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Abstract

Type checking is widely used for static analysis and code verification. This thesis
investigates an alternative use of type reconstruction, as a tool for extracting knowl-
edge from programs written in weakly typed language. We explore this avenue along
two different, but related directions.

In the first part we present a static analyzer that exploits typing techniques
to extract information from the COBOL source code: reconstructing informative
types is an effective way for automatically generating a basic tier of documenta-
tion for legacy software, and is also a reliable starting point for performing further,
higher-level program understanding processing. Our type system defines special
storage-types carrying along details on the size, in-memory representation and for-
mat of COBOL primitive data types, and a disjoint union type called flow-type that
keeps track of the multiple storage-types a variable may assume when reused with
different data types throughout the program - a rather common practice in COBOL.
The type analyzer follows the control-flow of the program through procedure calls,
branches and jumps, possibly looping, and terminates when no more changes occur
in the typing context. We formalize the analysis and present our prototype imple-
mentation of the system, which includes a parser for COBOL sources (a challenging
task in itself). The analyzer consists in a stand-alone application written in F#
that supports several COBOL language features used in real-world programs, and
statically detects a number of additional error-prone situations, such as arithmetic
operation overflows and possible runtime data corruptions due to misalignment or
misfit in assignments.

Similar principles may successfully be applied within an apparently distant con-
text: for validating inter-component communication of Android applications. In
the second part of this thesis we propose another type analysis technique for recon-
structing the types of data within Intents - the building blocks of message passing
in Android. As with COBOL, we present our implementation of the analyzer which
consists in an ADT (Android Development Tools) Lint plug-in written in F# and
Java, which performs a number for static checks on Android code that the Java
compiler cannot perform due to the design of the Android API. Being ADT Lint
fully integrated within the familiar Eclipse development environment, our analyzer
effectively provides a a second-tier Java type checker for Android programs.
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viii Preface

This thesis is the result of nearly 4 years of research over two main topics:
analyzing COBOL legacy code and, from late 2011 on, statically checking Android
programs. The material here presented is sometimes novel, sometimes an updated
and reworked form of material written or published over the last years. In particular:

e a small portion of the COBOL parsing system has been co-implemented by
Francesco Restifo in 2010, a Master student back then, and the whole topic
has been the subject of his Master thesis;

e the COBOL typing system has been published here [66] and then selected for
inclusion in [67]; COBOL analysis as a wider topic has been subject of research
by two more Master students throughout 2009, 2010 and 2011: Luca Zorzi and
Tobia Zambon, who respectively designed a prototype of a Ul for the COBOL
analyzer and a basic system for data-flow analysis built on-top of the type-flow
model;

e the Android type reconstruction system is novel material, though a security
validation subsystem (which this thesis will not deal with) and the analyzer
implementation are currently presented here [11] and hopefully going to be
published soon; the Java front-end of the ADT Lint plug-in component within
Lintent plus an upcoming system for information-flow is currently being the
subject of another Master thesis by Alessandro Frazza.

Two distinct prototypes have been in development over the years and are dis-
cussed on this thesis along with the formal models they implement. They are both
available for download and examination on GitHub:

e the COBOL Analyzer at https://github.com/alvisespano/CobolAnalyzer;

e and Lintent is an ADT Lint plug-in at https://github.com/alvisespano/
Lintent.


https://github.com/alvisespano/CobolAnalyzer
https://github.com/alvisespano/Lintent
https://github.com/alvisespano/Lintent

Introduction

The Context. In the history of programming languages probably no one has
lived as long as COBOL. Designed in the late 1950s, it has been used along 50 years
for writing approximatively 75% of business application, according to Datamonitor
analysts [7]. The reason of such a success is manifold: COBOL similarity with
plain English, its self-documenting and human-readable syntax, together with a
strong support for common business processes and data structures have all been
key elements of diffusion like batch operations on records. As the worldwide IT
panorama, evolves, millions of programs written in COBOL have to be maintained
and adapted to new needs and hardware infrastructures. The pensioning of old
mainframes only implies that hardware is replaced by newer and faster systems, as
the New York Stock Exchange Group, Inc proved in 2006, when it migrated all its 800
COBOL programs on a modern server cluster. The real problem however, remains
maintaining the enormous amount of existing sources as their creators are slowly
retiring [24], taking with them the companies’ only source of thorough knowledge
about those programs. In order to balance this loss, interest is growing towards
automated COBOL analysis and documentation tools.

COBOL similarity to spoken English, besides having probably contributed to
its early success, has been welcomed as a true novelty by the language scene back
then, though that has been the primary source of challenge in COBOL code analysis
ever since: starting with the parsing phase, throughout advanced data-flow analysis
techniques either via abstract interpretation or other approaches, COBOL variety
of constructs represent a huge obstacle for any reasonably in-depth Program Under-
standing approach.

Let’s now freeze COBOL for a moment and inspect a diametrically different
world. Mobile phones have quickly evolved, over the past few years, from simple
devices intended for phone calls and text messaging, to powerful handheld PDAs,
hosting sophisticated applications that perform complex operations, manage per-
sonal data, offer highly customized services: in poor words, the complexity of mo-
bile software has quickly converged to that of desktop software. This evolution has
attracted the interest of a growing community of researchers, though mainly on mo-
bile phone security and on Android security in particular. Fundamental weaknesses
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and subtle design flaws of the Android architecture have been identified, studied
and fixed. Originated with the seminal work in [30], a series of papers have de-
veloped techniques to ensure various system-level information-flow properties, by
means of data-flow analysis [35], runtime detection mechanisms [28] and changes to
the operating system [33]. Somewhat surprisingly, typing techniques have instead
received very limited attention, with few notable exceptions to date ([13], and more
recently [9]). And anyway all these are subjugated to security and permission anal-
ysis: no one seems to take care of how code is written, how much the host language
(Java) is exploited for statically validating application, besides security or other non-
purely-linguistical considerations. In our opinion, the potential extent and scope of
type-based analysis has been so far left largely unexplored.

The Problem. Programming language designers have learnt a number of impor-
tant lessons in the last three decades, arguably one of the most valuable of which is
that validating code by means of a strong static type system leads to more robust
and reliable programs. Though not all languages or development platforms, of the
past as well as modern, seem to take fully advantage of this principle: COBOL and
Android are two examples. COBOL is a language representing the past of computer
science, tied to the world of large business applications and industry, while Android
represents the present and the future of computing, tied to the world of mobile tech-
nologies, apps, next-generation devices and open-source development. Despite their
distance in time, both share a wide commercial success as well as the same design
flaw: they impose little to no type discipline to developers.

As said above, COBOL has been extensively used over 30 years by the business
world and is still used by banks, insurance companies and finance nowadays. Several
systems written in COBOL are still up and serving today and the industry is facing
a novel problem in the history of computing: dealing with millions of lines of code
belonging to big legacy software. Android, on the other end, is developing wider and
faster than possibly any other framework in the history of open-source technologies
- mobile and not -, it is used by millions of users worldwide and is facing a different
novel problem: dealing with millions of line of code written by thousands of non-
expert.

COBOL and Android do share something then: they have problems related to
either the understanding or validation of source code, and they both need something
for making applications either more robust or readable. The reasons behind these
issues have roots in recent or past history - and a common solution, as we’ll see
below. COBOL data types come from an era when memory was a valuable resource
and had to be allocated and handled by the programmer: variable reuse was an
everyday practice, back then, and any kind of type discipline was rather seen as an
obstacle than a tool for enforcing the program safety. Android, instead, is a modern
and freshly-designed platform based on Java 5 as host language but it did not take
advantage of all the latest achievements in the field of API and library design, enforc-



ing a programming pattern heavily based on inter-component communication which
relies on language mechanisms that are basically untyped, or unchecked statically
in general.

Moreover, in the COBOL world the maintenance of existing applications, still
running and serving, is an open issue for many companies that have not yet under-
taken the crucial decision of migrating to a more modern platform. And even those
who did, most likely had to deal with a major challenge: understanding what those
million lines of code do and what business processes they were originally meant to
implement. Symmetrically, in the Android world developers every day incur into
tricky bugs related to the lack of compile-time validation of the code by the Java
compiler, due to the loosely-typed approach adopted by the API. Being Android a
new platform, there’s no literature on its history yet (except for a quick overview
on Wikipedia [3]) but we argue that the reason why the Android API is so naive
type-wise comes from the speed at which Android has been spread as an open-source
development platform. Trivial choices made by the designers for core mechanisms,
such as Intent content being untyped, might have been revamped if Android had
not spread

The Proposal. Applying existing Program Understanding techniques to COBOL
could be a way for aiding IT specialists in charge of a porting - but useful low-level
information must be extracted from the source code in order to get any higher lever
technique yield to meaningful results.

In the first chapter of this thesis we delve into COBOL: we propose a LALR
parser which builds a representation of COBOL by means of a simpler and cleaner
idealized language along with a special error-recovery mechanism that makes the
parser tolerant to unknown constructs and statements, simulating Island Parsing
techniquesﬂ In the second chapter we introduce a calculus along with its typing
rules defined on top of this idealized language: the type system defines special flow
types for tracking the multiple types a variable may assume at any given program
point. We believe that the multiple types of variables reused in programs are a way
for both validating and understanding COBOL programs, that’s why our approach
is based on type reconstruction as a form of static analysis. Our system is capable
of reconstructing the type-flow of a program throughout branches, jumps and loops
in finite time by tracking type information on reused variables occurring in the code
until no more changes occur in the typing context.

We implemented a COBOL analyzer implementing both the parser and the type
system, which is capable of detecting a number of additional error-prone situations,
type mismatches and data corruptions due to misalignment or misfit in variable
reassignments involving datatypes having incompatible in-memory representations.

Switching to Android, our approach is the same: the core goal is not program

LCOBOL is a complex language with a great amount of syntactic constructs supported by
different specifications and revisions - supporting them all would be a cumbersome task.
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understanding now, but type analysis is a great tool for validating code. We make
a step towards filling the gap aforementioned: checking Android apps by analyzing
type from the source code. We developed a calculus to reason on the Android inter-
component communication API, and a typing system to statically analyze and verify
the interaction of intent-based communication among components.

Based on our formal framework, we then develop a prototype implementation
of Lintent, a type-based analyzer integrated with the Android Development Tools
suite (ADT). Lintent offers a number of static checks, the core of which is a full-
fledged static analysis framework that includes intent type reconstruction, man-
ifest permission analysis, and a suite of other actions directed towards assisting
the programmer in writing more robust and reliable applications. Enhancing the
Android development process is increasingly being recognized as an urgent need
[14, 32, 291 50}, 27]: Lintent represents a first step in that direction.

1.0.1 Plan of the thesis

This thesis is divided into two macroscopic topics: COBOL and Android. Chapter
2 and 3 are about COBOL and inspect, respectively, the problem of parsing and
typing it; chapter 4 switches to Android typing. Every chapter first deals with
the formal aspects of the problem, and then delves into implementation details and
shows some experimental results.

Chapter 2 is the less formal and more practical, as it basically describes a parsing
trick for parsing a language with no strict grammar as COBOL. Its experimental
section is thus more focused on convincing the reader that the proposed mecha-
nism does work by means of examples that test the various features of the parsing
techniques.

Chapter 3 and 4, instead, offer an in-depth description of the type systems de-
signed for COBOL and Android based on inference rules over type judices. Notably,
they do not bypass details that are typically skipped in literature: one of our goals
is to provide a formal model of a type system as close as possible to its implemen-
tation, which has to deal with real-world programs and has therefore to support a
number of language of constructs that makes things complex.

In fact, both the COBOL and Android analysis systems proposed have an imple-
mentation and are mentioned throughout this thesis: they represent a sensible part
of the research development work that has been done over the past years. The two
implementations are distinct programs, both available for download in executable
as well as source code format for examination.

Finally, all core chapters have their own brief future work section: being rather
different topics and having already spent some time investigating most of the exten-
sions there proposed, we believed it made more sense.



Parsing COBOL

2.1 Introduction

In this chapter we present an approach to COBOL parsing and develop a prototype
implementation, which serves as a front-end for a type analysis system aimed at
program understanding by reconstructing types. Thanks to a robust parsing strat-
egy, the prototype is tolerant with respect to unsupported and ill-formed constructs.
A mechanism has been developed to provide support for partially specified syntax,
needed in COBOL because of the many dialects around and the presence of embed-
ded foreign code; the same mechanism has been used to isolate fragments that are
not relevant for the back-end analysis phase. The implementation of these features
takes advantage of the efficiency of the LALR parsing algorithm and the reliabil-
ity of Yacc, the de-facto standard parser generator. A testing phase on real-world
legacy sources has confirmed flexibility to unexpected input configurations even with
a partially-defined language grammar specification.

2.2 Overview

A Formal Language is a (potentially infinite) set of strings, made up of symbols
from an Alphabet. Strings (or words) of a language are generated applying gener-
ative rules of a Grammar. In this work, we are interested in a particular type of
grammars, Context-Free Grammars (CFGs) [6]. First formalized by Chomsky and
Schiitzenberger in 1956 [15], these are defined as follows:

Definition. A Context-Free Grammar G is a quadruple (V, X, P, S), where:
e U/ is a finite set of nonterminal variables;

e Y is the alphabet, i.e. a finite set of terminal symbols;

e P is the set of production rules in V' x (V U X)x

e S €V is the grammar start symbol.
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As we can see from this definition, the left-hand side of a production rule con-
sists of one non-terminal, while the right hand side may contain both terminals
and nonterminals. Given a sequence of terminals and nonterminals (called senten-
tial form), a derivation step replaces one non-terminal in the left-hand side with
the corresponding right-hand side of one of the grammar’s productions. Leftmost
and rightmost derivations are derivation strategies in which the nonterminal to be
replaced is always the leftmost or rightmost in the sentential form, respectively.
The language generated by a grammar L(G) is the set of strings that can be pro-
duced by a finite number of derivation steps from the start symbol; more formally,
L(G) = {w € £ *|S = w}. A grammar is ambiguous if there exists a string that
can be generated by two or more different leftmost or rightmost derivations.

2.3 Parsing Algorithms

The main application of Context-free grammars in Computer Science is parsing.
Parsers traditionally work together with scanners, which split the input into tokens
according to user-defined lexical rules. Since scanners and parsers are implemented
as distinct functionalities, different levels of interaction between them are possible.
The parser input consists of a sequence of tokens, that can be produced either before
the parsing begins, or on demand. The lookahead is the number of not consumed
input tokens that a parser considers when deciding which action to take in a certain
state. Although the described situation is the most common, there are parsers which
do not rely on tokenizers. Scannerless parsers allow lexical definitions to appear into
the grammar. Each character of the input is treated as a terminal symbol; using
regular syntax appearing in the grammar definition, tokens can be identified as pars-
ing proceeds. Section introduces an application of this approach in the field of
island parsing, while a critical discussion on scannerless parsing can be found in [82]..

The remainder of this section briefly presents the main existing parsing strategies.

Top-down Parsing. Top-down parsing tries to find a leftmost derivation for the
input, by recursively exploring the right-hand sides of grammar productions begin-
ning from the start symbol. It is also called LL parsing, because the input is read
from Left to right producing a Leftmost derivation. Nonterminals are expanded
as they are encountered, forming a tree structure whose leaves are compared with
tokens: when a match is found the parser proceeds looking for further matches,
descending along the right hand sides of productions.

Left recursion in grammars can lead to infinite recursion in top-down parsers,
as the parser doesn’t consume any tokens while going deeper into the grammar. To
solve the problem, grammars can be rewritten to eliminate left recursion. Alterna-
tively, it is possible to implement techniques that cope with the problem, recognizing
this type of situations at runtime. As for other parsing techniques, ambiguity is a
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concern for top-down parsers, as there is more than one alternative path to generate
certain inputs.

Bottom-up Parsing. A symmetrical approach is Bottom-up parsing, also called
LR parsing; it consists in reading the input from Left to right, producing a Rightmost
derivation and building the parse tree in a bottom-up fashon, starting from the
leaves. At each step, a bottom-up parser compares tokens with right-hand sides of
grammar productions: once a match is found, the right-hand side is replaced with
the corresponding nonterminal (this is called a reduce action). The process contin-
ues, shifting input tokens in search for another match. Parsing successfully ends
when the start symbol is reduced. Situations can occur in which both a shift and a
reduce action, or alternatively two different reduce actions, may be legitimate. The
former is called a shift/reduce conflict, and is usually resolved by choosing shift as
the default action, as in most cases that corresponds to the intention of the grammar
developer. The latter occurs when more than one production rule could apply to a
certain sequence of tokens: such conflicts usually indicate the presence of an error
in the grammar definition. Ambiguity is cause of concern for bottom-up parsers
as well; some generator tools allow the user to assign priorities to productions, in
order to give precedence to a particular derivation path among those that possibly
generated the input. LALR parsers (LookAhead LR parsers) use lookahead tokens
as additional information for making decisions in ambiguous situations.

Generalized Parsing. While top-down and bottom-up strategies both accept a
subset of context-free grammars (typically LL(1) for top-down parsers, LR(1) for
bottom-up parsers), generalized parsing algorithms allow the use of arbitrary CF
grammars. Most of the available algorithms deal with conflicting parsing states
using some form of backtracking: when encountering a conflict, this strategy consists
in repeatedly choosing among the possible actions, undoing parsing if the current
path leads to a parse error, until the input is successfully consumed E| The available
implementations mainly differ in the strategy used to explore the search space, which
consists of all possible parses of the input. These choices also affect the complexity
of each algorithm, as in worst case scenarios parse times can grow exponentially.
Ambiguities are addressed manually specifying the order in which to try ambiguous
alternative productions. For a complete discussion of generalized parsing refer to
[72).

Island Parsing. Describing a language in full with a grammar can sometimes be
hard and time consuming; it can even be unnecessary in cases when only certain
constructs of the considered language are interesting, and the remaining might safely

IBacktracking can also be integrated into top-down and bottom-up algorithms; however, this
technique is not always useful in practice when dealing with LL(1) or LR(1) languages.
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be ignored. Island Grammars, introduced by Moonen [53], provide detailed produc-
tions only for specific parts of the language, called islands, leaving the remaining
parts, the water, as undetailed as possible. More precisely, the set of productions P
of an Island Grammar can be thought as the union of the following three setsE|:

e [, the set of detailed (island) productions, corresponding to the constructs of
interest;

e W, the set of liberal (water) productions, used to match uninteresting parts
of the language;

o F. the set of Framework productions that define the overall structure of the
language and connect islands with water.

Other definitions have been used referring to island grammars in literature.
When water productions appear within a fairly complete definition of a language, we
are in presence of a so-called Lake Grammar (a name which underlines the limited
extent of uninteresting syntax); on the other hand, when islands appear inside a
foreign language (e.g. in the case of an embedded language), the expression lakes
with islands is used.

A problem with island grammars is that the border between islands and water
can sometimes be unclear, and the parser might not behave as expected. Fulse
positives are uninteresting syntactical structures that are accepted by the grammar
as islands; in the opposite situation, false negatives are interesting parts treated as
water.

Island Parsing for source analysis

We refer to Island Parsing to indicate parsing solutions aimed at implementing the
behavior of an island grammar. This approach has been used in difficult parsing sce-
narios, where the ambiguity and /or context-dependentness of the input, the presence
of embedded sublanguages or syntactic irregularities discourage writing a complete
grammar specification. It has also be used as the preliminary step for automatic
documentation extraction from COBOL legacy systems, which is a field of active
research; recent literature on this topic is presented in the reminder of this section.

SDF[10,[37] is a modular, context-free syntax definition language. It is part of the
ASF+SDF Meta-Environment [10], an incteractive language analysis environment
that includes an implementation of a scannerless generalized LR parser generator
(SGLR) [74]. Since the formalization of island grammars [55], SDF has been often
chosen as a generator for island parsers. First attempts in this area are sketched in
[76], although scarcely detailed. An extensive discussion about the expressive power
of SDF in relation to island grammars can be found in [64].

2For a more formal definition, see [53].
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A slightly different approach is described in [45], where the concept of skeleton
grammar is introduced. Since the behavior of an island grammar in terms of false
positives and negatives can be hard to establish, a method for controlling this aspect
is described, assuming a fairly complete grammar of the language (which is called
baseline grammar) is available. Needless to say, this is rarely the case, the point
of island grammars being not having to specify a complete syntax specification.
However this approach leads to interesting results, as the behavior of the baseline
grammar with respect to the constructs of interest can be preserved in the island
grammar.

Island parsing leads to the desired results when focusing on a specific subset of
language constructs, but a full coverage of all COBOL real-world input configura-
tions is still a difficult task. The point is made particularly clear in [40], where the
entire process of creating a grammar specification for the language is described.

Another interesting result doesn’t directly involve COBOL, but is closely related
to it. TXL [16] is a special-purpose language designed for grammar-based language
manipulation. It allows the extension and modification of existing grammars, as
well as a powerful term rewriting mechanism. It has been used in [71] to develop
an island grammar capable of extracting constructs of a particular language from
a multilingual input (their case study involved asp web pages, containing (mal-
formed) HTML, Visual Basic and JavaScript fragments appearing in a nested and
interleaved fashon). The same approach can be applied to legacy COBOL, which
allows embedded SQL or CICS fragments to appear.

2.3.1 Further parsing challenges

Ambiguities and context-dependent lexical analysis are a common real-world sce-
nario when parsing computer languages (as a modern example, the C++ specifi-
cation [B] describes the ambiguities in the language). To illustrate this, consider
user-defined typenames. A scanner must be able to identify the syntactic category
of names (eg. variable vs. type identifiers), even if they match the same regular
expression. To tackle these issues, context information is usually stored at parse
time and made available to the lexer by user-defined data structures, for example
an early symbol table. The practice of sharing state and context information is
referred to as lexical feedback, while a scanner that uses contextual information is
said to be context-aware.

Another issue that parser generators need to addess is error handling. A parse
error occurs if the input text doesn’t comply to the grammar specification. Parsers
implement very different behaviours in this regard. The algorithm may abruptly
stop, reporting the error token and some state information. Error recovery mech-
anisms can try to resume from the error skipping some tokens until a point where
normal operation can be resumed (a resynchronization point), inserting some tokens
to match the current grammar production, or both. A complementary approach is to
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allow the user to integrate some error-related information into the grammar, usually
in the form of an error production (see below).

The next section provides an overview of some interesting approaches to the
problems mentioned above, implemented by different parser generators. Particular
emphasis is put on Yacc, the tool which has been chosen in this work.

2.4 Parser Generators

2.4.1 YACC - Yet Another Compiler Compiler

YACC [41] is a LALR parser generator, which traditionally works in combination
with the Lex lexical analyzer [48]. Lex+Yacc is the de facto standard lexer-parser
combintion (it has even been named ubiquitous [64]). The scanner functions as a
subroutine of the parser, and is invoked on-demand when a new token is needed. The
interface between lexer and parser can be manually expanded, making it easy to add
custom code, eg. for the purpose of lexical feedback. Many implementations of Lex
and Yacc are available; originally written in C, portings for a variety of languages
are available nowadays (OCaml [59], F# [70], Java [65] and C# [42] among the
others).

Yacc allows the user to specify error productions using the error keyword on
the right-hand side of a production. In case of a parse error, Yacc will skip input
until it finds three tokens that might legally follow the non-terminal containing the
error production. Recovery is then successful and parsing continues (this is called
the three-token-rule). If a false start is made, meaning that parsing did not resume
at the correct grammar position, parsing is aborted, reporting an error. The number
3 was chosen arbitrarily; it appears reasonable, because a lower value might not be
sufficiently restrictive and increase the probability of a false start, while a higher
value might represent a too high requirement to be met in practice. In spite of that,
Yacc’s recovery behavior is sometimes hard to predict.

