2. barb preserving

3. contextual

1. Reduction Closure. If M ≈ N and M −→ M ′, by the Theorem 3.1, ∃M̂ ≡ M ′

such that M
τ−→ M̂ , and, by Lemma 3.2, M ′ ≈ M̂ . Since M ≈ N , ∃N ′ such

that N =⇒ N ′ and M̂ ≈ N ′. Again, by the Theorem 3.1, N −→
∗
N ′ and, by

transitivity of the relation ≈, M ′ ≈ N ′.

2. Barb preservation. Suppose M ↓c@K . By Theorem 3.1, M
c!ṽ@K▹R−−−−−→ for some

set R ⊇ K. Since M ≈ N , it follows that N
c!ṽ@K▹R
=⇒ too and, by the definition

of weak actions, N =⇒ N̂
c!ṽ@K▹R−−−−−→. Again, by Theorem 3.1, we get N −→

∗

N̂ ↓c@K , that means N ⇓c@K , as required.

3. Contextuality. It follows straightforwardly from Lemma 3.3.

In order to prove the completeness result, we use the following standard property
of reduction barbed congruence (see, e.g. , [62]).

Proposition 3.1 If M ∼= N then

• M ⇓c@K iff N ⇓c@K

• M =⇒M ′ implies that there is N ′ such that N =⇒ N ′ and M ′ ∼= N ′

Theorem 3.3 (Completeness) Let M and N be two arbitrary networks, such that
M ∼= N . Then M ≈ N

Proof.
We prove that the relation R = {(M,N) |M ∼= N} is a bisimulation. The result

will follow by co-induction.

• Suppose that MRN and M
τ−→ M ′. By Theorem 3.1, M −→ M ′. Then there

exists N ′ such that N −→
∗
N ′, hence N =⇒ N ′ and M ′ ∼= M ′, as required.

3.3. A Bisimulation-based Proof Technique 39

• Suppose MRN and M
c!ṽ@K▹R−−−−−→ M ′, with R = {k1, ..., kn} and K ⊆ R. As

the action c!ṽ@K ▹ R can only be generated by an application of rule (Obs),

it follows that M
cL!ṽ[l,r]−−−−→ M ′ for some l, r and L such that K = R ∩ L. Let

us build a context which mimics the effect of the action c!ṽ@K ▹ R and also
allows us to subsequently compare the residuals of the two systems under
consideration. Our context has the form

C[·] def
= [·] |

n
i=1(mi[c(x̃i).[x̃i = ṽ]f̄

(i)
ki,ri
⟨x̃i⟩]ki | ni[f

(i)(ỹi).ōk
(i)
ki,ri
⟨ỹi⟩]ki) with

rmi
, rni

> 0, ri ≤ rni
and ri ≤ rmi

, names mi, ni for 1 ≤ i ≤ n and channels
names f(i), ok(i) for 1 ≤ i ≤ n fresh. Intuitively, the existence of the barbs on
the fresh channels f(i) indicates that the action has not yet happened, whereas
the presence of the barbs on channels ok(i), together with the absence of the
barbs on channels f(i) ensures that the action has been performed.

As ∼= is preserved by network contexts, M ∼= N implies C[M] ∼= C[N]. As

M
cL!ṽ[l,r]−−−−→M ′ it follows that

C[M] −→∗ M ′|
n

i=1(mi[0]ki|ni[ōk
(i)
ki,ri
⟨ṽ⟩]ki) = M̂ , with M̂ ̸↓f(i)@ki and M̂ ↓ok(i)@ki

,
for 1 ≤ i ≤ n.

The reduction sequence must be matched by a corresponding reduction se-
quence C[N] −→∗ N̂ with M̂ ∼= N̂ , N̂ ̸⇓f(i)@ki and N̂ ⇓ok(i)@ki

for 1 ≤ i ≤ n.
The constrains on the barbs allow us to deduce the structure of the above
reduction sequence

C[N] −→∗ N ′|
n

i=1(mi[0]ki|ni[ōk
(i)
ki,ri
⟨ṽ⟩]ki) = N̂ .

By barb preservation we know that, since M ↓c@K , then N ⇓c@K , while, by the
behaviour of the context, we are sure that N can perform an output reachable

by all the locations in R. This implies that N
c!ṽ@K▹R
=⇒ N ′. More precisely, the

derivative N ′ might be reached performing several outputs of the message ṽ
along the same channel c.

As M̂ ∼= N̂ , and as Reduction Barbed Congruence is preserved by restriction,
we have (νf̃, õk)M̂ ∼= (νf̃, õk)N̂ (where f̃ = f(1), f(2) ... and õk = ok(1), ok(2),
...). As f(i) and ok(i) for all 1 ≤ i ≤ n are fresh, by applying structural
congruence we have
(νf̃, õk)M̂ ≡M ′|(νf̃, õk)(mi[0]ki|ni[ōk

(i)
ki,ri
⟨ṽ⟩]ki)

(νf̃, õk)N̂ ≡ N ′|(νf̃, õk)(mi[0]ki|ni[ōk
(i)
ki,ri
⟨ṽ⟩]ki).

Using bisimilarity definition and soundness theorem we can easily prove that
(νf̃, õk)(mi[0]ki|ni[ōk

(i)
ki,ri
⟨ṽ⟩]ki) ∼= 0.

As a consequence, it follows that M ′ ∼= N ′, as required.

• Suppose that MRN and M
c?ṽ@l−−−→M ′.

The reception of a message cannot be directly observed. So we have to build
a context which let the action be observable.

40 3. A calculus for Energy-aware Multicast Communications

A context associated to the action M
c?ṽ@l−−−→M ′ could be:

C[·] def
= [·]|n[c̄l,r⟨ṽ⟩.f̄l,r⟨ṽ⟩.ōkl,r⟨ṽ⟩]k,

with f and ok fresh channels, r ≤ rn and d(l, k) ≤ r. As ∼= is preserved by

network contexts, C[M] ∼= C[N]. As M
c?ṽ@l−−−→M ′ it follows that

C[M] −→∗ M ′|n[ōkl,r⟨ṽ⟩]k = M̂

with M̂ ̸↓f@l and M̂ ↓ok@l. The reduction sequence must be matched by a
corresponding reduction sequence C[N], so we have C[N] −→∗ N̂ and M̂ ∼= N̂ ,
with N̂ ̸⇓f@l and N̂ ⇓ok@l. The constrains on the barb allows us to deduce
the structure of the above sequence: C[N] −→∗ N ′ | n[ōkl,r⟨ṽ⟩]k ≡ N̂ . This
reduction does not ensure that N performs c?ṽ@l but there exists N ′ such that

N
c?ṽ@l
=⇒ N ′, or N =⇒ N ′, in case N is not able to perform the input action on

the channel c. As M̂ ∼= N̂ , and ∼= is preserved by restriction, it follows that
(νok)M̂ ∼= (νok)N̂ , from which we can easily derive (by applying rule (Struct
Res Par))
(νok)M̂ ≡M ′|(νok)(n[ōkl,r⟨ṽ⟩]k,) and
(νok)N̂ ≡ N ′|(νok)(n[ōkl,r⟨ṽ⟩]k).
As (νok)(n[ōkl,r⟨ṽ⟩]k) ≡ 0 we obtain M ′ ∼= N ′, as required.
We have proved that ∼=⊆≈.

3.4 Connectivity Properties

In this section we show how the EBUM calculus can be used to face the problem
of conserving energy while maintaing a good connectivity among nodes.

As already introduced in Chapter 2, the problem of energy conservation is par-
ticularly challenging for wireless sensor networks, since sensors have usually limited
energy resources, and, due to the critical conditions of the environment where they
are installed, the substitution of the devices when battery is spent is not always
possible. In the literature there are a lot of communication protocols trying to ex-
tend the lifetime of these kinds of networks with energy-aware strategies (see, e.g.,
[93, 90, 33]).

In the following we define some important properties of sensor networks (which
can be verified for mobile ad hoc networks as well) which allow us to analyse the
trade-off between connectivity and energy consumption, in order to find the best
strategy to manage the power resources of a given network.

Simulation of static nodes

The tag L associated to each output action allows us to express a property of
simulation for static devices at different locations. Indeed, two static nodes, placed
at different locations (with therefore different neighbours), but communicating with
the same set of intended recipients, result to be observational equivalent (see Figure

3.4. Connectivity Properties 41

Figure 3.2: Example of simulation of stationary nodes

3.2).

Theorem 3.4 (Simulation of static nodes) Let n[P]ln and m[P]lm be two static
nodes with δn = δm = 0. Assume r ≤ rn and r ≤ rm for all r associated to the output
actions of P , R = {k | d(l, k) ≤ rn} and R′ = {k | d(l′, k) ≤ rm}. It holds that:

1. If R′ ⊆ R, then n[P]l simulates m[P]l′;

2. if R = R′, then n[P]l ≈ m[P]l′.

Proof.

1. We prove that the relation

S = {(m[P]lm , n[P]ln) | R′ ⊆ R}

is a simulation.

Suppose that m[P]lm
c!ṽ@K▹R̂−−−−−→ m[P ′]lm because m[P]lm

cL!ṽ[lm,r]−−−−−→ m[P ′]lm with

R̂ ⊆ R′ and K = R̂ ∩ L. Hence P
c̄L,r ṽ−−−→ P ′. Since, by hypothesis r ≤ rn,

by rule (Snd), n[P]ln
cL!ṽ[ln,r]−−−−−→ n[P ′]ln . Since R′ ⊆ R, we have that R̂ ⊆ R,

and hence, by rule (Obs), n[P]ln
c!ṽ@K▹R̂−−−−−→ n[P ′]ln , and (m[P ′]lm , n[P

′]ln) ∈ S
as required.

The other cases are straightforward.

2. If R = R′ then R ⊆ R′ and R′ ⊆ R; so, by applying the same reasoning used
to prove the first item of this theorem, we can demonstrate that the relation

S = {(n[P]ln ,m[P]lm) | R = R′}

is a bisimulation.

42 3. A calculus for Energy-aware Multicast Communications

(a) initial network topology (b) First routers allocation

(c) Optimal routers allocation

Figure 3.3: Example of optimized routers allocation

This property is useful, e.g., to minimize the number of routers within a network
while ensuring the correct communication between a given set of locations. Consider,
for instance, the case in which we want to determine the lowest number of routers
to be installed in a specific area. If we detect that two different routers result to
exhibit the same behaviour then one of them can be turn off, thus allowing us to
save both power and physical resources. Figure 3.3 shows an example of optimal
routers allocation, by turning off the router r3, which is not necessary since it is
simulated by r1.

This property is particularly useful when dealing with Wireless Sensor Networks,
constituted of devices with limited power sources, and it can be used to optimize
the scheduling strategies activating and deactivating sensor nodes.

Range repeaters

Range repeaters are static devices which regenerate a network signal in order
to extend the range of the existing network infrastructure. Here we generalize the
definition of repeater given in [58] and introduce a notion of complete range repeater.
In the following we consider range repeaters with both one and two channels.

In the following we assume that for each process P executed by a network node,

3.4. Connectivity Properties 43

it is possible to identify the set of all the observation locations that may appear
in an output action performed by P . We denote by rcv(P) the minimum set of
locations ensuring that for each output action c̄L,r⟨ṽ⟩ performed by P it holds that
L ⊆ rcv(P). Indeed, the tag L associated to an output action occurring in P can
be either a variable or a set of locations, then we are not able to statically calculate
rcv(P). However, since an ad hoc network is usually designed to guarantee the
communication within a specific area, we can reasonably assume that the underling
protocol will always multicast messages to recipients located within the interested
area and we can abstractly represent them by a finite set of locations.

Definition 3.8 (Range repeater with two channels) Let a and b be two chan-
nels, l be a location, r be a transmission radius and L be a set of locations. A repeater
with two channels a and b relative to L with transmission radius r is a static device,
denoted rr[a ↩→L,r b]l, where a ↩→L,r b is a process whose general recursive definition
is:

a ↩→L,r b
def
= a(x̃).b̄L,r⟨x̃⟩.a ↩→L,r b.

A range repeater with two channels receives tuples of values through the input
channel a and retransmits them through the output channel b to the set of L of
observation locations.

A range repeater with one channel operates analogously, but input and output
channels coincide.

Definition 3.9 (Range repeater with one channel) Let c be a channel, l be a
location, r be a transmission radius and L be a set of locations. A range repeater
with one channel c relative to L with transmission radius r is a static device, denoted
rr[c ↩→L,r c]l,r where

c ↩→L,r c
def
= c(x̃).c̄L,r⟨x̃⟩.c ↩→L,r c.

Range repeaters are usually exploited to enlarge the transmission cell of a static
node and, if such a node always communicates with the same set of devices, each
time through the same channel, by using a range repeater we can simulate the
presence of the sender in the location of the repeater.

Theorem 3.5 (Range repeaters with one channel) Let n[P]l be a static node
such that rcv(P) = L. Suppose that P uses exactly one channel c with a fixed
transmission radius r (i.e., each output action will be of the form cL′,r with L′ ⊆ L)
and r ≤ rn. Let rr[c ↩→L,r c]k be a range repeater such that d(l, k) ≤ r and r ≤ rrr.
Then:

n[P]l | rr[c ↩→L,r c]k simulates n[P]k.

44 3. A calculus for Energy-aware Multicast Communications

(a) initial network topology (b) Repeater s allocation

Figure 3.4: Example of repeater allocation

Proof.
It is sufficient to prove that the relation
S = {(n[P]k, n[P]l | rr[c ↩→L,r c]k) : d(l, k) ≤ r, rcv(P) ⊆ L and

each output action of P is of the form cL′,r}
is a simulation.

Suppose that n[P]k
c!ṽ@K▹R−−−−−→ n[P ′]k because n[P]k

cL′ !ṽ[k,r]−−−−−→ n[P ′]k with R ⊆ {k′ :

d(k, k′) ≤ r} and K = R ∩ L′ and P
c̄L′,r ṽ−−−→ P ′ for some L′ ⊆ L. Hence, since

n[P]l
cL′ !ṽ[l,r]−−−−−→ n[P ′]l and rr[c ↩→L,r c]k

c?ṽ@k−−−→ rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k with d(l, k) ≤ r,
by applying rule (Bcast) we obtain

n[P]l | rr[c ↩→L,r c]k
cL′ !ṽ[l,r]−−−−−→ n[P ′]l | rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k,

and, by applying the rule (Lose),

n[P]l | rr[c ↩→L,r c]k
τ−→ n[P ′]l | rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k

Since rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k
cL!ṽ[k,r]−−−−→ rr[c ↩→L,r c]k we can deduce that

rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k
c!ṽ@K′▹R′
−−−−−−→ rr[c ↩→L,r c]k for all R′ ⊆ {k′ : d(k, k′) ≤ r},

K ′ = R′ ∩ L′.
As L′ ⊆ L we can infer rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k

c!ṽ@K▹R−−−−−→ rr[c ↩→L,r c]k
and then

n[P]l | rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k
c!ṽ@K▹R
=⇒ n[P ′]l | rr[c ↩→L,r c]k.

By hypothesis rcv(P ′) ⊆ L and each output action of P ′ is of the form cL′,r with
L′ ⊆ L, hence (n[P ′]k, n[P

′]l | rr[c ↩→L,r c]k) ∈ S.
Suppose now that n[P]k

c?ṽ@k−−−→ n[P ′]k because P
cṽ−→ P ′. Hence

n[P]l | rr[c ↩→L,r c]k
c?ṽ@k−−−→ n[P]l | rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k.

3.4. Connectivity Properties 45

(a) rr[c ↩→L,r c]l (b) in[d ↩→L,r c]l|n[P]k|out[c ↩→L,r d]l

Figure 3.5: Range repeaters: interactions between the nodes

Moreover, since n[P]l
c?ṽ@l−−−→ n[P ′]l and rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k

cL!ṽ[k,r]−−−−→ rr[c ↩→L,r c]k
with d(l, k) ≤ r, by applying rule (Bcast) and (Lose) we obtain

n[P]l | rr[c̄L,r⟨ṽ⟩.c ↩→L,r c]k
τ−→ n[P ′]l | rr[c ↩→L,r c]k

and then
n[P]l | rr[c ↩→L,r c]k

c?ṽ@k
=⇒ n[P ′]l | rr[c ↩→L,r c]k,

with (n[P ′]k, n[P
′]l | rr[c ↩→L,r c]k) ∈ S, as required.

Finally, the case n[P]k
τ−→ n[P ′]k is trivial.

The simulation just described can be realised also with a range repeater with
two channels. Using two channels, however, we need to adopt two range repeaters,
respectively one for the input (in[d ↩→L,r c]l) and one for the output (out[c ↩→L,r d]l)
management. The diagrams in Figure 3.5 illustrate the use of the channels and the
interaction between the nodes when range repeaters with one or two channels are
adopted. This picture is inspired by the diagrams in [60], describing the behaviour
of agents and the use of channels for data input and output. We emphasise that
this kind of diagrams gives no information about the physical position of the nodes
or about the network topology, but they only show the connections through which
devices can exchange data.

Theorem 3.6 (Range repeaters with two channels) Let n[P]l be a stationary
node such that rcv(P) = L. Suppose that P uses exactly one channel c with a fixed
transmission radius r (i.e., each output action will be of the form cL′,r with L′ ⊆ L)
and r ≤ rn. Let out[c ↩→L,r d]k and in[d ↩→L,r c]k be two range repeaters such that
d(l, k) ≤ r and r ≤ rrr. Then:

n[P]l|out[c ↩→L,r d]k|in[d ↩→L,r c]k simulates n[P{d/c}]k

Proof.
It is sufficient to prove that the following relation
S = {(n[P{d/c}]k, n[P]l |out[c ↩→L,r d]k |in[d ↩→L,r c]k) :

d(l, k) ≤ r, rcv(P) ⊆ L and

46 3. A calculus for Energy-aware Multicast Communications

each output action of P is of the form cL′,r}
is a simulation.

Let n[P{d/c}]k
d!ṽ@K▹R−−−−−→ n[P ′{d/c}]k because n[P]k

cL′ !ṽ[k,r]−−−−−→ n[P ′]k with R ⊆
{k′ : d(k′, k) ≤ r} and K = R ∩ L′ with P

c̄L′,r ṽ−−−→ P ′ for some L′ ⊆ L. Hence,

from n[P]l
cL′ !ṽ[l,r]−−−−−→ n[P ′]l and out[c ↩→L,r d]k

c?ṽ@k−−−→ out[d̄L,r⟨ṽ⟩.c ↩→L,r d]k with
d(l, k) ≤ r by applying rule (Bcast) we obtain

n[P]l | out[c ↩→L,r d]k | in[d ↩→L,r c]k
cL′ !ṽ[l,r]−−−−−→

n[P ′]l | out[d̄L,r⟨ṽ⟩.c ↩→L,r d]k | in[d ↩→L,r c]k.

By rule (Lose) we have

n[P]l | out[c ↩→L,r d]k | in[d ↩→L,r c]k
τ−→

n[P ′]l | out[d̄L,r⟨ṽ⟩.c ↩→L,r d]k | in[d ↩→L,r c]k.

By rule (Bcast) and rule (Obs) we get

n[P ′]l | out[d̄L,r⟨ṽ⟩.c ↩→L,r d]k | in[d ↩→L,r c]k
d!ṽ@K′▹R′
−−−−−−→ n[P ′]l | out[c ↩→L,r d]k | in[d ↩→L,r c]k

for all R′ ⊆ {k′ : d(k, k′) ≤ r}, K ′ = R′ ∩ L. Since L′ ⊆ L we can infer

n[P ′]l | out[d̄L,r⟨ṽ⟩.c ↩→L,r d]k | in[d ↩→L,r c]k
d!ṽ@K▹R−−−−−→ n[P ′]l | out[c ↩→L,r d]k | in[d ↩→L,r c]k

and then

n[P]l | out[c ↩→L,r d]k | in[d ↩→L,r c]k
d!ṽ@K▹R
=⇒

n[P ′]l | out[c ↩→L,r d]k | in[d ↩→L,r c]k.

Since rcv(P ′) ⊆ L and each output action of P ′ is of the form cL′,r with L′ ⊆ L we
get (n[P ′{d/c}]k, n[P ′]l | out[c ↩→L,r d]k | in[d ↩→L,r c]k) ∈ S.

The other cases are similar to corresponding cases of Theorem 3.5.
We introduce now the notion of complete range repeater, that is a repeater which

has a radius large enough to reach all the observation locations.

Definition 3.10 (Complete range repeater) A range repeater rc[c ↩→L,r c]l is
said complete with respect to L if L ⊆ K where K = {k : d(l, k) ≤ r}.

Consider the example depicted in Figure 3.4: a sender (the red node in figure)
tries to communicate a message to a set of receivers (the light blue nodes), but its
radius does not allow it to reach all the observation locations at the same time. The
allocation of a repeater (the green node) covering the whole observation area is a
good strategy to guarantee the connectivity of the given network.

3.5. Conclusions 47

3.5 Conclusions

In this chapter we introduced the EBUM calculus, which allows us to study
the behaviour of mobile ad hoc and sensor networks. In particular we defined an
equivalence relation, that is a congruence, allowing us to compare different networks
having the same observational behaviour. Finally we addressed the problem of
energy conservation in wireless sensor networks and we exploited the EBUM calculus
to define some important connectivity properties that can be used to analyse the
communication strategies with respect to the energy consumption.

One of the main peculiarities of EBUM calculus is the possibility to represent
arbitrary movements of mobile nodes within the network area. Moreover, given a
network, the mobility of its nodes is not always completely causal, but it may be
influenced by several causes, as the obstacles inside the network area or the speed and
the physical characteristics of the devices. In chapter 4 we will extend the EBUM
calculus by adding probabilities to obtain a more realistic and precise representation
of node mobility.

48 3. A calculus for Energy-aware Multicast Communications

4
Connectivity and Energy-Aware

Preorders for Mobile Ad hoc
Networks

4.1 Introduction

In this chapter we introduce a probabilistic extension of the EBUM calculus
[22, 21, 23], where probability distributions are used to describe the mobility of
nodes. Like its predecessor [27], the calculus is built around nodes, representing the
devices of the systems, and locations, identifying the position cells across which each
device may move inside the network.

The probabilistic EBUM calculus deals with both nondeterministic and proba-
bilistic choices. The semantics is inspired by Segala’s probabilistic automata [83, 82]
driven by schedulers to resolve the non-deterministic choice among the probability
distributions over target states. We define a probabilistic observational congruence
in the style of [62] to equate networks exhibiting the same probabilistic connectivity
behaviour.

We also introduce energy-aware preorders over networks to measure the relative
energy cost of different, but behaviourally equivalent, networks. As a result, the
preorder may be employed to justify the replacement of components to lower the
overall energy cost of a network while preserving its connectivity properties.

4.2 The Calculus

In this section we introduce the probabilistic extension of the EBUM calculus.
The syntax of our calculus is the same introduced in Chapter 3 (see Table 3.1).

Both an Observational and a Labelled Transition Semantics are defined, based on
the introduction of probability distributions associated with nodes movements.

While the syntax for a node n is the same as for the non-deterministic calculus,
here we associate n with a pair < rn,J

n >, where rn is again the maximum trans-
mission radius for n, while Jn is the transition matrix of a discrete time Markov

50 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

chain: each entry Jn
lk is the probability that the node n located at l moves to lo-

cation k. Hence,


k∈Loc J
n
lk = 1 for all locations l ∈ Loc. Static nodes inside

a network are associated with the identity Markov chain, i.e., the identity matrix
Jn
ll = 1 for all l ∈ Loc and Jn

lk = 0 for all l ̸= k. We denote by µn
l the probability

distribution associated with node the n located at l, i.e. , the function over Loc
such that µn

l (k) = Jn
lk, for all k ∈ Loc. We will model the probabilistic evolution of

the network according to these distributions.

4.2.1 Probability distributions for networks

Let n be a node of a network M and l its location. We denote by M{n : l′/l}
the network obtained by replacing l with l′ inside the node n and by JMKµn

l
the

probability distribution over the set of networks induced by µn
l and defined as follows:

∀M ′ ∈ N ,

JMKµn
l
(M ′) =


µn
l (l

′) if M ′ = M{n : l′/l}

0 otherwise

Intuitively, JMKµn
l
(M ′) is the probability that the network M evolves to M ′ due

to the movement of its node n located at l. We say that M ′ is in the support of
JMKµn

l
(M ′ ∈ spt(JMKµn

l
)) if JMKµn

l
(M ′) ̸= 0. We write JMK∆ for the Dirac distribu-

tion on network M , namely the probability distribution defined as: JMK∆(M) = 1
and JMK∆(M ′) = 0 for all M ′ such that M ′ ̸= M . Finally, we let θ range over
{µn

l |n is a node and l ∈ Loc} ∪ {∆}.

Example 4.1 (Probability distributions) Consider a network

M = n1[c̄L,r1⟨ṽ1⟩.P1]l1 | n2[c̄L,r2⟨ṽ2⟩.P2]l2 | m[c(x̃).P3]k

consisting of two mobile sender nodes, n1 and n2, communicating with a static re-
ceiver node m. Node n1 moves back and forth between locations l1 and l2 according
to the probability distribution defined by the discrete time Markov chain with the
following transition matrix

J =

1− p p
q 1− q

 ,
where 0 < p, q < 1. Similarly, n2 moves between l2 and l1 according to the same
transition matrix J. Then the probabilistic mobility of the network induced by the
movement of the node n1 is

JMKµn1
l1

(M ′) =


1− p if M ′ = M{n1 : l1/l1} = M

p if M ′ = M{n1 : l2/l1}

0 otherwise.

4.2. The Calculus 51

(R-Bcast)
n[c̄L,r⟨ṽ⟩.P]l |


i∈Ini[c(x̃i).Pi]li−→Jn[P]l |


i∈Ini[Pi{ṽ/x̃i}]liK∆

where 0 < r ≤ rn, ∀i ∈ I.d(l, li) ≤ r, ri > 0 and |x̃i| = |ṽ|

(R-Move)
n[P]l−→Jn[P]lKµn

l

(R-Par)
M−→JM ′Kθ

M |N−→JM ′|NKθ

(R-Res)
M−→JM ′Kθ

(νc̃)M−→J(νc̃)M ′Kθ
(R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ

Table 4.1: Reduction Semantics

Similarly for the second node we have

JMKµn2
l2

(M ′) =


1− q if M ′ = M{n2 : l2/l2} = M

q if M ′ = M{n2 : l1/l2}

0 otherwise.

while for the static receiver we have

JMKµm
k
(M ′) =


1 if M ′ = M{m : k/k} = M

0 otherwise.

Note that for the static node movement, we have JMKµm
k
= JMK∆.

4.2.2 Reduction Semantics

The dynamics of the calculus is specified by the probabilistic reduction relation
over networks (−→), described in Table 4.1. Again, it relies on the structural congru-
ence relation, defined in Table 3.2. The rules are almost the same as in the previous
calculus, but reductions lead to probability distributions.

The probabilistic reduction relation takes the form M−→JM ′Kθ, which describes a
transition that leaves from network M and leads to a probability distribution JM ′Kθ.

Rule (R-Move) is the only rule with a different behaviour with respect to the
non-deterministic calculus. A node n located at l and executing a move action will
reach a location with a probability described by the distribution µn

l that depends
on the Markov chain Jn statically associated with n. Again movements are atomic
actions.

Since we are dealing with a probabilistic reduction semantics, which reduces
networks into probability distributions, we need a way of representing the steps of
each probabilistic evolution of a network. Formally, given a network M , we write

52 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

M−→θN

if M−→JM ′Kθ, and N is in the support of JM ′Kθ. Following [31], an execution for M
is a (possibly infinite) sequence of steps M−→θ1M1−→θ2M2....

In the rest of the paper, we write ExecM for the set of all possible executions
starting from M , last(e) for the final state of a finite execution e, ej for the prefix
M−→θ1M1...−→θjMj of length j of the execution e of the form

M−→θ1M1 · · · −→θjMj−→θj+1
Mj+1 · · · ,

and e↑ for the set of e′ such that e≤prefix e
′.

4.2.3 Observational Semantics

As for the EBUM calculus, we formalize the observational semantics in terms of
a notion barb, that provides the basic unit of observation [62]. As in other calculi
for wireless communication, the definition of barb is naturally expressed in terms
of message transmission. However, the technical development is more involved, as
our calculus presents both non-deterministic and probabilistic aspects, where the
non-deterministic choices are among the possible probability distributions that a
network may follow and arise from the possibility for the node to perform arbitrary
movements. Notice that the fact that a node performs a movement is arbitrary and
unpredictable, while the resulting location is surely predictable (it depends on the
transition matrix).

We denote by behave(M) = {JM ′Kθ | M −→ JM ′Kθ} the set of the possible
behaviours of M . In order to solve the non-determinism in a network execution,
we consider each possible probabilistic transition M −→ JM ′Kθ as arising from a
scheduler (also called adversary or policy [83]).

Definition 4.1 (Scheduler) A scheduler is a total function F assigning to a finite
execution e a distribution JNKθ ∈ behave(last(e)).

We denote by Sched the set of all schedulers.

Given a network M and a scheduler F , we define the set of executions starting
from M and driven by F as:

ExecFM = {e = M−→θ1M1−→θ2M2... | ∀j, Mj−1 −→ JM ′
jKθj , JM ′

jKθj = F (ej−1)
and Mj is in the support of JM ′

jKθj}.

Formally, given a finite execution e = M−→θ1M1...−→θkMk starting from a network
M and driven by a scheduler F we define

P F
M(e) = JM ′

1Kθ1(M1) · ... · JM ′
kKθk(Mk)

4.2. The Calculus 53

where ∀j ≤ k, JM ′
jKθj = F (ej−1). We define the probability space on the executions

starting from a given network M as follows. Given a scheduler F , σFieldFM is
the smallest sigma field on ExecFM that contains the basic cylinders e ↑, where
e ∈ ExecFM . The probability measure ProbFM is the unique measure on σFieldFM
such that ProbFM(e ↑) = P F

M(e). Given a measurable set of networks H, we denote
by ExecFM(H) the set of executions starting from M and crossing a state in H.
Formally ExecFM(H) = {e ∈ ExecFM | last(ej) ∈ H for some j}. We denote the
probability for a network M to evolve into a network in H, according to the policy
given by F , as ProbFM(H) = ProbFM(ExecFM(H)).

The notion of barb introduced below is the probabilistic extension of Definition
3.1 of Chapter 3 and denotes an observable transmission with a certain probability
according to a fixed scheduler.

Definition 4.2 (Probabilistic Barb) We say that a network M has a probabilis-
tic barb with probability p on a channel c to the set K of locations, according to the
scheduler F , written M⇓Fp c@K, if ProbFM({N |N ↓c@K}) = p.

Intuitively, for a given network M and a scheduler F , if M⇓Fp c@K then p is the
positive probability that M , driven by F , performs a transmission on channel c and
at least one of the receivers in the observation locations is able to correctly listen to
it.

In the following, we introduce a probabilistic observational congruence, in the
style of [31].

Schedulers constitute an essential feature for modeling communication protocols
as they provide freedom in modelling implementation and incomplete knowledge of a
system. However, many schedulers could be in fact unrealistic. Consider for example
schedulers giving priority to communication actions over movements of the nodes.
Such schedulers cancel the consequence that nodes mobility has on the network
behaviour, since no movements can be performed during the process execution.

Therefore our aim is the definition of a relation allowing us to compare networks
with respect to a given restricted set of schedulers.

In order to define a congruence relation among networks, we have to select a set
of schedulers guaranteeing that, for each behaviour a network can exhibit, the same
behaviour can be exhibited by the network in presence of any possible context.
The following definition allows us to select the set of schedulers preserving the
contextuality, once we have fixed the particular behaviour we want to capture.

Definition 4.3 Given a scheduler F ∈ Sched, we denote by FC the set of schedulers
F ′ such that ∀M0, ∀e ∈ ExecFM0

of the form

e = M0 −→θ1 M1 −→θ2 M2... −→θh Mh,
∀ context C0[·] and ∀e′ ∈ ExecF

′

C0[O0]
with M0 ≡ O0 of the form

e′ = C0[O0] −→θ′1
C1[O1] −→θ′2

C2[O2]... −→θ′k
Ck[Ok],

there exists a monotonic surjective function f from [0− k] to [0− h] such that:

54 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

(i) ∀i ∈ [0− k], Oi ≡Mf(i)

(ii) ∀j ∈ [1− k], θ′j = θf(j) when Mf(j−1) −→θf(j) Mf(j).

Given a subset F ∈ Sched of schedulers, then we have:
FC =


F∈FFC

Example 4.2 Let M0 ≡ m[c̄L,r⟨v⟩.P]l and F ∈ Sched such that

M0 −→∆ M1 ∈ ExecFM ,

with M1 ≡ m[P]l.
First notice that F ∈ FC, since we can take the empty context C[·] ≡ ∅ | · and

the identity function f such that f(i) = i for all i ∈ [0−1]. In this case C[Mi] ≡Mi

for i ∈ {0, 1} and the property of Definition 4.3 is satisfied.
Let now consider N0 ≡ n[c(x).Q]k such that d(l, k) ≤ r. All the admissible

schedulers allowing M0 and N0 to interact are in FC. Indeed, consider F1 ∈ Sched
such that, by applying rules (Struct-Bcast)

M0 | N0 −→∆ M1 | N1 ∈ ExecF1

M0|N0

with N1 ≡ n[Q{v/x}]k, and consider also F2 such that, by applying rule (R-Par)

M0 | N0 −→∆ M1 | N0 ∈ ExecF2

M0|N0
.

Both F1 and F2 satisfy the properties of Definition 4.3, hence F1, F2 ∈ FC.
Now consider again the network N0. Let e′ = n[c(x).Q]k −→µn

k
n[c(x).Q]k′ ̸∈

ExecFN0
, then ∀F̄ ∈ Sched such that e′ ∈ ExecF̄N0

, F̄ ̸∈ FC since F̄ does not satisfy
the conditions of Definition 4.3.

Now we are able to introduce our equivalence relation.

Definition 4.4 Given a set F ∈ Sched of scehdulers, and a relation R over net-
works:

• Barb preservation. R is barb preserving w.r.t. F if MRN and M⇓Fp c@K for

some F ∈ FC implies that there exists F ′ ∈ FC such that N⇓F ′

p c@K.

• Reduction closure. R is reduction closed w.r.t. F if MRN implies that
for all F ∈ FC, there exists F ′ ∈ FC such that for all classes C ∈ N /R,
ProbFM(C) = ProbF

′
N (C).

• Contextuality. R is contextual if MRN implies that for every context C[·], it
holds that C[M]RC[N].

4.2. The Calculus 55

(Snd)
P

c̄L,r ṽ−−−→ P ′

n[P]l
cL!ṽ[l,r]−−−−→ Jn[P ′]lK∆

(Rcv)
P

cṽ−→ P ′

n[P]l
c?ṽ@l−−−→ Jn[P ′]lK∆

(Bcast)
M

cL!ṽ[l,r]−−−−→ JM ′K∆ N
c?ṽ@l′−−−→ JN ′K∆ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−→ JM ′|N ′K∆
N |M

cL!ṽ[l,r]−−−−→JN ′|M ′K∆

(Obs)
M

cL!ṽ[l,r]−−−−→ JM ′K∆ R ⊆ {l′ ∈ Loc : d(l, l′) ≤ r} K = R ∩ L, K ̸= ∅
M

c!ṽ@K▹R−−−−−→ JM ′K∆

(Lose)
M

cL!ṽ[l,r]−−−−→ JM ′K∆
M

τ−→JM ′K∆
(Move)

n[P]l
τ−→ Jn[P]lKµn

l

(Par)
M

γ−→ JM ′Kθ
M |N γ−→ JM ′|NKθ

N |M
γ−→JN |M ′Kθ

(Res)
M

γ−→ JM ′Kθ Chan(γ) ̸= c

(νc)M
γ−→ J(νc)M ′Kθ

Table 4.2: LTS rules for Networks

Our probabilistic observational congruence with respect to a restricted set F of
schedulers is defined as the largest relation as follows.

Definition 4.5 (Probabilistic Observational Congruence with respect to F)
Given a set F of schedulers, Probabilistic observational congruence w.r.t. F , writ-
ten ∼=F

p , is the largest symmetric relation over networks which is reduction closed,
barb preserving and contextual.

Two networks are related by ∼=F
p if they exhibit the same probabilistic behaviour

(communications) relative to the corresponding sets of intended recipients. In the
next section we develop a bisimulation-based proof technique for ∼=F

p . It provides

an efficient method to check whether two networks are related by ∼=F
p .

4.2.4 Labelled Transition Semantics

We define a LTS semantics for our calculus, which is built upon two sets of rules:
one for processes and one for networks.

Rules for processes are the same defined in Chapter 3, shown in Table 3.4.

56 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

Table 4.2 presents the LTS rules for networks. Again Rules are the same defined
in Chapter 4 but transitions are of the form M

γ−→ JM ′Kθ, where M is a network and
JM ′Kθ is a distribution over networks.

Probabilities are used to model the mobility of nodes. Rule (Move) models
migration of a mobile node n from a location l to a location k according with
the probability distribution µn

l , which depends on the Markov chain Jn statically
associated with n.

The other rules have the same behaviour as for Table 3.5.
We prove that the LTS-based semantics coincides with the reduction semantics

and the notion of observability (barb) given in the previous section.

We first prove that if M
γ−→ JM ′K∆, then the structure of M and M ′ can be

determined up to structural congruence.

Lemma 4.1 Let M be a network.

1. If M
c?ṽ@l−−−→ JM ′K∆, then there exist n, x̃, a (possibly empty) sequence d̃ such

that c /∈ d̃, a process P and a (possibly empty) network M1 such that

M ≡ (νd̃)(n[c(x̃).P]l|M1)

and
M ′ ≡ (νd̃)(n[P{ṽ/x̃}]l|M1).

2. If M
cL!ṽ[l,r]−−−−→ JM ′K∆, then there exist n, a (possibly empty) sequence d̃ such

that c /∈ d̃, a process P , a (possibly empty) network M1 and a (possibly empty)
set I, with t d(l, li) ≤ r ∀i ∈ I, such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i).Pi]li |M1)

and
M ′ ≡ (νd̃)(n[P]l|


i∈I

ni[Pi{ṽ/x̃i}]li |M1).

We also show that structural congruence (Table 3.2) respects the transitions of
Table 4.2.

Lemma 4.2 If M
γ−→ JM ′Kθ and M ≡ N , then there exists N ′ such that N

γ−→ JN ′Kθ
and M ′ ≡ N ′.

Lemmas 4.1 and 4.2 corresponds to Lemmas 3.1 and 3.2 of Chapter 3 and the
proofs are similar.

The following theorem establishes the relationship between the reduction seman-
tics and the LTS one.

4.2. The Calculus 57

Theorem 4.1 (Harmony) Let M be a network.

1. If M −→ JM ′Kθ then there exists N ≡M and N ′ ≡M ′ such that N
τ−→ JN ′Kθ.

2. M ↓c@K if and only if there exist ṽ, R ⊇ K and N ≡M such that N
c!ṽ@K▹R−−−−−→.

3. If M
τ−→ JM ′Kθ then M −→ JM ′Kθ.

4. If M
c!ṽ@K▹R−−−−−→ JM ′K∆ then M −→ JM ′K∆.

Proof.

1. The first part is proved by induction on the reduction M −→ JM ′Kθ
Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Move). It
means that M ≡ M ′ ≡ n[P]l, for some name n, location l, some (possibly
empty) process P , with θ = µn

l . We simply apply (Move) to obtain:

n[P]l
τ−→ Jn[P]lKµn

l

.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Par), mean-
ing M ≡M1 |M2 , M ′ ≡M ′

1 |M2 and:

M1 −→ JM ′
1Kθ

M1 |M2 −→ JM ′
1 |M2Kθ

.

