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”Why are numbers beautiful?

It’s like asking why is Beethoven’s Ninth Symphony beautiful.

If you don’t see why, someone can’t tell you.

I know numbers are beautiful.

If they aren’t beautiful, nothing is.”

(Paul Erdős)
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Chapter 1

Introduction and Thesis Outline

The design of a market and the information that is available before traders make their deci-

sion largely influence traders’ behaviour and the efficiency of the market. For example the

OpenBook system as introduced in 2002 by the New York Stock Exchange, opened the con-

tent of the limit order book to the public. This allows for a change in behaviour of traders, who

can now condition their strategy on the full history of orders. We study whether a market design

with more information, such as the OpenBook system, is preferable in terms of efficiency. More

information benefits traders with a high market power and hurts others, but it is unclear whether

the total profit in the market and thus efficiency will increase. We consider boundedly rational

behaviour of traders and the resulting efficiency depending on the available information in the

market design, to study what information should be made available to traders. In the markets

examined in this dissertation traders are truthful, or behave boundedly rational. In the first case,

traders offer their valuation for the asset or ask their cost, which is in general not rational. In

the latter case traders are boundedly rational by only considering linear strategies or by using

a learning algorithm that is based on the hypothetical payoff of strategies in the previous pe-

riod. Boundedly rational behaviour is commonly modelled by putting mild restrictions on the

strategy of traders or by learning algorithms. Such algorithms are used in agent-based models

of financial markets since they do not impose strict assumptions on the behaviour of traders or

their strategy space, and are considered in the second part of this dissertation. An underexposed

type of market is a market in which trade occurs over a network, where the network structure is
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CHAPTER 1. INTRODUCTION AND THESIS OUTLINE

not entirely known to traders. An example is the spot foreign exchange market which is mod-

elled in the first part of this dissertation by imposing mild restrictions on the strategy function

of traders.

1.1 Network theory

Network theory is applicable to many research fields besides pure mathematics. In neuroscience,

biological networks of the neural system are considered. In sociology networks are applied for

instance to social media and relational connections. A common example in computer science

is the use of networks in Google’s PageRank and in operational research directed networks are

used for transportation problems. In economic theory the banking crisis has led to a large liter-

ature on banking networks.

The seminal papers of Erdős and Rényi (1960, 1961) have introduced a mathematical theory

on random graphs, often referred to as Erdős-Rényi graphs. We consider vertices in the net-

work as traders and edges as links between traders. In these graphs traders are linked with an

equal probability, independently of other connections. Erdős and Rényi derive phase transitions

for infinitely many traders. During these phase transitions the structure of the network changes

abruptly. The most surprising result of Erdős and Rényi occurs when the expected number of

links per trader crosses the threshold value of one half. During this phase transition the structure

of the graph changes from a collection of mainly isolated spanning trees to a network that con-

tains a giant component of positive measure. Such a spanning tree connects a subset of traders

of the graph but does not contain any cycle. Alon and Spencer (2008), Bollobás (1982) and

Janson et al. (2000) summarise the work in the field of random graphs.

Markets over networks have been studied in various settings and trading mechanisms. In these

markets trade may only occur between linked traders. The literature has in common that there is

full knowledge of the network structure when traders determine their strategy. Spulber (2006)

and Kranton and Minehart (2001) consider a market in which sellers jointly raise their ask
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1.2. LEARNING ALGORITHMS

until supply equals demand and trade occurs, known as simultaneously ascending-bid auc-

tions. In Corominas-Bosch (2004) and Chatterjee and Dutta (1998) traders submit an offer

side by side, which can be accepted or rejected by traders on the other side of the market. It

is shown in Corominas-Bosch (2004) that the network can be split into different subgraphs

in which the short side of the market extracts all the surplus, when all buyers have the same

valuation and sellers the same cost. Intermediaries that act strategically and extract surplus

are added in Easley and Kleinberg (2010) and Blume et al. (2009). In a market over a net-

work, the power of a trader is measured in Calvó-Armengol (2001) on the basis of the number

of linked traders and their links. The market power of a trader is higher when linked to more

traders and when the linked traders have fewer links themselves. Moreover, a branch of network

theory in economics and sociology studies the formation of links in a network, starting from

Jackson and Wolinksy (1996). However, entirely random graphs are very seldomly studied in

economic theory. These random graphs are important since they allow for studies on the effect

of information about the network structure that is available to traders.

1.2 Learning algorithms

Learning algorithms are used in economic theory to model boundedly rational behaviour of

traders. These algorithms are attractive because they do not make strict assumptions on the

behaviour. For instance in reinforcement learning traders may learn to select the optimal strat-

egy without having knowledge of the equilibrium. Genetic algorithms are developed in game

theory for cobweb and overlapping generations models. In genetic algorithms every period a

new generation of individuals is generated, depending on the fitness or profit of individuals

in the previous period. Many agent-based models use learning to avoid making extreme as-

sumptions about the rationality or strategies of traders. For example, the Individual Evolution-

ary Learning (IEL) algorithm is introduced in Arifovic and Ledyard (2003, 2007) to model

the boundedly rational learning behaviour of agents in a Call Market model. In this learn-

ing algorithm traders learn to select from a pool of strategies, based on the hypothetical pay-

offs in the previous period. Moreover, this learning algorithm is used in a Continuous Double

3



CHAPTER 1. INTRODUCTION AND THESIS OUTLINE

Auction in Anufriev et al. (2013) to compare efficiency under full and no information about

the history of others’ strategies. Anufriev et al. (2013) also study the GS-environment from

Gode and Sunder (1993, 1997) under the assumption that traders have zero intelligence and

submit every possible offer with equal probability.

The introduction of the OpenBook system in 2002 by the New York Stock Exchange allows

for studies on the effect of the information that is available to traders. This OpenBook system

opened the content of the limit order book to the public, which allows experienced traders to

use a full history of orders submission, instead of solely knowledge of global market statis-

tics as under the former ClosedBook system. Boehmer et al. (2005) empirically show that

this led to a decrease in price volatility and an increase in liquidity. The opening and closing

of stock exchanges can be modelled with a Call Market. For such Call Markets

Arifovic and Ledyard (2007) analyse experiments and simulations under the IEL algorithm,

in which traders select strategies on the basis of their hypothetical performance in the previ-

ous period. Under the OpenBook system traders can directly determine the hypothetical per-

formance of a strategy, assuming that other traders would have behaved the same. Under the

ClosedBook system however, traders have to make additional assumptions to estimate the hy-

pothetical foregone payoff of selecting another strategy. Arifovic and Ledyard (2007) show that

in the OpenBook system agents try to influence the market clearing price. Agents behave as

price makers and offers converge towards an equilibrium price. However, in the ClosedBook

system traders learn to become pricetakers and offers diverge away from the equilibrium price

range.

Anufriev et al. (2013) analyse the effect of the OpenBook system in a Continuous Double Auc-

tion. Agents enter the market and trade with an existing agent if possible. Otherwise

their offers are stored in the order book until trade occurs with newly arriving traders or the book

is emptied. In the IEL-algorithm the same hypothetical payoff functions as in

Arifovic and Ledyard (2007) are used to value strategies. Anufriev et al. (2013) find the same

bidding behaviour in a Continuous Double Auction as in the latter paper. They conclude that
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1.2. LEARNING ALGORITHMS

in the long-run, efficiency is similar in both designs and the price volatility is lower in the

OpenBook system. Under this hypothetical payoff function in the formerly used ClosedBook

system, where only information about past average prices is available, Anufriev et al. (2013)

proved divergence of bids and asks away from the equilibrium price range. This results from the

chosen ClosedBook hypothetical foregone payoff function, which only distinguishes between

orders below and above the average price of the previous period. As a consequence investors

trade with a high probability but may generate a very small profit. Anufriev et al. (2013) state

however that ”the specification (of the ClosedBook hypothetical foregone payoff function) is

a strong assumption ... which may affect (their) results of IEL”. Contrary to the latter paper,

Fano et al. (2013) use a genetic algorithm in a setting closely related to the ClosedBook system,

and show that traders behave as pricemakers and thus offers converge towards the equilibrium

price. In this genetic algorithm, traders with the same valuation are compared on the basis of

their average profit over some evaluation window, after which individuals with a low average

profit take on strategies of better performing agents.

Starting from early contributions it is common in many agent-based models of order-driven fi-

nancial markets that traders submit their order at a random moment during a trading session.

Moreover, they are often required to make a one-dimensional decision, namely to choose a bid

or ask price as in LiCalzi and Pellizzari (2006) or to forecast a future price as in

Brock and Hommes (1997, 1998). For example, LiCalzi and Pellizzari (2006, 2007) compare

efficiency in a Continuous Double Auction with other market protocols such as the Call Market,

under boundedly rational respectively zero intelligent agents that arrive in a random sequence.

Chiarella and Iori (2002) as well as Yamamoto and LeBaron (2010) use traders that submit

their order at a random moment and use simple rules to make predictions about future prices,

similar to Brock and Hommes (1998). In the classical financial literature many studies focus

on limit and market orders. The surveys Gould et al. (2013a) and Hachmeister (2007) discuss

the main theoretical, experimental and empirical papers on limit orders of informed and unin-

formed traders. Bae et al. (2003) and Biais et al. (1995) empirically find that the number of

orders during a day follows a U-shaped distribution. Their reasoning behind this distribution is
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that at the beginning of the day traders desire to perform price discovery and react to events that

occurred during the closing of the exchange and at the end of the day traders desire to unwind

their positions. With the use of learning algorithms such as Individual Evolutionary Learning,

agent-based models of financial markets can be extended to allow traders to submit their order

at a chosen moment during a period. This requires an extension of the learning algorithm, in

which traders are required to make a two-dimensional decision.

1.3 Dissertation outline

This dissertation consists of 4 chapters after this introduction. These chapters consider the ef-

fect of the available information in the market design on expected efficiency, in markets over

networks when we assume that traders use linear markup strategies and in Continuous Dou-

ble Auctions when traders use the Individual Evolutionary Learning algorithm to select their

strategy. The first two chapters study efficiency in markets over random networks; in infinitely

large markets when we assume that traders behave truthfully and in thin markets under bound-

edly rational behaviour of traders. The last two chapters consider the Individual Evolutionary

Learning algorithm in Continuous Double Auctions. We introduce a new hypothetical foregone

payoff function under no information about the history of others’ actions and moreover extend

the model by requiring traders to make the additional decision of choosing the timing of order

submission.

Efficiency in Large Markets over Random Erdős-Rényi Networks

Chapter 2 follows Erdős and Rényi and derives phase transitions of bipartite graphs, depend-

ing on the probability of a link. Links are realised with the same probability, independently of

each other. We find a similar transition of the bipartite graph, when the expected number of

links per trader crosses the value one: the graph consists of many small isolated spanning trees

below the threshold value and contains a giant component after the threshold. A market over

random bipartite graphs with infinitely many traders is considered in the second part of this

chapter. Agents desire to trade one unit and we assume that every trade yields the same surplus.

6



1.3. DISSERTATION OUTLINE

We study the restrictions of the network on the maximal efficiency, which can be calculated as

the maximal expected number of trades divided by the number of traders on the thin side of

the market, under identical valuations and costs of traders. The problem of finding the max-

imal number of trades is known as the Maximum Matching problem, studied for instance in

Mucha and Sankowski (2004) and in West (1999). We derive bounds on expected efficiency as

a function of the probability of a link, and improve these bounds for the range where the graph

contains mainly spanning trees. An algorithm is introduced to construct all spanning trees and

we determine the distribution of the degree of the vertices in a spanning tree.

Information and Efficiency in Thin Markets over Random Networks

A thin Erdős-Rényi market with two buyers and two sellers is considered in Chapter 3. Sim-

ilar to the model of the spot foreign exchange market studied in Gould et al. (2013a), trades

occur over links of the network. In contrast to their model we assume that links are realised

with the same probability and independently of each other. Traders receive information about

the network structure and behave strategically. We compare the equilibrium configurations for

three nested information sets about the network structure; no, partial and full information. Un-

der no information traders do not receive information about the realisation of links, but only

the probability that a link is realised. The existence of one’s links is given under partial infor-

mation, as well as the probability of links of other traders. Under full information the entire

network structure is revealed. We consider the effect of the amount of information on the al-

locative efficiency. This work shows that this effect is not only non-monotonic, but that a rever-

sal of this non-monotonicity occurs when we switch from complete to incomplete information

about traders’ valuations. Contrary to Corominas-Bosch (2004), we show that under partial in-

formation about the network structure, or under incomplete information about valuations and

costs, not all the surplus is necessarily extracted. Under complete information about valua-

tions and costs, partial information about the network structure is weakly dominated. Under

incomplete information about valuations and costs, we restrict attention to linear markup and

markdown strategies. This type of strategies is introduced in Zhan and Friedman (2007) and a

symmetric version is derived in Cervone et al. (2009). Myerson and Satterthwaite (1983) and
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Chatterjee and Samuelson (1983) show for bilateral trading that Nash equilibrium strategies are

monotone and piecewise linear transformations of valuations into offers. For the subset of linear

markup strategies, partial information about the network structure strongly dominates full and

no information.

On the role of Information under Individual Evolutionary Learning in a

Continuous Double Auction

In Chapter 4 we demonstrate through simulations that the specification of the hypothetical fore-

gone payoff functions indeed plays a crucial role in a Continuous Double Auction model under

the IEL learning algorithm, as suggested by Anufriev et al. (2013). Traders use the payoff func-

tion to estimate how other strategies would have performed in the previous period. Under their

hypothetical foregone payoff function bids and asks diverge away from the equilibrium price

range in de ClosedBook system. This work, jointly with Mikhail Anufriev, Jasmina Arifovic

and Valentyn Panchenko, introduces a new foregone payoff function, that uses more informa-

tion to estimate the hypothetical foregone payoff of each possible offer, which results in bids

and offers drifting towards an equilibrium price similar to Fano et al. (2013). Under this payoff

function investors learn to increase their expected profit by submitting an order that has a higher

possible profit. This results in a lower probability of trading, but this effect is outweighed by an

increase in possible profit from trade. First we perform simulations during the learning phase of

a Continuous Double Auction, to study the effect of the OpenBook system. We compare with

the results of the simulations in the Call Market performed by Arifovic and Ledyard (2007), by

comparing efficiency between both markets. Second, we examine the effect of the OpenBook

system during long-run simulations. This allows for a comparison of the new ClosedBook hy-

pothetical foregone payoff function with the function used in Anufriev et al. (2013). Thirdly we

show robustness of our results with respect to the size of the market and the number of units

a trader desires to buy or sell. As indicated in Anufriev et al. (2013) the specification of the

hypothetical foregone payoff function indeed plays a crucial role and largely affects their main

results.
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1.3. DISSERTATION OUTLINE

Timing under Individual Evolutionary Learning in a Continuous Double

Auction

In Chapter 5 we extend the IEL-algorithm used in Arifovic and Ledyard (2003, 2007) and in

Anufriev et al. (2013) by introducing learning about the timing of order submission. In this

joint work with Mikhail Anufriev, traders submit a multidimensional strategy which allows

for contemporaneous learning about the submitted order and the moment of submission. In a

benchmark environment with complete information about the trading history in the previous

period, we study the distribution of submission moments under the extended IEL algorithm and

the interrelation between the submission moments and the orders. This chapter is a step forward

to a more complete model of learning in markets and is distinguished from previous research

by the decision traders are required to make. Instead of a one-dimensional decision traders are

required to make a two-dimensional decision; which bid or ask to submit and when to submit

this offer during the trading session. We show that traders in medium size markets learn to

submit around the middle of the trading session to avoid a lower profit or trading probability.

Moreover, we consider the impact of competition and the size of the market on the timing of

the submission. We conclude that the size of the market highly influences the preferred arrival

moment. We show that the effect of the extra decision that traders are required to make is neg-

ative, by comparing general market statistics with Anufriev et al. (2013), where traders submit

at a random moment during the trading period.
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Chapter 2

Efficiency in Large Markets over Random

Erdős-Rényi Networks

2.1 Introduction

Random graphs have been of interest since the seminal papers of Erdős and Rényi (1960, 1961).

In these papers the random graph is introduced and phase transitions are derived as the number

of vertices converges to infinity. The main result is that a phase transition occurs as the expected

number of edges per vertex crosses the threshold value 1
2
. During such a phase transition the

structure of the graph changes dramatically; up to the threshold the graph consists mainly of

isolated trees whereas after the phase transition a giant component of positive measure arises.

The work in the field of random graphs has been summarised in Alon and Spencer (2008),

Bollobás (1982) and Janson et al. (2000).

The work of Erdős and Rényi on phase transitions in random graphs has not been thoroughly

extended to bipartite graphs, which are graphs whose vertices can be divided in two disjoint

sets in such a way that edges only occur between the sets. In this chapter we derive the phase

transitions of a bipartite graph depending on the probability of an edge. We find a similar transi-

tion of the graph at the value 1; below the threshold the graph is a collection of mainly isolated

spanning trees and after the transition a giant component emerges.
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We consider a market over such a random bipartite graph, in which buyers and sellers are ran-

domly linked with a certain probability. There is an equal number of buyers and sellers, who

all desire to trade one unit of the good and we consider the case where the number of traders

converges to infinity. For simplicity buyers assign a value of one to the good and sellers have

a cost of zero. We assume that traders behave truthfully and bid one or ask zero. We study the

maximal set of trades in the random bipartite graph, which depends on the characteristics of the

different phases. For this so-called Maximum Matching problem many algorithms have been

found, f.i. in Mucha and Sankowski (2004) and West (1999). We derive bounds on the expected

efficiency, which under these simplifications can be calculated by dividing the expected num-

ber of trades in the maximum matching, by the number of traders on one side of the market.

We derive an algorithm to construct all spanning trees and the distribution of the degree of the

vertices. This allows for a development of tighter bounds on expected efficiency in the range

consisting of mainly spanning trees.

The organisation of this chapter is as follows. The model and graph theory are considered in

Section 2.2, followed by the phases of random bipartite graphs in Section 2.3. Section 2.4

derives bounds on expected efficiency in an infinitely large market over such networks. Finally,

Section 2.5 concludes. The proofs are given in an appendix.

2.2 Model

We consider a market with n buyers and n sellers and we let n converge to infinity. Buyer i and

seller j are linked with each other with a fixed probability p, independent of other links. Trade

occurs only between linked traders. A related example of a market over networks is the spot

exchange market studied in Gould et al. (2013a). In this market, traders provide a blocklist that

excludes some traders on the opposite side of the market as possible trading partners. Trades

are possible when both traders are not included in the blocklist of the other. The blocklist is

used to protect against adverse selection and to control counterparty risk, and is thus considered

exogenous. However, in contrast to the spot exchange market we assume that links are realised

12
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with equal probability and independently of each other.

Traders desire to obtain or sell one unit of a good. The valuation of a buyer equals one and

the cost of a seller is zero, and there is complete information about valuations and costs. A

buyer receives a profit equal to his valuation minus the transaction price after a trade, and zero

otherwise. The profit of a seller that trades equals the transaction price minus his cost, otherwise

the profit equals zero. We consider the maximal expected efficiency given the restrictions of the

network structure and thus assume that traders are truthful and bid one or ask zero. Expected

efficiency is defined as the maximal expected surplus under the network structure divided by

the maximal surplus in a complete network. Because every trade results in the same surplus, it

is sufficient to determine the fraction of transactions.

2.2.1 Graph theory

The market can be considered as a random bipartite graph, which is an extended Erdős-Rényi

network. Two sets of labelled vertices V 1 and V 2 denote the sets of buyers and sellers and the

set of edges E represents the links between traders. A graph is called bipartite when every edge

connects a vertex in V 1 with a vertex in V 2. We consider the number of edges N(n) as a func-

tion of the number of traders n on one side of the market; the probability of an edge equals

p = E(N(n)
n2 ).

A graphG2 is called a subgraph ofG1 if the vertices V 1
2 and V 2

2 ofG2 are subsets of the vertices

V 1
1 and V 2

1 of G1, and the edges E2 of G2 are a subset of the edges E1 of G1. A subgraph is

called of size k,l if it is constructed from k and l labelled vertices. A subgraph is an isolated

subgraph when either both or neither of the endpoints of an edge in E1 belong to the subgraph,

i.e. a vertex in the subgraph cannot be linked with a vertex outside the subgraph.

We define different types of subgraphs. A sequence of m attached edges is called a path of size

m. A graph is connected if there is a path between every pair of vertices. A connected isolated

subgraph of G1 is denoted as a component of G1. A spanning tree of size k,l occurs when k and

13
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l vertices are connected by exactly k + l − 1 edges. A cycle of size k,k occurs when k and k

vertices are connected by at least 2k edges and a path of size 2k exists. In a complete bipartite

graph an edge exists between any point in V 1 and any point in V 2.

Two graphs are isomorphic if there is a one-to-one correspondence between the vertices and the

edges of both graphs. The degree of a graph G is the average number of edges of the vertices.

A graph G is balanced if it contains no subgraph that has a larger degree than G itself.

As we consider asymptotic behaviour of the graph we often use the order of variables. The

little o notation a(n) = o (b(n)) denotes that limn→∞
|a(n)|
b(n)

= 0 which indicates that b(n) grows

much faster than a(n). Functions have the same growth rate when |a(n)|
b(n)

is bounded, which

is indicated with the big O notation a(n) = O (b(n)). Two functions are similar, denoted as

a(n) ∼ b(n), when they are asymptotically equal and thus limn→∞
a(n)
b(n)

= 1.

For a given propertyD∗, the functionD(n) is called a threshold function with respect toN(n) if

D∗ almost surely (a.s.) is not satisfied when the ratio N(n)
D(n)

converges to zero, and a.s. is satisfied

if the ratio converges to infinity:

limn→∞ Pn,N(n)(D
∗) =

 0 if limn→∞
N(n)
D(n)

= 0

1 if limn→∞
N(n)
D(n)

=∞.

2.3 Phase transitions bipartite graphs

We consider the phase transitions for a bipartite graph, similar to Erdős and Rényi (1960, 1961),

as the probability of an edge increases. From phase to phase the network structure of the market

changes abruptly. As the probability increases the market evolves from a collection of larger

and larger spanning trees to a market that contains cycles; and eventually a giant central mar-

ket emerges that contains a positive fraction of all traders. In the next section we derive tighter

bounds when the market consists almost surely (a.s.) solely of spanning trees. We prove most

theorems, shown in the appendix, by considering the number of edges N . The Law of Large

Numbers implies that if p is of some order, the number of realised linksN is of order pn2 almost

14
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surely. Hence these results also hold for the generalised random bipartite graph.

Phase 1: p = o( 1
n
)⇐⇒ N = o(n)

In this phase the random graph consists a.s. solely of connected subgraphs that are spanning

trees (Th. 2.3.5). Hence, a.s. there are no cycles (Cor. 2.3.2). Spanning trees of size k,l only

exist from the threshold n2− k+l
k+l−1 on (Cor. 2.3.1). For p ∼ ρn2− k+l

k+l−1 the number of spanning

trees of size k,l follows a Poisson distribution with λ = ρk+l−1kl−1lk−1

k!l!
(Th. 2.3.2).

Hence during this phase the expected number of links per trader converges to zero and the mar-

ket consists of infinitely many isolated submarkets up to a certain size.

Phase 2: p ∼ c
n
⇐⇒ N ∼ cn, for c ≤ 1

Besides spanning trees, also cycles occur in the graph. For c < 1, the probability that the bi-

partite graph contains at least one cycle equals 1 −
√

1− c2e
c2

2 , which is strictly smaller than

1 (Th. 2.3.8). The number of cycles of size k,k follows a Poisson distribution with λ = 1
2k
c2k

(Th. 2.3.3), whereas the number of isolated cycles of size k,k follows a Poisson distribution

with λ = 1
2k

(cec)2k (Th. 2.3.4). The total expected number of cycles is given by 1
2

log( 1
1−c2 )− c2

2

(Th. 2.3.7) and the expected number of vertices that belong to a cycle equals c4

1−c2 (Th. 2.3.9).

Even though cycles emerge, almost every vertex belongs to a spanning tree (Th. 2.3.6). More-

over, the total number of components is given by n−N +O(1) (Th. 2.3.10) and hence almost

every component is a spanning tree. The possible cycles in the bipartite graph are thus negli-

gible. The maximum number of spanning trees of size k,l, kl−1lk−1

k!l!
· (k+l−1

k+l
)k+l−1e−(k+l−1), is

attained for p ∼ 1
n
· k+l−1

k+l
(Th. 2.3.2). In this phase spanning trees of all sizes exist.

For c = 1 the graph almost surely contains a cycle (Th. 2.3.8) and the total number of cycles is of

order 1
2

log(n) (Th. 2.3.7). The expected number of components is given by n−N +O (log(n))

(Th. 2.3.10).
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The expected number of links per trader in this phase is given by the value c. Almost every of

n−N +O(1) submarkets is a spanning tree and almost every trader is part of a spanning tree.

Phase 3: p ∼ c
n
⇐⇒ N ∼ cn, for c > 1

As the expected number of edges exceeds 1 the structure of the bipartite graph undergoes a sud-

den change. The probability that a vertex belongs to a spanning tree is smaller than 1 and equals
x(c)
c

, where x(c) =
∑∞

v=1
vv−1(ce−c)v

v!
and v = k + l (Th. 2.3.6). The number of components

is given by 2n
c

(
x(c)− x(c)2

2

)
(Th. 2.3.10). The greatest component covers a set of vertices of

positive measure, which follows directly from Blasiak and Durrett (2005).

The expected number of trading partners exceeds 1 and now a giant central market arises that

covers a positive fraction of the total market. Around the central market smaller and smaller

submarkets exist.

Phase 4: pn→∞

As the expected number of links converges to infinity, almost surely every trader is part of the

central market. With probability zero small submarkets exist and thus the number of components

is of order O(1) (Th. 2.3.10).

2.4 Bounds on expected efficiency

The different phases determined in the previous section allow us to consider the restrictions of

the network structure on the number of trades. Assuming truthful traders with equal valuations

and costs, the number of trades corresponds directly to the extracted surplus. The expected

maximal efficiency under the random network structure equals the expected maximum number

of trades divided by n. The problem of calculating this expected maximal efficiency reduces to

the Maximum Matching problem; this is a matching at which the number of trades is maximised.

A matching in which all traders can trade is called a perfect matching. Many algorithms have

been established to determine the maximum matching of a given bipartite graph.
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Translating the network into a matrix allows for some necessary and sufficient conditions for

a perfect matching. We can represent the network by a matrix, where rows correspond to the

buyers and columns to the sellers. A value of 1 at place i,j denotes a link between buyer i and

seller j; the value 0 denotes the absence of a link. A perfect matching is available iff either:

• All diagonal elements equal 1, possibly after permuting rows and/or columns.

• Every subset of sellers is linked to a subset of buyers with at least the same cardinality,

often referred to as the Marriage theorem of Hall (1935).

• There does not exist a block of zeros of size k · l with k + l > n.

2.4.1 Example

The expected maximal efficiency is calculated exactly for n = 1, ..., 4 by determining for every

number of existing links N the number of possibilities of having a certain number of maximal

trades t. For example for n = 2 the 24 = 16 possible realisations of the network are given in

Fig. 2.1, where the two buyers are shown on top and the two sellers on the bottom.

Figure 2.1: Possible network realisations for 2 buyers and 2 sellers.

We show the distribution of the maximal number of trades per number of links for n = 3 buyers

and sellers; thus there are 29 = 512 possible realisations of the network. For every possible

realisation we determined the maximal number of trades and the number of links. The number

of realisations with N links and a maximal possible number of trades t is shown in Table 2.1.
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t
N

0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0
1 0 9 18 6 0 0 0 0 0 0
2 0 0 18 72 90 45 6 0 0 0
3 0 0 0 6 36 81 78 36 9 1

Table 2.1: Example with 3 buyers and 3 sellers which shows the number of realisation of the
network with N links and a maximal possible number of trades t.

These calculations allow us to determine the distribution of the number of trades t for

n = 1, ..., 4 buyers and n sellers, shown in Fig. 2.2.

For n = 1, ..., 4 buyers and sellers we show respectively the probability of full efficiency and

the expected efficiency in Fig. 2.3. We observe that the probability of full efficiency increases

for large p and decreases for small p. The expected efficiency is increasing in n because the

expected number of links per trader increases.

2.4.2 Infinitely many traders

The expected maximal efficiency due to restrictions of the network structure is of interest in this

section in a market with infinitely many traders. As mentioned before, this market is related to

the spot exchange market studied in Gould et al. (2013a). For the different phases of the random

bipartite graph expected efficiency for the entire market is calculated. As the expected number

of links converges to zero, we find that the expected efficiency converges to zero. When the ex-

pected number of links however converges to a constant c we derive a lower bound of 1− 1−e−c

c

and an upper bound of 1 − e−c. Finally as the market becomes almost surely connected the

probability that full efficiency is attained converges to one (Th. 2.4.1).

In the range p = c
n
, c ≤ 1 cycles are negligible and almost every vertex of the bipartite graph

belongs to a spanning tree. Hence bounds for expected efficiency can be derived for spanning

trees individually and added up. We formally show that the expected efficiency is continuous
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(a) 1 buyer and 1 seller. (b) 2 buyers and 2 sellers.
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(c) 3 buyers and 3 sellers. (d) 4 buyers and 4 sellers.

Figure 2.2: Distribution of the number of trades for n = 1, ..., 4 buyers and sellers. For every
value of the probability of a link, the probability of maximal t = 0, ..., n trades is given.

and especially at the point c = 1 of the phase transition (Th. 2.4.2).

In order to derive tighter bounds on expected efficiency in the range p = c
n
, c ≤ 1 we construct

an algorithm that produces all possible, undirected, spanning trees of a certain size by adding

vertices one by one to a directed tree. We show that this algorithm produces exactly all spanning

trees (Th. 2.4.3).
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Figure 2.3: Efficiency as a function of the size of the market.

