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Abstract

The modelling of dependence of random variables, a central subject in probability and
statistics, it is becoming, more and more, important in finance and economics, being the
core background for the description and evaluation of systemic risk and the insurgence
of financial instabilities. The aim of this thesis, is to contribute to the design of a new
generation of non parametric statistics, that are able to investigate some characteristics
of the dependence structure of a system of random variables and random processes, in
order to act as a guidance for parametric, statistical and economic modelling.



Abstract

Modellare la dipendenza di variabili casuali, un tema centrale in probabilità e statis-
tica, sta diventando sempre più importante in economia e finanza, essendo il necessario
substrato per la descrizione e la valutazione del rischio sistemico e l’insorgenza di in-
stabilità finanziarie. Lo scopo di questa tesi è di contribuire alla progettazione di una
nuova generazione di statistiche non parametriche, che siano in grado di investigare al-
cune caratteristiche della struttura di dipendenza di sistemi di variabili casuali e processi
stocastici, in modo da fare da guida per modelli parametrici di tipo sia statistico che
economico.



Abstract

Modélisation de la dépendance des variables aléatoires, un thème central de la proba-
bilité et de statistiques, il est de plus en plus important dans l’économie et de la finance,
comme le substrat nécessaire pour la description et l’évaluation du risque systémique
et l’apparition de l’instabilité financière. L’objectif de cette thèse est de contribuer
à la conception d’une nouvelle génération de statistiques non paramétriques, qui sont
en mesure d’enquêter sur certaines caractéristiques de la structure de dépendance des
systèmes de variables aléatoires et processus stochastiques, afin d’agir comme un guide
pour les modèles paramétriques taper les deux termes statistiques et économiques.



Introduction

The Subprime and Sovereign bond crisis, partly originated from an incomplete and un-
reliable description of the dependences among financial and economic variables and the
resulting mispricing of risks associated to them. The prototypical example were the triple
A rating of MBSs and CDOs , and the incorrect valuation of exposures of other asset
classes to the real estate market, but also wrong evaluation of the risk of contagion among
the sovereign bonds of different European countries. The modeling of dependence of ran-
dom variables, a central subject in probability and statistics, it is becoming, more and
more, important in finance and economics, being the core background for the description
and evaluation of systemic risk and the insurgence of financial instabilities. The aim of
this thesis, is to contribute to the design of a new generation of non parametric statistics,
that are able to investigate some characteristics of the dependence structure of a system
of random variables and random processes, in order to act as a guidance for parametric,
statistical and economic modelling.
Three are the main ingredients used to understand dependence: copula functions, sym-
metries and empirical processes. In particular, we study the validity of some symmetry of
the copula of the system (i.e. invariance of the copula under some transformation), using
non parametric estimator of the copula and of the transformed copula. The asymptotic
properties of the estimators, and of the tests derived from them, can be obtained using
some recent advances in empirical process theory.With our focus on copula functions,
we can have a proper description of dependence beyond the usual one based on second
moments of the underlying random variables, the covariance. In fact,it is well known,
that only linear dependence can be captured by the covariance and that it can charac-
terize completely only the multivariate normal distribution. The concept of copula, due
to Sklar [79], that will be formally introduced in the first chapter, allows to separate
the effect of dependence from the effects of the marginal distributions. In this way a
general and convenient description of dependence, among random variables, is possible.
For those reasons in recent years copula functions became a central tool in many applied
fields [35],[17].
In particular, in the present thesis, we are concerned with maps of copula functions that
are still copulas (transformations). If the copula and the transformed copula are the
same we say that the copula have a symmetry. The probabilistic interpretation of this
symmetry can ,then, characterize some properties of the dependence among the random
variables considered.Most of the literature on copula symmetries focus on permutation
symmetry, exchangability [61],[46] and the related time reversibility [2], we instead will
focus on conditional independence and reflection symmetry, but will introduce the con-
cept using the an easy example.
The simplest possible example of this line of reasoning is the product symmetry, corre-
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sponding to independence. Consider the transformation Π, product of the marginals:

Π (C (u, v)) = C (u, 1)C (1, v) = uv (1)

If and only if, two random variables have a copula C (u, v), such that C (u, v) = Π (C (u, v)) =
uv, they are independent. Incidentally, testing for this symmetry, was one of the main
motivations that did lead Deheuvels [26] to the introduction of the empirical copula (al-
though the concept was already, independently, introduced in [71] in the context of rank
statistics) and to the use of empirical process theory for showing the weak convergence
to a Gaussian process (see [29] [80], [76] and [13] for a modern treatment). In chapter 2,
we study the weak convergence of an empirical process related to the conditional version
of this symmetry.
In addition, the symmetry introduced in (1) is a relevant case, also because, under it, the
covariance function of empirical copula process is easy to compute, leading to an analyt-
ical knowledge of the distributions of test statistics based on it. For a general copula,
instead, the determination of the covariance function of the empirical copula process,
requires the knowledge of the true copula and its derivatives. This was the main histori-
cal motivation that made, for a long time, independence tests, the only non parametric
inference procedure based on copula characteristics. The situation changed, when re-
sampling procedures like bootstrap [29] and the multiplier method [66], were introduced
in this context. In particular, after the simulation study in [10] for comparing different
methods, that showed the superiority of the multiplier approach, even if it requires the
estimation of copula derivatives, a large number of test for different copula properties,
were proposed (see [56] and references therein). In addition the recent extension of the
multiplier method to strongly mixing variables [12],[11] leads directly to applications in
finance and economics. The test of rank reflection symmetry developed in the chapter 3
is an example in this direction.
Finally,the improvement of multiplier method, along a different direction, is the subject
the last part of the thesis, in chapter 4. There, we propose alternative estimators of
copula derivatives that, based on orthogonal polynomials, go beyond the simple finite
differences estimators currently used in the literature.
The thesis is organized as follows: In Chapter 1 we introduce the mathematical back-
ground by stating some basic definitions and results, which will be repeatedly used
throughout this thesis. The definition of copula, and most of its notable properties,
will be discussed at first. Then, techniques and results for weak convergence in general
metric spaces based on outer integrals are quickly introduced. The last part of the chap-
ter is devoted to orthogonal polynomials.
In chapter 2 Conditional dependence is expressed as a projection map in the trivariate
copula space. The projected copula, its sample counterpart and the related process are
defined. The weak convergence of the projected copula process to a tight centered Gaus-
sian Process is obtained under weak assumptions on copula derivatives.
In chapter 3 We propose a new non parametric test of rank reflection symmetry, also
known as radial symmetry, of copula functions valid in any number of dimensions and for
strongly mixing random variables. The possibility of applying the test jointly to a high
number of weakly dependent random variables, allows applications to financial time series
whose asymmetric dependence has already been documented and linked to financial con-
tagion. The asymptotic theory for the test is based on new result in empirical processes
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theory that allows for sub exponentially strongly mixing data. Simulation based study
of empirical size and power is conducted and example of applications are provided. A
presentation, on preliminar results of this chapter, was given at the PhD lunch seminars
of the CES at the MSE of Paris 1 university. This work has, also, been accepted and will
be presented at the ERCIM 2014 conference, in December.
Chapter 4 is of technical nature and its aim is to show that we can use orthogonal poly-
nomials in the estimation of the copula derivatives, needed for the multiplier method.
This could increase the power of test procedures based on the empirical copula pro-
cesses. Result, from this chapter, were presented at the IWFOS 2014 conference and
an extended abstract is published in the peer-reviewed proceedings ”Contributions in
infinite-dimensional statistics and related topics”.
Finally proofs and technical arguments for all the chapters are deferred to the appendix.
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Chapter 1

Mathematical Background

1.1 Copula and Dependence

A Copula, can be, simply, introduced as a joint cumulative distribution function on
the hypercube, with uniform marginals. The advantage of using Copulas, in modeling
the distribution of a D dimensional random vector, resides in the separation between
the univariate marginal distribution of the components and their stochastic dependence,
carried by their copula. This property, comes, directly, from the representation of the
joint cumulative distribution function given in the Sklar’s Theorem.

Theorem 1 Sklar’s Theorem [79] Let F be a D-dimensional cumulative distribution
function with margins Fd for d = 1, . . . , D. Then there exist a copula C such that for all
x ∈ RD

F (x) = C (F1 (x1) , . . . , FD (xD)) (1.1)

If all marginals are continuous, then C is unique and given by

C (u) = F
(

F−
1 (u1) , . . . , F

−
D (uD)

)

otherwise, is uniquely determined on ranF1 × . . . × ranFd. Conversely, if C is a copula
and F1, . . . , FD are distribution function , then the function F defined in 1.1 is a joint
cumulative distribution function with marginals F1, . . . , FD.