To help control the recovery process, the user can specify an additional token af-
ter the error keyword, and in this case Yacc will skip ahead until this token appears
in the input, making it possible for the user to manually specify a resynchronization
point. If, however, a second error is detected within the following three tokens, Yacc
skips ahead without warning, using the three-token-rule to detect a new synchro-
nization point.

Error handling behavior can also be determined manually. For that purpose,
Yacc exposes utility functions like yyerrok() and yyclearin(). The former forces
Yacc to exit error mode, the latter clears the lookahead token. It is so possible
to skip the token that caused the error, manually seek to a synchronization point
in the input (i.e. repeatedly invoke the lexer), and resume parsing. Unfortunately,
these utilities are not available to the programmar in the functional implementations
(Ocaml and F#).
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2.4.2 ANTLR - Another Tool for Language Recognition

ANTLR [61] is a backtracking recursive-descent parser generator which comes with
a lexer implementation. The lexical specification for tokens and the grammar are
defined in the same file. Tokens can be declared at the beginning of the specification,
as well as directly referenced in the production rules. Before parsing, ANTLR
tokenizes the entire input, then feeds the parser with tokens from an internal data
structure. This makes it impossible for the programmer to influence the lexing phase
using contextual information. Although some independent users have been able to
re-implement the lexer-parser interaction for on-demand scanning, this is not the
default behavior, and it is not officially supported.

The last major release v.3 introduced the ability of automatically adjusting the
lookahead size for every grammar productionﬂ; previous versions required the user
to manually specify it in the grammar file.

ANTLR allows semantic actions to appear at any point of a production’s right
hand side. Also implemented in Bison [34], this feature can be useful when triggering
semantic actions for context-aware lexing, because it allows a more natural way of
writing the grammar (this practice is referred to as “Lexical Tie-ins” in Bison).

Parse errors are raised by means of an exception mechanism. Semantic ac-
tions can contain user-defined code to catch them: this way, meaningful error re-
porting can be implemented, and errors can be manually handled. Some utility
functions are provided as well: LATEXT (n) returns the n-th lookahead token, while
zzconsumeUntiltoken (tok) causes ANTLR to skip all tokens until tok appears in
the input.

2.4.3 Basil

Basil is a LR(1) parser generator which supports context-aware scanning. This is
achieved through the use of an integer attribute which is automatically passed to
the lexer when requesting a token. This number, called lexical state, represents the
position of the parser in the current right hand side, and can be used for disam-
biguation purposes. Regarding error recovery, Basil allows trying any number of
custom recovery strategies in case of an error, and provides functionality to skip or
add tokens to the input stream for this purpose.

2.4.4 Yapps - Yet Another Python Parser System

Yapps is al LL(1) parser generator written in Python. It is interesting for our pur-
poses because of its context-sensitive lexing strategy. At each step, when requesting
the next token, the parser passes the scanner a list of valid tokens, actively con-
tributing to the resolution of lexical ambiguities.

3the class of grammars which it can accept is thus called LL(*), where the "* indicates that an
arbitrary finite lookahead is supported.
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2.4.5 Apaged - Attributed Parser Generator for the D pro-
gramming language

Apaged, a backtracking generalized LR parse generator, supports context-aware
scanning through custom code blocks that can be integrated into the lexing routine
to manually control its behavior. It features a distinctive error handling mechanism.
It allows the user to manually specify the location of synchronization points via a
special keyword, which can appear in any position in a right hand side. In case of an
error, this information is used to locate the exact grammar location where parsing
can be resumed. As an example, statemets are usually separated by a semicolon or a
similar token. If a synchronization point is set after it, the parser will ignore tokens
of an eventually ill-formed statement’, avoiding the loss of the already parsed ones
and reverting to normal behavior for the next statement.

Semantic actions are only executed after the input has been completely parsed.
As the user is able to manually invoke semantic actions associated with each non-
terminal, it can execute them an arbitrary number of times, implementing multi-
pass analysis if desired. However, this also means that the user cannot influence the
construction of the parse tree.

2.5 Parsing COBOL

Unlike modern programming languages, a COBOL program has to obey certain
formatting rules, a heritage that comes from its punch-card history. The first six
characters of each line are reserved for line sequence numbers, the seventh for the
continuation charactelﬂ and the comment marker, and positions 72 to 80 are re-
served. Characters 8 through 11 are known as Area A and are used mainly for
division, section and paragraph header names and for level indicators (2-digit inte-
gers needed to associate fields to records). Area B (characters 12 to 72) contains
the actual code.

A COBOL program is structured hierarchically in four Divisions (Identification,
Environment, Data and Procedure Division), logically separated containers for file
attributes, I/O options, data declarations and statements. Each of these contains
various subdivisions or Sections, which in turn consist of labeled Paragraphs, named
groups of colon-separated Sentences which can comprise multiple Statements.

A specification for a COBOL parser should have a precise knowledge of the
syntactic details for each hierarchical level. Some formatting constrains require
special attention. For example, line numbers can appear anywhere a line break can

4The error recovery routine discards the error token and all symbols encountered after passing
the marked position.

5The continuation character allows using the following line for constructs that do not fit into a
single line, e.g. long string literals.
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occur, a sure cause of grammar explosion. For that reason a pre-processing phase is
often employed to remove these semantically irrelevant elements.

2.5.1 Challenges for COBOL parsers

First of all, a number of vendor-dependent language implementations are available,
each extending the standard syntax with specific constructs, keywords, operators
and even statements. Different compilers accept different dialects, and are differ-
ently restrictive about the formatting of sources. Although this can’t be considered
a blocking difficulty, it makes it impossible to precisely identify the language to be
parsed in the general case, and forces one to focus on a particular vendor imple-
mentation. Moreover, the variety and freedom of the allowed syntax and the vastity
of the language make it hard to even try and define a complete grammar for one
precise version (the C programming language defines approximately 40 keywords,
while the COBOL 85 specification mentions over 400; statement can have up to 6
syntactically correct formats, each having multiple optional parts).

The hardest challenges, however, are related to context-sensitiveness and ambi-
guities in the language specification. Context-sensitiveness arises mainly from tokens
having more than one correct meaning in the same program, depending on the en-
closing division (picture declarations are the clearest example of that) or on previous
declarations (e.g. the way money amounts are defined depends on the specified cur-
rency symbol). A simple example of ambiguity is arbitrary nesting of statements
having optional parts. Since COBOL does not allow bracketing and scope delimiters
can be omitted, in many cases optional clauses could be associated with more than
one of them [51].

Although most ambiguities can be resolved rewriting the corresponding grammar
productions and using associativity rules, there are cases where ambiguities are
context-dependent. Such situations cannot be solved by the parser, and may be
handled performing an extra pass on the AST [75].

2.5.2 Available COBOL Grammars

Despite COBOL’s unique parsing challenges, attempts to develop a COBOL gram-
mar in BNF form (or one of its variants) for use with a parser generator have been
made. Rather than writing it by hand, [47] derived a lexical and grammar defini-
tion from IBM’s language specification by means of a semi-automatic process. This
experimental grammar has been used as a starting point for two different projects.
The first [63] is a JavaCC [52] specification that can be used to create a COBOL
parser in the Java programming language. Input sources require preprocessing to
comply to this grammar; a prototypical preprocessor implementation is available.
The second project is the OpenCOBOL Compiler [I], an open-source compiler for
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the language. This is the only project where recent activity has been made, even
if it is not clear wether it still is under development (the last visible modification
dating early 2009). As of today, no grammar-based parser is a fully working real-life
solution for legacy COBOL code.

2.6 Owur Parsing System

The above discussion should not discourage alternative approaches to COBOL pars-
ing. As we will see in section [2.3] restricting the focus on a subset of the language
special purpose parsers can be generated in an automated way.

In our work, we target COBOL-85 [4] code running on the IBM z/Os platform. A
COBOL parser is needed as the front-end of a type- and data-flow analysis software
system. For this purpose, a fully-featured language support would be a waste of
effort, while the interesting subset of interesting constructs can be easily defined.
For example, constructs that do not affect the type of stored data are not significant;
compiler directives, database access statements and 1/O primitives, among others,
also fall in this class, simplifying our task in a way that can be handled using
standard parser generators. On the other hand, since such constructs may still
reveal useful information for the analysis stage, they are not to be ignored; rather
they represent input fragments having a lower relevance level, and need to be isolated
from interesting parts.

Due to partial language coverage, inputs outside the systems’ syntactical scope
can appear in source files: a robust parsing strategy is needed to cope with these
situations. Moreover, given that unknown or unsupported constructs may be useful
for documenting purposes, they cannot be simply skipped, even when their syntax
is not known.

The goals of this work can be summarized as follows:
e parsing a task-focused subset of COBOL using a widespread automated tool;

e accepting portions of input having a lower level of relevance, not having to
specify their full syntax;

e implementing a robust strategy towards unknown /unsupported parts of input,
avoiding parse errors, and keeping track of the symbols encountered.

2.6.1 Implementation considerations

After considering the many parser generators available (refer to section [2.3.1)), we
decided to rely on Yacc as our parsing tool. We briefly motivate our choice against
the alternatives below.
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Scannerless parsing. The unification of the lexical and syntactical language
definitions in a single specification (along with the removal of the interface between
them) is the most relevant advantage of the scannerless parsing paradigmﬂ This
can certainly be positively considered for small projects, but it is a certain source of
confusion and poor maintainability when dealing with a language such as COBOL:
the result would probably be a huge, monolythic, hardly readable specification file.
This makes using scannerless parsers impracticable for our purposes.

It must be admitted though, that some other features are certainly interesting.
One of these is grammar-guided tokenization: a token will not be considered if it
cannot appear in a certain position.

Handling semantic actions. Another aspect of parser specification is the way
semantic actions are handled. While they can be executed during parse time, purely
declarative parser generators have a different approach. They separate the syntac-
tical analysis phase (which yields an automatically-generated AST representation
of the input) from the user code, which is executed only once the entire input has
been seen. This is only applicable if a generic tree representation is sufficient, not
in situations where full control on its construction is required (which is the case of
this work, as section explains).

The use of backtracking strategies influences semantic actions as well. Each time
the parser encounters an error, it may attempt to match the input taking a differ-
ent path in grammar productions; actions that were executed after a wrong choice
need to be undone for obvious consistency reasons. This is only possible if they do
not maintain or modify global data structures, or if they do not affect parse tree
construction. Unfortunately, this is not our case. To solve these problems, [73] pro-
poses an extension to current backtracking strategies introducing semantic actions
that can be undone.

Island grammars. The idea of Island Grammar has a close affinity with the
objectives of this work. The need for support of unspecified syntax is in close rela-
tionship with the idea of water. The desired support for partially relevant fragments
recalls the generality in language specification which was the motivating point for
introducing island grammars. The most reliable impelmentation of a parser gen-
erator capable of island parsing (SDF), unfortunately uses a scannerless approach.
As described in the next chapter, a different way towards similar results has been
successful using the LALR parsing technique.

6The ANTLR parser generator also unifies the two definitions, even though it is able to derive
a lexer implementation from it
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2.6.2 The LALR approach

Based on the above motivations, we decided not to rely on scannerless, purely declar-
ative and island parser generators. Further considerations led us to the conclusion
that the traditional Lex-Yacc combination would be the best choice for achieving
project goals. These are summarized in this section, along with some of the advan-
tages of this approach.

Control on AST construction. As already mentioned, the implemented pars-
ing framework acts as the front-end of a source analysis tool. The main idea behind
the development of the parser is the translation of interesting parts of COBOL pro-
grams in a well-formed, succint intermediate representation. This representation
is named IL, which stands for Idealized Languagdﬂ, and can be defined as an im-
perative, typed language, specifically designed to be a suitable target of a program
translation process (its syntax is described in . To sum up, our task is trans-
lating COBOL into an equivalent IL syntax tree built in a completely controlled
manner, rather than with the help of automated tree construction utilities.

Performance. Efficiency should be kept into consideration as well. Currently
stable and supported implementations of both scannerless parsers and backtrack-
ing strategies have not entirely solved efficiency problems due to the computational
overheads introduced by these techniques (respectively caused by scannerless char-
by-char approach and backtracking worst-case complexity). In contrast, the high
performance of the bottom-up approach is vital when dealing with millions of lines
of legacy code.

Integration. By the time work on the front-end of the analysis software started,
the code analyzer was already under heavy development, the chosen programming
language being F# [70]. Having a native, official F# implementation eliminates the
problem of importing and interpreting data structures (AST) created by an external
parsing tool. One more technological advantage of this choice is that a functional
tool is most suitable in a setting where data structures are dynamically built in a
bottom-up fashion (e.g. the single elements of a tuple have to be created before the
whole touple). An imperative environment instead, forces creating data structures
before populating them: this mirrors a top-down behavior. Furthermore, the func-
tional paradigm was chosen as the programming paradigm for the analyzer, among
other reasons, for its intrinsic robustness, expressiveness, maintainability, and con-
venience for the task of source analysis. The parser should be consistent with this
choice, and share the benefits deriving from it.

Diffusion. As stated at the outset, one of the key requirements for our project
was the development of a reliable and robust parsing strategy for a focused selection

"Refer to section for the full syntax.
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of the COBOL language. The de facto standard, as well as the most widespread solu-
tion for parsing, is the Lex-Yacc combination. The computational performance, the
large number of target languages that are supported, including functional languages,
and its many applications, make YACC the most widespread tool for syntactic anal-
ysis. Although more expressive strategies have been developed in recent years, one
of the aims of this work is to show how to deal with potentially problematic inputs
using this tool, bringing the advantages of island parsing into the LALR world.

2.6.3 Framework structure

Our prototype consists of three lexical and syntactical specifications for different
parts of a Cobol program and an F+# software library. In the general case a prepro-
cessor might also be needed, depending on the considered input format. In our case
the mainframe sources at hand do not need preprocessing, as they do not include
occurrences of sequence numbers, continuation markers or characters after position
72, leaving us with an intact Area A (comments may still be present). The general
architecture of the system is shown in Figure [2.1]
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Figure 2.1: Overall prototype architecture

Considering the vastity of the language, to ease maintainability Cobol sources
are conceptually organized in two logically separated macro-areas: Identification,
Environment and Data divisions on one side, Procedure division on the other. A
distinct lexical and syntactical specification has been developed for each of the macro
areas, allowing a meaningful separation between the many Cobol configuration op-
tions and program attributes and the actual imperative code. To further simplify
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the synthesis of the grammar for the Procedure division, the decision was made to
focus on the smallest independent unit of code, a single sentence or statementﬁ (this
parser has been consequently named Statement Parser).

It should be clear that the parsing functions need to be manually invoked (once
on the first three divisions, and repeatedly on each statement or sentence in the Pro-
cedure division): a software layer must be written above the parsers, to keep track of
the current position on the input. Moreover, the AST construction is directed using
semantic actions, and since multiple parsers exist, a syntax forest will be produced
that needs to be unified in a single tree; this is another task left to this software layer.

As discussed in section [2.5.1] a further pass on selected syntax may be required
to handle particularly problematic Cobol artifacts. Although this planned feature
has not been implemented yet (see section , post-processing is already used in
presence of Picture format strings. During the first pass, Lex is able to correctly
disambiguate them from identifiers, but their internal structure, revealing type de-
tails of declared data, is not preserved (they are treated as strings instead). As this
kind of information is vital for the back end analyzer, a second knowledge-extraction
pass is needed to reveal the type of each data item. This may either be achieved
by custom code, or by a second parser exclusively targeting the sublanguage of the
strings. The latter has been chosen because of the obvious advantages of automation
and ease of implementation.

2.7 Parsing misc divisions

The structure of the first three divisions in a Cobol source file (which are handled by
a separate parser, as seen in the previous section) are here illustrated, for the pur-
pose of identifying meaningful information for the analysis phase and uninteresting
constructs:

e Identification division: mandatory division used to define documentary infor-
mation attributes (e.g. author, company, date). It is syntax checked only by
Cobol compilers.

e Environment division: consists of two sections. The Configuration section
describes the computers where the program was compiled and where it will be
executed. The Input-output section defines files, assigns them to 1/O devices
(e.g. disk, tape, printer), and specifies access-related information. Both this
division and its sections are considered optional for the majority of compilers.

8The smallest possible unit of code in Cobol consists of a sentence, i.e. one or more statements
terminated by a colon. In case only one construct appears, the sentence coincides with the lone
statement.
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e Data division: the File section describes the physical structure of files and
their contents. The Working Storage section, the only mandatory part of the
Data division, is the place where data items (variables) used in the program
are declared. The Linkage section regulates sharing data between programs.

Only the Working Storage section of the Data division contains semantically rele-
vant information for type analysis (this is why this parsing step has been named
Working Storage Parser in figure ; all other definitions only need syntactical
(grammar) support, and do not present any challenges for parsing. The generated
AST will therefore hold exclusively variable, record and constant declarations.

Let us focus on parsing Cobol picture formats, which hold precious type in-
formation for each declared Cobol data unit. When the Working storage scanner
encounters the PIC (or PICTURE) keyword token, it jumps into a special state.
Here it is instructed with a simple lexical definition of format strings, consisting of
repetitions of legal characters, taking into account the possible positions of comma,
dot and bracketﬂ When a whitespace or a period (a dot followed by a newline) is
seen, lexing continues from the default state. The returned token type carries the
recognized lexeme, which is stored as a strings in the abstract syntac tree.

A post-processing phase is needed for type information extraction from these
stringﬂ. A second parser (the Picture formats parser in figure is defined to
create an internal representation of the delcared data. As each single character has
a precise semantic meaning, syntactical analysis must be performed on a character
basis. Each single symbol is tokenized; semantic actions build a type representation
which will be made available to the back-end analyzer. The results of this process
are shown in section 2.9

2.8 Parsing the Procedure Division

As previously mentioned, only a subset of COBOL statements are semantically rel-
evant for the source analysis phase, thus requiring a complete syntactical definition.
Although the language coverage to be anchieved is significant, it is possible to write
the corresponding grammar without relevant issues by hand, taking advantage of
the expressiveness and intuitiveness of the LALR approach.

Besides the aspect of parsing, it is interesting to spend a few words about the
construction of the respective AST branches. A single COBOL statement may
carry a rich semantical content (e.g. simple arithmetic operations can allow re-
sults to be calculated and stored in various locations, with rounding options and
user-programmed overflow handling logic). Recall that an IL representation of the

91t can be expressed as the regular expression: [’A° X’ 2Z° 8> 2 (> ?)? 20°-'9> V' ]+
([}.7 }’7] [)A’ }X) 7Z) )S7 )() 7)) ,OJ_}97 )Vi])*
1ONote that this second pass happens only once the whole input file has been parsed.
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COBOL input is needed. This could not be achieved by means of concise semantic
actions only: a library of parse-time translation utilities has been written to per-
form the task. Constructs that are not in a one-to-one correspondence with an IL
statement are referred to as Block statements, as a block of IL code is originated
from them. When a block statement is parsed, the corresponding library function
is invoked, yelding a semantically equivalent tree forest. Sometimes it is even neces-
sary to declare temporary IL variables (e.g. implicit loop counters). These must be
given a unique name and a type, as they obviously do not appear among the Data
division declarations. This information has to be retained by the framework and
merged with the existing data items after parsing is completed. Detailed translation
examples are shown in section

2.8.1 Emulating Island Parsing

A vast class of statements appearing in the input code is not relevant for the analyzer,
as mentioned in section the program type and data flow is invariant with respect
to them, meaning that their presence has no effect on it; we refer to these constructs
as Invariant statements. Given that the parser’s objective in this case is their mere
recognition and isolation, specifying their exact syntax would be a waste of effort.
However, the fact that some useful information, mostly for documentation purposes,
can be found in these fragments can not be ignored. As an example, the appearence
of particular classes of tokens in them could be relevant; in this work, this is the
case of COBOL keywords and identifiers. It is meaningful to also store the whole
statement in which they appeared in the input, which can be treated as text.

To sum up, what is needed is a way of defining a general grammar structure
capable of accepting partially defined syntax, distinguishing some desired classes of
lexemes from the others, and saving the interested line(s) of code.

Implementation

A COBOL statement always begins with a reserved keyword: the membership of
the construct to the invariant class can be determined by the lexer as soon as this
token is seen. If an invariant statement keyword appears, Lex produces a special
token, which is only used in the grammar at the beginning of a general, multiple-line
catch-all production, named invariant_stmt, as shown below.

/* invariant statements */
invariant_stmt:
invariant_kwd anything mode_inv_lines RESYNC
{ clear_buffer_at_eol <- true; $1 }

| invariant_kwd anything_mode_inv_lines END_INVARIANT
{ clear_buffer_at_eol <- true; $1 }
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invariant_kwd:
INVARIANT _KEYWORD { keyword_token_mode <- true;
clear_buffer_at_eol <- false;

$1 }

anything_mode_inv_lines:
anything_inv_lines { keyword_token_mode <- false; $1 }

anything_inv_lines:

anything_inv { %1}
| anything_inv newlines { %11}
| anything_inv newlines anything_inv_lines { %1033}
anything_inv:
any { %11}
| any anything_inv {$1082}
anything_mode:
anything { keyword_token_mode <- false; $1 }
anything:
any {$1}
| any anything {$10%$21}
any
1D { [$11 }
| KEYWORD { [$11 }
| structured_access {03
| 1lit {03
| bool_binop {07}
| arith_binop {0}
| logic_binop {03
| BRA {0}
| COLON {0}

Let us analyze the syntactical specification first; semantic actions will be treated
shortly. As expressed in the top production, an invariant statement can be termi-
nated by an optional END_INVARIANT token[f], produced for all legal terminators of
invariant statements; another legal terminator is the RESYNC token, which is a syn-
chronization token whose role is explained in detail in the next section. An invariant
construct can spread along multiple lines, each consisting of occurrences of a set of
legal tokens (any and anything nonterminals) appearing in an arbitrary order. This
general specification allows a wide range of syntactic combinations to be accepted,

1In COBOL the majority of scope terminators are optional.
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withou worrying about their structure.

As one can deduce from the any production, the scanner generates a KEYWORD
token for every keyword appearing within an invariant statement. To do so, it needs
context information from the parser: the keyword_token mode flag, activated only
while parsing invariants, serves this purpose. A crucial necessity here is being cer-
tain that no tokens will be read after the INVARIANT_KEYWORD and before the flag is
set (Yacc could already have consumed the lookahead token when invariant kwd is
reduced). However, the INVARIANT KEYWORD token only appears once in the whole
grammar specification, causing no ambiguity with respect to other productions. A
lookahead parser only reads ahead if it is not able to make a decision; this is not
the case of the invariant kwd production, because of the unique distinguishing
INVARIANT _KEYWORD token; for this reason, we can assure the correct operation of
this mechanism.

To understand the meaning of the action code related to the clear_buffer_at_eol
flag in the Yacc grammar above, consider that the input is seen by the parser as a
token stream. For the purpose of saving the lines where invariant constructs appear,
the respective lexemes must be concatenated: lexemes, together with tokens, need
to be stored in a special data structure (named token buffer) as they are produced
by Lex. Intercepting tokens can be done before they are pushed to the parser, not-
ing that at the moment of parser invocation, the scanner function is passed as a
parameter. We simply have to encapsulate the tokenizing function with a wrapper,
which sends every recognized token to the token buffer before returning it.

Now, clearing the buffer between statements is sufficient to guarantee that its
contents pertain the currently parsed construct. As an invariant can spread across
lines (e.g. in the case of embedded SQL queries), the buffer contents need to be pre-
served until its terminator is seen; this is signaled by setting the clear_buffer_at_eol
flag. When the non-terminal corresponding to an entire statement is reduced (invariant stmt
in this case), our lexer wrapping function triggers the concatenation of lexemes in
the buffer. This yields the desired result, i.e. the invariant input fragment, which
can now be stored. At the end of the process, the buffer is cleared.

