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Abstract

In Real-Time Strategy (RTS) games, players develop an army in real time, then attempt
to take out one or more opponents. Despite the existence of basic similarities among
the many different RTS games, engines of these games are often built ad hoc, and code
re-use among different titles is minimal. We created a design pattern called ”Resource
Entity Action” (REA) that abstracts the basic interactions that entities have with each
other in most RTS games. This thesis discusses REA and language abstraction and
implementation using the Casanova game programming language. Our analysis shows
that not only the pattern forms a solid basis for a playable RTS game, but also that it
achieves considerable gains in terms of lines of code and runtime efficiency. We conclude
that the REA pattern is suitable approach to the implementation of many RTS games.
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Chapter 1

Introduction

Video games have seen a remarkable growth adoption in the last decade [23], with

game sales comparable to movie and music sales in 2010 [4]. This can be the main

reason that justifies all the benefit and researches held in this field and the reason

why many developers are involved in game development. Although games are generally

associated to multimedia contexts and entertainment purposes, at the same time video

games are used (through their simulations) even for serious purposes. The usage of

video games is commonly not only in context of simple multimedia entertainment, but

also in educational environments, training, etc. This because essentially a game is: ”an

activity among two or more independent decision makers that are seeking solutions to

achieve specific goals inside a bounded environment”. In essence we can summarize a

simulation as a human being existence, although with differences such as simplifications

or not realistic elements. This comes from the fact that the human is set to make

decisions in a limited context to reach a specific targets . Decisions may be of different

types ”when to buy a specific object”, ”when and where to go”. The context is limited,

because the actions taken are produced in a limited resource, in a world where its

variables are unknown or not completely clear. The objectives vary from managing

resources to survive as long as possible, defeat an opponent, maximize a specific set of

resources in a limited time, etc.

There are different kinds of games, but our research focuses on video games and partic-

ularly on strategy video games generally called real-time strategy games (RTS). Video
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games are a recent digital adaption of the commonly known genre of board games. Board

games are frequently played in the real world and involve movable objects or predefined,

in the real world game, following a set of predefined rules.

There are many different types and styles of board games that represent different life

styles. For example: the chess game, which represents a specific battle field, while tic-

tac-toe doesn’t represent a specific theme. Rules may vary from very simple rules, such

as those ones of checkers game, to very complicated and detailed, such as in Dungeons

and Dragons. What makes Dungeons and Dragons a successful role playing board game

is its game board, which makes it necessary for helping its players to visualize better

the game scenario.

The definition of permitted actions and of the objectives to achieve, regardless of whether

the game is serious or not, determines the involvement degree level of the game. For

instance, surviving in real life is funny provided that it is challenging, fast and the

application of its actions have big effects in the world. The same sets, but with slower

actions, limited effects and played in real time may not result interesting from the

entertainment point of view, but may result interesting from the educational point of

view. Surviving in a game that requires efforts and competitiveness may results funny

and challenging for the player.

The usage of video games for serious/educational purpose has been well known for time.

Documentations report its usage since the 1900s [35]. Video games share a lot of common

aspects with board games, except for the big difference, its digital platform. This implies

that the game state management, the applying of its rules, the action controls are all

managed by software components. Video games are often in real time, because the

system provides actions with immediate consequences on both, game logic state and

the visual one. Moreover many games represent complex scenarios with articulated

logic that are difficult to transpose to the board games. This is possible thanks to the
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underlying software architecture which manipulates, manages, and maintains the game

rules and their applications transparently for the players.

So the player can start playing a game without caring about its rule sets, but starts to

approach and learn them during the game, throughout tutorials, experimentation, and

trial-and-error. The real-time aspects, such as visual quality of simulations, big sets of

actions and rules make games excellent candidates for representing simulations, with

different degree of realism.

Video games are blends of the following different philosophies/aspects.

� Commercial games: it’s the most important and comes for first. Commonly re-

ferred as AAA games, typically they are the most expensive, in terms money.

It might cost millions of dollars for its development, and engages many years of

developing and involves tens of professional developers.

� Indie games: this type of games are developed by small groups with limited re-

sources; in these cases such games are referred as IndiGame.

� Serious games: it’s a game of another genre, closer to the indie rather than the

AAA, also known as serious games.Serious games are kind of games in which the

player main goal is not entertainment but educational, awareness and instruction

the player.

1.1 The challenge of game development

The cost budget associated to a video game creation are generally high, due to the

resources involved, this is evident in AAA games, but it is as true (in terms of proportions

concern) also for indie and serious games. The adoption of modern computers in the
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80s, improved and renewed the movement of educative games introducing the educative

video gaming. This genre is labeled as edutainment [16], deriving from the combination

of the two terms education and entertainment. Examples of this genre are Oregon Trail,

Math Blaster, and Number Munchers [13].

Serious games find a lot of difficulties in affirming, sometimes even during the develop-

ment phase, because they are not economically profitable. The technological difficulties

associated with its video game development don’t attract investments because of its low

economic return income. This has led, in years, to find different application environ-

ments for serious games. One of the first investors in this game genre is the United

States Army, with major titles such as America’s Army and Full Spectrum Warrior

(these games are used by many users also for entertainment). It is interesting to note

that military officers use intensively these games for strategic simulations. A recent

game of this genre used for this specific purpose is Kriegsspiel.

Similar problems are taken also for the indie-games [25]. The indie games are sold,

generally sold for less than 10 dollars (or are based on advertisement), and are often

played through mobile phones, tablets, and on browsers. These are fully fledged games,

but they are made simpler than those of the big industries [41]. The effort on the devel-

opment of these titles by the indie-games developers is bigger than those of big houses.

This is due to the limited resources (both humans and economics) of the indie-games

developers. This brought to an increase of interest, from the research fields, of patterns

and designed techniques to cut down the costs, and allowing these developers to test

and explore new genres without risking big funds. Moreover the innovation made by

serious games may be of big impact for what concerns the educational methods, a noble

goal that with time it would bring profits to the whole system. The low cost devel-

opment strategy impacts, both on serious and indie games development and reduces

the innovation distances between them. This bring us to observe the significant impor-
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tance of indie and serious games, and the reason why our focus is centered on these two

typologies rather that the AAA games. The goal of this thesis is to reduce the risks

of video games making (focusing on strategy games), reducing the efforts not only of

development but also those of maintenance. We believe that doing so, by introducing a

design pattern and its implementation through a language extension, we reduce many

development patterns and activities that are recurrent in games. Obviously we do not

pretend to solve all the problems of video games making, but in particular, if the design,

or the selected algorithms are not of sufficient quality, the game will fail even if the use

technology simplifies parts of the development.

1.2 RTS games

Real-time strategy games (RTS) have been highly popular for decades. As outlined by

the ESA, RTS’s are registering good sales and with a large number of playing hours.

Commercial RTS games are written by different kinds of developers: from large stu-

dios, to smaller independent developers of indie games. Indie developers are a growing

phenomenon within the video game industry [27]. Indie developers are typically small

teams and their games are known for innovation [30], creativity [31] and artistic exper-

imentation [15]. RTS games are also built outside the entertainment industry: many

serious games [14] and research games [21] are RTS’s. Studios which make serious games

create interactive simulations which have as main purpose the training and education

of users.
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1.3 Problem statement and research question

Building games in general and RTS’s in particular, are expensive[22]. This puts pressure

on all game developers, but especially on indie, serious game and research game devel-

opers because of their smaller resources. This lack of resources motivates research in

the direction of cost-effective development methodologies for games. Such research may

aim in reducing development efforts through the identification and automation/reuse

of common patterns in games and their automation in order to promote reuse. Mak-

ing a new game could then leverage part of the effort of past games, and not just the

knowledge and experience which must still be applied for every title. Surprisingly, from

a survey of game development research and literature we noticed a lack of abstract

pattern study which characterizes these games, and particularly with RTS’s. This mo-

tivates our research question: what are the common patterns of RTS games, and how

do we capture them?

1.4 A pattern for making RTS games

RTS are a variation of strategy games where two or more players achieve specific (often

conflicting) objectives by performing actions simultaneously in real time.The typical

elements which arise from this genre are units (characters, armies), buildings, resources

and battle statistics. Players command units to perform different types of actions. These

actions can affect several entities in the game world.

Units and buildings are the entities that the players control to achieve their objectives.

Units usually fight or harvest resources, while buildings may be used to create new

units or research upgrades. Resources are gathered from the playing field and the fuel

is the economy of the game entities. Battle statistics determine the attack and defense
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abilities of units in a fight. This taxonomy of the elements of a RTS game can be applied

successfully to multiple games: Starcraft, C&C, and Age of Empires all feature units,

buildings, resources, and battle statistics, among other elements.

In order to arrive at our design pattern we will now apply a simplification. Battle

statistics can be interpreted as resources, so that ”the life of a unit is the cost for killing

it, payable in attack power”. We can also merge units and buildings together into a new

category called entity. This leads us to a simpler view of a RTS as a game that is based

on Resources, Entities and Actions:

1. Resources: numerical values in the battle and economic system of the game. In

this group we find the attack, defense, and life patterns of entities. Resources also

cover building materials and cost of production, deployment of units, development

of new weapons, etc. (Resources are scalars.)

2. Entities: container for resources. They have physical properties and, as for the

game logic, the difference among them is only the interactions. These interactions

take place with resource exchanges through the actions. (Entities are vectors.)

3. Actions: The resource flow among entities. Our model can be viewed as a directed

weighted graph where the nodes are the entities, the weights are the amounts of

exchanged resources, and the edges are the actions, that is, the elements which

connect entities to one another. (Actions are transformation matrices.)

This leads us to a more precise research question: how do we model Resources, Entities

and Actions?
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1.5 Structure of this work

We’ll view in Section 2 the general structure of a game. In section 3 we’ll view the

available systems and languages for making video games, in particular for RTS games,

emphasizing their pro and cons for video game development. In section 4 we’ll show

how to capture the essential elements of an RTS. The design pattern studied, ensures

that developers can reuse some significant parts of game logic across multiple games,

but using it requires effort from the developer. This effort consists of writing boiler plate

code that links the definition of the game world and the design pattern primitives. To

go even further, eliminating the writing of boiler plate code, we extended the Casanova

game development language to automate this pattern (Section 5, 6, and 7). Casanova

is a newly designed computer language which integrates knowledge about many areas

of game development with the aim of simplifying the process of engineering a game.

The language extension is purely declarative. Its semantics resemble SQL, providing an

intuitive adoption for most programmers. Extending the language, gives us control over

the way the game world is explored and over RTS mechanics; this allows us to build

additional mechanisms such as automated optimization, which increases performance at

no additional cost. We show some implementation of some RTS games (section 8) and

evaluated this extension in a full-fledged RTS (Section 9), and compared programming

effort and run time efficiency.