By induction hypothesis ∃N ≡ M1 and N ′ ≡ M ′
1 such that N

τ−→ JN ′Kθ, then
by applying rule (Par) we get:

N
τ−→ JN ′Kθ

N |M2
τ−→ JN ′ |M2Kθ

,

and, by applying (Struct Cxt Par) and (Struct Trans) N |M2 ≡M1 |M2 ≡M
and N ′ |M2 ≡M ′

1 |M2 ≡M ′ as required.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Res), mean-
ing M ≡ (νc)M1, and M ′ ≡ (νc)M ′

1, for some channel c and some networks
M1 and M ′

1; we get:

M1 −→ JM ′
1Kθ

(νc)M1 −→ J(νc)M ′
1Kθ

.

58 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

By induction hypothesis ∃N ≡ M1 and N ′ ≡ M ′
1 such that N

τ−→ JN ′Kθ, then
by applying rule (Res), since Chan(τ) ̸= c we get:

N
τ−→ JN ′Kθ

(νc)N
τ−→ J(νc)N ′Kθ

,

and, by applying (Struct Cxt Res) and (Struct Trans) (νc)N ≡ (νc)M1 ≡ M
and (νc)N ′ ≡ (νc)M ′

1 ≡M ′ as required.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Bcast). It
means:

M ≡ n[c̄L,r⟨ṽ⟩.P]l |


i∈I ni[c(x̃i).Pi]li ,

M ′ ≡ n[P]l |


i∈I ni[Pi{ṽ/x̃i}]li and

∀i ∈ I.d(l, li) ≤ r

n[c̄L,r⟨ṽ⟩.P]l |


i∈I ni[c(x̃i).Pi]li−→Jn[P]l |


i∈I ni[Pi{ṽ/x̃i}]liK∆
,

for some name n, location l, radius r, some set L of locations, some tuple ṽ
of messages, some (possibly empty) process P , some (possibly empty) set I of
networks. By applying rule (Snd), (Rcv), | I | times rule (Bcast) and, finally
rule (Lose), we get

n[c̄L,r⟨ṽ⟩.P]l |

i∈I

ni[c(x̃i).Pi]li
τ−→Jn[P]l |


i∈I

ni[Pi{ṽ/x̃i}]liK∆,

as required.

Finally let suppose that the reduction M −→ JM ′Kθ is due to an application of
rule (R-Struct):

M ≡ N N−→JN ′Kθ N ′ ≡M ′

M−→JM ′Kθ
.

By induction hypothesis there exists N1 ≡ N and N2 ≡ N ′ such that N1
τ−→

JN2Kθ. Then, by applying the rule for structural congruence (Struct Trans) we
get M ≡ N ≡ N1 and M ′ ≡ N ′ ≡ N2, as required.

2. The second part of the theorem follows straightforwardly from Lemma 4.1 and
the definition of Barb.

⇒ If M ↓c@K , by the definition of Barb:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l |M1), for some n, ṽ, L, r, some (possibly empty)
sequence d̃ with c /∈ d̃, some process P and some (possibly empty) network
M1, with K ⊆ {k ∈ L s.t. d(l, k) ≤ r} and K ̸= ∅.

4.2. The Calculus 59

By applying the rules (Snd), (Par) and (Res):

n[c̄L,r⟨ṽ⟩.P]l
cL!ṽ[l,r]−−−−→ Jn[P]lK∆

(νd̃)(n[c̄L,r⟨ṽ⟩.P]l |M1)
cL!ṽ[l,r]−−−−→ J(νd̃)(n[P]l |M1K∆)

;

then we can apply rule (Obs):

n[c̄L,r⟨ṽ⟩.P]l |M1
c!ṽ@K▹R−−−−−→ Jn[P]l |M1K∆,

where R = {l′ ∈ Loc : d(l, l′) ≤ r}, and K ⊆ L ∩R as required.

⇐ If M
c!ṽ@K▹R−−−−−→ JM ′K∆, because M

cL!ṽ![l,r]−−−−−→ JM ′K∆, by applying lemma 4.1
then there exists n, some (possibly empty) sequence d̃ such that c /∈ d̃,
some process P , some (possibly empty) network M1 and a set I, such
that ∀i ∈ I d(l, li) ≤ r such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i).Pi]li |M1)

and
M ′ ≡ (νd̃)(n[P]l|


i∈I

ni[Pi{ṽ/x̃i}]li |M1).

Since K ̸= ∅, by applying the definition of barb we conclude M ↓c@K .

3. The third part of the theorem is proved by induction on the derivation M
τ−→

JM ′Kθ.
Suppose that M

τ−→ JM ′Kθ is due to an application of the rule (Move), that
means:

M ≡ n[P]l, M
′ ≡ n[P]l, for some name n, some (possibly empty) process P .

some location l with θ = µn
l and

n[P]l
τ−→ Jn[P]lKµn

l

,

hence , by applying (R-Move) we get:

n[P]l−→Jn[P]lKµn
l

.

If M
τ−→ JM ′Kθ is due to an application of (Lose):

M
cL!ṽ[l,r]−−−−→ JM ′K∆
M

τ−→JM ′K∆
,

for some channel c, some set L of locations, some tuple ṽ of messages, some
location l and radius r. By applying Lemma 4.1, there exist n, ṽ, a (possibly

60 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

empty) sequence d̃ such that c /∈ d̃, a process P , a (possibly empty) network
M1 and a (possibly empty) set I with d(l, li) ≤ r ∀i ∈ I , such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

i∈I

ni[c(x̃i).Pi]li |M1)

and
M ′ ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|


i∈i

ni[Pi{ṽ/x̃i}]li |M1).

Finally, by applying rule (R-Bcast), (R-Res) and (R-Struct) we get M −→
JM ′Kθ.

Suppose that M
τ−→ JM ′Kθ is due to the application of (Res), that means

M ≡ (νc)M1 and M ′ ≡ (νc)JM ′
1Kθ, for some channel c and for some networks

M1 and M ′
1. Then we have:

M1
τ−→ JM ′

1Kθ
(νc)M1

τ−→ J(νc)M ′
1Kθ

.

By induction hypothesis M1 −→ JM ′
1Kθ, hence, by applying rule (R-Res) we get

(νc)M1 −→ J(νc)M ′
1Kθ.

Finally, suppose that M
τ−→ JM ′Kθ is due to the application of (Par), meaning

M ≡M1 |M2, M
′ ≡M ′

1 |M2 and

M1
τ−→ JM ′

1Kθ
M1|M2

τ−→ JM ′
1|M2Kθ

.

By induction hypothesis M1 −→ JM ′
1Kθ, hence, by applying rule (R-Par) we get

M1|M2 −→ JM ′
1|M2Kθ.

4. The last part of the theorem follows from the definition of barb and Lemma

4.1. Formally, since M
c!ṽ@K▹R−−−−−→ JM ′K∆ because M

cL!ṽ[l,r]−−−−→ JM ′K∆ for some
location l, radius r and set L of intended recipients, by applying Lemma 4.1,
exist n, a (possibly empty) sequence d̃ with c /∈ d̃, a process P , a (possibly
empty) network M1 and a (possibly empty) set I such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l |

i∈I

ni[c(x̃i).Pi]li |M1)

and
M ′ ≡ (νd̃)(n[P]l |


i∈I

ni[Pi{ṽ/x̃i}]li |M1).

Then, by applying the rule (R-Bcast), (R-Par) and (R-Res) we get:

4.2. The Calculus 61

(νd̃)(n[c̄L,r⟨ṽ⟩.P]l |

i∈I

ni[c(x̃i).Pi]li |M1)

−→

J(νd̃)(n[P]l |

i∈I

ni[Pi{ṽ/x̃i}]li |M1)K∆,

and, by applying (R-Struct), we obtain M −→ JM ′K∆, as required.

4.2.5 Probabilistic labelled bisimilarity

Based on the LTS semantics, we define a probabilistic labelled bisimilarity that is
a complete characterisation of our probabilistic observational congruence. It is built
upon the following actions:

α ::= c?ṽ@l | c!ṽ@K ▹ R | τ.

Again, we write M
α−→θ N if M

α−→ JM ′Kθ and N is in the support of JM ′Kθ.
A labelled execution e of a network M is a finite (or infinite) sequence of steps:

M
α1−→θ1 M1

α2−→θ2 M2...
αk−→θk Mk. With abuse of notation, we define ExecM ,

last(e), ej and e ↑ as for unlabeled executions. We denote by lbehave(M) the set
of all possible behaviours of M , i.e., lbehave(M) = {(α, JM ′Kθ) | M

α−→ JM ′Kθ}.
Labelled executions arise by resolving the non-determinism of both α and JMKθ.
As a consequence, a scheduler1 for the labelled semantics is a function F assigning
to a finite labelled execution e a pair (α, JMKθ) ∈ lbehave(last(e)). We denote by
LSched the set of all schedulers for the LTS semantics. Given a network M and a
scheduler F , we define ExecFM as the set of all labelled executions starting from M
and driven by F .

We denote by ExecFM(
α

=⇒, H)2 the set of executions that, starting from M ,
according to the scheduler F , lead to a network in the set H by performing

α
=⇒.

Moreover, we define ProbFM(
α

=⇒, H) = ProbFM(ExecFM(
α

=⇒, H)).
Since we want our bisimulation to be a complete characterisation of our notion

of behavioural equivalence, which has been defined with respect to a restricted set of
schedulers F ⊆ Sched on Reduction semantics, we have to define the corresponding
set of schedulers for LTS.

Definition 4.6 Given a scheduler F ⊆ Sched, we denote as F̂C ⊆ LSched as the
set of schedulers F ∈ F̂C such that:
∀F ∈ F̂C, ∀M0 ∈ N such that e ∈ ExecFM0

:

e = M0
α1−→θ′1

M1...
αk−→θ′h

Mh

1With abuse of notation, we still use F to denote a scheduler for the LTS semantics.
2For the definition of

α
=⇒ see Definition 3.6 in Chapter 3

62 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

∃F ′ ∈ FC, a context C0 and O0 ∈ N , such that e′ ∈ ExecF
′

C0[O0]
:

e = C0[O0] −→θ1 C1[O1]... −→θk Ck[Ok]

and there exists a monotone surjective function f from [0− k] to [0− h] such that:

(i) ∀i ∈ [1− k] Oi ≡Mf(i)

(ii) ∀j ∈ [1− k] if Mf(j−1)

αf(j)−−−→θ′
f(j)

Mf(j) then θ′f(j) = θj.

Given a set F ⊆ Sched of schedulers, F̂C =


F∈F F̂C.

Example 4.3 Consider the networks M0 and N0, and the schedulers F and F1

introduced in the Example 4.2. If we take F̂1 ∈ LSched such that

M0
cL!v[l,r]−−−−→∆ M1 ∈ ExecF̂1

M0
,

then, since

M0 −→∆ M1 ∈ ExecFM0

the conditions of Definition 4.6 are satisfied by taking the empty context C[·] = 0 | ·
and the identity function f(i) = i for i ∈ {0, 1}. Hence F̂1 ∈ F̂C.

Moreover, if we consider F̂2 ∈ LSched such that

N0
c?v@k−−−→∆ N1 ∈ ExecF̂2

N0
,

since

M0 | N0 −→∆ M1 | N1 ∈ ExecF1

M0|N0

with F1 ∈ FC, by considering the contexts Ci[·] ≡ Mi | · for i ∈ {0, 1}, and the
identity function f(i) = i for i ∈ {0, 1} we get F̂2 ∈ F̂C too.

Proposition 4.1

1. SchedC = Sched

2. SchedC = LSched

Proof.

1. Proof follows straightforwardly from the Definition 4.3.

4.2. The Calculus 63

2. ∀F ∈ LSched, ∀M0 ∈ N , where e ∈ ExecFM0
is of the form:

e = M0
α1−→θ1 M1...

αk−→θk Mk

we are always able to find a context C0[·] and a scheduler F ′ ∈ LSched such
that e′ ∈ ExecF

′

C0[M0]
:

e′ = C0[M0]
τ−→θ1 ...C1[M1]...

τ−→θk Ck[Mk]

and by theorem 4.1, there will exists F ′′ ∈ Sched such that e′′ ∈ ExecF
′′

C0[M0]
:

e′′ = C0[M0] −→θ1 ...C1[M1]... −→ Ck[Mk],

meaning F ∈ SchedC as required.

Following we will give the definition of probabilistic labelled bisimilarity with
respect to a given set of schedulers.

Definition 4.7 (Probabilistic Labelled Bisimulation) Let M and N be two
networks. An equivalence relation R over networks is a probabilistic labelled bisim-
ulation w.r.t. F if MRN implies: for all scheduler F ∈ F̂C there exists a scheduler
F ′ ∈ F̂C such that for all α and for all classes C in N /R it holds:

1. if α ̸= c?ṽ@l then ProbFM(
α−→, C) = ProbF

′
N (

α̂
=⇒ C);

2. if α = c?ṽ@l then either ProbFM(
α−→, C) = ProbF

′
N (

α
=⇒, C) or

ProbFM(
α−→, C) = ProbF

′
N (=⇒, C).

Probabilistic labelled bisimilarity, written ≈F
p , is the largest probabilistic labelled

bisimulation w.r.t. F over networks.

Following we introduce two important propositions that will help us to prove
that our probabilistic bisimulation is a complete characterization of probabilistic
barbed congruence.

Proposition 4.2 Let M and N be two networks. If MRN for some bisimulation
R w.r.t F , ∀F ∈ F̂C ∃F ′ ∈ F̂C such that for all α and for all classes C in N /R it
holds:

1. if α ̸= c?ṽ@l then ProbFM(
α̂

=⇒, C) = ProbF
′

N (
α̂

=⇒ C);

2. if α = c?ṽ@l then either ProbFM(
α̂

=⇒, C) = ProbF
′

N (
α

=⇒, C) or

ProbFM(
α

=⇒, C) = ProbF
′

N (=⇒, C).

64 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

Proof.

We proceed by induction on the length of the weak transition
α̂

=⇒.
If M reaches C in one step then, since MRN , ∃F ′ ∈ F̂C such that: if α ̸= c?ṽ@l,

ProbFM(
α−→, C) = ProbF

′
N (

α̂
=⇒, C),

while, if α = c?ṽ@l P robFM(
α−→, C) = ProbF

′
N (

α
=⇒, C), or

ProbFM(
α−→, C) = ProbF

′
N (=⇒, C), as required.

If M reaches C in more steps then we consider two cases:

• The first transition is α, and M
α−→ JM ′Kθ.

ProbFM(
α̂

=⇒, C) =


M̂∈spt(JM ′Kθ)(ProbFM(
α−→, M̂)× ProbF

M̂
(=⇒, C)).

Now, if we partition the support of JM ′Kθ in equivalence classes of R, ∃I such
that ∀i ∈ I Ci ∈ N /R, spt(JM ′Kθ)∩Ci ̸= ∅, and spt(JM ′Kθ) ⊆


i∈I Ci. We get:

ProbFM(
α̂

=⇒, C) =


i∈I(ProbFM(
α−→, Ci)× ProbFRepCi

(=⇒, C)),

where RepCi is a representative element of the equivalence class Ci. Since

MRN ∃F̄ ∈ F̂C such that, ∀i ∈ I: if α ̸= c?ṽ@l P robFM(
α−→, Ci) = ProbF̄N(

α̂
=⇒

, Ci), while, if α = c?ṽ@l P robFM(
α−→, Ci) = ProbF̄N(

α
=⇒, Ci), or ProbFM(

α−→, Ci) =
ProbF̄N(=⇒, Ci).

Now, if we take F ′ ∈ LSched such that, ∀e such that e ≤prefix e′ ∈ ExecF̄N(
α̂

=⇒
, Ci), F ′(e) = F̄ (e), and ∀e such that e ≤prefix e′ ∈ ExecFRepCi

(=⇒, C) F ′(e) =

F (e), then, since F ′ is a composition of F and F̄ , both elements of F̂C, by
Definition 4.6 F ′ ∈ F̂C too and we get, if α ̸= c?ṽ@l,

ProbFM(
α̂

=⇒, C) =


i∈I(ProbFM(
α−→, Ci)× ProbFRepCi

(=⇒, C))

=


i∈I(ProbF
′

N (
α̂

=⇒, Ci)×ProbF
′

RepCi
(=⇒, C)) = ProbF

′
N (

α̂
=⇒, C),

while, if α = c?ṽ@l:

ProbFM(
α

=⇒, C) =


i∈I(ProbFM(
α−→, Ci)× ProbFRepCi

(=⇒, C))

=


i∈I(ProbF
′

N (
α

=⇒, Ci)×ProbF
′

RepCi
(=⇒, C)) = ProbF

′
N (

α
=⇒, C),

or

=


i∈I(ProbF
′

N (=⇒, Ci)×ProbF
′

RepCi
(=⇒, C)) = ProbF

′
N (=⇒, C),

as required.

• The first transition is a τ , and M
τ−→ JM ′Kθ.

The proof is analogous to the first item.

Proposition 4.3 Let R = (


i∈I Ri)
∗, where Ri are Probabilistic Labelled Bisimu-

lations w.r.t. F . Then R is a Probabilistic Labelled Bisimulation w.r.t. F .

4.2. The Calculus 65

Proof.
Each relation Ri partition the set N in equivalence classes. If (M,N) ∈ Ri, that

means (M,N) ∈ R, by definition of R. Given then an equivalence class Ci ∈ N /Ri,
this is wholly contained in an equivalence class C ∈ N /R. By partitioning the
equivalence class C with a set of equivalence classes for Ri, we can then deduce the
existence of a set J such that: C =


j∈J Cij.

Now, let consider (M,N) ∈ R. That means (M,N) ∈ (


i∈I Ri)
∗, and (M,N) ∈

(


i∈I Ri)
n for some n > 0.

We will prove by induction over n that R is a probabilistic labelled bisimulation
w.r.t. F̂ .

• n = 1.

If n = 1, (M,N) ∈ (


i∈I Ri)
1 means that for some i ∈ I, (M,N) ∈ Ri. We

have that, ∀F ∈ F̂C, ∃F ′ ∈ F̂C s.t. ∀α, C ∈ N /R :

If α ̸= c?ṽ@l then ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF
′

N (
α̂

=⇒, Cij) = ProbF
′

N (
α̂

=⇒, C),
as required.

If α = c?ṽ@l then:

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF
′

N (
α

=⇒, Cij) = ProbF
′

N (
α

=⇒, C),
or

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF
′

N (=⇒, Cij) = ProbF
′

N (=⇒, C),
as required.

• n > 1.

(M,N) ∈ (


i∈I Ri)
n means that ∃i ∈ I such that MRi(


i∈I Ri)

n−1N , and
that ∃O ∈ N such that, (M,O) ∈ Ri and (O,N) ∈ (


i∈I Ri)

n−1.

(M,O) ∈ Ri implies that, ∀F ∈ F̂C ∃F1 ∈ F̂C such that ∀C ∈ N /R and ∀α:
If α ̸= c?ṽ@l then ProbFM(

α−→, C) =


j∈JProbFM(
α−→, Cij)

=


j∈JProbF1
O (

α̂
=⇒, Cij) = ProbF1

O (
α̂

=⇒, C),
while, if α = c?ṽ@l then:

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF1
O (

α
=⇒, Cij) = ProbF1

O (
α

=⇒, C),
or

66 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF1
O (=⇒, Cij) = ProbF1

O (=⇒, C).
By induction hypothesis, ∀m < n, (


i∈I Ri)

m is a bisimulation w.r.t. F ,
hence (


i∈I Ri)

n−1 is a bisimulation w.r.t. F . Again, since for each (P,Q) ∈
(


i∈I Ri)
n−1, (P,Q) ∈ R, each equivalence class of (


i∈I Ri)

n−1 is wholly
contained in an equivalence class for R and we can then partition C with a set
of equivalence classes in (


i∈I Ri)

n−1, that means ∃J ′ such that C =


j∈J ′ Cj
where Cj ∈ N /(


i∈I Ri)

n−1 ∀j ∈ J ′.

By Proposition 4.2 and by Definition 4.6 we finally get that ∃F ′ ∈ F̂C such
that ∀C ∈ N /R and ∀α, if α ̸= c?ṽ@l:

ProbFM(
α−→, C) = ProbF1

O (
α̂

=⇒, C) =


j∈J ′ProbF1
O (

α̂
=⇒, Cj)

=


j∈J ′ProbF
′

N (
α̂

=⇒, Cj) = ProbF
′

N (
α̂

=⇒, C),
while, if α = c?ṽ@l then there are three different possibilities:

ProbFM(
α−→, C) = ProbF1

O (
α

=⇒, C) =


j∈J ′ProbF1
O (

α
=⇒, Cj)

=


j∈J ′ProbF
′

N (
α

=⇒, Cj) = ProbF
′

N (
α

=⇒, C),

ProbFM(
α−→, C) = ProbF1

O (
α

=⇒, C) =


j∈J ′ProbF1
O (

α
=⇒, Cj)

=


j∈JProbF
′

N (=⇒, Cj) = ProbF
′

O (=⇒, C),
or

ProbFM(
α−→, C) = ProbF1

O (=⇒, C) =


j∈J ′ProbF1
O (=⇒, Cj)

=


j∈JProbF
′

N (=⇒, Cj) = ProbF
′

O (=⇒, C).

4.2.6 A complete characterisation

We show that our probabilistic labelled bisimilarity is a complete characterisation
of the probabilistic observational congruence of Definition 4.5.

Theorem 4.2 (Soundness) Let M and N be two networks. We show that if
M ≈F

p N then M ∼=F
p N.

Proof.
In order to prove that probabilistic labelled bisimilarity ≈F

p is a sound charac-

terisation of probabilistic observational congruence ∼=F
p we have to prove that ≈F

p

is:

1 . probabilistic barb preserving

2 . reduction closed

4.2. The Calculus 67

3 . contextual.

1 . To prove that probabilistic labelled bisimilarity ≈F
p is barb preserving we have

to show that if M ≈F
p N then, for each scheduler F ∈ FC, for each channel c and

for each set K of locations such that M⇓Fp c@K, there exists F ′ ∈ FC such that

N⇓F ′

p c@K.

Assume that M⇓Fp c@K for some F ∈ FC. Then, by Definition 4.2 we have
ProbFM(H) = p, where H = {M ′ : M ′ ↓c@K}. We can partition H with a set of
equivalence classes with respect to ≈F

p . Formally, ∃J such that H ⊆ ∪j∈JCj, ∀j ∈ J

Cj ∈ N / ∼=F
p and H ∩ Cj ̸= ∅. Hence:

ProbFM(H) =


e∈ExecFM (H)P
F
M(e) =


j∈JProbFM(Cj) = p.

By Theorem 4.1 and by Definition 4.6 there exists F̂ ∈ F̂C such that ∀j ∈ J :

ProbFM(Cj) = ProbF̂M(=⇒, C ′j)
where C ′j = Cj ∪ {M̂ | ∃M̂ ′ ∈ Cj and M̂ ≡ M̂ ′};

Now, since ∀M̂ such that M̂ ≡ M̂ ′ ∈ Cj, by applying rule (R-Struct) and by

Definition 4.3 M̂ ∼=F
p M̂ ′, we get {M̂ : M̂ ≡ M̂ ′ ∈ Cj} ⊆ Cj, that means C ′j = Cj

∀j ∈ J . Hence we get:
j∈JProbFM(Cj) =


j∈JProbF̂M(=⇒, Cj).

Since M ≈F
p N , there exists F̂ ′ ∈ F̂C such that, by Proposition 4.2, for all j ∈ J :

ProbF̂M(=⇒, Cj) = ProbF̂
′

N (=⇒, Cj).
We then have:

p =


j∈JProbF̂
′

N (=⇒, Cj).
Again, by Theorem 4.1, Proposition 4.2 and Definition 4.3, there exists F ′ ∈ FC
such that for all j ∈ J :

ProbF̂
′

N (=⇒, Cj) = ProbF
′

N (Cj) and
p =


j∈JProbF̂

′
N (=⇒, Cj) =


i∈JProbF

′
N (Cj) = ProbF

′
N (H), that meansN⇓F ′

p c@K
as required.

2 . To prove that probabilistic labelled bisimilarity ≈F
p is reduction closed, we

have to show that if M ≈F
p N , then for all F ∈ FC, there exists F ′ ∈ FC such that

for all classes C ∈ N / ∼=F
p , ProbFM(C) = ProbF

′
N (C).

By Theorem 4.1 and by Definition 4.6 we deduce that ∃F̂ ∈ F̂C such that
ProbFM(C) = ProbF̂M(=⇒, C ′), where C ′ = C ∪ {M̂ : M̂ ≡ M̂ ′ ∈ C}, but since
∀M̂ such that M̂ ≡ M̂ ′ ∈ C, by applying rule (R-Struct) and by Definition 4.3
M̂ ∼=F

p M̂ ′ we get {M̂ : M̂ ≡ M̂ ′ ∈ C} ⊆ C, that means C ′ = C.
By Proposition 4.2 we have that ∃F̂ ′ ∈ F̂C such that ProbF̂M(=⇒, C) = ProbF̂

′
N (=⇒

, C).
Finally, by Theorem 4.1 and by Definitions 4.6 and 4.3, ∃F ′ ∈ FC such that

ProbF̂
′

N (=⇒, C) = ProbF
′

N (C), as required.
3 . In order to prove that probabilistic labelled bisimilarity ≈F

p is contextual we
have to prove that, if M ≈F

p N :

68 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

1. M | O ≈F
p N | O ∀O ∈ N .

2. (νd)M ≈F
p (νd)N ∀d ∈ C.

Case 1.
Let consider the relation R = {(M | O,N | O) : M ≈F

p N}.
We prove that for all scheduler F ∈ F̂C there exists a scheduler F ′ ∈ F̂C such

that for all α and for all classes C in N /≈F
p :

1. if α = τ then

ProbFM |O(
τ−→, C) = ProbF

′

N |O(=⇒, C).

If P,Q ∈ C, then, by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō and P̄ ≈F
p Q̄.

But then there exists D ∈ N / ≈F
p such that D = {P̄ : P̄ | Ō ∈ C}. Now we

have three cases to consider:

(i) if M | O τ−→ JM | O′Kθ because O
τ−→ JO′Kθ the proof is simple,

because for all M̄ in the support of JM | O′Kθ such that M̄ ∈ C, it holds
M̄ ≡M | O′′ and, since M ≈F

p N , N | O′′ ∈ C too, by definition of R. By
Definition 4.3 there exists F̄ ∈ FC such that, by applying rule (R-Par) to
the reduction O −→ JO′Kθ, N | O −→ JO′ | NKθ ∈ ExecF̄N |O. By Theorem

4.1 and by Definition 4.6 ∃F ′ ∈ F̂C such that ProbF̄N |O(C) = ProbF
′

N |O(=⇒
, C), hence:

ProbFM |O(
τ−→, C) = ProbF

′

N |O(=⇒, C).
as required.

(ii) If M | O τ−→ JM ′ | OKθ because M
τ−→ JM ′Kθ, by Definition 4.6 there

exists a scheduler F1 ∈ F̂C such that ProbFM |O(
τ−→, C) = ProbF1

M (
τ−→,D).

But since M ≈F
p N , there exists F2 ∈ F̂C such that ProbF1

M (
τ−→,D) =

ProbF2
N (=⇒,D). For each execution:

N
τ−→θ1 N1...

τ−→θk Nk ∈ ExecF1
N (=⇒,D),

there exists a scheduler F̄ ∈ FC such that

N −→θ1 N1... −→θk Nk ∈ ExecF̄N .

By Definition 4.3, since FC captures the interactions of N with any con-
text, ∃F̄ ′ ∈ FC such that, by applying rule (R-Par) to each step in e:

N | O −→θ1 N1 | O... −→θk Nk | O ∈ ExecF̄
′

N |O.

By Definition 4.6 we finally get F ′ ∈ F̂C such that:

ProbF2
N (=⇒,D) = ProbF̄N(D) = ProbF̄

′

N |O(C) = ProbF
′

N |O(=⇒, C).

4.2. The Calculus 69

(iii) If M | O τ−→ JM ′ | O′K∆ due to a synchronization between M and O,
then there are two cases to consider.

If M
cL!ṽ[l,r]−−−−→ JM ′K∆ and O

c?ṽ@k−−−→ JO′K∆, for some tuple ṽ of messages,
channel c, locations l, k and radius r, such that d(l, k) ≤ r, we can apply

rule (Obs) obtaining M
c!ṽ@K▹R−−−−−→ JM ′K∆ for some R = {l′ | d(l, l′) ≤ r}

with k ∈ R and K = L ∩ R. Therefore, by Definition 4.6 there exists
F1 ∈ F̂C such that:

ProbFM |O(
τ−→, C) = ProbF1

M (
c!ṽ@K▹R−−−−−→,D).

Since N ≈F
p M , there exists F2 ∈ F̂C such that

ProbF1
M (

c!ṽ@K▹R−−−−−→,D) = ProbF2
N (

c!ṽ@K▹R
=⇒ ,D),

where each execution e in ExecF2
N (

c!ṽ@K▹R
=⇒ ,D) is of the form

e = N
τ−→θ1 N1

τ−→θ2 ...Ni−1
c!ṽ@K▹R−−−−−→∆ Ni

τ−→θi+1
... N ′,

with k ∈ R, and, by applying rule (Obs) backwardly, Ni−1
c!ṽ[l′,r′]−−−−→∆ Ni for

some l′ and r′ such that d(l′, k) ≤ r′. We can apply rule (Bcast) obtaining

Ni−1 | O
c!ṽ[l′,r′]−−−−→∆ Ni | O′ without changing probability. Finally if we take

F ′ ∈ LSched which applies rule (Lose) to the output action, we obtain
the required result:

ProbF2
N (

c!ṽ@K▹R
=⇒ ,D) = ProbF

′

N |O(=⇒, C).

We have finally to prove that F ′ ∈ F̂C. We start by the consideration
that, by Definition 4.1, for any execution of the form

α
=⇒ in F̂C, where α

is a silent or an output action there exists a correspondent reduction in
FC. Since by Definition 4.3, for any context, there exists a scheduler in
FC mimicking the behaviour exhibited by N when interacting with the
given context, we can affirm that ∃F̄ ∈ FC such that ExecF̄N |O contains

all the reductions corresponding to the executions of ExecF
′

N |O. Hence, by

Definition 4.6, F ′ ∈ F̂C, as required.

If M
c?ṽ@k−−−→ JM ′K∆ and O

cL!ṽ[l,r]−−−−→ JO′K∆, for some message ṽ, channel c,
locations l, k and radius r, such that d(l, k) ≤ r, then by Definition 4.6
∃F1 ∈ F̂C such that:

ProbFM |O(
τ−→, C) = ProbF1

M (
c?ṽ@k−−−→,D),

and, since M ≈F
p N , there exists F2 ∈ F̂C such that

ProbF1
M (

c?ṽ@k−−−→,D) = ProbF2
N (

c?ṽ@k
=⇒ ,D)

70 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

or
ProbF1

M (
c?ṽ@k−−−→,D) = ProbF2

N (=⇒,D).
In the first case, since by hypothesis k ∈ R, also N is able to synchronize
with O, for all executions

e = N
τ−→θ1 N1

τ−→θ2 ...Ni−1
c?ṽ@k−−−→∆ Ni

τ−→θi+1
...N ′ ∈ ExecF2

N (
c?ṽ@k
=⇒ ,D),

since by hypothesis d(l, k) ≤ r, by applying rule (Bcast) we get Ni−1 |
O

cL!ṽ[l.r]−−−−→ Ni | O′, and there exists a matching execution:

N | O τ−→θ1 N1 | O
τ−→θ2 ...Ni−1 | O

cL!ṽ[l,r]−−−−→∆ Ni | O′ τ−→θi+1
...N ′ | O′.

By applying the rule (Lose) to the action Ni−1 | O
cL!ṽ[l,r]−−−−→∆ Ni | O′ and

by Definition 4.3 ∃F̄ ′ ∈ FC such that,

ProbF̄
′

N |O(C) = ProbF2
N (D).

By Definition 4.6 there exists F ′ ∈ F̂C such that,

ProbF
′

N |O(=⇒, C) = ProbF̄
′

N |O(C).

If N is not able to receive the message the proof is analogous, because
∃F ′ ∈ F̂C such that, for each execution of ExecF1

N (=⇒,D):
N

τ−→θ1 N1...
τ−→θk Nk,

by applying rule (Par) to each step:

N | O τ−→θ1 N1 | O...
τ−→θk Nk | O,

and by applying rule (Bcast) and (Lose) to O, and then (Par) to Nk | O,
we get:

N | O τ−→θ1 N1 | O...
τ−→θk Nk | O

τ−→∆ Nk | O′ ∈ ExecF
′

N |O(=⇒, C),
hence, since the output of O does not change the probabilities of the
executions, we get:

ProbFM |O(=⇒, C) = ProbF1
M (=⇒,D) = ProbF2

N (=⇒,D) = ProbF
′

N |O(=⇒, C).

2. if α = c!ṽ@K ▹ R then ProbFM |O(
c!ṽ@K▹R−−−−−→, C) = ProbF

′

N |O(
c!ṽ@K▹R
=⇒ , C).

The proof is analogous to point (iii) of the previous item.

3. if α = c?ṽ@k then ProbFM |O(
α−→, C) = ProbF

′

N |O(
α

=⇒, C)
or

ProbFM |O(
α−→, C) = ProbF

′

N |O(=⇒, C).

If P,Q ∈ C, then by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō and P̄ ≈F
p Q̄. But

then there exists D ∈ N / ≈F
p such that D = {P̄ : P̄ | Ō ∈ C}. Now we have

two cases to consider:

4.2. The Calculus 71

(i) The transition is due to an action performed by O, hence O
α−→∆ O′

and M | O′ ∈ C. But since M ≈F
p N , then also N | O′ ∈ C, and, by

Definition 4.6 there exists F ′ ∈ F̂C such that by applying rule (Par) to
O

α−→ O′, we get N | O α−→ N | O′ obtaining:

ProbFM |O(
α−→, C) = ProbF

′

N |O(
α

=⇒, C).

(ii) The transition is due to an action performed by M, in this case, by
Definition 4.6 ∃F1 ∈ F̂C such that:

ProbFM |O(
α−→, C) = ProbF1

M (
α−→,D).

Since M ≈F
p N , there exists F2 ∈ F̂C such that

ProbF1
M (

α−→,D) = ProbF2
N (

α
=⇒,D),

or

ProbF1
M (

α−→,D) = ProbF2
N (=⇒,D).

In both cases, for each e ∈ ExecF1
N (

α̂
=⇒,D):

e = N
α1−→θ1 N1...

αk−→θk Nk

by applying rule (Par) to each step we get:

N | O α1−→θ1 N1 | O...
αk−→θk Nk | O.

Hence, ∃F ′ ∈ LSched such that:

ProbF2
N (

α
=⇒,D) = ProbF

′

N |O(
α

=⇒, C),
or

ProbF2
N (=⇒,D) = ProbF

′

N |O(=⇒, C).
In order to prove that F ′ ∈ F̂C, we start by the consideration that, by
Definition 4.6 there exists at least a context C[·] and ∃F̄ ∈ FC such that
C[N] −→ C ′[N ′], and, by the reduction rules we get:

C[·] ≡ (νd̃)m[c̄L,r⟨ṽ⟩.P]l |M1

for some d̃ such that c ̸∈ d̃, some m, some set L of locations, some process
P , some (possibly empty) network M1, some location l and some radius r
such that d(l, k) ≤ r. Then, by Definition 4.3 we have that there exists a
scheduler allowing m[c̄L,r⟨ṽ⟩.P]l −→ Jm[P]lK∆, and again by Definition 4.3

there exists a scheduler allowing the reduction m[c̄L,r⟨ṽ⟩.P]l | N | O −→
∗

Jm[P]l | N ′ | O′K∆, meaning, by Definition 4.6, F ′ ∈ F̂C as required.

Case 2.
Let consider now the relation S = {((νd)M, (νd)N) : M ≈F

p N}.
Let consider C: if P,Q ∈ C, then by definition of S P ≡ (νd̄)P̄ , Q ≡ (νd̄)Q̄ and

P̄ ≈F
p Q̄. But then ∃D ∈ N / ≈F

p such that D = {P̄ : (νd̄)P̄ ∈ C}.
We have to prove that, ∀F ∈ F̂C, ∃F ′ ∈ F̂C sucht that, ∀C ∈ N /S, ∀α:

72 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

1. α = τ implies that ProbF(νd)M(
τ−→, C) = ProbF

′

(νd)N(=⇒, C).

Since Chan(τ) = ⊥, by Definition 4.6 ∃F1 ∈ F̂C such that
ProbF(νd)M(

τ−→, C) = ProbF1
M (

τ−→,D) and, since M ≈F
p N ∃F2 ∈ F̂C such that:

ProbF1
M (

τ−→,D) = ProbF2
N (=⇒,D).

Finally we can take F ′ ∈ LSchedmimicking the executions in the set ExecF2
N (=⇒

,D), when applying the restriction on N . Hence:

ProbF2
N (=⇒,D) = ProbF

′

(νd)N(=⇒, C).

In order to prove that F ′ ∈ F̂C, we start by the consideration that, by Def-
inition 4.3, for any context there exists a scheduler in FC mimicking the be-
haviour of N when interacting with the given context. Hence ∃F̄ ∈ FC such
that ExecF̄(νd)N contains all the reductions corresponding to the executions in

ExecF
′

(νd)N , meaning, by Definition 4.6, F ′ ∈ F̂C as required.

2. α = c!ṽ@K ▹ R

Since Chan(c!ṽ@K ▹ R) ̸= d, by Definition 4.6 ∃F1 ∈ F̂C

such that ProbF(νd)M(
α−→, C) = ProbF1

M (
α−→,D), then since M ≈F

p N , ∃F2 ∈ F̂C
such that

ProbF1
M (

α−→,D) = ProbF
′

N (
α

=⇒,D).
Therefore, since Chan(α) ̸= d, ∃F ′ ∈ LSched such that:

ProbF2
N (

α
=⇒,D) = ProbF2

(νd)N(
α

=⇒, C).

We prove that F ′ ∈ F̂C as for the previous cases.

3. α = c?ṽ@k

Again, since Chan(c?ṽ@k) ̸= d, by Definition 4.6 ∃F1 ∈ F̂C such that

ProbF(νd)M(
α−→, C) = ProbF1

M (
α−→,D). Since M ≈F

p N , there exists F2 ∈ F̂C such
that

ProbF1
M (

α−→,D) = ProbF2
N (

α
=⇒,D) or ProbF1

M (
α−→,D) = ProbF2

N (=⇒,D), if N
is not able to receive ṽ. In both cases we can apply rule (Res) to N, since
Chan(τ) = ⊥ and Chan(c?ṽ@k) ̸= d. Therefore, there exists F ′ ∈ LSched such
that the required result holds, that is ProbF2

N (
α

=⇒,D) = ProbF
′

(νd)N(
α

=⇒, C) or
ProbF2

N (=⇒,D) = ProbF
′

(νd)N(=⇒, C).

Again, we prove that F ′ ∈ F̂C as for the previous cases.

We finally prove that probabilistic labelled bisimilarity w.r.t. F is a complete
characterisation of the probabilistic observational congruence w.r.t. F of Definition
4.5.

4.2. The Calculus 73

Theorem 4.3 (Completeness) If M ∼=F
p N then M ≈F

p N.