Algorithm 2.4.1: Constructing all possible spanning trees of a bipartite graph

All possible, undirected, spanning trees of size k,l can be constructed by forming a directed tree

step by step. We denote the vertices by V 1 = {v1
1, ..., v

1
k} and V 2 = {v2

1, ..., v
2
l } respectively.

The set of spanning trees is equivalent to the set of directed spanning trees with root v1
1 . This

algorithm produces layer by layer all the possible spanning trees:

Step 1

The node v1
1 is linked to a non-empty subset of V 2. This subset is removed from V 2 and v1

1 is

removed from V 1.

Step 2

All the vertices that are added to the directed tree in the last step are linked to a group of disjoint

subsets of the other set of vertices that satisfy:

• The number of subsets in the group equals the number of vertices added in the last step.

• The union of the group of subsets is non-empty.

• The vertices linked to the same predecessor are ordered; to prevent counting isomorphic

spanning trees multiple times.
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The vertices in the group of subsets are removed from the set of vertices and this step is repeated

until one set of remaining vertices is empty.

Step 3

All the vertices that are added to the directed tree in the last step are linked to a group of disjoint

subsets of the other set of vertices that satisfy:

• The number of subsets in the group equals the number of vertices added in the last step.

• The union of the group is equal to the set of remaining vertices.

• The vertices linked to the same predecessor are ordered; to prevent counting isomorphic

spanning trees multiple times.

This algorithm can easily be extended to multipartite graphs. In every step vertices are added

that are a subset of the other sets of vertices. When all but one set of vertices is empty the al-

gorithm moves on to Step 3. The distribution of the degrees of vertices in spanning trees can

be determined using Algorithm 2.4.1. We show that every vertex in a spanning tree naturally

has one edge and that the remaining edges are multinomially distributed per set of vertices

(Th. 2.4.4).

This allows for tighter bounds on expected efficiency by considering the number of vertices with

a degree larger than one, #Vdegree>1. This number of vertices can be calculated from the multi-

nomial distribution of the remaining edges. We derive a lower bound of d#Vdegree>1+1

2
e on the ex-

pected efficiency in a spanning tree of size k+l > 2 and an upper bound ofmin (k, l,#Vdegree>1)

(Th. 2.4.5). Together it can provide bounds on the expected maximal efficiency of the entire

market when almost every component is a spanning tree. Considering spanning trees separately

we find tighter bounds on expected maximal efficiency in the range p ∼ c
n
, c ≤ 1:∑

1≤i≤k≤∞
∑

1≤j≤l≤∞
e−(k+l)

i!j!
S(l − 1, k − i)S(k − 1, l − j)dk−i+l−j+1

2
e ≤ E(eff)

≤
∑

1≤i≤k≤∞
∑

1≤j≤l≤∞
e−(k+l)

i!j!
S(l−1, k−i)S(k−1, l−j) min(k, l, k − i+ l − j) (Th. 2.4.6).
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These bounds are approximated by evaluating them for k + l ≤ 140. Fig. 2.4 shows that these

bounds are indeed tighter than the bounds found when the graph is considered as a whole.
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Figure 2.4: Bounds on expected efficiency on the basis of the entire graph and on the basis of
spanning trees.

2.5 Concluding remarks

Following Erdős and Rényi (1960, 1961) we have constructed phase transitions for random bi-

partite graphs, where links are realised independently from each other with probability p. In the

phase p = o( 1
n
) the graph consists of isolated spanning trees up to a certain size. The phase

p ∼ c
n
, c ≤ 1 is characterised by a graph where almost every component is a spanning tree.

Such spanning trees occur of every size. The number of spanning trees follows a Poisson dis-

tribution. The greatest component is a spanning tree with zero measure. As c crosses the value

1 for p ∼ c
n

, the behaviour of the graph undergoes a sudden change. Besides spanning trees

and small cycles, the graph contains a giant component of positive measure. As the expected

number of edges per vertex converges to infinity, p ·n→∞, almost every vertex belongs to the

giant component.

Using these phases we could find bounds for the expected efficiency in a market setting, for

individual spanning trees and in general. We considered an equal number of buyers and sellers,

who all desire to trade one unit of the good and consider the case where the number of traders
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converges to infinity. The results hold under the assumption that traders are truthful and bid

or ask their valuation of 1 and cost 0 respectively. Under these settings the problem of finding

the expected maximal efficiency reduces to the Maximum Matching problem. Moreover, the

expected maximal efficiency can be calculated by dividing the expected number of trades in the

maximum matching, by the number of traders on one side of the market. When the expected

number of edges per vertex converges to zero or infinity, the expected efficiency converges to

zero respectively one. In the range p ∼ c
n

we have found a lower bound of 1 − 1−e−c

c
and an

upper bound of 1− e−c on expected efficiency.

These bounds can be improved in the range p ∼ c
n
, c ≤ 1 by considering the expected

maximal efficiency of spanning trees separately. We introduced a new algorithm to

construct all the spanning trees of a certain size and determined the distribution of the

degrees of the vertices in spanning trees. In the phase where the bipartite graph consists

mainly of spanning trees and other components can be neglected, the tighter bounds∑
1≤i≤k≤∞

∑
1≤j≤l≤∞

e−(k+l)

i!j!
S(l − 1, k − i)S(k − 1, l − j)dk−i+l−j+1

2
e ≤ E(eff)

≤
∑

1≤i≤k≤∞
∑

1≤j≤l≤∞
e−(k+l)

i!j!
S(l− 1, k− i)S(k− 1, l− j) min(k, l, k − i+ l − j) are deter-

mined by considering the spanning trees separately.

As an extension of Erdős and Rényi (1960, 1961) we have found similar phase transitions for

random bipartite graphs. Under an assumption about the distribution of links, random bipartite

graphs describe the spot exchange market and we have derived bounds on expected maximal

efficiency for every phase.
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Appendix A: Theorems in Section 3

We prove most theorems by considering the number of edges N instead of the probability of

a link p. The Law of Large Numbers implies that if p is of some order, the number of realised

links N is of order pn2 almost surely. Hence these results also hold for the generalised random

bipartite graph. This random bipartite graph of size n,n with N edges is denoted as Γn,N .

Theorem 2.3.1

Let k + l ≥ 3 and k + l − 1 ≤ m ≤ kl be positive integers. Bk,l,m denotes the non-empty set

of connected balanced bipartite graphs of size k,l and m edges. The threshold function for the

existence of at least one subgraph isomorphic with an element in Bk,l,m is N = O(n2− k+l
m ).

Proof

Let Bk,l,m ≥ 1 be the number of graphs in Bk,l,m that can be constructed from k and l labelled

vertices. Pn,N(Bk,l,m) is the probability that the random graph Γn,N contains at least one sub-

graph that is isomorphic to one of the elements in Bk,l,m and can be bounded by Pn,N(Bk,l,m)

≤
(
n
k

)(
n
l

)
Bk,l,m

(n
2−m
N−m)
(n

2

N )
= O(nknl (n

2−m)N−m

(n2)N
· N !

(N−m)!
) = O( Nm

n2m−k−l ). This holds since as

n→∞,
(
n
k

)
= n!

(n−k)!k!
= O(nk) for k ≥ 1 and

(
n2−m
N−m

)
= (n2−m)!

(n2−m−(N−m))!(N−m)!

=O( (n2−m)N−m

(N−m)!
) for arbitrary N .

The k and l labelled vertices can be selected in
(
n
k

)(
n
l

)
different ways and the m edges can form

an element of Bk,l,m in Bk,l,m ways. The remaining N −m edges can be selected from the re-

maining n2−m possible edges. The above expression is only an upper bound, since graphs that

contain multiple subgraphs isomorphic with an element of Bk,l,m are counted multiple times.

Hence it remains to show that the graph contains a subgraph isomorphic with an element of

Bk,l,m if N is at least of the order n2− k+l
m .

We denote the set of all subgraphs S of Γn,N that are isomorphic with an element of Bk,l,m by

B(n)
k,l,m. Then E(

∑
S∈B(n)

k,l,m
1{S∈Γn,N}) =

∑
S∈B(n)

k,l,m
E(1{S∈Γn,N}) =

(
n
k

)(
n
l

)
Bk,l,m

(n
2−m
N−m)
(n

2

N )
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∼ Bk,l,m
k!l!
· Nm

n2m−k−l .

For two elements Si, Sj ∈ B(n)
k,l,m that do not share an edge we find that

E(
∑

Si,Sj∈B(n)
k,l,m

1{Si,Sj∈Γn,N}) =
∑

Si,Sj∈B(n)
k,l,m

E(1{Si,Sj∈Γn,N}) ≤
(
n
2k

)(
n
2l

)
B2
k,l,m

(n
2−2m
N−2m)
(n

2

N )

≤
((

n
k

)(
n
l

)
Bk,l,m

(n
2−m
N−m)
(n

2

N )

)2

∼
(

E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
)2

.

For two elements Si, Sj ∈ B(n)
k,l,m that share s,t vertices and 1 ≤ r ≤ m− 1 edges we find that

E(1{Si,Sj∈Γn,N}) =
(n

2−2m+r
N−2m+r)

(n
2

N )
= O(N

2m−r

n4m−2r ).

Since all Si are balanced the degree of the intersection of S1 and S2 should be less than the de-

gree of the subgraph S1 (and also S2): r
s+t
≤ m

k+l
. Hence s+ t ≥ r(k+l)

m
, and thus the number of

such pairs of subgraphs Si, Sj is bounded by B2
k,l,m

∑k
s=1

∑l

t=
r(k+l)
m
−s

(
n
k

)(
n
l

)(
k
s

)(
l
t

)(
n−k
k−s

)(
n−l
l−t

)
= O(B2

k,l,m

∑k
s=1

∑l

t=
r(k+l)
m
−s

nknlkslt(n−k)k−s(n−l)l−t
k!l!s!t!(k−s)!(l−t)! )

= O
(∑k

s=1

∑l

t=
r(k+l)
m
−s n

knl(n− k)k−s(n− l)l−t
)

= O(
∑k

s=1

∑l

t=
r(k+l)
m
−s n

2(k+l)−s−t)

= O(n2(k+l)− r(k+l)
m ), since s+ t ≥ r(k+l)

m
. So E(

∑
Si,Sj∈B(n)

k,l,m
1{Si,Sj∈Γn,N})

= O

(
( Nm

n2m−(k+l) )
2
∑m−1

r=1 (n
2− k+l

m

N
)r
)

.

We combine the above results and find that

E
(

(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
2
)

= E(
∑

Si,Sj∈B(n)
k,l,m

1{Si,Sj∈Γn,N})

≤ E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N}) +
(

E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
)2

+O

(
( Nm

n2m−(k+l) )
2
∑m−1

r=1 (n
2− k+l

m

N
)r
)

.

For Nm

n2m−k−l = ω →∞ it holds that

Var(
∑

S∈B(n)
k,l,m

1{S∈Γn,N}) = E
(

(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
2
)
−
(

E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
)2

= E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N}) +
(

E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
)2

+ O

(
( Nm

n2m−k−l )
2
∑m−1

r=1 (n
2− k+l

m

N
)r
)

−
(

E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
)2

=
(E(

∑
S∈B(n)

k,l,m

1{S∈Γn,N}))
2

E(
∑
S∈B(n)

k,l,m

1{S∈Γn,N})
+O

(
( Nm

n2m−k−l )
2
∑m−1

r=1 (n
2− k+l

m

N
)r
)

= O

(
(E(

∑
S∈B(n)

k,l,m

1{S∈Γn,N}))
2

Nm

n2m−k−l

)
= O

(
(E(

∑
S∈B(n)

k,l,m

1{S∈Γn,N}))
2

ω

)
.
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Now we are able to use Chebysheff’s inequality, which states that P(|X − µ| ≥ hσ)

≤ 1
h2 ,∀h > 0. For h = 1

2

√
ω we find that

P
(
|
∑

S∈B(n)
k,l,m

1{S∈Γn,N} − E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})| ≥ 1
2
E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
)

= O( 1
ω

)

⇒ P
(∑

S∈B(n)
k,l,m

1{S∈Γn,N} ≤ 1
2
E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N})
)

= O( 1
ω

).

As ω → ∞ we have that E(
∑

S∈B(n)
k,l,m

1{S∈Γn,N}) → ∞ and thus a.s. Γn,N contains a subgraph

isomorphic to an element in Bk,l,m and the number of these subgraphs a.s. converges to∞ with

order of magnitude ωm. 2

Corollary 2.3.1

The threshold function for the existence of a spanning tree of size k,l with m = k+ l− 1 edges

is N = O(n
k+l−2
k+l−1 ).

Corollary 2.3.2

The threshold function for the existence of a connected subgraph of size k,l with m = k+ l ≥ 3

edges is N = O(n). This connected subgraph contains precisely one cycle.

Corollary 2.3.3

The threshold function for the existence of a cycle of length 2k over k,k vertices with m = 2k

edges is N = O(n), k ≥ 2.

Corollary 2.3.4

The threshold function for the existence of a complete subgraph of size k,l with m = k · l edges

is p = O(n2− k+l
k·l ).

Lemma 2.3.1 (Erdős and Rényi, 1960)

Let εn1, εn2, ..., εnl be sets of l random variables on some probability space; suppose that εni

takes on only the values 1 or 0. If limn→∞
∑

1≤i1<i2<...<ir≤l E(εni1 , εni2 , ..., εnir) = λr

r!
uni-

formly in r for r = 1, 2, ..., where λ > 0 and the summation is extended over all combina-
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tions (i1, i2, ..., ir) of order r of the integers 1, 2, ..., l, then limn→∞ P(
∑l

i=1 εni = j) = λje−λ
j!

,

(j = 0, 1, ...). I.e. the distribution of the sum
∑l

i=1 εni tends for n → ∞ to the Poisson-

distribution with mean value λ.

Theorem 2.3.2

For τk,l, the number of isolated spanning trees of size k,l in Γn,N , and limn→∞
N(n)

n
− k+l
k+l−1

= ρ > 0

it holds that: limn→∞ Pn,N(τk,l = j) = λje−λ

j!
, (j = 0, 1, ...), with λ = ρk+l−1kl−1lk−1

k!l!
. Moreover,

the maximum number of spanning trees of size k,l of nk
l−1lk−1

k!l!
(k+l−1

k+l
)k+l−1e−(k+l−1) is attained

for N ∼ nk+l−1
k+l

.

Proof

We denote the set of all spanning trees of size k,l that are subgraphs of Γn,N by T (n)
k,l . The vari-

able ε(S) takes on the value 1 if it is an isolated subgraph and 0 otherwise. We prove the theorem

by applying Lemma 2.3.1 to
∑

S∈T (n)
k,l
ε(S), which requires us to show that all its conditions are

fulfilled.

We find E(ε(S)) =
((n−k)(n−l)
N−k−l+1 )

(n
2

N )
∼ ( N

n2 )k+l−1e−(k+l)N
n by induction. For k = 0 and l = 0,

((n−k)(n−l)
N−k−l+1 )

(n
2

N )
equals (n2)!N !(n2−N)!

(N+1)!(n2−N−1)!(n2)!
= n2−N

N+1
∼ n2

N
, and thus the equality holds for k = 0 and

l = 0. This is the basis of the induction. Dividing ((n−k)(n−l)
N−k−l+1 )

(n
2

N )
by its limit ( N

n2 )k+l−1e−(k+l)N
n

gives

((n−k)(n−l)
N−k−l+1 )

(n
2
N )

( N
n2 )k+l−1e−(k+l)Nn

= (n2−(k+l)n+kl)!N !(n2−N)!
(N−k−l+1)!(n2−(k+l)n+kl−N+k+l−1)!(n2)!

(n
2

N
)k+l−1e(k+l)N

n . We disregard

the negligible order term. Now we use this to construct the following step of induction, by di-

viding this term by the subsequent term with k + 1 and l (k and l + 1 works symmetrical):
(n2−(k+l)n+kl)!N !(n2−N)!

(N−k−l+1)!(n2−(k+l)n+kl−N+k+l−1)!(n2)!
(n

2

N )k+l−1e(k+l)
N
n

(n2−((k+1)+l)n+(k+1)l)!N !(n2−N)!

(N−(k+1)−l+1)!(n2−((k+1)+l)n+(k+1)l−N+(k+1)+l−1)!(n2)!
(n

2
N )(k+1)+l−1e((k+1)+l)Nn

=
(n2−(k+l)n+kl)!

(N−k−l+1)!(n2−(k+l)n+kl−N+k+l−1)!
(n

2

N )k+l−1e(k+l)
N
n

(n2−((k+1)+l)n+(k+1)l)!

(N−(k+1)−l+1)!(n2−((k+1)+l)n+(k+1)l−N+(k+1)+l−1)!
(n

2
N )(k+1)+l−1e((k+1)+l)Nn

∼ (n2−(k+l)n+kl)N−k−l+1

(n2−(k+l+1)n+(k+1)l)N−k−l
1
n2e
−N

n∼ n2 1
n2 e−

N
n ∼ e−

N
n → 1.
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And thus the limit is shown for k + 1 and l which concludes the induction. Hence the equation

is proved for limn→∞
N(n)

n
− k+l
k+l−1

= ρ > 0.

Moreover, for disjoint S1, ...Sr ∈ T (n)
k,l , k,l,r ≥ 1, it holds that

E
(
ε(S1), ..., ε(Sr)

)
=

((n−rk)(n−rl)
N−r(k+l−1) )

(n
2

N )
∼ ( N

n2 )r(k+l−1)e−(k+l)rN
n when all Si are disjoint and zero

otherwise.

An extended version of Cayley’s formula states that from k and l labelled points, kl−1lk−1 dif-

ferent spanning trees can be formed. Hence summing over all possible r-tuples of spanning trees

in T (n)
k,l gives

∑
E
(
ε(S1), ..., ε(Sr)

)
∼ kl−1lk−1 (nk)

r
(nl)

r

r!
( N
n2 )r(k+l−1)e−(k+l)rN

n

∼ (k
l−1lk−1

k!l!
)r n

(k+l)r

r!
( N
n2 )r(k+l−1)e−(k+l)rN

n .

For limn→∞
N(n)

n
− k+l
k+l−1

= ρ > 0 we can conclude that limn→∞
∑

E
(
ε(S1), ..., ε(Sr)

)
= λr

r!
,

r = 1, 2, ... with λ defined as before. Hence we showed that Lemma 2.3.1 can be applied to

τk,l =
∑

S∈T (n)
k,l
ε(S).

Rewriting the above formula gives E(τk,l) = n2

N
· (N

n
e−

N
n )k+lkl−1lk−1

k!l!
= n · mk,l(

N
n

) with

mk,l(t) = kl−1lk−1tk+l−1e−(k+l)t

k!l!
. For k,l fixed we solve ∂

∂t
mk,l(t)

= kl−1lk−1

k!l!
e−(k+l)ttk+l−2 (k + l − 1− (k + l)t) = 0 and hence the maximum is attained at

t = k+l−1
k+l

, or N ∼ nk+l−1
k+l

. This maximum equals nk
l−1lk−1

k!l!
(k+l−1

k+l
)k+l−1e−(k+l−1). 2

Theorem 2.3.3

Let γk,k be the number of cycles of size k,k as a subgraph of Γn,N . For N(n) ∼ cn, c > 0 we

find that limn→∞ P(γk,k = j) = λje−λ

j!
, λ = 1

2k
(N
n

)2k.

Proof

There are 1
2
k!(k − 1)! possible cycles of size k,k. Thus E(γk,k) =

(
n
k

)(
n
k

)
1
2
k!(k − 1)!

(n
2−2k
N−2k)
(n

2

N )

∼ 1
2
· n!n!k!(k−1)!
k!k!(n−k)!(n−k)!

· (n2−2k)N−2k

(n2)N
· N !

(N−2k)!
∼ 1

2k
nknk (N)2k

(n2)2k ∼ 1
2k
· (N

n
)2k.
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For C(n)
k,k all cycles of size k,k, let ε(S), S ∈ C(n)

k,k , be equal to 1 if S is a subgraph of Γn,N and

0 otherwise. Similar to above we find that E (ε(S)) =
(n

2−2k
N−2k)
(n

2

N )
∼ ( N

n2 )2k and E (ε(S1), ..., ε(Sr))

=
(n

2−2kr
N−2kr)
(n

2

N )
∼ (n2−2kr)N−2kr

(n2)N
· N !

(N−2kr)!
∼ ( N

n2 )2kr. Since there are 1
2
k!(k − 1)! of these cycles, if

we sum over all possible r-tuples of these cycles we have:
∑

E
(
ε(S1), ..., ε(Sr)

)
∼
(
(nk)(

n
k)

1
2
k!(k−1)!

)r
r!

( N
n2 )2kr ∼ ( 1

2
· n!n!k!(k−1)!
k!k!(n−k)!(n−k)!)

r

r!
·( N
n2 )2kr ∼ ( 1

2k
nknk)r

r!
·( N
n2 )2kr =

( 1
2k

(N
n

)2k)
r

r!
= λr

r!

with λ = 1
2k

(N
n

)2k. Since γk,k =
∑
ε(S) we can apply Lemma 2.3.1 and hence for N(n) ∼ cn

the number of cycles of size k,k follows a Poisson distribution with λ = 1
2k

(N
n

)2k. 2

Theorem 2.3.4

Let γ∗k,k be the number of isolated cycles or size k,k as a subgraph of Γn,N . For N(n) ∼ cn,

c > 0 we find that limn→∞ P(γ∗k,k = j) = λje−λ

j!
, λ = 1

2k
(cec)2k.

Proof

There are 1
2
k!(k − 1)! possible cycles of size k,k. E(γ∗k,k) = 1

2
k!(k − 1)!

(
n
k

)(
n
k

)((n−k)2

N−2k )
(n

2

N )

∼ 1
2
· n!n!k!(k−1)!
k!k!(n−k)!(n−k)!

( N
n2 )2ke−2kN

n ∼ 1
2k
nknk(N

n
)2ke−2kN

n ∼ 1
2k

(N
n

e−
N
n )2k. We can apply

Lemma 2.3.1 again and thus the number of isolated cycles of size k,k follows a Poisson distri-

bution with λ = 1
2k

(cec)2k for N(n) ∼ cn. 2

Theorem 2.3.5

For N = o(n) and n→∞ the graph Γn,N is a.s. the union of disjoint spanning trees.

Proof

Let T be the property that a graph is the union of disjoint spanning trees and thus T̄ the property

that the graph contains at least one cycle. Then Pn,N(T̄ ) ≤
∑n

k=2

(
n
k

)(
n
k

)
1
2
k!(k − 1)!

(n
2−2k
N−2k)
(n

2

N )

= O
(∑n

k=2

n!n! 1
2
k!(k−1)!

k!k!(n−k)!(n−k)!
· (n2−2k)N−2k

(n2)N
· N !

(N−2k)!

)
= O(

∑n
k=2

nknk

(n2)2kN
2k) = O

(∑n
k=2(N

n
)2k
)

= O(N
n

). Thus for N = o(n) we have that limn→∞ Pn,N(T ) = 1. 2
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Theorem 2.3.6

Let Vn,N be the number of vertices in Γn,N which belong to an isolated spanning tree contained

in Γn,N . For N(n) ∼ cn we have limn→∞
E(Vn,N )

2n
= 1 when c ≤ 1 and limn→∞

E(Vn,N )

2n
= x(c)

c

when c > 1, where x(c) =
∑∞

v=1
vv−1(ce−c)v

v!
and v = k + l.

Proof

For τk,l the number of isolated spanning trees of size k,l as a subgraph of Γk,l, then we have:

Vn,N =
∑n

k=0

∑n
l=0(k + l)τk,l and hence E(Vn,N) =

∑n
k=0

∑n
l=0(k + l)E(τk,l).

Using limn→∞
E(τk,l)

2n
= 1

2c
· (ce−c)k+lkl−1lk−1

k!l!
we obtain for c ≤ 1 that limn→∞

E(Vn,N )

2n

= 1
2c

∑∞
k=0

∑∞
l=0

(k+l)(ce−c)k+lkl−1lk−1

k!l!
.

Remains to show that the latter term equals 1. We make use of
∑v

k=0

(
v
k

)
kv−k−1(v − k)k−1

= 2vv−2 ⇒
∑v

k=0
kv−k−1(v−k)k−1

k!(v−k)!
= 2vv−2

v!
and

∑∞
v=1

vv−1(ce−c)v

v!
= c for c ≤ 1, see

Erdős and Rényi (1960).

Thus limn→∞
E(Vn,N )

2n
= 1

2c

∑∞
k=0

∑∞
l=0

(k+l)(ce−c)k+lkl−1lk−1

k!l!

= 1
2c

∑∞
v=1

∑
k+l=v

(k+l)(ce−c)k+lkl−1lk−1

k!l!
= 1

2c

∑∞
v=1

∑v
k=0

v(ce−c)vkv−k−1(v−k)k−1

k!(v−k)!

= 1
2c

∑∞
v=1 v(ce−c)v

∑v
k=0

kv−k−1(v−k)k−1

k!(v−k)!
= 1

2c

∑∞
v=1 v(ce−c)v 2vv−2

v!
= 1

c

∑∞
v=1

vv−1(ce−c)v

v!

= 1. So a.e. vertex belongs to a spanning tree for c ≤ 1.

Similarly to Erdős and Rényi (1960), for c > 1 it holds that limn→∞
E(Vn,N )

2n

= 1
c

∑∞
v=1

vv−1(ce−c)v

v!
< 1. 2

Theorem 2.3.7

The total number of cycles in Γn,N is denoted by Cn,N . For N(n) ∼ cn, c < 1 it holds that

limn→∞ E(Cn,N) = 1
2

log( 1
1−c2 )− c2

2
and for c = 1 that limn→∞ E(Cn,N) ∼ 1

2
log(n).
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Proof

For c < 1 we find that E(γk,k) =
(
n
k

)(
n
k

)
1
2
k!(k−1)!

(n
2−2k
N−2k)
(n

2

N )
∼ n!n! 1

2
k!(k−1)!

k!k!(n−k)!(n−k)!
· (n

2−2k)N−2k

(n2)N
· N !

(N−2k)!

∼ 1
2k

(N
n

)2k ∼ 1
2k
c2k. Since Cn,N =

∑n
k=2 γk,k and

∑∞
k=1

zk

k
= − log(1− z) for z = c2 we find

that limn→∞ E(Cn,N) = 1
2

log( 1
1−c2 )− c2

2
, which proves the first part.

For c = 1 it holds that E(γk,k) is similar to 1
2k

and hence Cn,N =
∑n

k=2 γk,k = 1
2

∑n
k=2

1
k
. Since∑n

k=1
1
k
∼ log(n+ 1) we can conclude that limn→∞ E(Cn,N) ∼ 1

2
log(n). 2

Theorem 2.3.8

LetC be the property that a bipartite graph contains at least one cycle. WhenN(n) ∼ cn, c ≤ 1,

it holds that limn→∞ Pn,N(C) = 1−
√

1− c2e
c2

2 . For c < 1 the probability of at least one cycle

is less than 1, but for c = 1 the bipartite graph a.s. contains a cycle.

Proof

Given that the probability that two cycles are not disjoint is negligibly small and that the number

of cycles follows a Poisson distribution with mean λ = limn→∞ E(Cn,N), we find for c < 1 that

limn→∞ Pn,N(C̄) = e− limn→∞ E(Cn,N ) = e
−
(

1
2

log( 1
1−c2

)− c
2

2

)
=
√

1− c2e
c2

2 . As this converges to

0 as c ↑ 1, the theorem is proved for c ≤ 1. 2

Theorem 2.3.9

The number of points of Γn,N that are part of a cycle is denoted as C∗n,N . ForN(n) ∼ cn, c < 1,

it holds that limn→∞ E(C∗n,N) = c4

2(1−c2)
.

Proof

Given that the probability that two cycles are not disjoint is negligibly small we find that

limn→∞ E(C∗n,N) ∼ limn→∞
∑n

k=2 2kγk,k = c4
∑∞

k=0(c2)k = c4 1
1−c2 = c4

1−c2 , since∑n
k=0 z

k = 1−zn+1

1−z . 2
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Theorem 2.3.10

We denote the number of components of Γn,N by ζn,N . For N(n) ∼ cn, c < 1 it holds that

E(ζn,N) = n − N + O(1). When c = 1 the expected number of components is given by

E(ζn,N) = n − N + O (log(n)). For c > 1 we find limn→∞
E(ζn,N )

2n
= 1

c

(
x(c)− x(c)2

2

)
, where

x(c) =
∑∞

v=1
vv−1(ce−c)v

v!
and v = k + l.

Proof

In order to prove the first two parts we will make use of Theorem 2.3.7, which states the number

of cycles. A new link can either connect two components or create at least one cycle. Hence a

new link either increases N − ζn,N by one or increases Cn,N by at least one. Thus it holds that

N ≤ n− ζn,N + Cn,N .

For c < 1 the expected number of cycles is a constant and hence E(ζn,N) = n−N +O(1).

Similarly when c = 1 the expected number of cycles is given by 1
2

log(n). Therefore it holds

that E(ζn,N) = n−N +O (log(n)).

Theorem 3.1 implies that the expected number of components of size k,l with m ≥ k + l edges

is of the order O( Nm

n2m−k−l ) = O
(
(N
n

)k+l
)
, which is bounded ∀k,l. The number of components

of size K,L or greater is trivially of order O( 2n
K+L

), where K,L < n can be chosen arbitrarily

large. Hence the number of components is similar to the number of spanning trees. As a result

it holds that E(ζn,N) ∼
∑n

k=0

∑n
l=0 E(τk,l) ∼ n2

N

∑n
k=0

∑n
l=0

kl−1lk−1

k!l!
(N
n

e−
N
n )k+l.

Using
∑v

k=0
kv−k−1(v−k)k−1

k!(v−k)!
= 2vv−2

v!
, it follows that limn→∞

E(ζn,N )

2n

= 1
2c

∑∞
k=0

∑∞
l=0

kl−1lk−1

k!l!
(ce−c)k+l = 1

2c

∑∞
v=1

∑
k+l=v

kl−1lk−1

k!l!
(ce−c)k+l

= 1
2c

∑∞
v=1

∑v
k=0

kv−k−1(v−k)k−1

k!(v−k)!
(ce−c)v = 1

2c

∑∞
v=1(ce−c)v

∑v
k=0

kv−k−1(v−k)k−1

k!(v−k)!