This paper presents the following contributions. Our technique is shown to reduce

the amount of boilerplate code that needs to be implemented, tested, and debugged,

therefore yielding increased development productivity. In this paper we provide evidence

that our approach is (i) syntactically simpler, (ii) semantically powerful, (iii) general

purpose, (iv) high-level, and (v) high-performance.
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Chapter 2

Requirements of a game

Making video games offers the same core challenges that appear in all games. A game

is a real-time application which simulates a virtual environment, in which the user can

interact with a set of predefined actions. This interactivity is due to a main structure,

which is known as game loop. The game loop continuously call functions which run the

game logic and then draw the world and if the loop is fast enough, then the sensation

will be of a real-time interaction. Game computes a numerical integration of the game

state. Such integration is made from the world’s physics, the input of the user, the

artificial intelligence (AI) and the behaviors of the game entities. AI and most of the

game logic are made by state machines in order to implement loops, timers, etc. The

game also draws the game world so that the user can see a visual representation of the

entities of the last few hundredths of seconds. Among the big challenges that developers

incur during the making of a game are:

� Should it run on different platforms

� Multiplayer inside a real-time game requires reliable synchronization through the

network

� The visual simulation must be realistic, detailed, and believable

� The simulation of the world and its entities must be enough complex and believable

� Inside a game project there is a creativity portion made by the designers, whom

many times don’t know much about computer programming so the architecture
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of the game should be flexible enough and easy to use in order to facilitate such

people to test, build new game iterations of game-play.

This list of challenges is not complete, but these elements are very common and dis-

cussed in many seminal texts [26] [17]. As expected these elements are the result of our

direct experience in this field. Moreover, the costs of making video games are increasing

as well as the hardware complexity too. As a consequence of these new possibilities

of making more realistic games (real-time multiplayer, more challenging AI, more in-

teraction among game entities, very detailed visual elements and realistic physics) are

available. Let’s consider a small scenario, to show how the complexity of a game com-

ponent increases as well as the other components increase their complexity? When the

game is very simple (it simulates just few components) then building an AI capable to

interact with the player comes to be very easy to build, but if the game starts to be

complex with very articulated aspects which involves many components, then the AI

must take into the account more elements than before and this makes making such AI

times more difficult. Later we will discuss how these features are built in a modern

video game.

2.1 Game Loop

The game loop (often referred as principle loop) is responsible for updating the internal

structure that represents the world game, both for the internal rules of the world and

externals input from the player. After updating the structure of the world, the game

loop draws the world entities on the screen (every frame the elements on the screen

are erased and rendered anew). The motivation of using this draw model is given by

the fact that the game elements generally move around the world during the game

session, in order to render anew object every frame instead of checking if the element
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has moved, save a lot of overhead from the point of view of the performances. A simple

implementation of the game structure could be given (we use a pseudo ML code) by

just an update and draw function. The update function accepts only the elapsed time,

so we can compute on how much the system should update the objects.

type GameState =

{

Update: float -> unit

Draw: unit -> unit

}

At this point we can give the definition of the game loop function which takes as input

the game state and alternately calls; first the update and then the draw function. The

update function takes as its argument the elapsed time given by the difference between

the current and previous frame. This fraction is used to compute correctly the integra-

tion of the update function and all the entities with respect to the appropriate amount

of time:

let gameLoop (game:GameState) =

let rec AUX_loop (prev_time:GameTime) =

let new_time = getTime ()

let dt = new_time - prev_time

do game.Update dt

do loop new_time

do AUX_loop (getTime ())

Indeed, a game can be seen as a numerical integrator that integrates the following

integral for all time T of the game:
∫ t=T

t=0
dwt/dt dt
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Where wt denotes the state of the world at time t. Let us consider a world made of a

single soldier who has velocity, position, and acceleration.

type World=

{

SoldierVelocity : Vector2

SoldierPosition : Vector2

SoldierAcceleration: Vector2

}

Integrating the world, means that we compute (and then draw on the screen) the game

state at time t = 0, t = 1/n, t = 2/n, ..., t = n/n for a game that runs n frames at

second. Of course instead of calculating the integrated game world at a certain time

from every frame, we make an incremental computation so we have to perform only the

missing part of the integration. This means that since the above integral is impossible

to compute analytically, instead of computing it every time t starting from w0, we

compute wt from wt− dt. The integration of this new concept, called Euler method, in

the previous update definition would then be:

let update (world:World) (dt:float)=

{

SoldierVelocity =world.SoldierVelocity + world.

SoldierAcceleration * dt

SoldierPosition =world.SoldierPosition+world.

SoldierVelocity * dt

SoldierAcceleration=world. SoldierAcceleration

}

13



Because the integration of this integration is important and the frame rate maybe slow in

some machines, with low computational power, sometimes the integration accumulates

errors. To avoid this other integration method, its more precise to use, for instance the

Ralston’s one.

let update (world:World) (dt:float) =

let f(v_old ,x_old) == (world. SoldierAcceleration , v

)

let k1 = f(world. SoldierVelocity , world.

SoldierPosition)

let k2= f(world. SoldierVelocity , world.

SoldierPosition) + 0.5 * dt * k1)

let k3= f(world. SoldierVelocity , world.

SoldierPosition) + 0.75 * dt * k2)

let v_new , p_new =

(world. SoldierVelocity , world.

SoldierPosition) +

(2.0/9.0)*dt*k1 +(1.0/3.0)*dt*k2+ (4.0/9.0) dt

*k3

{

SoldierVelocity = v_new

SoldierPosition = p_new

SoldierAcceleration = world. SoldierAcceleration

}

The above shown update function is more precise than the Euler, when dealing with

physical objects such as balls, collision detection, etc. and the approximation errors

are under the perception threshold of the user. Unfortunately this method does more
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operations than the other one and it is more difficult to write and maintain so it is

not always the best solution: in some cases the simpler version may be better. This

is one of the many trade-off between numerical accuracy and run-time speed for which

the game loop should take into the account during the update function. It can provide

exception for games which require high simulation quality, for instance some combat

simulations or real life simulation. The previous two samples show a simple scenario

made of just one physic simulation. For this reason it is easy to understand how to

apply the numerical integration. A simple AI may be integrated as well, even though it

must be threaded as a hybrid system (with both the aspects continuous and discrete).

For instance in the following world:

type World =

{

Enemy = Entity

Self = Entity

}

The enemy can choose to attack or hide depending on the relative strength of the player.

let update (world:World) (dt:float)=

let self_new = update_entity world.Self

let enemy_new = update_entity world.Enemy

let enemy_new ’ =

{

enemy_new with

Velocity =

If enemy_new.Health > self_new.

Health &&
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distance(self_new , enemy_new) <

10.0 then

towards enemy_new self_new

else

away enemy_new self_new

}

{ Self = self_new; Enemy = enemy_new ’ }

The enemy of the previous example is a simple reflex agent, which depending on the

situation he decides to attack or not. This solution suffers from the fact that if the player

continuously enters and exits from the enemy area, the enemy will change continuously

its behavior. To avoid this problem we can add a timer so that the enemy will maintain

its action until the timer is over. Of course we can make a more complex AI, but this

is not important for our presentation. Instead it is important to underline the presence

of discrete components in the game that makes the numerical integral more complex

to calculate. The game loop is not straightforward as in the previous example. To not

waste resources, it is not necessary to update continuously all the elements of the game

objects. While physical objects must be updated at every frame of the game, while

other components as the AI and the user input can be updated with low frequency. For

example AI can be run 5 times per second, while the input can be run 20 times per second

all this without losing interactivity; this technique reduces much the computational load.

To express different update frequencies, we need to change the definition of the game

loop presented above in the following new representation:

type GameState =

{

UpdateInput : float -> unit
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UpdateAi : float -> unit

UpdateLogic :float -> unit

Draw : unit -> unit

}

The game loop will run now three different loops: one for the Ai, one for the Input and

one for the Logic for the game logic and the drawing of the game. A multithread loop

can run the distinct loops.

let game_loop (game:GameState)=

let rec loop f t dt =

While(gameTime () - t < dt) sleep (0);

Do f dt

Do loop f (t+dt)

let logic_draw_loop ()=

Loop (fun t -> game. UpdateLogic dt; game.

Draw())

getTime ()

(1.0/60.0)

let ai_loop () = Loop game.UpdateAi (1.0/5/0)

let input_loop () = loop game. UpdateInput (1.0/20.0)

run_thread [logic_draw_loop;ai_loop;input_loop]

In the above code the function loop performs a generic function with a certain interval

of time defined by t and dt. So we use this function to run the three update functions,

update ai, input, and logic/draw.
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2.2 State Machines

The second very common activity in games is the maintaining of the state machines.

State machines are used in games which use timing, ai, input, etc. to the point that,

a simple web search shows that there are hundreds of tutorials and manuals about

this theme and many book and articles that talk about this topic. Let’s consider a

simple example where we want to wait a specific event before doing something else. In

particular we want to wait that a particular key is pressed in order to fire with a specific

weapon. We can code this function as an extension of the previous update function

which does some polling:

while (is_key_up(key_one)) do sleep (0)

let time = getTime ()

while (is_key_up(key_two)) do sleep (0)

let dt = getTime ()-time

If dt < 0.3 then

do fire_weapon ()

Unfortunately we cannot run this piece of code inside the update function, because this

will lock it. We can run it in a separate thread, but if all the functions do so, the number

of running thread would be too much decreasing, so the overall performances. To solve

this issue the comon solution is through state machines which explicitly track where we

are in the code. We then need a discrete step function which updates, at each step of

the game, the state of the state machine, managing its state and checking the various

transition conditions. The above machine can be defined as an ML discriminate union.

type StateMachine =

|Wait

|WaitT of float
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|Done

|Fail

And the update state machine function updates the state machine as follows:

let updateStateMachine (sm:StateMachine) (dt:float) =

match sm with

| Wait ->

if (is_key_up(key_one)) then do sleep (0.0)

else Wait

| WaitT(t) ->

if t <= 0.0 then Failure

elif (is_key_up(key_two)) then Success

else WaitT (t-dt)

The general pattern for state machine with states s1, ..., sn, transition matrix ti, j (that

defines the condition for going from si to sj), we can define the state machine as:

type StateMachine =

| S1 of s1

| ...

| Sn of sn

The transitions are defined as:

let transition (sm:StateMachine) (dt:float) =

match sm with

|S1(s1) ->

if t11 then S1(i11)

elif t12 then S2(i1n)
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...

else S1(s1)

|...

|Sn(sn) ->

if tn1 then S1(in1)

elif tn2 then S2(in2)

...

elif tnn then Sn(inn)

else Sn(sn)

2.3 Drawing

The game logic gives life to the interactive simulation, where the game world and its

entities are updated according to some specific internal rules, AI, and physics while the

user can change the state thorough his contribution. Of course though, the user need a

way for recognize the state of the world for making a plan and deciding his next moves.

Allowing the user to know the game state is done by visual elements on the screen. The

visual elements are typically textures, 3d models, but some notable (though not very

common) exceptions simply write a text description of the current state of the game

world to the screen which the user then reads. Such games usually are referred as text

adventures and are not our main focus. Drawing is done in a manner that it acts as a

window over the game through which the user watches the game entities in real-time.

We draw the game world after few logic updates, so that the visual differences will be

very small between each frame. Usually logic entities are mapped one-to-many to the

visible entities, which can be textures, 3d models, fonts, etc. It is important to notice

that most of the richness and complexity of a modern game doesn’t come from having
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many kinds of visual element on the screen; drawables elements are almost 7: text,

textures, or 3d models. To distinguish such elements we use different effects each of

them specialized to do a specific job.