The F−
d denote the generalized inverse of Fd, that can be defined by:

F− (u) ≡
{

inf {x ∈ R|F (x) ≥ u} 0 < u < 1
sup {x ∈ R|F (x) = 0} u = 0

(1.2)

and satisfy:

Fd
(

F−
d (u)

)

= u (1.3)

The most notable properties of multivariate copulas are summarized in the following
proposition:

proposition 1 Copula Properties
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• Frechet-Hoffending Bounds

W (u) = max

(

D
∑

d=1

ud −D + 1, 0

)

≤ C (u) ≤ min (u1, . . . , ud) =M (u) (1.4)

The lower bound is a copula in 2 dimensions only, the upper bound correspond
to perfect positive dependence ( all the variables can be expressed as a monotonic
increasing function of one of them)

• Independence if for each d ∈ {1, . . . , D}, Fd is continuous X1, . . . , XD are indepen-
dent if and only if C (u) =

∏D
d=1 ud = Π (u)

• Lipshitz continuity C is Lipschitz-continuos with respect to the L1-norm on [0, 1]D

|C (u)− C (v)| ≤
D
∑

d=1

|ud − vd| (1.5)

• Invariance under increasing transformations
Let α = (α1, . . . , αD)

T a vector of strictly increasing transformations. If the marginals
are continuous, the copula of (X1, . . . , XD)

T is equal to the copula of (α1 ◦X1, . . . , α ◦XD)
T

In the following proposition, we show, that the population versions of association mea-
sures can be expressed as a functional of the difference among a copula and the indepen-
dence copula.

proposition 2 Copulas and Association measures

ρX,Y = 12

∫

[0,1]2
(C (u, v)− uv)dudv

τX,Y = 4

(
∫

[0,1]2
C (u, v)dC (u, v)−

∫

[0,1]2
uvdudv

)

1.1.1 Differentiability, Darsow Products, conditional indepen-
dence

The importance of copula derivatives was pioneered in a seminal paper by Darsow and
coauthors [24], where they show the relationship among them, conditional independence
and Markov processes. In the following proposition, we summarize some basic properties
of copula derivatives:

proposition 3 Copulas Derivatives

• First partial derivatives of a copula
∂C (u)

∂ud
exist almost everywhere in [0, 1]D, being

derivatives of a monotonic function

• Partial derivatives are bounded

0 ≤ ∂C (u)

∂ud
≤ 1

2



• Partial derivatives are non decreasing function in non deriving arguments

The relation among copula partial derivatives and conditional probabilities is given in
the following theorem from [24].

Theorem 2 Let ω be and event in the sample space of the random vector X. If the
random vector X has copula C then

E (I (Xd < xd|X1, . . . , Xd−1, Xd+1, . . .XD)) (ω)

=
∂

∂ud
C (F1 (X1 (ω)) , . . . , Fd−1 (Xd−1 (ω)) , Fd (xd) , Fd+1 (Xd+1 (ω)) , . . . , FD (XD (ω)))

This representation of conditional probabilities, in terms of copula derivatives and marginals,
allows them to introduce a product operation, that can be used to characterize conditional
independence and Markovianity.

Definition 1 Darsow ⋆ product Let A be an M dimensional copula and B be an L
dimensional copula. Define A ⋆ B : [0, 1]M+L−1 7→ [0, 1]

A ⋆ B (u1, . . . , uM+L−1) =

∫ xM

0

∂

∂ξ
A (u1, . . . , uM−1, ξ)

∂

∂ξ
B (ξ, uM+1, . . . , uM∗+L−1) dξ

It should be noted, that A⋆B is an (M + L− 1)-copula and that the product is distribu-
tive over convex combinations, is associative (in the sense that (A ⋆ B)⋆C = A⋆(B ⋆ C))
and is continuous in each place.
The following theorem, links Darsow product and conditional independence and it is a
corollary of the more general theorem 3.3 about Markovianity in their paper.

Theorem 3 ⋆-product and conditional independence Let CXY Z (uX , uY , uW ) a three di-
mensional copula of the three variables X, Y, Z and CXY (uX , uZ) = CXY Z (uX, 1, uW )
and CY Z (uY , uZ) = CXY Z (1, uY , uZ). Then

E (I (X < x) I (Z < z)| Y ) = E (I (X < x) I|Y )E (I (Z < z)|Y )

⇔ CXY Z = CXY ⋆ CY Z

1.2 Weak Convergence and Empirical Processes

This section provides a quick introduction to convergence in distribution for random
elements that are not measurable. This is necessary for the study of empirical processes,
since they can be seen as taking values in non separable Banach spaces, and even in the
most elementary cases are non Borel measurable. The use this theory allows to derive
asymptotic results for the empirical copula process, one of the main object of interest of
this thesis.
Let (D, d) a metric space and let (PN)N∈N and P be probability measures on (D,D),
where D is the Borel σ-field on D. The definition of weak convergence, that is denoted
by PN  P, is defined by requiring:

∫

D

fdPN →
∫

D

fdP for allf ∈ Cb (D) (1.6)

3



Where Cb (D) is the space of all real-valued bounded and continuous function on D [5].
Considering D-valued random variables (XN)N∈N and X , Xn  X is equivalent to:

Ef (XN) → Ef (X) for allf ∈ Cb (D) (1.7)

In this formulation of weak convergence, all random variables must be Borel measurable
and this condition, easily, fails to hold for non separable metric spaces. A classical exam-
ple of relevant random variable on a non separable metric space, that is not measurable,
is the empirical distribution function of iid random variables X1, . . . , XN on [0, 1] that
can be seen as a random variable in D [0, 1], the space of all cadlag function on the unit
interval which are right continuous and posses left limit. If we equip D [0, 1] with the
sup norm, the space is not separable and the measurability fails to hold for the random
variables empirical distribution function :

F̂N (x) =
1

N

∑N
i=1 I (Xi ≤ x) , x ∈ [0, 1] (1.8)

and the associated empirical process [5]

F̂N (x) =
√
n
(

F̂N (x)− F (x)
)

, x ∈ [0, 1] (1.9)

Lots of solutions were proposed ,to overcome this difficulty. The most fruitful one, pro-
posed in recent years by J. Hoffman-Jorgensen and applied in [82],[77],[55], is to avoid,
completely, the requirement of measurability, by introducing the concept of outer integral,
expectation and probability.

Definition 2 Outer integral and outer probability Let T be an arbitrary map from a
probability space (ω,A,P) to the extended real line R̄. The outer integral of T with respect
to P is defined as

E
∗T = inf

{

EU : U ≥ T, U : Ω 7→ R̄measurable andEU exist
}

. (1.10)

The outer probability of an arbitrary subset B ⊂ Ω is defined as

P
∗ (B) = inf {P (A) : A ⊃ B,A ∈ A} (1.11)

The infima in the latter definition are always achieved by lemma 1.2.1 in [82]. The
introduction of outer expectation, leads to the possibility of defining weak convergence,
outer almost sure convergence and convergence in outer probability, for non measurable
maps.

Definition 3 Let XN : Ω 7→ D be arbitrary maps defined on some probability spaces
(ΩN ,An,PN),(Ω,A,P)

1. IfX is Borel measurable we say that XN weakly converges to X, denoted by Xn  X,
if and only if

E∗f (XN ) → Ef (X) for allf ∈ Cb (D) (1.12)
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2. If XN , X are defined on a common probability space we say that XN converges
outer almost surely to X if d (XN , X)∗ → 0 almost surely for some version of
d (XN , X)∗ → 0. This is denoted by X

as∗→ XN .

3. If XN , X are defined on a common probability space we say that XN converges in
outer probability to X if P∗ (d (XN , X) > ǫ) → 0 for every ǫ > 0 and is denoted by

X
P
∗

→ XN .

Now, we focus on the relevant example of space of bounded functions over some set T ,
ℓ∞ (T ), because the general empirical process is the most important example of a sequence
of maps in a space of the latter form. Given a sample X1, . . . , XN of random variables
with distribution P on an arbitrary sample space X we define the empirical measure as
PN = N−1

∑N
i=1 δXi

where δx is the Dirac measure at x. For f ∈ F = {f : X → R} we

set PNf = N−1
∑N

i=1 f (Xi) and define the empirical process as

GNf =
√
n (PN − P ) f =

1√
N

N
∑

i=1

f (Xi)− Pf,

which can be seen as an element of ℓ∞ (F) provided

sup
f∈F

|f (x)− Pf | <∞ for every x

Then, since D [0, 1] ⊂ ℓ∞ [0, 1] the example of the empirical process F̂N as defined in 1.9
is considered if we take F = {I (0 ≤ t ≤ x) : x ∈ [0, 1]}.
We follow the functional central limit theorem of [64] section 10 , in giving conditions for
weak convergence in ℓ∞ (T )

Theorem 4 Theorem 10.2 in Pollard [64] Let (T, ρ) be a totally bounded pseudo metric
space and let {XN (ω, t) : t ∈ T} be a sequence of random processes on T. If and only if

1. Convergence of the marginals: for any finite subset {t1, . . . , tk} of T , (XN (·, t1) , . . . , XN (·, tk))
converge weakly to a limit (X (·, t1) , . . . , X (·, tk))

2. Asymptotic Equicontinuity: For any positive ǫ and η, there exists a positive δ such
that

lim sup
n→∞

P
∗























sup
(s, t) ∈ T × T
ρ (s, t) ≤ δ

|XN (ω, s)−XN (ω, t)| > η























< ǫ

then XN  X

Results for the convergence of the empirical processes in the iid case can be found in
chapter 2 of [82]. The hypothesis of iid random variables is quite strong and doesn’t
allow the application of those results in the time series context. For this reason we
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introduce strongly mixing random variables as in [70]. The strong mixing coefficient
between two σ-fields A and B is defined by

α (A,B) = 2 sup {P (A ∩B)− P (A)P (B) : (A,B) ∈ A× B} (1.13)

For a sequence (Xi)i∈Z of random variables, in some polish space X , let Fk = σ (Xi : i ≤ k)
and Gl = σ (Xi : i ≥ l), the strong mixing coefficients (α)n≥0 of the sequence (Xi)i∈Z are
defined by:

α0 = 1/2 and αN = supα (Fk,Gk+n) for any n > 0

The sequence (Xi)i∈Z is said to be strongly mixing, in the sense of Rosenblatt, if limn↑∞ αN =
0. In the stationary case, this means that the σ-field Gn of the future after time n is asymp-
totically independent of F0, σ-field of the past before time 0. In chapter 7 of [68] under
the condition

αn ≤ cn−a for some real a > 1 and some constant c ≥ 1 (1.14)

and stationarity, marginal convergence and asymptotic equicontinuity are demonstrated
for the univariate and multivariate empirical process leading to a tight Gaussian limiting
process G with covariance function:

Cov (G (x) ,G (y)) =
∑

t∈Z
Cov (I (X0 ≤ x) , I (Xt ≤ y)) (1.15)

The following theorems allow to obtain the weak convergence of map of processes.