Scalability

In this work, only one differently-relevant syntactic class, the invariant class, is
needed. However, it is worth mentioning that no limitation exists on their number,
provided a dedicated token is reserved for each of them.

One important thing to notice is the ease of adding constructs to the invariant
class: the respective statement keyword just needs to be added to the scanner
specification in order to produce an INVARIANT KEYWORD token. The only drawback
of the described approach is the need of explicitly specifying tokens that are legal
in the catch-all production. An island grammar specification would be a more
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maintainable solution to this regard, because it would not require checking wether
newly introduced tokens should be added to the any list.

2.8.2 Errory Recovery and Unknown Constructs

The most important objective for any COBOL parser is undoubtedly robustness,
i.e. the abilty of being tolerant to unexpected inputs without breaking the parsing
process. The isolation of unknown or (currently) unsupported language constructs
is a fundamental feature also in an early development stage, as it avoids painful
crashes on real-world code and allows testing of supported features without having
to write limited test cases.

Errors can occur for two different reasons in the Procedure division:

e A totally unsupported/unknown statement is encountered. As already men-
tioned, a COBOL statement always starts with a dedicated keyword. Since
no lexical specification exists for it, the identifier regular expression will be
matched. Identifiers can only start a procedure division line in the case of
paragraph headers, which are followed by a period: any other configuration
leads to a syntax error.

e A bad/ unsupported format of a recognized statement is encountered, which
also is a syntax error.

Both, of course, can also occur within a nested construct, whose integrity must be
preserved. In whichever case, Yacc’s error recovery mechanism (described in section
will be triggered. To avoid parse errors, error productions covering the above
cases are needed. The position of the automatically detected synchronization point
is unpredictable: it is therefore important to specify unequivocally where normal
parsing can be resumed.

Implementation

The need of separators The hardest part of the task is specifying synchroniza-
tion points, in a language where the help of delimiters cannot be assumed (in nested
constructs there is no symbol separating each statement from the next one). Again,
the fact that each statement is introduced by its own keyword is helpful, because
the beginning of the construct following the unsupported fragment is exactly where
recovery should occur. The question is how to recover before consuming the key-
word token. It is clear that this cannot be done without adding some symbols to the
input. Our strategy consists in generating a RESYNC synchronization token when-
ever Lex recognizes a statement-starting keyword, in order to explicitly mark the
restore point. A particular kind of statements containing error productions has been
developed; a discussion of each of the reported grammar rules follows.
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error_statement:
| error_id anything_mode RESYNC {
| error_id anything_mode EOL {
| error RESYNC {
| error EOL {

eyword_token_mode <- false }
eyword_token_mode <- false }

¥
b
k
k

error_id:
error_id__ { %1%
error_id__:
ID { keyword_token_mode <- true; $1 }

anything_mode:
anything { keyword_token_mode <- false; $1 }

Let us focus on the first rule of the error_statement nonterminal. The presence
of two entities to be sent to the parser at once (RESYNC and the keyword itself) is
in contrast with the fact that Lex has a single return value. To get around this,
we declare a new token in the parser specification file (namely: %token <token>
ResyncKeywordED, which is able to carry an argument of the same type all to-
kens belong to. When one of the considered keywords is seen, ADD for example,
Lex produces a ResyncKeyword ADD. Recall that the tokenizer is encapsulated in a
wrapping function. Whenever Lex returns a ResyncKeyword, the wrapper retrieves
and stores the inner token via pattern matching, and returns RESYNC to the parser
in its placd™ The next scanner invocation will not execute Lex-generated routine
if a pending token is found (ADD in our example).

At this point, RESYNC is our error production terminatm{lzl. It also needs to be
added before scope terminators and dots (as the unsupported statement could be
in last position within a sentence). This explains the operation of the first error
production.

A consideration explains the idea behind the second rule. One may ask if allow-
ing the parser to enter error mode could not be avoided in some situations, in order
to maintain direct control of the parsing process in a higher number of situations.
A positive answer can be given for all those cases in which a COBOL statement is
completely unsupported by the used grammar. As its distinguishing keyword is not
known, it is tokenized as an identifier: thanks to the same catch-all mechanism used
for invariant statements (refer to the anything nonterminal, which role is explained

2The %token directive introduces a new type of Yacc token; this is defined by the
ResyncKeyword ML data constructor, which carries an argument of type token. The result is
a new kind of token which acts as a container.

13thethatResyncKeywordIKwerappemxingyanunar;noducﬁons

l4Referring to section m RESYNC also acts as delimiter for invariant statements.
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in section , it is possible to handle these situations explicitly. The only dif-
ference with invariants is that here we cannot guarantee the keyword token mode
flag to be set right after the ID, as the lookahead token may already have been con-
sumed (some more leaf grammar productions starting with the ID token are likely
to exist: a LALR parser needs to read ahead to disambiguate between them). For
this reason, if a keyword follows the first identifier token, Yacc enters error mode,
recovering when a RESYNC token is found. In other words, this implementation does
not assure avoiding error mode in all cases in which entirely unsupported constructs
are seen. However, this can be assumed in practice; it becomes clear analyzing the
COBOL-85 specification [4], where the few statements possibly introduced by two
keywords represent such fundamental constructs that either complete or partial (i.e.
invariant) grammar support for them in a COBOL parser is taken for grantele_gl. In
the remote case in which some of them are still unsupported, the error mechanism
takes over, assuring the desired parsing behavior.

Introducing the EOL token As the reader may notice, an additional EOL to-
ken appears in the last two productions of the error_statement nonterminal. An
example illustrates why this is required. Imagine a first ill-formed constructs is en-
countered, followed by a totally unknown statement, both within a nested sentence,
as shown below (assuming the USE statement is not supported, it is tokenized as an
identifier).

ADD TO MY-VARIABLE

USE ERROR PROCEDURE ERR-PROC.

No RESYNC is produced when the latter is seen, making it impossible to distin-
guish it from the former. It is clear that the only possibility of correctly interpreting
this input is introducing an end of line token, as no other symbol can act as a de-
limiter. The same issue would have happened if the first statement would have been
another completely unknown construct: line breaks are needed in this case as well
(this is implemented in the fourth production of the error_statement nonterminal).
Such situations may appear frequantly: this solution broadens the tolerance of the
parser to a larger set of syntactic irregularities.

Considerations

Implications of delimiters in grammar productions. The grammar excerpt
below highlights the fact that this method requires minimal grammar reworking: the
presence of the RESYNC and EOL delimiters is easily handled. They are both added
in the statement production (while the presence of the latter is self-explanatory,

5The statements falling in this class are: EXIT PROGRAM, FREE ALL, GO TO, STOP RUN, and
specific formats of the PERFORM, BEGIN, DISPLAY, HOLD, MOVE, OPEN, SEARCH, SET and USE
statements. We can see that all ot them, maybe with one only exception (USE), belong to the very
core of the language, appearing in almost every real-life source code.
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the former has to be consumed when it appears between two supported statements);
RESYNC must be considered before DOTs at toplevel, where also newlines need to be
taken into account to support entirely blank lines. Their optional presence has
also to be considered between clauses in multiple line statements (e.g. before WHEN
clauses in an EVALUATE phrase), natural locations for beginning a new lindT_GI. Nested
constructs are automatically supported, as they are recursive on the statement non-
terminal.

procdiv_line:

newlines EOF { EndOfStream }
| EOF { EndOfStream }
| ID RESYNC DOT { ActuallLine (Label (locate parseState 1 $1)) }
| newlines ID RESYNC DOT { ActuallLine (Label (locate parseState 2 $2)) }
| sentence { Actualline (Statement $1) }
newlines:
EOL {17}
| EOL newlines {17
sentence:
statements DOT { block_of_statements $1 }
statements:
statement { [$1] }

| statement statements {$1 :: $2 }

statement:
statement’ { locate parseState 1 $1 %}

statement’:

newlines { Nop }
| RESYNC { Nop 1}
| simple_statement { %11}
| block_statement {3%11}
| error_statement { .}
| newlines error_statement { ... }

Other considerations The presented method adds new token kinds to the input
stream, with minimal impact on existing productions. Although a preprocessor
could be used to this aim, inserting missing symbols with an arbitrary convention,
the same results are here achieved during parsing. This is a more efficient solution,

16COBOL formats allow a great number of optional clauses to be specified, and experience tells
that when line breaks occur, they are located between these clauses, rather than at any arbitrary
position. Although this is not a syntactic rule, COBOL sources comply to it for obvious reasons;
experience has validated this approach as a good working solution in a real-life environment.
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since no additional pass is required; a particularly appreciated feature when dealing
with COBOL source files, which can spread over several hundreds of thousands lines.

The described implementation of a robust parsing strategy cannot lead to false
positives, because a complete specification of the interesting constructs is given.
However, in some rare situations false negatives can occur. This is caused by an
unwanted side-effect of Yacc’s error handling mechanism in presence of an ill-formed
fragment spreading across multiple lines, as in the example below (BEFORE is incor-
rectly spelled):

PERFORM SOMETHING WITH TEST BFORE
UNTIL MY-VARIABLE ; 3

ADD 1 TO MY-VARIABLE.

Yacc is not able to deal with this kind of situations. In fact, after entering error
mode on the first line, it correctly identifies the EOL token as point of recovery,
expecting the beginnig of a valid statement. Instead, another syntax error is seen
within the following three tokens. Judging to have made a false start, it jumps back
into error mode, not recovering until input complies with the three token rule (see
section . The first legal token allowed to occur after a sentence is DOTE]: the
ADD statement is therefore included in the error, leading to a false negative (recall
that a false negative is a construct of interest unwantedly not recognized as such).

There are two possible causes of this behavior:

e No grammar support exists for a statement which spreads across multiple input
lines, and some of its formats have two leading keywords (otherwise Yacc would
not enter error mode, thanks to the error_id grammar productions). This
situation, which is very unlikely to happen for aforementioned reasons, can
be raidly solved by including the construct in the invariant class, i.e. adding
its distinguishing keyword to those producting the INVARIANT KEYWORD token
(multiple lines invariants are correctly handled).

e Syntax errors are present in the input source. Parsing legacy COBOL pro-
grams with syntax errors does not appear reasonable, as these have been com-
piled and running, presumably for decades.

We can sum up the discussion by stating that, although the presence of false nega-
tives cannot be categorically excluded, these might appear in the two cited scenarios;
the former can be addressed in literally seconds during a testing phase, the latter
is caused by an invalid input configuration and is highly unlikely to happen in the
field of application of this work, which is the analysis of legacy COBOL.

1"When looking for a synchronization point, Yacc does not consider eventually recursive non-
terminals following the production in which the error occurred. In our case, error mode was
entered in the statement production, which is automatically reduced. Now, the second rule of
the statements nonterminal is recursive and will not be tried. Therefore, the first token legally
following the error is a DOT, which also marks the end of the parsing process.
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2.8.3 Error reporting

Our error handling mechanism for the procedure division is designed to tolerate arbi-
trary input (only at toplevel productions syntax must be respected, which basically
means that non-empty inputs must be terminated by a dot). For what concerns the
Working Storage parser, a meaningful error reporting mechanism has been provided,
which is activated in the remote case an illegal input is able to break parsing un-
expectedly (e.g. because of disregarded formatting restrictions). On a parse error,
FSYacc allows the optional execution of a user-defined handler function (which is
called parse_error _rich); a parameter is passed to it, namely a data structure con-
taining information about the parser state. Useful fatcs are extracted and displayed
from it; consider the following sample code:

IDENTIFICATION DIVISION.

PROGRAM-ID. ERROR-REPORTING-EXAMPLE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING STORAGE SECTION.

01 X PIC S9V9 COMP-3 VALUE 2.

The WORKING-STORAGE keyword is incorrectly split into separate words, leading
to a syntax error. As it can be difficult to spot such a spelling mistake, additional
information joins the position of the error, as we can see from the output below:

parse error: syntax error: token jID WORKING, at line 6 column 1-8

shifts: TOKEN_WORKING_STORAGE TOKEN_FILE reduces:

states: 103 7 4 2

reducible prods: NONTERM _datadiv; NONTERM program1l; NONTERM _program;

NONTERM__startprogram

The illegal lexeme is displayed along with its token class. The user is also in-
formed about tokens allowed to appear in its place (the WORKING-STORAGE and the
FILE section headers), undecidable state numbers for the encountered input config-
uration, and nonterminals currently appearing on the parser stack. Such precise and
informative output is definitely helpful to quickly isolate the cause of unexpected
behaviors.

2.9 Experimental Results

Section[2.9]is dedicated to illustrating the capabilities of the described parsing frame-
work in relation with implementation requirements and project goals. Then a case
study on an existing Cobol legacy system is presented in section [2.9.2]
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Context-sensitive lexing

The meaning of tokens can be dependent on the context in which they appear. This
implies the need of a context-aware lexing strategy, and of some form of communi-
cation between scanner and parser. Lexical feedback has been implemented to this
aim, by means of status information that is maintained and updated using semantic
actions in the grammar specification file. Basing on the information it is provided,
Lex is able to decide which token to return. This mechanism has been used to
provide support for partially relevant syntax, as seen in section 2.8.1} in particu-
lar; a special token is produced when a Cobol keyword appears within an invariant
construct, making it possible to define a general-purpose catch-all production.

Picture format strings

Picture formats represent a similar class of context-dependencies. Symbols have an
individual precise semantic meaning when appearing within them, different from the
one they have in other contexts. In this case, however, the type-related knowledge
they carry is vital for the back-end analyzer: a dedicated parser has been defined
in order to acquire this information durin a post-processing phase. Consider the
following Cobol program:

IDENTIFICATION DIVISION.

PROGRAM-ID. WORKING-STORAGE-TEST.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 X PIC S9V9 COMP-3 VALUE 2.

01 R.

05 R-A PIC 9(4) VALUE ZEROS.
05 FILLER PIC XX VALUE SPACES.
05 R-B PIC 99V9.
05 FILLER PIC XX.
05 R-C.
10 R-C-1 PIC 9(5) VALUE 100.
10 FILLER PIC Z09(5).
10 R-C-2 PIC S9(4) VALUE -20 USAGE COMP.

PROCEDURE DIVISION.

ADD -10 TO X GIVING R-B R-C-2.

MOVE R-A TO R-C-1.

STOP RUN.

Most of the allowed picture formats appear in this fragment: type-specific char-
acters, sign and comma placeholders and symbol repetitions are used within nested
record declarations. The results of the second parsing stage are integrated in the
syntax tree built by the Working Storage parser. The process yields the following
output, which is generated by an AST pretty-printing routine (being the result of a



30 2. Parsing COBOL

translation process, the syntax tree is conveniently displayable as an IL program):

{
R.R-B := X + -10;
R.R-C.R-C-2 := X + -10;
R.R-C.R-C-1 := R.R-A;
return;

}

where
X : bed[S1.1] := 2
R:{ R-A : num[4] := 0,
FILLER : alphanum|2] := |
R-B : num[2.1],
FILLER : alphanum|2],
R-C : { R-C-1 : numl[5] := 100,
FILLER : num|7],
R-C-2 : bed[S4] :=-20 }
}

IL type information, reported in the where clause appearing after the gener-
ated IL statement block, is expressed by means of a concise syntax that reflects the
semantic meaning of Cobol declarations. Possible types include numerics, alphanu-
merics and bynary-coded decimals, used for computational fields. The size of each
variable is reported between square brackets; it is also split into integer and decimal
parts for numerics (e.g. the numeric B field of record R has two integer and one
decimal position: its type is therefore num[2.1]), and signed items are signed by
a leading S character. Initialization values are also visible as assignments in this
context.

The correctness of the retrieved information is easily verified. Note that, when
each variable is referred in the actual code, the dot notation common to most modern
programming languages eventually expresses it membership to a record, explicitly
highlighting the hierarchy of declarations.

Ambiguities

Many ambiguities have been solved writing ad-hoc grammar productions. The most
famous COBOL example is the so-called dangling-else problem, i.e. the uncertainty
about which IF statement an ELSE clause belongs to. Like many similar situations,
it can arise when nested constructs are used without specifying their optional de-
limiters (the END_IF keyword in this case). Consider the following line:

IF MY-VAR > 1 IF MY-BAR = 2 SUBTRACT 1 FROM MY-VAR ELSE DISPLAY MY-VAR.

It is unclear which statement the ELSE clause should be associated to. According
to Cobol specification [4], an ELSE clause is paired with the nearest IF statement
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that has no ELSE clause (the inner construct in the example). The Yacc grammar
below obeys this rule:

statements:
statement
— statement statements

statement:

— if_stmt
— if_stmt END-IF

if_stmt:
IF condition statements
— IF condition THEN statements
— IF condition statements ELSE statements
— IF condition THEN statements ELSE statements

Figure 2.2: An IF-ELSE grammar for solving the dangling-else problem

As the reader may notice, the if_stmt productions have a common prefix. As
explained in section [2.4.1] Yacc’s policy is to shift over the input, trying to match
the longest rule if possible: this yields the desired behavior. Numerous similar
situations can be faced when developing a Cobol grammar; as we can see, Yacc
allows to preserve a natural expression of grammar productions.

2.9.1 Project goals

A grammar specification for a task-focused subset of Cobol has been developed using
Yacc, the currently most widespread parser generator. As far as the project goals
are concerned, portions of input having a lower level of relevance are isolated even
though their syntax is not specified, and a robust error handling mechnism assures
tolerance to unsupported constructs. These two aspects are addressed in more detail
in the reminder of this section.

Differently-relevant fragments

Thanks to context-aware lexing, the input is treated differently based on its relevance
to type- and data-flow analysis. Consider the following:

IF MY-VALUE > O THEN
DISPLAY POSITIVE VALUE: MY-VALUE
WITH NO ADVANCING
GO TO DO-SOMETHING
OPEN OUTPUT A-FILE
END-IF.
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Clearly, DISPLAY and OPEN are invariant statements. When Lex matches each of
them, it generates an INVARIANT _KEYWORD token, and according to the grammar in
figure [2.8.1] the entire construct is accepted using a catch-all production. Keywords
appearing in it are distinguished from all other token classes by means of a general
KEYWORD token. stream is shown below:

The role of the RESYNC token is crucial: thanks to it, Yacc is able to correctly
tell statements apart (in particular, thoe added before the GO TO command and the
END-IF delimiter mark the end of the two invariants in this example)

Error recovery

An error handling mechanism has been implemented, making the parsing process
robust, i.e. tolerant with respect to constructs of unknown syntax, and at the
same time keeping track of encountered symbols, which is useful for documentation
purposes. Consider the following fragment:

IF MY-VAR > 3

ADD WITH CONVERSION ID-1 TO ID-2

ADD TO MY-VAR

SOME UNRECOGNIZED STMT IS HERE

MOVE FUNCTION ADD-DURATION(YYYYMMDD DAYS 90) TO MY-DATE
END-IF.

The many possible reasons of a missing parser specification for some input are
herewith illustrated: an unsupported statement clause (e.g. WITH CONVERSION of
the first nested statement), an error in the source file (e.g. the missing TO keyword in
the second ADD), a completely foreign construct (as in SOME UNRECOGNIZED STMT IS
HERE), or even unsupported language features (like intrinsic functions, used within
the MOVE statement above). The fact that no separators might appear between each
construct is an additional challenge: all delimiters, including the optional THEN and
END-IF keywords of the IF statement, are missing.

The presented framework uses all information the source provides, including end
of lines, and introduces missing delimiters where needed, producing a token stream
reading which, thanks to the added RESYNC tokens, the parser is able to correctly
separate each statement from the others. Exploiting COBOL syntactic structure
and using lexical feedback, an entirely unknown construct is accepted even without
entering error mode (SOME UNRECOGNIZED STMT IS HERE), and at the same time
the presence of keywords is distinguished from other tokens.

An unsupported statement is displayed with leading question marks, followed by
the list of identifiers appearing in it and by the corresponding input line, thanks to
the token buffering mechanism described in section [2.8.1]

As a final remark, the large number of existing compiler implementations, lan-
guage dialects and extensions is mentioned in section [2.5.1} Given the impossibility
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of supporting all these different variants, one specific version was targeted. How-
ever, thanks to the robustness of the Procedure division parser, even in the case
constructs from unsupported dialects are found, the framework is able to isolate
them without compromising the parsing process. This is the most general possible
solution: it allows support for common syntax, and at the same time is robust to
inputs where foreign fragments appear.

2.9.2 Case study considerations

The developed parsing solution has been applied on legacy Cobol programs (attached
to this document), for the purpose of testing its features in a real world setting.

For what concerns the project goals, we can state that they have been successfully
achieved. At the moment of testing, the language coverage of the used grammar can
be estimated to be approximately 35 %, including both supported and unrelevant
syntax. No parse error was produced on the input, a remarkably significant fact
taking into account the low percentage of Cobol support. This alone is a result
that no other widespread parsing solution has been able to achieve to the writer’s
knowledge.

As for the quality of the output, due to the exact specification of interesting
constructs, false positives cannot occur. Moreover, it was verified that no false
negatives were produced as well, as the conditions mentioned in section were
met, yelding exactly the desired output.

Finally, some considerations on the generated syntax tree. Due to the differenes
between Cobol and IL specifications (refer to section , the produced IL code is
larger than the corresponding Cobol text in the number of statements (the number
of lines is not a valid indicator in this case, due to the presence of multiple line
statements, blank lines and comments in the input). An increase of about 140 %
has been noticed, as branches, jumps and loop counters are introduced to mirror
Cobol semantics.

2.10 Future work

Although the framework is able to deal with a remarkably large set of real world
scenarios, one more feature is needed for dealing with all possible Cobol constructs.
Post-processing of the parse tree for context-dependent ambiguities, mentioned in
section[2.6.3] has not been implemented yet, and is planned for a further development
stage.

A further thorough test phase is also planned, in order to confirm expected be-
haviour of the described parsing solution in a wider spectrum of scenarios. Instead
of relying on a test suite of Cobol sources, which has to be maintained and expanded
as further features are implemented, test cases could be generated in an automated
fashion from the Cobol grammar definition in use. This way, all possible input
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configurations could be easily tested; arbitrary syntax could also be randomly intro-
duced among correctly generated constructs, in order to create fully comprehensive
inputs for each grammar revision automatically.

Plans of future work also include an extension of the lexer with a functionality
which is presently achieved manually. We refer to a special lexing mode, in which
a general-purpose token (similarily to the %token <token> ResyncKeyword defined
in section is returned instead of that corresponding to the matched regular
expression. A wrapper token type would be a very convenient implementation, as
it would still allow access to the original token when needed. This would avoid the
need of manually specifying a list of tokens legally accepted in the grammar catch-all
production, thus simplifying maintenance of the framework as new token types are
introduced.



Typing COBOL

3.1 Introduction

Analyzing COBOL code using type inference techniques has been proposed many
times in the last decade and before. From the system first described in [77] to its
later refinement in [50], giving informative types to COBOL variables seems to be
a good way for automatically generating a basic tier of documentation of legacy
software [81] and is also a reliable starting point for further Program Understand-
ing approaches [46]. These systems are quite sophisticate and rely on a number
of complex side models and tools aimed to extract properties and information from
COBOL programs at a high level of abstraction, thus inevitably omitting several de-
tails at low level - e.g. how to deal exactly with the many picture formats supported
by COBOL and with control constructs that alter the program flow.

Type analysis. Our proposal is a system for static analysis that is based on re-
constructing types. The term type reconstruction is here used together with the verb
typing for underlining an approach based on type rules aimed at understanding data
inspecting procedure calls, constants, variable use and reuse etcE]. No unification
over type variables a la ML [25] occurs in our system and no abstract interpretation
techniques take place: it is type reconstruction in the most general sense.