2.4 Summary

In the previous sections we identified the base requirements of a game, which are:

� managing the game loop

� managing of the input

� state machine support

� drawing the scene

It is important to notice that commercial high quality games (often known as AAA

games) need also other requirements. Large games have lots of assets produced by artists

and designers, and so they need tools that support transferring those assets into the game

engine. Designers also produce game scripts that customize some behaviors of the game

entities, which require data-centric engine architecture so that scripts may customize

large parts of the game without direct access (a complex task) and re-compilation (a

surprisingly lengthy task) of the main sources. Sometimes the effort made by remaking

all the visual aspects of the game starting from zero is excessive; and the reuse of

components and libraries for different titles is not an easy job to do. In this thesis our

will is not be on this kind of games but instead on the indie/serious-games which are

smaller and more maintainable.
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Chapter 3

Available game development
systems and languages

In this chapter we’ll be comparing the choices between programming languages and

systems form making in video games. We start by giving a background of systems

and languages and the comparison between them according to their advantages and

disadvantages. We will be discussing the pragmatic reason of why most of developers

choose systems instead of languages for making video games. Moreover, we will discuss

in detail some notable game development systems, and choose three of them for their

significance and current adoption. We then will be doing the same for the programming

languages. From our survey and considering the points underlined in the last chapter

we can conclude that there is the need of more exploration of specialized languages for

developing video games, because these can give significant advantages that actually are

not exploited by game developers.

3.1 System vs languages

A system form making video games is a collection of libraries and tools that are used

for making video games. A game development system offer mainly predefined functions

that the developer uses whenever he needs. For instance, using an editor, a developer

can drag and drop functionalities over a model just using a mouse or a keyboard. Game

development system often offers some customization due to the support of scripts written
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by the developers. Such scripts are small programs that modify limited aspects of the

game, for instance the formula that computes the damage in a weapon, personalized

triggers, timers, etc. The scripts do not modify the base services of the game. Some game

developments systems are mainly based on libraries, which are then accessed through a

programming language. Pre-build functionality are then used by invoking the library or

by instantiating its data type. Such libraries are supported by external tools, for instance

custom project settings for popular development environment. A game language is a

programming language which is used for making video games. The syntactic constructs

of a game development language are directly mapped to the abstract aspects of the game.

For instance a game development language may have specialized syntax for drawing the

game world, in this way it helps in reducing the amount of notions that the developer

should know and reduces the amount of code, in this way it helps the developer to explore

the functionality through a visual interface. Languages, on the other hand, should help

the developer to focus on the problem instead of the implementation details, offering

the maximum expressive power and reducing the amount of obvious and repetitive code.

Languages and systems offer advantages over one another. Generally systems represent

a secure investment where we leverage high-quality components built by others, while

taking advantage of existing technical knowledge to the fullest. But systems often

have limitation in power expressiveness. Such limitation can be of different shapes. It

is possible that most of the games build with a specific system can be in some way

very similar to each other. Languages, instead, represents a risky investment where we

spend a lot of energy to express the different solutions for the problems. The knowledge

acquired during the process of developing video games lets the developers to develop

quickly, making fewer errors in game by game, and making code increasingly clearer.

Languages for making video game offer a power expressive power, but on the other hand

they are harder to learn. The systems are more secure to use, and for this reason most
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of the companies use them for making video games instead of the computer languages.

The rise of many high-quality commercial game development systems in the last decades

means that there are a lot of systems of undoubted quality. Languages for making video

games, on the other hand, are not vey used if not in the academic environment. So the

adoption of commercial languages for making video games is insignificant.

3.2 System for making games

It’s out of our scope discussing all the available systems involved in games making.

Available systems cover most of the types of games: many systems are specialized for

first person shooter, role player games, flight simulators, and so on for the other kinds

of games. This happens because the games represent interactive virtual realities. A

virtual reality is a real time simulation with its rules, its logic, its goals, and its means

of interaction. Such virtual reality can be close enough to a real life for some aspects.

The number of ways that a virtual reality can be expressed is big: any aspect, from

the physics, to rendering, to the introduction of new elements and schemes may be

changed by our will. This implies that the range of possible games are very wide, with

the following consequence: for many games, it is very difficult to find existing systems

that completely satisfy our creativity requirements and sometimes a system that initially

seems to satisfy our requirements may fail during the process of making the game due to

the addition of new game elements. This comes from the fact that systems for making

video games are very strict and support just specific scenarios. There are systems

which support just first person shooter games, systems that simulates just fast cars

races, systems specialized on rendering of characters in third person view as for the role

playing games, systems specialized on rendering a very big number of elements as for

the war strategic games, and so on. As we see now, we will list some game systems that
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are very common; we then choose three relevant systems for further study.

3.2.1 Relevant game systems

There are many systems for making games. The earliest examples of engines used

for many games include 2d games were built in the 1980s. Among these, Adventure

Construction Set [1], Garry Kitchens game Maker [5], Wargame Construction Set [12],

Pinball Construction Set [6], Shoot Em-Up Construction Kit [8], Arcade game Con-

struction kit [2], and ASCIIs RPG Maker engine that are still nowadays being released

[7]. The 1990s, saw the introduction of the first graphics engine; BRender [3], Render-

Morphics Reality lab [42]. The term game engine started to be used in the second half

of the 1990s specifically in relation with FPS games. In particular, games like Quake

and Doom were so popular, that the developers authorized the use of some parts of

their code for making other games (levels, graphics, etc.). The engines listed above

cover just a small part of the available game kind; there are other kind of games such

as the adventure one, platform, fly simulations, etc. each of them associated to specific

engine that satisfies their requirements. Games that are not supported by any engine

require new engines that support them. Among the most important systems we also

find low level frameworks such as OpenGL [20] and DirectX [28], which simply offer a

set of libraries in addition to tools such as profiler or debugger, which can be easily used

from existing programming languages and IDE.

3.2.2 Our choice of systems

We choose three representatives of the actual trend:

� Game Maker [19] is a system for making video games based on the simple philos-

ophy of ”less is more”, in this way it allows beginners to make articulated games.
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Game maker is a visual environment which limits the developer to build only 2D

games based on camera and 2D sprites which represent objects, characters, etc.

� Unity [34], on the other hand, is a powerful and flexible game development system

which also, gives the possibility of making 3D games. It offers many generic

components which can be combined with the entities in order to customize them.

Unity allows expressing many different scenarios.

� XNA [34], is a framework oriented for making indie games based on the .Net

framework. The systems we consider are chosen for representing both game en-

gines and libraries. We consider them relevant because they are used much by the

communities. We exclude engines such as UDK and Quake, because they are used

for making AAA games, instead our thesis focuses on serious and indie games.

3.2.3 Game maker

Game maker is an IDE which allows users to easily make computer games without

requiring big experience, allowing at the same time expert developers to make complex

games through its built-in scripting language. The main interface of game maker is

a drag and drop. The available menu allows the creation of a hierarchy structure of

sprites which represents the room where the game takes place and the entities will

inhabit the game world. Available icons represent the common actions which are of

interest in a game, as movements, basic drawing, e simple flow control which allow the

creation of reactions as the detection of a collision. The drag and drop method, allows

the definition of simple games, but it is a limited system when an advanced user tries

to define more complex components such as an AI, path findings, etc. Game maker

has a built-in language called Maker Language (GML). GML can access and modify

most of the values of the game, we can write cycles, and in general it is a fully fledged
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Fig. 3.1: Game maker in action

programming language. Game maker interpret through an interpreter the games. Game

maker is mainly based on 2D graphics, with a variety of expected functionalities, more

than simple drawing of sprites, such as alpha adjustment and blending settings. Game

maker can be seen in figure 3.1.

3.2.4 Unity 3D

Unity 3D is an assets-centered game system. This means that Unity tries to keep

the developer as much as possible in the visual editor, dragging new game entities in

the hierarchy of the scene, and modifying the objects properties to customize their

appearance or behavior. The editor also shows a live preview of the game. Unity

3D supports high quality 3D. The underlying architecture is based on components.

Components are properties of the game entities which allow a certain entity to perform

certain rules. Components uses physics to respond to an input command, and so on.

When a developer selects an entity in the visual editor, he then attaches components to
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Fig. 3.2: Unity 3D in action

it. As for game maker, the visual editor is not enough in expressing complex behaviors.

So Unity supports personalized script through Mono, an open source implementation

of the framework .Net. The scripts may be written in Unity Script (a personalized

language inspired by JavaScript), in C# or in Boo [24]. Unity 3D can been seen in

figure 3.2.

3.2.5 XNA

Game maker and Unity mainly include a scripting system so that the game can be

managed through scripts written by the developer. These scripts track just some part

of the game state such as score, life, AIs, etc. and can be ran either as reply of an event

or at each step of the game. This may result in contrast with the visual nature of the

editors, which aim in allowing users making games without writing any line of code.

This will lead us to say that the definition of a game is intrinsically linked to the coding;

it is not important how the visual editor is powerful there is always the need to write
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some functionality by coding it. Visual editors can help users to reduce the amount

of written code. Continuously new algorithm are invented and published. This means

that, for a game system it is impossible to follow and express each of these algorithms.

In short, game development requires coding. For this reason we take into account XNA

which is a tool based on coding for making games based on XNA and that can be used

by any .Net language: from c# to F#, to VB.net. It offers classes which cover most of

the areas of game development. Such classes represent an efficient and easy to use and

understand implementation of the components common in all the games. XNA stars

starts with the game loop and game components classes to support the game. The input

is supported by polling the mouse, keyboard, and game pad. To ease building collision

detection and physics, a series of bounding volumes are supported such as bounding

volumes, bounding boxes, etc. XNA also offers renderer facilities to let the developer to

add quickly 2D sprites, and 3D models. The user moreover can customize the rendering

by writing its own shades for specific visual effects. Audio is supported with music,

positional 3D sound, and even pre-mixed audio effects. Networking unfortunately is not

completely supported. XNA does not offer any visual framework or helper but instead

requires coding the whole game, often with a lot amount of coding. XNA can be seen

in figure 3.3.

3.3 Languages for making video game

There are not many special purpose languages for making video games and the possible

causes are of different kind:

� Making a special purpose language is complex and requires specific knowledge of

the environment (in our case games) and parser on which the language is applied.
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Fig. 3.3: XNA in action

� Systems for developing video games compensates the lack of expressive power

through by integrating scripting languages.

� Game sectors are slow in adopting new programming languages compared to the

IT industry, this had led in the last decades to move first from the assembly

language, then to C and finally to C++

This is due to the big amount of already done code built in C/C++ and that is still used

in production. Outside the game environment, some researchers have experienced the

construction of special purpose language for making video games, while the industries

still focus on libraries coded in C or C++ and in the recent years in C#. Languages

used for making games built by researchers are all specialized distinctly in the aspects of

the game developments, as a result of this, there is a small set of languages specialized

for game development. We will discuss four of these languages and in particular:

� Simula [32], a very old language built for simulations, from which many languages

have taken inspiration.

� SGL [40], a recent developed language from the Cornell University which unifies

31



the game looping definition with a series of much optimized SQL queries on a

global table which memorize all the game entities

� Inform7 [33], a language concentrated on just a small kind of games, the ones

on textual adventures, but allows to write them in plain English, instead of a

traditional programming based approach

� Casanova [11] is a programming language designed around games. Casanova is

a language for developing videogames which allows building of games with three

important advantages when compared to traditional approaches: simplicity, safety

and performance. Casanova is a research project based on Giuseppe Maggiore’s

PhD thesis. There are various Papers that discusses this language and written by

many researchers such as me, Francesco Di Giacomo, Enrico Steffinlongo, Michele

Bugliesi, Pieter Spronck, Renzo Orsini, and Aske Plaat.

