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Abstract

In this thesis we discuss problems emerging in the application of

Markov Switching (MS) models both in Economics and Finance. The

aim of the study is to propose solutions for model selection and esti-

mation of multiple time series subject to regime shifts. In Chapter 1

we review the literature about dynamic systems for modeling time se-

ries with changes in regimes. In the second Chapter we investigate the

problem of determining the number of regimes in MS-VARMA models

and describe methods for model selection based on the autocovariance

function and on stable representation of the system. Application to

business cycle analysis is conducted. In Chapter 3 we introduce MS

models for volatility of financial data and propose a unified frame-

work for estimating MS-GARCH and MS-Stochastic Volatility mod-

els (duality result). In the fourth Chapter we explore other questions

concerning with MS models as estimation and spectral representation.

With regards to the first, we obtain simple matrix formulae for max-

imum likelihood estimates of parameters in the class of MS-VAR and

conditional heteroskedastic models. This allows us to determine ex-

plicitly the asymptotic variance-covariance matrix of the estimators,

thus giving a concrete possibility for the use of classical testing pro-

cedure. Concerning the second, we study the properties of spectral

density function for MS-VAR models and derive close-form formulae

for the spectral density. Several simulation exercises and applications

to macroeconomic and financial data complete the work.
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Introduction

This thesis discusses problems emerging in the study on non linear econometrics

models that embed changes in regime: Markov Switching (MS) models. The

study presents a statistical analysis of some MS models, such as MS-VARMA,

MS-GARCH and MS-SV models, and it is completed with several applications in

Economics and Finance. The content of the thesis consists of a review on existing

literature and five original papers, which are presented in details hereafter.

In Chapter 1 we review the literature about dynamic systems for modeling time

series with change in regimes. In particular, we develop some arguments from

Gourieroux and Monfort (1997), Hamilton (1990, 1993, 1994), Kim (1994) and

Krolzig (1997). These contents are convenient for next arguments since we will

study Markov switching (MS) models taking advantage of suitable state space

representations of them.

Chapter 2 is composed by two original papers. In the first we obtain stable

VARMA representations of certain Autoregressive (AR) and Moving Average

(MA) models with MS parameters, and examine how these representations may

be exploited in order to determine empirically a lower bound for the number of

Markov regimes. The results given in this work provide an improvement on the

bounds found in earlier literature on the subject. In particular, the upper bounds

for the stable VARMA orders are elementary functions of the dimension of the

process, the number of regimes, the AR and MA orders of the initial model. If

there is no cancellation, the bounds become equalities, and this solves the iden-

tification problem. Moreover, we provide an algorithm for model selection based

on the results obtained in the paper where the orders of the switching model and

xiii



0. INTRODUCTION

the number of regimes are all unknown; the performance is evaluated with Monte

Carlo experiments. An exercise on real data is also provided. This paper is forth-

coming in the Journal of Time Series Analysis with the title ”Determining the

Number of Regimes in Markov Switching VAR and VMA Models”. A working

paper version can be found in the University of Venice Working Paper Series (n.

3/2013) and it coincides with the text included in this thesis. The results of this

paper have been presented at the PhD Workshop - CEMFI (Madrid, Spain, 2012),

6th CSDA International Conference on Computational and Financial Economet-

rics (Oviedo, Spain, 2012), QED Jamboree (Vienna, Austria, 2013) and 1st CIDE

Workshop for PhD students in Econometrics and Empirical Economics - WEEE

(Perugia, Italy, 2013).

In the second paper of Chapter 2 we consider a generalization of MS-VARMA

models. In particular, we deal with the case in which the intercept term depends

not only on the actual regime, but also on the last r regimes. We show that the

most used models for business cycle analysis can be comprised into these latter

models. Then we obtain their stable VARMA representation whose orders can

be determined by evaluating the autocovariance function of the initial switching

model. Secondly, related to the first result, we are able to propose a new and more

rigorous way for the determination of the number of regimes. The application

focuses on US and European business cycles and concludes that two regimes are

sufficient for US economy, while the Euro area exhibits strong non-linearities and

more regimes, particularly four, are necessary. The estimation of the model gives

opportunity to identify regimes of this economic system. This paper is forthcom-

ing in the journal Rivista Italiana degli Economisti with the title ”Business Cycle

and Markov Switching Models with Distributed Lags: A Comparison Between US

and Euro Area” (joint with Monica Billio). It has been presented at 54th Riu-

nione Scientifica Annuale della Societá Italiana degli Economisti (Bologna, Italy,

2013) and Economic Seminar Series (University of Modena and Reggio Emilia,

Modena, Italy, 2013).

In Chapter 3 we study MS models for volatility: MS-GARCH and MS-SV models.

More precisely, we can rewrite these models in suitable state space representa-

tions and propose approximated linear filters following the line of Kim and Nelson

xiv



(1999). Then we prove a duality theorem in the estimation of MS-GARCH by

Kalman filter and various auxiliary models previously proposed in the litera-

ture. Finally, we apply these results to a simulation study and treasury bill rates

showing that the proposed methods have the advantage of avoiding fine-tuning

procedures implemented in most Bayesian estimation techniques. This work is

currently submitted for publication with the title ”Markov Switching Models for

Volatility: Filtering, Approximation and Duality”.

Chapter 4 is composed by two papers. In the first paper we provide simple

matrix expressions for the maximum likelihood estimates (MLE) and compute

explicitly their corresponding limiting covariance matrices for three classes of

MS-VAR models, namely: (i) Markov switching vector independent and identi-

cally distributed (i.i.d.) process (MS-VAR(0)), (ii) Markov switching vector au-

toregressions driven by i.i.d. innovations (MS-VAR(p)) and (iii) Markov switch-

ing autoregressions driven by Markov-switching vector ARCH(q) models (MS-

VARCH(p, q)). Here, the MS-VARCH model is in the framework of the Baba,

Engle, Kraft and Kroner (BEKK) formulation (see also Engle and Kroner, 1995).

Furthermore, we prove consistency and asymptotic normality of MLE for such

models. This paper entitled ”Analysis of the Likelihood Function for Markov

Switching VAR(CH) Models” is currently in its working paper version.

In the second paper of Chapter 4 we derive close-form formulae for the spectral

density function of MS-VAR models and use these findings to investigate via spec-

tral analysis whether S&P500 stock market returns suffer of structural changes

rather than long memory. This paper entitled ”Spectral Density of Regime Switch-

ing VAR Models” was presented at the Conference Complex Data Modelling and

Computationally Intensive Statistical Methods for Estimation and Prediction -

S.Co.2013 (Politecnico di Milano, Italy, 2013).

This thesis contributes to the literature on Markov Switching models both in

Economics and Finance, gives new methods for the statistical and econometric

analysis of such models. The proposed methods are of service for practioners in

model selection and estimation and offer new insights that can be developed for

future research.
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Chapter 1

Some of Representations of

Dynamic Systems.

Modeling Time Series with

Changes in Regimes

Abstract. In this work we study the connections between various representations of dynamic

systems, with major attention to ARMA and State-Space representations. Then we illustrate

the main results and basic properties of time series subject to Markovian changes in regime.

An EM algorithm for obtaining maximum likelihood estimates of parameters for such processes

is also presented. Our discussion is based on the fundamental work developed by Hamilton,

Kim, and Krolzig. All these arguments are then extended to general state-space models with

Markov switching, for which basic filtering, smoothing, and forecasting algorithms are completely

described. Finally, a strategy for simultaneously selecting the number of regimes and the order

of the autoregression completes the paper. [JEL Classification: C01, C05, C32]

Keywords: Time series, ARMA, State-Space models, Markov chains, changes in regime, filtering,

smoothing, forecasting, EM algorithm, test on regime number.
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1. SOME OF REPRESENTATIONS OF DYNAMIC SYSTEMS.
MODELING TIME SERIES WITH CHANGES IN REGIMES

1.1 Introduction

In this chapter we review some literature that is going to be convenient for arguments developed

in the present work. Firstly, we introduce ARMA and ARIMA processes and their state space

representations, following mainly Gourieroux-Monfort’s book [1]. This is valuable since in

Chapters 2 and 4 we study VARMA models with change in regime taking advantage from

suitable state space representations of them. Then we illustrate in details the econometric tools

used to statistically analize time series with change in regimes. In this context, we completely

describe an EM algorithm to obtain maximum likelihood estimates using different sources,

especially the seminal paper of Hamilton [2] and Krolzig’s book [6]. Moreover, we present

Markov switching state space systems following Kim [5] and we give extensive proofs of the

filtering and smoothing algorithms to make the reading self-contained. Finally, we discuss some

results obtained by Krolzig [6] on regime number’s determination for various classes of Markov

switching VARMA models. In the next chapter of the thesis we will extend this kind of results

for more general Markov switching processes, together with new algebraic findings. This will

be completed with numerical and empirical applications, with some focus on business cycle

analysis.

1.2 ARMA and ARIMA Representations

Let y = (yt) be an n-dimensional process, i.e., yt = (y1t . . . ynt)
′ is the n-vector at time t.

A white noise ε = (εt) is a n-dimensional process with zero mean and nonsingular variance-

covariance matrix Ω 1. The process y admits an ARMA(p, q) representation (or it is called an

Autoregressive-Moving Average of orders p and q) if it satisfies a difference equation

(1) Φ(L)yt = Θ(L)εt

where Φ(L) =
∑p
i=0 ΦiL

i and Θ(L) =
∑q
j=0 ΘjL

j are (n × n)-matrix polynomials in the

lag operator L, Φ0 = Θ0 = I (identity matrix), Φp 6= 0, Θq 6= 0. Here the variables

1The present and the next two Sections are based on the arguments treated in Chapters
2-8 of the Gourieroux-Monfort book [1]

2



1.2 ARMA and ARIMA Representations

y−1, ...,y−p, ε−1, ..., ε−q are assumed to be uncorrelated with εt for every t ≥ 0. If q = 0

(resp. p = 0), the process can be written as Φ(L)yt = εt (resp. yt = Θ(L)εt) and it is called

an autoregressive of order p, AR(p) (resp. a moving average of order q, MA(q)). The above

equation defines the process y without ambiguity. In fact, the long right-division of I by Φ(L)

gives

I = Qt(L)Φ(L) + Lt+1Rt(L)

with degree Qt(L) = t and degree Rt(L) ≤ p−1. This division may be carried out since Φ0 = I

is invertible. Premultiplying (1) by Qt(L), we get

(2)

yt = Qt(L)Θ(L)εt + Rt(L)y−1

=

t∑
j=0

Hjεt−j +

q∑
j=1

h̃j(t)ε−j +

p∑
j=1

h∗j (t)y−j

=

t∑
j=0

Hjεt−j + h̃(t)z−1

Thus y admits a linear representation with a sequence of coefficients given by H(z) = Φ−1(z)Θ(z)

and by initial condition

z−1 = (ε−1 . . . ε−q y−1 . . .y−p)
′.

The coefficient matrix h̃(t) = (h̃1(t) . . . h̃q(t) h∗1(t) . . . h∗p(t)) is deterministic and depends on

the time. The matrices Hj are called the Markov coefficients. Setting ε̃t = εt for every t ≥ 0,

and ε̃t = 0 for t < 0, Equation (2) becomes

(3) yt = H(L)ε̃+ h̃(t)z−1 =

+∞∑
j=0

Hj ε̃t−j + h̃(t)z−1

with H(L) =
∑+∞
j=0 HjL

j .

The distribution of the process y can often be summarized by the first two moments (which we

will assume to exist). For this, we impose that the sequence of the Markov coefficients (Hj)j≥0

is absolutely summable, i.e.,
+∞∑
j=0

||Hj || < +∞
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1. SOME OF REPRESENTATIONS OF DYNAMIC SYSTEMS.
MODELING TIME SERIES WITH CHANGES IN REGIMES

The mean of yt is given by

mt = E(yt) = h̃(t)E(z−1)

The autocovariances can be obtained from the assumption of uncorrelation

Γ(t, h) = cov(yt,yt−h)

= cov(

t∑
j=0

Hjεt−j ,

t−h∑
`=0

H`εt−h−`) + cov(h̃(t)z−1, h̃(t− h)z−1)

=

t∑
j=0

HjΩH
′

j−h + h̃(t)var(z−1)h̃(t− h)
′

where we used the convention Hj = 0 if j < 0.

The process y = (yt) as in (3) with H0 = I admits an autoregressive form. As H0 = I is

invertible, the long right division of I by H(L) gives

I = Pt(L)H(L) + Lt+1Nt(L)

where Pt(L) has degree t. Premultiplying (3) by Pt(L), we get

Pt(L)yt = ε̃t −Nt(L)ε̃−1 + Pt(L)h̃(t)z−1 = εt + Pt(L)h̃(t)z−1

as ε̃t = εt if t ≥ 0 and ε̃−1 = 0. We see that

Pt(L) = I + Π1L+ ΠtL
t

with

Π(z) =

+∞∑
j=0

Πjz
j = H(z)−1

Setting ỹt = yt if t ≥ 0, ỹt = 0 if t < 0, h∗(t) = h̃(t) if t ≥ 0, and h∗(t) = 0 if t < 0, we obtain

(4) Π(L)ỹt = εt + Π(L)h∗(t)z−1

A process y = (yt) is called stationary if the mean mt and the autocovariances Γ(t, h) are
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1.2 ARMA and ARIMA Representations

independent of t. In this case, we set mt = m (constant) and Γ(t, h) = Γ(h).

Theorem 2.1 Let y = (yt) be a stationary process.

i) Then y admits an infinite moving average representation MA(∞):

yt =

+∞∑
j=0

Hjεt−j + m

ii) Suppose that y has an ARMA representation (1) and that the polynomial det Θ(z), z ∈

C, has all its roots strictly outside the unit circle. Then y admits an infinite autoregressive

representation AR(∞)

εt =
+∞∑
j=0

Πjyt−j

where Π(L) = Θ(L)−1Φ(L).

Proof. (i) follows immediately from (3) as

m = mt = h̃(t)z−1,

for every t.

(ii) The condition on the roots of det Θ(z) implies the invertibility of the operator Θ(L)

defined on the values of a stationary process. �

A process ỹ = (ỹt) is said to be asymptotically stationary if there exists a stationary process

y = (yt) such that

limt→+∞E||yt − ỹt||2 = 0

In this case, we say that y (asymptotically) approximates ỹ.

Theorem 2.2

(i) If either z−1 = 0 or limt→+∞h̃(t) = 0 and
∑+∞
j=0 ||Hj || < +∞, then the process

ỹt = H(L)ε̃+ h̃(t)z−1

is asymptotically stationary.
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(ii) If either z−1 = 0 or limt→+∞h∗(t) = 0 and
∑+∞
j=0 ||Πj || < +∞, then the process

ỹ = (ỹt) given by

Π(L)ỹt = εt + Π(L)h∗(t)z−1

is asymptotically stationary.

To end this section we describe a generalization of ARMA processes, called ARIMA pro-

cesses. A process y = (yt) admits an ARIMA representation (or it is called an Autoregressive

Integrated Moving Average) if it satisfies a difference equation of type Φ(L)yt = Θ(L)εt as

above, where det Θ(z), z ∈ C, has all its roots outside the unit circle and det Φ(z) has all its

roots outside the unit circle but some of them equal to one.

Such processes are introduced especially for the following case. Given the first-difference

operator

∆yt = yt − yt−1 = (1− L)yt

set

Φ(L) = φ(L)∆d = φ(L)(1− L)d

where det φ(z) has all its roots outside the unit circle. The model becomes

(5) φ(L)(1− L)dyt = Θ(L)εt

If degree φ(L) = p and degree Θ(L) = q, then y = (yt) is said to have an ARIMA(p, d, q)

representation. In this case, Relation (5) can be written in the form

(6) ∆dyt = φ(L)−1Θ(L)ε̃t + Rt(L)∆dy−1 +

q∑
j=1

h̃j(t)ε−j

where Rt(L) is the remainder of the long division of I by φ(L) up to order t and h̃j(t), j = 1, ..., q,

are linear combinations of the coefficients of order t, t − 1, ..., t − q − 1 of the quotient of I by

φ(L). When t goes to infinity, the second and third summands in (6) vanish, so (∆dyt) tends to

the stationary process φ(L)−1Θ(L)ε̃t. Finally, we mention that the integer d can be interpreted

6
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as the order of the nonstationarity of an ARIMA process.

1.3 Characterizing ARMA Representations

1.3.1 Markov Coefficients

A process y = (yt) defined by yt = H(L)εt admits an ARMA(p, q) representation if and only

if there exist two (n× n)-matrix polynomials Φ(L) and Θ(L) such that

Φ(L)yt = Θ(L)εt ⇐⇒ Φ(L)H(L)εt = Θ(L)εt

with degree Φ(L) = p and degree Θ(L) = q. Since var(εt) = Ω is nonsingular, this is equivalent

to

Φ(L)H(L) = Θ(L)

which implies element by element

(7)

min(`,p)∑
j=0

ΦjH`−j =


Θ` if ` ≤ q

0 otherwise

Theorem 3.1 A process y = (yt), with yt = H(L)εt, admits an ARMA representation if and

only if the Markov coefficients sequence (Hj) satisfies a homogeneous linear difference equation

starting from a certain index.

Proof. Necessary Condition. From (7) we get

p∑
j=0

ΦjH`−j = 0

for all ` ≥ max(p, q + 1).

Sufficient Condition. Let us assume that the sequence (Hj) satisfies

p∑
j=0

ΦjH`−j = 0

7
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for all ` ≥ r ≥ p, and Φ0 = I. The term
∑p
j=0 ΦjH`−j is, by definition, the `-th coefficient of

the convolution product Φ ∗H where Φ = (Φ0,Φ1, . . . ,Φp,0,0, . . . ). Thus (Φ ∗H)` = 0 for

every ` ≥ r. This means that Φ(z)H(z) is a power series which does not contain terms of type z`

for ` ≥ r, i.e., it is a polynomial. Then the process y satisfies Φ(L)yt = Φ(L)H(L)εt = Θ(L)εt,

where Θ(L) = Φ(L)H(L) has finite degree. �

1.3.2 Hankel Matrix Rank

The condition on the Markov coefficients can be rewritten in terms of the infinite Hankel matrix

H =



H0 H1 H2 · · ·

H1 H2 H3 · · ·

H2 H3 H4 · · ·
...

...
...


The column (resp. row) rank of H is the largest number of linearly independent column

(resp. row) sequences of H. The rank of H is defined as

ρ(H) = supN,M ρ(HN,M )

where ρ(HN,M ) is the usual rank of the finite size matrix

HN,M =



H0 H1 · · · HM

H1 H2 · · · HM+1

...
...

...

HN HN+1 · · · HM+N


Of course, the above definitions coincide for finite size matrices. It turns out that the same

is true for infinite Hankel matrices.

Theorem 3.2 A process y = (yt), with yt = H(L)εt, admits an ARMA representation if and

only if the rank of the Hankel matrix H is finite.

Proof. Let us assume that H has a finite row rank r0. Then there exists an index r such
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that the rows of the submatrix 

H0 H1 · · ·

H1 H2 · · ·
...

...

Hr−1 Hr · · ·


contain a complete subsystem of rank r0. This implies that the rows (Hr Hr+1 · · · ) are linear

combinations of the preceding ones, i.e., there exist matrices Φ1, · · · ,Φr such that

(Hr Hr+1 · · · ) = −Φ1(Hr−1 Hr · · · )− · · · −Φr(H0 H1 · · · ).

In other words, there exist matrices Φ1, . . . ,Φr such that

r∑
j=0

ΦjH`−j = 0

for all ` ≥ r, with Φ0 = I. This reasoning can be reversed. Now the result follows from Theorem

3.1. �

The results of this section hold for the nonstationary case as in (3).

1.4 State-Space Representation

Let us consider a system S

(8)


zt+1 = Azt + But

yt = Czt + Dut

for t ≥ 0, where ut is m× 1, zt is K × 1, yt is n× 1 and the matrices A, B, C, D are K ×K,

K×m, n×K, n×m, respectively. The variables u (resp. y) are called inputs (resp. outputs or

observations) while z are called state variables. The first equation in (8), called state equation,

explains how the state variable evolves according to the input. The second equation, called

measurement equation, determines the output as a function of the state of the system. The

9
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system S can be seen as a linear map from the space of m-dimensional sequences (ut) to the

space of n-dimensional sequences (yt). This map, also denoted by S, is characterized by the

given matrices A, B, C, D and the initial condition z0. We write S = S(A,B,C,D, z0), and

call (A,B,C,D, z0) a representation of S. A system S admits many different representations.

In fact, for any nonsingular matrix Q of order K, we have

S(A,B,C,D, z0) = S(QAQ−1,QB,CQ−1,D,Qz0)

A representation (A,B,C,D, z0) of S is said to be minimal if A is of order K, where K is the

smallest possible size of the state vector. By successive substitutions in the state equation of

S, we get

(9) zt+1 = At+1z0 +

t∑
j=0

AjBut−j

Substituting (9) in the measurement equation yields

yt = C(Atz0 +

t−1∑
j=0

AjBut−1−j) + Dut = Dut +

t∑
j=1

CAj−1But−j + CAtz0

When the input u is an m-dimensional white noise ε, we see that yt has a moving average

representation

yt =

t∑
j=0

Hjεt−j + h̃(t)z0

where H0 = D, Hj = CAj−1B for every j ≥ 1, and h̃(t) = CAt. If we write down the moving

average expansions for successive values yt,yt+1, · · · , we get


yt

yt+1

...

 =


H1 H2 H3 · · ·

H2 H3 H4 · · ·
...

...
...



ε̃t−1

ε̃t−2
...



+


H0 0 0 · · ·

H1 H0 0 · · ·
...

...
...



ε̃t

ε̃t+1

...

+


h̃(t)

h̃(t+ 1)

...

 z0
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= H


ε̃t−1

ε̃t−2
...

+ T


ε̃t

ε̃t+1

...

+


h̃(t)

h̃(t+ 1)

...

 z0

Here T and H are infinite Toeplitz and Hankel matrices (the latter scaled down by one

element). Moreover, we have

H =



CB CAB CA2B · · ·

CAB CA2B CA3B · · ·

CA2B CA3B CA4B · · ·
...

...
...


=

=



C

CA

CA2

...


(
B AB A2B · · ·

)
= OC

where O is ∞×K and C is K ×∞. A representation (A,B,C,D, z0) of the system S, where

A is K ×K, is said to be observable (resp. controllable) if ρ(O) = K (resp. ρ(C) = K).

Theorem 4.1 A representation of a system S is minimal if and only if it is observable and

controllable.

Theorem 4.2 The Hankel matrix H of a state-space representation has a finite rank ≤ K.

Proof. We have ρ(H) = supN,Mρ(HN,M ) ≤ supN ρ(ON ) ≤ K, where ON is made of the

first N rows of O. �

Given an n-dimensional process y = (yt), with yt =
∑+∞
j=0 Hjεt−j , it admits an ARMA

representation if and only if ρ(H) is finite. Furthermore, it admits a state-space representation


zt+1 = Azt + Bεt

yt = Czt + εt

11
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for t ≥ 0, D = H0 = I if and only if ρ(H) is finite. The matrices H and H are different by n

columns, so that ρ(H) is finite if and only if ρ(H) is finite.

Theorem 4.3 A process y = (yt), with yt =
∑+∞
j=0 Hjεt−j and H0 = I, admits an ARMA

representation if and only if it has a state-space representation.

This equivalence can be expressed in terms of a transfer function. The transfer function of

an ARMA process Φ(L)yt = Θ(L)εt is given by

Φ(z)−1Θ(z) =

+∞∑
j=0

Hjz
j

The transfer function associated to a state-space representation is

+∞∑
j=0

Hjz
j = I +

+∞∑
j=0

CAj−1Bzj = I + C

+∞∑
j=0

Aj−1zj−1Bz = I + C(I−Az)−1Bz

Corollary 4.4 Any rational transfer function Φ(z)−1Θ(z), where Φi and Θj are square ma-

trices of order n can be written as

I + C(I−Az)−1Bz

where C,A and B are n×K, K ×K, and K × n, respectively. The reverse is also true.

To end the section we illustrate a state-space representation of an ARMA(p, q) model

yt = −φ1yt−1 − · · · − φpyt−p + θ1εt−1 + · · ·+ θqεt−q + εt

where φi and θj are (n× n)-matrices, and yt and εt are (n× 1)-vectors.

Let

zt = (y
′

t−1 . . .y
′

t−pε
′

t−1 . . . ε
′

t−q)
′

be the lag-vector. It is easily seen that yt and zt evolve according to the following state-space
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model: 
zt+1 = Azt + Bεt

yt = Czt + εt

where:

A =



−φ1 −φ2 · · · −φp−1 −φp θ1 · · · θq−1 θq

I 0 · · · 0 0 0 · · · 0 0

0 I · · · 0 0 0 · · · 0 0

...
...

...
...

...
...

...

0 0 · · · I 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 I · · · 0 0

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · I 0



B =



I

0

...

0

I

0

...

0



C =
(
−φ1 · · · −φp θ1 · · · θq

)

1.5 Markov Chains

Many random variables undergo episodes in which the behavior of the time series process

changes quite dramatically 1. These apparent changes can result from events such as wars,

financial panics, or significant modifications in government policies. To take in account changes

1Sections 1.5, 1.6 and 1.7 are based on the arguments treated in the Hamilton book [4], in
the Krolzig book [6], and in the Hamilton papers [2] and [3]
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in the process, we might consider it to be influenced by an unobserved random variable, called

state or regime, which is discrete-valued. The simplest time series model for a discrete-valued

random variable is a Markov chain. This section is devoted to review the basic definitions and

results about Markov chains.

1.5.1 The Definition

Let st be a random variable which can assume only an integer value in the set {1, 2, . . . ,M}.

Suppose that the probability that st equals some particular value j depends on the past only

through the most recent value st−1, that is,

P (st = j|st−1 = i, st−2 = k, . . . ) = P (st = j|st−1 = i) = pij

Such a process (st)t≥0 is called an M -state Markov chain with transition matrix

P = (pij)i,j=1,...,M =



p11 p12 · · · p1M

p21 p22 · · · p2M
...

...
...

pM1 pM2 · · · pMM


The term pij of P gives the probability that the state i will be followed by state j. Note that

pi1 + pi2 + · · ·+ piM = 1

for every i = 1, . . . ,M .

1.5.2 Representing a Markov chain by an Autoregression

An useful representation for a Markov chain is obtained by letting ξt denote a random (M × 1)

vector whose jth element is equal to unity if st = j and it is zero otherwise. Thus, when st = 1,

the vector ξt coincides with the first column of the (M ×M) identity matrix IM ; when st = 2,

the vector ξt is the second column of IM ; and so on. If st = i, then the jth element of ξt+1
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is a random variable that takes on the value unity with probability pij and takes on the value

zero otherwise. Such a random variable has expectation pij . Thus the conditional expectation

of ξt+1 given st = i is given by

E(ξt+1|st = i) =
(
pi1 pi2 · · · piM

)′

which is the ith column of P
′
. Moreover, when st = i, the vector ξt corresponds to the ith

column of IM , hence

E(ξt+1|st = i) = E(ξt+1|ξt) = P
′
ξt.

It follows further that

E(ξt+1|ξt, ξt−1, . . . ) = E(ξt+1|ξt) = P
′
ξt

This result implies that it is possible to express a Markov chain in the AR(1) form

(10) ξt+1 = P
′
ξt + vt+1

where

vt+1 = ξt+1 − E(ξt+1|ξt, ξt−1, · · · ).

In particular, the innovation vt is a martingale difference sequence. Although, the vector

vt can take on only a finite set of values, on average vt is zero. Moreover, the value of vt is

impossible to forecast on the basis of previous states of the process.

1.5.3 Forecasts

Formula (10) implies that

ξt+n = vt+n + P
′
vt+n−1 + (P

′
)2vt+n−2 + · · ·+ (P

′
)n−1vt+1 + (P

′
)nξt
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where Pi indicates the transition matrix multiplied by itself i times. Then the n-period-ahead

forecasts for a Markov chain are given by

(11) E(ξt+n|ξt, ξt−1, . . . ) = (P
′
)nξt

Again, since the jth element of ξt+n will be unity if st+n = j and zero otherwise, the jth

element of the (M × 1) vector E(ξt+n|ξt, ξt−1, . . . ) indicates the probability that st+n takes on

the value j, conditional on the state of the system at date t. For example, if the process is in

state i at date t, then (11) asserts that



P (st+n = 1|st = i)

P (st+n = 2|st = i)

...

P (st+n = M |st = i)


= (P

′
)nei

where ei denotes the ith column of IM . The matrix formula indicates that the n-period-

ahead transition probabilities for a Markov chain can be calculate by (P
′
)n. Specifically, the

probability that an observation from regime i will be followed n periods later by an observation

from regime j, that is, P (st+n = j|st = i), is given by the row j, column i element of (P
′
)n.

1.5.4 Reducible Markov chain

An M -state Markov chain is said to be reducible if there exists a way to label the states such

that the transpose of the transition matrix is upper block-triangular

P
′

=

B C

0 D


where B denotes a (K × K) matrix for some 1 ≤ K < M . In this case, (P

′
)n is also upper

block-triangular for any m. Hence, once such a process enters a state j such that j ≤ K, there

is no possibility of ever returning to one of the states K + 1,K + 2, . . . ,M . A Markov chain

that is not reducible is called irreducible. For example, for a two-state (M = 2) Markov chain,
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the transpose of the transition matrix is

P
′

=

 p11 1− p22

1− p11 p22


hence this process is irreducible if p11 < 1 and p22 < 1.

1.5.5 Ergodic Markov chains

Since every row of P sums to unity, we get

Pi = i

where i = (1, 1, . . . , 1)
′
. Then unity is an eigenvalue of P (and hence, of P

′
) and the (M × 1)

vector i is the associated eigenvector. If one of the eigenvalues of P is unity and all other

eigenvalues of it are inside the unit circle, then the Markov chain is said to be ergodic. The

(M × 1) vector of ergodic probabilities for an ergodic Markov chain is denoted by π. This

vector satisfies P
′
π = π, and it is normalized so that its elements sum to unity, i.e., i

′
π = 1.

If P is the transition matrix for an ergodic Markov chain, then

P
′

∞ = limn→+∞(P
′
)n = πi

′

This implies that the long-run forecast for an ergodic Markov chain is independent of the current

state since

E(ξt+n|ξt, ξt−1, · · · ) = (P
′
)nξt −→

p
πi
′
ξt = π

Here we use the fact i
′
ξt = 1 regardless of the value of ξt. The vector of ergodic probabilities

can also be viewed as indicating the unconditional probability of each of the M different states.

To see this, suppose that we had used the symbol πj to indicate the unconditional probability

P (st = j) = πj . Then the vector π = (π1, π2, . . . , πM )
′

could be described as the unconditional

expectation of ξt, that is, π = E(ξt). Taking unconditional expectations of both sides of (10)

17
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and assuming stationarity, we get

E(ξt+1) = P
′
E(ξt)

hence

π = P
′
π

which characterizes again π as the eigenvector of P
′

associated with the unit eigenvalue. For

an ergodic Markov chain, this eigenvector is unique, and so the vector π of ergodic probabilities

can be interpreted as the vector of unconditional probabilities. Finally, notice that an ergodic

Markov chain is a covariance-stationary process. To determine explicitly a vector π satisfying

P
′
π = π and i

′
π = 1, we seek a vector π such that

(12) Aπ = eM+1

where eM+1 denotes the (M + 1)th column of IM+1 and A is the (M + 1) ×M matrix given

by the block form

A =

IM −P
′

i
′


Such a solution can be found by premultiplying (12) by (A

′
A)−1A

′
, that is,

π = (A
′
A)−1A

′
eM+1

In other words, π is the (M + 1)th column of the matrix (A
′
A)−1A

′
.

1.5.6 Periodic Markov chains

It is possible to show that for any irreducible M -state Markov chain, all the eigenvalues of the

transition matrix will be on or inside the unit circle. If there are K eigenvalues strictly on the

unit circle with K > 1, then the chain is said to be periodic with period K. Such chains have

the property that the states can be classified into K distinct classes, such that if the state at

date t is from class α, then the state at date t+1 is certain to be from class α+1. Thus, there is
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zero probability of returning to the original state st, and indeed zero probability of returning to

any member of the original class α, except at horizons that are integer multiples of the period,

such as dates t+K, t+ 2K, t+ 3K, and so on.

1.6 Time Series Models of Changes in Regime

1.6.1 The model

Here we consider time series models in which the parameters can change as a result of a

regime-shift variable, described as the outcome of an unobserved Markov chain. Let yt be

an (K × 1) vector of observed endogenous variables and xt a (R × 1) vector of explanatory

observed variables. Let Yt denote a vector containing all observations obtained through date t,

i.e., Yt = (y
′

t,y
′

t−1, . . . ,y
′

t−s,x
′

t,x
′

t−1, . . . ,x
′

t−s)
′

for some natural number s. If the process is

governed by regime st = j at date t, then the conditional density of yt is assumed to be given

by

(13) f(yt|st = j,Yt−1;α)

where α is a vector of parameters characterizing the conditional density. If there are M different

regimes st ∈ {1, . . . ,M}, then there are M different densities represented by (13) for j =

1, . . . ,M , which will be collected in an M × 1 vector denoted by ηt, i.e.,

ηt =


f(yt|st = 1,Yt−1;α)

...

f(yt|st = M,Yt−1;α)


In particular, we have

f(yt|st−1 = i,Yt−1;α) =

M∑
j=1

f(yt|st = j,Yt−1;α)P (st = j|st−1 = i)

=

M∑
j=1

pijηjt
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= η
′

t



pi1

pi2
...

piM


= η

′

tP
′
ξt

= η
′

tE(ξt+1|st = i)

As an illustration, consider a first-order autoregression in which both the constant term

and the autoregressive coefficient might be different for different subsamples

yt = cst + φstyt−1 + εt

where εt ∼ i.i.d.N(0, σ2). Then yt is a scalar (K = 1), the exogenous variables consist only of

a constant term (xt = 1), and the unknown parameters in α consist of c1, . . . , cM , φ1, . . . , φM ,

and σ2. The vector of conditional densities is given by

ηt =


1√
2πσ

exp(− (yt−c1−φ1yt−1)
2

2σ2 )

...

1√
2πσ

exp(− (yt−cM−φMyt−1)
2

2σ2 )



Assumption A1. The conditional density in (13) is assumed to depend only on the current

regime st and not on past regimes, i.e.,

f(yt|xt,Yt−1, st = j;α) = f(yt|xt,Yt−1, st = j, st−1 = i, st−2 = k, . . . ;α)

though this is not really restrictive (see Hamilton [4], Ch.22).

Assumption A2. The random variable st evolves according a Markov chain that is inde-

pendent of past observations on yt, or current or past xt, i.e.,

P (st = j|st−1 = i, st−2 = k, . . . ,xt,Yt−1) = P (st = j|st−1 = i) = pij
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Let p = (p1,1, p1,2, . . . , pM,M )
′

denote the (M2 × 1) vector of Markov transition prob-

abilities. The population parameters that describe a time series governed by A1 and A2

consist of α and p. We collect the unknown parameters to be estimated in a single vector

θ = (α
′
,p
′
)
′
. One important objective is to maximize the likelihood function of the observed

data f(yT ,yT−1, . . . ,y1;θ) by choice of the population parameters vector θ.

1.6.2 Optimal Inference for the Regime

Another objective will be to estimate the value of θ based on observation of YT . Let us

nevertheless put this objective on hold for the moment and suppose that the value of θ is

somehow known with certainty to the analyst. Even if we know the value of θ, we will not

know which regime the process was in at every date in the sample. Instead the best we can

do is to provide inference for ξt given a specified observation set Yτ , τ ≤ T . The statistical

tools are the filter and smoother recursions which reconstruct the time path of the regime (ξt)

under alternative information sets. Let P (st = j|Yt;θ) denote the analyst’s inference about

the value of st based on data obtained through date t and based on knowledge of the population

parameter θ. This inference takes the form of a conditional probability that the analyst assigns

to the probability that the tth observation was generated by regime j. Collect these conditional

probabilities P (st = j|Yτ ;θ) for j = 1, . . . ,M in an (M × 1) vector denoted by

(14) ξ̂t|τ =


P (st = 1|Yτ ;θ)

...

P (st = M |Yτ ;θ)


which allows two different interpretations. First, ξ̂t|τ denotes the discrete conditional probabil-

ity distribution of ξt given Yτ . Secondly, ξ̂t|τ is equivalent to the conditional mean of ξt given

Yτ . This is due to the binarity of the elements of ξt which implies that

E(ξjt) = P (ξt = ej) = P (st = j) = πj
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for every j = 1, . . . ,M , i.e., E(ξt) = π and

(15) ξ̂t|τ = E(ξt|Yτ ;θ)

where ej is the jth column of the identity matrix IM .

Theorem 6.1 (Hamilton [4], Chp. 22) The optimal inference and forecast for each date t

in the sample can be found by iterating on the following pair of recursive formulae

(16)
ξ̂t|t =

ξ̂t|t−1 � ηt
i′(ξ̂t|t−1 � ηt)

ξ̂t+1|t = P
′
ξ̂t|t

Here ηt is the (M×1) vector defined in (1.6.1), P is the (M×M) transition matrix, i represents

the (M × 1) vector of 1s, and the symbol � denotes the element-by-element multiplication.

Furthermore, the conditional probability density of yt based upon Yt−1 is given by

(17) f(yt|Yt−1;α) = i
′
(ξ̂t|t−1 � ηt)

Remark. Given a starting value ξ̂1|0 = E(ξ1|Y0;θ) and an assumed value for the population

parameter vector θ, one can iterate on (16) for t = 1, . . . , T to calculate the values of ξ̂t|t and

ξ̂t+1|t for each date t in the sample. This gives the filtered regime probabilities ξ̂t|τ , t = τ

(filtering) and the predicted regime probabilities ξ̂t|τ , τ < t (forecasting).