Theorem 5 Extended continuous mapping [82] Let Dn ⊂ D and gN : Dn 7→ E satisfy
the following statements: if xN → x with xN ∈ DN , for every N and x ∈ 0, then
gN (xN ) → g (x), where D0 ⊂ D and g : D0 7→ E. Let XN be maps with values in DN , be
Borel measurable and separable, and take values in D0. then

1. XN  X implies that gN (XN) g (X)

2. XN
as∗→ X implies that gn (Xn)

as∗→ g (X)

3. XN
P
∗

→ X implies that gN (XN)
P
∗

→ g (X)

The next theorem requires the notion of Hadamard differentiability that we now define

Definition 4 Hadamard Differentiability A map φ : Dφ 7→ E defined on a subset Dφ of
a normed space D that contains θ is called Hadamard differentiable at θ if there exist a
continuous linear map φ′

θ : D 7→ E such that

∥

∥

∥

∥

φ (θ + tht)− φ (θ)

t
− φ′

θ (h)

∥

∥

∥

∥

E

, as t ↓ 0

for every ht → h such that θ + tht ∈ Dφ for all t > 0.

and the following chain rule for Hadamard differentiability:
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Theorem 6 Chain Rule [82] Let φ : Dφ 7→ Eψ and Eψ 7→ F be maps on subsets Dφ e
Eψ of normed spaces D eE let φ be Hadamard differentiable at θ tangentially to D0 and
let ψ be Hadamard differentiable at φ (θ) tangentially to φ′

θ (D0) Then ψ ◦ φ : Dφ 7→ F is
Hadamard differentiable at θ tangentially to D0 with derivative ψ′

φ(θ) ◦ φ′
θ

Theorem 7 Delta Method Let D and E be normed linear spaces. Let φ : Dφ ⊂ D 7→ E

be Hadamard differentiable at θ tangentially to D0. Let TN : Ωn 7→ Dφ be maps such that
rN (TN − θ) T for numbers rN → ∞ and a random element T that takes values in D0.
Then rN (φ (TN)− φ (θ))  φ′

θ (T ) . If φ′
θ is continuous on the whole space D, then we

also have rN (φ (TN )− φ (θ))− φ′
θ (rN (TN − θ)) converges to zero in probability.

We are now ready to introduce the object of interest of this thesis: the empirical copula

ĈN (u1, . . . , uD) =
1

N

N
∑

i=1

D
∏

d=1

I

(

ÛNid ≤ ui

)

ÛNid = F̂Ni (Xid)

that is a non parametric estimator of the copula, joining the random vector X. We can
define an empirical copula process by:

ĈN (u) =
√
N
(

ĈN (u)− C (u)
)

(1.16)

The weak convergence of the process, is easily obtained, from the weak convergence of
the multivariate empirical process with uniform margins, using the delta method on the
map [13]:

Φ :

{

DΦ 7→ ℓ∞ [0, 1]D

H 7→ H
(

H−
1 , . . . , H

−
D

) (1.17)

where DΦ denotes the set of all distribution functions on [0, 1]D whose marginal cdfs Hd

satisfy Hd (0) = 0. In fact we have

Cn =
√
N
(

ĈN − C
)

=
√
N
(

Φ
(

ĜN

)

− Φ (C)
)

Where ĜN is the empirical distribution function with uniform margins.
The representation

ĈN = Φ
(

ĜN (u)
)

= ĜN

(

G−
N1 (u1) , . . . , G

−
ND (uD)

)

for the empirical copula was introduced in [80]. The Hadamard differentiability of Φ for
a variety of strictly stationary processes and under non restrictive assumptions for the
copula derivatives is obtained in [13] In particular, they require, the empirical process,
based on X, to have the limit BC and the copula derivatives, to satisfy:

A 1 consider the strictly stationary sequence (Xi)i∈Z . Let Fd the marginal distribu-

tion function of the sequence (Xid)i∈Z. Define the uniform sequence on [0, 1]D (Ui)i∈Z =
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(F1 (XiD) , . . . , FD (XiD)) that has as empirical distribution function GN and as distri-
bution the copula C. the uniform multivariate empirical process GN =

√
N (GN − C).

ĜN weakly converges in ell∞ [0, 1]D to a tight centered Gaussian field BC concentrated on
D0,where

D0 =
{

α ∈ C [0, 1]D |α (1, . . . , 1) = 0 and α (x) = 0 if some components ofx are equal to 0
}

(1.18)

A 2 [76] For each j ∈ {1, 2, 3}, the jth first-order partial derivative ∂jC exists and is

continuous on the set VD,j :=
{

u ∈ [0, 1]D : 0 < uj < 1
}

.

As we already said, this is true for strongly mixing data because in that case BC is a
tight, centered Gaussian process on [0, 1]D with covariance function

Cov (BC (u) ,BC (v)) =
∑

t∈Z
Cov (I (U0 ≤ u) , I (Ut ≤ v)) =

∑

t∈Z
{Ct ((u,v))− C0 ((u,u))C0 ((v,v))}

With Ct being the 2D dimensional stationary autocopula linking random variables taken
at times whose absolute difference is t. In particular, we have

C0 ((u,v)) = C (u ∧ v) (1.19)

C0 ((u,u)) = C (u ∧ u) = C (u) (1.20)

and C is the D dimensional stationary copula. Under this conditions they derive

Theorem 8 Hadamard Derivative of Φ Suppose conditionA 2 holds. Then Φ is Hadamard
differentiable at C tangentially to D0. Its derivative at C in α ∈ D0 is given by

(Φ′
c (α)) (u) = α (u)−

D
∑

d=1

∂dC (u)α (1, . . . ud . . . , 1) .

where ∂dC is defined as 0 on the set VD,j

Corollary 1 Suppose A 1 and A2 hold. Then the empirical copula process CN =√
N
(

ĈN − C
)

weakly converges in ℓ∞ [0, 1]D to a Gaussian field GC ,

ĈN (u) C (u) = BC (u)−
D
∑

d=1

∂dC (u)BC (1, . . . ud . . . , 1) (1.21)

From the previous display, we can see, that the limiting process depend, in a complex
way, on the true Copula. Aside the simple case of independence, a closed form evalua-
tion of the limiting distribution is not available. For this reason bootstrap approxima-
tions of the limiting process are used. According to [10],the partial derivative multiplier
method,introduced in the copula context by [73] is the best one, even if it requires the
estimation of partial derivatives.
For strongly mixing random variables, it is based on the following dependent multiplier
central limit theorem:
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Definition 5 Dependent multiplier sequence [11] Define a dependent multiplier sequence
{ξi,n}i∈Z i.e. a sequence that satisfies

1. The sequence {ξi,N}i∈Z is strictly stationary with E (ξ0,N) = 0, E
(

ξ20,N
)

= 1 and
E (|ξ0,N |ν) <∞ for ν > 2 and independent from the available sample

2. There exists a sequence ℓn → ∞ of strictly positive constants such that ℓN = o (N)
and the sequence {ξi,N}i∈Z is ℓN -dependent i.e. ξi,N is independent from ξi+h,N for
all h > ℓN and i ∈ N.

3. There exists a function φ : R → [0, 1], symmetric around 0,continous at 0, satisfying
φ (0) = 1 and φ (x) = 0 for all |x| > 1 such that E (ξ0,Nξh,N) = φ (h/ℓN) for all
h ∈ Z

Given M independent copies of the dependent multiplier sequence
{

ξ
[1]
i,N

}

i∈Z
, . . . ,

{

ξ
[M ]
i,N

}

i∈Z
we can define the new processes:

Definition 6 Multiplier Empirical Process

B̃
[m]
N (u) =

1√
N

N
∑

i=1

ξ
(m)
i,N

(

I

(

Ûi ≤ u
)

− C (u)
)

(1.22)

(1.23)

Theorem 9 Dependent Multiplier Central Limit Theorem [11]. Assume that ℓn = O
(

n1/2−ǫ)

for some 0 < ǫ < 1/2 and that U1, . . . ,Un is drawn from a strictly stationary sequence
(Ui)i∈Z whose strong mixing coefficients satisfy αr = O (r−α) , a > 3 + 3d/2. Then,

(

ĜN , B̃
[1]
N , . . . , B̃

[M ]
N

)

 

(

BC ,B
(1)
C , . . . ,B

(C)
C

)

in
{

ℓ∞ [0, 1]D+1
}M+1

, where B
(1)
N , . . . ,B

(C)
C are independent copies of BC.

1.3 Introduction to Orthogonal Polynomials

Discrete orthogonal polynomials, can be fruitfully, used to approximate function and their
derivatives. Their use in estimation of derivatives on sampled data popularized by [72](
see also [28] )leads us to the idea, developed in chapter 4, of using them in the estimation
of copula derivatives.

Given a positive Borel measure on R,µ (x) such that

∫

R

|x|n dµ (x), with n ≥ 0, orthogonal

polynomials with respect to µ are defined as the set polynomials pi ≡ qc =
∑∞

k=0 ckx
k =

∑i
k=0 ckx

k of degree exactly i s.t.

〈pi, pj〉 =
∫

R

pi (x) pj (x) dµ (x) = 0 i 6= j (1.24)
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If the measure has finite discrete support dµ (x) =
∑K

k=1 δ (x− xk)wkdx, with δ (x− xk)
the point mass Dirac delta centered in xk, we can use sums instead of integrals:

〈pi, pj〉 =
∫

R

pi (x) pj (x) dµ (x) =

K
∑

k=1

pi (xk) pj (xk)wk = 0 i 6= j (1.25)

and, in this case, there are only K orthogonal polynomials.
There are different ways to normalize polynomials:

Definition 7 Orthonormal Polynomials The polynomials p in a set of polynomials are
orthonormal if they are mutually orthogonal and if 〈pi, pi〉 = 1.