3.3.1 Simula 67

The first language we discuss is Simula, in particular version Simula 67 (exists 2 version

of Simula: Simula1 and Simula67, the second one is more advanced than the first one).

Simula is an old language and was the precursor of the Object Oriented languages. It

was made in the 1967 and it is specialized in making simulations, as the name suggests.

In particular, Simula is characterized by objects, inheritance, and cooperative (through

coo routines) multi-threading. Simula is historically an important language, because its

object system laid the groundwork of many languages as C++, Java, and C#. Moreover

Simula uses very heavily coo routines which are widely used by many modern languages

for instance in making interactively collections. Coo routines in particular are used

much in the C# language in the shape of async. Also before C#, Mono and Unity have

introduced a personalized version which uses coo routine through the keyword yield.
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Now let us see an example of Simula67 in action. Mudy, Giulia, and Giuseppe are going

shopping for clothes. They have to share the dressing room. Each of them is searching

for about 15 minutes in the shop and then uses the dressing room exclusively for 5

minutes. A simulation of their dressing room is the following:

Simulation Begin

Class FittingRoom; Begin

Ref(head) door;

Boolean inUse;

Procedure request; Begin

If inUse then Begin

Wait(door)

Door.First.Out

End;

Procedure leave; Begin

inUse := False;

Activate door.First;

End;

Door :-New Head;

End;

Procedure report(message); Text message; Begin

OutFix (Tim2 ,2,0); OutText(" :  " &message);OutImage;

End;

Process Class Person (pname); Text pname; Begin
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While True Do Begin

Hold (Normal (15, 4, u));

Report(pname & "  is requesting the dressing room" );

Fittingroom1.request;

Report(pname & "has eneted the dressing room");

Hold(normal (3,1,u);

Fifittingroom1.leave;

Retport(pname & "has left the dressing room");

End;

End;

Integer u;

Ref(FittingRoom) FittingRoom1;

FittingRoom1 :- New FittingRoom;

Activate New Person("Mudy");

Activate New Person("Giulia");

Activate New Person("Giuseppe");

Hold (100);

End;

The keyword at the beginning of the listing enables the simulations. The dressing

room uses a queue called DressingRoom which arbitrates the entrances of the room. If

somebody asks to enter in the room and it’s occupied, then he will wait (Wait(door))

until its being released. When the dressing room is emptied, the user in the head of the

queue is activated (Active door.first) and removed from the queue. A person in modeled

as a process and its activities are described by the keyword ”Hold” which suspends the

process to simulate its activities in the shop. The program then simulates for 100
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minutes the games by initializing the entities at the beginning. Until today no other

languages has reached the expressiveness of Simula. The sample above for instance,

would be harder to express for a general purpose programming language as C++, given

the lack of first class support for cooperative multi-threading, queues, etc.

3.3.2 Inform

The Inform 7 language is the last incarnation of Inform; it is a programming language

and design system for interactive fiction developed in the 1993 from Graham Nelson.

Inform7 is a peculiar programming language; it addresses a niche-within-a-niche of the

domain of computer programming. Inform exclusively allows the developing of inter-

active text adventure games, where the world of such game genre are represented by

description texts and the users interact with the world by once again, text commands.

This makes Inform a specific language for making specific kind of games. The advanced

features of Inform allow the programmer to code the game in English, although with

some grammatical limitations. The language allows the description of the game, a col-

lection of objects with properties, together with a collection of scenes which interact

with the user. The parsing facilities offered by Inform are very powerful and are used to

parse the text input of the user which is expressed in natural language. Inform allows

single hierarchy and polymorphism. The language is strongly typed in order to let the

programmer to reuse the code, without adding complex concepts as abstraction, so the

entities definitions in the game are simple. This means that some traditional program-

ming activities are supported by the language, but all the constructs are declarative and

highly readable.

Constant Story "HELLO WIKIPEDIA";

Constant Headline "^An Interactive Example^";
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Include "Parser";

Include "VerbLib";

[ Initialise;

location = Living_Room;

"Hello World";

];

Object Living_Room "Living Room"

with

description "A comfortably furnished living room.",

n_to Kitchen ,

s_to Frontdoor ,

has light;

Object -> Salesman "insurance salesman"

with

name ’insurance ’ ’salesman ’ ’man ’,

description "An insurance salesman in a tacky 

polyester

              suit.  He seems eager to speak to you.",

before [;

Listen:

move Insurance_Paperwork to player;

"The salesman bores you with a discussion

                 of life insurance policies.  From his
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                 briefcase he pulls some paperwork which he

                 hands to you.";

],

has animate;

Object -> -> Briefcase "briefcase"

with

name ’briefcase ’ ’case ’,

description "A slightly worn , black briefcase.",

has container;

Object -> -> -> Insurance_Paperwork "insurance paperwork"

with

name ’paperwork ’ ’papers ’ ’insurance ’ ’documents ’ ’

forms ’,

description "Page after page of small legalese.";

Include "Grammar";

Inform does not have many constructs, which are necessary to build complex real time

simulations: there is not any concept of game loop, any language for defining real time

actions, or a way to customize the rendering. From the point of view of making video

games it is woefully under-powered, but when it comes to interactive interactively fiction

it is, a unique experience to use. Many games have been built with Inform. Curses,

was the first game written with Inform, Galatea is considered to have the most complex

interaction system, Mystery House Possessed, and are just few of the available games
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written with this language.

3.3.3 SGL

The last language that we will discuss is SGL. SGL, like the name suggest, is a language

that derive from the well known SQL language for expressing declarative queries on

databases. SGL is based on the idea of defining the world as a big empty table where

an entity is a role and the columns represent all its attributes. The attributes that are

not related to the entity are set to null. The game dynamics, as physics, damage, etc.

are defined as queries which transform the entities during the simulation. For instance

in SGL game virtual soldier’s entities can be defined as follow:

Class Unit{

State:

Number unit_id;

Number player;

Number command;

Number pos_x , pos_y;

Number health;

Set <number > squad;

Effects:

Number move_x : AVG;

Number move_y : AVG;

Number damage : SUM;

Set <number > joined : UNION;

Set <number > left : UNION;

Update:

Pos_x = pos_x + move_x;
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Pos_y = pos_y + move_y;

Quad = squad UNION joined SETMINUS left;

Health = health - damage;

}

The state encodes the entity description and all its attributes. The effects are a set of

queries that are specified below. The update consists on how the state of each entity

changes during the game simulation. The query which moves a unit towards enemy

clusters may be defined with an SQL-style aggregation such as:

Let enemies = (all u in Units where u.player != me.player);

Let centroid_x = AVG(enemies.x_pos);

Let centroid_y =AVG(enemies.y_pos);

Let me.move_x = (me.pos_x - closest.pos_x)/norm;

Let me.move_y = (me.pos_y - closest.pos_y)/norm;

SGL games maintain most of the readability of SQL queries, that is, even for simple

games not simple and pleasant to read as for the Inform game. But it is more pleasant

to read when compared to others low level languages. The algorithmic optimizations are

done by the system which relieves the programmer from the job of coding complex pieces

of codes. SGL allows developers to make games without warring about performances

but obtaining the runtime performances those results from the use of hand written,

specialized, complex algorithms. From this point of view SGL is not completely a game

programming language but it allows building efficiently the core module of a modern

game.
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3.3.4 Casanova

Computer games are seen as the next frontier of entertainment, with game sales being

comparable to movie and music sales in 2010 [9]. This unprecedented market prospects

and potential for computer game diffusion among end-users has created substantial in-

terest in research on principled design techniques and on cost-effective development

technologies for game architectures. But making games is an extremely complex busi-

ness. Games are large pieces of software with many heterogeneous requirements, the

two crucial being high quality and high performance [10]. High-quality games are mea-

sured by two factors: visual quality and simulation quality. For visual quality many

researchers have pushed the boundaries of this field, and continue till today. Simulation

quality instead is often lacking in modern games. The end result is that, while the visu-

als of a game are often stunningly realistic, the artificial intelligence of the game entities

are not animated by high quality AI. Input controllers are used in a simplistic way and

the logic of game levels is more often not completely linear. Along this direction, the

necessity to reduce the costs as well as increase the quality of the simulations has led

us to Casanova. Casanova is a language for developing video games which allows the

building of games with three important advantages, compared to traditional approaches:

simplicity, safety and performance.

� safe underlying model for updates based on double buffering: make less mistakes

that depend on update order

� units of measure: no mix ups of a Vector2<m> with Vector2<m/s>

� integrated co routines for simpler state machines, AIs, and timers

� automated save game facilities: saving and loading requires just one line of code

� first class menu management
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� nested drawing for easier positioning and expression of visual dependencies

� first class resources to implement economy or complex damage/defense systems

� first class physics integration
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Chapter 4

The Casanova language

In this chapter we describe informally the design of Casanova. We start by talking of a

recurrent and fundamental pattern in video that Casanova captures, which the authors

called rule-script-draw (in short RSD). Then we show the goal of this language, and in

the end we present informally the language.

4.1 The RSD pattern

The concept of RSD captures completely the definition of a game. Through our expe-

rience in developing video games, we realized that always the making of a video game

touches some fundamental concepts. These can be modeled as 3 principal components.

The game mainly is made by logic and drawing. The logic which is made of regular

aspects of the game, such as physics equations, and others continuous parts of the nu-

merical integration of the game, and irregular aspect, such as timers, AI, state machines

and other discrete parts. And finally, many aspects of the logic are draw on the screen,

in order to let the user to see them. So these three aspects of the RSD pattern are:

� Rules, the regular continuous aspect of the game

� Scripts, the discrete aspect of the game

� Drawing, the drawing of the game on the screen
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Unfortunately, most of the games are developed without an explicit awareness of these

components. This means that efforts to capture these so that building new games in

them requires less time and expenditure of resources are not well focused if they do not

consider such aspects. For instance, the XNA framework or DirectX UT offers (although

in a limited way) rules and drawing, but any support for scripting is given. More

advanced systems such as Unity 3D, offers more support of scripts through coroutines.

Casanova captures the RSD pattern, through a full complete programming language

with its compiler. Some attempt to capture recurrent patterns have be done [18] [36],

but often they take for granted the underlying models (for instance the RSD), and offer

highly articulated (and most of the times very complex) solutions. Such models often

require that the developer focuses much on very complex models, who is required to

perform as a human compiler. We think that these complex models as those cited above

often indicates a problem related to the language/system [37], and reinforce the necessity

of a dedicated language for making video games and our choice of choosing Casanova

as the language on which to base our project thesis. Design Goals We summarized

the goal that Casanova achieves in the following table. These points describe both the

requisites of the RSD model and requirements about expressive power and simplicity of

the language.

� Allow a developer to build games without explicit limitations in terms of genre or

creativity

� Support common game development tasks of handling the game logic, game AIs,

state machines, drawing, and input

� Be concise, in particular when compared with traditional programming languages

used for the same Games
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� Be efficient, supporting fast run-time execution of the game and common opti-

mizations such as multi-threading or query optimizations

� Be simple to read, supporting syntactic idioms that are grounded in logic and

mathematics rather than adopting the syntax of widespread programming lan-

guages

� Contain as few features as possible, that is the language should be built on top of

few orthogonal [29] constructs that each serve a clear purpose and that mix well

together

These objectives make Casanova, a simple language, expressive and efficient, and ideal

for making video games and simulations.

