
Università
Ca’ Foscari

Venezia

Dottorato di ricerca
in Economia
Scuola di dottorato in Economia
Ciclo XXV
(A.A. 2013-2014)

Essays on Bayesian inference with
financial applications

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: SECS-P05

Tesi di dottorato di OSUNTUYI AYOKUNLE ANTHONY , Matricola

955710

Coordinatore del Dottorato Tutore del dottorando

Prof. Michele Bernasconi Prof. Monica Billio

Co-tutore del dottorando

Prof. Roberto Casarin



The undersigned OSUNTUYI AYOKUNLE ANTHONY, in his quality of doctoral

candidate for a Ph.D. degree in Economics granted by the Università Ca’ Foscari

Venezia attests that the research exposed in this dissertation is original and that it

has not been and it will not be used to pursue or attain any other academic degree

of any level at any other academic institution, be it foreign or Italian.



© Copyright by OSUNTUYI AYOKUNLE ANTHONY, 2014.

All rights reserved.



Abstract

This thesis is composed of two main research lines. The first line, developed in

chapters 2 to 4, deals with frequentist and Bayesian estimation of regime-switching

GARCH models and its application to risk management on energy markets, while the

second part, which corresponds to chapter 5, focuses on forecast rationality testing

within a Bayesian framework.

Chapter 2 presents a unified mathematical framework for characterizing the class

of MSGARCH models based on collapsing the regimes in order to eliminate the usual

path dependence problem. Within this framework, two new models (identified as

Basic model and Simplified Klaassen model) are proposed as alternative specifications

of the MS-GARCH model. Using Maximum Likelihood Estimation, we estimate the

parameters of the different models within this family and compare their performance

on both simulation and empirical exercises. Chapter 3 proposes new efficient Monte

Carlo simulation techniques based on multiple proposal Metropolis. The application

to approximated inference for regime-switching GARCH models is there discussed.

In Chapter 4, we provide an extension of our efficient Monte Carlo simulation

algorithm to a multi-chain Markov switching multivariate GARCH model and apply

it to risk management in commodity market. More specifically we focus on futures

commodity market and suggest a dynamic and robust minimum variance hedging

strategy which accounts for model parameter uncertainty. In chapter 5, we propose

a new Bayesian inference procedure for testing the monotonicity properties of second

moment bounds across several horizons presented in Patton and Timmermann [2012].

iv



Acknowledgements

My profound gratitude goes to my PhD advisors, Monica Billio and Roberto Casarin,

for mentoring me in research, critical thinking, and scientific writing. I am indebted

to their invaluable insight, suggestion for improvements, and motivation during the

program. I also wish to thank Lennart Hoogerheide, and Herman K. van Dijk for

their contribution to my thesis and for their hospitality during my research visit to

Tinbergen Institute, Vrije Universiteit Amsterdam, The Netherlands.

I am grateful to my parents for their love and unceasing support during my gradu-

ate studies. Also, I am thankful to my wife, Olawumi Osuntuyi, for her encouragement

and understanding when the going was touugh.

I would also like to express my gratitude to the management of Obafemi Awolowo

University (O.A.U.), Ile-Ife, Nigeria for granting me the opportunity to take part in

this doctoral programme. The support and understanding of members of staff of the

Department of Mathematics, O.A.U, Ile-Ife is also duly acknowledged.

My thanks won’t be complete without expressing profound gratitude: To God

for granting me good health and for making this feat a reality; To my colleagues for

making my stay a memorable one; To Drs. Shola Adeyemi, Sajojbi Tolulope, Fareo

Gideon, Ireka Ikenna, Owatemi Dare for inspiring me to always strive for the best.

v



To my loving parents, wife and son.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Purpose and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Bibliography 7

2 A Unified class of Markov switching GARCH models based on Col-

lapsing procedure 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Markov switching GARCH models . . . . . . . . . . . . . . . . . . . 14

2.2.1 Path dependence issue . . . . . . . . . . . . . . . . . . . . . . 16

2.3 A family of MS-GARCH models . . . . . . . . . . . . . . . . . . . . . 17

2.4 Monte Carlo experiments on simulated data sets . . . . . . . . . . . . 21

2.5 Empirical application: the S&P500 daily returns . . . . . . . . . . . . 25

2.6 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography 29

vii



3 Efficient Gibbs Sampling for Markov Switching GARCH Models 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Markov switching GARCH models . . . . . . . . . . . . . . . . . . . 37

3.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Inference issues . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Sampling the state variables ξ1:T . . . . . . . . . . . . . . . . . 44

3.3.2 Auxiliary models for defining the proposal distribution . . . . 54

3.3.3 Sampling θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Monte Carlo experiments on simulated data sets . . . . . . . . . . . . 60

3.4.1 Comparison of algorithms . . . . . . . . . . . . . . . . . . . . 61

3.5 Empirical application: the S&P500 daily returns . . . . . . . . . . . . 72

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendices 78

3.A Constructing proposal distribution for θµ, θσ . . . . . . . . . . . . . . 78

3.B Parameter posterior distributions . . . . . . . . . . . . . . . . . . . . 82

Bibliography 86

4 Markov Switching GARCH models for Bayesian Hedging on Energy

Futures Markets 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Bayesian optimal hedge ratio . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Econometric model specification . . . . . . . . . . . . . . . . . 100

4.2.2 Computational requirement . . . . . . . . . . . . . . . . . . . 105

4.3 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Full sample Estimation . . . . . . . . . . . . . . . . . . . . . . 113

4.3.2 Hedge ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



4.3.3 Hedging effectiveness . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendices 128

4.A Proof to Proposition 4.2.1: . . . . . . . . . . . . . . . . . . . . . . . . 128

4.B Proof to Proposition 4.2.5: . . . . . . . . . . . . . . . . . . . . . . . . 130

4.C Constructing proposal distribution for θRSu , θRFa , θσ, θτ . . . . . . . . . 131

Bibliography 136

5 Bayesian Approach to Forecast Rationality Tests of A.J. Patton and

A. Timmermann 139

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Evaluating Hypothesis of Inequality Constraints . . . . . . . . . . . . 145

5.3 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.1 Theoretical moments . . . . . . . . . . . . . . . . . . . . . . . 151

5.3.2 Results from Monte Carlo Simulation . . . . . . . . . . . . . . 155

5.4 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 167

ix



List of Tables

2.1 Mean and RMSE based on 100 estimates of the MLE. . . . . . . . . . 22

2.2 Mean and RMSE based on 50 estimates of the MLE. . . . . . . . . . 24

2.3 Descriptive statistics for S&P 500 daily returns. . . . . . . . . . . . . 25

2.4 Estimation results of Klaassen [2002] model . . . . . . . . . . . . . . 26

3.1 Inefficiency (IF) and relative inefficiency (RI) factors. . . . . . . . . . 66

3.2 Estimated posterior mean and standard deviation of MS-GARCH pa-

rameters using various state proposal distributions and multi-move al-

gorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Estimated mean and standard deviation of the posterior mean of MS-

GARCH parameters based on 50 replications of the experiment de-

scribed in Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Estimated burn-in period. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Descriptive statistics for S&P 500 daily returns. . . . . . . . . . . . . 72

3.6 Posterior means and standard deviations (S&P500 daily returns). . . 73

4.1 Parameter estimate of the MSGRACH model and standard deviation

in parenthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Transition matrix for MC-f-MSGARCH model. . . . . . . . . . . . . 114

4.3 Transition matrix for MC-c-MSGARCH model. . . . . . . . . . . . . 115

4.4 Transition matrix for SC-MSGARCH model. . . . . . . . . . . . . . . 115

x



4.5 Conditional probabilities for the MC-f-MSGARCH model. . . . . . . 115

4.6 Hedging Effectiveness of MS-GARCH against Constant Hedge ratio. 125

5.1 Constraints Probability p̂1|2 in the presence of measurement error . . . . . . . . 161

5.2 Constraints Probability p̂1|2 in the presence of suboptimal forecast. . . 162

5.3 Constraints Probability p̂1|2 in the presence of measurement error . . . . . . . . 166

xi



List of Figures

2.1 Graphs for S&P 500 daily returns from 20/05/1999 to 25/04/2011. . 25

2.2 MS-GARCH smoothed probabilities for being regime 2. . . . . . . . . 27

3.1 Simulated data for MS-GARCH model with parameter setting

(µ1, µ2) = (0.06,−0.09), (γ1, γ2) = (0.30, 2.00), (α1, α2) = (0.35, 0.10),

(β1, β2) = (0.20, 0.60), and π11 = 0.98, π22 = 0.96. . . . . . . . . . . . 61

3.2 Average autocorrelation of the volatility for each sampler (different

plots) and approximation methods (different graph in each plot).

Note: B. approx, G. approx, D. approx, S. K. approx and K. approx

respectively represent Basic model approximation (subsection 3.3.2),

Gray’s approximation (subsection 3.3.2), Dueker’s approximation

(subsection 3.3.2), simplified Klaassen’s approximation (subsection

3.3.2) and Klaassen’s approximation (subsection 3.3.2) . . . . . . . . 62

3.3 Average autocorrelation of the volatility for each approximation

method (different plots) and samplers (different line in each plot). . . 64

3.4 Graphs for S&P 500 daily returns from 20/05/1999 to 25/04/2011. . 72

3.5 Posterior densities of the MS-GARCH parameters using multiple-trial

Metropolized independent sampler (MTMIS) combined with the sim-

plified Klaassen’s approximation on S&P 500 daily returns. . . . . . . 75

xii



3.6 Conditional volatility estimated with the MS-GARCH model using

multiple-trial Metropolized independent sampler (MTMIS) combined

with the simplified Klaassen’s approximation on S&P 500 daily returns. 75

3.7 Posterior densities for the MS-GARCH model using the single-move

algorithm and Multiple-Try Metropolis Sampler (MTM) algorithm.

Note: – single-move, – B. approx,– G. approx, – K. approx, – S. K.

approx, – K. approx . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.8 Posterior densities for the MS-GARCH model using the single-move

and Multiple-trial Metropolized independent sampler (MTMIS) algo-

rithms. Note: – single-move, – B. approx,– G. approx, – K. approx, –

S. K. approx, – K. approx . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Posterior densities for the MS-GARCH model using the single-move

and Multiple correlated-try Metropolis sampler (MTCM) algorithms.

Note: – single-move, – B. approx,– G. approx, – K. approx, – S. K.

approx, – K. approx . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Graphs for daily squared returns on WTI crude oil spot and futures

from September 14/09/2001 to 31/07/2013 . . . . . . . . . . . . . . . 112

4.2 Regime specific hedge ratio and corresponding weights for the un-

constrained multichain MS-GARCH model (MC-f-MSGARCH). first

row 08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009;

third row and 15/02/2013 to 31/07/2013. . . . . . . . . . . . . . . . . 119

4.3 Regime specific conditional variance and corresponding predicted

probabilities for the unconstrained multichain MS-GARCH model

(MC-f-MSGARCH). first row 08/08/2006 to 03/01/2007; second row

01/10/2008 to 25/03/2009; third row and 15/02/2013 to 31/07/2013. 120

xiii



4.4 Regime specific hedge ratio and corresponding weights for the single

chain MS-GARCH model (SC-MSGARCH). first row 08/08/2006 to

03/01/2007; second row 01/10/2008 to 25/03/2009; third row and

15/02/2013 to 31/07/2013. . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Regime specific conditional variance and the corresponding prediction

probabilities for the single chain MS-GARCH model (SC-MSGARCH).

first row 08/08/2006 to 03/01/2007; second row 01/10/2008 to

25/03/2009; third row and 15/02/2013 to 31/07/2013. . . . . . . . . 122

4.6 Regime specific hedge ratio and corresponding prediction proba-

bilities for the constrained multichain MS-GARCH model (MC-

c-MSGARCH). first row 08/08/2006 to 03/01/2007; second row

01/10/2008 to 25/03/2009; third row and 15/02/2013 to 31/07/2013. 123

4.7 Comparison of average hedge ratio for MC-f-MSGARCH, MC-c-

MSGARCH and SC-MSGARCH. first row 08/08/2006 to 03/01/2007;

second row 01/10/2008 to 25/03/2009; third row and 15/02/2013 to

31/07/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 Mean squared forecast with increasing noise . . . . . . . . . . . . . . 152

5.2 Covariance between forecast revision and actual with increasing noise 154

5.3 Forecast of the S&P 500 index and returns from June 1993 to June 2013.165

xiv



Chapter 1

Introduction

The first part of this research work addresses the estimation of Markov-switching

generalized autoregressive conditional heteroscedasticity (MS-GARCH) models and

their applications to risk management, while the second part focuses on forecast

rationality tests.

Volatility modeling has remained an active area of research in finance because of

the important role it plays in a variety of financial problems. For example, portfo-

lio theory, asset pricing, and hedging all involve volatilities. Since the introduction

of the generalized autoregressive conditional heteroscedasticity (GARCH) model by

Bollerslev [1986], a remarkable number of research papers providing extensions and

application of this modeling strategy to financial time series data have emerged in

the literature. These extensions recognize that there may be important nonlinearity,

asymmetry, and long memory properties in the volatility process. However, empir-

ical studies have shown that shocks to the volatility process described by a single

regime GARCH model exhibit high persistence when measured using estimates from

daily data. Based on this empirical observation, early studies have accounted for this

problem by considering integrated GARCH process (see Engle and Bollerslev [1986]

and Baillie and Mikkelsen [1996] for illustration). In recent years, argument in favour
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of model mis-specification has been advanced in the literature to be responsible for

the high persistence problem. See Lamoureux and Lastrapes [1990] and Mikosch and

Starica [2004]. Following this finding, there has been a shift of interest to regime

switching GARCH models.

A Markov Switching GARCH (MS-GARCH) model is a nonlinear specification

of the evolution of a time series assessed to be affected by different states of the

world and for which the conditional variance in each state follow a GARCH process.

Inherent in the MS-GARCH framework is the well known path dependence problem

which renders its estimation via maximum likelihood procedure a daunting task. To

tackle this estimation problem via maximum likelihood procedure, procedures based

on model approximation have been suggested in the literature. See Gray [1996],

Dueker [1997], and Klaassen [2002] for illustration. Apart from the models suggested

in the literature, new auxiliary MS-GARCH models may still be proposed and this

represents a possible area of research.

Although the various approximations to the estimation problem of the regime

switching GARCH models has proven to be a success, their analytical intractability

is a major drawback i.e. they cannot be verified by any of the well known analytical

approximation methods available. On this premise and thanks to the advent of com-

puters with high computing capabilities, new and extant statistical and mathemati-

cal methods such as simulated maximum likelihood (Augustyniak [2013]), Bayesian

methods (Bauwens et al. [2010]), particle filter (Bauwens et al. [2011]) and neural net-

works (Bildirici and Ersin [2012]), have been been proposed and applied as alternative

estimation technique for MS-GARCH models. However, most of these methods as

applied in estimating the MS-GARCH model are known to be either computationally

intensive or costly to code because of their complexity. This situation therefore sug-

gests that for practical purposes more research work is required in this area in order

to provide efficient estimators that can compete favourably with existing methods.

2



In the hedging literature, MS-GARCH models are often used for characterizing

the dynamics of both the spot and derivative returns. See Haigh and Holt [2002]

and Lee and Yoder [2007]. Most applications of MS-GARCH models are based on

the assumption that both the spot and derivative are driven by the same hidden

state process. Arguably, this assumption may not hold true since there exists the

possibility that spot and futures returns might follow different switching dynamics

governed by different state variables. See Sheu and Lee [2012] and references there in

for further discussion on this issue. In line with this argument, Sheu and Lee [2012]

propose the use of multichain Markov regime switching GARCH (MCSG) models.

More specifically, the authors assume that the state dependent variances of spot and

futures returns are driven by independent state variables while the correlation be-

tween the two variables depends on both state variables. To circumvent the path

dependence problem and facilitate the estimation via maximum likelihood procedure,

the authors apply the recombining method of Gray [1996]. From a modeling point

of view, the use of the multivariate GARCH framework as applied in most hedging

literature requires a definite specification of the dynamics of the covariance matrix.

Some of these specifications include the Matrix-Diagonal (MD) GARCH, the BEKK-

GARCH and the Constant Conditional Correlation (CCC) GARCH. The use of these

specifications may have different implication on the hedge ratio. An alternative mod-

eling framework which avoids a direct specification of the dynamics of the covariance

matrix is to consider a simultaneous modeling of the return dynamics on the hedged

portfolio and the futures. The reduced form representation of the simultaneous sys-

tem corresponds to a MS-GARCH model with covariance matrix different from the

ones considered in the literature. The impact of combining the multichain framework

with the simultaneous equation on the optimal hedge ratio will surely provide an

interesting study.
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Digressing a little from volatility modeling and estimation, the second part of this

research work is concerned with forecasting. Forecasts are used by policymakers and

other practitioners for making informed decisions in their businesses. For example,

Government’s decision on taxes, revenues, money and credit supply, foreign trade

and balances, employment among others rests upon actual or implied forecasts of

economic conditions. In finance, on the other hand, forecast plays an important

role in such studies as portfolio theory, asset pricing and corporate finance among

others. Research work in forecasting may be grouped into two major areas: (i)

forecast construction and (ii) forecasts evaluation. Although case (i) is a relevant

area of research interest (Elliot and Timmermann [2004], Geweke and Whiteman

[2006], Hashem Pesaran et al. [2013]), we are here concerned only with case (ii).

Forecasts on a single economic or financial variable are usually published by several

independent forecasters and, generally, the underlying forecasting processes used for

generating these forecasts are not made known. Hence, judging whether these avail-

able forecasts are good or not is vital in the decision making process of end users.

Typical forecast rationality testing procedures are constructed for forecast with one

horizon (Zellner [1986], Patton and Timmermann [2007], Aretz et al. [2011]). How-

ever, forecast on economic and financial variables are usually reported on a multi-

horizon basis. The availability of such forecasts provides an opportunity to develop

tests of optimality that exploit the information in the complete “term structure” of

forecasts recorded across all horizons. Rather than focusing separately on individual

horizon, to exploit the information across several horizons by the use of multi-horizon

forecast tests offers the potential of drawing more powerful conclusions about the

ability of forecasters to produce optimal forecasts. Patton and Timmermann [2012]

and Capistran [2007] propose several test procedures following this argument. While

the Patton and Timmermann [2012] rationality test has brought a new dimension to

the evaluation of forecasts, the procedure relies heavily on asymptotic distributions

4



under the null hypothesis and consequently to be able to produce more reliable re-

sults for moderate and small sample data needs adequate investigation. The Bayesian

framework represents an alternative tool that for addressing this issue.

1.1 Purpose and Objectives

The aim of this research is to contribute to the statistical analysis of financial market

data. The objectives are to develop:

1. new auxiliary MS-GARCH models;

2. new efficient methods for estimating MS-GARCH models;

3. new model for hedging and new provide efficient estimation procedure;

4. new Bayesian inference procedure for testing the monotonicity properties of

second moment bounds across several horizons presented in Patton and Tim-

mermann [2012].

1.2 Organization of Thesis

This thesis is organized into two parts composed of four manuscripts. Part 1 begins

with Manuscript 1, A Unified class of Markov switching GARCH models based on

Collapsing procedure, which is presented in Chapter 2. This manuscript reviews the

literature on MS-GARCH models and develops a family of MS-GARCH processes

that not only encompasses some of the specifications introduced in the literature but

also identifies new ones. This class of models shares a common feature of eliminating

the path dependence problem by “collapsing” the history of the regimes in some

way i.e. the conditional variance of being in the current regime is dependent on the

expectation of the previous conditional variances rather than their values. Based on

5



the concern related to the unverifiable nature of these approximations, Manuscript 2,

Efficient Gibbs Sampling for Markov Switching GARCH Models , presented in Chap-

ter 3, provides an alternative estimation strategy for the MS-GARCH model. In

this manuscript, new efficient Monte Carlo simulation techniques based on multiple

proposal Metropolis are proposed. The application to approximated inference for

regime-switching GARCH models is there discussed. Manuscript 3, Markov Switch-

ing GARCH models for Bayesian Hedging on Energy Futures Markets , presented in

Chapter 4, extends the application of the methodology developed in Chapter 3 to a

multichain multivariate GARCH framework. The application to futures hedging is

then undertaken.

The second part of this thesis corresponding to Chapter 5 focuses on forecast

rationality tests. This chapter which contains Manuscript 4, Bayesian Approach to

Forecast Rationality Tests of A.J. Patton and A. Timmermann, a joint work with

Lennart Hoogerheide, and Herman K. van Dijk, proposes a new Bayesian inference to

forecast rationality tests. These rationality tests are based on the monotonicity prop-

erties of second moment bounds across several horizons as identified in Patton and

Timmermann [2012]. This approach avoids the use of computationally expensive test

statistics and asymptotic distributions under the null hypothesis and consequently

produces more reliable results for moderate and small sample data. We are also able

to account for parameter uncertainty using our proposed Bayesian inference tech-

nique.
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Chapter 2

A Unified class of Markov switching

GARCH models based on Collapsing

procedure

Abstract : We present a unified mathematical framework for MS-GARCH models which

enables us (1) to easily identify the functional form of various MS-GARCH models based

on regime collapsing procedure as available in the literature, and (2) to propose new

variants of the MS-GARCH models. Using this framework, two new models tagged Basic

model and Simplified Klaassen model are proposed as alternative specifications of the

MS-GARCH model. Maximum Likelihood Estimation (MLE) procedure is then used to

estimate the parameters of the different models belonging to this family and a comparison

of their performances is conducted on both simulated and empirical data.

Keywords : GARCH, Markov switching, Volatility, MLE
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2.1 Introduction

In the last two decades, a lot of research has been devoted, both theoretically and

empirically, to modelling volatility of financial markets. This is because volatility

plays an important role in understanding and addressing financial problems such as

asset pricing and and financial risk management.

Bollerslev [1986] Generalized Autoregressive Conditional Heteroskedastic

(GARCH) model ranks as the most popular class of volatility models among

researchers and practitioners (e.g., see Ardia [2008]) as it is able to capture some of

the well known stylized facts (e.g., heavy tails, volatility clustering, no correlation in

returns but correlation in the squares e.t.c.) of financial data. A simple GARCH(1,1)

model has the following representation:

yt = µ+ σtηt ηt
iid∼ (0, 1)

σ2
t = γ + αε2t−1 + βσ2

t−1

εt = yt − µ = σtηt

where yt represents returns on some financial asset, µ represents the parameters of

the conditional mean of the returns series, γ > 0, α ≥ 0, β ≥ 0, are the GARCH

parameters. To ensure covariance stationarity of the process it is required that α +

β << 1.

Several extensions and refinements of the GARCH model have been proposed to

account for additional stylized facts observed in financial markets. These extensions

recognize that there may be important nonlinearity, asymmetry, and long memory

properties in the volatility process. A review of these models can be found Bollerslev

et al. [1992], Bollerslev and Engle [1994], Engle [2004]. Prominent ones among these

models are the Exponential GARCH model by Nelson [1991] and the GJR model by
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Glosten et al. [1993], both account for the asymmetric relation between stock returns

and changes in variance (see Black [1976]).

As appealing as this class of models is, the shocks to the volatility process are

known to exhibit high persistence when measured using estimates from daily data.

For example in Equation 2.1, the measure of volatility persistence α + β, when es-

timated from daily data is approximately 1. This is not a desirable property as it

violates the covariance stationarity assumption. Based on this observation, Engle

and Bollerslev [1986] propose integrated GARCH process which take α+ β = 1, and

prevents the shocks on the volatility from dying out over time. However, Lamoureux

and Lastrapes [1990], among others, argue that the presence of structural changes

in the variance process, for which the standard GARCH process cannot account for,

may be responsible for this phenomenon. To buttress this point, Mikosch and Star-

ica [2004] estimate a GARCH model on a sample that exhibits structural changes

in its conditional variance and obtained a nearly integrated GARCH effect from the

estimate. Based on this finding, it is instructional for practical purposes to assume a

regime-switching volatility models when handling financial problem involving volatil-

ity.

The class of MS-GARCH models is gradually becoming a work house among

economics and financial practitioners for analysing financial markets data (e.g., see

Marcucci [2005]). For practical implementation of this class of theoretical models,

it is crucial to have reliable parameter estimators. Maximum Likelihood (ML) ap-

proach is a natural route to parameter estimation in Econometrics. However, the ML

technique is not computationally feasible for MS-GARCH models because of the path

dependence problem (see Gray [1996]). To facilitate estimation via ML, Cai [1994]

and Hamilton and Susmel [1994] considered a MS-ARCH model. This approach effec-

tively makes the model tractable because the lagged conditional variance that makes

the conditional variance dependent on the history of regime has been dropped. An-
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other approach propose in the literature is to modify MS-GARCH model such that the

path dependent problem can be eliminated. For example, Gray [1996] noted that the

conditional density of the return is essentially a mixture of distributions with time-

varying mixing parameter and in particular under normality assumption he suggested

the use of aggregate conditional variances over all regimes as the lagged conditional

variance when constructing the conditional variance at each time step. Extensions

of Gray [1996] model can be found in Dueker [1997] and Klaassen [2002] among oth-

ers. Abramson and Cohen [2007] provide stationarity conditions for some of these

approximations. The collapsing procedure has been shown to be easy to implement

and effective. Other estimation methods such as simulated maximum likelihood pro-

cedure (Elliott et al. [2012], Augustyniak [2013]), Generalized method of moments

(GMM) procedure (Francq et al. [2001]), neural networks (Bildirici and Ersin [2012])

and Bayesian Markov chain Monte Carlo (MCMC) algorithm (He and Maheu [2010],

Bauwens et al. [2010], Bauwens et al. [2011], Dufays [2012]) have been proposed in

the literature.

The purpose of this chapter is to develop a framework for a family of MS-GARCH

processes encompassing some of the existing models in the literature, such as Gray

[1996], Dueker [1997] and Klaassen [2002], and also allowing for the identification new

variants of the MS-GARCH model. This class of models is developed by replacing

the lagged conditional variance in the variance process with an average. Furthermore,

the information set upon which the expectation is taken differentiates the models be-

longing to this class. This class of models are known to be less computationally

expensive and effective. Liu [2012] on the other hand develop a different class of the

MS-GARCH processes by exploiting the common feature shared by Markov-switching

and GARCH processes and applying a similar approach taken by He and Teräsvirta

[1999]. The nesting of the models in this class relies on a Box and Cox [1964] trans-
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formation with shape parameter (d > 0) to the conditional variance process and on

a response function driven by Markov chain to shocks.

This chapter is organized as follows. Section 2.2 defines the MS-GARCH model.

Section 2.3 introduces the new class of MS-GARCH models. In section 2.4, a sim-

ulation exercise is carried out to demonstrate the effectiveness of the models in this

class. In section 2.5, the Klaassen’s model is fitted to daily log-returns on the S&P

500 index. Section 2.6 concludes the paper.

2.2 Markov switching GARCH models

A Markov Switching GARCH model is a nonlinear specification of the evolution of a

time series assessed to be affected by different states of the world and for which the

conditional variance in each state follows a GARCH process. More specifically, let yt

be the observed variable (e.g. the return on some financial asset) and st a discrete,

unobserved, state variable which could be interpreted as the state of the world at time

t. Define (yt, . . . , yu) and (st, . . . , su) as yt:u and st:u respectively whenever t ≤ u. Then

yt = µt(y1:t−1, θµ(st)) + σt(y1:t−1, θσ(st))ηt, ηt
iid∼ N(0, 1), (2.1)

σ2
t (y1:t−1, θσ(st)) = γ(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1(y1:t−2, θσ(st−1)), (2.2)

where, N(0, 1) denotes the standard normal distribution, θµ represents the parame-

ters of the conditional mean of the returns series, εt = σt(y1:t−1, θσ(st))ηt, θσ(st) =

(γ(st), α(st), β(st)), γ(st) > 0, α(st) ≥ 0, β(st) ≥ 0, and st ∈ {1, . . . ,M}, t =

1, . . . , T , is assumed to follow a M -state first order Markov chain with transition

probabilities {πij}i,j=1,2,...,M :

πij = p(st = i|st−1 = j, θπ),
M∑
i=1

πij = 1 ∀ j = 1, 2, . . . ,M,
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where θπ represents the parameters of the transition matrix. The parameter shift

functions γ(st), α(st) and β(st), describe the dependence of parameters on the regime

st i.e.

γ(st) =
M∑
m=1

γmIst=m, α(st) =
M∑
m=1

αmIst=m, and β(st) =
M∑
m=1

βmIst=m,

where,

Ist=m =


1, if st = m,

0, otherwise.

By defining the allocation variable, st, as a M -dimensional discrete vector, ξt =

(ξ1t, . . . , ξMt)
′, where ξmt = Ist=m, m = 1, . . . ,M, the system of equations in (2.1)-

(2.2) can be written compactly as

yt = µt(y1:t−1, ξ
′
tθµ) + σt(y1:t−1, ξ

′
tθσ)ηt, ηt

iid∼ N(0, 1), (2.3)

σ2
t (y1:t−1, ξ

′
tθσ) = (ξ′tγ) + (ξ′tα)ε2t−1 + (ξ′tβ)σ2

t−1(y1:t−2, ξ
′
t−1θσ), (2.4)

where εt = σt(y1:t−1, ξ
′
tθσ)ηt, γ = (γ1, . . . , γM)′, α = (α1, . . . , αM)′, β = (β1, . . . , βM)′,

θµ = (θ1µ, . . . , θMµ)′ and θσ = (θ1σ, . . . , θMσ)′ with θmσ = (γm, αm, βm)′ for m =

1, . . . ,M . for t = 1, . . . , T . Let π = (π1, . . . , πM), with πi = (πi1, . . . , πiM) for

i = 1, 2, . . . ,M and
∑M

i=1 πij = 1 for all j = 1, 2, . . . ,M . Since ξt follows a M−state

first order Markov chain, we define the transition probabilities {πij}i,j=1,2,...,M by

πij = p(ξt = ei|ξt−1 = ej, θπ),
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where ei is the i−th column of a M-by-M identity matrix. The conditional probability

of ξt given ξt−1, θπ and y1:t−1 is given by

p(ξt|ξt−1, θπ) =
M∏
m=1

(πmξt−1)ξmt , (2.5)

which implies that the probability with which event m occurs at time t is πmξt−1.