Proof of Theorem 6.1. The jth element of ξ̂t|t−1 = E(ξt|Yt−1;θ) can also be described as

ξ̂j,t|t−1 = E(ξjt|Yt−1;θ) = P (st = j|xt,Yt−1;θ)

This follows since we have assumed that xt contains no information about st beyond that

contained in Yt−1. The jth element of ηt is

f(yt|st = j,xt,Yt−1;θ)
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The jth element of the (M×1) vector ξ̂t|t−1�ηt is the product of these two magnitudes, which

can be interpreted as the conditional joint density-distribution of yt and xt:

(18) P (st = j|xt,Yt−1;θ)f(yt|st = j,xt,Yt−1;θ) = P (yt, st = j|xt,Yt−1;θ)

The density of the observed vector yt, conditioned on past observables, is the sum of the

M magnitudes in (18) for j = 1, . . . ,M . This sum can be written in vector notation as

(19)

f(yt|xt,Yt−1;θ) =

M∑
j=1

P (yt, st = j|xt,Yt−1;θ)

=

M∑
j=1

f(yt|st = j,xt,Yt−1;θ)P (st = j|Yt−1;θ)

=

M∑
j=1

ξ̂j,t|t−1ηjt

= η
′

tξ̂t|t−1

= i
′
(ξ̂t|t−1 � ηt)

which proves the last formula in the statement of Theorem 6.1. If the joint density-distribution

in (18) is divided by the density of yt in (19), the result is the conditional distribution of st:

P (yt, st = j|xt,Yt−1;θ)

f(yt|xt,Yt−1;θ)
= P (st = j|xt,yt,Yt−1;θ) = P (st = j|Yt;θ)

Hence from (19)

(20) P (st = j|Yt;θ) =
P (yt, st = j|xt,Yt−1;θ)

i′(ξ̂t|t−1 � ηt)

But from (18) the numerator in the expression on the right side of (20) is the jth element

of the vector ξ̂t|t−1 � ηt, while the left side of (20) is the jth element of the vector ξ̂t|t. Thus,

collecting the equations in (20) for j = 1, . . . ,M into an (M × 1) vector produces

ξ̂t|t =
ξ̂t|t−1 � ηt

i′(ξ̂t|t−1 � ηt)

23



1. SOME OF REPRESENTATIONS OF DYNAMIC SYSTEMS.
MODELING TIME SERIES WITH CHANGES IN REGIMES

as claimed in (16). To prove the second relation in (16), take expectations of ξt+1 = P
′
ξt+vt+1

conditional on Yt, that is,

E(ξt+1|Yt) = P
′
E(ξt|Yt) + E(vt+1|Yt)

Note that vt+1 is a martingale difference sequence with respect to Yt, so the last formula

becomes

ξ̂t+1|t = P
′
ξ̂t|t

as E(vt+1|Yt) = 0 (use also formula (15)). �

Remark (Starting the algorithm). Given a starting value ξ̂1|0 one can use (16) to calculate

ξ̂t|t for any t. Several options are available for choosing the starting value. One approach

is to set ξ̂1|0 equal to the vector π of unconditional probabilities. Another option is to set

ξ̂1|0 = ρ, where ρ is a fixed (M × 1) vector of nonnegative constants summing to unity, such as

ρ = M−1i. Alternatively, ρ could be estimated by maximum likelihood along with θ subject

to the constraint that i
′
ρ = 1 and ρj ≥ 0 for j = 1, . . . ,M .

1.6.3 Forecasts and Smoothed Inferences for the Regime

The (M × 1) vector ξ̂t|τ for t > τ represents a forecast about the regime for some future period

t, whereas for t < τ it represents the smoothed inference about the regime as noted above.

Theorem 6.2 (Hamilton [4], Chp. 22) (i) The optimal h-period-ahead forecast of ξt+h is

given by

(21) ξ̂t+h|t = (P
′
)hξ̂t|t

where ξ̂t|t is calculated from (16).

(ii) Smoothed inferences can be calculated using an algorithm which can be written, in

vector form, as

(22) ξ̂t|T = ξ̂t|t � {P[ξ̂t+1|T (÷)ξ̂t+1|t]}
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where the symbol (÷) denotes element-by-element division.

Remark. The smoothed probabilities ξ̂t|T are found by iterating (22) backward for t =

T − 1, T − 2, . . . , 1. This iteration is started with ξ̂T |T which is obtained from (16) for t = T .

This algorithm is valid only when st follows a first-order Markov chain as in A2, when the

conditional density (13) depends on st, st−1, . . . only through the current state st, and when

xt (the vector of explanatory variables other than the lagged values of y) is strictly exogenous,

meaning that xt is independent of sτ for all t and τ .

Proof of Theorem 6.2. (i) follows by taking expectation of both sides of

ξt+h = vt+h + P
′
vt+h−1 + · · ·+ (P

′
)h−1vt+1 + (P

′
)hξt

conditional on information available at date t:

E(ξt+h|Yt) = (P
′
)hE(ξt|Yt)

or

ξ̂t+h|t = (P
′
)hξ̂t|t

(ii) Recall first that under the maintained assumptions, the regime st depends on past

observations Yt−1 only through the value of st−1. Similarly, st depends on future observations

only through the value st+1:

(23) P (st = j|st+1 = i,YT ;θ) = P (st = j|st+1 = i; Yt;θ)

The validity of (23) is formally established as follows (the implicit dependence on θ will be

suppressed to simplify notation). Observe that

P (st = j|st+1 = i,Yt+1) = P (st = j|st+1 = i,yt+1,xt+1,Yt)

=
P (yt+1, st = j|st+1 = i,xt+1,Yt)

f(yt+1|st+1 = i,xt+1,Yt)
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(24)
=
f(yt+1|st = j, st+1 = i,xt+1,Yt)P (st = j|st+1 = i,xt+1,Yt)

f(yt+1|st+1 = i,xt+1,Yt)

= P (st = j|st+1 = i,xt+1,Yt)

as f(yt+1|st = j, st+1 = i,xt+1,Yt) = f(yt+1|st+1 = i,xt+1,Yt). In fact, yt+1 depends on

st+1, st, . . . only through the current value st+1. Since x is exogenous, (24) further implies that

P (st = j|st+1 = i,Yt+1) = P (st = j|st+1 = i,Yt)

By induction, the same argument gives

P (st = j|st+1 = i,Yt+h) = P (st = j|st+1 = i,Yt)

for h = 1, 2, . . . from which (23) follows. Next note that

(25)

P (st = j|st+1 = i,Yt) =
P (st = j, st+1 = i|Yt)

P (st+1 = i|Yt)

=
P (st = j|Yt)P (st+1 = i|st = j)

P (st+1 = i|Yt)

=
pjiP (st = j|Yt)

P (st+1 = i|Yt)

Therefore we obtain

(26)

P (st = j, st+1 = i|YT ) = P (st+1 = i|YT )P (st = j|st+1 = i,YT )

= P (st+1 = i|YT )P (st = j|st+1 = i,Yt)

= P (st+1 = i|YT )
pji P (st = j|Yt)

P (st+1 = i|Yt)

where the second equality follows from (23) and the third follows from (25). The smoothed

inference for date t is the sum of (26) over i = 1, . . . ,M .
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ξ̂j,t|T = P (st = j|YT ) =

M∑
i=1

P (st = j, st+1 = i|YT )

=

M∑
i=1

P (st+1 = i|YT )
pjiP (st = j|Yt)

P (st+1 = i|Yt)

= P (st = j|Yt)

M∑
i=1

pjiP (st+1 = i|YT )

P (st+1 = i|Yt)

= P (st = j|Yt)(pj1 pj2 . . . pjM )


P (st+1=1|YT )
P (st+1=1|Yt)

...

P (st+1=M |YT )
P (st+1=M |Yt)


= P (st = j|Yt)pj(ξ̂t+1|T (÷)ξ̂t+1|t)

= ξ̂j,t|tpj(ξ̂t+1|T (÷)ξ̂t+1|t)

where the (1×M) vector pj denotes the jth row of the matrix P and the symbol (÷) indicates

element-by-element division. When the equations

ξ̂j,t|T = ξ̂j,t|tpj(ξ̂t+1|T (÷)ξ̂t+1|t)

for j = 1, . . . ,M are collected in an (M × 1) vector, the result is formula (22) as claimed. �

Assuming presample value Y0 is given, the density of the sample Y = YT for given state

ξ is determined by

f(Y|ξ) =

T∏
t=1

f(yt|ξt,Yt−1).

Hence the joint probability distribution of observations and states can be calculated as

P (Y, ξ) = f(Y|ξ)P (ξ)

=

T∏
t=1

f(yt|ξt,Yt−1)

T∏
t=2

P (ξt|ξt−1)P (ξt−1)

Thus the unconditional density of Y is given by the marginal density

(27) f(Y) =

∫
P (Y, ξ) dξ
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where ∫
P (x, ξ) dξ =

M∑
i1=1

· · ·
M∑
iT=1

P (x, ξT = eiT , . . . , ξ1 = ei1)

=

M∑
i1=1

· · ·
M∑
iT=1

P (x, sT = iT , . . . , s1 = i1)

denotes the summation over all possible values of ξ = ξT ⊗ ξT−1 ⊗ · · · ⊗ ξ1 in equation (27).

Setting P (st = j;θ) = πj , j = 1, . . . ,M , the joint density-distribution of yt and st is given by

(28) P (yt, st = j;θ) = f(yt|st = j;θ)P (st = j;θ) = πjf(yt|st = j;θ)

The unconditional density of yt can be found by summing up (28) over all possible states

f(yt;θ) =

M∑
j=1

πjf(yt|st = j;θ)

= (f(yt|s1 = 1;θ) . . . f(yt|st = M ;θ))π

Finally, it follows by the definition of the conditional density that the conditional distribution

of the total regime ξ is given by

P (ξ|Y) =
P (Y, ξ)

f(Y)

Thus the desired conditional regime probabilities P (ξt|Y) can be derived by marginalization of

P (ξ|Y).

1.6.4 Forecasts for the Observed Variables

From the conditional density (13), it is easy to forecast yt+1 conditional on knowing Yt,xt+1

and st+1. For example, for the AR(1) specification yt+1 = cst+1
+ φst+1

yt + εt+1, where εt+1 ∼

NID(0, σ2), such a forecast is given by

E(yt+1|st+1 = j,Yt;θ) = cj + φjyt.

There are M different conditional forecasts associated with the M possible values for st+1.

Note that the unconditional forecast based on all actual observable variables is related to these
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conditional forecasts by

E(yt+1|xt+1,Yt;θ) =

∫
yt+1f(yt+1|xt+1,Yt;θ) dyt+1

=

∫
yt+1{

M∑
j=1

P (yt+1, st+1 = j|xt+1,Yt;θ)} dyt+1

=

∫
yt+1{

M∑
j=1

[f(yt+1|st+1 = j,xt+1,Yt;θ)P (st+1 = j|xt+1,Yt;θ)]} dyt+1

=

M∑
j=1

P (st+1 = j|xt+1,Yt;θ)

∫
yt+1f(yt+1|st+1 = j,xt+1,Yt;θ) dyt+1

=

M∑
j=1

P (st+1 = j|Yt;θ)E(yt+1|st+1 = j,xt+1,Yt;θ)

= h
′

t ξ̂t+1|t

where ht is the (M × 1) vector whose jth element is E(yt+1|st+1 = j,xt+1,Yt;θ). Thus

E(yt+1|xt+1,Yt;θ) = h
′

t ξ̂t+1|t

Note that although the Markov chain itself admits the linear representation (12), the optimal

forecast of yt+1 is a non linear function of observables, since the inference ξ̂t+1|t in (16) depends

non linearly on Yt.

1.6.5 Maximum Likelihood Estimation of Parameters

In the iteration on (16) the parameter vector θ was taken to be a fixed known vector. Once the

iteration has been completed for t = 1, . . . , T for a given fixed θ, the value of the log likelihood

implied by that value of θ is then known as follows

L(θ) =

T∑
t=1

log f(yt|xt,Yt−1;θ)

where

f(yt|xt,Yt−1;θ) = i
′
(ξ̂t|t−1 � ηt) = η

′

tP
′
ξ̂t−1|t−1.
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If the transition probabilities are restricted only by the conditions that pij ≥ 0 and
∑M
j=1 pij = 1

for all i and j, and if the initial probability ξ̂1|0 is taken to be a fixed value ρ unrelated to

the other parameters, then it is shown in Hamilton (1990) [2] that the estimated transition

probabilities can be expressed as follows.

Theorem 6.3 (Hamilton 1990 [2]) The maximum likelihood estimates for the transition

probabilities satisfy

p̂ij =

∑T
t=2 P (st = j, st−1 = i|YT ; θ̂)∑T

t=2 P (st−1 = i|YT ; θ̂)

where θ̂ denotes the full vector of maximum likelihood estimates.

Thus the estimated transition probabilities p̂ij is essentially the number of times state i

seems to have been followed by state j divided by the number of times the process was in

state i. These counts are estimated on the basis of the smoothed probabilities. If the vector of

initial probabilities ρ is regarded as a separate vector of parameters constrained only by i
′
ρ = 1

and ρj ≥ 0, for every j, the maximum likelihood estimate of ρ turns out to be the smoothed

inference about the initial state ρ̂ = ξ̂1|T . The maximum likelihood estimate of the vector α

that governs the conditional density (13) is characterized by

T∑
t=1

(
∂logηt
∂α′

)
′
ξ̂t|T = 0

Here ηt is the (M × 1) vector in (14) and ∂logηt

∂α′
is the (M ×K) matrix of derivatives of the

logs of the densities in ηt, where k represents the number of parameters in α. We postpone

the proofs of Theorem 6.3 and the last formula in the next section.

1.7 EM algorithm and Likelihood function

Following Hamilton (1990) [2], we illustrate an EM (Expectation Maximization) algorithm

for obtaining maximum likelihood estimates of parameters for time series subject to discrete

Markovian shifts. Our task is to maximize the likelihood function of the observed data

f(Y;θ) = f(yT ,yT−1, . . . ,y1;θ)
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1.7 EM algorithm and Likelihood function

by choice of the population parameters θ = (α
′

p
′
)
′
. It usually proves computationally simplest

in time series autoregressions to replace the exact likelihood function f(Y;θ) with the likelihood

conditional on the first m observations f(yT ,yT−1, . . . ,ym+1|ym,ym−1, . . . ,y1;θ). The same

turns out to be true for the EM algorithm illustrated here. To form this conditional likelihood,

one also needs to make assumptions about the probability law governing the initial unobserved

states. It turns out to be computationally simplest to assume that the initial states were drawn

from a separate probability distribution, whose parameters are unrelated to θ:

(29) ρsm,sm−1,...,s1 = P (sm, sm−1, . . . , s1|ym,ym−1, . . . ,y1)

These population probabilities are collected in a (Mm × 1) vector

ρ = (ρ1,1,...,1, ρ1,1,...,2, . . . , ρM,M,...,M )
′
.

The elements of ρ sum to unity and are to be estimated by maximum likelihood along with θ.

We collect these parameters in a single vector λ = (α
′

p
′
ρ
′
)
′

= (θ
′
ρ
′
)
′
.

1.7.1 EM algorithm: general principles

Given a vector Y = (y
′

T ,y
′

T−1, . . . ,y
′

1)
′
, our objective is to choose the vector λ so as to

maximize the conditional likelihood

f(Y;λ) = f(yT , . . . ,ym+1|ym, . . . ,y1;λ).

We can most easily characterize the structure of this maximum likelihood estimation if we

consider the hypothetical joint likelihood function for unobserved states (st) and observed data

(yt). Define the (T × 1) vector S to be the realization of the unobserved states for the entire

sample, i.e., S = (sT , sT−1, . . . , s1)
′
. Though S is not observed by the econometrician, it is easy

to characterize what the joint distribution of Y and S would look like if S were observed:

(30) P (Y,S;λ) = P (yT , . . . ,ym+1, sT , . . . , s1|ym, . . . ,y1;λ)
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Notice that one does not need to calculate (30) in order to use the EM algorithm. Expression

(30) is only considered as a theoretical construct for expositing what the EM algorithm is and

why it works. Given this, we can regard the marginal likelihood function f(Y;λ) as the

summation of the joint likelihood P (Y,S;λ) over all possible values of S:

(31) f(Y;λ) =

∫
S

P (Y,S;λ)

where the notation
∫
S

denotes summation over all possible values of all the elements of S:

∫
S

g(S) =

M∑
sT=1

M∑
sT−1=1

· · ·
M∑
s1=1

g(sT , sT−1, . . . , s1)

Again (31) is not the expression one would use to evaluate the actual likelihood, but is a

representation of the sample likelihood in terms of the theoretical construct P (Y,S;λ). Let

Q(λ`+1;λ`,Y) denote the expected log-likelihood, where the log-likelihood is parameterized by

λ`+1 and the expectation is taken with respect to a second distribution parameterized by λ`,

i.e.,

(32) Q(λ`+1;λ`,Y) =

∫
S

[logP (Y,S;λ`+1)]P (Y,S;λ`)

There are two ways to characterize the EM algorithm for arriving at the MLE λ̂.

The first characterization is based on a sequence of optimization problems (indexed by ` =

1, 2, . . . ), each of whose analytic solution λ̂` is found exactly. The solution λ̂`+1 to optimization

problem ` + 1 increases the value of the likelihood function relative to the value for λ̂`. The

limit of this sequence of estimators achieves a local maximum of the likelihood function:

lim
`→+∞

λ̂` = λ̂MLE

This follows from Theorem 7.1.

An alternative characterization of the EM algorithm is as follows. Imagine that S were

observed directly. The first-order conditions for calculating the MLE for λ would in this case
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be quite easy. These conditions (one for each possible realization of S) can be weighted by the

probability that the unobserved state variables indeed took on the particular values represented

by S. These probabilities in turn can be evaluated, using the previous iteration’s estimate λ̂`

as P (S|Y; λ̂`). The sum of the weighted conditions over all possible states then characterizes

the EM algorithm’s choice for λ̂`+1. Thus the EM algorithm replaces the unobserved scores by

their expectation given the previous iteration’s estimated parameter vector. This follows from

Theorem 7.2.

1.7.2 First characterization of EM algorithm

Let λ̂` denote the estimate of the parameters vector resulting from our previous iteration,

with λ̂0 an arbitrary initial guess. We choose for λ̂`+1 the value of λ`+1 that maximizes

Q(λ`+1; λ̂`,Y) given in (32), i.e., λ̂`+1 satisfies

(33)

∫
S

∂logP (Y,S;λ`+1)

∂λ`+1

∣∣∣∣
λ`+1=λ̂`+1

P (Y,S; λ̂`) = 0

We show in Subsection (1.7.4) how (33) can be solved analytically for λ̂`+1 as a function of Y

and λ̂`.

Theorem 7.1

i) The estimate λ̂`+1 is associated with a higher value of the likelihood function than is λ̂`,

that is, f(Y; λ̂`+1) ≥ f(Y; λ̂`) with equality only if λ̂`+1 = λ̂`;

ii) If

∂Q(λ`+1; λ̂`,Y)

∂λ`+1

∣∣∣∣
λ`+1=λ̂`

= 0 ,

then

∂f(Y;λ`+1)

∂λ`+1

∣∣∣∣
λ`+1=λ̂`

= 0.

Proof. i) By construction, λ̂`+1 maximizes Q(λ`+1; λ̂`,Y), so in particular Q(λ̂`+1; λ̂`,Y) ≥

Q(λ̂`; λ̂`,Y) with equality only if λ̂`+1 = λ̂`. Recall that for any positive real number x, we

33



1. SOME OF REPRESENTATIONS OF DYNAMIC SYSTEMS.
MODELING TIME SERIES WITH CHANGES IN REGIMES

have log(x) ≤ x− 1 with equality only if x = 1. Then we have

Q(λ̂`+1; λ̂`,Y)− Q(λ̂`; λ̂`,Y) =

∫
S

log[
P (Y,S; λ̂`+1)

P (Y,S; λ̂`)
]P (Y,S; λ̂`)

≤
∫
S

[
P (Y,S; λ̂`+1)

P (Y,S; λ̂`)
− 1]P (Y,S; λ̂`)

=

∫
S

[P (Y,S; λ̂`+1)− P (Y,S; λ̂`)]

= f(Y; λ̂`+1)− f(Y; λ̂`)

Thus, if Q(λ̂`+1; λ̂`,Y) > Q(λ̂`; λ̂`,Y), then f(Y; λ̂`+1) > f(Y; λ̂`). This proves (i).

ii) By definition of Q, we have

∂Q(λ`+1; λ̂`,Y)

∂λ`+1

∣∣∣∣
λ`+1=λ̂`

=

∫
S

{ 1

P (Y,S;λ`+1)

∂P (Y,S;λ`+1)

∂λ`+1
}λ`+1=λ̂`

P (Y,S; λ̂`)

=

∫
S

∂P (Y,S;λ`+1)

∂λ`+1

∣∣∣∣
λ`+1=λ̂`

=
∂f(Y;λ`+1)

∂λ`+1

∣∣∣∣
λ`+1=λ̂`

Thus, if the left-hand-side is zero, so it must be the right-hand-side as well. �

Theorem 7.1 implies that the sequence (λ̂`)
∞
`=1 converges to the (local) MLE λ̂.

1.7.3 Second characterization of EM algorithm

Suppose that the vector of regimes S were observed directly. Then the MLE λ̂(S) would be

characterized by the first-order conditions

(34)
∂logP (Y,S;λ)

∂λ

∣∣∣∣
λ=λ̂(S)

= 0

Now, though the econometrician does not have data directly on S, after iteration ` we have an

inference about S based on our parameter estimate λ̂` and the observed data Y:

(35) P (S|Y; λ̂`) =
P (Y,S; λ̂`)

f(Y; λ̂`)
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1.7 EM algorithm and Likelihood function

For each of the MT possible values for S, there is a corresponding particular first-order

condition (34). If we weight each of these first-order conditions by probability (35) that S took

on that particular value, we would be chosing λ so as to satisfy

∫
S

∂logP (Y,S;λ)

∂λ

P (Y,S; λ̂`)

f(Y; λ̂`)
= 0

or equivalently

1

f(Y; λ̂`)

∂Q(λ; λ̂`,Y)

∂λ
= 0

that is

∂Q(λ; λ̂`,Y)

∂λ
= 0.

So the following result holds.

Theorem 7.2 The estimate λ̂`+1 in Theorem 7.1 (i) coincides with the estimate that would

result if we weighted the first-order conditions (33) associated with direct observation of S by

the probability that S took on each of its feasible values.

1.7.4 Explicit form of the EM algorithm

Theorem 7.3 For a Markov switching time series satisfying Assumptions A1 and A2 in Sub-

section 1.6.1, the expected log-likelihood function Q(λ`+1;λ`,Y) is maximized by chosing

λ`+1 = (α
′

`+1,p
′

`+1,ρ
′

`+1)
′

to satisfy:

(36) p
(`+1)
ij =

∑T
t=m+1 P (st = j, st−1 = i|Y;λ`)∑T

t=m+1 P (st−1 = i|Y;λ`)

for i, j = 1, . . . ,M .

(37)

T∑
t=m+1

M∑
st=1

· · ·
M∑

st−m=1

∂logf(yt|zt;α)

∂α

∣∣∣∣
α=α`+1

P (st, . . . , st−m|Y;λ`) = 0

where zt = (st, . . . , st−m,y
′

t−1, . . . ,y
′

t−m)
′
, and

(38) ρ
(`+1)
im,im−1,...,i1

= P (sm = im, sm−1 = im−1, . . . , s1 = i1|Y;λ`)
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for i1, . . . , im ∈ {1, . . . ,M}.

Proof. To prove formula (36), we show that it maximizes Q(λ`+1;λ`,Y) with respect to

p`+1. Note first that

P (Y,S;λ) =P (yT |zT ;θ)P (sT |sT−1; p)

P (yT−1|zT−1;θ)P (sT−1|sT−2; p)

...

P (ym+1|zm+1;θ)P (sm+1|sm; p)ρsm,sm−1,...,s1

Differentiating P (Y,S;λ) with respect to pij (a representative element of p), we obtain

∂P (Y,S;λ)

∂pij
=

T∑
t=m+1

∂logP (st|st−1; p)

∂pij
P (Y,S;λ).

But recall that

∂logP (st|st−1; p)

∂pij
=


1
pij

if st = j and st−1 = i

0 otherwise

Using notation δ[ ] for the Kronecker delta (that is, δ[A] = 1 when the event A occurs and zero

otherwise), we get

∂P (Y,S;λ)

∂pij
= p−1ij {

T∑
t=m+1

δ[st=j,st−1=i]}P (Y,S;λ)

hence

∂logP (Y,S;λ)

∂pij
= p−1ij {

T∑
t=m+1

δ[st=j,st−1=i]}.

By definition of Q(·), it follows that

∂Q(λ`+1;λ`,Y)

∂p
(`+1)
ij

=

∫
S

∂logP (Y,S;λ`+1)

∂p
(`+1)
ij

P (Y,S;λ`)

=

∫
S

[p
(`+1)
ij ]−1{

T∑
t=m+1

δ[st=j,st−1=i]}P (Y,S;λ`)
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Noting that

∫
S

δ[st=j,st−1=i]P (Y,S;λ`) = P (st = j, st−1 = i|Y;λ`)f(Y;λ`)

we get

(39)
∂Q(λ`+1;λ`,Y)

∂p
(`+1)
ij

= [p
(`+1)
ij ]−1

T∑
t=m+1

P (st = j, st−1 = i|Y;λ`)f(Y;λ`)

Now our task in the EM algorithm was to find the value of p`+1 for which Q(λ`+1;λ`,Y)

was maximized. Imposing the constraint
∑M
j=1 p

(`+1)
ij = 1, we form the Lagrangean

L(λ`+1) = Q(λ`+1;λ`,Y)− µi(
M∑
j=1

p
(`+1)
ij − 1)

from which the first-order conditions are

(40)
∂Q(λ`+1;λ`,Y)

∂p
(`+1)
ij

= µi

for j = 1, . . . ,M . Substituting (39) in (40) yields

(41)

T∑
t=m+1

P (st = j, st−1 = i|Y;λ`) =
p
(`+1)
ij µi

f(Y;λ`)

Summing up the last relations for j = 1, . . . ,M we obtain

T∑
t=m+1

M∑
j=1

P (st = j, st−1 = i|Y;λ`) =

M∑
j=1

p
(`+1)
ij µi

f(Y;λ`)
=

µi
f(Y;λ`)

or, equivalently,
T∑

t=m+1

P (st−1 = i|Y;λ`) =
µi

f(Y;λ`)

Substituting this formula in (41) gives (36). To prove formula (37) we differentiate P (Y,S;λ)
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with respect to α. This gives

∂P (Y,S;λ)

∂α
=

T∑
t=m+1

∂logf(yt|zt;α)

∂α
P (Y,S;λ)

hence

∂logP (Y,S;λ)

∂α
=

T∑
t=m+1

∂logf(yt|zt;α)

∂α

The point to note here is that f(yt|zt;α) depends on s (through zt) at most for dates t, t −

1, . . . , t−m. Thus we have

∂Q(λ`+1;λ`,Y)

∂α`+1
=

∫
S

∂logP (Y,S;λ`+1)

∂α`+1
P (Y,S;λ`)

=

T∑
t=m+1

∫
S

∂logf(yt|zt;α`+1)

∂α`+1
P (Y,S;λ`)

=

T∑
t=m+1

M∑
st=1

· · ·
M∑

st−m=1

{∂logf(yt|zt;α`+1)

∂α`+1
P (st, . . . , st−m|Y;λ`)f(Y;λ`)}

Noting that f(Y;λ`) is not a function of the index t, it can be taken outside of the sum-

mation operators. Setting this derivative equal to zero, we get formula (37). To prove formula

(38) we differentiate logP (Y,S;λ) with respect to ρim,...,i1 . This gives

∂logP (Y,S;λ)

∂ρim,...,i1
= [ρim,...,i1 ]−1δ[sm=im,...,s1=i1]

hence

∂Q(λ`+1;λ`,Y)

∂ρ
(`+1)
im,...,i1

=

∫
S

[ρ
(`+1)
im,...,i1

]−1δ[sm=im,...,s1=i1]P (Y,S;λ`)

Maximizing Q(λ`+1;λ`,Y) subject to the constraint that the sum of the elements of ρ`+1 equals

unity yields the first-order conditions

∂Q(λ`+1;λ`,Y)

∂ρ
(`+1)
im,...,i1

= µ
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for µ the Lagrange multiplier associated with the summation constraint. Thus we have

∫
S

δ[sm=im,...,s1=i1]P (Y,S;λ`) = µρ
(`+1)
im,...,i1

or

(42) P (sm = im, . . . , s1 = i1|Y;λ`)f(Y;λ`) = µρ
(`+1)
im,...,i1

Summing up these relations over all possible values of im, . . . , i1, we obtain µ = f(Y;λ`).

Substituting the last formula in (42) gives (38). �

Thus the EM algorithm begins at iteration ` = 0 with an arbitrary guess for the parameter

vector λ` = λ0. For this guess, we calculate the smoothed probabilities P (st, . . . , st−m|Y;λ0).

Equations (36)-(38) are then solved for λ`+1 = λ1. The next iteration (` = 1) takes λ`

to be the value λ1 calculated from the previous iteration, and solves equations (36)-(38) for

λ`+1 = λ2. The process continues until a fixed point λ`+1 = λ` is satisfactorily approximated.

Calculation of λ`+1 as a function of λ` is quite easy. Once one has calculated smoothed

probabilities such as P (st = j, st−1 = i|Y;λ`), equations (36) and (38) allow calculations of

p`+1 and ρ`+1. Then it should be clear that in order to implement the EM algorithm, it is

not at all necessary to calculate such cumbersome expressions as P (Y,S;λ) or Q(λ`+1;λ`,Y).

Rather, all one ever needs to evaluate are the smoothed inferences about the unobserved state:

P (st, st−1, . . . , st−m|Y;λ`), as done in Section 1.6.

1.8 State-Space Models with Markov Switching

In [5] Kim extended the Hamilton model with Markov switching [2][3] to a general state-space

model. Here we illustrate the basic filtering and smoothing algorithm obtained by Kim, and

give an explicit proof of his formulae by using arguments from [1], chp.15.
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1.8.1 Specification of the Model

Let us consider the following state-space model with Markov switching


yt = Fstxt + βstzt + et

xt = Astxt−1 + γstzt + Gstνt

where et

νt

 ∼ N

0,

R 0

0 Q


Here xt is a J × 1 unobserved state vector, zt is a K × 1 vector of weakly exogenous or lagged

dependent variables, et and νt are n× 1 and L× 1 vectors of disturbances, yt is a n× 1 vector

of measurements, and the parameters Fst ,βst ,Ast ,γst and Gst are n×J , n×K, J ×J , J ×K

and J × L matrices, respectively, depending upon an M -state first-order Markov process (st)

with transition probability matrix P = (pij). The parameter matrices may be known under

different regimes, but in some circumstances a particular element of a parameter matrix takes

on different values which are unknown. The model incorporates also the latter case. When

a particular element of the matrix Fst , for example, switches from one state to another, and

when the value of that element are unknown under different states, it can be modeled in the

following way. Assuming that the state variable st can take the values 1, . . . ,M , the (i, j)th

element of Fst can be written as

fi,j,st = fi,j,1s1t + · · ·+ fi,j,MsMt

where smt = 1 if st = m, and zero otherwise. The elements fi,j,m, m = 1, . . . ,M are part of

the parameters to be estimated.

1.8.2 Basic Filtering and Estimation

Suppose the parameters of the model are known. Letψt−1 = (y
′

t−1,y
′

t−2, . . . ,y
′

1, z
′

t, z
′

t−1, . . . , z
′

1)
′

denote the vector of observations received as of time t−1. In the usual derivation of the Kalman

filter for a fixed-coefficient state-space model (see [1], chp.15), the goal is to form a forecast

40



1.8 State-Space Models with Markov Switching

of the unobserved state vector xt based on ψt−1, denoted xt|t−1 = E(xt|ψt−1). Similarly, in

the conventional fixed-coefficient case, the matrix Pt|t−1 denotes the mean square error of the

forecast, i.e.,

Pt|t−1 = E[(xt − xt|t−1)(xt − xt|t−1)
′
|ψt−1].

Here the goal will be to form a forecast of xt based not just on ψt−1 but also conditional on

the random variable st taking on the value j and on st−1 taking on the value i, denoted

x
(i,j)
t|t−1 = E(xt|ψt−1, st = j, st−1 = i)

for i, j ∈ {1, . . . ,M}. Associated to these forecasts are M2 different mean squared error matrices

P
(i,j)
t|t−1 = E[(xt − xt|t−1)(xt − xt|t−1)

′
|ψt−1, st = j, st−1 = i]

The computation algorithm is given by the following filter:

Theorem 8.1 (Kim covariance filter) For t ≥ 0, we have the following relations

(43) x
(i,j)
t|t−1 = Ajx

i
t−1|t−1 + γjzt

(44) P
(i,j)
t|t−1 = AjP

i
t−1|t−1A

′

j + GjQG
′

j

(45) η
(i,j)
t|t−1 = yt − Fjx

(i,j)
t|t−1 − βjzt

(46) H
(i,j)
t = FjP

(i,j)
t|t−1F

′

j + R

(47) K
(i,j)
t = P

(i,j)
t|t−1F

′

j [H
(i,j)
t ]−1

(48) x
(i,j)
t|t = x

(i,j)
t|t−1 + K

(i,j)
t η

(i,j)
t|t−1
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(49) P
(i,j)
t|t = (I−K

(i,j)
t Fj)P

(i,j)
t|t−1

where xit−1|t−1 is an inference about xt−1 based on information up to time t−1, given st−1 = i;

η
(i,j)
t|t−1 is the conditional forecast error of yt based on information up to time t− 1, given st = j

and st−1 = i; H
(i,j)
t is the conditional variance of η

(i,j)
t|t−1; and K

(i,j)
t is the Kalman gain.

Proof. Let us define the conditional forecast error of yt at horizon 1 as

η
(i,j)
t|t−1 = yt − y

(i,j)
t|t−1 = yt − E(yt|ψt−1, st = j, st−1 = i)

= yt − E(Fstxt + βstzt + et|ψt−1, st = j, st−1 = i)

= yt − FjE(xt|ψt−1, st = j, st−1 = i)− βjE(zt|ψt−1)

= yt − Fjx
(i,j)
t|t−1 − βjzt

which is formula (45). Using (45) and the geometric subspace decomposition as in [1] chp. 15,

we get

x
(i,j)
t|t = E(xt|ψt, st = j, st−1 = i)

= E(xt|ψt−1,η
(i,j)
t|t−1, st = j, st−1 = i)

= E(xt|ψt−1, st = j, st−1 = i) + E(xt|η(i,j)
t|t−1)− E(xt)

= x
(i,j)
t|t−1 + cov(xt,η

(i,j)
t|t−1)[var(η

(i,j)
t|t−1)]−1η

(i,j)
t|t−1

= x
(i,j)
t|t−1 + cov(xt,η

(i,j)
t|t−1)[H

(i,j)
t ]−1η

(i,j)
t|t−1

Now we have

cov(xt,η
(i,j)
t|t−1) = E((xt − xt|t−1)η

(i,j)
t|t−1

′

|ψt−1, st = j, st−1 = i)

= E((xt − xt|t−1)(Fj(xt − xt|t−1) + et)
′
|ψt−1, st = j, st−1 = i)

= E((xt − xt|t−1)(xt − xt|t−1)
′
|ψt−1, st = j, st−1 = i)F

′

j

= P
(i,j)
t|t−1F

′

j

hence

x
(i,j)
t|t = x

(i,j)
t|t−1 + P

(i,j)
t|t−1F

′

j [H
(i,j)
t ]−1η

(i,j)
t|t−1

= x
(i,j)
t|t−1 + K

(i,j)
t η

(i,j)
t|t−1

which proves formulae (47) and (48). We compute the filtering error covariance matrix P
(i,j)
t|t =
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var(xt − x
(i,j)
t|t ). Since the corresponding error xt − x

(i,j)
t|t is not correlated with y1, . . . ,yt, it is

not correlated with η
(i,j)
t|t−1. Using (47) and (48), we get

P
(i,j)
t|t = E((xt − x

(i,j)
t|t )(xt − x

(i,j)
t|t )

′
)

= E((xt − x
(i,j)
t|t−1 −K

(i,j)
t η

(i,j)
t|t−1)(xt − x

(i,j)
t|t−1)

′
)

= E((xt − x
(i,j)
t|t−1)(xt − x

(i,j)
t|t−1)

′
)−K

(i,j)
t E(η

(i,j)
t|t−1(xt − x

(i,j)
t|t−1)

′
)

= P
(i,j)
t|t−1 −K

(i,j)
t E(η

(i,j)
t|t−1(xt − x

(i,j)
t|t + K

(i,j)
t η

(i,j)
t|t−1)

′
)

= P
(i,j)
t|t−1 −K

(i,j)
t E(η

(i,j)
t|t−1η

(i,j)
t|t−1

′

)K
(i,j)
t

′

= P
(i,j)
t|t−1 −K

(i,j)
t var(η

(i,j)
t|t−1)K

(i,j)
t

′

= P
(i,j)
t|t−1 −K

(i,j)
t H

(i,j)
t K

(i,j)
t

′

= P
(i,j)
t|t−1 −K

(i,j)
t H

(i,j)
t [H

(i,j)
t ]−1FjP

(i,j)
t|t−1

= P
(i,j)
t|t−1 −K

(i,j)
t FjP

(i,j)
t|t−1

= (I−K
(i,j)
t Fj)P

(i,j)
t|t−1

which proves (49). To prove (43) we consider

xt = Astxt−1 + γstzt + Gstνt

Computing the conditional expectation for each element with respect to Ψt−1, st = j, st−1 = i,

and using the fact that the innovation νt and the measurement errors are uncorrelated, we get

x
(i,j)
t|t−1 = E(xt|Ψt−1, st = j, st−1 = i)

= E(Astxt−1 + γstzt + Gstνt|Ψt−1, st = j, st−1 = i)

= AjE(xt−1|Ψt−1, st−1 = i) + γjE(zt|Ψt−1)

= Ajx
i
t−1|t−1 + γjzt

as zt belongs to Ψt−1. To prove (44), the corresponding error is (use (43))

xt − x
(i,j)
t|t−1 = Astxt−1 + γstzt + Gstνt −Ajx

i
t−1|t−1 − γjzt
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So we obtain

P
(i,j)
t|t−1 = var(xt − x

(i,j)
t|t−1|Ψt−1, st = j, st−1 = i)

= var(Aj(xt−1 − xit−1|t−1)) + var(Gjνt)

= Ajvar(xt−1 − xit−1|t−1)A
′

j + Gjvar(νt)G
′

j

= AjP
i
t−1|t−1A

′

j + GjQG
′

j .