4.2 Informal design

Casanova specifies a game by defining the following points:

� The model of the world, that are entities, and values useful to represent and track

the game world

� Logic and physics rules in which the objects must obey

� The state machines which manage the not regular dynamic of the game logic,

which are not easy to express in term of rules

� The visual aspect of the game entities

� The initial state of the world
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For instance, let’s see a very simple game written in pseudo-game code which simulates a

collection of bouncing balls. We will use this pseudo-code to introduce the idea behind

Casanova and in the following section we will see a full Casanova code sample. Our

model for the bouncing ball game is defining the world as follow:

World = a series of balls

A ball then be defined as:

Ball =

The ball position

The ball velocity

A sprite of a ball

We now define the logical and physics rules of the world and its entities. In our world

there is just one blobal rule which yields the valid balls and remove the balls which ore

out of the screen:

World rules =

When a ball exits the screen then it is removed from the

world state

The rules of the ball simply deal with its physical attributes and update its appearance:

Ball rules =

The position is the numerical integration of its velocity

The velocity is the numerical integration of the gravity ,

when the ball touches the groing (screen border) the

velocity is turned upside -down

The sprite position is the same as the ball position
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Thanks to the info just given above the simulation results to be very immediate and it

works by running a set of balls and removing those which go out of the screen. Now we

add a new behavior which is moving continuously balls in to the screen. We model this

by the following script:

Wait between one or three seconds

Add to the world a random ball

Repeat

Finally we define the initial world which represents the

initial state when the simulation is run:

Initial world =

An empty collection of balls

As we can see, the just given description of the ball game is clear and simple to under-

stand, we are not forgetting any aspect of the game definition. Compared to other game

systems or languages for developing video games, there is not any mention of game loop

neither for the rendering (it is implicit in the ball definition); moreover the creation of

a ball is defined a simple process. Also notice that we are not assuming prefabricated

physics entities or temporal operations, that is we have described everything ourselves.

47



Fig. 4.1: Casanova bouncing balls in action

4.3 Casanova in action

Now we show the complete bouncing balls described above using the Casanova lan-

guage(figure 4.1).

The sample is written with the actual implementation of Casanova, which is based on
F# and MonoGame 2.5. It can be used in conjunction with Visual Studio, taking
advantage of its powerful tools. Moreover, thanks to MonoGame, it is possible to port
Casanova games to multiple platforms, most notably Android smartphones and Tablets
or Windows 8 RT. Let us give a look to the sample: a ball simply contains a physics
entity and a drawable sprite.

type [<CasanovaEntity >] Ball = {

Circle : PhysicsEntity

Sprite : Sprite

} with

The sprite position and rotation are taken directly from the physics.

member self.Position = self.Circle.Position

static member SpritePosition ’(self:Ball ,dt:float32 <s>)=

self.Circle.Position

static member SpriteRotation ’(self:Ball ,dt:float32 <s>)=
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self.Circle.Orientation

A wall simply contains a physics entity and a drawable sprite. Ball and Wall are separate
entities because extending the sample would likely require adding fields to one or the
other. So as a starting point the two entities are almost identical, but in practice it is
likely that they would quickly evolve to store different values.

and [<CasanovaEntity >] Wall = {

Box : PhysicsEntity

Sprite : Sprite

} with

Again the sprite position is taken directly from the physics.

static member SpritePosition ’(self:Wall ,dt:float32 <s>) =

self.Box.Position

The game world contains: i the physics world (before the physics entities, otherwise
updates do not work correctly), ii a canvas to draw the entities in a fixed-aspect ratio
area of the screen, iii the list of balls, iv the list of wall.

and [<CasanovaWorld >] World = {

Physics : PhysicsWorld

Canvas : Canvas

Balls : RuleList <Ball >

Walls : List <Wall >

} with

Balls are removed when they fall out of the screen.

static member Balls ’( world:World ,dt:float32 <s>) =

seq{ for b in !world.Balls do

if b.Position.Y < 600.0f<m> then

yield b }

We start by initializing the physics world and the canvas. The canvas is created under
the default sprite layer, as we only draw everything there. The canvas is uniformly
stretched, that is it will appear as a square, and it will be smaller than the screen.

let rec start_game (start_selector:StartGameSignature <’a>)

(args : StartGameArgs) =

let physics = PhysicsWorld.Create ()

let canvas = Canvas.Create(args.DefaultLayer ,

Vector2.Zero ,

Vector2.One * 1000.0f,
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StretchMode.Uniform)

Then we create a ball with a position (x,y),a radius (r), and a mass of r / 50. Balls
move around, so the physics bodies for the balls are dynamic.

let mk_ball x y r =

{

Circle = physics.CreateBall(x, y, r, 1.0f<kg > * r/

50.0f<m>,

0.2f, 0.4f, true)

Sprite = Sprite.Create(

canvas ,

Vector2 <pixel >.Zero ,

Vector2 <pixel >(r * 2.2f<pixel/m>, r *

2.2f<pixel/m>),

@"BouncingBalls\ball")

}

We create one static body for the ground and one for the left wall. Walls are still, so
the physics bodies for them are static.

let ground =

{

Box = physics.CreateBox (0.0f<m>, 495.0f<m>,

500.0f<m>, 10.0f<m>,

0.0f<kg >, 0.0f, 0.4f,

false)

Sprite = Sprite.Create(

canvas ,

Vector2 <pixel >.Zero ,

Vector2 <pixel >(1000.f<pixel >,

10.0f<pixel >),

0.0f<rad >,

Vector2 <pixel >.Zero ,

@"BouncingBalls\wall",

Color.White ,

true)

}

let left_wall =

{

Box = physics.CreateBox ( -500.0f<m>, 0.0f<m>,

10.0f<m>, 500.0f<m>,

0.0f<kg >, 0.0f, 0.4f,

false)

Sprite = Sprite.Create(
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canvas ,

Vector2 <pixel >.Zero ,

Vector2 <pixel >(10.f<pixel >,

1000.0f<pixel >),

0.0f<rad >,

Vector2 <pixel >.Zero ,

@"BouncingBalls\wall",

Color.White ,

true)

}

The game world starts with: ithe physics engine,iithe canvas,iiino balls,ivthe two walls.

let world =

{

Physics = physics

Canvas = canvas

Balls = RuleList.Empty

Walls = [ground; left_wall]

}

We add balls in two different scripts(main and input), so we create an auxiliary script
for this purpose. add-ball creates a ball in a random position above the screeen and
with a random radius between 25 and 100m.

let add_ball =

co{

do world.Balls.Add(mk_ball (random_range -400.0f<m>

400.0f<m>)

-650.0f<m>

(random_range 25.0f<m>

100.0f<m>))

do! yield_

}

The main script adds a random ball every second.

let main =

repeat_

(co{

do! add_ball

do! wait 1.0f<s>

})
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Five input scripts: i when the user presses the F9 key the game will be saved in Bounc-
ingBalls file;iiwhen the user presses the F10 key the game will be loaded from Bounc-
ingBalls file;iiiwhen the user presses space a new ball is created ivwhen the user presses
backspace a ball (if there are any) is removed vwhen the user presses the escape key the
pause menu will be pushed on the stack and displayed.

let input =

[

wait_key_press Keys.F9 => args.Save("BouncingBalls");

wait_key_press Keys.F10= > args.Load("BouncingBalls");

wait_key_down Keys.Space =>

co{

do! add_ball

do! wait_key_up Keys.Space .||> wait 0.2f<s>

}

wait_key_down Keys.Back =>

co{

if world.Balls.Count > 0 then

do world.Balls := world.Balls |> Seq.skip 1

do! wait_key_up Keys.Back .||> wait 0.2f<s>

}

wait_key_press Keys.Escape

=> args.PushStack(ConfirmationMenu.

start_menu

(args.SetStack

start_selector),

false)

]

world , main , input
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Chapter 5

The REA design pattern

In this section we will define a model for an algebra tho show that the REA (Resource
Entity Action) model can be reduced to a problem of linear algebra. We then show how
games that use this model can be further simplified by linguistic constructs. In an RTS
game we can think of the game world as a collection of entities. Entities perform an
action by exchanging resources with one another, thus the resources may be stored in a
vector and resource exchange may be expressed by matrix algebra.

5.1 Action algebra

As described in Section 2, we can consider an action as a flow of resources from a source
entity to one or more target entities. We require that each entity has a resource vector,
which contains the current amount of resources of the entity. The resource vector is
sparse since most actions involve only few resource types. An action is expressed by a
transformation matrix A which determines how a resource is passed to another entity
for that particular action.

Let us consider a set of target entities T = {t1, t2, ..., tn} which are the targets of the
action and a source entity e. Each entity ti (including the source entity type) owns a
resource vector ri = (ri1 , ri2 , ..., rim) while the source entity owns also a transformation
matrix A of size m ×m, which defines how the h-th component (i.e., resource) of the
resource vector is affected by the interaction with the k-th resource. We also consider
an integrator dt which contains the time difference between the current frame and the
previous one. We then compute we = (we1 , we2 , ..., wem) = rs×A·dt. From the definition
of matrix multiplication, it immediately follows that each component of we represents
how the h-th resource will change by applying the effect of all the other resources to it.
Now we compute the vector r′i = ri + we ∀ei ∈ E which will now replace the resource
vector in each target entity.

For instance, consider the action of a spaceship entity using laser to damage (resource)
an enemy spaceship (entity). This involves a vector resource of two elements: laser
and life points. The action must transfer laser points to subtract from the enemy life
points. Let us assume the vector resource of the targeting ship is rs = (20, 500) and the
vector resource of the targeted ship is rt = (15, 1000). Let the transformation matrix be
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A =

[
0 −1
0 0

]
which means that the source entity will affect the life of the target with a

negative number of laser points. Thus we = rs×A ·dt = (20, 500)×A ·dt = (0,−20) ·dt.
At this point, assuming dt = 1 second, we have r′t = rt+we = (20, 1000)+(0,−20) ·dt =
(20, 980).

5.2 A declarative language extension

The REA design pattern is modeled using the action algebra. We will now describe a
language extension that implements this design pattern/algebra for the Casanova game
programming language. The language extension is purely declarative. Its semantics are
described using the SQL query language, which has the advantage of familiarity to most
programmers.

Implementing the action algebra may be done using an abstract class which contains an
abstract method which performs the action. Each action is a class which extends the
previous abstract class and implements the abstract method. This method will fetch the
world looking for the information needed to find what entities are affected by the action
execution. Each entity of the game will have a collection of actions it can perform,
automatically run by Casanova.

We still lack a way to identify the set of target entities T given a source entity and its
action. A solution that lets the programmer implement class inheritance and abstract
methods will produce a lot of boilerplate code, where the common behavior is scanning
the game world in search of entities satisfying certain properties needed to apply the
effect of an action. The reason is that the library lacks knowledge of the game definition,
which must be compensated for by the game programmer.