Proof.
In order to prove the completeness of probabilistic labelled bisimilarity we show

that the relation R = {(M,N) : M ∼=F
p N} is a Probabilistic Labelled Bisimulation.

This follows from Theorem 4.1 and Proposition 4.2.
We have to prove that, ∀F ∈ F̂C ∃F ′ ∈ F̂C such that, ∀C ∈ N /R, ∀α:

if α = τ then ProbFM(
τ−→, C) = ProbF

′
N (=⇒, C).

By Theorem 4.1 and by Definition 4.6 we know that ∃F̄ ∈ FC such that
ProbFM(

τ−→, C) = ProbF̄M(C), and, sinceM ∼=F
p N , ∃F̄ ′ ∈ FC such that ProbF̂M(C) =

ProbF̄
′

N (C). Again by Theorem 4.1 and by Definition 4.6 ∃F ′ ∈ F̂C such that

ProbF̂
′

N (C) = ProbF
′

N (=⇒, C ∪ {N̄ ≡ N ′ ∈ C}), but since ∼=F
p is closed un-

der structural equivalence, ∀N̄ ≡ N ′ ∈ C, N̄ ∈ C, hence: ProbFM(
τ−→, C) =

ProbF
′

N (=⇒, C).

if α = c!ṽ@K ▹ R then ProbFM(
α−→, C) = ProbF

′
N (

α
=⇒, C).

First we notice that ProbFM(
c!ṽ@K▹R−−−−−→, C) is either 0 or 1.

If ProbFM(
c!ṽ@K▹R−−−−−→, C) = 0 we are done, because it will be enough to take any

scheduler F ′ ∈ F̂C not allowing observable output actions on the channel c,

and we get ProbFM(
c!ṽ@K▹R−−−−−→, C) = ProbF

′
N (

c!ṽ@K▹R
=⇒ , C).

If ProbFM(
c!ṽ@K▹R−−−−−→, C) = 1, by Theorem 4.1 and by Definition 4.6 ∃F̄ ∈ FC

such that M⇓F̄1 c@K, and it means that ∃F̄ ′ ∈ FC such that N⇓F̄ ′

1 c@K, hence,
again by Theorem 4.1 and by Definition 4.6 there exist F ′ ∈ F̂C and R′ such

that K ⊆ R′ and ProbF̄
′

N (C) = ProbF
′

N (
c!ṽ@K▹R′
=⇒ , C).

We proved that ∃R′ such that ProbFM(
c!ṽ@K▹R−−−−−→, C) = ProbF

′
N (

c!ṽ@K▹R′
=⇒ , C), now

we want to show that R′ = R. In order to mimic the effect of the action
c!ṽ@K ▹ R, we build the following context

C[·] =
n

i=1
(ni[c(x̃i).[x̃i = ṽ]f̄

(i)
ki,r
⟨x̃i⟩]ki | mi[f

(i)(ỹi).ōk
(i)
ki,r
⟨ỹi⟩]ki),

where R = {k1, ..., kn}, ni, mi, ok(i) and f(i) fresh ∀i ∈ [1 − n]. Since

M
c!ṽ@K▹R−−−−−→, then the message is reachable by all nodes ni, hence, by Defi-

nition 4.3 ∃F̄1 ∈ FC such that C[M] −→
∗
M̂ , where

M̂ ≡M ′ |
n

i=1
(ni[0]ki | mi[ōk

(i)
ki,r
⟨ṽi⟩]ki

≡M ′ |
n

i=1
(mi[ōk

(i)
ki,r
⟨ṽi⟩]ki ,

with M̂ ̸↓f(i)@R and M̂⇓F̄1
1 ok(i)@R, ∀i ∈ [1− n].

74 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

The absence of the barb on the channels f(i) together with the presence of
the barb on the channels ok(i) ensures that all the locations in R have been
able to receive the message. Since C[M] ∼=F

p C[N], ∃F̄2 ∈ FC such that

ProbF̄1

C[M](C ′) = ProbF̄2

C[N](C ′) where M̂ ∈ C ′.

Therefore, C[N] −→
∗
N̂ with N̂ ̸↓f(i)@R and N̂⇓F̄2

1 ok(i)@R. The constrains on
the barbs allow us to deduce that

N̂ ≡ N ′ |
n

i=1
(ni[0]ki | mi[ōk

(i)
ki,r

ṽi]ki)

≡ N ′ |
n

i=1
(mi[ōk

(i)
ki,r

ṽi]ki),

which implies N
c!ṽ@K▹R
=⇒ N ′, or N =⇒ N ′ in case (Lose) has been applied to

the output action on the channel c. Since M̂, N̂ ∈ C, then M̂ ∼=F
p N̂ , and

since ∼=F
p is contextual, it results (νok(1)...ok(n))M̂ ∼=FM

p (νok(1)...ok(n))N̂ . By
applying (Struct Res Par):

(νok(1)...ok(n))M̂ ≡M ′ | (νok(1)...ok(n))
n

i=1
(mi[ōk

(i)
ki,r
⟨ṽi⟩]ki) ≡M ′

and

(νok(1)...ok(n))N̂ ≡ N ′ | (νok(1)...ok(n))
n

i=1
(mi[ōk

(i)
ki,r
⟨ṽi⟩]ki) ≡ N ′,

and, since the network (νok(1)...ok(n))
n

i=1(mi[ōk
(i)
ki,r
⟨ṽi⟩]ki) is silent, we can

derive that M ′ ∼=F
p N ′. But since N ′ ∈ C and N

c!ṽ@K▹R
=⇒ N ′, by Definition 4.6

∃F ′ ∈ F̂C such that:

ProbF
′

N (
c!ṽ@K▹R
=⇒ , C) = 1 = ProbFM(

c!ṽ@K▹R
=⇒ , C),

as required.

if α = c?ṽ@k then ProbFM(
α−→, C) = ProbF

′
N (

α
=⇒, C) or ProbF

′
N (=⇒, C).

We notice that ProbFM(
c?ṽ@k−−−→, C) is either 0 or 1.

If ProbFM(
c?ṽ@k−−−→, C) = 0 we are done, because it will be enough to take any

scheduler F ′ ∈ F̂C not allowing input actions on the channel c, and we get

ProbFM(
c?ṽ@k−−−→, C) = ProbF

′
N (

c?ṽ@k
=⇒ , C).

If ProbFM(
c?ṽ@k−−−→, C) = 1, because M

c?ṽ@k−−−→ JM ′K∆, by Definition 4.3 there
exists at least a context C[·] and ∃F̄ ∈ FC such that C[M] −→ C ′[M ′], and by
Theorem 4.1 we deduce that:

C[·] ≡ (νd̃)m[c̄L,r⟨ṽ⟩.P]l |M1,
C ′[·] ≡ (νd̃)m[P]l |M ′

1,

4.2. The Calculus 75

for some m, some tuple d̃ of channel such that c /∈ d̃, dome set L of messages,
some radius r, some process P , some location l such that d(l, k) ≤ r and some
(possibly empty) network M1 and M ′

1.

By Definition 4.3, for any context there exists a scheduler in FC allowing m
to perform the output when interacting with any context. Hence we can build
the following context:

C1[·] = · | m[c̄L,r⟨ṽ⟩.P]l | m1[c(x̃).f̄k,r′⟨x̃⟩.ōkk,r′⟨x̃⟩]k,

in order to mimic the behaviour of the networks, with m static, f and ok fresh,
r′ > 0 and d(l, k) > r′ ∀l ∈ Loc s.t. l ̸= k. There exists a scheduler F̄1 ∈ FC
such that:

C1[M] −→
∗
M ′ | m[P]l | m1[ōkk,r′⟨ṽ⟩]k ∈ ExecF̄1

C[M],

with M ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k ̸↓f@k and

M ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k⇓F̄1
1 ok@k.

The reduction sequence above must be matched by a corresponding reduction
sequence C1[N] −→

∗
N ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k, with

M ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k ∼=p N
′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k,

N ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k ̸↓f@k and

N ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k⇓F̂2
1 ok@k for some F̄2 ∈ FC.

This does not ensure that N actually performed the input action, but we can

conclude that there exists F ′ ∈ LSched and N ′ such that either N
c?ṽ@k
=⇒ N ′ or

N =⇒ N ′. Since M ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k ∼=p N ′ | m[P]l | m[ōkk,r′⟨ṽ⟩]k and
∼=F

p is is a contextual relation, we can easily derive M ′ ∼=F
p N ′ (applying rules

for structural equivalence), that means M ′, N ′ ∈ C and ∃F ′ ∈ LSched such
that:

ProbFM(
c?ṽ@k−−−→, C) = 1 = ProbF

′
N (

c?ṽ@k
=⇒ , C)

or
ProbFM(

c?ṽ@k−−−→, C) = 1 = ProbF
′

N (=⇒, C).

Now we have only to prove that F ′ ∈ F̂C, but this follows straightforwardly
by Definition 4.6, since F̄2 ∈ FC.

Proposition 4.4 ∼=Sched
p =≈Sched

p .

Proof.
It follows straightforwardly from Proposition 4.1 and from Theorems 4.2 and 4.3.

76 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

4.3 Introduction of a Cost Preorder

In this section, based on the reduction semantics, we define a preorder over
networks which allows us to study the performances of different networks, in terms
of several kinds of metrics, but exhibiting the same connectivity behaviour.

We first associate a cost function with each reduction as follows:
Costf (M,N) = f(M,N), where M −→ JN ′Kδ, with N in the support of JN ′Kδ.
If e = M0 −→θ1 M1 −→θ2 M2... −→θk Mk

is an execution then Costf (e) =
k

i=1Cost(Mi−1,Mi).
Let H be a set of networks, we denote by PathsFM(H) the set of all executions

from M ending in H and driven by F which are not prefix of any other execu-
tion ending in H. More formally, PathsFM(H) = {e ∈ ExecFM(H) | last(e) ∈
H and ∀e′ such that e <prefix e′, e′ ̸∈ PathsFM(H)}.

Now, we are ready to define the average cost of reaching a set of networks H
from the initial network M according to the scheduler F .

Definition 4.8 Let H be a set of networks. The average cost of reaching H from
M according to the scheduler F is

Costf
F

M(H) =


e∈PathsFM (H)Costf (e)× P F

M(e)
e∈PathsFM (H)P

F
M(e)

.

The average cost is computed by weighting the cost of each execution by its
probability according to F and normalized by the overall probability of reaching H.
The following definition provides an efficient method to perform both qualitative
and quantitative analyses of mobile networks.

Definition 4.9 Let H be a countable set of sets of networks and let F ⊆ Sched a
set of schedulers. We say that N is more efficient than M with respect to the cost
function f , in the context of H and F denoted

N ⊑f
⟨H,F⟩ M,

if N ∼=F
p M and, for all schedulers F ∈ FC and for all H ∈ H, there exists a

scheduler F ′ ∈ FC such that Costf
F ′

N (H) ≤ Costf
F

M(H).

4.3.1 Energy Cost Preorder

As already seen in Chapter 2, the performances improving of ad hoc networks
can be summarized in finding a good trade-off between energy conservation and
connectivity. Since Probabilistic EBUM allows us to compare different networks
with the same behaviours, with respect to the transmissions, i.e. to the connectivity,
we can define a cost function in terms of energy consumptions.

4.4. Analysing the SW-ARQ and GBN-ARQ Protocols 77

We define our energy cost function based on the common assumption that the
transmission power can be abstracted by taking the transmission radius [91, 12]
(a larger transmission power will enlarge the transmission area, while a smaller
transmission power will reduce it).

e(M,N) =


r if M −→ JNK∆ with M ≡ c̄L,r⟨ṽ⟩.M ′ |M1

and N ≡M ′ |M1for some c, L ṽ and M1

0 otherwise.

We can use our function of energy cost in many practical cases, since it gives
a way to select among several protocols having always the same connectivity be-
haviours, the most energy efficient one: due to the compositionality of our equiva-
lence relation, this property can be used to replace a network component with a less
consuming one, in terms of the given metrics, while maintaining connectivity.

4.4 Analysing the SW-ARQ and GBN-ARQ Pro-

tocols

High speed data transmission is rapidly becoming an essential requirement of
today’s wireless networks. Consequently, adaptive modulation and coding (AMC)
techniques are increasingly being used in most of 2.5/3g wireless networks in order
to increase the transmission rate. At the same time, a wireless channel is error
prone due to fading and other propagation impairments. To address this issue,
many control schemes have been proposed. In particular, the automatic repeat
request (ARQ)-based error control is considered as very attractive to counteract the
residual errors without using costly error correction codes at the physical layer (see,
e.g., [96, 53]). However, portable communication devices must rely on batteries with
limited energy to conduct communication.

There are three main ARQ protocols: stop-and-wait (SW), go-back-N (GBN) and
selective repeat (SR). In this section, we use our framework to analyse both SW-
ARQ and GBN-ARQ protocols. First, we show that the protocols exhibit the same
probabilistic observational behaviour, i.e., they are bisimilar. Then, we compute
and compare their energy consumption under various scenarios depending on the
stability of the wireless channel.

4.4.1 Protocol description

In the following we briefly recall the salient features of SW-ARQ and GBN-ARQ
protocols. In SW-ARQ protocol, the sender pushes a packet into the channel with
a delay that is given by ratio between the packet size and the channel bandwidth
(pushing time). Once the packet is in the channel we observe two delays: one is
that required to reach the destination and the other one is that required for the

78 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

acknowledge packet (ACK) to go back to the transmitter. The sum of the two is
known as the round trip time. In SW-ARQ protocol the sender sends a packet
only once the acknowledge of the previous one has been received. If the round trip
time (or an upper bound) is known by the protocol designer, a possible error in
the transmission is detected by a timeout mechanism, i.e., if the sender does not
receive an ACK from the receiver before a deadline, then it assumes that an error
occurred and sends again the same packet. If the round trip time is much higher
than the pushing time, then SW-ARQ protocols are very inefficient and exploit
only a minimal part of the channel capacity. With respect to SW protocols, GBN
takes advantage of the pipelining of the packets, i.e., a sequence of n packets can
be sent without receiving any confirmation. This widely used technique is known
to highly improve the throughput of the sender, but it is expensive from the energy
consumption point of view (see, e.g., [53]) since correctly received packets may be
required to be resent. Indeed, once the sender realizes that a packet p has not been
received (using a timeout), it has to resend all the packets already sent starting from
p. In this way, it can be shown that throughput is really improved and the protocol
can use the full channel capacity.

4.4.2 Assumptions on the models

In this case study, we consider a single transmitter node using ARQ-based er-
ror recovery protocol to communicate with a receiver node over a wireless channel.
Transmissions occur in fixed-size time slots whose size is the time required by the
sender to push a packet into the channel. We assume the round trip time to be a
multiple of the time slot. For both SW and GBN protocols, the transmitter contin-
uously sends packets until it detects a transmission error. Notice that although in
actual implementations of the ARQ protocols errors are usually detected by means
of a timeout mechanism, in this context we use negative-acknowledge (NACK) feed-
backs which simplify the protocol encodings and are equivalent for the analysis
purposes if we assume to know the number of slots that the round trip time consists
of. Here, we consider an error-free feedback channel 3 and assume that the ACK
or NACK of each transmitted packet arrives at the sender node one slot after the
beginning of its transmission slot. Therefore, the feedback of a packet is received
exactly after its transmission for the SW-protocol and in case of a failure (NACK),
the packet is automatically resent. Instead for the GBN protocol, a feedback for the
ith packet arrives exactly after the transmission of the (i+n−1)th packet and in case
of a failure the transmission restarts from the ith packet. We model both SW-ARQ
and GBN-ARQ-based protocols for a communication channel of capacity n = 3 in
our framework. Observe that in this way we do not take into account the round
trip time for SW-ARQ protocols, however this does not affect the analysis that we
will carry out later, i.e., the expected energy cost for each packed correctly received.

3A very standard assumption [53].

4.4. Analysing the SW-ARQ and GBN-ARQ Protocols 79

Figure 4.1: Topology of the network and mobility of the sender

We consider a unique static receiver rec < 0, I4>. We model the transmitter as a
mobile node send (< r, Js >) whose reachable locations are l1, which represents the
“good state” of the channel, where the receiver lies within the transmission radius
of the channel and l2 the “bad state”, where the destination is no longer reachable
(see Figure 4.1). The mobility of the sender is modelled by the two state Markov
chain with the following transition probability matrix

Js =

 p 1− p
1− q q

 ,
where p and q are the probabilities of the stability of the node in two successive time
slots in its good and bad states, respectively.

4.4.3 Modelling the Protocols

In our analysis, we assume that the energy consumption of the feedback messages
is negligible. Therefore, they are sent over channels with zero radius. For this reason
the static receiver rec is located at l1, i.e., at the same location of the sender in its
good state, so that the feedback will be received with no cost. Note that the sender
still transmits over channels with radius r and thus it consumes an amount of energy
equal to r for each fired packet.

The process executed by rec, the receiver node, is the same for both protocols
and modelled as the process

REC⟨i⟩ = c(i)(x).c̄l1,0⟨ACK(i)⟩.REC⟨i+ 1⟩

which, upon receiving packet pi over the channel c
(i), sends ACK(i) over the channel

c and waits for the next packet on c(i+1).

For each channel c(i), we use a static auxiliary node bi(⟨0, I⟩) located at l2, the bad
state of the sender, capturing bad transmissions over c(i). It executes the following

4i.e. the Identity Matrix.

80 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

(a) Structure of the communications (b) Example of GBN and SW behaviour

Figure 4.2: Description and example of the network communications

process which upon receiving packet pi over the channel c(i), sends NACK(i) over
the channel c:

BAD⟨i⟩ = c(i)(x).c̄l2,0⟨NACK(i)⟩.BAD⟨i⟩.

GBN-ARQ.

Now we introduce the full model of the protocol GBN-ARQ.

We start by modelling its sender node. Recall that, as a simplifying assumption,
the channel capacity is 3. It executes the following process:

GB⟨i⟩ = c̄
(i)
l1,r
⟨pi⟩.c(x1)c̄

(i+1)
l1,r
⟨pi+1⟩.c(x2)c̄

(i+2)
l1,r
⟨pi+2⟩.c(x3)

[x1 = NACK(i)]GB⟨i⟩, SEND⟨i+ 3, x2, x3⟩

where the process SEND is defined as follows.

SEND⟨i, x, y⟩ = c̄
(i)
l1,r
⟨pi⟩.c(z)[x = NACK(i− 2)]GB⟨i− 2⟩, SEND⟨i+ 1, y, z⟩.

Though that the feedback of a packet is received after the transmission of its two
successors, for practical reason, we read a feedback of a packet right after sending it.
Indeed, since we do not want feedback to be costly, both sender and receiver must
be located at the same place when the feedback is sent. However, the sender node
will verify it only after having sent the following two packets.

Recall that the receiver node in our modelling above, reads each packet pi on its
specific channel c(i). Thus, in the GBN, if the transmitter sends p1 while being in its
good state, then moves to bad and sends p2 and finally moves back to the good state
and sends p3, then the later packet will not be read by the receiver as it is blocked
on c(2). Then, the firing on c(3) is lost and this models the fact that packets sent
after a bad packet is just a wasting of energy. But since the sender process GB⟨i⟩ is

4.4. Analysing the SW-ARQ and GBN-ARQ Protocols 81

blocked on the feedback channel c, we introduce a static auxiliary node lose(⟨0, I⟩)
located at l1 and executing the process:

WAST = c̄∅,0⟨LOST ⟩.WAST

SW-ARQ.

Now on to the SW-ARQ-based protocol. This is very simple since it always sends
one packet and waits for its feedback. The sender process is defined as follows.

SW ⟨i⟩ = c̄
(i)
l1,r
⟨pi⟩.c(x)[x = NACK(i)]SW ⟨i⟩, SW ⟨i+ 1⟩.

The full protocols are then modelled as the network

GBN = (νc(1), c(2)...)(send[GB⟨1⟩]l1 | rec[REC⟨1⟩]l1
| lose[WAST]l1 |


i≥1

bi[BAD⟨i⟩]l2)

and

SW = (νc(1), c(2)...)(send[SW ⟨1⟩]l1 | rec[REC⟨1⟩]l1 |

i∈I

bi[BAD⟨i⟩]l2).

4.4.4 Measuring the Energy Cost of the Protocols.

This section analyzes the energy consumption of the above ARQ-based protocols.
In order to compare the observational behaviours of the protocols, we assume that
the communications over the feedback channel are observable for any observer node
located at l1. Thus the protocols are equivalent with respect to a set of schedulers
F if for all schedulers F in F driving one of the protocols, there exists a scheduler
F ′ in F driving the other one such that both protocols correctly transmit the same
packets with the same probabilities. Therefore, we consider the following set of
schedulers denoted Falt which:

1. always alternates between sending packets and node’s movement so that at
each interaction of the transmitter with the channel, the later can be either
good or bad;

2. gives priority to acknowledgment actions (ACK and NACK) to model the
standard assumption of an error-free feedback channel;

3. allows interaction with the outside environment only through its observable
actions so that we capture exactly the observable behaviour of the protocol.

Notice that the assumptions on the schedulers would be stricter if one desires to
carry out an analysis of the throughput. Under these assumptions, we can prove the
following results which shows that, the SW-ARQ protocol is more energy efficient
of the GBN-ARQ one.

82 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

Proposition 4.5 GBN ∼=Falt
p SW .

Proof.
In order to prove the observational congruence it is enough to prove GBN ≈Falt

p

SW . We give here a sketch of the proof. For each sender’s window size we will
choose, the only observable actions are the acknowledgments sent by the stationary
node rec. All other actions are silent, since we apply the restriction on each c(i).
For all i ≥ 1 rec[REC⟨i⟩]l1 sends the acknowledgment ACK(i) if and only if the
relative packet pi has been correctly received, hence, all the executions performed
by GBN and SW are of the form:

=⇒ c!ACK(1)@{l1}▹{l1}−−−−−−−−−−−−→=⇒ c!ACK(2)@{l1}▹{l1}−−−−−−−−−−−−→=⇒ ...

Since the number of transmissions performed by the sender do not affect the prob-
abilities, the bisimulation between the two different protocols can be proved.

We compare their energy efficiency in the context of the set H = {Hk | k ≥ 1}
where Hk means that all the packets up to k have been correctly transmitted and
is defined as Hk = H1

k ∪H2
K where

H1
k = {M |M ≡ send[¯c(k+1)∅,r⟨pk+1⟩.P]l1 | rec[REC⟨k + 1⟩]l1

| loose[WAST]l1 |


i≥1 bi[BAD⟨i⟩]l2}

for some process P and

H2
k = {N |N ≡ send[SW ⟨i+ 1⟩]l1 | rec[REC⟨k + 1⟩]l1 |


i∈I

bi[BAD⟨i⟩]l2}.

Then, we compute the energy consumption of the protocols assuming that we
start by a move action at the good state so that the first message could be lost if it
moves to the bad state5. The results are summarized in the following propositions
and illustrated in Figure 4.3.

Proposition 4.6 If q ̸= 1 then for all F ∈ Falt

CosteFSW(Hk) =


1 +

1− p

1− q


kr

Proposition 4.7 If q ̸= 1 then for all F ∈ Falt

CosteFGBN(Hk) = kr

p+

(p− 1)

(−1 + q)(1 + p2 − q + q2 − p+ 2pq)

· 1− 2p2 + 2p2q + 4q − 4q2 + 2q3 + 2p− 6pq + 4pq2

−p2 + p2 + (−p+ pq)(−1 + 2q) + q(2 +−2q + q2)


5The analysis for the other case is similar.

4.4. Analysing the SW-ARQ and GBN-ARQ Protocols 83

(a) SW protocol (b) GBN protocol

(c) costGBN (p, q)− costSW (p, q)

Figure 4.3: Energy cost functions for SW and GBN and their comparison.

These results can be derived by applying the Chapman-Kolmogorv’s forward equa-
tions to compute the probability of consecutive failures in the sending of the same
packet. Each of these failures (except the first) causes the waste of a number of
sent packets equals to the window size. It can be observed that the number of
wasted windows has a geometric distribution. Then, the mean of total packets sent
to obtain a success, can be straightforwardly derived.

To conclude this section, we note that while both protocols increasingly enjoy bad
performance in term of energy consumption when the channel deteriorates, i.e., when
q is increasing (see Figures 4.3-(a) and 4.3-(b)), the GBN protocol deteriorates faster.
Indeed, as illustrated by Figure 4.3-(c) as the channel deteriorates the additional
energy required by GBN protocol to correctly transmit the same number of packets
increases to infinite. Thus, the gain of having a high throughput results in a very
high energy consumption.

Finally we can conclude that the GBN protocol is much more energy consuming
than SW.

Theorem 4.4 It holds that SW ⊑e
⟨H,Falt⟩ GBN.

84 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

Proof.
The proof follows straightforwardly from Propositions 4.5, 4.6 and 4.7.

4.5 Analysis of a location based routing protocol

In Chapter 2 we discussed how important is the choice of a good routing protocol
in the design of an ad hoc network, due to the dynamic nature of the network, and
to the limited power sources of its nodes.

As a case study, in order to show how to use the probabilistic EBUM calculus
to face the problem of choosing the best routing protocol for a given network, we
analyze the performance of LAR (Location Aided Routing)[47] : a location based
strategy which improves the traditional flooding algorithm exploiting the possibility
for the network nodes, to know their geographical locations, due to common existing
technologies such as GPS (Global Position System)[45].

4.5.1 Protocol Description

Informally, location based routing algorithms assume that each node of the wire-
less network is aware of its own location thanks to a Global Positioning System
(GPS) device or thanks to other mechanisms such as the knowledge of the distances
between its location at a given epoch and some other static stations. The main idea
behind the development of these algorithms is that in very large mobile networks
using a flooding policy in an AODV style [79] may turn out to be very expensive
in terms of number of sent packets and hence of energy consumption. Location
based routing algorithms aim at controlling the flooding by guessing the possible
location of the destination node. The guess can be driven by several factors, such as
the knowledge of the destination node’s location in the latest communication joint
with some assumptions on the node’s maximum movement speed. In this section,
we show our framework at work on a simplified version of the LAR protocol, and
prove that, under mild assumptions on the node mobility, it is equivalent to the
flooding algorithm in terms of the probability of discovering a path. Obviously, it is
not possible to establish a general energy-aware preorder between the two protocols,
but this can be done (algorithmically) for specific instances of wireless networks.

4.5.2 Simple flooding: description

Protocol LAR extends the route discovery based on flooding by exploiting infor-
mation about locations within the network. The simplest route discovery algorithm
based on flooding consists of three simple packets: request, reply and error [87],
which are forwarded within the network. They are structured as follows:

• Route Request packet (RREQ) has the form:

(S,Bid,D, seq#S, hop counter) ,

4.5. Analysis of a location based routing protocol 85

where S is the permanent source address, Bid is the Request Id (unique iden-
tifier), D is the permanent address of the destination, seq#S denotes the
sequence number of the source, and hop counter is the number of hops to
reach the destination (which is initially set to 0 and then incremented at each
request forwarding).

• Route Reply packet (RREP) has the form:

(S,Bid,D, seq#D, hop counter, Lifetime) ,

where S, Bid and D are as above, seq#D is the sequence number of the
destination, hop counter is the number of hops to reach the destination and
Lifetime is the duration of the route validity.

• Route Error packet (RERR) has the form:

(S,D, seq#D) ,

where S D and seq#D are as in the previous case.

Normally, a node looking for a path to a given destination, simply broadcasts a
RREQ within the network. Having sent the packet, the node sets a timeout to
manage the cases when the destination does not receive the request, or the reply
packet is lost. If the timeout expires, the node broadcasts a new request, using a
different sequence number to avoid loops. When the destination finally receives the
RREQ, it immediately sends back the corresponding RREP, using unicast commu-
nication, i.e., each intermediate node forwards the RREP using the information in
its routing table. When, during a communication, a node realizes that a link failed,
it broadcasts a RERR and each node will update its routing table.

4.5.3 Exploiting location data: the LAR policy

LAR extends the simple flooding algorithm described above by directing the
propagation of the discovery packets to a particular network area based on the
expected locations of the destination node. In the LAR specification, the Expected
Zone is the network area where the source expects to find the destination node. This
is determined by means of the information that the source has previously retrieved
about the destination location. In practice, if node S knows that destination node
D was located at location l1 at epoch t, and it moves with a speed v, then it can
calculate the circle area centered at l1, with radius v(t′ − t), where t′ is the current
epoch. If S does not know anything about D, then the Expected Zone coincides
with the entire network.

The Request Zone is the network area that the source defines to specify a candi-
date route to the destination. An intermediate node forwards a route request only
if it is within the Request Zone. There are different ways to define a Request Zone:

86 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

Figure 4.4: Expected and Request Zones in the LAR protocol

(a) A simple route request packet (b) Aroute request packet with location in-
formation

Figure 4.5: Different route request packets of LAR - Scheme 1

usually choosing a smaller area reduces the message overhead (because it reduces
the number of forwarded packets), while a larger area reduces the latency of the
route discovery because the network finds a path with higher probability.

LAR behaves similarly to the simple flooding, with the difference that a node
that is not inside the Request Zone does not forward the request. LAR can use two
different policies for determining the Request Zone: we focus on the first such policy,
known as LAR Scheme 1.

LAR Scheme 1 uses a rectangular Request Zone, depending on the position of
the source with respect to the Expected Zone. In particular, the Request Zone will
be the smallest rectangle containing both the Expected Zone and the position of the
source node, as shown in Figure 4.4.

Let (XS, YS) and (XD, YD) the Cartesian coordinates of S and D, and R the
radius of the Expected Zone. If S is outside the Expected Zone, the coordinates of
the rectangle area are:
A: → (XS, YD +R) B: → (XD +R, YD +R)
C: → (XD +R, YS) D: → (XS, YS)
If S falls inside the Expected Zone, the coordinates of the rectangle area are:
A: → (XD −R, YD +R) B:→ (XD +R, YD +R)
C: → (XD −R, YD −R) D: → (XD +R, YD −R)
When S broadcasts its request, it includes the coordinates of the Request Zone
rectangle (see Figure 4.5). Once an intermediate node receives a RREQ, this is
discarded if its location does not fall within the rectangle specified in the packet.

4.5. Analysis of a location based routing protocol 87

To take into account the location measuring error, a positive value e is added to the
radius of the Expected Zone, consequently enlarging also the Request Zone.

4.5.4 Modelling the network

We encode the simple flooding and the LAR protocols using PEBUM. We ab-
stract out all details about how the Expected Zone and Request Zone are determined,
by using pre-defined functions that are implemented according to the specifications
of LAR Scheme 1.

We first introduce some auxiliary functions to simplify the protocol specification:

• gps : returns the actual geographical position of the node executing the process
(by means, e.g., of GPS technology);

• dist(l) : returns the distance from location l and the location of the node
executing the process;

• self : returns the name (permanent address) of the node executing the pro-
cess;

• geq(k, l) = true if k ≥ l, false otherwise;

• inside(s, A) = true if s ∈ A, false otherwise;

• unable(n) = refreshes the route table, removing the existing path to n;

• find path(n) = true if there exists a valid path for n in the route table of
the node executing the process;

• newBid: generates a new unique Bid identifier for a packet;

• lastBid: returns the latest generated Bid identifier;

• control(Bid) = true if the request associated with Bid has been already
received by the node executing the process.

Each node maintains a routing table containing information about the paths to the
other nodes in the network. Each entry has the following form:

(d, seq#d, next hopd, hopcountd, locd, vd, timeout) ,

where d is the destination name, seq#d is the sequence number of the route to d,
next hopd is the name of the next node to reach d, hopcountd is the number of hops
to reach d, locd is the last location known for d, vd is the average speed of d and
timeout is the timeout associated with the entry.

Each node is also associated with a request table containing the list of all the
requests already processed by the node; this is needed to prevent loops during the
route request forwarding. For brevity, we model a network in which all the nodes
use a common transmission radius r.

Let’s now consider N = (νc)(n[P]l |


i∈Ini[Q SIMPLE]li) where a node n
broadcasts a route request using the simple flooding algorithm to find a path to

88 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

m in the network


i∈Ini, and M = (νc)(n[P]l |


i∈Ini[Q LAR1]li) which is the
same network but with nodes in I using the LAR protocol (Scheme 1) instead of
the simple flooding algorithm.

The process executed by node n simply broadcasts a RREQ packet for node m
and waits for a RREP packet until a timeout expires. The timeout is modelled using
the operator ⊕ that behaves as the non-deterministic choice and can be implemented
in our calculus by means of the parallel composition is the standard way. In case of
timeout, a new RREQ is sent.

P = c̄∅,r⟨(rreq, n, newBid,m, Request Zone, seq#n, 0)⟩.P ′

P ′ = P ⊕ c(x1, x2, x3, x4, x5, x6, x7).[x1 = rrep][x2 = n][x3 = lastBid]

[x4 = m][geq(hop countm, x7)]ōkgps,r⟨route found⟩ , P ′

where m = ni for some i ∈ I, and x7 = hop count in the RREP packet received.
Basically, once a route is found, n broadcasts on channel ok a packet that signals
this event. Therefore, we consider that the two networks are probabilistic equivalent
with respect to their ability to find a route to m if we observe this transmission with
the same probability. Notice that, the output on channel c will not be observed by
any location because we want to allow the route discovery packets used in the two
networks to be arbitrary different.

Hereafter, we use X ∈ {SIMPLE,LAR1} to denote the simple flooding or LAR
Scheme 1. The RREQ SIMPLE and the RREQ LAR1 subprocess are defined as
shown by Table 4.3.

In order to compare the behaviour of the protocols, we focus our attention on
the following restricted set F ⊆ Sched of admissible schedulers:

1. the timeout for a RREQ identified by Bid occurs when in the networks there
are no packets related to Bid;

2. nodes’ movements are allowed at least every time a timeout occurs;

Condition 1 on F is a requirement inherited by the protocol design; the timeout is
usually set by knowing the physical dimension of the network. Roughly speaking, we
aim at preventing that in the analysis we consider unrealistic schedulers that always
choose the timeout option too quickly and hence a route to the destination is never
found and those schedulers that wait for an answer indefinitely long. Condition 2
is needed because we do not want to consider those schedulers that never allow for
node movements.

Proposition 4.8 (Energy Efficiency of LAR) Let M , N , M = {M̄ : M −→
∗

M̄} ∪ {N̄ : N −→
∗
N̄} and F as above. A sufficient condition for

M ⊑e
⟨M,F⟩ N.

is that the Markov chains Jni associated with the mobile nodes ni (i ∈ I) are ergodic.

4.5. Analysis of a location based routing protocol 89

Q X = c(x1, x2, x3, x4, x5, x6, x7).

[x1 = rreq]([control(x3) = false]([x4 = self]

c̄next hopx2
,r⟨(rrep, s, Bid, d, seq#s, hop counter)⟩.Q X,RREQ X⟨x̃⟩), Q X),

[x1 = rrep]([x2 = self]out⟨udgps,r, x2, x3, x4, x5, x6, x7⟩,
c̄next hopx2

,r⟨(rrep, s, Bid, d, seq#s, hop counter)⟩.Q X),

[x1 = rerr]unable(x4).Q X,Q X

RREQ SIMPLE⟨(rreq, s, Bid, d, seq#s, hop counter)⟩ =
[find path(d) = true].

c̄next hopd,r
⟨(rrep, s, Bid, d, seq#d, hop counter+ 1 + hopcountd, timeout)⟩,

c̄Request Zone,r⟨(rreq, s, Bid, d, seq#s, (hop counter) + 1)⟩.Q SIMPLE

RREQ LAR1⟨(rreq, s, Bid, d, Request Zone, seq#s, hop counter)⟩ =
([inside(gps, Request Zone) = true](

[find path(d) = true]

c̄next hopd,r
⟨(rrep, s, Bid, d, seq#d, hop counter+ 1 + hopcountd, timeout)⟩,

c̄Request Zone,r⟨(rreq, s, Bid, d, Request Zone, seq#s, (hop counter) + 1)⟩)).Q LAR1

Table 4.3: Process specifications used in the case study of Section 4.5

Proof.
We have to prove that:

1. N ∼=F
p M

2. for all schedulers F ∈ FC and for all H ∈M, there exists a scheduler F ′ ∈ FC
such that CosteF

′

M (H) ≤ CosteFN(H).

1. It is sufficient to prove M ≈F
p N . We have to find a relation containing

the pair (M,N) that is a probabilistic bisimulation relative to F . Let consider

Zi ∈ {RREQ,Q}, P̄ ∈ {P ′ : P −→
∗
P ′} and

R = {(n[P̄]l |


i∈Ini[Zi SIMPLE]li , n[P̄]l |


i∈Ini[Zi LAR1]li) :

N −→
∗
n[P̄]l |


i∈Ini[Zi SIMPLE]li}.

In order to prove that R ⊆≈F
p we have to show that, for all pairs (N̄ , M̄) ∈ R

and for all schedulers F ∈ F̂C there exists a scheduler F ′ ∈ F̂C such that for all α
and for all classes C in N /R it holds:

1. if α ̸= c?ṽ@l then ProbF
N̄
(
α−→, C) = ProbF

′

M̄
(

α̂
=⇒ C);

2. if α = c?ṽ@l then either ProbF
N̄
(
α−→, C) = ProbF

′

M̄
(

α
=⇒, C) or

ProbF
N̄
(
α−→, C) = ProbF

′

M̄
(=⇒, C).

We start from τ actions and consider N̄
τ−→ JN̄ ′Kθ. Then, ∀C ∈ N /R, we have:

ProbN̄(
τ−→, C) =


N̂∈spt(JN̄ ′Kθ)∩CJN̄

′Kθ(N̂).

90 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

If the action has been determined by the application of rule (Move) we are done,
because, for each pair (N̄ , M̄) ∈ R, M̄ can perform exactly the same movements as
N̄ , hence there will exists F ′ ∈ F̂C such that: ProbF

N̄
(
τ−→, C) = ProbF

′

M̄
(
τ−→ C), and we

are done.
If the action is the result of the application of rule (Lose), by applying rule

(Bcast) backwardly we get N̄
cK !ṽ[l,r]−−−−→ JN̄ ′K∆.

If l ∈ Request Zone then we are done, because, by the analysis of the pro-
cess P LAR1 with respect to P SIMPLE we realize that the protocol packets are
forwarded exactly in the same way inside the RequestZone.

If l ̸∈ Request Zone, then we are sure that M̄ ̸ cK !ṽ[l,r]−−−−→ because the routing
protocol packets are forwarded only inside the Request Zone. However, this does
not means that M̄ will not reach an equivalent state with the same probability. By
the initial hypothesis that all the Markov matrices are ergodic, M̄ can enter the
Request Zone with probability 1, send the message, and come back to the previous
location again with probability 1, and we get

ProbFN̄(
τ−→, C) = 1 = ProbFM̄(=⇒, C)

as required.
As concerns the input and the observable actions the proof is trivial, since the

input actions are the same for both protocols, and we applied the restriction to
channel c, hence the only observable output is the transmission of route found

through the channel ok by the node n, which behaves in the same way for both
protocols.

2. The proof of this second point is easy since we are sure that M performs at
least exactly the same output actions as N (the borderline case is when all nodes
are inside the Expected Zone, i.e., the request forwarding are the same for both
networks). Otherwise, we are sure that M performs less output actions then N ,
and, since all the nodes use exactly the same transmission radius for their commu-
nications, the Energy Cost will be proportional to the number of the outputs.

4.6 Conclusions

In this chapter we introduced a new version of the EBUM calculus, where prob-
abilistic and non-determinstic aspects co-exist. This probabilistic calculus allows us
to make both qualitative and quantitative analysis, and to compare ad hoc connec-
tivity protocols having the same observational behaviours but different performances
in terms of several metrics, as e.g., energy consumption and throughput.