= 1
2c

∑∞
v=1(ce−c)v 2vv−2

v!
= 1

c

∑∞
v=1(ce−c)v v

v−2

v!
= 1

c

(
x(c)− x(c)2

2

)
as in Erdős and Rényi (1960).

2
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Appendix B: Theorems in Section 4

Theorem 2.4.1

a) If p = O( 1
nα

), α > 1 it follows that E(eff)→ 0.

b) If p = c
n

it follows that E(eff)→ d ∈ [1− 1−e−c

c
, 1− e−c].

c) If 1
p

= O(nα), α < 1 it follows that P(eff = 1)→ 1 and therefore E(eff)→ 1.

Proof

a) We can bound the probability that buyer i trades by the probability that he has at least one

link: P(buyeri trades) ≤ 1− (1− p)n = 1− (1− 1
nα

)n = 1−
(
(1− 1

nα
)n
α)n1−α

→ 1− e−n
1−α

→ 1− e0 = 0. Since P(buyeri trades)→ 0 we have that E(eff)→ 0.

b) We select buyers one by one and if possible let them trade with a linked and available seller.

The ith selected buyer has at least n− i + 1 available sellers. Hence a lowerbound is found by

considering the probability that this buyer is not linked to at least one of the available n− i+ 1

sellers. It holds that 1 − (1 − c
n
)n−i+1 ≤ P(ith selected buyer trades) ≤ 1 − (1 − c

n
)n. Sim-

ilarly, this leads to n+1−n
α

c
+

(1− c
nα

)n+1

c

n
≤ E(eff) ≤ n(1−(1− c

n
)n)

n
. In the limit it follows that

1− 1−e−c

c
≤ E(eff) ≤ 1− e−c.

c) Here we make use of the matrix representation. A perfect matching and therefore a maxi-

mal number of trades is obtained if there does not exist a block of zeros, where the number of

columns plus the number of rows exceeds n. We show that the probability that the maximal

number of trades t is lower than n converges to zero.

P(t < n) = P(∃k, l block, k + l > n) ≤
∑n

i=1 P(∃i(n− i+ 1) block)

≤
∑n

i=1

(
n
i

)(
n

n−i+1

)
(1− p)i(n−i+1) ≤ 2

∑bn+1
2
c

i=1

(
n
i

)(
n

n−i+1

)
(1− p)i(n−i+1). As a result of

Claim 2.4.1 it holds that P(eff = 1)→ 1 and thus E(eff)→ 1. 2

Claim 2.4.1

limn→∞
∑bn+1

2
c

i=1

(
n
i

)(
n

n−i+1

)
(1− p)i(n−i+1) → 0 for p = O( 1

nα
) and α < 1.
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Proof

Let us denote P(∃(i+1)(n−i) block)
P(∃i(n−i+1) block)

as fi. We use induction to prove the claim.

f1 = 1
1
· 1

2
n(n− 1)(1− p)n−2 < 1 for n large enough. Furthermore

fi+1

fi
= i

i+2
n−i+2
n−i (1 − p)2 < 1, i ≤ bn−3

2
c. So fi < 1, i ≤ bn−1

2
c and therefore it holds that

P(∃1 · n block) ≥ P(∃i(n− i+ 1) block), i ≤ bn+1
2
c.

Now we can conclude that

limn→∞ P(t < n) ≤ 2
∑bn+1

2
c

i=1

(
n
i

)(
n

n−i+1

)
(1− p)i(n−i+1) ≤ 2

∑bn+1
2
c

i=1

(
n
1

)(
n
n

)
(1− p)n

≤ 2 limn→∞ nbn+1
2
c(1−p)n ≤ 2 limn→∞ n

2(1−p)n ≤ 2 limn→∞ n
2e−n

1−α → 0 for p = O( 1
nα

)

and α < 1. 2

Theorem 2.4.2

Although the behaviour of the graph changes abruptly when c passes through 1, the expected

efficiency is continuous in c.

Proof

For any given graph G we add a link e. Obviously we have for t the maximal number of

trades that E (t(G+ e)) − E (t(G)) ≤ 1; a removal of the link e can only lead to a decrease

of at maximum one trade. So for any number of added links δ we have that

E
(
t(G+

∑δ
i=1 ei)

)
−E (t(G)) ≤ δ. The expected efficiency as a function of p is simply the

weighted sum over all possible graphs. So now we can find a δ for every ε > 0 such that

E (eff(p+ δ))− E (eff(p)) ≤ ε; namely a δ such that limn→∞
δ
n
≤ ε. This proves right continu-

ity and similarly the expected efficiency is also left continuous. 2

Theorem 2.4.3

Algorithm 2.4.1 produces the set of possible spanning trees of size k,l.

Proof

The maximal in-degree of the vertices is one and all vertices are connected, thus the algorithm
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only constructs spanning trees.

Next we will prove by reductio ad absurdum that this algorithm produces all the possible span-

ning trees. Let us suppose a spanning tree T of size k,l exists that is not produced by the

algorithm. The set of points in T that are linked to v1
1 is non-empty and a subset of V 2 and

is thus produced by the algorithm. Let D be the maximal distance from node v1
1 . The sets of

vertices with distance 0 < d ≤ D from node v1
1 must be non-empty and disjoint. If this set is

empty there cannot be a point with distance D. If these sets are not disjoint then there is a point

from which there are two possible paths to reach v1
1 , which is not possible in a spanning tree.

Trivially since T is a spanning tree, all the vertices that do not have distance 0 < d < D must

have distance D. Thus T must be produced by the algorithm. 2

Theorem 2.4.4

A spanning tree with k buyers and l sellers has k + l − 1 edges. Every vertex has at least one

edge. The remaining l− 1 edges are multinomially distributed over the buyers, and the remain-

ing k − 1 edges multinomially over the sellers.

Proof

The number of spanning trees with degrees i1, ..., ik respectively j1, ..., jl can be computed

recursively by building such a spanning tree step by step. We select a vertex or component

without unfulfilled outgoing links and calculate the number of possible incoming links. The set

V 1 has l outgoing links and V 2 has k − 1 outgoing links. A selected vertex or component with

a root in V 1 can be linked to all k − 1 outgoing links of set V 2. A selected vertex or com-

ponent with a root in V 2 can be linked to l − 1 outgoing links; the outgoing link of the root

v1
1 excluded. There have to be at least two vertices with degree one so we can assume without

loss of generality that v1
1 has degree one. After every step there has to be at least one compo-

nent remaining without any unfulfilled outgoing links. The outgoing link of root v1
1 has to be

fulfilled last, otherwise the remaining vertices or components cannot be added to the same span-

ning tree. Including symmetric spanning trees for the moment, this results in (k − 1)!(l − 1)!
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possible spanning trees.

The number of symmetries in a vertex is given by the factorial of the outdegree. We can con-

clude that the number of different spanning trees of size k,l and degrees i1, ..., ik respectively

j1, ..., jl is given by (k−1)!(l−1)!
(i1−1)!·...·(ik−1)!·(j1−1)!·...·(jl−1)!

and the probability of having those degrees

equals (k−1)!(l−1)!
(i1−1)!·...·(ik−1)!·(j1−1)!·...·(jl−1)!

· 1
kl−1lk−1 .

If we only consider the degrees of set V 1, we can calculate the number of spanning trees with

degrees i1, ..., ik by
∑

j1+...+jl=k+l−1
(k−1)!(l−1)!

(i1−1)!·...·(ik−1)!·(j1−1)!·...·(jl−1)!
· 1
kl−1lk−1

= (l−1)!
(i1−1)!·...·(ik−1)!

· 1
kl−1

∑
j1+...+jl=k+l−1

(k−1)!
(j1−1)!·...·(jl−1)!

· 1
lk−1 = (l−1)!

(i1−1)!·...·(ik−1)!
· 1
kl−1 This shows

that the remaining edges per set of vertices follow a multinomial distribution, independently of

each other. 2

Theorem 2.4.5

A lower- and upper bound for the maximum number of trades in a spanning tree with k+l > 2 is

determined by the number of vertices with a degree of at least 2, #Vdegree>1: LB = d#Vdegree>1+1

2
e

and UB = min (k, l,#Vdegree>1).

Proof

To show the lower bound, we consider the sidebranches until a single path remains. Side-

branches start in vertices with degree larger than two and consist of an isolated path. We

consider sidebranches with the root excluded that have vertices with a degree that is maxi-

mal two. Vertices in sidebranches are considered only once, and hence a sequence of side-

branches with vertices of a degree maximal two exists. In such a sidebranch the maximal num-

ber of trades is equal to t = b#V bdegree>1+1

2
c ≥ #V bdegree>1

2
, where V b denotes the vertices in this

branch. By removing such branches one by one only a single path remains. Trivially, the num-

ber of possible trades in such a remaining single path is given by d#V pdegree>1+1

2
e, where V p are

the vertices in this path. Hence the total number of possible trades is bounded from below by
#V bdegree>1

2
+ d#V pdegree>1+1

2
e ≥ d#V pdegree>1+1

2
e.
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Trivially k and l are both an upper bound for the maximum number of trades. Since there are

no vertices with degree one linked to each other in a spanning tree with k + l > 2, every trade

includes a vertex with a degree of at least two. Hence UB = min (k, l,#Vdegree>1) is an upper

bound for the maximum number of trades. 2

Theorem 2.4.6

For p ∼ c
n
⇐⇒ N ∼ cn, c ≤ 1 it holds that:∑

1≤i≤k≤∞
∑

1≤j≤l≤∞
e−(k+l)

i!j!
S(l − 1, k − i)S(k − 1, l − j)dk−i+l−j+1

2
e ≤ E(eff)

≤
∑

1≤i≤k≤∞
∑

1≤j≤l≤∞
e−(k+l)

i!j!
S(l − 1, k − i)S(k − 1, l − j) min(k, l, k − i+ l − j).

Proof

In a spanning tree every vertex has at least one edge and the remaining edges are multino-

mially distributed over the vertices. The probability that i out of k vertices do not have any

of the remaining l − 1 edges is given by k!
i!
S(l−1,k−i)

kl−1 , where S(l − 1, k − i) is the Stirling

number of the second kind. Hence the probability of a spanning tree with k,l vertices where

k− i and l− j vertices have a degree larger than 1 equals kl−1lk−1

k!l!
e−(k+l) k!

i!
S(l−1,k−i)

kl−1
l!
j!
S(k−1,l−j)

lk−1

= e−(k+l)

i!j!
S(l − 1, k − i)S(k − 1, l − j).

The result is obtained by multiplying by the bounds on the expected maximal efficiency per

spanning tree and summing over all sizes of the spanning tree and the number of vertices with

a degree equal to 1:
∑

1≤i≤k≤∞
∑

1≤j≤l≤∞
e−(k+l)

i!j!
S(l − 1, k − i)S(k − 1, l − j)dk−i+l−j+1

2
e

≤ E(eff) ≤
∑

1≤i≤k≤∞
∑

1≤j≤l≤∞
e−(k+l)

i!j!
S(l− 1, k− i)S(k− 1, l− j) min(k, l, k − i+ l − j).

2
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Chapter 3

Information and Efficiency in Thin

Markets over Random Networks

3.1 Introduction

In this chapter we consider a market in which transactions only occur between linked traders.

These links occur as in a bipartite random network where every link is realised with the same

probability, independently of each other. Regular random graphs have been introduced by

Erdős and Rényi (1960, 1961). The spot foreign exchange market is studied by

Gould et al. (2013a) and is an example of a market in which trade occurs through Bilateral

Trading Agreements. Traders provide a block list containing trading partners with whom they

prefer not to trade, to protect themselves against adverse selection and to control counterparty

risk. In such a market a transaction between two traders only takes place if both are not part of

the other’s block list. We use the model of Gould et al. and additionally assume that links are

realised with the same probability and independently of each other.

Markets over networks have been studied in various settings. Corominas-Bosch (2004) and

Chatterjee and Dutta (1998) consider a market in which side by side traders submit an offer

which the other traders accept or reject. In Corominas-Bosch (2004) all buyers have the same

valuation and sellers the same cost; this allows the network to be split into different subgraphs.
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In every subgraph the short side extracts all the possible surplus. We show that under par-

tial information about the network structure, or under incomplete information about valuations

and costs, not all the surplus is necessarily extracted. Spulber (2006) and

Kranton and Minehart (2001) study simultaneously ascending-bid auctions in which

sellers jointly raise their ask until supply equals demand, and then trade occurs.

Easley and Kleinberg (2010) and Blume et al. (2009) introduce intermediaries who act

strategically and profit from trade. The power of a trader in a network is formalised in

Calvó-Armengol (2001) by considering the number of linked traders and their links. A higher

market power is achieved when a trader is linked to more traders and when linked traders have

fewer links themselves.

For bilateral trading Myerson and Satterthwaite (1983) and Chatterjee and Samuelson (1983)

study Nash equilibrium strategies that monotonely transform valuations and costs into offers

and exhibit an equilibrium in which they are piecewise linear. We restrict attention to linear

markup and markdown strategies where the intensity of the markup or markdown depends on

the information set that is available to the trader. These strategies have been introduced by

Zhan and Friedman (2007); Cervone et al. (2009) discuss a version that is symmetric between

buyers and sellers.

We consider thin markets with few traders, who trade only over existing links in a bipartite

graph. These links are formed independently with the same probability p in (0, 1), forming a

bipartite random graph à la Erdős-Rényi. Traders behave strategically, and we derive equilib-

rium configurations depending on the information about the network structure that is available

to traders.

Three nested information sets about the realisation of the network are compared. Under no

information, traders place orders without knowing which links materialise, but simply the prob-

ability p that each link may exist. With partial information, traders know their own links and the

probability p that links may exist between other market participants. Under full information, the

40



3.2. THE MODEL

entire structure of the network is common knowledge.

We study the effect of the quantity of information available to traders on allocative efficiency.

We show that this effect is non-monotonic. Furthermore, switching from complete to incom-

plete information about traders’ valuations flips the shape of this non-monotonicity. Under

complete information about traders’ valuations, we show that for any value of p both no in-

formation and full information lead to full allocative efficiency, while the partial information

regime is weakly dominated. However, under a more realistic assumption of incomplete infor-

mation about traders’ valuations, this ranking is reversed. If traders use linear markup strategies,

partial information strongly dominates full and no information for any value of p.

The organisation of this chapter is as follows. The model and the trading mechanism are de-

scribed in Section 3.2, together with the markup and markdown strategies and the information

sets. Efficiency under complete information about traders’ valuations is studied in Section 3.3,

followed by incomplete information in Section 3.4. Finally, Section 3.5 concludes.

3.2 The model

Let us consider a market over a bipartite Erdős-Rényi network. In such a network every buyer

bi and every seller sj are connected with probability p in (0, 1) independently of other links.

Trade is possible only if a link exists. An example of such a market is the spot exchange market

studied in Gould et al. (2013a). In comparison with this market we add the assumption that

every pair of traders is linked with the same probability and independently of other links. Fur-

thermore, in the spot exchange market trade is only possible when both traders do not include

the other in their blocklist. E.g. this may occur when the trading partner does not exceed some

risk requirement and therefore the network structure is considered exogenous. Nevertheless, a

bijective transformation exists from the probability of a link in the spot exchange market to the

probability of a link in this chapter. The probability of a link in the spot exchange market is the

square of the latter probability.
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A buyer desires to obtain one unit of a good and a seller seeks to sell one unit. Under complete

information valuations equal one and costs equal zero, whereas under incomplete information

the valuations vi of buyers and costs cj of sellers are uniformly distributed on the interval [0, 1].

This distribution is public information but the realisations are private information. The profit of

a buyer is equal to his valuation minus the transaction price if he trades and zero otherwise. The

profit of a seller equals the transaction price minus his cost after a trade and zero otherwise.

The probability of a link influences the expected allocative efficiency as absence of links makes

some trades impossible. Furthermore, expected efficiency is reduced by strategic behaviour of

traders, that could prevent feasible trades. Expected allocative efficiency is defined as the ex-

pected total realised surplus from trade divided by the expected maximal total surplus, i.e. the

expected total profit of all traders divided by the expected total maximal profit.

We show our results for a market with two buyers and two sellers. In this market the maximal

expected surplus equals 2 under complete information and 2
5

under incomplete information of

valuations and costs. The maximal expected surplus under incomplete information is derived

for a full network. From the point of view of buyer b1, he has the highest valuation with prob-

ability v1 since the valuation of the other buyer is uniformly distributed. This results in a trade

with the seller with the lowest cost if this trade is feasible. The density function of the lowest

cost is given by 2− 2cmin and this trade results in a surplus of v1 − cmin. Similarly buyer b1 has

the lowest valuation with probability 1− v1 and he trades with the seller with the highest cost,

with density function 2cmax, if this trade is feasible. Hence the maximal expected surplus of 2
5

for a full network is obtained from

2
[∫ 1

0

∫ 1

cmin
(v1 − cmin)(2− 2cmin)v1dv1dcmin +

∫ 1

0

∫ 1

cmax
(v1 − cmax)2cmax(1− v1)dv1dcmax

]
.

However, due to absence of links the maximal expected surplus is reduced, depending on the

value of p. For complete and incomplete information about valuations and costs, the ratios

between maximal expected surplus given the random network structure and maximal expected

surplus of the full network are given by
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E(AEC
p ) = 1·4p(1−p)3+1·4p2(1−p)2+2·2p2(1−p)2+2·4p3(1−p)+2·p4

2 ,

E(AEI
p) =

1
6 ·4p(1−p)

3+ 1
4 ·4p

2(1−p)2+ 1
3 ·2p

2(1−p)2+ 43
120 ·4p

3(1−p)+ 2
5 ·p

4

2
5

.

In Fig. 3.1 it is shown that a difference in reduction of efficiency, due to restrictions of the

network structure, exists between complete and incomplete information. This is due to the dif-

ference in distribution of valuations and costs. Hence, under complete information every trade

results in the same surplus while under incomplete information extra links not only increase the

expected number of links, but also decrease the expected surplus per trade. Hence the difference

between both ratios of efficiency increases.
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Figure 3.1: Ratios of efficiency given the probability of a link for complete and incomplete
information about valuations and costs.

3.2.1 Trading mechanism

The symmetric trading mechanism consists of simultaneous submission of bids and asks by

all traders after which the offers are made public. A buyer ranks his connected sellers by their

asks, and a seller his linked buyers by their bids. Trades respect such preferences: preferred

buyer-seller pairs are matched with each other. As long as further trades are possible, such a
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preferred pair naturally exists. Every seller desires to trade with the buyer with the highest bid

which ensures that this buyer can trade with his preferred connection. The trade is executed at

a price that is equal to the average of bid and ask and this is repeated until no further trades

are possible. In contrast to some related literature, this trading mechanism gives equal power to

both sides of the market.

If this trading mechanism does not lead to a unique outcome, as a result of traders that do not

have a unique preferred trading partner, the trading mechanism selects the outcome that max-

imises total surplus. Under complete information about valuations and costs this is conservative

towards our result, under incomplete information this occurs only in a nullset.

A possible realisation of the bipartite Erdős-Rényi network with bids βi and asks αj is given

in Fig. 3.2. In the first example buyer b1 and seller s1 trade after which b2 and s2 trade; this

coincides with the social optimum. In the second example however b1 and s2 trade. Hence the

most profitable trade occurs first and therefore a social optimum is not necessarily reached.

(a) The social optimum is reached. (b) The social optimum is not reached.

Figure 3.2: Example of the trading mechanism.
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3.2.2 Markup and markdown strategies

There is an incentive for traders to act strategically and bid below their valuation and ask above

their cost to obtain a higher profit. Under complete information about valuations and costs

traders choose a unique strategy given the available information about the network. Under in-

complete information traders choose a strategy that is depending on the realisation of their

valuation or cost. We assume that traders use linear markup and markdown strategies symmet-

ric on [0, 1] from Cervone et al. (2009). These strategies transform the valuations and costs as

follows:

A buyer with valuation vi bids βi = vi(1−md
i ).

A seller with cost cj asks αj = cj +mu
j (1− cj).

The values md
i and mu

j denote the intensity of the markdown of buyer i and the markup of

seller j. The higher these values, the further away bids and asks are from the valuations and

costs. The Nash equilibrium markdown and markup strategies are determined on the basis of

the distribution of valuation and cost of others, not on the realisation of it. Moreover, we need to

take into account the information set of a trader. Hence the markdown and markup strategies will

not be a simple transformation of the valuation or cost, but will also depend on the information

that is available to traders about the network structure.

3.2.3 The information sets

We study the Nash equilibrium markdown and markup strategies depending on the information

set available to traders. Under complete information the valuations and costs are known; under

incomplete information only their distribution. Moreover, the number of traders on both sides

of the market is known. We consider the following nested sets of information about the network

structure, which are all common knowledge:
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• No information: The probability of a link is known.

• Partial information: The probability of a link is known as well as

the realisation of the own links.

• Full information: The realisation of the entire network is known.

Under no information only the minimal amount of information is available to traders. The prob-

abilities of all networks can be calculated and hence the equilibrium strategy depends only on

the probability of a link. Partial information allows a trader to base the strategy on the num-

ber of own links and hence the equilibrium strategy depends on the number of a player’s own

links and the probability that other links are realised. With full information the entire network

is known and the equilibrium strategy is based on the realisation of all links.

We show the partitions of the possible networks of the different information sets, for two buyers

and two sellers, in Figs. 3.3-3.5. Networks that are not distinguishable are shown in the same

partition.

Figure 3.3: Partition under no information.
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Figure 3.4: Partitions with partial information from the perspective of the top left node.

Figure 3.5: Partitions under full information from the perspective of the top left node.

3.3 Complete information about valuations and costs

To compare the expected efficiency given different information sets we consider a market

with two buyers and two sellers. Under complete information we assume that valuations and

costs are equal to one respectively zero, which is common knowledge. For each information

set we calculate the symmetric Nash equilibrium strategies from the profit functions given in

Appendix 1. These profit functions are a multiplication of the profit of trade and an indicator

function that attains the value one if the trade is feasible.

No Information

Under no information traders have no knowledge about the realisation of links; but they know
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the probability that they occur. All the traders have the same information and thus they use the

same deterministic strategy. Naturally, bids can be decreased and asks increased until they are

equal. Hence in the unique symmetric Nash equilibrium buyers bid 1
2

and sellers ask 1
2
. Given

the limitations of p full efficiency is reached; i.e. strategic behaviour does not reduce efficiency.

Partial Information

For computational reasons we restrict offers of traders to the grid [0, 1
2k
, ..., 1]. Traders with one

link may prefer to be less aggressive to outcompete other traders. This requires them to increase

their bid or decrease their ask by 1
2k

. With a rougher grid this becomes less attractive. For a

rough grid with k < 5 buyers bid and sellers ask 1
2

in equilibrium and hence full efficiency is

reached.

Below we show the equilibrium strategies as a function of p for k = 5, the roughest grid that

does not always lead to full efficiency. First given is the markup of a trader with one link, second

the markup of a trader with two links. For mixed strategies the probabilities are given by ρi. In

the range 1√
11
< p < 1

3
the latter equilibrium is unstable with respect to the strategy of traders

with two links. If one trader deviates to the stable equilibrium it is optimal for other traders to

deviate also, because this allows for trades between agents with two links.

0 < p < 5−
√
5

10 : [12 ], [12 ].

5−
√
5

10 < p <
√
17−3
4 : [ρ1

2
5 , (1− ρ1)

3
5 ], [35 ], where ρ1 = −4

2p2+3p−5 .
√
17−3
4 < p < 1√

11
: [25 ], [35 ].

1√
11

< p < 1
3: [25 ], [12 ] stable and [25 ], [35 ] unstable.

1
3 < p < 5+

√
5

10 : [ρ1
3
10 , ρ2

2
5 , (1− ρ1 − ρ2)

1
2 ], [12 ],

where ρ1 = −−8+45p−45p2
41(p−1)p and ρ2 = −29−25p+25p2

41(p−1)p .

5−
√
5

10 < p < 1: [12 ], [12 ].

For k = 5 we find that full efficiency is not attained for 5−
√

5
10

< p < 1√
11

. When the grid is
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sufficiently dense full efficiency is not reached for every value of p. For denser grids this area

increases and hence the result may also hold without the assumption of a grid of strategies.

The subset of p for which traders with one link become less aggressive increases. As k goes to

infinity these traders use mixed strategies over an infinite number of strategies. When the prob-

ability p is sufficiently small, traders with two links will become more aggressive when traders

with one link are less aggressive. This does not hold when the probability p is relatively large,

because this will cause a profit of zero in a fully connected network. For a subset of p, strategic

behaviour reduces efficiency.

Full Information

Under full information traders have full knowledge about the realisation of the network. When

both sides of the market have the same size, bids and asks equal one half in the symmetric equi-

librium. For traders with one link it is not profitable to be less aggressive. When one side of the

market is thinner, it extracts all the possible surplus. Agents with one link are less aggressive

to outcompete the other trader on the same side of the market. Given the limitations of p full

efficiency is reached, i.e. efficiency is not reduced by strategic behaviour.

No and full information lead to full efficiency, given the limitations of the network structure.

For a grid of possible strategies we show that under partial information the strategic behaviour

of traders decreases efficiency for a subset of p. Moreover, we argue that with a denser grid effi-

ciency is decreased for a larger range of values for p. Under no and full information, restricting

strategies of traders to a grid has no effect. Hence a non-monotonicity occurs and partial infor-

mation is weakly dominated. Under complete information about traders’ valuations and costs it

is optimal when traders either receive all or no information about the network structure.

3.4 Incomplete information about valuations and costs

Under incomplete information, valuations and costs are uniformly distributed on [0, 1], where

the distribution is common knowledge but the realisations are private information. To com-

49



CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

pare the expected efficiency given different information sets we again consider a market with

two buyers and two sellers. The necessary calculations for every information set are shown in

Appendix 2. As an example, the best response functions under full information are given below

for a network where buyer b1 is connected with both sellers. We solve these to find the Nash

equilibrium strategies and calculate expected allocative efficiency, volume and profit.

Example

Network b1 ↔ s1 & b1 ↔ s2

In equilibrium it holds that mu
1 = mu

2 = mu and thus buyer b1 trades with the seller with the

lowest cost cmin = min(c1, c2), which has pdf 2 − 2cmin. We denote the profit of a buyer with

bid βi trading with a seller with ask αj as π(βi, αj) and similar for sellers. For simplicity we

disregard in this notation that the offers are a function of both the strategy and the valuation or

cost. The integration limits are set to indicate the region of valuations and costs in which trade

occurs:

∂
∂md

1

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)dv1dcmin = 0.

Seller s1 only trades when its ask is lower than the ask from seller s2:

c1 + mu
1(1 − c1) < c2 + mu

2(1 − c2). For a given cost c1 this happens with probability

P(trade) = 1− (1−mu1 )c1+mu1−mu2
1−mu2

:

[ ∂
∂mu

1

∫ 1−md
1−mu

1
1−mu

1
0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(α1, β1)P(trade)dv1dc1
]
{mu

2=m
u
1}

= 0.

Solving these best response functions gives the Nash equilibrium strategies

mu = mu
1 = mu

2 ≈ 0.110 and md
1 ≈ 0.341.

The expected efficiency given the reductions invoked by absence of links is given by

E(AE) =

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

(v1−cmin)(2−2cmin)dv1dcmin∫ 1

0

∫ 1

cmin
(v1−cmin)(2−2cmin)dv1dcmin

≈ 0.858.

The ratio between the expected number of trades and the maximal number of trades gives the

50



3.4. INCOMPLETE INFORMATION ABOUT VALUATIONS AND COSTS

expected volume:

E(Volume) = 1
2

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

1 · (2− 2cmin)dv1dcmin ≈ 0.204.

Similarly to the best response functions above we calculate the expected profit for a trader hav-

ing one link, respectively two links:

E(Π1) =
∫ 1−md

1−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(α1, β1)(1− c1)dv1dc1 ≈ 0.038,

E(Π2) =
∫ 1−md

1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, α1)(2− 2cmin)dv1dcmin ≈ 0.138.

Comparisons

No information outperforms full information in terms of expected efficiency for values of p

smaller than the benchmark c ≈ 0.106, but for large values of p the opposite holds, as shown in

Fig. 3.6. As the available information has no effect on the efficiency reduction due to absence of

links, we emphasise solely the effect of strategic behaviour. Hence the ratio is shown between

the realised efficiency and the maximal efficiency given the network structure. The maximum

differences are reached at p ≈ 0.070 and p ≈ 0.729.
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Figure 3.6: Efficiency no and full information.

We find that the amount of information available to traders has a non-monotonic effect on effi-

ciency; irrespective of the probability of a link, partial information leads to the highest expected
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efficiency. Moreover, we observe that switching from complete to incomplete information re-

verses the shape of the non-monotonicity. We conclude that in terms of efficiency the following

order of information sets holds:

0 < p < c : E(AEpartial) > E(AEno) > E(AEfull),

c < p < 1 : E(AEpartial) > E(AEfull) > E(AEno).

The maximum difference between information sets is reached near p = 2
3

where the probability

of having one respectively two links is equal. At this point uncertainty about the network struc-

ture is the most reduced by additional information. Fig. 3.7 shows the efficiency under strategic

behaviour given the restrictions of the network structure, between the different information sets:
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Figure 3.7: Comparison between ratios between efficiency under strategic behaviour and the
maximal efficiency given the limitations of the network structure.

These results can be explained by the equilibrium strategies for which the average value for

having one link, respectively two links, with their bands and the volatility for every value of p

are displayed in Fig. 3.8. The no information strategies are the highest, but are not subject to

volatility. The average partial and full information strategies are similar albeit the volatility is

significantly larger in the latter case. A higher volatility in observable market power results in a
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(c) Volatility of strategies.

Figure 3.8: Distribution of strategies.

higher volatility of strategies, since the higher the observable market power the more aggressive

offers the trader submits.