To prove (46), we consider

yt = Fstxt + βstzt + et

hence

y
(i,j)
t|t−1 = Fjx

(i,j)
t|t−1 + βjzt

Thus we obtain

yt − y
(i,j)
t|t−1 = Fj(xt − x

(i,j)
t|t−1) + et

and

H
(i,j)
t = var(yt − y

(i,j)
t|t−1)

= var(Fj(xt − x
(i,j)
t|t−1)) + var(et)

= FjP
(i,j)
t|t−1F

′

j + R

which is (46). �

To make the above filtering operable, it is necessary to introduce the following approxima-

tions (see [5], p.6, for more details)

(50) xjt|t =

∑M
i=1 P (st−1 = i, st = j|Ψt)x

(i,j)
t|t

P (st = j|Ψt)

(51) Pj
t|t =

∑M
i=1 P (st−1 = i, st = j|Ψt)[P

(i,j)
t|t + (xjt|t − x

(i,j)
t|t )(xjt|t − x

(i,j)
t|t )

′
]

P (st = j|Ψt)

The last thing that remains to be considered to complete the filtering is to calculate P (st−1 =

i, st = j|Ψt) and other probability terms.

The following procedure explains how a complete basic filtering can be performed using
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1.8 State-Space Models with Markov Switching

the above formulae (43) through (51). Note that the basic filter accepts the three inputs

xit−1|t−1,P
i
t−1|t−1 and P (st−1 = i, st−2 = i

′ |Ψt−1), and has three outputs xjt|t,P
j
t|t and P (st =

j|Ψt).

Step 1. Calculate

(52)

P (st−1 = i, st = j|Ψt−1) =

M∑
i′=1

P (st−2 = i
′
, st−1 = i|Ψt−1)P (st = j|st−1 = i)

= P (st = j|st−1 = i)

M∑
i′=1

P (st−2 = i
′
, st−1 = i|Ψt−1)

= pij

M∑
i′=1

P (st−2 = i
′
, st−1 = i|Ψt−1)

Step 2. Calculate the joint conditional density function

(53) f(yt, st−1 = i, st = j|Ψt−1) = f(yt|Ψt−1, st−1 = i, st = j)P (st−1 = i, st = j|Ψt−1)

where

f(yt|Ψt−1, st−1 = i, st = j) = (2π)−
n
2 |H(i,j)

t |− 1
2 exp(−1

2
η
(i,j)
t|t−1

′

[H
(i,j)
t ]−1η

(i,j)
t|t−1)

Step 3. Calculate

(54) P (st−1 = i, st = j|Ψt) =
f(yt, st−1 = i, st = j|Ψt−1)

f(yt|Ψt−1)

where

f(yt|Ψt−1) =

M∑
i=1

M∑
j=1

f(yt, st−1 = i, st = j|Ψt−1)

Step 4. From (50) and (51) and output from Step 3, we get xjt|t and Pj
t|t. The remaining

output P (st = j|Ψt) can be calculated by

P (st = j|Ψt) =

M∑
i=1

P (st−1 = i, st = j|Ψt)

45
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The sample conditional log-likelihood function can be obtained from Step 3

LL = logf(yT ,yT−1, . . . ,y1|Ψ0) =

T∑
t=1

logf(yt|Ψt−1)

The above filter is obtained under the assumption that parameters of the model are known.

To estimate the parameters, we can maximize the log-likelihood function above with respect to

the underlying unknown parameters by using the EM method (see Section 1.7).

1.8.3 Smoothing

Once parameters are estimated, we can get inference about st and xt based on all the infor-

mation in the sample, that is, P (st = j|ΨT ) and xt|T , for t = 1, . . . , T . Let us consider the

following derivation of the joint probability that st = j and st+1 = k based on full information

set ΨT (here it is assumed that no lagged dependent variables appear in the model):

P (st = j, st+1 = k|ΨT ) = P (st+1 = k|ΨT )P (st = j|st+1 = k,ΨT )

∼ P (st+1 = k|ΨT )P (st = j|st+1 = k,Ψt)

=
P (st+1 = k|ΨT )P (st = j|Ψt)P (st+1 = k|st = j)

P (st+1 = k|Ψt)

and

P (st = j|ΨT ) =

M∑
k=1

P (st = j, st+1 = k|ΨT )

Note that the first formula involves an approximation. To investigate the nature of this approx-

imation, define ht+1,T = (y
′

t+1, . . . ,y
′

T , z
′

t+1, . . . , z
′

T )
′

for t < T , that is, ht+1,T is the vector of

observations from date t+ 1 to T . Then we have

P (st = j|st+1 = k,ΨT ) = P (st = j|st+1 = k,ht+1,T ,Ψt)

=
f(st = j,ht+1,T |st+1 = k,Ψt)

f(ht+1,T |st+1 = k,Ψt)

=
P (st = j|st+1 = k,Ψt)f(ht+1,T |st+1 = k, st = j,Ψt)

f(ht+1,T |st+1 = k,Ψt)
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which equals P (st = j|st+1 = k,Ψt) provided that

f(ht+1,T |st+1 = k, st = j,Ψt) = f(ht+1,T |st+1 = k,Ψt).

For the Hamiltonian model [2] with no lagged dependent variables, this equality holds. For the

state-space model considered here, it does not hold exactly, and this why an approximation is

involved above.

Like the basic filtering in (1.8.2), the smoothing algorithm for the vector xt can be written as

follows.

Theorem 8.2 (Smoothing)

Given st = j and st+1 = k, we have for t = 1, . . . , T − 1

(55) x
(j,k)
t|T = xjt|t + P̃

(j,k)
t (xkt+1|T − x

(j,k)
t+1|t)

(56) P
(j,k)
t|T = Pj

t|t + P̃
(j,k)
t (Pk

t+1|T −P
(j,k)
t+1|t)P̃

(j,k)′

t

where P̃
(j,k)
t = Pj

t|tA
′

k[P
(j,k)
t+1|t]

−1, x
(j,k)
t|T is the inference of xt based on the full sample, and

P
(j,k)
t|T is the variance-covariance matrix of x

(j,k)
t|T (note that xjt|t and Pj

t|t are given by formulae

(50) and (51)).

Proof. We have to compute

x
(j,k)
t|T = E(xt|ΨT , st = j, st+1 = k)

Reasoning as in [1], chp.15, from iterated projections, we get

x
(j,k)
t|T = E(E(xt|It)|ΨT )

where It is the set of variables y1, . . . ,yt,x
k
t+1 − x

(j,k)
t+1|t, zt, . . . , zT ,wt, . . . ,wT , where wt =

(e
′

t ν
′

t)
′
, given st = j and st+1 = k. We can decompose E(xt|It) into two orthogonal projections
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xjt|t and E(xt|xkt+1 − x
(j,k)
t+1|t)− E(xt). The second component is given by

E(xt|xkt+1 − x
(j,k)
t+1|t)− E(xt) = cov(xt,x

k
t+1 − x

(j,k)
t+1|t)[var(x

k
t+1 − x

(j,k)
t+1|t)]

−1(xkt+1 − x
(j,k)
t+1|t)

= cov(xt,x
k
t+1 − x

(j,k)
t+1|t)[P

(j,k)
t+1|t]

−1(xkt+1 − x
(j,k)
t+1|t)

By formula (43) we have

xkt+1 − x
(j,k)
t+1|t = xkt+1 −Akx

j
t|t − γkzt

= Akxt + γkzt + Gkνt −Akx
j
t|t − γkzt

= Ak(xt − xjt|t) + Gkνt.

Thus we get

cov(xt,x
k
t+1 − x

(j,k)
t+1|t) = cov(xt,Ak(xt − xjt|t) + Gkνt)

= cov(xt,Ak(xt − xjt|t)) = E((xt − xjt|t)(xt − xjt|t)
′
A
′

k)

= var(xt − xjt|t)A
′

k = Pj
t|tA

′

k

Finally we get

E(xt|It) = xjt|t + Pj
t|tA

′

k[P
(j,k)
t+1|t]

−1(xkt+1 − x
(j,k)
t+1|t).

Taking the conditional expectation with respect to ΨT gives

x
(j,k)
t|T = xjt|t + Pj

t|tA
′

k[P
(j,k)
t+1|t]

−1(xkt+1|T − x
(j,k)
t+1|t)

= xjt|t + P̃
(j,k)
t (xkt+1|T − x

(j,k)
t+1|t)

which proves (55). Formula (55) implies

x
(j,k)
t|T − P̃t

(j,k)
xkt+1|T = xjt|t − P̃

(j,k)
t x

(j,k)
t+1|t

hence

xt − x
(j,k)
t|T + P̃

(j,k)
t xkt+1|T = xt − xjt|t + P̃

(j,k)
t x

(j,k)
t+1|t.

Now xt − x
(j,k)
t|T is uncorrelated with y1, . . . ,yT , z1, . . . , zT and therefore with xkt+1|T ; for the
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same reason, xt − xjt|t and x
(j,k)
t+1|t are uncorrelated, so that

P
(j,k)
t|T + P̃

(j,k)
t var(xkt+1|T )P̃

(j,k)′

t = Pj
t|t + P̃

(j,k)
t var(x

(j,k)
t+1|t)P̃

(j,k)′

t

hence

P
(j,k)
t|T = Pj

t|t + P̃
(j,k)
t [var(x

(j,k)
t+1|t)− var(x

k
t+1|T )]P̃

(j,k)′

t

Moreover, taking the noncorrelation into acccount, the identity

xt+1 − x
(j,k)
t+1|t + x

(j,k)
t+1|t = xt+1 − xkt+1|T + xkt+1|T

implies that

P
(j,k)
t+1|t + var(x

(j,k)
t+1|t) = Pk

t+1|T + var(xkt+1|T )

hence

var(x
(j,k)
t+1|t)− var(x

k
t+1|T ) = Pk

t+1|T −P
(j,k)
t+1|t.

Finally, we have

P
(j,k)
t|T = Pj

t|t + P̃
(j,k)
t (Pk

t+1|T −P
(j,k)
t+1|t)P̃

(j,k)′

t

which is formula (56). �

As P (st = j|ΨT ) is not dependent upon xt|T , we can first calculate smoothed probabilities,

and then they can be used to get smoothed values of xt and xt|T . Given the above smoothing

algorithms, actual smoothing can be performed by applying approximations similar to those

used in the basic filtering.

Step 1. Run through the basic filter in (1.8.2) for t = 1, . . . , T , and store the resulting

sequences

x
(i,j)
t|t−1,P

(i,j)
t|t−1,x

j
t|t,P

j
t|t,

P (st = j|Ψt−1) =

M∑
i=1

P (st−1 = i, st = j|Ψt−1)

and P (st = j|Ψt) from formulae (43), (44), (50), (51), (52), and from Step 4 in (1.8.2), respec-

tively, for t = 1, . . . , T .
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Step 2. For t = T − 1, T − 2, . . . , 1, get the smoothed joint probability P (st = j, st+1 =

k|ΨT ) and P (st = j|ΨT ) according to the initial relations in (1.8.2), and save them. Here

P (sT = j|ΨT ) (the starting value for smoothing) is given by the last iteration of the basic

filter.

Step 3. We use the smoothed probabilities from Step 2 to collapse the M2 elements of

x
(j,k)
t|T and P

(j,k)
t|T into M elements by taking weighted averages. At each iteration of (55) and

(56) for t = T −1, T −2, . . . , 1, collapse the M2 elements into M in the following way by taking

weighted averages over state st+1:

xjt|T =

∑M
k=1 P (st = j, st+1 = k|ΨT )x

(j,k)
t|T

P (st = j|ΨT )

Pj
t|T =

∑M
k=1 P (st = j, st+1 = k|ΨT )[P

(j,k)
t|T + (xjt|T − x

(j,k)
t|T )(xjt|T − x

(j,k)
t|T )

′
]

P (st = j|ΨT )

Step 4. From Step 3, the smoothed value of xjt|T is dependent upon states at time t. By

taking a weighted average over the states at time t, we can get xt|T from

xt|T =

M∑
j=1

P (st = j|ΨT )xjt|T .

As remarked in [6, p.119], the procedure proposed in Kim seems to work in practice, but

theoretical results concerning the effects of the above approximations to optimal filtering are

missing. Futher results on switching state-space models like above can be found in Billio and

Montford (1995) [Switching State Space Models. Likelihood function, Filtering and Smoothing,

CREST Working Paper].

Finally, we observe that the approach of this section permits to treat any Markov-switching

ARMA(p, q) model as

yt = −
p∑
i=1

φi(st)yt−i +

q∑
j=1

Θj(st)εt−j + εt.
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As shown in Section 1.4, it possesses a state-space representation as above:


yt = C(st)zt + εt

zt+1 = A(st)zt + Bεt

where zt = (y
′

t−1, . . . ,y
′

t−p, ε
′

t−1, . . . , ε
′

t−q)
′

is the lag vector, and the matrices C(st),A(st) and

B are described in Section 1.4. Now the elements φi(st) and Θj(st) in C(st) and A(st) are

regime dependent.

1.9 Determination of the Number of Regimes

In this section we consider vector autoregressive processes with Markovian regime shifts in the

intercept term (in short, MSI-AR). The case with regime changes in the mean can be treated in

a similar manner. Following [6, chps.3 and 7] we illustrate finite order ARMA representations

for such processes. Then we use these results to develop a strategy for selecting simultaneously

the number of regimes and the order of the autoregression. Let us consider the following n× 1

vector MSI-AR(p), p ≥ 0, model

(57) A(L)yt = ν(st) + ut

where A(L) =
∑p
i=0 AiL

i with A0 = In is an n × n matrix polynomial in the lag operator

(here the variance-covariance matrix of ut and the autoregressive parameters Ai are assumed

to be regime invariant). As usual, the M -state (irreducible and ergodic) Markov chain (st) can

be represented by the AR(1) equation ξt = P
′
ξt−1 + vt. For st = m, νm = ν(st = m) is n× 1,

and Λ = (ν1 · · · νM ) is n×M . The above MSI-AR(p) model has the state-space representation

(58)


A(L)yt = Λξt + ut

ξt = P
′
ξt−1 + vt
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since ν(st) =
∑M
m=1 νmI(st = m) = Λξt. The transition equation in (58) differs from a stable

linear AR(1) process by the fact that one eigenvalue of P is equal to one and the covariance

matrix of vt is singular, due to the adding-up restriction i
′

Mξt = 1. For analytical purposes,

a slightly different formulation of the transition equation is more useful, where the above re-

striction is eliminated. This procedure alters representation (58), and we consider a new state

vector δt which is (M − 1) dimensional:

δt =


ξ1,t − π1

...

ξM−1,t − πM−1


where π = (π1 · · ·πM )

′
is the M × 1 vector of ergodic probabilities of the Markov chain. The

transition matrix, F say, associated with the state vector δt is given by

F =


p1,1 − pM,1 · · · pM−1,1 − pM,1

...
...

p1,M−1 − pM,M−1 · · · pM−1,M−1 − pM,M−1


Then we have

δt = Fδt−1 + wt

where wt = [IM−1 − iM−1]vt. The measurement equation in (58) can be reformulated as

A(L)yt = Λπ + Λ(ξt − π) + ut

Taking expectation gives

A(L)E(yt) = Λπ + Λ(E(ξt)− π) = Λπ

since E(ξt) = π. Setting E(yt) = µy, we obtain

A(L)yt = A(L)µy + Λ(ξt − π) + ut
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hence

A(L)(yt − µy) = Mδt + ut

where M = (ν1 − νM · · · νM−1 − νM ) is n× (M − 1). Thus we get the unrestricted state-space

representation

(59)


A(L)(yt − µy) = Mδt + ut

δt = Fδt−1 + wt

where (wt) is a martingale difference sequence with a nonsingular covariance matrix and the

innovation sequence in the measurement equation is unaltered. Setting zt = (δ
′

t u
′

t)
′
, we get

the state-space representation

(60)


A(L)(yt − µy) = [M In]zt

zt =

F 0

0 0

 zt−1 +

wt

ut


By [6, chp.3], any MSI-AR(p) process, represented as in (60), admits a finite order ARMA

representation. For this, we need the following lemma, due to Lütkepohl (see, for example,

Lemma 1 of [6],p.55)

Lemma 9.1

Suppose that xt is a R-dimensional AR(p) process with A(L)xt = ut. Let G be a K × R

matrix of rank K. Then

yt = Gxt = GA(L)−1ut = G|A(L)|−1A(L)∗ut

has an ARMA(p∗, q∗) representation with

p∗ ≤ deg|A(L)|

q∗ ≤ max
i,j

degAij(L)− deg |A(L)|+ p∗
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where deg(·) denotes the degree of a polynomial, |A(L)| is the determinant of A(L), A(L)∗ is

the adjoint of A(L), and Aij(L) is the (i, j)th cofactor of A(L).

Proposition 9.2 [Krolzig, Prop.2, chp.3]

Let yt denote an n× 1 vector MSI-AR(p) process, p = 0, satisfying (60). Then there exists

a final equation form ARMA(p∗, q∗) representation with p∗ = q∗ ≤M − 1:

γ(L)(yt − µy) = B(L)εt

where εt is a zero mean vector white noise process,

γ(L) = 1− γ1L− · · · − γM−1LM−1

is the scalar AR operator, and B(L) = In − B1L − · · · − BM−1L
M−1 is a n × (n + M − 1)-

dimensional matrix polynomial in the lag operator (of order M − 1).

Proof. Solving the transition equation in (60) gives

zt =

∑∞i=0 Fiwt−i

ut

 =

∑∞i=0(FL)iwt

ut


=

(IM−1 − FL)−1wt

ut



=

F(L) 0

0 In

−1 wt

ut


where F(L) = IM−1−FL (here we have used the fact that all the eigenvalues of F are less than

1 in modulus). Inserting the above vector MA(∞) representation for zt in the measurement

equation gives

yt − µy =
[
M In

]F(L) 0

0 In

−1 wt

ut


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=
[
M In

]F(L)−1 0

0 In

wt

ut


=
[
MF(L)−1 In

]wt

ut


= MF(L)−1wt + ut

Applying Lemma 9.1 we get the final equation form of ARMA(M − 1,M − 1) model

|F (L)|(yt − µy) = MF (L)∗wt + |F (L)|ut

Note that p∗ = q∗ = M − 1 is satisfied if the scalar lag polynomial γ(L) = |F (L)| and B(L) are

coprime. �

Proposition 9.3 [Krolzig, Prop.3, chp.3]

Suppose that yt is an n× 1 vector MSI-AR(p) process, p > 0, satisfying (60). Under quite

general regularity conditions, yt possess the ARMA(M+np−1,M+(n−1)p−1) representation

C(L)(yt − µy) = B(L)εt

where εt is a zero mean vector white noise.

Proof. It is a simple extension of Proposition 9.2. Consider the process y∗t = A(L)(yt−µy).

Since the relation A(L)(yt − µy) = Mδt + ut holds from (59), the transformed process y∗t

satisfies the conditions of Lemma 9.1. This MSI-AR(0) process has the ARMA(M − 1,M − 1)

representation

|F (L)|y∗t = MF (L)∗wt + |F (L)|ut

which induces the ARMA(M + p− 1,M − 1) representation

|F (L)|A(L)(yt − µy) = MF (L)∗wt + |F (L)|ut
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Multiplying with the adjoint A(L)∗ gives the final equation form

|F (L)||A(L)|(yt − µy) = A(L)∗MF (L)∗wt + |F (L)|A(L)∗ut

which is an ARMA(M + np− 1,M + (n− 1)p− 1). �

By Proposition 9.3 any univariate MSI-AR(p), p > 0, has an ARMA(M + p − 1,M −

1) representation. Thus, an ARMA structure in the autocovariance function may reveal the

characteristics of a data generating MSI-AR process. More precisely, the determination of

the number of regimes, as well as the number of autoregressive parameters, can be based on

currently available procedures to estimate the order of ARMA models. In principle, any of

the existing model selection criteria may be applied for identifying M and p. For example, for

specifying univariate ARMA models, one can use the classical Box-Jenkins strategy (see, for

example, [1], chapter 6).

References

[1] GOURIEROUX C.- MONFORT A:, ”Time Series and Dynamic Models”, Themes in Modern

Econometrics, Cambridge University Press, Cambridge U.K., 1997.

[2] HAMILTON J.D., ”Analysis of Time Series Subject to Changes in Regime”, Journal of

Econometrics 45 (1990), 39-70.

[3] HAMILTON J.D., ”Estimation, Inference and Forecasting of Time Series Subject to Changes

in Regime”,in Handbook of Statistics (Maddala G.S., Rao C.R. and Vinod H.D. eds), Vol.11,

North-Holland, New York, 1993.

[4] HAMILTON J.D., ”Time Series Analysis”, Princeton University Press, Princeton, N.J.,

1994.

[5] KIM C.J., ”Dynamic Linear Models with Markov-Switching”, Journal of Econometrics 60

(1994), 1-22.

[6] KROLZIG H.M., ”Markov-Switching Vector Autoregressions: modelling, statistical inference

and application to business cycle analysis”, Springer Verlag, Berlin, Heidelberg, N.Y.,1997.

56



Chapter 2

Markov-Switching VARMA

Models

2.1 Determining the Number of Regimes in Markov-

Switching VAR and VMA Models

Abstract.We give stable finite order VARMA(p∗, q∗) representations for M -state Markov switch-

ing second-order stationary time series whose autocovariances satisfy a certain matrix relation.

The upper bounds for p∗ and q∗ are elementary functions of the dimension K of the process,

the number M of regimes, the autoregressive and moving average orders of the initial model. If

there is no cancellation, the bounds become equalities, and this solves the identification problem.

Our classes of time series include every M -state Markov switching multivariate moving average

models and autoregressive models in which the regime variable is uncorrelated with the observ-

able. Our results include, as particular cases, those obtained by Krolzig (1997), and improve

the bounds given by Zhang and Stine (2001) and Francq and Zaköıan (2001) for our classes of

dynamic models. Data simulations and an application on foreign exchange rates complete the

paper. [JEL Classification: C01, C32, C50, C52]

Keywords: Second-order stationary time series, VMA models, VAR models, State-Space models,

Markov chains, changes in regime, regime number.
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2. MARKOV-SWITCHING VARMA MODELS

2.1.1 Introduction

In this paper we consider dynamic models whose parameters can change as a result of a regime-

shift variable, described as the outcome of an unobserved Markov chain. Such models have

attracted much interest in the literature for their applications in areas as economics, statis-

tics, and finance. A key problem arising in applications is to determine the number of Markov

regimes for which a switching model gives an adequate representation of the observed data. In

practice, the state dimension of the Markov chain is sometimes dictated by the actual appli-

cation or it is determined in an informal manner by visual inspection of plots. However, there

exists in the literature likelihood ratio test developed under non-standard conditions which help

testing Markov switching models (see Hansen (1992)). The current methods for determining

the state dimension are mainly based either on complexity-penalized likelihood criteria (see,

for example, Psaradakis and Spagnolo (2003), Olteanu and Rynkiewicz (2007), and Ŕıos and

Rodŕıguez (2008)) or on finite order VARMA representations of the initial switching models

(see, for example, Krolzig (1997), Zhang and Stine (2001) and Francq and Zaköıan (2001)). The

parameters of the VARMA representations can be determined by evaluating the autocovariance

function of the Markov-switching models. It turns out that the above parameters are elemen-

tary functions of the dimension of the dynamic process, the number of regimes and the orders

of the switching autoregressive moving-average model. As the sample autocovariances are more

easily calculated than maximum (penalized) likelihood estimates of the model parameters, the

bounds arising from the above-mentioned elementary functions are very useful for selecting

the number of regimes and the orders of the switching moving-average autoregression. Some

bounds are previously determined by Krolzig (1997), Zhang and Stine (2001) and Francq and

Zaköıan (2001) for some Markov regime switching models of different type. Surprisingly, we

show that the bounds given by Krolzig maintain their validity for Markov switching time series

whose autocovariances satisfy a matrix relation specified in the statement of Theorem 2.2. This

allows us to improve the bounds obtained by Zhang and Stine (2001) in Theorem 4 and Francq

and Zaköıan (2001) in Section 4.3 for a large class of dynamic models. This class includes every

multivariate regime switching Moving Average (MA) process and multivariate regime switching

Autoregressive (AR) processes, in which the regime variable is uncorrelated with the observable.
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and VMA Models

The main results of the paper are Theorems 2.2, 3.5, 4.2 and we are going to illustrate them (the

specifics of the models and the regularity assumptions will be given in the next sections). The

first result states that a second-order stationary dynamic process, whose autocovariances satisfy

a certain matrix relation, has a stable VARMA representation whose AR and MA orders are

well-specified elementary functions. The second result relates to M -state switching multivariate

Moving Average model MA(q) of the type yt = νst + Θst(L)ut. We will show that it admits a

stable VARMA(p∗, q∗) representation, whose autoregressive lag polynomial is scalar, and where

the orders of the stable VARMA satisfy p∗ ≤ M − 1 and q∗ ≤ M + q − 1. Finally, the last

result regards to a M -state switching K-dimensional Autoregressive model AR(p) of the type

φst(L)yt = νst +Σst(L)ut. Assuming that the regime variable is uncorrelated with the observ-

able, we prove that it admits a stable VARMA(p∗, q∗) representation, whose autoregressive lag

polynomial is scalar, and where the orders of the stable VARMA satisfy p∗ ≤M +Kp− 1 and

q∗ ≤M+(K−1)p−1. The assumption of uncorrelated regimes with the observable is, of course,

satisfied when the autoregressive part is regime-invariant (as done in Krolzig (1997)). However,

it is also a reasonable assumption when coinceving the change in regimes as an outside event

from the economic system as, for instance, abrupt natural events or unexpected wars. This

leads us to the fact that if the lag polynomials of the autoregressive and moving-average parts

of the stable VARMA(p∗, q∗) are coprime, then equalities hold in the previous relations. In

other words, if there is no cancellation, then the identification problem is completely solved. In

any case, the above result allows us to determine a lower bound for the number of states. This

means that a VARMA representation, and hence a VARMA structure in the autocovariance

function, may reveal the characteristics of a data generating MS(M)-VMA and MS(M)-VAR

processes. More precisely, the determination of the number of regimes, as well as the number of

autoregressive (or moving-average) parameters, can be based on currently available procedures

to estimate the orders of VARMA models. In principle, any of the existing model selection

criteria may be applied for identifying M and p or q. In the case of MS(M)-VMA(q) model,

evaluating estimates (p̂∗, q̂∗) of the orders of the stable VARMA(p∗, q∗) representation, we get

the estimates M̂ = p̂∗ + 1 and q̂ = q̂∗ − p̂∗, for M and q, respectively, when there is no

cancellation (see Theorem 3.5). Furthermore, for MS(M)-VAR(p) model, in which the regime

variable is uncorrelated with the observable, having estimates (p̂∗, q̂∗) of the orders of the stable
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2. MARKOV-SWITCHING VARMA MODELS

VARMA(p∗, q∗) representation, gives us M̂ = K(q̂∗ + 1) − (K − 1)(p̂∗ + 1) and p̂ = p̂∗ − q̂∗,

for M and p, respectively, when there is no cancellation and the autoregressive lag polynomial

of the stable representation is scalar (see Theorem 4.2). The rest of the paper is organized as

follows. In Section 2 we recall a characterization of VARMA process in terms of autocovari-

ances, as given by Zhang and Stine (2001). Then we extend Lemma 1 of the quoted paper, and

give a different proofs of Krolzig’s results on VARMA representations of certain MS processes

(see Krolzig (1997), Propositions 2, 3, and 4, Chp. 3) and of some results of Zhang and Stine

(2001) and Francq and Zaköıan (2001). In Section 3 (resp. 4) we show that an MS(M)-MA(q),

q ≥ 0, (resp. MS(M)-VAR(p), p ≥ 0, for which the regime variable is uncorrelated with the

observable) has a VARMA(p∗, q∗) representation, where the upper bounds for p∗ and q∗ are

induced by specific elementary functions. In Section 5 we discuss the implications of our results

for model selection, and illustrate some simulation experiments and numerical applications. In

Section 6 we include our results on the exchange rata data from Engle and Hamilton (1990).

Section 7 concludes. The proofs of theorems in Section 3 and 4 are reported in the Appendix

which completes the paper.

2.1.2 VARMA Representations

In this section, we introduce the model and the basic notation concerning with it. In particular,

we prove new algebraic results (Theorem 2.2 and Corollary 2.3) which will be used in the next

Sections 3 and 4 for the determination of the number of regimes in Markov-switching VMA and

VAR models. As a consequence, we give different and simple proofs of some results, previously

obtained by several authors, for classes of Markov switching time series which are included in

our models.

Let y = (yt) be a second-order stationary K-dimensional process. Then y is said to have

a stable and invertible VARMA(p, q) representation if it satisfies a finite difference equation

φ(L)yt = Θ(L)ut, where φ(L) =
∑p
i=0 φiL

i and Θ(L) =
∑q
j=0 ΘjL

j are K × K matrix

polynomials in the lag operator L, φ0 = Θ0 = IK , φp 6= 0,Θq 6= 0. Here the variables

y−1, . . . ,y−p, u−1, . . . ,u−q are assumed to be uncorrelated with ut for every t ≥ 0. The

process u = (ut) is a zero mean white noise, i.e., E(utu
′

τ ) = δtτG with |G| 6= 0 (through
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the paper, the symbol |A| denotes the determinant of a square matrix A, and δtτ denotes the

Kronecker symbol, i.e., δtτ = 1 if t = τ and zero otherwise). To avoid redundancy, φ(L) and

Θ(L) are coprime, and to guarantee invertibility, we assume that the polynomials |φ(z)| and

|Θ(z)|, z ∈ C, have all their roots strictly outside the unit circle. This definition implies that

the orders p and q are minimal in the usual sense. Finally, the process y = (yt) is second-order

stationary if the mean E(yt) and the autocovariances Γy(t, h) are independent of t. So we can

write µy = E(yt) and Γy(h) = Γy(t, h). We start with the following well-knowm result which

characterizes the minimal VARMA(p, q) model in terms of its autocovariance function (through

the paper we always assume that the process is not deterministic). For the proof see Zhang and

Stine (2001), Theorem 1. Let L be the backward shift operator, LΓy(h) = Γy(h− 1), where Γy

is the autocovariance function of the observed process y = (yt).

Theorem 2.1. Suppose that the K-dimensional process y = (yt) is second-order stationary

(or equivalently, weakly stationary) and the covariances Γy(h), h ∈ Z, satisfy a finite difference

equation of order p and rank q + 1, that is, there exist K ×K matrices Ai, i = 0, . . . , p, with

A0 = IK and Ap 6= 0, such that B(L)Γy(h) 6= 0 for h = q and vanishes for every h ≥ q + 1,

where B(L) =
∑p
i=0 AiL

i. Then y = (yt) has a VARMA(p∗, q∗) representation, where p∗ ≤ p

and q∗ ≤ q. If the pair (p, q) is minimal, then we have equalities p∗ = p and q∗ = q.

Note that the dimension K is absent from p∗ and q∗. This depends on the fact that the

autoregressive part of VARMA(p∗, q∗) consists of matrices, in general. In what follows, we also

seek special VARMA(p∗, q∗) representation whose autoregressive part consists of scalars. This

corresponds to the final equation form usually considered in the statements of Krolzig’s book

(1997); see, for example, Formula 3.10, p.58.

The following result generalizes Lemma 1 of Zhang and Stine (2001), proved for the case p =

q = 0.

Theorem 2.2. Suppose that the K-dimensional process y = (yt) is second-order stationary

and the autocovariances of y satisfy

B(L)Γy(h) = A
′
QhB
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2. MARKOV-SWITCHING VARMA MODELS

for every h ≥ q ≥ 0, where all the matrices on the right hand-side are nonzero matrices, Q is

M ×M , A and B are M × K matrices, B(L) =
∑p
i=0 BiL

i is a K × K matrix polynomial

of degree p ≥ 0, with B0 = IK and Bp 6= 0. Then y = (yt) has a stable VARMA(p∗, q∗)

representation, where p∗ ≤ M + p and q∗ ≤ M + q − 1. If we require that the autoregressive

part of such a representation consists of scalars (not matrices) and assume the usual regularity

conditions on the roots of the polynomial |B(z)|, z ∈ C, to guarantee the invertibility of B(L),

the bounds become p∗ ≤M +Kp and q∗ ≤M + (K − 1)p+ q − 1.

Proof. The Cayley-Hamilton theorem implies that there exist real numbers f1 . . . fM ∈ R such

that

(2.1) QM − f1QM−1 − · · · − fMIM = ϕQ(Q) = 0

where ϕQ(λ) = λM −f1λM−1−· · ·−fM is the characteristic polynomial of Q, that is, ϕQ(λ) =

|λIM −Q|. The hypothesis of the statement implies the following relations

Γy(q + h+M) + B1Γy(q + h+M − 1) + · · ·+ BpΓy(q + h+M − p) = A
′
Qq+h+MB

Γy(q + h+M − 1) + B1Γy(q + h+M − 2) + · · ·+ BpΓy(q + h+M − p− 1) = A
′
Qq+h+M−1B

...

Γy(q + h) + B1Γy(q + h− 1) + · · ·+ BpΓy(q + h− p) = A
′
Qq+hB

for every h ≥ 0. Multiplying the last M lines with −f1, . . . ,−fM and adding all equations, we

get

(2.2) Γy(q + h+M) +

M+p∑
j=1

CjΓy(q + h+M − j) = A
′
Qq+hϕQ(Q)B = 0

for some matrices {Cj} and for every h ≥ 0. The right hand-side of (2.2) is zero by (2.1).

Formula (2.2) can be written in the equivalent form

(2.3) Γy(h) +

M+p∑
j=1

CjΓy(h− j) = 0
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for every h ≥M + q. From (2.3) and Theorem 2.1 we can conclude that

p∗ ≤M + p and q∗ ≤M + q − 1.

To get a stable VARMA(p∗, q∗) representation whose autoregressive part consists of scalars (not

matrices), we multiply (2.1) by Qq−p

(2.4) QM+q−p − f1QM+q−p−1 − · · · − fMQq−p = 0.

Premultiplying (2.4) by A
′

and postmultiplying (2.4) by B yield

A
′
QM+q−pB − f1A

′
QM+q−p−1B − · · · − fMA

′
Qq−pB = 0

hence

B(L)Γy(M + q − p)− f1B(L)Γy(M + q − p− 1)− · · · − fMB(L)Γy(q − p) = 0

by using the matrix relation of the statement. Premultiplying the last equation by the adjoint

B(L)∗ of B(L) defined as B(L)∗ = |B(L)|B(L)−1 recalling that B(L) is invertible by hypothesis

(or equivalently, B(L)∗B(L) = |B(L)|IK), we get

|B(L)|(Γy(M + q − p)− f1Γy(M + q − p− 1)− · · · − fMΓy(q − p)) = 0

where the polynomial |B(L)| has degree Kp. Doing the matrix products term-by-term, taking

in mind the definition of the operator L and collecting similar terms, we get a finite scalar

difference equation of the form

(2.5) Γy(M + q +Kp− p) + η1Γy(M + q +Kp− p− 1) + · · ·+ ηM+KpΓy(q − p) = 0

where the coefficients {ηj} are scalars. Now the last result in the statement follows from (2.5)

and Theorem 2.1, that is, we get p∗ ≤M +Kp, and q∗ ≤M + q + (K − 1)p− 1. �
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Corollary 2.3. Under the hypothesis of Theorem 2.2, if the autocovariances of y = (yt) satisfy

B(L)Γy(h) =

r∑
i=1

A
′

iQ
h
i Bi

for every h ≥ q ≥ 0, where Ai and Bi are Mi×K nonzero matrices, Qi is an Mi×Mi nonzero

matrix, for i = 1, . . . , r, and B(L) is a K × K matrix polynomial in L of degree p ≥ 0, with

B0 = IK . Then y = (yt) has a stable VARMA(p∗, q∗) representation, where p∗ ≤
∑r
i=1Mi + p

and q∗ ≤
∑r
i=1Mi + q − 1. If B(L) is invertible and we require that the autoregressive part of

such a representation consists of scalars (not matrices), the bounds become p∗ ≤
∑r
i=1Mi+Kp

and q∗ ≤
∑r
i=1Mi + (K − 1)p+ q − 1.

Proof. SettingA
′

= [A
′

1 . . . A
′

r], B = [B
′

1 . . . B
′

r]
′
andQ = diag(Q1 . . . Qr), we getB(L)Γy(h) =

A
′
QhB. The result now follows from Theorem 2.2. �

To complete the section we give different proofs of Krolzig’s results on VARMA representations

of certain MS processes (see Krolzig (1997), Chp. 3).

Proposition 2.4. (Krolzig(1997), Proposition 2, p.56) Let y = (yt) be a K-dimensional Hidden

Markov-chain process (called MSI(M)-VAR(0) process in Krolzig (1997),p.50)

yt = νst + ut ut ∼ IID(0,Σu).

Then y admits a stable VARMA(p∗, q∗) representation with p∗ = q∗ ≤M − 1.

Proof. The autocovariances of y satisfy Γy(h) = A
′
FhB for every h ≥ 1, where A and B are

nonzero (M − 1)×K matrices, and F is (M − 1)× (M − 1) (see Krolzig (1997), Section 3.3.2,

Formula (3.21)). Now apply Theorem 2.2 for p = 0, q = 1 and M − 1 instead of M . �

Proposition 2.5. (Krolzig(1997), Proposition 3, p.57) Let y = (yt) be a K-dimensional M -

state Markov switching process (called MSI(M)-VAR(p) process, p > 0, in Krolzig (1997),p.50)

A(L)yt = νst + ut ut ∼ IID(0,Σu).

where A(L) = IK−A1L−· · ·−ApLp, Ap 6= 0, is invertible and regime invariant. Then y = (yt)
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admits a stable VARMA(p∗, q∗) representation

C(L)(yt − µy) = B(L)εt

where p∗ ≤ M + p − 1 and q∗ ≤ M − 1, C(L) is a K × K dimensional lag polynomial of

order M + p − 1, B(L) is a K × K dimensional lag polynomial of order M − 1, and εt is a

zero mean vector white noise process. If we require that the autoregressive part of such a stable

representation is scalar, the bounds become p∗ ≤ M +Kp− 1 and q∗ ≤ M + (K − 1)p− 1, as

pointed out in Krolzig (1997), p.58, Formula (3.10).