2.2.1 Path dependence issue

Estimating Markov switching GARCH models is a challenging problem since the

likelihood of yt depends on the entire sequence of past states up to time t due to the

recursive structure of its volatility. To elaborate on this, the likelihood function of

the switching GARCH model is given by

L(θ|y1:T ) ≡ f(y1:T |θ) =
M∑
i1=1

· · ·
M∑
iT=1

f(y1:T , ξ1 = ei1 , . . . , ξT = eiT |θ) (2.6)

where θ = ({θmµ, θmσ}m=1,...,M , θπ). Setting ξs:t = (ξ′s, . . . , ξ
′
t) whenever s ≤ t, the

joint density function of y1:t and ξ1:t on the right hand side of equation (2.6) is

f(y1:T , ξ1:T |θ) = f(y1|ξ1:1, θµ, θσ)
T∏
t=2

f(yt|y1:t−1, ξ1:t, θµ, θσ)p(ξt|ξ1:t−1, θπ)

= f(y1|ξ1:1, θµ, θσ)
T∏
t=2

f(yt|y1:t−1, ξ1:t, θµ, θσ)

(
M∏
i=1

(πiξt−1)ξit

)
,

(2.7)

with,

f(yt|y1:t−1, ξ1:t, θµ, θσ) ∝ 1

σt(y1:t−1, ξ′tθσ)
exp

(
−1

2

(
yt − µt(y1:t−1, ξ

′
tθµ)

σt(y1:t−1, ξ′tθσ)

)2
)
.
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Given σ1, recursive substitution in equation (2.4) yields

σ2
t =

t−2∑
i=0

[
ξ′t−iγ + (ξ′t−iα)ε2t−1−i

] i−1∏
j=0

ξ′t−jβ + σ2
1

t−2∏
i=0

ξ′t−iβ. (2.8)

Equation (2.8) clearly shows the dependence of conditional variance at time t on the

entire history of the regimes and thus the dependence of the likelihood function on the

entire history of the regimes. The evaluation of the likelihood function over a sample

of length T , as can be seen in equation (2.6), involves integration (summation) over

all MT unobserved states i.e. integration over all MT possible (unobserved) regime

paths. This requirement makes the maximum likelihood estimation of θ infeasible in

practice.

In order to tackle this estimation problem via maximum likelihood procedure,

procedures based on model approximation have been suggested in the literature.

This approach has been shown (see Gray [1996], Dueker [1997], Klaassen [2002] for

illustration) to be very convenient, easy to implement and effective. In the next

section we develop a family of MS-GARCH models based on model approximation.

2.3 A family of MS-GARCH models

A possible way of circumventing the path dependence problem inherent in the MS-

GARCHmodel is to replace the lagged conditional variance appearing in the definition

of the GARCH model with a proxy. In general, we consider the following class of MS-

GARCH(1,1) model

yt = µt(y1:t−1, ξ
′
tθµ) + σt(y1:t−1, ξ

′
tθσ)ηt, ηt

iid∼ N(0, 1), (2.9)

σ2
t = (ξ′tγ) + (ξ′t1α)ε2(X)t−1 + (ξ′t2β)σ2

(X)t−1, (2.10)
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where t1, t2 ≤ t,

ε(X)t−1 = yt−1 − E[µt−1(y1:t−2, ξ
′

t−1θµ)|It−1]

σ2
(X)t−1 = E[σ2

t−1|It−1] + V (µt−1(y1:t−2, ξ
′

t−1θµ)|It−1),

and It−1 is a information set at time t − 1. The parameters and transition proba-

bilities remains as defined in (2.2). Alternative specification of ε(X)t−1 and σ2
(X)t−1

amounts to different MS-GARCH models. The variable X is a label that takes up

various values such as B,G,D,K,KL, representing different approximations. This

new family includes:

1. Gray’s approximation (model G): Gray [1996] model is obtained by setting

t1 = t2 = t and It−1 = {y1:t−2} i.e.

σ2
t = (ξ′tγ) + (ξ′tα)ε2(G)t−1 + (ξ′tβ)σ2

(G)t−1,

with

ε(G)t−1 = yt−1 − µ(G)t−1

µ(G)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−2]

σ2
(G)t−1 = V (µt−1(y1:t−2, ξ

′
t−1θµ)|y1:t−2) + E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−2]

2. Dueker’s approximation (model D): Dueker [1997] model may be obtained by

setting t1 = t2 = t− 1 and It−1 = {y1:t−1} i.e.

σ2
t = (ξ′tγ) + (ξ′t−1α)ε2(D)t−1 + (ξ′t−1β)σ2

(D)t−1(ξ
′

t−1),
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with
ε(D)t−1 = yt−1 − µ(D)t−1

µ(D)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−1]

σ2
(D)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−2θσ)|y1:t−1].

3. Klaassen’s approximation (model K): Klaassen [2002] MS-GARCH(1,1) model

is obtained by setting t1 = t2 = t and It−1 = {y1:t−1, ξt} i.e.

σ2
t = (ξ′tγ) + (ξ′tα)ε2(K)t−1 + (ξ′tβ)σ2

(K)t−1(ξ
′

t),

with
ε(K)t−1 = yt−1 − µi,(K)t−1

µi,(K)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−1, ξt = ei]

σ2
i,(K)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1, ξ

′
t−2)|y1:t−1, ξt = ei].

In addition, the system of Equation (2.9)-(2.10) also give many new MS-GARCH

models. For example, we identify the following new MS-GARCH models and tag

them Basic and Simplified Klaassen approximation.

1. Basic approximation (model B): this is obtained by setting t1 = t2 = t and

It−1 = {y1:t−2} i.e.

σ2
t = (ξ′tγ) + (ξ′tα)ε2(B)t−1 + (ξ′tβ)σ2

(B)t−1,
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with

ε(B)t−1 = yt−1 − µ(B)t−1

µ(B)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−2] = E[yt−1|y1:t−2]

=
M∑
m=1

µt−1(y1:t−2, e
′
mθµ)q(ξt−1 = em|y1:t−2),

σ2
(B)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−2] = E[ε2t−1|y1:t−2] = V (εt−1|y1:t−2)

=
M∑
m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξt−1 = em|y1:t−2).

If µt = 0 ∀ t, then this approximation is equivalent to Gray’s approximation.

Observe that in this approximation scheme µ(B)t−1 and σ2
(B)t−1 are functions

of y1:t−2 and the information coming from yt−1 is lost. In line with Gray’s

approach, σ2
(B)t−1 is equal to the variance of the conditional density of εt. For

practical implementation of this approximation, given q(ξt−1 = em|y1:t−2) for

m = 1, . . . ,M , µ(B)t−1 can easily be computed while σ2
(B)t−1 can be computed

recursively since σ2
t−1(y1:t−2, e

′
mθσ) depends on σ2

(B)t−2. This auxiliary model uses

the least information, y1:t−2, among the auxiliary models under consideration.

Hence, we tag it basic model approximation.

2. Simplified Klaassen approximation (model SK) is obtained by letting t1 = t2 = t

and It−1 = {y1:t−1} i.e.

σ2
t = (ξ′tγ) + (ξ′tα)ε2(SK)t−1 + (ξ′tβ)σ2

(SK)t−1,
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with

ε(SK)t−1 = yt−1 − µ(SK)t−1

µ(SK)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−1] =

M∑
m=1

µt−1(y1:t−2, e
′
mθµ)q(ξt−1 = em|y1:t−1)

σ2
(SK)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−1] =

M∑
m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξt−1 = em|y1:t−1).

This approximation is similar to Dueker’s approximation (Model D). As opposed

to Dueker’s approximation, we assume that σ2
t−1 is functions of (y1:t−2, ξt−1). On

the other hand, Klaassen’s approximation reduces to the Simplified Klaassen

approximation model by eliminating ξ′t from the conditioning set.

2.4 Monte Carlo experiments on simulated data sets

We generate 100 independent time series of length T = 500, 1500, 5000 from the data

generating process (DGP) corresponding to the model defined by equations (2.3) and

(2.4) for two regimes (M = 2), time invariant transition probabilities and switching

conditional mean and variance. In the simulation exercise, we set µt(y1:t−1, θµ(st)) =

(µ1, µ2) = (0.06,−0.09), (γ1, γ2) = (0.30, 2.00), (α1, α2) = (0.35, 0.10), (β1, β2) =

(0.20, 0.60), and π11 = 0.98, π22 = 0.96. This parameter setting corresponds to the

one in Bauwens et al. [2010] for a similar Monte Carlo exercise. A relatively higher

and more persistent conditional variance as compared to the first regime GARCH

equation is implied by the second regime GARCH equation. Also, the probability of

staying in each regime is close to one. For each of the simulated trajectories of the

MS-GARCH model, the MLE estimates of the models in section 2.3 are obtained.

Table 2.1 displays the summary statistics for 100 estimates of the MLE obtained for

each of the auxiliary models.
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In Table 2.1, we can observe that the estimates of γ2 and β2 across all models

display significant biases. However, the biases decreases with increase in the sample

size. This confirms the deduction by Augustyniak [2013] on a similar exercise that the

MLE of GARCH models can be biased in small sample sizes. Furthermore, Table 2.1

shows that the Klaassens model is the most effective model among the set of models

under consideration for generating consistent estimates for the path dependent MS-

GARCH model. We further examine the performance of each these approximation by

computing the percentage of correctly classified regime. An observation is assigned

to regime 2 if its corresponding smoothed probability of being in that state is higher

than the smoothed probability of staying in regime 1. We find that, on average, the

auxiliary models correctly classified 91% of the observation for sample size T = 500

and 94% for sample size T = 5000. We also observe that there is no significant

different in the number of correctly classified observation across the different auxilliary

models. This observation may be argued to be a result of the low level of persistence

in the GARCH models for each regime considered in this simulation exercise. To rule

this out, we studied the results of parameterizations where one of regimes is highly

persistent i.e. α+β is between 0.9 and 1. In line with this, 50 independent trajecttories

of the MS-GARCH model with length T = 5000 was generated using the parameter

set indicated in the third column of Table 2.2. A summary statistics for 50 estimates

of the MLE obtained for each of the auxiliary models is reported in Table 2.2. Similar

to our result in the low persistence case (Table 2.1), we observe, from Table 2.2, that

Klaassen’s model provides consistent estimates for a path dependent MS-GARCH

model. We also observe that the percentage of correctly classified regimes by the

auxiliary models are not significantly different from each other. i.e. the number vary

between 94% and 96%.

23



Ta
bl
e
2.
2:

M
ea
n
an

d
R
M
SE

ba
se
d
on

50
es
ti
m
at
es

of
th
e
M
LE

.

T
D
G
P

M
ea
n

R
M
SE

V
al
ue
s

B
as
ic

G
ra
y

D
ue

ke
r
Si
m
pl
ifi
ed

K
K
la
as
se
n

B
as
ic

G
ra
y

D
ue

ke
r
Si
m
pl
ifi
ed

K
K
la
as
se
n

50
00

π
1
1

0.
99

0.
98

92
0.
98

92
0.
98

94
0.
98

94
0.
98

91
0.
00

25
0.
00

25
0.
00

25
0.
00

25
0.
00

28
π

2
2

0.
99

0.
99

09
0.
99

09
0.
99

13
0.
99

13
0.
98

93
0.
00

29
0.
00

29
0.
00

30
0.
00

30
0.
00

28
µ

1
0.
06

0.
06

24
0.
06

25
0.
06

24
0.
06

24
0.
05

72
0.
01

93
0.
01

93
0.
01

92
0.
01

92
0.
03

46
µ

2
−

0
.0

9
−

0
.0

88
1
−

0
.0

88
7
−

0
.0

85
6
−

0.
08

56
−

0
.0

90
0

0.
05

96
0.
05

98
0.
05

82
0.
05

82
0.
06

98
γ

1
0.
40

0.
63

67
0.
63

67
0.
62

42
0.
62

25
0.
42

50
0.
24

44
0.
24

44
0.
23

15
0.
23

01
0.
07

82
γ

2
0.
60

2.
45

43
2.
44

87
2.
28

49
2.
26

74
0.
67

49
1.
94

12
1.
93

58
1.
77

73
1.
76

18
0.
15

31
α

1
0.
20

0.
21

58
0.
21

58
0.
20

71
0.
20

59
0.
20

10
0.
03

60
0.
03

60
0.
03

37
0.
03

34
0.
03

79
α

2
0.
05

0.
06

95
0.
06

95
0.
05

67
0.
05

44
0.
05

39
0.
02

59
0.
02

59
0.
01

78
0.
01

70
0.
02

88
β

1
0.
40

0.
10

91
0.
10

89
0.
13

03
0.
13

13
0.
38

51
0.
29

49
0.
29

51
0.
27

44
0.
27

35
0.
10

43
β

2
0.
90

0.
73

50
0.
73

54
0.
75

55
0.
76

26
0.
88

53
0.
17

70
0.
17

65
0.
15

75
0.
15

11
0.
05

55

N
ot
es
:
T
he

es
ti
m
at
ed

m
od

el
s
be

lo
ng

to
th
e
cl
as
s
of

M
S-
G
A
R
C
H

m
od

el
s
de
sc
ri
be

d
by

eq
ua

ti
on

s
2.
9
-
2.
10
(1
).

R
es
ul
ts

ar
e
ba

se
d
on

50
re
pl
ic
at
io
ns
,

ea
ch

co
ns
is
ti
ng

of
15
00

ob
se
rv
at
io
ns

fr
om

th
e
D
G
P

de
fin

ed
by

eq
ua

ti
on

s
2.
3
an

d
2.
4.

T
he

pa
ra
m
et
er
µ
i
de
no

te
s
th
e
co
nd

it
io
na

lm
ea
n,
γ
i
de
no

te
s
th
e

lo
ng

ru
n
co
nd

it
io
na

lv
ar
ia
nc
e
in

re
gi
m
e
i,
α
i
an

d
β
i
ar
e
th
e
re
gi
m
e
sp
ec
ifi
c
A
R
C
H

an
d
G
A
R
C
H

pa
ra
m
et
er
s,

re
sp
ec
ti
ve
ly
,a

nd
th
e
π
ii
ar
e
th
e

re
gi
m
e-
st
ay
in
g
pr
ob

ab
ili
ti
es
.

24



0 500 1000 1500 2000 2500 3000
−10

−5

0

5

10

15

(a) Time series

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Density approximation

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

 

(c) sample autocorrelation
of squared returns

Figure 2.1: Graphs for S&P 500 daily returns from 20/05/1999 to 25/04/2011.

2.5 Empirical application: the S&P500 daily returns

In this section, Klaassen [2002] MS-GARCH model is fitted to S&P500 daily percent-

age returns from 20/05/1999 to 25/04/20111 (3000 observations). This daily data

set has already been analyzed by several authors e.g. Bauwens et al. [2011], Dufays

[2012] and Augustyniak [2013]. Thus, we compare the estimation results obtained

with Klaassen [2002] MS-GARCH model to the MCEM-MCML algorithm developed

by Augustyniak [2013]. Fig. 2.1 displays the returns sample path and kernel density

estimate, and the autocorrelation of the squared returns. As one would expect from a

typical financial time series, it exhibits strong persistence in the squared returns (see

Fig. 2.1), slightly negative skewness and large excess kurtosis (see Tab. 2.3). These

features calls for the use of a MS-GARCH model.

Table 2.3: Descriptive statistics for S&P 500 daily returns.

Min. max. Mean Std. Skewness Kurtosis
−9.470 10.960 −0.00022 1.353 −0.116 10.546.

Fitting a full MS-GARCH model to empirical data can lead to parameters being

estimated on the boundary of the parameter space and result in slow convergence.

Based on this, a common practice in the estimation of MS-GARCH models with em-

pirical data is to impose some restriction on the parameters. See Bauwens et al. [2010]
1Thanks to Bauwens et al. [2011] for making the data available on

https://sites.google.com/site/websiteofarnauddufays/
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and Augustyniak [2013] for illustration. In this paper, two different specification of

the MS-GARCH model are considered. The first is tagged unconstrained model. In

this case, we provide estimates for all the parameters of the MS-GARCH model. The

second corresponds to Augustyniak [2013] specification and we tag this constrained

model. In this case we assume that both the ARCH and GARCH parameters are

non-switching i.e. α1 = α2 and β1 = β2.

Table 2.4: Estimation results of Klaassen [2002] model

π11 π22 µ1 µ2 γ1 γ2 α1 α2 β1 β2 log-lik
Daily S&P 500: unconstrained model
0.9738 0.8504 0.0660 −0.5319 0.0085 0.1864 0.0283 0.0560 0.9262 0.9440 −44487
(0.0122) (0.0103) (0.0006) (0.0058) (0.0091) (0.0107) (0.0190) (0.0242) (0.0082) (0.0230)

Daily S&P 500: constrained model with α1 = α2 and β1 = β2

0.9894 0.7733 0.0421 −1.0092 0.0092 0.4142 0.0479 0.0479 0.9227 0.9227 −44558
(0.0067) (0.0077) (0.0003) (0.0067) (0.0053) (0.0056) (0.0053) (0.0053) (0.0036) (0.0036)

Notes: Standard errors in parentheses. “log-lik”denotes the log-likelihood of a model. The
estimated model is based on Klaassen [2002] MS-GARCH model. The parameter µi denotes the
conditional mean, γi denotes the long run conditional variance in regime i, αi and βi are the
regime specific ARCH and GARCH parameters, respectively, and the πii are the regime-staying
probabilities.

Table 2.4 reports the maximum likelihood estimates of both the constrained and

unconstrained MS-GARCH model. The results displayed in Table 2.4 suggests that

the estimation of the constrained model is very accurate, but more variability is ob-

served for the unconstrained model. Furthermore, the results of our estimation on

the constrained model are consistent with those obtained by Augustyniak [2013]. In

both MS-GARCH specifications, we can identify the first regime as a positive mean

returnlow volatility state while the second regime corresponds to a negative mean

returnhigh volatility state. The second regime of the constrained model, however,

exhibits (in absolute value) higher mean return (µ2), higher long run unconditional

variance (γ2) and less persistence (i.e., π22 is reduced) when compared to the uncon-

strained model. The results of the log-likelihood ratio test suggests a better fit for
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Figure 2.2: MS-GARCH smoothed probabilities for being regime 2.

the unconstrained model. To illustrate the difference in the role played by regime

two in the constrained and unconstrained MS-GARCH models, we can compare the

smoothed inferences of the states given by these models (see Fig. 2.2). The trajectory

of the smoothed probability of the models are quite similar. Nevertheless, the uncon-

strained model exhibit more noticeable and higher probability than the constrained

model during some period suggesting that it is not as conservative as the constrained

model. This shows that the unconstrained model is more flexible and gives more

credible judgment about the possible state of this process.

27



2.6 conclusion

A family of MS-GARCH models based on collapsing procedure was developed. This

class of MS-GARCH models encompasses some of the existing models in the literature

and allows for the identification of new variants of the MS-GARCH model. Using sim-

ulated data, a comparison among the models belonging to this class was considered.

The comparison is based on their ability to effectively and consistently generate esti-

mates for a path dependent MS-GARCH model. It was shown that Klaassen’s model

provide the most accurate parameter estimates for a path dependent MS-GARCH

model. However, we observed that all the auxiliary models produce equivalent num-

ber of correctly classified regime. This suggest that if one is interested in the value

of the parameters then Klaassen’s model is the choice model. On the other hand, if

regime classification is of paramount interest then any of the auxiliary models can

be used. Based on this observation, for empirical exercise we implement Klasssen’s

model.
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Chapter 3

Efficient Gibbs Sampling for Markov

Switching GARCH Models

Abstract We develop efficient simulation techniques for Bayesian inference on switching

GARCH models and contribute to the existing literature in several directions. First, we

discuss different multi-move sampling techniques for Markov Switching (MS) state space

models with particular attention to MS-GARCH models. Our multi-move sampling strat-

egy is based on the Forward Filtering Backward Sampling (FFBS) applied to a auxiliary

MS-GARCH model. Another important contribution is the use of multi-point samplers,

such as the Multiple-Try Metropolis (MTM) and the Multiple-Trial Metropolized Inde-

pendent Sampler, in combination with FFBS. In this sense we extend to MS state space

models the work of So [2006] on efficient MTM sampler for continuous state space models.

Finally, we suggest to further improve the sampler efficiency by introducing the antithetic

sampling of Craiu and Meng [2005] and Craiu and Lemieux [2007] within the FFBS pro-

posal. Our simulation experiments and application to financial data show the efficiency

and effectiveness of our multi-point and multi-move strategies.

Keywords : Bayesian inference, GARCH, Markov switching, Multiple-try Metropolis
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3.1 Introduction

The modeling of financial markets volatility has remained a prominent area of re-

search in finance given the important role it plays in a variety of financial problems

(e.g. asset pricing and risk management). Among volatility models, the Bollerslev

[1986] Generalized Autoregressive Conditional Heteroskedastic (GARCH) model and

its variants ranks as the most popular class of models among researchers and practi-

tioners (e.g., see Ardia [2008]). However, from empirical studies, this class of models

have been well documented to exhibit high persistence of conditional variance, i.e.

the process is close to being non-stationary (nearly integrated). Lamoureux and Las-

trapes [1990], among others, argue that the presence of structural changes in the

variance process, for which the standard GARCH process cannot account for, may

be responsible for this phenomenon. To buttress this point, Mikosch and Starica

[2004] estimate a GARCH model on a sample that exhibits structural changes in its

conditional variance and obtained a nearly integrated GARCH effect from the esti-

mate. Based on this observation, Hamilton and Susmel [1994] and Cai [1994] propose

a Markov Switching-Autoregressive Conditional Heteroskedastic (MS-ARCH) model,

governed by a state variable that follows a first order Markov chain to capture the

high volatility persistence, while Gray [1996] considers a Markov Switching GARCH

(MS-GARCH) model since it can be written as an infinite order ARCH model and

may be more parsimonious than the MS-ARCH model for financial data.

The class of MS-GARCH models is gradually becoming a work house among

economics and financial practitioners for analysing financial markets data (e.g., see

Marcucci [2005]). For practical implementation of this class of theoretical models,

it is crucial to have reliable parameter estimators. Maximum Likelihood (ML)

approach is a natural route to parameter estimation in Econometrics. However,

the ML technique is not computationally feasible for MS-GARCH models because

of the path dependence problem (see Gray [1996]). To this end, Henneke et al.
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[2011] and Bauwens et al. [2010] propose Bayesian approach based on Markov Chain

Monte Carlo (MCMC) Gibbs technique for estimating the parameters of Markov

Switching-Autoregressive Moving Average-Generalized Autoregressive Conditional

Heteroskedastic (MS-ARMA-GARCH) and MS-GARCH models respectively. Their

proposed algorithm samples each state variable given others individually (single-move

Gibbs sampler). This sampler is slowly converging and computationally demanding.

Great attention have been paid in the literature at improving such inefficiencies

in the context of continuous and possibly non-Gaussian and nonlinear state space

models. See, for example, Frühwirth-Schnatter [1994], Koopman and Durbin [2000],

De Jong and Shephard [1995] and Carter and Kohn [1994] for multi-move Gibbs

sampler and So [2006] for multi-points and multi-move Gibbs sampling schemes

for continuous and nonlinear state space models. To the best of our knowledge

there are few works on efficient multi-move sampling scheme for discrete or mixed

state space models. See Kim and Nelson [1999] for a review on multi-move Gibbs

for conditionally linear models, Billio et al. [1999] for global Metropolis-Hastings

algorithm for sampling the hidden states of MS-ARMA models and Fiorentini et al.

[2012] for multi-move sampling in dynamic mixture models. As regards MS-GARCH

models, Ardia [2008] develops a Gibbs sampling scheme for the joint sampling of the

state variables for the Haas et al. [2004] model, which is a particular approximation

of a MS-GARCH model, He and Maheu [2010] propose a Sequential Monte Carlo

(SMC) algorithm for GARCH models subject to structural breaks, while Bauwens

et al. [2011] propose a Particle MCMC (PMCMC) algorithm for estimating GARCH

models subject to either structural breaks and regime switching. Dufays [2012], on

the other hand, proposes a Metropolis-Hastings algorithm for block sampling of the

hidden state of infinite state MS-GARCH models. See also Elliott et al. [2012] for an

alternative approach, i.e. Viterbi-based technique, for sampling the state variables

in MS-GARCH models.
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In this paper, we develop an efficient simulation based estimation approach for

MS-GARCH models with a finite number of regimes wherein the conditional mean

and conditional variance of the observation process may change over time. We follow

a data augmentation framework by including the state variables into the parameter

vector. In particular, we propose a Bayesian approach based on MCMC algorithm

which allows us to circumvent the problem of path dependence by simultaneously

generating the states (multi-move Gibbs sampler) from their joint distribution. Our

strategy for sampling the state variables is based on Forward Filtering Backward

Sampling (FFBS) techniques. As in the case of mixed hidden state models, FFBS

algorithm cannot be applied directly on switching GARCH models, thus we suggest

the use of a Metropolis algorithm with an FFBS proposal generated using an auxiliary

model. We propose and discuss different auxiliary models obtained by alternative

approximations of the MS-GARCH conditional variance equation.

Another original contribution of the paper relates to the Metropolis step for the

hidden states. To efficiently estimate MS-GARCHmodels we consider the class of gen-

eralized (multipoint) Metropolis algorithms (see Liu [2002], Chapter 5) which extends

the standard Metropolis-Hastings (MH) approach (Hastings [1970] and Metropolis

et al. [1953]). See Liu [2002] and Robert and Casella [2007] for an introduction to

MH algorithms and a review of various extensions. Multipoint samplers have been

proved, both theoretically and computationally, to be effective in improving the mix-

ing rate of the MH chain and the efficiency of the Monte Carlo estimates based on

the output of the chain. The main feature of the multipoint samplers is that at each

iteration of the MCMC chain the new value of the chain is selected among multiple

proposals, while in the MH algorithm one accepts or rejects a single proposal. In

this paper we apply the Multiple-Try Metropolis (MTM) (see [Liu et al., 2000]) and

some modified MTM algorithms. The superiority of the MTM over standard MH

algorithm has been proved in Craiu and Lemieux [2007], who also propose to apply
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antithetic and quasi-Monte Carlo techniques to obtain good proposals in the MTM.

So [2006] applies MTM to the estimation of latent-variable models and finds evidence

of superiority of the MTM over standard MH samplers for the latent variable esti-

mation. The author also finds that the efficiency of MTM can further be increased

by the use of multi-move sampling. Casarin et al. [2013] apply the MTM transition

to the context of interacting chains. They provide a comparison with standard in-

teracting MH and also estimate the gain of efficiency when using interacting MTM

combined with block-sampling for the estimation of stochastic volatility models. We

thus combine the MTM sampling strategies with the approximated FFBS techniques

for the Markov switching process. In this sense, we extend the work of So [2006] to

the more complex case of Markov-switching nonlinear state space models. In fact, the

use of multiple proposals is particularly suited in this context where the forward filter

is used at each iteration to generate only one proposal with a large computational

cost. The use of multiple proposals based on the same run of the forward filter is thus

discussed. We also apply to this context the antithetic sampling technique proposed

by Craiu and Lemieux [2007] to generate negatively correlated proposal within the

Multiple-try algorithm, and suggest a Forward Filtering Backward Antithetic Sam-

pling (FFBAS) algorithm which combines the permuted displacement algorithm of

Craiu and Meng [2005] with FFBS and possibly produces pairwise negative associa-

tion among the trajectories of the hidden states. Note that our approach could easily

be extended to other discrete or mixed state space models. Our efficient sampling

procedure may also be applied to simulation-based maximum likelihood context (such

as Billio et al. [1998] and Augustyniak [2013]) to carry out inference on MS-GARCH

model.

The paper is organized as follows. Section 3.2 introduces the MS-GARCH model

and discuss inference issues related to existing methods in the literature. In Section

3.3, we present the Bayesian inference approach and explain the multi-move multi-
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point sampling strategies. In Section 3.4, we study the efficiency of our estimation

procedure through some simulation experiments. In Section 3.5 we provide an appli-

cation to S&P 500 return series while in Section 3.6, we conclude and discuss possible

extensions.

3.2 Markov switching GARCH models

3.2.1 The model

A Markov Switching GARCH model is a nonlinear specification of the evolution of a

time series assessed to be affected by different states of the world and for which the

conditional variance in each state follows a GARCH process. More specifically, let yt

be the observed variable (e.g. the return on some financial asset) and st a discrete,

unobserved, state variable which could be interpreted as the state of the world at time

t. Define (yt, . . . , yu) and (st, . . . , su) as yt:u and st:u respectively whenever t ≤ u. Then

yt = µt(y1:t−1, θµ(st)) + σt(y1:t−1, θσ(st))ηt, ηt
iid∼ N(0, 1), (3.1)

σ2
t (y1:t−1, θσ(st)) = γ(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1(y1:t−2, θσ(st−1)), (3.2)

where, N(0, 1) denotes the standard normal distribution, θµ represents the parame-

ters of the conditional mean of the returns series, εt = σt(y1:t−1, θσ(st))ηt, θσ(st) =

(γ(st), α(st), β(st)), γ(st) > 0, α(st) ≥ 0, β(st) ≥ 0, and st ∈ {1, . . . ,M}, t =

1, . . . , T , is assumed to follow a M -state first order Markov chain with transition

probabilities {πij,t}i,j=1,2,...,M :

πij,t = p(st = i|st−1 = j, y1:t−1, θπ),
M∑
i=1

πij,t = 1 ∀ j = 1, 2, . . . ,M,
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where θπ represents the parameters of the transition matrix. The parameter shift

functions γ(st), α(st) and β(st), describe the dependence of parameters on the regime

st i.e.