However, this calculus is not able to cover the collisions occurring during the
networks transmissions, which can be due to both traffic congestion or attacks of
malicious nodes intended to disturb the network communications. Mobile ad hoc
networks are particularly vulnerable to these kinds of interference, due to the nature

4.6. Conclusions 91

of the channels used (radio-frequencies), and to the absence of a fixed infrastructure
to control the flow of communication inside the network.

In Chapter 5 we introduce a new version of the EBUM calculus where, in addition
to the introduction of probability distributions to model nodes mobility, we define
a new semantic, where input and output are modelled as non-atomic actions. The
new version of the calculus allows us to capture the collisions which may occur when
the transmission areas of different senders overlap.

92 4. Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks

5
Interference-sensitive Preorders for

Mobile Ad hoc Networks

5.1 Introduction

In this chapter we introduce a new extension of the EBUM calculus [11, 24, 10]
aimed at modelling the collisions which may occur during the network communica-
tions. Like its predecessor [22, 21], it deals with both nondeterministic and prob-
abilistic choices. Its semantics is inspired by Segala’s probabilistic automata [83]
driven by schedulers to resolve the nondeterministic choice among the probability
distributions over target states.

The peculiarity of this new version of the EBUM calculus is that, due to the non-
atomic nature of input and output actions, it can capture the case where multiple
nodes may simultaneously transmit along the same channel, over overlapping areas:
as in [51], the calculus provides an explicit representation of the collisions that may
occur at the receivers which lie within the transmission range of different senders.

5.2 The Calculus

5.2.1 Syntax

The syntax of our calculus is the same as the one introduced in chapter 3, (see
Table 3.1) except for the input and output actions of the inactive processes, reported
in Table 5.1: in(c, x̃).P is ready to listen to a transmission, while out⟨cL,r, w̃⟩.P is
ready to transmit.

Two further process forms arise as a result of reduction, due to our characteri-
zation of communication. In particular, processes that are ready to send or receive
evolve into active senders and receivers:

P,Q ::= . . . As in Table 5.1
| c(x̃).P Active input
| c̄L,r⟨w̃⟩.P Active output

94 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

Table 5.1: Syntax

Processes
P,Q,R ::= 0 Inactive process

| in(c, x̃).P Input
| out⟨cL,r, w̃⟩.P Output
| [w1 = w2]P,Q Matching
| A⟨w̃⟩ Recursion

Here, c(x̃).P is actively receiving a tuple w̃ of (closed) values via channel c and
continues as P{w̃/x̃}, i.e., as P with w̃ substituted for x̃ (where |x̃| = |w̃|). Dually,
c̄L,r⟨w̃⟩.P is transmitting a tuple of values w̃ via channel c and then continues as
P. We say that a process P is active if it is in prefix form, with the prefix denoting
an active input or output action. Predicate Active(P) is true when P is active,
and A(M) denotes the network composed of all the active nodes in M , i.e., all nodes
n[P]l in M with P active.

5.2.2 Reduction Semantics

The dynamics of the calculus is specified by the probabilistic reduction relation
(−→), described in Table 5.2: it takes the form M−→JM ′Kθ, denoting a transition that
leaves from M and leads to a probability distribution JM ′Kθ. As usually it relies on
the structural congruence relation, defined in Table 3.2. .

The synchronization over a wireless channel is described by the two rules (R-Bgn-
Bcast) and (R-End-Bcast). (R-Bgn-Bcast) models the beginning of a transmission,
with node n transiting from ready to active state to transmit a tuple ṽ of messages
on the channel c with radius r. The state change in n may cause a collision, which
the rule captures as follows. The premise of the rule describes a situation in which,
for i ∈ I ∪K nodes ni are actively involved in a synchronization, while node n and
the nodes in the set J are in (output and input, respectively) ready state. Given
that all the active transmitters are out of n’s range (because d(l, li) > ri∀i ∈ I), n
transits into active state: this awakes the nj with j ∈ J , as they are now in range of
an active transmitter, and at the same time causes a collision at the nodes in the set
K, which also are in range and were already active on input: as a result, ∀i ∈ K, ni

exits its active state, receiving the error signal ⊥. All the remaining active receivers
that do not sense a collision, and are in the range of an active sender may conclude
the synchronisation, as described by the (R-End-Bcast) rule.

5.2. The Calculus 95

(R-Bgn-Bcast)

∀i ∈ I.d(l, li) > ri ∀i ∈ I ∀j ∈ J.d(li, lj) > ri ∀h ∈ (J ∪K).d(l, lh) ≤ r

n[out⟨cL,r, ṽ⟩.P]l |M−→Jn[c̄L,r⟨ṽ⟩.P]l |M ′K∆

where M ≡


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li |


j∈Jnj[in(c, x̃j).Pj]lj |


k∈Knk[c(x̃k).Pk]lk ,

M ′ ≡


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li |


j∈Jnj[c(x̃j).Pj]lj |


k∈Knk[Pk{⊥/x̃i}]lk

(R-End-Bcast)
∀i ∈ I.d(l, li) ≤ r

n[c̄L,r⟨ṽ⟩.P]l |


i∈Ini[c(x̃i).Pi]li−→Jn[P]l |


i∈Ini[Pi{ṽ/x̃i}]liK∆

(R-Res)
M−→JM ′Kθ

(νc)M−→J(νc)M ′Kθ
(R-Move)

Active(P) = false

n[P]l−→Jn[P]lKµn
l

(R-Par)
M−→JM ′Kθ

M |N−→JM ′|NKθ
(R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ

Table 5.2: Reduction Semantics

Example 5.1 (Interference) Consider a network

M = n1[out⟨cL,r1 , ṽ1⟩.P1]l1 | n2[out⟨cL,r2 , ṽ2⟩.P2]l2 | m[in(c, x̃).P3]k

consisting of two mobile sender nodes, n1 and n2, communicating with a static
receiver node m, where the two sender nodes are not within the radius of each
other, i.e., d(l1, l2) > max(r1, r2), and they are both able to reach the receiver, i.e.,
d(l1, k) ≤ r1 and d(l2, k) ≤ r2. Then the following reductions, obtained by applying
rule (R-Bgn-Bcast), lead to a state where an interference is caused at the receiver
node:

M → Jn1[c̄L,r1⟨ṽ1⟩.P1]l1 | n2[out⟨cL,r2 , ṽ2⟩.P2]l2 | m[c(x̃).P3]kK∆

and if M ′ = n1[c̄L,r1⟨ṽ1⟩.P1]l1 | n2[out⟨cL,r2 , ṽ2⟩.P2]l2 | m[c(x̃).P3]k then

M ′ → Jn1[c̄L,r1⟨ṽ1⟩.P1]l1 | n2[c̄L,r2⟨ṽ2⟩.P2]l2 | m[P3{⊥/x̃}]kK∆.

The first sender node starts broadcasting on the channel c causing the receiver to
become active. Then the second sender being too far away from n1 to notice that
the channel is occupied starts broadcasting on the same channel and hence causes
an interference at the receiver side.

Rule (R-Move) describes node mobility, and it is the same as the one described
in the previous chapter.

96 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

All the remaining rules are standard, but a further remark is in order about the
(R-Par) rule and its interaction with the rules that govern synchronization. In fact,
such interactions may give rise to inconsistent network configurations. To see that,
observe that an application of the (R-Par) rule may cause messages to be lost by
active receivers located within the range of an active sender, even when there is
no interference. Similarly, an application of (R-Par) may exclude any set of active
sender and/or receiver from a synchronization: in both cases, the network is left in
an inconsistent state, with active senders (dually receivers) and no receiver (sender)
in range.

Example 5.2 (Inconsitent networks) Consider again the network of the previous
example where now the two sender nodes are within the radius of each other, that is
d(l1, l2) ≤ min(r1, r2). By applying rule (R-Bgn-Bcast) we obtain

M → Jn1[out⟨cL,r1 , ṽ1⟩.P1]l1 | n2[c̄L,r2⟨ṽ2⟩.P2]l2 | m[c(x̃).P3]kK∆.

Now let M ′ = n1[out⟨cL,r1 , ṽ1⟩.P1]l1 | n2[c̄L,r2⟨ṽ2⟩.P2]l2 | m[c(x̃).P3]k. The following
reduction obtained by applying rule (R-Par)

M ′ → Jn1[c̄L,r1⟨ṽ1⟩.P1]l1 | n2[c̄L,r2⟨ṽ2⟩.P2]l2 | m[c(x̃).P3]kK∆

leads to an inconsitent state where both sender nodes are broadcasting on the same
channel while being within a reachable distance of each other. Similarly, consider
the following application of rule (R-Bgn-Bcast):

M → Jn1[c̄L,r1⟨ṽ1⟩.P1]l1 | n2[out⟨cL,r2 , ṽ2⟩.P2]l2 | m[c(x̃).P3]kK∆

If M ′′ = n1[c̄L,r1⟨ṽ1⟩.P1]l1 | n2[out⟨cL,r2 , ṽ2⟩.P2]l2 | m[c(x̃).P3]k then by an application
of rule (R-Par) we obtain

M ′′ → Jn1[P1]l1 | n2[out⟨cL,r2 , ṽ2⟩.P2]l2 | m[c(x̃).P3]kK∆

leading to an inconsitent state where m is activelly receiving a message while there
is no active sender.

While it would be possible to rectify the problem by including conditions to
exclude critical pairs for the (R-Par) and synchronization rules, it is technically
more convenient to simply disregard any undesired reduction. This is achieved in
our definition of observational semantics (to be discussed shortly) by resorting to
the notion of “admissible scheduler” to guide the dynamics of networks through
“well-formed” executions.

5.2. The Calculus 97

5.2.3 Observational Semantics

As for its predecessor, we introduce the notion of barb denoting an observable
transmission with a certain probability according to a fixed scheduler. Schedulers
are total functions discribed in chapter 4 (see the Definition 4.1).

As we anticipated, we restrict the class of all networks (resp. executions) to the
class of well-formed networks (resp. executions) where, (1) a transmitter, before
transiting in active state checks that, locally, the communication channel is not
presently busy with other transmissions, and (2) each active receiver in the network
is in the transmission cell of exactly one transmitter. In order to restrict the set
of all executions to the set of well-formed executions, we restrict the set of all
schedulers to the following set of admissible schedulers. For this purpose, we remind
the reader that A(M) is network composed only by its currently active nodes in M
and introduce the auxiliary operator Top(·) over networks. A channel c is at the top
level of a network M , denoted c ∈ Top(M), if M ≡ (νd̃)(n[P]l | N) and P is of the
form in(c, x̃).Q; c(x̃).Q; out⟨cL,r, w̃⟩.Q; or c̄L,r⟨w̃⟩.Q.

Definition 5.1 (Well-formed network) A network M is well-formed if either
A(M) ≡ ∅ or M ≡M1 | N such that:

1. A(M1) ≡ (νd̃)


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li |


j∈J nj[c(x̃j).Pj]lj

and the following

conditions hold:

• ∀i, i′ ∈ I.d(li, li′) > max(ri, ri′),

• ∀j ∈ J.∃!i ∈ I such that d(lj, li) ≤ ri,

2. c ̸∈ Top(N), and N is well-formed.

Definition 5.2 (Admissible scheduler) A scheduler F is admissible if for all
executions e and for all networks M in the support of F (e), M is well-formed.

We shall denote the set of admissible schedulers by Sched and, unless otherwise
stated, assume that all schedulers are admissible.

As we have done in the Chapter 4, we want to define a relation among networks,
related to a specific set of schedulers 1.

Definition 5.3 Given an admissible scheduler F ∈ Sched, we denote by FC the set
of admissible schedulers F ′ such that ∀M0, ∀e ∈ ExecFM0

of the form

e = M0 −→θ1 M1 −→θ2 M2... −→θh Mh,
∀ context C0[·] and ∀e′ ∈ ExecF

′

C0[O0]
with M0 ≡ O0 of the form

e′ = C0[O0] −→θ′1
C1[O1] −→θ′2

C2[O2]... −→θ′k
Ck[Ok],

there exists a monotonic surjective function f from [0− k] to [0− h] such that:

1The following definitions are redundant with respect to Chapter 4 but we report them integrally
in order to make the chapter more readable and understandable.

98 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

(i) ∀i ∈ [0− k], Oi ≡Mf(i)

(ii) ∀j ∈ [1− k], θ′j = θf(j) when Mf(j−1) −→θf(j) Mf(j).

Given a subset F ∈ Sched of schedulers, we define FC =


F∈FFC.

Example 5.3 Let M0 ≡ m[out⟨cL,r, v⟩.P]l and F ∈ Sched such that

M0 −→∆ M1 −→∆ M2 ∈ ExecFM ,

with M1 ≡ m[c̄L,r⟨v⟩.P]l and M2 ≡ m[P]l.
First notice that F ∈ FC, since we can take the empty context C[·] ≡ ∅ | · and

the identity function f such that f(i) = i for all i ∈ [0−2]. In this case C[Mi] ≡Mi

for all i ∈ [0− 2] and the property of Definition 5.3 is satisfied.
Let now consider N0 ≡ n[in(c, x).Q]k such that d(l, k) ≤ r. All the admissible

schedulers allowing M0 and N0 to interact are in FC. Indeed, consider F1 ∈ Sched
such that, by applying rules (Struct-Bgn-Bcast) and (Struct-End-Bcast)

M0 | N0 −→∆ M1 | N1 −→∆ M2 | N2 ∈ ExecF1

M0|N0

with N1 ≡ n[c(x).Q]k and N2 ≡ n[Q{v/x}]k, and consider also F2 such that, by
applying rule (R-Par)

M0 | N0 −→∆ M1 | N0 −→∆ M2 | N0 ∈ ExecF2

M0|N0
.

Both F1 and F2 satisfy the properties of Definition 5.3, hence F1, F2 ∈ FC.
Now consider again the network N0. Let e′ = n[Q]k −→µn

k
n[Q]k′ ̸∈ ExecFN0

then

∀F̄ ∈ Sched such that e′ ∈ ExecF̄N0
, F̄ ̸∈ FC since F̄ does not satisfy the conditions

of Definition 5.3.

Now we are able to introduce our equivalence relation.
Again, the notion of barb introduced below is the probabilistic extension of

Definition 3.1 of Chapter 3 and denotes an observable transmission with a certain
probability according to a fixed admissible scheduler.

Definition 5.4 (Probabilistic Barb) We say that a network M has a probabilis-
tic barb with probability p on a channel c to the set K of locations, according to the
admissible scheduler F , written M⇓Fp c@K, if ProbFM({N |N ↓c@K}) = p.

Intuitively, for a given network M and scheduler F , if M⇓Fp c@K then p is the
positive probability that M , driven by F , performs a transmission on channel c and
at least one of the intended recipients is able to correctly listen to it.

In the following, we introduce a probabilistic observational congruence, in the
style of [31], which, as for the previous version of the calculus, is parametric to a
restricted set of schedulers.

5.3. A Bisimulation-based Proof Technique 99

Definition 5.5 Given a set of networks, and a set F ∈ Sched of scehdulers, and a
relation R over networks:

• Barb preservation. R is barb preserving w.r.t. F if MRN and M⇓Fp c@K for

some F ∈ FC implies that there exists F ′ ∈ FC such that N⇓F ′

p c@K.

• Reduction closure. R is reduction closed w.r.t. F if MRN implies that
for all F ∈ FC, there exists F ′ ∈ FC such that for all classes C ∈ N /R,
ProbFM(C) = ProbF

′
N (C).

• Contextuality. R is contextual if MRN implies that for every context C[·], it
holds that C[M]RC[N].

Our probabilistic observational congruence with respect to a restricted set F of
schedulers is defined as the largest relation as follows.

Definition 5.6 (Probabilistic Observational Congruence with respect to F)
Given a set F of schedulers, Probabilistic observational congruence w.r.t. F , writ-
ten ∼=F

p , is the largest symmetric relation over networks which is reduction closed,
barb preserving and contextual.

Two networks are related by ∼=F
p if they exhibit the same probabilistic behaviour

(communications) relative to the corresponding sets of intended recipients. In the
next section we develop a bisimulation-based proof technique for ∼=F

p . It provides

an efficient method to check whether two networks are related by ∼=F
p .

5.3 A Bisimulation-based Proof Technique

In this section we develop a co-inductive proof technique for the relation ∼=F
p .

5.3.1 Labelled Transition Semantics

As for its predecessor, we define a LTS semantics for our calculus, which is built
upon two sets of rules: one for processes and one for networks. Table 5.3 presents
the LTS rules for processes. Transitions are of the form P

η−→ P ′, where η ranges
over input and output actions of the form:

η ::= c |cϑ |c̄L,r | c̄L,rṽ with ϑ ::= ṽ | ⊥.

Rules (Beg-Out) and (End-Out) model the beginning and the end of an output
action. Rule (Beg-In) models a process beginning listening to a channel in order to
receive a value. Rule (End-In) models either the correct reception of a message or
the reception of a ⊥ due to a collision. All the remaining rules are standard.

100 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

(Beg-Out)
−

out⟨cL,r, ṽ⟩.P
c̄L,r−−→ c̄L,r⟨ṽ⟩.P

(End-Out)
−

c̄L,r⟨ṽ⟩.P
c̄L,r ṽ−−−→ P

(Beg-In)
−

in(c, x̃).P
c−→ c(x̃).P

(End-In)
−

c(x̃).P
cϑ−→ P{ϑ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P,Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 ̸= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q′

(Rec)
P{ṽ/x̃} η−→ P ′ A(x̃)

def
= P

A⟨ṽ⟩ η−→ P ′

Table 5.3: LTS rules for Processes

Table 5.4 presents the LTS rules for networks. The transitions are of the form
M

γ−→ JM ′Kθ, where M is a network, JM ′Kθ is a distribution over networks, and γ
ranges over the following labels:

γ ::= c?@l |c?ϑ@l | cL![l, r] |cL!ṽ[l, r] | c!ṽ@K ▹ R | τ.

We denote by AsM(c, l) the set of active senders of M on channel c reaching l, i.e.,
if A(M) ≡ (νd̃)


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li |


j∈Jnj[c(x̃j).Pj]lj | N


and c ̸∈ Top(N) then

AsM(c, l) = {ni : i ∈ I, d(l, li) ≤ ri}.
Rules (Beg-Snd) and (End-Snd) model the transmission of a message ṽ through

channel c with radius r to the set L of observers. Transmissions are non-atomic
actions: indeed, since mobile ad-hoc networks are not controlled by any fixed infras-
tructure, we have to take into account the possibility for nodes to be not perfectly
synchronized with each other. (Beg-Rcv) models the beginning of a message re-
ception, while (End-Rcv) models both the successful reception of a message or the
reception of a failure message (denoted by ⊥) due to an interference.

Rule (Beg-Bcast) models the beginning of a broadcast message propagation: all
the nodes lying within the transmission cell of the sender may begin to receive a
message (regardless of the fact that they are in L).

Rule (Coll-Bcast) models the collision occurred at the location of a receiver
lying within the intersection of the transmission area of different nodes transmitting
simultaneously through the same channel.

Rule (End-Bcast) models the conclusion of a broadcast message propagation: all
the nodes lying within the transmission cell of the sender will successfully receive a
message.

5.3. A Bisimulation-based Proof Technique 101

Rule (Obs) models the observability of a transmission: every transmission may
be detected (and hence observed) by any recipient located within the transmission
cell of one sender and outside the “interference area”, that is the intersection of
the transmission areas of the active senders of the network. The label c!ṽ@K ▹ R
represents the transmission of the tuple ṽ of messages via c to the subset K of
observers inside the reachable locations R within the transmission cell of the sender.
Notice that collisions are not observable and only a correctly ended transmission
may be observed.

Rule (Par) is standard.

Rule (Move) models migration of a mobile node n from a location l to a location
k according to the probability distribution µn

l , which depends on the Markov chain
Jn statically associated with n. Nodes can move only if they are not executing any
active action (i.e., nodes cannot move while transmitting or receiving).

Rules (Lose1) and (Lose2) model both message loss and a local activity of the
network which an observer is not party to. As usual, τ -transitions are used to denote
non-observable actions. Finally, rule (Res) models the standard channel restriction,
where Chan(γ) = c if γ is of the form c?@l; c?ϑ@l; cL![l, r]; cL!ṽ[l, r]; or c!ṽ@K ▹R,
and Chan(τ) = ⊥.

We prove that the LTS-based semantics coincides with the reduction semantics
and the notion of observability (barb) given in the previous section.

We first prove that if M
γ−→ JM ′K∆, then the structure of M and M ′ can be

determined up to structural congruence.

We introduce the following auxiliary lemma in order to prove our harmony the-
orem.

Lemma 5.1 Let M be a network.

1. If M
c?@l−−→ JM ′K∆, then there exist n, x̃, a (possibly empty) sequence d̃ such

that c /∈ d̃, a process P and a (possibly empty) network M1 such that:

M ≡ (νd̃)(n[in(c, x̃)P]l |M1)

and

M ′ ≡ (νd̃)(n[c(x).P]l|M1).

2. If M
c?ϑ@l−−−→ JM ′K∆, then there exist n, x̃, d̃ such that c /∈ d̃ and P such that:

M ≡ (νd̃)(n[c(x).P]l|M1)

and

M ′ ≡ (νd̃)(n[P{ϑ/x̃}]l|M1).

102 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

3. If M
cL![l,r]−−−−→ JM ′K∆, then there exist n, ṽ, a (possibly empty) sequence d̃ such

that c /∈ d̃, a process P , two (possibly empty) sets J and K such that ∀h ∈ J∪K
d(l, lh) ≤ r and a (possibly empty) network M1 such that:

M ≡ (νd̃)(n[out⟨cL,r, ṽ⟩.P]l |


j∈J
nj[in(c, x̃j).Pj]lj |


k∈K

nk[c(x̃k).Pk]lk |M1)

and

M ′ ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l |


j∈J
nj[c(x̃j).Pj]lj |


k∈K

nK [Pk{⊥/x̃k}]lk |M1).

4. If M
cL!ṽ[l,r]−−−−→ JM ′K∆, then there exist n, a (possibly empty) sequence d̃ such

that c /∈ d̃, a process P , a (possibly empty) set J , such that ∀j ∈ J d(l, lj) ≤ r
and a (possibly empty) network M1 such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|


j∈J
nj[c(x̃j).Pj]lj |M1)

and
M ≡ (νd̃)(n[P]l|


j∈J

nj[Pj{ṽ/x̃j}]lj |M1).

Proof.
The proof obtained by induction on the transition rules of Table 5.

Case 1 : M
c?@l−−→ JM ′K∆

(Beg-Rcv) Let M
c?@l−−→ JM ′K∆ inferred by rule (Beg-Rcv), then there exist

n, P, l, r such that M ≡ n[P]l, M
′ ≡ n[P ′]l and

P = in(c, x̃).Q and P ′ = c(x̃).Q. If we consider the empty network M1 and
the empty sequence d̃ lemma is proved.

(Par) Let M
c?@l−−→JM ′K∆ inferred by rule (Par), where M ≡ M1 | N , M ′ ≡

M ′
1 | N and M1

c?@l−−→JM ′
1K∆. By induction hypothesis we have

M1 ≡ (νd̃)(n[in(c, x̃).P]l|M2)

and
M ′

1 ≡ (νd̃)(n[c(x̃).P]l|M2),

for some n, P , x̃, (possibly empty) d̃ such that c /∈ d̃, and (possibly empty)
M2. By applying rule (Struct Cxt Par), (Struct Par Assoc), (Struct Res Par)
and (Struct Trans) we obtain

M ≡M1 | N ≡ (νd̃)(n[in(c, x̃).P]l|(M2 | N))

and
M ′ ≡M ′

1 | N ≡ (νd̃)(n[in(c, x̃).P]l|(M2 | N)),

as required.

5.3. A Bisimulation-based Proof Technique 103

(Res) Let M
c?@l−−→JM ′K∆ inferred by rule (Res), where M ≡ (νd)M1, M

′ ≡
(νd)M ′

1 and M1
c?@l−−→JM ′

1K∆ and c ̸= d. By induction hypothesis we have

M1 ≡ (νd̃′)(n[in(c, x̃).P]l|M2)

and
M ′

1 ≡ (νd̃′)(n[c(x̃).P]l|M2)

for some n, P , x̃, (possibly empty) d̃′ such that c /∈ d̃′, and (possibly empty)
M2.

If we consider d̃′′ = d̃′ ∪ d, since c /∈ d̃′′, we get:

M ≡ (νd̃′′)(n[in(c, x̃).P]l|M2)

and
M ′ ≡ (νd̃′′)(n[in(c, x̃).P]l|M2).

Case 2 : M
c?x̃@l−−−→ JM ′K∆

The proof of this case is analogous to the previous one.

Case 3 : M
cL![l,r]−−−−→ JM ′K∆

(Beg-Snd) Let M
cL![l,r]−−−−→ JM ′K∆ inferred by rule (Beg-Snd), then exist ṽ and

P such that: M ≡ n[out⟨cL,r, ṽ⟩.P]l. Since out⟨cL,r, ṽ⟩.P
¯cL,r−−→ c̄L,r⟨ṽ⟩.P , if we

suppose d̃, J , K and M1 empty, lemma is proved because

M ≡ (νd̃)(n[out⟨cL,r, ṽ⟩.P]l|

j∈J

nj[in(c, x̃j)Pj]lj |

k∈K

nk[c(x̃k)Pk]lk |M1)

and

M ′ ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

j∈J

nj[c(x̃j)Pj]lj |

k∈K

nk[Pk{⊥/x̃k}]lk |M1).

(Beg-Bcast) Let M
cL![l,r]−−−−→ JM ′K∆ because M ≡ M1 | N , M ′ ≡ M ′

1 | N ′,

M1
cL![l,r]−−−−→ JM ′

1K∆ and N
c?@l′−−−→ JN ′K∆, with d(l, l′) ≤ r. By induction hypoth-

esis:

M1 ≡ (νd̃1)(n[out⟨cL,r, ṽ⟩.P]l|

j∈J

nj[in(c, x̃j)Pj]lj |

k∈K

nk[c(x̃k)Pk]lk |M2)

and

M ′
1 ≡ (νd̃1)(n[c̄L,r⟨ṽ⟩.P]l|


j∈J

nj[c(x̃j)Pj]lj |

k∈K

nk[Pk{⊥/x̃k}]lk |M2),

104 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

for some n, P , ṽ, l, some (possible empty) sequence d̃1 such that c /∈ d̃1, some
(possibly empty) sets J and K and some (possibly empty) network M2, and
by indcution hypothesis we get:

N ≡ (νd̃2)(m[in(c, x̃).Q]l′ |N1)

and
N ′ ≡ (νd̃2)(m[c(x̃).Q]l′ |N1),

for some m, Q, x̃, some (possible empty) sequence d̃2 such that c /∈ d̃2 and
(possibly empty) network N1 . By applying rules (Struct Cxt Par), (Struct
Par Assoc), (Struct Res Par) and (Struct Trans), if we consider d̃ = d̃1 ∪ d̃2,
we can assume d̃1 ̸∈ fc(N) and d̃2 ̸∈ fc(M) and we get:

M ≡ (νd̃)(n[out⟨cL,r, ṽ⟩.P]l|m[in(c, x̃).Q]l′ |

j∈J

nj[in(c, x̃j)Pj]lj

|

k∈K

nk[c(x̃k)Pk]lk | (M2 | N1))

and
M ′ ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|m[c(x̃).Q]l′ |


j∈J

nj[c(x̃j)Pj]lj

|

k∈K

nk[Pk{⊥/x̃k}]lk | (M2 | N1)).

(Coll) Let M
cL![l,r]−−−−→ JM ′K∆ because M ≡ M1 | N , M ′ ≡ M ′

1 | N ′, M1
cL![l,r]−−−−→

JM ′
1K∆ and N

c?⊥@l′−−−−→ JN ′K∆, with d(l, l′) ≤ r. By induction hypothesis:

M1 ≡ (νd̃1)(n[out⟨cL,r, ṽ⟩.P]l|

j∈J

nj[in(c, x̃j)Pj]lj |

k∈K

nk[c(x̃k)Pk]lk |M2)

and

M ′
1 ≡ (νd̃1)(n[c̄L,r⟨ṽ⟩.P]l|


j∈J

nj[c(x̃j)Pj]lj |

k∈K

nk[Pk{⊥/x̃k}]lk |M2),

for some n, P , some (possibly empty) sequence d̃1 such that c /∈ d̃1, some
(possibly empty) sets J and K and some (possibly empty) network M2, and
by induction hypothesis we get:

N ≡ (νd̃2)(m[c(x̃).Q]l′ |N1)

and
N ′ ≡ (νd̃2)(m[Q{⊥/x̃}]l′ |N1),

5.3. A Bisimulation-based Proof Technique 105

for some m, Q, x̃, some (possibly empty) sequence d̃2 such that c /∈ d̃2 and
(possibly empty) network N1 . By applying rules (Struct Cxt Par), (Struct
Par Assoc), (Struct Res Par) and (Struct Trans), if we consider d̃ = d̃1 ∪ d̃2,
we can assume d̃1 ̸∈ fc(N), d̃2 ̸∈ fc(M) and we get:

M ≡ (νd̃)(n[out⟨cL,r, ṽ⟩.P]l|

j∈J

nj[in(c, x̃j)Pj]lj

|

k∈K

nk[c(x̃k)Pk]lk | m[c(x̃).Q]l′ |(M2 | N1))

and
M ′ ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|


j∈J

nj[c(x̃j)Pj]lj

|

k∈K

nk[Pk{⊥/x̃k}]lkm[Q{⊥/x̃}]l′ | (M2 | N1)).

The proof of the other cases is analogous to the first part of the lemma.

Case 4 : M
cL!ṽ[l,r]−−−−→ JM ′K∆

(End-Snd) Let M
cL!ṽ[l,r]−−−−→ JM ′K∆ inferred by rule (End-Snd), then exists P

such that M ≡ n[c̄L,r⟨ṽ⟩.P]l. Since c̄L,r⟨ṽ⟩.P
¯cL,r ṽ−−−→ P , if we suppose J , d̃ and

M1 empty, lemma is proved because

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|

j∈J

nj[c(x̃j)Pj]lj |M1)

and
M ′ ≡ (νd̃)(n[P]l|


j∈J

nj[Pj{ṽ/x̃j}]lj |M1).

(End-Bcast) Let M
cL!ṽ[l,r]−−−−→ JM ′K∆ because M ≡ M1 | N , M ′ ≡ M ′

1 |
N ′, M1

cL!ṽ[l,r]−−−−→ JM ′
1K∆ and N

c?ṽ@l′−−−→ JN ′K∆, with d(l, l′) ≤ r. By induction
hypothesis:

M1 ≡ (νd̃1)(n[c̄L,r⟨ṽ⟩.P]l|

j∈J

nj[c(x̃j)Pj]lj |M2)

and
M ′

1 ≡ (νd̃1)(n[P]l|

j∈J

nj[Pj{ṽ/x̃j}]lj |M2),

for some n, P , some (possibly empty) sequence d̃1 such that c /∈ d̃1, some (pos-
sibly empty) set J and some (possibly empty) network M2, and by induction
hypothesis we get:

N ≡ (νd̃2)(m[c(x̃).Q]l′ |N1)

106 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

and
N ′ ≡ (νd̃2)(m[Q{ṽ/x̃}]l′ |N1),

for some m, Q, x̃, some (possibly empty) sequence d̃2 such that c /∈ d̃2 and
(possibly empty) network N1 . By applying rules (Struct Cxt Par), (Struct
Par Assoc), (Struct Res Par) and (Struct Trans), if we consider d̃ = d̃1 ∪ d̃2,
we can assume d̃1 ̸∈ fc(N), d̃2 ̸∈ fc(M) and we get:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|m[c(x̃).Q]l′ |

j∈J

nj[c(x̃j)Pj]lj | (M1 | N1))

and
M ′ ≡ (νd̃)(n[P]l|m[Q{ṽ/x̃}]l′ |


j∈J

nj[Pj{ṽ/x̃}]lj | (M1 | N1)).

The proof of the other cases is analogous to the first part of the lemma.
We also show that structural congruence respects the transitions of Table 5.4.

Lemma 5.2 If M
γ−→ JM ′Kθ and M ≡ N , then there exists N ′ such that N

γ−→ JN ′Kθ
and M ′ ≡ N ′.

Proof.
By induction on the depth of the inference M

γ−→ JM ′Kθ.
There are a lot of cases to consider, following we give only some example.

(Par) Let consider M
γ−→ JMKθ because M ≡ M1 | N , M ′ ≡ M ′

1 | N and M
γ−→

JM ′Kθ. There are several rules for structural congruence that can be applied.

Let consider M1 | N ≡ M1 | N ′ because N ′ ≡ N , by (Struct Cxt Par). By

hypothesis M1
γ−→ JM ′

1Kθ and, by an application of rule (Par) we get M1 | N ′ γ−→
JM ′

1 | N ′Kθ. But, since N ′ ≡ N , by applying (Struct Cxt Par) we have that
M ′

1 | N ′ ≡M ′
1 | N .

Let consider now M1 | N ≡ N | M1 by (Struct Par Com). Again, since

M1
γ−→ JM ′

1Kθ, by applying rule (Par) we get N | M1
γ−→ JN | M ′

1Kθ, and, by
applying again rule (Struct Par Com), N |M ′

1 ≡M ′
1 | N , as required.

(End-Bcast) Let consider M
cL!ṽ[l,r]−−−−→ JM ′K∆, because M ≡ M1 | N , M ′ ≡ M ′

1 | N ′ and

M
cL!ṽ[l,r]−−−−→ JM ′K∆ and N

c?ṽ@l′−−−→ JN ′K∆, with d(l, l′) ≤ r.

Again several rules for structural congruence can be applied.

Let consider, e.g. M1 | N ≡ N | M1 by (Struct Par Comm). Again, since

M1
cL!ṽ[l,r]−−−−→ JM ′

1K∆, N
c?ṽ@l′−−−→ JN ′K∆, and d(l, l′) ≤ r, we can apply rule (Bcast),

obtaining N | M1
cL!ṽ[l,r]−−−−→ JN ′ | M ′

1K∆, and, by applying again (Struct Par
Comm) we get N ′ | M ′

1 ≡ M ′
1 | N ′ as required. Let consider now M2 | N ≡

5.3. A Bisimulation-based Proof Technique 107

M1 | N because M2 ≡ M1, by (Struct Cxt Par). By induction hypothesis

M2
cL!ṽ[l,r]−−−−→ JM ′

2K∆, and M ′
2 ≡ M ′

1. But since d(l, l′) ≤ r we can apply rule

(Bcast), obtaining M2 | N
cL!ṽ[l,r]−−−−→ JM ′

2 | N ′K∆. Now, by applying (Struct Cxt
Par) we get M ′

2 | N ′ ≡M ′
1 | N ′, as required.

The proof of the other cases is similar.
The following theorem establishes the relationship between the reduction seman-

tics and the LTS one.

Theorem 5.1 (Harmony) Let M be a network.

1. If M −→ JM ′Kθ then there exist N and N ′ such that N
τ−→ JN ′Kθ, M ≡ N and

M ′ ≡ N ′.

2. M ↓c@K iff M is well-formed and N
c!ṽ@K▹R−−−−−→ JN ′K∆ for some R, ṽ, N ≡ M

and M ′.

3. If M
τ−→ JM ′Kθ then M −→ JM ′Kθ.

4. If M
c!ṽ@K▹R−−−−−→ JM ′K∆ then M −→ JM ′K∆.

Proof.

1. The first part is proved by induction on the reduction M −→ JM ′Kθ
Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Move). We
deduce M ≡ M ′ ≡ n[P]l and θ = µn

l , for some name n, some location l and
some process P . We simply apply (Move) to obtain:

Active(P) = false

n[P]l
τ−→ Jn[P]lKµn

l

.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Par). If we
consider M ≡M1 |M2 and M ′ ≡M ′

1 |M2

M1 −→ JM ′
1Kθ

M1 |M2 −→ JM ′
1 |M2Kθ

,

By induction hypothesis M1
τ−→ JM ′

1Kθ, then by applying rule (Par) we get:

M1
τ−→ JM ′

1Kθ
M1 |M2

τ−→ JM ′
1 |M2Kθ

.

108 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Res). If we
consider M ≡ (νc)M1 and M ′ ≡ (νc)M ′

1:

M1 −→ JM ′
1Kθ

(νc)M1 −→ J(νc)M ′
1Kθ

,

by induction hypothesis M1
τ−→ JM ′

1Kθ, then by applying rule (Res), since
Chan(τ) ̸= c we get:

M1
τ−→ JM ′

1Kθ
(νc)M1

τ−→ J(νc)M ′
1Kθ

.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-Bgn-Bcast).
It means:

M ≡ (νd̃)(n[out⟨cL,r, ṽ⟩.P]l |


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li

|


j∈Jnj[c(xj).Pj]lj |


k∈Knk[in(c, xk).Pk]lk)

and

M ′ ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l |


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li

|


j∈Jnj[Pj{⊥/x̃j}]lj |


k∈Knk[c(xk).Pk]lk),

for some n, some process P , some channel c, some set L of locations, some
radius r, some tuple ṽ of messages, some tuple d̃ of channels, and some (pos-
sibly empty) sets I, J and K of networks. Then, by applying rule (Beg-Snd),
(Beg-Rcv), and then | K | times rule (Beg-Bcast), | J | times rule (Coll-Bcast),
and, finally rules (Res), (Lose1) and (Par), we obtain:

M
τ−→≡

J(νd̃)(n[c̄L,r⟨ṽ⟩.P]l |


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li |


j∈Jnj[Pj{⊥/x̃j}]lj |


k∈Knk[c(xk).Pk]lk)Kθ
as required.

Suppose that M −→ JM ′Kθ is due to the application of the rule (R-End-Bcast).
It means:

M ≡ (νd̃)n[c̄L,r⟨ṽ⟩.P]l |


j∈J
nj[c(x̃j).Pj]lj

M ′ ≡ (νd̃)n[P]l |


j∈J
nj[Pj{ṽ/x̃j}]lj

for some channel c, some tuple d̃ of channels such that c /∈ d̃, some node n,
some process P , some tuple ṽ of messages, some location l, some set L of
locations, some radius r, some process P , and some (possibly empty set) J
such that d(l, lj) ≤ r ∀j ∈ J .

Then, by applying rule (End-Snd), (End-Rcv), | I | times rule (End-Bcast),
| d̃ | times (Res) and finally rule (Lose2), we get:

5.3. A Bisimulation-based Proof Technique 109

(νd̃)n[c̄L,r⟨ṽ⟩.P]l |


j∈J
nj[c(x̃j).Pj]lj

τ−→J(νd̃)n[P]l |


j∈J
nj[Pj{ṽ/x̃j}]ljK∆

as required.

Finally let suppose that the reduction M −→ JM ′Kθ is due to an application of
rule (R-Struct):

M ≡ N N−→JN ′Kθ N ′ ≡M ′

M−→JM ′Kθ
.

By induction hypothesis there exists N1 ≡ N and N2 ≡ N ′ such that N1
τ−→

JN2Kθ. Then, by applying the rule for structural congruence (Struct Trans) we
get M ≡ N ≡ N1 and M ′ ≡ N ′ ≡ N2, as required.

2. The second part of the theorem follows from Lemma 5.1 and the definition of
Barb. If M ↓c@K , by the definition of Barb there exists ṽ, L, r, a (possibly
empty) sequence d̃ such that c ̸∈ d̃, a process P , a (possibly empty) network
M1 such that:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l |M1), with K ⊆ {k ∈ L s.t. d(l, k) ≤ r} and K ̸= ∅.