Definition 8 Monic Polynomials Polynomials in a set are said to be monic orthogonal
polynomials if they are orthogonal, if the coefficient of the monomial of highest degree is
1, and their norms are strictly positive.

One of the most important properties of orthogonal polynomials is the three terms re-
currence relation that links the k + 1 polynomial with the k and the k − 1 polynomials

Theorem 10 [41]For orthonormal polynomials, there exist a sequence of coefficients αk
and βk such that

√

βk+1pk+1 = (x− αk+1) pk (x)−
√

βkpk−1 (x)

p−1 (x) ≡ 0, p0 (x) ≡
1√
β0
, β0 =

∫

R

dµ (x) (1.26)

where

αk+1 =
〈xpk, pk〉
〈pk, pk〉

(1.27)

and βk is computed such that
√

〈pk, pk〉 = 1.

Theorem 11 [41]For monic orthogonal polynomials, there exist a sequence of coefficients
αk and βk such that

pk+1 = (x− αk+1) pk (x)− βkpk−1 (x)

p−1 (x) ≡ 0, p0 (x) ≡ 1 (1.28)

where

αk+1 =
〈xpk, pk〉
〈pk, pk〉

(1.29)

βk =
〈pk, pk〉

〈pk−1, pk−1〉
(1.30)

Now let us focus on a measure with discrete finite support that put weight wk on the
node xk. For that measure we have a relationship between weights nodes and the three
terms recursions coefficients for orthonormal polynomials.
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Theorem 12 [33] There exists an orthogonal matrix Q such that

QT















1
√
w1

√
w2 . . .

√
wN√

w1 x1 0 . . . 0√
w2 0 x2 . . . 0
...

...
...

. . .
...√

wN 0 0 . . . xn















Q =















1
√
β0 0 . . . 0√

β0 α0

√
β1 . . . 0

0
√
β1 α1 . . . 0

...
...

...
. . .

...
0 0 0 . . . αn















with QTQ = IN .

Given this theorem, that is proved in [33] as a corollary of theorem 3.1, the knowledge of
weights and nodes i.e. of the measure can be used to obtain the recursion coefficients with
the use, for example, of the Lanczos algorithm for the tridiagonalization of matrices. If in
addition we add a discretization procedure we have a strategy for numerically obtaining
orthogonal polynomials for every measure.
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Chapter 2

Empirical Projected Copula Process
and Conditional Independence

2.1 Introduction

In this chapter, our purpose is to introduce the empirical projected copula process and
explain its importance in non parametric conditional independence testing. The central
role of conditional independence in statistical theory was first adressed in the paper of
Dawid ([25]) in which he rephrases sufficency, ancillarity, exogeneity, identification, causal
inference and other relevant statistical concepts in terms of conditional independence. In
this paper, he also introduced the usual notation for conditional independence that we
will use all along this chapter:

X1 ⊥⊥ X2|X3 ⇔
P (X1 ≤ x1, X2 ≤ x2 |X3 = x3 ) = P (X1 ≤ x1 |X3 = x3 )P (X2 ≤ x2 |X3 = x3 ) .

(2.1)

Conditional independence is a fundamental tool for probabilistic graphical models(PGM),
[54] and a proper understanding of Granger causality [83]. To investigate Conditional
Independence, both non parametric copulas estimators and empirical distributions have
already been used independently in the literature: [6] consider empirical Bernstein cop-
ulas; [44] develop a strong consistent test based on empirical distribution function. The
approach, that most resembles our methodology, is the use of non parametric pair copu-
las to test for conditional independence done in [45]. In this Chapter, using conditional
copulas with three variables, we rephrase conditional independence for copula functions,
[24]. The outcome is the definition of a projection map, the projected copula and the
related empirical process. Then, considering recent advances in the study of empirical
copula process [76], [13] we obtain the weak convergence of the projected empirical copula
process to a tight centered Gaussian process, under weak assumptions for second deriva-
tives in the conditioning argument.
The paper is organised as follows. We inroduce some notations and assumptions in
Section 2.2, then, in Section 2.3, we develop the relationship (2.1) using copulas and in-
troduce the projected copula, showing that it is the proper representation of conditional
independence in the copula space, and we introduce and prove the weak convergence of
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the projected empirical copula process. Section 3.6 is devoted to the conclusion and pos-
sible extensions. The technical lemma 1 and application to finite difference derivatives
are postponed to the appendix.

2.2 Notation and Assumptions

In this section we define some notations and introduce the assumptions needed for our
main theorem. Thorough the paper, arguments in boldface are collection of single argu-
ments, for example x ≡ {xi}ki=1 ≡ x1, . . . , xk, the maximum between a and b is a∨ b and
the minimum is a ∧ b. The n-th partial derivative in the arguments {xik}

n
k=1 is written

∂
(n)
i1...in

≡ ∂n

∂xi1 ...∂xin
and when the arguments are all equal i abbreviated in ∂

(n)
i ≡ ∂n

∂xi...∂xi
.

For the first derivative the one is omitted. ∂
(1)
i ≡ ∂i. The indicator function on the

set A is I (A), the space of all bounded functions defined on A is ℓ∞ (A) and the space
of k-times differentiable functions on A is Ck (A). Weak convergence and convergence
in outer probability in Hoffman-Jorgesen sense [82] are denoted respectively by  and
P
∗

→.We use o and O Landau symbols and their stochastic counterparts as defined in [81].
Given 3 random variables {Xi}3i=1, with marginals P (Xi ≤ xi) = Fi (xi), i = 1, 2, 3 and
joint cumulative distribution P (X1 ≤ x1, X2 ≤ x2, X3 ≤ x3) = F (x1, x2, x3) by Sklar’ s
theorem in three dimensions [59]
we know it exists a copula function C : [0, 1]3 7→ [0, 1] such that F (x1, x2, x3) =
C (F1 (x1) , F2 (x2) , F3 (x3)). Any 3-variate copula is a 3-variate distribution function
with uniform marginals. We denote the space of all such functions by C3. Follow-
ing [24] we define the conditional copulas of the first 2 variables given the third one
CU1,U2|U3 (u1, u2 |u3 ) = ∂3C (u1, u2, u3). Let (X11, X21, X31) . . . (X1N , X2N , X3N ) be a ran-
dom sample, distributed according to F , the empirical distribution function and its mar-

gins are F̂N (x1, x2, x3) =
1

N

N
∑

j=1

3
∏

i=1

I (Xij ≤ xi) and F̂Ni (xi) =
1

N

N
∑

j=1

I (Xij ≤ xi).

The empirical copula is ĈN (u1, u2, u3) =
1

N

N
∑

j=1

3
∏

i=1

I

(

ÛNij ≤ ui

)

with the pseudo-observations

given by ÛNij = F̂Ni (Xij).
Several authors ([76],[13] and references therein) have studied - both in the iid and
strongly mixing case - the weak convergence of the associated empirical process

ĈN (u1, u2, u3) =
√
N
(

ĈN (u1, u2, u3)− C (u1, u2, u3)
)

(2.2)

and under the assumption:

A 3 [76] For each j ∈ {1, 2, 3}, the jth first-order partial derivative ∂jC exists and is
continuous on the set V3,j :=

{

u ∈ [0, 1]3 : 0 < uj < 1
}

.

they prove:

ĈN (u1, u2, u3) C (u1, u2, u3) = αC (u1, u2, u3) +
3
∑

i=1

βiC (ui) ∂iC (u1, u2, u3) (2.3)
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where αC (u1, u2, u3) is a C-Brownian Bridge on [0, 1]3 and βiC (ui) are its margins.
To obtain our result, we need an additional assumption on the second derivative in the
conditioning argument.

A 4 The function u3 7→ ∂
(2)
3 C (u1, u2, u3) ∈ C0 ([0, 1]), ∀u1, u2 ∈ [0, 1]2

In addition be able to define the sample version of the projection, that we are going to
introduce in the next section, we need a sequence of functional maps D(n)

N,i : ℓ
∞ ([0, 1]3

)

7→
ℓ∞
(

[0, 1]3
)

, satisfying several hypothesis in order to properly approximate the derivative

∂
(n)
i and obtain weak convergence. In appendix A.1 the prototipical example of finite

difference derivatives is discussed in detail.
All the limits are for N → ∞. The first assumption guaranties that when D(n)

N,i is applied
to the subspace of functions for which the partial derivative exists: it is an uniform
approximation of this derivative.

A 5 For all G ∈ ℓ∞
(

[0, 1]3
)

s.t. ∃∂(n)i G for i = 1, 2, 3:

sup
u∈[0,1]3

∣

∣

∣
D(n)
N,iG (u)− ∂

(n)
i G (u)

∣

∣

∣
≤ RN , lim

N→∞
RN = 0

The next hypothesis guaranties that D(n)
N,i when applied to the empirical copula is a

consistent estimator of copula derivatives.

A 6 For any copula: sup
u∈[0,1]3

∣

∣

∣D(n)
N,iĈN (u)− ∂

(n)
i C (u)

∣

∣

∣

P
∗

→ 0 for i = 1, 2, 3

The following one allows the asymptotic integration by part in the conditioning argument.
We need this assumption in order to avoid the derivation of a Gaussian process.