γ(st) =
M∑
m=1

γmIst=m, α(st) =
M∑
m=1

αmIst=m, and β(st) =
M∑
m=1

βmIst=m,

where,

Ist=m =


1, if st = m,

0, otherwise.

By defining the allocation variable, st, as a M -dimensional discrete vector, ξt =

(ξ1t, . . . , ξMt)
′, where ξmt = Ist=m, m = 1, . . . ,M, the system of equations in (4.2)-

(4.6) can be written compactly as

yt = µt(y1:t−1, ξ
′
tθµ) + σt(y1:t−1, ξ

′
tθσ)ηt, ηt

iid∼ N(0, 1), (3.3)

σ2
t (y1:t−1, ξ

′
tθσ) = (ξ′tγ) + (ξ′tα)ε2t−1 + (ξ′tβ)σ2

t−1(y1:t−2, ξ
′
t−1θσ), (3.4)

where εt = σt(y1:t−1, ξ
′
tθσ)ηt, γ = (γ1, . . . , γM)′, α = (α1, . . . , αM)′, β = (β1, . . . , βM)′,

θµ = (θ1µ, . . . , θMµ)′ and θσ = (θ1σ, . . . , θMσ)′ with θmσ = (γm, αm, βm)′ for m =

1, . . . ,M . for t = 1, . . . , T . Let πt = (π1t, . . . , πMt), with πit = (πi1,t, . . . , πiM,t) for

i = 1, 2, . . . ,M and
∑M

i=1 πij,t = 1 for all j = 1, 2, . . . ,M . Since ξt follows a M−state

first order Markov chain, we define the transition probabilities {πij,t}i,j=1,2,...,M by

πij,t = p(ξt = ei|ξt−1 = ej, y1:t−1, θπ),
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where ei is the i−th column of a M-by-M identity matrix. The conditional probability

of ξt given ξt−1, θπ and y1:t−1 is given by

p(ξt|ξt−1, y1:t−1, θπ) =
M∏
m=1

(πmtξt−1)ξmt , (3.5)

which implies that the probability with which event m occurs at time t is πmtξt−1.

3.2.2 Inference issues

Estimating Markov switching GARCH models is a challenging problem since the

likelihood of yt depends on the entire sequence of past states up to time t due to the

recursive structure of its volatility. To elaborate on this, the likelihood function of

the switching GARCH model is given by

L(θ|y1:T ) ≡ f(y1:T |θ) =
M∑
i1=1

· · ·
M∑
iT=1

f(y1:T , ξ1 = ei1 , . . . , ξT = eiT |θ) (3.6)

where θ = ({θmµ, θmσ}m=1,...,M , θπ). Setting ξs:t = (ξ′s, . . . , ξ
′
t) whenever s ≤ t, the

joint density function of y1:t and ξ1:t on the right hand side of equation (3.6) is

f(y1:T , ξ1:T |θ) = f(y1|ξ1:1, θµ, θσ)
T∏
t=2

f(yt|y1:t−1, ξ1:t, θµ, θσ)p(ξt|y1:t−1, ξ1:t−1, θπ)

= f(y1|ξ1:1, θµ, θσ)
T∏
t=2

f(yt|y1:t−1, ξ1:t, θµ, θσ)

(
M∏
i=1

(πitξt−1)ξit

)
,

(3.7)

with,

f(yt|y1:t−1, ξ1:t, θµ, θσ) ∝ 1

σt(y1:t−1, ξ′tθσ)
exp

(
−1

2

(
yt − µt(y1:t−1, ξ

′
tθµ)

σt(y1:t−1, ξ′tθσ)

)2
)
.
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Given σ1, recursive substitution in equation (3.4) yields

σ2
t =

t−2∑
i=0

[
ξ′t−iγ + (ξ′t−iα)ε2t−1−i

] i−1∏
j=0

ξ′t−jβ + σ2
1

t−2∏
i=0

ξ′t−iβ. (3.8)

Equation (3.8) clearly shows the dependence of conditional variance at time t on the

entire history of the regimes and thus the dependence of the likelihood function on the

entire history of the regimes. The evaluation of the likelihood function over a sample

of length T , as can be seen in equation (3.6), involves integration (summation) over

all MT unobserved states i.e. integration over all MT possible (unobserved) regime

paths. This requirement makes the maximum likelihood estimation of θ infeasible in

practice.

Two major approaches have been developed in the literature in order to circumvent

this path dependence problem. One approach involves the use of model approximation

while the other is simulation based.

As regards to the model approximation approach, Cai [1994] and Hamilton and

Susmel [1994] approximated the MS-GARCH model by an MS-ARCH model. This

approach effectively makes the model tractable because the lagged conditional vari-

ance that makes the conditional variance dependent on the history of regime has

been dropped. Kaufman and Frühwirth-Schnatter [2002] employed the algorithm

developed by Chib [1996] for a Markov mixture models to compute the marginal like-

lihood of the MS-ARCH model but noted that this methodology cannot be carried

over to the MS-GARCH model because of the path dependence problem. Another

approximation approach can be credited to Gray [1996] who noted that the condi-

tional density of the return is essentially a mixture of distributions with time-varying

mixing parameter and in particular under normality assumption he suggested the use

of aggregate conditional variances over all regimes as the lagged conditional variance

when constructing the conditional variance at each time step. Extensions of Gray
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[1996] model can be found in Dueker [1997], Klaassen [2002] and Haas et al. [2004]

among others. Abramson and Cohen [2007] provide stationarity conditions for some of

these approximations. The problem with this approach is that these approximations

cannot be verified.

Among the simulation based approaches proposed in the literature there is the

Bayesian estimation technique proposed by Bauwens et al. [2010]. In particular, they

develop a single-move MCMC Gibbs sampler for a Markov switching GARCH model

with a fixed number of regimes. The authors also provide sufficient conditions for geo-

metric ergodicity and existence of moments of the process. Their estimation approach,

though quite promising, has one main limitation that has rendered it unattractive.

The single-move Gibbs sampler is inefficient i.e. draws from the single-move scheme

are noted to be highly correlated and thus slow down the convergence of the Markov

chain. Alternative simulation based approaches relies on particle filter also known as

sequential Monte Carlo methods. He and Maheu [2010] develop a sequential Monte

Carlo method for estimating GARCH models subject to an unknown number of struc-

tural breaks. Bauwens et al. [2011] propose a particle MCMC approach to GARCH

models subject to structural break or regime switching. Augustyniak [2013] devel-

oped a hybrid Monte Carlo expectation-maximization and Monte Carlo maximum

likelihood algorithm to calculate the maximum likelihood estimator the MS-GARCH

model.

3.3 Bayesian inference

Based on the aforementioned inference issues associated with MS-GARCH models,

we present a Bayesian approach based on MCMC Gibbs algorithm which allows us to

circumvent the path dependence problem and efficiently sample the state trajectory.

The purpose of this algorithm is to generate samples from the posterior distribution
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which are then used for its characterization. We follow a data augmentation frame-

work by treating the state variables as parameters of the model and construct the

likelihood function assuming the states known.

Before proceeding with the elicitation of our proposed Bayesian technique, it is

important that we make explicit the parametric specification of the conditional mean,

µt(y1:t−1, ξ
′
tθµ), of the return process yt in equation (3.3) and the transition probabil-

ities p(ξ′t|ξ′t−1, y1:t−1, θπ). Since our major aim is to define a technique for sampling

the state variables efficiently, which in turn will affect other parameter estimates, we

assume for expository purposes a conditional mean defined by a constant switching

parameter given by ξ′tµ where µ = (µ1, . . . , µM)′ and constant transition probabil-

ities. Alternative specification such as switching ARMA process could be thought

of for the conditional mean and time varying transition probabilities may be de-

fined by following Gray [1996] approach, i.e. specifying transition probabilities as a

function of past observables. Under this specification, the augmented parameter set

of our model consists of ξ1:T , θ = (θµ, θσ, θπ) where θµ = µ, θπ = ({πm}m=1,...,M)

and θσ = ({θmσ}m=1,...,M) with θmσ = (γm, αm, βm), πm = (πm1, . . . , πmM) and∑M
m=1 πmm∗ = 1 ∀ m∗ = 1, . . . ,M . We assume a fairly informative prior distributions

for the transition probabilities θπ

θπ ∼
M∏
m=1

Dirichlet(ν1m, . . . , νMm),

where ν1m, . . . , νMm ∀ m = 1, . . . ,M are hyperparameters to be defined. Other pa-

rameters of the MS-GARCH model are assumed to follow independent uniform priors.

If the uniform is defined on a bounded domain (see Bauwens et al. [2010]) then the

posterior is alway defined. If the uniform is an improper prior the posteriors are not

always proper distributions (see Wasserman [2000]). The posterior of the k-thregime

parameter is not proper if there are no observations allocated to the k-th regime. It is
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possible to avoid this offensive grouping of the data by rejecting, at each iteration of

the Gibbs sampler, the draws of the sequence of allocation variables, ξt, t = 1, . . . , T ,

that do not belong to the set S = {ξ1:T |
∑T

t=1 ξjt ≥ 1,∀j = 1, . . . ,M}. Moreover, to

avoid the label switching problem, we assume this γ1 < . . . < γM identifiability restric-

tion. See Frühwirth-Schnatter [2006] for an introduction to label switching problem

for dynamic mixtures and MS models and Bauwens et al. [2010] for illustration of the

identification constraint for MS-GARCH models. The joint prior distribution is thus

proportional to

f(θ) ∝
M∏
m=1

Dirichlet(ν1m, . . . , νMm)Iγ1<...<γM , (3.9)

and the posterior density of the augmented parameter vector given by

f(θ, ξ1:T |y1:T ) ∝ f(y1:T |ξ1:T , θ)f(ξ1:T |θ)f(θ), (3.10)

cannot be identified with any standard distribution, hence we cannot sample directly

from it. Using the Gibbs sampler, we can generate samples from this high-dimensional

posterior density. This will be done by iteratively sampling from the following three

full conditional distributions

1. p(ξ1:T |θ, y1:T ),

2. f(θπ|θµ, θσ, ξ1:T , y1:T ) = f(θπ|ξ1:T ),

3. f(θσ, θµ|θπ, ξ1:T , y1:T ) = f(θσ, θµ|ξ1:T , y1:T ).

These full conditional distributions are easier to manage and sample from because

they can either be associated with a known distribution or simulated by a lower

dimensional auxiliary sampler. In the following subsections we present in details our

sampling procedure for both the single move and multi move algorithms .
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3.3.1 Sampling the state variables ξ1:T .

To sample ξ1:T using the single-move algorithm, one relies on computing

p(ξt|ξ1:t−1, ξt+1:T , θ, y1:T ) ∝
M∏
m=1

(πmξt−1)ξmt (πmξt)
ξm,t+1

T∏
j=t

f(yj|ξj, θ, y1:j−1), (3.11)

for each value ξt in {em : m = 1, . . . ,M} and dividing each evaluation by the sum of

the M points to get the normalized discrete distribution of ξt from which to sample.

Sampling from such a distribution once the probabilities are known is similar to sam-

pling from a Multinomial distribution. On the other hand, the full joint conditional

distribution of the state variables, ξ1:T , given the parameter values and return series

p(ξ1:T |θ, y1:T ) ∝ f(y1:T |ξ1:T , θ)p(ξ1:T |θ) (3.12)

is a non-standard distribution. Therefore multi-move FFBS sampling is not feasible.

For this reason, we consider a generalized metropolis (i.e. multipoint Metropolis)

algorithm for generating the state variables. Multipoint samplers are designed to

consider multiple proposals at each iteration of a Metropolis and to choose the new

value of the chain from this trial set. The multi-move and multipoint sampling pro-

cedures are of interest because of their potentials at addressing issues associated with

multi-modality of the target function (i.e. in the event that the target distribution

is multi-modal in nature the MCMC chain runs the risk of getting trapped in local

modes) and autocorrelation of samples from the Metropolis chain. Our scheme gen-

erally involves running a FFBS on the auxiliary sampler to generate several proposals

at each iteration step. Let the proposal distribution be denoted by

q(ξ1:T |θ, y1:T ) = q(ξT |θ, y1:T )
T−1∏
t=1

q(ξt|ξt+1, θ, y1:t), (3.13)
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where q(ξt|ξt+1, θ, y1:t) ∝ q(ξt|y1:t, θ)q(ξt+1|ξt, θ) with q(ξ′t|y1:t, θ) representing filtered

probability. A discussion on the proposal distribution is presented in Section 3.3.2.

In the following, we discuss the three multipoint algorithms considered in this paper.

Multiple-try Metropolis sampler

Liu et al. [2000] suggest the Multiple-Try Metropolis (MTM) sampler scheme. As

in the general case of multipoint samplers, their idea is to consider several points

generated by a proposal distribution so that possibly a larger region from which the

new value for the chain is chosen can be investigated. By using the multiple-try

strategy, it is easier for the iterates to jump from one local maximum to another and

thus speed up the convergence to the desired target distribution. Samples from the

proposal distribution will be generated by FFBS algorithm. We present below a sketch

of the main ingredients needed in Forward Filter (FF) and Backward Sampling (BS)

algorithm and refer the reader to Frühwirth-Schnatter [2006] for detailed presentation

of this procedure. At time t, given θ and y1:t the FF probabilities are obtained by

first computing the one-step ahead prediction

q(ξt|θ, y1:t−1) =
M∑
i=1

(
M∏
j=1

(πjei)
ξj,t

)
q(ξt−1 = ei|θ, y1:t−1),

then, the FF is

q(ξt|θ, y1:t) =
g(yt|ξt, θ, y1:t−1)q(ξt|θ, y1:t−1)∑M

i=1 g(yt|ξt = ei, θ, y1:t−1)q(ξt = ei|θ, y1:t−1)
, (3.14)

where g(yt|ξt, θ, y1:t−1) is the conditional density of the return process under the aux-

iliary model. Using the output of the FF, we compute q(ξT |θ, y1:T ) and

q(ξt|ξt+1, θ, y1:t) =

∏M
j=1 (πjξt)

ξj,t+1 q(ξt|θ, y1:t)

q(ξt+1|θ, y1:t)
, (3.15)
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for t = T − 1, T − 2, . . . , 2, 1. Then at each time step we sample ξT from q(ξT |θ, y1:T )

and ξt from q(ξt|ξt+1, θ, y1:t) iteratively for t = T − 1, T − 2, . . . , 2, 1. This is the

BS step. The BS procedure is implemented by first noting that ξt+1 is the most

recent value sampled for the hidden Markov chain at t + 1 and since ξt can take

one of e1, . . . , eM , we compute the expression in equation (3.15) for each of these

values. Sampling ξt from q(ξt|ξt+1, θ, y1:t) may be compared to multinomial sampling,

provided that the probability of ξi = ei, i = 1, . . . ,M , are known. Note that at each

iteration step of the MCMC procedure we only need a single run of the Forward Filter

(FF) for generating multiple proposals using Backward Sampling (BS).

A summary of our MTM algorithm is given in Algorithm 1.
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Algorithm 1 Multiple Try Metropolis Sampler (MTM)

i. Choose a starting value ξ0
1:T .

ii. Let ξ(r−1)
1:T be the value of the MTM at the (r − 1)-th iteration.

iii. Construct a trial set {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} containing K independent paths

of the state variable drawn from the proposal distribution q(ξ1:T |θ(r−1), y1:T ).

iv. Evaluate

Wk(ξ1:T,k, ξ
(r−1)
1:T ) =

p(ξ1:T,k|θ(r−1), y1:T )

q(ξ1:T,k|θ(r−1), y1:T )
, ∀k = 1, . . . , K.

v. Select ξ̃1:T from {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} according to the probability

pk =
Wk(ξ1:T,k, ξ

(r−1)
1:T )∑K

k=1Wk(ξ1:T,k, ξ
(r−1)
1:T )

, ∀k = 1, . . . , K.

vi. Construct a reference set {ξ∗1:T,1, ξ
∗
1:T,2, . . . , ξ

∗
1:T,K} by setting the first K − 1

elements to a new set of samples drawn from the proposal distribution

q(ξ1:T |θ(r−1), y1:T ) and the K−th element ξ∗1:T,K to ξ(r−1)
1:T .

vii. Draw u ∼ U[0,1] and set

ξ
(r)
1:T =


ξ̃1:T if u ≤ α(ξ̃1:T , ξ

(r−1)
1:T ),

ξ
(r−1)
1:T otherwise,

where,

α(ξ̃1:T , ξ
(r−1)
1:T ) = min

(
1,

∑K
k=1Wk(ξ1:T,k, ξ

(r−1)
1:T )∑K

k=1Wk(ξ∗1:T,k, ξ̃1:T )

)
.
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Observe that the MTM algorithm reduces to standard Metropolis-Hasting algo-

rithm when K = 1. We also note that alternative weight function other than the

importance weight function assumed in the MTM algorithm presented above could

be used (e.g., see Craiu and Lemieux [2007]).

Multiple-trial Metropolized independent sampler

As suggested by Liu [2002], when using independent proposal distributions the gen-

eration of a set of reference points is not needed to have a possibly more efficient

generalized Metropolis algorithm. Thus, we combine the FFBS proposals with the

Liu [2002] Metropolized Independent Sampler (MTMIS) and obtain Algorithm 2.

The main advantage is that one can use multiple proposals without generating the

reference points, obtaining thus a decrease of the computational complexity of the

algorithm.
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Algorithm 2 Multiple-Trial Metropolized Independent Sampler (MTMIS)

i. Choose a starting value ξ0
1:T .

ii. Let ξ(r−1)
1:T be the value of the MTM at the (r − 1)-th iteration.

iii. Construct a trial set {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} containing K independent paths

of the state variable drawn from the proposal distribution q(ξ1:T |θ(r−1), y1:T ).

iv. Evaluate

Wk(ξ1:T,k) =
p(ξ1:T,k|, θ(r−1), y1:T )

q(ξ1:T,k|θ(r−1), y1:T )
, ∀ k = 1, . . . , K,

and define

W =
K∑
k=1

Wk(ξ1:T,k)

v. Select ξ̃1:T from {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} according to the probability

pk =
Wk(ξ1:T,k)∑K
k=1Wk(ξ1:T,k)

, ∀k = 1, . . . , K.

vi. Draw u ∼ U[0,1] and set

ξ
(r)
1:T =


ξ̃1:T if u ≤ α(ξ̃1:T , ξ

(r−1)
1:T )

ξ
(r−1)
1:T otherwise

where,

α(ξ̃1:T , ξ
(r−1)
1:T ) = min

(
1,

W

W −W (ξ̃1:T ) +W (ξ
(r−1)
1:T )

)
.
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Multiple correlated-try Metropolis sampler

To further improve the efficiency the MTM algorithm and to ensure that a larger

portion of the sample space is explored for better mixing and shorter running time,

we propose the use of correlated proposals. There are various ways of introducing

correlation among proposals e.g. antithetic and stratified approaches. In this paper,

we study the antithetic approach. The use of antithetic sampling in a Gibbs sampling

context allows for a gain of efficiency. Pitt and Shephard [1996] propose a blocking

method with antithetic approach for non-Gaussian state space models, Holmes and

Jasra [2009] propose a scheme for reducing the variance of estimates from the standard

Metropolis-within-Gibbs sampler by introducing antithetic samples while Bizjajeva

and Olsson [2008] propose a forward filtering backward smoothing particle filter al-

gorithm with antithetic proposal. Here we follow Craiu and Lemieux [2007] which

use antithetic proposals within a multi-point sampler and apply their idea to the con-

text of discrete state space models. We propose Multiple Correlated-Try Metropolis

sampler (MCTM) based on a combination of the FFBS and antithetic sampling tech-

niques. To the best of our knowledge, antithetic proposals of this kind have not

been used in the context of Markov switching nonlinear state space models. The idea

is to choose, at each step of the MCMC algorithm, a new hidden state trajectory

from negatively correlated proposals instead of independent proposals. Following the

suggestion of Liu [2002], we obtain Algorithm 3.
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Algorithm 3 Multiple Correlated-Try Metropolis Sampler (MCTM)

i. Choose a starting value ξ0
1:T .

ii. Let ξ(r−1)
1:T be the value of the MTM at the (r − 1)-th iteration.

iii. Construct a trial set {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} containing K correlated paths of

the state variable drawn from the proposal distribution.

iv. Evaluate

W1(ξ1:T,1) = p(ξ1:T,1|θ(r−1), y1:T ),

Wk(ξ1:T,1:k) = p(ξ1:T,k|θ(r−1), y1:T )
k−1∏
i=1

q(ξ1:T,i|θ(r−1), y1:T , ξ1:T,i:k) ∀ k = 2, . . . , K,

v. Select ξ̃1:T from {ξ1:T,1, ξ1:T,2, . . . , ξ1:T,K} according to the probability

pk =
Wk(ξ1:T,1:k, ξ

(r−1)
1:T )∑K

k=1 Wk(ξ1:T,1:k, ξ
(r−1)
1:T )

, ∀k = 1, . . . , K.

vi. Suppose ξ̃1:T = ξ1:T,l is chosen in item (v) above, create a reference set

{ξ∗1:T,1, ξ
∗
1:T,2, . . . , ξ

∗
1:T,K} by letting

ξ∗1:T,j = ξ1:T,l−1 ∀ j = 1, . . . , l − 1

ξ∗1:T,l = ξ
(r−1)
1:T

and drawing ξ∗1:T,j for j = l + 1, . . . , K from the proposal distribution.

vii. Draw u ∼ U[0,1] and set

ξ
(r)
1:T =


ξ̃1:T if u ≤ α(ξ̃1:T , ξ

(r−1)
1:T )

ξ
(r−1)
1:T otherwise

where,

α(ξ̃1:T , ξ
(r−1)
1:T ) = min

(
1,

∑l
k=1 Wk(ξ1:T,1:k, ξ

(r−1)
1:T )∑l

k=1Wk(ξ∗1:T,1:k, ξ̃1:T )

)
.
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The simplest way to introduce negative correlation between the trajectories gen-

erated with the FFBS algorithm is to use, at a given iteration r of the sampler and for

the t-th hidden state, a set of K uniform random numbers U (r)
t,k , k = 1, . . . , K gener-

ated following the permuted displacement method (see Arvidsen and Johnsson [1982]

and Craiu and Meng [2005]) given in Algorithm 4. The uniform random numbers are

then use within the BS procedure to generate correlated proposals.

Algorithm 4 Permuted displacement method

• Draw r1 ∼ U[0,1]

• For k = 2, . . . , K − 1, set rk = b2k−2r1 + 1/2c where bxc denotes the fractional

part of x

• Set rK = 1− {2K−2r1}

• Pick at random σ ∈ SK , where SK is the set of all possible permutation of the

integers {1, . . . , K}

• For k = 1, . . . , K, set Uk = rσ(k)

For K = 3, Craiu and Meng [2005] show that the random numbers generated with

the permuted displacement method are pairwise negatively associated (PNA). The

definition of PNA given in the following is adopted from Craiu and Meng [2005].

Definition 1 (pairwise negative association). The random variables ξt,1,ξt,2.. . . ,ξt,K

are said to be pairwise negatively associated (PNA) if, for any nondecreasing functions

52



f1, f2 and (i, j) ∈ {1, . . . , K}2 such that i 6= j

Cov(f1(ξt,i), f2(ξt,j)) ≤ 0

whenever this covariance is well defined.

The proof for the case K ≥ 4 is still an open issue. For this reason we consider in

our algorithm K ≤ 3. The presence of PNA in the case of K ≥ 4 proposals depends

on the degrees of uniformity of the filtering probability and the gain of efficiency

should be proved computationally in each applications.

We use the permuted sampler to generate K = 2 multi-move and correlated pro-

posals in the backward sampling step of the FFBS. In order to show how the antithetic

sampler works, we consider the case where the hidden Markov switching process has

two states, i.e. ξt = (ξ1t, ξ2t)
′ and for notational convenience let {q(r)

t }t=1,...,T be the

sequence of filtered probabilities of being in state 1 at the r-th iteration of the sampler.

Proposition 3.3.1. Define backward antithetic samples ξt,1 and ξt,2 as follows

ξt,1 =

I
U

(r)
t <q

(r)
t

I
U

(r)
t ≥q

(r)
t

 , ξt,2 =

I
V

(r)
t <q

(r)
t

I
V

(r)
t ≥q

(r)
t


where V (r)

t = 1 − U (r)
t and U (r)

t ∼ U[0,1]. Then it is possible to show by following the

rules of expectation that

Cov(ξ
(r)
t,1 , ξ

(r)
t,2 ) =

(2q
(r)
t − 1)I

q
(r)
t > 1

2

−
(
q

(r)
t

)2 (
q

(r)
t (1− q(r)

t )
)2(

q
(r)
t (1− q(r)

t )
)2

(1− 2q
(r)
t )I

q
(r)
t < 1

2

−
(

1− q(r)
t

)2

 .

Proof The result follows from the application of expectation properties.
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Using the expected value of the square of the Euclidean distance, d(ξt,1, ξt,2),

between these two antithetic samples

E[d2(ξt,1, ξt,2)] = 2− 2
(

(2q
(r)
t − 1)I

q
(r)
t > 1

2

+ (1− 2q
(r)
t )I

q
(r)
t < 1

2

)
, (3.16)

it is possible to verify that extremely antithetic proposals are obtained when the

distance on average is optimal. From equation (3.16) extreme antithetic sample ob-

tained when q
(r)
t is equal to 0.5, which can be easily found in applications where

regimes exhibit similar persistence level.

3.3.2 Auxiliary models for defining the proposal distribution

In order to build up proposal distributions for the state variables, we will exploit all

the knowledge we have about the full conditional distribution. The first step is to

approximate the MS-GARCH model by eliminating the problem of path dependence

and then derive a proposal distribution for state variables from the auxiliary model

thus obtained. A possible way of circumventing the path dependence problem inherent

in the MS-GARCH model is to replace the lagged conditional variance appearing in

the definition of the GARCH model with a proxy. In the literature there are different

auxiliary models which differ only by the content of the information used in the

definition of the proxy introduced in each case. In general, various MS-GARCH (as

available in the literature) can be obtained by approximating the conditional variance

σ2
t (y1:t−1, θσ(st)) = V [yt|y1:t−1, s1:t] = V [εt|y1:t−1, s1:t]

of the GARCH process as follow

σt
2(y1:t−1, ξ

′
tθσ) ≈ ξ′tγ + (ξ′tα)ε2(X)t−1 + (ξ′tβ)σ2

(X)t−1. (3.17)
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In the subsection 3.3.2 - 3.3.2, we present alternative specifications of ε(X)t−1 and

σ2
(X)t−1 that define different approximations of the MS-GARCH model. The vari-

able X can take on any of B,G,D, SK,K with each label representing basic, Gray

[1996], Dueker [1997], simplified Klaassen [2002] and Klaassen [2002] approximations,

respectively.

Basic model approximation (model B)

As a first attempt at eliminating the path dependence problem, we note that the

conditional density of εt is a mixture of normal distributions with zero means and time

varying variances. Hence, we approximate the switching GARCH model by replacing

the lagged conditional variance, σ2
t−1, with the variance σ2

(B)t−1 of the conditional

density of εt i.e.

ε(B)t−1 = yt−1 − µ(B)t−1

µ(B)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−2] = E[yt−1|y1:t−2]

=
M∑
m=1

µt−1(y1:t−2, e
′
mθµ)q(ξt−1 = em|y1:t−2),

σ2
(B)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−2] = E[ε2t−1|y1:t−2] = V (εt−1|y1:t−2)

=
M∑
m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξt−1 = em|y1:t−2).

Observe that in this approximation scheme µ(B)t−1 and σ2
(B)t−1 are functions of y1:t−2

and the information coming from yt−1 is lost. With q(ξt−1 = em|y1:t−2) known for

m = 1, . . . ,M , µ(B)t−1 can easily be computed while σ2
(B)t−1 can be computed recur-

sively since σ2
t−1(y1:t−2, e

′
mθσ) depends on σ2

(B)t−2. Note that in this approximation

the conditioning is on y1:t−2. This approach represents a starting point for other

approximations hence we tag it basic model approximation.
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Gray’s approximation (model G)

Gray [1996] notes that the conditional density of the observation process, yt, of the

switching GARCH model is a mixture of normal distributions with time-varying pa-

rameters. Hence, he suggests the use of the variance of the conditional density σ2
(G)t−1

of yt as a proxy for the lagged of the conditional variance σ2
t−1 switching GARCH pro-

cess i.e.

ε(G)t−1 = yt−1 − µ(G)t−1

µ(G)t−1 = µ(B)t−1

σ2
(G)t−1 = V (yt−1|y1:t−2) = V

(
E[yt−1|y1:t−2, ξ

′
t−1]|y1:t−2

)
+ E[V

(
yt−1|y1:t−2, ξ

′
t−1

)
|y1:t−2]

= V (µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−2) + E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−2]

= E[(µt−1(y1:t−2, ξ
′
t−1θµ))2|y1:t−2]− (E[µt−1(y1:t−2, ξ

′
t−1θµ)|y1:t−2])2 + σ2

(B)t−1

=
M∑
m=1

(µt−1(y1:t−2, e
′
mθµ))2q(ξt−1 = em|y1:t−2)− (µ(B)t−1)2 + σ2

(B)t−1.