By applying the rules (End-Snd) and (Par) we obtain:

n[c̄L,r⟨ṽ⟩.P]l
cL!ṽ[l,r]−−−−→ Jn[P]lK∆

n[c̄L,r⟨ṽ⟩.P]l |M1
cL!ṽ[l,r]−−−−→ Jn[P]l |M1K∆

;

then, since K ⊆ {l′ | d(l, l′) ≤ r} ∩ L and K ̸= ∅, we can apply rule (Obs):

n[c̄L,r⟨ṽ⟩.P]l |M1
c!ṽ@K▹R−−−−−→ Jn[P]l |M1K∆,

where R ⊆ {l′ ∈ Loc : d(l, l′) ≤ r}, as required.

If M
c!ṽ@K▹R−−−−−→ JM ′K∆, because M

cL!ṽ[l,r]−−−−→ JM ′K∆, by applying Lemma 5.1 then
there exist n, a (possibly empty) sequence d̃ such that c /∈ d̃, P , a (possibly
empty) network M1 and a (possibly empty) set J , such that ∀j ∈ J d(l, lj) ≤ r
and:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|


j∈J
nj[c(x̃j).Pj]lj |M1)

and

M ≡ (νd̃)(n[P]l|


j∈J
nj[Pj{ṽ/x̃j}]lj |M1).

By applying the definition of barb we conclude M ↓c@K .

110 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

3. The third part of the theorem is proved by induction on the derivation M
τ−→

JM ′Kθ.
Suppose that M

τ−→ JM ′Kθ is due to an application of the rule (Move), that
means M ≡ M ′ ≡ n[P]l, θ = µn

l for some node n, some process P and some
location l, and :

Active(P) = false

n[P]l
τ−→ Jn[P]lKµn

l

.

Hence , by applying (R-Move) we get:

Active(P) = false

n[P]l−→Jn[P]lKµn
l

.

If M
τ−→ JM ′Kθ is due to an application of (Lose1):

M
cL![l,r]−−−−→ JM ′K∆
M

τ−→JM ′K∆
,

then, by applying Lemma 5.1, there exists n, ṽ, P d̃ such that c /∈ d̃ and P ,
a (possibly empty) network M1 and two (possibly empty) sets J and K such
that ∀i ∈ J ∪K d(l, li) ≤ r, such that:

M ≡ (νd̃)(n[out⟨cL,r, ṽ⟩.P]l|


j∈J
nj[in(c, x̃j).Pj]lj |


k∈K

nk[c(x̃k).Pj]lj |M1)

and

M ′ ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l|


j∈J
nj[c(x̃j).Pj]lj |


k∈K

nk[Pk{⊥/x̃k}]lk |M1).

Finally, by applying rule (R-Bgn-Bcast), (R-Res) and (R-Struct) we get M −→
JM ′Kθ.

For the application of the rule (Lose2) the proof is analogous to the previous
one.

Suppose that M
τ−→ JM ′Kθ is due to the application of (Res), we have M ≡

(νc)M1, M
′ ≡ (νc)M ′

1 and

M1
τ−→ JM ′

1Kθ
(νc)M1

τ−→ J(νc)M ′
1Kθ

.

By induction hypothesis M1 −→ JM ′
1Kθ, hence, by applying rule (R-Res) we get

(νc)M1 −→ J(νc)M ′
1Kθ.

5.3. A Bisimulation-based Proof Technique 111

Finally, suppose that M
τ−→ JM ′Kθ is due to the application of (Par), we have

M ≡M1 | N , M ′ ≡M ′
1 | N and:

M1
τ−→ JM ′

1Kθ
M1|N

τ−→ JM ′
1|NKθ

,

by induction hypothesis M1 −→ JM ′
1Kθ, hence, by applying rule (R-Par) we get

M1|N −→ JM ′
1|NKθ.

4. The last part of the theorem follows from definition of barb and Lemma 5.1.

Formally, since M
c!ṽ@K▹R−−−−−→ JM ′K∆ because M

cL!ṽ[l,r]−−−−→ JM ′K∆ for some location
l, radius r and set L of intended recipients, by applying Lemma 5.1:

M ≡ (νd̃)(n[c̄L,r⟨ṽ⟩.P]l |


j∈J
nj[c(x̃j).Pj]lj |M1)

and
M ′ ≡ (νd̃)(n[P]l |


j∈J

nj[Pj{ṽ/x̃j}]lj |M1)

for some n, P , for some (possibly empty) sequence d̃ such that c /∈ d̃, some
(possibly empty) set J , and some (possibly empty) network M1. Then, by
applying the rule (R-End-Bcast), (R-Par) and (R-Res) we get

(νd̃)(n[c̄L,r⟨ṽ⟩.P]l |


j∈Jnj[c(x̃j).Pj]lj |M1) −→ J(νd̃)(n[P]l |
j∈Jnj[Pj{ṽ/x̃j}]lj |M1)K∆,

and, by applying (R-Struct), we obtain M −→ JM ′K∆, as required.

5.3.2 Probabilistic Labelled Bisimilarity

As for the previous versions of the calculus, we define a probabilistic labelled
bisimilarity that is a complete characterisation of our probabilistic observational
congruence. It is built upon the following actions:

α ::= c?@l | c?ϑ@l | c!ṽ@K ▹ R | τ.

Again, we write M
α−→θ N if M

α−→ JM ′Kθ and N is in the support of JM ′Kθ. Moreover
we write M

α−→ N if M
α−→θ N for some θ. A labelled execution e of a network

M is a finite (or infinite) sequence of steps: M
α1−→θ1 M1

α2−→θ2 M2...
αk−→θk Mk.

With abuse of notation, we define ExecM , last(e), ej and e ↑ as for unlabeled
executions. We denote by lbehave(M) the set of all possible behaviors of M, i.e.,
lbehave(M) = {(α, JM ′Kθ) | M

α−→ JM ′Kθ}. Labelled executions arise by resolving
the non-determinism of both α and JMKθ. As a consequence, a scheduler2 for the

2We abuse notation and still use F to denote a scheduler for the LTS semantics.

112 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

labelled semantics is a function F assigning a pair (α, JMKθ) ∈ lbehave(last(e)) with
a finite labelled execution e. We denote by LSched the set of (admissible) schedulers
for the LTS semantics, i.e., the set of all the schedulers F such that, for each network
M in the support of F , M is well formed. Given a network M and a scheduler F ,
we define ExecFM as the set of all labelled executions starting from M and driven
by F .

Since we are interested in weak observational equivalences, that abstract over
τ -actions, we introduce the notion of weak action.

Definition 5.7 (Weak Action) We denote by =⇒ the transitive and reflexive closure

of
τ−→ and by

α
=⇒ the weak action =⇒ α−→=⇒. We denote by

α̂
=⇒ the weak action

α
=⇒

if α ̸= τ , and =⇒ otherwise.

In the following we will give the definition of probabilistic labelled bisimilarity
with respect to a given set of schedulers

Definition 5.8 Given an admissible scheduler F ∈ Sched, we denote by F̂C ⊆
LSched the set of admissible schedulers F̂ ∈ LSched such that ∀M0, ∀e ∈ ExecF̂M0

of the form
e = M0

α1−→θ1 M1...
αh−→θh Mh

∃F ′ ∈ FC, a context C0 and e′ ∈ ExecF
′

C0[O0]
with O0 ≡M0 such that

e′ = C0[O0] −→θ′1
C1[O1]... −→θ′k

Ck[Ok]
and there exists a monotone surjective function f from [0− k] to [0− h] such that:

(i) ∀i ∈ [1− k], Oi ≡Mf(i)

(ii) ∀j ∈ [1− k], θ′j = θf(j) when Mf(j−1)

αf(j)−−−→θf(j) Mf(j).

Given a set F ⊆ Sched of schedulers, we define F̂C =


F∈F F̂C.

Example 5.4 Consider the networks M0 and N0, and the schedulers F and F1

introduced in the Example 5.3. If we take F̂1 ∈ LSched such that

M0
cL![l,r]−−−−→∆ M1

cL!v[l,r]−−−−→∆ M2 ∈ ExecF̂1
M0

,

then, since
M0 −→∆ M1 −→∆ M2 ∈ ExecFM0

the conditions of Definition 5.8 are satisfied by taking the empty context C[·] = 0 | ·
and the identity function f(i) = i for i ∈ [0− 2]. Hence F̂1 ∈ F̂C.

Moreover, if we consider F̂2 ∈ LSched such that

N0
c?@k−−−→∆ N1

c?v@k−−−→∆ N2 ∈ ExecF̂2
N0
,

since
M0 | N0 −→∆ M1 | N1 −→∆ M2 | N2 ∈ ExecF1

M0|N0

with F1 ∈ FC, by considering the contexts Ci[·] ≡ Mi | · for i ∈ [0 − 2], and the
identity function f(i) = i for i ∈ [0− 2] we get F̂2 ∈ F̂C too.

5.3. A Bisimulation-based Proof Technique 113

Proposition 5.1

1. SchedC = Sched

2. SchedC = LSched

Proof.

1. The Proof follows straightforwardly from Definition 5.3.

2. ∀F ∈ LSched, ∀M0 ∈ N and ∀e ∈ ExecFM0
of the form:

e = M0
α1−→θ1 M1...

αk−→θk Mk

it is always possible to find a context C0[·] and a scheduler F ′ ∈ LSched such
that e′ ∈ ExecF

′

C0[M0]
with

e′ = C0[M0]
τ−→θ1 ...C1[M1]...

τ−→θk Ck[Mk].

By Theorem 5.1, ∃F ′′ ∈ Sched such that e′′ ∈ ExecF
′′

C0[M0]
with

e′′ = C0[M0] −→θ1 ...C1[M1]... −→ Ck[Mk],

meaning that F ∈ SchedC as required.

Definition 5.9 (Probabilistic Labelled Bisimulation) Let M and N be two
networks. An equivalence relation R over networks is a probabilistic labelled bisim-
ulation w.r.t. F if MRN implies: for all scheduler F ∈ F̂C there exists a scheduler
F ′ ∈ F̂C such that for all α and for all classes C in N /R it holds:

1. if α = τ or α = c!ṽ@K ▹ R then ProbFM(
α−→, C) = ProbF

′
N (

α̂
=⇒ C);

2. if α = c?@l or α = c?ϑ@l then either ProbFM(
α−→, C) = ProbF

′
N (

α
=⇒, C) or

ProbFM(
α−→, C) = ProbF

′
N (=⇒, C).

Probabilistic labelled bisimilarity, written ≈F
p , is the largest probabilistic labelled

bisimulation w.r.t. F over networks.

In the following we prove that our probabilistic labelled bisimulation is a complete
characterisation of our notion of probabilistic barbed congruence.

The following propositions will be useful.

Proposition 5.2 Let M and N be two networks. If MRN for some bisimulation
R w.r.t. F , then for all scheduler F ∈ F̂C there exists a scheduler F ′ ∈ F̂C such that
for all α and for all classes C in N /R it holds:

1. if α = τ or α = c!ṽ@K ▹ R then ProbFM(
α̂

=⇒, C) = ProbF
′

N (
α̂

=⇒, C);

114 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

2. if α = c?@l or α = c?ϑ@l then either ProbFM(
α

=⇒, C) = ProbF
′

N (
α

=⇒, C) or
ProbFM(

α
=⇒, C) = ProbF

′
N (=⇒, C).

Proof.

We proceed by induction on the length of the weak transition
α̂

=⇒.
If M reaches C in one step then, since MRN , ∃F ′ ∈ F̂C such that:

if α = τ or c!ṽ@K ▹ R, ProbFM(
α−→, C) = ProbF

′
N (

α̂
=⇒, C), while, if α = c?ϑ@l

or c?@l P robFM(
α−→, C) = ProbF

′
N (

α
=⇒, C), or ProbFM(

α−→, C) = ProbF
′

N (=⇒, C), as re-
quired.

If M reaches C in more steps then we consider two cases:

• The first transition is α, and M
α−→ JM ′Kθ.

ProbFM(
α̂

=⇒, C) =


M̂∈spt(JM ′Kθ)(ProbFM(
α−→, M̂)× ProbF

M̂
(=⇒, C)).

Now, if we partition the support of JM ′Kθ in equivalence classes of R, ∃I such
that ∀i ∈ I Ci ∈ N /R, spt(JM ′Kθ)∩Ci ̸= ∅, and spt(JM ′Kθ) ⊆


i∈I Ci. We get:

ProbFM(
α̂

=⇒, C) =


i∈I(ProbFM(
α−→, Ci)× ProbFRepCi

(=⇒, C)),
where RepCi is a representative element of the equivalence class Ci. Since
MRN , ∃F̂ ∈ F̂C such that, ∀i ∈ I: if α = τ or c!ṽ@K ▹ R, ProbFM(

α−→, Ci) =
ProbF̂N(

α̂
=⇒, Ci), while, if α = c?ϑ@l or c?@l P robFM(

α−→, Ci) = ProbF̂N(
α

=⇒, Ci),
or ProbFM(

α−→, Ci) = ProbF̂N(=⇒, Ci).

If we take F ′ ∈ LSched such that, ∀e such that e ≤prefix e′ ∈ ExecF̂N(
α̂

=⇒, Ci),
F ′(e) = F̂ (e), and ∀e such that e ≤prefix e′ ∈ ExecFRepCi

(=⇒, C) F ′(e) = F (e)

we get, if α = τ or c!ṽ@K ▹ R,

ProbFM(
α̂

=⇒, C) =


i∈I(ProbFM(
α−→, Ci)× ProbFRepCi

(=⇒, C))

=


i∈I(ProbF
′

N (
α̂

=⇒, Ci)×ProbF
′

RepCi
(=⇒, C)) = ProbF

′
N (

α̂
=⇒, C),

while, if α = c?ϑ@l or c?@l:

ProbFM(
α

=⇒, C) =


i∈I(ProbFM(
α−→, Ci)× ProbFRepCi

(=⇒, C))

=


i∈I(ProbF
′

N (
α

=⇒, Ci)×ProbF
′

RepCi
(=⇒, C)) = ProbF

′
N (

α
=⇒, C),

or

=


i∈I(ProbF
′

N (=⇒, Ci)×ProbF
′

RepCi
(=⇒, C)) = ProbF

′
N (=⇒, C),

and, by Definition 5.8, since both F̂ , F ∈ F̂C, F
′ ∈ F̂C, as required.

• The first transition is a τ , and M
τ−→ JM ′Kθ.

The proof is analogous to the first item.

Proposition 5.3 Let R = (


i∈I Ri)
∗, where Ri are Probabilistic Labelled Bisimu-

lations w.r.t. F . Then R is a Probabilistic Labelled Bisimulation w.r.t. F .

5.3. A Bisimulation-based Proof Technique 115

Proof.
Each relation Ri partition the set N in equivalence classes. If (M,N) ∈ Ri, that

means (M,N) ∈ R, by definition of R. Given then an equivalence class Ci ∈ N /Ri,
this is wholly contained in an equivalence class C ∈ N /R. By partitioning the
equivalence class C with a set of equivalence classes for Ri, we can then deduce the
existence of a set J such that: C =


j∈J Cij.

Now, let consider (M,N) ∈ R. That means (M,N) ∈ (


i∈I Ri)
∗, and (M,N) ∈

(


i∈I Ri)
n for some n > 0.

We will prove by induction over n that R is a probabilistic labelled bisimulation.

• n = 1.

If n = 1, (M,N) ∈ (


i∈I Ri)
1 means that for some i ∈ I, (M,N) ∈ Ri. We

have that ∃F ′ ∈ F̂C s.t. ∀α, C ∈ N /R :

If α = τ or c!ṽ@K ▹ R then ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF
′

N (
α̂

=⇒, Cij) = ProbF
′

N (
α̂

=⇒, C),
as required.

If α = c?ϑ or c?@l then:

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF
′

N (
α

=⇒, Cij) = ProbF
′

N (
α

=⇒, C),
or

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF
′

N (=⇒, Cij) = ProbF
′

N (=⇒, C),
as required.

• n > 1.

(M,N) ∈ (


i∈I Ri)
n means that ∃i ∈ I such that MRi(


i∈I Ri)

n−1N , and
that ∃O ∈ N such that, (M,O) ∈ Ri and (O,N) ∈ (


i∈I Ri)

n−1.

(M,O) ∈ Ri implies that, ∀F ∈ F̂C ∃F1 ∈ F̂C such that ∀C ∈ N /R and ∀α:
If α = τ or c!ṽ@K ▹ R then ProbFM(

α−→, C) =


j∈JProbFM(
α−→, Cij)

=


j∈JProbF1
O (

α̂
=⇒, Cij) = ProbF1

O (
α̂

=⇒, C),
while, if α = c?ϑ@l or c?@l then:

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

=


j∈JProbF1
O (

α
=⇒, Cij) = ProbF1

O (
α

=⇒, C),
or

ProbFM(
α−→, C) =


j∈JProbFM(

α−→, Cij)

116 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

=


j∈JProbF1
O (=⇒, Cij) = ProbF1

O (=⇒, C).

By induction hypothesis, ∀m < n, (


i∈I Ri)
m is a bisimulation, hence (


i∈I Ri)

n−1

is a bisimulation. Again, since for each (P,Q) ∈ (


i∈I Ri)
n−1, (P,Q) ∈ R,

and each equivalence class of (


i∈I Ri)
n−1 is wholly contained in an equiva-

lence class for R, we can then partition C with a set of equivalence classes in
(


i∈I Ri)
n−1 that means ∃J ′ such that C =


j∈J ′ Cj where Cj ∈ N /(


i∈I Ri)

n−1

∀j ∈ J ′.

By proposition 5.2 we finally get that ∃F ′ ∈ F̂C such that ∀C ∈ N /R and ∀α:
If α = τ or c!ṽ@K ▹ R then

ProbFM(
α−→, C) = ProbF1

O (
α̂

=⇒, C) =


j∈J ′ProbF1
O (

α̂
=⇒, Cj)

=


j∈J ′ProbF
′

N (
α̂

=⇒, Cj) = ProbF
′

N (
α̂

=⇒, C),
while, if α = c?ϑ@l or c?@l then there are three different possibilities:

ProbFM(
α−→, C) = ProbF1

O (
α

=⇒, C) =


j∈J ′ProbF1
O (

α
=⇒, Cj)

=


j∈J ′ProbF
′

N (
α

=⇒, Cj) = ProbF
′

N (
α

=⇒, C),

ProbFM(
α−→, C) = ProbF1

O (
α

=⇒, C) =


j∈J ′ProbF1
O (

α
=⇒, Cj)

=


j∈JProbF
′

N (=⇒, Cj) = ProbF
′

O (=⇒, C),
or

ProbFM(
α−→, C) = ProbF1

O (=⇒, C) =


j∈J ′ProbF1
O (=⇒, Cj)

=


j∈JProbF
′

N (=⇒, Cj) = ProbF
′

O (=⇒, C).

Theorem 5.2 (Soundness) Let M and N be two networks. We show that if
M ≈F

p N then M ∼=F
p N.

Proof.
In order to prove that bisimulation is a sound characterisation of Probabilistic

Barbed Congruence we have to prove that ≈F̂
p is:

1. reduction closed w.r.t. F

2. probabilistic barb preserving w.r.t. F

3. contextual

Probabilistic Labelled Bisimulation is reduction closed.
We have to prove that if M ≈F

p N , then for all F ∈ FC, there exists F ′ ∈ FC

such that for all classes C ∈ N /R, ProbFM(C) = ProbF
′

N (C).
By Theorem 5.1 there exists an admissible scheduler F̂ ∈ LSched such that

ProbFM(C) = ProbF̂M(=⇒, C ′), where C ′ = C ∪ {M ′ : M ′ ≡ M ′′ ∈ C}, but since

5.3. A Bisimulation-based Proof Technique 117

∀M ′ such that M ′ ≡ M ′′ ∈ C, by applying rule (R-Struct) M ′ ∼=F
p M ′′, we get

{M ′ : M ′ ≡M ′′ ∈ C} ⊆ C, that means C ′ = C.
By Definition 5.8 we deduce F̂ ∈ F̂C, since for all the executions in ExecF̂M(=⇒

, C), the correspondent reduction executions are allowed by F , which is an element
of FC.

By Proposition 5.2 we have that ∃F̂ ′ ∈ F̂C such that ProbF̂M(=⇒, C) = ProbF̂
′

N (=⇒
, C).

Finally, by Theorem 5.1, ∃F ′ ∈ Sched such that ProbF̂
′

N (=⇒, C) = ProbF
′

N (C).
Finally, we can deduce F ′ ∈ FC by applying Definitions 5.8 and 5.3.

Probabilsitc Lablelled Bisimulation is Probabilistic barb preserving.
To prove that bisimulation is Probabilistic barb preserving we have to show that,

if M ≈F
p N , then, for each scheduler F ∈ FC, for each channel c, and for each set K

of locations such that M⇓Fp c@K, then ∃F ′ ∈ FC such that N⇓F ′

p c@K.

LetM⇓Fp c@K for some channel c, some setK of locations, and scheduler F ∈ FC.
It means that ProbFM(H) = p, where M ′ ∈ H iff M ′ ↓c@K . We can partition H in a
set of equivalence classes for ≈F

p . Hence ∃I such that ∀i ∈ I Ci ∈ N / ≈F
p , Ci∩H ̸= ∅,

and H ⊆


i∈I Ci. We get:
ProbFM(H) =


e∈ExecFM (H)P

F
M(e) =


i∈I ProbFM(Ci) = p.

by Theorem 5.1, ∃F̂ ∈ LSched such that ∀i ∈ I:
ProbFM(Ci) = ProbF̂M(=⇒, C ′i),
where C ′i = Ci ∪ {M ′ | ∃M ′′ ∈ Ci and M ′ ≡ M ′′}, but, since ∼=F

p is closed under

structural congruence, ∀M ′ ≡ M ′′ ∈ Ci, M ′ ∼=F
p M ′′, hence {M ′ : M ′ ≡ M ′′ ∈

Ci} ⊆ Ci, that means C ′i = Ci. Now we have to prove that F̂ ∈ F̂C, but this follows
straightforwardly by Definition 5.8. Hence:

ProbFM(Ci) = ProbF̂M(=⇒, Ci) ∀i ∈ I and
i∈I ProbFM(Ci) =


i∈I ProbF̂M(=⇒, Ci).

Since M ≈F
p N , ∃F̂ ′ ∈ F̂C such that, ∀i ∈ I:

ProbF̂M(=⇒, Ci) = ProbF̂
′

N (=⇒, Ci).
Again by Lemma 5.1 ∃F ′ ∈ LSched such that:
p =


i∈I ProbF̂

′
N (=⇒, Ci) =


i∈I ProbF

′
N (Ci) = ProbF

′
N (H),

that means N⇓F ′

p c@K.
By Definition 5.8 we finally deduce F ′ ∈ FC, as required. Probabilistic Labelled

Bisimulation is contextual
We start with the Parallel Composition. Let R be the following relation:

R = {(M | O,N | O) : M,N,M | O,N | O are well-formed, and ,M ≈F
p N}.

We will prove that it is a Probabilistic Labelled bisimulation w.r.t. F . For this
purpose, we need to prove that, ∀F ∈ F̂C ∃F ′ ∈ F̂C such that, ∀C ∈ N /R, ∀α:

1. α = τ then ProbFM |O(
τ−→, C) = ProbF

′

N |O(=⇒, C).

118 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

If P,Q ∈ C, then, by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō and P̄ ≈F
p Q̄.

But then there exists D ∈ N / ≈F
p such that D = {P̄ : P̄ | Ō ∈ C}. Now we

have three cases to consider:

(i) if M | O τ−→ JM | O′Kθ the proof is simple, because we have, ∀M̄ in
the support of JM | O′Kθ, such that M̄ ∈ C, M̄ ≡ M | O′′ and, since
M ≈F

p N , N | O′′ ∈ C too, by definition of R. Hence (by applying rule

(Par) to the action O
τ−→ JO′Kθ), sinceN | O is well-formed, ∃F ′ ∈ LSched

such that
ProbFM |O(

τ−→, C) = ProbF
′

N |O(=⇒, C).

We have only to prove that F ′ ∈ F̂C, but the proof follows straightfor-
wardly by the Definitions 5.3 and 5.8.

(ii) If M | O τ−→ JM ′ | OKθ, since M is well-formed, by Definition
5.8 ∃F1 ∈ F̂C such that ProbFM |O(

τ−→, C) = ProbF1
M (

τ−→,D). But since

M ≈F
p N , and N is well-formed, ∃F2 ∈ F̂C such that ProbF1

M (
τ−→,D) =

ProbF2
N (=⇒,D). Again, since the network N | O is well-formed, ∃F ′ ∈

LSched such that, by applying rule (Par) to the executions in ExecF2
N (=⇒

,D), we get
ProbF2

N (=⇒,D) = ProbF
′

N |O(=⇒, C).

Since by Definitions 5.8 each execution in the set ExecF2
N (=⇒,D) has

a correspondent reduction execution allowed by FC, and by Definition
5.3 we know that the same executions can be performed by N when
interacting with any context, we can finally deduce, by applying again
Definition 5.8, that F ′ ∈ F̂C, as required.

(iii) If M | O τ−→ M ′ | O′ due to a synchronization between M and O,
then there are two cases to consider.

If M
c!ṽ[l,r]−−−→ JM ′K∆ and O

c?ṽ@k−−−→ JO′K∆, for some message ṽ, channel c,
locations l, k and radius r, such that d(l, k) ≤ r, we can apply rule (Obs)

obtaining M
c!ṽ@K▹R−−−−−→ M ′ for some K ⊆ L and for some R, with k ∈ R.

Therefore, ∃F1 ∈ LSched such that:

ProbFM |O(
τ−→, C) = ProbF1

M (
c!ṽ@K▹R−−−−−→,D).

By Definition 5.8 we deduce F1 ∈ F̂C and, since N ≈F
p M , ∃F2 ∈ F̂C such

that
ProbF1

M (
c!ṽ@K▹R−−−−−→,D) = ProbF2

N (
c!ṽ@K▹R
=⇒ ,D),

where each execution e in ExecF2
N (

c!ṽ@K▹R
=⇒ ,D) is of the form

e = N
τ−→θ1 N1 −→ ...Ni−1

c!ṽ@K▹R−−−−−→∆ Ni −→ ...N ′,

5.3. A Bisimulation-based Proof Technique 119

and, by applying rule (Obs) backwardly, Ni−1
c!ṽ[l′,r′]−−−−→∆ Ni for some l′

and r′ such that d(l′, k) ≤ r′. We can apply rule (Bcast) obtaining Ni−1 |
O

c!ṽ[l′,r′]−−−−→∆ Ni | O′ without changing probability. Finally if we take
F ′ ∈ LSched which applies rule (Lose2) to the output action, we obtain
the required result:

ProbF2
N (

c!ṽ@K▹R
=⇒ ,D) = ProbF

′

N |O(=⇒, C).

We have finally to prove that F ′ ∈ F̂C. We start by the consideration
that, by Definition 5.1, for any execution of the form

α
=⇒ in F̂C, where α

is a silent or an output action there exists a correspondent reduction in
FC. Since by Definition 5.3, for any context, there exists a scheduler in
FC mimicking the behaviour exhibited by N when interacting with the
given context, we can affirm that ∃F̄ ∈ FC such that ExecF̄N |O contains

all the reductions corresponding to the executions of ExecF
′

N |O. Hence, by

Definition 5.8, F ′ ∈ F̂C, as required.

If M
c?ṽ@k−−−→ JM ′K∆ and O

cL!ṽ[l,r]−−−−→ JO′K∆, for some message ṽ, some set L
of locations, some channel c, some locations l, k and radius r, such that
d(l, k) ≤ r, then ∃F1 ∈ F̂C such that:

ProbFM |O(
τ−→, C) = ProbF1

M (
c?ṽ@k−−−→,D).

Since N ≈F
p M , ∃F2 ∈ F̂C such that:

ProbF1
M (

c?ṽ@k−−−→,D) = ProbF2
N (

c?ṽ@k
=⇒ ,D)

or
ProbF1

M (
c?ṽ@k−−−→,D) = ProbF2

N (=⇒,D).

In the first case, since by hypothesis k ∈ R and N | O is well-formed,
also N is able to synchronize with O. Hence ∃F ′ ∈ LSched such that for
all

e = N
τ−→θ1 N1 −→ ...Ni−1

c?ṽ@k−−−→ Ni −→ ...N ′ ∈ ExecF2
N (

c?ṽ@k
=⇒ ,D)

there exists a matching execution such that, by applying rule (Bcast)

Ni−1 | O
c!ṽ[l,r]−−−→ Ni | O, and by applying rule (Lose2), we get:

e′ = N | O τ−→θ1 N1 | O −→ ...Ni−1 | O
τ−→ Ni | O′ −→ ...N ′ | O′

in ExecF
′

N |O(=⇒, C). Hence,

ProbF2
N (

c?ṽ@k
=⇒ ,D) = ProbF

′

N |O(=⇒, C).

120 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

In order to prove F ′ ∈ F̂C, we start by the consideration that, since

O
cL!ṽ[l,r]−−−−→ JO′K∆, by Definition 5.3, for any context, there exists a sched-

uler in FC mimicking the behaviour of O in its interaction with the given
context. Then we can affirm that ∃F̄ ∈ FC such that ExecF̄N |O contains

all the reductions corresponding to the executions of ExecF
′

N |O. Hence, by

Definition 5.8, F ′ ∈ F̂C, as required.

If N is not able to receive the message the proof is analogous: it is

sufficient to apply the rule (Par) to O
c!ṽ@K▹R−−−−−→ JO′K∆, obtaining:

ProbF2
N (=⇒,D) = ProbN |O(=⇒, C).

2. α = c!ṽ@K ▹ R

The proof is analogous to the point (iii) of the previous item.

3. α = c?@k then

ProbFM |O(
α−→, C) = ProbF

′

N |O(
α

=⇒, C) or ProbFM |O(
α−→, C) = ProbF

′

N |O(=⇒, C).

If P,Q ∈ C, then P ≡ M̄ | Ō, Q ≡ N̄ | Ō and M̄ ≈F
p N̄ . But then

∃D ∈ N / ≈F
p such that D = {M̄ : M̄ | Ō ∈ C}. Now we have two cases to

consider:

(i) The transition is due to an action performed by O, hence O
α−→∆ O′

and M | O′ ∈ C. But since M ≈F
p N , N | O′ ∈ C too, ∃F ′ ∈ LSched

such that by applying parallel composition to the input of O, we obtain
the desired result:

ProbFM |O(
α−→, C) = ProbF

′

N |O(
α

=⇒, C).

Finally, by Definition 5.8 we deduce F ′ ∈ F̂C, as required.

(ii) The transition is due to an action performed by M, in this case, by
Definition 5.8 ∃F1 ∈ F̂C such that:

ProbFM |O(
α−→, C) = ProbF1

M (
α−→,D). Since M ≈F

p N ∃F2 ∈ F̂C such that:

ProbF1
M (

α−→,D) = ProbF2
N (

α
=⇒,D),

or

ProbF1
M (

α−→,D) = ProbF2
N (=⇒,D).

In both cases, since N | O is well-formed, ∃F ′ ∈ LSched such that by
applying parallel composition, we have:

ProbF2
N (

α
=⇒,D) = ProbF

′

N |O(
α

=⇒, C),
or

ProbF2
N (=⇒,D) = ProbF

′

N |O(=⇒, C).

5.3. A Bisimulation-based Proof Technique 121

In order to prove that F ′ ∈ F̂C, we start by the consideration that, by
Definition 5.8 there exists at least a context C[·] and ∃F̄ ∈ FC such that
C[N] −→ C ′[N ′], and, by the reduction rules we get:

C[·] ≡ (νd̃)m[out⟨cL,r, ṽ⟩.P]l |M1

for some d̃ such that c ̸∈ d̃, some m, some set L of locations, some pro-
cess P , some (possibly empty) network M1, some location l and some
radius r such that d(l, k) ≤ r. Then, by Definition 5.3 we have that
there exists a scheduler allowing m[out⟨cL,r, ṽ⟩.P]l −→ Jm[P]lK∆, and
again by Definition 5.3 there exists a scheduler allowing the reduction
m[out⟨cL,r, ṽ⟩.P]l | N | O −→

∗
Jm[P]l | N ′ | O′K∆, meaning, by Definition

5.8, F ′ ∈ F̂C as required.

4. α = c?ϑ@k the proof is analogous as for α = c?@k.

Now we proceed with the Restriction. Let R = {((νd)M, (νd)N) : M ≈F
p N} be

a relation. We need to prove that it is a Probabilistic Labelled bisimulation w.r.t.
F .

Let consider C: if P,Q ∈ C, by definition of R, P ≡ (νd̄)P̄ , Q ≡ (νd̄)Q̄ and
P̄ ≈F

p Q̄. But then ∃D ∈ N / ≈F
p such that D = {P̃ : (νd̄)P̄ ∈ C}.

We have to prove that, ∀F ∈ F̂C ∃F ′ ∈ F̂C such that, ∀C ∈ N /R, ∀α:

1. α = τ implies that ProbF(νd)M(
τ−→, C) = ProbF

′

(νd)N(=⇒, C).

Since Chan(τ) = ⊥, by Definition 5.8 ∃F1 ∈ F̂C such that ProbF(νd)M(
τ−→, C) =

ProbF1
M (

τ−→,D) and, since M ≈F
p N ∃F2 ∈ F̂C such that: ProbF1

M (
τ−→,D) =

ProbF2
N (=⇒,D).

Finally we can take F ′ ∈ LSched mimicking the executions in ExecF2
N (=⇒,D),

when applying the restriction on N . Hence:

ProbF2
N (=⇒,D) = ProbF

′

(νd)N(=⇒, C).

In order to prove that F ′ ∈ F̂C, we start by the consideration that, by Def-
inition 5.3, for any context there exists a scheduler in FC mimicking the be-
haviour of N when interacting with the given context. Hence ∃F̄ ∈ FC such
that ExecF̄(νd)N contains all the reductions corresponding to the executions in

ExecF
′

(νd)N , meaning, by Definition 5.8, F ′ ∈ F̂C as required.

2. α = c!ṽ@K ▹ R

Since d ̸= c, by Definition 5.8 ∃F1 ∈ F̂C such that ProbF(νd)M(
α−→, C) = ProbF1

M (
α−→

,D), then since M ≈F
p N , ∃F2 ∈ F̂C such that

ProbF1
M (

α−→,D) = ProbF2
N (

α
=⇒,D).

122 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

Therefore, since Chan(α) ̸= d, ∃F ′ ∈ LSched such that:

ProbF2
N (

α
=⇒,D) = ProbF

′

(νd)N(
α

=⇒, C).

Again, we prove that F ′ ∈ F̂C as for the previous case.

3. α = c?@k

Again, since d ̸= c, by Definition 5.8 ∃F1 ∈ F̂C such that ProbF(νd)M(
α−→, C) =

ProbF1
M (

α−→,D). Since M ≈F
p N , there exists F2 ∈ F̂C such that

ProbF1
M (

α−→,D) = ProbF2
N (

α
=⇒,D) or

ProbF1
M (

α−→,D) = ProbF2
N (=⇒,D).

In both cases we can apply rule (Res) to N, since Chan(τ) ̸= Chan(α) ̸= d.
Therefore, there exists F ′ ∈ LSched such that the required result holds, that
is

ProbF2
N (

α
=⇒,D) = ProbF

′

(νd)N(
α

=⇒, C) or

ProbF2
N (=⇒,D) = ProbF

′

(νd)N(=⇒, C).

In order to prove that F ′ ∈ F̂C we proceed as for the previous cases.

4. α = c?ϑ@k

The proof is analogous as for α = c?@k.

Theorem 5.3 (Completeness) If M ∼=F
p N then M ≈F

p N.

Proof.
In order to prove the completeness of bismulation we show that the relation

R = {(M,N) : M ∼=F
p N} is a Probabilistic Labelled Bisimulation. We have to

prove that, ∀F ∈ F̂C ∃F ′ ∈ F̂C such that, ∀C ∈ N /R, ∀α:

if α = τ then ProbFM(
τ−→, C) = ProbF

′
N (=⇒, C).

By Theorem 5.1 we know that there exists a scheduler F̄ ∈ Sched such that
ProbFM(

τ−→, C) = ProbF̄M(C), and, by Definition 5.8 we deduce F̄ ∈ FC. Since
M ∼=F

p N , ∃F̄ ′ ∈ FC such that ProbF̄M(C) = ProbF̄
′

N (C). Again by Theorem 5.1

and Definition 5.8, there exists F ′ ∈ F̂C such that ProbF̄
′

N (C) = ProbF
′

N (=⇒
, C ∪ {N̄ ≡ N ′ ∈ C}), but since ∼=F

p is closed under structural equivalence,

∀N̄ ≡ N ′ ∈ C, N̄ ∈ C, hence: ProbFM(
τ−→, C) = ProbF

′
N (=⇒, C).

if α = c!ṽ@K ▹ R then ProbFM(
α−→, C) = ProbF

′
N (

α
=⇒, C).

First we notice that ProbFM(
c!ṽ@K▹R−−−−−→, C) is either 0 or 1.

5.3. A Bisimulation-based Proof Technique 123

If ProbFM(
c!ṽ@K▹R−−−−−→, C) = 0 we are done, because it will be enough to take any

scheduler F ′ ∈ F̂C not allowing observable output actions on the channel c,

and we get ProbFM(
c!ṽ@K▹R−−−−−→, C) = ProbF

′
N (

c!ṽ@K▹R
=⇒ , C).

If ProbFM(
c!ṽ@K▹R−−−−−→, C) = 1, then, by Definition 5.8 there exists a scheduler

F̄ ∈ FC such thatM⇓F̄1 c@K, and it means that ∃F̄ ′ ∈ FC such that N⇓F̄ ′

1 c@K,

hence ∃R′ such that K ⊆ R′ and N
c!ṽ@K▹R′
=⇒ . Now in order to mimic the effect

of the action c!ṽ@K ▹ R, we build the following context

C[·] =
n

i=1
(ni[in(c, x̃i).[x̃i = ṽ]out⟨fiki,r, x̃i⟩]ki | mi[in(fi, ỹi).out⟨okiki,r, ỹi⟩]ki),

where R = {k1, ..., kn} and fi and oki fresh ∀i ∈ [1− n].

Since M
c!ṽ@K▹R−−−−−→, then the message is reachable by all nodes ni, hence, by

Definition 5.3, which captures the behaviour of a network when interacting
in any context, since C[M] is well-formed, ∃F̄1 ∈ FC such that C[M] −→

∗
M̄ ,

where
M̄ ≡M ′ |

n

i=1
(ni[0]ki | mi[out⟨okiki,r, ṽi⟩]ki),

with M̄ ̸↓fi@R and M̄⇓F̄1
1 oki@R, ∀i ∈ [1− n].

The absence of the barb on the channels fi together with the presence of
the barb on the channels oki ensures that all the locations in R have been
able to receive the message. Since C[M] ∼=F

p C[N], ∃F̄2 ∈ FC such that

ProbF̄1

C[M](C ′) = ProbF̄2

C[N](C ′) where M̄ ∈ C ′.