Proof. The autocovariances of y satisfy Γy(h)−
∑p
j=1AjΓy(h− j) = A

′
FhB for every h ≥ 1,

where A and B are nonzero (M − 1) ×K matrices, and F is (M − 1) × (M − 1) (see Krolzig

(1997), Section 3.3.4, Formula (3.27)). The result now follows from Theorem 2.2 for q = 1 and

M − 1 instead of M . �

Proposition 2.6. (Krolzig(1997), Proposition 4, p.58) Let y = (yt) be a K-dimensional M -

state Markov switching process (called MSM(M)-VAR(p) process, p > 0, in Krolzig (1997),p.50)

A(L)(yt − µst) = ut ut ∼ IID(0,Σu).

where A(L) is as above. Then there exists a final equation form VARMA(p∗, q∗) representation

γ(L)(yt − µy) = B(L)εt

where p∗ ≤ M + Kp − 1 and q∗ ≤ M + Kp − 2, γ(L) is a scalar lag polyonomial of order

M +Kp− 1, B(L) is a (K ×K) dimensional lag polynomial of order M +Kp− 2, and εt is a

zero mean vector white noise process.

Proof. The autocovariances of y satisfy Γy(h) = V
′
FhW +X

′
AhZ, for every h ≥ 0, where V

and W are nonzero (M −1)×K matrices, X and Z are nonzero (Kp)×K nonzero matrices, F

is (M − 1)× (M − 1) and A is (Kp)× (Kp) (see Krolzig (1997), Section 3.3.3, Formula (3.24)).

Now apply Corollary 2.3 by setting r = 2 and p = q = 0 in the last statement of it. �

Note that there is a typographic error in the statement of Proposition 4, Krolzig (1997), p.58,
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that is, one reads q∗ ≤ M −Kp− 2. However, the first minus sign in this inequality is a typo

as remarked at line -4, p.58, in the same reference.

For completeness, we also recall the bounds for the regime number obtained by Francq and

Zaköıan (2001) in Section 4.3. Here we give a different proof of their result by using Theorem

2.2 above.

Proposition 2.7. (Francq and Zaköıan (2001), Sec. 4.3) Let y = (yt) be a K-dimensional

second-order stationary centered dynamic process which satisfies the following MS(M) VARMA(p, q)

model (in the notation of the quoted paper)

yt =

p∑
i=1

ai(st)yt−i + εt +

q∑
j=1

bj(st)εt−j

where ai(st) and bj(st) are K × K random matrices, εt = σ(st)ηt, where σ(st) is a K × K

random matrix and ηt is a centered white noise with E(ηtη
′

τ ) = δtτΩ (Ω non singular). Then

y = (yt) admits a stable VARMA(p∗, q∗) representation, where p∗, q∗ ≤MK(p+ q).

Proof. It was shown in Francq and Zaköıan, Section 4.3, that the autocovariance of y = (yt)

is given by Γy(h) = E(yty
′

t−h) = (e
′ ⊗ f

′
)(P ∗)hW (0)f , for every h > 0, where (e

′ ⊗ f
′
) and

W (0)f are nontrivial K × [MK(p+ q)] and [MK(p+ q)]×K matrices, respectively, and P ∗ is

[MK(p+ q)]× [MK(p+ q)]. Now we apply Theorem 2.2 where on the right side Q = P ∗ is a

square matrix of order MK(p+ q) and on the left side B(L) = IK , i.e., we must set p = 0 and

q = 1 according to the notation in the statement of Theorem 2.2. �

Finally, we obtain the main result in Zhang and Stine (2001) by using Theorem 2.2 above.

Proposition 2.8. (Zhang and Stine (2001), Theorem 4) Let y = (yt) be a K-dimensional

second-order stationary Markov regime switching VAR(p)

yt = A(1)
st yt−1 + · · ·+A(p)

st yt−p + Σstvt

where vt ∼ IID(0, IK), Σst is a K × K positive definitive matrix, A
(i)
st is K × K and {st}

is independent of {vt}. Then y = (yt) admits a stable VARMA(p∗, q∗) representation, where

p∗ ≤M(Kp)2 and q∗ ≤M(Kp)2 − 1.
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Proof. It was shown in Zhang and Stine (2001), Formula (29), that the autocovariance of

y = (yt) is given by vec Γy(h) = QFh1 R, for every h ≥ 0, where Q and R are nontrivial

K2× [M(Kp)2] and [M(Kp)2]×1 matrices, respectively, and F1 is [M(Kp)2]× [M(Kp)2]. Now

we apply Theorem 2.2 where on the right side Q = F1 is a square matrix of order M(Kp)2 and

on the left side B(L) = IK , i.e., we must set p = 0 and q = 0 according to the notation in the

statement of Theorem 2.2. �

In the next sections, we improve the bounds given by the previous authors, and show that the

bounds given by Krolzig (1997) maintain their validity in the general case of MS(M)- VMA(q)

models and for the class of MS(M)-VAR(p) models in which the regime variable is uncorrelated

with the observable.

2.1.3 Markov Switching Moving Average Models

In this section we consider Markov-switching models with the following moving-average form

(in short, MS(M)-MA(q)):

(3.1) yt = νst + Θst(L)ut

Here we allows Markovian shifts in the intercept term; the case with regime changes in the

mean can be treated in a similar manner. As usual, y = (yt) is a K-dimensional random

process, Θst(L) =
∑q
j=0 Θst,jL

j , with Θst,0 = Σst (nonsingular symmetric K × K matrix)

and Θst,q 6= 0. The process u = (ut) is a zero mean white noise with E(utu
′

τ ) = δtτ IK . The

M -state Markov chain s = (st) is irreducible, stationary and ergodic with transition matrix

P = (pij), where pij = P (st+1 = j|st = i), and stationary distribution π = (π1, . . . , πM )
′
.

Irreducibility implies that πm > 0, for m = 1, . . . ,M , meaning that all unobservable states are

possible. As remarked in Francq and Zaköıan (2001), Example 2, p.351, a Markov-switching

moving-average process is always second-order stationary. It is sufficient to observe that the

terms νst and Θst,jut−j , j = 0, . . . , q in (3.1) belong to the space of square summable vector
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function L2. The Markov chain follows an AR(1) model

(3.2) ξt = P
′
ξt−1 + vt

where ξt is the random M × 1 vector whose mth element is equal to 1 if st = m and zero

otherwise. The innovation v = (vt) is a zero mean martingale difference sequence with respect

to an increasing σ-field (for more details, see Krolzig (1997), p.34). By direct computations, we

have

(3.3)

E(ξt) = π

E(ξtξ
′

t+h) = DPh

E(vtv
′

τ ) = δtτ (D−P
′
DP)

where D = diag(π1, . . . , πM ) and h ≥ 0 (here, and in the sequel, we use the convention that

Ah = I, identity matrix, if h = 0 for every square matrix A). We also assume that (st,ut) is

a strictly stationary process defined on some probability space, and that (st) is independent of

(ut). Our formulation includes the Hidden Markov chain processes of Krolzig (1997), Chp.3,

and the Markov mean-variance switching models of Zhang and Stine (2001), Section 3.1, which

is the case q = 0. Setting Λ = (ν1 . . . νM ) and Θj = (Θ1,j . . . ΘM,j) for j = 0, . . . , q,

where Θ0 = Σ = (Σ1 . . . ΣM ), the process y = (yt) in (3.1) admits the following state-space

representation

(3.4)

yt = Λξt +

q∑
j=0

Θj(ξt ⊗ IK)Ljut

ξt = P
′
ξt−1 + vt.

Taking expectation gives µy = E(yt) = ΛE(ξt) = Λπ as E(ξt) = π. In the next theorem we

compute the autocovariance function of the process y = (yt). This extends Theorem 3 from

Zhang and Stine (2001) proved for the case q = 0.
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Theorem 3.1. The autocovariance function of the process y = (yt) in (3.1) is given by

i) Γy(h) = Λ(Q
′
)hD(IM − δ0hP∞)Λ

′
+

q∑
j=h

Θj((P
′
)hD⊗ IK)Θ

′

j−h

for h = 0, . . . , q; and

ii) Γy(h) = Λ(Q
′
)hDΛ

′
for every h ≥ q + 1

where Q = P−P∞, P∞ = limn Pn = iMπ
′

and iM = (1, 1, . . . , 1)
′
.

Theorem 3.2. Assume Λ 6= 0. Then the process y = (yt) in (3.1) has a VARMA(p∗, q∗)

representation, where p∗ ≤M − 1 and q∗ ≤M + q − 1.

Note that the remaining case Λ = 0 (and hence Λ̃ = 0) will be included in the next Theorem

3.5. Now we use an argument discussed in Krolzig (1997), Section 2.3. The transition equation

in (3.4) differs from a stable linear AR(1) process by the fact that one eigenvalue of P
′

is equal

to one and the covariance matrix of vt is singular, due to the adding-up restriction i
′

Mξt = 1.

For analytical purposes, a slightly different formulation of the transition equation is more useful,

where the above restriction is eliminated. This procedure alters representation (3.4), and we

consider a new state (M −1)-dimensional vector defined by δt = (ξ1,t−π1 . . . ξM−1,t−πM−1)
′
.

The transition matrix, F say, associated with the state vector δt is given by

F =


p11 − pM1 · · · pM−1,1 − pM1

...
...

p1,M−1 − pM,M−1 · · · pM−1,M−1 − pM,M−1


which is an (M − 1) × (M − 1) nonsingular matrix with all eigenvalues inside the unit circle.

Then we have

(3.5) δt = Fδt−1 + wt
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where wt = [IM−1 − iM−1]vt. By direct computations, we have

(3.6)

E(δt) = 0

E(δtδ
′

t+h) = D̃(F
′
)h

E(wtw
′

τ ) = δtτ (D̃− FD̃F
′
)

where D̃ = AD(I−P∞)A
′

and A = [IM−1 oM−1] is (M−1)×M (here oM−1 is the (M−1)×1

vector of zeros). More explicitly, we get

D̃ =



π1(1− π1) −π1π2 · · · −π1πM−1

−π1π2 π2(1− π2) · · · −π2πM−1
...

...
...

−πM−1π1 −πM−1π2 · · · πM−1(1− πM−1)


.

We can see that |D̃| = |D| = π1π2 · · ·πM 6= 0 as the Markov chain is irreducible. Now the

measurement equation in (3.4) can be reformulated as

yt = Λπ + Λ(ξt − π) +

q∑
j=0

Θj [(ξt − π)⊗ IK ]ut−j +

q∑
j=0

Θj(π ⊗ IK)ut−j .

Then the process y = (yt) in (3.1) admits a second state-space representation

(3.7)

yt = Λπ + Λ̃δt +

q∑
j=0

Θ̃j(δt ⊗ IK)ut−j +

q∑
j=0

Θj(π ⊗ IK)ut−j

δt = Fδt−1 + wt

where Λ̃ = (ν1 − νM · · · νM−1 − νM ) and Θ̃j = (Θ1,j −ΘM,j · · · ΘM−1,j −ΘM,j) for every

j = 0, . . . , q. Equation (3.7) is also called the unrestricted state-space representation of y,

where w = (wt) is a martingale difference sequence with a nonsingular covariance matrix and

the innovation sequence in the measurement equation is unaltered. Note that (3.7) can be

written in short as

yt − µy = Λ̃δt +

q∑
j=0

Θ̃j [(δt + π̃)⊗ IK ]Ljut
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where µy = E(yt) = Λπ and π̃ = (π1 − πM · · · πM−1 − πM )
′
. Using representation (3.7) and

doing computations similar to those in the proof of Theorem 3.1, we get

Theorem 3.3. The autocovariance function of the process y = (yt) in (3.1) is given by

i) Γy(h) = Λ̃FhD̃Λ̃
′

+

q∑
j=h

Θ̃j [(F
hD̃)⊗ IK ]Θ̃

′

j−h +

q∑
j=h

Θj [(DP∞)⊗ IK ]Θ
′

j−h

for h = 0, . . . , q; and

ii) Γy(h) = Λ̃FhD̃Λ̃
′

for every h ≥ q + 1.

Now Γy(h) = Λ̃FhD̃Λ̃
′

for h ≥ q+1 is in the form of Theorem 2.2, with p = 0 and q+1 instead

of q. Since F is (M − 1) × (M − 1), we can apply directly Theorem 2.2 to get an alternative

proof of Theorem 3.2, assuming that Λ̃ 6= 0. However, the next two results are valid in the

general case.

Theorem 3.4. The process y = (yt) in (3.1) admits the MA(∞) representation

yt − µy = Λ̃F(L)−1wt +

q∑
j=0

Θ̃j [(F(L)−1wt)⊗ IK ]Ljut +

q∑
j=0

Θj(π ⊗ IK)Ljut

where F(L) = IM−1 − FL.

Now we compute explicitly a VARMA representation for the process y = (yt) in (3.1). The final

equation form of the stable representation could be very useful also when dealing with inference

problems. Moreover, this gives a new proof of Theorem 3.2 and generalizes Proposition 2 from

Krolzig (1997), Section 3.2.3.

Theorem 3.5. The process y = (yt) in (3.1) admits a final equation form VARMA(p∗, q∗)

representation with p∗ ≤M − 1 and q∗ ≤M + q − 1

γ(L)(yt − µy) = C(L)εt

where γ(L) = |F (L)| is the scalar AR operator of degree M−1, C(L) is the matrix lag polynomial
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of degree M + q − 1 given by

C(L) = [Λ̃F∗(L) Θ̃0(F ∗(L)⊗ IK) · · · Θ̃q(F
∗(L)⊗ IK)Lq |F(L)|

q∑
j=0

Θj(π ⊗ IK)Lj ]

and εt = (w
′

t u
′

t(w
′

t ⊗ IK) · · · u′t(w
′

t+q ⊗ IK) u
′

t)
′

is a zero mean vector white noise with

var(εt) = diag(D̃−FD̃F
′

(D̃−FD̃F
′
)⊗ IK · · · (D̃−FD̃F

′
)⊗ IK IK). Here F∗(L) is

the adjoint of F(L) = IM−1−FL. Note that p∗ = M−1 and q∗ = M+q−1 are satisfied if γ(L)

and C(L) are coprime, so the identification problem is completely solved, that is, M = p∗ + 1

and q = q∗ − p∗ (hence q∗ ≥ p∗ in this case).

To end the section we treat the forecasting for the above Markov switching moving average

model. Predictions of Markov switching VARMA models can be based on the state–space rep-

resentations obtained above. By ignoring the parameter estimation problem, i.e., the fact that

the parameters of the multivariate Markov switching process are unknown and must therefore

be estimated, the mean squared prediction error optimal forecast can be generated by the con-

ditional expectation ŷt+h|t = E(yt+h|Yt), for h ≥ 1, where Yt = (y
′

t,y
′

t−1, . . . )
′
. From (3.2)

we get the forecast of the hidden Markov chain, that is, ξ̂t+h|t = (P
′
)hξ̂t|t, for h ≥ 1, where

ξ̂t|t = E(ξt|Yt). Equivalently, from (3.5) we obtain δ̂t+h|t = Fhδ̂t|t, for h ≥ 1, where δ̂t|t is the

(M − 1) vector formed by the columns, but the last one, of ξ̂t|t−π. Inserting this formula into

Equation (3.7) gives the h–step predictor in the case of MS(M) MA(q) models. More precisely,

we have

ŷt+h|t = E(Λπ + Λ̃δt+h +

q∑
j=0

Θ̃j(δt+h ⊗ IK)ut+h−j +

q∑
j=0

Θj(π ⊗ IK)ut+h−j |Yt)

= Λπ + Λ̃δ̂t+h|t = Λπ + Λ̃Fhδ̂t|t.

Since the eigenvalues of F are all inside the unit circle, the forecasts of yt+h converge to the

unconditional mean of the process as h goes to infinity, that is, we have

limh→∞ ŷt+h|t = Λπ = µy.

Our prediction formula ŷt+h|t is based on the quantity δ̂t|t, or equivalently, on ξ̂t|t. It is known
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that ξ̂t|t can be computed by iterating on the following pair of recursive formulae

ξ̂t|t =
ηt � ξ̂t|t−1
η
′
tξ̂t|t−1

ξ̂t+1|t = P
′
ξ̂t|t

where the symbol � denotes the element-by-element multiplication and ηt is the (M×1) vector

whose jth component is the conditional density of yt given st = j and Yt−1. See, for example,

Krolzig (1997), Chp.5, Formulae (5.4) and (5.5). The iteration is started by assuming that the

initial state vector is drawn from the stationary unconditional probability distribution of the

Markov chain, that is, ξ̂1|0 = π.

2.1.4 Markov Switching Autoregressive Models

Let y = (yt) be a K-dimensional second-order stationary dynamic process satisfying the fol-

lowing Markov switching autoregressive model (in short, MS(M)-VAR(p)):

(4.1) φst(L)yt = νst + Σstut

where ut ∼ IID(0, IK) and φst(L) =
∑p
i=0 φst,iL

i with φst,0 = Ik and |φst,p| 6= 0. As usual,

we assume that the polynomials |φst(z)| have all their roots strictly outside the unit circle.

Sufficient conditions ensuring second-order stationarity for Markov-switching VAR models and

Markov-switching VARMA models can be found, for example, in Karlsen (1990a and 1990b)

and Francq and Zaköıan (2001), respectively. Moreover, in Francq and Zaköıan (2002) it was

shown that, under appropriate moment conditions, the powers of the stationary solutions admit

weak ARMA representations, which are potentially useful for statistical applications. Define

Λ = (ν1 · · · νM ) Σ = (Σ1 · · · ΣM )

and

φ(L) = (

p∑
i=0

φ1,iL
i · · ·

p∑
i=0

φM,iL
i).

73



2. MARKOV-SWITCHING VARMA MODELS

Then the process y = (yt) in (4.1) admits the following state-space representation

(4.2)
φ(L)(ξt ⊗ IK)yt = Λξt + Σ(ξt ⊗ IK)ut

ξt = P
′
ξt−1 + vt.

Taking expectation gives φ(1)(π ⊗ IK)µy = Λπ. Assuming the invertibility of the K × K

matrix R = φ(1)(π⊗ IK), we can write µy = R−1Λπ. Set xt = Λξt+Σ(ξt⊗ IK)ut. For every

h ≥ 0 and assuming that the regime variable ξt+h is uncorrelated with yt, we have

cov(xt+h,yt) = cov(φ(L)(ξt+h ⊗ IK)yt+h,yt)

= φ(L)[E(ξt+h)⊗ cov(yt+h,yt)]

= φ(L)(π ⊗ IK)[1⊗ cov(yt+h,yt)]

= B(L)Γy(h)

where B(L) = φ(L)(π ⊗ IK) is a K × K matrix lag polynomial of degree p. By explicit

computations, we can see that B(L) =
∑p
i=0BiL

i, with B0 = IK , where Bi = φi(π ⊗ IK) is

K × K and φi = (φ1,i · · · φM,i) is K × (KM) for every i = 1, . . . , p. As done in Section 3,

we can substitute ξt with the state (M − 1) × 1 vector δt in order to obtain the unrestricted

state-space representation

(4.4)
φ̃(L)(δt ⊗ IK)yt + φ(L)(π ⊗ IK)yt = Λπ + Λ̃δt + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

δt = Fδt−1 + wt

where Λ̃ = (ν1 − νM · · · νM−1 − νM ), Σ̃ = (Σ1 − ΣM · · · ΣM−1 − ΣM ) and φ̃(L) =

(
∑p
i=1(φ1,i − φM,i)L

i · · ·
∑p
i=1(φM−1,i − φM,i)L

i). From the transition equation in (4.4) we

obtain δt+h = Fhδt +
∑h−1
j=0 Fjwt+h−j . Using this relation, xt+h can be expressed as

(4.5)

xt+h =Λπ + Λ̃Fhδt +

h−1∑
j=0

Λ̃Fjwt+h−j + Σ̃[(Fhδt)⊗ IK ]ut+h

+

h−1∑
j=0

Σ̃[(Fjwt+h−j)⊗ IK ]ut+h + Σ(π ⊗ IK)ut+h.
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By (4.5), we obtain

(4.6) cov(xt+h,yt) = cov(Λπ + Λ̃Fhδt,yt) = Λ̃Fhcov(δt,yt) = Λ̃FhE(δty
′

t)

for every h > 0. For h = 0, we have

(4.7)
cov(xt,yt) = cov(Λπ + Λ̃δt + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut,yt)

= Λ̃E(δty
′

t) + Σ̃E[(δt ⊗ IK)uty
′

t] + Σ(π ⊗ IK)E(uty
′

t).

Now we are going to compute E(δty
′

t), E(uty
′

t) and E[(δt ⊗ IK)uty
′

t]. Postmultiplying the

measurement equation in (4.4) by δ
′

t and taking expectation give

φ(1)(π ⊗ IK)E(ytδ
′

t) = Λ̃D̃

hence

(4.8) E(δty
′

t) = D̃Λ̃
′

[R
′
]−1.

Postmultiplying the measurement equation in (4.2) and (4.4) by u
′

t and equating them, we get

φ(L)(ξt ⊗ IK)ytu
′

t = Λπu
′

t + Λ̃δtu
′

t + Σ̃(δt ⊗ IK)utu
′

t + Σ(π ⊗ IK)utu
′

t.

Taking expectation gives

φ(1)(π ⊗ IK)E(ytu
′

t) = Σ(π ⊗ IK)

hence

(4.9) E(uty
′

t) = (π
′
⊗ IK)Σ

′
[R
′
]−1.

Reasoning as above by using u
′

t(δ
′

t ⊗ IK) instead of u
′

t, we get

φ(1)(π ⊗ IK)E[ytu
′

t(δ
′

t ⊗ IK)] = Σ̃(D̃⊗ IK)
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hence

(4.10) E[(δt ⊗ IK)uty
′

t] = (D̃⊗ IK)Σ̃
′

[R
′
]−1.

Substituting Formulae (4.8), (4.9) and (4.10) into (4.6) and (4.7), we get

(4.11) cov(xt+h,yt) = Λ̃FhD̃Λ̃
′

[R
′
]−1

for every h > 0, and

(4.12) cov(xt,yt) = [Λ̃D̃Λ̃
′

+ Σ(DP∞ ⊗ IK)Σ
′
+ Σ̃(D̃⊗ IK)Σ̃

′

][R
′
]−1.

Collecting Formulae (4.3), (4.11) and (4.12) gives the following result:

Theorem 4.1. Under the hypothesis that the regime variable is uncorrelated with the observable,

the autocovariance function of the second-order stationary process y = (yt) in (4.1) is given by

i) B(L)Γy(0) = [Λ̃D̃Λ̃
′

+ Σ(DP∞ ⊗ IK)Σ
′
+ Σ̃(D̃⊗ IK)Σ̃

′

][R
′
]−1; and

ii) B(L)Γy(h) = Λ̃FhD̃Λ̃
′

[R
′
]−1 for every h > 0,

where R = φ(1)(π ⊗ IK) has been assumed to be nonsingular.

Applying Theorem 2.2 for q = 1 and taking in mind that F is (M − 1)× (M − 1), we get

Theorem 4.2. Suppose that the regime variable ξt+h is uncorrelated with yt for every h ≥ 0

and Λ̃ 6= 0. Then the MS(M)-VAR(p) process y = (yt) in (4.1) admits a stable VARMA(p∗, q∗)

representation with p∗ ≤ M + p − 1 and q∗ ≤ M − 1. If we require that the autoregressive lag

polynomial of such a stable representation is scalar, then the bounds become p∗ ≤M +Kp− 1

and q∗ ≤ M + (K − 1)p − 1. If there is no cancellation, then the identification problem is

completely solved and the above relations become equalities. In particular, the last formulae

imply M = K(q∗ + 1)− (K − 1)(p∗ + 1) and p = p∗ − q∗.

Theorem 4.2 can be reformulated by using the hypothesis Λ 6= 0 as done in Theorem 3.2. This

arises from the autocovariances expressed by using the matrix Q instead of F, similarly as in

Theorem 4.1. Moreover, to justify the hypothesis of having Λ̃ 6= 0 (respectively, Λ 6= 0), we
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refer to Krolzig (1997), p.53, line 15, where it was assumed the identifiability of the regimes,

νi 6= νj for i 6= j, in order to render the results unique. To end the section we compute

explicitly a VARMA representation for the process y = (yt) in (4.1). This gives a new proof

of Theorem 4.2 and extends Proposition 3 from Krolzig (1997), Section 3.2.4. We start with

the more simple case in which the autoregressive lag polynomial of the initial process is state

independent.

Theorem 4.3. Under quite general regularity conditions, the process y = (yt) in (4.1), with

Φst(L) = A(L) is state independent, has a VARMA(p∗, q∗) representation with p∗ ≤M+Kp−1

and q∗ ≤M + (K − 1)p− 1

γ(L)(yt − µy) = C(L)εt

where γ(L) = |F (L)||A(L)| is the scalar AR operator of degree M+Kp−1, C(L) = [A(L)∗Λ̃F (L)∗

A(L)∗Σ̃(F (L)∗ ⊗ IK) |F (L)|A(L)∗Σ(π ⊗ IK)] is a matrix lag polynomial of degree M +

(K − 1)p− 1, and εt = (w
′

t u
′

t(w
′

t⊗ IK) u
′

t)
′

is a zero mean vector white noise process with

var(εt) = diag(D̃− FD̃F
′
, (D̃− FD̃F

′
)⊗ IK , IK) .

In the general case in which the autoregression part of the initial process is state dependent

but the regime variable is uncorrelated with the observable, we can proceed as follows. By

Theorem 4.1 the autocovariances of the process satisfy a finite difference equation of order

p∗ = M +Kp− 1 and rank q∗ + 1 = M + (K − 1)p. Then the process can be represented by a

stable VARMA(p∗, q∗), whose autoregression lag polynomial is assumed to be scalar. Given the

process (yt), we can estimate the coefficients of the stable VARMA(p∗, q∗) via OLS. If there is

no cancellation between the AR and MA part of the estimated VARMA(p∗, q∗), then we get

the representation of Theorem 4.2 with equalities.

To complete the section we also discuss the forecasting for our Markov switching autore-

gressive model. So let us consider the MS(M)-VAR(p) model in (4.4). Then we can write

yt +

p∑
i=1

Φ̃i(δt ⊗ IK)yt−i +

p∑
i=1

Φi(π ⊗ IK)yt−i = Λπ + Λ̃δt + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

where Φi = (Φ1,i · · ·ΦM,i) and Φ̃i = (Φ1,i − ΦM,i · · ·ΦM−1,i − ΦM,i), for every i = 1, . . . , p
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(see Section 4). The one-step predictor ŷt+1|t can be calculated as above, so we get

ŷt+1|t = Λπ + Λ̃Fδ̂t|t −
p∑
i=1

Φ̃i(F⊗ IK)(δ̂t|t ⊗ IK)yt+1−i −
p∑
i=1

Φi(π ⊗ IK)yt+1−i.

For h–step predictions, h > 1, the task is much more complicated, and the last formula gener-

alizes as follows

ŷt+h|t = Λπ + Λ̃Fhδ̂t|t −
p∑
i=1

Φ̃i(F⊗ IK)h(δ̂t|t ⊗ IK)ŷt+h−i|t −
p∑
i=1

Φi(π ⊗ IK)ŷt+h−i|t

which in practice gives a recursive formula. Also in this case, taking the limits for h → ∞ on

both sides yields

limh→∞ ŷt+h|t = Λπ −
p∑
i=1

Φi(π ⊗ IK) limh→∞ ŷt+h−i|t

hence

limh→∞ ŷt+h|t = R−1Λπ = µy.

where R = Φ(1)(π ⊗ IK). However, in applied work it is customary to follow a suggestion of

Doan, Litterman and Sims (1984) for which the sequence of predicted values {ŷt+1|t, . . . , ŷt+h|t, . . . }

is substituted by the sequence {ŷt+1|t, . . . , ŷt+h|t+h−1, . . . }. See, for example, Krolzig (1997),

Section 4.4, for more details on this construction. Of course, the calculation of the filtered

regime probabilities ξ̂t|t (and hence δ̂t|t) can be performed by the recursive formulae listed at

the end of Section 3.

2.1.5 Data Simulation

In this section, we perform some MonteCarlo experiment for the estimation of the number of

states given by the estimated lower bound obtained in the previous sections and penalized likeli-

hood criteria such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)

and Hannan-Quinn Criterion (HQC). For the computation of the orders of the stable VARMA

we use the 3-pattern method (TPM) proposed by Choi (1992). We perform three experiments.
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Parameters 1.A 1.B 1.C
P 1 0 0.8 0.2 0.8 0.2

1 0 0.2 0.8 0.2 0.8
λ 4 4 4 12 4 6

Table 2.1: First experiment: Poisson Markov regime switching models with two states.
In table we report the transition matrices P s and Poisson Means λ for cases A–C.

The first is taken from Zhang and Stine (2001) in which we generate three different Poisson

Markov regime switching models with two states. The second is a Markov switching process

with two states and autoregressive dynamic with one lag (in short, MS(2)-AR(1) process) and

the third is a two-states Markov switching with two lags in the autoregressive part (in short,

MS(2)-AR(2)). The data-generating processes have gaussian i.i.d. errors and the parameters

are reported below in Table 1, 2 and 3.

With regards to the first experiment, we consider three different Markov switching Poisson

models (Table 1). The first model, denoted as case A, is a one-state model; that is, yt is an

i.i.d. sequence of Poisson random variables with λ= 4. Cases B and C are two-state models

and share the same transition matrix but different means. With λ1= 4 and λ2 = 12, the two

states of case B are more distinct than those of case C with λ1 = 4 and λ2 = 6.

Concerning with the second experiment, the parameters are set in accordance to Table 2.

It is a Markov switching process with two states and autoregressive dynamic with one lag and

it can be written as yt = µst +φstyt−1 +σstut with st ∈ {1, 2}. The three models in A, B and C

share the same transition probability matrix and the values for the intercept and the variance

but there are diffences in the autoregressive parameters (this follow some experiments as in

Psaradakis and Spagnolo, 2003). The last case D, instead, has a different transition matrix

which gives a more persistent chain.

Finally, in the third experiment, we consider a Markov switching process with two states

and autoregressive dynamic with two lags, written as yt = µst +φ1styt−1+φ2styt−2+σstut with

st ∈ {1, 2} . Here we want to compare the performance of the bounds proposed in the present

paper (we will denote it by CAV) with those proposed by Zhang and Stine (2001) (in short,

ZS) and Francq and Zaköıan (2001) (in short, FZ) for those autoregressive markov switching

models. Case B considers a more persistent process compared to the baseline case A and case
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Parameters 2.A 2.B 2.C 2.D
P 0.6 0.4 0.6 0.4 0.6 0.4 0.8 0.2

0.4 0.6 0.4 0.6 0.4 0.6 0.2 0.8
µ 0 3 0 3 0 3 0 3

σ 1
√

1.5 1
√

1.5 1
√

1.5 1
√

1.5
φ 0.3 0.3 0.3 0.6 0.3 0.9 0.3 0.6

Table 2.2: Second experiment: Markov switching process with two states and autore-
gressive dynamic with one lag. In table we report the transition matrices P s and the
parameters of the process (means µs, standard deviation σs and autoregressive coefficients
φs) for cases A–D.

Parameters 3.A 3.B 3.C
P 0.6 0.4 0.9 0.1 0.6 0.4

0.4 0.6 0.1 0.9 0.4 0.6
µ 0 3 0 3 0 3

σ 1
√

1.5 1
√

1.5 1
√

1.5
φ1 0.3 0.6 0.3 0.6 0.3 0.3
φ2 0.4 0.8 0.4 0.8 0.1 0.1

Table 2.3: Third experiment: Markov switching process with two states and autore-
gressive dynamic with two lags. In table we report the transition matrices P s and the
parameters of the process (means µs, standard deviation σs and autoregressive coefficients
φ1s and φ2s) for cases A–C.

C instead considers same autoregressive coefficients in different states.

The experiments simulate artificial time series of length T + 50 with T ∈ {100, 500, 1000}

; the first 50 initial data points are discarded to minimize the effect of initial conditions. 100

MonteCarlo replications are carried out for each trial. When complexity-penalized likelihood

criteria are computed, we use the recursive procedure discussed by Hamilton and the penaliza-

tion constants are the usual proposed in that literature (1 for AIC, 1
2 lnN for BIC and lnlnN

for HQC).

The simulation results from the first experiment are reported in Table 4. With respect to

the one-state case (A) only the TPM applied on our bounds seems to correctly predict the exact

number of states most of the times, while the likelihood criteria seem to overestimate that. The

same happens for case B and in case C for larger samples. Overall, the TPM does better than

any other likelihood methods.

With regards to the second experiment, the results are shown in Table 5. Here close
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1.A 1.B 1.C

N M̂ AIC BIC HQC TPM AIC BIC HQC TPM AIC BIC HQC TPM
100 1 0 0 0 45 0 0 0 5 0 0 0 39

2 53 74 66 15 22 41 26 64 59 77 67 26
3 47 26 34 40 78 59 74 31 41 23 33 35

500 1 0 0 0 44 0 0 0 0 0 0 0 26
2 28 58 44 25 4 6 5 62 11 51 27 36
3 72 42 56 31 96 94 95 38 89 49 73 38

1000 1 0 0 0 40 0 0 0 0 0 0 0 8
2 19 58 31 23 0 2 2 60 8 27 11 62
3 81 42 69 37 100 98 98 40 92 73 89 28

Table 2.4: Simulation results of the first experiment: Poisson Markov regime switch-
ing models with two states for cases A–C. We report the number of regimes chosen by
the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) and
Hannan-Quinn Criterion (HQC). TPM denotes the number of regimes chosen in accor-
dance to the bounds presented in the present paper.

conclusions can be drawn. In fact, the likelihood methods overestimate the number of states,

with the exception of the Bayesian Criterion (BIC) in small sample, while the TPM detects

it most of the times. These conclusions are robust to the change in the transition probability

matrix, when choosing a more persistent chain (case D).

The results of the third experiment are in Table 6. As expected from theoretical aspects,

using the bounds of Zhang and Stine (2001) (ZS in short) or Francq and Zaköıan (2001) (FZ in

short) we tend to underestimate the number of states since these bounds are larger and then

less informative. Whereas when using the bounds obtained in this work (denote by CAV), we

are able to detect the exact number of regimes most of the time; and this choice is robust to

the change of the transition probability matrix (case B) or of the values of the autoregressive

coefficients (case C).

2.1.6 Application on foreign exchange rates

As an application on real data, we want to consider and complete the example of Zhang and

Stine (2001) on foreign exchange rates. The data are the same used in Engle and Hamilton

(1990), who consider quarterly data for French franc, British pound and German mark for the

period from 1973:Q3 to 1988:Q4. Engle and Hamilton (1990) proposed to model the logarithm

of exchange rates as a two states Markov-switching autoregressive of order one. In line with
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2.A 2.B

N M̂ AIC BIC HQC TPM AIC BIC HQC TPM
100 1 0 0 0 0 0 0 0 0

2 38 87 65 75 24 63 40 76
3 62 13 35 25 76 37 60 24

500 1 0 0 0 0 0 0 0 0
2 0 21 1 74 1 3 1 70
3 100 79 99 26 99 97 99 30

1000 1 0 0 0 0 0 0 0 0
2 0 0 0 68 0 0 0 72
3 100 100 100 32 100 100 100 28

2.C 2.D

N M̂ AIC BIC HQC TPM AIC BIC HQC TPM
100 1 0 0 0 0 0 0 0 0

2 13 48 21 74 10 58 24 75
3 87 52 79 26 90 42 76 25

500 1 0 0 0 0 0 0 0 0
2 9 16 13 75 0 2 1 82
3 91 84 87 25 100 98 99 18

1000 1 0 0 0 0 0 0 0 0
2 10 17 14 76 0 0 0 74
3 90 83 86 24 100 100 100 26

Table 2.5: Simulation results of the second experiment: Markov switching process with
two states and autoregressive dynamic with one lag (in short, MS(2)-AR(1) process) for
cases A–D. We report the number of regimes chosen by the Akaike Information Criterion
(AIC), the Bayesian Information Criterion (BIC) and Hannan-Quinn Criterion (HQC).
TPM denotes the number of regimes chosen in accordance to the bounds presented in the
present paper.

3.A 3.B 3.C

N M̂ CAV ZS FZ CAV ZS FZ CAV ZS FZ
100 1 0 100 100 0 100 100 1 100 100

2 73 0 0 96 0 0 75 0 0
3 27 0 0 4 0 0 24 0 0

500 1 0 100 100 0 100 100 0 100 100
2 75 0 0 20 0 0 70 0 0
3 25 0 0 80 0 0 30 0 0

1000 1 0 100 100 0 100 100 0 100 100
2 75 0 0 50 0 0 60 0 0
3 25 0 0 50 0 0 40 0 0

Table 2.6: Simulation results of the third experiment: Markov switching process with
two states and autoregressive dynamic with two lags (in short, MS(2)-AR(2) process) for
cases A–C. We report the number of regimes chosen by using the three-pattern method and
applying different bounds either those obtained in Zhang and Stine (2001) (ZS), Francq
and Zaköıan (2001) (FZ) or in the present paper (CAV).

82
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Criteria Franc Pound Mark
AIC 2 2 1
BIC 1 1 1
HQC 1 1 1
CAV 2 1 2
ZS 0 0 0
FZ 1 0 1

Table 2.7: Estimates of the number of regimes for quarterly data on French franc, British
pound and German mark for the period from 1973:Q3 to 1988:Q4 based on penalized
likelihood criteria (Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC) and Hannan-Quinn Criterion (HQC)) and based on three-pattern method computing
the lower bounds as in Zhang and Stine (2001) (ZS), Francq and Zaköıan (2001) (FZ) or
in the present paper (CAV).

Zhang and Stine (2001), when we fit Gaussian regime switching models, penalized likelihood

criteria as Bayesian Information Criterion (BIC) and Hannan-Quinn Criterion (HQC) choose

M = 1 for all three currencies while Akaike Information Criterion (AIC) chooses 2 regimes

for franc and pound and only one regime for the mark. What is interesting is that, when we

compute the orders of the stable VARMA and evaluate the lower bounds as proposed in the

papers of Zhang and Stine (2001) (ZS), Francq and Zaköıan (2001) (FZ) and in the present one

(CAV), we find that our bounds are more precise and then more informative. In particular,

our bounds propose the existence of two regimes for franc and mark and one regime for the

pound (as reported in Table 7), while using the bounds of ZS and FZ we are not able to infer

any information on regime switching from the data. Finally, note that the last methodology

compared to penalized methods is less demanding and computationally faster since it does not

request likelihood calculations.