Similarly, as in the basic approximation, information on yt−1 is lost in this approxi-

mation scheme as µ(G)t−1 and σ2
(G)t−1 are functions of y1:t−2. By recursion, σ2

(G)t−1 can

be computed since σ2
(B)t−1 depends on σ2

(G)t−2 through σ2
t−1(y1:t−2, e

′
mθσ). Within this

framework the conditioning is also on y1:t−2. The major difference between the basic

model approximation and Gray’s approximation can be seen from the development of

the proxy i.e V (εt−1|y1:t−2) is replaced with V (yt−1|y1:t−2) in Gray’s approximation.

Dueker’s approximation (model D)

In the previous approximation schemes, the information coming from yt−1 is not

used. Dueker [1997] suggests that yt−1 should be included in the conditioning set

of the proxy while assuming that µt−1 and σ2
t−1 are functions of (y1:t−2, ξt−2). The
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following relation can thus be credited to him

ε(D)t−1 = yt−1 − µ(D)t−1

µ(D)t−1 = E[µt−1(y1:t−2, ξ
′
t−2θµ)|y1:t−1] =

M∑
m=1

µt−1(y1:t−2, e
′
mθµ)q(ξt−2 = em|y1:t−1)

σ2
(D)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−2θσ)|y1:t−1] =

M∑
m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξt−2 = em|y1:t−1).

The probability q(ξt−1 = em|y1:t) is a one period ahead smoothed probability which

can be computed as:

q(ξt−1 = em|y1:t) =
M∑
i=1

q(ξt−1 = em, ξt = ei|y1:t)

=
M∑
i=1

q(ξt−1 = em|ξt = ei, y1:t)q(ξi = ei|y1:t)

=
M∑
i=1

q(ξt−1 = em|ξt = ei, y1:t−1)q(ξi = ei|y1:t)

=
M∑
i=1

q(ξt−1 = em, ξt = ei|y1:t−1)q(ξi = ei|y1:t)

q(ξt = ei|y1:t−1)

= q(ξt−1 = em|y1:t−1)
M∑
i=1

q(ξt = ei|ξt−1 = em, y1:t−1)q(ξi = ei|y1:t)

q(ξt = ei|y1:t−1)

Within this framework we note that the conditioning is on y1:t−1 while the functional

form depends on (y1:t−2, ξ
′
t−2). We equally note that at every time step t the value of

q(ξt−2 = em|y1:t−1) for all m is required for computation.

simplified Klaassen’s approximation (model SK)

The following approximation is similar to Dueker’s approximation (Model D). As

opposed to Dueker’s approximation, we assume that µt−1 and σ2
t−1 are functions of

(y1:t−2, ξt−1). This modification leads to the following approximation Klaassen [2002]
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model.

ε(SK)t−1 = yt−1 − µ(SK)t−1

µ(SK)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−1] =

M∑
m=1

µt−1(y1:t−2, e
′
mθµ)q(ξt−1 = em|y1:t−1)

σ2
(SK)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−1] =

M∑
m=1

σ2
t−1(y1:t−2, e

′
mθσ)q(ξt−1 = em|y1:t−1).

In the next approximation, the current regime will be added to the conditioning set of

this version of the auxiliary model. Hence, this approximation will be identified as the

simplified version of Klaassen [2002] model. In order to implement this approximation

scheme the value of q(ξt−1 = em|y1:t−1) for all m is required at each point in time t.

Model 5: Klaassen’s approximation (model K)

In each of the approximations described above, information relating to the current

regime is ignored in the conditioning set. On observing this, Klaassen [2002] suggests

the following approximation

ε(K)t−1 = yt−1 − µi,(K)t−1

µi,(K)t−1 = E[µt−1(y1:t−2, ξ
′
t−1θµ)|y1:t−1, ξt = ei]

=
M∑
m=1

µt−1(y1:t−2, e
′
mθµ)q(ξt−1 = em|y1:t−1, ξt = ei)

σ2
i,(K)t−1 = E[σ2

t−1(y1:t−2, ξ
′
t−1θσ)|y1:t−1]

=
M∑
m=1

(
µ2
t−1(y1:t−2, e

′
mθµ) + σ2

t−1(y1:t−2, e
′
mθσ)

)
q(ξ′t−1 = e′m|y1:t−1, ξ

′
t = e′i)

−

(
M∑
m=1

µt−1(y1:t−2, e
′
mθµ)q(ξt−1 = em|y1:t−1, ξt = ei)

)2

,
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where

q(ξt−1 = em|y1:t−1, ξt = ei) =
q(ξt−1 = em, ξt = ei|y1:t−1)

q(ξt = ei|y1:t−1)

=
q(ξt = ei|y1:t−1, ξt−1 = em)q(ξt−1 = em|y1:t−1)

q(ξt = ei|y1:t−1)
.

Note that the computational complexity of this approximation is O(M2T ), as it

requires the computation of q(ξt−1 = em|y1:t−1, ξt = ei) for all m and i at time step t.

3.3.3 Sampling θ

Sampling θ from the full conditional distribution will be done by separating the

parameters of the transition matrix from the GARCH parameters, accordingly. We

assume that the parameters of the transition probabilities are independent of GARCH

parameters.

As regards the transition probability parameters, θπ, their posterior distribution

is given by the product of independent Dirichlet distributions

f(θπ|ξ1:T , θµ, θσ, y1:T ) =
M∏
m=1

Dirichlet(n1m + η1m, . . . , nMm + ηMm), (3.18)

where

nij =
T∑
t=1

ξjt−1ξit,

which can be simulate from directly.

Given a prior density f(θµ, θσ), the posterior density of the GARCH parameters,

(θµ, θσ), can be expressed as

f(θµ, θσ|ξ1:T , θπ, y1:T ) ∝ f(θµ, θσ)
T∏
t=1

N (µt(y1:t−1, ξ
′
tθµ), σ2

t (y1:t−1, ξ
′
tθσ)). (3.19)
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For this step of the Gibbs sampler, we apply an adaptive Metropolis-Hastings (MH)

algorithm, since the full conditional distribution is known to be non-standard. Details

can be found, as required, in the Appendix 3.A.

3.4 Monte Carlo experiments on simulated data sets

We generate a time series of length 1500 from the data generating process (DGP) cor-

responding to the model defined by equations (3.3) and (3.4) for two regimes (M = 2),

time invariant transition probabilities and switching conditional mean and variance.

In the simulation exercise, we set (µ1, µ2) = (0.06,−0.09), (γ1, γ2) = (0.30, 2.00),

(α1, α2) = (0.35, 0.10), (β1, β2) = (0.20, 0.60), and π11 = 0.98, π22 = 0.96. This pa-

rameter setting corresponds to the one in Bauwens et al. [2010] for a similar Monte

Carlo exercise. A relatively higher and more persistent conditional variance as com-

pared to the first regime GARCH equation is implied by the second regime GARCH

equation. Also, the probability of staying in each regime is close to one. A typical

series of length 1500 simulated from this DGP exhibits volatility clusters (see Fig.

3.1(a)). The kernel estimate of the unconditional density has heavy tails (see Fig.

3.1(b)) and the excess kurtosis is estimated to be 3.57. The autocorrelation function

(ACF) of the square of the same series (Fig. 3.1(c)) is significant and this calls for

the use of autoregressive volatility models.

For each hidden state sampling algorithm described in Section 3.3.1 and the aux-

iliary models presented in Section 3.3.2, we perform 10000 Gibbs iterations after

convergence according to the Geweke’s (Geweke [1992]) diagnostic by testing for the

equality of means between the first 10% and the last 50% samples of the converging

chain. It is well known that Gibbs sampler produces drawings with very high positive

serial correlation for most parameters and results for 10000 samples may yield poor

approximations. In view of this, we consider every 10th draw after convergence of
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Figure 3.1: Simulated data for MS-GARCH model with parameter setting (µ1, µ2) =
(0.06,−0.09), (γ1, γ2) = (0.30, 2.00), (α1, α2) = (0.35, 0.10), (β1, β2) = (0.20, 0.60),
and π11 = 0.98, π22 = 0.96.

the Gibbs chain when evaluating the results presented in this section. This approach

reduces the effective sample size to 1000 samples. The MCMC exercise is carried

out by setting the initial state trajectory and parameter values of the algorithm to

the maximum likelihood estimates of MS-GARCH model based on basic model ap-

proximation (see Section 3.3.1). The hyperparameters, νij for i, j = 1, 2, of the prior

distributions of the transition probabilities are set equal to 1. The support for other

parameters are defined to obey their respective constraints. The case of two trials,

(K = 2), is considered within the different multi-point sampling strategies discussed

earlier.

3.4.1 Comparison of algorithms

Using the first 10000 draws of the MCMC algorithm, we compare the efficiency of

the different multi-move hidden state sampling algorithms against the single-move

approach by computing the first 30 autocorrelations of the volatility, σt, for all time

t. We summarize the results by taking the average of these autocorrelations over

time. In Fig. 4.7 and 3.3 we plot the average of the autocorrelations for each of the

multi-move multi-point sampling algorithms and single-move sampling scheme.

From Fig. 4.7, it may be deduced that under each multi-move multi-point sam-

pling scheme Klaassen [2002] approximation produces the lowest autocorrelations
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(a) Multiple-Try Metropolis (MTM)
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(b) Multiple-trial Metropolized Independent Sam-
pler (MTMIS)
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(c) Multiple Correlated-Try Metropolis (MCTM)

Figure 3.2: Average autocorrelation of the volatility for each sampler (different plots)
and approximation methods (different graph in each plot).
Note: B. approx, G. approx, D. approx, S. K. approx and K. approx respectively repre-
sent Basic model approximation (subsection 3.3.2), Gray’s approximation (subsection
3.3.2), Dueker’s approximation (subsection 3.3.2), simplified Klaassen’s approxima-
tion (subsection 3.3.2) and Klaassen’s approximation (subsection 3.3.2)
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while, as expected, the single-move algorithm produces the highest autocorrelations.

There is no clear difference among the autocorrelations produced by other approx-

imations in each of the sampling scheme. On the other hand, from Fig. 3.3 we

observe that MTMIS consistently outperform other sampling schemes. The efficiency

of the various multi-move multi-point samplers are further assessed by computing the

inefficiency factor and the relative inefficiency of the multi-point algorithms.

Let σ(1)
t , . . . , σ

(G)
t denote a sample from the posterior distribution of a random

variable σt. Then inefficiency factor (IF ) is

IF = 1 + 2
L∑
l=1

wlρl, (3.20)

where ρl, l = 1, 2, . . . , L is the autocorrelation function of σ(1)
t , . . . , σ

(G)
t at lag l and

wl is the associated weight (see Robert and Casella [2007] for details). If the samples

are independent then IF = 1. We define the relative inefficiency (RI) factor of two

competing algorithms A and B with inefficiency factor IFA and IFB respectively, as

RI =
TimeA
TimeB

× IFA
IFB

, (3.21)

where TimeA and TimeB are the computing times of each algorithm. RI measures the

factor by which the run-time of algorithm A must be increased to achieve algorithm

B’s precision; values greater than one suggest that algorithm B is more efficient. In

Tab. 3.1 we present the IF and report the RI for various multi-move multi-point

algorithms relative to the single-move sampling technique. The table provides results

for the two σt variables with the highest single-move inefficiency factor, i.e. σ513

and σ514 and the average σ over the volatilities. The number of lags over which

we calculate both the IF and RI is set equal to L = 500. The inefficiency factor

shows that MTMIS generally performs best among the sampling techniques while

Klaassen [2002] is the best among the approximation methods (see Tab. 3.1). We
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(a) Basic model approximation
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(b) Gray [1996] approximation

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag

 

A
C

F

 

 
MTM
MTMIS
MTCM

(c) Dueker [1997] approximation
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(d) simplified Klaassen [2002] approximation
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(e) Klaassen [2002] approximation

Figure 3.3: Average autocorrelation of the volatility for each approximation method
(different plots) and samplers (different line in each plot).
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equally observe that our multi-move multi-point algorithms are more efficient than

the single-move sampling technique for the state variable (see columns RI in Tab.

3.1). In order to achieve the precision of the multi-point sampling schemes, results

from Tab. 3.1 suggest that, on average, one needs to run the single-move algorithm

72 times longer. Similarly, we observe from Tab. 3.1 that MTMIS under Klaassen’s

approximation is the most efficient combination. It does not come too much as a

surprise that there is no appreciable difference in the efficiency of the MTCM over

standard MTM because of the small number of multi-point used (see Craiu and

Lemieux [2007] for discussion).

In Tab. 3.2, we report the posterior means and standard deviations of the param-

eters and the transition probabilities of the MS-GARCH using the various sampling

schemes and approximation methods. With the exception of a few cases, the param-

eter posterior means obtained using our multi-move multi-point sampling schemes

have more values within one posterior standard deviation away from the true values.

We also quantify the performance of these estimates by calculating the mean squared

error (MSE) of the posterior means of parameters relative to the true parameters i.e.

MSE =
1

n

n∑
i=1

(θ̂i − θi)2, (3.22)

where n is the number of parameters, θ̂i is the parameter estimate of the i-th element,

θi, of the DGP parameter set.

The results in Tab. 3.2 show that some of the estimates are a bit off their re-

spective true parameters. A possible explanation for this bias could be related to

the variance scaling factor of the proposal distribution for sampling the GARCH pa-

rameters, which needs to be fine tuned in order to obtain estimates closer to the

true parameters. Another explanation may be related to the choice of identification

constraint. In our simulation exercise we considered a simple ordering of the inter-

65



Table 3.1: Inefficiency (IF) and relative inefficiency (RI) factors.

Single-Move MTM MTMIS MTCM
IF IF RI IF RI IF RI

B. approx.
σ513 7.62 5.39 53.38 5.03 59.00 5.33 62.02
σ514 7.51 5.49 51.65 5.07 57.67 5.45 59.85
σ 5.68 5.08 42.20 4.68 47.27 5.05 48.90

G. approx.
σ513 7.62 5.37 53.38 5.29 56.05 5.05 65.73
σ514 7.51 5.33 53.00 5.18 56.41 4.91 66.57
σ 5.68 5.02 42.55 4.66 47.47 4.92 50.23

D. approx.
σ513 7.62 4.88 58.73 4.94 59.15 5.33 61.24
σ514 7.51 4.91 57.60 4.88 58.98 5.33 60.30
σ 5.68 4.73 45.17 4.73 45.97 5.11 47.56

S. K. approx.
σ513 7.62 4.87 59.85 4.51 65.89 5.68 58.56
σ514 7.51 4.73 60.73 4.57 64.18 5.80 56.55
σ 5.68 4.77 45.49 4.43 50.01 5.00 49.55

K. approx.
σ513 7.62 3.09 90.18 3.07 92.15 3.97 79.53
σ514 7.51 3.02 90.73 3.04 91.53 4.00 77.69
σ 5.68 3.77 55.07 3.70 56.96 4.08 57.66

Notes: IF and RI as defined in 3.20 and 3.21 respectively are computed using 10000 draws; the two
σt variables shown are those for which the single move algorithm gives the largest IF; σ is the
average over all σt; B. approx, G. approx, D. approx, S. K. approx and K. approx respectively
represent Basic model approximation (3.3.2), Gray’s approximation (3.3.2), Dueker’s
approximation (3.3.2), simplified Klaassen’s approximation ( 3.3.2) and Klaassen’s approximation
(3.3.2)

cept ( γ1 < · · · < γM) of the MS-GARCH model in order to identify the regimes.

This approach, as illustrated in Marin et al. [2005] and Jasra et al. [2005], may have

some consequences (such as large bias) on the resulting inference. In view of this,

we leave for further research the effect of other choices of identification constraint

such as the random permutation MCMC sampling of Frühwirth-Schnatter [2006] and

the re-labelling algorithm of Jasra et al. [2005] on the parameter estimates. Per-

haps, a different choice of the identification constraint may bring about reduction
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in bias. The large standard deviation observed for some of the parameters in the

second regime may be attributed to the fact that the regime is less frequently visited.

Estimates of our multi-point multi-move sampling schemes are also observed to be

very close to each other. These observation is not too surprising because the differ-

ent approximations are based on the same fundamental while the different sampling

strategies are meant to improve the efficiency of the MCMC algorithm. Furthermore,

the assumption of low persistence (αm + βm << 1 for m = 1, 2) in each regime of

the MS-GARCH model may also have contributed to obtaining close parameter esti-

mates. As with maximization algorithms, MCMC parameter estimates may change

when they operate close to the boundaries of the constrained domain i.e. when MS-

GARCH are strongly persistent in each regime. Nevertheless, unlike the single-move

state sampling algorithm that is prone to getting stuck in some local optimum which

in turn may lead to parameter estimates that are far off from the true value (see Tab.

3.2), our multi-point multi-move state sampling schemes is capable of avoiding such

scenario. The superiority of our multi-point sampling schemes over the single-move

sampler is further confirmed by their low MSE (see Tab. 3.2).

Fig. 3.7-3.9 in Appendix 3.B report the posterior densities of the parameters ob-

tained via the different sampling strategies. The shapes of the posterior densities

are unimodal, thus ruling out the presence of label switching. From these figures,

we observe that the single-move (blue line) algorithm produces density estimates of

the parameters that are highly peaked and are mostly not concentrated around the

true parameter values. This confirms that the single-move state sampling algorithm

produces samples that are trapped in some local modes of the posterior distribu-

tion. The multi-point multi-move algorithms on the other hand produce parameter

posterior histograms concentrated around the true values. As noted for the parame-

ter estimates, there is no clear difference among the density plot obtained using the

multi-point and multi-move proposals.
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It may be argued, as it is often the case, that the starting values for our MCMC

algorithm may influence the parameter estimates and the results reported in Tab.

3.2 may have occurred by chance. To rule out this issue, the previous experiment

is repeated 50 times, thus generating 50 samples of size 1500 of the same DGP and

repeating the MCMC estimation for each sample using the same set of starting val-

ues. The mean and standard deviation (in parenthesis) for each set of 50 parameter

estimates are reported in Tab. 3.3. A look at this table does not indicate much

difference from the result presented in Tab. 3.2.

Based on these 50 replications we compute the average burnin period required to

achieve convergence based on Geweke’s convergence criterion. Tab. 3.4 shows that on

average Klaassen [2002] approximation seems to converge the fastest among the dif-

ferent approximation methods while MTMIS offers the shortest burnin period among

the multi-point sampling schemes. We also observe in Tab. 3.4 that on average the

single-move scheme converges very fast. Unfortunately, as discussed above the seem-

ingly fast convergence rate of single-move algorithm suggest that the algorithm has

been trapped at a local optimum. This observation makes the single-move sampling

scheme unattractive.

The performance of our multi-move multi-point algorithms relative to the single-

move strategy is further examined by computing the percentage of correctly specified

regimes. To do this, for each of the 50 replications, we calculate the average of the

Gibbs output on the state variables and then assign mean states greater than one-half

to regime 2 (and regime 1 otherwise). We find out that the single-move technique is

able to classify on average 55% of the data correctly while the multi-move multipoint

samplers classified between 93% and 96% of the data correctly. The acceptance rate of

the multi-move multi-point proposals varies between 10% and 35% with the highest

arising from MTMIS sampling schemes characterised with a proposal distribution

constructed using Klaassen’s approximation.
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Table 3.4: Estimated burn-in period.

Single- Multi-move algorithms
Move MTM MTMIS MCTM

models
B. approx. 332 3550 2259 3648
G. approx. 332 1836 2090 3750
D. approx. 332 2579 2090 3667
S. K. approx. 332 5209 3113 5587
K. approx. 332 1208 2366 1816

Notes: Burn-in period is evaluated based on 10000 Gibbs iterations after convergence according to
the Geweke’s diagnostic. Estimated burn-in period is computed by taking the average burn-in
period over 50 replications of the experiment.

Using our proposed multi-point sampling scheme we observe a substantial compu-

tational time reduction, as expected, when compared with the single-move scheme.

We observe that the computational time required by our multi-point schemes are not

different from one another. This observation is a consequence of the the two point

sampling algorithm used in our MCMC algorithm. For one to observe an appreciable

difference in the computational time among our multi-point sampling schemes, it will

be required to increase the number of multi-point. Finally, comparing our MCMC

algorithm in terms of their coding cost, the basic model approximation is the easi-

est approximation to code while the Klaassen’s approximation is the most complex

and challenging approximation to code. MTMIS on the other hand is the simplest

multi-point sampling scheme among the set under consideration to code.

In summary, subject to the various performance criterion discussed above,

Klaassen’s approximation consistently performs at least as good as other MS-

GARCH approximations used in constructing proposal distribution for sampling

state trajectory. Be that as it may, the complexity of coding Klaassen’s model

limits its attractiveness. Subject to this and based on the fact that the parameter

estimates obtained using the various multi-point multi-move algorithms are not

significantly different from each other, we suggest the use of simplified Klaassen’s
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Figure 3.4: Graphs for S&P 500 daily returns from 20/05/1999 to 25/04/2011.

approximation which is closely related to Klaassen’s approximation and whose coding

is not as complex as Klaassen’s approximation for practical implementation. Among

the multi-point sampling schemes we suggest that the MTMIS should be used for

practical purposes since it is the most efficient and requires the least coding cost.

3.5 Empirical application: the S&P500 daily returns

We use our proposed Bayesian estimation procedure to fit MS-GARCH model to

S&P500 daily percentage returns from 20/05/1999 to 25/04/20111 (3000 observa-

tions). The Bauwens et al. [2011] estimates would serve as a benchmark for evaluating

the parameter estimates obtained using MTMIS algorithm coupled with the simpli-

fied Klaassen’s approximation. Fig. 3.4 displays the returns sample path and kernel

density estimate, and the autocorrelation of the squared returns. As one would ex-

pect from a typical financial time series, it exhibits strong persistence in the squared

returns (see Fig. 3.4), slightly negative skewness and large excess kurtosis (see Tab.

3.5). These features calls for the use of a MS-GARCH model. We consider a two

Table 3.5: Descriptive statistics for S&P 500 daily returns.

Min. max. Mean Std. Skewness Kurtosis
−9.470 10.960 −0.00022 1.353 −0.116 10.546.

1Thanks to Bauwens et al. [2011] for making the data available on
https://sites.google.com/site/websiteofarnauddufays/
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regime MS-GARCH model and set µ1 = µ2 = 0 because the sample mean of the series

is close to zero. In Tab. 3.6, we report the posterior means and standard deviations

(in bracket) from the estimation of the MS-GARCH model using MTMIS sampling

scheme and simplified Klaassen’s approximation for constructing the proposal distri-

bution for sampling the state trajectory. These parameter estimates are based on

2000 samples i.e. we perform 20000 Gibbs iterations after convergence according to

the Geweke’s diagnostic and consider every 10th draw of this sample period to re-

duce the high correlation arising from the sampling algorithm. Fig. 3.5 displays the

posterior density estimate for the distribution of the model parameters.

Table 3.6: Posterior means and standard deviations (S&P500 daily returns).

π11 π22 σ2
1 σ2

2 α1 α2 β1 β2

0.987 0.991 0.423 2.617 0.040 0.092 0.899 0.880
(0.003) (0.002) (0.006) (0.015) (0.011) (0.013) (0.018) (0.016)
σ2
i = γi/(1− αi − βi), i = 1, 2, represents the regime-specific unconditional variance

Our parameter estimates (see Tab. 3.6) are quite close to those obtained by

Bauwens et al. [2011] with the same model specification on exactly the same set of

data. We observe that our MS-GARCH model is characterized by low unconditional

variance of 0.42 and persistence level of 0.93 for regime 1, while the second regime

is characterized by high unconditional variance of 2.6 and persistence level of 0.97.

In Fig. 3.6, we observe a sudden switch from low volatility to high volatility and

then back to low volatility. The high volatility period corresponds to the 2008/2009

financial crisis. This observation shows that our model is flexible enough to capture

extreme events confirming the empirical findings of Bauwens et al. [2011].

Finally, we assess the performance of our estimation procedure by computing the

acceptance rate of the multi-point multi-move sampling scheme. We observed a very

low acceptance rate of 0.1% on the empirical exercise as opposed to (10%− 35%) on

the simulated data for the multipoint proposals. Despite the low acceptance rate for
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the multipoint proposals, we still have good results (as discussed above) considering

our of single block sampling strategy for time series with many observations (1500

for simulated data and 3000 for empirical exercise) used. We expect that using the

blocking scheme (as in So [2006]) the efficiency and the acceptance rate of our sampling

procedure may increase. The issues of the block selction and block length are a subject

of future research.
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Figure 3.5: Posterior densities of the MS-GARCH parameters using multiple-trial
Metropolized independent sampler (MTMIS) combined with the simplified Klaassen’s
approximation on S&P 500 daily returns.
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Figure 3.6: Conditional volatility estimated with the MS-GARCH model using
multiple-trial Metropolized independent sampler (MTMIS) combined with the sim-
plified Klaassen’s approximation on S&P 500 daily returns.
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3.6 Conclusion

In this paper, we deal with the challenging issue of designing efficient sampling algo-

rithms for Bayesian inference on Markov-switching GARCH models. We provide some

new generalized Metropolis algorithms based on the combination of multi-move and

multi-points strategies. Our algorithms extend to Markov-switching nonlinear state

space models the sampling algorithms propose by So [2006] for continuous nonlinear

state space models.

More specifically, we apply the multiple-try sampling strategies of Craiu and

Lemieux [2007] with a joint proposal distribution for the hidden states of the Markov-

switching GARCH model. For generating candidate paths of the state variable we

apply Forward Filtering Backward Sampling (FFBS) algorithm to an auxiliary MS-

GARCH model. We propose different auxiliary models which are based on approxi-

mation of the GARCH conditional variance equation. We also design a multiple-try

algorithm with correlated proposals. To this aim we introduce antithetic FFBS based

on the permuted displacement method of Craiu and Meng [2005].

We compare our algorithms on simulated data and found that the multiple-trial

Metropolized independent sampler in combination with Klaassen’s approximation

outperforms other multi-move multi-point sampling strategies under consideration.

However, due to the cost of coding Klaassen’s model and since there is no clear

difference in the parameter estimates obtained by the various sampling algorithms,

we suggest the use and apply the simplified Klaassen’s approximation in combination

with MTMIS for empirical purpose.

We conclude the paper with the indication of some future research lines. Our

sampling approach can be extended by introducing a blocking scheme (as in So [2006]).

We expect the efficiency and the acceptance rate of the resulting sampling procedure

to be better. Also, the issue of the choice of block length could be a matter of future

research. Another research line is related to the number of trial points required to
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achieve optimal performance of the multiple proposal scheme. Using insufficient trials

may have negative effect on the performance of the multi-point algorithm. To this

end, further research will be focused on computing the optimal choice of trial points.

Finally, the effect of alternative prior distributions and identification constraints, on

the parameter estimates, is a subject for further study.
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3.A Constructing proposal distribution for θµ, θσ

Sample θ(r)
µ , θ

(r)
σ from f(θµ, θσ|ξ(r)

1:T , π
(r), y1:T ). Given a prior density f(θµ, θσ), the

posterior density of θθµ,θσ can be expressed as follows

f(θµ, θσ|ξ(r)
1:T , π, y1:T ) ∝ f(θµ, θσ)

T∏
t=1

N (yt; ξ
(r)
t

′
µ, σ2

t ) (3.23)

where,

σ2
t = ξ

(r)
t

′
γ + (ξ

(r)
t

′
α)(yt−1 − ξ(r)

t−1

′
µ)2 + (ξ

(r)
t

′
β)σ2

t−1.

In order to generate θµ, θσ from the joint distribution we apply a further blocking

of the Gibbs sampler i.e. We split the regime-dependent parameters in two subvectors,

the parameter of the observation equation (θµ) and the parameters of the volatility

process (θσ). For each subvector we implement a Metropolis-Hastings (MH) step

that samples from a mixture of two normally distributed components in the case of

θµ and mixture of two truncated normally distributed components in the case of θσ.

The mixture is adapted during the burnin period. The expectation and the variance-

covariance matrix of the first component are computed as described in Equation 3.24

and 4.38. This component behaves as an independent MH. We characterize the second

component by a random walk proposal with the variance-covariance matrix specified

as in the first component. We attach a low weight (0.05) to the first component and

0.95 to the second component.

As regards the parameters of the conditional expectation of the observation, we

derive the mean and variance of the first component of the proposal distribution by
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considering an approximation of the full conditional distribution of µ,

f(µ|ξ(r)
1:T , γ

(r−1), β(r−1), α(r−1), y1:T ) ∝
T∏
t=1

N (yt; ξ
(r)
t

′
µ, σ2

t ).

Given an approximation σ∗2t of σ2
t , it can easily be shown, by completing the square

method, that the full conditional distribution of µ can be approximated by a normal

distribution with mean and variance given by

mµ = Σµ

(
T∑
t=1

ytξt
σ∗2t

)
, Σµ =

(
T∑
t=1

ξtξt
′

σ∗2t

)−1

(3.24)

respectively, where

σ∗2t = (ξ
(r)
t

′
γ(r−1)) + (ξ

(r)
t

′
α(r−1))(yt−1 − ξ(r)

t−1

′
µ(r−1))2 + (ξ

(r)
t

′
β(r−1))σ∗2t−1.

The mean and variance thus constructed are used in defining the parameters of the

mixture normal proposal distribution for µ.

As regards the parameters of the volatility process the full conditional is

f(θσ|ξ(r)
1:T , µ

(r), y1:T ) ∝
T∏
t=1

N (yt; ξ
(r)
t

′
µ(r), σ2

t ). (3.25)

We now follow the ARMA approximation of the MS-GARCH process i.e.