In this chapter we propose a revision of the system originally presented in [66]
and selected for publication on [67]. It consists in a light-weight system for statically
analyzing COBOL by means of custom types that pursue a number goals:

1. model the COBOL picture system without losing storage format information
such as computational fields or the size of a numeric; this let us reconstruct the
exact in-memory representation of datatypes and perform precise comparisons
among the many formats COBOL supports;

2. deal with what in [80] is called pollution in such a way that no complex re-
lational property system among types is needed, by tracking type alterations
that variables are subject to in the following scenarios:

In [62] the well-known ML type inference is referred to as a form of type reconstruction.
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(a) when data is reused for different purposes in a program: many COBOL
programmers have been used to this practice in order to save memory
and the result is often poorly maintainable and error-prone code;

(b) when the language performs an implicit datatype cast, readapting value
representation to fit a target variable having a different format than the
source - and this can happen in COBOL either at compile-time or at
run-time.

3. deal with branches in the program flow that are not statically decidable (i.e.
conditional statements) by embedding into the type itself multiple types a
variable may possibly assume during the execution. In other words, we don’t
try to guess how a condition is evaluated - we rather keep track of the types
a variable might assume in multiple control-flow branches.

Type System.

Usually types are given both to expressions and computations that do not lie in
memory and to data bound to variable names or memory cells. We introduce a
form of type for both cases plus a higher-order special type for variables having
multiple types.

1. storage types are the single types having an in-memory representation a vari-
able may assume;

2. temporary types are the single types a computation can assume before it gets
stored in memory or bound to a variable;

3. choice types are the multiple storage types a variable can assume resulting
from conditional branches in the program flow;

4. flow types are simply a pair encapsulating a choice type and the original ini-
tialization storage type of a variable.

Jumps and Loops.

GOTO and PERFORM instructions are constantly found in legacy COBOL code as the
main constructs for altering the control-flow of programs, hence our system cannot
behave like an ordinary type-checker or type-inference algorithm: it looks more like
a type analyzer capable of following jumps and branches in the code, detect cycles
and avoid loops by checking for a convergence in topological environment (defined in
section . This might resemble a weird form of abstract interpretation over types
[3 1]E| but in fact is not: our system is a typing system performing type reconstruction;
but it also recurs on GOTO statements until one of the environments does not change.

2Finding a convergence in the status of the typing function is almost trivial compared to inter-
preting computations on abstract domains. That is basically thanks to the static nature of types:
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Implementation.

A prototype of the system described in this thesis has been developed in F# for
the .NET 4.0 platform and includes a full-featured COBOL parser and translator
to our Intermediate Language as well. A Lex & Yacc tweak has been designed for
reproducing the behavior of Island Grammars [54] while keeping the benefits of an
efficient LALR parser.

Typing-wise, it is currently able to parse large COBOL source programs (up to
many hundreds of thousands of lines) and to type them generating as output the
flow-types annotated at every variable occurrence. Additionally, it annotates useful
information on type usage in form of error messages, warnings and hints. Again as
opposed to a compiler, errors do not make the system fail: typing carries on and is
tolerant to ill-typed situations by simply switching back to the initialization type of
a variable whenever ambiguous scenarios are found.

3.1.1 Overview

Our system does not manipulate COBOL code directly: as other remarkable systems
do [78], we translate COBOL into an Idealized Language (from now on referred to
as IL) resembling modern imperative languages without altering COBOL semantics
and principles. The syntax of IL is shown in section [3.1.3] Notably, what in COBOL
speak is referred to as a program (i.e. a compilation unit), in IL becomes a procedure
with its own set of static variable declarations. A COBOL application consisting
of many programs translates into a single large IL program and the COBOL entry-
point as its bottom unnamed block.

Before performing the type analysis, the system labels all variable occurrences
in the program with an unique identifier - for example a fresh integer. The type
analyzer eventually proceeds statement by statement and recursively descends into
expressions, basically performing two operations:

1. updating the possible type changes a variable is subject to and keeping track
of multiple types variables could concurrently assume;

2. annotating each variable occurrence with its current flow-type at that point
in the program.

Assignments and call-by-reference argument passing are the two scenarios where
variables could be subject to an implicit cast, hence the type of a variable could
change. And conditional constructs are responsible for merging multiple types re-
sulting from the typing of the two sub-blocks of an if-then-else statement into
one choice type.

Look at the following sample code directly translated from COBOL into IL:

even including variable reuse, the overall number of reuses in any program is finite and can be
statically determined in a finite number of passes.
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{
X :=x + 1;
if x > 0 then x := "foo";
X = X + 23;

}

where x : num[2] := 11

Our system can reconstruct the types of the program and annotate each occurrence
of variable x with its flow-type in that point of the code. Typing follows all branches
in the control-flow: after the if block the system has to remember that x might have
become a string. Also, where an ambiguous or ill-typed operation takes place, the
system reports that and recovers to a default decision.

{
(x : num[2]) := (x : num[2]) + 1;
// [WARNING] possible truncation in assignment: num[3] :> num[2]

if (x : num[2]) > O then
(x : alpha[2]) := "foo";
// [ERROR] truncation in assignment: alphal3] :> num[2]

(x : num[2]) := (x : num[2]lalphal[2]) + 23;
// [HINT] x: ambiguity: assuming initialization type num[2]
// [WARNING] possible truncation in assignment: num[3] :> num[2]
}

where x : num[2] := 11

In the statement at line 1, in which x gets incremented by 1, its type is annotated
both at its usage as a right-value and as the target at the left hand of an assignment.
In the right-hand its type is the initialization type num[2], which obviously happens
to be its current type at the beginning of the program; in the left-hand x should
apparently be given a wider numeric type, because the result of the sum of a num[2]
and a literal whose type is num[1] actually leads to a num[3]F] but it gets truncated
in order to fit the initialization type, exactly as COBOL run-time does. The final
type happens to be equivalent to the initialization type and nothing seems changed,
but internally the whole process has passed through the creation and the truncation
of the temporary type num[3].

Encountering the if statement makes the analyzer descend into the then block:
a truncation is detected therein (being alpha[3] wider than the target type num[2])
and the truncated type alpha[2] is finally given to x, which fits the initialization
type. Such information must then be merged to what had been previously inferred
before the if statement: hence why, in the assignment under ther if block, the

3Simply because a number of 2 digits plus a number of 1 digit could possibly lead to a number
of 3 digits, as 99 + 9 = 109. See the type rules for expressions in table for details on how
arithmetic operations formally affect numeric type formats.
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type of x in the right hand is not a simple type. A choice type has been introduced
here by the merge: it shows the multiple types x might have at that program point.
Which leads to an ambiguity when typing the sum operation and so the system
needs to recover to the initial type declaration to prevent from failing. That might
seem odd, but is in fact a viable solution: in COBOL every variable strictly adheres
to its picture declaration, thus falling back to the initialization type is not unsafe -
it is just inaccurate, but it serves just as a last resort in unsolvable situations.

3.1.2 Comparisons and Motivation

As already mentioned, the legacy software analysis system thoroughly presented
in [56]E| rely on mechanisms for producing information over types that mainly serve
Program Understanding techniques, Concept Analysis [46] and other high-level elab-
orations. In general, its scope is wider than ours and not entirely overlapping. While
the basic goal may look similar, i.e. giving somehow interesting types to COBOL
variables, there are several differences.

e We translate COBOL into a simpler intermediate language as [77] does, though
without leaving out important language constructs whose behavior is relevant
to typing real-world programs, such as jump primitives, procedure calls and
conditional statements.

e Our type syntax is more complete and open to orthodox type manipulation,
as it doesn’t provide a flat representation of COBOL picture systemﬂ

e The type inference rules given in [80]@ are sometimes a tad trivial. In our
type system the type reconstruction is more detailed, e.g. our type rules for
arithmetic operators in table |3.7| recalculate the resulting type format length
in order to detect a number of size errors at typing time.

e We don'’t infer a type equivalence when two or more types are expected to be
the same. Our system rather falls back to a variable initialization type in case
a type mismatch or ambiguity is detected. This trade off does not necessarily
imply a loss of information and reflects COBOL run-time semantics better.

4That is a Ph.D. thesis collecting previous works on the same subject and anticipating some
that yet had to come. In general, that system has been proposed several times in more articles
with some additions - we might therefore refer to either [77], [80], [(9], [46] or [56].

®Syntax of types in [77], weirdly, include variable names and picture format strings into type
terms, leaving unclear how the type environment and type comparison functions handle them.

6The word inference, with a clear reference to ML and type theory in the functional language
world, is a bit improper for the context: we’d rather prefer reconstruction or analysis, as there is
no use of type variables and unification for resolving a set of constraints over type equations as in
actual type inference systems [25].
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e The system in [46] represents the inferred set of type relations via a Relational
Algebra and resolves it by applying an algorithm written in Grok [38]: the
resolution is actually a simplification process performing iterative unification.
This approach doesn’t seem to take into account control-flow jumps. Our
system performs a code analysis at typing time by following branches and
jumps and thus detects a wider range of possible type anomalies and variable
reuses.

e According to [80], pollution occurs whenever a type-equivalence involves types
that are not equivalent or subtypes: we do not handle this as a special case, but
it automatically comes from non-singleton choices within flow-types, which
are natively supported by our type-system and do not require any further
processing.

e Our subtype relation deals with the in-memory representation of a wider range
of type formats and qualifiers that are very common in COBOL programs,
such as all COMP fields (translated into native integer, floating point and binary-
coded-decimal types), signed/unsigned numeric formats and mixed alphabet-
ic/alphanumeric strings.

e In [80] there is no mention on how COBOL referencesﬂ are handled, nor on
how COBOL run-time data conversions affect type rules manipulating different
picture formats and computational fields (e.g. a COMPUTE instruction using
mixed numeric variables and literals). A major feature of our system is to
statically reproduce COBOL run-time and compile-time behaviors, keeping
track of numeric formats and sizes and introducing temporary types for R-
Valueﬁ which are eventually promoted to storage types when a type coercion
to a L-value occurs (see definitions|3.1.1{ and [3.1.6)).

3.1.3 Idealized Language Syntax

Grammar rules for IL syntax are given below together with lexical rules for identi-
fiers, literals and operators. Terminal symbols are underlined, non-terminal symbols
are in italics and EBNF meta-operators are in plain form.

3.1.4 Storage Types and Flow-Types

COBOL picture declarations in the Working Storage section of the Data Division
define data instances along with their own storage format: they’re not just type dec-

"According to COBOL syntax specification in [39], accessible memory cells are called references.
We renamed them as left values in our intermediate language for the sake of symmetry with
imperative languages such as C that define them as a sub-class of expressions which can appear at
the left side on an assignment and refer to a real memory location [43].

8Symmetrically, emphright values are expressions that can stand on the right side of an assign-
ments, hence evaluate to a temporary value [68] that does not lie in memory.
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Table 3.1: IL Syntax..

P := procp((y:7)*%) B in P procedure
| B main
B := st where (x:7 [:= lit])* body with environment bindings
st = lv:=e assignment
| if e then st [else st if-then/if-then-else
| pl(@)) call
| gotol goto
| perform! [ perform/perform-thru
| return return
| [ { (st)+ } anonymous/named-block
lv = =z variable
e array subscript
| vz record field select
a = vale call-by-value
| reflv call-by-reference
e = e (opalopilop,) e binary operator application
| (= |not)e unary operator application
| lit literal
| v l-value
lit = [=]n[.n] numeric literal
[ I string literal
| true| false boolean literal
r,y,z,l,p = [a—zA—2Z]la—zA—Z— _0—9]x identifiers
opa = + =[x/ binary arithmetic operators
op, := and | or binary logic operators
op, = <|=|l=l<=|>|>= binary relational operators

n = [0—9]+ natural number
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larations. Our system must of course reproduce this design, but mapping COBOL
picture format strings into types. For example, consider the following picture dec-
laration:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 A PIC 9(3) COMP-3 OCCURS 10.
01 N PIC COMP 9(8).
01 R1.
02 R1-S PIC A(2).
02 R1-B PIC X(3)9(2)A(3).
01 R2 OCCURS 7.
02 X PIC S99V9 COMP-2.

We translate it into more readable and compact type bindings that are quite self-
explanatory:

nUMpeq|3] array[10]

NUM intgy [8]

: {S: alpha2]; B : alphanum]8]}
R2 + {X : numgoa,, [S2.1]} array(7]

Tz

Picture format strings are mapped into either numeric, pure alphabetic or alphanu-
meric types according to their structure; arrays and records are also first-class citi-
zens of the type language in our system and can therefore be nested at will, yielding
to types that resemble those of modern functional languages. Moreover, numeric
types carry along detailed information on their in-memory representation at ma-
chine level, sign and length of both integral and fractional parts; while arrays and
alphabetic/alphanumeric strings simply carry their length. The full syntax of the
type-system follows:
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"y
| alphaln]
| alphanum[n]
| 7 arrayln]
| {z1:7m . xp 0}

-
| bool
| mumlp]

ascii
| bed
| intig|s2i64
| floatsyes

storage types
numeric

alphabetic string
alphanumeric string
array

record

temporary types

boolean
abstract numeric

numeric storage qualifier
display or ASCII
binary-packed decimal
native integer

native float

numeric format

flow-item or choice

flow-type

where £ >1, ne N*, d&€ N

There are two distinct classes of types:

e 7 is the type of storage variables and L-values in general, i.e. the type of data
that stands in memory and has some representation’}

e 0, where ¢ D 7, is the type given to expression terms only and is never
produced by picture translation, serving just as a temporary light-weight type

whose in-memory representation is yet to be known in that context.

As typing rules will show,such temporary types are eventually promoted to ordinary
T types as soon as the storage type of an actual variable becomes known, for example
when an expression that’s given a temporary is then assigned to a L-value or passed
as a call-by-ref argument in an procedure call. Finally, a flow-type is a simply a pair
of possibly multiple storage types (those a variable may concurrently have following
statically undecidable conditional branches in the program flow, as stated in section

9ASCII is the default qualifier for numeric types: whenever unspecified this one holds, as in

num[3] for example.
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and an additional single storage type, which is the type initially declared for the
variable in the global environment. We’ll be often referring to the first component
of a flow-type as flow-item or choice.

3.1.5 Environments

Type rules operate over a number of environments mapping different entities.

Type Environment I' maps variable identifiers to flow-types: this environment is
initially populated with global type declarations and its bindings are then up-
dated when the current flow-type changes during typing. It contains bindings
of form = : ®.

Topological Environment O collects all annotations produced by the type an-
alyzer by mapping labeled variable occurrences z* to its flow-type at that
program point. It represents also the status of the typing function in the
detection of loop termination. It contains bindings of form x* : ®.

Procedure Environment IT maps procedure names to signatures (see definition
3.1.8). It contains bindings of form p — (y1 : 71 .. yn : 72, T,).

Block Environment > maps label identifiers to blocks of statements. It contains
bindings of form [ — {st; .. st,}.

Type environments also support a binary function merge, used by rules IF and
Ir-ELSE, which recompacts the bindings collected in separate environments by the
typing of program branches, as informally introduced by section Such merge
function is alone responsible for the growth of the flow-item component within a
flow-type.

3.1.6 Coercion of L-Values

Take the following example:

{

al[0].1 := "boo";

}

where a : { 1 : num[2]; m : alphal[10] } array[5]

And its annotated form resulting from the type analysis:

{

(a : {{1: alpha[2]; m : alpha[10] } array[5])[0].1
:= "boo";

}

where a : { 1 : num[2]; m : alphal[10] } array[5]
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The literal "boo" having type alphal[3] is assigned to field 1 of a record within a
cell of an array. The flow-type of variable a needs to be updated here somehow with
the type of the right-hand of the assignment - and of course it’s not to a that such
type must naively be given, but to the record field 1 nested within. Nonetheless the
environment binds variable identifiers to flow-types, thus there is no way to update
the type of a record label (as 1 in our case) or of an array cell alone. Therefore the
whole type of a variable must be updated keeping the original structure layout and
replacing the appropriate bit nested within it. Hence, the whole type of a in the
example becomes { 1 : alpha[2]; m : alpha[10] } array[5].

This shows also that the expected type alpha[3] of the literal "boo" has been
adapted to fit into the initialization type num[2]: coercion in assignments needs
therefore both to replace a piece of a type and to resize it accordingly, keeping the
original storage class (num in our example) and recalculating the format in such a
way that the overall size of the new resulting type fits the initialization one.

For this reasons, judgements for L-value terms are slightly different: II;>;T"; ©q -,
lv: 7\6*" > ©O; means that the L-value [v has a storage type 7 coercible by the
substitution 6%, where z is the root variable of [v (formally x = R(Iv) as of defi-
nition and x" is its labeled occurrence. 6 is a function from storage types to
storage types that can be passed by typing rules that need to update the type of
the root variable of an L-value to the coerce function € (see definition [3.1.6), which
performs the proper fit operation among other things.

3.1.7 Loops and Convergence

As informally stated in section the type analyzer follows goto and perform
statements unless already visited and a convergence in the status of the typing
function is detected. In subsection we said that this status actually consists of
the topological environment ©. The typing function at step ¢ of the analysis can be
defined as a function taking the statement fetched at that step and the topological
environment:

i(stBp, ©i) = Oip

where stp, is the statement located within block B at position p.

Each time the typing function encounters a jump statement, it performs a num-
ber of operations. Say a jump statement st4, = goto [ is encountered by at step i
while typing block A = {sta; .. sta,} (with ¢ € [1,n]):

1. it saves the topological environment ©; built up so far, binding it to the current
program location;

2. it looks up the destination block of statements from the block environment,
hence B = istBJ . StB,ml = 3(1);

3. it continues the analysis from there, i.e. from statement stp ;.
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Let’s consider that later at step j (obviously j > ¢) reaches the jump statement
sta,q again: then the new current topological environment ©; is compared against
©;, which had formerly been saved at that program location. If ©; T ©, (see
definition then it means that no further type information has been collected
during the second pass and we can therefore assume that the analysis can safely
skip the jump statement st4 , and continue from sty ,41. Else, the new topological
environment ©; is saved (replacing the old ©; previously stored) and the analysis
continues from the jump statement destination stp; again.

We observed that the system detects a convergence averagely in 1 and anyway
in up to 3 reiterations of the same piece of code. The reason is twofold:

e the topological environment cannot by definition be subject to binding re-
moval, hence Vz* € ©,. 2" € ©;,, at any given step i;

e flow-types bound to variable occurrences in the topological environment can
only grow - they can never diminish in width. Given we’re dealing with types
and not values, the stability is certain: storage types of variables do not change
from pass to pass for obvious reasons and the only thing that could change
and modify the status © of the typing function is the flow-item ¢ part of
flow-types bound to variable occurrences. ¢ is defined as a set of storage types
7 in table and it is subject to a single operation: the merge function as
of definition [3.1.9, which basically consists in a set-union between flow-items.
Duplicate types can therefore never occur and no element could be removed.

3.1.8 Ambiguity

Having non-singleton flow-items within flow-types is indeed a central feature of this
system, signaling that the programmer reused a variable in different ways along the
program. Nonetheless, that makes judgments for L-values problematic: how are we
supposed to type an L-value appearing in an expression, for instance, if its current
flow-type says that it could have many storage types at the same time? In fact, we
can’t - that’s exactly what flow-types stand for: detecting anomalous scenarios that
may lead to unwanted results at run-time.

In our code example in section [3.1] imagine the system had output another
hint message for the ambiguous statement claiming that among the possible choices
num [3] would have been suitable. And the typing then proceeded selecting num[3]
as candidate, leading to a different type for x - not the one shown in the original
example.

{

(x : num[3]) := (x : num[2]) + 1;

// [WARNING] possible truncation detected
// in assignment:

// num[3] :> num[2]
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if (x : num[3]) > O then

{
(x : alpha[3]) := "foo";
// [ERROR] truncation detected in
// assignment:
// alpha[3] :> num[2]
}

(x : num[6]) := (x : num[3]|alphal3]) + 23;
// [HINT] type of ’x’ is ambiguous in

// expression at right-hand of

// assignment: choice num[3]

// would fit

// [WARNING] possible truncation detected
// in assignment:

// num[6] :> num[2]

}

where x : num[2] := 11

What if more than one type was suitable, though? What type would the whole
expression - and therefore x - have had then? Arguably multiple types resulting
from different typing paths - but if so, which path led to which result type? The
flow-type would literally explode for tracking several implications among possible
typing paths and in the end it would hardly be useful.

Our proposal in such situations is to do the simplest thing: falling back to the
initial type of the variable; and of course notifying the choice with a hint message.
However, this leads to a duplication of the type rule for variables, as table[3.5]shows.

In this section we give the full specification of the IL language and the type-
system described in section [3.1.4]

3.1.9 Definitions
A number of formal definitions is needed before presenting type rules.

Definition 3.1.1 (Promote). The promotion [o]” of a temporary type o to a storage
type 7 produces a storage type that transform o into a storable type inheriting the
characteristics of 7. The promotion function is defined as follows (top-down closest-
match rule on the left hand holds):

o]yl = mglps) AL = nunta)
[bool]” = [mwm[1.0]]" ml" = o

Notice, though, that the case where a seq type is promoted to an array cannot
actually occur in any real-world scenario since COBOL, as well as IL, does not
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support array literals in its expression syntax but only in default-value definitions
within data declarations (i.e. pictures in the data division translated into IL as
environment bindings specifying a sequence of literal constants).

Definition 3.1.2 (Representation). We define a function rep : 7 — N for calculat-
ing the in-memory byte size of a storage type:

rep(alphaln|) = n

rep(numasei|n.dj) = nﬂt dgir ) rep(alpph(anim%ng = n
rep(numpcln.d]) = [*5=] rep(T array[n]) = rep(r)*n

rep(numin, [p]) = b/8 n
rep(numyioa, [p]) = b/8 rep({zy : 1.yt Tn}) = Zrep(n)

i=1

Definition 3.1.3 (Subtype). We define a total-order between storage types such
that the relation 71 < 75 holds when rep(7) < rep(7).

Definition 3.1.4 (Var-Bound Substitution). A substitution §*" is a function from
storage types to storage types that carries along a labeled identifier 2" which stands
for the variable occurrence whose type the substitution has been built from and is

supposed to replacﬂ

Definition 3.1.5 (Fit). The fit |7 |, of a storage type 7 to a storage type 7
produces a storage type whose storage class is equivalent to that of 7 and whose
size fits into that of 7. The fit function is defined as follows:

E | I— rep(numy/]) = rep(r)
|alpha[n]], = alpha[n/| rep(alphaln']) = rep(7)
Lalphcmum%n] r

7! arrayn]
oy} = {bim by 7}

Definition 3.1.6 (Coerce). The coerce function % updates the given type and
topological environments by applying a given substitution function #*" to the types
a given flow-item ¢ consists of; it produces a new pair of form (I'; ©) consisting
of the type and topological environments endowed with updated bindings for the
variable z and the occurrence label x annotated on the substitution function 6
itself:

,_
) &
2
3
3
e
<
=3
Bl

I

rep(T array[ ]) = rep(7)
rep({li : 71..ln : 7, }) = rep(7)

—_
)
I

| (
| (

alphanum(n’| I epéa phanum|n']) = rep(7)
| (

" _ .- . : (p;72) = I'()
C(p, 07", 1,0) = ,z:9;0,k:P) with B = (V7 € 0.[07 (1) | }: 7a)

10GQubstitution functions are recursively defined by type rules for L-Values as shown in table
They’re meant for generically replacing a term nested within a storage type of arbitrary complexity
by reproducing its original structure of recursive type terms and changing the innermost part only.
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Definition 3.1.7 (Root Variable). Given an L-value lv, its root variable is the
identifier x evaluated by the recursive function defined as:

Rx) = = R(vle]) = R(lv) Rlvl) = R(w)

Definition 3.1.8 (Signature). A signature is a pair (Y,;I',) where p is a procedure
name, Y, are its formal parameters y; : 77..y, : 72 and I', is the output type
environment returned by typing the body of p.