The expected value of the bargaining power measure, as in Calvó-Armengol (2001), can be

calculated on the basis of the available information about the market. This measure takes on

values in the interval [0, 1] and is increasing in market power. For example with no information

the expected bargaining power is always equal to one half. Under partial information, having

two links results in an expected bargaining power larger than one half, in which case the trader

will aim for a higher profit. For this trader it results in possible large profits but reduces the

probability of trading. Having one link results in an expected bargaining power less than one

half. Under full information certain networks lead to an even higher dispersion between traders’
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expected market powers.

Volatility of strategies has a negative effect; lower markups cause a slightly higher efficiency

whereas higher markups may result in absence of trade. Partial information leads to the high-

est expected efficiency and the negative effects of higher markups for no information and high

volatility for full information are similar.

For example for p = 1
2
, under no information a trader will always use the markup strategy 0.224.

Under partial information a trader with one link uses 0.190 and a trader with two links 0.237.

Under full information the markup does not only depend on the own number of links but also

on the links of others. If a trader has one link his strategy ranges from 0.110 to 0.227, with two

links from 0.187 to 0.341.

Volume

In Fig. 3.9 the expected number of trades, i.e. the volume, shows a similar comparison as the

expected efficiency. For p > 0.030 we find that full information leads to a higher volume than

no information, for small p the opposite holds. For every value of the probability of a link, par-

tial information leads to the highest expected volume.
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Figure 3.9: Expected volume for all information sets.
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Expected profit

The expected profit for a trader that has one link, respectively two links, is shown in Fig. 3.10.

A trader with one link has the highest expected profit under partial information; for p < 0.408

the lowest under full information, and otherwise the lowest under no information. A trader with

two links has the highest expected profit under full information, the lowest under no informa-

tion. Comparing partial and full information, a trader with one link has a higher expected profit

under partial information and a trader with two links under full information. For any value of p

the latter is dominated and hence partial information leads to the highest expected efficiency.
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Figure 3.10: Expected profit for having one (left) and two links (right).

3.5 Concluding remarks

In a bipartite Erdős-Rényi market agents only trade in case they are linked to each other. The

trading mechanism allows preferred trades to occur, not necessarily the socially optimal alloca-

tion of trades. In such a market three ordered sets of information about the network structure are

considered; no, partial and full information. These information sets are compared under com-

plete and incomplete information about valuations and costs.

With no information only the probabilities of all networks can be calculated and hence the equi-
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librium strategy depends on the probability of a link. Partial information allows a trader to base

the strategy on the number of his own links and hence the equilibrium strategy depends on the

number of a player’s own links and the probability that other links are realised. With full infor-

mation the entire network is known and the equilibrium strategies are based on the realisation

of all links.

Under complete information about traders’ valuations, in a market with two buyers and two sell-

ers, no and full information lead to attain full efficiency for every probability of a link. Due to

strategic behaviour of traders, under partial information allocative efficiency might be reduced.

Hence we found that partial information is weakly dominated by no and full information and it

is optimal if either everything or nothing of the realisation of the network structure is revealed

to traders.

Under incomplete information about valuations and costs, expected efficiency given no and full

information are comparable, when we assume that traders use markup and markdown strate-

gies. For a small probability of a link no information outperforms and the opposite holds for

a large probability. Partial information leads to the highest expected efficiency, since markups

in no information and volatility of strategies in full information are higher, and thus strongly

dominates no and full information. Higher markups and a larger volatility increase the proba-

bility of absence of trades and hence decrease the expected efficiency. Knowledge of the own

links rather than only of the probability distribution improves efficiency, but adding knowledge

of the links of others decreases efficiency. It is optimal, when only the realisation of own links

is known. Therefore, more information does not necessarily lead to a higher expected allocative

efficiency. Furthermore, the expected volume and the expected profit for traders when they have

one link, respectively two links, are compared.

We demonstrated that the effect of the quantity of information available to traders on the alloca-

tive efficiency is non-monotonic. Moreover, the shape of this non-monotonicity flips over when

we switch from complete to incomplete information about traders’ valuations.
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Appendix A: Profit functions complete information about val-

uations and costs

The profit functions of buyer b1 under complete information about valuations and costs are

shown below. These are used to calculate the Nash equilibrium markup and markdown strate-

gies. Some best response functions are symmetric and hence we find symmetric markups, and

simplifying assumptions about the strategies of others can be made.

Network 1: b1 ↔ s1

Buyer b1 trades if 1−md
1 ≥ mu

1 , which results in a profit of π(md
1,m

u
1) = 1− 1−md1+mu1

2
:

E(Πb1) = π(md
1,m

u
1)1{1−md1≥mu1}.

Network 2: b1 ↔ s1 & b1 ↔ s2

Buyer b1 trades with the seller with the lowest ask mu = mu
1 = mu

2 , if 1−md
1 ≥ mu:

E(Πb1) = π(md
1,m

u)1{1−md1≥mu}.

Network 3: b1 ↔ s1 & b2 ↔ s1

b1 only trades when its bid is higher than the bid from b2, 1−md
1 > 1−md

2, or with probability

one half if they are equal, if 1−md
1 ≥ mu

1 :

E(Πb1) = π(md
1,m

u
1)1{1−md1≥mu1}(1{1−md1>1−md2} + 1

2
1{md1=md2}).

Network 4: b1 ↔ s1 & b2 ↔ s2

Buyer b1 trades if 1−md
1 ≥ mu

1 :

E(Πb1) = π(md
1,m

u
1)1{1−md1≥mu1}.

Network 5: b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

Buyer b1 is only connected to s2. Unless b2 and s2 prefer to trade with each other he trades with

s2, if 1−md
1 ≥ mu

2 . This happens unless md
2 < 1−md

1 and mu
2 < mu

1 :

E(Πb1) = π(md
1,m

u
2)1{1−md1≥mu2}(1− 1{md2<md1}1{m

u
2<m

u
1}).
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Network 6: b1 ↔ s1, b1 ↔ s2 & b2 ↔ s2

If 1−md
1 ≥ mu

1 and 1−md
1 ≥ mu

2 , buyer b1 trades with s1 except when he and s2 both prefer

to trade with each other. The latter happens when 1−md
1 > 1−md

2 and mu
2 < mu

1 :

E(Πb1) = π(md
1,m

u
2)1{1−md1≥mu2}1{1−md1>1−md2}1{m

u
2<m

u
1}

+ π(md
1,m

u
1)1{1−md1≥mu1}(1− 1{1−md1>1−md2}1{m

u
2<m

u
1}).

Network 7: b1 ↔ s1, b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

In the symmetric equilibrium both sellers use the strategy mu = mu
1 = mu

2 . Buyer b1 can trade

as long as his bid exceeds the askprice of the sellers:

E(Πb1) = π(md
1,m

u)1{1−md1≥mu}.
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Appendix B: Efficiency under incomplete information about

valuations and costs

The possible realisations of the network, without permutations, are given below. For each net-

work we show the best response function of buyer b1 under incomplete information about val-

uations and costs. Some best response functions are symmetric and hence we find symmetric

markups, and simplifying assumptions about the strategies of others can be made. We denote

the profit of a buyer with bid βi trading with a seller with ask αj as π(βi, αj) and similar for

sellers. For simplicity we disregard in the notation that the offers are a function of both the strat-

egy and the valuation or cost. The integration limits are set to indicate the region of valuations

and costs in which trade occurs.

Network 1: b1 ↔ s1[
∂

∂md1

∫ 1−md1−m
u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md1

π(β1, α1)dv1dc1

]
{mu1 =md1}

= 0

Network 2: b1 ↔ s1 & b1 ↔ s2

In equilibrium, mu
1 = mu

2 = mu and thus b1 trades with the seller with the lowest cost

cmin = min(c1, c2) which has pdf 2− 2cmin:

∂
∂md1

∫ 1−md1−m
u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

π(β1, αmin)(2− 2cmin)dv1dcmin = 0.

Network 3: b1 ↔ s1 & b2 ↔ s1

b1 only trades when its bid is higher than the bid from b2, v1(1 − md
1) > v2(1 − md

2):[
∂

∂md1

∫ 1−md1−m
u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md1

π(β1, α1)
v1(1−md1)

(1−md2)
dv1dc1

]
{md2=md1}

= 0.

Network 4: b1 ↔ s1 & b2 ↔ s2

The network is split into two separate markets; the best response function of b1 is the same as

in network 1.
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Network 5: b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

b1 is only connected to s2 and unless b2 and s2 prefer to trade with each other he can trade with

s2. This happens with probability P(trade) = 1− (1−min{1, v1(1−md1)

1−md2
})(1− (1−mu2 )c2+mu2−mu1

1−mu1
).

We disregard the possibility that the latter term is negative, since in equilibrium the markup of

a trader with two links is higher than the markup of a trader with one link:[
∂

∂md1

∫ 1−md1−m
u
2

1−mu2
0

∫ 1
c2+mu2 (1−c2)

1−md1

π(β1, α2)P(trade)dv1dc2

]
{mu1 =md1,m

u
2 =md2}

= 0.

Network 6: b1 ↔ s1, b1 ↔ s2 & b2 ↔ s2

b1 trades with s1 except when he and s2 both prefer to trade with each other. This happens with

probability v1(1−md1)

1−md2
(1 − (1−mu2 )c2+mu2−mu1

1−mu1
) =

v1(1−md1)

1−md2
· max{0, (1−mu1 )c1+mu1−mu2

1−mu2
}, where we

disregard the possibility that the first term is negative:[
∂

∂md1

∫ 1−md1−m
u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md1

π(β1, α1)(1− v1(1−md1)

1−md2
·max{0, (1−mu1 )c1+mu1−mu2

1−mu2
})dv1dc1

+
∫ 1−md1−m

u
2

1−mu2
0

∫ 1
c2+mu2 (1−c2)

1−md1

π(β1, α2)
v1(1−md1)

1−md2
(1− (1−mu2 )c2+mu2−mu1

1−mu1
)dv1dc2

]
{mu1 =md2,m

u
2 =md1}

= 0.

Network 7: b1 ↔ s1, b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

In equilibrium, mu
1 = mu

2 = mu and thus b1 trades with the seller with the lowest cost

cmin = min(c1, c2) which has pdf 2 − 2cmin, if his bid is higher than the bid of b2. For a given

value of β1 = v1(1−md
1) this happens with probability v1(1−md1)

1−md2
. b1 trades with the seller with

the highest cost cmax = max(c1, c2) which has pdf 2cmax, if his bid is lower than the bid of b2.

For a given value of β1 = v1(1−md
1) this happens with probability 1− v1(1−md1)

1−md2
:[

∂
∂md1

∫ 1−md1−m
u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

π(β1, αmin)(2− 2cmin)
v1(1−md1)

1−md2
dv1dcmin

+
∫ 1−md1−m

u

1−mu
0

∫ 1
cmax+mu(1−cmax)

1−md1

π(β1, αmax)2cmax(1− v1(1−md1)

1−md2
)dv1dcmax

]
{mu=md2=md1}

= 0.

Full Information

In the full information setting, traders have knowledge of the entire realisation of the network.

Hence Nash equilibrium strategies are calculated per possible network.
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Network: b1 ↔ s1

Solving the best response function of network 1 gives the Nash equilibrium strategies

md
1 = mu

1 ≈ 0.227. This allows us to calculate expected allocative efficiency given the lim-

itations of the network structure, which is the ratio between the expected surplus from trade,

divided by the total expected surplus:

E(AE) =

∫ 1−md1−m
u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md1

(v1−c1)dv1dc1

∫ 1
0

∫ 1
c1

(v1−c1)dv1dc1
≈ 0.792.

Moreover, the expected volume, the ratio between the expected number of trades and the maxi-

mal number of trades, equals:

E(Volume) = 1
2

∫ 1−md1−m
u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md1

1dv1dc1 ≈ 0.125.

Similarly to the best response function above we calculate the expected profit for a trader that

has one link:

E(Π1) =
∫ 1−md1−m

u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md1

π(β1, α1)dv1dc1 ≈ 0.066.

Network: b1 ↔ s1 & b1 ↔ s2

Solving the best response functions of network 2 and a symmetric version of 3 gives the Nash

equilibrium strategies mu = mu
1 = mu

2 ≈ 0.110 & md
1 ≈ 0.341:

E(AE) =

∫ 1−md1−m
u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

(v1−cmin)(2−2cmin)dv1dcmin

∫ 1
0

∫ 1
cmin

(v1−cmin)(2−2cmin)dv1dcmin
≈ 0.858,

E(Volume) = 1
2

∫ 1−md1−m
u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

1 · (2− 2cmin)dv1dcmin ≈ 0.204,

E(Π1) =
∫ 1−md1−m

u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md1

π(α1, β1)(1− c1)dv1dc1 ≈ 0.038,

E(Π2) =
∫ 1−md1−m

u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

π(β1, α1)(2− 2cmin)dv1dcmin ≈ 0.138.
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Network: b1 ↔ s1 & b2 ↔ s2

This network is similar to the first network, except that expected volume is doubled.

Network: b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

Solving the best response functions of network 5 and a symmetric version of 6 gives the Nash

equilibrium strategies mu
1 = md

1 ≈ 0.169 & mu
2 = md

2 ≈ 0.246:

E(AE)=
[
2
∫ 1−md2−m

u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md2

(v2 − c1)

×(1− (1− v2(1−md2)

1−md1
)(1−max{0, (1−mu1 )c1+mu1−mu2

1−mu2
}))dv2dc1

+
∫ 1−md2−m

u
2

1−mu2
0

∫ 1
c2+mu2 (1−c2)

1−md2

(v2 − c2)
v2(1−md2)

1−md1
(1− (1−mu2 )c2+mu2−mu1

1−mu1
)dv2dc2]

/[2
∫ 1

0

∫ 1

c1
(v2 − c1)(1− (1− v2)(1− c1))dv2dc1 +

∫ 1

0

∫ 1

c2
(v2 − c2)v2(1− c2)dv2dc2

]
≈ 0.867,

E(Volume)= 1
2

[
2
∫ 1−md2−m

u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md2

1

×(1− (1− v2(1−md2)

1−md1
)(1−max{0, (1−mu1 )c1+mu1−mu2

1−mu2
}))dv2dc1

+
∫ 1−md2−m

u
2

1−mu2
0

∫ 1
c2+mu2 (1−c2)

1−md2

1 · v2(1−md2)

1−md1
(1− (1−mu2 )c2+mu2−mu1

1−mu1
)dv2dc2

]
≈ 0.293,

E(Π1)=
∫ 1−md1−m

u
2

1−mu2
0

∫ 1
c2+mu2 (1−c2)

1−md1

π(β1, α2)

×(1− (1−min{1, v1(1−md1)

1−md2
})(1− (1−mu2 )c2+mu2−mu1

1−mu1
))dv1dc2

≈ 0.056,

E(Π2)=
∫ 1−md2−m

u
1

1−mu1
0

∫ 1
c1+mu1 (1−c1)

1−md2

π(β2, α1)(1− v2(1−md2)

1−md1
·max{0, (1−mu1 )c1+mu1−mu2

1−mu2
})dv2dc1

+
∫ 1−md2−m

u
2

1−mu2
0

∫ 1
c2+mu2 (1−c2)

1−md2

π(β2, α1)
v2(1−md2)

1−md1
(1− (1−mu2 )c2+mu2−mu1

1−mu1
)dv2dc2 ≈ 0.099.
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Network: b1 ↔ s1, b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

Solving the best response function of network 7 gives the Nash equilibrium strategies

mu = mu
1 = mu

2 = md
1 = md

2 ≈ 0.187:

E(AE) =
[ ∫ 1−md1−m

u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

(v1 − cmin)(2− 2cmin)
v1(1−md1)

1−md2
dv1dcmin

+
∫ 1−md1−m

u

1−mu
0

∫ 1
cmax+mu(1−cmax)

1−md1

(v1 − cmax)2cmax(1− v1(1−md1)

1−md2
)dv1dcmax

]
/
[ ∫ 1

0

∫ 1

cmin
(v1 − cmin)(2− 2cmin)v1dv1dcmin

+
∫ 1

0

∫ 1

cmax
(v1 − cmax)2cmax(1− v1)dv1dcmax

]
≈ 0.913,

E(Volume) = 1
2

[
2
∫ 1−md1−m

u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

1 · (2− 2cmin)
v1(1−md1)

1−md2
dv1dcmin

+2
∫ 1−md1−m

u

1−mu
0

∫ 1
cmax+mu(1−cmax)

1−md1

1 · 2cmax(1− v1(1−md1)

1−md2
)dv1dcmax

]
≈ 0.347,

E(Π2)=
∫ 1−md1−m

u

1−mu
0

∫ 1
cmin+mu(1−cmin)

1−md1

π(β1, αmin)(2− 2cmin)v1dv1dcmin

+
∫ 1−md1−m

u

1−mu
0

∫ 1
cmax+mu(1−cmax)

1−md1

π(β1, αmax)2cmax(1− v1)dv1dcmax ≈ 0.091.

Combining the 4 possibilities of having only one link in the network, the 4 possibilities of

having one trader that has two links, the 2 possibilities of having two linked pairs, the 4 possi-

bilities of having 3 links in total, with the possibility of having a fully connected network, gives

a function of the expected efficiency in terms of the probability of a link. We show the expected

efficiency reduction due to strategic behaviour and the total expected efficiency. The latter is the

ratio of efficiency reductions due to strategic behaviour and the limitations of the network:

E(AEs) = 0.132·4p(1−p)3+0.215·4p2(1−p)2+2·0.132·2p2(1−p)2+0.311·4p3(1−p)+0.366·p4

1
6
·4p(1−p)3+ 1

4
·4p2(1−p)2+ 1

3
·2p2(1−p)2+ 43

120
·4p3(1−p)+ 2

5
·p4 ,

E(AEp,s) = 0.132·4p(1−p)3+0.215·4p2(1−p)2+2·0.132·2p2(1−p)2+0.311·4p3(1−p)+0.366·p4

2
5

.
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The expected volume as a function of p is given by

E(Volume) = 0.125 · 4(1− p)3p+ 0.204 · 4(1− p)2p2 + 2 · 0.125 · 2(1− p)2p2

+ 0.293 · 4(1− p)p3 + 0.347 · p4

≈ 0.499 · p− 0.181 · p2 + 0.039 · p3 − 0.009 · p4.

Furthermore we calculate the expected strategy as a function of the probability of a link:

E(m) = 0.227 · 4(1− p)3p+
2 · 0.110 + 0.341

3
· 4(1− p)2p2 + 0.227 · 2(1− p)2p2

+
0.169 + 0.246

2
· 4(1− p)p3 + 0.187 · p4

≈ 0.908 · p− 1.522 · p2 + 1.150 · p3 − 0.349 · p4

1− (1− p)4
.

Conditioning on having one link, respectively two links, we calculate the expected profit:

E(m1) = 0.227 · (p(1− p) + (1− p)2) + 0.110 · p(1− p) + 0.169 · p2

≈ 0.227− 0.117 · p+ 0.059 · p2,

E(m2) = 0.341 · (1− p)2 + 0.246 · 2p(1− p) + 0.187 · p2 ≈ 0.341− 0.191 · p+ 0.036 · p2.

Moreover, the expected strategy of a trader with one link, respectively two links, is given by

E(Π1) = 0.066 · (p(1− p) + (1− p)2) + 0.038 · p(1− p) + 0.056 · p2

≈ 0.066− 0.028 · p+ 0.018 · p2,

E(Π2) = 0.138 · (1− p)2 + 0.099 · 2p(1− p) + 0.091 · p2 ≈ 0.138− 0.177 · p+ 0.130 · p2.

Partial Information

In this setting, traders know only the realisation of own links and the probability of the other

links. Hence Nash equilibrium strategies for having one link m1 and for having two links m2

are found based on the best response functions given below.

If a trader has one link the possible networks are 1, 3, 4 or 5 and hence the best response function

is given by
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[
∂

∂md1
(1− p)p

∫ 1−md1−m
1

1−m1

0

∫ 1
c1+m1(1−c1)

1−md1

π(β1, α1)dv1dc1

+(1− p)p
∫ 1−md1−m

2

1−m2

0

∫ 1
c1+m2(1−c1)

1−md1

π(β1, α1)
v1(1−md1)

(1−m1)
dv1dc1

+(1− p)2
∫ 1−md1−m

1

1−m1

0

∫ 1
c1+m1(1−c1)

1−md1

π(β1, α1)dv1dc1

+p2
∫ 1−md1−m

2

1−m2

0

∫ 1
c2+m2(1−c2)

1−md1

π(β1, α2)

×min{1, 1− (1− v1(1−md1)

1−m2 )(1− (1−m2)c2+m2−m1

1−m1 )}dv1dc2

]
{m1=md1}

= 0.

If a trader has two links networks 2, 6 or 7 are possible and which results in the following best

response function:[
∂

∂md1
(1− p)2

∫ 1−md1−m
1

1−m1

0

∫ 1
cmin+m1(1−cmin)

1−md1

π(β1, αmin)(2− 2cmin)dv1dcmin

+2(1− p)p[
∫ 1−md1−m

1

1−m1

0

∫ 1
c1+m1(1−c1)

1−md1

π(β1, α1)min{1, 1− v1(1−md1)

1−m1

(1−m1)c1+m1−m2

1−m2 }dv1dc1

+
∫ 1−md1−m

2

1−m2

0

∫ 1
c2+m2(1−c2)

1−md1

π(β1, α2)
v1(1−md1)

1−m1 (1− (1−m2)c2+m2−m1

1−m1 )dv1dc2]

+p2
[ ∫ 1−md1−m

2

1−m2

0

∫ 1
cmin+m2(1−cmin)

1−md1

π(β1, αmin)(2− 2cmin)
v1(1−md1)

1−m2 dv1dcmin

+
∫ 1−md1−m

2

1−m2

0

∫ 1
cmax+m2(1−cmax)

1−md1

π(β1, αmax)2cmax(1− v1(1−md1)

1−m2 )dv1dcmax
]]
{m2=md1}

= 0.

The Nash equilibrium strategies are calculated with double precision from these two best re-

sponse functions. The second derivatives in these points are smaller than zero; ensuring a max-

imum.

No Information

With no information the only knowledge about the network is the probability that a link oc-

curs. Hence the best response function of b1 is a weighted average over all seven best response

functions given above. Because of symmetry we may assume that all other traders use the same

strategy, i.e. m = md
2 = mu

1 = mu
2 :
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[
∂

∂md1
2(1− p)3p

∫ 1−md1−m
1−m

0

∫ 1
c1+m(1−c1)

1−md1

π(β1, α1)dv1dc1

+(1− p)2p2
∫ 1−md1−m

1−m
0

∫ 1
cmin+m(1−cmin)

1−md1

π(β1, α1)(2− 2cmin)dv1dcmin

+2(1− p)2p2
∫ 1−md1−m

1−m
0

∫ 1
c1+m(1−c1)

1−md1

π(β1, α1)
v1(1−md1)

(1−m)
dv1dc1

+2(1− p)2p2
∫ 1−md1−m

1−m
0

∫ 1
c1+m(1−c1)

1−md1

π(β1, α1)dv1dc1

+2(1− p)p3
∫ 1−md1−m

1−m
0

∫ 1
c2+m(1−c2)

1−md1

π(β1, α2)(1− (1−min{1, v1(1−md1)

1−m })(1− c2))dv1dc2

+2(1− p)p3[
∫ 1−md1−m

1−m
0

∫ 1
c1+m(1−c1)

1−md1

π(β1, α1)(1−min{1, v1(1−md1)

1−m }c1)dv1dc1

+
∫ 1−md1−m

1−m
0

∫ 1
c2+m(1−c2)

1−md1

π(β1, α2)
v1(1−md1)

1−m (1− c2)dv1dc2]

+p4
[ ∫ 1−md1−m

1−m
0

∫ 1
cmin+m(1−cmin)

1−md1

π(β1, αmin)(2− 2cmin)
v1(1−md1)

1−m dv1dcmin

+
∫ 1−md1−m

1−m
0

∫ 1
cmax+m(1−cmax)

1−md1

π(β1, αmax)2cmax(1− v1(1−md1)

1−m )dv1dcmax
]]
{m=md1}

= 0.

The Nash equilibrium strategy md
1 is solved to be the solution in [0, 1] of

Root
[
− 40 + 45p− 41p2 + 22p3

+ (300− 340p+ 203p2 − 61p3)md
1

+ (−700 + 875p− 254p2 − 77p3)md
1

2

+ (780− 1070p+ 32p2 + 306p3)md
1

3

+ (−460 + 670p+ 124p2 − 258p3)md
1

4

+ (120− 180p− 40p2 + 60p3)md
1

5]
= 0.
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Chapter 4

On the role of Information under

Individual Evolutionary Learning in a

Continuous Double Auction

4.1 Introduction

The effect of the setup of markets and the information available to traders has been studied

intensively on allocative efficiency. Common examples of studied markets are the Call Market

and the Continuous Double Auction (CDA). In these markets, experiments as in

Cason and Friedman (1996) showed that subjects do not learn to optimise in a Bayesian sense,

and hence are not fully rational. However, this paper showed that still a fast converge towards

the equilibrium occurs, and hence the efficiency moves towards one quickly. This led to a

large literature on simulations to model the boundedly rational behaviour of traders. In these

models traders select their next strategy on the basis of the past trading history

(Brock and Hommes, 1997, 1998), or by imitating other past strategies (Dawid, 1999). This

branch of research distinguishes itself from the standard economic research in which traders

are forward looking and hence select a rational equilibrium. One approach to model boundedly

rational behaviour is to use learning algorithms, as this does not impose any strict assumptions

on the behaviour of traders. The literature uses learning algorithms under full information about
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trading history, to describe the boundedly behaviour of traders and to show that this may still

lead to full efficiency.

In this chapter we study the impact of the information about trading history that is available

to traders. In 2002 the New York Stock Exchange introduced the OpenBook system, which

opened the content of the limit order book to the public. This allowed experienced traders to

use a full history of orders submission, instead of solely knowledge of global market statis-

tics as under the former ClosedBook system. This decision resulted in decreased price volatil-

ity and increased liquidity in the market as shown in Boehmer et al. (2005). A number of

papers describe the effect of this OpenBook system in simplified markets. In a Continuous

Double Auction model, Ladley and Pellizzari (2014) show that the information of the Open-

Book is useless. We use the Individual Evolutionary Learning (IEL) algorithm, introduced by

Arifovic and Ledyard (2003, 2007) to model the boundedly rational learning behaviour of

agents in a Call Market model, in a multi-period Continuous Double Auction that models the

common stock exchanges. This individual learning algorithm allows traders to select their strat-

egy depending on the, hypothetical, performance in the previous period.

Arifovic and Ledyard (2004) show that this algorithm performs better than other learning rules,

and that it suits well in environments with continuous or large strategy spaces. Under this Open-

Book system traders can directly determine the hypothetical performance of a strategy, assum-

ing that traders would have behaved the same. Under the ClosedBook system however, traders

have to make additional assumptions to estimate the hypothetical foregone payoff of selecting

another strategy.

The effect of the OpenBook system is analysed in a simple Call Market by

Arifovic and Ledyard (2007). In a Call Market, at the end of each period a market clearing

price is computed, at which price agents can trade. Their paper shows that this IEL-algorithm

captures the behaviour of subjects in experiments during the learning phase. In the OpenBook

system agents can influence the market clearing price, and the offers converge towards an equi-

librium value. In the former ClosedBook system it becomes more difficult to influence the mar-
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ket clearing price and agents become pricetakers. The offers converge to the private valuations

or costs of the agents. Both in experiments and simulations, Arifovic and Ledyard (2007) show

that efficiency is higher in the ClosedBook system.

Anufriev et al. (2013) analyse the OpenBook system in a Continuous Double Auction. Agents

place their offer when they enter the market and if possible trade with an existing agent. Other-

wise the order is stored in the order book. Agents learn by using the IEL-algorithm, where the

same hypothetical payoff functions as in Arifovic and Ledyard (2007) are used to value strate-

gies based on their hypothetical performance in the previous period. Anufriev et al. (2013) find

the same bidding behaviour in Open- and ClosedBook as in the latter paper. In the long-run,

efficiency is similar in both designs and the price volatility is lower in the OpenBook system.

In the formerly used ClosedBook system, where only information about past average prices is

available, they proved divergence of bids and asks away from the equilibrium price range. This

is the consequence of their choice for a payoff function that only distinguishes between offers

below and above the average price of the previous period. As a result, investors trade with a

high probability but may generate a very small profit. However, the latter paper states that ”the

specification (of the ClosedBook hypothetical foregone payoff function) is a strong assumption

... which may affect results of IEL”.

The paper Fano et al. (2013) compares the Call Market and the Continuous Double Auction

in a setting closely related to the ClosedBook system. The strategies of traders emerge over

time by a genetic algorithm. Traders with the same valuation are compared on the basis of their

average profit over some evaluation window, after which individuals with a low average profit

take on strategies of better performing agents. Thus only information contained in the Closed-

Book system is used. Similar to Arifovic and Ledyard (2007) they find that traders in a Call

Market become pricetakers and offer their valuation of cost. Contrary to Anufriev et al. (2013),

in a Continuous Double Auction traders become pricemakers and offers converge towards the

equilibrium price.
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In this chapter we demonstrate in simulations that the specification of the hypothetical payoff

functions indeed plays a crucial role in a Continuous Double Auction model under the IEL

learning algorithm. We show, that when agents use more information to estimate the hypothet-

ical foregone payoff of each possible offer, bids and asks tend to drift towards each other. In

this approach investors learn to increase their expected profit by submitting an order that has a

higher possible profit. The probability of trading will be lower in this situation but is outweighed

by the increase in possible profit. Similarly to Fano et al. (2013), in this setting bids and asks

will not converge to the redemption value, but to some equilibrium price.

In the learning phase of the Continuous Double Auction, we examine the effect of the Open-

Book system in simulations. Furthermore we compare these results with the simulations in the

Call Market performed by Arifovic and Ledyard (2007). Hence we study whether the compari-

son of efficiency between Open- and ClosedBook differs between both markets.