σ2
t = ξ′tγ + (ξ′tα)ε2t−1 + (ξ′tβ)σ2

t−1

ε2t = ξ′tγ + (ξ′tα + ξ′tβ)ε2t−1 − (ξ′tβ)(ε2t−1 − σ2
t−1) + (ε2t − σ2

t ).

Let

wt = ε2t − σ2
t =

(
ε2t
σ2
t

− 1

)
σ2
t = (χ2(1)− 1)σ2

t
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with

Et−1[wt] = 0; and V art−1[wt] = 2σ4
t .

Subject to the above and following Nakatsuma [1998] suggestion, we assume that

wt ≈ w∗t ∼ N (0, 2σ4
t ). Then we have an “auxiliary”ARMA model for the squared

error ε2t .

ε2t = ξ′tγ + (ξ′tα + ξ′tβ)ε2t−1 − (ξ′tβ)w∗t−1 + w∗t , w∗t ∼ N (0, 2σ4
t )

i.e. w∗t = ε2t − ξ′tγ − (ξ′tα)ε2t−1 − (ξ′tβ)(ε2t−1 − w∗t−1).

(3.26)

Following Ardia [2008] we further express w∗t as a linear function of (3M ×

1) vector of θσ = (γ1, . . . , γM , α1, . . . , αM , β1, . . . , βM)′. To do this, we ap-

proximate the function w∗t by first order Taylor’s expansion about θ
(r−1)
σ =

(γ
(r−1)
1 , . . . , γ

(r−1)
M , α

(r−1)
1 , . . . , α

(r−1)
M , β

(r−1)
1 , . . . , β

(r−1)
M )′.

w∗t ≈ w∗∗t = w∗t (θ
(r−1)
−π )− (θσ − θ(r−1)

σ )′∇tξt,

where

∇t = −



∂w∗t
∂γ1

0 · · · 0
∂w∗t
∂α1

0 · · · 0
∂w∗t
∂β1

0 · · · 0

0
∂w∗t
∂γ2

0
... 0

∂w∗t
∂α2

0
... 0

∂w∗t
∂β2

0
...

... 0
. . . 0

... 0
. . . 0

... 0
. . . 0

0 · · · 0
∂w∗t
∂γM

0 · · · 0
∂w∗t
∂αM

0 · · · 0
∂w∗t
∂βM



′

and
∂w∗t
∂γk

= −ξtk + (ξ′tβ)
∂w∗t−1

∂γk
∂w∗t
∂αk

= −ξtkε2t−1 + (ξ′tβ)
∂w∗t−1

∂αk
∂w∗t
∂βk

= −ξtk(ε2t−1 − w∗t−1) + (ξ′tβ)
∂w∗t−1

∂βk
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for k = 1, . . . ,M , evaluated at θ(r−1)
σ .

Upon defining r∗t = w∗t (θ
(r−1)
−π ) + θ

′(r−1)
σ ∇tξt, it turns out that w∗∗t = r∗t − θ′σ∇tξt.

Furthermore, by defining the T × 1 vectors w = (w∗∗1 , . . . , w
∗∗
T )′, r∗ = (r∗1, . . . , r

∗
T )′, a

T × 3M matrix ∇ whose t−th row corresponds to ξ′t∇′t as well as a T × T matrix

V = 2


σ∗∗41 · · · 0

... . . . ...

0 · · · σ∗∗4T

 ,

with σ∗∗2t = (ξ
(r)
t

′
γ(r−1)) + (ξ

(r)
t

′
α(r−1))(yt−1 − ξ(r)

t−1

′
µ(r))2 + (ξ

(r)
t

′
β(r−1))σ∗∗2t−1, we end up

with w = r∗ − ∇θ′σ. Using this linear approximation, we can approximate the full

conditional probability of the volatility parameters as

f(θσ|ξ(r)
1:T , µ

(r), y1:T ) ∝

∝ 1

|V| 12
exp

(
−w′V−1w

2

)
I{γ1>0...,γM>0,0<α1<1,...,0<αM<1,0<β1<1...,0<βM<1}

∝ N3M(mσ,Σσ)I{γ1>0...,γM>0,0<α1<1,...,0<αM<1,0<β1<1...,0<βM<1},

(3.27)

where
Σσ = (∇′V−1∇)−1

mσ = Σ∇′V−1r∗.

(3.28)

The mean and variance defined above are used to characterize proposal distribution

for θσ, that is a mixture of truncated normal distributions. In our MCMC exercise, we

sample from the normal mixture and check that each sample satisfies the constraints.

Samples from the truncated distribution can be generated more efficiently by applying

Gibbs sampling (see Fernández et al. [2007] for further details).
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3.B Parameter posterior distributions
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Figure 3.7: Posterior densities for the MS-GARCH model using the single-move al-
gorithm and Multiple-Try Metropolis Sampler (MTM) algorithm.
Note: – single-move, – B. approx,– G. approx, – K. approx, – S. K. approx, – K.
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Figure 3.8: Posterior densities for the MS-GARCH model using the single-move and
Multiple-trial Metropolized independent sampler (MTMIS) algorithms.
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Figure 3.9: Posterior densities for the MS-GARCH model using the single-move and
Multiple correlated-try Metropolis sampler (MTCM) algorithms.
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Chapter 4

Markov Switching GARCH models

for Bayesian Hedging on Energy

Futures Markets

Abstract We propose Bayesian Markov Switching GARCH models for dynamic hedging in

energy futures markets and contribute to the existing literature in several ways. First, we

introduce a system of simultaneous equations consisting of return dynamics on the hedged

portfolio and futures. More specifically, we assume that both the mean and variance

of the hedged portfolio are governed by two unobserved discrete state processes, while

the futures dynamics is driven by a univariate hidden state process. The noise in both

processes are characterized by MS-GARCH. This formulation has at least two practical and

conceptual advantages:(1) easy interpretation of the model parameters e.g. regime specific

hedge ratios are easily generated and identified; (2) it provides an avenue to analyze the

contribution of the volatility dynamics and switching probabilities to the optimal hedge

ratio. Another contribution is the application of expected utility framework combined

with regime-switching models to define a robust minimum variance hedging strategy which

accounts for model parameter uncertainty. In this sense, we extend to regime switching

environment the work of Lence and Hayes [1994a] on. Thirdly, we extend the FFBS

sampling techniques in chapter 3 for a univariate chain MS-GARCH(1,1) to a multi-chain

multivariate MS-GARCH(1,1) environment. Finally, the hedging model is applied to crude

oil spot and futures markets.

Keywords : Markov Switching, Hedge ratio, Energy futures, GARCH
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4.1 Introduction

Hedging is an investment position taken by investors to mitigate the adverse effect

arising from changes in the price of a companion investment. A crucial issue, which

has been subject to both theoretical discussions and econometric specifications, is

the determination of the optimal hedge ratio, i.e. the number of derivative contracts

to buy (or sell) for each unit of the underlying asset on which the investor bears

risk. See Chen et al. [2003] for a review. In this paper, we focus on the econometric

model specification and estimation procedure of the optimal hedge ratio proposed by

Johnson [1960] and called Minimum Variance (MV) hedge ratio.

The MV hedge ratio is defined as the ratio of the covariance between the under-

lying spot and futures returns to the variance of the futures return. To apply this

optimum hedge ratio in practice, Ederington [1979] suggests regressing the under-

lying spot returns against the futures returns and to use the estimate of the slope

as MV hedge ratio. This approach has been widely criticized on the grounds that

some of the well known stylized facts about asset returns are ignored. For example,

it is well known that asset returns are usually not strictly stationary. To this end

and to improve hedging performance, time-varying hedge ratios are proposed in the

literature.

Two main approaches have been developed in the literature to estimate time-

varying MV hedge ratios. One approach involves the estimation of the conditional

second order moment of the underlying and futures returns captured by Generalized

Autoregressive Conditional Heteroscedasticity (GARCH) models. See Haigh and Holt

[2002], Chang et al. [2010] among others for illustration. The later approach treats

the hedge ratio as a time-varying regression coefficient and focuses on the estimation

of such a parameter (Lee et al. [2006], Chang et al. [2010] e.t.c.). Note that this hedge

ratio works by re-balancing the hedged portfolio on a period by period basis. This

may involve huge transaction costs and therefore it may not be worthwhile using this
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particular instrument for hedging. Also, it has been well documented in the empirical

literature that the class of GARCH models exhibit high persistence of conditional

variance, i.e. the process is close to being nearly integrated. In view of this, a few

authors allow the optimal hedge ratio to be state-dependent. In line with the first

approach of estimating time-varying hedge ratios, Alizadeh et al. [2008], Lee and

Yoder [2007a], Lee and Yoder [2007b] among others propose various regime-switching

multivariate GARCH models. More precisely, due to the path dependence problem

of MS-GARCH models, these authors implement the multivariate extension of Gray

[1996] model with differing characterization of time-varying covariance matrix. While

Gray’s model is attractive, its analytical intractability is a drawback i.e. it cannot

be derived using any standard analytical approximation technique. Still in the same

framework, Sheu and Lee [2012] argues that the dependence of both the derivative

and the spot on the same hidden state process might be inappropriate. Thus, the

authors propose the use of multichain Markov regime switching GARCH (MCSG)

model. Alizadeh and Nomikos [2004] on the other hand follow the second approach

and estimate time-varying hedge ratio by specifying a Markov switching variance

model.

In practice, the actual values of the constituent parameters in the optimal hedge

ratio are unknown. In this respect, traditionally, given the underlying econometric

model, optimal hedge ratio is estimated by replacing the unknown parameters by

their corresponding estimates. This approach is referred to as the “plug-in” or Pa-

rameter Certainty Equivalent (PCE) principle in the literature. Generally, decision

makers are left to provide, using any estimation technique, estimates of the model

parameters and substitute directly for their respective actual parameter values in

the theoretical model. One of the problems with this approach is that it completely

ignores estimation risk. As discussed above, several alternative econometric specifica-

tion has been suggested in the literature for estimating the optimal hedge ratio. It is
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however puzzling to observe large differences in the estimated MV hedge ratios using

these various econometric models on the same commodity. This observation further

suggest that it may be very costly if estimation risk is ignored. Another problem is

that relevant non sample information (such as insider information or subjective prior)

available to the hedger are discarded in the decision making process. Perhaps, a more

reliable decision may be arrived at by accounting for non-sample information in our

estimation exercise.

A convenient and most frequently used approach in the literature for handling

the problem of estimation risk is the expected utility paradigm. It may be argued

that a rational decision maker would choose an action that maximizes its expected

utility over the unknown parameter space. Early studies on this problem is pursued

in Raiffa and Schlaifer [1961] and DeGroot [2005], among others. A review of the

application of this theory, prior to 1978, to portfolio choice is provided in Bawa et al.

[1979]. More recent application of this theory can be found in Kan and Zhou [2007].

As appealing as the expected utility theory sounds, it is laden with a number of

computational issues. In many empirical application, analytical solution to either

the optimization exercise and/or the integration problem are often not achievable.

In view of this, alternative solution approach such as approximation or simulation is

called for. Müller et al. [2004], Müller et al. [2004], among others, propose simulation

based approach to the expected utility optimization problem.

Our contribution to the literature on time-varying hedge ratio is manifold. First,

we propose a robust hedging ratio that accounts not only for parameter uncertainty

but also for different state of the market. We follow a Bayesian decision rule to ac-

count for parameter uncertainty in the definition of optimal hedging strategies. See

for example Lence and Hayes [1994a] and Lence and Hayes [1994b] for illustration.

The second contribution is the use of MS-GARCH model in our econometric modeling

framework. Our modeling approach differs from existing regime switching multivari-
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ate GARCH models in the hedging literature that nest within them both Gray’s

univariate regime switching model and state independent multivariate GARCH mod-

els. The closest approach to our modeling framework is the work by Alizadeh and

Nomikos [2004]. We defer from Alizadeh and Nomikos [2004] in two ways. The first

difference between ours and theirs lies in the characterization of the time-varying

variance process. While Alizadeh and Nomikos [2004] considered a time-varying vari-

ance defined by an exponential function of the lagged 4-week moving average of the

difference between the logarithm of the underlying and the logarithm of the futures,

we consider a MS-GARCH model. The second difference relates to the properties

of the underlying hidden process governing the observable processes. Alizadeh and

Nomikos [2004] either assumes that the conditional variance of futures returns are

regime independent or that the hidden process characterizing the dynamics of the

hedged portfolio is independent of that influencing the futures returns process. We

account for this limitations in our econometric framework. Examples of the appli-

cation of MS-GARCH models in risk management can be found in Ardia [2008].

The third contribution involves a numerical procedure based on Monte Carlo Markov

Chains (MCMC) for estimating the hedging ratio. We adopt a Bayesian approach for

inferential purposes. The estimation exercise is carried out by following the sampling

technique in Billio et al. [2012] to efficiently sample the state variable trajectory. In

the empirical applications, we also efficiently estimate time-varying MV hedge ratios

for crude oil and gasoline spot and futures prices used in Chang et al. [2010] and

compare the result to conventional OLS method proposed by Ederington [1979].

The structure of this paper is as follows. In the next section, we present the

conventional MV hedge ratio as well as the Bayesian hedging strategy. In Section

3, we illustrate with real data how the proposed model is implemented. Section 4

concludes the paper and provides suggestions for possible extensions.
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4.2 Bayesian optimal hedge ratio

Let (Y,Y , Pθ) be a probability observation space, with Pθ a parametric family of prob-

ability distributions and θ a parameter in the measurable parameter space (Θ,FΘ).

Let yt = (RSt, RFt)
′ ∈ Y ⊂ R2, t = 1, . . . , T , be an observable process, where RSt,

RFt respectively corresponds to returns on the underlying and returns on the deriva-

tive (e.g., option, futures, etc.) at time t. Let us define the information set available

at time t, as the σ-algebra Ft = σ({ys}s≤t) generated by yt, t = 1, . . . , T and denote

with ys:t = (ys, . . . ,yt) a collection of observable variables.

Generally, consequent on the basic paradigm of expected utility theory and fol-

lowing standard hedging literature on commodities (e.g., see Haigh and Holt [2002]

and references therein), at time t the optimal hedge ratio, ht, is evaluated by solving

the following optimization problem,

arg max
h∈H

E(U |FΘ
t−1) = arg max

h∈H

∫
Y

U(r(h,yt))p(yt|y1:t−1, θ)dyt, (4.1)

where, E(·|F) is the conditional expectation operator, conditioning on a σ-algebra F

FΘ
t = σ(Ft ∨ FΘ) the information set generated by the collection of past values of

observable process and prior information available about the parameter values, U(·)

is the utility function, r(h,y) is a function of decision variable, h, and a vector of

random variables y, H is the feasible set of hedge ratios, p(yt|y1:t−1, θ) is the joint

probability density function (pdf) corresponding to yt conditional on past values y1:t−1

and the parameter θ. For example, the minimum variance (MV) hedge ratio proposed

by Johnson [1960] fits into this setting by assuming that: (i) the utility function is

quadratic, and (ii) the function r(h,y) is the returns on the hedged portfolio (RSt −

hRFt). Subject to these assumptions, minimizing the variance of the hedged portfolio

reduces (4.1) to

ht =
Cov(RSt, RFt|FΘ

t−1)

V ar(RFt|FΘ
t−1)

. (4.2)
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An important assumption in (4.1) is that p(yt|y1:t−1θ) is known with certainty. Un-

fortunately, in practice we are faced with incomplete knowledge either about (i) the

functional form of p(y|θ) (model risk) or (ii) the parameter vector, θ, given that the

functional form of p(yt|y1:t−1, θ) is known with certainty, (parameter uncertainty).

We shall limit our discussion in what follows to the case characterized by parameter

uncertainty while model risk problem is a subject for further research.

If the hedger does not know the true values of the parameters in θ, the problem

as represented in (4.1) cannot be solved because E(U |FΘ
t−1) is a function of these

unknown parameters and therefore is also unknown. The classical solution to this

problem follows the “plug-in” principle i.e. a point estimate θ̂ ∈ Ft−1 is substituted

for the unknown parameter vector θ. Upon appropriate substitution, (4.1) becomes

arg max
h∈H

E(U |Ft−1) = arg max
h∈H

∫
Y

U(r(h,yt))p(yt|y1:t−1, θ̂)dyt. (4.3)

In the technique described above, we act as if the parameters are known thus suggest-

ing the name parameter certainty equivalent (PCE) as this technique is sometimes

referred to in the literature. The uncertainty about the parameters in (4.1) are com-

pletely ignored in this approach. This calls for care when applying this method.

Based on this, we adopt the Bayes’ decision criterion (see Lence and Hayes [1994a])

by integrating out the unknown parameters in the product of E(U |FΘ
t−1) and the

posterior distribution of θ i.e.

arg max
h∈H

E(E(U |FΘ
t−1)|Ft−1) =

= arg max
h∈H

∫
Θ

(∫
Y

U(r(h,yt))p(yt|y1:t−1, θ)dyt

)
p(θ|y1:t−1)dθ

= arg max
h∈H

∫
Y

U(r(h,y))p(yt|y1:t−1)dyt,

(4.4)
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where p(yt|y1:t−1) is the marginal posterior predictive distribution. Unlike (4.1), (4.4)

does not involve any unknown parameter, but requires some information about the

parameters. The information can come from past values of the observation process

or from other prior information included in FΘ and in the prior distribution of the

parameters. In this case, the MV hedge ratio is

hBAYt =
E(Cov(RSt, RFt|FΘ

t−1)|Ft−1)

E(V ar(RFt|FΘ
t−1)|Ft−1)

. (4.5)

As highlighted in Bawa et al. [1979], applying Bayes’ criterion (4.4) in place of the

PCE approach has at least three benefits. First, Bayes’ criterion is supported by the

basic axioms postulated by von Neumann-Morgenstern, whereas the PCE has no such

axiomatic foundation. Second, all relevant (sample or non-sample) information about

θ are taking into consideration through the posterior distribution in Bayes’ method.

In contrast, sample informations contained in the point estimates θ̂ are only needed

to implement the PCE. Lastly, optimal average risk decision is arrived at by using

Bayes’ criterion.

In many situations, obtaining analytical solution to the Bayesian optimal hedge

ratio problem in (4.4) can be a daunting task. This is because, in some cases, nei-

ther the maximization nor the integration exercise can be solved analytically, thus

demanding for alternative approaches such as approximation and/or simulation based

methods (see Müller [1999]). For example, the integrand may be too complex to in-

tegrate or the number of parameters to integrate over might be too large to evaluate

analytically. In such a scenario, it is possible to approximate the optimization prob-

lem in (4.4) by using draws from the posterior distribution of θ given Ft−1, which

is a natural output of the MCMC approximation of the θ posterior distribution (see

Amzal et al. [2006] and Müller et al. [2004]). Several alternative theories regarding

the functional form of utility function (see for example Lence and Hayes [1994b] and
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Haigh and Holt [2002]) other than the negative squared error loss function used in

the MV hedge ratio exit in the literature for deriving the optimal hedge ratio. In this

article, we shall limit our attention to the MV hedge ratio as it is the most commonly

used optimal hedge ratio.

4.2.1 Econometric model specification

A popular econometric model used for calculating the optimal hedge ratio is the linear

model proposed by Ederington [1979]. In this model a linear relationship is assumed

between the underlying spot and futures returns

RSt = µ+ νRFt + εt, εt
iid∼ (0, σ2), (4.6)

where µ, ν and σ are the regression parameters. The ordinary least square (OLS)

estimate of the coefficient of RFt, ν, is then the MV hedging ratio. The assumption

of constant variance and covariance in (4.6) implies time-invariant hedge ratio and

thus makes this approach easy to implement. However, as highlighted by Myers

[1991], this method fails to properly account for all relevant conditioning information

available to hedgers when making their decision. Also, this method fails to account

for some of the well known stylized facts, such as conditional heteroscedasticity and

volatility clustering, commonly observed in financial data. In view of this and to

allow for changes in the market conditions to affect the hedge ratios, Equation (4.6)

is extended to an M state Markov switching model with a time-varying volatility

process also characterized by regime switching.

Let us define two measurable state space (X,X ) and (Z,Z) and unobserved pro-

cesses, st ∈ (X,X ), zt ∈ (Z,Z), t = 1, . . . , T , which are state variables representing,

respectively, the state of the hedged portfolio and futures market at time t. Let FXt
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and FZt be the sigma algebras generated respectively by su, and zu, u ≤ t. Then,

RSt = µ(st) + ν(st, zt)RFt + σtηt, ηt
iid∼ N (0, 1),

σ2
t = γ(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1,

RFt = a(zt) + τtζt, ζt
iid∼ N (0, 1),

τ 2
t = κ(zt) + ω(zt)ξ

2
t−1 + ψ(zt)τ

2
t−1,

(4.7)

where, εt = σtηt, ξt = τtζt, µ(st, zt), ν(st), γ(st) > 0, α(st) ≥ 0, β(st) ≥ 0, a(zt),

κ(zt) > 0, ω(zt) ≥ 0, ψ(zt) ≥ 0, and (st, zt) ∈ {1, . . . ,M}2, t = 1, . . . , T , is as-

sumed to follow a M ×M -state first order Markov chain with transition probabilities

{πij,kl}i,j,k,l=1,2,...,M :

πij,kl = p(st = i, zt = j|st−1 = k, zt−1 = l),
M∑
i=1

M∑
j=1

πij,kl = 1 ∀ k, l = 1, 2, . . . ,M.

(4.8)

The parameter shift functions µ(st), ν(st, zt), a(zt), γ(st), α(st), β(st), κ(zt), ω(zt)

and ψ(zt) describe the dependence of parameters on the realized regimes st, zt e.g.

µ(st) =
M∑
i,j=1

µiIst=iIzt=j, ν(st, zt) =
M∑
i,j=1

νijIst=iIzt=j, with Ist=i =


1, if st = i

0, otherwise,

Let ss:t = (ss, . . . , st), zs:t = (zs, . . . , zt), (s, z)s:t = {(sr, zr)}r=s:t, RSs:t =

(RSs, . . . , RSt), RFs:t = (RFs, . . . , RFt) whenever s < t, θπ = ({πij,kl}i,j,k,l=1,...,M),

θRSu = (µ1, . . . , µM , ν11, . . . , νMM), θRFa = (a1, . . . , aM), θσ = (γ1, . . . , γM , α1, . . . , αM , β1, . . . , βM),

θτ = (κ1, . . . , κM , ω1, . . . , ωM , ψ1, . . . , ψM) and θ = (θπ, θ
RS
u , θRFa , θσ, θτ ).

We summarize the theoretical implication of this extension on the optimal hedge

ratio in the following proposition.

Proposition 4.2.1. Suppose θ is known and assume that the observations are gener-

ated by the process described in (4.7). Then the conditional minimum variance hedge
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ratio at time t, is the solution to

ht = arg min
h∈H

V ar(RSt − hRFt|FΘ
t−1) (4.9)

which is given by

ht =
Cov(µ(st), a(zt)|FΘ

t−1)

V ar(RFt|FΘ
t−1)

+
M∑
i,j=1

νijwij, (4.10)

where

wij =

(∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

)
∑M

i,j=1

(∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

) ,

E(a(zt)|FΘ
t−1) =

∑
(s,z)1:t−1

M∑
i,j=1

ajπij,..p((s, z)1:t−1|Ft−1, θ),

Cov(µ(st), a(zt)|FΘ
t−1) =

∑
(s,z)1:t−1

M∑
i,j=1

(
µiaj − µiE[a(zt)|FΘ

t−1]
)
πij,..p((s, z)1:t−1|Ft−1, θ),

V (RFt|FΘ
t−1) =

M∑
i,j=1

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

 ,

πij,.. = p(st = i, zt = j|st−1, zt−1, θ),

and τ 2
t (k) = κk + ωkξ

2
t−1 + φkτ

2
t−1 for k = 1, . . . ,M and t = 1, . . . , T .

Proof: See Appendix (4.A).

Proposition 4.2.1 states that the optimal hedge ratio at any point in time can be

determined by two components. The first one is given by the conditional covariance

between the intercepts (a(zt) and µ(st)) scaled by the conditional variance of RFt. If

ν(st, zt) = 0 and the spot and derivative rates go on average in the same direction

within the same regime then the hedge ratio increases. The second component is a

weighted average of the hedge ratios conditioning on the different states (νij, i, j =
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1, . . . ,M). The weights are driven by the volatility of the returns on the derivative.

This suggests that the dynamics of the variance process on the derivative plays an

important role in estimating the MV hedge ratio. This is more evident in Remark

4.2.2 below.

Remark 4.2.2. If a(zt) is constant, then the optimal hedge ratio in (4.10) reduces to

ht =
M∑
i,j=1

νij


(∑

(s,z)1:t−1
τ 2
t (j)p(st = i, zt = j|st−1, zt−1, θ)p((s, z)1:t−1|Ft−1, θ)

)
∑M

i,j=1

(∑
(s,z)1:t−1

τ 2
t (j)p(st = i, zt = j|st−1, zt−1, θ)p((s, z)1:t−1|Ft−1, θ)

)
 .

(4.11)

Remark 4.2.3. If the dynamics of both the hedged portfolio and the derivative are

govern by the same unobserved state process, st, then the optimal hedge ratio at time

t is given by

ht =
Cov(µ(st), a(st)|FΘ

t−1)

V ar(RFt|FΘ
t−1)

+
M∑
j=1

νjwj, (4.12)

where

wj =

(∑
s1:t−1

(a2
j + τ 2

t (j)− ajE[a(st)|FΘ
t−1])p(st = j|st−1, θ)p(s1:t−1|Ft−1, θ)

)
∑M

j=1

(∑
s1:t−1

(a2
j + τ 2

t (j)− ajE[a(st)|FΘ
t−1])p(st = j|st−1, θ)p(s1:t−1|Ft−1, θ)

) ,

E(a(st)|FΘ
t−1) =

∑
s1:t−1

M∑
j=1

ajp(st = j|st−1, θ)p(s1:t−1|Ft−1, θ),

Cov(µ(st), a(st)|FΘ
t−1) =

∑
s1:t−1

M∑
j=1

(
µjaj − µjE[a(st)|FΘ

t−1]
)
p(st = j|st−1, θ)p(s1:t−1|Ft−1, θ),

V (RFt|FΘ
t−1) =

M∑
j=1

(∑
s1:t−1

(a2
j + τ 2

t (j)− ajE[a(st)|FΘ
t−1])p(st = j|st−1, θ)p(s1:t−1|Ft−1, θ)

)
,

and τ 2
t (k) = κk + ωkξ

2
t−1 + φkτ

2
t−1 for k = 1, . . . ,M and t = 1, . . . , T .

Remark 4.2.4. If st, zt are independent given (st−1, zt−1) and zt−1 (st−1) does not

cause st (zt) one step ahead given st−1 (zt−1) and ν(st, zt) = ν(st), then the result by
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Alizadeh and Nomikos [2004] is obtained i.e.

ht =
M∑
j=1

νj


(∑

s1:t−1
p(st = j|st−1, θ)p(s1:t−1|Ft−1, θ)

)
∑M

j=1

(∑
s1:t−1

p(st = j|st−1, θ)p(s1:t−1|Ft−1, θ)
)


=
M∑
j=1

νj


(∑

s1:t−1
p(st = j, s1:t−1|Ft−1, θ)

)
∑M

j=1

(∑
s1:t−1

p(st = j, s1:t−1|Ft−1, θ)
)


=
M∑
j=1

νj

(
p(st = j|Ft−1, θ)∑M

j=1 (p(st = j|Ft−1, θ))

)

ht =
M∑
j=1

νjp(st = j|y1:t−1, θ).

(4.13)

Furthermore, we expect a better estimate of the optimal hedge ratio using the

above outlined framework over constant hedge ratio since the model allows for shifts

in the mean and volatility of both RSt and RFt and recognizes the relationship

between them. As noted in Section 4.2, the model parameters in Equation (4.10) are

not known in practice. In this respect, a natural approach to solving this problem

will be to apply the plug-in principle. Alternatively, following the Bayesian paradigm

outlined above we have the following proposition.

Proposition 4.2.5. Assume that the observations are generated by the process de-

scribed in (4.7). Then under certain regularity conditions the Bayesian conditional

minimum hedge ratio at time t is the solution to

hBAYt = arg min
h∈H

{E(V ar(RSt − hRFt|FΘ
t−1)|Ft−1))} (4.14)

which is given by

hBAYt =

∫
Θ

[Cov(µ(st), a(zt)|FΘ
t−1)]p(θ|y1:t−1)dθ∫

Θ
[V ar(RFt|FΘ

t−1)]p(θ|y1:t−1)dθ
+

M∑
i,j=1

∫
Θ

νijwij(θ|y1:t−1)dθ, (4.15)
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where,

wij(θ|y1:t−1)

=

∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1, θ|y1:t−1)∑M

i,j=1

(∫
Θ

∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1, θ|y1:t−1)dθ

) ,
πij,.. = p(st = i, zt = j|st−1, zt−1, θ),

τ 2
t (k) = κk + ωkξ

2
t−1 + φkτ

2
t−1 for k = 1, . . . ,M , t = t̄, . . . , T and t̄ is the minimum

number of observations needed for the posterior distribution of θ to be proper.

Proof: See Appendix (4.B).

Similar to Proposition (4.2.1), Proposition (4.2.5) states that the Bayesian opti-

mal hedge ratio at any point in time can be determined by two components. The

first component measures the expected covariance between the intercepts divided by

the expected variance of the returns on futures after incorporating all available in-

formation about the unknown parameters through their joint posterior distribution.