Definition 3.1.9 (Type Environment Merge). The binary function & merges two
given type environments into one as I'y @ I'y = I'™* U (I'1\I'y) U (I'2\I'y) where I'* =
{z: (1 Upa;m)|T1(x) = (p1371) AT2(2) = (p2;72) A1 = T}

Definition 3.1.10 (Partial Ordering of Flow-Types). We define a partial order
between flow-types such that ®; C ®5 holds when, let ®; = (p1;71) and $y =

(po; o), then 1 C Yo ATy = To.

Definition 3.1.11 (Partial Ordering of Topological Environments). We define a
partial order between topological environments such that ©; C ©, holds when
Vo : (I)l € @1.37 € dom(@g) N (I)l E (I)Q, where (I)Q = @Q(SL’)

3.1.10 Properties of the System

One important property of our system is termination: since GOTO statements produce
a recursion in our typing rules, one question about terminability arises.

Proposition 3.1.1 (Termination). For any COBOL program represented by an IL
program P, the type judice 0; Og Fp P > Oy implies a finite derivation.

A real proof would require a lot of additional formal tools, including an addi-
tional map or environment in which already visited GOTO occurrences in the program
are stored. That would make our type rules even more complicated for gaining a
property that is quite straightforward to imagine. Intuitively, sooner or later the
topological environment will be populated with all variable occurrences of every
reachable code block, thus a convergence will be found in a relatively low number
of passes through the same given GOTO occurrence. Convergence is defined of course
as the topological environment not changing anymore (as of definition ), and since
we're speaking of types here and not values, changes may happen only in conjunc-
tion with non-unary flow types, which in turn are created only by the IF rule - i.e.
in program branches which are of course finite.

Another interesting property would be some kind of soundness. We cannot
deliver detailed proofs in this thesis due to a number of reasons, among which the
fact that that would require a full formal semantics for COBOL, which has never
been done in a satisfying way in literature, being COBOL such a complex language.
We can formulate a form of weak subject reduction, though. We claim that at, the
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end of the type analysis, for every variable occurrence mapped to its flow type by
the topological environment, the choice type part within such flow types will contain
all storage types that that variable can possibly assume in that program point at
runtime; and all such storage types do fit into the variable initial type. We need
to introduce the notion of semantics, reduction and values, though, to achieve some
degree of formal precision. Arguably, most of the semantics of IL should be pretty
trivial, being a generic imperative language resembling COBOL: it behaves like any
ordinary language with assignments and static scopes. Complex reduction rules
would probably be arithmetic operators and data conversion in assignments, though
these are beyond our current scope. Since we're interested in variable occurrences,

we should only care about the rule for variable lookup. In an operational form, that
shall be:

Definition 3.1.12 (Reduction Rule for Variable Lookup). The following rule holds

reA
for variables appearing as right-values in a program: —————— where v is a value
Azt o

represented by an IL literal defined by the non-terminal /¢t in syntax table 3.1}, and
A is an environment mapping identifiers to values.

Notably, = - and not x" - belongs to A , because only variable plain names are
mapped by the environment, ignoring the unique label annotated on top of it. Also
it’s easy to imagine that A gets populated when entering a procedure scope and its
bindings are rebound in case of assignments.

Now let us formulate a proposition for guaranteeing some form of subject reduc-
tion for variable occurrences:

Proposition 3.1.2 (Weak Subject Reduction). Given a COBOL program repre-
sented by an IL program P, let ©1 be the topological environment output by the type
gudice 0; 09 Fp P > ©1. For any given labeled variable identifier % occurring as
a right-value in P, let " evaluate to a value v according to the reduction rule in
definition [3.1.13, then 31, € ¢ | v : 7;, where z* : (p;7) € O1 and ¢ = {71..7,,}.
Additionally, |7;],-

The proposition above claims two important safety properties:

e for any given variable occurrence in a program, a storage type exists within
the reconstructed flow type for each possible value that that variable could
evaluate to at runtime; and

e such storage type does fit (see definition [3.1.5)) into the declared initial storage
type of that variable, therefore any value hosted by the variable would not
imply data corruption or memory issues.

A realistic proof would require the complete operational semantics definition for
IL, as said, but an arguably straightforward proof sketch can be anticipated. The
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type of the value v of a given variable occurrence z" is present in the flow type (¢; 1)
bound to " in the the topological environment ©; because that v had to be assigned
to x earlier in the program in a way or another: if no branches in the code block
occur, then trivially rule ASSIGN in table 3.3 shows how the type bound to = in the
type environment I is replaced with the type of the right-value, i.e. inductively the
type of v - and ©; is populated with every single type of x for every occurrence x*
throughout the program as rule VAR-CURR shows. Else, in case code branches occur,
rule IF is the only responsible for the creation of non-unary choice types within flow
types (via the environment merge operation as of definition , therefore every
possible assignment within then or else blocks brings either to the former trivial
case in case no nested conditionals occur or to the latter case inductively.

3.1.11 Type Rules

Syntax-directed type rules are divided by category. Rules for Programs are shown
in table [3.2] for Statements in table for Expressions in table for Arguments
in table 3.4l and for Literals in table [3.6l

Most judgements give a type to a term of the language in a context consisting
of a tuple of environments and output the updated I' and ©, except judgements for
Statements and Programs that give no type and simply update the environments. As
a general rule, the topological environment © is always forwarded to and returned by
all judgements (except literals), because flow-types must be annotated recursively on
each variable occurring in any subterm of the program. While the type environment
[' is output only by rules that actually update it: consider it as returned back
untouched when there’s no mention of it among outputs.

Table 3.2: Type Rules for Programs and Body.

MAIN
H,@,@O l_BB > F,@l

H7®0 l_PB > @1

Proc
Iy = 0,91 : <{sz};7—g)>“yn (T
ILT,;00kp B > T;0, ILp = (yr: 7 oyn s 75;1,);01 Fp P > O

II; 00 Fp proc p(y; : 71..yn : 72) Bin P > O,

Boby
Vi € [1,n].I1; 2;To; Og it lit; - oy A Jou]™ 2 7
I 0;To,q - ({m}; 1) s ({70} 70); Oo Far st > T30,

II;Ty; ©¢ Fp st where xq : 71 := lity..x,, : Ty, := lit, > ['1;604
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Judgements are of a number of forms, each syntactic category having its own,
though most of them are quite self-explanatory. For example, I1;3;1;00 . e :
o > ©; denotes that, in the given environments, expression e is given a temporary
type o and the topological environment ©; is output.

Judgements for Arguments probably need some extra words. Call-by-ref calls
need to update the type environment of the the caller because the flow-type of
argument might be modified by the invoked procedure. The procedure environment
IT stores the type environment I', for each procedure p of the program, thus the
flow-type of a variable passed by reference to p can be updated according to the
flow-type of the corresponding formal parameter bound in I',. Such update is carried
on by the coerce function ¢, as shown by rule BYREF in table The mechanism
resembles that in rule ASSIGN in table 3.3} call-by-reference argument application
indeed behaves like an assignment (call-by-value doesn’t).

Rules for Arguments have form II; ¥;Tg; ©¢ F, a : 73 > ['; ©1, meaning that, in
the given environments, the actual argument a has type 77, which is the type of the
1-th formal parameter of procedure p.

As a final notice, for the sake of simplicity we assume that all labels in the
program are named in order of occurrence: if [, and [, are two labels and m > n,
then [, appear below [,, in the program. That makes type rules for jump statements
simpler.

3.2 Experimental Results

Our implementation of the system is the COBOL Analyzer tool and is available for
download as anticipated in the preface. It can detect a number of type misuses and
mismatches besides producing flow-type annotations for each variable occurrence.
At the time of writing several tests have been run over real-world legacy business
code. Being COBOL an old language, though, it is not possible to check full pro-
grams because they consist in millions of lines spread over thousands of modules: we
rather tested code portions that we believed meaningful. All of them were written in
COBOLSS5 for z/0OS throughout the 1990s and owned by a big company in northern
Italy within the mechanical vehicle industry.

They kindly sent us several unrelated code excerpts: some smaller than 10 KB
and some larger than 50 MB. Admitedly, memory has been an issue during the tests,
especially for parsing such long programs and keeping the IL AST representation
in memory. Typing itself has never been a problem, instead, which probably means
that the F# garbage collector (i.e. .NET’s) work well even with heavily monadic
code as well. Refer to section 4.6|for an in-depth view of some interesting features of
the implementation, as both the COBOL and the Android analyzers share several
design choices and patterns.

As far as results are concerned, the following considerations on type usage in
COBOL programs have emerged:
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Table 3.3: Type Rules for Statements.

ASSIGN ;
II;X:Ty;0g e e: 0. > Oy I3 T0; 01 by Lo s 1, \OF > O
f— §R<Z’U) <F1, @2> = %([[O'e]]n”, 9"”2 FO, @2)

I3, T0;0g g lv:=e > T'1;0,

Ir
IT; 3;T9; Og k¢ € : bool > ©1 I1;3;T; 01 g st > T'1; 0, Ih=TypIy

H, Z, Fo, O¢ ot if e then st; > FQ, O,

IF-ELSE
IT; 3;T9; O ¢ € : bool > ©4
I1;3;T0; ©1 g st > 11509 I1;3;T0; ©g =g stg > I'9; O3 I's=11®TI%

I1;3:T9; O ks if e then sty else sty > I'3; 03

PERFORM
istl..stnl =X%(I) IT; 3; Ty; Og g istl..stni > I';0,

I1; 3, T; ©g s perform [ > I'1;0,

PERFORM-THRU
Vi € [a,b)
{Sti,l--Sti,nil = X(L) 1LY T 0 Oima ot iSti,l--Sti,nii > [igi15Oiata

I1; 35 To; O o perform I, I, > Ty 130541

GoTo
I, € dom(%) | Plpp. m >n
Vi € [kan] LY T Ok Z(li) > i p1; Oicigr

H; E; Fo; @0 l_st goto lk > ank; @nfk

CALL
(yr : 71 yn - T2 Ty) = T(p) Vie [1,n]0L 3T 1;0, 1 g a; : 77 > Ty 0;

H,E,Fo,@() l_st p(al"a'n) > Fn7@n

Brock
Vj|st07j = lj;istjjl..stjmji Y= 2, lj — istjjl..stjmji..

Vi € [1,m]lm < n A st; £ goto [ ILY T ;0,0 by sty > 14,0,
H, E, Fo, @0 |_st lo . iStO,l"StO,noi > Fn, @n
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Table 3.4: Type Rules for Arguments.

ByVaL )
ILYE;T0;00 Fee:o > O [e] = 7P

I;3;T0; 00 Feval e: 77 > Tp; 04

BYREF .
IL; X To; Og bpp Lo - 7\OF > O x = R(lv) <7’
Wy i Up) =) (o)) =Tp(y)  (T1302) =C(g;, 07, To, ©1)
;5 T0; 00 o ref lv: 77 > T'1;0,

Table 3.5: Type Rules for L-Values.

VAR-INIT i
[(z)=®={{nm.m}) O, =0y, z" : O 0°" (7)) =7

IL; 3T 00 b 27 : 1o\0*" > O,

VAR-CURR )
[(z)=&=({n}mn) ©1=06n2":® 0" (F) =7

I1; ;1,00 by 27 - 1 \0" > 0,

SUBSCRIPT ;
IL; ;T 0 b e : mumlp] > ©; I3 1501 by Lo 7 array[n]\0;, > O
x = R(lv) 6" (T) = Qﬁf (T array[n))

I1; 3,1, 09 by lvle]_ T\ > O,

SELECT )
IO b lv i {z1 i1z i Tz s T P\, > Oy
z = R(lv) 0" (7) =07, ({21 : T2 1 T2 - T })

I1;3:T: 00 Fpp lv.z : T\0" > O,
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Table 3.6: Type Rules for Literals.

NumMm-U NumMm
n = len(ny) d = len(nsy) n = len(ny) d = len(nsy)

II; ;T © by ny[.ng] : numn.d] I YT 0 by —na[.ng] : num|Sn.d]
STRING-ALPHANUM STRING-ALPHA
{0..9}N"str.." 40  n=len(str) n=Ilen("str..")

I 3T 0 by "str. . " : alphanum(n] I 3: 150 by "str. . " @ alphaln]
TRUE FALSE
IT; ;T © by true - bool I1; ;T O by false : bool

e variable reuse involves up to 30% of overall variable usage in COBOL programs

— nearly 90% of these, though, accumulate less than 5 storage types simul-
taneously within their flow-type; averagely 3

— remaining 10% however unlikely grow wider than 8
— 75% of non-singleton flow-types indicates reuse of numeric types

* 80% of these come from in-place arithmetic operations possibly ex-
ceeding target variable space, such as the typical scenario (x : num[3])
:= (x @ num[2]) + 1

x probably few of such operations are potentially risky at run-time,
because programmers typically declare pictures wider than actually
needed for their numerics

* remaining 20% are re-assignments or data movements, i.e. assign-
ments where variables on the right-hand do not appear in left-hand

e 25% of non-singleton flow-types indicates reuse of non-numeric types
— 70% of these are alphanumeric-strings-to-array type switches and vicev-

ersa

— 10% involve complex data types, such as nested records overlapping ar-
rays

— only 2% occurs between incompatible types, thus probably leading to
data corruption and bugs

— remaining 18% involve data movements implying no truncation, thus
might be bad code but does not lead to run-time unwanted behaviors
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Table 3.7: Type Rules for Expressions.

DEMOTE-NUM LV 3
IL ;T 00 Fe et numy[p] > O I T500 by Lo T\OT > 6,
I ;T 00 b, e : mumlp] > O ILY; I Og ke lv:T > O
LiT NEG-S
I Y10 by lit o II; ;T 00 . e : mum[Sn.d| > ©,
I X: ;0 . lit : o0 > O I %1500 e — e: num[Sn.d] > ©,
NEG-U Nor
I1; ;T 00 b, e : numn.d] > 6 IT; ;170 . e : bool > O,
I3 1,00 ko — e : mum|[Sn.d] > ©, IT;3;T; 09 . not e : bool > O
Prus-U

H7 2, F, @0 l_e e : m[nl.dl] > @1
IL; ;T 01 b, ey : mumng.ds] > Oy n = max(ny, ny) d = max(dy, ds)

I ;T 00 b 61 + e : mum[Sn.d] > O,

Prus-MINuUs-S
H, 2, F, @O |_e eq: num[Slnl.dl] > @1 H, E, F, @1 l_e €9 ! num[SQTlQ.dg] > @2
S =51V5S, n =max(ny,ng) + 1 d = max(dy, ds)

II; 5, T; 00 Fe e1(+]|—)es : mum[Sn.d] > Oy

MuLt
H, Z, F, @0 |_e eq: m[slnl.dl] > @1 H, Z, F, @1 l_e €9 ! W[SQnQ.dQ] > @2
stl\/SQ n =mni + Na d:d1+d2

I1; ;1500 ke €1 % eg : mum|[Sn.d] > O,

Div
H; E; F; @0 |_e eq: num[Slnl.dl] > @1 H; Z; F; @1 l_e €9 ! num[SQng.dg] > @2
S251VSQ n:n1+d2 d:d1+n2

II; ;1500 Fe e1/eg : num[Sn.d] > Oy

BIN-REL-NUM
H, E, 1—‘7 @0 |_6 e : m[slnl.dl] > @1 H, Z, F, @1 }_e €9 . nu—m[Sgng.dg] > @2

IT; 3,17 ©q . e1op,es : bool > O,

BIN-REL-ALPHANUM
I; 3, T;0¢ k. €1 : alphanum|[nl] > 6, I; 3; T 01 b, ey @ alphanum[n2] > O,

IT; 3,17 ©q ¢ e1opres : bool > O,

BiN-Locic
IT; ;17,09 . €1 : bool > Oy I; 317,01 . e3 : bool > Oy

IT; 3; T, Og . eropies : bool > O,
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e 80% of jump statements require up to 3 visits (including the first one, hence
2 re-visits) to reach a convergence in the typing function status; averagely 2,
hence 1 re-visit

— 98% of those are actually pretty ordinary loops coming from COBOL
iterative constructs; just 2% are weird custom cycles created by the pro-
grammer

— remaining 20% of jump statements need anyway up to 5 visits before a
convergence OCCurs

— 70% the latter are actually just nested conditional loops that COBOL
iterative constructs cannot express and are explicitly written by program-
mers via IF and GOTO statements.

All this suggests that type-flow analysis is actually able to detect a number of
possible errors in COBOL programs coming from bad reuse of variables or incom-
patible data movements. Either ways lead to data truncation or corruption, which
are the major sources of run-time bugs. And, by the way, the statistics above do
not differ a lot from those collected and shown by [56].

In the following example we show how a data move from a smaller type to a larger
one might lead to unwanted scenarios where previous data has not been replaced by
new one:

{

a :=r;

// [WARNING] reverse subsumption detected in
assignment: right-hand type
is smaller that left-hand type

n := al[3];

// [WARNING] possible access to corrupted
data: accessing ’a’ with its
initialization type
’alphanum([2] array[4]’ but its
content and type have changed

b

where a : alphanum[2] array[4];
r : {x : num([3];
y : alphanum[2];
z : num[2] };
n : alphanum[2]

Record r is 7-bytes long and array a is 8 bytes, therefore, once r is copied into
a, accesses to the latter as its initialization array type would lead to unwanted data
in case the last byte is accessed. Although in the example we used a literal in the
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subscript, in general the analyzer cannot know what is accessed and therefore the
warning is output.

For this matter, partial evaluation of expressions has been implemented in our
prototype, even though we haven’t considered it in this chapteIE - that would avoid
the warning in case the assignment was n := a[1] and we generally noted that it
does slightly reduce the number of messages logged by the analyzer, overall.

3.3 Future Work

During the long research and development of this COBOL analysis system a number
of side-projects have started up: some of them have been matter of thesis for Master
degree, others were attempts that have not been finished but would be interesting
topic of further investigation.

e A GUI front-end prototype based on Windows Presentation Foundation [21]
and written in C# for .NET 4.0 has been in development until an early alpha
stage. The goal was letting users browse annotated source programs and
understand complex flow-type more easily. This is a purely applicative aspect
of the problem, but we believe it would be crucial bringing the analyzer to a
realistic production-quality level.

e Dealing with unknown statements in some interesting way, type-wise, such
as adding weak types to the type-system indicating that type assumptions
might get broken whenever a variable is used by a COBOL command whose
semantics are unknown.

e COBOL does not have libraries but many language extensions have been put
into the language standard specification over the decades. Support for the SQL
extension would be useful and interesting, introducing the notion of cursor and
table types within the system for detecting possible inconsistencies between
declared records and actual row layout in the database.

e Adding some form of data-flow analysis over value domains and ranges. An
embryonic-stage implementation of it can be already seen in the source code
of the analyzer: it is based on an abstract interpretation system based on
polynomials instead of usual ranges. That is of course a very complex topic
on its own and we have spent some time studying it - a Master degree thesis
on the subject has been written on the matter as stated on the preface.

e Designing some custom Program Understanding approaches, such as pattern
recognition over identifier names or code snippets for making the system aware
of typical COBOL programming trends, styles, practices and design patterns.

1A partial evaluation system is formalized and described in the last chapter of this thesis on
Android Type Analysis.



Typing Android

4.1 Introduction

In this chapter we delve into another topic bordering with program validation and
understanding by reconstructing types. Android is a well-known mobile platform
[18] that is been having a great success among both the software industry and the
open-source community:.

Enhancing the Android development process is increasingly being recognized
as an urgent need [I4] 32 29, 50, 27]. Surprisingly, though, there is little to no
literature directly addressing the problem of typing Intents and components, nor
even proposals for imposing some degree of type discipline in Android programming.
In the world of development tools, analogously, there is no evidence of interest in
approaching the problem from a type perspective; and all those analyzers out there
deal with bytecode or install fancy runtime monitors for checking security-related
properties - no one seems to care about detecting errors and issues when they are
being created, i.e. when developers write code. Our proposed system represents
a first step in the direction of aiding the user with a programming assistant that
detects component inter-communication type issues as a second-tier type checker for
Java.

Type analysis. Our proposal is in general a system for static analysis that is based
on reconstructing types. We will use the term type reconstruction as a synonym
for type inference in a wider sense: an approach based on understanding types of
whatever nature by either grasping explicit type information annotated on the code
or by truly inferring types from method calls, constants, variable use etd’] Even
though there is no unification over type variables ML [25] in our system, this does
not mean it is not a form of type reconstruction in the general sense.

Moreover, we perform some form of partial evaluation for reconstructing infor-
mation belonging to the world of data in a static way - which has not to be confused
with abstract interpretation, being the latter a rather different technique based
on approximating values to abstract domains. In our system reconstructed types

In [62] the well-known ML type inference is referred to as a form of type reconstruction.
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and partially-evaluated information are then mixed into custom types representing
high-level Android entities such as Intents and components. We call all this type
analysis, because it combines static analysis techniques such as partial evaluation
with type reconstruction and because the target of the analysis are the type of An-
droid entities. In fact, once Intent and component types are collected, a number
of late-time validations are performed over the program as a whole: as shown in
section 4.4} inter-component communication is checked against illegal or ill-typed
passing of data within Intents and consistency of requests and results is verified.
In other words, our system consists of a static analysis stage that performs type
reconstruction and partial evaluation, and a further validation stage that checks the
types collected before and detects mismatches or inconsistencies in inter-component
communication. Therefore the system is also as a type checker to some extent, re-
jecting Android applications that are ill-typed according to component-level type
rules.

Before proceeding with the in-depth analysis of the motivational aspects of our
proposal, we review the most important aspects of the Android architecture and its
security model, thus providing the necessary ingredients to understand the technical
contents of this chapter.

Intents. Once installed on a device, Android applications run isolated from each
other in their own security sandbox. Data and functionality sharing among different
applications is implemented through a message-passing paradigm built on top of
intents, i.e., passive data structures providing an abstract description of an operation
to be performed and the associated parameters. For instance, an application can
send an intent to an image viewer, requesting to display a given JPEG file, to avoid
the need of reimplementing such functionality from scratch.

The most interesting aspect of intents is that they can be used for both explicit
and tmplicit communication. Explicit intents specify their intended receiver by
name and are always securely delivered to it; since the identity of the recipient
is typically unknown to developers of third-party applications, explicit intents are
particularly useful for intra-application communication. Implicit intents, instead, do
not mention any specific receiver and just require delivery to any application that
supports a desired operation.

Components. Intents are delivered to application components, the essential build-
ing blocks of Android applications. There are four different types of components,
serving different purposes:

e An activity represents a screen with a user interface. Activities are started
with an intent and possibly return a result upon termination;

e A service runs in the background to perform long-running computations and
does not provide a user interface. Services can either be started with an intent
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or expose a remote method invocation interface to a client upon establishment
of a long-standing connection;

e A broadcast receiver waits for intents sent to multiple applications. Broadcast
receivers typically act as forwarders of system-wide broadcast messages to
specific application components;

e A content provider manages a shared set of persistent application data. Con-
tent providers are not accessed through intents, but through a CRUD (Create-
Read-Update-Delete) interface reminiscent of SQL databases.

We refer to the first three component types as “intent-based” components. Any
communication among such components can employ either explicit or implicit in-
tents.