A 7 Given f : u3 7→ f (u′) = f (u′1, u
′
2, u3), s.t.f ∈ C1 ([0, 1]), u′1, u

′
2 ∈ [0, 1]2

sup
u∈[0,1]3

∣

∣

∣
J
(

f, ĈN

)∣

∣

∣

P
∗

→ 0, ∀a ∈ [0, 1]

J
(

f, ĈN

)

=

∫ a

0

f (u′)D(1)
N,3ĈN (u) +D(1)

N,3f (u
′) ĈN (u) du3 − f (u′) ĈN (u)

∣

∣

∣

u3=a

u3=0

The last one is a technical assumption on the rate of convergence of integrated difference
between true derivative and its approximation, when we apply it to the true copula.

A 8 When N → ∞:
√
N
∫ ui
0

(

D(n)
N,iC (u) − ∂

(n)
i C (u)

)

dui → 0

2.3 Projection and Weak Convergence

In this section we introduce the projection map in C3, show that conditional independence
is equivalent to invariance with respect to this map and obtain, in theorem 1, the weak
convergence and asymptotic normality of the empirical projected copula process.
Using the notion of conditional copulas, relationship (2.1) can be rewritten:

C (F1 (x1) , F2 (x2) , F3 (x3)) =

∫ F3(x3)

0

∂3C (F1 (x1) , 1, v3) ∂3C (1, F2 (x2) , v3) dv3
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Thus X1 ⊥⊥ X2|X3 is equivalent to invariance with respect to the map Π|3 : C3 7→ C3

where:

Π|3 (C (u1, u2, u3)) =

∫ u3

0

∂3C (u1, 1, v3) ∂3C (1, u2, v3) dv3 (2.4)

The map Π|3 is the map projection onto X3 and the right hand side of (2.4) is the
projected copula. The map is not new as it can be rephrased using the ⋆-product of
[24] from which follows the fact that the projected copula is always in C3.Analogously,the
empirical projected copula is defined as:

Π̂N |3

(

ĈN (u1, u2, u3)
)

=

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3)D(1)

N,3ĈN (1, u2, v3) dv3,

From wich follows the definition of the empirical projected copula process:

ĈN |3 =
√
N
(

Π̂N |3

(

ĈN (u1, u2, u3)
)

−Π|3 (C (u1, u2, u3))
)

(2.5)

We are now in the position to state our main theorem:

Theorem 1 Under A3-A8,

ĈN |3 (u1, u2, u3)  C|3 (u1, u2, u3) =

∂3C (u1, 1, u3)C (1, u2, u3) −
∫ u3

0

∂
(2)
3 C (u1, 1, v3)C (1, u2, v3) dv3

+∂3C (1, u2, u3)C (u1, 1, u3) −
∫ u3

0

∂
(2)
3 C (1, u2, v3)C (u1, 1, v3) dv3 (2.6)

We remark that since C|3 is a linear combination of Gaussian processes it is also a Gaus-
sian process.

2.3.1 Proof of theorem 1

In this section, we prove the theorem 1. For the proof the following technical Lemma 1
is needed:

Lemma 1 let ΨN : ℓ∞ [0, 1]3 7→ ℓ∞ [0, 1]3 be the map:

ΨN (f) = ∂3C (u1, u2, u3) f (u1, u2, u3)−
∫ u3

0

dv3D(1)
N,3C (u1, u2, v3) f (u1, u2, v3)

then, under A5-A8, we have:

ĈN |3 = ΨN

(

ĈN (u1, 1, v3)
)

+ΨN

(

ĈN (1, u2, v3)
)

+ oP∗ (1)

The empirical projected copula process (2.5) can be rewritten as difference between the
empirical projection map applied to the empirical copula and the empirical projection
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map applied to the true copula, plus the difference between the empirical and asymptotic
projection map applied to the true copula:

ĈN |3 =
√
N
(

Π̂N |3

(

ĈN (u1, u2, u3)
)

− Π̂N |3 (C (u1, u2, u3))
)

+
√
N
(

Π̂N |3 (C (u1, u2, u3))−Π|3 (C (u1, u2, u3))
)

(2.7)

We develop first the second term of the right hand of (2.7) representing the difference
between the empirical and asymptotic projection map applied to the true copula:

√
N
(

Π̂N |3 −Π|3

)

◦ (C (u1, u2, u3)) = (2.8)

=
√
N
(

Π̂N |3 (C (u1, u2, u3))− Π|3 (C (u1, u2, u3))
)

=
√
N

(∫ u3

0

dv3

(

D(1)
N,3C (u1, 1, v3)D(1)

N,3C (1, u2, v3)− ∂3C (u1, 1, v3) ∂3C (1, u2, v3)
)

)

=
√
N

(
∫ u3

0

dv3D(1)
N,3C (u1, 1, v3)

(

D(1)
N,3C (1, u2, v3)− ∂3C (1, u2, v3)

)

+ ∂3C (1, u2, v3)
(

D(1)
N,3C (u1, 1, v3)− ∂3C (u1, 1, v3)

)

)

=
√
N

(
∫ u3

0

dv3

(

D(1)
N,3C (u1, 1, v3)− ∂3C (u1, 1, v3)

)(

D(1)
N,3C (1, u2, v3)− ∂3C (1, u2, v3)

)

+ ∂3C (u1, 1, v3)
(

D(1)
N,3C (1, u2, v3)− ∂3C (1, u2, v3)

)

+ ∂3C (1, u2, v3)
(

D(1)
N,3C (u1, 1, v3)− ∂3C (u1, 1, v3)

)

)

. Using the last expression,|∂3C| ≤ 1 and assumption A5 ,we can bound the absolute
value of (2.8):

∣

∣

∣

√
N
(

Π̂N |3 −Π|3

)

◦ (C (u1, u2, u3))
∣

∣

∣

≤
√
N (1 +RN )

∫ u3

0

∣

∣

∣
D(1)
N,3C (u1, 1, v3)− ∂3C (u1, 1, v3)

∣

∣

∣
dv3

+
√
N

∫ u3

0

dv3

∣

∣

∣
D(1)
N,3C (u1, 1, v3)− ∂3C (u1, 1, v3)

∣

∣

∣
dv3

By the dominated convergence theorem, the use assumption A8 on this bound, implies
that the limit of the absolute value of (2.8) is zero, i.e. that (2.8) is o (1) .
We consider now the first term of the right hand of the relationship (2.7) that represents
the difference beetween the application of the empirical projection map to the empirical
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copula and the application of the empirical projection map to the true copula :

√
N
(

Π̂N |3

(

ĈN (u1, u2, u3)
)

− Π̂N |3 (C (u1, u2, u3))
)

(2.9)

=
√
N

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3)D(1)

N,3ĈN (1, u2, v3) dv3

−
√
N

∫ u3

0

D(1)
N,3C (u1, 1, v3)D(1)

N,3C (1, u2, v3) dv3 =

=
√
N

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3)

(

D(1)
N,3ĈN (1, u2, v3)−D(1)

N,3C (1, u2, v3)
)

dv3

+
√
N

∫ u3

0

(

D(1)
N,3ĈN (u1, 1, v3)−D(1)

N,3C (u1, 1, v3)
)

D(1)
N,3C (1, u2, v3) dv3

=
√
N

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3)

1√
N
D(1)
N,3ĈN (1, u2, v3) dv3

+
√
N

∫ u3

0

1√
N
D(1)
N,3ĈN (u1, 1, v3)D(1)

N,3C (1, u2, v3) dv3

=

∫ u3

0

∂3C (u1, 1, v3)D(1)
N,3ĈN (1, u2, v3) dv3 + oP∗ (1)

∫ u3

0

D(1)
N,3ĈN (1, u2, v3) dv3

+

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3) ∂3C (1, u2, v3) dv3 + o (RN )

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3) dv3

Where the last equality follows from A5 and A6.
Now, under A7 and A5, we have for any u ∈ [0, 1]3

∫ u3

0

D(1)
N,3ĈN (u1, u2, v3) dv3 = ĈN (u1, u2, u3)−

∫ u3

0

(

D(1)
N,31

)

ĈN (u1, u2, v3) dv3

= ĈN (u1, u2, u3) + o (RN)

∫ u3

0

ĈN (u1, u2, v3) dv3

= ĈN (u1, u2, u3) + oP∗ (1)

The last expression implies that the second and the fourth term in the last inequality of
(2.9) are oP∗ (1) .
Summarizing, we have shown that:

ĈN |3 =
√
N
(

Π̂N |3

(

ĈN (u1, u2, u3)
)

− Π̂N |3 (C (u1, u2, u3))
)

+
√
N
(

Π̂N |3 (C (u1, u2, u3))−Π|3 (C (u1, u2, u3))
)

=
√
N
(

Π̂N |3

(

ĈN (u1, u2, u3)
)

− Π̂N |3 (C (u1, u2, u3))
)

+ o (1)

=

∫ u3

0

∂3C (u1, 1, v3)D(1)
N,3ĈN (1, u2, v3) dv3

+

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3) ∂3C (1, u2, v3) dv3 + oP∗ (1) (2.10)
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Under A7,to obtain the result we can again ”integrate by part”. In particular, we can
rewrite the last equality of (2.10) in the following way:

ĈN |3 =

∫ u3

0

∂3C (u1, 1, v3)D(1)
N,3ĈN (1, u2, v3) dv3

+

∫ u3

0

D(1)
N,3ĈN (u1, 1, v3) ∂3C (1, u2, v3) dv3 + oP∗ (1)

= ΨN

(

ĈN (1, u2, v3)
)

+ J
(

∂3C (u1, 1, v3) , ĈN (1, u2, v3)
)

+ ΨN

(

ĈN (u1, 1, v3)
)

+ J
(

∂3C (1, u2, v3) , ĈN (u1, 1, v3)
)

+ oP∗ (1)

= ΨN

(

ĈN (1, u2, v3)
)

+ΨN

(

ĈN (u1, 1, v3)
)

+ oP∗ (1)

Consider, now, the map ΨN , introduced the previous lemma toghether with the map :
Ψ : ℓ∞ [0, 1]3 7→ ℓ∞ [0, 1]3

Ψ (f) = ∂3C (u1, u2, u3) f (u1, u2, u3)−
∫ u3

0

dv3∂
(2)
3 C (u1, u2, v3) f (u1, u2, v3) .