2.1.7 Conclusion

In this paper, for M -state Markov switching multivariate moving average models and autore-

gressive models in which the regime variable is uncorrelated with the observable, we give finite

order VARMA(p∗, q∗) representations. The parameters of the VARMA can be determined by

evaluating the autocovariance function of the Markov-switching models. It turns out that up-

per bounds for p∗ and q∗ are elementary functions of the dimension K of the process, the
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number M of regimes, and the orders p and q. In particular, the order of the stable VARMA

admits a simple form: p∗ ≤M − 1, q∗ ≤M + q− 1 for M -state switching VMA(q) models and

p∗ ≤M +Kp−1, q∗ ≤M +p(K−1)+q−1 for M -state switching VAR(p) models. This result

yields an easily computed method for setting a lower bound on the number of regimes from

an estimated autocovariance function. Our results include, as particular cases, those obtained

by Krolzig (1997), and improve the bounds found in the literature in the works of Zhang and

Stine (2001) and Francq and Zaköıan (2001) for our classes of dynamic models. Our simulation

results indicate the procedure is more precise than penalized likelihood criteria such as AIC,

BIC and HQC which require more elaborate procedures and assumption of a specific probability

model and the associated likelihood calculations. Moreover, having bounds for the number of

states which are small than those of Zhang and Stine (2001) or Francq and Zaköıan (2001) give

estimates for the number of states which are more precise and then more informative. This is

shown both with simulated experiments and with real data application on exchange rates.
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2.1.8 Appendix

In this section, we give proofs of Theorems in Sections 3 and 4.

Proof of Theorem 3.1. The following are well-known facts (see, for example, Zhang and

Stine (2001), Section 3.1): DP∞ = ππ
′
, Pn
∞ = PnP∞ = P∞Pn = P∞ and Qn = Pn − P∞
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for every n ≥ 1. First we treat the case h = 0. Then we have

Γy(0) = E(yty
′

t)− E(yt)E(y
′

t)

= E(yty
′

t)−Λππ
′
Λ
′

= E(yty
′

t)−ΛDP∞Λ
′

and

E(yty
′

t) = E[(Λξt +

q∑
j=0

Θj(ξt ⊗ IK)ut−j)(

q∑
j=0

u
′

t−j(ξ
′

t ⊗ IK)Θ
′

j + ξ
′

tΛ
′
)]

= ΛE(ξtξ
′

t)Λ
′
+

q∑
j=0

Θj [E(ξtξ
′

t)⊗ IK ]Θ
′

j

= ΛDΛ
′
+

q∑
j=0

Θj(D⊗ IK)Θ
′

j

hence

Γy(0) = ΛD(IM −P∞)Λ
′
+

q∑
j=0

Θj(D⊗ IK)Θ
′

j

which proves i) for h = 0. For h = 1, . . . , q, we have

Γy(−h) = cov(yt,yt+h) = E(yty
′

t+h)− E(yt)E(y
′

t+h) = E(yty
′

t+h)−ΛDP∞Λ
′

and

E(yty
′

t+h) = E[(Λξt +

q∑
j=0

Θj(ξt ⊗ IK)ut−j)(

q∑
i=0

u
′

t+h−i(ξ
′

t+h ⊗ IK)Θ
′

i + ξ
′

t+hΛ
′
)]

= ΛE(ξtξ
′

t+h)Λ
′
+

q∑
j=0

q∑
i=0

Θj [E(ξtξ
′

t+h)⊗ δt−jt+h−iIK ]Θ
′

i

= ΛDPhΛ
′
+

q−h∑
i=0

Θi[(DPh)⊗ IK ]Θ
′

i+h

hence

Γy(−h) = ΛD(Ph −P∞)Λ
′
+

q−h∑
i=0

Θi[(DPh)⊗ IK ]Θ
′

i+h

= ΛDQhΛ
′
+

q−h∑
i=0

Θi[(DPh)⊗ IK ]Θ
′

i+h.
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Now taking transposition and setting j = i+ h, we get

Γy(h) = Λ(Q
′
)hDΛ

′
+

q∑
j=h

Θj [((P
′
)hD)⊗ IK ]Θ

′

j−h

which proves i) for h = 1, . . . , q. For every h ≥ q + 1, we have

E(yty
′

t+h) = ΛE(ξtξ
′

t+h)Λ
′

= ΛDPhΛ
′

and

Γy(−h) = ΛD(Ph −P∞)Λ
′

= ΛDQhΛ
′

hence

Γy(h) = Λ(Q
′
)hDΛ

′

which proves ii). �

Proof of Theorem 3.2. For h ≥ q+ 1, the autocovariance function Γy(h) = Λ(Q
′
)hDΛ

′

is in the form specified in Theorem 2.2 with p = 0 and q + 1 instead of q. As remarked in

Zhang and Stine (2001) (see the proof of Theorem 3), the minimal polynomial of Q has a zero

constant term as Q is singular. So the proof is now slightly different from that of Theorem 2.2.

Let λi, i = 1, . . . ,M , be the eigenvalues of P
′
, where we set λ1 = 1 as P

′
π = π. Since the

Markov chain is ergodic, all other eigenvalues of P
′

are inside the unit circle. It follows that the

eigenvalues of Q
′

are µ1 = 0 and µi = λi− limn λ
n
i = λi for i = 2, . . . ,M . Since Q

′
is an M×M

singular matrix, its minimal polynomial can be written as ϕ(x) = xM − f1xM−1−· · ·− fM−1x,

where the coefficient fM−1 may be zero. An argument similar to that used in the proof of

Theorem 2.2 gives

Γy(M + q)− f1Γy(M + q − 1)− · · · − fM−1Γy(q + 1) = 0.

The result now follows from Theorem 2.1 with h = M + q, p∗ ≤M − 1 and q∗ ≤ h− 1. �

Proof of Theorem 3.4 From (3.5) we get δt = (IM−1 − FL)−1wt = F(L)−1wt (here we

have used the fact that all the eigenvalues of F are less than 1 in modulus). Inserting the above
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relation in (3.7) gives the result of the statement. �

Proof of Theorem 3.5 Premultiplying by |F(L)| the MA(∞) representation of Theorem

3.4 yields

|F(L)|(yt − µy) = Λ̃F∗(L)wt +

q∑
j=0

Θ̃j [(F
∗(L)wt)⊗ IK ]Ljut + |F(L)|

q∑
j=0

Θj(π ⊗ IK)Ljut

= Λ̃F∗(L)wt +

q∑
j=0

Θ̃j [F
∗(L)⊗ IK ]Lj(wt+j ⊗ IK)ut + |F(L)|

q∑
j=0

Θj(π ⊗ IK)Ljut

which is a VARMA(p∗, q∗) representation as claimed in the statement. �

Proof of Theorem 4.3 From (4.4) we get δt = F (L)−1wt as usual. Equating (4.1) and

(4.4) and substituting the last formula, we get

A(L)yt = Λπ + Λ̃δt + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

= A(1)µy + Λ̃F (L)−1wt + Σ̃(F (L)−1 ⊗ IK)(wt ⊗ IK)ut + Σ(π ⊗ IK)ut

hence

(4.13) A(L)(yt − µy) = Λ̃F (L)−1wt + Σ̃(F (L)−1 ⊗ IK)(wt ⊗ IK)ut + Σ(π ⊗ IK)ut.

Premultiplying (4.13) by |F (L)| yields

(4.14) |F (L)|A(L)(yt−µy) = Λ̃F (L)∗wt+ Σ̃(F (L)∗⊗ IK)(wt⊗ IK)ut+ |F (L)|Σ(π⊗ IK)ut.

Now the regularity conditions of the statement mean thatA(L) is invertible, that is, A(L)∗A(L) =

|A(L)|IK . Premultiplying (4.14) by A(L)∗, we get the VARMA(p∗, q∗) representation, with

p∗ ≤M +Kp− 1 and q∗ ≤M + (K − 1)p− 1 (use the fact that the degree of |A(L)| is Kp):

|F (L)||A(L)|(yt − µy) =A(L)∗Λ̃F (L)∗wt +A(L)∗Σ̃(F (L)∗ ⊗ IK)(wt ⊗ IK)ut

+ |F (L)|A(L)∗Σ(π ⊗ IK)ut

which is a model as required in the statement. �
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2.2 Business Cycle and Markov Switching Mod-

els with Distributed Lags: a Comparison

between US and Euro Area

Abstract. Abstract. Business cycle models are often investigated by using reduced form time

series models, other than (or in alternative to) structural highly grounded in economic theory

models. Reduced form VARMA with fixed parameters play a key role in business cycle analysis,

but it is often found that by their very nature they do not typically capture the changing phases

and regimes which characterize the economy. ln this paper we show that well-known state space

systems used to analyse business cycle in several empirical works can be comprised into a broad

class of non linear models, the MSI-VARMA. These processes are M -state Markov switching

VARMA models for which the intercept term depends not only on the actual regime but also

on the last r regimes. We give stable finite order VARMA representations for these processes,

where upper bounds for the stable VARMA orders are elementary functions of the parameters

of the initial switching model. If there is no cancellation, the bounds become equalities, and this

solves the identification problem. This result allows us to study US and European business cycles

and to determine the number of regimes most appropriate for the description of the economic

systems. Two regimes are confirmed for the US economy; the European business cycle exhibits,

instead, strong non-linearities and more regimes are necessary. This is taken into account when

performing estimation and regime identification. [JEL Classification: C01, C50, C32, E32]

Keywords: Time series, Varma models, Markov chains, changes in regime, regime number,

business cycle models.
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2.2.1 Introduction

In last years, we have witnessed a renewed interest in estimating and forecasting economic

growth rates and turning points in economic activity. To address those issues, business cycle

models have been proposed in the literature which are highly grounded in economic theory.

Since Hamilton (1989) those models, which are usually in state space form, have been acces-

sorized with devices being able to capture asymmetries and turning points in business cycle

dynamics: Markov switching features. However, estimation tasks of Markov switching state

space are not easily performed due to complexity of estimation algorithms. Therefore, re-

searchers typically deal with easier equipments such as reduced form Vector Autoregressive

Moving Average (VARMA) models, but it is often found that VARMA models with fixed pa-

rametes do not typically capture the changing phases characterizing the economy. We note

that well-known state space models of business cycle can be rewritten into a special case of

Markov switching VARMA models (in short, MS-VARMA), which we call Markov switching

VARMA with distributed lags (in short, MSI-VARMA). These models for time series allow the

parameters to change as a result of the outcome of an unobserved Markov chain, which is a

M -state discrete variable. Having such a convenient reduced form permits simpler inference

and a more tractable framework. In particular, differently from the baseline of a MS-VARMA

(see Cavicchioli (2013)), we study MSI-VARMA models where the intercept term depends not

only on the actual regime, but also on the last r regimes. A key problem when using non-linear

models is the determination of the number of states which best describes the observed data. In

fact, in empirical applications where such non-linear specifications are employed, the number

of regimes is sometimes dictated by the particular application or is determined in an informal

manner by visual inspection of plots. In this work we propose a method for the determination

of the number of regimes which relies on the computation of the autocovariance function and on

finite order (or stable) VARMA(p∗, q∗) representation of the initial switching model (see Krolzig

(1997) and Cavicchioli (2013)). More precisely, the parameters of the VARMA representation

can be determined by evaluating the autocovariance function of the Markov switching model.

It turns out that the orders p∗ and q∗ of the stable VARMA representations are elementary

functions of the dimension of the process, the number M of regimes, the number of lags r on
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the intercept and the AR and MA orders of the initial swiching model. Moreover, if there is

no cancellation among the roots of the autoregressive and moving average polynomials, the

bounds become equalities, and this solves the identification problem. With these results in

hand, we are thus able to propose an easier toolkit for the study of economic phases in applied

works. Particularly, business cycle analysis takes its first steps from the main empirical facts

establishing that during a postwar period, contraction has typically been followed by a high-

growth recovery that quickly boosts output to its prerecession level. This two phase pattern

was initially proposed by Hamilton (1989) and Lam (1990) and we call it the Lam-Hamilton-

Kim model. An alternative description was initiated by Friedman (1964; 1993) who observes

that postwar fluctuations in real output should be thought of having three phases rather than

two - contractions, high-growth recoveries and moderate-growth subsequent recoveries (see also

DeLong and Summers (1988) and Kim and Nelson (1999)). In the sequel we will refer to this

alternative model as Friedman-Kim-Nelson. More recent works on turning points detection and

economic growth forecast can be found in Krolzig (2001,2004), Billio and Casarin (2010) or

Billio, Ferrara, Guégan and Mazzi (2013)). Since Hamilton (1989) and his application for the

study of US cycles, two regimes have been considered in many studies. On the contrary, in some

recent papers which analyze the Euro area dynamics, more regimes have been suggested. For

example, Billio, Casarin, Ravazzolo and Van Dijk (2012) considered Markov Switching models

and in their application to US and EU industrial production data, for a period of time includ-

ing the last recession, they find that four regimes (strong-recession, contraction, normal-growth,

and high-growth) are necessary to identify some important features of the cycle.

The main contributions of our paper are twofold. Firstly, we show that the most used models

for business cycle analysis can be comprised into the broad class of non linear model, the MSI-

VARMA, and we obtain new results related to it. Specifically, we give its stable VARMA

representation and the orders can be determined by evaluating the autocovariance function

of the initial switching model. Secondly, we propose a new and more rigorous way for the

determination of the number of regimes and apply it to analyse the US and Euro business

cycles. In particular, we are able to assess that two regimes are sufficient when modeling the

US business cycle but more regimes are necessary when we consider the Euro area. This is the

preliminary stage to obtain correct estimation and to identify regimes.
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The rest of the paper is organized as follows. In Section 2 we review some facts linking Markov

switching models to business cycle analysis and thus we introduce the MS-VAR model. In

Section 3 we study MSI-VARMA models starting from the baseline case of an hidden Markov

chain process with distributed lags in the regime; here we give upper bounds for the stable

VARMA orders both via autocovariance function and via explicit determination of the stable

VARMA. Then we extend these results in Section 4 where theorems are stated for every MSI-

VARMA model in which the regime variable is uncorrelated with the observable. Section

5 introduces the Lam-Hamilton-Kim and the Friedman-Kim-Nelson models of business cycle

fluctuations and shows that these state space models can be expressed as MSI-VARMA. Finally,

an application on the determination of the number of regimes for the US and Euro real GDP is

conducted in Section 6, followed by estimation and regime identification. Section 7 concludes.

Proofs are given in the Appendix.

2.2.2 Markov Switching Models and Business Cycle

Many economic time series occasionally exhibit dramatic breaks in their behavior, associated

with events such as financial crises, abrupt changes in government policy or in the price of

production factors. Of particular interest for economists is the statistical measurement and

forecasting of business cycles. Since the early work of Bruns and Mitchell (1946), many attempts

have been made to identify cycles and to provide a turning-point chronology that dates the cycle

for a given country or economic area. The modern tools to deal with business cycle analysis

refer to nonlinear parametric modelling, which are flexible enough to take into account certain

stylized facts, such as asymmetries in the phase of the cycle. In fact, there is a large literature

that uses Markov switching (MS) models to recognize business cycle phases. The starting point

of this strand of literature is the recognition that there is a relationship between the concepts

of changes in cyclical phases and changes in regime. The most representative works are the

univariate regime-switching model proposed by Hamilton (1989) and its multivariate extension

allowing both for co-movement of macroeconomic variables and switching regime as in Kim and

Nelson (1999). The relationship between turning point and change in regime has been confirmed

by a number of empirical studies, as Krolzig (2001, 2004) and Billio, Ferrara, Guégan and Mazzi
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(2013) among the others. When using parametric models to analyze the cycle, the most used

models are certainly MS-VAR. This approach do not assume any a priori definition of the

business cycle: by means of the switching approach, different regimes are identified. Indeed,

these regimes differ in terms of average growth rates and/or growth volatilities. Let us now

introduce the MS-VAR model. Consider the K-dimensional second-order stationary dynamic

process y = (yt) satisfying the following Markov switching autoregressive model

(2.1) φst(L)yt = νst + Σstut

where ut ∼ IID(0, IK) and φst(L) =
∑p
i=0 φst,iL

i with φst,0 = Ik and φst,p 6= 0. As usual,

we assume that the polynomials |φst(z)| have all their roots strictly outside the unit circle.

Sufficient conditions ensuring second-order stationarity for Markov-switching VAR models and

Markov-switching VARMA models can be found, for example, in Francq and Zaköıan (2001).

The regime (st) follows an M -state ergodic irreducible Markov chain with P = (pij) being the

(M ×M) matrix of transition probabilities pij = Pr(st = j|st−1 = i), for i, j = 1, . . . ,M . In

general, from a statistical point of view, the order p, the number of states M , the parameters

and the transition matrix P are unknown. However, it is established in the literature that such

models admit finite-order VARMA(p∗, q∗) representations. Several authors (Krolzig (1997),

Zhang and Stine (2001), Francq and Zaköıan (2001,2002), Cavicchioli (2013) have looked at the

problem of finding upper bounds for p∗ and q∗, expressed as functions of various parameters of

the initial switching model. One possible application of such bounds are corresponding lower

bounds for M which in principle could be useful in real data situation. Another method for

the determination of regimes’ number refers to complexity-penalized likelihood criteria, such as

AIC, BIC, HQC (see Psaradakis and Spagnolo 2003, Olteanu and Rynkiewicz 2007, Rios and

Rodriguez 2008). However, these criteria are not widely used in empirical literature, possibly

for the computational burder required. The sample autocovariances are instead more easily

calculated than maximum (penalized) likelihood estimates of the model parameters and the

bounds arising from the above-mentioned elementary functions are very useful for selecting

the number of regimes and the orders of the switching autoregression. In the sequel we will

consider a generalization of these models where the intercept depends not only on the actual

93



2. MARKOV-SWITCHING VARMA MODELS

regime but also on the some previous regimes and we propose a method for the determination

of regimes number. This is interesting since well-known models used for business cycle analysis

can be recomprised in this framework, thus having a rigorous way for detection of regimes and

estimation.

2.2.3 The MSI(M, r) - VAR(0) Model

Let us consider a generalization of the MS(M)-VAR(p) model (see Cavicchioli (2013)), for which

we assume that the intercept term depends not only on the actual regime but also on the last

r (r ≥ 0) regimes

νt = νst,st−1,...,st−r
=

r∑
j=0

νj,st−j
=

r∑
j=0

M∑
m=1

νjmI(st−j = m)

where the indicator function I(st = · ) takes on the value 1 if st = m and zero otherwise. This

specification is called MSI(M, r) - VAR(p) model. Here we treat the case r > 0 (for r = 0 see

Cavicchioli (2013)). (The basic reference for our arguments and techniques is the Krolzig book

(1997)). First we consider the K-dimensional MSI(M, r)-VAR(0) process:

(3.1) yt =

r∑
j=0

νj,st−j
+ Σstut

where ut ∼ IID(0, IK) and (st) follows an M -state ergodic irreducible Markov chain. The

Markov chain follows an AR(1) process

ξt = P
′
ξt−1 + vt.

where P = (pij) is the (M×M) matrix of transition probabilities pij = Pr(st = j|st−1 = i), for

i, j = 1, . . . ,M , and ξt denotes the random (M × 1) vector whose mth element is equal to 1 if

st = m and zero otherwise. Here the innovation process (vt) is a martingale difference sequence

defined by vt = ξt − E(ξt|ξt−1); it is uncorrelated with ut and past values of u, ξ or y. The

(M × 1) vector of the ergodic probabilities is denoted by π = E(ξt) = (π1, . . . , πM )
′
. It turns

out to be the eigenvector of P associated with the unit eigenvalue, that is, the vector π satisfies
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P
′
π = π. The eigenvector π is normalized so that its elements sum to unity. Irreducibility

implies that πm > 0, for m = 1, . . . ,M , meaning that all unobservable states are possible.

The process in (3.1) has a first state space representation as follows

(3.2)


yt =

∑r
j=0 Λjξt−j + Σ(ξt ⊗ IK)ut

ξt = P
′
ξt−1 + vt

where Λj = (νj1 . . . νjM ), for j = 0, . . . , r, and Σ = (Σ1 . . . ΣM ).

Theorem 3.1 Assume P non singular. For every h ≥ r > 0, the autocovariance function of

the process (yt) in (3.1) satisfies

Γy(h) = A
′
(Q
′
)hB

where

A
′

=

r∑
i=0

Λi(P
′
)−i B =

r∑
j=0

(P
′
)jDΛ

′

j Q = P−P∞ P∞ = limn Pn.

We can always obtain a second state space representation in the following way:

yt =

r∑
j=0

Λj(ξt−j − π) + (

r∑
j=0

Λj)π + Σ((ξt − π)⊗ IK)ut + Σ(π ⊗ IK)ut

or equivalently

yt = (

r∑
j=0

Λj)π +

r∑
j=0

Λ̃jδt−j + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

where

Λ̃j = (νj1 − νjM . . . νjM−1 − νjM ) Σ̃ = (Σ1 −ΣM . . . ΣM−1 −ΣM ).

Here δt is the (M −1)×1 vector formed by the columns, but the last one, of ξt−π. Of course,

the last formula is obtained by using the restrictions i
′

Mξt = 1 and i
′

Mπ = 1, where i
′

M denotes
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the (M × 1) vector of ones. So we get

(3.3)


yt = (

∑r
j=0 Λj)π +

∑r
j=0 Λ̃jδt−j + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

δt = Fδt−1 + wt

where E(wtw
′

t) = D̃− FD̃F
′
, E(wtw

′

τ ) = 0 for t 6= τ ,

D̃ =



π1(1− π1) −π1π2 · · · −π1πM−1

−π1π2 π2(1− π2) · · · −π2πM−1
...

...
...

−πM−1π1 −πM−1π2 · · · πM−1(1− πM−1)


and

F =


p11 − pM1 · · · pM−1,1 − pM1

...
...

p1,M−1 − pM,M−1 · · · pM−1,M−1 − pM,M−1


which is an (M − 1) × (M − 1) matrix with all eigenvalues inside the unit circle. Since

δt has zero mean, the unconditional expectation of the initial process is given by E(yt) =

µy = (
∑r
j=0 Λj)π, as before. By iteration of the transition equation in (3.3), we also obtain

E(δtδ
′

t+h) = D̃(F
′
)h for every h ≥ 0.

For Model (3.1), we obtain the following main result:

Theorem 3.2. The second-order stationary dynamic process defined in (3.1), with r > 0,

has a stable VARMA(p∗, q∗) representation, where p∗ ≤ M − 1 and q∗ ≤ M + r − 2. If the

lag polynomials of the AR and MA parts of the VARMA(p∗, q∗) have no roots in common,

equalities hold in the previous relations, and the identification problem is completely solved, that

is, M = p∗ + 1 and r = q∗ − p∗ + 1 (in this case, we have q∗ ≥ p∗).

Now we also determine explicitly a stable VARMA(p∗, q∗) representation for the process (yt)

in (3.1), with r > 0. In our computation, the autoregressive lag polynomial of such a stable

VARMA is shown to be scalar.

Theorem 3.3. The second-order stationary dynamic process defined in (3.1), with r > 0, has
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a stable VARMA(p∗, q∗) representation, with p∗ ≤M − 1 and q∗ ≤M + r − 2,

γ(L)(yt − µy) = C(L)εt

where γ(L) = |F (L)| is a scalar polynomial of degree M−1 in L (that is, the determinant of the

matrix F (L) = IM−1−FL, where L is the lag operator) and C(L) is the [K× (KM +M − 1)]-

dimensional lag polynomial matrix of degree M + r − 2 in L given by

C(L) = [

r∑
j=0

Λ̃jF (L)∗Lj Σ̃(F (L)∗ ⊗ IK) |F (L)|Σ(π ⊗ IK)]

where F (L)∗ is the adjoint matrix of F (L). Furthermore, εt = (w
′

t u
′

t(w
′

t ⊗ IK) u
′

t)
′

is

a zero mean white noise process with var(εt) = diag(D̃−FD̃F
′
, (D̃−FD̃F

′
)⊗ IK , IK). If γ(L)

and C(L) are coprime, then p∗ = M − 1 and q∗ = M + r− 2, and the identification problem is

completely solved.

2.2.4 The MSI(M, r)-VARMA(p, q) Model

Firstly, we consider the following K-dimensional second-order stationary MSI(M, r)-VAR(p)

process, with r > 0 and p > 0,

(4.1) φst(L)yt =

r∑
j=0

νj,st−j
+ Σstut

where ut ∼ IID(0, IK) and φst(L) = φ0,st+φ1,stL+· · ·+φp,stL
p with φ0,st = IK and φp,st 6= 0

. As usual, we assume that the polynomials |φst(z)| have all their roots strictly outside the unit

circle. Sufficient conditions ensuring second-order stationarity for Markov-switching VARMA

models can be found, for example, in Francq and Zaköıan (2001) .

For every j = 0, . . . , r, define Λj = (νj1 . . . νjM ). Then define Σ = (Σ1 . . . ΣM ) and

φ(L) = [IK + φ1,1L+ · · ·+ φp,1Lp . . . IK + φ1,ML+ · · ·+ φp,MLp].
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The process in (4.1) has a first state space representation as follows

(4.2)


φ(L)(ξt ⊗ IK)yt =

∑r
j=0 Λjξt−j + Σ(ξt ⊗ IK)ut

ξt = P
′
ξt−1 + vt

Moreover, we can always obtain a second state space representation:

(4.3)



φ̃(L)(δt ⊗ IK)yt + φ(L)(π ⊗ IK)yt

= (

r∑
j=0

Λj)π +

r∑
j=0

Λ̃jδt−j + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

δt = Fδt−1 + wt

where δt, Λ̃j and Σ̃ are defined as in the previous section, and

φ̃(L) = [(φ1,1−φ1,M )L+· · ·+(φp,1−φp,M )Lp . . . (φ1,M−1−φ1,M )L+· · ·+(φp,M−1−φp,M )Lp].

Theorem 4.1. Let F be non singular. For every h ≥ r > 0, assume that the regime variable

ξt+h is uncorrelated with yt. Then the autocovariance function of the second-order stationary

process in (4.1) satisfies

B(L)Γy(h) = A
′
FhB

where A
′

=
∑r
j=0 Λ̃jF

−j and B = E(δty
′

t), which are assumed to be nonzero matrices.

Now, applying Theorem 2.2 from Cavicchioli (2013) for q = r and taking in mind that F is

(M − 1)× (M − 1), we have the following main result for model (4.1):

Theorem 4.2. Under the hypothesis that the regime variable is uncorrelated with the observable,

the K-dimensional second-order stationary process in (4.1), with r > 0 and p > 0, admits a

stable VARMA(p∗, q∗) representation with p∗ ≤M+p−1 and q∗ ≤M+r−2. If we require that

autoregressive lag polynomial of such a stable representation is scalar, then the bounds become

p∗ ≤ M + Kp − 1 and q∗ ≤ M + (K − 1)p + r − 2. If the lag polynomials of the AR and MA

parts of the former VARMA(p∗, q∗) representation have no roots in common, equalities hold in

the previous relations, that is, p∗ = M + p− 1 and q∗ = M + r − 2.
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To end the section we compute explicitly a VARMA representation for a general MSI-VARMA.

This gives a new proof of Theorem 3.3 (case q = 0) and extends Proposition 5 from Krolzig

(1997), Section 10.2.2. We start with the more simple case in which the autoregressive lag

polynomial of the initial process is state independent.

Theorem 4.3. Let y = (yt) be an K–dimensional second-order stationary MSI(M, r)-VARMA(p, q)

process, with r > 0,

A(L)yt =

r∑
j=0

νj,st−j +

q∑
i=0

Θst(L)ut

where A(L) =
∑p
`=0 A`L

` with A0 = IK , |Ap| 6= 0, and Θst(L) =
∑q
i=0 Θst,iL

i, with

Θst,0 = Σst (nonsingular symmetric K ×K matrix) and |Θst,q| 6= 0 are full rank matrix lag

polynomials. Under quite general regularity conditions, the dynamic process y = (yt) admits

a stable VARMA(p∗, q∗) representation, with p∗ ≤ M + Kp − 1 and q∗ ≤ M + (K − 1)p +

max{r, q + 1} − 2,

γ(L)(yt − µy) = C(L)εt

where γ(L) = |F (L)||A(L)| is the scalar AR operator of degree M +Kp− 1, C(L) is a matrix

lag polynomial of degree M + (K − 1)p+ max{r, q + 1} − 2, and εt is a zero mean vector white

noise process. In the general case in which the autoregression part of the process in Theorem

4.3 is state dependent but the regime variable is uncorrelated with the observable, we can

proceed as follows. By Theorem 4.1 the autocovariances of the process satisfy a finite difference

equation of order p∗ = M + p− 1 and rank q∗ + 1 = M + max{r, q + 1} − 1. Then the process

can be represented by a stable VARMA(p∗, q∗). Given the process (yt), we can estimate the

coefficients of the stable VARMA(p∗, q∗) with usual procedures. If there is no cancellation

between the AR and MA part of the estimated VARMA(p∗, q∗), then we get the representation

as in Theorem 4.3 with equalities.

2.2.5 Business Cycle Models

In this Section we show that business cycle models widely used in empirical works can be

rewritten as MSI-VARMA. Therefore, we can formally test the number of regimes as well

as lags in the intercept or autoregressive lags, given the above results. This avoids informal
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determination of regimes’ number by the researcher and leads to correct estimation results and

possibly to reliable forecasting conclusions.

(5.1) The Lam-Hamilton-Kim model. In modeling the time series behaviour of real Gross

National Product (GNP) of United States, Hamilton (1989) considered the case in which real

GNP is generated by the sum of two independent unobserved components, one following an

autoregressive process with a unit root, and the other following a random walk with a Markov

switching error term. Lam (1990) generalized the Hamilton model to the case in which the

autoregressive component need not contain a unit root. Finally, Kim (1994) showed that the

Lam-Hamilton model can be written in the following state space form, which we shall call the

Lam-Hamilton-Kim model :

(5.1)


yt = Hxt + βst

xt = Φxt−1 + et

where yt is scalar (K = 1), xt = (xt xt−1 · · ·xt−r+1)
′

and et = (ut 0 · · · 0)
′

are r × 1, with

ut ∼ IID(0, σ2), H = (1 − 1 0 · · · 0) is 1× r and

Φ =



φ1 φ2 φ3 · · · φr

1 0 0 · · · 0

0 1 0 · · · 0

...
...

...
...

0 0 0 · · · 0


with φi ∈ R, i = 1, . . . , r, (r ≥ 2). Here βst = δ0 + δ1st, where δj ∈ R, j = 0, 1, and (st) is

an M -state Markov chain. Kim (1994) estimated this model by using suitable (filtering and

smoothing) algorithms that he also constructed for more general state space representations

with Markov switching. Now we are going to show that Model (5.1) can be interpreted as a

model with distributed lags in the regime. Then we give a stable VARMA representation of it.

This allows us to estimate the model via MLE, i.e., a very simple procedure which is alternative
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to that employed by Kim (1994). From the transition equation in (5.1) we get

Φ(L)xt = et

hence

(5.2) |Φ(L)|xt = Φ(L)∗et

where Φ(L) = Ir − ΦL. Substituting (5.2) into the measurement equation in (5.1) after pre-

multiplying by the determinant of Φ(L) gives

(5.3) |Φ(L)|yt = |Φ(L)|βst + HΦ(L)∗et

which is an MSI(M, r)-VARMA(p, q) model in the sense of Section 4, where p = r and q = r−1

(recall r ≥ 2). So Theorem 4.3 directly implies that the Lam-Hamilton-Kim model admits

a stable VARMA(p∗, q∗) representation (whose autoregressive lag polynomial is scalar) with

p∗ ≤M + r − 1 and q∗ ≤M + max{p, p} − 2 = M + p− 2.

We now determine explicitly the final form of this stable VARMA and we need some notation.

Define β = (β1 · · ·βM ), where βm = δ0 + δ1m for every m = 1, . . . ,M . Then we get βst = βξt.

Substituting this relation into (5.3) yields

|Φ(L)|yt = |Φ(L)|βξt + HΦ(L)∗et

= |Φ(L)|β(ξt − π) + |Φ(1)|βπ + HΦ(L)∗et

= |Φ(L)|β̃δt + |Φ(1)|βπ + HΦ(L)∗et

where β̃ = (β1 − βM · · ·βM−1 − βM ). Then we get the state space representation

(5.4)


|Φ(L)|(yt − µy) = |Φ(L)|β̃δt + HΦ(L)∗et

δt = Fδt−1 + wt

where |Φ(L)|µy = |Φ(1)|βπ (in fact, µy = βπ). Substituting δt = F (L)−1wt into the measure-
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ment equation in (5.4) and premultiplying by |F (L)| yield

|F (L)||Φ(L)|(yt − µy) = β̃|Φ(L)|F (L)∗wt + H|F (L)|Φ(L)∗et

which is a stable VARMA(p∗, q∗) with p∗ ≤ M + r − 1 and q∗ ≤ M + r − 2, and whose

autoregressive lag polynomial is scalar. Summarizing we have the following result:

Theorem 5.1. The Lam-Hamilton-Kim model for US real GNP has a stable VARMA(p∗, q∗)

representation

γ(L)(yt − µy) = C(L)εt

with p∗ ≤ M + r − 1 and q∗ ≤ M + r − 2. Under quite general regularity conditions, γ(L) =

|F (L)||Φ(L)| is the scalar AR operator of degree M + r − 1 in the lag operator L and C(L) is

a [1× (M + r − 1)]-dimensional matrix lag polynomial of degree M + r − 2 in L given by

C(L) = [H|F (L)|Φ(L)∗ β̃|Φ(L)|F (L)∗]

and εt = (e
′

t w
′

t)
′

is a zero mean (M + r − 1) × 1 vector white noise process. If γ(L) and

C(L) are coprime, then equalities hold in the previous relations, hence p∗ = M + r − 1 and

q∗ = p∗ − 1.

(5.2) The Friedman-Kim-Nelson model. Friedman’s plucking model (1964) of business fluctua-

tions suggests that output cannot exceed a ceiling level, and it is occasionally plucked downward

by recession. The model implies that business fluctuations are asymmetric, that recessions have

only a temporary effect on output, and that recessions are duration dependent while expansions

are not. Subsequent literature has provided copious empirical support for these statements. See,

for example, De Simone and Clarke (2007) and its references. Kim and Nelson (1998) showed

that the Friedman model can be written in the following state space form, which we shall call

the Friedman-Kim-Nelson model :

(5.5)


yt = Hxt

xt = µst + Φxt−1 + Σstet

102



2.2 Business Cycle and Markov Switching Models with Distributed
Lags: a Comparison between US and Euro Area

where yt is scalar (K = 1), xt, µst and et are 4×1 with et ∼ IID(0, I4), Σst is a 4×4 diagonal

matrix, H = (1 1 0 0), and

Φ =



1 0 0 1

0 φ1 φ2 0

0 1 0 0

0 0 0 1


with φi ∈ R, i = 1, 2; here (st) is an M -state Markov chain (M = 2 in the quoted papers).

Kim and Nelson (1998) estimated the model by using Kim’s approximate MLE. See also Kim

(1994). We show that Model (5.5) can be viewed as a model with distributed lags in the regime

and then we give a stable VARMA representation of it. From the transition equation in (5.5)

we get

Φ(L)xt = µst + Σstet

where

Φ(L) = I4 −ΦL =



1− L 0 0 −L

0 1− φ1L −φ2L 0

0 −L 1 0

0 0 0 1− L


hence |Φ(L)| = (1 − L)2(1 − φ1L − φ2L

2). Premultiplying by the adjoint matrix Φ(L)∗ we

obtain

(5.6) |Φ(L)|xt = Φ(L)∗µst + Φ(L)∗Σstet

where

Φ(L)∗ =



(1− L)(1− φ1L− φ2L2) 0 0 L(1− φ1L− φ2L2)

0 (1− L)2 φ2L(1− L)2 0

0 L(1− L)2 (1− φ1L)(1− L)2 0

0 0 0 (1− L)(1− φ1L− φ2L2)


.

103



2. MARKOV-SWITCHING VARMA MODELS

Substituting (5.6) into the measurement equation in (5.5) gives

|Φ(L)|yt = HΦ(L)∗µst + HΦ(L)∗Σstet

which is an MSI(M, r)-VARMA(p, q) with p = 4 and r = q = 3. So Theorem 4.3 implies that

such a model has a stable VARMA(p∗, q∗) representation, with p∗ ≤ M + p − 1 = M + 3 and

q∗ ≤M + max{r, q+ 1}− 2 = M + 2. We now determine explicitly the final form of this stable

VARMA. Model (5.5) has the following state space representation

(5.7)


yt = Hxt

xt = µ̃δt + µπ + Φxt−1 + Σ̃(δt ⊗ I4)et + Σ(π ⊗ I4)et

δt = Fδt−1 + wt

where µ = (µ1 · · ·µM ) is 4×M , Σ = (Σ1 · · ·ΣM ) is 4× (4M), and µ̃ and Σ̃ are defined in the

usual way. Furthermore, we have E(yt) = HE(xt) and Φ(L)E(xt) = µπ, hence yt − E(yt) =

H(xt − E(xt)). From (5.7) we get

Φ(L)(xt − E(xt)) = µ̃δt + Σ̃(δt ⊗ I4)et + Σ(π ⊗ I4)et

= µ̃F (L)−1wt + Σ̃(F (L)−1wt ⊗ I4)et + Σ(π ⊗ I4)et

hence

|F (L)|Φ(L)(xt − E(xt)) = µ̃F (L)∗wt + Σ̃(F (L)∗wt ⊗ I4)et + Σ|F (L)|(π ⊗ I4)et.

Premultiplying by the determinant of Φ(L) yields

|F (L)||Φ(L)|(xt−E(xt)) = Φ(L)∗µ̃F (L)∗wt+Φ(L)∗Σ̃(F (L)∗wt⊗I4)et+Φ(L)∗Σ|F (L)|(π⊗I4)et.