Based on our formal type reconstruction system, we developed a prototype im-
plementation of Lintent, a type-based analyzer integrated with the Android Devel-
opment Tools suite (ADT). Lintent, among other kinds of static checksﬂ7 features
a full-fledged static analysis framework that includes Intent and component type
reconstruction, partial evaluation of Java code, manifest analysis, and a suite of
other actions directed towards assisting the programmer in writing more robust and
reliable applications.

4.2 Motivation

The typing of Intents and component supported by the Java compiler is rather loose
and uninformative: in fact, the Java type system does not keep track of any type in-
formation about either the contents of Intent objects or the data a component sends
and expects to receive. This seriously hinders any form of type-based analysis and
makes Android programming very error-prone. Lintent infers and records the types
of data injected into and extracted out of intents while tracking the flow of inter-
component message passing for reconstructing the incoming requests and outgoing
results of each component. This proves helpful to detect common programming
errors related to misuse of intents [50].

4.2.1 The problem: Untyped Intents

Often programmers write bugged code by misusing data extracted from an Intent
sent by another component, even of the very same application. Intents act as un-
typed containers - dictionaries, more precisely - into which components put data

2Most notably it integrates a typing technique for privilege escalation and other security-related
issue detection [11]
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bound to a named label to be sent to another component; such data can be re-
trieved back by the recipient component from the intent as if it was a dictionary,
i.e. by looking up data by specifying a label string.

This is a typical use of Intents in a type-unsafe fashion. The sender component
populates the Intent object by binding data of either primitive or customrf] type to
key values.

class MySenderActivity extends Activity {
static class MySer implements Serializable { ... }

void mySenderMethod() {
Intent i = new Intent(this, TargetActivity.class);
i.putExtra("k1", 3);
i.putExtra("k2", true);
i.putExtra("k3", new MySer());
startActivityForResult(i, 0);

The recipient component retrieves data by getting the Intent and looking up data
from within it by specifying the same keys. Such keys are simply objects of type
String, therefore whether they actually are plain string literals or objects computed
by complex algorithms, the Java compiler treats them in the way and their content
obviously belong to the runtime world - with all the pros and cons of it. What if
the recipient component looks up for an non-existing key? Or what if it retrieves a
given item by specifying the wrong getter method, thus resulting in the wrong type?

class MyRecipientActivity extends Activity {
static class WrongSer implements Serializable { ... }

void onCreate(Bundle savedInstanceState) {
Intent i = getIntent()

// run-time type error: kl was an int!
String vl = i.getStringExtra("k1");

// dynamic cast fails!
WrongSer o = (WrongSer)i.getSerializableExtra("k3");

// "k2" is not even extracted: that might be unwanted!

}

3By defining a Serializable
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In short, Intents are populated by the sender by calling a family of overloaded
putter methods putExtra(String, 7), where 7 belongs to a set of supported Java
types; on the other end, Intents are inspected by the receiver by calling a family
of getter methods getTExtra(String), where T' is a Java type name belonging to
the set of supported types - i.e. these are not overloaded, but are rather a set of
predefined methods with similar names.

The reason for this asymmetric design in the Intent API is due to the limitations
of the Java overloading system: contezt-independent overloading does not allow the
definition of multiple methods sharing the same name and arguments and differing
only in the return type.

A more sophisticate form of overloading supporting context-dependent resolution
would require a major revamp of the Java type system and would have deep im-
plications within polymorphism and type inference[I2], hence the reason why it is
typically not supported by languagesﬂ Nonetheless, Android API design feels quite
naive in this respect: we cannot but argue whether, using Java genericsﬂ and other
advanced language features smartly, the type of Intent contents could have been
tracked by the Java type system itself somehow, offering a strong tool to the pro-
grammer for statically checking the insertion and extraction of custom data within
Intents as modern standard libraries do with type-parametric container classes, for
example. This poor design trend has plagued the Java community [60] since the
release of generics with the 5th revision of the language, and specifically in the
Android scenario it yields to a number of possible issues the receiver side:

1. key does not exist: being key just string objects and not language identifiers,
they totally belong to the runtime world and are subject to runtime errors;

2. key is bound to data whose type does not match the requested type;

3. non-primitive data is retrieved simply as Serializable objects, which likely
require a downcast to operate with, thus leading to well-known runtime type
errors.

Such scenarios are not restricted to implicit Intent usage or to components com-
municating with unknown remote components: it may occur even between compo-
nents of the same application written by the same programmer. It is exactly the
same kind of error-proneness that many long-term Java programmers were used to
before the release of Java 1.5: back then the language did not support generics and
custom objects of any type put into containers at a given program location were

4Actually almost no wide-spread imperative or functional language supports context-dependent
overloading resolution at all, due to its demanding type system design. Haskell supports it in
form of type classes and predicates over type variables, opening the door to an advanced form of
parametric polymorphism [36]. Other proposals meant for ML-like languages are just theoretical
systems that have not seen the light of day in any real-world language yet [26].

5 Android adopts Java 1.5 as language and runtime specification.
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retrieved with type Object at a different program point, hence the widespread use
of downcast and the resulting runtime type errors the practice implies.

4.2.2 The Proposal: Inferring Intent Types

In order to provide Android developers with some sort of tool for statically check-
ing the consistency of Intents within their application source code, two different
approaches and solutions can be proposed:

1. a replacement API that grants a more type-safe management of Intents and
components, i.e a Java library wrapping a portion of the Android SDK and
benefitting from generics and advanced language features for keeping track of
the type of data injected into Intents by using the Java type system itself.
This approach unfortunately yields to a number of drawbacks, among which
the worst arguably being the inability to check existing code without having
to rewrite it using the new wrapper API. Even for writing a new application
from scratch - thus using a third-party API for Intents and components can be
taken into consideration more realistically - the decision is tricky: developers
must ensure everyone in the team mastered the new API as well as advanced
Java language features, otherwise the extra safety provided by the wrapper
will not pay off the extra complexity programmers have to deal with for using
it properly.

2. a tool that functions as a second type-checker for the Android program - a type
analyzer able to reconstruct the types of data injected and extracted within
and from Intents. This approach does require an external program developers
must be aware of and have to launch for checking their own, but it allows the
user to check both existing and new code written using the standard Android
API. Moreover, Android official tools for developers include a Lint[17] code
analyzer that can be easily extendable by means of plug-ins. Implementing an
Intent type analyzer as an ADT Lint plug-in makes it visible and widely adopt-
able by the dev audience, as friendly to use as an automatic and integrated
second Java type-checker.

Intents are dictionaries, thus they resemble records type-wise. With a difference:
labels are string objects and not language identifiers, thus they are not static entities
for the type system. This makes things harder to model. In addition, Intents carry
a few extra information that are tricky to reconstruct:

1. Intents can be addressed to either a recipient component class (explicit Intent)
or an action string (implicit Intent). Different constructors of the Intent class
are defined by the Android framework for creating explicit or implicit Intents -
but due to the typical imperative programming conventions, empty constructor
and setter methods can be used instead for configuring up Intents. This leads
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to the need of performing a full-featured form of analysis for reconstructing
the kind of Intents reliably.

2. components can invoke method Activity.startActivityForResult (Intent,
int) for sending Intents and binding them to an integer request code to be used
by the receiver for discriminating Intents sent by the same sender component
for different purposes. Request codes appear multiple times in other spots
of a component architecture: once a recipient activity performs its task, an
Intent can be sent back to the original sender along with a special result code
and the request code that was specified on the startActivityForResult().
This information can be retrieved by analyzing the sender component callback
method Activity.onActivityResult(Intent, int, int).

What makes Intent type reconstruction challenging is basically a subtle aspect
of the Android API: strings used as Intent keys or action strings for implicit com-
munication, result and request codes, as well as Intent objects themselves passed as
argument to component methods are all runtime data: these values must be some-
how evaluated statically for being used in any type-based approach - and this makes
things much more harder than most type-based analysis or reconstruction tech-
niques, as it involves some form of data-flow analysis within the type reconstruction
process.

4.2.3 Challenges

Analyzing Android applications actually means analyzing Java code deeply based
on a special API that introduces a number of anomalies with respect to canonical
Java programming patterns and conventions.

As an example, the control-flow of Android applications is not the usual one:
program does not start up from the main method and does not proceed linearly.
Activity and Service components are invoked by the operating system by calling the
onCreate () method - developers must know this and design their app according to
the application life-cycle [20]. No entry point exists for the application alone but
rather one entry point exists for each component, making the analysis in need of
being specifically designed for Android. In other words, within method bodies the
flow is that of plain Java, while at top level the call flow is handled by Android in
a special way.

Many challenges have to be faced for offering a proper analysis.

Detecting API patterns. The Android communication API offers various dif-
ferent patterns to implement inter-component communication - all of which are used
by the development community, possibly even mixed in the same application. For
example, the developer guide describes at least three different ways to implement
bound services, with different degrees of complexity, and a local inspection of the



66 4. Typing Android

instructions alone does not suffice to reconstruct enough information to support
verification. Partial evaluation techniques combined with type reconstruction are
needed where syntactic pattern matching of code templates would be too naive.

Delocalized information. Request codes specified by calls to startActivityForResult ()
and passed to onActivityResult () by the framework are defined and used in dif-

ferent locations within the application code. Component names and certain infor-

mation related to them (such as permissions) are meta-information which does not

appear in the Java code, but in the application Manifest file. This is an XML file
containing, among other information, the permissions each application component

requires for being accessed and what permissions are requested by the application

itself. Information is therefore spread across different files or spots within files.

Type reconstruction. Arguably the hardest challenge is related to a number of
“untyped” programming conventions which are enabled by the current Android API.
In section the example highlights a total lack of static control over standard
intents manipulation operations: with these premises, no type-based analysis can
be soundly performed. For this reason, intents are basically treated as record types
of the form {k;y : T, ..., k, : T,,}, where k; is a string constant and T; is a Java type.
This enforces a much stronger discipline on data passing between components - i.e.,
on the injection and extraction of “extras” into and from intents. Notably, the same
type reconstruction applies to objects of type Bundle as well, and Bundle objects
possibly put within Intents or other Bundle’s are recursively typed as sub-records.

Partial evaluation. Recall from the previous discussion that every data an user
puts into an intent must be bound to a key, hence an Intent could be initially rep-
resented as a record of the form {ky : 7 ...k, : 7,}, where 7; are Java types for
1 <=1 <= n. Unfortunately, the dictionary keys k; are runtime string objects com-
puted by whatever Java expression of type string - they are not first-class language
identifiers, thus they are not easily known at compile-time. In other words, whether
they happen to appear as string literals or complex method calls computing a string
object is irrelevant: in any case they belong to the run-time world. The very same
problem arises for result codes, request codes, implicit Intent action strings and
explicit Intent recipient component class objects: all this information could be the
result of computations. In order to reconstruct these bits, some form of static anal-
ysis should be endeavored. We argue that partial evaluation is enough: a good trade
off between complexity and results, as typically Android applications to not rely on
sophisticate algorithms for computing Intent keys, recipients and result codes, but
they often calculate them by means of operations on constants or simple function
calls - defining static final attributes as constants is a pretty common practice
in Android development. In the real-world a partial evaluator would actually work
most of the times and is more straightforward to formalize and integrate into a type
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system.
Consider the following code snippet reproducing a typical way of organizing
Intent information in an Android program:

static class Const {
public static final label = "LABEL";
public static final name = name + "_NAME";
public static final age = name + "_AGE";
public static final code = 4;

Class<?> getRecp() { return SomeClass.class; }
Activity getSelf() { return this; }

void mySenderMethod() {
int code_base = 10;
final String key_base = "PERSON_" + Const.label;
Intent i = new Intent(getSelf(), getRecp());
i.putExtra(key_base + Const.name + 1, "John");
i.putExtra(key_base + Const.name + 2, "Smith");
i.putExtra(key_base + Const.age, 23);
startActivityForResult (i, code_base + Const.code);

}

Here the system should be able to reconstruct something more than just a record:
besides calculating key string values by partially evaluating the first argument of each
putExtra() call, the recipient class object SomeClass.class and the request code
3 must be added to the Intent representation. That requires a rich record of form
(IT| %, 2){k1 : T1..kn : T, }, where |T.| is the class object of the reifiable [ component
type T,, and x is an integer constant.

Interaction with third party libraries. Typically applications rely on external
libraries offering a number of services to the programmer. From the point of view
of Java code, such libraries are collections of compiled classes linked into one or
more jar files: their source code is therefore not available at analysis time. Import
declarations on top of compilation units simply carry information on package names
and class paths, but do not specify class member signatures or other details. This is
mainly an implementation challenge, but type resolution is a tricky task for a tool
that does not have the same information the Java compiler is given by command
line arguments, therefore types that are inferred as external must be treated in
some special way: access to jar files must be granted to Lintent to let it inspect
the contents of imported packages and classes.

6Since some type information is erased during compilation, in Java not all types are available
at run time. Types that are completely available at run-time are known as reifiable types [22].
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4.3 Type System

We defined a system built on top of Java type system[22] for modeling the types
of Intents and of components. In table we show the Java AST of expressions,
statements, literals and types. Only constructs meaningful to our formalization are
shown; those omitted, though, would have added little to nothing to our reasoning.

In table we show the type of Intents and the values computed by partial
evaluation used by our system for performing its reconstruction.

Notice that literal constants of form £[l] do not carry along any type informa-
tion because literals of different primitive types are syntactically distinct, therefore
syntax-directed rules can match accordingly. Constants can also be pairs w : 7 that
represents pointers to heap objects of type 7. Addresses can either be unknown
(o) or actual references, which consist simply of strictly-positive integer numbers r
identifying an object instance uniquely.

The type of Intents are basically records binding keys consisting in string con-
stants to types, plus a recipient which can either be undefined (for example when an
Intent object is created with the empty constructor), explicit (a specific component
class name) or implicit (a string constant representing an Android action string).

Finally, the type of components are made of multiple sets of references to Intents
r or of pairs reference-code (r,c). Activity components have form Z; — 7, —
L1 < L5 and each part of the type representation models a direction of the inter-
component communication system on which Android is based:

e Incoming Requests Z;. In the onCreate () method an Activity can use getIntent ()
for retrieving an Intent sent by another sender component. Such Intents can
possibly be multiple as our system creates a fresh Intent representation for each
getIntent (). Considering Activities as if they were functions, this would be
the input, i.e. the domain of the function, hence the Intent set Z; appearing
in the Activity type.

e Qutgoing Results Iy. After having processes an incoming Intent, an Activity
can use the setResult () methods for repling to the original sender component
sending back an Intent - and possibly attaching a request code to it. This is
similar as the codomain of the Activity function.

e QOutgoing Requests L£,. An Activity can act both as a receiver and as a sender
at the same time: the functional-like arrow type is not enough for modeling an
Activity properly. Outgoing requests can be Intents possibly bound to request
codes and sent via the startActivity() and startActivityForResult()
methods.

e Incoming Results Lo. The last doorway of an Activity is the onActivityResult ()
method callback, which is invoked by the OS when an Activity receives a result
to an outgoing request sent via startActivityForResult (). Multiple Intents
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Table 4.1: Abstract Syntax of Java Types, Expressions and Statements..

st

where T is a fully-qualified Java class identifier, z is an identifier and F' is

int | boolean | ..
T

al

T<T1, .., Tpn >

ralfl =e
e

if e; then st else sty

st1; Sta
Tr:=e
return e
while e do st

[

x

this

e.r

e.mf(eq, .., e,)
new 7(eyq, .., €y,)
new 7[1{e1,..,en}
e1 7 ey oeg
(1) e

e1 binop es
unop e

e1 Lea]

n
d

true | false
s

[v1, -, va]
null
T.class

type

top type

bottom type

built-in primitive types
fully-qualified class name
array

application

statement

declaration with initializer
statement expression
if-then-else

sequence

assignment

return

while

expression
literal

var

this

select

call
construction
array construction
conditional
type cast
binary operator
unary operator
array subscript

literal

integer
double-precision float
boolean

string

array

null

class operator
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Table 4.2: Syntax of Types for Intent and Components..

where T is a fully-qualified Java class identifier, all s are strings, all n €N an

T+ 0

(0){s1:71 . 8p:7n }

T.class

@s
?

T4 —)IQ:£1<—’[,2
11:>IQ
{Tl..Tn}

{(r1,c1) .. (Tn,cn) }

partially evaluated constant
none

literal

address of heap object

object address
unknown object
reference to object

intent type

intent recipient

explicit component class
implicit action string
implicit action string

component type

activity

service

intent reference set

intent and request code set
request code

some code
none
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might be reconstructed by our system and each can be bound to a different
request, codes.

Service components are simpler: they just consist in the incoming request and
the outgoing request parts, being both Intent sets only.

As a final note, request codes do not have to be mistaken for result codes: the
former must be taken into account by our system for associating requests to replies,
while the latter do not appear in our model because they are just integers the
Android API uses for specifying success or failure by a given Activity - similarly to
what happens in most operating systems with process exit codes.

4.3.1 Formalization

Before giving rules for partial evaluation and type reconstruction, we first make a
number of definitions.

As defined by the Java specification [22], a reifiable type is a type that is avail-
able at runtime - that is after type erasure has been performed by the type checker.
Therefore, types can be translated into reifiable types by means of a simple type-
to-type transformation that reproduces the behaviour of Java type erasure, i.e. ba-
sically removing arguments from type applications and substituting primitive types
with their object-based counterparts.

Definition 4.3.1 (Reification). We define a reification function [7] : 7 — 7 map-
ping Java types to reifiable types.

int| = java.lang.Integer
J g g
[boolean| = java.lang.Boolean
[T] = T

il

[T<T1,.,Th>] =

Kl
71

Definition 4.3.2 (Subtyping). We define a simple subtype relation between Java
types such that 7 C 7 iff m; = 7 or T} extends a type 73 such that 73 C 75, where
Ty =[] and Ty = [712]|. We also define the top type T as the type such that, for
all types 7, the relation 7 — T holds; and the bottom type such that 7 holds.

Note that the bottom type is used just for typing the null literal, precisely as
the Java type compiler does.

For inspecting the content of classes we need to define them as set of members,
in such a way that, for example, (a : 7) € T holds for an attribute identifier a and a
Java class name T.
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Definition 4.3.3 (Class as Set of Members). Let 7 be a Java type and T = ||
its reifiable type representing a class. We treat classes as sets of attributes, inner
classes and methods (constructors are treated as static methods whose return type
is the self type). Members are bindings of form:

afl o 7 attribute

afl . r7=e¢ attribute with initializer
T : 7 inner class
m . X1 :T] X .. X Ty Ty, — To = St method with body

Flag F' denotes the optional final modifier.

Mind that in Java attributes and inner classes cannot be overloaded (thus bind-
ings for these are unique), while methods are subject to a context-independent form
of overloading - which means that multiple bindings with the same method name
might occur, thus lookup must take into account the type of arguments of a given
method call. Hence, the need for two distinct lookup operators. The most basic
one looks up non-overloaded members (i.e. attributes and inner classes) within Java
classes. 7 | x seeks for symbol x within the reified type [7] and returns the type
associated to member x; it recurs on super classes in case none is found until the
top type is reached.

Definition 4.3.4 (Lookup Member). Let 7 | x be the lookup member function
defined as follows:
€ T=1T
Tlr=<1, (x:7) € ]T]
olx z¢[r|ANTCo
Where o is the direct super type of 7.
The second member lookup operator is for resolving overloaded methods: 7
m(7y, .., T,) seeks for possibly multiple methods having name m within the reified

type [7] and calculates the best match by minimum distance between types of
arguments and parameters.

Definition 4.3.5 (Type Distance). Given two Java types 71 and 7, the type dis-
tance 1 < 75 is defined recursively as follows:

0 ™ = T2
T1 DI Ty = ¢ 00 =171

l4+o1 <19 T C oy

Where o is the direct super type of 7.
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Definition 4.3.6 (Resolve Overload). Let 7 |} m(7y, .., 7,) be the resolution function
calculating the result (m : zy : 74 X .. X T, : 7, — T = st) such that A(m : 2/ :
n n

X .xa T, ry=st')eT| Y.mxr, <> 7T, where T=17 | m.
i=1 i=1

Finally, a number of formal tools must be introduced for dealing with literals
and constants. Literals are language elements that can’t be manipulated formally:
they need to be converted into mathematical constants and objects in such a way
that partial evaluation rules can handle them properly. For example, the literal 3
does not belong to natural or integer numbers: it is just a piece of code, but it can
easily be mapped to integer For the sake of simplicity we mention only integers,
double-precision floats, strings and booleans.

Definition 4.3.7 (Literal Sets). We define L. as the set of literals of a primitive
type 7. And the set of all Java literals L = Line U Lyootean U Laounre U Listring.

Definition 4.3.8 (String Set and Append). We define S as the set of all character
strings that can be specified by the string literals contained in Lgiying. And the
string append binary operator ¥ : S x S — S.

Definition 4.3.9 (Invertible Literal Abstraction). We define a family of injective
functions for mapping Java literals to numeric, boolean and string constants in the
mathematical sets.

(-
O =0 - Lin
i Lne — Z o) = ¢° " ‘
1 n= 1 € Lint
L
(.
OO d = 00 c Ldouble
Qq - Ldouble — R Oéd(g[d}) =
1.0 d=1.0¢€ Lioupie
L
"blabla” s = "blabla" € Lgring
Qg o LString — S A (E[SD - .

true b =true € Lysoiean

L oolean —7 t ’ l 4l -
ap bool { rue fa 86} O-/b( [ D {false b= false c Lboolean

1

Being clearly injective, an inverse function o™ mapping constants back to Java

literals exists for each of the functions above.
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4.3.2 Environments and Judices

We define the following environments appearing in the premise of typing and partial
evaluation rules. For the sake of simplicity we consider all Java types as fully
qualified, as it would otherwise complicate things due to the need to resolve type
paths within packages, nested classes and external libraries - a challenging task
that adds nothing to the principles of our system (but that has been necessarily
implemented in Lintent). Therefore any occurrence of 7 means a fully qualified
type and T a fully qualified reifiable type.

Definition 4.3.10 (Variable Type Environment I'). We define the type environment
I' as a map from identifiers to types and partial evaluated constants. Bindings have
form z : 7 ~ v. We may either say x € T'or (z : 7) € T'or (z : 7 ~ v) €
I' for denoting any binding belonging to I' possibly ignoring type and constant
information.

Definition 4.3.11 (Intent Environment §2). We define an auxiliary environment €2
as a map from object references to intent types. Bindings have form r — 1 where
r € N*.

Definition 4.3.12 (Component Environment Z). We define another auxiliary envi-
ronment = as a map from component names (i.e. reifiable Java type) to component
types. Bindings have form T : &.

Rules are given for two kinds of judices: rules for Partial Evaluation and rules
for Type Reconstruction. The two kinds are inter-connected and therefore all envi-
ronments involved appear in the premise as well as in the effect side of both.

e Partial Fvaluation. Partial evaluation judices are meant to evaluate language
terms to constants v. Environments ) and = are involved but are never
touched: they’re just passed to type reconstruction rules. Nonetheless, the
whole system must propagate all environments thoroughly.

— FExpressions. Rules of form 7;1';Q2; = F e ~ v>1; 2; = means that, in the
given environments, while typing class members whose type of this is 7,
expression e evaluates to constant v and environments in the premise are
effected.

— Statements. Rules of form 7;1;Q;Z F st > IV;v means that, in the
given environment, while typing class members whose type of this is 7,
statement st returns constant v and the environments in the premise are
effected.

e Typing. Typing judices basically give a type to terms - similarly to the ju-
dices for an ordinary type system. For reconstructing the type of Intents and
components environments I', {2 and = are involved.