Therefore, C[N] −→
∗
N̄ with N̄ ̸↓f@R and N̄⇓F̄2

1 ok@R. The constrains on the
barbs allow us to deduce that

N̄ ≡ N ′ |
n

i=1
(ni[0]ki | mi[out⟨okiki,r, ṽi⟩]ki)

which implies N
c!ṽ@K▹R
=⇒ N ′, or N =⇒ N ′ in case (Lose2) has been applied to

the output action on the channel c. Since M̄, N̄ ∈ C, then M̄ ∼=F
p N̄ . Since

∼=F
p is contextual, it results (νok)M̄ ∼=F

p (νok)N̄ , from which we can derive

that M ′ ∼=F
p N ′. But since N ′ ∈ C and N

c!ṽ@K▹R
=⇒ N ′, then, by Definition 5.8

∃F ′ ∈ F̂C such that:

ProbF
′

N (
c!ṽ@K▹R
=⇒ , C) = 1 = ProbFM(

c!ṽ@K▹R
=⇒ , C).

if α = c?@k then we notice that ProbFM(
c?ṽ@k−−−→, C) is either 0 or 1.

If ProbFM(
c?@k−−−→, C) = 0 we are done, because it will be enough to take any

scheduler F ′ ∈ F̂C not allowing input actions on the channel c, and we get

ProbFM(
c?@k−−−→, C) = ProbF

′
N (

c?@k
=⇒, C).

124 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

If ProbFM(
c?@k−−−→, C) = 1, because M

c?@k−−−→ JM ′K∆, by Definition 5.3 there exists
at least a context C[·] and ∃F̄ ∈ FC such that C[M] −→ C ′[M ′], and by
Theorem 5.1 we deduce that:

C[·] ≡ (νd̃)m[out⟨cL,r, ṽ⟩.P]l |M1,

C ′[·] ≡ (νd̃)m[c̄L,r⟨ṽ⟩.P]l |M ′
1,

for some m, some tuple d̃ of channel such that c /∈ d̃, dome set L of messages,
some radius r, some process P , some location l such that d(l, k) ≤ r and some
(possibly empty) network M1 and M ′

1.

By Definition 5.3, for any context there exists a scheduler in FC allowing m
to perform the output when interacting with any context. Hence we can build
the following context:

C1[·] = · | m[out⟨cL,r, ṽ⟩.P]l | m1[in(c, x̃).out⟨fk,r′ , x̃⟩.out⟨okk,r′ , x̃⟩]k,

in order to mimic the behaviour of the networks, with m static, f and ok fresh,
r′ > 0 and d(l, k) > r′ ∀l ∈ Loc s.t. l ̸= k. There exists a scheduler F̄1 ∈ FC
such that:

C1[M] −→
∗
M ′ | m[P]l | m1[out⟨okk,r′ , ṽ⟩]k ∈ ExecF̄1

C[M],

withM ′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k ̸↓f@k andM ′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k⇓F̄1
1 ok@k.

The reduction sequence above must be matched by a corresponding reduction
sequence C1[N] −→

∗
N ′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k, with

M ′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k ∼=p N
′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k,

N ′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k ̸↓f@k and N ′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k⇓F̂2
1 ok@k

for some F̄2 ∈ FC.

This does not ensure that N actually performed the input action, but we

can conclude that there exists F ′ ∈ LSched and N ′ such that either N
c?@k
=⇒

N ′ or N =⇒ N ′. Since M ′ | m[P]l | m[out⟨okk,r′ , ṽ⟩]k ∼=p N ′ | m[P]l |
m[out⟨okk,r′ , ṽ⟩]k and ∼=F

p is preserved by the parallel composition, we can

easily derive M ′ ∼=F
p N ′ (applying rules for structural equivalence), that means

M ′, N ′ ∈ C and ∃F ′ ∈ LSched such that:

ProbFM(
c?@k−−−→, C) = 1 = ProbF

′

N (
c?@k
=⇒, C)

or
ProbFM(

c?@k−−−→, C) = 1 = ProbF
′

N (=⇒, C).

Now we have only to prove that F ′ ∈ F̂C, but this follows straightforwardly
by Definition 5.8, since F̄2 ∈ FC.

5.4. Introduction of a Cost Preorder 125

if α = c?ϑ@k the proof is analogous as for α = α = c?@k.

Proposition 5.4 ∼=Sched
p =≈LSched

p .

Proof.
It follows straightforwardly from Proposition 5.1 and from Theorems 5.2 and 5.3.

5.4 Introduction of a Cost Preorder

As for the other version of the calculus we define a preorder over networks which
allows us to analyse ad hoc networks in terms of several kinds of metrics. This
property can be used to replace a network component with a more efficient one,
while maintaining the connectivity.

We first associate a cost function with each reduction as follows:
Costf (M,N) = f(M,N), where M −→ JN ′Kθ, with N in the support of JN ′Kθ.
If e = M0 −→θ1 M1 −→θ2 M2... −→θk Mk

is an execution then Costf (e) =
k

i=1Cost(Mi−1,Mi).
Let H be a set of networks, we denote by PathsFM(H) the set of all executions

from M ending in H and driven by F which are not prefix of any other execu-
tion ending in H. More formally, PathsFM(H) = {e ∈ ExecFM(H) | last(e) ∈
H and ∀e′ such that e <prefix e′, e′ ̸∈ PathsFM(H)}.

Now, we are ready to define the average cost of reaching a set of networks H
from the initial network M according to the scheduler F .

Definition 5.10 Let H be a set of networks. The average cost of reaching H from
M according to the scheduler F is

Costf
F

M(H) =


e∈PathsFM (H)Costf (e)× P F

M(e)
e∈PathsFM (H)P

F
M(e)

.

The average cost is computed by weighting the cost of each execution by its
probability according to F and normalized by the overall probability of reaching H.
The following definition provides an efficient method to perform both qualitative
and quantitative analyses of mobile networks.

Definition 5.11 Let H be a countable set of sets of networks and let F ⊆ Sched a
set of schedulers. We say that N is more efficient than M with respect to the cost
function f , in the context of H and F denoted

N ⊑f
⟨H,F⟩ M,

if N ∼=F
p M and, for all schedulers F ∈ FC and for all H ∈ H, there exists a

scheduler F ′ ∈ FC such that Costf
F ′

N (H) ≤ Costf
F

M(H).

126 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

5.4.1 Measuring the interference level of the protocols.

In the following we introduce a cost function in order to measure the interference
level of a network.

First we give the definition of cost. We define two interference metrics. The
first one focuses on the senders and counts how many currently broadcasting nodes
might interfere with each other due to the overlapping communication ranges. The
second metric puts the emphasis on the receiver nodes and counts the number of
active receivers which are simultaneously reached by two (or more) transmissions.

Sender-based interference Let M be a network. Given a channel c, we de-
note by Overlaps(M, c) the set of nodes currently broadcasting over c and whose
transmission areas are overlapping at some locations. Formally, let

A(M) ≡ (νd̃)


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li |


j∈J nj[c(x̃j).Pj]lj |M ′ be the active nodes
of M , where c ̸∈ Top(M ′), then

Overlaps(M, c) = {ni | i ∈ I, ∃i′(̸= i) ∈ I.d(li, li′) ≤ ri + ri′}.

For example, consider the following network

M̂ = n1[out⟨cL1,r1 , ṽ1⟩.P1]l1 | n2[c̄L2,r2⟨ṽ2⟩.P2]l2 | n3[c̄L3,r3⟨ṽ3⟩.P3]l3
| n4[āL,r⟨ṽ⟩.P4]l4 | n5[c(x̃).P5]l5 | n6[in(c, ỹ).P6]l6

where d(li, lj) > ri for all i, j ∈ {1, 2, 3}, i.e., the nodes n1, n2, and n3 are all far
enough away from each other and can broadcast at the same time over the channel
c. In this case, function Overlaps(M̂, c) is defined as follows: for all c′ ̸= c (e.g.,
c′ = a) Overlaps(M̂, c′) = ∅, while

Overlaps(M̂, c) =


{n2, n3} if d(l2, l3) ≤ r2 + r3
∅ otherwise.

We define the sender-based level of interference induced by a probabilistic action as
follows:

s(M,N) =



|Overlaps(N, c)| − |Overlaps(M, c)|
if M ≡ (νd̃)n[out⟨cL,r, ṽ⟩.P]l |M1,

for some d̃, n, L, l, r, P,M1,

N ≡ (νd̃)n[c̄L,r⟨ṽ⟩.P]l |M ′
1, and

M −→ JNK∆;

0 otherwise.

5.5. The Alternating Bit Protocol 127

Consider again the above network M̂ . Since d(l1, lj) > r1 for j in {2, 3}, we have
M̂ −→ JN̂K∆, where

N̂ = n1[c̄L1,r1⟨ṽ1⟩.P1]l1 | n2[c̄L2,r2⟨ṽ2⟩.P2]l2 | n3[c̄L3,r3⟨ṽ3⟩.P3]l3
| n4[āL,r⟨ṽ⟩.P4]l4 | n5[P

′
5]l5 | n6[P

′
6]l6

The sender-based level of interference induced by M̂ −→ JN̂K∆ is, e.g.:

• If n1 is too far away from both n2 and n3, i.e., d(l1, lj) > r1+ rj for j in {2, 3},
then Overlaps(N̂ , c) = Overlaps(M̂, c). Hence, Costs(M̂, N̂) = 0.

• If n2 and n3 were already overlapping, i.e., d(l2, l3) ≤ r2 + r3 and n1 is not too
far away of at least one of them, i.e., d(l1, l2) ≤ r1 + r2 or d(l1, l3) ≤ r1 + r3
then Overlaps(N̂ , c) = {n1, n2, n3}. Therefore, Costs(M̂, N̂) = 1.

Receiver-based interference. We denote by Collr(M, c, l, r) the set of nodes in
M which are currently listening over channel c and lie in the transmission range of a
sender located at l with radius r. Formally, let A(M) ≡ (νd̃)


i∈Ini[c̄Li,ri⟨ṽi⟩.Pi]li |

j∈J nj[c(x̃j).Pj]lj |M ′ be the active nodes of M , where c ̸∈ Top(M ′), then

Collr(M, c, l, r) = {nj, j ∈ J | d(l, lj) ≤ r}.

The number of receiver-based interferences induced by a probabilistic step is:

r(M,N) =



|Collr(M, c, l, r)| if

M ≡ (νd̃)n[out⟨cL,r, ṽ⟩.P]k |M1,

for some d̃, n, L, P,M1,

N ≡ (νd̃)n[c̄L,r⟨ṽ⟩.P]l |M ′
1, and

M −→ JNK∆;

0 otherwise.

For instance, if we consider again our previous networks M̂ and N̂ , assuming
that n1 can reach both l5 and l6 then P ′

5 = P5{⊥/x̃} and P ′
6 = c(ỹ).P6. Then,

Collr(M̂, c, l1, r1) = {n5}. Hence Costr(M̂, N̂) = 1.

5.5 The Alternating Bit Protocol

In the following we analyse the performances of the Alternating Bit Protocol
(ABP), in terms of the interference caused by the networks transmissions.

128 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

Figure 5.1: Topology of the network and mobility of devices

5.5.1 Introduction to the protocol

The alternating bit protocol (ABP) is a simple network protocol designed to
achieve a point to point reliable transmission on unreliable channels. Messages are
sent from a transmitter to a receiver and include the payload (i.e., the meaningful
data) and some control information (e.g., the address identifying the destination, a
checksum for the integrity checks, etc.). Among the control information, there is
packet sequence number of 1 bit. When the sender sends a message with sequence
number b, it waits for an acknowledge (ack) identified with the same sequence
number from the receiver. If the ack does not arrive before a given deadline then
the sender assumes that the packet has been lost and tries to resent it. The deadline
is chosen according to the channel characteristics and must be greater than its round
trip time. When the ack is correctly received, the sender flips the sequence number
and starts a new transmission.

We consider a network consisting of two mobile sender nodes, n1 and n2, com-
municating with a static receiver node m. Node n1 moves back and forth between
locations l1 and l2 according to the probability distribution defined by the discrete
time homogeneous Markov chain with the following transition matrix:

J =

1− p p
q 1− q

 ,
where 0 < p, q < 1. Node n2 moves similarly between l3 and l4 according to a
discrete time Markov chain with the same transition matrix J. We also assume
that the receiver node is always in the transmission range of both senders (and that
the senders are always in the range of the receiver) regardless of where the senders
are located. This guarantees that m receives any packet from the senders (unless a
collision occurs), and that both senders receive any ack sent by m.

Furthermore, we assume that the transmission ranges of the senders overlap
only when n1 is at l1 and n2 is at l3. As a result, unless n1 is at l1 and n2 is at l3,
the senders are in the condition to attempt a simultaneous transmission (as they
don’t sense each other) leading to an interference (see Figure 5.1): in literature,

5.5. The Alternating Bit Protocol 129

this is known as the hidden station problem. Notice that while communications can
be damaged by many factors, we shall consider only the interference factor in this
analysis.

Table 5.5 shows an encoding of the sender and receiver processes. SNDj runs
inside node nj, sending a queue of messages Tj with sequence bit bj; RCV, in turn,
runs inside the receiver node m, expecting messages with sequence bits b1 and b2
from n1 and n2, respectively. We presuppose few auxiliary functions: empty(),
dequeue() and head() implement the standard queue operations, while ¬b flips the
value of the bit b. Finally, ok is a channel name and a location introduced for the
purposes of our analysis.

In order to compare the observational behaviours of the protocols, we assume
that a successful end of transmission of the packets by a sender, indicated by broad-
casting the message ”END” over the channel ok, is observable for any observer node
located at k. In this analysis, we are only interested in the levels of interference due
to the internal nodes of the protocols. Therefore, we restrict communications over
the channel c to the internal nodes of the protocols.

5.5.2 Interference cancellation scheme for CDMA

The CDMA/CA [64] transmission scheme protocol we consider in this section
does not avoid collisions, but it allows a receiver to solve collisions without forcing
the retransmissions of all the packets involved in the interference. The successive
interference cancellation (SIC) method used by CDMA exploits the mathematical
properties between vectors representing the data strings. Each sender uses a code
orthogonal to the others’ codes to modulate their signal. In order to obtain a set of
codes preserving orthogonality, CDMA represents each bit as a vector of 8 chips, and
assigns a different chip sequence to each device, according with the Walsh matrix,
that means that for each couple of vectors the number of identical chips are equal to
the number of complementary chips. When two devices transmit at the same time,
each receiver is able to obtain the desired message by calculating the dot product
between the received signal and the expected signal. This is due to the properties
of orthogonal vectors. A receiver is able to decode a message only if it knows the
sender’s code.

In this example, we sketch a simplified successive interference cancellation (SIC)
method. Assume that nodes n1 and n2 cause an interference atm by sending packets
encoded by signals xA and xB. m receives the signal y1 = xA + xB, detects the
interference and stores y1 in memory. In the successive slot, n1 successfully resends
xA, i.e., m receives y2 = xA and sends an ack to n1. Now, xB may be extracted
from y1 by m without further retransmissions as the result of y1 − xA. Although in
practice this procedure is not always successful, we assume, for the sake of clarity,
that messages can always be recovered correctly.

In modelling this protocol, the sender processes remain the same as in the simple
ABP protocol defined in Table 5.5, while the receiver process is defined as shown

130 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

in Table 5.6.
In order to compare the observational behaviours of the protocols, we consider

the following set Ffas of fair alternating schedulers which:

1. always alternate between sending packets and node movements so that at
each interaction of the transmitters with the receiver, the formers could be far
enough of each other to cause interference or not;

2. give priority to acknowledgment actions (ACK and NACK) to model our as-
sumption of an error-free feedback channel;

3. give priority to begin broadcasting actions (Beg-Bcast) over end broadcasting
actions (End-Bcast) so that whenever an interference is possible, it is auto-
matically created.

We know introduce some propositions in order to prove that applying the SIC
method to the alternating bit protocol reduces the interference. We first prove that
the two networks exhibit the same observable behaviour relative to Ffas.

Proposition 5.5 ABP ≈Ffas
p SIC ABP .

Proof.
For the sake of brevity, we give just a sketch of the proof. In both protocols, the

only observable actions, are the final messages sent by n1 and n2 through the channel
ok, that occur when all the messages of their respective queues are completely and
correctly received by m, since the other actions are either silent, or hidden by the
restriction operator applied to the channel c. Hence, in both protocols the only
observable actions are of the form:

=⇒ ok!(n1,END)@k▹k−−−−−−−−−−→=⇒,

or

=⇒ ok!(n2,END)@k▹k−−−−−−−−−−→=⇒ .

We can conclude that ABP and SIC ABP are probabilistic bisimilar, because they
exhibit the same behavior, with the same probability. Indeed, the characteristics of
matrix J ensures that for both the protocols the probability of eventually transmit-
ting the whole queue of messages in 1.

Now let T1 and T2 be the queues of messages to be transmitted by the senders.
We compare the interference efficiency of the protocols in the context of the set
H(T1, T2) = {Hρ(T1, T2) | ρ ≤ max(|T1|, |T2|)} where Hρ(T1, T2) means that all the
packets up to ρ have been correctly transmitted by both senders and is defined as
Hρ(T1, T2) = H1

ρ(T1, T2) ∪H2
ρ(T1, T2) where

H1
ρ(T1, T2) = {M |M ≡ (νc)


n1[SND1⟨b1, dequeueρ(T1)⟩]l′

| n2[SND2⟨b2, dequeueρ(T2)⟩]k′ | m[RCV ⟨b1, b2⟩]k

}

5.5. The Alternating Bit Protocol 131

(a) Alternating Bit Protocol (b) CDMA/CA SIC Method

Figure 5.2: Description of the protocols

with the assumption that dequeue(∅) = ∅, and b1, b2 ∈ {0, 1}. Similarly

H2
ρ(T1, T2) = {N |N ≡ (νc)


n1[SND1⟨b1, dequeueρ(T2)⟩]l′′

| n2[SND2⟨b2, dequeueρ(T2)⟩]k′′ | m[RCVSIC⟨b1, b2⟩]k

}

with b1 and b2 in {0, 1}, l′, l′′ in {l1, l2}, and k′, k′′ in {l3, l4}. Then, we compute
the interference level of the protocols assuming that we start by a move action for
each sender node so that their first transmissions could create an interference if they
move too far away from each other3. The results are summarized in the following
propositions.

Proposition 5.6 For all F in Ffas and for all ρ ≤ max(|T1|, |T2|) we have:

CostsABP,F (Hρ(T1, T2)) =

2×CostrABP,F (Hρ(T1, T2)) = 2×

(p+ q)2

q2
− 1


×min(ρ, |T1|, |T2|)

with 0 < p, q < 1.

Proof.

The proof relies on the observation that correct packets are sent only when the
mobile nodes are in the locations l1 and l3. Hence, by exploiting the independence
between the stochastic processes underlying the node movements, the result follows
by standard analysis of absorbing Markov chains.

Note that our sender-based interference metric coincides with the number of lost
packets. For the ABP with SIC, we have:

3The analysis for the other case is similar.

132 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

Proposition 5.7 For all F in Ffas and each ρ ≤ max(|T1|, |T2|) we have:

CostsSIC ABP,F (Hρ(T1, T2)) = 2×CostrSIC ABP,F (Hρ(T1, T2)) =

2× p

(p+ q)3


n(p+ q)(p+ 2q)−

((1− p− q)n − 1)(p+ q − 1)(p2 − p(1− p− q)n+1 − 4q + 3pq + 2q2 − p)

p+ q − 2


×min(ρ, |T1|, |T2|)

with 0 < p, q < 1.

Proof.

Also in this case the proof is based on standard transient Markov chain analysis
and exploits the independence among the processes that regulate the node move-
ments. Indeed, the n-th steps transition probability matrix Jn is:

Jn =

p(1−p−q)n+q
p+q

p−p(1−p−q)n

p+q
q−q(1−p−q)n

p+q
p+q(1−p−q)n

p+q


According to the SIC specification, nodes need only to send one packet for a suc-
cessful packet transmission if they are in the locations l1 and l3. All the other
location combinations require one of the nodes to send two packets for each suc-
cessful transmission (while the other sends just one). Starting from states l1 and
l3, the probability of being still in the same state after i > 0 steps is given by
(p(1− p− q)i + q)2/(p+ q)2 (by independence). We derive the expression given by
Proposition 5.7 as the closed expression of the following sum which represents the
expected number of observed interferences for sending n packets:

n
i=1


1−


p(1− p− q)i + q

p+ q

2

.

Theorem 5.4 SIC ABP ⊑χ
⟨Ffas,H(T1,T2)⟩ ABP ,

with χ ∈ {s, r}.

Proof.

Let us denote by Hρ the set Hρ(T1, T2). In Fig. 5.3 (a) and (b) we show a plot
of CostsABP,F (Hρ) and CostrSIC ABP,F (Hρ), respectively, as a function of p and q,
for min(ρ, |T1|, |T2|) = 100, while Fig. 5.3 (c) shows a plot of CostrABP,F (Hρ) −
CostrSIC ABP,F (Hρ). Finally, from Propositions 5.5, 5.6, and 5.7, we can conclude
that the SIC-based ABP protocol is much more interference efficient than its simple
version.

5.6. Resistance to Jamming and Casual Interception 133

(a) Plotting of CostrABP,F (Hρ) given by Proposi-
tion 5.6

(b) Plotting of CostrSIC ABP,F (Hρ) given by Propo-
sition 5.7

(c) Plotting of CostrABP,F (Hρ)−CostrSIC ABP,F (Hρ)

Figure 5.3: Interference levels for ABP and SIC ABP and their comparison

5.6 Resistance to Jamming and Casual Intercep-

tion

Following we introduce another interesting case study, showing how this calculus
can be use to analyse the resilience to jamming attacks of a wireless network governed
by two different routing protocols.

5.6.1 Scenario

Let us consider an in-door MANET operating in a building of 30 × 20 meters
with three floors whose height is 3 meters. For the sake of simplicity, we assume
each floor to have the same topology: eight rooms connected by a central corridor
as shown in Figure 5.4. A location is denoted by a pair ⟨f, r⟩ where f ∈ {1, 2, 3}
indicates the floor, while r ∈ {A,B,C,D,E, F,G,H, S} indicates the room. Rooms
A,B,C,D,E, F have dimension 5× 5 meters, while G,H, S have dimension 10× 15
meters.

The MANET consists of seven devices: three static nodes (n1, n2, n3), located

134 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

Figure 5.4: Topology of a building floor

respectively in the first, second and third floor, which represent the servers inside
the building, and four mobile nodes (n4, n5, n6, n7).

Nodes can transmit with three transmission radii: r1 = 5m, r2 = 10m and
r3 = 15m. We assume omnidirectional antennas, and the euclidean function to
evaluate the distance between two locations. Hence, a node sending a message with
radius r1 can reach only those nodes lying in the adjacent rooms, or in the same
room of an adjacent floor, while using radius r2 the successfulness of a reception
depends on the rooms where the sender and the receiver nodes are located. In
order to simplify the computation of the distance between sender and receivers
nodes, we assume that each transmission always begins exactly from the centre of
a room. In practice, if n1 is located at l = ⟨1, A⟩ and n2 is located at k = ⟨2, A⟩
then their distance is d(l, k) = 3m. Hence, they are able to mutually communicate
by using any of the transmission radii in the set {r1, r2, r3}. If n1 is located at
l′ = ⟨1, C⟩, then the Euclidean distance between l′ and k is d(l′, k) =

√
109. Since

10 <
√
109 < 15, n1 and n2 can communicate only using radius r3. Note that

these assumptions are intended to simplify the model. However, our calculus may
also deal with non-euclidean distances allowing us to take into account the effect of
walls on the transmissions.

5.6.2 The HWMP protocol.

The Hybrid Wireless Mesh Protocol (HWMP) is the routing protocol used by
the standard IEEE 802.11s [39]. It offers a variety of routing strategies, including
some optional ones. HWMP can be configured to operate in two modes: on-demand
reactive mode and tree-based proactive mode.
The reactive mode used by HWMP is based on the Ad-hoc On-demand Distance
Vector Routing protocol (AODV) [79]. It uses three types of control packets whose
forwarding allows each node to update its information about the best path to reach
a specific destination. It is one of the most popular routing protocols specifically
designed for mobile ad-hoc and sensor networks.

Each node maintains information about its neighbours in its route table, where
each entry contains the following data associated with a given destination d.

5.6. Resistance to Jamming and Casual Interception 135

• seq#d: the sequence number of the destination: it is incremented before send-
ing a request, or (only if the node is the destination) before broadcasting the
response;

• nexthopd: the next intermediate node towards the destination d;

• hopcountd: the number of hops from the source to the destination d;

• lifetime: the life-time of the record in the route table;

• List of precursorsd: the list of nodes using the actual node as nexthop to
reach d.

The protocol exchanges three types of control packets:

• RREQ (Route Request): when a node needs to find a path, it broadcasts a
RREQ message and then, when it receives the response, it chooses the cheap-
est path (in terms of energy costs, delays, number of hops, etc.);

• RREP (Route Response): When a node receives a RREQ message, it controls
if it is the destination. In this case it immediately sends back the response,
otherwise it searches a valid path in its route table to send back. If there are
no valid paths, it propagates the RREQ packet;

• RERR (Route Error): the error message informing the network of a link
breakage.

The tree-based proactive mode used by the HWMP protocol is based on a proac-
tive protocol in which the network topology is built statically, forming a tree, i.e.,
a connected and acyclic graph, rooted in a chosen node. As in the previous mode,
packet types, apart from root announcements, are RREQ, RREP and RERR, rep-
resenting requests, responses and errors, respectively. The difference lays in the fact
that, in the tree-based approach, the network topology is built statically from the
start, and each node selects as the next hop the neighbour node that is nearest
to the root according to its hop count, but it also maintains a table that contains
the hop count to the root of its neighbours. The final result of these operations
is that a spanning tree is created and used for the subsequent message forwarding.
Whenever a node detects that the link with the upstream node, i.e., the node to
which it would normally forward packets, is broken, it selects a new upstream node
from its neighbours using the table of the hop counts, updates its own count and
then broadcasts a RRER message to the downstream nodes. Then, these can select
their own alternative paths if the hop count of the upstream node is no longer the
shortest one. If a new path is chosen, the RERR message is propagated in turn to
the downstream nodes. The effect of this action is to build a new spanning subtree.

136 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

In what follows we assume that the root node, e.g., a gateway between a wired
network and the wireless one, is chosen statically and that it never moves.

5.6.3 Modelling the system.

We model our case study into the framework of Section 5.2. The set of feasible
locations is:

Loc ={⟨f, r⟩ :f ∈ {1, 2, 3} ∧ r ∈ {A,B,C,D,E, F,G,H, S}} .

Each node ni is statically characterised by a pair ⟨rni
,Jni⟩, where rn is the maximum

transmission radius, i.e., in our scenario rni
= r3 for all ni, with i = 1, . . . , 7, and

Jni is the transition matrix of a discrete time Markov chain denoting the probability
of movements.
We model the HWMP protocol into our probabilistic calculus with the aim of com-
paring the resilience to jamming of both the proactive and reactive modes used by
the protocols.

In its simplest definition, the routing table maintained by each node has the
form:

⟨d, seq#d, nexthopd, hopcountd, LPd⟩

where d is the primary key of the table and identifies the node name of the
destination associated with the entry.

The packets used by HWMP are:

• (rreq, Bids,d, (s, seq#s), (d, seq#d), hopcounts,d) for the request of a path from
s to d;

• (rrep, (s, seq#s), (d, seq#d), hopcounts,d) for the response to a path request
from s to d;

• (rerr, s, d, seq#d) denotes an error message;

• (ack, d, seq#d) to confirm the correct reception of a route response.

For the sake of simplicity we abstract out the AODV packet management, and
we consider the behaviour of the network assuming that a node needing a path to a
given destination simply obtains it by calling the procedure find path(s, d) where
s and d are the source and destination nodes. The effect of this procedure is to
update the node’s routing table.

5.6. Resistance to Jamming and Casual Interception 137

We consider the following network, where nodes n4 and n6 want to communicate,
and the paths are the results of the routing protocol execution:

N =
7

i=1
(ni[Pi]li)

where ∀i ∈ [1− 7], li ∈ Loc, and:

P4 = find path(n4, n6).out⟨cnexthopn6
,r2 , (msg, nexthopn6

, n6)⟩.
in(c, (x1, x2, x3)).[x3 = n4]out⟨okLoc,r2 , OK⟩.P4,

P6 = in(c, (x1, x2, x3)).[x2 = n6](find path(n6, n4).
out⟨cnexthopn4

,r2 , (ack, nexthopn4
, n4)⟩).P6

and ∀i ∈ {1, 2, 3, 5, 7}:
Pi = in(c, (x1, x2, x3)).[x2 = ni](

[x3 = n4](find path(ni, n4).
out⟨cnexthopn4

,r2 , (x1, nexthopn4
, n4)⟩).Pi,

[x3 = n6](find path(ni, n6).
out⟨cnexthopn6

,r2 , (x1, nexthopn6
, n6)⟩).Pi).

The processes depicted above describe the communication between n4 and n6.
Node n4 uses the function find path to discover the path to n6, and then forwards
the packet. When it receives the acknowledgment it fires the message OK through
the channel ok. Node n6 waits for the packet from n4 and, when it receives it, it
sends back the acknowledgment. Each intermediate node executes a simple process
forwarding both the packet sent by n4 and the ack of n6.

These processes will be used to study both the AODV and the tree-based pro-
tocols, the only difference is the way the function find path behaves: while in the
AODV the path is discovered after the RREQ, RREP and RERR packages exchange,
in the tree-based protocol, in order to find the best path, the process simply follows
the predetermined routing spanning tree, built at the moment of the initial network
setup through the algorithm informally described above. Thus, HWMP packets are
sent only during the network setup or whenever a broken link is detected, causing
the corresponding operations to happen.

5.6.4 Resilience to jamming attacks

We focus our attention on proactive jammers, executing the following process:
P = out⟨c∅,r2 , JAM⟩.P which continuously broadcasts the dummy message JAM
with radius r2 on channel c. We consider two malicious nodes: a static jamming
attacker m1 identified by ⟨r2, I⟩, with I being the identity matrix, located at k =
⟨1, H⟩, and a mobile node m2 identified by ⟨r2,Jm2⟩ whose initial location is k′ =
⟨3, G⟩. Notice that the jammer m1 is a node blocking the activity of each node lying
within

Locm1 = {⟨1, H⟩, ⟨2, H⟩, ⟨3, H⟩, ⟨1, F ⟩, ⟨2, F ⟩, ⟨3, F ⟩} .

138 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

and its process is a recursive process continuing to send JAM messages through
channel c. We study the behaviour of the protocol in a context C1 consisting of
node m1, and in a context C2 consisting of both m1 and m2. We consider the set of

schedulers F such that:

• during the forwarding of the packets (x1, x2, x3) where x1 ∈ {msg, ack}, move-
ments of nodes ni, i ∈ [4− 7] occurs at each collision or JAM -message recep-
tion,

• the beginning of output actions have priority on the ending of the output
actions.

The first constraint allows us to model the fact that mobile nodes react to in-
terference by moving away from their current location, while the second constraint
is necessary since we are considering proactive jammers, which continue to send
packets to provoke collisions. Let

C1[·] = · | m1[P]k.
The robustness of the network using the HMWP protocol against the malicious

node m1 can be verified by checking if the observational behaviour of N is indepen-
dent of the presence of the jammer inside the building. Formally, we have to prove
that:

(νc)N ∼=F
p (νc)C1[N].

The restriction operator νc is due to the fact that we want to observe only the
correctness of the communication between the nodes n4 and n6, without considering
the different paths they may choose for the message forwarding. Then, since c is

hidden, the only observable action in (νc)N and (νc)C1[N] is
ok!OK@K▹K−−−−−−−→ for some

K ⊆ Loc.

Moreover, we consider the dynamic context:

C2[·] = · | m1[P]k | m2[P]k′

where m2 is a mobile node, meaning that the jamming area may change in time.
We also consider the same restricted set of schedulers F as above and we aim at
observing the successfulness of the communication between n4 and n6. Hence, we
have to prove that:

(νc)N ∼=F
p (νc)C2[N].

In order to verify resilience of our network case study with respect to the jamming
context C1, we check whether

(νc)N ∼=F
p (νc)C1[N]. (5.1)

5.6. Resistance to Jamming and Casual Interception 139

By using the proof technique presented in Section 5.3, it is sufficient to find a
probabilistic bisimulation containing the pair ((νc)N, (νc)C1[N]). Let us consider
the relation

R = {((νc)N̄ , (νc)C̄1[N̄]) : (νc)C̄1[N̄] ∈ M̄}

where M̄ = {(νc)C̄1[N̄] : (νc)C1[N] −→
∗
(νc)C̄1[N̄]}. In order to prove (5.1), it is

enough to prove thatR is a bisimulation relative to F̂ withM = {(νc)N, (νc)C1[N])}.
Since in M̄ channel c is hidden, the only actions that N̄ can do are τ actions,

or output through the channel ok, while the jamming context C̄1[·] can only make τ
actions. Let us consider (νc)N̄

τ−→ J(νc)N̄ ′Kθ driven by F ∈ F̂C. Then, ∀C ∈ N /R,
ProbF

(νc)N̄
(
τ−→, C) =

(νc)N̄ ′′∈C in the support of J(νc)N̄ ′Kθ
J(νc)N̄ ′Kθ((νc)N̄ ′′).

If the τ action is due to the application of the rule (Move), we conclude by applying
rule (Par) to m1 and, by Definitions 5.3 and 5.8 ∃F ′ ∈ F̂C such that

ProbF(νc)N̄(
τ−→, C) = Prob(νc)C̄1[N̄](=⇒, C),

as required.
If (νc)N̄

τ−→ (νc)JN̄ ′K∆, because of an application of rule (Beg-Bcast) then

N̄
cL![l,r2]−−−−→ JN̄ ′K∆ for some location l and some set L of locations. If C̄1[0] ≡ C1[0],

or d(l, k) > r2 we are done, because it is enough to apply rule (Par), since both
C̄1[N̄] and C̄1[N̄

′] are well-formed networks, and ∃F ′ ∈ F̂C such that ProbF
(νc)N̄

(
τ−→

, C) = ProbF
′

(νc)C̄1[N̄]
(=⇒, C), as required. If C̄1[0] ≡ C ′

1[0] and d(l, k) ≤ r2, we can

not apply rule (Par) because C ′
1[N̄

′] is not well-formed (i.e., there are two active
senders whose distance is smaller of their transmission radius). Now, in order to
prove bisimulation, we have to find in F̂C a scheduler allowing C ′

1[N̄] to reach C̄1[N̄
′]

with probability 1, where C̄1[·] ∈ {C1[·], C ′
1[·]}. In this case, there exists F ′ allowing

m1 to finish its communication, i.e., C1[N̄]
τ−→ JC1[N̄ ′]K∆.

The most interesting case is when d(k, lh), d(l, lh) ≤ r2 for some h ∈ [1 − 7], where
N̄ ≡

7
i=1ni[Qi]li and Qh = c(x̃).Q′

h.
This means that nh is in the jammer’s transmission area, and it receives the correct
packet in N̄ , while it receives a collision in C ′

1[N̄] avoiding it to immediately reach
C̄1[N̄

′] with probability 1. If the node receiving the collision (⊥) is an intermediate
node in the path from n4 to n6, we are done, since, when n4 does not receive the
acknowledge, it searches another path to reach n6 (by re-executing find path) and
it sends again the message. If the node receiving the collision is the source or the
destination of the communication (n4, n6), the bisimulation depends on the tran-
sition matrix modelling its mobility: if the node, with a finite number h of steps,
goes far away from the jammer with probability 1, i.e., the probability to end up in
an ergodic set in which all the states represents locations inside the jammed area
is 0, then the bisimulation is proved, otherwise the probability for C ′

1[N̄] to reach a

140 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

state in C is 1− p, where p =


l′∈LocjamJ
ni (h)
ll′ and Jni being the transition matrix

associated with the node ni.
Moreover, when the protocol uses the tree-based strategy, assuming that root nodes
are static (in our example nodes n1, n2 and n3), e.g., when those nodes are bridges
between wireless and wired networks, or access points, if the node receiving the col-
lision is the root itself, it can never be possible to detect an alternative route, thus
the bisimulation does not hold.

Let us now consider now the dynamic context:

C2[·] = · | m1[P]k | m2[P]k′ .

We have to prove that:
(νc)N ∼=F

p (νc)C2[N]. (5.2)

Again, we check whether the relation

S = {((νc)N̄ , (νc)C̄2[N̄]) : (νc)C̄2[N̄] ∈M},

where M = {(νc)C̄2[N̄] : (νc)C2[N] −→
∗
(νc)C̄2[N̄]}, is a bisimulation. The proof

proceeds as for the previous context (the behaviours of N and C2[N] only differ
for the collisions caused by the jammers attacks), but we have to take into account
that the second jammer is mobile: if in the previous case we had only to verify the
positions of n4 and n6, while the jamming area was known statically, now we have
to analyse all the possible locations occupied by the mobile jammer.

Let the Markov chain Jnim2 be the joint process between Jni and Jm2 , in which
states are pairs (l, k) of states of the chains Jni and Jm2 , which are associated with
nodes ni and m2 (the mobile jammer), respectively. Hence, each pair (l, k) of Jnim2

means that ni is located at l and m2 is located at k. The state space of Jnim2 is thus
the Cartesian product of the state spaces of Jni and Jm2 . We consider a subset Snim2

of Jnim2 , such that (l, k) ∈ Snim2 ⇔ d(l, k) ≥ rm2 , i.e., all combinations of states
in which the jammer can interfere with the node ni. ni can always communicate
successfully (and then the bisimulation is proved) only if the probability to end up
in an ergodic set in which all states are member of Snim2 is 0.

Again, when using the tree-based strategy, if the root nodes are stationary, even
if n4 and n6, when jammed, are able to reach a safe location with probability 1,
the success of the communication depends on the root nodes, and if the root nodes
are jammed, n4 and n6 may not be able to find a valid path to complete their
communication.

Even if both relations R and S are proved to be bisimulations only under par-
ticular conditions depending on the mobility of nodes, with our proof technique we
have been able to show that the reactive approach used by the HWMP protocol is
more robust against jamming than the proactive one, since, when using the tree-
based routing, the bisimulations are proved under more restricted conditions, which
depend on the mobility behaviour of the root nodes.

5.7. Conclusions 141

5.7 Conclusions

In this chapter we introduce a version of the Probabilistic EBUM calculus, aimed
at capturing the collisions caused by multiple nodes transmitting with the same
channel.

We showed how this calculus is useful to study the performances of different ad
hoc communications protocols, as well as to face the problem of jamming attacks,
due to malicious nodes constantly occupying a channel with dummy transmissions.

Due to the non-atomic nature of input and output actions, this calculus is fit
for studying ad hoc communication protocols only when we are interested in the
analysis of the level of interference, while, for all the other kinds of performance
analysis the best choice is to use the probabilistic calculus introduced in chapter 4.