Assuming µy = E(yt) time invariant, we obtain

|F (L)||Φ(L)|(yt − µy) = H|F (L)||Φ(L)|(xt − E(xt))

= HΦ(L)∗µ̃F (L)∗wt + HΦ(L)∗Σ̃(F (L)∗ ⊗ I4)(wt ⊗ I4)et + HΦ(L)∗Σ|F (L)|(π ⊗ I4)et
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which is a stable VARMA(p∗, q∗) with p∗ ≤M + 3 and q∗ ≤M + 2, and whose autoregressive

lag polynomial is scalar. Summarizing we have the following result:

Theorem 5.2. The Friedman-Kim-Nelson model of business fluctuations admits a stable

VARMA(p∗, q∗) representation

γ(L)(yt − µy) = C(L)εt

with p∗ ≤M+3 and q∗ ≤M+2. Under quite general regularity conditions, γ(L) = |F (L)||Φ(L)|

is the scalar AR operator of degree M + 3 in the lag operator L and C(L) is a [1× (5M − 1)]-

dimensional matrix lag polynomial of degree M + 2 in L given by

C(L) = [HΦ(L)∗µ̃F (L)∗ HΦ(L)∗Σ̃(F (L)∗ ⊗ I4) HΦ(L)∗Σ|F (L)|(π ⊗ I4)]

and εt = (w
′

t e
′

t(w
′

t ⊗ I4) e
′

t)
′

is a zero mean (5M − 1) × 1 vector white noise process. If

γ(L) and C(L) are coprime, then equalities hold in the previous relations, hence p∗ = M + 3

and q∗ = p∗ − 1.

2.2.6 Empirical Application

In our study we consider the Gross Domestic Product (GDP) from FRED at a quarterly fre-

quency for the United States (US), from 1951:1 to 2012:4, and from EUROSTAT for the Euro-

pean Union (EU 12), from 1973:1 to 2012:4 1. The presence of unit root in the data has been

checked by augmented Dickey-Fuller (ADF) test which points out the non-stationarity of both

series. For the null hypothesis of unit roots, the test statistic gives 1.724 (with p = 12) for US

GDP and -0.4037 (with p=5) for EU GDP. In both cases the null hypothesis of a unit root

cannot be rejected. For differenced time series, the ADF test rejects the unit root hypothesis

on the 1% significance level (with test statistics of -4.4853 for US and -5.3384 for EU). In the

following analysis we consider the growth rate of quarterly real GDP data for US and EU and

the series are plotted in Figure 1 and Figure 2.

1Data are taken from Fred website: < research.stlouisfed.org > and from Eurostat website: < http :
//epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ >. Data are seasonally adjusted.
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ARMA(p̂∗, q̂∗) M̂ r̂

US ARMA(1,1) 2 1
EU ARMA(3,2) 4 0

Table 2.8: Estimated number of regimes and distributed lags in the intercept for US
and EU GDP. The time lags are from 1951:1 to 2012:4 for US GDP and from 1973:1 to
2012:4 for EU GDP. The procedure uses the bounds obtained in Section 3.

We model both series as a MSI(M,r)-AR(0), with state-dependent mean and variance and no

autoregressive part. This follows from several empirical studies which find that most part of

the forecast errors is due to time changes in some parameters of the prediction models. In

particular, we follow Krolzig (2000) and Anas et al. (2008) where only intercept and volatility

are assumed to be driven by a regime-switching variable. In fact, with regards to the Euro area,

Anas et al. (2008) and Billio et al. (2013) find that allowing regime switching-autoregressive

coefficients deteriorates the detection of the business cycle turning points. Note that we can

now apply the bounds proposed in Section 3 which simultaneously define number of regimes

and lags in the intercept. Those can be obtained having estimates of the stable VARMA orders

p̂∗ and q̂∗ as follows 
M̂ = p̂∗ + 1

r̂ = 1− p̂∗ + q̂∗.

For the computation of the orders of the stable VARMA we use the 3-pattern method (TPM)

proposed by Choi (1992). This gives the results reported in Table 1.

Our results suggest that US real GDP is sufficiently good described with two regimes and one

lag in the intercept, which is in line with the estimated Markov-switching State Space models

of the previous section and with several empirical works studying US business cycle. Then we

are not going to indagate further. On the contrary, when modeling GDP of the Euro Area

four regimes are more appropriate. In order to identify regimes for the European economy,

we proceed with the estimation of a MSI(4,0)-AR(0) model, as suggested from the above step.

Tables 2 and 3 report estimated parameters and their standard errors, the transition matrix

and the expected duration of the regimes. Moreover, Figure 2 plots the smoothed probabilities
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Figure 2.1: US quarterly growth rate of real GDP for the period 1951:1 - 2012:4. Data
are taken from Fred website.
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Figure 2.2: European (EU12) quarterly growth rate of real GDP for the period 1973:1
- 2012:4. Data are taken from Eurostat website.
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Mean St.Deviation
µ1 -0.437 σ1 1.274

(0.604) (0.322)
µ2 -0.180 σ2 0.260

(0.132) (0.048)
µ3 0.394 σ3 0.184

(0.058) (0.042)
µ4 0.893 σ4 0.289

(0.038) (0.031)

Table 2.9: Estimated coefficients of the MSI(4,0)-AR(0) model for EU quarterly growth
rate of real GDP for the period 1973:1 - 2012:4. Standard errors are in parenthesis. The
log-likelihood value is 268.4987.

Regime 1 Regime 2 Regime 3 Regime 4
Regime 1 0.49 0.00 0.09 0.00

(0.45) (0.01) (0.06) (0.01)
Regime 2 0.51 0.58 0.02 0.05

(0.33) (0.26) (0.02) (0.03)
Regime 3 0.00 0.20 0.68 0.18

(0.01) (0.12) (0.16) (0.07)
Regime 4 0.00 0.22 0.22 0.76

(0.01) (0.12) (0.09) (0.13)

Table 2.10: Transition probability matrix of the estimated MSI(4,0)-AR(0) model for
EU quarterly growth rate of real GDP for the period 1973:1 - 2012:4. Standard errors are
in parenthesis.

of the four regimes. All regimes can be matched with a plausible economic interpretation. In

fact, recession phases are identified with Regime 1 and 2, being Regime 1 a stronger recession

than Regime 2 (contraction), while Regime 3 is moderate/normal growth and Regime 4 is high

growth. The expansionary regimes are more persistent than the others, in fact probabilities of

staying in those regimes are 0.68 and 0.76. Note also that all volatility coefficients are significant

at 1% level. The expected duration of recession phases is 4/5 quarters, while expansionary

regimes cover about 7 quarters. Here we detect turning points as the last quarter of each

regime phase and the following recession periods can be inferred from the estimation: 1974:1 -

1975:3, 1979:1 - 1981:3, 1982:1 - 1983:1, 1991:1 - 1993:3, 2008:1 - 2010:1 and 2011:1 - 2012:4.

These conclusions are in line with well-recognised recession phases, see, for instance, Anas et

al.(2007).
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Figure 2.3: Smoothed probabilities from the estimated MSI(4,0)-AR(0) model for EU
quarterly growth rate of real GDP for the period 1973:1 - 2012:4. Data are taken from
Eurostat. Regime 1 corresponds to strong recession, Regime 2 to contraction, Regime 3 to
moderate/normal growth and Regime 4 to high growth.
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2.2.7 Conclusion

In this paper, for a general class of Markov-switching VARMA models with distributed lags in

the regime, in symbols MSI(M, r)- VARMA(p, q), we give finite order VARMA(p∗, q∗) repre-

sentations where the parameters can be determined by evaluating the autocovariance function

of the Markov-switching models. It turns out that upper bounds for p∗ and q∗ are elementary

functions of the dimension K of the process, the number M of regimes, the number of regimes

r on the intercept and the orders p and q. If there is no cancellation, the bounds become

equalities, and this solves the identification problem. This result produces an easy method for

setting a lower bound on the number of regimes from the estimated autocovariance function.

Of particular interest is how some well-known state space systems, introduced in the literature

for business cycle analysis, are shown to be comprised in this general MSI-VARMA model, such

as the Lam-Hamilton-Kim and the Friedman-Kim-Nelson models of business fluctuations. In

the application we determine the number of regimes which turns out to be more appropriate for

the description of US and EU economic systems by using the bounds obtained in this work. In

particular, US real GDP is better described with two regimes, as is usually assumed in the esti-

mation of such state space systems. However, EU business cycle exhibits strong non-linearities

and more regimes are necessary. This is taken into account when performing estimation and

regime identification.
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[11] Francq, C. and Zaköıan, J.M. (2001) Stationarity of Multivariate Markov-Switching

ARMA Models, Journal of Econometrics 102, 339–364.
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2.2.8 Appendix

Proof of Theorem 3.1. Using the measurement equation in (3.2) , we can easily compute

E(yt) =

r∑
j=0

ΛjE(ξt−j) = (

r∑
j=0

Λj)π

and

E(yt)E(y
′

t+h) = (

r∑
j=0

Λj)ππ
′
(

r∑
j=0

Λ
′

j) = (

r∑
j=0

Λj)DP∞(

r∑
j=0

Λ
′

j)

where D = diag(π1, . . . , πM ). For every h ≥ r > 0, we get

E(yty
′

t+h) = E[

r∑
j=0

Λjξt−j + Σ(ξt ⊗ IK)ut,

r∑
i=0

ξ
′

t+h−iΛ
′

i + u
′

t+h(ξ
′

t+h ⊗ IK)Σ
′
]

=

r∑
i=0

r∑
j=0

ΛjE(ξt−jξ
′

t+h−i)Λ
′

i

=

r∑
i=0

r∑
j=0

ΛjE(ξt−jξ
′

t−j+h−i+j)Λ
′

i

=

r∑
i=0

r∑
j=0

ΛjDPh−i+jΛ
′

i

=

r∑
i=0

r∑
j=0

ΛjDQh−i+jΛ
′

i +

r∑
i=0

r∑
j=0

ΛjDP∞Λ
′

i

because h+r ≥ h− i+j ≥ h−r ≥ 0 for every i, j = 0, . . . , r. Here we have used the well-known

property E(ξtξ
′

t+h) = DPh for every h ≥ 0 (where we set Ph = IM for h = 0). Thus

Γy(−h) = cov(yt,yt+h) = E(yty
′

t+h)− E(yt)E(y
′

t+h) = (

r∑
j=0

ΛjDPj)Qh(

r∑
i=0

P−iΛ
′

i)

for every h ≥ r > 0, and taking the transpose gives the result. Here we have used the relations

Qh−i+j = Ph−i+j − P∞ = Pj(Ph − P∞)P−i = PjQhP−i as PnP∞ = P∞Pn = P∞ and

Qn = Pn −P∞ for every n ≥ 1. �

Proof of Theorem 3.2. For every h ≥ r > 0, we get

Γy(−h) = E(yty
′

t+h)− (

r∑
j=0

Λj)DP∞(

r∑
i=0

Λ
′

i)
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and

E(yty
′

t+h) = (

r∑
j=0

Λj)DP∞(

r∑
j=0

Λ
′

j) +

r∑
j=0

r∑
i=0

Λ̃jE(δt−jδ
′

t−j+h−i+j)Λ̃
′

i,

by using the State-Space representation in (3.3). Then it follows that

Γy(−h) =

r∑
j=0

r∑
i=0

Λ̃jD̃(F
′
)h−i+jΛ̃

′

i = (

r∑
j=0

Λ̃jD̃(F
′
)j)(F

′
)h(

r∑
i=0

(F
′
)−iΛ̃

′

i)

hence

Γy(h) = A
′
FhB

where A
′

=
∑r
i=0 Λ̃iF

−i and B =
∑r
j=0 FjD̃Λ̃

′

j , which we assume to be nonzero matrices.

Now apply Theorem 2.2 from Cavicchioli (2013) with p = 0, q = r > 0 and M − 1 instead of

M as F is (M − 1)× (M − 1). �

Proof of Theorem 3.3. The stable VAR(1) process (δt) possesses the vector MA(∞) represen-

tation δt = F (L)−1wt. Since the inverse matrix polynomial can be reduced to the inverse of the

determinant, that is, |F (L)|−1, and the adjoint matrix F (L)∗, we have δt = |F (L)|−1F (L)∗wt.

Inserting this transformed state equation into the measurement equation in (3.3) and multiply-

ing by the determinant of F (L) yield

|F (L)|(yt − µy) =

r∑
j=0

Λ̃jF (L)∗Ljwt + Σ̃(F (L)∗ ⊗ IK)(wt ⊗ IK)ut + |F (L)|Σ(π ⊗ IK)ut

which is a stable VARMA whose autoregressive lag polynomial is scalar, and where the orders

of the stable VARMA are as in the statement. �

Proof of Theorem 4.1. Set xt =
∑r
j=0 Λjξt−j +Σ(ξt⊗ IK)ut. For every h ≥ r > 0, we have

(A.1)

cov(xt+h,yt) = cov(φ(L)(ξt+h ⊗ IK)yt+h,yt)

= φ(L)[E(ξt+h)⊗ cov(yt+h,yt)]

= φ(L)(π ⊗ IK)[1⊗ cov(yt+h,yt)]

= B(L)Γy(h)

where B(L) = φ(L)(π ⊗ IK) is a K × K matrix lag polynomial of degree p. Since the
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process is second-order stationary, the above formula implies that cov(xt+h,yt) is time in-

variant. Using the unrestricted State-Space representation (4.3) and the relation δt+h =

Fhδt +
∑h−1
j=0 Fjwt+h−j , we have

(A.2)

xt+h =(

r∑
j=0

Λj)π +

r∑
j=0

Λ̃jF
hδt−j +

h−1∑
i=0

r∑
j=0

Λ̃jF
iwt+h−i−j + Σ̃[(Fhδt)⊗ IK ]ut+h

+

h−1∑
i=0

Σ̃[(Fiwt+h−i)⊗ IK ]ut+h + Σ(π ⊗ IK)ut+h

By (A.2), for every h ≥ r > 0, we obtain

(3.6)

cov(xt+h,yt) = cov((

r∑
j=0

Λj)π +

r∑
j=0

Λ̃jF
hδt−j ,yt) =

r∑
j=0

Λ̃jF
hcov(δt−j ,yt)

=

r∑
j=0

Λ̃jF
h−jE(δty

′

t) = A′FhB

where A
′

=
∑r
j=0 Λ̃jF

−j and B = E(δty
′

t), as requested. Now we see that E(δty
′

t) is time

invariant as cov(xt+h,yt) is. Collecting formulae (A.1) and (A.3) gives the result. �

Proof of Theorem 4.3. We have δt = F (L)−1wt as usual. Substituting the last formula in

the State-Space representation of the initial process obtained in the same manner as in (4.3),

we get

(A.4)

A(L)(yt − µy) =

r∑
j=0

Λ̃jF (L)−1Ljwt +

q∑
i=0

Θ̃i(F (L)−1 ⊗ IK)(wt ⊗ IK)Liut

+

q∑
i=0

Θi(π ⊗ IK)Liut

where Θ̃i is given by the usual construction applied to Θi = (Θ1i . . .ΘMi) for i = 0, . . . , q.

Premultiplying (A.4) by |F (L)| yields

(A.5)

|F (L)|A(L)(yt − µy) =

r∑
j=0

Λ̃jF (L)∗Ljwt +

q∑
i=0

Θ̃i(F (L)∗ ⊗ IK)(wt ⊗ IK)Liut

+ |F (L)|
q∑
i=0

Θi(π ⊗ IK)Liut.
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Now the regularity conditions of the statement mean that A(L) is invertible, that is, A(L)∗A(L) =

|A(L)|IK . Premultiplying (A.5) by A(L)∗, we get the VARMA(p∗, q∗) representation, with

p∗ ≤M +Kp− 1 and q∗ ≤M + (K − 1)p+ max{r, q + 1} − 2 (use the fact that the degree of

|A(L)| is Kp):

|F (L)||A(L)|(yt − µy) =

r∑
j=0

A(L)∗Λ̃jF (L)∗Ljwt

+

q∑
i=0

A(L)∗Θ̃i(F (L)∗ ⊗ IK)(wt ⊗ IK)Liut + |F (L)|A(L)∗
q∑
i=0

Θi(π ⊗ IK)Liut

which is a stable model as required in the statement. �
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Chapter 3

Markov Switching Models for

Volatility: Filtering,

Approximation and Duality

Abstract.This paper is devoted to show duality in the estimation of Markov Switching (MS)

processes for volatility. It is well-known that MS-GARCH models suffer of path dependence

which makes the estimation step unfeasible with usual Maximum Likelihood procedure. However,

by rewriting the MS-GARCH model in a suitable linear State Space representation, we are able

to give a unique framework to reconcile the estimation obtained by the Kalman Filter and with

some auxiliary models proposed in the literature. Reasoning in the same way, we present a

linear Filter for MS-Stochastic Volatility (MS-SV) models on which different conditioning sets

yield more flexibility in the estimation. Estimation on simulated data and on short-term interest

rates shows the feasibility of the proposed approach.[JEL Classification: C01, C13, C58]

Keywords: Markov Switching, MS-GARCH model, MS-SV model, estimation, auxiliary model,

Kalman Filter.
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3.1 Introduction

Time varying volatility is one of the main property of economic time series, common especially

to many financial time series. Moreover, describing and, where possible, forecasting volatility

is a key aspect in financial economics and econometrics. It is not only a statistical exercise but

it has also important impacts in terms of asset allocation, asset pricing as well as value-at-risk

computation and thus for risk management. A lot of work has been done on two popular classes

of models which describe time-varying volatility: Generalized Autoregressive Conditional Het-

eroschedasticity (GARCH)-type models and Stochastic Volatility (SV)-type models. GARCH

models (Bollerslev (1986), Nelson (1990), Lamoureux and Lastrapes (1990)) are commonly

known as observation-driven models (see Shephard (1996)). In fact, they describe the variance

as a linear function of the squares of past observations and then one type of shock alone drives

both the series itself and its volatility. On the contrary, SV models (Taylor (1986), Harvey,

Ruiz and Shephard (1994)) belong to the class of parameter-driven models since these models

are driven by two type of shocks, one of which influences the volatility. The presence of unob-

served or latent components makes SV models harder to estimate and to handle statistically,

while GARCH parameters can easily be estimated using maximum likelihood procedure. In the

latter models, one potential source of misspecification is that the structural form of conditional

means and variances is relatively inflexible and it is held fixed throughout the sample period.

In this sense, they are called single-regime models since a single structure is assumed for the

conditional mean and variance.

In order to allow more flexibility, the assumption of a single regime could be relaxed in favour of

a regime-switching model. The coefficients of this model are different in each regime to account

for the possibility that the economic mechanism that generates the financial serie undergoes

a finite number of changes over the sample period. These coefficients are unknown and must

be estimated, and, althought the regimes are never observed, probabilistic statements can be

made about the relative likelihood of their occurrence, conditional on an information set.

A well-known problem to face when dealing with the estimation of Markov Switching GARCH

models is the path dependence. Cai (1994) and Hamilton and Susmel (1994) have argued that

MS-GARCH models are essentially intractable and impossible to estimate due to the depen-
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dence of conditional variance on the entire path history of the data. That is, the distribution

at time t, conditional on the current state and on available information, is directly dependent

of the current state but also indirectly dependent on all past states due to the path dependence

inherent in MS-GARCH models. This is because the conditional variance at time t depends

upon the conditional variance at time t− 1, which depends upon the regime at time t− 1 and

on the conditional variance at time t− 2, and so on. Hence, the conditional variance at time t

depends on the entire sequence of regimes up to time t.

In the first part of this paper, we will consider the univariate version of MS-GARCH and some

methods proposed to bypass the problem of path dependence. The trick is mainly found in

adopting different specifications of the original MS-GARCH model. Some authors propose

Quasi Maximum Likelihood (QML) procedures of a model which allow similar effects of the

original one. Models which elude in this way the path dependence problem are proposed by

Gray (1996), Dueker (1997) and Klaassen (2002), among others. Gray (1996) proposes a model

in which path dependence is removed by aggregating the conditional variances from the regimes

at each step. This aggregated conditional variance (conditional on available information, but

aggregated over the regimes) is then all that is required to compute the conditional variance

at the next step. The same starting idea is used in Dueker (1997), with a slightly different

approach. He extends the information set including also current information on the considered

series. Furthermore, Klaassen (2002) puts further this idea. Particularly, when integrating

out the unobserved regimes, he uses all available information, whereas Gray uses only part of

it. Another method to deal with MS-GARCH models has been proposed by Haas, Mittnik

and Paolella (2004) for which the variance is disaggregated in independent processes; this is

a simple generalization of the GARCH process to a multi-regime setting. Finally, Bayesian

approach based on Markov Chain Monte Carlo (MCMC) Gibbs technique for estimating MS-

GARCH can be found in Bauwens, Preminger and Rombouts (2010) and Bauwens, Dufays and

Rombouts (2011), Henneke, Rachev, Fabozzi and Metodi (2011) or Billio, Casarin and Osuntuyi

(2012). Other approaches based on both Monte Carlo methods combined with expectation-

maximization algorithm and importance sampling to evaluate ML estimators can be found in

Augustyniak (2013) and Billio, Monfort and Robert (1998a and 1998b).

In the second part of the paper, we will consider the extension of univariate SV model with
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regime-switching features. If SV models are difficult to estimate due to the latent variable, MS-

SV are even more complicated because there are two hidden levels in the latent structure. So,

MS-SV models have been studied and estimated mainly with Bayesian techniques. For example,

So, Lam and Li (1998) adopt MCMC method and they construct Bayesian estimators by Gibbs

sampling. Another Bayesian approach is sequential simulation based filtering (Particle Filter).

See, for instance, Casarin (2004) and Carvalho and Lopes (2007).

The main contribution of the present paper is to give a unique framework to reconcile the

estimation obtained by the above auxiliary models from one side, and Kim’s (1994) filtering

algorithm for Markov switching state space from the other. Kim’s algorithm can be used, un-

der some regularity conditions, to obtain inferences about any dynamic time series model with

Markov switching that can be put in a state space form. It is a very flexible approach and

allows the estimation of a broad class of models. However, to make the filter operable, at each

iteration it collapses M2 posteriors (where M is the number of states) in M of it, employing

an approximation. Finally, Quasi Maximum Likelihood estimation of the model recovers the

unknown parameters. Then our first contribution is to show duality in the estimation of Markov

Switching processes for volatility. In particular, having a suitable linear state space representa-

tion for the MS-GARCH model, we are able to prove the equivalence in the estimation obtained

by Kim’s Filter and through auxiliary models proposed in the literature. The second contribu-

tion relates instead to MS-SV models. In fact, we are able to extend the approach previously

used for MS-GARCH to MS-SV models. In particular, we parallel the model with the gaussian

state space model and we propose a linear Filter on which different conditioning information

sets yield more flexibility in the estimation. Numerical and empirical applications show the

feasibility of these approaches.

The paper is structured as follows. In Section 2 we specify the MS-GARCH model of interest

and introduce some concepts and notations. Section 3 reviews the main auxiliary models for

MS-GARCH which are proposed in the literature to overpass the path dependence problem.

In Section 4 we present a linear state space representation associated to the MS-GARCH and

determine the algorithm for the linear filter. This serves to prove our duality results discussed

in Section 5. In Section 6 we write a linear approximated filter for MS-SV models. In Section 7

we compare estimation of the parameters using different approximations in the proposed filter
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for simulated data and short-term interest rates. Section 8 concludes. Finally, Appendix A

describes in details some Formulae and in Appendix B we recall the main results about the

stationarity of Markov Switching models and particulary applied to our specifications.

3.2 Markov Switching GARCH

Let εt be the observed univariate1 time series variable (as for instance, returns on a financial

asset) centered on its mean and let st be a discrete, unobserved state variable with M -states.

The Markov Switching GARCH(1,1) model is defined as

(1)


εt = σt(Ψt−1, θ(st))ut

σ2
t (Ψt−1, st) = ω(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1(Ψt−2, st−1)

where ut ∼ IID(0, 1), ω(st) > 0, α(st), β(st) ≥ 0 and θ(st) is the parameter vector defined

as θ(st) = (ω(st), α(st), β(st))
′
. Here Ψt−1 = {εt−1, . . . , ε1} denotes the information set of

observations available up to time t−1. Moreover, st is a M -state first order Markov chain with

transition probabilities, which are assumed time invariant2,

πij,t = p(st = j|st−1 = i)

where
M∑
j=1

πij,t = 1

for every i = 1, . . . ,M .

Let us introduce the following concepts and notations:

• p(st = j|Ψt−1) = pj,t|t−1 which is the prediction probability;

1The proposed setting can be easily extended to a multivariate framework. This can be done on the line
of multivariate GARCH models to regime-switching framework proposed by Billio and Caporin (2005) and
Pellittier (2006). However, note that multivariate volatility models in the context of single regime switching
are the Constant Conditional Correlation (CCC) model of Bollerslev (1990) and the Dynamic Conditional
Correlation (DCC) model of Engle (2002).

2If the information variables that govern time-variation in the transition probabilities is conditionally un-
correlated with the state of the Markov process, which holds in general, Hamilton’s (1989) filtering method is
still valid also with time-varying transition probabilities.
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• p(st = j|Ψt) = pj,t|t which is the filtered probability.

From these we can compute the augmented filtered probability as

p(st−1 = i|st = j,Ψt−1) =
πij,t pi,t−1|t−1

pj,t|t−1
= pij,t−1|t,t−1.

Note that the filtering algorithm computes pt|t−1,t = p(st|st−1,Ψt) in terms of pt|t−1,t−1 and

the conditional density of εt which depends on the current regime st and all past regimes, i.e,

f(εt|s1, . . . , st,Ψt−1). Computation details are shown in Appendix A1.

3.3 Auxiliary Models for MS-GARCH

As argued in the Introduction, the main problem to face when dealing with the estimation

of Markov Switching GARCH model is the path dependence, which is the dependence of the

conditional variance on the entire sequence of regimes. The common approach to eliminate path

dependence is to replace the lagged conditional variance derived from the original MS-GARCH

model with a proxy. Various authors have proposed different auxiliary models which differ only

by the content of the information used to define such a proxy. In general, different auxiliary

models can be obtained by approximating the conditional variance of the MS-GARCH process

(2) σ2
t (Ψt−1, st) = ω(st) + α(st)

(SP )ε2t−1 + β(st)
(SP )σ2

t−1.

In the literature there are different specifications (in short, SP) of (SP )ε2t−1 and (SP )σ2
t−1 which

in turn define different approximations of the original process. In this Section we give a detailed

description of four auxiliary models presented in the literature, specifying the superscript in (2)

with the initial letter of the author who proposed that specification.

3a. Gray’s Model

The first attempt to eliminate the path dependence is proposed by Gray (1996). He approxi-

mates the original model by replacing the lagged conditional variance σ2
t−1 with a proxy (G)σ2

t−1
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as follows:

(3)

(G)σ2
t−1 = E[σ2

t−1(Ψt−2, st−1)|Ψt−2]

=

M∑
i=1

σ2
t−1(Ψt−2, st−1 = i) p(st−1 = i|Ψt−2)

=

M∑
i=1

(G)σ2
i,t−1|t−2 pi,t−1|t−2

where, according to the model, (G)σ2
t−1|t−2 turns out to be a function of Ψt−2 and st−1 = i.

Note that the model originally proposed by Gray is not centered as in our case, but this can

always be assumed without loss of generality.

3b. Dueker’s Model

In the previous approximation, the information coming from εt−1 is not used. Dueker (1997)

proposes to change the conditioning scheme including εt−1 while assuming that σ2
t−1 is a function

of Ψt−2 and st−2. Hence

(4)

(D)σ2
t−1 = E[σ2

t−1(Ψt−2, st−2)|Ψt−1]

=

M∑
k=1

σ2
t−1(Ψt−2, st−2 = k) p(st−2 = k|Ψt−1)

=

M∑
k=1

(D)σ2
k,t−1|t−2 pk,t−2|t−1

so that (D)σ2
t−1|t−2 is a function of Ψt−2 and st−2 = k, and pk,t−2|t−1 is one-period ahead

smoothed probability which, shifting one period, can be computed as

pi,t−1|t = p(st−1 = i|Ψt) = pi,t−1|t−1

M∑
j=1

πij,t pj,t|t

pj,t|t−1
.

3c. Simplified Klaassen’s Model

The approximation proposed by Klaassen (2002) is similar to that from Dueker (1997) but it

assumes that σ2
t−1 is a function of Ψt−2 and st−1. So it results computationally simpler. In
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fact, we have

(5)

(SK)σ2
t−1 = E[σ2

t−1(Ψt−2, st−1)|Ψt−1]

=

M∑
i=1

σ2
t−1(Ψt−2, st−1 = i) p(st−1 = i|Ψt−1)

=

M∑
i=1

(SK)σ2
i,t−1|t−2 pi,t−1|t−1.

Then from the considered model, (SK)σ2
t−1|t−2 results to be a function of Ψt−2 and st−1 = i.

3d. Klaassen’s Model

Finally, Klaassen (2002) generalizes the previous auxiliary model including in the conditioning

set the information coming also from the current regime st. So σ2
t−1 turns out to be approxi-

mated as

(6)

(K)σ2
t−1 = E[σ2

t−1(Ψt−2, st−1)|Ψt−1, st = j]

=

M∑
i=1

σ2
t−1(Ψt−2, st−1 = i) p(st−1 = i|Ψt−1, st = j)

=

M∑
i=1

(K)σ2
i,t−1|t−2 pij,t−1|t,t−1

where pij,t−1|t,t−1 is the augmented filtered probability as defined in Section 2. Consequently,

here (K)σ2
t−1|t−2 becomes a function of Ψt−2 and st−1 = i.

3.4 State Space Representation and Filtering

In order to develop a theory of linear filtering for MS-GARCH models, we need to associate

to the model some linear state space representations. In this Section we propose a state space

representation and write the associated Kalman Filter. For this purpose, we use notations from

Kim (1994) and Kim and Nelson (1999) which study Markov switching state space models. They

propose basic filtering and smoothing algorithms, along with maximum likelihood estimation,

for a broad class of Markov switching models which can be written in state space form. This
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linear filter can be used, under some regularity conditions, to obtain approximate inferences.

In fact, it introduces an approximation by collapsing information on the regimes story at each

iteration. Such an approximation will be presented hereafter.

Consider the model as in (1). For every st = j and st−1 = i, let us define ε2t = σ2
j,t + vt, where

σ2
j,t = σ2

t (Ψt−1, st = j) and vt = σ2
j,t(u

2
t − 1). Then vt is a white noise with zero mean and

variance σ2
vj and vt ∈ [−σ2

j,t,+∞[. Now we have

ε2t = σ2
j,t + vt

= ωj + αjε
2
t−1 + βjσ

2
i,t−1 + vt

= ωj + αjε
2
t−1 + βj(ε

2
t−1 − vt−1) + vt,

where ωj , αj and βj are the elements obtained by replacing st by j in ωst , αst and βst ,

respectively.

So we can write the MS-ARMA(1,1) representation of the process in (1) as

(7) (1− δjL)ε2t = ωj + (1− βjL)vt

where δj = αj + βj for j = 1, . . . ,M . See, for example, Gourieroux and Monfort (1997). For

stationarity conditions concerning with such a process we refer to Appendix B.

Setting Bt =

ε2t−1
vt−1

, we get

ε2t = ωj + (δj − βj)

ε2t−1
vt−1

+ vt = ωj + (δj − βj)Bt + vt

for every j = 1, . . . ,M . In order to simplify notations, let us define

yt = ε2t , Hst = (δst − βst), Fst =

δst −βst

0 0

 , G =

1

1

 , µst =

ωst
0

 .
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Then, for every st, we obtain the following state space representation 1:

(8)


yt = ωst +HstBt + vt

Bt = µst + FstBt−1 +Gvt−1

Conditional on st−1 = i and st = j, the Kalman Filter is:

Prediction

• B
(i,j)
t|t−1 = µj + FjB

i
t−1|t−1

• P
(i,j)
t|t−1 = FjP

i
t−1|t−1F

′

j +GG
′
σ2
vj

• η
(i,j)
t|t−1 = yt − y(i,j)t|t−1 = yt −HjB

(i,j)
t|t−1 − ωj

• f
(i,j)
t|t−1 = HjP

(i,j)
t|t−1H

′

j + σ2
vj

Updating

• B
(i,j)
t|t = B

(i,j)
t|t−1 +K

(i,j)
t η

(i,j)
t|t−1

• P
(i,j)
t|t = P

(i,j)
t|t−1 −K

(i,j)
t HjP

(i,j)
t|t−1

where K
(i,j)
t = P

(i,j)
t|t−1H

′

j [f
(i,j)
t|t−1]−1 is the Kalman gain

Initial Conditions

• Bj0|0 = (I2 − Fj)−1µj =

(1− δj)−1ωj

0



• vec(P j0|0) = σ2
vj(I4 − Fj ⊗ Fj)−1 vec(GG

′
) = σ2

vj



(1− δ2j )−1(1− 2δjβj + β2
j )

1

1

1


1Note that other state space representations can be associated to the model in (1). For instance, following

the line of Kim and Nelson (1999), Example 2, Chapter 3. Our choice tends to be the less restrictive in term of
stationarity conditions, hence more general.
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• p(s0 = i) = πi (steady-state probability) .

So Yt−1 = {yt−1, . . . , y1} is the information set up to time t− 1, Bit−1|t−1 =

E(Bt|Yt−1, st−1 = i) is an inference onBt based on Yt−1 given st−1 = i; B
(i,j)
t|t−1 = E(Bt|Yt−1, st =

j, st−1 = i) is an inference on Bt based on Yt−1, given st = j and st−1 = i; P it−1|t−1 is the

mean squared error matrix of Bit−1|t−1 conditional on st−1 = i; P
(i,j)
t|t−1 is the mean squared error

matrix of B
(i,j)
t|t−1 conditional on st = j and st−1 = i; η

(i,j)
t|t−1 is the conditional forecast error of yt

based on information up to time t− 1, given st = j and st−1 = i; and f
(i,j)
t|t−1 is the conditional

variance of forecast error η
(i,j)
t|t−1. Each iteration of the Kalman Filter produces an M -fold in-

crease in the number of cases to consider. It is necessary to introduce some approximations to

make the filter operable. The key is to collapse the (M ×M) posteriors B
(i,j)
t|t and P

(i,j)
t|t into

M posteriors Bjt|t and P jt|t. Hence, we consider the approximation proposed by Kim and Nelson

(1999) and Kim (1994) applied to this state space representation (explicit computations are in

Appendix A2) . Let Bjt|t be the expectation based not only on Yt but also conditional on the

random variable st taking on the value j. Then

(9) Bjt|t =

M∑
i=1

pij,t−1|t,t B
(i,j)
t|t .

3.5 Duality Results

Having such a convenient switching state space form associated to the initial MS-GARCH,

gives us the possibility to reconcile in an unique framework the estimation through linear

filter as described in Section 4 or via auxiliary models presented in Section 3. Duality exists

when modifying the approximation described in (9) with different conditioning sets. From the

measurement equation in (8) and using (9), we get

yjt|t = E(yt|st = j, Yt) = ωj +Hj B
j
t|t

= ωj +Hj

M∑
i=1

pij,t−1|t,t B
(i,j)
t|t
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=

M∑
i=1

pij,t−1|t,t (ωj +Hj B
(i,j)
t|t )

=

M∑
i=1

pij,t−1|t,t y
(i,j)
t|t

as
∑M
i=1 pij,t−1|t,t = 1. Here the expectation operator is meant in the sense of Kim and Nelson’s

book (1999). In the same way we can obtain

yjt|t−1 = E(yt|Yt−1, st = j) =

M∑
i=1

pij,t−1|t,t−1 y
(i,j)
t|t−1

and

yjt−1|t−1 = E(yt−1|Yt−1, st = j) = E(σ2
t−1|Yt−1, st = j)

= σ2
j,t−1|t−1 =

M∑
i=1

pij,t−1|t,t−1 σ
2
ij,t−1|t−2.

In particular, if the conditional variance is not a function of st = j , we get

(10)

yt−1|t−1 = E(ε2t−1|Yt−1) = E(σ2
t−1|Yt−1)

= σ2
t−1|t−1 =

M∑
i=1

pij,t−1|t,t−1 σ
2
i,t−1|t−2

which coincides with (K)σ2
t−1 in Formula (6). Here (K)σ2

t−1 is only a function of st−1 = i.

Thus the approximation of the Kalman Filter is dual to the one used as auxiliary model from

Klaassen (2002). This also means that if we change the conditioning scheme in (10), we obtain

others auxiliary models. In fact, if we assume probabilities to be only function of st−1 = i and

if still σ2
t−1 is a function of st−1 , we have the Simplified Klaassen’s model (2002). This gives

the expression in (5), in fact:

(SK)σ2
t−1 =

M∑
i=1

(SK)σ2
i,t−1|t−2 pi,t−1|t−1 .

Moreover, if we assume instead that σ2
t−1 is a function of st−2 = k and also considering predic-
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tion probabilities of st−2 = k, we get the auxiliary model proposed by Dueker (1997):

(D)σ2
t−1 =

M∑
i=1

(D)σ2
k,t−1|t−2 pk,t−2|t−1

which is Formula (4). Finally, if we consider the conditioning set up to Yt−2 rather than Yt−1,

we obtain

(G)σ2
t−1 =

M∑
i=1

(G)σ2
i,t−1|t−2 pi,t−1|t−2

which is Formula (3) and corresponds to Gray’s model. Hence, if we slightly change the con-

ditioning set, we can obtain different specifications of the auxiliary models moving from the

state space form in (8). To conclude, this proves ambivalence in the estimation via Kalman

Filter and via approximated models. In Section 7, we will show the feasibility of the filtering

procedure through numerical and empirical applications.

3.6 Markov Switching Stochastic Volatility

When we consider Markov Switching Stochastic Volatility model and in general parameter-

driven models, we are facing a double level of latency which makes estimation and statistical

analysis harder. However, there are very good reason to investigate this kind of models, as for

instance, easier properties or generalization to the multivariate case as well as continuous time

counterpart. Then, we consider the following MS-SV model

(11)


εt = exp{ 12ht}ut

ht = µst + ρstht−1 + vt

where ut ∼ IIN(0, 1) and vt ∼ IIN(0, σ2
vst

). Here the error terms are assumed to be indepen-

dent of one other. To discuss stationarity conditions of the process, we will later rewrite the

model in MS-ARMA form and stationarity conditions are discussed at the end of Appendix B.