Conditional on past observations, the second component is the expected hedge ratio

subject to a modified joint posterior distribution of the unknown parameters.

4.2.2 Computational requirement

An important ingredient needed in the Bayesian optimal hedge ratio defined by (4.15)

is the posterior distribution of the augmented parameter vector p((s, z)1:t−1, θ|y1:t−1), t =

t̄, . . . , T . These quantities cannot be identified with any known distribution. This

limitation makes the evaluation of (4.15) a non-trivial one. We shall address this

problem by using a simulation based technique.

The computation of the MV hedge ratio will be broken down into two main stages.

The first part consist of approximating the posterior distribution of the unknown
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parameters vector given past observations, p((s, z)1:t−1, θ|y1:t−1), while the second

part involves evaluating the hedge ratio.

Following Billio et al. [2012], we describe an efficient simulation based technique

for Bayesian approximation of the posterior probability, p((s, z)1:t−1, θ|y1:t−1). The

Bayesian approach is based on MCMC Gibbs algorithm which allows us to circumvent

the path dependence problem inherent in MS-GARCH models and efficiently sample

the state trajectories. The purpose of this algorithm is to generate samples from the

posterior distribution, p((s, z)1:t−1, θ|y1:t−1), which are then used in the second stage

for approximating the moments in (4.15).

We assume fairly informative prior for θπ and independent uniform prior for θRSu ,

θRFa , θσ and θτ and denote with f(θ) the joint prior density. To avoid label switching

we assume that γ1 < γ2 < · · · < γM , κ1 < κ2 < · · · < κM i.e. identifiability

restriction. The posterior density of the augmented parameter vector given by

f(θ, (s, z)1:t|RS1:t, RF1:t) ∝ f(RS1:t|(s, z)1:t, θ, RF1:t)f(RF1:t|(s, z)1:t, θ)p((s, z)1:t|θ)f(θ)

(4.16)

for t = t̄, . . . , T , cannot be identified with any standard distribution, hence we cannot

sample directly from it. In this respect, we apply Gibbs sampling technique whereby

for each t = t̄, . . . , T , our Gibbs sampler generate samples by iteratively sampling

from the following full conditional distributions:

1. p((s, z)1:t|θ, RS1:t, RF1:t),

2. f(θπ|θRFu , θRSa , θσ, θτ , (s, z)1:t, RS1:t, RF1:t) = f(θπ|(s, z)1:t), and

3. f(θRSu , θRFa , θσ, θτ |θπ, (s, z)1:t, RS1:t, RF1:t) = f(θRSu , θRFa , θσ, θτ |(s, z)1:t, RS1:t, RF1:t).

These full conditional distributions are easier to manage and sample from since they

can either be associated with a known distribution or simulated from by a lower

dimensional auxiliary sampler.
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The full joint distribution of the state variables, s1:t, given the parameter values

and return series

p((s, z)1:t|θ, RS1:t, RF1:t) ∝ f(RS1:t|RF1:t, θ, (s, z)1:t)f(RF1:t|θ, (s, z)1:t) (4.17)

is a non-standard distribution. In view of this, we consider a Metropolis Hastings

(MH) strategy for generating proposals for the state variables. We construct the

proposal distribution by first considering an approximation of the regime switching

GARCH model and then derive the joint distribution of the state variables. See

Billio et al. [2012] for alternative approximations. For expository purpose, we apply

the simplified Klaassen’s approximation given in Billio et al. [2012]. Samples of the

state trajectory are then drawn by Forward Filter Backward sampling scheme.

Let the proposal distribution be denoted by

q((s, z)1:t|θ, RS1:t, RF1:t) = q(st, zt|θ, RS1:t, RF1:t)
t−1∏
r=1

q(sr, zr|sr+1, zr+1, θ, RS1:r, RF1:r),

(4.18)

for t = t̄, . . . , T and where

q(sr, zr|θ, RS1:r−1, RF1:r−1)

=
M∑
i,j=1

p(sr, zr|sr−1 = i, zr−1 = j)q(sr−1 = i, zr−1 = j|θ, RS1:r−1, RF1:r−1),

q(sr, zr|sr+1, zr+1, θ, RS1:r, RF1:r)

=
p(sr+1, zr+1|sr, zr)q(sr, zr|θ, RS1:r, RF1:r)∑M

i,j=1 p(sr+1, zr+1|sr = i, zr = j)q(sr = i, zr = j|θ, RS1:r, RF1:r)
,

q(sr, zr|θ, RS1:r, RF1:r)

=
g(RSr|sr, zr, θ, RS1:r−1, RF1:r)g(RFr|sr, zr, θ, RF1:r−1)q(sr, zr|θ, RS1:r−1, RF1:r−1)

g(RS1:r, RF1:r|θ)
,
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g(RSr|sr, zr, θ, RS1:r−1, RF1:r) ∝
r∏

r∗=1

1

σ(RS)r∗
exp

(
−(RSr∗ − µ(sr∗)− ν(sr∗ , zr∗)RFr∗)

2

2σ2
(RS)r∗

)
,

g(RFr|sr, zr, θ, RF1:r−1) ∝
r∏

r∗=1

1

τ(RF )r∗
exp

(
−(RFr∗ − a(zr∗))

2

2τ 2
(RF )r∗

)
,

σ2
(RS)r∗ = γ(sr∗) + α(sr∗)

(
RSr∗−1 −

M∑
i,j=1

(µi + νijRFr∗−1)q(sr∗−1 = i, zr∗−1 = j|RS1:r∗−1, RF1:r∗−1)

)2

+ β(sr∗)

(
M∑
i,j=1

σ2
(RS)r∗−1(i)q(sr∗−1 = i, zr∗−1 = j|RS1:r∗−1, RF1:r∗−1)

)
,

τ 2
(RF )r∗ = κ(zr∗) + ω(zr∗)

(
RFr∗−1 −

M∑
m=1

(amq(zr∗−1 = m|RS1:r∗−1, RF1:r∗−1))

)2

+ ψ(sr∗)

(
M∑
m=1

τ 2
(RF )r∗−1(m)q(zr∗−1 = m|RS1:r∗−1, RF1:r∗−1)

)
,

for i = 1, . . . , t. The full conditional of θπ is Dirichlet under Dirichlet prior distribution

assumption and the posterior density of (θRSu , θRFa , θσ, θτ )

f(θRSu , θRFa , θσ, θτ |(s, z)1:t, RS1:t, RF1:t)

∝
t∏

r=1

1

σr
exp

(
−(RSr − µ(sr)− ν(sr)RFr)

2

2σ2
r

) t∏
r=1

1

τr
exp

(
−(RFr − a(zr))

2

2τ 2
r

)
(4.19)

is non-standard. Hence, we apply adaptive Metropolis-Hastings (MH) sampling tech-

nique for this step of the Gibbs algorithm. A summary of this step is summarized in

the Algorithm 1.
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Algorithm 1: Posterior approximation

For each t = t̄, . . . , T

1. Choose a starting value (s(0), z(0))1:t and θ(0).

2. Let (s(g−1), z(g−1))1:t, θ(g−1) and p(g−1)(st|Ft−1, θ) respectively be the state trajectory,

parameter set and prediction probability at (g − 1)th iteration.

3. Draw (s, z)1:t using FFBS from q((s, z)1:t|θ,RS1:t, RF1:t) and identify q(st, zt|Ft−1, θ)

from the forward filter.

4. Draw u ∼ U[0,1] and set

(s(g), z(g))1:t =


(s, z)1:t if u ≤ α((s, z)1:t, (s

(g−1), z(g−1))1:t),

(s(g−1), z(g−1))1:t otherwise,

where,

α((s, z)1:t, (s
(g−1), z(g−1))1:t)

=

(
1,
p((s, z)1:t|θ,RS1:t, RF1:t)q((s

(g−1), z(g−1))1:t|θ,RS1:t, RF1:t)

q((s, z)1:t|θ,RS1:t, RF1:t)p((s(g−1), z(g−1))1:t|θ,RS1:t, RF1:t)

)
.

5. Draw θπ from a Dirichlet distribution.

6. Draw θ−π from g(θ−π|(s(g−1), z(g−1))1:t, RS1:t, RF1:t).

7. Draw u ∼ U[0,1] and set

θ
(g)
−π =


θ−π if u ≤ α(θ−π, θ

(g−1)
−π ),

θ
(g−1)
−π otherwise,

where

α(θ−π, θ
(g−1)
−π ) =

(
1,
f(θ−π|(s, z)1:t, RS1:t, RF1:t)g(θ

(g−1)
−π |(s, z)1:t, RS1:t, RF1:t)

g(θ−π|(s, z)1:t, RS1:t, RF1:t)f(θ
(g−1)
−π |(s, z)1:t, RS1:t, RF1:t)
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In the second stage, samples generated from the posterior distribution,

p((s, z)1:t−1, θ|Ft−1), will be used for computing the Bayesian hedge ratio 4.15.

Let G represent the number of Monte Carlo samples from p((s, z)1:t−1, θ|Ft−1), then

ĥBAYt =

∑G
g=1[Cov(µ(g)(st), a

(g)(zt)|FΘ
t−1)]∑G

g=1[V ar(g)(RFt|Ft−1)]
+

1

G

M∑
i,j=1

G∑
g=1

ν
(g)
ij wij(θ

(g)|y1:t−1)

wij(θ
(g)|y1:t−1)

=
((τ

(g)
t )2(j) + (a

(g)
j )2 − a(g)

j E[a(g)(zt)|FΘ
t−1])p(g)(st = i, zt = j|s(g)

t−1, z
(g)
t−1, θ

(g))

1
G

∑M
j,k=1

∑G
g=1(((τ

(g)
t )2(k) + (a

(g)
k )2 − a(g)

k E[a(g)(zt)|FΘ
t−1])p(g)(st = j, zt = k|s(g)

t−1, z
(g)
t−1, θ

(g)))
.

We summarize in Algorithm 2 the steps involved in this stage.
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Algorithm 2: Hedging

For each t = t̄, . . . , T

1. Compute the moments and substitute into 4.2.2

E[a(g)(st)|FΘ
t−1]

=
M∑
i=1

M∑
j=1

a
(g)
j p(g)(st = i, zt = j|s(g)

t−1, z
(g)
t−1, θ

(g))

Cov(µ(g)(st), a
(g)(zt)|FΘ

t−1)

=
M∑
i=1

M∑
j=1

(
µ

(g)
i a

(g)
j − µ

(g)
i E[a(g)(zt)|Ft−1]

)
p(g)(st = i, zt = j|s(g)

t−1, z
(g)
t−1, θ

(g))

Cov(ν(g)(st)RFt, RFt|FΘ
t−1)

=
M∑
i=1

M∑
j=1

ν
(g)
ij ((a

(g)
j )2 + (τ

(g)
t )2(j)− a(g)

j E[a(g)(zt)|Ft−1])p(g)(st = i, zt = j|s(g)
t−1, z

(g)
t−1, θ

(g))

V ar(RFt|FΘ
t−1)

=
M∑
i=1

M∑
j=1

((a
(g)
j )2 + (τ

(g)
t )2(j)− a(g)

j E[a(g)(zt)|Ft−1])p(g)(st = i, zt = j|s(g)
t−1, z

(g)
t−1, θ

(g))

It is worth noting that the decision problem characterized by Proposition 4.2.5

may be classified as a sequential estimation problem. This is because, in contrast to a

fixed decision problem, as new observation yt+1 arrives, the hedger updates the pos-

terior distribution, f(θ|y1:t), about the unknown parameters and by induction revises

the hedge ratio. In our computational procedure, at each date t MCMC algorithm

is employed for drawing samples from the posterior probability distribution of the

unknown parameters which are then used in computing the moments in the Bayesian

hedge ratio. A drawback of our Bayesian estimation approach is the potential compu-
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tational burden involved running the MCMC algorithm on the posterior probability

distribution at each date. However, it can be argued that, the procedure remain

feasible in practice since the computation of hedging ratio may be done overnight

and result will be available at the beginning of the next trading day. Alternative

procedures such as the sequential MCMC proposed by Yang and Dunson [2013] or

sequential monte carlo (see Doucet et al. [2001]) may be used to reduce the computing

time when a timely updating of the hedge ratio is required.

4.3 Empirical Application

To illustrate the proposed method, we use daily closing energy prices for West Texas

Intermediate (WTI) crude oil futures for the period September 14, 2001 to July

31, 2013 (2967 observations). Both spot and futures daily settlement prices were

obtained from the US Energy information Agency (http://www.eia.doe.gov). The

daily returns are computed using the first difference of the natural logarithm of the

daily settlements. Figure (4.1) displays the sample path of crude oil squared returns

on spot and futures. We observe volatility clustering, which calls for the use of

MS-GARCH models. We consider a two regime (M = 2) MS-GARCH model with

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 4.1: Graphs for daily squared returns on WTI crude oil spot and futures from
September 14/09/2001 to 31/07/2013

(a(zt) = 0 and µ(st) = 0) since the sample mean of the both returns on futures and

spot are close to zero. Before we proceed with estimating the hedge ratio, we consider
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a full sample estimation of the parameters of the MS-GARCH model under different

assumptions on the hidden state process (ie. independent, dependent and same state

variables). This estimation will help us investigate the potential impact on the hedged

portfolio at time t if the state of the futures returns at time t − 1 remains the same

or changes and vice versa.

4.3.1 Full sample Estimation

In this paper, we perform 10000 Gibbs iterations after convergence according to the

Geweke’s diagnostic. To reduce serial correlation of the draws, we consider every 10th

draw after convergence of the Gibbs iteration in the results presented below. Table

4.1 to 4.4 show the estimation results for two state models using the full sample of

observation described above. From the estimated parameters in Table 4.1, regime

1 may be labeled as the low volatility state. Except for the constrained multichain

MS-GARCH model, we observe from Table 4.1 that the volatility persistence of the

hedged portfolio measured by the sum of garch parameter, β, and the arch parameter,

α, is higher in regime 1 than in regime 2. In other words, large persistence tends to be

associated with low volatility regime. This observation may largely be a reflection of

the dependence assumption between the chains driving the two series as observed in

the unconstrained multichain MS-GARCH model and the single chain MS-GARCH

model case.

The transition probabilities in Table 4.2 shows that the probability that the hedged

portfolio and futures return simultaneously remain in the high regime is very low.

Whereas, from Table 4.4 we observe that the single chain MS-GARCH model gives a

relatively high probability for the two variables to be in the high state simultaneously.

The implication of this observation is that, when possible misalignment between the

states of the chains driving the two dynamics are not taken into account, our results

may be a reflection of an under or over estimation exercise. Nevertheless, a consistent
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deduction from all the MS-GARCH specifications under consideration is that when

both returns are in the low regime at time t − 1, it is probable to maintain this

scenario in the next period. Also, Table 4.2 suggests that when the returns on the

hedged portfolio is in a different state with respect to the returns on the futures at

time t − 1, then the most probable scenario at time t will be the alignment of the

futures to the same scenario of the hedged portfolio.

Table 4.1: Parameter estimate of the MSGRACH model and standard deviation in
parenthesis.

MC-f-MSGARCH MC-c-MSGARCH SC-MSGARCH
ν11 0.994(0.0011) 0.993(0.0014) 0.991(0.0013)
ν12 0.629(0.0097)
ν21 0.947(0.0011) 0.875(0.0128) 0.829(0.0189)
ν22 0.055(0.0097)
γ1 1.23e-06(4.93e-08) 1.62e-06(7.85e-08) 1.64e-06(2.15e-07)
γ2 8.33e-05(6.06e-06) 1.14e-04(9.67e-06) 1.65e-04(1.79e-05)
α1 0.560(0.0369) 0.363(0.0310) 0.868(0.0501)
α2 0.586(0.0554) 0.632(0.0708) 0.091(0.0503)
β1 0.037(0.0022) 0.005(0.0032) 0.022(0.0086)
β2 0.292(0.0525) 0.325(0.0675) 0.442(0.0873)
κ1 9.76e-06(3.25e-06) 1.11e-06(8.99e-07) 7.14e-06(3.315e-06)
κ2 9.70e-05(4.37e-05) 5.48e-05(1.34e-05) 4.73e-05(1.813e-05)
ω1 0.073(0.0104) 0.026(0.0062) 0.062(0.0122)
ω2 0.093(0.0144) 0.122(0.0220) 0.084(0.0226)
ψ1 0.908(0.0123) 0.965(0.0067) 0.918(0.0176)
ψ2 0.794(0.0097) 0.789(0.0388) 0.872(0.0370)

Notes: SC-MSGARCH stands for single chain MS-GARCH; MC-c-MSGARCH stands for
constrained Multichain MS-GARCH model; and MC-f-MSGARCH stands for unconstrained
Multichain MS-GARCH

Table 4.2: Transition matrix for MC-f-MSGARCH model.

st−1 = 1, zt−1 = 1 st−1 = 1, zt−1 = 2 st−1 = 2, zt−1 = 1 st−1 = 2, zt−1 = 2
st = 1, zt = 1 0.9124 0.6383 0.2672 0.2176
st = 1, zt = 2 0.0026 0.0866 0.0168 0.2635
st = 2, zt = 1 0.0766 0.0534 0.6682 0.3781
st = 2, zt = 2 0.0084 0.2217 0.0478 0.1408
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Table 4.3: Transition matrix for MC-c-MSGARCH model.

(a) Hedged portfolio

st−1 = 1 st−1 = 2
st = 1 0.894 0.383
st = 2 0.106 0.617

(b) Futures

zt−1 = 1 zt−1 = 2
zt = 1 0.974 0.059
zt = 2 0.026 0.941

Table 4.4: Transition matrix for SC-MSGARCH model.

st−1 = 1 st−1 = 2
st = 1 0.930 0.424
st = 2 0.070 0.576

Also of interest in the unconstrained multichain MS-GARCH framework is the

ability to say in clear terms the effect of the possibility of changing the regime for a

single series, given a certain scenario in the previous period i.e.

p(st = i|st−1 = h, zt−1 = r) and p(zt = j|st−1 = h, zt−1 = r) ∀ i, j, h, r = 1, 2

In Table 4.5, we report these probabilities. The influence of zt−1 on the changes in

regime for the hedged portfolio are evident; in fact, the probability of hedged portfolio

staying in regime 1, when the futures was in regime 1 in the previous month, is 0.92,

but decreases to 0.72 when the futures was in regime 2. In a similar way, the futures

remains in regime 1 with an 98% chance when the hedged portfolio was in the same

regime, but switches to regime 2 with a probability equal to 31% when the hedged

portfolio was in regime 2.

Table 4.5: Conditional probabilities for the MC-f-MSGARCH model.

st−1 = 1, zt−1 = 1 st−1 = 1, zt−1 = 2 st−1 = 2, zt−1 = 1 st−1 = 2, zt−1 = 2
st = 1 0.9150 0.7249 0.2840 0.4811
st = 2 0.0850 0.2751 0.7160 0.5189
zt = 1 0.9890 0.6917 0.9354 0.5957
zt = 2 0.0110 0.3083 0.0646 0.4043
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Lastly, the correlations between the returns on the spot and the futures can be

obtained by evaluating

ρt =
1√

σ2
t

ν2t τ
2
t

+ 1
.

Unlike the single chain MS-GARCH model with two correlations, the multichain MS-

GARCH models have four possible correlation regime at each point in time. To have

an idea of the relative importance of the correlations in each MS-GARCH specifica-

tions, we replace the time varying variance with their respective regime unconditional

variance. In the unconstrained (constrained) multichain case, when both spot and

futures are in the high volatility regime, the correlation is equal to 0.997 (0.989) and

when both of them are in the low volatility regime, the correlation is equal to 0.016

(0.389). When spot return is in the high volatility regime and futures return is in the

low volatility regime, the correlation is equal to 0.995 (0.998) and when spot return

is in the low volatility regime and futures return is in the high volatility regime, the

correlation is equal to 0.634 (0.185). In summary, we find that the correlation of

spot and futures return series tend to be higher when the spot is in the low volatility

regime. The estimated correlations for the first and second regime of the single chain

MS-GARCH model are respectively equal to 0.979 and 0.822. This values are some-

where in between the highest correlation and the lowest correlation estimated from

the multichain MS-GARCH models. Overall, more model flexibility may be achieved

with the unconstrained MS-GARCH model since it has widest correlation range.

Based on the discussion above, it can be deduced that multichain MS-GARCH

models have an important role to play in the optimal hedge ratio theory.

4.3.2 Hedge ratio

In order to check whether our proposed model is of practical use, we conduct a

sequential estimation exercise to investigate the performance of our proposed model.
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For each hedging model, an out-of-sample analysis of hedging performance with daily

re-balancing is carried out. On daily basis, an estimate of the MV hedge ratio is

obtained and the futures position to be taken at the end of that day until the following

day is also determined. The sample is then extended by one day, the hedge ratios

re-estimated, and the hedge rebalanced and held until the end of the next day. For

each MS-GARCH specification we consider the sequential estimation of the hedge

ratio for three sub-periods i.e. 08/08/2006 to 03/01/2007, 01/10/2008 to 25/03/2009

and 15/02/2013 to 31/07/2013. These periods respectively correspond to the period

before, during and after the 2008/2009 global financial crisis.

Figure ?? - ?? shows how different regime specific hedge ratios, conditional vari-

ance and prediction probabilities have evolved over the three sub-sample periods. For

the unconstrained MS-GARCH model, we observe a small range of values for the

regime specific hedge ratios (see 4.2(a)) and high variability in the conditional vari-

ance of the futures (see 4.3(a)) prior the 2008/2009 global financial crisis. However,

after the 2008/2009 global financial crisis, we observe a clear separation of the hedge

ratios (4.3(e)) into two groups determined the change in the hidden process on the

futures returns. Also, the variability of the conditional variance of the futures is very

low (4.3(e)) relative to our observation prior the global financial crisis. Although, the

reason for this is not clear, one possible argument is that investors are more care-

ful and are learning from the experience during financial crisis. The application of

the single chain MS-GARCH model tend to suffer from an under or over estimation

problem arising from the use of a single chain (see 4.4(a)-4.5(e)). In the case of the

constrained MS-GARCH model, there no significant difference in the evolution of the

hedge ratio before and after the global financial crisis. A direct comparison between

the hedge ratios formed by the unconstrained and constrained MS-GARCH suggests

that the unconstrained models is more flexible as it produces a wider range of values

for the hedge ratio. Overall, the unconstrained MS-GARCH model seem to perform
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best among the set of models under consideration. Also, the high probability of stay-

ing in the low volatility regime implies low transaction cost because the investor only

needs to re-balance his portfolio occasionally.

In the above exercise, it is assumed that the prevailing state of the world is known.

However, in reality and most certainly, the current state of the world cannot be cor-

rectly identified by the hedger. In this situation, the average hedge ratio is imple-

mented and it is computed as using the following:

ht = EθE[ν(st, zt)|Ft−1] = Eθ

[
M∑

m,m′=1

νmp(st = m, zt = m′|Ft−1)

]
, (4.20)

and estimated using,

ht =
1

G

G∑
i=1

M∑
m,m′=1

ν
(i)
m,m′p

(i)(st = m, zt = m′|Ft−1), (4.21)

where G is the number of Gibbs samples.

In Figure 4.7, we report the estimation results for each model and compare them

with the OLS hedge ratio over the three subsamples. The MS-GARCH hedge ratios

display similar time varying characteristics. However, occasionally, we observe that

the time varying hedge ratios fall below the OLS hedge ratio. Also, the hedge ratios

are observe to shift closer 1 after the global financial crisis. This observation further

confirm our earlier deduction that hedgers seem to be more careful in their investment

decisions after the global financial crisis.

4.3.3 Hedging effectiveness

Following the estimation of the hedge ratios, we formally assess the performance of

these hedges by first constructing the portfolio implied by the computed hedge ratios

daily. Then we calculate the variance of the returns of these portfolios over each
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(a) Regime specific hedge ratio before the crisis
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(b) Regime specific weights before the crisis
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(c) Regime specific hedge ratio during the crisis
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(d) Regime specific weights during the crisis
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(e) Regime specific hedge ratio after the crisis
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(f) Regime specific weights after the crisis

Figure 4.2: Regime specific hedge ratio and corresponding weights for the uncon-
strained multichain MS-GARCH model (MC-f-MSGARCH). first row 08/08/2006 to
03/01/2007; second row 01/10/2008 to 25/03/2009; third row and 15/02/2013 to
31/07/2013.
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(a) Regime specific conditional variance before the
crisis
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(b) Regime specific prediction probability before
the crisis
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(c) Regime specific conditional variance during the
crisis
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(d) Regime specific prediction probability during
the crisis
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(e) Regime specific conditional variance after the
crisis
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(f) Regime specific prediction probability after the
crisis

Figure 4.3: Regime specific conditional variance and corresponding predicted proba-
bilities for the unconstrained multichain MS-GARCH model (MC-f-MSGARCH). first
row 08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and
15/02/2013 to 31/07/2013.
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(a) Regime specific hedge ratio before the crisis
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(b) Regime specific weights before the crisis
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(c) Regime specific hedge ratio during the crisis
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(d) Regime specific weights during the crisis
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(e) Regime specific hedge ratio after the crisis
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(f) Regime specific weights after the crisis

Figure 4.4: Regime specific hedge ratio and corresponding weights for the single chain
MS-GARCH model (SC-MSGARCH). first row 08/08/2006 to 03/01/2007; second
row 01/10/2008 to 25/03/2009; third row and 15/02/2013 to 31/07/2013.
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(a) Regime specific conditional variance before the
crisis
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(b) Regime specific prediction probability before
the crisis
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(c) Regime specific conditional variance during the
crisis
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(d) Regime specific prediction probability during
the crisis
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(e) Regime specific conditional variance after the
crisis
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(f) Regime specific prediction probability after the
crisis

Figure 4.5: Regime specific conditional variance and the corresponding prediction
probabilities for the single chain MS-GARCH model (SC-MSGARCH). first row
08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and
15/02/2013 to 31/07/2013.
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(a) Regime specific hedge ratio before the crisis
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(b) Regime specific weights before the crisis
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(c) Regime specific hedge ratio during the crisis
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(d) Regime specific weights during the crisis
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(e) Regime specific hedge ratio after the crisis
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(f) Regime specific weights after the crisis

Figure 4.6: Regime specific hedge ratio and corresponding prediction probabilities
for the constrained multichain MS-GARCH model (MC-c-MSGARCH). first row
08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and
15/02/2013 to 31/07/2013.
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(a) Hedge ratio before financial crisis
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(b) Hedge ratio during the financial crisis
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(c) Hedge ratio after the financial crisis

Figure 4.7: Comparison of average hedge ratio for MC-f-MSGARCH, MC-c-
MSGARCH and SC-MSGARCH. first row 08/08/2006 to 03/01/2007; second row
01/10/2008 to 25/03/2009; third row and 15/02/2013 to 31/07/2013.
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subsample period. In mathematical forms, we evaluate

V ar(RSt − h∗tRFt) (4.22)

where h∗t are the estimated hedge ratios. The percentage incremental variance im-

provement of the MS-GARCH model against the OLS model is calculated as follows

V ar(OLS)− V ar(MS-GARCH)

V ar(OLS)
× 100, (4.23)

where V ar(OLS) and V ar(MS-GARCH) are respectively the variance of the returns

on the hedged portfolio (Equation (4.22)) estimated using hedge ratios obtained from

the OLS and MS-GARCH models. A positive value of 4.23 is an indication that the

MS-GARCH hedge ratio performs better than the OLS hedge ratio. Three different

measures of the hedge ratio h∗t in 4.23 are considered. The first the average hedge

ratio given by 4.21, the second is the average hedge ratio at time t given the most

probable state at time t− 1, and the third measure assumes the most probable hedge

ratio at time t given the most state of the market at time t.

Table 4.6: Hedging Effectiveness of MS-GARCH against Constant Hedge ratio.

h∗t = E[ν(st, zt)] h∗t = E[νt|ŝt−1, ẑt−1] h∗t = ν(ŝt.ẑt)
before during after before during after before during after

SC-MSGARCH 6.9 7.8 −3.8 0.8 9.3 4.5 2.2 16.4 4.6
MC-c-MSGARCH 6.3 5.9 −6.3 6.9 5.9 −6.3 11.7 12.1 −14.9
MC-f-MSGARCH 3.9 4.7 −4.8 1.9 4.6 0.2 −5.9 1.0 −3.3

Notes: (ŝt, ẑt)=argmax p(st, zt|Ft−1), Percentage variance reduction are calculated as the
differences of variance of hedged portfolio using OLS estimate and estimated variances of
alternative models over variance of hedged portfolio using OLS estimate position multiplied by
100. before, during and after respectively signifies the period before, during and after the
2008/2009 global financial crisis. SC-MSGARCH stands for single chain MS-GARCH;
MC-c-MSGARCH stands for constrained Multichain MS-GARCH model; and MC-f-MSGARCH
stands for unconstrained Multichain MS-GARCH
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From Table 4.6, it appears that Markov-switching models provide more efficient

hedge ratios relative to the OLS estimate both before and during the 2008/2009 global

financial crisis. The OLS hedge ratio on the other hand seem to perform better than

MS-GARCH models after the financial crisis. This observation may be due to the low

conditional variance of the markets after the 2008/2009 global financial crisis. Among

the MS-GARCH specifications under consideration, the constrained multichain MS-

GARCH model provides the most consistent measure of hedging effectiveness across

the three different measures of hedge ratios used in the evaluation of the of 4.23.

While, the unconstrained multichain MS-GARCH model provides the least hedging

effectiveness across the three different measures of hedge ratios used in its evaluation.