4.3. Type System 75

— FExpressions. Rules of form 7; 1, Q; Z F e : 7>1"7;€); Z/ means that, in the
given environments, while typing class members whose type of this is
T, expression e can be given the type 7 and environments in the premise
are effected.

— Statements. Rules of form 7;1;; = F st > ;v means that, in the
given environments, while typing class members whose type of this is
7, statement st can be typed successfully and the environments in the
premise are effected.

4.3.3 Partial Evaluation Rules

In general, partial evaluation rules are used by type reconstruction rules shown be-
low: the opposite happens only in the CALL rule which has to know the type of
arguments for resolving an overloaded method that has to be evaluated. Also, all
rules resemble a continuation-passing style (CPS) [§]: environments in the thesis
premise are inputs and those on the right hand of the > symbol are outputs. En-
vironments are passed through all rules in the hypothesis by forwarding the output
of a rule as the input of the following one.

Keep in mind that our system performs a type analysis on Java source code
that has already been compiled. This means that we can skip several generic type
checking rules, having the code been previously validated by the Java compiler: for
example, when reconstructing the type of an array constructor invocation, we do
not need to check that all expressions in the initializer have a subtype of the type
specified for the array; our system can proceed with evaluation of all expressions
assuming type errors cannot occur.

Evaluating Expressions. Partial evaluation rules for expressions are given in
table [4.3] Mind also that in table we won’t show rules for all binary and unary
operators, as they would be all similar. We now propose a detailed description of
the most meaningful ones.

(FALLBACK) Rules must be intended to work when all hypotheses apply;
whenever they don’t, rule (FALLBACK) holds by matching any expression and
evaluates €, meaning that an expression could not be evaluated statically.

(BiN-op) We chose a few meaningful representatives for binary and unary op-
erators, since other cases are analogous. The basic idea is that when operands
evaluate successfully to constant literals, the literal abstraction function (as of
definition is applied to such literals for mapping them into the ordinary
mathematical sets (Z, R, ecc.) in order to compute a result statically by means
of the appropriate arithmetic operator. Result is eventually mapped back to
literal using the inverse function of literal abstraction.
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Table 4.3: Partial Evaluation Rules for Java Expressions..

LiT THIS
LG ER L~ ) >0, 2 712k this~o: 7> 1O 2
VAR-LOCAL VAR-MEMBER
(z:7~v)elV (el ir~wv) el ;00 2 F thise ~ o> [0 2
T ~o O E Qe ~o O E
SEL
T:T0; Qo 2o e~ w: 7> Q55 rlr=0"1=uv)

T:00;Q0;Z0 F ecx ~ vy > 115 Q; 54
NEwW
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Table 4.4: Partial Evaluation Rule Samples for Java Operator Expressions and
Literals..

UN-NEG-DOUBLE
7,\:, Fo, Qo, EO H €1 ™~ g[dl] > F17 Qla El dg = @;1(00 — Oéd(d1>)

7;00; Qo3 Zo F =1 ~ {[da] > T'1; Q3 =4

d2 € Ldouble
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(UN-PosTINC-INT) The semantics of post-increment in Java implies a spe-
cial side-effected rule that, rather than behaving like other pure operators,
it resembles (ASSIGN) but actually evaluates the old value. Notice that this
applies to variables only, since generic expressions cannot be post-incremented.

(VAR) In Java a variable alone may refer to different kinds of language enti-
ties: if it exists on the local variable environment, then it refers to a variable
identifier and (VAR-LOCAL) applies; otherwise it may refer to a class member,
being a shortcut for a select on this - which can either be an attribute field
or an inner non-static class - and (VAR-MEMBER) applies.

(SEL) This rule deals with class member selection - either attribute fields or in-
ner classes. For the sake of simplicity, the system looks up only final attribute
fields because, given the complex control-flow of an Android application[20],
reconstructing the life cycle of components and objects would require sophis-
ticate data-flow analysis techniques (if decidable at all). Since most usages of
attribute fields for defining constant data involve the final modifier, we argue
our approach captures a wide enough range of applications. In case it refers
to an inner class, the rules works anyway: left-hand expressions evaluates to
an object of whatever address w and type 7 in which the identifier x is looked
up regularly.

(NEW) This is responsible for creating new heap object references: the idea
is to emulate the runtime heap memory by identifying objects by means of
a unique natural number which resembles a memory address. Newly created
objects are therefore fresh unique numbers attached to their respective type:
variables are bound to their constant within the environment I', which makes
multiple variables able to be bound to the same object, as it happens in by-
reference languages like Java.

(CoND) Self-explanatory rules for the functional-like if construct.

(CALL) Target method is looked up using the overload resolver as of definition
4.3.6, which needs the types of arguments to be reconstructed the method body
is eventually evaluated in the environment I' enriched with bindings for each
method argument

(SuBSCRIPT) This rule evaluates the n-th constant within the array literal, of
course if the index expression can evaluate to an integer n. Evaluation of the
array itself took place on array literal creation.

Evaluating Statements. Partial evaluation rules for statements are given in ta-
ble [4.5] A detailed walk-through follows.
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Table 4.5: Partial Evaluation Rules for Java Statements..

IF-TRUE
T:T0; Q03 2 €1 ~ L[true] > Ty; Q152 701 Q020 B sty > Doy Q93 Zo; 0y
F'=Tu{(z:t~v)|(z:7T~v)elsAzely}
T:T0:Qo; S0 F if €5 then sty else sty > ;s Zo: 1y

Ir-FALSE
?, Fo, Qo, EO = €1 ™~ f[false] > Fla Ql;El ?, Fla QI;EI + Stg > FQ,QQ, EQ;/UQ
Fr=hu{(z:t~v)|(z:7~v)ely Az €T}

7:T0;Qo; S0 F if e; then sty else sty > [y Zo: Uy

IF-¢
T;L0; Q0 ZEg Feg~ e> 1130455
T Q32 B osty > Do Qo5 Zos 0y 7;19; Q93 Sy = sty > I35 (35 E35 09
F=Tu{(z:t~e|(r:1)elgnz el JU{(x:T~e€) | (x:7) €T3 Az €T}

7:To;:Q0: 2o - if eq then sty else sty > ;3 24 €

ASSIGN
(x:7)elVv (@ :7)el

T, 002 ri=en T (z: T~ v)je

WHILE-€
73003 Q0520 F e1 ~ 0o > T3 55
;015 Q0521 B st > Ty Q95 Zg; 09 F=T1uU{(z:7~¢€|(z:7)elNnzel}
T:T0:Qo; Zo F while e do st > [ Qy; =o€

RETURN
T: 00 Qo E - er ~ v >0, 5

T;L0; Qo; Zg F return e > I'y; Q5 =150

DEcL
700 Q0 E0 F e~ v T Q55

= — I —
T:00; Qo 2ok Tx=e> T, (27 : 7~ 0v); Q4525 €

ST-EXPR
T:10;Qo;ZgFe~>ov> 10,2,
02k e T Qq; 215

SEQ
T:T0; Q0320 F sty > 115 Q4521504 ;D1 Qs 2y B oste D Do Qo Eos v

T:T0; Q03 2o = sty sta D> T'e; Qo5 20519
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(RETURN) Statement rules do not evaluate to a constant: they rather forward
a constant calculated by the return statement; all rules can effect the variable
type environment I', though.

(SEQ) The only rule propagating the effected environment while applying
to different statements is (SEQ), which is the defined as a typical semicolon
combine rule.

(AssiGN) The main challenge here is dealing with assignments. The basic
principle is that all variables could be potentially statically evaluable even
when assignments are performed: the source of undecidability are loops and
branches, not assignments on their own. Rule (ASSIGN) therefore simply
rebinds the left-hand variable in the I' with the new constant and removing
the final modifier, if present - this makes the system able to evaluate code
blocks declaring non-final variables without initializer and assigning a value
later, for example.

(Ir) When if branches are encountered, though, only those with a condition
that can be evaluated successfully will not modify the way non-final variables
are handled: depending on the boolean constant, either the variables within
the then or else statement that are also defined in the outer scope will get
updated within the output environment with the (possibly) new constant val-
ues.

(Ir-€) In case the boolean condition cannot be evaluated, rule (IF-€) applies.
It basically invalidates all variables defined in both inner and outer scopes
that do not show the final modifier - i.e. those that appeared as left-values
in assignments. This is the ratio behind rule (ASSIGN) removing final modi-
fiers: touched variables are subject to invalidation; while untouched ones are
considered final, whether they have been explicitly declared as such or notﬂ

(WHILE) All loops are encodable by means of the while construct, hence the
absence of for and do..while constructs in our model). Rule (WHILE-€)
always invalidates all variables sharing both the outer and the inner scopes,
similarly to what rule (Ir-€) does. The reason for this conservative behaviour
is that evaluating loops would require an interpreter model for Java featuring
a set of sophisticate semantic rules - and all this only for dealing with trivial
loops based on statically evaluable conditions: a possibility that is extremely
unlikely.

(DEcCL) Declarations consist simply in binding the variable to its type and
evaluated initializer expression within the environment I". Notably, the final

"This mechanism based on the propagation of the final modifier as a way for checking constant-

ness resembles the const-checking system performed by the C++ compiler[5].
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modifier is always used at declaration-time - all local variables are actually
final as long as they are not assigned.

(ST-ExpPr) This rule just applies the rule for expressions to a statement ex-
pression. Notice that this does not make the expression compute a value in
an imperative language like Java - this just makes a non-void return value be

discarded.

4.3.4 Type Reconstruction Rules

Rules for type reconstruction are tied to those for partial evaluation: the premise
of both kinds of rule involves the same items but type reconstruction rules are the
lonely responsible for new bindings to the Intent as well as component environments.
Basically type reconstruction rules are the main rules - the entry point of the system:
the whole Java program is in fact analyzed by those, which at times perform on-spot
partial evaluation of expressions.

Type reconstruction rules for statements are given in table 4.6, We omit trivial
rules that simply descend into inner sub-expressions and sub-statements and show
only rule which are meaningful with respect to typing Intents and components: for
example, the rule for if-then-else would just apply rules to the conditional ex-
pression, then to the two statement blocks forwarding environments as continuations
as usual - that would have nothing to do with typing Intents or components, type-
wise. Basically the system detects a number of Android API - i.e. method calls -
and behaves accordingly: language constructs are not interesting here. While for
partial evaluation rules most part of the inner complexity was due to interpreting
Java constructs, operators, control-flow, ecc., when it comes to type reconstruction
the complexity is detecting Android API calls and reconstructing information from
local bits of information. Our system is designed for letting rules progressively add
local information to a context that, by the end of the analysis, will contain all Intent
and component types. Post-analysis reasoning on the resulting context will detect
possible errors in inter-component communication, as shown below.

Type-checking Java. Another challenge of this kind of rules is that, being all
method calls at the end of the day, a detection based on the method name would be
naive, as it would generate possible false positives in case custom user code defines
methods with the same name. The type of the object invoking the method must
be inferred and the rule must apply only when such type is a subtype of the basic
Android component supertypes (Activity and Service). This implies that a type
checker for Java expressions is needed - and this in turn means that types of all
variables, attributes, classes, method arguments must be checked: a full-featured
Java type-checker, in other words.

As said above, we will not give rules for Java expressions - they’'re well known.
But of course our implementation provides a full Java type checker by typing all
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language construct on bottom of the type reconstruction rules that are peculiar to
the system.

Non-statically Evaluable Intent Keys. Keep in mind that in this model, when
the partial evaluation sub-system is not able to compute a constant for a string
key of an Intent, it simply does not add that key to the Intent type. This case
is not handled by the formal system for the sake of simplicity, but the Lintent
implementation notifies that to the user and creates a special string key computed
by hashing the non-evaluable expression and its program location. The ratio behind
this is that in case non-statically evaluable expressions are used for computing string
keys at runtime, then we argue there is a probability the that the same expression
will be used in other parts of the program for computing the very same string key.
Of course this does not belong to the world of exactness: that’s why we did not
formalize that with a typing rule - but it is worth mention nonetheless, since in
real-world applications such an event may occur and has to be handled in some wise
way even if it is beyond the the theoretical limits of computability.

Typing Statements. Notice that some Android API calls are detected by rules
for statements and others for expressions. This apparent lack of symmetry is actu-
ally due to some methods having a return type and others being marked as void:
Intent.putExtra() for example does not return a value, therefore calls are syn-
tactically statement expressions - i.e. a production of the non-terminal statement;
Intent.getExtra(), instead, returns something and is therefore an expressions.

Basically one group of rules are capable of reconstructing the type of Intents and
a second group deals with API calls related to inter-component communication, thus
they’re related to the typing of components. Intent content types can be inferred by
typing putExtra() overloaded methods and methods of the getTExtra() (where
T is a supported type); component types can be reconstructed by putting together
the information gathered when Activities and Services communicate.

We now propose a detailed description of the most meaningful rules for type
reconstruction of expressions.

(PUTEXTRA) A pair of rules deal with putExtra() calls over Intents. If
the string key specified as first argument might already exists in the type
reconstructed for the Intent, rule (PUTEXTRA-A) applies: it adds no new key
to the Intent type and it simply verifies that the type of the former-existing key
is equal or a supertype of the newly-added value. Otherwise (PUTEXTRA-3)
applies adding the new binding to the Intent type.

(DEcL) This rules is straightforward: it simply introduces new bindings to
the variable type environment.

(STARTACTIVITYFORRESULT) This is one of the core API calls of the whole
Android system. The Intent argument and the request code are evaluated as
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well as the Activity object invoking the method; this is typically srcthis but
it could actually be any subclass of Activity. The Intent reference is the
added to the outgoing request set of the component performing the method
call.

(STARTACTIVITY) Two analogous rules exist for this method call: depending
on the type of object invoking the method, either (ACTIVITY.STARTACTIVITY )
or (SERVICE.STARTACTIVITY) applies. They’re basically the same, except for
the syntactic structure of the type of the activity and service components.
Indeed, both rules effect the outgoing request part of the component typd]

(seTRESuLT) This API call is used by Activities for replying to sender com-
ponents a given result, i.e. an Intent. Keep in mind that the second argument
is the result code - not to be confused with the request code. That’s why
it is ignored by the rule and it does not appear in any part of the Activity
component type: only the Intent reference is recorded in the outgoing result
part.

Typing Expressions. Expressions are basically API calls again, with a difference:
they’re not void method calls. Typing the getIntent () method call is one of the
main challenges here. It can be treated as a static constructor of Intent, as it literally
introduces a novel Intent object into the scope, from a strictly Java perspective.
When encountered inside an onCreate() callback within an Activity component,
it represents the incoming request; when inside an onActivityResult () within an
Activity, it is bound to a request code forwarded by the framework to the callback
as integer argument and it effects the incoming result part; else, when encountered
while typing a Service component, it effects the incoming request of the Service
component type.

Type reconstruction rules for expressions are shown in table 1.7 For the sake
of simplicity we do not give rules for descending class methods as they would be
trivial. Only one peculiar aspect of such rules is actually worth mentioning: the
information on what method of a class is being typed must be carried along because
it is needed for distinguishing different uses of the getIntent () method call. We
explain them:

(ACTIVITY.GETINTENT-IN-ONCREATE) When typing the onCreate method
overridden by an Activity component, this rule applies and affects the incoming
request part of the component type representing this. Notably, a new fresh
reference to an undefined empty Intent type is introduced, since the method
call actually behaves as a constructor that creates an Intent object with the
default empty constructor.

8Due to page width, the effected component environment = had to be redefined in the hypothesis
rather than directly on the right hand of the thesis.
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Table 4.6: Type Reconstruction Rules for Java Statements..

PUTEXTRA-3
T:19:;Q0;Z0 F eg ~ r+— o : Intent >1'1;Q; =
;, F17Q1; El l_ €1 ™~ E[E] > FQ; QQ;EQ %, FQ, QQ; 52 }_ €9 : T D> Fg;Qg; Eg
Q(?“) = (Q){Sl STl -5 8n ¢ Tn} ﬂl € [17n] | §=5;
7; o5 Q0; E - eg.putExtra(er, eq) > I's; Qs, (r = (0){s1: 71, ., Sn : 7w, S : T}); Z3

PUTEXTRA-3
T;00; ;20 F eg ~ 7+ o : Intent > '1;Qq; =
;05 Q1 2 F ey~ £]5] > Ty; Q9 29 T: D9, Q93 0 - €9~ T > I'3; Q35 23
Q(r) = (0){s1: 71,80 : Tn} Jell,n]|s=s;ATC T
7;T0; Qo; 20 F eg.putExtraler, ex) > I's; Qs, (r— (0){s1: 71,-, 80 : T}); 23

DEcCL
T:10; Q020 Fe:o>T11;Q1; 2 cC T I Q21 Fe~ou> Ty Q0 5,

= = F F =
T:T0; QoS 72" =e> T, (7 1 7~ v); Q9,5
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E(T) :Il —>IQ — ,Cl — ;CQ E4 = E3, (T : Il —>IQ — £1 U {(T’,TL)} <~ ﬁg)
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ACTIVITY.STARTACTIVITY
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SERVICE.STARTACTIVITY
T:00; Qo Z0 Feg: 7> Q5 2, T C Service
?,Fl,Ql,Ell—elvrwoIntentDFg,Qg,Ez [ﬂ:T :(T):Iiﬁ

—
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SETRESULT
T D05 Qo; 20 Feg 1 7> 1150015 54
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(ACTIVITY.GETINTENT-IN-ONACTIVITYRESULT) When typing the onActivityResult
method overridden by an Activity component, instead, the incoming result
part of the component is effected.

(SERVICE.GETINTENT) When the type of this reveals a Service, the incoming
request part of the component type is effected.

(GETEXTRA) A single rule for integers stands as representative for the whole
family of rules defined for each primitive type. In case the string key already
exists, rule (GETEXTRA-T — 3) (where T' is the primitive type) applies and no
new binding is inserted into the Intent type; otherwise rule (GETEXTRA-T —7)
applies and a new string key is bound to type T into the Intent type. This
and rule (PUTEXTRA) are symmetric: the former populates Intent types as the
user code puts data within Intents to be sent by sender components, the latter
as user code extracts data from Intents received by recipient components.

(NEW-INTENT) A group of rules deal with Intent constructor invocation.
Again the problem is to distinguish between different behaviours by resolv-
ing overloaded constructors: the 3 constructors shown herd’] are actually all
unary constructors: the type of the argument discriminates between different
semantics. In case the argument evaluates to a class object literal, it means
the Intent is explicit; in case the argument evaluates to a string, it’s implicit;
in case it is an Intent, the copy constructor is invoked™} If the empty construc-
tor is invoked, a new undefined Intent is created. Whatever the case, though,
Intents are stored in the 2 environment, which reproduces the runtime heap
memory for Intents only.

A couple of additional rules for special literals are shown as well: while the typing
of ordinary literals is trivial, the type rules for the null literal and for the .class
operator are given.

Keep also in mind that the Android API unfortunately offers several ways for
doing things, often involving side effects and impure or unchecked programming
conventions. For example, for setting the recipient of an Intent an user can create an
explicit Intent by creating an empty Intent and then setting the recipient component
type by name:

Intent i = new Intent();
i.setComponentName (new ComponentName("com.domain.app", "MyComponent");

9Much more Intent constructors exist in the Android API: the implementation deal with all of
them, but here we show a few representatives for the sake of simplicity.

10 According to the Android API documentation this creates a new Intent with the contents of
the input one but there’s no connection between them afterwards - it is not a reference to another
Intent but a deep-copy of it [19].
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Table 4.7: Type Reconstruction Rules for Java Expressions..

Lir-NuLL Lir-CLASS

0 =2 null: L1502 7;1; =2 F T.class : Class<T>> [';(); =
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Or by setting the recipient component type by passing an Activity as context
and a class object:

Intent i = new Intent();
i.setComponentName (new ComponentName(this, MyComponent.class);

Or, again, by setting the class name by means of a facility method call:

Intent i = new Intent();
i.setClass(this, MyComponent.class);

Or, finally, by invoking a third utility:

Intent i = new Intent();
i.setClassName("com.domain.app", "MyComponent");

It is clear that the approach of the Android API is a source of troubles for a
system that is based on static analysis of the source code: dozens of rules should
be given for every possible combination of calls and patterns - and that is clearly
unfeasible in a formal specification. An implementation must although be able to
deal with all these tricky situations

4.4 Post-Typing Checks

Before discussing such further checks we define a subtype relation between Intents:

Definition 4.4.1 (Intent Subtyping). We define a subtype relation between Intent
types such that, given two Intents 7; = (0){s} : 7{..s} : 7'} and 15 = (0){s? : 72..52 :

2} 0 g iff Vi € [1,m].s? : 77 € 1y.

After the typing phase, the information gathered by type rules and collected
within environments can be used for performing some additional checks.

e (Consistency of requests. Outgoing requests should be compatible with incom-
ing requests. The former set is populated by analyzing calls to startActivityForResult ()
and startActivity() and the latter by inspecting getIntent () calls within
onCreate() code: such sets are compared in such a way that all requests are
handled by the recipient component and that all Intent contents retrieved by
the receiver have actually been put by the sender. Formally, for all explicit
Intents » mentioned in the outgoing request set £, of an Activity in the com-
ponent environment =, the incoming request set of the recipient component T
mentioned in 2 must contain at least one Intent ¢’ such that + C ¢/. Anyway
even the case ¢ # ¢/ might point out a potential error: the recipient compo-
nent might be forgetting to extract a given key from the Intent - it can’t be
statically decided, of course, because it belongs to the domain of the user in-
tentions. Nonetheless, a warning should be raised for informing the user of
this.



88 4. Typing Android

e Completeness of request code handling.. Incoming results must handle all re-
quest codes used as outgoing requests. The former by inspecting request codes
associated to incoming Intents retrieved within onActivityResult () code and
the latter set gets populated by analyzing calls to startActivityForResult():
such sets are compared in such a way that all request codes are handled cor-
rectly by the sender. Formally, for all Intents and non-null request code pair
(2,m) within the outgoing request set £, of an Activity, there must exist a pair
(¢/,n) within the incoming results set Ly of the same Activity.

e Consistency of results.. Outgoing results of receiver components are subject
to a comparison against incoming results of sender components. The for-
mer set gets populated by analyzing calls to setResult() and the latter
by inspecting request codes associated to incoming Intents retrieved within
onActivityResult () code: such sets are compared in such a way that, if the
application code provides both sender and receiver components that are com-
municating, Intents replied back from the receiver are correctly handled by
the sender, i.e. the contents retrieved by the sender have all been put the re-
ceiver who populated the Intent for replying. Formally, for all Intents ¢ within
the outgoing result set Z, of an Activity T" in the component environment =,
if there exists a sender component 7" whose outgoing request set contained
Intents addressed to 7', then in the incoming result set Lo of the sender 7’
must exist an Intent ¢’ such that + C /. As for the consistency of request
validation, non-strict equality might mean error-prone scenarios here as well
and is notified by means of a warning to the user.

4.5 Implementation: Lintent

Our implementation of the Android Type Analyzer is a tool named Lintent. As
anticipated in the preface, it is currently under development and available for down-

load.

pa

| Android Java Code|—>| Lint/Plug-in}——Lombok AST

spawn process .
AST pipe

Lintent Engine |

warn pipe

Figure 4.1: Lintent architecture

Lintent architecture is described in Figure below. As anticipated, the tool
is a Lint plug-in acting as a front-end for an engine program running as a separate
process. The plug-in is written in Java and takes advantage of the built-in Java
parser offered by Lint, which produces an Abstract Syntax Tree (AST) based on
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Lombok AST [49]. Once parsing ends successfully, the engine process is spawned
and starts receiving data from a pipe formerly created by the plug-in itself for
interprocess communication. Our plug-in AST visitor simply serializes the program
tree through the pipe and then waits for feedback from the engine process, hanging
on a second pipe aimed at receiving warnings and messages to be eventually shown
as issues by the Lint UI. The engine program is written in F# and does the real job:
after deserializing the input program tree acquired from the AST pipe, it creates its
own custom representation of the AST and performs the analysis.