Under A5-A8,using lemma 1, we have:

ĈN |3 = ΨN

(

ĈN (u1, 1, v3)
)

+ΨN

(

ĈN (1, u2, v3)
)

+ oP∗ (1)

Because ΨN (fN) → Ψ (f) whenever fN → f , under A3, we have (4.9) and under A4,
Ψ (f) is continous, the hypotesis of the extended continous mapping theorem (1.11.1)
in [82] pg. 67 are satisfied and the result follows by the application of the theorem to

ΨN

(

ĈN (u1, 1, v3)
)

+ΨN

(

ĈN (1, u2, v3)
)

.

2.4 Limit Process under Conditional Independence

In the hypothesis H0 : X1 ⊥⊥ X2|X3 and A4 and the continuity of the second mixed
derivatives of the copula, the limit could be further simplified as in the following lemma:

Lemma 2 if H0 and A4 and if the second mixed derivatives of the copula are continous
then:

C|3 (u1, u2, u3) = C1⊥2|3 (u1, u2, u3) ≡

= ∂3C (u1, 1, u3)αC (1, u2, u3)−
∫ u3

0

dv3∂
(2)
3 C (u1, 1, v3)αC (1, u2, v3)

+ ∂3C (1, u2, u3)αC (u1, 1, u3)−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3)αC (u1, 1, v3)

+

∫ u3

0

dv3∂
(2)
3 C (u1, u2, v3)β3C (v3)− β3C (u3) ∂3C (u1, u2, u3)

+ C (u1, u2, u3)− αC (u1, u2, u3) (2.11)
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2.4.1 Proof of lemma 2

Under A4 the integrand in (2.4) is derivable and we can obtain the derivative of the
integral using the fundamental theorem of calulus. Then, in the hypothesis of conditional
independence, we have:

∂3C (u1, u2, u3) = ∂3C (u1, 1, u3) ∂3C (1, u2, u3) (2.12)

This is the property tested, for example, in [6] and [45].
From wich we can derive the following, using the continuty of mixed partial derivatives
and Schwarz’s theorem:

∂3∂2C (u1, u2, u3) = ∂3∂2C (1, u2, u3) ∂3C (u1, 1, u3) (2.13)

∂3∂1C (u1, u2, u3) = ∂3∂1C (u1, 1, u3) ∂3C (1, u2, u3) (2.14)

We are ready to develop the expression for C|3, using the definition of C:

C|3 (u1, u2, u3)

= ∂3C (u1, 1, u3) [αC (1, u2, u3)− β2C (u2) ∂2C (1, u2, u3)− β3C (u3) ∂3C (1, u2, u3)]

−
∫ u3

0

dv3∂
(2)
3 C (u1, 1, v3) [αC (1, u2, v3)− β2C (u2) ∂2C (1, u2, v3)− β3C (u3) ∂3C (1, u2, v3)]

+ ∂3C (1, u2, u3) [αC (u1, 1, u3)− β1C (u1) ∂1C (u1, 1, u3)− β3C (u3) ∂3C (u1, 1, u3)]

−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3) [αC (u1, 1, v3)− β1C (u1) ∂1C (u1, 1, v3)− β3C (v3) ∂3C (u1, 1, v3)]

Using (2.12) and the rule for the derivation of a product on the terms that multiply β3C ,
we can obtain:

= ∂3C (u1, 1, u3) [αC (1, u2, u3)− β2C (u2) ∂2C (1, u2, u3)]− β3C (u3) ∂3C (u1, u2, u3)

−
∫ u3

0

dv3∂
(2)
3 C (u1, 1, v3) [αC (1, u2, v3)− β2C (u2) ∂2C (1, u2, v3)]

+

∫ u3

0

dv3

[

∂3 (∂3C (u1, 1, v3) ∂3C (1, u2, v3))− ∂
(2)
3 C (1, u2, v3) ∂3C (u1, 1, v3)

]

β3C (v3)

+ ∂3C (1, u2, u3) [αC (u1, 1, u3)− β1C (u1) ∂1C (u1, 1, u3)]− β3C (u3) ∂3C (u1, u2, u3)

−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3) [αC (u1, 1, v3)− β1C (u1) ∂1C (u1, 1, v3)− β3C (v3) ∂3C (u1, 1, v3)]

Then using again (2.12) and simplyfing terms that are equal:

= ∂3C (u1, 1, u3) [αC (1, u2, u3)− β2C (u2) ∂2C (1, u2, u3)]

−
∫ u3

0

dv3∂
(2)
3 C (u1, 1, v3) [αC (1, u2, v3)− β2C (u2) ∂2C (1, u2, v3)]

+ ∂3C (1, u2, u3) [αC (u1, 1, u3)− β1C (u1) ∂1C (u1, 1, u3)]

−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3) [αC (u1, 1, v3)− β1C (u1) ∂1C (u1, 1, v3)]

+

∫ u3

0

dv3∂
(2)
3 C (u1, u2, v3) β3C (v3)− 2β3C (u3) ∂3C (u1, u2, u3)
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Collecting the terms in β2C and β1C and using again the rule for the derivation of a
product, we have:

= ∂3C (u1, 1, u3) [αC (1, u2, u3)− β2C (u2) ∂2C (1, u2, u3)]

−
∫ u3

0

dv3∂3∂3C (u1, 1, v3)αC (1, u2, v3)

+ β2C (u2)

∫ u3

0

dv3 [∂3 (∂3C (u1, 1, v3) ∂2C (1, u2, v3))− ∂3C (u1, 1, v3) ∂3∂2C (1, u2, v3)]

+ ∂3C (1, u2, u3) [αC (u1, 1, u3)− β1C (u1) ∂1C (u1, 1, u3)]

−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3)αC (u1, 1, v3)

+ β1C (u1)

∫ u3

0

dv3 [∂3 (∂3C (1, u2, v3) ∂1C (u1, 1, v3))− ∂3C (1, u2, v3) ∂3∂1C (u1, 1, v3)]

+

∫ u3

0

dv3∂
(2)
3 C (u1, u2, v3) β3C (v3)− 2β3C (u3) ∂3C (u1, u2, u3)

Up to this point everything is valid under the assumptions of theorem 1, but now we are
going to use (2.13) and (2.14) that rely onthe continuity of mixed partial derivatives

= ∂3C (u1, 1, u3) [αC (1, u2, u3)− β2C (u2) ∂2C (1, u2, u3)]

−
∫ u3

0

dv3∂
(2)
3 C (u1, 1, v3)αC (1, u2, v3)

+ β2C (u2)

∫ u3

0

dv3 [∂3 (∂3C (u1, 1, v3) ∂2C (1, u2, v3)− ∂2C (u1, u2, v3))]

+ ∂3C (1, u2, u3) [αC (u1, 1, u3)− β1C (u1) ∂1C (u1, 1, u3)]

−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3)αC (u1, 1, v3)

+ β1C (u1)

∫ u3

0

dv3 [∂3 (∂3C (1, u2, v3) ∂1C (u1, 1, v3)− ∂1C (u1, u2, v3))]

+

∫ u3

0

dv3∂
(2)
3 C (u1, u2, v3)β (v3)− 2β3C (u3) ∂3C (u1, u2, u3)

Doing the integrals that multiply β2C and β1C and simplyfing, we obtain:

= ∂3C (u1, 1, u3)αC (1, u2, u3)−
∫ u3

0

dv3∂
(2)
3 C (u1, 1, v3)αC (1, u2, v3)

+ ∂3C (1, u2, u3)αC (u1, 1, u3)−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3)αC (u1, 1, v3)

+

∫ u3

0

dv3∂
(2)
3 C (u1, u2, v3)β (v3)− β3C (u3) ∂3C (u1, u2, u3)

− β3C (u3) ∂3C (u1, u2, u3)− β2C (u2) ∂2C (u1, u2, u3)− β1C (u1) ∂1C (u1, u2, u3)
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The final expression comes from the definition of C.