The results of the long-run simulations allow us to compare the effect of the difference

between our ClosedBook hypothetical payoff function and the function used in

Anufriev et al. (2013). We study whether the differences between Open- and ClosedBook, as

indicated in Anufriev et al. (2013) still hold under the new ClosedBook hypothetical foregone

payoff function. Moreover, we show robustness of our results with respect to the size of the

market and the number of units a trader desires to buy or sell.

This chapter is organised as follows. The Call Market and Continuous Double Auction models

are described in Section 4.2. The renewed Individual Evolutionary Learning algorithm is ex-

plained in Section 4.3. The setup of the simulations as well as the parameters and methods used

are described in Section 4.4. In Section 4.5 the simulations in the learning phase are compared

with the Call Market results of Arifovic and Ledyard (2007). We compare the results in the

long-run that are described in Section 4.6 with Anufriev et al. (2013). Robustness with respect

to the number of units traded is studied in Section 4.7 and with respect to the number of traders

in Section 4.8. Concluding remarks are given in Section 4.9.
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4.2 Market setup

We describe the environments and the competitive equilibrium used to compare OpenBook

(OP) and ClosedBook (CB). The Call Market and the Continuous Double Auction (CDA) are

explained together with the benchmark environments we use.

4.2.1 The environments

Each environment is determined by a set of buyers and a set of sellers with their valuations and

costs for the good, also referred to as redemption values. In each trading period t ∈ {1, · · · , T}

each of the buyers b ∈ {1, · · · , B} desires to consume one unit of the good and each of the sell-

ers s ∈ {1, · · · , S} is endowed with one unit of the good. The buyers have the same valuation

of Vb per unit in every period, sellers have fixed costs of Cs that only need to be paid when a

transaction occurs. Agents have knowledge of their own redemption value, but not of the values

or distribution of the other agents.

The environments are shown as a vector of valuations and a vector of costs. For example the

environment {[0.9, 0.9], [0, 0.2, 0.4]} consists of two buyers with valuation 0.9 and three sellers

with costs of 0, 0.2 and 0.4. We mainly use two environments from Arifovic and Ledyard (2007)

and Anufriev et al. (2013) in our analysis, in order to compare with these papers.

The demand and supply functions are determined from the valuations and costs of traders. The

equilibrium quantity is denoted as q∗ and the interval of equilibrium prices is given by [p∗L, p
∗
H ].

The traders that can gain a positive profit in equilibrium are called intramarginal, whereas the

traders that in equilibrium cannot make a positive profit and therefore will not trade are called

extramarginal. The payoff of a buyer equals Ub(p) = Vb− p if he traded at price p and zero oth-

erwise. The payoff of a seller equals Us(p) = p−Cs after a trade at price p and zero otherwise.

The allocative value of a trading period is the sum of the payoffs of all agents. The allocative

efficiency is defined as the ratio between the allocative value in a trading period and the maximal
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allocative value. The market is fully efficient when during a period all intramarginal agents

trade. The efficiency of a period can be lower when an extramarginal agent trades, or when

intramarginals simply do not trade. Furthermore we study the average price, the price volatility

and the number of transactions.

4.2.2 Call Market

A Call Market is often used to determine the opening- and closing prices at stock exchanges.

In period t each buyer b submits a bid bb,t and each seller s submits an ask as,t. At the end of

the period all offers are collected and a market clearing price is computed. This market clearing

price is the midpoint of the range where supply equals demand. Each buyer that submitted a bid

above this value, and each seller with an ask below this value will trade at the market clearing

price.

In the ClosedBook system the market clearing price is publicly available after the period. More-

over, the own offer is known and thus traders know their own profit and own trading history.

The market clearing price does not reveal the entire sequence of orders. Hence the limited in-

formation does not allow agents to determine precisely how they can influence their transaction

price. In a multi-period setting all offers are converging towards the redemption values, since

this increases the probability of trading and in principle does not influence the market clearing

price. In this system, Arifovic and Ledyard (2007) show that agents behave as pricetakers under

the Individual Evolutionary Learning algorithm.

In the OpenBook system not only the market clearing price is known, but also all offers become

publicly available after the period. Full information is available and therefore agents can exactly

calculate how they can influence the market clearing price, assuming that other agents submit

the same offers. In a multi-period setting, offers will not converge towards the redemption values

but to some equilibrium price and Arifovic and Ledyard (2007) conclude that agents behave as

pricemakers.

72



4.2. MARKET SETUP

4.2.3 Continuous Double Auction

A Continuous Double Auction model is used to describe the regular behaviour during the trad-

ing day at stock exchanges. In this model, buyers and sellers arrive in a random sequence during

a trading period and submit their bid. Agents can select their order only once, before the period

and hence unconditional on the state of the order book. The bid of buyer b and the ask of seller

s in period t are denoted as bb,t and as,t. If an arriving order can be matched with an order from

the book according to the price-time priority, the transaction takes place at the price of the order

in the book and both orders are removed. If the arriving order cannot be matched, it is stored

in the order book. At the end of the period the order book with unmatched orders is cleared.

The latter is a strict assumption that is often made in Continuous Double Auction models as

Anufriev et al. (2013). However we show that our results are robust with respect to larger mar-

kets, in which case this assumption is less important.

The prices in period t at which buyer b and seller s trade are denoted as pb,t and pa,t. The payoff

of a buyer equals Ub(p) = Vb−pb,t if he trades and zero otherwise. The payoff of a seller equals

Us(p) = ps,t−Cs after a trade and zero otherwise. We note that the payoff depends not only on

the own offer, but also on the arrival sequence. The arrival sequence does not only determine

the trading partner but also at which price the trade occurs.

In the ClosedBook system the average price of the last period is public information and each

trader knows if his offer resulted in a trade and if so at which transaction price. Submitting an

offer equal to the own redemption value will increase the probability of trading, but the trade

may occur at the price of the own offer, yielding a profit of zero.

All offers and thus the average price are publicly available in the OpenBook system. Each agent

can exactly determine what the payoff would have been for each possible offer, assuming that

other agents submit the same offers and arrive in the same sequence. Agents learn to select

the offer that has the highest expected payoff and the offers will converge to some equilibrium

value.
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4.3 Individual Evolutionary Learning algorithm

Agents learn to submit the most profitable offer by the Individual Evolutionary Learning (IEL)

algorithm as introduced by Arifovic and Ledyard (2003, 2007). It is shown in the paper

Arifovic and Ledyard (2004) that this algorithm performs better than other learning rules, and

it suits well in environments with continuous or large strategy spaces.

At the beginning of the period every agent selects an offer from an individual pool of strate-

gies probabilistically, depending on the hypothetical foregone payoff of these strategies. After

the trading period, the new hypothetical payoffs of own strategies are determined assuming the

same arrival sequence and offers of other traders. The pool of agents’ strategies is also updated

using these new hypothetical payoffs as follows. First, every strategy may mutate with a given

probability. Second, the places in the new pool are filled by those strategies that have higher hy-

pothetical payoffs. After every agent updated own pool, the new period starts and, again, every

agent selects probabilistically a strategy.

Pool of strategies

Every trader has an individual pool of strategies, which is a subset of the continuous strategy

space: the set Bb,t of K bids bb,t ≤ Vb for buyer b and the set As,t of K asks as,t ≥ Cs for seller

s. Hence the Individual Rationality constraint of Anufriev et al. (2013) is satisfied and traders

cannot submit offers that could result in a negative profit. The offers are initially drawn from

a uniform distribution on [0, Vb] and [Cs, 1] respectively. Even though this pool of strategies is

updated every period, the number of strategies remains constant. However, it is possible that a

single strategy starts to dominate the pool of strategies over time and occupies many positions

in the pool.

Mutation

With a fixed small probability ρ a strategy mutates and otherwise remains the same. When a

strategy mutates, a normally distributed variable with mean zero and a fixed variance is added

to the old strategy.
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Replication

At the end of the period and after possible mutations, the foregone payoff is calculated for each

strategy while taking the strategies from others constant. Two strategies are randomly selected

and compared on the basis of their hypothetical foregone payoff, after which the best perform-

ing strategy occupies a spot in the new pool of strategies. This procedure is repeatedK times, in

order to select a new strategy for every position in the pool. In the field of Genetic Algorithms

this is denoted as a tournament selection process.

Hypothetical foregone payoff functions

After a period traders have knowledge about the profit of the strategy that they selected. How-

ever, it is vital for traders to value also the other strategies from the pool. Hence traders calcu-

late, or estimate, the hypothetical payoff of other strategies in the previous period. This is done

given the offers of traders and the sequence of order submission in the previous period. Hence

traders do not take into account that others are also learning in between periods and thus behave

boundedly rational. Moreover, similar to Arifovic and Ledyard (2007) and Anufriev et al. (2013)

traders compare strategies solely on their performance in the previous period. It is unclear how

a longer sampling period would affect the comparison between Closed- and OpenBook.

The order book and arrival sequence of the previous period are known in the OpenBook system

and hence it is possible to calculate the hypothetical foregone payoffs. These can be deter-

mined exactly for every possible strategy, given the strategies of others and the arrival sequence

from the previous period. We assume the same arrival sequence because of the computational

problems this would yield for traders in large markets, as the number of computations will be

multiplied by the factorial of the number of traders. For example, with only one buyer and one

seller who in the previous period submitted ask as,t, the hypothetical foregone payoff of the

buyers’ strategy (bi, ni) is equal to Vb− as,t when ni > ns,t and bi ≥ as,t, equal to Vb− bi when

ni < ns,t and bi ≥ as,t and zero otherwise. When ni = ns,t one of the traders randomly arrives

first, and the hypothetical foregone payoff of the strategy (bi, ni) equals 1
2
(Vb−as,t)+ 1

2
(Vb−bi).

The hypothetical foregone payoff functions are given by
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Ub,t(bi|J OP
b,t ) =

 Vb − p∗b,t(bi) if bid bi resulted in a transactionat price p∗b,t(bi)

0 otherwise,

Us,t(aj|J OP
s,t ) =

 p∗s,t(aj)− Cs if ask aj resulted in a transactionat price p∗s,t(aj)

0 otherwise.

In the ClosedBook system however, only the average price of the previous period is known and

it is necessary to determine some estimated payoff for every strategy. The average price, P av
t , is

set to the previous average price if no trade occurred. In this setup it is only possible to estimate

the probability that a different strategy would have resulted in a trade. We extend the paper of

Anufriev et al. (2013) by introducing a different hypothetical foregone payoff function in the

ClosedBook setting, that uses more of the available information.

Anufriev et al. (2013) proved convergence of submitted bids and asks towards the redemption

values of the agents in the ClosedBook system. This is the consequence of their choice for a pay-

off function chosen to be the closest to the Call Market payoff function of

Arifovic and Ledyard (2007). Anufriev et al. (2013) state that ”this specification is a strong

assumption” and that this ”may effect results of IEL”. This foregone payoff function solely

distinguishes between offers below and above the average price of the previous period. The

consequence is that investors trade with a high probability but may generate a very small profit.

The ClosedBook hypothetical payoff function of Anufriev et al. (2013) is given by

Ub,t(bi|J CL
b,t ) =

 Vb − P av
t if bi≥P av

t

0 otherwise,

Us,t(aj|J CL
s,t ) =

 P av
t − Cs if aj≤P av

t

0 otherwise.

Fig. 4.1 shows a simulation in the symmetric S5-environment that has valuations and costs

{[1, 0.8, 0.6, 0.4, 0.2], [0.8, 0.6, 0.4, 0.2, 0]} and consists of 5 buyers and 5 sellers, where the

payoff function of Anufriev et al. (2013) is used. The figures can be described as follows. Part

(a) and (b) show the average price, efficiency and number of transactions in every period for
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.1: Dynamics in the S5-environment under the foregone payoff function of
Anufriev et al. (2013). In the OpenBook system they observe that offers of intramarginal traders
rapidly move towards the equilibrium price range. In the ClosedBook however, offers of traders
move towards their valuation of cost. Extramarginal agents have more opportunities to trade,
yielding a higher number of transactions and a slightly lower efficiency.
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ClosedBook (CL) respectively OpenBook (OP). The horizontal lines indicate the equilibrium

price range 0.4− 0.6, the equilibrium efficiency and the equilibrium quantity 3. The individual

offers in the Open- and ClosedBook are shown in parts (c)-(f). The equilibrium price range is

here indicated by the vertical line and the redemption values by the stars on the right. While

in the OpenBook system offers of intramarginal traders converge towards the equilibrium price

range, in ClosedBook they observe convergence of offers towards the redemption values, i.e. a

divergence away from the equilibrium range of prices. As a result, extramarginal agents trade

frequently and more transactions occur than the equilibrium number of 3. This leads to a lower

efficiency and a higher price volatility. Under OpenBook mutation might prevent trades, hence

the number of transactions and the efficiency are occasionally lower than the equilibrium value.

We now introduce a new ClosedBook hypothetical foregone payoff function, that uses more of

the available information in the CDA. This payoff function uses more of the available informa-

tion to derive hypothetical foregone payoffs. Both Arifovic and Ledyard (2007) and

Anufriev et al. (2013) use a ClosedBook hypothetical foregone payoff function in which the

main interest of agents is to trade. We will show that under the new ClosedBook payoff func-

tion intramarginal traders have a higher profit. We assume the following thought process of a

buyer. A buyer who traded in the last period trades again with probability 1, if he submits a bid

that is higher than the minimum of his last bid and the average price. A buyer who did not trade,

trades if and only if he submits a bid above the maximum of his last bid and the average price.

A bid that we assume to result in a trade, is matched with an ask price with the average price as

estimated value. The trading price is equal to the bid with probability 1
2

and with the same prob-

ability equal to P av
t . A similar argument is used to construct the hypothetical payoff function

for sellers. The new and old OpenBook hypothetical foregone payoff functions only coincide

for a trader that traded at the average price. A buyer would under the old payoff function not

distinguish between bids above the average price. Under the new payoff function a buyer prefers

a lower bid, when he assumes that this also results in a trade. The hypothetical foregone payoff

function is given by:
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If the agent traded in the last period:

Ub,t(bi|J CL
b,t ) =

 1
2
(Vb − bi) + 1

2
(Vb − P av

t ) if bi≥min(P av
t , pb,t)

0 otherwise,

Us,t(aj|J CL
s,t ) =

 1
2
(P av

t − Cs) + 1
2
(aj − Cs) if aj≤max(P av

t , ps,t)

0 otherwise.

If the agent did not trade in the last period:

Ub,t(bi|J CL
b,t ) =

 1
2
(Vb − bi) + 1

2
(Vb − P av

t ) if bi≥max(P av
t , bb,t)

0 otherwise,

Us,t(aj|J CL
s,t ) =

 1
2
(P av

t − Cs) + 1
2
(aj − Cs) if aj≤min(P av

t , as,t)

0 otherwise.

We observe the impact of the new ClosedBook hypothetical foregone payoff function in

Fig. 4.2. Under ClosedBook, instead of a movement of offers towards the valuations and costs of

traders as seen in Fig. 4.1, the offers move towards the equilibrium price range. The OpenBook

hypothetical payoff function remains unchanged. After the learning phase offers occasionally

fluctuate when traders use a different strategy due to mutation. These fluctuations may reduce

efficiency and occur less frequently under the ClosedBook system. Hence the efficiency and

number of transactions seem higher and the price volatility lower than under OpenBook.

Selection of a strategy from the pool

Initially, every strategy is equally likely to be chosen. In the next periods the probability that

a certain strategy is selected is proportional to its hypothetical payoff in the previous period.

After mutation has taken place, the probability that a buyer b selects strategy bi for period t+ 1

is given by

πb,t+1(bi) =
Ub,t(bi|Jt)∑K
i=1 Ub,t(bi|Jt)

.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.2: Dynamics in the S5-environment under the new ClosedBook payoff function. Where
offers move towards valuations and costs in Fig. 4.1 under the ClosedBook payoff function of
Anufriev et al. (2013), the new payoff function leads to a convergence of offers towards the
equilibrium price range. The OpenBook payoff function is identical.

80



4.4. METHODOLOGY

The variables used in this Individual Evolutionary Learning algorithm are the size of the in-

dividual pools, the probability and the distribution of mutation and the replication rate. In the

next section the values of these variables are given, as well as the methods to compare average

behaviour of Open- and ClosedBook.

4.4 Methodology

In the standard model we examine three environments used in Arifovic and Ledyard (2007) and

Anufriev et al. (2013). The symmetric environment {[1, 0.8, 0.6, 0.4, 0.2], [0.8, 0.6, 0.4, 0.2, 0]}

which is denoted as S5 and {[1, 0.93, 0.92, 0.81, 0.5], [0.66, 0.55, 0.39, 0.39, 0.3]} as the AL-

environment, which both consist of 5 buyers and 5 sellers. The results of the latter environment

will be shown in the appendices. The third environment is introduced by

Gode and Sunder (1997) for its simplicity, which allows for obtaining intuition about the be-

haviour under the IEL-algorithm and the differences between Open- and ClosedBook. In this so

called GS-environment we have 1 seller with cost 0, 1 buyer with valuation 1 and n buyers with

valuation β. Of main concern is the GS-environment with 3 extramarginal buyers with valuation

0.5. We will find similar results for all environments and hence show a robustness with respect

to the environment. The demand- and supply functions of these environments are shown in

Fig. 4.3.
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Figure 4.3: The main environments used: (a) The symmetric S5-environment
{[1, 0.8, 0.6, 0.4, 0.2], [0.8, 0.6, 0.4, 0.2, 0]} with 5 buyers and 5 sellers, (b) the AL-environment
{[1, 0.93, 0.92, 0.81, 0.5], [0.66, 0.55, 0.39, 0.39, 0.3]} with 5 buyers and 5 sellers and (c) the
GS-environment {[1, 0.5, 0.5, 0.5], [0]} with 4 buyers and 1 seller.
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We study efficiency, average price, the price volatility and the number of transactions under

the Individual Evolutionary Learning algorithm, where the allocative efficiency is defined as

the ratio between the allocative value in a trading period and the maximal allocative value.

This algorithm is studied under the parameters of Arifovic and Ledyard (2007), to be able to

make a thorough comparison with their Call Market results. As a result our setup differs from

Anufriev et al. (2013) where mutation is uniform. However, simulations have shown that our

results are not affected by the distribution of this mutation. Every agent is given an individual

pool of strategies, which is in principle of size K = 100. A strategy can mutate with a probabil-

ity of 0.033. When a strategy mutates a normally distributed term with mean 0 and a standard

deviation of 0.1 is added to the former strategy. When the mutated strategy lies outside the strat-

egy space, a new normally distributed variable is drawn. In the replication phase K pairs are

compared. All the averages are calculated over S = 100 random seeds.

We denote the periods 1 − 20 as the learning phase and moreover highlight learning by con-

sidering the periods 1 − 5 and 16 − 20 as well. With a small probability it can happen that no

transaction takes place in a period during the learning phase, since we only use few agents. In

that case the average price of the previous period remains, similar to real markets.

We will see that after the learning phase the market becomes quite stable and the offers and

average price only fluctuate within a certain range. We denote this behaviour as the ”equilib-

rium” phase. During the periods 101 − 200 we study the response of the learning algorithm to

mutation.

4.5 Learning phase

The learning phase of a Call Market is studied in Arifovic and Ledyard (2007). They conclude

that the IEL-algorithm with the parameters above explains their experiments quite well. In the

OpenBook system agents behave as pricemakers and in the ClosedBook system as pricetakers.

In their simulations and experiments the efficiency is higher in the ClosedBook system. In this
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section we compare simulations of the Open- and ClosedBook in a Continuous Double Auction

market during periods 1 − 20 and the subperiods 1 − 5 and 16 − 20. Moreover, during this

learning phase we study whether the comparison of efficiency is identical to the comparison of

Open- and ClosedBook in the Call Market.

4.5.1 Gode Sunder-environment

The Gode Sunder-environment, denoted as GS-environment, is simulated in Fig. 4.4 with 3 ex-

tramarginal buyers with valuation β = 0.5. In both settings we observe that the intramarginal

traders seem to coordinate on offers above the valuation of the extramarginal buyers. However,

during the first periods the asks from sellers are often quite low, which may result in a trade

with an extramarginal buyer.

In Anufriev et al. (2013) the expected efficiency in the ClosedBook system is close to 1
2
+ 1

2
β as n

goes to infinity, but under our payoff function the expected efficiency is close to the equilibrium

value of 1 even for n = 3. In the new setting the agents will learn to select a strategy with a

higher expected profit and the buyer will in general bid and the seller ask more than β, thus the

efficiency will not be lowered due to transactions with extramarginal buyers.

4.5.2 S5- and AL-environments

Fig. 4.5, and Fig. 4.12 in the appendix, show the behaviour in simulations during the learning

phase over periods 1 − 20 of the S5- en AL-environment. We notice that the orders of intra-

marginal traders converge fast towards the equilibrium price range. The initial pool of strategies

is drawn uniformly and hence in the first periods the submitted offers are almost uniform. In

these figures we observe that after five periods the orders are relatively close to each other and

the standard deviation of individual offers has significantly dropped. The fast convergence origi-

nates from two effects. Strategies far away from the equilibrium price range are removed during

the replication process, for example if the strategy with the lowest hypothetical foregone payoff

occurs only once in the pool it cannot attain a spot in the updated pool. Second, the algorithm
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.4: Learning phase dynamics in the GS-environment with 3 extramarginal buyers with
valuation β = 0.5. Both in Open- and ClosedBook the intramarginal buyer learns to submit a
bid above 0.5, such that the seller prefers to trade with this buyer. The seller increases his ask to
make sure that he will trade with the intramarginal buyer and not with an extramarginal.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.5: Learning phase dynamics in the symmetric S5-environment with 5 buyers and 5
sellers. In both settings a fast convergence occurs. After the first periods offers are relatively
close to each other and these offers are less volatile.
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selects more profitable offers, since the selection probability of a strategy is proportional to its

hypothetical foregone payoff.

4.5.3 Comparison between Open- and ClosedBook

The IEL-algorithm is used to replicate the behaviour of agents. We simulated the different en-

vironments and averaged the efficiency, average price, price volatility and the number of trans-

actions. The results of the simulations for Open- and ClosedBook are shown in Table 4.1 for

the S5-environment and Table 4.5 in the appendix for the AL-environment, with the standard

deviation between brackets. The t-values for comparing two means are given in Tables 4.2 and

4.6, the difference is significant at a level of 5% when the absolute t-value exceeds 1.96. These

t-values are obtained by subtracting the OpenBook values from the ClosedBook values.

Of main interest is the question how the behaviour in the OpenBook system differs from the

ClosedBook system. From the t-test for comparing two means, we can conclude that the effi-

ciency is higher in the ClosedBook system, at a significance level of 5%. The average prices

are similar in both systems and the price volatility is lower under ClosedBook. The number of

transactions is higher in ClosedBook, but always lower than the equilibrium quantity. We show

that this also holds for periods 1 − 5 and 16 − 20. We can now conclude that in the learning

phase, the extra available information in the OpenBook setting leads to a higher price volatility

and a lower efficiency and number of transactions. When under OpenBook some traders can

increase their profit by submitting a more aggressive offer, they do not take into account that

traders on the other side of the market do the same. This will often result in absence of trade

when multiple traders are more aggressive and may lead to a higher price volatility when traders

are matched with other tradingpartners. In the ClosedBook system traders will in such a case

be less aggressive as the previous average price is used as a benchmark. Hence multiple traders

may offer more aggressively, but this will less frequently result in absence of trade and a higher

price volatility. This results in a lower expected efficiency and a higher price volatility in the

OpenBook system.
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CL: closed book OP: open book

Period: 1-5 1-20 16-20 1-5 1-20 16-20

Efficiency 0.7771 0.9031 0.9562 0.7304 0.8433 0.8887

(0.1109) (0.0491) (0.0562) (0.0900) (0.0477) (0.0695)

Price 0.5001 0.5020 0.5027 0.4966 0.4930 0.4891

(0.0881) (0.0567) (0.0488) (0.0564) (0.0414) (0.0510)

Price Volat 0.0835 0.0546 0.0209 0.1173 0.0776 0.0320

(0.0440) (0.0246) (0.0124) (0.0503) (0.0238) (0.0170)

Num transact 2.3260 2.6860 2.8200 2.1680 2.5010 2.6120

(0.3299) (0.1536) (0.1938) (0.2737) (0.1616) (0.2324)

Table 4.1: Average outcomes during the learning phase in the symmetric S5-environment with 5
buyers and 5 sellers. We observe a clear learning effect, during the initial periods the efficiency
and the number of transactions are relatively low but these increase fast during the learning
phase.

T-values

Period: 1-5 1-20 16-20

Efficiency 3.27 8.74 7.55

Price 0.33 1.28 1.93

Price Volat -5.06 -6.72 -5.28

Num transact 3.69 8.30 6.87

Table 4.2: T-values for testing the differences in average outcomes between ClosedBook and
OpenBook during the learning phase in the symmetric S5-environment with 5 buyers and 5
sellers. The efficiency and number of transactions are significantly higher and the volatility sig-
nificantly lower under ClosedBook at a 5% percent significance level. Average price is slightly
higher under ClosedBook but not significantly.
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4.5.4 Comparison with the Call Market

Arifovic and Ledyard (2007) find a higher efficiency in the ClosedBook system in various envi-

ronments, a ClosedBook efficiency between 92% and 94% and an OpenBook efficiency between

77% and 90%. We used the same parameters in the simulations and, as in their paper, averaged

over the first 20 periods of all environments. We find a ClosedBook efficiency between 86% and

90% and an OpenBook efficiency between 82% and 84%. The efficiency under ClosedBook is

slightly higher in the Call Market and similar under OpenBook. We conclude that the differ-

ences in efficiency between Open- and ClosedBook are very similar for the Continuous Double

Auction and the Call Market. Moreover, under ClosedBook the efficiency is higher in a Call

Market than in a Continuous Double Auction.

4.6 Long-term behaviour

Arifovic and Ledyard (2007) do not consider the long-run in the Call Market, since the offers

will converge to the redemption values in the ClosedBook system and mutation has little effect.

The efficiency will almost always be equal to one. Arifovic and Ledyard (2007) find that under

the OpenBook traders behave as pricemakers, and hence mutation does have a significant effect.

Hence we argue that under OpenBook the efficiency is higher.

The long-term behaviour of agents in a Continuous Double Auction under the IEL-algorithm is

studied by Anufriev et al. (2013). The foregone payoff function that they use is the same as in

the Call Market model. The orders converge to the redemption values, as Anufriev et al. (2013)

explain in their Result 1: ”The strategy profile under which the pool of every trader consists of

messages equal to his own valuation/cost is attractive under the ClosedBook treatment in the

GS-environment”.

In this section we present our results under the alternative ClosedBook foregone payoff func-

tion. We use normally instead of uniformly distributed mutation, but simulations have shown

that this does not affect our results. We compare Open- and Closed book simulations and the
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differences with the foregone payoff function from Anufriev et al. (2013). Under the foregone

payoff function we introduced, also in the ClosedBook system orders will converge towards the

equilibrium price range and this result does no longer hold.

4.6.1 GS-environment

Figs. 4.6 and 4.7 show the impact of the payoff function in the ClosedBook setting, in the GS-

environment with 3 extramarginal buyers with valuation β = 0.5. In Fig. 4.6 the hypothetical

foregone payoff function of Anufriev et al. (2013) is used. The intramarginal buyer will submit

a bid close to 1 and the seller will submit an ask close to 0. The seller will often trade with

an extramarginal buyer, giving him a low payoff. The seller can increase his expected profit

by asking a higher price, without a decrease in the probability of trading. In Fig. 4.7 the new

hypothetical payoff functions is used, where the agents use more of the available information,

resulting in both in Open- and ClosedBook in some convergence towards an equilibrium price

between 0.5 and 1.

4.6.2 S5- and AL-environments

Now we have studied the long-term behaviour in the simple GS-environment, we can formally

consider the other environments. Figs. 4.8 and 4.13 show the S5- and the AL-environment.

In these realisations the efficiency and the number of transactions are clearly higher in the

ClosedBook system. In equilibrium the offers in the ClosedBook fluctuate less, as a result of

the mutual IEL of all the agents, and in particular of their evaluation of mutations and their

consequences. In the OpenBook system traders observe the entire trading sequence of the pre-

vious period and base their next strategy on this. If an agent traded at the price of the trading

partner, slightly higher bids or lower asks have an identical hypothetical foregone payoff. How-

ever, in the ClosedBook system, the hypothetical foregone payoff function gives a lower profit

for these slightly higher bids and lower asks. Hence mutated strategies are more often selected

in the OpenBook system, which may reduce efficiency in the next period when other traders

condition on this mutated strategy. The arrival sequence influences the strategy of traders and
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.6: Long-term dynamics in the GS-environment with 3 extramarginal buyers with val-
uation β = 0.5 under the foregone payoff function of Anufriev et al. (2013). While in the
OpenBook system the intramarginal buyer and seller coordinate on a price above 0.5, in the
ClosedBook system the buyer bids close to 1 and the seller asks 0. Frequently an extramarginal
buyer will trade which lowers the efficiency to 0.5. Hence the trading price is very volatile.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.7: Long-term dynamics in the GS-environment with 3 extramarginal buyers with val-
uation β = 0.5 under the new foregone payoff function. The intramarginal buyer and seller
coordinate on a price above 0.5, which ensures that they will trade with each other.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.8: Long-term dynamics in the symmetric S5-environment with 5 buyers and 5 sellers.
While under the OpenBook offers fluctuate frequently this occurs much less under ClosedBook.
Hence the efficiency and the number of transactions are often lower under OpenBook.

92



4.6. LONG-TERM BEHAVIOUR

they will occasionally offer relatively aggressive. This may lead to absence of trade if the arrival

sequence in the next period is different.

4.6.3 Comparison between Closed- and OpenBook

We simulated the S5- and AL-environments and averaged the efficiency, average price, price

volatility and the number of transactions, for different sizesK of the pools of strategies. In equi-

librium we observe robustness with respect to the size of the pool of strategies.