The analysis consists in reconstructing the types of intents and components by
means of a hybrid type-inference/partial-evaluation algorithm. Throughout the
analysis, the engine communicates back with the Lint plug-in through the warn
pipe, feeding back any issue worth to be prompted to the user via its built-in mech-
anisms of integration with Eclipse.

4.5.1 Engine Overview

The core of Lintent is the engine program written in F#. It consists of a number
of modules:

Lexer and Parser The Java frontend of the plug-in uses Lombok AST API for
rendering the parsed input program onto the AST pipe in a custom text format. Such
data has to be parsed from the engine side via a Yacc-generated parser and a Lex-
generated lexer for being translated into our custom Java AST representation. It is
worth saying that parsing directly Java code could have been a possibility, removing
the need to communicate between the Java and the F# parts; but that would have
been more challenging due to a number of syntactic sugars and ambiguous grammar
productions that Java, as any real-world language, shows: the Lint built-in parser
does the job well, and just the AST provided by Lombok is translated into our own.

Custom Java AST Java AST is defined as a series of type definitions mixing
classes and variants - and does not reflect the way Lombok AST is defined because
such representation would be suboptimal for a functional language. Using variants
for language expressions and statements is very common in compiler implementa-
tions written in ML-like languages [62], as opposed to object-oriented languages that
typically rely on the wvisitor design pattern [65] for modeling ASTs. F# supports
object-oriented programming as well, so a mixed approach has been used, gaining
the best of the two worlds. Classes are useful for modeling macroscopic language
constructs such as compilation units, classes, interfaces, methods and attributes:
subtype polymorphism allows a lot of code reuse on similar data types. Variants are
best suited for representing language statements and expressions, instead, thanks
to the ability of performing pattern matching on them for implementing case-based
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rules which can be placed in the same location of the source code and do not need
to be spread around multiple source files, improving scalability and maintainability.

Auxiliary parsers A few additional Yacc-generated parsers are defined for a num-
ber of side operations. A parser for the output of javap exists as well as a tiny parser
for Intent types annotated by the user by means of Java annotations.

Java type-checker A full-featured type-checker for Java expressions is imple-
mented. As anticipated in section this is highly needed by most Intent and
component reconstruction algorithms for some important reasons:

1. when Android API calls are detected, recognizing method names alone would
be unsafe: reconstructing the type of objects invoking the method and its ar-
guments are needed for resolving possibly overloaded methods or constructors
defined by the API and for ensuring no homonymous user-defined or third-
party methods is being invoked;

2. in order to reconstruct the types of object injected into Intents, the type of
arguments passed to putExtra() must be reconstructed for resolving which
overload of putExtra is being invoked;

3. when the partial evaluation subsystem performs static computation of method
calls, method bodies are needed: this means that overloading resolution is
again needed for picking up the right method;

4. user code might use any kind of external jar or third party library, therefore
object injected into Intents as well as any other data that is subject to partial
evaluation could use those external packages: code must be fully type checked
in the same way as the compiler does; the additional analysis our system
performs is built on top of that.

This means that the types of every program variable and expression has to be
reconstructed by simulating the Java type checker precisely as the Java compiler
does: all classes, interfaces and methods must be typed because they could be used
with Intents and components.

Intent and component type reconstruction. The core of the system consists
in descending the AST and reconstruct a lot of type information by detecting rel-
evant Android API calls as well as all Java constructs. This first pass populates
a number of environments defined within the state of a monad (see section [4.6.2)
below for details) and performs two main tasks: reconstructing the type of Intents
and components, and partially evaluating code portions on-demand according to the
needs of the type analysis. Technically speaking, it is not properly a type inference
in the common sense because it does not involve unification and other mechanisms
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that historically defined the notion of type inference itself [25]. It is rather a custom
algorithm based on adding type information incrementally, exactly reproducing the
flow of a strictly imperative API as Android’s.

Security verification. Lintent performs an additional task as a second pass
taking place after the type analysis described and formalized in this chapter. The
scope of it is beyond the topic of this thesis and its mechanisms are therefore not
shown in detail. Being a major component of our implementation, though, we
believe it is at least worth mentioning and the reader may find a full insight of it
in [11].

Android offers a permission system the Java compiler is completely oblivious of,
since all permission information is encoded in terms of string literals used within
the Java code and declared in the manifest. At the time of writing, even Android
Lint does not perform any static check on permissions usage, thus leaving developers
exposed, for instance, to run-time failures once the Android operating system detects
a permission violation on some component interaction. Lintent performs a number
of static checks over permissions usage, analyzing the application source code and
the manifest permission declarations, and eventually warning the developer in case
of potential attack surfaces for privilege escalation scenarios. As a byproduct of its
analysis, Lintent is able to detect over-privileged or under-privileged applications,
and suggest fixes.

4.5.2 Limitations and extensions

As of now our tool supports only activities and started services, while support for
bound services is still under development and in a very preliminary stage. We
plan to identify calls to API methods as checkCallingPermissions() to make our
static analysis more precise. We are also investigating the possibility of developing
a frontend to a decompiler as smali [2] or ded [29] to support the analysis of third-
party applications.

4.6 Implementation Highlights

Our implementation is based on some advanced functional programming techniques
which make its code scalable, succinct and highly reusable. All forms of polymor-
phism and nearly all F# language features have been used here or there throughout
the code: object classes as well as pure records and variant types, pattern matching
as well as dynamic dispatching on object-oriented hierarchies, sequence expressions
and monads, and often a combination of all of these - everything except side-effects
and imperative programming, unless strictly needed.

Most patterns, styles, conventions and the overall design used for coding Lintent
are shared with the COBOL analyzer implementation, as many principles and so-
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lutions are common to both. Peculiar highlights shown below do actually apply to
both programs, indeed.

4.6.1 Support for Java Annotations

In real-world programs, some Intent types might not be reconstructible due to the
user using reflection for computing labels or type themselves, for example. Similar
and other weird cases may prevent Lintent from aiding the programmer with its set
of checks just because an Intent type could not be inferred. To let the programmer
specify an Intent type manually, Lintent supports special Java annotations:

@Intent ("LABEL1 : int; LABEL2 : String")

Intent i = new Intent(this, Recipent.class);
i.putExtra(weirdExpressionComputinglLABEL1(), 3);
i.putExtra("LABEL2", "foo");

Annotations must be put on an Intent initialization and the type specified within
the annotation data refers to the heap reference created for that variable (refer to
type rules (NEW-INTENT) for details). Our system does not rely on variables but
on heap references: therefore an Intent is not bound to a variable - but in Java
it is, linguistically. Also Java is based on object references at runtime, and that’s
precisely what our system emulates statically, but for offering the programmer with
a linguistic tool for typing Intents explicitly, annotations could not but be bound to
object initializations - i.e variable bindings.

Additionally, annotations can be put on method parameters too and even vari-
able declarations with no initializer - in general, on every language constructs that
involves the introduction of a variable. Finally, type of Intent keys can be writ-
ten using either the functional-like notation x : 7 or the C-like syntax for variable
declarations 7 x:

@Intent("double LABEL1, java.collections.generic.IList<String> LABEL2")
Intent i = new Intent(this, Recipent.class);
i.putExtra(weirdExpressionComputingLABEL1(), 3.5);

i.putExtra("LABEL2", new MySerializableList<String>());

The basic principles do not change, though: the Intent type newly created by
the system gets the type specified within the annotation and it is eventually locked.
This prevents further addition of any inferred keys and types to the Intent, including
those that could be inferred wrongly - which is the reason why the user chose to
annotate the type in the first place. The user must provide the full type, therefore,
carefully paying attention to all the data that the code will put or extract into the
Intent.

Keep in mind that Android does not support injection of any type into the Intent:
only primitive types and Serializable are handled by the overloads of putExtra.
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Our system though tracks the actual type of objects injected by using putExtra,
thus the user can specify actual types or supertypes on the annotation - subtyping
is naturally supported.

4.6.2 Monads and CPS

Rules in section 4.3 make extensive use of continuation-passing-style for affecting and
forwarding environments in a pure paradigm with no need to introduce imperative-
like side effects. This is typical of functional programming, of course, thus writing
them in form of inference rules is as straightforward as writing them in form of
functional code. As said, Lintent engine is written in F#, which supports monadic
programming by means of a generalized re-writing subsystem called computation
expressions[T0]: by defining a set of primitives, the user can give custom semantics to
the basic constructs of the computation expression sub-language. Identifier binding,
sequential combine, for loops and other atomic language terms can be redefined,
for example, for reproducing the behaviour of the state monad[69]:

type builder () =

member m.Delay f : M<’s, ’a> = f ()

member m.Return x : M<’s, ’a> = fun s -> (x, s8)

member m.ReturnFrom f : M<’s, ’a> = fun s -> f s

member m.Bind (e, f) : M<’s, ’b> = fun s -> let (r, s’) = e s in f r s’
member m.Zero () : M<’s, unit> = fun s -> (), s)

member m.TryFinally (e, fin) : M<’s, ’a> = fun s -> try e s finally fin ()

member m.TryWith (e : M<’s, ’a>, catch : exn -> M<’s, ’a>) : M<’s, ’a> =
fun s -> try e s with exn -> catch exn s

member m.For (seq, f) : M<’s, unit> =
fun s -> ((), Seq.fold (fun s x -> let (r, s’) = f x s in s’) s seq)

member m.Combine (el, e2) : M<’s, ’a> =
fun s -> let ((), s’) = el s in e2 s’

Class builder contains a method definition for each re-definable computation
expression construct. Types have been annotated for the sake of readability even
if F# is capable of fully infer these functions. Every primitive is a polymorphic
function over the state of the monad 's in such a way that the same builder can be
used for different state types.

Usage of the monad is simple and makes easy the implementation of typing rules
over Java constructs which have recursive terms. Take the following snippet for a
type-checker:

// Java type representation
type type = Ty_Int | Ty_Bool |
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// state monad instance
let M = new builder ()

let rec typecheck_statement st =
M {
match st with

| IfThenElse (el, stl, st2) ->
let! t1 = typecheck_expr el
if t1 <> Ty_Bool then raise Type_error
let! () = typecheck_statement stl
let! () = typecheck_statement st2
return ()

| // other statement union cases

and typecheck_expr e =
M {
match e with
| PlusBinOp (el, e2) ->

let! t1 = typecheck_expr el

let! t2 = typecheck_expr e2

match t1, t2 with
| Ty_Int, Ty_Int -> () // ok
| _ -> raise Type_error

return Ty_Int

| // other expression union cases

Despite resembling imperative programming in the name of constructs, the state
monad in fact emulates a stateful paradigm while actually making the F# compiler
generate purely functional code. Re-written functions are those whose body appears
inside M ... : this tells the compiler to translate the computation expression
within and the resulting code will lambda-abstract a further parameter - the state.
In other words, if e : 7 then M { e } : ¢ — 7 where o is the state type. Due
to the state monad definition, state is constantly lambda-abstract and applied by
the implementation of primitives, hence the need to not pass as it argument it or
to not bind it as result when monadic functions are called. In other words, this
mechanism emulates a continuation-passing-style in a transparent way, relieving the
programmer from the task of constantly forward the state thoroughly.

Analysis functions for each language non-terminal would have a lot of arguments
and would output a big tuple if written in plain functional code. As far as input is
concerned, looking at our tying rule premises, we distinguished between two kinds of
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entities: pure and effected entities. Environments are effected, while for example the
type of this 7 belongs to the pure set; another information that is pure is the name of
the method we’re currently analyzing - which does not appear in the formalization for
simplicity reasons but is needed by the implementation for discriminating between
getIntent () calls within method onCreate and onActivityResult.

Monad State. Effected environments have been put into the monad state:

type state =
{
var_decls : env<id, var_decl>
classes : env<fqid, class_signature>
intents : env<address, intent>
components : env<fqid, componentt>
3

The implementation has one more environment that the formalization: the class
environment, which stores all classes and interfaces of the the program in their
AST representation. This is needed because the lookup operators need to lookup
somewhere - and the program carries along this class storage within the monad
state.

Types used in the definition are:

e env is the environment type having two type parameters: the type of symbols
and the type of values mapped by symbols;

e id is the type of identifiers;

e fqid is the type of fully-qualified identifiers;

e var _decl is the type of variable type judices x : 7 ~» v;

e class_signature is the super-type of classes and interfaces within the AST;
e address is the type of addresses of heap references w : 7;

e intent is the type of Intents;

e component is the type of components &.

Pure Context. Other pure information are passed to analysis functions by means
of a record called context:

type context =

{
this_ty  J.ty
current_method : J.methodd option

}
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In the actual implementation a few of other data is stored within the monad
state and the context record, which we omitted here for not delving into complex
implementation architecture details.

4.6.3 Active Patterns as API Detectors

Detecting Android API calls, as already said, is not only a matter of matching the
name of a method - that would be naive. The type of the object invoking the
method must be inferred and possible overload resolution must occur for selecting
the correct method among many with the same name.

Typically when writing a typing function (or in general a function dealing with
language term processing) in an ML-like language, pattern matching among the
many variants of each term type is used. Plain pattern matching is not powerful
enough though for performing tasks that are more complex than matching terms or
method names - as we said, at least the type of the calling object should take place
to the match as well.

F# offers a powerful language feature called Active Patterns[70)] which is ele-
gantly integrated within the classic pattern matching ML and lets the user defined
custom wirtual patterns which can be used as regular patterns but perform custom
code for actually performing the matching at runtime. In other words, the user
code must deal with whatever comparison for deciding whether the Active Pattern
matches or not given the expression being matched.

Lintent implementation make extensive use of Active Patterns for letting the
analysis code perform apparently regular pattern matching over statement and ex-
pression terms, while actually special detection code take place - and such code
performs not only the method name match but also the type checking of the object
invoking it and of arguments.

A simple example:

module Detector =
let (ITyl_l) tyname envs ty =
if TJ.qualify_ty envs ty = J.Ty_SQId tyname then Some ()
else None

module Intent =
let (ITyl_I) = (ITyl_|) "android.content.Intent"
let (|INew|_|) envs = function

| E (J.New (Ty envs, ([], args))) -> Some args
(. -> None

Note that the active pattern (|Ty|_|) defined within submodule Detector.Intent
is not recursive but is just shadowing the former definition in the outer module
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Detector. The first active pattern (|Ty|_|) detects whether 'tyname’ is a subtype
or equal to 'ty’ within environments ’envs’, while the second is curried over the first
and checks for the Intent typd™]

Code below can use the active pattern Detector.Intent.New for pattern match-
ing calls to Intent constructors against Java expressions:

module D = Detector

let analyze_expr (e : J.expr) =
match e with
| D.Intent.New [e] -> // perform checks on unary constructor invocation
| D.Intent.New [el; e2] -> // perform checks on binary constructor invocation

4.7 Experimental Results

With Lintent in alpha stage of development we have been able to run tests over
a number of Android programs and snippets. As already said, our system is im-
plemented as an ADT Lint plug-in and performs a number of validations that goes
beyond the scope of Intent and component type reconstruction (permission checking
against privilege escalation, above all). We’ll stay in-topic here, though, and will
strictly discuss about the type reconstruction feature, avoiding considerations on
other aspects.
We ran several kinds of tests:

1. apps belonging to the official samples included in the Android SDK: some
of these make wide use of implicit Intents, some others are more based on
explicit ones - both present typical Android patterns, though, thus they’re
meaningful test-wise. For the sake of fair statistics, we picked samples from
both groups, though it is clear that the benefits of our system are largely
intended for applications involving a heavy use of explicit inter-component
communication - how else could Lintent notify the user of certain ill-typed
Intents or components if it cannot inspect them?

2. tests written by us meant for stressing the system in a way that probably
no real-world application ever would. Think for example at who would put
4 nested components within a component or compute weird Intent labels by
means of Intent results - similar scenarios are surely possible, but no code we
had the opportunity to review has even come close to that.

' This snippet is taken from the actual implementation, therefore it uses several data types and
utility functions that are defined by the many modules is made of. There is no need to delve into
technical details: the overall flavour of Active Patterns usage is more important.
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3. real-world apps from the open-source community or relevant portions of them:
testing those of course might be more meaningful for testing the security-
oriented features of Lintent rather that Intent typing. Reasonably, if an app
gets released then it would likely work, and if it works then it means Intents
and components are ok, otherwise it would have crashed already while being
tested by the developer himself. We believe anyway that it is rather interesting
to sample how many existing and running apps deal with Intents correctly and
are bug-free.

One last consideration before showing results: during these test sessions we used
Lintent as a code analyzer for validating existing apps - but we discovered that
this is not how it performs at its best. Our tool behaves like an advanced type-
checker, thus it is best used as an assistant for the developer, aiding him/her in
finding and fixing issues in the code while he/she writes it. This was of course a
rather qualitative consideration that cannot be brought by evidences and numbers,
but can only be experienced while actually writing an app.

Effectiveness of Intents and components type Reconstruction.

e 85% of warning and error messages output by ADT Lint and originating from
our Lintent plug-in are related to Intent and component mistyping

e apps define a number of Intents typically proportional to the number of com-
ponents, which is up to 30% of the non-trivial code of the whole program

e apps heavily based on GUI typically define a lot of Activities and therefore a lot
of explicit Intents: these are the applications benefitting most from Lintent.
In such kind of apps, up to 75% of Intents are explicit and sent to components
which are components of the app itself - i.e. the analyzer knows the code and
can verify Intent usage on the recipient side.

This implies a strong qualitative property over Lintent: it is mostly useful
when both sender and recipient component code are available for analysis.
Therefore, apps communicating mostly via implicit Intents addressed to sys-
tem services cannot be checked effectively because post-typing checks do not
have enough information for making meaningful comparisons between Intents
that the sender and receiver components deal with.

e 95% of apps relies on external or third-party libraries (i.e. not belonging to
the Java or the Android SDK), hence the analyzer needs to know their class,
interface and method signatures in order to type-check code and successfully
reconstruct Intents and components involved. This implies that users must pro-
vide jar files to Lintent in order to make it able to inspect imports in-depth.
The type resolution algorithm never fails, though, and won’t simply resolve
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methods and other members within unknown classes in case no jar is pro-
vided; and, as far types are involved, the class name itself is kept as type if
needed.

We observed that up to 35% of type occurrences within apps for which no
external library jar had been provided to Lintent are successfully typed.
This is due to the extensive use of methods defined in those external libraries,
naturally. In other words, plain type names occur in the code, of course, but
less than method calls.

e under 8% of apps use implicit Intents for communicating with own internal
components; these include two cases:

1. apps that define own Services or Service-like Activities{r_z] and some other
component within the app itself is client of that Service;

2. apps that misuse implicit-Intent-based mechanisms for inter-component
communication: this is an issue related to programming style but it un-
derlines bad habits in designing application code and very little knowledge
of the Java language.

e apps which are basically clients of a system or third-party Service are based on
mostly implicit Intent passing: for this kind of app, Intent checking is uninfor-
mative possibly up to 85% of all Intents involved (assuming, pessimistically,
that a 15% minimum is involved within basic Ul communication)

Effectiveness of Partial Evaluation.

e up to 95% of apps rely on constant keys for Intents, action strings and com-
ponent recipient classes. Use of complex non-statically-evaluable algorithms
for computing one of the bits above is quite unusual in the great majority of
programs.

e what is less unusual is the dynamic structure of Intents: up to 30% of apps
use a few Intent entries as control data, in order to make the recipient able to
perform different tasks according to the presence of a special Intent data-less
key or according to the value of a given integer or boolean key. Even a pretty
simple app like the Notepad included within the Android SDK Tutorial makes
use of such technique: the recipient component inspects a special Intent key
and, depending on its existence within the received Intent, it performs different
tasks.

We might discuss whether this is or not a reasonable programming convention
and how developers could avoid such error-prone approaches by using the Java

12Sometimes Activities behave like Services but have a visual component, hence they cannot
inherit the Service class.
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language and the Android API more carefully - but that’s not the point of an
analyzer. A lot of existing code out there behave like that: and Lintent is
supposed to offer some degree of aid to developers used to such techniques,
even if arguable. Admittedly, our system does not help much in this respect
unfortunately: a warning is prompted in case the sender component does
not put all the entries the recipient component will retrieve (refer to post-
typing check in section but understanding the dynamic behaviour of the
recipient code by inspecting if-branches and Intent extras usage would require
some form of data-flow analysis which is beyond the capabilities of our partial
evaluation sub-system.

e about 40% of apps rely on non-final bits for Intent keys, action strings, etc.
which are actually statically evaluable: this is a symptom of a bad pro-
gramming style based on declaring uninitialized non-final variables or class
attributes, eventually setting them to actually immutable values via assign-
ment. Most cases are based on simple computations of key strings and our
system is capable of evaluating them statically anyway, since no conditional
branches or loops which would invalidate the evaluation are involved (refer to
typing rules (IF) and (WHILE) in section (4.3.3)).

We also observed that no inter-component communication issues affect apps
belonging to the Android SDK Tutorial that have been tested - which likely means
that Google developers clearly paid attention in providing error-free samples. Other
third-party apps we have tested had little to no issues as well (below 3% of Intents
involved overall).

This does not mean that Lintent is useless though: there might exist dozens
of apps in the Google Play Store that could have not been as heavily debugged.
Our system is similar to the type-checker of a programming language: users may
develop even without it and invest a lot of time in debugging untyped code before
releasing an application; having a compiler that notifies the user with type errors
and warning, though, alleviates the developer from possibly hundreds of man-hours
of debugging and testing.

Intent management and component inter-communication represent a sensible
part of Android development and we believe that our type analysis makes the writing
of those parts much safer and faster, possibly reducing debugging time of Intent-
related code to zero.

Speaking of rough averages, a scenario that would best benefit of our system is:

e a stand-alone non-Service-based application code dealing with Intents for 20%
of its non-trivial code, where

e roughly 80% of such Intents are explicit, then

e a developer would spend about 20% of its debugging time in fixing Intent
passing, thus
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e 16% of the debugging time would be saved by Lintent.

Even if we approximate such result down to 10% due to some Intents not being
reconstructible or other limitations of the system, we believe that is still a valuable
benefit for software houses as well as for independent developers releasing open-
source apps.

4.8 Future Work

As stated in the introduction, the system proposed here is just the core typing
module of a wider static analysis framework that offers security validation and per-
mission checking too [II]. Lintent implementation already performs such checks,
as the reader can see from the source code of the application.

Another major topic is already under research and development: integrating a
type system for information-flow security to the existing features, somewhat resem-
bling other DLM-based™| systems such as JIF [58][23] and JLift [44] for Java, but
with a more light-weight approach from the user perspective and fully oriented to
Android. For keeping intact the user-experience Lintent brings, being an ADT Lint
plug-in that relies on an external Java parser and operates together with possibly
dozens of other analyzers, we had to host all DLM types and constructs on Java
annotations - which is a pretty hard design task on its own. Another important fea-
ture is that all default behaviours of the type system fall back to transparent rules,
in such a way that a totally unannotated application would compile as usual - other
systems like JIF do not follow this principle and are therefore considered hard to
learn and understand for the casual programmer. We believe that a system designed
for Android should be easily and effectively used also by the many non-professional
developers writing apps nowadays.

13The Decentralized Label Model is a well-known system based on static type analysis for con-
trolling information flow in systems with mutual distrust and decentralized authority [57].
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