142 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

(Beg-Snd)
P

c̄L,r−−→ P ′

n[P]l
cL![l,r]−−−−→ Jn[P ′]lK∆

(End-Snd)
P

c̄L,r ṽ−−−→ P ′

n[P]l
cL!ṽ[l,r]−−−−→ Jn[P ′]lK∆

(Beg-Rcv)
P

c−→ P ′

n[P]l
c?@l−−→ Jn[P ′]lK∆

(End-Rcv)
P

cϑ−→ P ′

n[P]l
c?ϑ@l−−−→ Jn[P ′]lK∆

(Beg-Bcast)
M

cL![l,r]−−−−→ JM ′K∆ N
c?@l′−−−→ JN ′K∆ d(l, l′) ≤ r ∧ AsN(c, l) = AsN(c, l

′) = ∅

M |N cL![l,r]−−−−→ JM ′|N ′K∆

(Coll-Bcast)
M

cL![l,r]−−−−→ JM ′K∆ N
c?⊥@l′−−−−→ JN ′K∆ d(l, l′) ≤ r ∧ AsN(c, l) = ∅

M |N cL![l,r]−−−−→ JM ′|N ′K∆

(End-Bcast)
M

cL!ṽ[l,r]−−−−→ JM ′K∆ N
c?ṽ@l′−−−→ JN ′K∆ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−→ JM ′|N ′K∆

(Lose1)
M

cL![l,r]−−−−→ JM ′K∆
M

τ−→JM ′K∆
(Lose2)

M
cL!ṽ[l,r]−−−−→ JM ′K∆
M

τ−→JM ′K∆

(Move)
Active(P) = false

n[P]l
τ−→ Jn[P]lKµn

l

(Res)
M

γ−→ JM ′Kθ Chan(γ) ̸= c

(νc)M
γ−→ J(νc)M ′Kθ

(Obs)
M

cL!ṽ[l,r]−−−−→ JM ′K∆ R ⊆ {l′ : d(l, l′) ≤ r ∧ | AsM(c, l′) |= 1} K = R ∩ L, K ̸= ∅
M

c!ṽ@K▹R−−−−−→ JM ′K∆

(Par)
M

γ−→ JM ′Kθ
M |N γ−→ JM ′|NKθ

Table 5.4: LTS rules for Networks

5.7. Conclusions 143

SNDj⟨bj , Tj⟩= [empty(T) = false](out⟨c{k},rj , (bj , head(Tj), nj)⟩.WAIT Ackj⟨bj , Tj⟩),
out⟨ok{k},rj , (nj , END)⟩

WAIT Ackj⟨bj , Tj⟩ = in(c, (x, y, z)).[y = nj]([(x = bj) ∧ (z = ACK)]SNDj⟨¬bj , dequeue(Tj)⟩,
SNDj⟨bj , Tj⟩),WAIT Ackj⟨bj , Tj⟩

RCV ⟨b1, b2⟩ = in(c, (x, y, z)).[z = n1]

([x = b1]out⟨c{l1,l2,l3,l4},r, (b1, n1, ACK)⟩.

RCV ⟨¬b1, b2⟩, out⟨c{l1,l2,l3,l4},r, (b1, n1, NACK)⟩.RCV ⟨b1, b2⟩),
[z = n2]([x = b2]out⟨c{l1,l2,l3,l4},r, (b2, n2, ACK)⟩.RCV ⟨b1,¬b2⟩,
out⟨c{l1,l2,l3,l4},r, (b2, n2, NACK)⟩.RCV ⟨b1, b2⟩)


,

out⟨c{l1,l2,l3,l4},r, (b1, n1, NACK)⟩.out⟨c{l1,l2,l3,l4},r, (b2, n2, NACK)⟩.
RCV ⟨b1, b2⟩

ABP = (νc)

n1[SND1⟨1, T1⟩]l1 | n2[SND2⟨1, T2⟩]l3 m[RCV ⟨1, 1⟩]k



Table 5.5: ABP

RCVSIC⟨b1, b2⟩= in(c, (x1, x2, x3))[x3 = n1]

([x1 = b1]out⟨c{l1,l2,l3,l4},r, (b1, n1, ACK)⟩.

RCVSIC⟨¬b1, b2⟩, out⟨c{l1,l2,l3,l4},r, (b1, n1, NACK)⟩.RCVSIC⟨b1, b2⟩),
[x3 = n2]([x1 = b2]out⟨c{l1,l2,l3,l4},r, (b2, n2, ACK)⟩.RCVSIC⟨b1,¬b2⟩,
out⟨c{l1,l2,l3,l4},r, (b2, n2, NACK)⟩.RCVSIC⟨b1, b2⟩)


,

out⟨c{l1,l2,l3,l4},r, (b1, n1, NACK)⟩.WAIT ⟨⊥x1,x2,x3 , b1, b2⟩
WAIT ⟨⊥p1,p2,p3 , b1, b2⟩ = in(c, (x1, x2, x3))[x3 = n1]([x1 = b1](out⟨c{l1,l2,l3,l4},r, (b1, n1, ACK)⟩.

[f(x3, p3) = n2][b2 = f(x1, p1)](out⟨c{l1,l2,l3,l4},r, (b2, n2, ACK)⟩.
RCVSIC⟨¬b1,¬b2⟩), out⟨c{l1,l2,l3,l4},r, (b2, n2, NACK)⟩.RCVSIC⟨¬b1, b2⟩),
out⟨c{l1,l2,l3,l4},r, (x1, n1, NACK)⟩.WAIT ⟨⊥x1,x2,x3 , b1, b2⟩

SIC ABP = (νc)

n1[SND1⟨1, T1⟩]l1 | n2[SND2⟨1, T2⟩]l3 | m[RCVSIC⟨1, 1⟩]k



Table 5.6: SIC ABP

144 5. Interference-sensitive Preorders for Mobile Ad hoc Networks

6
Automatic Performance Analysis

6.1 Introduction

In Chapter 4 we defined a preorder among networks (see Definition 4.9), which
allows us to study how different protocols with the same connectivity can have
different performances in terms of energy conservation, level of interference or other
metrics. The preorder has been defined in two steps: the first step consists in
verifying that the networks compared are equivalent with respect to our definition
of barbed congruence, while in the second step we prove that one of the systems we
are comparing is always able to mimic the behaviour of the other one, with a less
cost.

In Chapter 2, a number of tools have been cited for model checking probabilistic
systems. Among the existing tools we decided to use the PRISMModel Checker [49],
because it supports the modelling of Markov Decision Processes (MDPs), (where
non-deterministic and probabilistic aspects coexist), as well as the definition of
costs and rewards of the models executions. We exploit the PRISM tool to per-
form automated, quantitative verification and analysis of wireless networks for a
range of performance metrics [50]. Specifically, we develop a parser to translate
an EBUM process term, representing a network, into an MDP model expressed in
the PRISM language. Then we use the PRISM property specification language to
analyse the connectivity of a networks and to compute the costs for a network to
reach a particular state.

6.2 Introduction to the PRISM language

PRIMS MDPs are expressed through a simple state-based language, composed
of modules. Each module in turn is composed of variables and commands.

Modules. A module is specified as

module name

...

endmodule

146 6. Automatic Performance Analysis

The first part of the module is the list of its local variables, describing the
different states the module can reach. A variable declaration contains its name,
type and initial value. As an example, the following declaration

x : [1 .. 5] init 3;

means that variable x is an integer, which can take a value in the interval [1-5], and
its initial value is 3.

Commands describe all the possible behaviours of the modules, i.e. all the pos-
sible transitions from a state to another one. They include guards, which indicate
the states where the transition can occurs, and the updates, which modify the vari-
ables in order to reach the arrival states. In PRISM it is possible to represent both
probabilistic and non-deterministic transitions.

An example of probabilstic command is:

[] (x = 1) -> 0.6:(x’ = 2) + 0.4:(x’ = 3);

that means that from the state where x = 1 we can reach the state where x = 2
with probability 0.6 , and the state where x = 3 with probability 0.4 .

The non-deterministic version of this command is:

[] (x = 1) -> (x’ = 2);

[] (x = 1) -> (x’ = 3);

meaning that the model will arbitrarily choose one of that commands, assigning to
x either the value 2 or the value 3, i.e., from the states where variable x is set to
1, we can arbitrarily reach one of the two possible arrival states. We can also have
multiple variables in a module. In this case guards and updates are enriched with
the & and ∥ operators in order to combine the modifications of different variables
inside the same command.

Commands can also be associated with labels, and this is useful in order to model
synchronisations. In PRISM synchronisations can occur only among commands with
the same label. Usually only one of the synchronising commands is probabilistic
while all the other ones are non-deterministic; if we have multiple probabilistic
commands with the same label, the probability of the synchronisation will be the
normalized product of the synchronising commands probabilities.

6.2.1 The Property Specification Language of PRISM

PRISM provides a property specification language in order to specify properties
of Markov decision processes, probabilistic and timed automata, discrete time and
continuous time markov chains. It supports several temporal logics, such as PCTL
(Probabilistic Computation Tree Logic) and LTL (Linear Temporal Logic).

In particular, when dealing with MDPs, the PRISM property specification lan-
guage enables us to study a lot of important properties, such as the minimum or

6.2. Introduction to the PRISM language 147

maximum probability to reach a particular state under some conditions. Moreover,
PRISM supports also the specification of reward properties, i.e., the expected values
of some given rewards (or costs) associated with a model.

The P operator.
The P operator is used to reason about the probability of an event’s occurrence.
Formally, we write:

P bound [pathprop]

which is true if the probability that the path property pathprop is satisfied by the
paths from the initial states respects the bound bound. In particular, when dealing
with MDPs, PRISM allows only to calculate the minimum or the maximum proba-
bility, due to the property of Markov Decision Processes to allow non-determinism.
As an example, the property:

Pmax > 0.5 [pathprop]

is true if the maximum probability to eventually reach the state satisfying pathprop
is greater than 0.5, false otherwise.

We can also adopt a quantitative approach, by computing the actual probability
a path property is satisfied. An example is:

Pmin =? [pathprop]

which computes the minimum probability to satisfy pathprop.

The PRISM property specification language introduces a set of temporal opera-
tors in order to express the PCTL path formulas or the LTL formulas which can be
verified for a single path of a model.

Among these operators, the most used are:

• F (= “eventually”) : F “condition” expresses the property that the condition
will be eventually satisfied by the path.

• U (= “until”) : “condition1”U “condition2” expresses the property that
condition2 is eventually true and that condition1 is always true until condition2
becomes true.

• G (= “always”) : G “condition” expresses the property that the condition
is always true (i.e., it expresses the invariancy property).

148 6. Automatic Performance Analysis

Costs and Rewards.
Reward properties are based on the possibility of defining rewards associated with
a given PRISM model. Rewards are associated with models using the following
construct:

rewards ‘‘name’’

...

endrewards

Rewards can be defined anywhere in the model file, except within a module
definition. These constructs contain one or more reward items, which assign rewards
to particular states or transitions. The syntax for the state reward is:

constraints: cost;

which assigns the cost cost to the states satisfying the list of constrains.
On the other hand, in order to assign a cost to a transition, we have

[action] constraints: cost;

which assigns the cost cost to the transition [action], when the list of constraints
is satisfied.

With the PRISM property specification language we can compute the expected
value of the rewards associated with the model. Again, since MDPs support the
non-deterministic choices the syntax will be:

Rmin bound [rewardprop]

Rmax bound [rewardprop]

which calculate the minumum (respectively the maximum) expected reward associ-
ated with rewardprop of the model.

As an example, the following reward property

Rmax = ? [F state]

returns the maximum cost for the model, to eventually reach the state state.
PRISM supports experiments, which is a way of automating multiple instances

of model checking. Experiments can be performed by verification or by simulation.

6.3 A Parser for the Probabilistic EBUM calculus

In the following we introduce a parser to automatically translate Probabilistic
EBUM networks into PRISM MDPs, in order to have an automatic and efficient
tool to study and compare their performances, in terms of a range of indexes, such
as energy consumption and time delay. In particular, we use a translator, imple-
mented in F# [17] with FsYacc and FsLex [54], which compiles EBUM networks
into the PRISM language. The result is an MDP, such that there is a one-to-one
correspondence between the PRISM transitions and the EBUM reductions.

6.3. A Parser for the Probabilistic EBUM calculus 149

6.3.1 Input file of the parser

The input of the parser is a text file containing all the information necessary
to build the corresponding MDP. In particular we remind that each network node
is associated with a Markov Matrix corresponding to the probability distribution
which describes its mobility. On the other hand, the reduction semantics needs the
definition of a distance function d(·, ·) which computes the distance between each
pair of locations in the set Loc.

Finally we need to use a regular grammar for the EBUM Syntax, in order to
make it readable by the Lexer.

Following we describe in detail the contents of the Input text file.

• The PEBUM network (see Table 3.1 in Chapter 3) is written in the following
grammar:

Regular grammar PEBUM Syntax
M ::= 0 Empty Network 0

|M1 |M2 Parallel Composition M1 |M2

| [c]M Restriction (νc)M
n@l{P} Node (or device) n[P]l

where each process in turn is written as follows:

Regular grammar PEBUM Syntax
P ::= 0 Inactive process 0

| (x̃)← c;P Input c(x̃).P
| ṽ → c@L/r;P Output c̄L,r⟨w̃⟩.P
| ifw1 = w2 thenP elseQ Matching [w1 = w2]P,Q
| rec {P} Recursion A⟨w̃⟩

• A transition probability matrix Jn is associated with each node n as illus-
trated below, where L1, ..., Lk are the locations in the network and pi,j is the
probability for the node n to move from location Li to Lj.

Jn = L1 L2 ... Lk
p1,1 p1,2 ... p1,k

...
pk,1 pk,2 ... pk,k

150 6. Automatic Performance Analysis

• A triangular matrix Dist, describing the distances between each pair of net-
work locations. The matrix is triangular because we assume the distance to
be symmetric.

Dist = L1 L2 ... Lk
d1,1 d1,2 ... d1,k

...
dk,k

6.3.2 The parsing task

The parser processes the input text to collect all the information we need to
capture the behaviour of a network expressed by the reduction semantic rules (see
Table 4.1). The key is to generate a list of records containing information about
the possible synchronisations the network can perform (see (R-Bcast) rule in Table
4.1). This list can be generated by analysing all the network processes, with respect
to the probability distribution of each node’s mobility (expressed by Jn) and the
topology of the network (expressed by Dist).

As a result of the input elaboration, the parser creates a structure, called out entry
list, containing all the possible output reductions the network can perform.

Each out entry contains:

• The name of the sender node;

• The list of the synchronising nodes;

• The channel associated with the transmission;

• The radius associated with the transmission;

• The list of the messages transmitted;

• The possible locations the sender can occupy in order to produce the same
observable action;

• The set of the locations able to receive the message.

This entry list is the key aspect of our parser, because it allows one to deduce
all the possible behaviours of the input network.

Notice that we elaborate the network in order to create a model corresponding
to the reduction semantics, without taking into account the observable behaviour of
the network, since we want to use model checking to study the costs of the protocols,
and not to analyse their observable behaviours.

6.3. A Parser for the Probabilistic EBUM calculus 151

6.3.3 Output of the parser: generation of a PRISM MDP

The output of the parser is an MDP written in the PRISM language [49]. Given
a network M ≡


i∈Ini[Pi]li , each network node ni[Pi]li corresponds to an MDP

module, with name ni. The variable locni
refers to the current location of ni; the

variable procni
represents the current process status, which is used to control the

order of process execution (since processes are deterministic and sequential). Free
variables and locations are defined as constants at the beginning of the file while, if
a process contains bound variables, they are defined inside the node module.

Modules may execute commands (or actions) corresponding to the reduction
rules (R-Bcast) and (R-Move) in Table 4.1:
• (R-Bcast) n[c̄L,r⟨ṽ⟩.P]l |


i∈Ini[c(x̃i).Pi]li−→Jn[P]l |


i∈Ini[Pi{ṽi/x̃i}]liK∆

Since in PRISM synchronisations are modelled by labelling commands with ac-
tions, we associate the following action label with each message transmission:

[cn n1...nh1 v1...vh2 R1... Rh3]

where

{c} is the channel of the transmission;

{n} is the sender node;

{n1, ..., nh1} is the set of the nodes ni (i ∈ I) receiving the message;

{v1, ..., vh2} is the tuple ṽ of messages;

{R1, ..., Rh3} is the set of locations whose distance from l is less than the radius.

The module of sender n contains the following command in PRISM (for Lk = l):
[cn n1...nh1 v1...vh2 R1... Rh3] (proc n=counter)& (loc n=Lk)

→ (proc n′=counter+1);
The module of a receiver node ni(i ∈ I) contains the following command in

PRISM:
[cn n1...nh1 v1...vh2 R1... Rh3] (proc ni = counter)& ((loc ni = R1)| · · · |(loc ni = Rk))

→ (proc n′i = counter+ 1)&(x′i1 = v1)& ... &(x1h2 = vh2);
If I is the empty set, then it means that no nodes receive the transmission, and

the message is lost. We add a command with a loss-message action to the sender’s
module:
[cn v1...vh2 lost] (proc n = counter)& (loc n = Lk)→ (proc n′ = counter+ 1);
• (R-Move) n[P]l−→Jn[P]lKµn

l

In PRISM the mobility of nodes is expressed using a different command for each
row of the matrix Jn associated with each node. In particular, if L1, ..., Lj is the
set Loc of the network locations, each i-th row of the matrix Jn corresponds to the
command:

152 6. Automatic Performance Analysis

[] (loc n=Li)→ pi,1:(loc n′=L1)+ · · ·+pi,j(loc n′=Lj);

The internal actions executed by a process P are expressed by a sequence of
labelled commands:

• if− then− else : P ≡ [v1 = v2]P1, P2

Each choice corresponds to the following command:

[if n then](proc n = counter)& (v1 = v2) → (proc n′ = counter+ 1);

[else n](proc n = counter)& !(v1 = v2) → (proc n′ = counter+ N);

where N is the number of steps in P1. Notice that the presence of the node’s
name inside the action label has been added in order to differentiate the ac-
tion labels for each module’s if− then− else commands, since they are not
synchronising actions.

• Recursion : P ≡ A⟨w⟩
Each recursion is expressed by the following command

[rec n](proc n = counter) → (proc n′ = counter− N);

where N is the number of steps inside the recursion.

6.3.4 Correctness of the translation

Let N be the set of networks, and let T be the function mapping networks into
corresponding MDPs. Let M ∈ N be a network, and let T(M) be its corresponding
MDP model.

The translation captures all the behaviours expressed by the reduction semantics,
i.e., there is a one-to-one correspondence between the reduction rules of M and the
possible actions in T(M). This correspondence can be proved by induction on the
reduction rules.

• (R-Bcast)

n[c̄L,r⟨ṽ⟩.P]l |


i∈Ini[c(x̃i).Pi]li−→Jn[P]l |


i∈Ini[Pi{ṽ/x̃i}]liK∆
where 0 < r ≤ rn, ∀i ∈ I.d(l, li) ≤ r, ri > 0 and |x̃i| = |ṽ|
In this case the module n contains the action

[cn n1...nh1 v1...vh2 R1... Rh3] (proc n=counter)& (loc n=Lk)

→ (proc n′=counter+1);

where I = {1, ...h1}, ṽ = v1, ..vh2, {R1, ...Rh3} = {k ∈ Loc | d(l, k) ≤ r},
v1, ..., vh2 = ṽ and li ∈ {R1, ...Rh3} ∀i ∈ I.

On the other end, each module ni, i ∈ I contains the action

6.3. A Parser for the Probabilistic EBUM calculus 153

[cn n1...nh1 v1...vh2 R1... Rh3] (proc ni = counter)& ((loc ni = R1)| · · · |(loc ni = Rk))

→ (proc n′i = counter+ 1)&(x′i1 = v1)&...&(x′ih2 = vh2);

• (R-Move)

n[P]l−→Jn[P]lKµn
l

Given Loc = {l1, ..., lk}, the module n contains, ∀li ∈ Loc, the row is:

[] (loc n=Li)→ pi,1:(loc n′=L1)+ · · ·+pi,j(loc n′=Lj);

where pi,j = µn
li
(lj) ∀j ∈ [1− k].

• (R-Par)

M−→JM ′Kθ
M |N−→JM ′|NKθ
The parallel composition is ensured by the fact that each module has always
the possibility to perform non-synchronising actions. In the case of a (R-Bcast)
reduction, e.g., there always exists the command labelled with a loose action,
which avoids any synchronisation with other nodes.

• (R-Res)

M−→JM ′Kθ
(νc̃)M−→J(νc̃)M ′Kθ
When building the list of all possible output reductions, only the nodes sharing
the same channels are included in the list of the synchronising nodes.

• (R-Struct)

N ≡M M−→JM ′Kθ M ′ ≡ N ′

N−→JN ′Kθ
The correctness of the translation with respect to this rule is ensured by the
structural congruence closure of the reduction barbed congruence (See Table
3.2 in Chapter 3).

6.3.5 A simple example

In order to show how our networks become PRISM MDPs, following we will
show the translation of a simple message exchange case. We use the toy example of
a network composed of two mobile nodes trying to communicate.

Formally:
M ≡ n1[P1]l1 | n2[P2]l2
where:

154 6. Automatic Performance Analysis

mdp

const L1=1;
const L2=2;

const msg1 = 1;
const msg2 = 2;

module n1

loc_n1 : [L1 .. L2] init L1;
x : [0 .. 2] init 0;
proc_n1 : [0 .. 2] init 0;

[] (loc_n1 = L1) -> 0.5:(loc_n1' = L1) + 0.5:(loc_n1' = L2);
[] (loc_n1 = L2) -> 0.5:(loc_n1' = L1) + 0.5:(loc_n1' = L2);

[cn1_n2_msg1_l1] (proc_n1 = 0) & ((loc_n1 = L1)) -> (proc_n1' = 1);
[cn1_msg1_lost] (proc_n1 = 0) -> (proc_n1' = 1);

[cn2_n1_msg2_l1] (proc_n1 = 1) & ((loc_n1 = L1)) -> (proc_n1'=2) & (x' = msg2);

[rec_n1] (proc_n1 = 2) -> (proc_n1' =0);
endmodule

module n2

loc_n2 : [L1 .. L2] init L2;
y : [0 .. 2] init 0;
proc_n2 : [0 .. 2] init 0;

[] (loc_n2 = L1) -> 0.5:(loc_n2' = L1) + 0.5:(loc_n2' = L2);
[] (loc_n2 = L2) -> 0.5:(loc_n2' = L1) + 0.5:(loc_n2' = L2);

[cn1_n2_msg1_l1] (proc_n2 = 0) & ((loc_n2 = L1)) -> (proc_n2'=1) & (y' = msg1);

[cn2_n1_msg2_l1] (proc_n2 = 1) & ((loc_n2 = L1)) -> (proc_n2' = 2);
[cn2_msg2_lost] (proc_n2 = 1) -> (proc_n2' = 2);

[rec_n2] (proc_n2 =2) -> (proc_n2' = 0);
endmodule

Figure 6.1: Sample

6.3. A Parser for the Probabilistic EBUM calculus 155

0
(1,0,0,1,0,0)

0: 1: 2:cn1_msg1_lost 3:cn1_n2_msg1_l10.5

14
(2,0,0,1,0,0)

0.5

0: 1:2:cn1_msg1_lost

0.5

1
(1,0,0,2,0,0)

0.5

0: 1: 2:cn1_msg1_lost

2
(1,0,1,1,0,0)

1

0:1:

3
(1,0,1,1,2,1)

1

0:1:

2:cn2_msg2_lost

3:cn2_n1_msg2_l1

0.5

15
(2,0,0,2,0,0)

0.5

0:1:2:cn1_msg1_lost

0.5

0.5

5
(1,0,1,2,0,0)

1

0: 1:

0.5

16
(2,0,1,1,0,0)

0.5

0:1:

0.5

0.5

0.5

17
(2,0,1,1,2,1)

0.5

0:1:

2:cn2_msg2_lost

0.5

6
(1,0,1,2,2,1)

0.5

0:1: 2:cn2_msg2_lost

4
(1,0,1,1,2,2)

1

0:1:

12
(1,2,2,1,2,2)

1

0: 1:

2:rec_n1

0.5

18
(2,0,1,1,2,2)

0.5

0: 1:

0.5

7
(1,0,1,2,2,2)

0.5

0:1:

0.5

19
(2,0,1,2,0,0)

0.5

0:1:

0.5

0.5 0.5

20
(2,0,1,2,2,1)

0.5

0: 1:2:cn2_msg2_lost

0.5

0.5

1

0.5

21
(2,0,1,2,2,2)

0.5

0: 1:

0.5

0.5

8
(1,2,0,1,2,2)

0:1: 2:cn1_msg1_lost0.5

22
(2,2,0,1,2,2)

0.5

0:1:2:cn1_msg1_lost

0.5

9
(1,2,0,2,2,2)

0.5

0: 1:2:cn1_msg1_lost

10
(1,2,1,1,2,2)

1

0: 1:

0.5

23
(2,2,0,2,2,2)

0.5

0:1:2:cn1_msg1_lost

0.5

0.5

11
(1,2,1,2,2,2)

1

0:1:

0.5

24
(2,2,1,1,2,2)

0.5

0: 1:

0.5

0.5

0.5

25
(2,2,1,2,2,2)

0.5

0:1:

0.5

0.5

0.5

26
(2,2,2,1,2,2)

0.5

0:1:

2:rec_n1

0.5

13
(1,2,2,2,2,2)

0.5

0:1:2:rec_n1

1

0.5

27
(2,2,2,2,2,2)

0.5

0: 1:

2:rec_n1

0.5

0.5

1

0.5

0.5 0.5

0.5

1

0.5

0.5

0.5

0.5

1

0.5

0.50.5

0.5

0.5

0.50.5

0.5

1

0.5

0.5 0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

0.5

0.5

0.5

0.5

0.5

0.50.5

0.5

1

0.5

0.5

0.5

0.5

1

0.5

0.5 0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.50.5

0.5

1

0.5

0.5

0.5

0.5

1

Figure 6.2: Transitions graph

156 6. Automatic Performance Analysis

Figure 6.3: PRISM: Building the model

• P1 ≡ c̄l1,1⟨msg1⟩.c(x).P1;

• P2 ≡ c(y).c̄l1,1⟨msg2⟩.P2;

Following we write the text file corresponding to M , given as input file to the
parser:

n1@l1{rec {msg1 -> c@l1/1 ;

(x) <- c }}

| n2@l2{ rec {(y) <-c;

msg2 -> c@l1/1}}

J = l1 l2

[0.5 0.5,

0.5 0.5]

n1 : J

n2 : J

Dist = l1 l2

[3.0]

J is the matrix describing the probability distributions associated with the nodes.
Dist is the triangular matrix describing the function d(·, ·): Distij indicates the
distance between the location i and the location j.

Figure 6.1 shows the resulting PRISM MDP, having 28 states and 130 transi-
tions; Figure 6.2 shows the resulting graph where nodes represent all the possible

6.3. A Parser for the Probabilistic EBUM calculus 157

Figure 6.4: PRISM: Verification of properties and rewards

states the model can reach, while the edges represent all the possible transitions the
model can perform. Notice that the probabilistic transitions are tagged with the cor-
respondent probability, while the non-deterministic transitions are simply labelled
with 1. Figure 6.3 shows a screenshot of the PRISM framework when building the
network model.

The model can be used to prove some interesting properties related to the net-
work behaviour. As an example, we may be interested in studying the probability
that n1 receives the message msg2 from n2. Hence we can write the following prop-
erty:

Pmax=? [F x=2].

We can also study the probability that n1 receives the message from n2 in less than
a given number of steps. We define a constant T and we write:

Pmax=? [F<=T x=2].

Figure 6.5 shows an example of simulation, while Figure 6.4 shows the results of
the experiment run to compute the probability for n1 to reveive msg2 in less than T
steps. The experiment has been run in the verification as well as simulation mode.
Notice that the difference between the results is very large: this is due to the choice
of using MDPs, which allows to make non-deterministic choices.

158 6. Automatic Performance Analysis

Figure 6.5: PRISM: Simulations

6.4. A case study 159

(a) Scheme 1 (b) Scheme 2 (c) Scheme 3

Figure 6.6: The different network schemes

6.4 A case study

We present a case study to show the effectiveness of translating our process
algebra into an MDP in order to automatise the performance analysis for a range of
metrics using PRISM.

6.4.1 The network.

We consider two static nodes, n1 and n2 communicating in a 60 × 60 metres
network area (see Figure 6.6). The distances between cells are determined by con-
sidering the centre of each cell and calculating the euclidean distance between each
pair of centres (each cell is 15 × 15 metres). Since the two static nodes are too
distant to reach each other (compared to their radius 20), the communication is
possible only if there are other intermediate nodes inside the network forwarding
the messages between n1 and n2. We consider a simple flooding algorithm in which
mobile nodes forward the messages in lazy mode, i.e., they store the data to be sent
until there is another node ready to receive it. This scenario is typical for gossip
protocols.

In the following, we analyse different situations, each with some intermediate
nodes that may move in a fixed area of the network (that is formally captured by
the probability transition matrix associated with each intermediate node).

Scheme 1 The first network we consider has three mobile nodes able to forward
messages inside the network. As shown in Figure 6.6.(a), n4 can move within the
top-left square of nine locations, n3 moves within the bottom-right square of nine
locations, while n5 can only move within the four central cells of the network area.

Scheme 2 The second scheme we consider is a network with only two mobile nodes
where, as shown in Figure 6.6.(b), one of the two intermediate nodes can move in the

160 6. Automatic Performance Analysis

triangular area around the position of n1, while the other one covers the triangular
area around n2.

Scheme 3 In the last scheme, shown in Figure 6.6.(c), one node can only move
inside the central area of the network (4 cells), while the second one can only move
in the 12 border cells.

We study the performance of these networks by varying the transmission power
of the intermediate nodes, in order to find the best power strategy which optimises
the performance in terms of energy consumption and throughput.

The three networks only differ in the transition probability matrix that is asso-
ciated with each mobile node, while their behaviour (when RAD ∈ {20, 30, 40, 50})
is expressed in the EBUM calculus as follows :

MRAD ≡
j

i=1ni[Pi]li , j = {4, 5} where:

• P1 ≡ c̄l4,20⟨msg for n2⟩.P ′
1

P ′
1 ≡ c(x1).[x1 = ack to n1]d̄l13,20⟨ok⟩, P ′

1;

• P2 ≡ c(x2).[x2 = msg to n2]c̄l13,20⟨ack to n1⟩, P2

• Pk ≡ c(xk).c̄∅,RAD⟨xk⟩.Pk, k ∈ {3, 4, 5}

with j = 5 for scheme 1, and j = 4 for schemes 2, 3.
We consider the restricted set of schedulers F ∈ Sched such that the nodes ni

always perform synchronisations where possible and they transmit a message only
if at least one node is listening to the channel (i.e., messages are not lost).

First we prove that, by varying the value of RAD, among the values in the set
{20, 30, 40, 50}, the probabilistic observational behaviour of MRAD does not change.

Theorem 6.1 For R1, R2 ∈ {20, 30, 40, 50},

MR1
∼=F

p MR2.

Proof.
In order to prove the congruence it is sufficient to find a bisimulation containing

the pair (MR1,MR2). Let us consider the relation:

R = {(M̄, N̄) : MR1 −→
∗
M̄ and N̄ ≡ M̄{R2/R1}}.

We prove that R is a bisimulation we have to show that, ∀α and ∀C ∈ N /R

• α = τ

If the τ action has been caused by the application of the Rule (Move) the
proof is trivial since N̄ ≡ M̄{R2/R1}, and N̄ can perform exactly the same
movements as M̄ . If the τ action has been caused by an application of rule

6.4. A case study 161

(Lose) we have M̄
c′L!ṽ[l,r]−−−−→∆ M̄ ′ for some channel c′ ∈ {c, d}, some message ṽ

some location l, some set L of locations and some radius r. If the transmission
has been performed by n1 or n2 which uses a fixed radius 20, N̄ is able to
perform exactly the same output as M̄ and again the bisimulation is proved.

If the node transmitting is ni, i > 2, then r = R1, meaning N̄
c′!ṽ[l,r′]−−−−→ with

r′ = R2. If R2 ≥ R1, we are done, because, N̄ can mimic the transmission
performed by M̄ and we get, by Definition 4.6 ∃F ′ ∈ F̂C such that

ProbFM̄(
τ−→, C) = ProbF

′

N̄ (
τ−→, C) = ProbF

′

N̄ (=⇒, C),

as required. If R2 ≤ R1, then, since the Markov matrices modelling the
mobility of the intermediate nodes are ergodic, the output action can be
mimicked by a sequence of movements and outputs by N̄ which reach the
same receivers that have been able to synchronise with M̄ , and ∃F ′ ∈ F̂C

such that N̄ =⇒ c′!ṽ[k1,r′]−−−−−→=⇒ =⇒ c′!ṽ[kn,r′]−−−−−→=⇒ N̄ ′ ≡ M̄ ′{R2/R1}, where,
∀l′ ∈ Loc.d(l, l′) ≤ r, ∃ki, i ∈ [1− n] such that d(l′, ki) ≤ r′. By applying rule
(Lose) to each output action we get:

ProbFM̄(
τ−→, C) = ProbF

′

N̄ (=⇒, C),

as required.

• α = c′!ṽ@K ▹ R

We notice that the only observable action is the transmission d!ok@{l13} ▹
{l9, l13, l14} performed by n1 with a fixed radius 20. This mean that N̄ can
perform exactly the same action as M̄ .

• α = c′?ṽ@k

The proof is simple since N̄ only differs from M̄ for the radius used in the
output actions, while the networks can perform exactly the same input.

For each scheme we build a PRISM MDP, assigning to the variable RAD the
values in the set {20, 30, 40, 50}, in order to investigate how different transmission
powers influence the performances of the networks.

We use PRISM to verify the following property which computes the maximum
probability (among all schedulers) of eventually reaching the goal states:

Pmax=? [F goal_state]

From the experiments, we obtain probability 1 for all the different schemes, and
for all possible radii. In the next paragraph, time and energy cost information is
added to the MDP. We investigate how the cost will be affected by varying the
network topology and the transmission radii of the nodes.

162 6. Automatic Performance Analysis

6.4.2 Time and Energy Costs.

In order to analyse the performance of our network, we define a cost function in
terms of energy consumption and time delay. In our analysis we study the energy
spent in the transmissions assuming that the cost for the control packets is negligible.

We assume quasi-linear cost functions of the form
k

wk · Φk() (6.1)

that are sums of arbitrary functions Φk(), each of which maps one metric (e.g., en-
ergy cost and throughput) to some common measure. In general, we give a different
weight wk ≥ 0 to each Φk() to reflect its importance. We assume that


k wk = 1.

In the following, we first introduce the energy cost ΦE, then the time cost ΦT

and finally the global cost function.

Energy Cost. We associate an energy cost with the probabilistic network reduc-
tions, as follows:

e(M,N) =



(Enelec × packet len+
Enampl × packet len× r2)

if M−→θN,M ≡ n[c̄L,r⟨ṽ⟩.P]l |M ′,
N ≡ n[P]l | N ′ for some c, L, ṽ, l

0 otherwise.

where Enelec(nJ/b) is the energy dissipated to run the transmitter circuit, Enampl

(pJ/b/m2) is the Radio amplifier energy. They are constants given a priori (see [57]).

Time Cost. We associate time cost with the probabilistic network reductions as
follows:

t(M,N) =



(packet len/bandwith)

if M−→∆N,M ≡ n[c̄L,r⟨ṽ⟩.P]l |M ′

and N ≡ n[P]l | N ′ for some c, L, v, l

(cell size/velocity)

if M−→µn
l
N,M ≡ n[P]l |M ′

and N ≡ n[P]k |M ′

where cell size (m) is the size of a cell, velocity (m/s) is the velocity of the
devices and bandwith (MB) is the channel bandwidth of the network. Again they
are constants.

6.4. A case study 163

RAD  
[m]"

TIME  
[s]"

ENERGY
[J*10-7]"

20" 1269.45" 5360.97"
30" 884.04" 6880.00"
40" 874.06" 12480.02"
50" 874.06" 16800.02"

(a) Scheme 1

RAD  
[m]"

TIME  
[s]"

ENERGY
[J*10-7]"

20" 448.70" 5279.99"
30" 200.72" 6880.00"
40" 205.48" 5760.00"
50" 205.48" 7199.99"

(b) Scheme 2

RAD  
[m]"

TIME  
[s]"

ENERGY
[J*10-7]"

20" 1333.33" 3039.99"
30" 34.67" 4029.33"
40" 34.67" 4960.00"
50" 166.67" 6400.00"

(c) Scheme 3

Figure 6.7: The time-only and energy-only cost

Composition of Cost Functions Now consider Definition 4.8, and let ΦE =
Coste and ΦT = Costt, and w be the weight of the energy function. We define the
cost of reaching a set H from the network M according to the scheduler F as:

Cost(e ◦ t)
F

M(H) = αCosteFM(H) + βCostt
F
M(H), (6.2)

where α and β are weighting coefficients expressed in s−1 and J−1 respectively,
and henceforth we simply consider α = w and β = 1− w, with w ∈ [0, 1].

According to the energy and time costs we introduced above, in our PRISM
MDP the constants are given as follows:

const double cell_size = 10.0;

const double bandwith = 1.0 ;

const double packet_len = 200.0;

const double velocity = 0.3 ;

//ENERGY FOR COMMUNICATION

//50 nJ/b*packet_len+100 pJ/bit/m^2*packet_len*r^2

const double bcast_pow_n1= 800+1.6*RAD1*RAD1;

const double bcast_pow_n2= 800+1.6*RAD2*RAD2;

const double bcast_pow_n3= 800+1.6*RAD4*RAD4;

const double bcast_pow_n4= 800+1.6*RAD3*RAD3;

const double move_power = 0;

const double move_time = cell_size/velocity;

const double bcast_time = packet_len/1000000 ;

where bcast pow ni and bcast time are the energy and time spent for a sin-
gle transmission performed by ni, while move power and move time are the energy
and time spent for each single movement step. Notice that only the cost of the

164 6. Automatic Performance Analysis

transmissions depends on the identity of the sender nodes, i.e. to on the radius
each node uses to communicate. The time and energy costs of each movement are
fixed because we consider devices having the same physical characteristics, which
performs a movements of 15− 20 metres for each move step. The time cost of each
transmission is fixed because we assume that all the packets have the same size.

The cost can be calculated by defining a reward structure:

rewards "cost"

[] true : (1-w)*move_time + w*(move_power);

[out_ni] true : (1-w)*bcast_time +w*bcast_pow_ni;

...

endrewards

Since for all the schemes introduced above we proved that, for each pair R1, R2 ∈
{20, 30, 40, 50}, MR1

∼=F
p MR2, we are ready to investigate if there exists, for each

scheme, a preorder among M20, M30, M40 and M50. This means that we have a way
of choosing the radius optimising the performance of the network in terms of time
and energy cost.

We use the PRISM tool to automatically verify the second point of Def. 4.9, by
calculating, for each radius in the set {20, 30, 40, 50}, the minimum cost among all
schedulers under which the goal state is reached with probability 1:

R{"cost"}min=? [F goal_state]

Fig. 6.7 shows the time and energy costs we calculated for each scheme, while
the general cost functions are specified in Fig. 6.8 (time cost is expressed in s while
energy is expressed in J × 10−7). Here we summarize our results.

(i) Time cost (w = 0). For each scheme, a higher time cost is needed for RAD =
20 (see Figure 6.7).

This is due to the fact that a small radius requires more rounds of forwarding
and more movements of the nodes: both these factors increase the time cost.

(ii) Energy cost (w = 1). In all of the three schemes in Figure 6.7, the smallest
radius always has the minimum energy cost. This is because, regardless of time,
it is always possible that mobile nodes move closer to each other or move close to
n1 or n2, and this reduces the energy cost. It is worth pointing out that, due to a
scaling representation factor, Figure 6.8 tends to hide the relative differences in the
total weighted cost among the radii for w = 0.

(iii) For 0 < w < 1 in general, we investigate for each scheme how the total
cost is affected by choosing different power strategies (i.e., transmission radii). The
results are shown in Figure 6.8.

Scheme 1 It can be seen in Figure 6.7 that radius 30 is better than 20 in terms
of delays (about 884

1269
= 70% of time cost for radius 20), and radius 20 is better

6.4. A case study 165

(a) Scheme 1 (b) Scheme 2

(c) Scheme 3

Figure 6.8: Cost results for each scheme

than 30-50 in terms of energy (about 5360
6880

= 78% of the energy cost for radius 30).
So the best radius depends on the w we choose: roughly speaking, if w ≤ 0.6,
then radius 30 is better than 20; otherwise 20 is better. We notice that here large
radii consistently deteriorate the energy performance of the network, without a real
improvement in terms of transmission delays: this is due to the fact that there
is a high density of nodes in the network area, which can cause unnecessary and
expensive transmissions.