Following Harvey, Ruiz and Shephard (1994), we easily obtain a linear state space form. In
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fact, squaring (11) and taking logs, we have

log ε2t = α+ ht + et

where α = E(log u2t )
∼= −1.270 and et = log u2t − E(log u2t ). Thus et ∼ IIN(0, π

2

2 ), where

π2

2
∼= 4.935, and higher moments of (et) are known. Now, replacing log ε2t with yt, the MS-SV

can be written as

(12)


yt = α+ ht + et

ht = µst + ρstht−1 + vt

Hence, it is natural to propose the Kalman filter for model (12) following the line of Kim and

Nelson (1999, Chapter 5). In this case, conditional on st = j and st−1 = i, we get

Prediction

• h
(i,j)
t|t−1 = µj + ρjh

i
t−1|t−1

• P
(i,j)
t|t−1 = ρ2jP

i
t−1|t−1 + σ2

vj

• η
(i,j)
t|t−1 = yt − y(i,j)t|t−1 = yt − h(i,j)t|t−1 − α

• f
(i,j)
t|t−1 = P

(i,j)
t|t−1 + π2

2

Updating

• h
(i,j)
t|t = h

(i,j)
t|t−1 + P

(i,j)
t|t−1[f

(i,j)
t|t−1]−1η

(i,j)
t|t−1

• P
(i,j)
t|t = P

(i,j)
t|t−1 − P

(i,j)
t|t−1[f

(i,j)
t|t−1]−1P

(i,j)
t|t−1

where K
(i,j)
t = P

(i,j)
t|t−1[f

(i,j)
t|t−1]−1 is the Kalman gain.

Initial Conditions

• hj0|0 = µj(1− ρj)−1

• P j0|0 = σ2
vj(1− ρ2j )−1
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• p(s0 = i) = πi (steady-state probability).

If we apply the approximation proposed by Kim and Nelson (1999) to this state space repre-

sentation, we can write

hjt|t =

M∑
i=1

h
(i,j)
t|t pij,t−1|t,t.

At this point, different conditioning sets can be applied to the above approximation, mimic

the same ideas used to obtain different auxiliary models in the MS-GARCH model. In the

sequel we propose four approximations for the MS-SV in (12). Approximation 1 denotes Kim

and Nelson’s approximation as specified above. As done for the MS-GARCH, if we change the

conditioning set we can obtain different and possibily more precise estimates. Approximation

2 changes the conditioning set on the volatility up to t− 1:

hjt|t =

M∑
i=1

h
(i,j)
t|t−1 pij,t−1|t,t.

Approximation 3 considers the information set up to Yt−1 only for the augmented filtered

probabilities:

hjt|t =

M∑
i=1

h
(i,j)
t|t pij,t−1|t,t−1.

The last approximation 4 simultaneously has the features of 2 and 3, conditioning both volatility

and probabilities at t− 1 :

hjt|t =

M∑
i=1

h
(i,j)
t|t−1 pij,t−1|t,t−1.

In the next Section we will test these specifications in a simulated study in order to investigate

differences in the implementation of the Filter.

3.7 Numerical and Empirical Applications

In this Section we apply the methods described above both to Monte Carlo experiment and

real data. In particular, the aim of these applications is to show the feasibility of the proposed

approaches via linear filtering for both Markov switching GARCH and SV models. Note that
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this method has the advantage of avoiding fine-tuning procedures implemented in most Bayesian

estimation techniques. In fact, giving some initial conditions, the only duty of the researcher is

to decide which approximation to adopt in the filtering procedure.

(I) Simulation study

In this Subsection, we draw some comparisons from a simulation study performed by So, Lam

and Li (1998). In that paper, they simulate a Markov switching stochastic volatility model

with three states and parameters described hereafter and estimate the model through MCMC

procedure and Gibbs sampler. Thus the model is a MS(3)-SV as in (11) with fixed ρ equal to

0.5, vt ∼ N(0, 0.2) and the intercept equal to

µst =


−1 if st = 1

−2 if st = 2

−5 if st = 3

.

The state variables are generated by a first order Markov process with transition probability

matrix

P =


p00 p01 p02

p10 p11 p12

p20 p21 p22

 =


0.9 0 0.05

0 0.95 0.05

0.1 0.05 0.9


which implies high persistence in each regime. A dataset of n = 400 observations has been

simulated from the model. We estimate the model with the filter proposed in Section 6 and

2,000 iterations are considered.

Results are summarized in Table 4.1 where means and standard deviations are given, together

with the Bayesian estimators of So, Lam and Li and true values. As point estimate, all the

approximated filters give close values to the corresponding true one. The persistence parameter

ρ is better captured by Approximation 3 or 4, which is also the faster; those seem to be the

best choices. Finally, our estimates obtained via Kalman filters give closer result to the true

values with respect to the Bayesian counterpart. In fact, the Mean Square Error (MSE) value

for the third approximation is equal to 0.00203 and the MSE computed by So, Lam and Li is
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Figure 3.1: The panel contains a time series plot of monthly one-month US Treasury
bill rates (in annualized percentage term). The sample period is from January 1970 to
April 1994; a total of 1.267 observations. The data are obtained from FRED database.

0.00330.

(II) Real Data: an application on US Treasury Bill rates

As a second application, we use real data and the same dataset as in Gray (1996). The data are

one-month US Treasury bill rates obtained from FRED for the period January 1970 trought

April 1994. Figure 4.1 plots the data. It is immediate the dramatic increase in interest rates

that occurred during the Fed experiment and the OPEC oil crisis, which leads us to consider a

2 regimes model.

Then, we fit the model in (1) as MS(2)-GARCH and in (11) as MS(2)-SV with both changes in

regimes in the intercept term and in the persistence parameters of the volatility process. The

values of the estimation are reported in Table 4.3 and 4.4, respectively. Table 4.3 describes

the estimated values along with robust standard errors of model (1). In particular, the model

estimated by linear filter with Kim’s approximation is labelled with Approximation 1. The

following approximations instead are those in Section 5, respectively. Note that Approximation

2 mimics the auxiliary model of Gray (1996) and values are in fact in line (see Gray(1996), Table

3, p.44). The high-volatility regime is characterized by more sentivity to recent shocks (α2 > α1)

and less persistence (β2 < β1) than the low-volatility regime. Within each regime, the GARCH

processes are stationary (αi + βi < 1) and the parameter estimates suggest that the regimes
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Approximations p̂ q̂ β̂1 β̂2 α̂1 α̂2 ω̂1 ω̂2

Approximation 1 0.8467 0.9982 0.4113 0.0085 0.0184 0.4967 0.023 0.068
(0.1402) (0.0334) (0.0407) (0.0927) (0.0338) (0.0331) (0.2626) (0.0908)

Approximation 2 0.8018 0.9157 0.391 0.0062 0.0203 0.4801 0.045 0.0713
(0.1146) (0.0157) (0.1624) (0.2609) (0.0640) (0.1089) (0.3591) (0.2853)

Approximation 3 0.8467 0.9983 0.4112 0.0086 0.0184 0.4967 0.023 0.068
(0.1406) (0.0336) (0.0420) (0.0923) (0.0342) (0.0337) (0.2651) (0.0799)

Approximation 4 0.8119 0.9160 0.397 0.0064 0.0212 0.4831 0.039 0.0692
(0.1140) (0.0157) (0.1629) (0.2618) (0.0642) (0.1092) (0.3603 ) (0.2867)

Table 3.2: Estimation of the parameters in model (1) MS(2)-GARCH. Robust standard
errors in parenthesis. The observables are one-month US Treasury bill rates (in annualized
percentage term). The sample period is from January 1970 to April 1994; a total of 1.267
observations. The data are obtained from FRED database.

Approximations p̂ q̂ ρ̂1 ρ̂2 σ̂v µ̂1 µ̂2

Approximation 1 0.8935 0.9542 0.5492 0.9256 0.2863 0.2460 0.4165
(0.0345) (0.3633) (0.1252) (0.1260) (0.0208) (2.5734) (2.5797)

Approximation 2 0.8677 0.8676 0.5388 0.9852 0.3478 0.2952 0.4905
(0.0347) (0.2813) (0.0651) (0.0585) (0.1148) (1.3258) (1.2977)

Approximation 3 0.8668 0.8435 0.6063 0.9730 0.2706 0.3143 0.5707
(0.0197) (0.2288) (0.0863) (0.0620) (0.3524) (1.7598) (2.4015)

Approximation 4 0.8668 0.8435 0.6063 0.9730 0.2706 0.3143 0.5707
(0.0197) (0.2288) (0.0863) (0.0620) (0.3524) (1.7598) (2.4015)

Table 3.3: Estimation of the parameters in model (11) MS(2)-SV. Robust standard
errors in parenthesis. The observables are one-month US Treasury bill rates (in annualized
percentage term). The sample period is from January 1970 to April 1994; a total of 1.267
observations. The data are obtained from FRED database.

are very persistent, so the source of volatility persistence will be important. With regards to

the MS-SV model, the approximated filters are presented in Section 6. Most of the masses

in the transition probability matrix are concentrated in the diagonal, implying medium-high

persistence in each regime. Moreover, the first regime is associated with a intermediate level of

persistence in the volatility process while the second shows a highly-persistent volatility, with

values close to one. In both models, however, the four approximations are not very dissimilar

to the others.

Figure 4.2 contains plots of smoothed probabilities Pr(st = 1|ΦT ) which are of interest to

determine if and when the regime switching occurs. The smoothed probability plots manage to

identify crises periods that affected the market indices. The top panel of Figure 4.2 refers to
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Figure 3.2: The top panel refers to MS-GARCH model and bottom panel to the MS-SV
model. They represent smoothed probabilities being in high-volatility regime. Parameters
estimates are based on a data set of one-month Treasury Bill rates, reported in annualized
percentage terms. The sample period is from January 1970 to April 1994; a total of 1.267
observations. The data are obtained from FRED database.
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the MS-GARCH and the bottom panel to the MS-SV model. In particular, both plots identify

three periods of high-variance. The first (1973-1975) corresponds to the OPEC oil crisis. The

second is shorter and more precise in the bottom panel and correspond to the Fed experiment

(1979-1983). The third is a short period around 1987 after stock market crash.

3.8 Conclusion

In this paper we deal with Markov Switching models for volatility. In particular, we firstly

consider MS-GARCH models which are known to suffer of path-dependence, i.e., dependence of

the entire path history of the data. This makes Quasi Maximum Likelihood procedure unfeasible

to apply. Hence, some solutions to overcome this problem have been proposed in the literature

and particularly through the estimation of auxiliary models that allow similar effects of the

original MS-GARCH. However, rewriting the model in a suitable state space representation,

we propose an approximated linear filter following the line of Kim and Nelson (1999) and

then we are able to prove duality in the estimation by Kalman filter and auxiliary models.

Moreover, we introduce a linear filter also for MS-SV model on which different conditioning

sets in the approximation step yield more flexibility in the estimation. We apply those methods

to a simulation study and Treasury bill rates (the same dataset as in Gray (1996)). These

applications show the feasibility of the linear filter for both MS models. In particular, this

method has the advantage of avoiding fine-tuning procedures implemented in most Bayesian

estimation techniques. In fact, giving some initial conditions, the only duty of the researcher is

to decide which approximation to adopt in the filtering procedure. So, the proposed methods

have a large applicability in financial and economics exercises and potential applications are

those dealing with time varying volatility.
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Appendix A – Computation details of some Formulae

A1. We show that pt|t−1,t = p(st|st−1,Ψt) can be espressed in terms of pt|t−1,t−1 and the

conditional density of εt which depends on the current regime st and the past regimes, i.e,

f(εt|s1, . . . , st,Ψt−1). In fact,

pt|t−1,t = p(st|st−1,Ψt) = p(st|s1, . . . , st−1,Ψt)

= p(st|s1, . . . , st−1, εt,Ψt−1)

=
f(εt|s1, . . . , st,Ψt−1)p(st|s1, . . . , st−1,Ψt−1)

f(εt|s1, . . . , st−1,Ψt−1)

=
f(εt|s1, . . . , st,Ψt−1)p(st|st−1,Ψt−1)

f(εt|s1, . . . , st−1,Ψt−1)

=
f(εt|s1, . . . , st,Ψt−1)pt|t−1,t−1

f(εt|s1, . . . , st−1,Ψt−1)

where

f(εt|s1, . . . , st−1,Ψt−1) =

M∑
st=1

f(εt|s1, . . . , st,Ψt−1)p(st|st−1,Ψt−1)

=

M∑
st=1

f(εt|s1, . . . , st,Ψt−1) pt|t−1,t−1.

A2. Here we derive the approximation of Kim and Nelson’s Filter applied to model in (8),

which is Formula (9):

Bjt|t =

∑M
i=1B

(i,j)
t|t p(st−1 = i, st = j|Yt)
p(st = j|Yt)

=

M∑
i=1

p(st−1 = i, st = j|Yt)
p(st = j|Yt)

B
(i,j)
t|t

=

M∑
i=1

p(st−1 = i|st = j, Yt) B
(i,j)
t|t

=

M∑
i=1

pij,t−1|t,t B
(i,j)
t|t .

Appendix B – Stationarity Conditions
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Let us consider the MS-GARCH model in (1). Then we have

E(ε2t ) = E(σ2
t ) = E(E(σ2

t |st)) =

M∑
j=1

E(σ2
t |st = j)p(st = j)

=

M∑
j=1

πj(ωj + αjE(ε2t−1) + βjE(σ2
t−1))

=

M∑
j=1

πjωj +

M∑
j=1

πj(αj + βj)E(σ2
t−1).

For any n ≥ 1, we have

E(σ2
t ) = a

n−1∑
i=0

bi + bnE(σ2
t−n)

where a =
∑M
j=1 πjωj and b =

∑M
j=1 πj(αj + βj). This immediately implies that the MS-

GARCH process in (1) is covariance stationary if and only if b < 1. Of course, if δj = αj+βj < 1,

for every j = 1, . . . ,M , the above condition is satisfied. Conversely, if the MS-GARCH is

covariance stationary, at least one of the regimes is covariance stationary. The above condition

is sufficient but non necessary for strict stationarity. By iteration, we get

σ2
t = ωst + αstε

2
t−1 + βstσ

2
t−1

= ωst + σ2
t−1(αstu

2
t−1 + βst)

= ωst + [ωst−1 + σ2
t−2(αst−1u

2
t−2 + βst−1)](αstu

2
t−1 + βst)

...

= ωst +

∞∑
k=1

ωst−k

k∏
i=1

(αst−i+1
u2t−i + βst−i+1

).

For every n ≥ 2, define

σ2
t,n = ωst +

n−1∑
k=1

ωst−k

k∏
i=1

ast−i+1
(u2t−i)

where ast(x) = αstx
2 + βst . Now

n−1∑
k=1

log[ωst−k

k∏
i=1

ast−i+1
(u2t−i)] =

n−1∑
k=1

{logωst−k
+

k∑
i=1

log ast−i+1
(u2t−i)}
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is monotone. Then the limit n→ +∞ is finite whenever

E[log(αstu
2
t−1 + βst)] < 0.

Here log denotes the natural logarithm as usual. But we have

E[log(αstu
2
t−1 + βst)] = E[E[log(αstu

2
t−1 + βst)|st]] =

M∑
j=1

πjE[log(αju
2
t−1 + βj)].

So we get that σ2
t < +∞ a.s. (almost surely) and {ε2t , σ2

t } is strictly stationary if

M∑
j=1

πjE[log(αju
2
t−1 + βj)] < 0.

This extends the strictly stationarity condition given by Francq and Zaköıan (2012) for a

GARCH(1,1) model to the case of changing in regime. See also Theorem 1 in Bauwens et

al. (2010). Of course, the covariance stationarity condition implies strict stationarity, but the

converse is not true in general.

The MS-GARCH(1,1) model in (1) can be represented by a MS-ARMA(1,1) process as in (7)

(1− δstL)ε2t = ωst + (1 + θstL)vt

where δst = αst + βst and θst = −βst . The necessary and sufficient condition for second-order

stationarity of univariate MS-ARMA(1,1) models was given by Francq and Zaköıan (2001), see

Example 3 pag.351. We apply their result in our case. Let us consider the M ×M matrix

Ω = (aij)i,j=1,...,M

where aij = pjiδ
2
i . Let ρ(Ω) be the spectral radius of the matrix, that is, its largest eigenvalue

in modulus. From Francq and Zaköıan (2001), ρ(Ω) < 1 if and only if the process (ε2t ) in (1) is

second-order stationary in the case where, for at least one regime, the AR and MA polynomials

have no common roots. For our model, this means that δj 6= −θj , that is, αj > 0 for some

j = 1, . . . ,M . Finally, note that the MA part in the process (ε2t ) does not matter for the
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second-order stationarity condition.

Finally, with regards to the MS-SV model in (12), its MS-ARMA representation is easily ob-

tained as follows

(1− ρstL)yt = ξst + (1 + βstL)zt

where ξst = α − ρstα + µst and zt + βstzt−1 = vt + et − ρstet−1. Thus stationarity conditions

as discussed above apply. More precisely, the process is second-order stationary if and only if

ρ(Ω̃) < 1, where Ω̃ is the matrix obtained by replacing δj by ρj in the definition of Ω.
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Chapter 4

Estimation and Spectral

Representation

4.1 Analysis of the Likelihood Function for Markov

Switching VAR(CH) Models

Abstract. In this work we give simple matrix formulae for maximum likelihood estimates of

parameters in a broad class of vector autoregressions subject to Markovian changes in regime.

This allows us to determine explicitly the asymptotic variance-covariance matrix of the estima-

tors, giving a concrete possibility for the use of the classical testing procedures. Our discussion

is based on the fundamental work developed by Hamilton, Kim, and Krolzig, and is related

with the analytical derivatives obtained by Gable, Van Norden and Vigfusson for univariate

Markov-switching models without lags. Finally, in the context of multivariate ARCH models

with changes in regime we show how analytic derivatives of the log likelihood can be successfully

employed for estimation purposes.[JEL Classification: C01, C32, C51]

Key words: Time series with changes in regime, Markov-switching VAR models, filtering,

smoothing, MLE, asymptotic variance matrix.
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4.1.1 Introduction

In this paper we derive maximum likelihood estimators and the asymptotic variance for a broad

class of dynamic models with regime-switching parameters. The main contribution in this field

is due to Hamilton (1990, 1993). In his work at the centre of interest is the Expectation

Maximization (EM) algorithm. A limitation of this procedure is its implementation in the

case of models with autoregressive dynamic, which conduces to some problems. A theoretical

improvement on this side has been proposed by Krolzig (1997) who derived the normal equations

of the Maximum Likelihood Estimation (MLE) for Markov-Switching Vector Autoregressive

(MS-VAR) models. However, with regards to the estimation of asymptotic variance-covariance

matrix, it was explicitly stated in his work that, for a generic MS-VAR model, it is often

impracticable to evaluate the asymptotic information matrix analytically. The contribution of

this paper is to provide simple matrix formulae for the MLE of parameters in the general case

of MS-VAR models and to determine explicitly the asymptotic variance-covariance matrix,

allowing for the implementation of classical testing procedures. As remarked in Gable, Van

Norden and Vigfusson (1997), estimation for Markov switching models is usually done using

numerical techniques that approximate the derivative by the change in the likelihood function

for small changes in the parameter vector. This is not especially efficient, however, as such

techniques typically require a lot of numerical evaluations (see Section 3 of the quoted paper).

Using analytical gradients the number of calculations can be greatly reduced, and this in turn

considerably speeds up MLE with no loss of accuracy. This gives a strong motivation for

searching explicit formulae of ML estimates and their asymptotic variance-covariance matrix.

The rest of the paper is organized as follows. In Section 2 we survey the basic definitions on

Markov chains and the main steps of the Maximum Likelihood Estimation (MLE) for time series

models of changes in regime. The contents of such a section are based on the arguments treated

in the Hamilton book (1994), in the Krolzig book (1997), and in the Hamilton papers (1990,

1993). In Sections 3 and 4 we give explicit formulae for the ML estimates of the parameters for

some Markov switching AR models. In Section 5 we determine the analytic derivatives of the log

likelihood for multivariate ARCH models subject to Markovian changes in regime, and discuss

the properties of the ML estimates. Our recursive matrix formulae are very simple and different
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in some cases to those listed in the known literature. Then we discuss the asymptotic properties

of the ML estimators, and compute exactly the asymptotic variance-covariance matrix of them.

This is also combined with classical specification testing procedures. A brief summary and

conclusion follow in Section 6.

4.1.2 Time Series Models of Changes in Regime

2.1. The model. We consider time series models in which the parameters can change as a

result of a regime-shift variable, described as the outcome of an unobserved Markov chain. The

basic references are the Hamilton book (1994), Chp.22, Kim (1994), the Krolzig book (1997),

Chps.5, 6 and 7, and the Hamilton papers (1990) and (1993). Let yt be an (K × 1) vector of

observed endogenous variables and let Yt denote a vector containing all observations obtained

through date t, that is, Yt = (y
′

t,y
′

t−1, . . . )
′
. To take in account changes in the process (yt),

we assume it to be governed by an unobserved random variable, called state or regime, which

is discrete-valued. The simplest time series model for a discrete-valued random variable is

a Markov chain. Let (st)t≥0 be an M -state, homogeneous, irreducible and ergodic Markov

chain. Let P = (pij)i,j=1,...,M denote the transition matrix of the chain, where pij gives the

probability that the state st−1 = i will be followed by the state st = j. As usual, we suppose

that the probability that st equals some particular value depends on the past only through the

most recent value st−1. Ergodicity implies the existence of a stationary vector of probabilities

π = (π1, . . . , πM )
′

satisfying P′π = π and i
′

Mπ = 1, where iM denotes an (M×1) vector of ones.

Irreducibility implies that πi > 0 for i = 1, . . . ,M , meaning that all unobservable states are

possible. An useful representation for a Markov chain is obtained by letting ξt denote a random

(M×1) vector whose jth element is equal to unity if st = j and zero otherwise. We see that the

conditional expectation of ξt+1 satisfies the property E(ξt+1|ξt, ξt−1, . . . ) = E(ξt+1|ξt) = P′ξt.

This implies that it is possible to express a Markov chain in the AR(1) form

(2.1) ξt+1 = P′ξt + vt+1

where the innovation vt+1 = ξt+1−E(ξt+1|ξt, ξt−1, · · · ) is a zero mean martingale difference se-

quence. The vector π of ergodic probabilities can be described as the unconditional expectation
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of ξt, that is, π = E(ξt).

If the process is governed by regime st = j at date t, then the conditional density of yt is

assumed to be given by

(2.2) p(yt|st = j,Yt−1;θ)

where θ is a vector of parameters characterizing the conditional density. Then there are M

different densities represented by (2.2) for j = 1, . . . ,M , which will be collected in an (M × 1)

vector denoted by ηt(θ), i.e.,

(2.3) ηt(θ) =


p(yt|st = 1,Yt−1;θ)

...

p(yt|st = M,Yt−1;θ)

 .

Assumption A1. The conditional density in (2.3) is assumed to depend only on the current

regime st and not on past regimes, i.e.,

p(yt|Yt−1, st = j;θ) = p(yt|Yt−1, st = j, st−1 = i, st−2 = k, . . . ;θ)

though this is not really restrictive. See Hamilton (1994), Chp.22.

Assumption A2. The random variable st evolves according a Markov chain that is inde-

pendent of past observations on yt, i.e.,

Pr(st = j|st−1 = i, st−2 = k, . . . ,Yt−1) = Pr(st = j|st−1 = i) = pij

Let ρ = (p11, p12, . . . , pMM )
′

denote the (M2×1) vector of Markov transition probabilities.

The population parameters that describe a time series governed by A1 and A2 consist of θ and

ρ (here we always set, for simplicity, the initial state ξ0 equal to π). We collect the unknown

parameters to be estimated in a single vector λ = (θ
′
,ρ
′
)
′
. One important objective is to

maximize the likelihood function of the observed data p(YT ;λ) = p(yT ,yT−1, . . . ,y1;λ) by

choice of the population parameters vector λ.
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2.2. Optimal Inference for the Regime. Another objective will be to estimate the value of λ

based on observation of YT . Suppose for the moment that the value of λ is somehow known

with certainty to the analyst. Nevertheless, we do not know which regime the process was in

at every date in the sample. Instead the best we can do is to provide inference for ξt given a

specified observation set Yτ , τ ≤ T . The statistical tools are the filter and smoother recursions

which reconstruct the time path of the regime (ξt) under alternative information sets.

Collect the conditional probabilities Pr(st = j|Yτ ), for j = 1, . . . ,M , in an (M × 1) vector

denoted by

(2.4) ξ̂t|τ =


Pr(st = 1|Yτ )

...

Pr(st = M |Yτ )

 .

Then ξ̂t|τ turns out to be the conditional mean of ξt given Yτ , that is, ξ̂t|τ = E(ξt|Yτ ).

The following theorem is well-known. It gives a fast algorithm for calculating the filtered

and smoothed regime probabilities For the proof see Hamilton (1994), Chp.22, Krolzig (1997),

Chp.5, and Kim (1994).

Theorem 2.1. i) The optimal inference and forecast for each date t in the sample can be found

by iterating on the following pair of recursive formulae

(2.5)
ξ̂t|t =

ξ̂t|t−1 � ηt
i
′
M (ξ̂t|t−1 � ηt)

ξ̂t+1|t = P
′
ξ̂t|t

where the symbol � denotes the element-by-element multiplication. Furthermore, the condi-

tional probability density of yt based upon Yt−1 is given by

p(yt|Yt−1;θ) = i
′

M (ξ̂t|t−1 � ηt)

ii) Smoothed inferences can be calculated using an algorithm which can be written, in vector
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form, as

(2.6) ξ̂t|T = ξ̂t|t � {P[ξ̂t+1|T (÷)ξ̂t+1|t]}

where the symbol (÷) denotes element-by-element division.

Remarks.

1) Given a starting value ξ̂1|0 = E(ξ1|Y0) (for example, ξ̂1|0 = π) and an assumed value for the

population parameter vector λ, one can iterate on (2.5) for t = 1, . . . , T to calculate the values

of ξ̂t|t and ξ̂t+1|t for each date t in the sample. This gives the filtered regime probabilities ξ̂t|τ ,

t = τ (filtering) and the predicted regime probabilities ξ̂t|τ , τ < t (forecasting).

2) The smoothed regime probabilities ξ̂t|T (smoothing) are found by iterating (2.6) backward

for t = T − 1, T − 2, . . . , 1. This iteration is started with ξ̂T |T which is obtained from (2.5) for

t = T . This algorithm is valid only when st follows a first-order Markov chain as in A2, when

the conditional density (2.2) depends on st, st−1, . . . only through the current state st.

2.3. Maximum Likelihood Estimation of Parameters. In the iterations of Theorem 2.1 the

parameter vector λ was taken to be a fixed known vector. Once the iteration has been completed

for t = 1, . . . , T for a given fixed λ, the value of the log likelihood implied by that value of λ is

then known as follows (for these arguments we refer to the Krolzig book (1997), Chp.6):

(2.7)

L(λ|Y T ) := p(YT |λ) =

∫
ξ

p(YT , ξ|λ)dξ

=

∫
ξ

p(YT |ξ,θ)Pr(ξ|ξ0,ρ)dξ

where

p(YT |ξ,θ) =

T∏
t=1

p(yt|ξt,Yt−1;θ) Pr(ξ|ξ0,ρ) =

T∏
t=1

Pr(ξt|ξt−1;ρ).
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Then we have (see Krolzig (1997), formula (6.7))

(2.8)

∂lnL(λ|YT )

∂θ
=

T∑
t=1

M∑
m=1

∂ln p(yt|st = m,Yt−1;θ)

∂θ
Pr(st = m|YT ;λ)

=

T∑
t=1

M∑
m=1

∂ln ηmt(θ)

∂θ
ξ̂mt|T (λ).

Thus the FOC condition for the ML estimates θ̂ of θ is given by (see Krolzig (1997), formula

(6.8))

(2.9)

T∑
t=1

M∑
m=1

∂ln ηmt(θ)

∂θ
ξ̂mt|T (λ) = 0.

As usual, we assume that the transition probabilities are restricted by the conditions that

pij > 0 and
∑M
j=1 pij = 1 for all i and j (recall that we set ξ̂1|0 = π). Then the ML estimates ρ̂

of ρ is given by the following formula, due to Hamilton (1990), formula (4.1) (see also Hamilton

(1994), formula (22.4.16) or Krolzig (1997), formula (6.14)).

Theorem 2.2. The maximum likelihood estimates for the elements of the transition probabil-

ities vector ρ = (p11, . . . , pMM )
′

satisfy

(2.10) p̂ij =

∑T
t=1 Pr(st = j, st−1 = i|YT ; λ̂)∑T

t=1 Pr(st−1 = i|YT ; λ̂)

where λ̂ denotes the full vector of maximum likelihood estimates.

Thus the estimated transition probabilities p̂ij is essentially the number of times state i seems

to have been followed by state j divided by the number of times the process was in state i.

We recall that estimation and inferences for multivariate Markov switching models are

based on the Expectation Maximization EM algorithm, as described in Hamilton (1990). Max-

imization of the log-likelihood function within the current step of the EM algorithm is made

faster by the fact that the FOC defining the ML estimators may often be written down in closed

form. Finally, we mention that a state-space representation for VARMA models that enables

ML estimation via EM algorithm can also be found in Metaxoglou and Smith (2007).

2.4. Consistency and Asymptotic Variance. Under quite general regularity conditions (such
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as identifiability, stability and the fact that the true parameter vector does not fall on the

boundaries which we assume here), an ML estimator λ̂ for λ is consistent and asymptotically

normal (see Lütkepohl (1991), Section C.4 and Krolzig (1997), Section 6.6.2):

√
T (λ̂− λ)

d−→ N(0, Ia(λ)−1)

where Ia(λ) is the asymptotic information matrix

(2.11) Ia(λ) = lim
T→∞

−T−1E
[∂2ln p(YT ;λ)

∂λ∂λ
′

]
Although other choices exist, i.e., either to use the conditional scores or a numerical evaluation

of the second partial derivative of the log-likelihood function with respect to λ̂, in applications

it has become typical to employ the White sample estimator of Ia(λ) (see, for example, Krolzig

(1997), formula (6.46)). The asymptotic normal distribution of the ML estimator λ̂ ensures

that standard inferential procedures (Wald test, Likelihood ratio LR and Lagrange multiplier

LM) are available to test statistical hypothesis. However, notice that a necessary condition for

the validity of such procedures is that the number M of regimes is unaltered under the null

hypothesis. See Krolzig (1997), Section 7.4 for more details. The next sections are devoted to

compute explicitly the ML estimates λ̂ for some Markov-switching VAR models. Our matrix

formulae are very simple and different in some cases to those obtained in the known literature.

Then we determine the asymptotic variance of the estimators. For the basic identities and

results on Matrix Calculus we refer for example to Fackler (2005), Greene (2008) and Petersen

and Pedersen (2008).

4.1.3 The Basic Markov Switching Model

Suppose that the (K× 1) random vector yt follows an M -regime Markov-switching autoregres-

sive process without lags in the endogeneous variable, in short, an MS AR(p) model, for p = 0

(the case p > 0 will be treated in the next section). Such a model is also called the Hidden
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Markov-chain process (see, for example, Krolzig (1997), Chp.3):

(3.1) yt = νst + Σstut

where the innovations (ut) represent a zero mean white noise process which we assume to be

Gaussian, i.e., ut ∼ NID(0, IK) . As usual, st is a latent state variable driving all the matrices of

parameters appearing in (3.1). The (K×1) vector νst collects the regime-dependent intercepts.

The (K×K) matrix Σst represents the factor applicable to state st in a state-dependent Choleski

factorization of the variance-covariance matrix Ωst of the variables of interest, i.e., Ωst = Σ2
st .

Thus we have

(3.2) yt|st ∼ NID(νst ,Ωst)

The unknown parameter θ consists of the elements of the intercept vectors (ν1, . . . ,νM ) and

the variance-covariance matrices (Ω1, . . . ,ΩM ), or, equivalently, their inverses. Notice that the

independent parameters characterizing each matrix Ωm, m = 1, . . . ,M , are at most K(K+1)/2.

As usual, the vector ρ = (p11, . . . , pMM )
′

characterizes the unknown matrix P, and it has

M(M − 1) independent random variables. Hence Model (3.1) implies the estimation of a

number of parameters which is equal to dim ΛM = M [K+K(K+ 1)/2 + (M − 1)] for the most

general situation. The log of the conditional density in (2.2) becomes

lnηt(θ) = ln p(yt|st;θ) = −K
2
ln(2π)− 1

2
ln|Ωst | −

1

2
(yt − νst)

′
Ω−1st (yt − νst).

The first derivatives are given by

∂lnηt(θ)

∂νm
= Ω−1m (yt − νm)

∂lnηt(θ)

∂Ω−1m
=

1

2
Ωm −

1

2
(yt − νm)(yt − νm)

′

when st = m and zero otherwise, for every m = 1, . . . ,M . So the FOC conditions in (2.9) give

(3.3)

T∑
t=1

Ω−1m (yt − νm)ξ̂mt|T = 0
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and

(3.4)

T∑
t=1

[1
2
Ωm −

1

2
(yt − νm)(yt − νm)

′]
ξ̂mt|T = 0

for every m = 1, . . . ,M . Solving (3.3) and (3.4) for νm and Ωm, we get their ML estimates

(3.5) ν̂m =
[ T∑
t=1

ξ̂mt|T
]−1[ T∑

t=1

ytξ̂mt|T
]

and

(3.6) Ω̂m =
[ T∑
t=1

ξ̂mt|T
]−1[ T∑

t=1

(yt − ν̂m)(yt − ν̂m)
′
ξ̂mt|T

]
Substituting (3.5) into (3.6) yields

(3.7) Ω̂m =
[ T∑
t=1

ξ̂mt|T
]−3[ T∑

t=1

T∑
τ=1

T∑
σ=1

(yt − yτ )(yt − yσ)
′
ξ̂mτ |T ξ̂mσ|T ξ̂mt|T

]
.

The ML estimates of pij are given by (2.10). However, we compute them explicitly for our case.

Form the Lagrangean

L(λ,µ) = lnL(λ|YT )−
M∑
t=1

µi
( M∑
j=1

pij − 1
)

where µ = (µ1, . . . , µM )
′

is the vector of Lagrange multipliers. Then we must have (see, for

example Krolzig (1997), Section 6.3.2)

(3.8)
∂L(λ,µ)

∂pij
=
∂lnL(λ|YT )

∂pij
− µi = 0

where

(3.9)

∂lnL(λ|YT )

∂pij
=

T∑
t=1

M∑
n=1

M∑
m=1

∂lnPr(st = m|st−1 = n;ρ)

∂pij

Pr(st = m, st−1 = n|YT ;λ)
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Since

∂lnPr(st = m|st−1 = n;ρ)

∂pij
= p−1ij

when m = j and n = i, and zero otherwise, (3.9) becomes

(3.10) p−1ij

T∑
t=1

Pr(st = j, st−1 = i|YT ;λ) = µi.

Summation over j = 1, . . . ,M gives

T∑
t=1

M∑
j=1

Pr(st = j, st−1 = i|YT ;λ) = µi
( M∑
j=1

pij
)

= µi

that is

(3.11) µi =

T∑
t=1

Pr(st−1 = i|YT ;λ) =

T∑
t=1

ξ̂i,t−1|T (λ).

Substituting (3.11) into (3.10) and evaluating in λ̂ gives (2.10), as requested. The consistency

of the ML estimators follows easily from relations above. Substituting yt by (3.1) for st = m

into (3.3) yields

ν̂m =
[ T∑
t=1

ξ̂mt|T
]−1[ T∑

t=1

(νm + Σmut)ξ̂mt|T
]

= νm +
[ T∑
t=1

ξ̂mt|T
]−1

Σm

[ T∑
t=1

utξ̂mt|T
]

hence

plimT→∞ ν̂m = νm + plimT→∞
[ 1

T

T∑
t=1

ξ̂mt|T
]−1

Σm plimT→∞
[ 1

T

T∑
t=1

utξ̂mt|T
]

= νm

for every m = 1, . . . ,M , as

(3.12) plimT→∞
1

T

T∑
t=1

ξ̂mt|T = E(ξmt) = πm
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and

(3.13) plimT→∞
1

T

T∑
t=1

utξ̂mt|T = E(utξmt) = E(ut)E(ξmt) = E(ut)πm = 0

since ξt is independent of ut.

Using (3.1) for st = m, we get

(yt − ν̂m)(yt − ν̂m)
′

=
[
(νm − ν̂m) + Σmut

][
(νm − ν̂m)

′
+ u

′

tΣ
′

m

]
= (νm − ν̂m)(νm − ν̂m)

′
+ (νm − ν̂m)u

′

tΣ
′

m

+ Σmut(νm − ν̂m)
′
+ Σmutu

′

tΣ
′

m

hence

T∑
t=1

(yt − ν̂m)(yt − ν̂m)
′
ξ̂mt|T =

[ T∑
t=1

ξ̂mt|T
]
(νm − ν̂m)(νm − ν̂m)

′

+ (νm − ν̂m)
[ T∑
t=1

u
′

tξ̂mt|T
]
Σ
′

m + Σm

[ T∑
t=1

utξ̂mt|T
]
(νm − ν̂m)

′
+ Σm

[ T∑
t=1

utu
′

tξ̂mt|T
]
Σ
′

m.

From (3.6) we obtain

Ω̂m =(νm − ν̂m)(νm − ν̂m)
′
+
[ 1

T

T∑
t=1

ξ̂mt|T
]−1

(νm − ν̂m)
[ 1

T

T∑
t=1

u
′

tξ̂mt|T
]
Σ
′

m

+
[ 1

T

T∑
t=1

ξ̂mt|T
]−1

Σm

[ 1

T

T∑
t=1

utξ̂mt|T
]
(νm − ν̂m)

′

+
[ 1

T

T∑
t=1

ξ̂mt|T
]−1

Σm

[ 1

T

T∑
t=1

utu
′

tξ̂mt|T
]
Σ
′

m.