= ∂3C (u1, 1, u3)αC (1, u2, u3)−
∫ u3

0

dv3∂
(2)
3 C (u1, 1, v3)αC (1, u2, v3)

+ ∂3C (1, u2, u3)αC (u1, 1, u3)−
∫ u3

0

dv3∂
(2)
3 C (1, u2, v3)αC (u1, 1, v3)

+

∫ u3

0

dv3∂
(2)
3 C (u1, u2, v3)β (v3)− β3C (u3) ∂3C (u1, u2, u3)

+ C (u1, u2, u3)− αC (u1, u2, u3)

2.5 Conclusion

The objective of this Chapter is to lay the theoretical foundation for a new, non para-
metric, test of conditional independence based on a symmetry principle with respect to
a projection map. The novelty of our approach is, in defining a sample estimator, for the
projection, using empirical copula processes. This makes our results valid under very gen-
eral assumption and widens the range of applications for our findings. For what concern
our hypothesis, a closer look to the example section of [76] reveals that the discontinuity
at the boundaries of the most common copula first derivatives occurs only when two or
more arguments are involved in the limit so our hypothesis of continuity of the second
partial derivative only in the conditioning argument are verified for most of the examples.
We are only more restictive in considering twice continously differentiable Archimedean
copula generators and dependence function of extreme value copula twice continously
differentiable in each argument. For what concerns derivative approximations, in the
appendix is shown that finite difference approximation as in [36] are copula consistent
approximation. With a second order copula consistent derivative approximation, using
the multiplier central limit theorem [82] as in [10] it is possible to evaluate through simu-
lation the limit process distribution. This would be done in a different paper. Concerning
the simplyfied limiting process introduced in lemma 2, instead, the hypothesis are more
restrictive, and only a detailed simulation study, could ascertain, if the gain in empiri-
cal power, that we expect from test based on the simplyfied process with respect tests
based on C|3, could justify its use, even if the theoretical applicability of the test is more
restricted. This is left for future research.
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Chapter 3

Multivariate Normalized Rank
Reflection Symmetry of Copula
Functions

3.1 Introduction

Statistical description of multivariate data, has suffered from serious limitations, due
to the mathematical difficulties associated multivariate probability distributions. The
vast majority of model used, were based on the multivariate Gaussian distribution. The
situation has slowly changed when Sklar [79] introduced copula functions, allowing to
model, separately, the dependence structure and the marginals. Recently, copula func-
tions have become essential ingredients, in many applied fields concerning the modeling
of multivariate data, such as actuarial sciences, finance, hydrology and survival analy-
sis [35] [17]. Nevertheless, in most high dimensional applications of copula methods, in
particular when temporal dependence cannot be disregarded, the Gaussian and t copulas
remain the preferred copula models. A test of the symmetry proposed in this paper,
among other things, allows to justify or reject the use of those models. In addition,
testing this property could be evidence of asymmetric dependence that was empirically
documented by different statistical means in [57], [1] and [49] for financial time series.
The asymmetry of dependence and, in particular, an increase of dependence during down-
turns is usually regarded as the occurence of financial contagion and can be also related
to systemic risk being a sympthom of a negative collective response of the financial sys-
tem. With respect to many of previously cited methods for contagion detection, our
copula framework allows to have a measure that include the effect of more than two
variables and investigate, directly, a change in dependence, different from a simulta-
neus change in the characteristics of marginal distributions as, for example, a sudden
shift in all volatilities due, for example, to a shift in the volatility of a common factor.
Those are important advantages with respect to correlation and conditional correlation
based measures. Rejection of parametric models and detection of contagion, motivate the
choice of datasets for our applications of the test, but consequences of this symmetry and
the related radial symmetry of the joint distribution are relevant in other financial and
econometric areas: for portfolio management([62]) for quantile regressions ([7]), for up
and down barrier symmetry in multivariate barrier options ([20]) and put-call parity for
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multivariate assets([18]).The Asymptotic test, being based on empirical copula, survival
empirical copula and dependent multiplier bootstrap, is completely non parametric and
is valid under the vast majority of hypothesis underling most common strictly stationary
parametric models. The difference between our test and already introduced tests of this
type [8], [69],[27],[37]and [56], is the use of the survival empirical copula process, that
allows to avoid the use of the combicatorially complex multivariate generalization of the
relation between the copula and the survival copula (see for example [40],[18]), making
the application of the test to dimensions greater than 2 much easier. We remark that
this difficulty arises also in the parametric context. For example, using the fact that from
every copula function, being symmetric or not, we may build a symmetric copula by
simply drawing from a mixture of the copula function itself and its survival counterpart
obtained by a mixture of the copula function itself and its survival counterpart [52], a
test for the difference beetween an asymmetric copula and its symmetrized version could
be conceived. This kind of test is hard to implement with a number of variables greater
than two due to the complexity of obtaining a manegeable expression for the survival
copula. In this regards an extensive simulation study concerning the empirical power of
the test is conducted with a particular emphasis on temporal dependence and high num-
ber of variables. The paper is structured as follows: In section 3.2 we introduce the rank
reflection symmetry and motivate its importance for the right modellization of extreme
events and asymmetric dependence. Then in section 3.3 we discuss the asymptotics of
the test and introduce the dependent multiplier bootstrap. In section 3.4 there is our
extensive simulation study where we discuss the empirical size and power of the test.
Section 3.5 reports simple application of the methodology to the Cook Jonhson database
and financial data. In the end, in section 3.6 we summarize our findings discussing their
implications and extensions.

3.2 Copulas and Rank Reflection

The aim of this paper is the introduction of a new non parametric test for the study of
the null hypothesis

H0 : C (u1, . . . , uD) = C̄ (u1, . . . , uD) (3.1)

where C is a copula and C̄ is the corresponding survival copula, to be properly introduced
in the following. This relationship, was first introduced, in the bivariate copula context,
by [58] under the name of radial symmetry of the copula function. The reason, motivating
the use of this name, was that this invariance property is linked to the so called radial
symmetry of the bivariate distribution. We Instead follow [69], in calling it reflection
symmetry because, in our opinion, the name radial symmetry is misleading in two ways.
The first one is that the transformation under which the probability of the random vari-
ables is invariant is a reflection in a point( also called central inversion [23]), and this is
true both for multivariate and copula symmetry. The second, most compelling, reason is
that (3.1) has important probabilistic implications, that we try to point out, even without
assuming symmetric marginals, needed together with (3.1) for the reflection symmetry
of the joint distribution. Here, we will call a copula satisfying (3.1), normalized rank re-
flection symmetric,( rank reflection in brief), because under this property a multivariate
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random variable and the multivariate random variable whose normalized ranks are the
reflection trough the center of the Hypercube of the normalized rank of the original vari-
able, have the same probability (see also [69]). In this section, after introducing copulas
and survival copulas, we discuss normalized rank reflection symmetry, its probabilistic
implication and which copulas and time series models manifest the symmetry.
We begin introducing the well known relationship among the cumulative marginal dis-
tribution function Fi of the i-th variable Xi and the marginal survival function F̄i of the
same variable:

P (Xi > xi) = F̄i (xi) = 1− P (Xi ≤ xi) = 1− Fi (xi) (3.2)

Applying the probability integral transforms Fi (Xi) = Ui and F̄i (Xi) = Ūi we can
translate it to a relationship among uniform random variables

Ūi = 1− Ui (3.3)

.
The sample version of Ui represents the univariate ranks of the sample from Xi divided
by the number of observations in the sample and, using (3.3), Ūi can be interpreted as
the one dimensional reflection around the center of the unitary interval of Ui. In this way
the usual concept of symmetry of the distribution :

{

Fi (ci − xi) = 1− Fi (ci + xi) = F̄i (ci + xi)

Fi (ci) = 1− Fi (ci) = F̄i (ci) =
1

2

(3.4)

can be interpreted(see the appendix) as a rank reflection symmetry in probability:

P (Ui ≤ ui) = P
(

Ūi ≤ ui
)

(3.5)

whose extension to the multivariate setting can be translated in a relationship between
the copula and its corresponding survival. Then, to introduce this extension, we need
some results from copula theory.
According to the Sklar Theorem [79], a multivariate cumulative distribution could be
expressed using the univariate marginal cumulative distributions and a copula function

P (X1 ≤ x1, . . . , XD ≤ xD) = F (x1, . . . , xD) = C (F1 (x1) , . . . , FD (xD)) (3.6)

With the application of the probability integral transform to the original random variable
we produce an uniform random vector U = (U1, . . . , UD)

T with Ui = Fi (Xi). Then, given
the joint distribution and the marginals we can define a copula by

P (U1 ≤ u1, . . . , UD ≤ xD) = C (u1, . . . , uD) = F
(

F−1
1 (u1) , . . . , F

−1
D (uD)

)

(3.7)

Analogously, a multivariate survival function could be expressed using the univariate
survival functions and the survival copula

P (X1 > x1, . . . , XD > xD) = F̄ (x1, . . . , xD) = C̄
(

F̄1 (x1) , . . . , F̄D (xD)
)

(3.8)
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the survival copula is in this way a distribution function on the hypercube (not a survival

function) of the random vector Ū =
(

Ū1, . . . , ŪD
)T

with Ūi = F̄i (Xi)

P
(

Ū1 ≤ u1, . . . , ŪD ≤ xD
)

= C̄ (u1, . . . , uD) = F̄
(

F̄−1
1 (u1) , . . . , F̄

−1
D (uD)

)

(3.9)

In this paper, we are concerned with the study of the null hypothesis of rank reflection
symmetry, that is represented by the following generalization of (3.5):

P (U1 ≤ u1, . . . , UD ≤ uD) = P
(

Ū1 ≤ u1, . . . , ŪD ≤ uD
)

(3.10)

⇔ C (u1, . . . , ud) = C̄ (u1, . . . , ud) (3.11)

Since the sample version of U represents the vector of univariate ranks of the sample
divided by the number of observations, and Ū is U reflected in the center of the unit
hypercube, we choose the name normalized rank reflection symmetry for this property
and we, also, remark that this is only a necessary condition for radial symmetry of the
multivariate distribution around a point, that must be supplemented by the symmetry
of all the marginals.
In terms of probabilities, rank reflection symmetry correspond to:

P (X1 ≤ x1, . . . , XD ≤ xD) = P
(

X1 > F̄−1
1

(

1− F̄1 (x1)
)

, . . . , XD > F̄−1
D

(

1− F̄D (xD)
))

⇔ P (X1 ≤ x1, . . . , XD ≤ xD) = P
(

X1 > F−1
1 (1− F1 (x1)) , . . . , XD > F−1

D (1− FD (xD))
)

To have a better understanding of (3.12), we compute the previous relation in the vector

of marginal u-th quantiles
{

F−1
d (u)

}D

d=1
.