To avoid boilerplate code to a great extent, we can try to hide repeated patterns, by
capturing it as a language construct with its syntax and semantic extending Casanova.
Such an extension allows us to alleviate the problem of finding entities because, at
compile-time, we can explore the shape of the game world and generate the appropri-
ate world exploration code. To do so we add a new type definition: the action. An
action is a declarative construct which is used to describe not only the resource ex-
change between entities, but also what kinds of entities participate in the exchange.
The resource exchange is based on transfers (Add, Subtract, and Set), while the target
determination is based on predicates : we filter the game world entities depending on
their types,attributes and radius (specifying the distance beyond which the action is not
applied). Some actions, called threshold actions, are not continuous and make use of
special predicates to delay the execution (Output) until certain conditions are met.

Using actions it is possible to specify an exchange of resources in a fully declarative
manner, so that the developer does not have to rewrite similar pieces of code ad hoc for
each action.

55



56



Chapter 6

Syntax and semantic of REA

We now give the syntax and semantics of actions in Casanova. The grammar allows the
definition of actions, which make up the body of spacial Casanova entities which act as
placeholders for actions. When an entity contains such an action, the Casanova runtime
will apply it to all appropriate targets.

6.1 Action Grammar Definition

In this section we will define formally the grammar definition for actions. To better
clarify the use of this grammar, we will first provide a taxonomy for our actions. We
divide our actions into three kinds: (1) constant transfer actions, (2) mutable transfer
actions, and (3) threshold actions.

Constant Transfer:

Constant transfer actions update the target fields with a constant value or a value taken
from one of the source fields. The source field is not affected by the resource transfer.
An example of a constant transfer action is a defense tower shooting an arrow at an
infantry unit.

TARGET Infantry; RESTRICTION Owner <> Owner; RADIUS 1000.0;

TRANSFER CONSTANT Life - ArrowDamage;

Mutable Transfer:

Mutable transfer actions are used when the resource exchange affects not only the target,
but also the source entity. The source field is updated depending on the used operation:
if we add a resource to the target, then the same amount is subtracted to the source
field, if we subtract a resource then the same amount will be added while if we set the
target to a value the source is not changed. An example of a mutable transfer action is
a spaceship transferring minerals from its holds to a shipyard.
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TARGET Shipyard; RESTRICTION Owner = Owner; RADIUS 150.0;

TRANSFER MineralStash + Minerals;

Threshold Action:

Threshold actions follows the same transfer semantics of the previous two types of ac-
tions. In addition, they have a collection of threshold values and output operations.
The output operations are executed once when all the threshold values are reached.
The threshold values are on fields belonging to the source entity. The output opera-
tions modify only fields of the source entity following the same semantic of the transfer
operations. An example for a threshold action is a worker building a town hall. When
the integrity of the town hall reaches 100, a flag completed is set (which is one of
its fields) which warns the system to replace the partial constructed building with the
complete building.

TARGET ConstructionTownHall; RESTRICTION Owner = Owner;

RADIUS 10.0; TRANSFER CONSTANT Integrity + 1.0; THRESHOLD

Integrity = 100.0; OUTPUT Completed := true

Now we give a formal definition for the grammar instances presented in the examples
above. In the following formal grammar definition we used reference to Casanova types:
Casanova Entity is an entity in the game world represented as a record with its fields;
the special keyword Self is used to point the entity owning the action as one if its fields.
To define the grammar we use the extended Backus-Naur form.

<Action > ::= TARGET <TARGET LIST > <RESTRICTION LIST > [<

RADIUS CLAUSE >] <TRANSFER LIST >

<INSERT LIST > [<THRESHOLD BLOCK >]

<TARGET LIST > ::= <ACTION ELEMENT >+

<ACTION ELEMENT > ::= Casanova Entity | Self

<RESTRICTION LIST > ::= {<RESTRICTION CLAUSE >}

<RESTRICTION CLAUSE > ::= RESTRICTION Boolean Expression of <

SIMPLE PRED >

<SIMPLE PRED > ::= Self Casanova Entity Field (= | <>) Target

Casanova Entity Field

<TRANSFER LIST > ::= {<TRANSFER CLAUSE >}

<TRANSFER CLAUSE > ::= (TRANSFER | TRANSFER CONSTANT)

(Target Casanova Entity Field) <Operator > ((Self Casanova

Entity Field) | (Field Val)) [* Float Val]

<Operator > ::= + | - | :=

<RADIUS CLAUSE > ::= RADIUS (Float Val)

<INSERT LIST > ::= {<INSERT CLAUSE >}
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<INSERT CLAUSE > ::= INSERT (Target Casanova Entity Field) ->

(Self Casanova Entity Field List)

<THRESHOLD BLOCK > ::= <THRESHOLD CLAUSE >+

<OUTPUT CLAUSE >+

<THRESHOLD CLAUSE > ::= THRESHOLD

(Self Casanova Entity Field) Field Val

<OUTPUT CLAUSE > ::= OUTPUT

(Self Casanova Entity Field) <Operator > ((Self Casanova

Entity Field) | (Field Val)) [* Float Val]

6.2 Formal semantic definition

Given the fact that our actions resemble queries on entities, we specify their semantics
as translation semantics to SQL. This allows us to leverage existing discussions on SQL
correctness [39].

In defining our translation rules formally, we consider a set T = {t1, t2, ..., tn} of target
types and a source entity type s. In all actions we select a subset of targets in each
ti, on which applying the action, using restriction conditions (if any exist, otherwise
the targets of type ti are used). After that we apply the resource transfer (which, as
explained above, can be either from a constant field or a mutable field).

We assume that each entity type is represented by an SQL relation and that there exists
a key attribute called Id for each relation. We now consider each of the three translation
cases, based on the taxonomy given above, separately. In the following translation rules
we will use, for greater clarity, notations inside the SQL code taken from the Backus-
Naur form for grammar definitions such as [expr] to denote an optional expression or
”|” to denote a choice between expressions. We also extend the SQL grammar with a
global variable dt which is the time difference between the current and the last game
frame. In this way the increment of the entity attribute values are proportional to the
elapsed time. All types of actions evaluate the predicates in the restriction conditions
and apply a filter to their targets. All targets further than the radius are automatically
discarded when executing the action. The transfer predicates are executed immediately
on all filtered targets.

CONSTANT TRANSFER:

In constant transfers we must update each target ti satisfying the restriction conditions
with the value in the source fields or constant values specified in the transfer clause. For
simplicity, we will assume that constant values will be stored as attributes of the source
entity.
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Let us consider a set of resource attributes A = {aj1 , aj2 , ..., ajm} of the source entity
used to update the target ti. We have to compute the contribution of all sources of the
same type on the target ti. We want to produce a relation whose tuples represent the
target id followed by the total amount of resource ajr to transfer, called Σr:

Transfer
ID Σ1 Σ2 · · · Σm

The following SQL instruction implements the relation definition above:

SELECT ti.id, SUM(s.a
j1} AS Σ1,

SUM(s.a
j2} AS Σ2 ,...,

SUM(s.a
jm} AS Σm

FROM Target ti, Source s
WHERE <RESTRICTION LIST > [AND <RADIUS CLAUSE >]

GROUP BY ti.id

Now ∀ti ∈ T we must update the target attributes A′ = {at1 , at2 , ..., atm} using one of
the target operators defined in the grammar (Set, Add, Subtract) with the attributes
of the previous relation scheme.

WITH Transfer AS(

SELECT ti.id, SUM(s.a
j1} AS Σ1,

SUM(s.a
j2} AS Σ2 ,...,

SUM(s.a
jm} AS Σm)

FROM Target ti, Source s
WHERE [<RESTRICTION LIST >] [AND <RADIUS CLAUSE >]

GROUP BY ti.id)
UPDATE Target ti
SET ti.at1 = u.Σ1 | ti.at1 = ti.at1 + u.Σ1 * dt | ti.at1 =

ti.at1 - u.Σ1 * dt\
· · ·
FROM Transfer u
WHERE u.id = ti.id

MUTABLE TRANSFER:

In a mutable transfer the field of the source involved in the resource transfer must be
updated depending on the applied transfer operator. If the operator is Add then the
resource is subtracted from the source field and added to the target field proportionally
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do dt. If the operator is Subtract then the resource is subtracted from the target field
and added to the value of the source field proportionally to dt.

The first step in translating this semantic rule is finding how many targets (if any) are
affected by each source entity, in order to obtain the following relation scheme:

TotalTargets
Source ID TargetCount

The SQL code implementing the previous scheme is the following:

TotalTargets =

SELECT s.id ,COUNT (*) AS TargetCount

FROM Source s, Target t1, Target t2 ,...,Target tn
WHERE <RESTRICTION LIST > [AND <RADIUS CLAUSE >]

GROUP BY s.id

HAVING COUNT (*) > 0

Now ∀ti ∈ T we need to obtain a relation storing what target each of the source entity
is affecting and the count of affected targets. The following relation scheme describes
what we have just informally explained:

OutputSharing
Source ID Target ID Output Sharing

For brevity in the code below it has been used the notation RelationName = [...] which
means the code for that table has been previously defined. The following SQL code
implements the previous scheme:

OutputSharing =

SELECT *

FROM TotalTargets c, SourceOutput c1

WHERE c.s_id = c1.s_id

AND SourceOutput =

SELECT s.id AS s_id ,ti.id AS t_id

FROM Source s, Target ti
WHERE <RESTRICTION LIST > [AND <RADIUS

CLAUSE >]

AND TotalTargets = [...]

Each target attribute receives an amount of resources equal to the total transferred
resources divided by the number of targets receiving that resource from the source. The
latter value can be read in the table obtained with the SQL code above. Formally, let
ajk ∈ A be the resource attribute containing the total amount to be transferred and c the
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number of targets affected by the resource transfer, then each target receives Rk = ajk/c
resources from each source. The values needed to compute Rk can be obtained both
from OutputSharing and the Source relation. The complete SQL code to update the
target ti is the following:

WITH Transfer AS(

SELECT ti.id, SUM(s.aj1 / o.TargetCount) AS Σ0,SUM(s.aj2
/ o.TargetCount) AS Σ2 ,...,SUM(s.ajm / o.

TargetCount) AS Σm

FROM Source s, Target ti,OutputSharing o

WHERE OutputSharing = [...] AND s.id = o.s_id AND

t.id = o.t_id)

GROUP BY ti.id
UPDATE Target ti
SET ti.at1 = u.Σ1 |ti.at1 = ti.at1 + u.Σ1 * dt |ti.at1 = ti.at1 - u.Σ1

* dt
· · ·
FROM Transfer u

WHERE ti.id = u.id

To update the Source relation we use a relation similar to the one use to update the
target, but this time there is no need to save the count of the affected targets but just
to check if the source has at least one target, otherwise it is not updated.

WITH TotalTransfer AS(

SELECT s.id ,s.aj1,s.aj2 ,...,s.ajm
FROM Source s, Target t1 ,...,Target tn
WHERE <RESTRICTION LIST >

[AND <RADIUS CLAUSE >]

GROUP BY s.id ,s.aj1,s.aj2 ,...,s.ajm
HAVING COUNT (*) > 0)

UPDATE Source s

SET s.aj1 = s.aj1 - s.aj1 ∗ dt|s.aj1 = s.aj1 + s.aj1 ∗ dt
· · ·
FROM TotalTansfer u

WHERE s.id = u.id

THRESHOLD TRANSFER:

A threshold action is an action defined as the previous two types, i.e. it has a resource
transfer definition which is always executed, and a set of threshold conditions that,
if met, activate the Output operations, which are always towards the source entity.
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The attributes of the source entity affected by Output operations can be updated with
constant values or values from other attributes in the source entity. In the latter case
the transfer is treated as in the mutable transfer case.