Using (3.12), (3.13) and the consistency of ν̂m, we get

plimT→∞ Ω̂m = plimT→∞
[ 1

T

T∑
t=1

ξ̂mt|T
]−1

Σm plimT→∞
[ 1

T

T∑
t=1

utu
′

tξ̂mt|T
]
Σ
′

m

= π−1m ΣmE(utu
′

t)E(ξmt)Σ
′

m = Σ2
m = Ωm,

as ξt is independent of ut, E(utu
′

t) = IK , E(ξmt) = πm and Σm is symmetric.

156



4.1 Analysis of the Likelihood Function for Markov Switching
VAR(CH) Models

The consistency of p̂ij follows directly from (2.10) as

plimT→∞ p̂ij = plimT→∞
[ 1

T

T∑
t=1

ξ̂i,t−1|T
]−1

plimT→∞
[ 1

T

T∑
t=1

ξ̂i,t−1|TPr(st = j|st−1 = i,YT )
]

= π−1i E(ξi,t−1)pij = π−1i πipij = pij .

For the asymptotic variance of ν̂m we have

vara(ν̂m) = plimT→∞ TE((ν̂m − νm)(ν̂m − νm)
′
)

= plimT→∞E
[ 1

T

T∑
t=1

ξ̂mt|T
]−2

Σm plimT→∞E
[ 1

T

T∑
t=1

T∑
τ=1

utu
′

τ ξ̂mt|T ξ̂mτ |T
]
Σ
′

m

= π−2m ΣmE(ξ2mt)Σ
′

m = π−1m Σ2
m = π−1m Ωm

as E(ξ2mt) = πm. Recall that E(ξtξ
′

t) = D = diag(π1, . . . , πM ).

Thus
√
T (ν̂m−νm) is asymptotically normal with zero mean and asymptotic variance π−1m Ωm

for every m = 1, . . . ,M (see Subsection 2.4). One could proceed in this manner for the other

estimators. Alternatively, we compute explicitly the asymptotic information matrix in (2.11).

For the second derivatives, we have

∂2lnηmt(θ)

∂ν ′m∂νm
= −Ω−1m

∂2lnηmt(θ)

∂νm∂Ω−1m
=

1

2

[
(yt − νm)⊗ IK + IK ⊗ (yt − νm)

]
∂2lnηmt(θ)

∂Ω−1m ∂ν ′m
= IK ⊗ (yt − νm)

′

∂2lnηmt(θ)

∂Ω−1m ∂Ω−1m
= −1

2
(Ωm ⊗Ωm)

for every m = 1, . . . ,M . Using the FOC conditions in (3.1) and (3.2) and taking the derivatives

of (2.8) with respect to θ, we get the Hessian matrix

H(θm) =

(
∂2ln p(YT ;λ)

∂θm∂θ
′

m

)
=

−Ω−1m Sm 0

0 − 1
2 (Ωm ⊗Ωm)Sm


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where Sm =
∑T
t=1 ξ̂mt|T (> 0). Since the above matrix is negative definite for every m =

1, . . . ,M , also H(θ) = diag(H(θ1), . . . ,H(θM )) is. Then the full vector θ̂ (and whence λ̂ from

Theorem 2.2) maximizes the log likelihood function (for interior values in the parameter space).

Furthermore, we have

Ia(θm) = limT→∞−T−1E(H(θm)) =

Ω−1m πm 0

0 1
2 (Ωm ⊗Ωm)πm

 .

In particular, we see that vara(ν̂m) = π−1m Ωm and vara(Ω̂
−1
m ) = 2π−1m (Ω−1m ⊗Ω−1m ). Analogously,

taking the derivatives of (3.7) with respect to pij and taking asymptotic expectations give

Ia(pij) = (p−1ij πi), hence vara(p̂ij) = π−1i pij , for every i, j = 1, . . . ,M .

The explicit expressions for the score vector and Hessian of the log likelihood and the derivation

of the asymptotic information matrix are useful in applications, for instance, in the concrete

formulation of Wald and Lagrange multiplier tests. For sake of conciseness, we present the Wald

test in the case of linear null hypothesis (the general situation can be obtained by using the

Jacobian matrix). Suppose that the parameter vector θm is partitioned as θm = (θ1m,θ2m),

where θ1m = νm and θ2m = vec Ω−1m , for m ∈ {1, . . . ,M}. Let us consider linear restrictions

on θim, that is, H0 : Aimθim = 0 with rk Aim = rim, while there is no constraint given for

θ3−i,m, for i = 1, 2, and m ∈ {1, . . . ,M}. Then the Wald statistic is given by

θ̂
′

imA
′

im

[ 1

T
AimΣ̂imA

′

im

]−1
Aimθ̂im

d−→ χ2(rim)

where Σ̂im is the ML estimator of the asymptotic variance matrix of θ̂im, that is, Σ̂1m = π−1m Ω̂m

and Σ̂2m = 2π−1m (Ω̂
−1
m ⊗ Ω̂

−1
m ), for any m ∈ {1, . . . ,M}.

4.1.4 State-dependent Autoregressive Dynamics

Let now yt be a (K × 1) random vector which follows an M -regime Markov-switching (MS)

AR(p) process, with p > 0:

(4.1) yt +

p∑
i=1

Φst,iyt−i = νst + Σstut
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where ut ∼ NID(0, IK), and Φm,i is a (K × K) matrix for every m = 1, . . . ,M . If we set

Yt−1 = (y
′

t−1, . . . ,y
′

t−p)
′
, then we have

(4.2) yt|st,Yt−1 ∼ NID(νst −
p∑
i=1

Φst,iyt−i,Ωst)

where Ωst = Σ2
st , as before. Now the unknown parameter θ consists of the elements of the

intercept vectors (ν1, . . . ,νM ) and the variance-covariance matrices (Ω1, . . . ,ΩM ) (or, equiva-

lently, their inverses) and the matrices Φm,i for m = 1, . . . ,M and i = 1, . . . , p. The vector ρ

is as in Section 3. Hence Model (4.1) implies the estimation of a number of parameters which

is equal to dim ΛM = M [K + pK2 +K(K + 1)/2 + (M − 1)] for the most general situation. In

the case st = m, the log of the conditional density in (2.2) becomes

lnηmt(θ) = ln p(yt|st = m,Yt−1;θ) = −K
2
ln(2π)− 1

2
ln|Ωm|

− 1

2
(yt − νm +

p∑
i=1

Φm,iyt−i)
′
Ω−1m (yt − νm +

p∑
i=1

Φm,iyt−i).

The first derivatives are given by

∂lnηmt(θ)

∂νm
= Ω−1m (yt − νm +

p∑
i=1

Φm,iyt−i)

∂lnηmt(θ)

∂Ω−1m
=

1

2
Ωm −

1

2
(yt − νm +

p∑
i=1

Φm,iyt−i)(yt − νm +

p∑
i=1

Φm,iyt−i)
′

∂lnηmt(θ)

∂Φm,i
= −Ω−1m (yt − νm +

p∑
j=1

Φm,jyt−j)y
′

t−i

when st = m and zero otherwise, for every m = 1, . . . ,M and i = 1, . . . , p. So the FOC

conditions in (2.9) give

(4.3)

T∑
t=1

Ω−1m (yt − νm +

p∑
i=1

Φm,iyt−i)ξ̂mt|T = 0

(4.4)

T∑
t=1

[1
2
Ωm −

1

2
(yt − νm +

p∑
i=1

Φm,iyt−i)(yt − νm +

p∑
i=1

Φm,iyt−i)
′]
ξ̂mt|T = 0
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and

(4.5) −
T∑
t=1

Ω−1m (yt − νm +

p∑
j=1

Φm,jyt−j)y
′

t−iξ̂mt|T = 0

for every m = 1, . . . ,M and i = 1, . . . , p.

Define the following matrices:

Φm = (Φm,1 · · ·Φm,p) Am = (Am(i, j)) Bm = (Bm(i))

Cm = (Cm(i)) Sm = (

T∑
t=1

ξ̂mt|T ) Tm = (−
T∑
t=1

ytξ̂mt|T )

where

Am(i, j) =

T∑
t=1

yt−iy
′

t−j ξ̂mt|T Bm(i) =

T∑
t=1

y
′

t−iξ̂mt|T

and

Cm(i) = −
T∑
t=1

yty
′

t−iξ̂mt|T

for m = 1, . . . ,M and i = 1, . . . , p.

Using these matrices, Equations (4.3) and (4.5) become

ΦmB
′

m − νmSm = Tm

ΦmAm − νmBm = Cm

Multiplying the first (resp. the second) equation by Bm on the right (resp. by the scalar Sm),

we get

ΦmB
′

mBm − νmSmBm = TmBm

ΦmSmAm − νmSmBm = SmCm

Subtracting the last two equations gives

ΦmXm = Wm

where

Xm = B
′

mBm − SmAm Wm = TmBm − SmCm
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for every m = 1, . . . ,M . Now solving (4.3), (4.4) and (4.5) for νm, Ωm and Φm and using the

above-defined matrices, we get their ML estimates

(4.6) ν̂m = S−1m (WmX−1m B
′

m −Tm)

(4.7) Φ̂m = WmX−1m

and

(4.8) Ω̂m = S−1m
[ T∑
t=1

(yt − ν̂m +

p∑
i=1

Φ̂m,iyt−i)(yt − ν̂m +

p∑
i=1

Φ̂m,iyt−i)
′
ξ̂mt|T

]
.

Moreover, we obtain

Xm =
(
Xm(i, j)

)
Wm =

(
Wm(i)

)
where

Xm(i, j) =
[ T∑
t=1

yt−iξ̂mt|T
][ T∑

t=1

y
′

t−j ξ̂mt|T
]
−
[ T∑
t=1

ξ̂mt|T
][ T∑

t=1

yt−iy
′

t−j ξ̂mt|T
]

and

Wm(i) = −
[ T∑
t=1

ytξ̂mt|T
][ T∑

t=1

y
′

t−iξ̂mt|T
]

+
[ T∑
t=1

ξ̂mt|T
][ T∑

t=1

yty
′

t−iξ̂mt|T
]

for every m = 1, . . . ,M and i, j = 1, . . . , p. The ML estimates of pij are given by (2.10). For

the second derivatives, we have

∂2lnηmt(θ)

∂ν ′m∂νm
= −Ω−1m

∂2lnηmt(θ)

∂νm∂Ω−1m
=

1

2

[
(yt − νm +

p∑
i=1

Φm,iyt−i)⊗ IK + IK ⊗ (yt − νm +

p∑
i=1

Φm,iyt−i)
]

∂2lnηmt(θ)

∂νm∂Φ
′

m,i

= Ω−1m ⊗ yt−i

∂2lnηmt(θ)

∂Ω−1m ∂ν ′m
= IK ⊗ (yt − νm +

p∑
i=1

Φm,iyt−i)
′
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∂2lnηmt(θ)

∂Ω−1m ∂Ω−1m
= −1

2
(Ωm ⊗Ωm)

∂2lnηmt(θ)

∂Ω−1m ∂Φ
′

m,i

= −IK ⊗
[
yt−i(yt − νm +

p∑
j=1

Φm,jyt−j)
′]

∂2lnηmt(θ)

∂Φm,i∂ν
′
m

= Ω−1m ⊗ y
′

t−i

∂2lnηmt(θ)

∂Φm,i∂Ω−1m
= −1

2

[
(yt − νm +

p∑
j=1

Φm,jyt−j)⊗ IK + IK ⊗ (yt − νm +

p∑
j=1

Φm,jyt−j)
]

(y
′

t−i ⊗ IK)

∂2lnηmt(θ)

∂Φm,i∂Φ
′

m,j

= −Ω−1m ⊗ (yt−jy
′

t−i)

for every m = 1, . . . ,M and i, j = 1, . . . , p. Using the FOC conditions in (4.3)–(4.5) and taking

the second derivatives with respect to θ, we get the Hessian matrix (up to re–ordering)

H(θm) =

− 1
2 (Ωm ⊗Ωm)Sm 0

0 −Ω−1m ⊗Rm


where

Rm =

 Sm −Bm

−B
′

m Am


is positive definite, hence H(θm) is negative definite, for every m = 1, . . . ,M . In fact, we have

Rm =

T∑
t=1

ξ̂mt|TWW
′

where W = (1 − y
′

t−1 · · · − y
′

t−p)
′
. Finally, we have

Ia(θm) =

 1
2 (Ωm ⊗Ωm)πm 0

0 Ω−1m ⊗ E(Rm)

 .

For Ia(pij) see the previous section. The derivation of the asymptotic information matrix is

useful in the explicit formulation of Wald and Lagrange multiplier tests, as shown in the previous

section for the case of Wald test with linear null hypothesis.
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4.1.5 State-dependent Multivariate ARCH Models

In this section we discuss the parameter estimation for a multivariate Markov-switching model

with ARCH disturbances. Estimation of ARCH models has been considered by several authors

as, for example, Weiss (1986), Bollerslev, Engle and Nelson (1993), and Hamilton (1994),

Chp.21, p.657.

Let us consider the following M–regime Markov-switching regression model

(5.1) yt = Xtβst + ut

where yt is (K × 1), βst is a (n × 1) parameter vector, and Xt denotes a (K × n) matrix of

predetermined explanatory variables, which could include lagged values of y. The error term

ut is a (K×1) random variable which follows a stationary ARCH process of order p with p > 0.

To specify the ARCH equation, let It−1 be the information set containing information about

the process up to and including time t − 1. Then assume E(ut|It−1) = 0. Furthermore, the

conditional variance–covariance matrix of ut is given by

(5.2) Ωst,t = ΣstΣ
′

st +

p∑
i=1

Λst,iut−iu
′

t−iΛ
′

st,i.

This formulation is taken from Bollerslev, Engle and Nelson (1993), Formula (6.5), p.50. It has

the advantage that Ωst,t is guaranteed to be positive definite a.s. for all t. The process in (5.1) is

the multivariate version of that considered in Hamilton (1994) , Formula [21.1.17], p.660. In this

book the scalar conditional variance Ωt = ht evolves according to ht = ξ+
∑p
i=1 αiu

2
t−i, where

ξ and αi are scalar parameters and the error term ut is scalar, too. If ut|It−1 ∼ NID(0,Ωst,t)

with ut independent of st, Xt and It−1, then the conditional distribution of yt is Gaussian with

mean Xtβst and conditional variance Ωst,t, that is, we have

p(yt|st, Xt, It−1;θ) =(2π)−K/2|Ωst,t|−1/2

× exp

{
−

(yt −Xtβst)
′
Ω−1st,t(yt −Xtβst)

2

}

where Ωst,t follows (5.2). In short, we denote the above dynamic process by VARCH(p) with
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p > 0. The unknown parameter θ consists of the (n× 1) vectors β1, . . . , βM and the (K ×K)

matrices Σm and Λm,i for m = 1, . . . ,M and i = 1, . . . , p. The vector ρ is as in Section

3. Hence Model (5.1) implies the estimation of a number of parameters which is equal to

M [n+ (p+ 1)K2 + (M − 1)] for the most general situation. In the case st = m, the log of the

conditional density of yt becomes

lnηmt(θ) = ln p(yt|st = m,Xt, It−1;θ)

= −K
2

ln(2π)− 1

2
ln |Ωmt| −

1

2
(yt −Xtβm)

′
Ω−1mt(yt −Xtβm),

where

Ωmt = ΣmΣ
′

m +

p∑
i=1

Λm,i(yt−i −Xt−iβm)(yt−i −Xt−iβm)
′
Λ
′

m,i.

The first derivatives are given by

(5.3)
∂ lnηmt(θ)

∂βm
= X

′

tΩ
−1
mtut −

p∑
i=1

[
X
′

t−iΛ
′

m,i

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
Λm,iut−i

]

(5.4)
∂ lnηmt(θ)

∂Σm
=

1

2

{(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
Σ
′

m + Σm

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)}

and

(5.5)

∂ lnηmt(θ)

∂Λm,i
=

1

2

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
ut−iu

′

t−iΛ
′

m,i

+
1

2
Λm,iut−iu

′

t−i

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
when st = m and zero otherwise, for every m = 1, . . . ,M and i = 1, . . . , p. In the univariate

case (K = 1), setting M = 1, Ωmt = ht, Λm,i =
√
αi and Xt = x

′

t (which is a (1× n) vector),

the first derivative in (5.3) becomes that obtained in Hamilton (1994), Formula [21.1.21], p.661,

that is

∂ lnηmt(θ)

∂βm
=
ut
ht

xt −
(
u2t
h2t
− 1

ht

) p∑
i=1

αiut−ixt−i.

Of course, the first derivatives in (5.4) and (5.5) are slightly different from those listed in that

page of the quoted book due to the definition of the conditional variance. In our univariate
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case, setting M = 1 and Σm =
√
ξ, we get

∂ lnηmt(θ)

∂Σm
=

(
u2t
h2t
− 1

ht

)√
ξ

∂ lnηmt(θ)

∂Λm,i
=

(
u2t
h2t
− 1

ht

)
u2t−i
√
αi.

So the FOC conditions in (2.9) give

(5.6)

T∑
t=1

X
′

tΩ
−1
mtutξ̂mt|T =

T∑
t=1

p∑
i=1

[
X
′

t−iΛ
′

m,i

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
Λm,iut−i

]
ξ̂mt|T

(5, 7)

T∑
t=1

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
Σ
′

mξ̂mt|T +

T∑
t=1

Σm

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
ξ̂mt|T = 0

and

(5.8)

T∑
t=1

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
ut−iu

′

t−iΛ
′

m,iξ̂mt|T

+

T∑
t=1

Λm,iut−iu
′

t−i

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
ξ̂mt|T = 0

for every m = 1, . . . ,M and i = 1, . . . , p. Using the relations

ût = yt −Xtβ̂m = Xtβm + ut −Xtβ̂m,

we get from (5.6)

β̂m = βm + I−1mTTmT

where

ImT =

T∑
t=1

X
′

tΩ
−1
mtXtξ̂mt|T

and

TmT =

T∑
t=1

X
′

tΩ
−1
mtutξ̂mt|T −

T∑
t=1

p∑
i=1

[
X
′

t−iΛ
′

m,i

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
Λm,iut−i

]
ξ̂mt|T .
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Then we have

plimT→∞ β̂m = βm +

[
plimT→∞

1

T
ImT

]−1 [
plimT→∞

1

T
TmT

]
= βm

for every m = 1, . . . ,M as

Im = plimT→∞
1

T
ImT = E(X

′

tΩ
−1
mtXt)πm < +∞ plimT→∞

1

T
TmT = 0.

This gives the consistency of the ML estimators β̂m for every m = 1, . . . ,M . For the conditional

asymptotic variance of β̂m we have

vara(β̂m) = plimT→∞ TE((β̂m − βm)(β̂m − βm)
′
)

= plimT→∞ TE
(
I−1mTTmTT

′

mT I
−1
mT

)
= I−1m SmI−1m ,

where

Sm = plimT→∞
1

T
TmTT

′

mT .

For example, in the univariate non state–dependent case with the above considered correspon-

dences, we get

β̂m = βm +
( T∑
t=1

1

ht
xtx

′

t

)−1[ T∑
t=1

ut
ht

xt −
T∑
t=1

(u2t
h2t
− 1

ht

) p∑
i=1

αiut−ixt−i
]
.

So the conditional asymptotic variance of β̂m becomes

vara(β̂m) =
(
1 + 2

p∑
i=1

α2
i

)
I−1m .

In particular, if αi = 0 for every i = 1, . . . , p, that is, the conditional variance Ωt = ht = ξ is

time independent, we obtain

vara(β̂m) = ξ[E(xtx
′

t)]
−1

as expected.

166



4.1 Analysis of the Likelihood Function for Markov Switching
VAR(CH) Models

From (5.7) we get

T∑
t=1

[(Σm ⊗ IK) + TK,K(Σm ⊗ IK)] vec(Ω−1mtutu
′

tΩ
−1
mt −Ω−1mt)ξ̂mt|T = 0

where TK,K is the usual (K2×K2) permutation matrix which transforms vec(A) into vec(A
′
) for

a given (K×K) matrix A. Here we have used the property TK,K(Σm⊗IK) = (IK⊗Σm)TK,K .

Thus we obtain

(TK,K + IK2)(Σm ⊗ IK)

T∑
t=1

vec(Ω−1mtutu
′

tΩ
−1
mt −Ω−1mt)ξ̂mt|T = 0

which gives another form of (5.7). In similar manner the FOC in (5.8) can be expressed as

(TK,K + IK2)
{ T∑
t=1

[
(Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt)ut−iu

′

t−i

]
⊗ IK ξ̂mt|T

}
vec(Λmi) = 0

for every i = 1, . . . , p.

To end the section we observe that the conditional asymptotic variances of Σ̂m and Λ̂m,i can

be obtained by making use of the matrices [E(RmtR
′

mt)]πm and [E(TmtT
′

mt)]πm, respectively,

where

Rmt =
1

2

[
IK ⊗

(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
vec(Σ

′

m)

+
(
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
⊗ IK vec(Σm)

]
and

Tmt =
1

2

{
IK ⊗

[ (
Ω−1mtutu

′

tΩ
−1
mt −Ω−1mt

)
ut−iu

′

t−i
]

vec(Λ
′

m,i)

+
[ (

Ω−1mtutu
′

tΩ
−1
mt −Ω−1mt

)
ut−iu

′

t−i
]
⊗ IK vec(Λm,i)

}
.
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4.1.6 Conclusion

In this paper we derive maximum likelihood estimators and their asymptotic variance-covariance

matrix for Markov switching vector autoregressive models. Our matrix formulae are very simple

and different in some cases to those obtained in the known literature. This in turn permits to use

easily the classical specification testing procedures. Our discussion is based on the fundamental

work developed by Hamilton, Kim, and Krolzig, and is related with the analytical derivatives

obtained by Gable, Van Norden and Vigfusson for univariate Markov-switching models without

lags. As remarked by these last authors, estimation for Markov switching models is usually

done using numerical techniques that approximate the derivative by the change in the likelihood

function for small changes in the parameter vector. This is not especially efficient, however,

as such techniques typically require a lot of numerical evaluations. Using analytical gradients

the number of calculations can be greatly reduced, and this in turn considerably speeds up

MLE with no loss of accuracy. This gives a strong motivation for searching explicit formulae

of ML estimates and their asymptotic variance-covariance matrix. Finally, in the context of

multivariate ARCH models with changes in regime we show how analytic derivatives of the log

likelihood can be successfully employed for estimation purposes.
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4.2 Spectral Density of Regime Switching VAR

Models

Abstract.We consider multivariate AR models subject to Markov Switching and present re-

sults about the computation of their autocovariance function. We derive a close-form formula

for the spectral density function of Markov Switching VAR models, and give stable VARMA

representations of such processes. An example is proposed in order to illustrate the behavior of

spectral density functions and the feasibility of the approach. Finally, we investigate whether

S&P500 stock market returns suffer of structural change rather then long memory via spectral

analysis.[JEL Classification: C01, C32, C50]

Keywords: Markov Switching, VAR model, Spectral density, Stable representation, Long mem-

ory, financial returns.

4.2.1 Introduction

This paper studies multivariate autoregressive models which are subject to change in regime,

described as an outcome of an unobserved Markov chain. Markov switching models play an

important role in many financial and economic studies and constitute an useful method to

model uncertainty preserving the tractabililty of linear framework. Moreover, in time series

analysis, the primary interest is often to study the periodic behavior of the data and a useful

tool is the Fourier transform. The frequency content of a time series can be analyzed through

the spectral density function, which results from its autocovariance function values. Hence, we

derive close-form formulae for the spectral representations of Markov switching VAR processes.

Our results are related to the work of Krolzig (1997) in terms of state space representation

and stable representation and to the paper of Pataracchia (2011) where a different Markovian

representation has been considered.
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4.2 Spectral Density of Regime Switching VAR Models

4.2.2 Markov-switching VAR(0) process

Let us consider the model

yt = νst + Σstut (4.1)

where ut ∼ IID(0, Ik), yt, νst and ut are K × 1, Σst is K ×K and (st) follows an M -state

(irreducible and ergodic) Markov chain. Let P = (pij)i,j=1,...,M be the transition matrix of

the chain, where pij = Pr(st = j|st−1 = i). Ergodicity implies the existence of a stationary

vector of probabilities π = (π1 . . . πM )
′

satisfying π = P
′
π and i

′

Mπ = 1, where iM denotes the

(M × 1) vector of ones. Irreducibility implies that πm > 0 for m = 1, . . . ,M , meaning that

all unobservable states are possibile. An useful representation for (st) is obtained by letting

ξt denote a random (M × 1) vector whose mth element is equal to unity if st = m and zero

otherwise. Then the Markov chain follows a VAR(1) process

ξt = P
′
ξt−1 + vt

where vt = ξt − E(ξt|ξt−1) is a zero mean martingale difference sequence.

Consequently, we have the following standard properties (h > 0):

E(ξt) = π E(ξtξ
′

t) = D = diag(π1 . . . πM )

E(ξtξ
′

t+h) = DPh vt ∼ IID(0,D−P
′
DP)

Define Λ = (ν1 . . . νM ) and Σ = (Σ1 . . .ΣM ). We get a first state space representation of (1)


yt = Λξt + Σξt ⊗ IK)ut

ξt = P
′
ξt−1 + vt

(4.2)
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In fact, for st = m, ξt = em the mth column of the identity matrix IM . So we get

yt =
(
ν1 . . . νM

)


0

...

1

...

0


+
(

Σ1 . . . ΣM

)


0

...

IK
...

0


ut

= νm + ΣmIKut = νm + Σmut.

The transition equation in (2) differs from a stable linear VAR(1) process by the fact that one

eigenvalue of P
′

is equal to one, and the covariance matrix is singular due to the adding-up

restriction. For analytical purposes, a slightly different formulation of the transition equation

in (2) is more useful, where the identity i
′

Mξt = 1 is eliminated. See Krolzig (1997), Chp.3.

This procedure alters the state-space representation by using a new (M − 1)-dimensional state

vector

δt =


ξ1,t − π1

...

ξM−1,t − πM−1

 .

The transition matrix F associated with δt is given by

F =


p1,1 − pM,1 . . . pM−1,1 − pM,1

...
...

p1,M−1 − pM,M−1 . . . pM−1,M−1 − pM,M−1

 .

The eigenvalues of F are less than 1 in absolute value. Here the relations

ξM,t = 1−
M−1∑
m=1

ξmt πM = 1−
M−1∑
m=1

πm

have been used. Then we have

ξt − π = P
′
(ξt−1 − π) + vt
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4.2 Spectral Density of Regime Switching VAR Models

hence

δt = F δt−1 + wt

where

wt = (IM−1 − iM−1)vt.

This gives a second (unrestricted) state-space representation

yt = Λπ + Λ(ξt − π) + Σ((ξt − π)⊗ IK)ut + Σ(π ⊗ IK)ut

hence 
yt = Λπ + Λ̃δt + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

δt = F δt−1 + wt

(4.3)

where

Λ̃ = (ν1 − νM . . . νM−1 − νM ) Σ̃ = (Σ1 − ΣM . . .ΣM−1 − ΣM ).

We then have the following standard properties:

E(δt) = 0 E(δtδ
′

t) = D̃

E(δtδ
′

t+h) = D̃(F
′
)
h
, h > 0 wt ∼ IID(0, D̃− FD̃F

′
)

where

D̃ =


π1(1− π1) . . . −π1πM−1

...
...

−πM−1π1 . . . πM−1(1− πM−1)

 .

The autocovariance function of the process (yt) in (3) is given by

Γy(0) = Λ̃D̃Λ̃
′
+ Σ̃(D̃⊗ IK)Σ̃

′
+ Σ((DP∞)⊗ IK)Σ

′

Γy(h) = Λ̃FhD̃Λ̃
′
, h > 0

where DP∞ = ππ
′

and P∞ = limn Pn = iMπ
′
. For the proof see Cavicchioli (2013), Th.3.3.
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The multivariate spectral matrix describes the spectral density functions of each element of the

state vector in the diagonal terms. The off-diagonal terms are defined cross spectral density

functions and they are typically complex numbers. Here we are only interested in the diagonal

terms. Therefore, we can compute them, without loss of generality, considering the summation

Fy(ω) =

+∞∑
h=−∞

Γy(|h|)e−iωh

where the frequency ω belongs to [−π, π]. See also Pataracchia (2011) where a different spectral

representation was obtained. Since the spectral radius ρ(F) of F is less than 1, the spectral

density matrix of the process (yt) in (3) is given by

Fy(ω) = Q+ 2Λ̃FRe{(IM−1eiω − F)−1}D̃Λ̃
′

where Re denotes the real part of the complex matrix (IM−1e
iω − F)−1, and

Q = Λ̃D̃Λ̃
′
+ Σ̃(D̃⊗ IK)Σ̃

′
+ Σ((DP∞)⊗ IK)Σ

′
.

An alternative approach to the same problem is based on a stable representation of (3). Set

µy = Λπ. From (3) we get

δt = F (L)−1wt

where F (L) = IM−1 − FL (here L is the lag operator). Substituting this relation into the

measurement equation in (3) yields

|F (L)|(yt − µy) = Λ̃F (L)∗wt + Σ̃(F (L)∗wt ⊗ IK)ut + |F (L)|Σ(π ⊗ IK)ut

where F (L)∗denotes the adjoint matrix of F (L) and |F (L)| is the deteminant of F (L). Thus

we get a stable VARMA(p∗, q∗) representation of the process (yt) in (3)

φ(L)(yt − µy) = θ(L)εt (4.4)
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where p∗ = q∗ ≤M − 1, φ(L) = |F (L)| is scalar and

θ(L) = (Λ̃F (L)∗ Σ̃(F (L)∗ ⊗ IK) |F (L)|IK).

See Cavicchioli (2013), Th. 3.5. The error term is also given by

εt = (w
′

t u
′

t(w
′

t ⊗ IK) u
′

t(π
′
⊗ IK)Σ

′
)
′

with variance matrix

Ξ = V ar(εt) = diag(D̃− FD̃F
′
, (D̃− FD̃F

′
)⊗ IK ,Σ((DP∞)⊗ IK)Σ

′
).

Using (4) the spectral density matrix of the process (yt) in (3) is also given by

Fy(ω) =
θ(eiω)Ξθ

′
(e−iω)

|φ(eiω)|2
.

In fact, we can apply a well-known result (see, for example, Gourieroux and Monfort (1997),

Chp.8, Formula 8.3, p.257). The spectral density of a VARMA process

Φ(L)yt = Θ(L)εt,

with V ar(ε) = Ω, is given by

Fy(ω) =
1

2π
Φ−1(exp(iω))Θ(exp(iω))ΩΘ(exp(iω))′ Φ−1(exp(iω))′

This formula can be applied when det Φ(z) has all its roots outside the unit circle. Moreover,

we can also write Fy(ω) as

Fy(ω) =
1

2π

Φ∗(exp(iω))Θ(exp(iω))ΩΘ(exp(iω))′ Φ∗(exp(iω))′

|det Φ(exp(iω))|2

where Φ∗ denotes the adjoint matrix of Φ. Here, we apply these formulae ignoring the coefficient.

Written in this form Fy(ω) is a matrix whose elements are rational functions of exp(iω). This
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property is a characteristic of the VARMA process.

4.2.3 Markov-switching VAR(p) process

Let us consider the MS-VAR(p), p > 0, process

A(L)yt = νst + Σstut (4.5)

where A(L) = IK −A1L− · · · −ApL
p is a (K ×K)-dimensional lag polynomial. Assume that

there are no roots on or inside the unit circle of the complex plane, i.e., |A(z)| 6= 0 for |z| ≤ 1.

Reasoning as above, the process (yt) in (5) admits a stable VARMA(p∗, q∗) with p∗ ≤M+p−1

and q∗ ≤M − 1:

Ψ(L)(yt − µy) = θ(L)εt (4.6)

where Ψ(L) = |F (L)|A(L) = φ(L)A(L) and θ(L)εt is as in (4). If we want the autoregressive

part of the stable VARMA in (6) to be scalar, we have to multiply (6) on the left with the adjoint

A(L)∗ to give a stable VARMA(p
′
, q
′
) representation, where the bounds satisfy p

′ ≤M+Kp−1

and q
′ ≤M + (K − 1)p− 1. Thus the spectral density matrix of the process (yt) in (6) is given

by

Fy(ω) =
A−1(eiω)θ(eiω)Ξθ

′
(e−iω)[A

′
(e−iω)]−1

|φ(eiω)|2

=
A∗(eiω)θ(eiω)Ξθ

′
(e−iω)A∗

′
(e−iω)

|φ(eiω)|2|det A(eiω)|2
.

From the above section we can also obtain the matrix expression

Fy(ω) = A−1(eiω)Q[A
′
(e−iω)]−1 + 2A−1(eiω)Λ̃F

× Re{(IM−1eiω − F)−1}D̃Λ̃
′
[A
′
(e−iω)]−1.

(4.7)

A similar result can be obtained for a Markov switching VAR(p), p > 0, process

Ast(L)yt = νst + Σstut (4.8)
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where we assume that the state variable is independent of the observables.

Define

A(L) = (A1(L) . . . AM (L))

where

Am(L) = IK −A1,mL− · · · −Ap,mL
p

for m = 1, . . . ,M . Recall that st ∈ {1, . . . ,M}. Then (8) can be written in the form

A(L)(ξt ⊗ IK)yt = Λξt + Σ(ξt ⊗ IK)ut.

Assume that B(L) = A(L)(π ⊗ IK) is invertible. Then the spectral density matrix of the

process (yt) in (8) is given by

Fy(ω) =
B−1(eiω)θ(eiω)Ξθ

′
(e−iω)[B

′
(e−iω)]−1

|φ(eiω)|2
.

Finally, we can also obtain the matrix expression

Fy(ω) = B−1(eiω)Q[B
′
(e−iω)]−1 + 2B−1(eiω)Λ̃F

× Re{(IM−1eiω − F)−1}D̃Λ̃
′
[B
′
(e−iω)]−1.

4.2.4 A numerical example

Let us consider the MS(2)-AR(1) model defined as


yt = a1 yt−1 + ν1 + σ1 ut st = 1

yt = a2 yt−1 + ν2 + σ2 ut st = 2

. (4.9)

In Figure 1 we plot the spectral density of model (9), where σ1 = σ2 = 1, ν1 = 1, ν2 = 2,

p = 0.3 and q = 0.8. When the AR(1) coefficients are both positive (top left panel: a1 = 0.4

and a2 = 0.8) or negative (top right panel: a1 = −0.4 and a2 = −0.8), the shape is similar to

the typical spectral representation of an AR(1) with positive/negative coefficients. When the

sign is opposite (bottom left panel: a1 = 0.4 and a2 = −0.8; bottom right panel: a1 = −0.4
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Figure 4.1: Plot of spectral density functions of MS(2)-AR(1)

and a2 = 0.8) the prevailing shape depends on which model dominates in terms of absolute

value of the coefficients and underlying probabilities.

4.2.5 Long memory or Regime Switching?

Since the empirical work of Ding, Engle and Granger (1993) and Ding and Granger (1996), a long

debate on theoretical and empirical econometrics of long memory and fractional integration has

been developed. A common finding is that returns themselves contain little serial correlation,

while absolute reruns and their power transformations are highly correlated. In Ding et al.

(1993) a long memory property for the absolute returns of S&P 500 daily stock market is

established empirically. However, in more recent works more attention has been paid to the

possibility of confusing long memory and structural change. Mikosch and Starica (2000) find

structural change in asset return dynamics and argue that it could be responsible for evidence

of long memory. Moreover, Diebold and Inoue (2001) show analytically that stochastic regime

switching is easily confused with long memory, even asymptotically, so long as a small amount

of regime switching occurs. This claim is supported with Monte Carlo analysis and there

stochastic regime switching produce realizations that appear to have long memory in particular
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Figure 4.2: Spectra of S&P500 daily absolute log-return

cases. Granger and Hyung (2004) studied occasional structural breaks and the empirical results

suggest a possibility such that, at least, part of the long memory can be caused by the presence

of neglected breaks in the series. In the context of diffusion models, Chen, Hansen and Carrasco

(2010) show how nonlinearity induces temporal dependence in continuous-time Markov models.

Traditionally, long memory has been defined in the time domain in terms of decay rate of long-

lag autocorrelations, or in the frequency domain in terms of rates of explosion of low-frequency

spectra. In our work we obtain close form formulae for the spectra of Markov Switching VAR

models and those can be used to investigate the ”long memory or Markov switching” debate

from the frequency domain prospective.

In particular, using the sample periodogram, we obtain the sample spectral density of absolute

log-returns from S&P 500 daily stock market for the period January 2nd, 1957 September

30th, 2013. See Figure 2.

As expected, we recognize the explosion at low-frequency in the spectra. Then we follow a Monte

Carlo experiment of Diebold and Inoue (2001) (Example 4.3, page 149) in which they analize

the finite-sample property of the following Markov Switching model (in symbols MS(2)-AR(0)):

yt = µst + εt
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Figure 4.3: Spectra MS(2)-AR(0) with p00 = p11 = 0.95

where εt ∼ IIDN(0, σ2), and st and ετ are independent for all t and τ . The intercept term

take values µ0 = 0 in regime 0 and µ1 = 1 in regime 1. For a short T = 400 or long T = 10, 000

the following results remain the same. Diebold and Inoue (2001) observe the behavior of the

data for different values of probabilities p00 and p11 and show that for equal probabilities close

to one (say, 0.9995), the regime does not change with positive probability so that it does a

good job of mimicking long memory as opposed to the equal probabilities case well away from

unity (say, 0.95). We are able to confirm those conclusions from a different prospective through

the analysis of the spectra of the two described cases. Figure 3 show the spectral density of

the MS(2)-AR(0) model with equal probabilities which are away from unity; here the spectrum

shows a smooth behaviour which vanishes only at frequency equal to 1. On the contrary, when

probabilities are close to one (Figure 4) we witness an explosion at low-frequency in the spectra,

which is exactly what we see in Figure 2. Therefore, stochastic regime switching is intimately

related to long memory and easily confused with it, so long as only a small amount of regime

switching occurs in an observed sample path.
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Figure 4.4: Spectra MS(2)-AR(0) with p00 = p11 = 0.9995

4.2.6 Conclusion

In this paper we derive close-form formulae for the spectral density function of MS-VAR models.

These results are related to the work of Krolzig (1997) in terms of state space representation

and stable representation and to the paper of Pataracchia (2011) where a different Markovian

representation has been considered. Due to the simple tractability of this framework, we inves-

tigate via spectral analysis whether S&P500 stock market returns suffer of structural changes

rather than long memory. These arguments will be developed in the next future for further

research.
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