Furthermore, prior to the financial crisis, the hedging effectiveness obtained using the

most probable hedge ratio suggests that the OLS hedge ratio perform better than

the unconstrained multichain model. This is in contrast with our observation when

the average hedge ratio is applied. This observation suggests that the unconstrained

multichain model is flexible enough to detect events that are not apparent when aver-

age hedge ratio is applied. Our observation is in line with Sephton [1998] observation

who finds that the Regime Switching strategy outperforms both OLS and GARCH

strategies in the low variance state, but performs much worser than either strategy

in the high variance state. This is an indication that multichain Markov-switching

models has the potentials of competing favourable with other time-varying models.

It is worth emphasizing that our measure of hedging effectiveness has been shown

to be inadequate in evaluating minimum-variance hedge ratios other than OLS. See

Lien [2005] and Lien [2009] for discussion. Based on this, alternative measures of

effectiveness may provide better insight into the relative advantages of the multichain

regime switching model over other models.
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4.4 Conclusion

In this paper, we present and examine the performance of a robust Bayesian MS-

GARCH model for determining the time-varying hedge ratios in energy futures mar-

kets. We account for parameter uncertainty by considering a Bayesian decision rule.

Our results suggest that Markov switching models are capable of improving hedg-

ing performance in terms of variance reduction. Subject to further research is the

issue arising from model uncertainty and the use Bayesian Model Averaging (BMA).

Finally, Ederington hedging effectiveness measure is considered in analysing the out-

of-sample performance of the proposed hedging strategies in this paper. However,

Lien [2005] has emphasized the inadequacy of the regression R2 to evaluate minimum-

variance hedge ratios other than OLS. Also, the hedging effectiveness calculation does

not consider transaction cost. Thus, the superiority of the regime switching hedge

strategy limits its use for practical purposes. In this respect, it is our plan to ad-

dress these issues in further research. First by incorporating transaction cost into our

modelling framework and secondly by considering alternative measures of hedging ef-

fectiveness such as a utility framework in order to create a balance between variance

reduction and incremental transaction.
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4.A Proof to Proposition 4.2.1:

ht = arg min
h∈H

V ar(RSt − hRFt|FΘ
t−1),

= arg min
h∈H

(
V ar(RSt|FΘ

t−1) + h2V ar(RFt|FΘ
t−1)− 2hCov(RSt, RFt|FΘ

t−1)
)
.

(4.24)

where Ft−1 denotes the information set available up to time t. Under the

normal distributional assumption, neither V ar(RSt|FΘ
t−1), V ar(RFt|FΘ

t−1) nor

Cov(RSt, RFt|FΘ
t−1) depend on the on RSt and RFt. Therefore, our problem reduces

to

ht = arg min
h∈H

V ar(RSt|FΘ
t−1) + h2V ar(RFt|FΘ

t−1)− 2hCov(RSt, RFt|FΘ
t−1). (4.25)

Taking the first order derivative with respect to h and equating the resulting expres-

sion to zero, we have

ht =
Cov(RSt, RFt|FΘ

t−1)

V ar(RFt|FΘ
t−1)

,

=
Cov(µ(st), RFt|FΘ

t−1)

V (RFt|FΘ
t−1)

+
Cov(ν(st, zt)RFt, RFt|FΘ

t−1)

V (RFt|FΘ
t−1)

.

(4.26)

where,

Cov(ν(st, zt)RFt, RFt|FΘ
t−1) = E[ν(st, zt)RF

2
t |FΘ

t−1]− E[ν(st, zt)RFt|FΘ
t−1]E[RFt|FΘ

t−1]

= E[ν(st, zt)(a(zt) + τtζt)
2|FΘ

t−1]

− E[ν(st, zt)(a(zt) + τtζt)|FΘ
t−1]E[(a(zt) + τtζt)|FΘ

t−1],

iid ζt
= E[ν(st, zt)(a(zt)

2 + τ 2
t )|FΘ

t−1]− E[ν(st, zt)a(zt)|FΘ
t−1]E[a(zt)|FΘ

t−1],

= E[ν(st, zt)(a(zt)
2 + τ 2

t − a(zt)E[a(zt)|FΘ
t−1])|FΘ

t−1].

(4.27)
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Then by law of iterated expectation, we have

Cov(ν(st, zt)RFt, RFt|FΘ
t−1)

= E

(
M∑
i,j=1

νij(a
2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])p(st = i, zt = j|(s, z)1:t−1,Ft−1, θ)|FΘ

t−1

)

= E

(
M∑
i,j=1

νij(a
2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..|FΘ

t−1

)

=
∑

(s,z)1:t−1

(
M∑
i,j=1

νij(a
2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..

)
p((s, z)1:t−1|Ft−1, θ)

=
M∑
i,j=1

νij

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

 ,

(4.28)

where (s, z)s:t = {(sr, zr)}r=s:t and πij,.. = p(st = i, zt = j|st−1, zt−1, θ).

Analogously,

V (RFt|FΘ
t−1) =

M∑
i,j=1

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

 ,

(4.29)

E(a(zt)|FΘ
t−1) =

∑
(s,z)1:t−1

M∑
i,j=1

ajπij,..p((s, z)1:t−1|Ft−1, θ),

Cov(µ(st), RFt|FΘ
t−1) = Cov(µ(st), a(zt)|FΘ

t−1) =

=
∑

(s,z)1:t−1

M∑
i,j=1

(
µiaj − µiE[a(zt)|FΘ

t−1]
)
πij,..p((s, z)1:t−1|Ft−1, θ),

τ 2
t (j) = κj + ωjξ

2
t−1 + φjτ

2
t−1 for j = 1, . . . ,M and t=1,. . . , T. The result follows

immediately by substituting these quantities into (4.26) and letting

wij =

(∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

)
∑M

i,j=1

(∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

) .
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4.B Proof to Proposition 4.2.5:

ht = arg min
h∈H

E[(V ar(RSt − hRFt|FΘ
t−1))|Ft−1],

= arg min
h∈H

E(
(
V ar(RSt|FΘ

t−1) + h2V ar(RFt|FΘ
t−1)− 2hCov(RSt, RFt|FΘ

t−1)
)
||Ft−1).

(4.30)

where Ft−1 denotes the information set available up to time t − 1. Under the

normal distributional assumption, neither V ar(RSt|FΘ
t−1), V ar(RFt|FΘ

t−1) nor

Cov(RSt, RFt|FΘ
t−1) depend on the on RSt and RFt. Therefore, our problem reduces

to

ht = arg min
h∈H

E[(V ar(RSt|FΘ
t−1) + h2V ar(RFt|FΘ

t−1)− 2htCov(RSt, RFt|FΘ
t−1))|Ft−1].

(4.31)

Under some regularity conditions, the first order condition with respect to ht is given

by

ht =
E(Cov(RSt, RFt|FΘ

t−1)|Ft−1)

E(V ar(RFt|FΘ
t−1)|Ft−1)

,

=
E(Cov(µ(st), RFt|FΘ

t−1)|Ft−1)

E(V (RFt|FΘ
t−1)|Ft−1)

+
E(Cov(ν(st, zt)RFt, RFt|FΘ

t−1)|Ft−1)

E(V (RFt|FΘ
t−1)|Ft−1)

.

(4.32)

where,

E(Cov(ν(st, zt)RFt, RFt|FΘ
t−1)|Ft−1)

=

∫
Θ

 M∑
i,j=1

νij

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

 p(θ|y1:t−1)dθ

=
M∑
i,j=1

∫
Θ

νij

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

 p(θ|y1:t−1)dθ


=

M∑
i,j=1

∫
Θ

νij

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1, θ, |Ft−1, θ)

 dθ

 ,

(4.33)
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and

E(V (RFt|FΘ
t−1)|Ft−1)

=

∫
Θ

 M∑
i,j=1

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

 p(θ|y1:t−1)dθ

=
M∑
i,j=1

∫
Θ

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1|Ft−1, θ)

 p(θ|y1:t−1)dθ


=

M∑
i,j=1

∫
Θ

 ∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1, θ|Ft−1, θ)

 dθ

 .

(4.34)

τ 2
t (j) = κj + ωjξ

2
t−1 + φjτ

2
t−1 for j = 1, . . . ,M and t=1,. . . , T. The result follows

immediately by substituting these quantities into (4.32) with

wij(θ|y1:t−1)

=

(∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1, θ|Ft−1, θ)

)
∑M

i,j=1

(∫
Θ

(∑
(s,z)1:t−1

(a2
j + τ 2

t (j)− ajE[a(zt)|FΘ
t−1])πij,..p((s, z)1:t−1, θ|Ft−1, θ)

)
dθ
) .

4.C Constructing proposal distribution for θRSu , θRFa , θσ, θτ

Sample (θRSu )(g), (θRFa )(g), θ
(g)
σ , θ

(g)
τ from f(θRSu , θRFa , θσ, θτ |s(g)

1:t , π
(g), y1:t). Given a prior

density f(θRSu , θRFa , θσ, θτ ), the posterior density of (θRSu , θRFa , θσ, θτ ) can be expressed

as follows

f(θRSu , θRFa , θσ, θτ |s(r)
1:t , π, y1:t) ∝ f(θRSu , θRFa , θσ, θτ )

×
t∏
i=1

1

σi
exp

(
−(RSi − µ(si)− ν(si)RFi)

2

2σ2
i

)

×
i∏
i=1

1

τi
exp

(
−(RFi − a(si))

2

2τ 2
i

) (4.35)
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where,

σ2
i = γ(si) + α(si)(RSi−1 − µ(si−1)− ν(si−1)RFi−1)2 + β(si)σ

2
i−1.

and

τ 2
i = κ(si) + ω(si)(RFi−1 − a(si−1))2 + φ(si)τ

2
i−1.

In order to generate θRSu , θRFa , θσ, θτ from the joint distribution we first separate

the parameters of RSt from RFt and apply further blocking on this subgroups of

the Gibbs sampler i.e. We split the regime-dependent parameters of both RSt and

RFt into two subvectors, the parameter of the observation equation θRSu (θRFa ) and

the parameters of the volatility process θσ (θτ ). For each subvector we implement a

Metropolis-Hastings (MH) step that samples from normal distribution in the case of

θRSu (θRFa ) and truncated normal distribution in the case of θσ (θτ ). The distributions

is adapted during the burnin period.

As regards the parameters of the conditional expectation of the θRSu , we derive

the mean and variance of the proposal distribution by considering an approximation

of the full conditional distribution of θRSu ,

f(θRSu |s
(g)
1:t , γ

(g−1), β(g−1), α(g−1), RS1:t, RF1:t) ∝
t∏
i=1

N (RSi;µ(si) + ν(si)RFi, σ
2
i ).

Given an approximation σ∗2t of σ2
t , it can easily be shown, by completing the square

method, that the full conditional distribution of θRSu can be approximated by a normal

distribution. Let

∇ut =



1 0 · · · 0 RFt 0 · · · 0

0 1 0
... 0 RFt 0

...
... 0

. . . 0
... 0

. . . 0

0 · · · 0 1 0 · · · 0 RFt



′

,
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Vu =


σ∗21 · · · 0

... . . . ...

0 · · · σ∗2t

 ,

and define a t × 2M matrix ∇u whose i−th row corresponds to ∇uiξi and ξi =

(Isi=1, . . . , Isi=M)′ then

f(θRSu |s
(g)
1:t , γ

(g−1), β(g−1), α(g−1), RS1:t, RF1:t)

≈ 1

|V| 12
exp

(
−(RS′1:t −∇uθ

RS
u
′
)′V−1u (RS′1:t −∇uθ

RS
u
′
)

2

)

= N2M(mu,Σu),

where,

Σu = (∇′uVu
−1∇u)

−1

mu = Σu∇′uVu
−1RS

′

1:t.

σ∗2i = γ(g−1)(s
(g)
i )+α(g−1)(s

(g)
i )(RSi−1−µ(g−1)(s

(g)
i−1)−ν(g−1)(s

(g)
i−1)RFi−1)2+β(g−1)(s

(g)
i )σ2

i−1.

As regards the parameters of the volatility process the full conditional is

f(θRSu |s
(g)
1:t , γ

(g−1), β(g−1), α(g−1), RS1:t, RF1:t) ∝
t∏
i=1

N (RSi;µ(si) + ν(si)RFi, σ
2
i ).

We now follow the ARMA approximation of the MS-GARCH process i.e.

σ2
t = γ(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1

ε2t = γ(st) + (α(st) + β(st))ε
2
t−1 − β(st)(ε

2
t−1 − σ2

t−1) + (ε2t − σ2
t ).

Let

wt = ε2t − σ2
t =

(
ε2t
σ2
t

− 1

)
σ2
t = (χ2(1)− 1)σ2

t

with

Et−1[wt] = 0; and V art−1[wt] = 2σ4
t .
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Subject to the above and following Nakatsuma [1998] suggestion, we assume that

wt ≈ w∗t ∼ N (0, 2σ4
t ). Then we have an “auxiliary”ARMA model for the squared

error ε2t .

ε2t = γ(st) + (α(st) + β(st))ε
2
t−1 − β(st)w

∗
t−1 + w∗t , w∗t ∼ N (0, 2σ4

t )

i.e. w∗t = ε2t − γ(st)− α(st)ε
2
t−1 − β(st)(ε

2
t−1 − w∗t−1).

(4.36)

Following Ardia [2008] we further express w∗t as a linear function of (3M ×

1) vector of θσ = (γ1, . . . , γM , α1, . . . , αM , β1, . . . , βM)′. To do this, we ap-

proximate the function w∗t by first order Taylor’s expansion about θ
(r−1)
σ =

(γ
(r−1)
1 , . . . , γ

(r−1)
M , α

(r−1)
1 , . . . , α

(r−1)
M , β

(r−1)
1 , . . . , β

(r−1)
M )′.

w∗t ≈ w∗∗t = w∗t (θ
(r−1)
−π )− (θσ − θ(r−1)

σ )′∇tξt,

where

∇t = −



∂w∗t
∂γ1

0 · · · 0
∂w∗t
∂α1

0 · · · 0
∂w∗t
∂β1

0 · · · 0

0
∂w∗t
∂γ2

0
... 0

∂w∗t
∂α2

0
... 0

∂w∗t
∂β2

0
...

... 0
. . . 0

... 0
. . . 0

... 0
. . . 0

0 · · · 0
∂w∗t
∂γM

0 · · · 0
∂w∗t
∂αM

0 · · · 0
∂w∗t
∂βM



′

and
∂w∗t
∂γk

= −ξtk + (ξ′tβ)
∂w∗t−1

∂γk
∂w∗t
∂αk

= −ξtkε2t−1 + (ξ′tβ)
∂w∗t−1

∂αk
∂w∗t
∂βk

= −ξtk(ε2t−1 − w∗t−1) + (ξ′tβ)
∂w∗t−1

∂βk

for k = 1, . . . ,M , evaluated at θ(r−1)
σ .

Upon defining r∗t = w∗t (θ
(r−1)
−π ) + θ

′(r−1)
σ ∇tξt, it turns out that w∗∗t = r∗t − θ′σ∇tξt.

Furthermore, by defining the T × 1 vectors w = (w∗∗1 , . . . , w
∗∗
T )′, r∗ = (r∗1, . . . , r

∗
T )′, a
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T × 3M matrix ∇ whose t−th row corresponds to ξ′t∇′t as well as a T × T matrix

V = 2


σ∗∗41 · · · 0

... . . . ...

0 · · · σ∗∗4T

 ,

with σ∗∗2t = (ξ
(r)
t

′
γ(r−1)) + (ξ

(r)
t

′
α(r−1))(yt−1 − ξ(r)

t−1

′
µ(r))2 + (ξ

(r)
t

′
β(r−1))σ∗∗2t−1, we end up

with w = v − θ′σ∇. Using this linear approximation, we can approximate the full

conditional probability of the volatility parameters as

f(θσ|ξ(r)
1:T , µ

(r), y1:T ) ∝

∝ 1

|V| 12
exp

(
−w′V−1w

2

)
I{γ1>0...,γM>0,0<α1<1,...,0<αM<1,0<β1<1...,0<βM<1}

∝ N3M(mσ,Σσ)I{γ1>0...,γM>0,0<α1<1,...,0<αM<1,0<β1<1...,0<βM<1},

(4.37)

where
Σσ = (∇′V−1∇)−1

mσ = Σ∇′V−1r∗.

(4.38)

In a similar fashion we construct the proposal distribution for the parameters of RFt
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Chapter 5

Bayesian Approach to Forecast

Rationality Tests of A.J. Patton and

A. Timmermann

with Lennart Hoogerheide, and Herman K. van Dijk1

Abstract We propose Bayesian inference as an alternative procedure for testing the mono-

tonicity properties of second moment bounds across several horizons as presented in Patton

and Timmermann [2012]. This approach avoids the use of computationally expensive test

statistics and asymptotic distributions under the null hypothesis and consequently pro-

ducing more reliable results for moderate and small sample data. We are also able to

account for parameter uncertainty using our proposed Bayesian inference technique.

Keywords : Markov Switching, Hedge ratio, Energy futures, GARCH

1This paper was developed during my research visit to Tinbergen Institute, Vrije Universiteit
Amsterdam, The Netherlands.

139



5.1 Introduction

Forecasts are used by policymakers and other practitioners for making informed de-

cisions in their businesses. For example, Government’s decision on taxes, revenues,

money and credit supply, foreign trade and balances, employment among others rests

upon actual or implied forecasts of economic conditions. In finance, on the other

hand, forecast plays important role in such studies as portfolio theory, asset pricing

and corporate among others. Forecasts on various economic and financial variables

are published by bodies like the Philadelphia Federal Reserve (Survey of Professional

Forecasters) and the IMF (World Economic Outlook). These forecasts are usually

generated using econometric models and/or subjective judgment; see Ross [1955] for

a survey on economic forecasting techniques. A stream of research on forecasting

takes the view of a forecast producer and focuses on the issues of constructing opti-

mal forecast subject to a loss function. See Elliot and Timmermann [2004], Geweke

and Whiteman [2006], Zellner [1986], Hashem Pesaran et al. [2013] for illustration.

The other stream of research takes on the forecast evaluator’s perspective and deals

with issues surrounding tests of forecast rationality/optimality. Forecasts on a single

economic or financial variable are usually published by several independent forecasters

and, generally, the underlying forecasting processes used for generating these forecasts

are not made known. Hence, judging whether these available forecasts are good or

not is vital in the decision making process of end users. In this paper, we focus on

forecast rationality test.

As proposed by Muth [1961] and further developed by Nelson [1975] and Sargent

[1972], we say forecasts are rational if they fully incorporate all the information avail-

able at the time they are made. Two main properties (i.e. efficiency and consistency)

are placed on forecasts by this definition. The first property, efficiency, requires that

in generating one-period ahead forecast, forecasters should utilize all the informa-

tion in the realized rates of the variable being forecast. In essence, one-period ahead
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forecast and realization share the same autoregressive pattern. The other property,

consistency, demands that all the available information should be consistently applied

in producing multi-horizon forecast. Thus, forecasts are consistent if multi-horizon

forecasts are obtained recursively, with the yet to be observed realizations of the series

replaced by rational forecast.

The efficiency and consistency requirement of rational forecast, so described here,

must hold under quite general conditions. More particularly, these properties must

be satisfied (see Modigliani and Shiller [1973]) if the forecast are optimal in the least

square (quadratic loss function) sense. Based on this, tests of forecast rationality are

usually constructed by first defining an optimal forecast subject to a loss function

and then use the properties of this optimal forecast to evaluate it. Diebold and Lopez

[1996] and Granger and Newbold [1986] show that under covariance stationarity and

Mean Squared Error (MSE) loss function, rational forecast is unbiased, one-period

forecast errors are serially uncorrelated, h−step-ahead forecast error exhibit zero serial

correlation beyond lag (h − 1) and the unconditional variance of the forecast error

is a weakly increasing function of the forecast horizon. Two of these properties (i.e.

forecast errors have zero mean and are uncorrelated with any information available

at the time that the forecast is made) are routinely checked when testing for forecast

rationality. Given a set of forecasts, yt|t−h, for a variable yt, a commonly used test

procedure for checking for unbiasedness follows the proposal by Mincer and Zarnowitz

[1969] i.e. a simple regression yt = a + βyt|t−h + et is carried out. If the estimated

value of a and β are respectively not significantly different from 0 and 1, then the

forecasts are unbiased. The efficiency test, on the other hand, requires determining

if the forecast errors (yt − yt|t−h) are systematically related to some other variable

that was known to the forecaster when the forecasts were made. Suppose this other

variable is denoted Zt. Then the efficiency test requires running a regression of

the form (yt − yt|t−h) = g + dZt + ut. If the estimated value of d is significantly
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different from 0, the forecasts are inefficient. Unfortunately, some of the properties

of optimal forecast under covariance stationarity and symmetric forecast error loss

function assumption do not provide useful guideline for empirical tests because they

do not generally hold under other loss function (Patton and Timmermann [2007b]) or

the data generating process of the variable of interest does not satisfy the covariance

stationarity assumption (Giacomini and Rossi [2010]). In Giacomini and Rossi [2010]

and Rossi and Sekhposyan [2011] the assumption of covariance stationarity is dropped

and methods for performing inference on forecast comparisons when the forecasting

ability may be affected by instabilities is developed. Granger and Newbold [1986] on

the other hand argue that the assumption of symmetric loss function does not provide

a good representation of a forecaster’s objective. Consequently, forecast rationality

tests in Economics and Finance are therefore derived by either assuming a specific

asymmetric loss function (see, for example, Zellner [1986], Patton and Timmermann

[2007b], Aretz et al. [2011]) or imposing testable restrictions on the data generating

process of the variable that is being forecast (see Patton and Timmermann [2007a],

Elliot et al. [2005] for illustration). Test of forecast rationality is extended to the

multivariate setting in Komunjer and Owyang [2012].

In contrast to the one-step ahead forecast upon which the tests of forecast rational-

ity discussed above are designed, empirical records on forecasts are usually produced

on two or more horizons at the same time. This observation suggests that the failure

to include this information when assessing the quality of forecasts could lead to wrong

conclusion that the forecasts are rational. To this end, Capistran [2007] propose tests

of forecast rationality based on the property that the unconditional variance of the

forecast error under MSE loss function is a non decreasing function of the forecast

horizon. More recently, Patton and Timmermann [2012] propose several forecast

rationality tests arising from such implications of forecast rationality as; the mean

squared forecast error (MSFE) should be non-decreasing with the forecast horizon
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(Diebold, 2001, and Patton and Timmermann [2007b]) and that the mean squared

forecast should be decreasing with the horizon. They also propose new regression

based tests of forecast rationality called “optimal revision regression”. This regression

model uses the complete set of multi-horizon forecasts in a univariate regression. One

other novelty of their paper is that the proposed forecast rationality tests can be

implemented without observing the target variable. Patton and Timmermann [2012]

further show that both their monotonicity results and “optimal revision regression”test

hold when the target variable is replaced with the short horizon forecast. Following

Patton and Timmermann [2012], Rossi [2012] propose a robust forecast rationality

test that can account for the presence of instability in the DGP of the target variable.

Our suggestion to the literature on tests of forecast rationality are manifolds.

First, we propose an easy to compute Bayesian based procedure to illustrate how

to implement the joint tests of inequality constraint described in Patton and Tim-

mermann [2012]. In Patton and Timmermann [2012], the authors suggest testing

the monotonicity properties via tests of inequality constraints using the methods of

Gourieroux et al. [1982], Wolak [1987] and Wolak [1989], and also the bootstrap meth-

ods of White [2003] and Hansen [2005]. All these methods are quite challenging to

implement and they rely on the asymptotic properties of the test statistics which

may not produce reliable results in small sample situation. The second contribution

involves the use of our Bayesian inference procedure to account for parameter un-

certainties when evaluating the joint tests of the inequality constraints described in

Patton and Timmermann [2012]. In Patton and Timmermann [2012] the inequal-

ity tests procedure are implemented under the assumption that the parameter value

used in the test procedure are known by the forecasters. This approach totally ignores

parameter estimation risk. Hoogerheide et al. [2012] provides an interesting applica-

tion of the “optimal revision regression”to Value-at-Risk forecasting. This application

played on the fact that observation on the target variable are not required, a desirable
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feature in volatility or Value-at-risk applications, where the target variable is latent.

They further show, through a simulation study, that when parameter estimation error

are ignored the test results are oversized. A simulation based method for obtaining

critical values that take into account parameter uncertainty was then propose by

the authors. The third contribution involves an application of our test procedure to

the Livingston Survey’s stock market forecast. How well forecasters forecast the stock

market index has been examined in a number of articles. Early studies on this dataset

by Lakonishok [1980] and Pearce [1984] found that the forecasts were biased and inef-

ficient. Contrary to this result, Dokko and Edelstein [1989] reached a conclusion that

there is no evidence against the rationality of this forecasts. He further argued that

the results obtained by both earlier studies were a reflection of wrong computation of

expected returns on the stock market index since survey participants are not required

to provide forecast for the current June or December value of the stock market index.

In previous studies, a common assumption made, for example in the June survey, is

that forecasts were made on a particular day. This assumptions is faulted as different

participants send in their forecasts on different days and the day-to-day movements

of the stock market may be large thus influencing different choices of base index upon

which survey participant make their forecast. These findings suggest that the results

of all these statistical tests are very sensitive to researchers assumptions. A more

recent study on the forecast rationality of stock market index is carried out by Aretz

et al. [2011]. In their paper, they combined the approaches of Elliot et al. [2005]

and Patton and Timmermann [2007a] with a block bootstrap to show that allowing

for variation in the asymmetric loss functions across forecasters, forecasts rationality

may no longer be often rejected. Other studies that have been conducted on the

Livingston survey data on the forecast of S&P 500 stock market index include stock

returns predictability (Söderlind [2010]), herding bahaviour of forecasters (Pierdzioch
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and Rülke [2012]) and test of behavioural finance theories and asset pricing models

(De Bondt [1991]).

The rest of the paper is as follows. In Section 2 we describe the methodology

for evaluating hypothesis of inequality constraints. Section 3 presents results from

simulation exercise. Section 4 presents our results on empirical exercise and section

5 concludes.

5.2 Evaluating Hypothesis of Inequality Constraints

Following the highlighted implications, i.e. monotonicity and covariance bounds prop-

erties, of forecast rationality under squared error loss function in Patton and Tim-

mermann [2012], the authors suggest and illustrate test of these implications through

inequality constraint methods of Gourieroux et al. [1982], Wolak [1987, 1989] and the

bootstrap methods of White [2003] and Hansen [2005]. These tests approaches rely

on asymptotic distribution and asymptotic approximation of the test statistics which

may be complicated and challenging to implement. Based on these inherent chal-

lenges associated with classical test procedures to inequality constraints, we take up

a Bayesian approach to the problem of inequality constraints. This approach does not

require the use of complicated test statistics and works well in small or medium sam-

ple situation. Bayesian inference on econometric models with inequality constraints

on the coefficients have been well studied in the literature. Geweke [1995], Davis

[1978], Chamberlain and Leamer [1976], among others, approached the problem of

inequality constraint from a Bayesian perspective by analysing linear regression mod-

els subject to linear inequality constraints on the coefficients. These literatures defer

in the number of inequality or mixed equality and inequality constraints involved.

Geweke [1986] extends the study to linear models subject to nonlinear inequality

constraints on the coefficients and implements a Monte Carlo integration technique
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for evaluating the expected value of the function of interest. In this paper, we ap-

proach the problem of evaluating hypothesis of inequality constraints by using the

“crude frequency simulation” method proposed by Geweke [1986].

Suppose Yt = (yt, yt|t−1, . . . , yt|t−H)′ is an observation from a random vector in

<(H+1) with probability density function f(Yt, θ), where θ represents the vector of

unknown parameters and the function f(Yt, θ) is a continuous function of θ for all Yt

with t = 1, 2, . . . , T. The vector of observation is a collection of the target variable at

time t and its forecast made at h (h = 1, 2, . . . , H) horizons before. Let the inequality

constraints be expressed as

l ≤ g(θ) ≤ u, (5.1)

where g(θ) = (g1(θ), . . . , gp(θ))
′, is a set of real valued function on θ, while l =

(l1, . . . , lp)
′ and u = (l1, . . . , lp)

′ respectively represents the lower and upper bounds

on g(θ). Elements of l and u are allowed to be equal to ±∞.

Under the above specification, we combine a non-informative prior, π(θ), on θ with

the likelihood function (L(θ|Y ′1 , . . . , Y ′T ), to obtain the following posterior probability

when the parameters are unconstrained

fu(θ|Y ′1 , . . . , Y ′T ) =
L(θ|Y ′1 , . . . , Y ′T )π(θ)∫
L(θ|Y ′1 , . . . , Y ′T )π(θ)dθ

. (5.2)

In the constrained case, we define the prior probability to be equal to the product of

a non-informative distribution, π(θ), and an indicator function Iθ∈Q (Q = {θ : l ≤

g(θ) ≤ u}) representing the inequality constraints. The indicator function Iθ∈Q = 1 if

θ ∈ Q and Iθ∈Q = 0 if θ 6∈ Q. The posterior distribution is then defined by replacing

the prior probability in Equation (5.2) with the modified prior. i.e.

fc(θ|Y ′1 , . . . , Y ′T ) =
L(θ|Y ′1 , . . . , Y ′T )π(θ)Iθ∈Q∫
L(θ|Y ′1 , . . . , Y ′T )π(θ)Iθ∈Qdθ

. (5.3)
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Evaluation of the inequality constraints in Equation (5.1) as a formal hypothesis is

then carried out by assuming that the econometric model with inequality constraints

and that without constraints are two competing hypothesis for which a posterior odds

ratio is to be formed. Without loss of generality, we assume that the prior odds ratio

is 1:1. To this end, an estimate of the posterior ratio, p1|2, is given by

p1|2 =

∫
L(θ|Y ′1 , . . . , Y ′T )π(θ)Iθ∈Qdθ∫
L(θ|Y ′1 , . . . , Y ′T )π(θ)dθ

=

∫
L(θ|Y ′1 , . . . , Y ′T )π(θ)∫
L(θ|Y ′1 , . . . , Y ′T )π(θ)dθ

Iθ∈Qdθ

=

∫
Iθ∈Qfu(θ|Y ′1 , . . . , Y ′T )dθ

= E[Iθ∈Q].