Anufriev et al. (2013) already showed robustness with regards to the probability of mutation;

general statistics barely change as long as this probability is not too large. The results of the

simulations for Open- and ClosedBook are shown in Tables 4.3 and 4.7 with the standard de-

viation between brackets. The t-values for comparing two means are given in Tables 4.4 and 4.8.

In all the environments the average efficiency is higher and the price volatility is lower in the

ClosedBook setting. We do not observe a difference in average prices between Closed- and

OpenBook. We observe a higher number of transactions for the ClosedBook setting in each

environment, but this is in each case lower than the equilibrium number of transactions. All

these results are significant at a level of 5%. Efficiency and number of transactions are higher

when the size of the pool K increases, and the price volatility decreases. We conclude that in

equilibrium, irrespective of the size of the pool of strategies, the extra available information in

the OpenBook setting significantly leads to a higher price volatility and a lower efficiency and

number of transactions. Hence we have shown robustness with respect to the size of the pool of

strategies.

4.6.4 Comparison with the ClosedBook foregone payoff function in

Anufriev et al. (2013).

The behaviour under the introduced ClosedBook hypothetical foregone payoff function is differ-

ent than the behaviour in Anufriev et al. (2013). They find a divergence of offers; we find a con-

vergence towards an equilibrium price. With the new hypothetical foregone payoff
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CL: closed book OP: open book

K = 10 K = 50 K = 100 K = 200 K = 10 K = 50 K = 100 K = 200

Eff 0.9059 0.9799 0.9868 0.9918 0.8708 0.9505 0.9605 0.9607

(0.0817) (0.0230) (0.0196) (0.0144) (0.0883) (0.0345) (0.0295) (0.0362)

Price 0.5035 0.5042 0.5030 0.4986 0.4973 0.4993 0.4966 0.5031

(0.0503) (0.0405) (0.0432) (0.0442) (0.0535) (0.0412) (0.0407) (0.0426)

Vol 0.0227 0.0090 0.0066 0.0054 0.0252 0.0130 0.0122 0.0117

(0.0114) (0.0060) (0.0050) (0.0053) (0.0120) (0.0046) (0.0045) (0.0048)

Trans 2.6176 2.9362 2.9559 2.9723 2.5377 2.8461 2.8714 2.8862

(0.3305) (0.0724) (0.0587) (0.0435) (0.3310) (0.0989) (0.0881) (0.0977)

Table 4.3: Long-term average outcomes in the symmetric S5-environment with 5 buyers and
5 sellers. As the size K of the pool of strategies increases, so do the average efficiency and
number of transactions, and the price volatility decreases.

T-values

K = 10 K = 50 K = 100 K = 200

Eff 2.92 7.09 7.43 7.98

Price 0.84 0.85 1.08 -0.73

Vol -1.51 -5.29 -8.32 -8.81

Trans 1.71 7.35 7.98 8.05

Table 4.4: T-values for testing the differences in long-term average outcomes between Closed-
Book and OpenBook in the symmetric S5-environment with 5 buyers and 5 sellers. For every
size K of the pool of strategies the average efficiency and number of transactions are signifi-
cantly higher and the price volatility lower under ClosedBook. However, for a small size of the
pool, K = 10, not all statistics are significant.

function, mutation has a smaller effect on the market under Closed Book. Hence, where they

find a comparable efficiency and a higher price volatility in the ClosedBook system, under

the new foregone payoff function the efficiency is higher and the price volatility lower under

ClosedBook.
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We argue that intramarginal traders are better off when they use the newly introduced hypothet-

ical foregone payoff function. Efficiency and thus the total profit is significantly higher under

the new payoff function. Moreover, we have shown that extramarginals trade less frequently, so

that intramarginal traders receive a larger part of the total profit. Hence the intramarginal traders

can increase their profit by using the new hypothetical foregone payoff function.

4.7 Multi-unit Continuous Double Auction market

So far we considered a market in which every buyer and every seller tries to trade a single

unit of the good. In this section we extend this model by allowing agents to trade multiple

units. Investors submit a strategy (bi, ni) respectively (aj, nj), which not only consists of a bid

or an ask price, but also the number of units they desire to trade. The more units a buyer al-

ready obtained in the period the lower he values an extra unit, and similarly for sellers. In this

symmetric environment the 10 valuations for a single buyer are given by

{[1, .95, .89, .82, .74, .63, .53, .42, .3, .17]}, where the first value denotes the valuation for the

first obtained unit and so on. The costs for a seller are symmetric to these valuations. Fig. 4.9a

shows the decreasing valuation function and the increasing cost function for 5 identical buyers

and sellers.

In this symmetric environment there exist only equilibria in which all investors trade 7 units.

Submitting a strategy for more units can result in a loss on the additional units. Mutation of the

number of units can occur, in which case one unit is added or subtracted to the strategy with

equal probability. In the ClosedBook setting the payoff function needs to be adjusted to consider

in how many trades a certain strategy will result. The adjusted hypothetical payoff is calculated

by multiplying the payoffs of the regular payoff function by the estimated number of units that

would be traded. For buyers this number of units is as follows:
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If the buyer traded in the previous period and the strategy consists of fewer units than in the

previous period (ni,t+1 < ni,t): all if bi ≥ P av
t

# of transaction prices in the last period < bi otherwise.

If the buyer traded in the previous period and the strategy consists of more units than in the

previous period (ni,t+1 ≥ ni,t):
all if bi ≥ max(P av

t , bb,t)

# of transactions in the previous period if max(P av
t , bb,t) > bi ≥ min(P av

t , bb,t)

# of transaction prices in the last period < bi otherwise.

If the buyer did not trade in the previous period: all if bi > max(P av
t , bb,t)

0 otherwise.

The symmetric environment in this extended market is shown in Figs. 4.9 and 4.10.

Two-dimensional learning occurs as traders place an offer and a size of the offer. Both in Open-

and ClosedBook these order move towards the equilibrium. We observe a robustness with re-

spect to the number of units agents can trade. Mutation has a larger effect in the OpenBook

system, resulting in a lower efficiency and number of trades and a higher price volatility.

A random environment where each investor trades 5 units in equilibrium is shown in Figs. 4.14

and 4.15 in the appendix. In this example, during early trading periods we observe a remarkable

coordination on offers outside the equilibrium price, which is never observed before under IEL.

Both in Open- and ClosedBook a disturbance after period 40 leads to coordination on offers

closer to the equilibrium price. This may be the result of the relatively small equilibrium price

range.

As shown in Tables 4.9-4.16 the comparisons between Open- and ClosedBook in the learning

and in the equilibrium phase are slightly altered. The efficiency and number of transactions
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(a) Symmetric environment under CL. (b) Aggregate outcomes under CL.
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(c) Individual bids under CL. (d) Individual asks under CL.
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(e) Order size buyers under CL. (f) Order size sellers under CL.

Figure 4.9: Long-term dynamics in the ClosedBook multi-unit symmetric environment with 5
buyers and 5 traders that can place an offer for a maximum of 10 units. The equilibrium offer is
made for 7 units. Even though traders are required to make a two-dimensional decision, orders
move towards the equilibrium. Mutation seems to have little effect after the learning phase.
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(a) Symmetric environment under OP. (b) Aggregate outcomes under OP.
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(c) Individual bids under OP. (d) Individual asks under OP.
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(e) Order size buyers under OP. (f) Order size sellers under OP.

Figure 4.10: Long-term dynamics in the OpenBook multi-unit symmetric environment with 5
buyers and 5 sellers that can place an offer for a maximum of 10 units. The equilibrium offer
is made for 7 units. Orders move towards the equilibrium quantity and price, but mutation has
a larger effect than in the ClosedBook system. Efficiency and the number of transactions are
often below the equilibrium value and the price volatility is higher.
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remain higher under ClosedBook. However, the difference in price is now significantly larger

under OpenBook. In the multi-unit symmetric environment the price volatility is significantly

larger under OpenBook, but in the multi-unit random environment significantly lower. In the

first environment offers converge to the equilibrium price range after the first 20 periods, but

in the latter environment traders coordinate on offers outside the equilibrium price range as

described above. The disturbance around period 40 increases the price volatility, which reverses

the comparison between Open- and ClosedBook. Moreover, the average price is significantly

larger under OpenBook, in the long run of this extended model. We find a robustness with

respect to the number of units traded, but the IEL algorithm reacts slightly different when the

equilibrium price range is relatively small.

4.8 Size of the market

Robustness with respect to the size of the pool of strategies and to the number of units that

each investor prefers to trade is shown in the previous sections. In this section we will consider

robustness with respect to the number of investors in the market.

To study the robustness with respect to the size of the market we increased the number of in-

vestors in the S5- and AL-environments. This results in a setting with 15 buyers and 15 sellers

shown in Fig. 4.16 of the appendix and a setting with 25 buyers and 25 sellers in Fig. 4.11.

Larger markets would be more realistic, but computationally not feasible. Although the ef-

ficiency increases and volatility decreases, the comparisons between Open- and ClosedBook

remain in Tables 4.17-4.24. Our results are robust to the size of the market, both during the

learning and the equilibrium phase.

4.9 Concluding Remarks

In this chapter we have studied the role of information about the trading history that is available

to traders in a Continuous Double Auction market, when traders use the Individual Evolution-
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Orders of sellers

Time

O
rd

er

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Orders of sellers

Time

O
rd

er

(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.11: Long-term dynamics in the symmetric S25-environment with 25 buyers and 25
sellers. Both in the learning phase and long-term offers of intramarginal traders are less volatile
under ClosedBook. Average efficiency and number of transactions are higher and price volatility
lower under ClosedBook, showing a robustness with respect to the number of traders on both
sides of the market.
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ary Learning algorithm. In this learning algorithm traders select from a pool of strategies based

on the, hypothetical, payoff in the previous period. In the ClosedBook system, where only in-

formation about past average prices is available, Anufriev et al. (2013) proved convergence of

bids and offers towards the valuations and costs of agents. This is the consequence of their

choice for a payoff function that only distinguishes between offers below and above the average

price of the previous period, as in a Call Market. The consequence is that investors trade with a

high probability but may generate a very small profit. We showed however, that when the pay-

off function uses more information to estimate the expected payoff of each possible offer, bids

and offers tend to drift towards the equilibrium price range. In this approach investors learn to

increase their expected profit by submitting an offer that has a higher possible profit. The prob-

ability of trading will be lower in this situation but is outweighed by the increase in possible

profit. In this setting bids and asks will not diverge, but will converge towards some equilibrium

price. These results are in line with Fano et al. (2013) who show that, in a setting closely related

to the ClosedBook system, traders behave as pricetakers in a Call Market and as pricemakers in

a Continuous Double Auction.

Both during the learning phase and in equilibrium we compared simulations of the Closed- and

OpenBook treatments in different environments. In all the environments the efficiency and the

number of transactions are significantly larger in the ClosedBook system. The number of trans-

actions is in each case lower than the equilibrium number of transactions. In general, we did not

observe a difference in average prices between Closed- and OpenBook. Moreover, we observed

a significantly lower price volatility in the ClosedBook system. The cause is that agents in the

OpenBook system are more tempted to try to influence their transaction price. We conclude

that both during the learning phase and in equilibrium, the extra available information in the

OpenBook treatment leads to a higher price volatility and a lower efficiency and number of

transactions.

The efficiency found is comparable to efficiency in the Call Market from

Arifovic and Ledyard (2007). The results differ however from the results under the payoff
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function of Anufriev et al. (2013), which results in a comparable efficiency and a higher price

volatility in the ClosedBook system. The behaviour in the ClosedBook system is also quite dif-

ferent under the new payoff function; instead of a divergence of offers some convergence occurs.

Some extensions to this Continuous Double Auction market are considered. We have shown

that the above results are robust with respect to the number of units agents desire to trade and

the size of the market. However, in the multi-unit random environment, price volatility is higher

in the ClosedBook as a result of the relatively small equilibrium price range.

Both during the learning phase and in equilibrium, more information about the trading history

leads to a higher price volatility and a lower efficiency and number of transactions. This is the

result of the ClosedBook foregone hypothetical payoff function, that is introduced to estimate

the expected profit in the previous period by using more of the available information in a Contin-

uous Double Auction market. We conclude that it is optimal not to reveal the extra information

of the OpenBook system.
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Appendix A: Learning phase

In this appendix we consider the learning phase during the periods 1−20 for the AL-environment.

This is done for the entire period, as well as the subperiods 1 − 5 and 16 − 20. An example is

shown in Fig. 4.12 and averages in Table 4.5. Moreover, the t-values for testing the differences

between ClosedBook and OpenBook are given in Table 4.6.

We observe a fast convergence of offers towards the equilibrium price range, both in the Open-

and ClosedBook system. In the entire time span and the subperiods, the efficiency and number

of transactions are significantly higher and the price volatility significantly lower under Closed-

Book. The average price does not significantly differ. Traders learn over time, and hence the

efficiency and number of transactions increase and the price volatility decreases during the pe-

riods 1− 20.

103



CHAPTER 4. INFORMATION IN A CONTINUOUS DOUBLE AUCTION

5 10 15 20
0

0.5

1
P

ric
e

5 10 15 20
0

0.5

1

E
ffi

ci
en

cy

5 10 15 20
0

5

T
ra

ns
ac

tio
ns

Time

5 10 15 20
0

0.5

1

P
ric

e

5 10 15 20
0

0.5

1

E
ffi

ci
en

cy

5 10 15 20
0

5

T
ra

ns
ac

tio
ns

Time

(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.12: Learning phase dynamics in the AL-environment with 5 buyers and 5 sellers. Both
in the Open- and ClosedBook system offers of traders move fast towards the equilibrium price
range.
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CL: closed book OP: open book

Period: 1-5 1-20 16-20 1-5 1-20 16-20

Efficiency 0.7764 0.9059 0.9546 0.7198 0.8331 0.8805

(0.1176) (0.0386) (0.0441) (0.0719) (0.0361) (0.0608)

Price 0.6328 0.6316 0.6297 0.6396 0.6436 0.6459

(0.0703) (0.0490) (0.0429) (0.0488) (0.0324) (0.0394)

Price Volat 0.0648 0.0416 0.0163 0.0819 0.0552 0.0226

(0.0313) (0.0147) (0.0078) (0.0309) (0.0140) (0.0119)

Num transact 3.2000 3.6920 3.8600 2.9560 3.4330 3.6380

(0.4680) (0.1716) (0.1853) (0.2907) (0.1460) (0.2662)

Table 4.5: Average outcomes during the learning phase in the AL-environment with 5 buyers
and 5 sellers. The efficiency and number of transactions are higher and the price volatility is
lower under ClosedBook. A difference in average price is not observed. A learning effect occurs
and efficiency and number of transactions increase over time and price volatility decreases.

T-values

Period: 1-5 1-20 16-20

Efficiency 4.11 13.77 9.87

Price -0.79 -2.04 -2.78

Price Volat -3.89 -6.70 -4.43

Num transact 4.43 11.50 6.84

Table 4.6: T-values for testing the differences in average outcomes between ClosedBook and
OpenBook during the learning phase in the AL-environment with 5 buyers and 5 sellers. The
efficiency and number of transactions are significantly higher and the price volatility is signifi-
cantly lower under ClosedBook. A difference in average price is not observed.
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Appendix B: Equilibrium phase

This appendix considers the long term behaviour of traders during the periods 101−200 for the

AL-environment. This is done for different sizes K of the pool of strategies. Fig. 4.13 shows

an example of the behaviour, with the averages given in Table 4.7. Moreover, the t-values for

testing the differences between ClosedBook and OpenBook are given in Table 4.8.

In the example we observe a smaller effect of mutation under ClosedBook. Hence the equi-

librium efficiency and number of trades are more often reached. The efficiency and number of

transactions are significantly higher and the price volatility significantly lower in the Closed-

Book system, irrespective of the size K of the pool of strategies. We do not observe a clear

significant difference in average price.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.13: Long-term dynamics in the AL-environment with 5 buyers and 5 sellers. In both
systems offers move fast towards the equilibrium price range. Under ClosedBook mutation
seems to have a smaller effect and efficiency and the number of transactions more frequently
attain the equilibrium value.
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CL: closed book OP: open book

K = 10 K = 50 K = 100 K = 200 K = 10 K = 50 K = 100 K = 200

Eff 0.9197 0.9745 0.9806 0.9885 0.8646 0.9229 0.9259 0.9267

(0.0584) (0.0219) (0.0210) (0.0151) (0.0647) (0.0319) (0.0334) (0.0347)

Price 0.6287 0.6326 0.6239 0.6184 0.6364 0.6320 0.6359 0.6353

(0.0383) (0.0263) (0.0289) (0.0274) (0.0423) (0.0287) (0.0262) (0.0267)

Vol 0.0167 0.0089 0.0077 0.0063 0.0220 0.0144 0.0132 0.0134

(0.0074) (0.0050) (0.0055) (0.0064) (0.0078) (0.0044) (0.0038) (0.0039)

Trans 3.6898 3.9213 3.9359 3.9562 3.5087 3.7459 3.7785 3.7698

(0.3175) (0.0659) (0.0649) (0.0583) (0.2936) (0.1162) (0.1120) (0.1245)

Table 4.7: Long-term average outcomes in the AL-environment with 5 buyers and 5 sellers.
The efficiency and number of transactions are higher and the price volatility is lower under
ClosedBook. A clear difference in average price is not observed. These results are robust with
respect to the size K of the pool of strategies.

T-values

K = 10 K = 50 K = 100 K = 200

Eff 6.32 13.34 13.86 16.33

Price -1.35 0.15 -3.08 -4.42

Vol -4.93 -8.26 -8.23 -9.47

Trans 4.19 13.13 12.16 13.56

Table 4.8: T-values for testing the differences in long-term average outcomes between Closed-
Book and OpenBook in the AL-environment with 5 buyers and 5 sellers. The efficiency and
number of transactions are significantly higher and the price volatility is significantly lower
under ClosedBook. A clear significant difference in average price is not observed.
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Appendix C: Multi-unit market

In this appendix we consider an extension of the model by allowing agents to trade multiple

units. In the equilibrium of the random environment traders place an order for 5 units, shown

in Figs. 4.14 and 4.15. The learning phase of both the symmetric and random environments is

studied over the periods 1 − 20 and the subperiods 1 − 5 and 16 − 20. We present the aver-

age outcomes and the t-values for testing the differences between Closed- and OpenBook in

Tables 4.9-4.12 for both the symmetric and random environment. Average outcomes and t-

values for the long-term, during periods 101 − 200 and for different sizes K of the pool of

strategies, are shown in Tables 4.13-4.16.

In the examples of the multi-unit random environment we observe that mutation plays a larger

role under OpenBook, as full efficiency is often not obtained. During the learning phase the

efficiency and number of transactions are higher under ClosedBook. The average price and

price volatility do not show a significant difference. In the long-rum efficiency and number

of transactions remain higher under ClosedBook and the average price becomes significantly

lower. The comparison between price volatility is different between both environments. In the

symmetric environment the price volatility is significantly lower under ClosedBook, and in the

random environment significantly higher. The latter is the effect of the coordination of offers

outside the small equilibrium price range in the ClosedBook system.
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(a) Symmetric environment under CL. (b) Aggregate outcomes under CL.
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(c) Individual bids under CL. (d) Individual asks under CL.
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(e) Order size buyers under CL. (f) Order size sellers under CL.

Figure 4.14: Long-term dynamics in the ClosedBook multi-unit random environment with 5
buyers and 5 sellers that can place an offer for a maximum of 10 units. The equilibrium offer
is made for 5 units. Both size and offer converge. Traders coordinate their offers outside the
relatively small equilibrium price range. This coordination is disturbed around period 40.
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(a) Random environment under OP. (b) Aggregate outcomes under OP.
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(c) Individual bids under OP. (d) Individual asks under OP.
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(e) Order size buyers under OP. (f) Order size sellers under OP.

Figure 4.15: Long-term dynamics in the OpenBook multi-unit random environment with 5 buy-
ers and 5 sellers that can place an offer for a maximum of 10 units. The equilibrium offer is
made for 5 units. Both size and offer converge to the equilibrium value. Mutation seems to play
a larger role than under ClosedBook, as full efficiency is less frequently obtained.
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CL: closed book OP: open book

Period: 1-5 1-20 16-20 1-5 1-20 16-20

Efficiency 0.6895 0.8657 0.9516 0.6423 0.8109 0.8878

(0.0654) (0.0322) (0.0336) (0.0604) (0.0311) (0.0525)

Price 0.4895 0.4863 0.4852 0.5015 0.5054 0.5078

(0.0804) (0.0435) (0.0380) (0.0623) (0.0403) (0.0417)

Price Volat 0.1278 0.0808 0.0273 0.1355 0.0786 0.0210

(0.0511) (0.0249) (0.0121) (0.0535) (0.0223) (0.0107)

Num transact 21.8240 27.8625 30.8560 21.4420 27.3770 30.1460

(2.6538) (1.3104) (1.4896) (2.5747) (1.2164) (2.0175)

Table 4.9: Average outcomes during the learning phase in the multi-unit symmetric environment
with 5 buyers and 5 sellers that can place an offer for a maximum of 10 units. The efficiency
and number of transactions are higher under ClosedBook. A clear difference in average price
and price volatility is not observed. A learning effect occurs and efficiency and number of
transactions increase over time and price volatility decreases.

T-values

Period: 1-5 1-20 16-20

Efficiency 5.30 12.24 10.24

Price -1.18 -3.22 -4.01

Price Volat -1.04 0.66 3.90

Num transact 1.03 2.72 2.83

Table 4.10: T-values for testing the differences in average outcomes between ClosedBook and
OpenBook during the learning phase in the multi-unit symmetric environment with 5 buyers
and 5 sellers that can place an offer for a maximum of 10 units. The efficiency and number of
transactions are significantly higher under ClosedBook. A clear significant difference in average
price and price volatility is not observed.
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CL: closed book OP: open book

Period: 1-5 1-20 16-20 1-5 1-20 16-20

Efficiency 0.5395 0.8201 0.9614 0.4850 0.7593 0.8889

(0.0883) (0.0444) (0.0413) (0.0675) (0.0352) (0.0544)

Price 0.4951 0.4862 0.4822 0.5094 0.5078 0.5101

(0.0559) (0.0368) (0.0361) (0.0512) (0.0332) (0.0336)

Price Volat 0.0849 0.0559 0.0236 0.0839 0.0543 0.0205

(0.0391) (0.0174) (0.0089) (0.0360) (0.0157) (0.0098)

Num transact 16.5240 21.5830 24.0320 16.1740 20.4600 22.3260

(2.6932) (1.1873) (1.0307) (2.3771) (0.9495) (1.3516)

Table 4.11: Average outcomes during the learning phase in the multi-unit random environment
with 5 buyers and 5 sellers that can place an offer for a maximum of 10 units. The efficiency
and number of transactions are higher under ClosedBook. A clear difference in average price
and price volatility is not observed. A learning effect occurs and efficiency and number of
transactions increase over time and price volatility decreases.

T-values

Period: 1-5 1-20 16-20

Efficiency 4.90 10.73 10.61

Price -1.89 -4.36 -5.66

Price Volat 0.19 0.68 2.34

Num transact 0.97 7.39 10.04

Table 4.12: T-values for testing the differences in average outcomes between ClosedBook and
OpenBook during the learning phase in the multi-unit random environment with 5 buyers and
5 sellers that can place an offer for a maximum of 10 units. The efficiency and number of
transactions are significantly higher and average price significantly lower under ClosedBook. A
clear difference in price volatility is not observed.
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CL: closed book OP: open book

K = 10 K = 50 K = 100 K = 200 K = 10 K = 50 K = 100 K = 200

Eff 0.9749 0.9781 0.9783 0.9783 0.9388 0.9372 0.9442 0.9399

(0.0244) (0.0254) (0.0263) (0.0254) (0.0219) (0.0260) (0.0219) (0.0199)

Price 0.4721 0.4764 0.4795 0.4766 0.5038 0.5040 0.5040 0.4991

(0.0171) (0.0195) (0.0232) (0.0189) (0.0307) (0.0376) (0.0324) (0.0312)

Vol 0.0077 0.0055 0.0054 0.0055 0.0120 0.0110 0.0102 0.0106

(0.0042) (0.0044) (0.0055) (0.0049) (0.0037) (0.0036) (0.0039) (0.0038)

Trans 32.7328 33.0609 33.1029 33.0880 31.9787 31.7267 32.0048 31.8543

(2.0657) (2.2211) (2.2171) (2.2109) (1.5151) (1.6777) (1.7313) (1.6213)

Table 4.13: Long-term average outcomes in the multi-unit symmetric environment with 5 buyers
and 5 sellers that can place an offer for a maximum of 10 units. The efficiency and number of
transactions are higher and the price volatility lower under ClosedBook. However, also the
average price is lower under ClosedBook. These results are robust with respect to the size K of
the pool of strategies.

T-values

K = 10 K = 50 K = 100 K = 200

Eff 11.01 11.25 9.96 11.90

Price -9.02 -6.52 -6.15 -6.17

Vol -7.68 -9.67 -7.12 -8.22

Trans 2.94 4.79 3.90 4.50

Table 4.14: T-values for testing the differences in long-term average outcomes between Closed-
Book and OpenBook in the multi-unit symmetric environment with 5 buyers and 5 sellers that
can place an offer for a maximum of 10 units. The efficiency and number of transactions are sig-
nificantly higher and the price volatility significantly lower under ClosedBook. However, also
the average price is significantly lower under ClosedBook.
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CL: closed book OP: open book

K = 10 K = 50 K = 100 K = 200 K = 10 K = 50 K = 100 K = 200

Eff 0.9524 0.9470 0.9517 0.9517 0.9306 0.9391 0.9410 0.9426

(0.0267) (0.0310) (0.0294) (0.0250) (0.0251) (0.0286) (0.0267) (0.0271)

Price 0.4502 0.4463 0.4516 0.4517 0.4989 0.5014 0.4978 0.5028

(0.0354) (0.0321) (0.0348) (0.0359) (0.0302) (0.0279) (0.0270) (0.0268)

Vol 0.0200 0.0182 0.0181 0.0175 0.0103 0.0089 0.0092 0.0091

(0.0076) (0.0082) (0.0074) (0.0082) (0.0027) (0.0028) (0.0031) (0.0028)

Trans 23.8183 23.6129 23.7963 23.6853 23.2905 23.4898 23.5340 23.5920

(0.8207) (0.9692) (0.8932) (0.9102) (0.7143) (0.7415) (0.7692) (0.7354)

Table 4.15: Long-term average outcomes in the multi-unit random environment with 5 buyers
and 5 sellers that can place an offer for a maximum of 10 units. The efficiency, number of
transactions and price volatility are higher and the average price lower under ClosedBook. Price
volatility is higher under ClosedBook due to the disturbances between subsequent coordinations
of offers outside the equilibrium price. These results are robust with respect to the size K of the
pool of strategies.

T-values

K = 10 K = 50 K = 100 K = 200

Eff 6.44 1.87 2.69 2.47

Price -10.47 -12.96 -10.49 -11.41

Vol 12.03 10.73 11.09 9.69

Trans 4.85 1.01 2.23 0.80

Table 4.16: T-values for testing the differences in long-term average outcomes between Closed-
Book and OpenBook in the multi-unit random environment with 5 buyers and 5 sellers that
can place an offer for a maximum of 10 units. The efficiency, number of transactions and price
volatility are significantly higher and the average price significantly lower under ClosedBook.
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Appendix D: Size of the market

This appendix considers larger markets that consist of 15 buyers and 15 sellers or 25 buyers

and 25 sellers. An example of the S15-environment is shown in Fig. 4.16. Both for the learning

phase and the long-term we present average outcomes and the t-values for testing the differ-

ences between ClosedBook and OpenBook. These are given in Tables 4.17-4.24 for both the

S15- and the S25-environment. The learning phase is studied over the periods 1 − 20 and the

subperiods 1− 5 and 16− 20 and the long-term during periods 101− 200 for different sizes K

of the pool of strategies.

In the example under ClosedBook full efficiency is often attained, but only rarely in the Open-

Book system. Hence we can conclude that the results shown in the S5-environment are robust

with respect to the size of the market. The efficiency and the number of transactions are signifi-

cantly higher under ClosedBook, and the price volatility significantly lower. The average price

does not differ significantly between Open- and ClosedBook.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.
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(c) Individual bids under CL. (d) Individual bids under OP.
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(e) Individual asks under CL. (f) Individual asks under OP.

Figure 4.16: Long-term dynamics in the symmetric S15-environment with 15 buyers and 15
sellers. With more traders in the market offers again move towards the equilibrium price range.
Where under ClosedBook mutation incidentally leads to a decreased efficiency, this occurs un-
der OpenBook in most periods.
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CL: closed book OP: open book

Period: 1-5 1-20 16-20 1-5 1-20 16-20

Efficiency 0.8246 0.9258 0.9664 0.7514 0.8401 0.8744

(0.0415) (0.0207) (0.0288) (0.0490) (0.0231) (0.0464)

Price 0.5048 0.5026 0.5008 0.5015 0.5003 0.4995

(0.0379) (0.0219) (0.0176) (0.0314) (0.0193) (0.0230)

Price Volat 0.0549 0.0336 0.0125 0.0574 0.0406 0.0199

(0.0197) (0.0094) (0.0056) (0.0242) (0.0106) (0.0093)

Num transact 6.7700 7.3650 7.5920 6.1060 6.7280 6.9000

(0.4552) (0.2222) (0.2953) (0.4278) (0.2015) (0.4045)

Table 4.17: Average outcomes during the learning phase in the symmetric S15-environment
with 15 buyers and 15 sellers. The efficiency and number of transactions are higher and price
volatility lower under ClosedBook. A difference in average price is not observed. A learning
effect occurs and efficiency and number of transactions increase over time and price volatility
decreases.