Scheme 2 In Scheme 2 (see Figure 6.8.(b)), the smallest (largest) radius still
seems to give the best (worst) cost. However, using radius 40 is much better than
30 due to the mobility behaviours associated with the intermediate nodes: with
radius 30, n3 is only able to reach n1, while n4 can only forward n2 communications:
this situation enlarges the minimum number of transmissions allowing n1 and n2 to
complete their communications. Conversely, choosing a larger radius (40) enables
n3 (respectively n4) to eventually reach n2 (respectively n1), drastically reducing
the number of transmissions. Since the energy cost using radius 40 is not much
higher than the cost spent using radius 20, while the time costs are halved, we
can conclude that for the second scheme the best power management strategy for
time-aware applications is to use radius 40.

Scheme 3 Finally, let us consider the third scheme (see Figure 6.8.(c)). With w ≤
0.57 the best solution is radius 30, while with w > 0.57 the best strategy is radius 20.

166 6. Automatic Performance Analysis

However, if we are interested only in reducing the time spent to communicate (see
Fig. 6.7.(c)), radius 40 is the best choice, since the costs are consistently reduced with
respect to the other radii, while radius 20 critically increases time cost. Generally
speaking, the best solution (in order to reduce both energy and time costs) is to
use radius 30. We notice that 30 is the smallest distance that the inner area (4
cells) and the outer area (12 cells) can always directly reach each other, while radius
20 never allows n3 to reach n1 and n2. For these reasons time cost consistently
increases for radius 20, while with radius 30 is better (about 34.67

1333.33
= 2.5% of the

time cost for radius 20). With respect to radii 40 and 50, both the radius 30 and the
radius 20 allow one to reduce the energy cost, but only radius 30 do not significantly
deteriorate the time delays.

6.5 Conclusions

In this chapter we presented an automatic tool, based on the probabilistic cal-
culus introduced in 4, for comparing different costs of networks having the same
probabilistic observable behaviour. The automatic quantitative verification of a
network has been implemented by model checking. In particular we provided a
translation of the EBUM models into PRISM MDP models, which allows one to
automatically verify the performances of the networks in terms of various metrics.

In Chapter 4 we introduced a Preorder with the aim of comparing different
networks, having the same connectivity behaviour, but different performances in
terms of energy conservation or other metrics. This preorder has been defined in two
steps: we first use the bisimulation proof technique to verify that two systems have
the same connectivity behaviour, then we compare the average costs of the systems
to reach a particular state. While in the literature there are several frameworks to
automatically verify the bisimilarity of two systems, in this chapter we provided a
way to automatically verify the second step of the preorder: this framework can
be used to predict the performances of ad hoc or sensor networks in their planning
stage.

Conclusions

Ad hoc networks is an area of mobile communication networks that has attracted
significant attention due to its challenging problems. The main goal of our work is
to provide a formal model to reason about the problem of limiting the energy con-
sumption of the communications, without compromising the network connectivity.

As a first contribution, we define the EBUM calculus: a process calculus for
the analysis of mobile ad hoc and sensor networks, supporting broadcast as well as
unicast and multicast communication, the possibility for each node to arbitrarily
connect and disconnect from the network and the possibility for the mobile nodes to
arbitrarily move within the network area. Another important characteristic of the
EBUM calculus is the ability of a node to change its transmission radius (and, as a
consequence, the transmission power) in accordance with the protocol it is executing.
Our calculus results to be a valid formal model for an accurate analysis of ad hoc
and sensor networks, and allows us to evaluate and compare the behaviours of the
energy-aware protocols and algorithms used to mange the communications.

The second contribution of this thesis is the development of a probabilistic ver-
sion of the EBUM calculus, where we use probabilities to model the mobility of
the nodes.This extension allows us to give a more realistic representation of the
networks, where the movements of the devices are not completely casual, but they
follows particular trajectories, caused, e.g., by the physical obstacles of the network
area. The introduction of the probabilities in the model allows us to make both
a qualitative and a quantitative analysis, and to compare different networks which
have the same connectivity but different performances, in terms of various metrics
such as throughput and energy consumption. This is important because, during the
network implementation, there always exists a trade-off between the energy conser-
vation and the connectivity maintenance.

The third contribution of this thesis is the development of another probabilistic
version of the EBUM calculus, where again probabilities are used to model the mobil-
ity of nodes, but where the communications among the network nodes are modelled
as non-atomic actions. This characteristic allows us to capture the collisions which
can occur when the transmission areas of different sender nodes overlap. We can
use our model to make a qualitative and quantitative analysis of the performances
of the networks, concentrating the attention on the level of interference in terms of
the number of collisions occurring during the network communications.

The last contribution of this thesis is the presentation of a tool, based on the
PRISM Model Checker, for the automatic verification of mobile ad hoc and sensor
networks for a range of performance metrics. Specifically, we develop a parser to
translate EBUM terms into models expressed in PRISM language, and we provide

168 6. Conclusions

a formulation of the metrics for the computation of the time and the energy costs
of the communications in terms of reward structures. The PRISM framework has
been already used to analyse the performances of several communication protocols
for wireless networks (see, e.g. [18] , [48]). In this thesis we combined the powerful of
process algebra to compare the behaviours of different systems, and the possibility
to make automatic derivation of some system performances. While in the literature
there already exists applications of formal verification techniques to process alge-
bras (e.g., [70], [16]), to the best of our knoledge, as concerns the process algebras
specifically developed to analyse mobile ad hoc and sensor networks, no automatic
verification has already been implemented.

A
A Parser for the Probabilistic EBUM

Calculus

In the following we will give a detailed description of the parser, presented in
Chapter 6 which has been implemented in order to translate an EBUM network into
a PRISM mdp.

A.1 Development Environment

The Parser has been realized using Microsoft Visual Studio 2010, with the addi-
tion of the FSharp PowerPack 2.0.

In particular, we implemented a translator in F# with FsYacc and FsLex.
The resulting project is not simply aimed at building PRISM MDPs, but it can

be used to translate EBUM networks in other languages: as an example, we can use
one of the existing tools supporting bisimulation in order to automatically verify the
behavioural equivalence of different networks.

Indeed the parser here described is an important contribution to our work, since,
having a way of interacting with other framework make our calculus useful in prac-
tical situations.

A.2 Structure of the Parser

In the following we introduce the source files managing the different steps of the
parsing task, and we report some sketch of the source code.

Ver.fs : is a simple file only containing the version of the parser.

Prelude.fs : is a file containing a set of general auxiliary functions. As an example:

let identity x = x

returns the input element, while:

170 A. A Parser for the Probabilistic EBUM Calculus

let capitalize (s : string) =

if s.Length > 1

then s.Substring(0, 1).ToUpper() + s.Substring(1)

else s.ToUpper()

converts the first character of a string with the correspondent upper case char-
acter.

Config.fs : is a file containing the functions for the static configuration of the
parsing task, e.g., all the auxiliary functions for the creation of the Log File.

Log.fs : is a file containing the functions to write the log.

Env.fs : is a file containing a set of polymorphic functions useful for the information
management during the parsing task. As an example:

let map f (Env m) = Env (Map.map f m)

maps the function f on all the elements in the environment m, while

let exists f (Env m) = Map.exists f m

controls the existence of an element in Env, satisfying f.

Absyn.fs is the file defining the Abstract Syntax Tree (ATS), and it contains the
definition of all the data types (channels, nodes, distances, etc.), and the
auxiliary functions elaborating and preparing the parsed input file, for the
creation of the labelled transition system of the input EBUM network. The
types for simple values, names and channels are:

type id = string

type channel = id

type location = id

type radius = float

type node = id

type value = Int of int

| Float of float

| Char of char

| String of string

| Id of id

Types for networks are expressed as follows:

A.2. Structure of the Parser 171

type proc = PEmpty

| Receive of id list*channel*proc

| Send of value list *channel*location list*radius*proc

| If of value*value*proc*proc

| Rec of proc

where PEmpty denotes the empty process, Receive and Send respectively the
process input and output actions, if the if-then-else construct, and Rec the
recursion. The network type definition is:

type net = NEmpty

| Exec of node*location*proc

| Parallel of net*net

| Restrict of id*net

where NEmpty denotes the empty network, Exec a network constituted of a
single node executing a process, Parallel the parallel composition of two
network an Restrict the channel restriction. The matrices describing the
mobility of the nodes, and the matrix describing the distances among the
locations are expressed as

type matrix = {

labels : id list

values : float[,] }

where label is the list of all the locations names of the network topology, while
values contains all the values of the matrix. Finally a program is expressed
as following:

type program = {

net : net

matrix_env : Env.t<id, matrix>

node_env : Env.t<id, id>

dist : matrix }

where net is the network (the parallel composition of nodes executing pro-
cesses), matrix env is a list of pairs, where each pair is made of a name, and
the correspondent Markov matrix describing a mobility probability distribu-
tion; node env is a list of pairs, where each pair is made of a node name,
and the correspondent name of the markovian matrix describing its mobility;
finally, dist is the triangular matrix describing the distance function of the
program. The file presents another type which is used to build the labelled
transition tree: in particular the following type describes the element of an
output reduction; the definition of the output type is:

172 A. A Parser for the Probabilistic EBUM Calculus

type out_entry = {

node : node;

nodes: node list;

ch : channel;

rad : radius;

msg : value list;

locs : location list;

locsR : location list}

where node is the sender node, nodes is the set of the synchronising receiver
nodes, ch is the transmission channel, rad the transmission radius, locs is the
list of all the locations the sender node may occupy during the transmission,
and locsR the set of all the locations inside the network area. The remaining
functions in Absyn.fs allow the creation of the reduction tree: the set of all
possible behaviours of the input network can be deduced by associating the
processes definition with the distance function and with the mobility matrices,
in order to infer the set of all the possible synchronisations occurring during
the processes executions. As an example, the function:

let find_dist = fun loc1 loc2 dist->

let rec find_index = fun loc locs count->

match locs with

[] -> -1

| x::xs -> if (x = loc)

then count

else find_index loc xs (count+1)

in let l1 = find_index loc1 dist.labels 0

in let l2 = find_index loc2 dist.labels 0

in if l1 = l2 then 0.0 else

if l1 < l2 then (dist.values.[l1,l2])

else (dist.values.[l2,l1])

computes the distance among two locations (loc1 and loc2 are locations,
while dist is the matrix representing the distance function). The function:

let create_output_list net prog

let rec aux = fun net prog n->

match n with

NEmpty -> []

|Exec (node, loc, proc) ->

if ((Env.lookup node prog.node_env).Equals("I"))

then (create_out_list_proc_sta proc node net loc prog.dist)

else (create_out_list_proc proc node net prog.dist)

A.2. Structure of the Parser 173

|Parallel (net1, net2) -> List.append (aux net prog net1)

(aux net prog net2)

|Restrict (chan,net2) ->

let nodes = (restricted_channel net chan)

in aux net prog net2

in aux net prog net

creates the list of all the possible network synchronisations, by exploring the
network and analysing each single output action, in order to discover the set of
all the possible synchronisations which can occur, depending on the locations
covered by the receiver nodes.

Lexer.fsl : is the source file specifying the grammar in the FsLex metalanguage.
As an example, the code:

// brakets

| ’(’{ BRA }

| ’)’{ KET }

| ’[’{ SQBRA }

| ’]’{ SQKET }

| ’{’{ CURBRA }

| ’}’{ CURKET }

// punctuation

| ";" { SEMICOLON }

| ":" { COLON }

| "," { COMMA }

| "." { DOT }

| "@" { AT }

| "0" { ZERO }

recognizes the symbols of the input network regular grammar, and encodes
them with a list of key words that will be used by the parser to translate the
input file.

Parser.fsy : is the source file specifying the grammar in the FsYacc metalanguage.
As an example, the code:

proc:

proc_atom { $1 PEmpty }

| proc_atom SEMICOLON proc { $1 $3 }

| IF value EQ value THEN proc ELSE proc { If ($2, $4, $6, $8) }

| REC CURBRA proc CURKET { Rec $3 }

174 A. A Parser for the Probabilistic EBUM Calculus

| ZERO { PEmpty }

| BRA proc KET { $2 }

is the grammar for processes.

Parsing.fs : is a file containing a set of auxiliary functions for the parsing phase.

Main.fs : is the file containing the main code to parse the input file. The main
code of the file is:

module Test =

let parse_program filename mode=

ignore (Parsing.load_and_parse_program filename mode)

[<EntryPoint>]

let main (args : string[]) =

if args.Length <> 2 then usage ()

else try Test.parse_program args.[0] args.[1]

with :? Parsing.syntax_error as e ->

fatal_error "syntax error: %s" e.Message

| Env.Report.UnboundSymbolError s ->

fatal_error "error: %s" s

| Unexpected s ->

unexpected_error "%s" s

| e ->

fatal_error "uncaught exception: %s" e.Message

ignore <| System.Console.ReadKey ()

0

The module Test parses the input file and manages the eventual error occur-
rances.

The code above described constitutes the general parser for a probabilistic EBUM
process, and it can be used to translate an EBUM network in any language sup-
porting the representation of labelled transition systems.

As concerns the creation of the PRISM MDPs, the following file have been
created on purpose.

Functions.fs : is the file containing general auxiliary functions that will be used
for the translation. As and example, the function:

A.2. Structure of the Parser 175

let eliminate_duplicates = fun in_list ->

let rec aux = fun l1 l2 ->

match l1 with

[] -> l2

|x::xs -> if(is_in x l2) then (aux xs l2)

else (aux xs (x::l2))

in aux in_list []

eliminates the duplicate elements of a list, while the function:

let rec add_el = fun e l ->

match l with

[] -> []

|x::xs -> (e::x)::(add_el e xs)

let rec power_set = fun list l2 ->

match list with

[] -> [[]]

|x::xs -> (List.append (add_el x (power_set xs l2))

(power_set xs l2))

creates the power set of a given list. The file contains also some of the functions
participating to the output file creation. As an example, the functions:

let header = "mdp\n"

let locations (locs : location list) =

List.fold (fun s (id: string) ->

List.append s [id.ToUpper()]) [] locs

let locations_constants (d : matrix) =

let (s, _) = List.fold (fun (s,cnt) (id : string) ->

(s+"const "+id.ToUpper()+"="

+(cnt+1).ToString()+";\n" , cnt+1))

("",0) d.labels

in s+"\n"

create the header and the global constants of the mdp, while

let module_header (node : node) = "module "+ node + "\n"

let loc_var (node : node) (loc : location) (d : matrix) =

let s =

176 A. A Parser for the Probabilistic EBUM Calculus

"loc_"+node+" : ["+(List.head (locations d.labels))+" .. "+

(last (locations d.labels))+"] init "+loc.ToUpper()+";\n"

in s

let print_variables = fun l n p ->

let print_variable = fun (net : net) prog (var : id) ->

let count = (count_members (

eliminate_duplicates (

create_message_list prog.net (

create_variable_list prog.net))))

in var+" : "+"[0 .. "+count.ToString()+"] init 0;\n"

in let rec aux = fun list net prog->

match list with

[] -> ""

|x::xs -> (print_variable net prog x)+

(aux xs net prog)

in aux l n p

create the header and the variable of each mdp module.

Ebum.fs : is the file creating and writing the output file in the PRISM language:
The file created will have the same name of the input file, but with the ex-
tension .nm, that is the extension for the PRISM mdps. The file is again
constituted of a set of functions; as an example the function:

let rec print_modules = fun net prog out ->

match net with

NEmpty -> "\n"

| Exec(node,location,proc) ->

(print_module node location proc prog out)+"\n\n"

| Parallel (net1,net2) ->

(print_modules net1 prog out)+

(print_modules net2 prog out)

| Restrict(c,net1) ->

print_modules net1 prog out

create the mdp modules corresponding to each network node, where net is
the network, prog the whole input program, and out the list of all possible
broadcast actions the network can perform. The functions for the output file
creation are:

let save_string_to_file filename (s : string) =

use fstr = new IO.FileStream (filename, IO.FileMode.Create)

A.3. The parsing task: results and performances 177

in use wr = new IO.StreamWriter (fstr)

in wr.Write s

let create_file prog filename =

let s =

Functions.header+

(Functions.locations_constants prog.dist)+

(Functions.messages_constants prog.net)+

(print_modules prog.net prog (create_output_list prog.net prog))

in let writing =

save_string_to_file (filename.Replace(".mc", "_p.nm")) s

in s

where the first function creates the file, while the second function combine all
the strings created for each part of the final mdp network in a single string
that will be then written in the output file.

A.3 The parsing task: results and performances

The compilation of he project produces an executable file, which can be run by
a Microsoft Windows system. The execution of the application creates the desired
mdp, written in the PRISM language, corresponding to the input EBUM network.

The proof of the correctness can be found in Chapter 6, together with a case
study showing the practical usefulness of the resulting framework.

The response time of the parsing task is of the order of few seconds, but can vary,
depending on the network dimension, and on the number of instructions constituting
the nodes processes.

The final Output of the program is a PRISM model, that can be built and used
by the PRISM framework.

The model captures all the possible transitions that the reduction semantic infer
for the input EBUM network, as well as a set of transitions that have probability
0 to occur (e.g., the parser, for each transmission, consider that the sender may
perform the output action from any network location, while it is not sure that the
mobility behaviour of that node covers the entire network area).

This problem can be easily solved with a brief pruning operation consisting in
manually eliminating all the actions with probability 0 of the final MDP.

These kinds of pruning operations will make the MDP more readable, and reduce
the number of states and transitions.

178 A. A Parser for the Probabilistic EBUM Calculus

Bibliography

[1] M .Abadi and C. Fournet. Mobile Values, New Names, and Secure Communi-
cation. SIGPLAN Not., 36(3):104–115, 2001.

[2] A. Acquaviva, A. Aldini, M. Bernardo, A. Bogliolo, E. Bontà, and E. Lattanzi.
A Methodology Based on Formal Methods for Predicting the Impact of Dy-
namic Power Management. In Formal Methods for Mobile Computing, volume
3465 of lncs, pages 51–58. Springer Berlin / Heidelberg, 2005.

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor
Networks: A Survey. Computer Networks, 38(4):393 – 422, 2002.

[4] A. Aldini, M. Bernardo, and F. Corradini. A Process Algebraic Approach to
Software Architecture Design. Springer Publishing Company, Incorporated, 1st
edition, 2009.

[5] C. Baier, F. Ciesinski, and M. Grosser. PROBMELA: a Modeling Language
for Communicating Probabilistic Processes. In Proc. of the 2nd ACM and
IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE ’04), pages 57– 66. ieee, 2004.

[6] C. Baier and J.P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[7] J.A. Bergstra and J.W. Klop. Algebra of Communicating Processes. NASA
STI/Recon Technical Report N, 85:28214, 1984.

[8] M. Bernardo and M. Bravetti. Performance Measure Sensitive Congruences for
Markovian Process Algebras. Theoretical Computer Science, 290(1):117–160,
2003.

[9] S. Bucchegger and J.Y. Le Boudec. Cooperative Rrouting in Mobile Ad-hoc
Networks: Current Efforts Against Malice and Selfishness. In Proc. of Mobile
Internet Workshop, 2002.

[10] M. Bugliesi, L. Gallina, S. Hamadou, A. Marin, and S. Rossi. Interference-
sensitive preorders for manets. Technical Report DAIS-2011-10, University Ca’
Foscari Venice, 2011.

[11] M. Bugliesi, L. Gallina, S. Hamaodu, A. Marin, and S. Rossi. Interference-
sensitive Preorders for MANETs. In Proc. 9th International Conference on
Quantitative Evaluation of SysTems (QEST ’12). IEEE, 2012.

180 Bibliography

[12] M. Burkhart, P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Does
Topology Control Reduce Interference? In Proc. of the 5th ACM international
symposium on Mobile ad hoc networking and computing (MobiHoc ’04), pages
9–19. ACM, 2004.

[13] L. Cardelli and R. Mardare. The Measurable Space of Stochastic Processes.
In Proc. of the 7th International Conference on the Quantitative Evaluation of
Systems (QEST’10), pages 171–180. ieee, 2010.

[14] A. Cerone and M. Hennessy. Modelling probabilistic wireless networks. In
Formal Techniques for Distributed Systems, volume 7273 of lncs, pages 135–
151. Springer Berlin / Heidelberg, 2012.

[15] F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative and Quantitative
Linear Time analysis of Reactive Systems. In Proc. of the 3rd International
Conference on Quantitative Evaluation of Systems (QEST’06), pages 131–132.
IEEE CS Press, 2006.

[16] F. Ciocchetta and J. Hillston. Bio-PEPA: A Framework for the Modelling and
Analysis of Biological Systems. Theoretical Computer Science, 410(33-34):3065
– 3084, 2009.

[17] F. DeRemer and T. Pennello. Efficient Computation of LALR(1) Look-ahead
Sets. ACM Transactions on Programming Languages and Systems, 4(4):615–
649, 1982.

[18] A. Fehnker and P. Gao. Formal Verification and Simulation for Performance
Analysis for Probabilistic Broadcast Protocols. In Proc. of the 5th International
Conference on Ad-Hoc, Mobile, and Wireless Networks (ADHOC-NOW’06),
volume 4104 of LNCS, pages 128–141. Springer, 2006.

[19] A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W. Tan.
A process algebra for wireless mesh networks. In Programming Languages and
Systems, volume 7211 of lncs, pages 295–315. Springer Berlin / Heidelberg,
2012.

[20] P. Hö fner, R. van Glabbeek, W.L. Tan, M. Portmann, A. McIver, and
A. Fehnker. A rigorous analysis of aodv and its variants. In Proc. of the 15th In-
ternational Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWIM ’12). acm, 2012.

[21] L. Gallina, S. Hamadou, A. Marin, and S. Rossi. A Framework for Throughput
and Energy Efficiency in Mobile Ad hoc Networks. In Proc. of IFIP Wireless
Days 2011 (WD ’11). IEEE Press, 2011.

Bibliography 181

[22] L. Gallina, S. Hamadou, A. Marin, and S. Rossi. A Probabilistic Energy-
aware Model for Mobile Ad-hoc Networks. In Proc. of the 18th International
Conference on Analytical and Stochastic Modelling Techniques and Applications
(ASMTA ’11), volume 6751 of LNCS, pages 316–330. Springer-Verlag, 2011.

[23] L. Gallina, S. Hamadou, A. Marin, and S. Rossi. Connectivity and Energy
Aware Preorders for Mobile Ad hoc Networks. Technical Report DAIS-2012-1,
University Ca’ Foscari Venice, 2012.

[24] L. Gallina, G. Dei Rossi, A. Marin, and S. Rossi. Evaluating Resistance to
Jamming and Casual Interception in Mobile Wireless Networks. In Proc. of the
15th ACM International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWIM ’12). acm, 2012.

[25] L. Gallina and S. Rossi. A Formal Model for the Analysis of Mobile Ad-
hoc Networks. Research Report CS-2009-9, Department of Computer Science,
University Ca’ Foscari of Venice, 2009.

[26] L. Gallina and S. Rossi. A Calculus for Power-aware Multicast Communications
in Ad hoc Networks. In Proc. of the 6th IFIP International Conference on
Theoretical Computer Science (TCS ’10), pages 20–31. Springer, 2010.

[27] L. Gallina and S. Rossi. A Process Calculus for Energy-aware Multicast Com-
munications of Mobile Ad hoc Networks. Wireless Communications and Mobile
Computing, 2012.

[28] M. Gerla, X. Hong, and C.C. Chiang. A Wireless Hierarchical Routing Proto-
col with Group Mobility. In Proc. Wireless Communications and Networking
Conference (WCNC ’99), volume 3, pages 1538 – 1542. ieee, 1999.

[29] S. Gilmore and J. Hillston. The PEPAWorkbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Computer Performance
Evaluation Modelling Techniques and Tools, volume 794 of lncs, pages 353–368.
Springer Berlin / Heidelberg, 1994.

[30] J.C. Godskesen. A calculus for mobile ad hoc networks. In Coordination Models
and Languages, volume 4467 of Lecture Notes in Computer Science, pages 132–
150. Springer Berlin Heidelberg, 2007.

[31] J. Goubault-Larrecq, C. Palamidessi, and A. Troina. A Probabilistic Applied
Pi-Calculus. In Proc. of the 5th Asian Symposium on Programming Lan-
guages and Systems (APLAS ’07), volume 4807/2009 of LNCS, pages 175–190.
Springer-Verlag, 2007.

[32] Z.J. Haas, M.R. Pearlman, and P. Samar. The Zone Routing Protocol (ZRP)
for Ad hoc Networks. IETF Internet Draft, 2002.

182 Bibliography

[33] W. Rabiner Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient Communication Protocol for Wireless Microsensor Networks. In Proc.
of the 33rd International Conference on System Sciences (HICSS ’00), 2000.

[34] M. Hennessy. A Distributed Pi-Calculus. Cambridge University Press, 2007.

[35] M. Hennessy and T. Regan. A Process Algebra for Timed Systems. Information
and Computation, 117(2):221 – 239, 1995.

[36] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural
theory of access and mobility control in distributed systems. In Foundations of
Software Science and Computation Structures, volume 2620 of Lecture Notes in
Computer Science, pages 282–298. Springer Berlin Heidelberg, 2003.

[37] O. Herescu and C. Palamidessi. Probabilistic Asynchronous Pi-Calculus. In
Foundations of Software Science and Computation Structures, volume 1784 of
Lecture Notes in Computer Science, pages 146–160. Springer Berlin / Heidel-
berg, 2000.

[38] H. Hermanns, V. Mertsiotakis, and M. Rettelbach. A Construction and Analysis
Tool based on the Stochastic Process Algebra tipp. In Tools and Algorithms for
the Construction and Analysis of Systems, volume 1055 of lncs, pages 427–430.
Springer Berlin / Heidelberg, 1996.

[39] G.R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, and
B. Walke. IEEE 802.11s: The WLAN Mesh Standard. Wireless Communica-
tions, IEEE, 17(1):104–111, 2010.

[40] J. Hillston. A Compositional Approach to Performance Modelling. Distin-
guished Dissertations in Computer Science. Cambridge University Press, 2005.

[41] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM,
21(8):666–677, 1978.

[42] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University
Press, 2nd edition, 2004.

[43] D. B. Johnson and D.A. Maltz. Dynamic Source Routing in Ad hoc Wireless
Networks. InMobile Computing, volume 353 of The Kluwer International Series
in Engineering and Computer Science, pages 153–181. Springer US, 1996.

[44] C. Jouand and S. Smolka. Equivalences, Congruences, and Complete Axiomati-
zations for Probabilistic Processes. In CONCUR ’90 Theories of Concurrency:
Unification and Extension, volume 458 of Lecture Notes in Computer Science,
pages 367–383. Springer Berlin / Heidelberg, 1990.

Bibliography 183

[45] E.D. Kaplan. Understanding GPS: Principles and Applications. Artech House
Publishing, 1996.

[46] J.-P. Katoen, E. M. Hahn, H. Hermanns, D. Jansen, and I. Zapreev. The Ins
and Outs of the Probabilistic Model Checker MRMC. In Proc. 6th International
Conference on Quantitative Evaluation of Systems (QEST’09), pages 167–176.
IEEE CS Press, 2009.

[47] Y.B. Ko and N. Vaidya. Locationaided Routing (LAR) in Mobile Ad hoc
Networks. Wireless Networks, 6:307–321, 2000.

[48] M. Kwiatkowska, G. Norman, and D. Parker. Analysis of a Gossip Protocol
in PRISM. ACM SIGMETRICS Performance Evaluation Review, 36(3):17–22,
2008.

[49] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In CAV, pages 585–591, 2011.

[50] T. Han L. Gallina, M. Kwiatkowska, A. Marin, S. Rossi, and A. Spanò. Au-
tomatic Energy-aware Performance Analysis of Mobile Ad-hoc Networks. In
Proc. of IFIP Wireless Days Conference (WD ’12). IEEE Press, 2012.

[51] I. Lanese and D. Sangiorgi. An Operational Semantics for a Calculus for Wire-
less Systems. Theoretical Computer Science, 411(19):1928–1948, 2010.

[52] R. Lanotte and M. Merro. Semantic Analysis of Gossip Protocols for Wireless
Sensor Networks. In CONCUR 2011 Concurrency Theory, volume 6901 of
lncs, pages 156–170. Springer Berlin / Heidelberg, 2011.

[53] L.B. Le, E. Hossain, and M. Zorzi. Queueing Analysis for GBN and SR ARQ
Protocols under Dynamic Radio Link Adaptation with Non-zero Feedback De-
lay. IEEE Transactions on Wireless Communications, 6(9):3418–3428, 2007.

[54] M.E. Lesk. Lex – A Lexical Analyzer Generator. Computer Science Technical
Report 39, Murray Hill, New Jersey: Bell Laboratories, 1975.

[55] J. Li, J. Jannotti, D.S.J. De Couto, D.R. Karger, and R. Morris. A Scalable Lo-
cation Service for Geographic Ad hoc Routing. In Proceedings of the 6th annual
international conference on Mobile computing and networking (MobiCom’00),
Boston, Massachussets, United States, pages 120–130. ACM, 2000.

[56] D. Macedonio and M. Merro. A Semantic Analysis of Wireless Network Security
Protocols. In NASA Formal Methods, volume 7226 of lncs, pages 403–417.
Springer Berlin / Heidelberg, 2012.

184 Bibliography

[57] T. Venu Madhav and N.V.S.N. Sarma. Maximizing Network Lifetime through
Varying Transmission Radii with Energy Efficient Cluster Routing Algorithm
in Wireless Sensor Networks. International Journal of Information and Elec-
tronics Engineering, 2(2):205–209, 2012.

[58] M. Merro. An Observational Theory for Mobile Ad Hoc Networks. Information
and Computation, 207(2):194–208, 2009.

[59] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Sci-
ence, 25(3):267–310, 1983.

[60] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[61] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press, 1999.

[62] R. Milner and D. Sangiorgi. Barbed Bisimulation. In Proc. of International
Colloquium on Automata, Languages and Programming (ICALP ’92), volume
623 of LNCS, pages 685–695. Springer-Verlag, 1992.

[63] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In
CONCUR ’90 Theories of Concurrency: Unification and Extension, volume
458 of Lecture Notes in Computer Science, pages 401–415. Springer Berlin /
Heidelberg, 1990.

[64] A. Muqattash and M. Krunz. CDMA-based MAC Protocol for Wireless ad Hoc
Networks. In Proc. of the 4th ACM International Symposium on Mobile ad hoc
Networking & Computing (MobiHoc ’03), pages 153–164. ACM, 2003.

[65] S. Murthy and J. Garcia-Luna-Aceves. An Efficient Routing Protocol for Wire-
less Networks. Mobile Networks and Applications, 1:183–197, 1996.

[66] S. Nanz and C. Hankin. A Framework for Security Analysis of Mobile Wireless
Networks. Theoretical Computer Science, 367(1):203 – 227, 2006.

[67] R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control.
Theoretical Computer Science, 240(1):215 – 254, 2000.

[68] R. De Nicola, G.L. Ferrari, and R. Pugliese. Klaim: a Kernel Language for
Agents Interaction and Mobility. IEEE Transactions on Software Engineering,
24(5):315–330, 1998.

[69] X. Nicollin and J. Sifakis. An Overview and Synthesis on Timed Process Alge-
bras. In Computer Aided Verification, volume 575 of Lecture Notes in Computer
Science, pages 376–398. Springer Berlin / Heidelberg, 1992.

Bibliography 185

[70] G. Norman, C. Palamidessi, D. Parker, and P. Wu. Model Checking Proba-
bilistic and Stochastic Extensions of the π-Calculus. IEEE Transactions on
Software Engineering, 35(2):209–223, 2009.

[71] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using Prob-
abilistic Model Checking for Dynamic Power Management. In M. Leuschel,
S. Gruner, and S. Lo Presti, editors, Proc. 3rd Workshop on Automated Ver-
ification of Critical Systems (AVoCS’03), Technical Report DSSE-TR-2003-2,
University of Southampton, pages 202–215, April 2003.

[72] G. Norman and V. Shmatikov. Analysis of Probabilistic Contract Signing.
Journal of Computer Security, 14(6):561–589, 2006.

[73] V.D. Park and M.S. Corson. A Highly Adaptive Distributed Routing Algorithm
for Mobile Wireless Networks. In Proc. of the 16th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM ’97), volume 3,
pages 1405–1413. ieee, 1997.

[74] C.E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

[75] C.E. Perkins and P. Bhagwat. Highly dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers. In Proc. of the Conference
on Communications architectures, protocols and applications, SIGCOMM ’94,
pages 234–244, New York, NY, USA, 1994. ACM.

[76] K. V. S. Prasad. A Calculus of Broadcasting Systems. Science of Computer
Programming, 25(2-3):285–327, 1995.

[77] C. Priami. Application of a Stochastic Name-passing Calculus to Representa-
tion and Simulation of Molecular Processes. Information Processing Letters,
80(1):25 – 31, 2001.

[78] V. Narasimha Raghavan and Suvitha Kesavan T. Peer Meera Labbai, N. Bha-
laji. Extended Dynamic Source Routing Protocol for the Non Co-operating
Nodes in Mobile Ad-hoc Networks. International Journal of Applied Mathe-
matics and Computer Sciences, 3(1):12–17, 2007.

[79] E. M. Royer and C. E. Perkins. Multicast Operation of the Ad-hoc On-demand
Distance Vector Routing Protocol. In Proc. of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking, pages 207–
218. ACM, 1999.

[80] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2011.

[81] P. Santi. Topology Control in Wireless Ad hoc and Sensor Networks. ACM
Computing Surveys (CSUR), 37(2):164–194, 2005.

186 Bibliography

[82] R. Segala. A Compositional Trace-based Semantics for Probabilistic Automata.
In CONCUR ’95: Concurrency Theory, volume 962 of Lecture Notes in Com-
puter Science, pages 234–248. Springer Berlin / Heidelberg, 1995.

[83] R. Segala and N.A. Lynch. Probabilistic Simulations for Probabilistic Processes.
In Proc. of the 5th International Conference on Concurrency Theory (CONCUR
’94), volume 836 of LNCS, pages 481–496. Springer-Verlag, 1994.

[84] A. Singh, C.R. Ramakrishnan, and S.A. Smolka. A Process Calculus for Mobile
Ad hoc Networks. In Proc. of the 10th International Conference on Coordina-
tion Models and Languages (COORDINATION ’08), volume 5052 of LNCS,
pages 296–314. Springer-Verlag, 2008.

[85] L. Song and J. Godskesen. Probabilistic mobility models for mobile and wire-
less networks. In Proc. the 6th IFIP TC 1/WG 202 international conference
on Theoretical Computer Science (TCS’10), volume 323 of IFIP Advances in
Information and Communication Technology, pages 86–100. Springer Boston,
2010.

[86] L. Song and J. Godskesen. Broadcast abstraction in a stochastic calculus for
mobile networks. In Proc. the 7th IFIP TC 1/WG 202 international conference
on Theoretical Computer Science (TCS’12), volume 7604 of lncs, pages 342–
356. Springer-Verlag, 2012.

[87] A. S. Tanenbaum. Computer Networks. Prentice-Hall, 2003.

[88] F. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part II–The
Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone
Solution. IEEE Transactions on Communications, 23(12):1417 – 1433, 1975.

[89] M. Tribastone. The PEPA Plug-in Project. In Proc. 4th International Con-
ference on Quantitative Evaluation of Systems (QEST’07), pages 53–54. IEEE
Computer Society, 2007.

[90] T. van Dam and K. Langendoen. An Adaptive Energy-efficient MAC Protocol
for Wireless Sensor Networks. In Proc. of the 1st International Conference on
Embedded Networked Sensor Systems, SenSys ’03, pages 171–180. ACM, 2003.

[91] R. Wattenhofer, L. Li, P. Bahl, and Y.M. Wang. Distributed Topology Control
for Power Efficient Operation in Multihop Wireless Ad hoc Networks. In Proc.
20th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM ’01)., volume 3, pages 1388– 1397. ieee, 2001.

[92] P. Yang, C.R. Ramakrishnan, and S.A. Smolka. A Logical Encoding of the
π-calculus: Model Checking Mobile Processes using Tabled Resolution. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 6:38–66,
2004.

Bibliography 187

[93] Wei Ye, J. Heidemann, and D. Estrin. An Energy-efficient MAC Protocol for
Wireless Sensor Networks. In Proc. of the 21st Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2002)., volume 3,
pages 1567–1576. ieee, 2002.

[94] B. Zhang and H.T. Mouftah. Energy-aware On-demand Routing Protocols for
Wireless Ad hoc Networks. Wireless Networks, 12(4):481–494, 2006.

[95] L. Zhou and Z.J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine,
3(6):24–30, 1999.

[96] M. Zorzi and R.R. Rao. Error Control and Energy Consumption in Communi-
cations for Nomadic Computing. IEEE Transactions on Computers, 46(3):279–
289, 1997.

	Introduction
	Key concepts
	Contribution of the thesis
	Overview

	Background
	Introduction
	Wireless Ad Hoc Networks
	Ad hoc routing protocols

	Process Algebras
	Timed Process Algebras
	Probabilistic and Stochastic Process Algebras

	Model checking and Formal Verification
	State of the Art
	Process algebras
	Probabilistic, Timed and Stochastic Process Calculi

	A calculus for Energy-aware Multicast Communications
	Introduction
	The Calculus
	Syntax
	Reduction Semantics
	Observational Semantics.

	A Bisimulation-based Proof Technique
	Label Transition Semantics
	Simulation and Bisimulation
	A complete characterisation

	Connectivity Properties
	Conclusions

	Connectivity and Energy-Aware Preorders for Mobile Ad hoc Networks
	Introduction
	The Calculus
	Probability distributions for networks
	Reduction Semantics
	Observational Semantics
	Labelled Transition Semantics
	Probabilistic labelled bisimilarity
	A complete characterisation

	Introduction of a Cost Preorder
	Energy Cost Preorder

	Analysing the SW-ARQ and GBN-ARQ Protocols
	Protocol description
	Assumptions on the models
	Modelling the Protocols
	Measuring the Energy Cost of the Protocols.

	Analysis of a location based routing protocol
	Protocol Description
	Simple flooding: description
	Exploiting location data: the LAR policy
	Modelling the network

	Conclusions

	Interference-sensitive Preorders for Mobile Ad hoc Networks
	Introduction
	The Calculus
	Syntax
	Reduction Semantics
	Observational Semantics

	A Bisimulation-based Proof Technique
	Labelled Transition Semantics
	Probabilistic Labelled Bisimilarity

	Introduction of a Cost Preorder
	Measuring the interference level of the protocols.

	The Alternating Bit Protocol
	Introduction to the protocol
	Interference cancellation scheme for CDMA

	Resistance to Jamming and Casual Interception
	Scenario
	The HWMP protocol.
	Modelling the system.
	Resilience to jamming attacks

	Conclusions

	Automatic Performance Analysis
	Introduction
	Introduction to the PRISM language
	The Property Specification Language of PRISM

	A Parser for the Probabilistic EBUM calculus
	Input file of the parser
	The parsing task
	Output of the parser: generation of a PRISM MDP
	Correctness of the translation
	A simple example

	A case study
	The network.
	Time and Energy Costs.

	Conclusions

	Conclusions
	A Parser for the Probabilistic EBUM Calculus
	Development Environment
	Structure of the Parser
	The parsing task: results and performances

	Bibliography