Let us consider a set of updating attributes U = {ak1 , ak2 , ..., akl} and a set of attributes
to be updated U ′ = {as1 , as2 , ..., asl} in the output operation. We must first check that
all the conditions in the threshold clauses are met, then we have to update the attributes
in the source entity appropriately.

WITH TotalOutput AS(

SELECT s.id ,s.ak1,s.ak2 ,...,s.akl
FROM Source s

WHERE <THRESHOLD CLAUSE 1>

[AND <THRESHOLD CLAUSE 2>]

.

.

.

[AND <THRESHOLD CLAUSE l>])
UPDATE Source s

SET s.as1 = o.ak1|s.as1 = (s.as1 + o.ak1) ∗ dt; o.ak1 = o.ak1 - o

.ak1 ∗ dt|s.as1 = (s.as1 - o.ak1) ∗ dt; o.ak1 = o.ak1 + o.ak1 ∗ dt
· · ·
FROM TotalOutput o

WHERE s.id = o.id

6.3 Casanova implementation

The process of evaluating actions was added to Casanova, which, using a compiler, gen-
erates assembly code specific for each action. The generated code executes the actions
at each game frame. Besides, the compiler checks that the targets are valid and that the
fields used in all the predicates are contained in those entities. To improve performance
an index is built at compile time, to speed up resolution of radius restrictions. The
implementation uses type attributes for actions, so the syntax is different even though
there is a mapping between elements of the syntax presented here and those of the
concrete syntax.
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Chapter 7

Case study

We now present an RTS game we used as a case study and the benchmarks that test the
action implementation. We call this game “CS” for “case study.” In the game players
must conquer a star system made up of various planets. Each planet builds fleets which
are used to fight the fleets of the other players and to conquer more planets. A planet
is conquered when a fleet of a player is near it and no other enemy fleet is defending it.

7.1 Case study

Three actions are required in this game: The first action, called Fight Action, defines
how a fleet fights enemy fleets in range. The fight action subtracts 0.5 · dt life points
to the enemy fleet during every action tick (every frame) which are in range.

Fleet = {Position: Rule Vector2;FightAction: FightAction;

Owner: Ref Player;Life: Var float32;Fight: FightAction }

The fight action is defined as follows:

FightAction = TARGET Fleet; RESTRICTION Owner <> Owner;

RADIUS 150.0; TRANSFER CONSTANT Life - 0.5;

The action target is an entity whose type is Fleet, the condition to execute the action
is that the fleet must be an enemy, so the fleet owner must be different as specified in
the Restriction clause. The attack range is 150 units of distance, so the Radius will
be 150. When atacked 0.5 life points are subtracted at every attack.

The second action is called BuildAction and allows a planet to create a ship. In order
to build a ship, a planet must gather 10 mineral units. Each planet has a field called
GatherSpeed which determines how fast it gathers minerals. Every tick the planet
mineral stash is increased by this amount. This action is a threshold action where the
threshold value is the minerals of the planet. As soon as the threshold value is reached,
we set the field NewFleet to TRUE (it is used by the engine to create a new fleet) and
Minerals to 0 to reset the counter. The planet and its actions are:
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Planet = {Position: Vector2;Owner: Rule Ref Player;NewFleet:

Rule bool;BuildAction:BuildAction;

EnemyOrbitingFleetsAction : EnemyOrbitingFleetsAction;

GatherSpeed: float32;Minerals: Var float32 }

BuildAction =

TARGET Self; TRANSFER CONSTANT Minerals + GatherSpeed;

THRESHOLD Minerals 10.0; OUTPUT NewFleet := true; OUTPUT

Minerals := 0.0

A Casanova rule is appointed to read the value of NewFleet and, if it is true, it spawns
a new fleet.

The third action is required to check if a planet can be conquered by a fleet. A fleet can
conquer a planet if there is no enemy fleet near it and if it is close enough. Thus the
action definition will be the following:

EnemyOrbitingFleetsAction =

TARGET Fleet; RESTRICTION Owner Not Eq Owner; RADIUS 25.0;

INSERT Owner -> EnemyOrbitingFleets

The action will add an enemy fleet close enough in a data structure used by a Casanova
rule to change the owner of the planet.

Even the concept of drawing lasers can be implemented using the INSERT clause simply
adding it to FightAction which inserts in a list all the targeted ships positions. In this
way we can draw a laser from the source position to the target position. We omit this
aspect for brevity.

7.2 REA in action

Below we show a complete example of an RTS game written with the actual implemen-
tation of REA in Casanova. We omit the initial world and the world definition because
they do not use such pattern and are useless to our demonstration. The sample actually
run and can be downloaded at the Casanova website together with others samples which
use REA as a way to define resources exchange between entities.

The star system is a CasanovaWorld, in that it acts as a local root for all the entities it
contains. Those entities do not know anything about the game world and can only in-
teract with the other entities inside the star system itself. The star system contains:(i)a
reference to the drawable layers; it is important that layers, inside the star system act
as a reference, otherwise everything will be rendered twice, (ii) a list of planets, (iii) a
list of fleets, (iv) a list of references to players.
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type [<CasanovaWorld >] StarSystem =

{

Layers : Ref <Layers >

Planets : List <Planet >

Fleets : RuleList <Fleet >

Players : Ref <Player >[]

} with

We create the star system from the players and the layers. First of all we convert all
players to references then we initialize a randomized grid of planets from a list of possible
planet textures and sizes.Bigger planets build ships faster.

static member Create(players:Player[], layers) =

let players = [| for p in players do yield ref p |]

let mutable planets = []

for i = -10 to 10 do

for j = -10 to 10 do

if random_interval 0 10 <= 3 then

let texture ,size =

[

@"RTS\Planets\earth", 50.f

@"RTS\Planets\findolfin.png", 30.f

@"RTS\Planets\fungo.png", 40.f

@"RTS\Planets\ice.png", 50.f

@"RTS\Planets\marte.png", 40.f

@"RTS\Planets\pluto.png", 30.f

@"RTS\Planets\saturn.png", 70.f

@"RTS\Planets\thor.png", 80.f

] |> List.RandomElement

let new_planet = Planet.Create(Vector2.Create(i, j

) * 120.0f + Vector2.Create(random_range -25.0f

25.0f, random_range -25.0f 25.0f) * 0.25f,

layers , texture , size , players .[ (

random_interval 0 players.Length) ])

do planets <- new_planet :: planets

{

Players = players

Layers = ref layers

Planets = planets

Fleets = RuleList.Create (fun () -> Seq.empty)

}
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The fleets list is updated by keeping all the fleets that are still alive, plus all the fleets
from planets that just finised building; when a planet is done building it will set, for
just one frame, the NewFleet field to true. Notice that we do not build more than a
given number of fleets in total.

static member FleetsRule(self : StarSystem) =

seq{

for p in self.Planets do

if !p.NewFleet && self.Fleets.Value |> Seq.length <

300 then

yield Fleet.CreateFrom (!(!p.Owner), 1.0f, p.

Position , @"RTS\Ships\ship", !self.Layers)

for f in self.Fleets do

if !f.Life > 0.0f then

yield f }

Fleets implement a large portion of the logic of the game. A fleet handles basic flocking
and path-finding, maintains information on its owner, handles battles, and draws its
texture, selection halo, lasers, and health bar. Position, target, velocity and max speed
determine movement for the ship. Neighboring fleets contains all the nearby fleets in
order to avoid excessive superposition. The list is filled by the FindNeighboringFleet-
sAction, which performs spatial optimizations in order to find the neighbors quickly.
Fighting involves the current health of the ship and the fight action which takes care of
modifying the life of ships when enemies enter in range. The fight action also fills the
laser targets with all the fleets that are currently being attacked; these fleets are then
linked to the current one by lines that represent lasers. The ship draws its own texture,
a shadow that shows the color of the owner and the current selection, and a line that
represents the fleet’s health.

and [<CasanovaEntity >] Fleet =

{

Position : Rule <Vector2 <m>>

Target : Var <Vector2 <m>>

Velocity : Rule <Vector2 <m/s>>

MaxSpeed : Var <float32 <m/s>>

NeighbouringFleets : RuleList <Vector2 <m>>

FindNeighbouringFleetsAction :

FindNeighbouringFleetsAction

Owner : Ref <Player >

Life : Var <float32 >

Fight : FightAction

LaserTargets : RuleList <Ref <Fleet >>

Lasers : RuleList <Line >

Appearance : Sprite

FleetShadow : Sprite
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Stats : Line

Selected : Var <bool >

} with

LasersRule: create one line for each laser target from self to the target. this.SetTarget :
when a new target is sent to this fleet, then zero the velocity and set the target.
StatsSourceRule: the health bar moves with the fleet. StatsDestRule: the length of
the health bar reflects the health; longer = healthier. StatsColorRule the color of the
health bar reflects the health; greener = healthier. AppearancePositionRule: the tex-
ture moves with the fleet. FleetShadowPositionRule: the shadow moves with the fleet.
FleetShadowScaleRule: the shadow is bigger and darker when the ship is selected. Neigh-
bouringFleetsRule: the velocity moves towards the target, but it also moves away from
the neighboring fleets. The neighboring fleets are filled by the FindNeighbouringFleets-
Action action with a spatial partitioning optimization. PositionRule: the position of a
fleet is updated by its velocity, unless it reached its target.

static member LaserTargetsRule(self:Fleet) : seq <Ref <Fleet

>> = Seq.empty

static member LasersRule(world:StarSystem , self:Fleet) =

seq{

for t in self.LaserTargets do

let t = !t.Value.Position

yield Line.Create ((! world.Layers).Overlay , !self.

Position * 1.0f<_>, t * 1.0f<_>, @"UI\laser",

Color.White , 1.0f)

}

member inline this.SetTarget(target : Vector2 <m>) =

this.Velocity := Vector2.Create (0.0f)

this.Target := target

static member StatsSourceRule(self:Fleet) = !self.Position

+ Vector2.UnitY * 10.0f - Vector2.UnitX * 5.0f

static member StatsDestRule(self:Fleet) = !self.Position +

Vector2.UnitX * !self.Life + Vector2.UnitY * 10.0f -

Vector2.UnitX * 5.0f

[<RuleUpdateFrequency(UpdateFrequency.AI) >]

static member StatsColorRule(self:Fleet) = Color.Lerp(

Color.Red , Color.Green , !self.Life / 10.0f)

static member AppearancePositionRule(self:Fleet) = !self.

Position

static member FleetShadowPositionRule(self:Fleet) = !self.

Position

[<RuleUpdateFrequency(UpdateFrequency.Interactive) >]

static member FleetShadowScaleRule(self:Fleet) =

if !self.Selected then Vector2 1.25f else Vector2 1.0f
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[<RuleUpdateFrequency(UpdateFrequency.Interactive) >]

static member FleetShadowColorRule(self:Fleet) =

if !self.Selected then (!self.Owner).Color else Color.