T-values

Period: 1-5 1-20 16-20

Efficiency 11.40 27.63 16.85

Price 0.67 0.79 0.45

Price Volat -0.80 -4.94 -6.82

Num transact 10.63 21.24 13.82

Table 4.18: T-values for testing the differences in average outcomes between ClosedBook and
OpenBook during the learning phase in the S15-environment with 15 buyers and 15 sellers. The
efficiency and number of transactions are significantly higher and price volatility significantly
lower under ClosedBook. A significant difference in average price is not observed.
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CL: closed book OP: open book

Period: 1-5 1-20 16-20 1-5 1-20 16-20

Efficiency 0.8417 0.9356 0.9725 0.7640 0.8387 0.8652

(0.0362) (0.0172) (0.0192) (0.0398) (0.0211) (0.0406)

Price 0.5032 0.5028 0.5031 0.5017 0.5007 0.4992

(0.0290) (0.0158) (0.0116) (0.0274) (0.0148) (0.0155)

Price Volat 0.0433 0.0263 0.0098 0.0395 0.0293 0.0142

(0.0169) (0.0080) (0.0040) (0.0185) (0.0075) (0.0061)

Num transact 11.3120 12.1510 12.4600 10.0800 10.9110 11.1380

(0.5638) (0.2832) (0.3510) (0.5895) (0.2804) (0.5208)

Table 4.19: Average outcomes during the learning phase in the symmetric S25-environment
with 25 buyers and 25 sellers. The efficiency and number of transactions are higher and price
volatility lower under ClosedBook. A difference in average price is not observed. A learning
effect occurs and efficiency and number of transactions increase over time and price volatility
decreases.

T-values

Period: 1-5 1-20 16-20

Efficiency 14.44 35.60 23.89

Price 0.38 0.97 2.01

Price Volat 1.52 -2.74 -6.03

Num transact 15.10 31.11 21.05

Table 4.20: T-values for testing the differences in average outcomes between ClosedBook and
OpenBook during the learning phase in the S25-environment with 25 buyers and 25 sellers. The
efficiency and number of transactions are significantly higher and price volatility significantly
lower under ClosedBook. A significant difference in average price is not observed.

119



CHAPTER 4. INFORMATION IN A CONTINUOUS DOUBLE AUCTION

CL: closed book OP: open book

K = 10 K = 50 K = 100 K = 200 K = 10 K = 50 K = 100 K = 200

Eff 0.9340 0.9791 0.9827 0.9844 0.8636 0.9103 0.9146 0.9196

(0.0316) (0.0111) (0.0117) (0.0125) (0.0337) (0.0215) (0.0195) (0.0245)

Price 0.4996 0.5010 0.5007 0.5010 0.5015 0.5038 0.5014 0.5012

(0.0240) (0.0129) (0.0143) (0.0154) (0.0225) (0.0148) (0.0137) (0.0164)

Vol 0.0112 0.0052 0.0052 0.0047 0.0181 0.0107 0.0104 0.0100

(0.0038) (0.0018) (0.0022) (0.0024) (0.0043) (0.0025) (0.0019) (0.0018)

Trans 7.1764 7.7946 7.8386 7.8599 6.6505 7.2267 7.3048 7.3640

(0.3919) (0.1082) (0.0989) (0.1054) (0.3692) (0.1677) (0.1502) (0.1624)

Table 4.21: Long-term average outcomes in the S15-environment with 15 buyers and 15 sellers.
The efficiency and number of transactions are higher and price volatility lower under Closed-
Book. A difference in average price is not observed. These results are robust with respect to the
size K of the pool of strategies.

T-values

K = 10 K = 50 K = 100 K = 200

Eff 15.24 28.69 29.95 23.56

Price -0.58 -1.43 -0.35 -0.09

Vol -12.02 -17.85 -17.89 -17.67

Trans 9.77 28.46 29.68 25.61

Table 4.22: T-values for testing the differences in long-term average outcomes between Closed-
Book and OpenBook in the S15-environment with 15 buyers and 15 sellers. The efficiency and
number of transactions are significantly higher and price volatility significantly lower under
ClosedBook. A significant difference in average price is not observed.
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CL: closed book OP: open book

K = 10 K = 50 K = 100 K = 200 K = 10 K = 50 K = 100 K = 200

Eff 0.9456 0.9800 0.9859 0.9864 0.8647 0.9046 0.9057 0.9052

(0.0214) (0.0086) (0.0079) (0.0080) (0.0305) (0.0170) (0.0148) (0.0174)

Price 0.5021 0.5030 0.5022 0.5011 0.5010 0.5016 0.5002 0.5002

(0.0186) (0.0096) (0.0085) (0.0094) (0.0174) (0.0083) (0.0080) (0.0088)

Vol 0.0083 0.0043 0.0037 0.0035 0.0145 0.0085 0.0085 0.0085

(0.0020) (0.0011) (0.0014) (0.0013) (0.0033) (0.0015) (0.0013) (0.0013)

Trans 11.7892 12.6831 12.7884 12.7947 10.9008 11.7102 11.7794 11.8101

(0.4615) (0.1521) (0.1274) (0.1190) (0.4903) (0.2301) (0.1869) (0.2145)

Table 4.23: Long-term average outcomes in the S25-environment with 25 buyers and 25 sellers.
The efficiency and number of transactions are higher and price volatility lower under Closed-
Book. A difference in average price is not observed. These results are robust with respect to the
size K of the pool of strategies.

T-values

K = 10 K = 50 K = 100 K = 200

Eff 21.71 39.58 47.81 42.40

Price 0.43 1.10 1.71 0.70

Vol -16.07 -22.58 -25.12 -27.20

Trans 13.19 35.27 44.61 40.14

Table 4.24: T-values for testing the differences in long-term average outcomes between Closed-
Book and OpenBook in the S25-environment with 25 buyers and 25 sellers. The efficiency and
number of transactions are significantly higher and price volatility significantly lower under
ClosedBook. A significant difference in average price is not observed.
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Chapter 5

Timing under Individual Evolutionary

Learning in a Continuous Double Auction

5.1 Introduction

In many agent-based models of order-driven financial markets traders submit their order at a

random moment during a trading period and are required to make a one-dimensional decision;

to choose a bid or ask price as in LiCalzi and Pellizzari (2006) or to forecast a future price

as in Chiarella and Iori (2002). However, in a Continuous Double Auction (CDA) the moment

of order submission plays a crucial role; submitting at the end of the period will yield a lower

probability of trading, submitting at the beginning of the period will most likely result in a trade

at the own submitted price which yields a lower profit. Allowing traders to submit their order at

their preferred moment may influence these effects as traders may decide to condition their of-

fer on the moment of submission. In agent-based models learning is often used to avoid making

extreme assumptions about the rationality of traders and to select between multiple equilibria.

With non-random timing learning of agents becomes multidimensional; not only learning about

the offer but also learning about the timing of submission is of great importance.
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In this chapter we introduce learning about the timing of order submission in an agent-based

model. Traders also learn about the offer that they submit, and hence we extend the Individ-

ual Evolutionary Learning (IEL) algorithm used in Arifovic and Ledyard (2003, 2007) and in

Anufriev et al. (2013) to a multidimensional version and allow for contemporaneous learning

about the moment of submission and about the submitted orders. In the IEL algorithm traders

select from a pool of possible strategies. After a trading period the hypothetical payoff is cal-

culated for every possible strategy and some strategies are replaced with randomly modified

strategies. Adopting the IEL algorithm to incorporate the decision about timing, we study the

distribution of preferred submission moments, the interrelation between these moments and the

submitted orders, and also the impact of the size of the market on the timing of submission and

the offers of traders. In simulations we find that the distribution of the submission moments

highly depends on the size of the market.

Starting from early contributions it is common that investors in agent-based models make a deci-

sion about the price of the order, but not about its timing. It is typically assumed that they submit

their one unit orders at a random moment in the trading period and that between periods their

learning is only one-dimensional: buyers learn which bid to submit and sellers learn which price

to ask. Sometimes agents directly learn bids and asks, sometimes their bids and asks depend on

the expectations and learning is over the space of prediction rules. For examples of the former

approach, see LiCalzi and Pellizzari (2006, 2007) who compare efficiency in the CDA with

other market protocols such as the call market, under boundedly rational resp. zero intelligent

agents; and Bottazzi et al. (2005) who focus on the properties of price time series under different

trading protocols. In the market protocols with sequential trade these papers assume that agents

arrive in a random sequence. For examples of the latter approach see Chiarella and Iori (2002)

who study properties of asset pricing under Continuous Double Auctions and other mecha-

nisms in a model with heterogeneous expectations, Yamamoto and LeBaron (2010) who study

the number of order splits and Anufriev and Panchenko (2009) who study the switching be-

tween forecasting rules. Again, in all simulations under Continuous Double Auctions, agents

submit orders in a random sequence.
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Arifovic and Ledyard (2003, 2007) introduced the Individual Evolutionary Learning algorithm

to model the boundedly rational learning behaviour of agents in a Call Market model.

Anufriev et al. (2013) use IEL in a Continuous Double Auction and compare efficiency un-

der full and no information about the history of orders. Furthermore the latter paper studies

the GS-environment from Gode and Sunder (1993, 1997) in the case where traders have zero

intelligence and submit every possible offer with equal probability. In Chapter 4 we have shown

that the results of Anufriev et al. (2013) depend on the hypothetical foregone payoff function

that is chosen, under no information about the order history. This chapter extends the model

in Anufriev et al. (2013) by considering multidimensional learning in which traders also learn

about the moment of order submission.

An important feature of IEL is that it is essentially a backward-looking learning process. This

approach contrasts with the standard economic approach where optimising agents make their

decision and use all information rationally. In Friedman (1991) traders can submit orders at

any moment of time and can also improve their outstanding orders. Traders regard other’s or-

ders as random, update their beliefs about the order distribution using Bayes’ formula and sub-

mit orders on the basis of their updated distribution. The classical financial literature contains

many studies on limit and market orders. Rosu (2009) and Parlour and Seppi (2008) provide

a survey about the theoretical research on limit and market orders under random arrival of

traders. The surveys Gould et al. (2013b) and Hachmeister (2007) discuss the main theoret-

ical, experimental and empirical papers on limit orders of informed and uninformed traders.

Bloomfield et al. (2005) performed an experiment on the choice between limit and market

orders by informed and uninformed traders over time. As the period advances, uninformed

traders use more market orders and informed traders more limit orders. Bae et al. (2003) and

Chung et al. (1999) empirically consider the number of limit and market orders during a trading

day and their relation with spread, order size and price volatility. Biais et al. (1995) determine

the empirical distribution of large and small trades, orders and cancelations during a trading

day. These papers find a U-shaped distribution of orders during a day. They explain this finding

as motivated by the desire of traders to perform price discovery in the beginning of the day and
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react to events during the closing of the exchange. At the end of the day traders desire to unwind

their positions. In this chapter there is no modelling of the news process; information is equal

for all traders and does not evolve during periods. Rather we are interested in how traders with

given valuation and cost are able to find their trading moment and strategy during the period.

The distribution of submission moments is studied in a benchmark environment under full in-

formation about trading history. We find that under the IEL-algorithm investors in a medium

size market learn to submit their order around the middle of the trading period to avoid a lower

trading probability or lower profit. Moreover, we observe an increasing bid function and de-

creasing ask function over time, similar to Fano and Pellizzari (2011). We show that the size of

the market and competition between traders influence the distribution or submission moments.

Furthermore of interest are the placed offer, efficiency, profit and the probability of trading as

a function of the submission moment. General market statistics are compared with the setup in

Anufriev et al. (2013) where traders submit orders at random moments.

The organisation of this chapter is as follows. The model and the trading mechanism are de-

scribed in Section 5.2, followed by the extended Individual Evolutionary Learning algorithm in

Section 5.3 and the methodology used. The distribution of the preferred moment of submitting

and its relation to the bid and ask are described in a benchmark environment in Section 5.4. The

impact of the size of the market is considered in Section 5.5. In Section 5.6 we study submission

moments and their relation with offers as the amount of competition changes. The Gode-Sunder

environment is attractive for its simplicity and studied in Section 5.7. Finally, Section 5.8 con-

cludes.

5.2 Market setup

We describe the environments and the trading mechanism in which we study the simultaneous

decision about the time of order submission and the submitted offer. Each trader buys or sells

in a Continuous Double Auction market one unit of the good and has to decide the moment of
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submission and the offered price.

5.2.1 The environments

Each environment is determined by a set of buyers and a set of sellers with their redemption val-

ues for the good. In each trading period t ∈ {1, · · · , T} each of the buyers b ∈ {1, · · · , B} likes

to consume one unit of the good and each of the sellers s ∈ {1, · · · , S} is endowed with one unit

of the good. Such a trading period consists of the time moments {0, 1, ..., 100}. The buyers have

a fixed valuation of Vb per unit, sellers have fixed costs of Cs that only needs to be paid in case

of a transaction. Agents know their own redemption value, but not the values of the other agents.

We will denote the environments by vectors of valuations and costs. For instance,

{[1, 1], [0, 0.1, 0.2]} denotes an environment with two buyers having identical valuations 1 and

1 and three sellers with costs 0, 0.1 and 0.2. The supply and demand functions of the benchmark

environment {[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]} and the main symmetric environment

{[1, 0.85, 0.7, 0.55, 0.4], [0.6, 0.45, 0.3, 0.15, 0]} are shown in Fig. 5.1.
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(a) The benchmark environment. (b) The main symmetric environment.

Figure 5.1: The demand and supply functions of the main environments used, the
benchmark environment {[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]} and the main symmetric environment
{[1, 0.85, 0.7, 0.55, 0.4], [0.6, 0.45, 0.3, 0.15, 0]}.
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Based on the valuations and costs the demand and supply functions can be determined. We

denote the equilibrium quantity by q∗ and the interval of equilibrium prices by [p∗L, p
∗
H ]. The

traders that can gain a positive profit in equilibrium are denoted as intramarginals, whereas

the traders that cannot make a positive profit and therefore will not trade in equilibrium are

called extramarginals. The payoff of a buyer equals Ub(p) = Vb − p if he traded at price p and

zero otherwise. The payoff of a seller equals Us(p) = p − Cs after a trade at price p and zero

otherwise.

5.2.2 Continuous Double Auction

A Continuous Double Auction model is used to describe the regular behaviour at stock ex-

changes. During a trading period buyers and sellers arrive at their preferred moment and im-

mediately submit their order. The bid of buyer b and the ask of seller s in trading period t

are denoted as bb,t and as,t and their arrival times as nb,t and ns,t. If an arriving order can be

matched with the best order from the book, the transaction takes place at the price of the order

in the book. If the arriving order cannot be matched, it is stored in the order book. At the end of

the period the order book with unmatched orders is cleared.

If in period t buyer b traded, the transaction price of this buyer is denoted as pb,t. Similarly the

transaction price of seller s is denoted as ps,t. Hence the payoff of a buyer equals

Ub,t(p) = Vb − pb,t if he traded and zero otherwise. The payoff of a seller equals

Us,t(p) = ps,t − Cs after a trade and zero otherwise. We note that the payoff depends not

only on the own offer, but also on the trading sequence. For example, if there are only one buyer

and one seller, given their offers bb,t > as,t a buyer will get higher payoff if he will submit his

order after the seller, as this will yield a transaction price equal to the ask of the seller. In this

chapter we will focus on learning of traders about their timing of submitting the order and about

the price of submission. That is why we assume that no order can be cancelled and restrict the

traders to buy or sell only one unit of the good. The effects of learning about cancellation and

size of the order are left for further research.
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5.2.3 Nash equilibria

In the extended model where traders are required to make a two-dimensional decision, a mul-

tiplicity of possible long run outcomes may exist. Let us consider a one-period version of our

model, where valuations and costs are common knowledge. In this one-period model traders are

required to select a strategy consisting of a submission moment and an order only once. Then

irrespective of the environment, one set of Nash equilibria exists in which every intramarginal

trader submits the same offer in the equilibrium price range, at any possible arrival moment.

Hence in this equilibrium the timing of order submission is of no importance. Trivially this

constitutes an equilibrium. If a trader adjust its offer price this will result in a lower profit if the

offer is more conservative or in absence of trade if more aggressive. However, after a deviation

of any offer the arrival moment does play an important role. It is optimal for traders on the other

side of the market to arrive at moment n = 100 if the deviation leads to a more conservative

offer. A more aggressive offer leads to absence of trade for one of the traders on the other side

of the market. Hence it is optimal for traders on the other side to arrive at moment n = 0.

Furthermore other Nash equilibria may exist in the one-period model, depending on the envi-

ronment. A trivial example consists of one buyer and two sellers, such that the sellers attempt

to outcompete each other. An example of a Nash equilibrium in which not all traders submit the

same offer consists of the two sellers submitting an ask price of 0 and the buyer submitting a

bid price b at a later moment than both sellers.

The Nash equilibria of this one-period model are possible long run outcomes of the multi-period

model used in this chapter. Under the Individual Evolutionary Learning algorithm we find that

the offers of traders converge towards the equilibrium price range, such as in the first Nash

equilibrium of the one-period model. However, the timing of order submission is of importance;

traders learn the optimal submission moment when offer prices of intramarginal traders are not

all identical.
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5.3 Individual Evolutionary Learning algorithm

Agents learn which strategy to select by a multidimensional version of the Individual Evolution-

ary Learning algorithm as introduced by Arifovic and Ledyard (2003). Every agent can choose

from a set of strategies, which consists of an offer and a submission moment. These strategies

might mutate from time to time to allow for some sort of experimentation. Based on how these

strategies would have performed in the last trading period, some strategies are replaced by better

performing ones. At the beginning of the next period one strategy is selected with a probability

proportional to the hypothetical foregone payoff.

Past offers and arrival moments and thus the average price are publicly available. This setup is

comparable with the OpenBook setting of Chapter 4. Therefore, after the trading period each

agent can determine exactly what his payoff would have been for each possible strategy, assum-

ing no changes in the behaviour of other agents. Agents learn to select the strategy that has the

highest hypothetical payoff in the previous period.

Pool of strategies

Every trader has an individual set of strategies: the set Bb,t of K randomly drawn pairs of bids

and arrival moments (bi, ni) for buyer b and the set As,t of K randomly drawn pairs of asks

and arrival moments (aj, nj) for seller s. Offers are initially drawn from a uniform distribution

on [0, Vb] and [Cs, 1] respectively and the arrival moments are uniformly drawn from the set

{0, 1, 2, ..., 100}. The periods correspond to days in reality and the arrival moments to the time

period of a trading day. Note that the set of arrival moments is larger than the number of traders,

which in most environments equals 10. This is done to prevent a large random component in

the sequence of submission. When two or more traders decide to submit their order at the same

moment in time the orders are handled randomly. Expanding the set of arrival moments reduces

this random component.

Traders observe not only the sequence in which traders arrived in the last period, but also their

actual moment of submitting. Under the OpenBook system introduced in Chapter 4, the full
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order book is shown to traders in the New York Stock Exchange. Hence the actual submission

moments are known and not only the sequence of submission. Under this assumption agents

evaluate the hypothetical payoff in the previous period on the basis of the moment of submis-

sion of other traders. This assumption is important as the following example illustrates. If there

are 10 traders and trader i desires to submit in place 9 and the submitted moments of others are

for example {1, 1, 1, 1, 1, 1, 1, 1, 3} (trader i excluded), he prefers to submit at moment 2. This

results in submitting the order at place 9, ceteris paribus. We compare with the setup where only

the sequence of submissions is known and traders select at which position in the sequence they

prefer to arrive, from the set [1, 2, ..., 10]. Calculating foregone payoffs is more difficult as it

is uncertain in which place in the sequence a certain submission moment results. If the trader

in this example prefers to maximise the probability of submitting in place 9, he would submit

moment 9 and ceteris paribus arrive at place 10.

Mutation

A part of a strategy mutates with a fixed small probability ρ. A normally distributed variable

with mean zero is added to the part of the strategy that mutates while the other part may remain

unchanged. The mutated arrival moment is rounded to the nearest integer n ∈ {0, 1, 2..., 100}.

The variance of the normally distributed variable depends on which part of the strategy mutates.

This distribution is truncated; when the mutated strategy lies outside the strategy space, a new

normally distributed variable is drawn.

Replication

After the trading period has ended and some strategies have possibly mutated, the foregone

payoffs are calculated for each strategy while taking the chosen strategies of others from this

period constant. Replication consists of a comparison of two strategies, randomly selected from

the pool of strategies. The strategy with the highest foregone hypothetical payoff will obtain a

place in the updated pool of strategies. This is repeated K times to fill the entire updated pool.
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Hypothetical foregone payoff functions

Calculating the foregone payoffs is a straightforward task under full information about the trad-

ing history. Since the entire order book and the arrival moments of others in the last period are

known, the foregone payoff can precisely be determined for every possible strategy, given that

others remain to use the same strategies.

For example, with only one buyer and one seller who in the previous period submitted ask

as,t, the hypothetical foregone payoff of the buyers’ strategy (bi, ni) is equal to Vb − as,t when

ni > ns,t and bi ≥ as,t, and is equal to Vb − bi when ni < ns,t and bi ≥ as,t and zero otherwise.

When ni = ns,t one of the traders randomly arrives first, and the hypothetical foregone payoff

of the strategy (bi, ni) equals 1
2
(Vb − as,t) + 1

2
(Vb − bi). The hypothetical foregone payoff func-

tions are in general given by

Ub,t(bi, ni) =

 Vb − p∗b,t(bi, ni) if strategy (bi, ni) resulted in a tradeat price p∗b,t(bi, ni)

0 otherwise,

Us,t(aj, nj) =

 p∗s,t(aj, nj)− Cs if strategy (aj, nj) resulted in a tradeat price p∗s,t(aj, nj)

0 otherwise.

Selection of a strategy from the pool

After the hypothetical foregone payoffs are determined each trader has to select a strategy for

the next trading period. The probability that a certain strategy is selected is proportional to its

hypothetical foregone payoff. In the first period every strategy is equally likely to be chosen.

For a buyer bi the probability of selecting strategy (bi, ni) for period t+ 1 is given by

πb,t+1(bi, ni) =
Ub,t(bi,ni)∑K
i=1 Ub,t(bi,ni)

.

This Individual Evolutionary Learning algorithm depends on some variables, such as the size

of the individual pools, the probability and the distribution of mutation and the replication rate.

The next section shows the values of these variables that are used in the simulations, as well as

the characteristics used to describe the overall outcome in a trading period.
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5.3.1 Methodology

The benchmark environment {[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]} is considered to show the basic results

of IEL-learning regarding the moment of arrival. We simulate this environment with different

numbers of traders to study the effect of the size of the market. Furthermore we will use sym-

metric environments which mainly consist of five buyers and five sellers to study the impact of

changes in the amount of competition and the size of the equilibrium price range on the dis-

tribution of arrival moments. Some of these environments as the main symmetric environment

{[1, 0.85, 0.7, 0.55, 0.4], [0.6, 0.45, 0.3, 0.15, 0]} are introduced in Arifovic and Ledyard (2007)

and Anufriev et al. (2013). We will show that the results are not robust with respect to the envi-

ronment; when one side of the market is much larger the other side will extract their power and

submit their order as late as possible.

We study the long-run distribution of arrival moments and the expected offer per submission

moment. Also of interest are the allocative efficiency, which is the ratio between the allocative

value in a trading period and the maximal possible allocative value. The allocative value of a

trading period is the sum of the payoffs of all agents. It is fully efficient when all intramarginal

investors trade during a period. Efficiency can be lower when an extramarginal investor trades,

or when intramarginals do not trade at all. Furthermore we study the average transaction price,

the price volatility and the number of transactions. All these characteristics are considered per

trading period as well as per possible arrival moment and are compared with the one dimen-

sional model.

The Individual Evolutionary Learning algorithm is used with most of the parameters of

Arifovic and Ledyard (2007). Every agent is given an individual pool of strategies of size

K = 300. A part of a strategy mutates with a probability of 0.033; in the case that the offer

mutates a normally distributed term with mean 0 and a standard deviation of 0.1 is added to the

offer, in the case that the arrival moment mutates a normally distributed term with mean 0 and

a standard deviation of 10 is added to the arrival moment. The mutated offer is truncated on the

bounds of the interval [0, 1] and the mutated arrival moment is rounded to the nearest integer
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n ∈ {0, 1, 2..., 100}. When the mutated strategy lies outside the strategy space, a new normally

distributed variable is drawn. This mutation differs from Anufriev et al. (2013), where a uni-

form distribution is used to form the new strategy. In the replication phaseK pairs are compared.

All the averages are calculated over S = 3000 random seeds. The benchmark environment

{[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]} shows that 3000 seeds is indeed sufficient. After a number of pe-

riods the market becomes more or less stable and the offers and average price only fluctuate

within a certain range, mainly due to mutation. We denote this behaviour as an ”equilibrium”

in which the offers of intramarginals are close to the equilibrium price range and the agents

choose the time to submit that showed to perform the best given these offers. All the results

are averaged over periods 41 − 50 to avoid the random impact of the first learning periods.

We show that the distribution of submission moments is stable after 40 periods and thus the

impact of the first learning periods is negligible. This is done by conducting a two-sample

Kolmogorov-Smirnov test on periods 39 and 40. The test statistic D = 0.0022 lies outside the

critical region D > 0.0159 for α = 0.001. Chapter 4 studies this impact by considering both

the learning and the equilibrium phase.

5.4 Benchmark environment

In this section we focus on the distribution of arrival moments and its correlation with the

chosen offer, in a benchmark environment. Important characteristics as efficiency, variance of

transaction prices and volume are considered both per trading period as per possible arrival

moment. We consider simulations of the basic environment with the following redemption val-

ues: {[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]}. In this environment all buyers and all sellers are identical and

buyers and sellers are symmetric. In Fig. 5.2 we show the distribution of arrival times and the

expected offer per arrival moment for every trader individually, where buyers are represented by

solid lines and sellers by dotted lines. Averages are shown in solid black lines. Bids of buyers

are positively correlated with the moment of arrival, asks of sellers are negatively correlated.

Buyers’ valuations are shown in the offer function plotted by stars and sellers’ costs by circles.
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When multiple traders have the same valuation or cost, colours do not correspond to the colours

of the offer functions, but are shown in black.
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Figure 5.2: Distribution of learned submission moments (left) and offers as function of submis-
sion moment (right) in environment {[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]}. Traders learn to submit their
order more often during the middle of the period. The increasing bid function and decreasing
ask function show that early submitting traders are more aggressive.

We derive more intuition about the distribution of submission moments by further investigating

the environment with 5 buyers and 5 sellers. In Section 5.5 we study robustness with respect

to the number of traders. This environment is attractive since it is an intermediate case. In the

environment with one trader on either side of the market the probability of trading does not play

a role, and as the number of traders converges to infinity the effect of timing on the expected

profit from trade fades away. However, in this intermediate environment both effects play a sig-

nificant role.

Moment of order submission

With respect to the preferred moment of submitting we observe in Fig. 5.2 that agents desire to

submit their order in the middle part of the trading period. This illustrates the trade-off any in-

dividual trader faces: submitting the same offer earlier increases the probability that a trade will

occur at the price of their own offer which results in a lower expected profit, submitting later

decreases the probability of trading. A peak at the end of the period exists and we observe an

135



CHAPTER 5. TIMING IN A CONTINUOUS DOUBLE AUCTION

increasing bid function and decreasing ask function. The latter conclusion is also drawn in the

paper Fano and Pellizzari (2011). Traders who submit their offer late, bid close to the valuation

or ask close to the cost, which yields a high probability of trading. It makes sense for such a

late offer to be submitted as late as possible. This ensures that the trade occurs at the preferable

price of the other trader, which outweighs the minimal decrease in the probability of trading.

Traders learn which arrival moment performs best when the offers of intramarginal traders are

not identical. Under the IEL algorithm, mutation is the main cause that strategies do not entirely

converge. Due to mutation the trade-off between the probability of trading and the expected

profit is of importance and the moment of submission plays a crucial role. This results in the

distribution shown in Fig. 5.2. The micro-motives of this distribution are further investigated in

Section 5.5.

Offer

Our main observation, with regards to the offer that agents submit in relation with the preferred

moment of submitting, is that the earlier they intend to submit their order, the further bids are

from the valuations and asks from the costs. If an agent prefers to submit at a late moment, he

intends for a lower profit to increase his probability of trading. Thus we find a positive correla-

tion between bids and time and negative between asks and time.

Characteristics per possible arrival moment are shown in Fig. 5.3. The average profit per trans-

action is shown in panel (a), conditional on the arrival moment. This excludes the instances

where a trader arrives at that moment but does not trade. The next panel shows the probability

of trading; defined as the number of trades divided by the number of arrivals at a given moment.

Panel (c) shows the average profit over all the instances in which a trader arrives at that moment.

Included in this average are the instances at which no trade occurs and a trader receives a profit

of 0. This panel is the product of the first two panels; the probability of trading and the average

profit of a transaction. Finally the standard deviation of transaction prices is shown for every

arrival moment in panel (d).
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(a) Average profit per transaction. (b) Average probability of trading.
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(c) Average profit. (d) Standard deviation of transaction prices.

Figure 5.3: Characteristics environment {[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]} per possible arrival mo-
ment. The average profit per transaction is decreasing and the average probability of trading
increasing. The average profit, which is the product of the two, is U-shaped. The standard devi-
ation of transaction prices is increasing at the end of the period and is µ-shaped.

The average profit per transaction is decreasing and the probability of trading is increasing dur-

ing the period. Early submitting traders submit a very aggressive offer, a bid below and a ask

above one half. This will often not result in a trade, but if a trade occurs this will yield a very

high profit. An early or late arrival leads to a higher average profit, but also a higher variance of

transaction prices. A higher variance of the price at which the trade occurs (if late), or a higher

variance because of more occasions where the agent does not trade (if early). In the replica-

tion process early and late strategies are therefore often removed from the pool and that is why
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agents more often submit in the middle of the trading period. It is remarkable that in the IEL-

algorithm traders learn to arrive more frequent at moments that yields a lower average profit.

This may be the result of the learning algorithm, which only considers the profit in the previous

period. It is likely that when the IEL-algorithm is modified in such a way that hypothetical profit

is averaged over multiple periods, a reversal will occur and traders more frequently submit at

the beginning or the end of the period.