(5.4)

Observe that the posterior odds ratio, p1|2, is essentially the expected value of the

indicator function (Iθ∈Q) representing the inequality constraints under the posterior

distribution of the unconstrained model. Analytical evaluation of this quantity may

be a difficult one to handle due to the presence of the indicator function. As a result

of this, we approximate the posterior odds ratio by implementing a Monte Carlo

integration technique. This is done by generating G random samples of θ from the

unconstrained posterior probability and then compute

p̂1|2 =
G∑
i=1

Iθi∈Q
G

. (5.5)

The number of samples needed to achieve a good approximation depends on the

complexity of the inequality constraints. The advantage of this procedure lies in its

simplicity but it is known to be inefficient and requires many draws, G, if p̂1|2 is small.

Geweke [1995] propose a more efficient method based on Geweke-Hajivassiliou-Keane

(GHK) probability simulator to evaluate the constrained posterior probability within

the framework of linear regression models subject to linear inequality constraints

147



on the coefficient. We leave as a subject for further research an extension of this

technique to the case of nonlinear inequality constraints.

In the methodology presented above, we assumed a 1:1 prior odds ratio. In general,

a substantive result of the posterior odds ratio, p1|2, may be obtained by evaluating

the limiting ratio formed from the sequence of the prior odds ratio chosen.

Finally, having been able to state the posterior odds and probabilities, we are now

left with taking an action: that is, accept H0 or reject H0. We address this problem

by following the expected utility hypothesis framework described on pages 294 - 297

of Zellner [1996]. Under a two-state-two-action situation, we assume the following

loss structure as a representative of the consequences of our action:

Action State of the world
H0 true H1 true

Accept H0 L(H0, Ĥ0) = 0 L(H1, Ĥ0)

Accept H1 L(H0, Ĥ1) L(H1, Ĥ1) = 0

where L() represent the loss experienced as a result of our action, Ĥ0 and Ĥ1

respectively denote our acceptance of Ĥ0) or H1. In the above loss structure, we

assign zero loss to a situation where the action taken corresponds to the state of the

world. On the hand, a positive loss L(H1, Ĥ0) is assumed if we accept H0 when it is

actually false.

Based on this loss structure and given the posterior probabilities for the hypothesis

H0 and H1, we evaluate the consequences of the action taken by computing the

expected loss associated with the action accept H0

E(L|Ĥ0) = p(H1|Y )L(H1, Ĥ0),

and accept H1

E(L|Ĥ1) = p(H0|Y )L(H0, Ĥ1).
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Having computed the expected loses, an action is taken by comparing the expected

loses as follows:

If E(L|Ĥ0) < E(L|Ĥ1), accept H0, action Ĥ0,

If E(L|Ĥ1) < E(L|Ĥ0), accept H1, action Ĥ1.

This decision rule can further be expressed in terms of the posterior odds ratio of the

hypothesis and the ratio of the loss function i.e. we accept H0 if

p(Y |H0)p(H0)

p(Y |H1)p(H1)
>
L(H1, Ĥ0)

L(H0, Ĥ1)
.

If we further assume a symmetric loss structure i.e.

L(H0, Ĥ1) = L(H1, Ĥ0); L(H0, Ĥ0) = L(H1, Ĥ1) = 0

then, we accept H0 if the posterior odds ratio is greater than 1 and H1 otherwise.

In the following section, we present a simulation exercise involving the application

of our propose Bayesian inference technique for inequality constraints to the problem

of forecast rationality based on monotonicity and covariance bound properties.

5.3 Simulation Design

We assess the performance of our proposed test procedure by conducting a Monte

Carlo experiment. A detailed documentation of the framework of the experiment

that follows can be obtained from Patton and Timmermann [2012].

Let the target variable yt evolve according to an AR(1) process

yt = µy + φ(yt−1 − µy) + εt, εt ∼ iidN(0, σ2
ε ), t = 1, . . . , 100, (5.6)
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with φ = 0.5, σ2
y = 0.5, µy = 0.75. The optimal forecast is given by

ŷ∗t|t−h = Et−h[yt] = µy + φh(yt−h − µy) ∀ h = 1, . . . , H = 4.

The DGP of yt and its optimal forecast are further contaminated to set the stage for

the experiment that follows.

i. Measurement error: owing to the suspicion that the performance of rationality

tests that rely on the target variable versus tests that only use forecasts are

heavily influenced by measurement errors in the underlying target variable, yt.

The target variable ỹt is assumed to be observed with error, ψt

ỹt = yt + ψt, ψt ∼ iidN(0, σ2
ψ). (5.7)

where σψ can take three different values: (i) zero, σψ = 0; (ii) medium, σψ =
√

0.7σy; and (ii) high, σψ = 2
√

0.7σy.

ii. Suboptimal forecasts: in order to study the power of the optimality tests, it is

assumed that the optimal forecast is contaminated by the same level of noise

at all horizons:

ŷt|t−h = ŷ∗t|t−h + σξ,hξt,t−h, ξt,t−h ∼ iidN(0, 1), (5.8)

where σξ,h =
√

0.7σy for all h. A simple extension to the case when the standard

deviation is increasing in the horizon is also considered. In this case, σξ,h is

assumed to be equal to 2(h−1)
7
×
√

0.7σy for h = 1, 2, . . . , H.
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5.3.1 Theoretical moments

As a basis for checking the performance of our proposed Bayesian inference technique,

we compute, from a frequentist perspective, the theoretical moments of the various

nonlinear function defining the implications of forecast rationality as discussed in Pat-

ton and Timmermann [2012] and check when the implications of forecast rationality

are violated.

1. Monotonicity (Increasing) of Mean Squared Error (MSE): Forecast

rationality implies that under mean square error, mean squared forecast error

should be a weakly increasing function of the forecast horizon. Based on our

simulation design,

E[e2
t|t−h] = E[(ỹt − ŷt|t−h)2]

= σ2
y(1− φ2h) + σ2

ψ + σ2
ξ,h.

(5.9)

Observe that

E[e2
t|t−h−1]− E[e2

t|t−h] = σ2
yφ

2h(1− φ2) + σ2
ξ,h+1 − σ2

ξ,h ≥ 0 ∀h. (5.10)

This shows that MSE is an increasing function of h. Hence, hypothesis tests

constructed for checking the monotonicity of the MSE under forecast rationality

may not be capable of detecting deviations from optimality.

2. Monotonicity (Decreasing) of Mean Square Forecast (MSF): The in-

ternal consistency of a sequence of optimal forecast suggests that the variance

of rational forecasts should be a non-increasing function of the forecast horizon.
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This implication, under our simulation design, may be checked by evaluating

E[y2
t|t−h] = E[(ŷ2

t|t−h + σξ,hξt,t−h)
2]

= µ2
y + σ2

yφ
2h + σ2

ξ,h.

(5.11)

Here, note that MSF is independent of the magnitude of the measurement error.

Two cases can be distinguished here,

Case 1: Constant σ2
ξ,h: In this case, MSF decreases as h increases. This suggests

that the hypothesis tests based on the monotonicity of MSF may be inca-

pable of detecting deviations from optimality.

Case 2: Increasing σ2
ξ,h: In this case, Figure (5.1) shows an increasing trend in

MSF as h increases. This trend contradicts the decreasing trend expected

of MSF. Hence, deviations from optimality may be detected with the use

of MSF monotonicity test.
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Figure 5.1: Mean squared forecast with increasing noise

3. Monotonicity of the covariance between forecast and target variable:

Another implication of forecast rationality under mean squared error is that the
152



covariance between the forecast and its target variable should be a decreasing

as the forecast horizon increases. Under of simulation design we have,

E[ỹtŷt|t−h] = µ2
y + φ2hσ2

y . (5.12)

The above quantity decreases as h increases. This suggests that the inequality

test based on the monotonicity of the covariance between forecast and target

variable may be incapable of detecting deviations from optimality.

4. Covariance bound: Forecast rationality implies that the variance of forecast

revision is bounded above by the covariance between forecast revision and the

target variable. This implication will be checked, under our simulation design,

by evaluating the following:

E[2ỹtdt|h,h+1 − d2
t|h,h+1] = φ2h(1− φ2)σ2

y − σ2
ξ,h − σ2

ξ,h+1 (5.13)

Case 1 Constant σξ,h: The quantity above is a decreasing function of h and at

some point it will become negative. This indicates that the COVBOUND

test is capable of detecting deviations from optimality.

Case 2 Increasing σξ,h: Figure (5.2) describe the quantity in Equation (5.13). The

quantity is mostly negative which implies that test based on Covariance

bound is capable of detecting violation of forecast rationality.

5. Monotonicity (increasing) of Mean Squared Forecast Revision

(MSFR): Forecast rationality also implies that under mean square error,

mean squared forecast revision should be a non decreasing function of the
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Figure 5.2: Covariance between forecast revision and actual with increasing noise

forecast horizon. This suggests that under our simulation design,

E[d2
t|1,h] = E[(ŷt|t−1 − ŷt|t−h)2]

= σ2
y(φ

2 − φ2h) + σ2
ξ,1 + σ2

ξ,h,

(5.14)

MSFR is an increasing function of h i.e. tests of the monotonicity property

of MSFR may not be capable of detecting deviations from forecast rationality

under our simulation design.

6. Monotonicity of Covariance between long horizon forecast and target

(proxy): In the absence of the target variable, forecast rationality suggests that

the covariance with the shortest horizon forecast, which is used as a proxy for

the unavailable target variable, and longer horizon forecast should be a weakly

decreasing function of the forecast horizon h. In our simulation design

E[ŷt|t−1ŷt|t−h] = µ2
y + φ2hσ2

y (5.15)
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similar deductions made in item (3) is arrived at here.

7. Covariance bound with proxy: Replacing the target variable with a proxy,

shortest horizon forecast, forecast rationality implies that the variance of fore-

cast revision using the proxy is bounded above by the covariance between the

modified forecast revision and the proxy. Assessing this implication in our sim-

ulation design

E[2ŷt|t−1dt|h,h+1 − d2
t|h,h+1] = φ2h(1− φ2)σ2

y − σ2
ξ,h − σ2

ξ,h+1 (5.16)

gives a similar result as obtained in item (4).

In summary, from the analytical results of the theoretical moments described

above, we can deduce that only covariance bound tests are capable of detecting devi-

ations from optimality when the standard deviation, σξ,h, of the noise in the optimal

forecast is kept constant over all horizons. On the other hand, the mean squared

forecast (MSF) and covariance bound tests should be able to detect deviations from

optimality if the standard deviation of the noise in the optimal forecast is allowed to

increase with the forecast horizon.

5.3.2 Results from Monte Carlo Simulation

Let the random vector Yt = (yt, yt|t−1, yt|t−1, . . . , yt|t−H)′ representing the observation

at time t follow a multivariate normal distribution i.e.

Yt ∼ NH+1(µ,Σ) (5.17)
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for t = 1, 2, . . . , T , with

µ =



µ0

µ1

...

µH


,Σ =



σ2
0 σ0,1 · · · σ0,H

σ1,0 σ2
1 · · · σ1,H

...
... . . . ...

σH,0 σH,1 · · · σ2
H


.

In the unconstrained case, we combine a non-informative prior on the parameters

π(µ,Σ−1) ∝ |Σ−1|−
H+2

2 , (5.18)

with the likelihood function

L(µ,Σ−1|Y ′1 , . . . , YT ) ∝ |Σ−1|T/2 exp

(
−1

2

T∑
t=1

(Yt − µ)′Σ−1(Yt − µ)

)
, (5.19)

to obtain the joint posterior distribution

fu(µ,Σ
−1|Y ′1 , . . . , YT ) ∝ |Σ−1|

T−(H+2)
2 exp

(
−1

2

T∑
t=1

(Yt − µ)′Σ−1(Yt − µ)

)
. (5.20)

Whereas, in the constrained case we set the prior on the parameters to be the prod-

uct of the quantity in Equation (5.18) and an indicator function accounting for the

inequality. Combining this modified prior with the likelihood function in Equation

(5.19) leads to the following joint posterior probability for the constrained model

fc(µ,Σ
−1|Y ′1 , . . . , YT ) ∝ |Σ−1|

T−(H+2)
2 exp

(
−1

2

T∑
t=1

(Yt − µ)′Σ−1(Yt − µ)

)
Iθ∈Q,

(5.21)

where θ = (µ,Σ) and Q represents the region for which the inequality constraints are

satisfied. These inequalities are derived from the implications of forecast rationality

(See Section (5.3.1) for summary) and are summarized as hypothesis in the following:
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1. Monotonicity (Increasing) of Mean Squared Error (MSE).

Let the forecast error be

et|t−h =


yt − yt|t−1 = (1,−1, 0, . . . , 0)Yt, for h = 1,

yt − yt|t−h = (1, 0, . . . , 0,−1, 0, . . . , 0)Yt, for h = 2, . . . , H − 1

yt − yt|t−H = (1, 0, . . . , 0,−1)Yt for h = H,

(5.22)

and the second non-central moments

E[e2
t|t−h] =



(1,−1, 0, . . . , 0)Σ(1,−1, 0, . . . , 0)′ + ((1,−1, 0, . . . , 0)µ)2, for h = 1,

(1, 0, . . . , 0,−1, 0, . . . , 0)Σ(1, 0, . . . , 0,−1, 0, . . . , 0)′

+((1, 0, . . . , 0,−1, 0, . . . , 0)µ)2, for h = 2, . . . , H − 1

(1, 0, . . . , 0,−1)Σ(1, 0, . . . , 0,−1)′ + ((1, 0, . . . , 0,−1)µ)2 for h = H,

(5.23)

then the Null hypothesis of forecast rationality we have

H0 : E[e2
t|t−h−1]− E[e2

t|t−h] ≥ 0 ∀ h = 1, 2, . . . , H − 1 (5.24)

2. Monotonicity (Decreasing) of Mean Square Forecast (MSF).

Let the forecast be represented by

yt|t−h =


(0, 1, 0, . . . , 0)Yt, for h = 1,

(0, . . . , 0, 1, 0, . . . , 0)Yt, for h = 2, . . . , H − 1

(0, 0, . . . , 0, 1)Yt for h = H,

(5.25)
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and the second non-central moments

E[y2
t|t−h] =



(0, 1, 0, . . . , 0)Σ(0, 1, 0, . . . , 0)′ + ((0, 1, 0, . . . , 0)µ)2, for h = 1,

(0, . . . , 0, 1, 0, . . . , 0)Σ(0, . . . , 0, 1, 0, . . . , 0)′

+((0, . . . , 0, 1, 0, . . . , 0)µ)2, for h = 2, . . . , H − 1

(0, . . . , 0, 1)Σ(0, . . . , 0, 1)′ + ((0, . . . , 0, 1)µ)2 for h = H,

(5.26)

then the Null hypothesis of forecast rationality is

H0 : E[y2
t|t−h−1]− E[y2

t|t−h] ≤ 0 ∀ h = 1, 2, . . . , H − 1

3. Monotonicity of Covariance Between the Forecast and Target Variable.

E[ytyt|t−h] =



(1, 0, . . . , 0)Σ(0, 1, 0, . . . , 0)′ + (1, 0, . . . , 0)µµ′(0, 1, 0, . . . , 0)′, for h = 1,

(1, 0, . . . , 0)Σ(0, . . . , 0, 1, 0, . . . , 0)′

+(1, 0, . . . , 0)µµ′(0, . . . , 0, 1, 0, . . . , 0)′, for h = 2, . . . , H − 1

(1, 0, . . . , 0)Σ(0, . . . , 0, 1)′ + (1, 0, . . . , 0)µµ′(0, . . . , 0, 1)′ for h = H,

(5.27)

Null hypothesis:

H0 : E[ytyt|t−h−1]− E[ytyt|t−h] ≤ 0 ∀ h = 1, 2, . . . , H − 1

4. Bounds on Variances of Forecast Revisions.
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Let forecast revision be defined by

dt|h,h+1 = yt|t−h−yt|t−h−l =


(0, 1,−1, 0, . . . , 0)Yt for h = 1

(0, . . . , 0, 1,−1, 0, . . . , 0)Yt for h = 2, . . . , H − 2

(0, . . . , 0, 1,−1)Yt for h = H − 1

(5.28)

and the second non-central moments

E[d2
t|h,h+1] =



(0, 1,−1, 0, . . . , 0)Σ(0, 1,−1, 0, . . . , 0)′ + ((0, 1,−1, 0, . . . , 0)µ)2, for h = 1,

(0, . . . , 0, 1,−1, 0, . . . , 0)Σ(0, . . . , 0, 1,−1, 0, . . . , 0)′

+((0, . . . , 0, 1,−1, 0, . . . , 0)µ)2, for h = 2, . . . , H − 1

(0, . . . , 0, 1,−1)Σ(0, . . . , 0, 1,−1)′ + ((0, . . . , 0, 1,−1)µ)2 for h = H − 1,

(5.29)

then Null hypothesis:

H0 : E[2ytdt|h,h+1 − d2
t|h,h+1] ≥ 0 for h = 1, . . . , H − 1.

5. Mean Squared Forecast Revision (MSFR).

Null hypothesis:

H0 : E[d2
t|1,h+2 − d2

t|1,h+1] ≥ 0 for h = 1, . . . , H − 2

6. Monotonicity of Covariance Between the Forecast and Target(Proxy) Variable.

Null hypothesis:

H0 : E[yt|t−1yt|t−h−2]− E[yt|t−1yt|t−h−1] ≤ 0 for h = 1, . . . , H − 2
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7. Bounds on Covariances of Forecast Revisions with Proxy:

Null hypothesis:

H0 : E[2yt|t−1dt|h,h+1 − d2
t|h,h+1] ≥ 0 for h = 2, . . . , H − 1

These hypothesis will be evaluated according to our proposed Bayesian inference

procedure. Samples of (µ,Σ) are generated from the unconstrained posterior distribu-

tion, Equation (5.20), via Gibbs sampling scheme. We draw samples of µ from its full

conditional unconstrained posterior distribution given Σ and observation Y1, . . . , YT

i.e.

f(µ|Y ′1 , . . . , Y ′T ,Σ) ∝ |Σµ|−1 exp

(
−1

2
(µ− τµ)′Σ−1

µ (µ− τµ)

)
(5.30)

where

Σµ =
Σ

T
, and τµ = ΣµΣ−1

T∑
t=1

Yt = T−1

T∑
t=1

Yt.

Σ on the other hand, will be generated from its full conditional unconstrained poste-

rior distribution given µ and observation Y1, . . . , YT

f(Σ−1|Y1, . . . , YT , µ) = Wishart(νΣ, RΣ), (5.31)

with

νΣ = T, and RΣ =

(
T∑
t=1

(Yt − µ)(Yt − µ)′

)−1

.

Haven generated samples of (µ,Σ) via the above Gibbs sampling technique, we

evaluate the posterior odds ratio in favour of the constrained model using Equation

(5.5). The results presented in Table (5.1) and (5.2) below are based on experiment

conducted on 1000 simulated datasets each consisting of 100 observation. The largest

horizon, H, in this experiment is 4. The Bayesian exercise is conducted using 10000
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samples from the posterior distribution. To reduce serial correlation in our draws, we

consider every 10th draw of the Gibbs iteration in our Bayesian exercise.

Table 5.1: Constraints Probability p̂1|2 in the presence of measurement error

Zero Med High
Meas. error std.: σψ = 0 σψ =

√
0.7σy σψ = 2

√
0.7σy

Test
Increasing MSE 0.0394 0.0320 0.0236

(0.0228) (0.0213) (0.0184)
Decreasing COV 0.0493 0.0447 0.0366

(0.0229) (0.0230) (0.0220)
COV BOUND 0.0340 0.0301 0.0241

(0.0246) (0.0232) (0.0203)
Decreasing MSF 0.0442 0.0442 0.0442

(0.0254) (0.0255) (0.0255)
Increasing MSFR 0.0596 0.0595 0.0595

(0.0187) (0.0187) (0.0187)
Decreasing COV, 0.0568 0.0568 0.0568
with proxy (0.0211) (0.0211) (0.0211)
COV BOUND, 0.0420 0.0420 0.0420
with proxy (0.0250) (0.0250) (0.0250)

NOTES: This table presents the outcome of 1,000 Monte Carlo simulations of the constraint proba-
bility of various forecast optimality tests. Data are generated by a first-order autoregressive process
with parameters φ = 0.5, σ2

y = 0.5, µy = 0.75. We consider three levels of error in the measured
value of the target variable (high, medium, and zero). Optimal forecasts are generated under the
assumption that this process (and its parameter values) are known to forecasters. The simulations
assume a sample of 100 observations and tests labeled with proxy refer to cases where the one-period
forecast is used in place of the predicted variable. The standard deviation of constraint probabilities
for each the 1000 Monte Carlo experiment is given in the parenthesis.

The econometric model in our Monte Carlo experiment is a particular case of

linear regression models subject to inequality constraints. Within this framework, we

defer from most literature on inferential exercise on inequality constraints by allowing

the inequality constraints depend on both the scale matrix and the coefficients of the

regression model in, possibly, a nonlinear manner. Table 5.1 and 5.2 respectively

report the constraint probability, p̂1|2, in the presence of measurement error and

suboptimality in the forecast. As noted in Section 2, a substantive result of these

probabilities can be obtained by evaluating the limiting ratio of prior odds ratio of

the each constraint i.e. the probabilities in Table (5.1) and (5.2) need to be scaled

appropriately in order to obtain substantive results showing whether the constrained
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model is competitive with the unconstrained model or not. Evidently, irrespective of

the scaling factor used, in Table (5.2) covariance bounds tests confirms our deductions

from the theoretical moments i.e. the forecast are not sequentially rational since they

violates the covariance bound implication of forecast rationality.

5.4 Empirical Application

Our database consists of S&P 500 price forecasts obtained from the Livingston Sur-

veys of Professional Forecasters. The Livingston Survey is maintained by the Federal

Reserve Bank of Philadelphia and is available from June 1957 to June 2013. The sur-

vey data contain forecasts of S&P 500 stock market index at four horizons: 6 months,

12 months, 18 months and 24 months. The survey also classifies forecasters into

groups: Academic institutions, Commercial banks, Investment banks, Non-Financial

business among others. We limit attention to the sample period June 1993 to June

2013 and two forecast horizons 6 and 12 months for two main reasons. Firstly, in

1992, the Federal Reserve Bank of Philadelphia introduced important changes to the

survey design and the handling of the data. Many of these changes were made to

overcome well-known obstacles to the academic analysis of the survey responses. One

important methodological flaw addressed is survey is the absence of a consistent ba-

sic index for computing expected market returns. Prior to this period, researchers

make ad hoc assumptions about the dates on which the survey participants filled

in the questionnaire in order to compute the expected returns on the stock market

index (see Lakonishok [1980] and Pearce [1984]). This approach, as pointed out by

Dokko and Edelstein [1989], leads to diverging conclusion made by researchers. The

correction made is the questionnaire was to ask forecasters to forecast the current

December value for the index (as well as June and the following December), so that

there are definite six- and 12-month forecasts. Using the new forecasts avoids this
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complication stated earlier, as we can now accurately calculate the expected returns

semi-annualized expected market returns through:

yt|t−h =

((
SPIt|t−h
SPIt

)(12/h)

− 1

)
× 100 for h = 6, 12,

where yt|t−h, is the annualized S&P 500 return forecast of at time t for the pe-

riod starting from the survey publication date (t − h) to h months in the future.

Similarly, SPIt|t−h is the S&P 500 stock price forecast (averaged across the fore-

casters) for h months in the future and SPIt is the stock price forecast (aver-

aged across the all forecasters or forecasters in a sector) for the surveys publication

date. For the same period, S&P 500 price data were obtained from yahoo finance

(http://www.finance.yahoo.com.) in order to calculate the realized annualized rate

of return.

The second issue relates to the number of available multi-horizon forecasts. An

important requirement in our proposed rationality test relies on the availability of

multi-horizon forecasts. This requirement provides a means for studying the inter-

nal consistency in term structure of the multi-horizon forecast. Unfortunately, we

observed that majority of participants in the survey only report forecast for two hori-

zons i.e. 6 and 12-months horizons. Also, we notice that the number respondents

to the survey change over time. These empirical observations provide basis for the

choice of our sample period and horizon.

In our empirical exercise, we consider the average responses from the survey and in

order to have better understanding of our results we study individual survey responses

based on group affiliation. Figure ?? displays the actual, the consensus forecast over

all forecasters and the consensus forecast for each forecaster category for both the

stock market index and their corresponding returns. Except from the large deviation

from the target series produced by the non financial business at the later part of
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the series, all forecast produced by the forecasters are observed to be close to the

actual values. Table 5.3 reports the posterior odds probabilities for comparing the

constrained model against the the unconstrained model. From the
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(a) 6 months forecast of S&P 500 index
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(b) 12 months forecast of S&P 500 index
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(c) 6 months forecast returns of S&P 500
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(d) 12 months forecast returns of S&P 500

Figure 5.3: Forecast of the S&P 500 index and returns from June 1993 to June 2013.
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Table 5.3: Constraints Probability p̂1|2 in the presence of measurement error

Full Academic Commercial Investment Non-Financial
Sample Institutions Banks Banks Business

Test
Increasing MSE 0.0092 0.0895 0.0507 0.0084 0

Decreasing COV 0.0990 0.0990 0.0990 0.0990 0.0990

COV BOUND 0.0906 0.0980 0.0880 0.0724 0.0922

Decreasing MSF 0.0192 0.0924 0.0494 0.0273 0
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Estratto per riassunto della tesi di dottorato

Studente: OSUNTUYI AYOKUNLE ANTHONY
Matricola: 955710
Dottorato: Economia
Ciclo: 25

Titlo della tesi: Essays on Bayesian inference with financial applications

Abstract: This thesis is composed of two main research lines. The first line, devel-
oped in chapters 2 to 4, deals with frequentist and Bayesian estimation of regime-
switching GARCH models and its application to risk management on energy markets,
while the second part, which corresponds to chapter 5, focuses on forecast rationality
testing within a Bayesian framework.

Chapter 2 presents a unified mathematical framework for characterizing the class
of MSGARCH models based on collapsing the regimes in order to eliminate the usual
path dependence problem. Within this framework, two new models (identified as
Basic model and Simplified Klaassen model) are proposed as alternative specifications
of the MS-GARCH model. Using Maximum Likelihood Estimation, we estimate the
parameters of the different models within this family and compare their performance
on both simulation and empirical exercises. Chapter 3 proposes new efficient Monte
Carlo simulation techniques based on multiple proposal Metropolis. The application
to approximated inference for regime-switching GARCH models is there discussed.
In Chapter 4, we provide an extension of our efficient Monte Carlo simulation
algorithm to a multi-chain Markov switching multivariate GARCH model and apply
it to risk management in commodity market. More specifically we focus on futures
commodity market and suggest a dynamic and robust minimum variance hedging
strategy which accounts for model parameter uncertainty. In chapter 5, we propose
a new Bayesian inference procedure for testing the monotonicity properties of second
moment bounds across several horizons presented in Patton and Timmermann [2012].

Estratto: Questa tesi sviluppa due principali linee di ricerca. La prima, presentata
nei capitoli 2,3 e 4, tratta l’inferenza frequentista e classica per i modelli GARCH a
cambiamento di regime (MSGARCH) e la loro applicazione alla gestione del rischio
nel mercato energetico, mentre la seconda linea, presentata nel capitolo 5, si concentra
sul verifica statistica della razionalità previsiva proponendo un approccio bayesiano.

Il capitolo 2 presenta un approccio matematico all’approssimazione della dinam-
ica MSGARCH che si fonda sul collasso dei regimi e che consente di eliminare il
problema della dipendenza del modello MSGARCH dalla traiettoria passata degli
stati. Applicando questo metodo di approssimazione sono stati identificati due nuovi
modelli approssimati, chiamati modello di base e modello di Klaassen semplificato,
che sono stati poi utilizzati nelle procedure di inferenza per modelli MSGARCH in
alternativa alle approssimazioni già esistenti in letteratura. Utilizzando il metodo di
stima di massima verosimiglianza, si stimano i parametri dei diversi modelli di questa
classe e si confronta l’efficienza della stima sia attraverso esempi in simulazioni che
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con applicazioni a dati reali. Il capitolo 3 propone una nuova ed efficiente tecnica di
simulazione Monte Carlo basata su algoritmi Metropolis con distribuzioni strumentali
multiple. Nello stesso capitolo si discute anche dell’applicazione dei metodi di simu-
lazione all’inferenza approssimata per modelli MSGARCH. Il capitolo 4 presenta una
applicazione dei nuovi metodi di simulazione Monte Carlo per modelli MSGCARCH
bayesiani, sviluppati nei precedenti capitoli della tesi, alla gestione del rischio nei
mercati delle commodity. In modo più specifico, il capitolo si concentra su sui con-
tratti a termine nel mercato delle commodity e suggerisce una strategia di copertura
dinamica, robusta e a varianza minima, che include nella decisione ottima l’elemento
di incertezza sui parametri del modello. Nel capitolo 5 si propone una nuova proce-
dura di inferenza bayesiana per verificare statisticamente le proprietà di monotonia
del limite sui momenti secondi su più orizzonti temporali che sono state discusse in
Patton and Timmermann [2012].
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