Lerp ((! self.Owner).Color , Color.White , 0.25f)

static member NeighbouringFleetsRule(self:Fleet) : seq <

Vector2 <m>> = Seq.empty

[<RuleUpdateFrequency(UpdateFrequency.AI) >]

static member VelocityRule(star_system:StarSystem ,self:

Fleet ,dt:float32 <s>) =

let target_distance = Vector2 <m>. Distance (!self.Position

,!self.Target)

let repulsions =

seq{

for f’ in self.NeighbouringFleets do

let strength = smoothstep(Vector2.Distance(f’, !

self.Position) / 50.0f<m>) 5.0f 0.0f

let away =

if Vector2.Distance (!self.Position , f’) <= 0.1f<

m> then Vector2.Create(random_interval -1 1,

random_interval -1 1) * 5.0f

else Vector2.Normalize (!self.Position - f’)

yield away * strength

}

let repulsions = repulsions |> Seq.fold (+) Vector2.Zero

let try_normalize (v:Vector2 <1>) =

if v.Length <= 0.1f then v

else v |> Vector2.Normalize

let velocity ’=

if target_distance < 0.1f<m> then

(repulsions |> try_normalize) * !self.MaxSpeed

else

(!self.Target - !self.Position).Normalized * !self.

MaxSpeed + (repulsions |> try_normalize) * !self.

MaxSpeed

Vector2.Lerp(!self.Velocity , velocity ’, dt * 1.0f<_>)

static member PositionRule(star_system:StarSystem ,self:

Fleet ,dt:float32 <s>) =

let target_distance = Vector2 <m>. Distance (!self.Position

,!self.Target)

let new_position = !self.Position + dt * !self.Velocity

if target_distance < 0.1f<m> then

!self.Target

else
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new_position

We create a new fleet with empty counters, loaded textures, and full life.

static member CreateFrom(owner : Player , laser ,

planet_position : Vector2 <m>, texture , layers : Layers)

: Fleet =

let pos = planet_position - Vector2 <m>. UnitY * 70.0f

{

LaserTargets = RuleList.Create(fun () -> Seq.

empty)

NeighbouringFleets = RuleList.Create(fun () -> Seq.

empty)

Lasers = RuleList.Create(fun () -> Seq.

empty)

Position = Rule.Create(planet_position + Vector2 <m

>. Create(random_range -1.0f 1.0f, random_range -1.0

f 1.0f) * 10.0f)

FleetShadow = Sprite.Create(layers.Planets ,

planet_position * Vector2.One , Vector2 <pixel >.One *

70.f, @"UI\selection_frame", owner.Color)

Target = var(planet_position + Vector2.Create(

random_range -1.0f 1.0f, random_range -1.0f 1.0f) *

50.0f)

Velocity = Rule.Create(Vector2.Zero)

MaxSpeed = var 50.0f<m/s>

Owner = ref owner

Life = var 10.0f

Stats = Line.Create(layers.Overlay ,

planet_position * 1.0f<_>, planet_position * 1.0f

<_>, @"UI\white_pixel", Color.White , 5.0f)

Appearance = Sprite.Create(layers.Fleets ,

planet_position * Vector2.One , Vector2 <pixel >.One *

50.f, texture)

Selected = var false

Fight = FightAction

FindNeighbouringFleetsAction =

FindNeighbouringFleetsAction

}

Planets mainly handle building of new fleets. When an enemy fleets are the closest to the
planet, then it is conquered and it changes owner. Building of fleets is done through the
BuildAction action which accumulates minerals. When the target amount of minerals
is reached, then NewFleet is set to true for one frame. The planet also stores a position,
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an owner, and its visuals. The visuals are made up of a texture for the planet, a bar
that signals building completion, and a halo that determines the planet owner.

and [<CasanovaEntity >] Planet =

{

Position : Vector2 <m>

Owner : Rule <Ref <Player >>

Appearance : Sprite

PlanetShadow : Sprite

Stats : Line

NewFleet : Rule <bool >

BuildAction : BuildAction

GatherSpeed : float32

Minerals : Var <float32 >

EnemyOrbitingFleets : RuleTable <Ref <Player >>

EnemyOrbitingFleetsAction : EnemyOrbitingFleetsAction

} with

PlanetShadowColorRule: the color of the background halo of the planet is the same
as the planet owner. It is updated with low frequency. StatsDestRule: the stats bar
length depends on the amount of gathered minerals. It is updated with low frequency.
StatsColorRule: the stats bar color depends on the amount of gathered minerals. It is
updated with low frequency. EnemyOrbitingFleetsRule: the owner is changed if only
enemy fleets are orbiting the planet. It is updated with low frequency. NewFleetRule:
is reset to false after every tick, but it is set to true by the BuildAction action.

[<RuleUpdateFrequency(UpdateFrequency.AI) >]

static member PlanetShadowColorRule(self:Planet) = (!(!

self.Owner)).Color

[<RuleUpdateFrequency(UpdateFrequency.AI) >]

static member StatsDestRule(self:Planet) = self.Position +

Vector2.UnitX * !self.Minerals * 2.0f + Vector2.UnitY

* 10.0f - Vector2.UnitX * 10.0f

[<RuleUpdateFrequency(UpdateFrequency.AI) >]

static member StatsColorRule(self:Planet) = Color.Lerp(

Color.CornflowerBlue , Color.GreenYellow , !self.Minerals

/ 10.0f)

static member EnemyOrbitingFleetsRule(self : Planet ,

star_system : StarSystem) : seq <Ref <Player >> = Seq.

empty

[<RuleUpdateFrequency(UpdateFrequency.AI) >]

static member OwnerRule(self : Planet , star_system :

StarSystem) =

if Seq.isEmpty self.EnemyOrbitingFleets then

!self.Owner

72



else

Seq.head self.EnemyOrbitingFleets

static member NewFleetRule(self : Planet , star_system :

StarSystem) = false

We create a new planet with empty counters and loaded visuals.

static member Create(position , layers , texture , size :

float32 , owner : Ref <Player >) =

{

EnemyOrbitingFleetsAction = EnemyOrbitingFleetsAction

EnemyOrbitingFleets = RuleTable.Create(fun () -> Seq.

empty)

Position = position

Appearance = Sprite.Create(layers.Planets , position

* Vector2.One , Vector2 <pixel >.One * size , texture)

PlanetShadow = Sprite.Create(layers.Planets , position

* Vector2.One , Vector2 <pixel >.One * size * 1.5f<_

>, @"UI\selection_frame")

Stats = Line.Create(layers.Overlay , position *

1.0f<pixel/m> + Vector2.UnitY * 10.0f - Vector2.

UnitX * 10.0f, position * 1.0f<pixel/m>, @"UI\

white_pixel", Color.White , 5.0f)

Owner = Rule.Create(owner)

NewFleet = Rule.Create false

BuildAction = BuildAction

GatherSpeed = size / 50.0f

Minerals = var 0.0f

}

The player simply contains a name and a color.

and [<CasanovaEntity; ReferenceEquality >] Player = {

Name : string

Color : Color

} with static member Create(name , color) = { Name = name;

Color = color}

The EnemyOrbitingFleetsAction selects the enemy fleets which are orbiting within a
ray of 25 around the planet.

and [<Action.Action(Target = "Fleet");

Action.Restrict(Condition = Action.Condition.NotEqual

, Field = "Owner");
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Action.Insert(Value = "Owner", To = "

EnemyOrbitingFleets");

Action.Radius (25.0f)

>] EnemyOrbitingFleetsAction =

EnemyOrbitingFleetsAction

The fight action subtracts 0.5*dt during every tick from the life of the enemy fleets that
are within range. All laser targets are added to the LaserTargets list of the source fleet.

and [<Action.Action(Target = "Fleet");

Action.Restrict(Condition = Action.Condition.NotEqual

, Field = "Owner");

Action.Transfer(Operation = Action.Operation.Subtract

, From = "0.5", To = "Life");

Action.Insert(Value = "this", To = "LaserTargets");

Action.Radius (150.0f)

>] FightAction = FightAction

The FindNeighbouringFleetsAction adds nearby fleets to the NeighbouringFleets list,
so that the flocking algorithm can avoid collisions.

and [<Action.Action(Target = "Fleet");

Action.Insert(Value = "Position", To = "

NeighbouringFleets");

Action.Radius (25.0f)

>] FindNeighbouringFleetsAction =

FindNeighbouringFleetsAction

BuildAction adds GatherSpeed*dt to Minerals inside a planet. When Minerals reaches
the 10.0 threshold, then NewFleets is set to true and Minerals is reset to 0.

and [<Action.Action(Target = "Self");

Action.Transfer(Operation = Action.Operation.Add , From

= "GatherSpeed", To = "Minerals");

Action.Threshold(Field = "Minerals", Value = "10.0");

Action.Output(Operation = Action.Operation.Set , Value

= "true", To = "NewFleet");

Action.Output(Operation = Action.Operation.Set , Value

= "0.0", To = "Minerals")>] BuildAction =

BuildAction
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Chapter 8

Evaluation

We now present the benchmarks that test the action implementation.

8.0.1 Evaluation

We evaluate the performance of actions with the CS case study of the previous subsection
and with an additional example. The additional example is a shooter where the player
moves a ship and fires at incoming asteroids. We used actions to model the damage
interactions between projectiles and asteroids. Table 8.1 shows a code length comparison
between the implementation with actions and standard Casanova rules for CS, Asteroid
Shooter and an expanded version of CS with more complex rules, which is used only
for comparing the code length and not the performances since the first two samples are
enough.

We note that in games with basic dynamics the code saving is not very high due to the
fact that the repeated patterns are not many. The advantage of using actions becomes
evident in a game with actions involving many types of targets, such as the expanded CS
game: without the use of actions, the code related to each interaction would be repeated
for each type of target while, with actions, the code is always the same. Furthermore we
managed to drastically increase the performance of the game logic: as we can see from
Figure 8.1, using R.E.A. (labeled “with actions”) gives us a speedup between 6 times
and 25 times thanks to automated optimizations in the query evaluation. We also note
that our implementation is flexible and general since it is possible to use our actions to
express a behavior, such as a projectile collision, which is not strongly related to RTS
games, since in those games player do not shoot manually a target but it is the game
entity which automatically attacks nearby targets.
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Table 8.1: CS (case study),Asteroid Shooter and Extended CS code length
Game Entities Rules Actions Total

CS with REA 41 71 19 131
CS without REA 40 90 0 130
Asteroid shooter with REA 33 33 6 72
Asteroid Shooter without REA 34 44 0 78
Extended CS with REA 135 138 40 313
Extended CS without REA 135 328 0 463

Fig. 8.1: Frame rate as a function of numbers of entities
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Chapter 9

Conclusions

In this thesis we are concerned with the problem of finding a general way to define
RTS games. This problems manifests itself in the boilerplate code that developers have
to write when they are rewriting common patterns identified during the generalization
process.

The results are:

� A design pattern for making RTS games where the interaction among entities
can be reduced to a dynamic exchange of resources.

� An expressive, high performance language extension to Casanova with a com-
piler and an appropriate grammar with new syntax and semantic. The leanguage
extension is purely declarative. Its semantics resemble SQL.

� An evaluation with three examples provides evidence for increases in programming
efficiency.

� The evaluation shows an increase in run time efficiency of 6 to 25 times for the
Casanova language, using a native code compiler/opimizer.

Even better results could be obtained with an actual access plan optimizer that would
increase the performance when exploring the structure of both the action query and
the entity structure. Given the significant results on position indexing, the chance of
defining multi-attribute indexes would increase the performance. Finally, a system like
F# quotations [38] might be used to increase the expressiveness of the actions.
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