Let us suppose that traders do not condition their offer on the moments of submitting, thus al-

ways submit the same bid or ask. In this case the probability of trading would be decreasing over

time because fewer possible trading partners remain, whereas the expected profit per trade is in-

creasing over time because it is more likely to occur at the preferable price of the other trader.

However, the buyers’ bid function is increasing and the sellers’ ask function is decreasing. This

results in a reversal of these two effects.

5.4.1 Knowledge of the submission moments

We compare the results in the benchmark environment with 5 buyers and 5 sellers to the setting

where traders only observe the sequence of arrivals and the offers of traders, but not the actual

submission moments. In the latter setting traders choose from the set [1, 2, ..., 10] in which

position in the sequence they want to submit their order. We observe in Fig. 5.4 that knowledge

of the actual arrival moment in addition to the sequence impacts the arrival moment distribution.

This is confirmed with a two-sample Kolmogorov-Smirnov test. The test statistic D = 0.0530

lies in the critical region D > 0.0051 for α = 0.001. The additional knowledge reduces the

kurtosis and increases the peak at the end of the period.

5.4.2 Allowing the choice of submission moment

For the two-dimensional model with timing and the one-dimensional model without timing, we

measure the overall results for efficiency, number of trades and volatility in the benchmark en-

vironment with 5 buyers and 5 sellers over trading periods 41 − 50. These characteristics and

138



5.4. BENCHMARK ENVIRONMENT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Cdf arrival moments

Time

P
ro

ba
bi

lit
y

Figure 5.4: CDF of arrival times for knowledge of sequence (solid line) and actual arrival mo-
ments (dotted). The distribution of arrival moments is significantly altered when knowledge of
the actual arrival moments of others in the previous period is added. This additional information
reduces the kurtosis and increases the peak in the distribution of arrival moments at the end of
the period.

With timing Without timing
Efficiency 0.8567 0.8952

(0.1718) (0.0447)
Price Volatility 0.0208 0.0177

(0.0101) (0.0077)
Number of transactions 4.2837 4.3520

(0.8591) (0.1290)

Table 5.1: Average outcomes with and without timing in environment
{[1, 1, 1, 1, 1], [0, 0, 0, 0, 0]}. The average efficiency and the average number of trades
significantly decrease, and the average price volatility significantly increases when traders are
allowed to submit orders at their preferred moment.

their standard deviations are shown in Table 5.1. Allowing traders to submit at their preferred

moment has a negative effect; the average efficiency and the average number of transactions

decrease, and the average price volatility increases. These comparisons are all significant at a

significance level of 1%. It is optimal not to allow traders this extra decision, since it results in

a lower efficiency and thus a lower profit.
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5.5 Size of the market

The size of the market plays a crucial role on the distribution of arrival moments. Two forces

are important for the expected profit: the expected profit from a transaction and the probability

of trading. In thinner markets the first has a larger impact than in thicker markets. In Fig. 5.5 we

show the distribution of arrival moments and the average offer per trading moment depending

on the number of traders. The results are given for 1, 2, 5, 10 and 15 traders on either side of the

market.

Moment of order submission

In a market with only one buyer and one seller the moment of arrival does not affect the prob-

ability of trading. It is optimal to submit the order at moment 100, since submitting after the

other trader results in a trade at the price of the other trader. In the simulations we find indeed

that traders submit as late as possible. Submitting later strongly dominates submitting earlier in

the IEL algorithm and hence in a market with one buyer and one seller the IEL algorithm se-

lects submission moment 100. A similar distribution of submission moments is shown for two

buyers and two sellers. When the size of the market increases, the probability of trading does

play a role. Also the effect of the moment of arrival on the expected profit from trade decreases,

since the probability that the transaction price equals the own offer tends towards one half for

every arrival moment. With five traders on either side of the market traders submit around the

middle of the period. The larger the size of the market, the earlier traders arrive. The simulations

suggest that the moment of arrival will converge to zero as the size of the market converges to

infinity, which would in the benchmark environment with infinitely many traders be optimal as

the effect of the expected profit from trade disappears.
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Dynamics in environment with 5 buyers with valuation 1 and 5 sellers with cost 0.
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Dynamics in environment with 10 buyers with valuation 1 and 10 sellers with cost 0.
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Figure 5.5: Distribution of learned submission moments (left) and offers as function of submis-
sion moment (right), for 1, 2, 5, 10 and 15 traders on either side of the market. In the environment
with one buyer and one seller both traders submit as late as possible, since the probability of
trading does not depend on the submission moment. As the size of the market increases, this
probability does play a role and traders submit earlier and earlier, and moreover bids increase
and asks increase for every possible arrival moment.

Offer

Irrespective of the arrival moment traders on average submit a higher bid and a lower ask as

the size of the market increases. Average bids and asks of early arriving traders are below

respectively above one half, but the intersection points of the bid and ask function with one half

approaches n = 0. For traders arriving late the average bids and asks are further away from one

half and thus closer to their valuation and cost.
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5.6 Competition

In this section we study how the distribution of arrival moments and the function of average

offers is affected by different aspects of competition. Sets of environments are considered in

which the size of one side of the market increases, competition to extramarginal traders in-

creases, additional extramarginal traders enter or the range of equilibrium prices decreases.

5.6.1 Decreasing competition between buyers, increasing competition be-

tween sellers

Competition between buyers decreases and competition between sellers increases as more and

more sellers enter, as illustrated in Fig. 5.6. These environments range from a large difference

in size between both sides of the market, towards a symmetric environment.

Moment of order submission

When there is little competition between sellers they tend to trade late. After more and more

sellers enter, the intramarginal sellers trade earlier and earlier. Intramarginal buyers trade early

to outcompete extramarginals. In the final environment in Fig. 5.6 the distribution is symmetric

and traders prefer not to trade too early. The extramarginal buyers submit every moment with

the same probability in the first environment, and act more like the intramarginals as more sell-

ers enter; in which case they have more opportunities to trade.

Offer

Sellers submit lower asks as more sellers enter; since their market power decreases they can

be less aggressive. The intramarginal buyers submit a bid higher than the extramarginal buyers.

When a seller enters, the buyer that becomes the most competitive extramarginal buyer signif-

icantly increases his bid. The other intramarginal buyers lower their bid, so that they slightly

overbid the most competitive extramarginal buyer. The average offer of extramarginals is not

affected by their moment of submitting their order.
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Figure 5.6: Distribution of learned submission moments (left) and offers as function of submis-
sion moment (right) with decreasing competition between buyers and increasing competition
between sellers. With little competition between sellers, they tend to trade late in order to trade
with the buyer who submitted the highest bid, and intramarginal buyers trade early. When more
sellers are added to the environment the arrival moments move towards the middle of the period.
Intramarginal buyers slightly overbid the most competitive extramarginal buyer.
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5.6.2 Increasing competition to extramarginal traders

Competition between intramarginal traders and the two extramarginals increases in Fig. 5.7 as

their valuation and cost become closer to the equilibrium price range.

Moment of order submission

When extramarginals in Fig. 5.7 have little opportunity to trade they have no clear preferred

arrival moment. As they can compete more with intramarginal traders they prefer to trade ear-

lier to increase their probability of trading. The intramarginals that set the range of equilibrium

prices, and thus are the traders that face the most competition from extramarginals, trade earlier

than the other intramarginals when competition to extramarginals is less. They behave more

similar to the other intramarginals when competition increases.

Offer

When competition increases and the valuation and the cost of the extramarginals get closer to

the equilibrium price range, they post less aggressive offers. As a result, the intramarginals that

set the range of equilibrium prices also submit less aggressive offers to ensure that their offers

are better than the offers from the extramarginals.

5.6.3 Extramarginal traders entering

In Fig. 5.8 we show environments with zero, one and two extramarginals on either side of the

market. Over these environments the same intramarginals face an increasing probability of ab-

sence of trade due to competition to extramarginals.

Moment of order submission

Intramarginals tend to trade earlier when extramarginals enter. The intramarginals that set the

range of equilibrium prices tend to trade even earlier than the rest of the intramarginals. The

most competitive extramarginals in the last environment prefer to trade earlier to increase their

probability of outcompeting an intramarginal.
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Figure 5.7: Distribution of learned submission moments (left) and offers as function of sub-
mission moment (right) with increasing competition to extramarginal traders. As competition
to extramarginal traders increases, these traders learn to submit early and post less aggressive
offers to increase their probability of trading. The weakest intramarginal traders submit later
and submit less aggressive offers.
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Figure 5.8: Distribution of learned submission moments (left) and offers as function of submis-
sion moment (right) as more intramarginal traders enter the market. This increasing competition
forces intramarginal traders to submit their order earlier.
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Offer

There is not a clear effect of extramarginal traders entering in Fig. 5.8 on the average offer of

intramarginals. Hence the intramarginals solely respond to extra competition to extramarginals

by trading earlier, not by altering their offer function. The extramarginal traders submit a similar

offer for every arrival moment.

5.6.4 Decreasing range of equilibrium prices

Over the environments of Fig. 5.9, all valuations decrease by 0.02 and all costs increase, which

reduces the equilibrium price range. Thus competition between intramarginal traders is in-

creased and competition to extramarginals decreased.

Moment of order submission

As the range of equilibrium prices decreases in Fig. 5.9, the intramarginals that set the range

of equilibrium prices tend to trade earlier. The remaining intramarginals alter their moment of

arrival very limited. Extramarginals prefer to trade early, but this effect decreases as the equi-

librium price range decreases and their valuation and cost are relatively further away from this

range.

Offer

The offer functions of traders that set the equilibrium price range become more constant as

the equilibrium price range decreases. The average offer function lies within the equilibrium

price range. There is no clear impact of the increasing competition on the other intramarginals

and the decreasing competition on extramarginals. However, the change in valuations and costs

naturally causes the average bid to decrease and the average ask to increase.

5.7 Gode-Sunder environments

Gode and Sunder (1997) study the impact of extramarginals in the so-called GS-environments.

These environments consist of one seller with cost 0, one buyer with valuation 1 and a set of ex-
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Figure 5.9: Distribution of learned submission moments (left) and offers as function of sub-
mission moment (right) when the range of equilibrium prices decreases. The least competitive
intramarginals submit earlier and the extramarginal traders later.
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tramarginal buyers with valuation β. In this analysis we consider three extramarginal buyers un-

der different values of β. The demand and supply function of the GS-environment with β = 0.5

is shown in Fig. 5.10. Anufriev et al. (2013) determine efficiency in these GS-environments

in a simple CDA. They show that the efficiency under the IEL-algorithm is very close to one

and significantly larger than under Zero Intelligence. We investigate the impact of timing in the

GS-environments in Fig. 5.11 and compare efficiency with Anufriev et al. (2013) in Fig. 5.12.
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Figure 5.10: The demand and supply function of the GS-environment with 1 buyer with valua-
tion 1, 1 seller with cost 0 and 3 extramarginal buyers with valuation β = 0.5.

Moment of order submission

The seller submits late and makes use of his market power to face the best possible bid and

trade at the price of the buyer. As β increases the seller has a weaker incentive to enter late. The

intramarginal buyer faces more competition and is forced to trade earlier. As extramarginals are

competing more with the intramarginal buyer they tend to trade earlier. Arriving early can be

used to outperform other buyers if the seller submits early.

Offer

The intramarginal buyer increases his bid as β increases to outbid other buyers. The seller

increases his ask to trade more often with the intramarginal buyer; which yields a higher profit.

Early arriving extramarginals relatively bid higher to outbid other early arriving buyers.
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Figure 5.11: Distribution of learned submission moments (left) and offers as function of sub-
mission moment (right) in the GS-environment with 3 extramarginal buyers with valuation β.
The seller submits his offer late in order to make use of his market power to trade against the
best possible bid. As β increases the intramarginal buyer faces more competition, requiring him
to increase his bid.
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The efficiency function shows the same non-monotonicity as in Gode and Sunder (1997) and

Anufriev et al. (2013). However, as stated earlier, with a more complex decision problem for

traders that yields more freedom we find a lower efficiency than in Anufriev et al. (2013). The

number of trades is increasing and the volatility decreasing in β.
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Figure 5.12: Characteristics of the GS-environments with 3 extramarginal buyers with valuation
β. The efficiency as a function of β follows a U-shape similar to Gode and Sunder (1997)
and Anufriev et al. (2013). The number of transactions is increasing and the price volatility
decreasing in β.

5.8 Concluding Remarks

In the Continuous Double Auction the moment of submitting the order plays a crucial role;

submitting at the end of the trading period may yield a lower probability of trading, submitting

at the beginning of the period will most likely result in a trade at the own submitted price which

yields a lower profit. This chapter is a step forward to a more complete model of learning in

markets. Moreover, it is distinguished from other papers by the decision of traders. Instead of a

one-dimensional decision traders are required to make a two-dimensional decision; which bid

or ask to submit and when to submit the offer during the trading period. We showed that the

size of the market and competition between traders influence this distribution.

The distribution of arrival moments is studied in a benchmark environment under full infor-

mation about trading history. We found in simulations that under the Individual Evolutionary
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Learning algorithm intramarginal traders learn to submit their order around the middle of the

trading period. This result holds for a medium size market with a comparable number of traders

on each side. If one side of the market is thinner it can extract more profit by submitting later.

Our main observation with regards to the offer that agents submit, in relation with the preferred

moment of submitting, is that the earlier they submit their order, the higher profit they aim for.

If an agent submits his order at a late moment, he submits a conservative offer to increase his

probability of trading. As a result, an early or late arrival results in a higher expected profit.

However, an early arrival increases the risk of not trading and a late arrival results in a higher

price volatility. Therefore agents tend to trade more often in the middle of the period. This shows

that in the IEL-algorithm traders learn not to submit risky strategies, resulting from the algo-

rithm that considers only the performance of strategies in the previous period. A possible future

research subject would be to adjust the IEL-algorithm in such a way that the average profit over

multiple periods is considered. This may result in a more realistic outcome and traders may

prefer to enter at the beginning or the end of the period.

Allowing traders to submit at their preferred moment has a negative effect; the expected effi-

ciency and the expected number of trades decrease significantly and the expected price volatility

significantly increases. Hence, allowing traders to make this extra decision results in a lower ex-

pected profit. It is optimal not to allow traders this extra decision.

When the size of the market increases, the probability of trading and the probability that trade

occurs at the price of the own offer change. The larger the size of the market, the earlier traders

submit their order. It appears that the moment of submission will converge to zero as the size

of the market converges to infinity. Irrespective of the submission moment traders on average

submit a higher bid and a lower ask as the size of the market increases. We conclude that the

size of the market is of great importance to the distribution of submission moments.

Ceteris paribus as competition increases in some sense, the probability of trading decreases.

Intramarginal traders are hence forced to trade earlier and to submit less aggressive offers to
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cope with the increased competition, which increases the probability of trading. Extramarginal

traders have a clearer preference for their submission moment when they have more opportunity

to trade, in which case they submit early to outcompete others.

We found that under the Individual Evolutionary Learning algorithm investors in a medium

size Continuous Double Auction market learn to submit their order around the middle of the

trading period to avoid a lower trading probability or profit. The earlier traders submit the more

aggressive offer they submit and thus aim for a higher profit. In a large market the latter effect

reduces and traders submit earlier and earlier. Moreover, we have shown how the distribution

of submission moments and the expected offer as a function of the submission moment change

with the amount of competition and the size of the market.
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Summary

The behaviour of traders has previously been studied extensively in different market designs.

The setup of a market contains the information available to traders, the decisions traders have

to make and the trading mechanism. Markets over networks, where transactions may occur be-

tween connected traders, have been studied mainly under full information about the network

structure. In many agent-based models, for instance on Continuous Double Auctions, traders

submit orders at random moments during a period under full or limited information about trad-

ing history. In both situations, traders simply have to select the optimal deterministic offer.

To study the effect of the design of the market, we have extended these models in this dis-

sertation. In markets over networks we have introduced randomness and in equilibrium we

have derived bounds on the maximal efficiency given the network structure. Moreover, under

strategic behaviour of traders, we derived the effect of the available information about the net-

work structure on the expected allocative efficiency. This effect depends also on the information

about traders’ valuations. We studied an alternative payoff function used in the Evolutionary In-

dividual Learning algorithm under a Continuous Double Auction. Furthermore we extended

this model by allowing traders to submit a two dimensional decision; their order and their pre-

ferred submission moment during the period, and studied the distribution of these moments. We

compared with the original model to conclude whether it is optimal to allow traders this extra

decision.

In Chapter 2 random bipartite networks are considered, similar to Erdős and Rényi (1960, 1961),

where links between buyers and sellers are realised independently from each other with an equal
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probability. We considered a market over such a network, which models the foreign spot ex-

change market. For infinitely large networks we derived phase transitions, where the structure

of the network changes abruptly. When the expected number of links per trader converges to

zero, the network almost surely consists of isolated spanning trees, which connect a subset of

traders of the graph but do not contain any cycle. We show that a remarkable change in struc-

ture occurs when the expected number of links per trader crosses the threshold value one. The

structure of the network changes from a collection of relatively small spanning trees, to a net-

work that contains a giant central market. As the expected number of links per trader converges

to infinity, almost every trader is contained in the giant market. We derive bounds on maximal

efficiency given the network structure, and improve these bounds in the phases where almost

every trader is part of a spanning tree, by studying the number of traders that have more than

one connected trader.

Chapter 3 extends this setup by considering the efficiency reduction in equilibrium due to strate-

gic behaviour, under different information sets about the network structure. In a thin Erdős-

Rényi market with two buyers and two sellers a trading mechanism is used that allows preferred

trades to occur, not necessarily the trades that construct a globally optimal allocation. We have

compared three ordered information sets about the network structure; no, partial and full infor-

mation. Under no information traders only know the probability of a link, under partial informa-

tion the existence of own links is revealed and under full information the entire network structure

is known to all traders. Under complete information about traders’ valuations and costs, partial

information is weakly dominated and hence it is optimal if either everything or nothing of the

network structure is revealed to traders. Under incomplete information about valuations and

costs we have found that no and full information lead to a comparable efficiency, assuming that

traders use markup strategies. Partial information dominates strongly, since volatility of strate-

gies under full information is higher and under no information traders offer more aggressively.

Thus under incomplete information about valuations, it is optimal if traders know the existence

of the own links, but not of the links of other traders. We can conclude that the quantity of

information about the network structure that is available to traders, has a non-monotonic effect
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on allocative efficiency. Switching from complete to incomplete information about valuations

and costs reverses the shape of this non-monotonicity.

In Chapter 4 the role of the information about the trading history that is available to traders

is studied in a Continuous Double Auction market. Traders use the Individual Evolutionary

Learning algorithm to determine their offer for the next period, based on the hypothetical

payoff in the previous period. We introduced a new hypothetical payoff function when only

information about past average prices is available, that uses more of the available informa-

tion. We have shown that during the learning phase and in equilibrium, the efficiency and the

number of transactions are higher than under full information about the trading history. More-

over, the price volatility is lower. This comparison of efficiency is in line with the results of

Arifovic and Ledyard (2007) in a Call Market. However, when only past average prices are

known the behaviour found is quite different than in Anufriev et al. (2013); instead of a diver-

gence of offers, some convergence occurs. This behaviour is in line with Fano et al. (2013),

who show that traders behave as pricemakers when only past profits and average prices are

available. Moreover, we have found that these results are robust with respect to the size of the

market and the number of units that agents desire to trade. Under the introduced hypothetical

payoff function we have found that more information about the trading history leads to a higher

price volatility and a lower efficiency and number of transactions.

Chapter 5 studies the timing of order submission. The Individual Evolutionary Learning algo-

rithm is extended by requiring traders to make a two-dimensional decision: to choose the offer

and the moment of submitting this offer. We have found that traders in a medium size market

learn to submit their order around the middle of the period to balance the probability of trading

and the expected profit from trade. Moreover, early submitted offers are more aggressive to gain

a higher profit if trade occurs. Offers that are submitted late are less aggressive in order to in-

crease the probability of trading. As a result, submitting early or late results in a higher expected

profit, but respectively also in a higher risk of not trading or a higher price volatility. Traders

learn to trade in the middle of the period, showing that in the IEL-algorithm traders learn not to
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select risky strategies. We showed that it is optimal not to allow traders to submit their offer at

their preferred moment, since this results in a lower expected efficiency and a higher expected

price volatility. As the size of the market or competition between traders increases, traders learn

to submit their offer earlier and to submit a more conservative offer.

A general conclusion of this dissertation is that market design has a large impact on allocative

efficiency. In random Erdős-Rényi markets the information about the network structure that is

available to traders has a non-monotone effect on efficiency. This non-monotonicity is opposite

under complete and incomplete information about traders’ valuations and costs. In a Contin-

uous Double Auction, information about the trading history reduces expected efficiency when

traders use the Individual Evolutionary Learning algorithm. Allowing traders to choose their

submission moment has a negative effect on allocative efficiency.
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Samenvatting (Summary in Dutch)

Het gedrag van handelaren is in de literatuur uitgebreid onderzocht in verschillende marktde-

signs. De opzet van een markt bevat de beschikbare informatie voor handelaren, de beslissingen

die handelaren moeten nemen en het handelsmechanisme. Markten over netwerken, waarin

transacties kunnen optreden tussen verbonden handelaren, zijn voornamelijk bestudeerd bij

volledige informatie over de structuur van het netwerk. In veel agent gebaseerde modellen,

bijvoorbeeld voor Continuous Double Auctions, plaatsen handelaren biedingen op willekeurig

momenten gedurende een periode, met volledige of met beperkte informatie over de handelshis-

torie. In beide situaties hoeven handelaren dan alleen het optimale deterministische bod te se-

lecteren.

Om te onderzoeken wat het effect is van het design van de markt, hebben we deze modellen in

dit proefschrift uitgebreid. In markten over netwerken hebben we onzekerheid geı̈ntroduceerd

en in het evenwicht grenzen voor de maximale efficiëntie gegeven de structuur van het netwerk

afgeleid. Bovendien bekeken we, bij strategisch gedrag van handelaren, het effect van de infor-

matie die beschikbaar is over de structuur van het netwerk op de verwachte efficiëntie. Dit effect

is ook afhankelijk van de informatie over de waarderingen van handelaren. We bestudeerden een

alternatieve winstfunctie die gebruikt wordt in het Evolutionaire Individuele Leer algoritme, in

een Continuous Double Auction. Dit model hebben we verder uitgebreid door handelaren een

tweedelige beslissing voor te leggen; hun bod en het door hen geprefereerde moment tijdens de

periode om dit bod te plaatsen, en bestudeerden de verdeling van het moment van plaatsen. We

vergeleken onze resultaten met het oorspronkelijke model om te onderzoeken of het optimaal is

om handelaren deze extra beslissing te laten nemen.
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In Hoofdstuk 2 worden stochastische bipartiete netwerken beschouwd, vergelijkbaar met

Erdős and Rényi (1960, 1961), waarbij connecties tussen kopers en verkopers onafhankelijk van

elkaar worden gerealiseerd met dezelfde kans. We hebben een markt over een dergelijk netwerk

onderzocht, hetgeen de spotmarkt voor buitenlandse valuta modelleert. Voor oneindig grote

netwerken hebben we faseovergangen afgeleid, waarbij de structuur van het netwerk abrupt

verandert. Als het verwachte aantal connecties per handelaar naar nul convergeert, bestaat het

netwerk vrijwel zeker uit geı̈soleerde opspannende bomen, die deelverzamelingen van han-

delaren verbinden maar geen cycli bevatten. We hebben aangetoond dat er een opmerkelijke

verandering in de structuur optreedt wanneer het verwachte aantal connecties per handelaar

de waarde één overschrijdt. De structuur van het netwerk verandert van een verzameling van

relatief kleine opspannende bomen, naar een netwerk dat één grote centrale markt bevat. Wan-

neer het verwachte aantal connecties per handelaar naar oneindig convergeert, maakt bijna elke

handelaar onderdeel uit van de grote markt. We leidden grenzen voor de maximale efficiëntie

gegeven deze structuur van het netwerk af en verbeterden deze grenzen in de fasen waar bijna

elke handelaar onderdeel uitmaakt van een opspannende boom, door het aantal handelaren dat

meer dan één aangesloten handelaar heeft te bestuderen.

In Hoofdstuk 3 wordt dit model uitgebreid door in het evenwicht te kijken naar de efficiëntiever-

mindering ten gevolge van strategisch gedrag, bij verschillende aannames met betrekking tot

de informatie over de structuur van het netwerk. In een Erdős-Rényi markt met twee kopers

en twee verkopers wordt een handelsmechanisme gebruikt waarbij de geprefereerde transac-

ties plaatsvinden, niet per se de transacties die tot een sociaal optimale allocatie leiden. We

hebben drie geneste informatieverzamelingen over de structuur van het netwerk vergeleken;

geen, partiële en volledige informatie. Bij geen informatie kennen handelaren alleen de kans

op een connectie, bij partiële informatie zijn alleen de eigen connecties bekend en bij volledige

informatie is de hele netwerkstructuur bekend bij alle handelaren. Bij complete informatie over

waarderingen en kosten van handelaren, wordt partiële informatie zwak gedomineerd en dus is

het optimaal indien ofwel alles ofwel niets van de netwerkstructuur bekend wordt gemaakt aan

handelaren. Onder incomplete informatie over waarderingen en kosten leiden geen en volledige
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informatie tot een vergelijkbare efficiëntie, onder de veronderstelling dat handelaren gebruik

maken van zogenaamde opslagstrategieën. Partiële informatie domineert sterk, omdat ener-

zijds de volatiliteit van de strategieën bij volledige informatie hoger is en anderzijds hande-

laren agressiever bieden bij geen informatie. Onder incomplete informatie over waarderingen,

is het optimaal als handelaren de eigen connecties kennen, maar niet de connecties van andere

handelaren. We concluderen dat de hoeveelheid informatie over de structuur van het netwerk

die beschikbaar is voor handelaren, een niet-monotoon effect heeft op de efficiëntie. Veranderen

van complete naar incomplete informatie over waarderingen en kosten, leidt tot een omkering

van deze niet-monotoniciteit.

In Hoofdstuk 4 is de rol van de informatie over de handelshistorie die beschikbaar is voor

handelaren onderzocht in een Continuous Double Auction markt. Handelaren gebruiken het In-

dividuele Evolutionaire Leer algoritme om hun bod voor de volgende periode te bepalen, aan

de hand van de hypothetische winst in de voorgaande periode. We introduceerden een nieuwe

hypothetische winst functie die meer informatie in een Continuous Double Auction markt ge-

bruikt, als uit het verleden alleen informatie over gemiddelde aandelenprijzen beschikbaar is.

We hebben aangetoond dat tijdens de leerfase en in het evenwicht, de efficiëntie en het aan-

tal transacties significant hoger zijn dan onder complete informatie over de handelshistorie.

Bovendien is gebleken dat de prijsvolatiliteit lager is. Deze vergelijking van efficiëntie komt

overeen met de resultaten van Arifovic and Ledyard (2007) in een Call Market. Wanneer uit

het verleden louter gemiddelde prijzen bekend zijn, leidt deze nieuwe winstfunctie tot ander

gedrag dan onder de oude winstfunctie, die bestudeerd is in Anufriev et al. (2013); in plaats van

een divergentie van biedingen, vindt enige convergentie plaats. Dit gedrag komt overeen met

Fano et al. (2013), die laten zien dat handelaren proberen de transactieprijzen te beı̈nvloeden

wanneer alleen historische winsten en gemiddelde aandelenprijzen bekend zijn. Onze resultaten

bleken robuust met betrekking tot de omvang van de markt en het aantal eenheden dat agenten

willen verhandelen. Gegeven de geı̈ntroduceerde hypothetische winstfunctie hebben wij gecon-

stateerd dat meer informatie over de handelshistorie leidt tot een hogere prijsvolatiliteit en een

lagere efficiëntie en aantal transacties.
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Hoofdstuk 5 beschrijft de keuze van het moment om een bod in te doen. Het Individuele Evo-

lutionaire Leer algoritme wordt uitgebreid door van handelaren te vragen om een tweedelige

beslissing te nemen: het bod zelf en het moment om dit bod te plaatsen. Handelaren in een mid-

del grote markt leren om hun bod rond het midden van de periode te plaatsen, om de kans op

een transactie en de verwachte winst uit een transactie tegen elkaar af te wegen. Vroeg geplaat-

ste biedingen zijn agressiever om een hogere winst te behalen. Aanbiedingen die laat ingediend

worden zijn minder agressief om de kans op een transactie te verhogen. Als gevolg hiervan, leidt

het vroeg dan wel laat plaatsen van een bod tot een hogere verwachte winst, maar respectievelijk

ook tot een hoger risico op het uitblijven van een transactie of een hogere prijsvolatiliteit. Han-

delaren leren om hun bod in het midden van de periode te plaatsen, hetgeen laat zien dat het

leeralgoritme er toe leidt dat handelaren leren om de risicovolle strategieën niet te selecteren.

Het is dus optimaal om handelaren niet toe te staan om te kiezen wanneer zij hun bod plaatsen,

aangezien dit leidt tot een lagere verwachte efficiëntie en een hogere prijsvolatiliteit. Wanneer

de omvang van de markt of concurrentie tussen handelaren toeneemt, leren handelaren om con-

servatiever te bieden en om hun bod eerder in te dienen.

Een algemene conclusie van dit proefschrift is dat het marktdesign een grote impact op de

efficiëntie heeft. In willekeurige Erdős-Rényi markten heeft de informatie over de structuur van

het netwerk die beschikbaar is voor de handelaren een niet-monotoon effect op de efficiëntie.

Deze niet-monotoniciteit is precies omgekeerd als we de gevallen met complete en incomplete

informatie over waarderingen en kosten van handelaren vergelijken. In een Continuous Double

Auction vermindert informatie over de handelshistorie de verwachte efficiëntie als handelaren

gebruik maken van het Individuele Evolutionaire Leer algoritme. Toestaan om handelaren te

laten kiezen wanneer zij hun bod plaatsen heeft een negatief effect op de efficiëntie.
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