P
(

X1 ≤ F−1
1 (q) , . . . , XD ≤ F−1

D (u)
)

= P
(

X1 > F−1
1 (1− u) , . . . , XD > F−1

D (1− u)
)

The probability of having all variable less than their respective u-th quantile is the same
of the probability of having all the variables greater than the complementary marginal
quantile. In this way, in particular, upper and lower joint extreme events are equiprobable.
Introducing the multivariate generalization of upper and lower tail dependence coefficients
[78],[50] allows us to express in another way the same concept :

λU = lim
v→1

C̄ (1− v, · · · , 1− v)

1− v
= lim

u→0

C̄ (u, · · · , u)
u

(3.12)

λL = lim
u→0

C (u, · · · , u)
u

(3.13)

From (3.12) and (3.13), we have that rank reflection symmetry implies the equality λU =
λL and this is, also, true for more refined measure of tail dependence as the one introduced
in [74]. Given the above interpretation of rank reflection symmetry, testing this property
could be evidence of asymmetric dependence an contagion as already discussed in the
introduction.For a complete discussion of which parametric models are rank reflection
symmetric in the two dimensional case, we refer to the seminal paper of Nelsen [58] (there
rank reflection symmetry is named radial symmetry of the copula)and more the recent
works [69] and [27]. We, only, stress here, that all elliptical copula are rank reflection
symmetric and that Frank [32], explicitly constructed the only rank reflection symmetric
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bivariate Archimedean copula. For higher dimensions, to our knowledge, only elliptical
copulas are known to exhibit this property. In time series context,it is well known,
linear models with elliptic innovation are elliptically distributed and, a fortiori, exhibit
rank reflection symmetry, because the class of elliptical distributions is closed under
affine transformations. In addition, it can be direcly showed unsing the C-convolution
contruction introduced in [19] and [18] that the reflection symmetry is preserved for linear
process. Generalizing to the multivariate case Proposition 3.2 in [19], it is possible to
obtain that, in case of symmetry of both the convolution and the cross-sectional copula
the symmetry is preserved. Since in linear models the innovations are assumed to be
independent from the variables, the convolution copula is the indipendence copula wich
is reflection symmetric, this implies that the simmetry of the innovations is the same of
the variables. For what concern multivariate GARCH and copula GARCH models, the
covariance process, being quadratic, is invariant by a joint change of sign of innovations
for each past time, i.e. for reflection of past innovations, so that the reflection symmetry
of the normalized ranks of those models is, completely determined by the symmetry of
the Copula joining the innovations.

3.3 Asymptotics with Empirical Processes

In this section, after introducing the empirical copula, the survival empirical and the
related empirical processes, we discuss the dependent multiplier bootstrap as a way to
approximate the asymptotic distribution and introduce our test statistic.
It can be shown [40],[18], that the multivariate survival copula can be expressed in terms of
the corresponding copula through a complex generalizzation of the bivariate relationship:

C̄ (u, v) = u+ v − 1 + C (1− u, 1− v) (3.14)

This has been the usual way of testing this invariance property [8],[69],[27],[37]and [56].
That approach is difficult to generalize for a number of variables greater than 2. In this
paper we propose an alternative route to test the null hypothesis (3.1) by making explicit
use of Empirical survival copula process.

3.3.1 Empirical Copula Processes

Let {{Xid}ni=1}
D

d=1 ≡ {Xi}ni=1 a D dimensional multivariate sample of size n of strongly-

mixing random variables. The empirical distribution function F̂ (x), the empirical sur-
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vival function ˆ̄F (x) and their marginals are

F̂ (x) =
1

n

n
∑

i=1

D
∏

d=1

I (Xid ≤ xd)) =
1

n

n
∑

i=1

I (Xi ≤ x) (3.15)

F̂d (xd) =
1

n

n
∑

i=1

I (Xid ≤ xd) (3.16)

ˆ̄F (x) =
1

n

n
∑

i=1

D
∏

d=1

I (Xid > xd) =
1

n

n
∑

i=1

I (Xi > x) (3.17)

ˆ̄Fd (xd) =
1

n

n
∑

i=1

I (Xid > xd) (3.18)

(3.19)

Let us define the pseudo observations Ûid = F̂d (Xid) and
ˆ̄Uid =

ˆ̄Fd (Xid) = 1− Ûid. Then,
the empirical copula and the empirical survival copula are

Ĉn (u) = F̂
(

F̂−1
1 (u1) , . . . , F̂

−1
D (uD)

)

=
1

n

n
∑

i=1

D
∏

d=1

I

(

Xid ≤ F̂−1
d (ud)

)

=
1

n

n
∑

i=1

I

(

Ûi ≤ u
)

(3.20)

ˆ̄Cn (u) =
ˆ̄F
(

ˆ̄F−1
1 (u1) , . . . ,

ˆ̄F−1
D (uD)

)

=
1

n

n
∑

i=1

D
∏

d=1

I

(

Xid >
ˆ̄F−1
d (ud)

)

=
1

n

n
∑

i=1

I

(

ˆ̄Ui ≤ u
)

(3.21)

where we used non increasingness of the marginal empirical survivals.
The empirical processes are:

Ĉn =
√
n
(

Ĉn (u)− C (u)
)

(3.22)

ˆ̄
Cn =

√
n
(

ˆ̄Cn (u)− C̄ (u)
)

(3.23)

An application of the functional Delta method [82] on results for central limit theorem
(CTL) of multivariate empirical process for strongly mixing data with mixing coefficient
αn = o (n−a) for some a > 0,that can be found in [67], allow [13] to obtain the following
weak convergence result for the empirical copula process

Ĉn  C = BC (u)−
D
∑

d=1

∂C (u)

∂ud
Bd,C (ud) (3.24)

where BC is a D-dimensional Brownian sheet with covariance function

Cov (BC (u) ,BC (v)) = C (u ∧ v)− C (u)C (v) (3.25)
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where ∧ is the component-wise minimum.
We derive the weak convergence results for the empirical survival copula process, for
strongly mixing data, under an assumption analogous to the one introduced in [76] (see
the appendix for the proof):

A 9 For each j ∈ {1, 2, 3}, the jth first-order partial derivative
∂C̄

∂uj
exists and is contin-

uous on the set VD,j :=
{

u ∈ [0, 1]D : 0 < uj < 1
}

.

proposition 4 Suppose Conditions A9 hold and the strongly mixing coefficients αn of
the sample are such that αn = o (n−a) for some a > 0 . Then the empirical survival

copula process ˆ̄
Cn =

√
n
(

ˆ̄Cn (u)− C̄ (u)
)

weakly converges towards a Gaussian field C̄

ˆ̄
Cn  C̄ = BC̄ (u)−

∑D
d=1

∂C̄ (u)

∂ud
Bd,C̄ (ud) in ℓ∞ [0, 1]D

To our knowledge, the weak convergence of the empirical survival copula, under the
stated assumptions, is new in literature, the only similar result is obtained for upper tail
copula processes in [75] but under more restrictive assumptions on copula derivatives.
We ,also, stress that the use of delta method could make the result valid for a variety of
weakly dependent conditions for which the CTL on the multivariate empirical processes
are known, as argued in [11]. The assumption of strongly mixing processes, assures
the validity of the dependent multiplier bootstrap, to be introduced in the next section,
known, only, for this kind of mixing condition.

3.3.2 Dependent Multiplier Bootstrap

The dependence of the limiting processes from the unknown copula and related survival
Copula, through the covariance of BC and BC̄ and derivatives, forbid a closed form
inference, based on the their distribution. The multiplier central limit theorem allows
to obtain the distribution of the limiting process trough simulations. Here, we will use
a recently introduced version of the multiplier central limit theorem valid for strictly
stationary strongly mixing data [11]. Define a dependent multiplier sequence {ξi,n}i∈Z
i.e. a sequence that satisfies

1. The sequence {ξi,n}i∈Z is strictly stationary with E (ξ0,n) = 0, E
(

ξ20,n
)

= 1 and
E (|ξ0,n|ν) <∞ for ν > 2 and independent from the available sample.

2. There exists a sequence ℓn → ∞ of strictly positive constants such that ℓn = o (n)
and the sequence {ξi,n}i∈Z is ℓn-dependent i.e ξi,n is independent from ξi+h,n for all
h > ℓn and i ∈ N.

3. There exists a function φ : R → [0, 1], symmetric around 0,continous at 0, satisfying
φ (0) = 1 and φ (x) = 0 for all |x| > 1 such that E (ξ0,nξh,n) = φ (h/ℓn) for all h ∈ Z.
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Given M independent copies of the dependent multiplier sequence
{

ξ
[1]
i,n

}

i∈Z
, . . . ,

{

ξ
[M ]
i,n

}

i∈Z
we can define the new processes:

B̃
[m]
n (u) =

1√
n

n
∑

i=1

ξ
(m)
i,n

(

I

(

Ûi ≤ u
)

− C (u)
)

(3.26)

˜̄
B
[m]

n (u) =
1√
n

n
∑

i=1

ξ
(m)
i,n

(

I

(

ˆ̄Ui ≤ u
)

− C̄ (u)
)

(3.27)

C̃
[m]
n (u) = B̃

[m]
n (u)−

D
∑

d=1

DFD
ud
Ĉn (u) B̃

[m]
d,n (ud) (3.28)

˜̄C [m]
n (u) = ˜̄

B
[m]

n (u)−
D
∑

d=1

DFD
ud

ˆ̄Cn (u)
˜̄
B

[m]

d,n (ud) (3.29)

Where DFD
ud

is the partial finite difference derivative operator, that introduced for deriva-
tive estimation in [66], let estimated derivatives satisfy condition 4.1 of [11], originally

in [76]. Proposition 4.2 in [11] implies that if ℓn = O
(

n
1
2
−ǫ
)

with 0 < ǫ < 1
2
and

the sample is drawn by a strictly stationary sequence with strongly mixing coefficients
α (r) = O (r−a) , a = 3 + 3D/2 we have

(

Ĉn, C̃
[1]
n , . . . , C̃

[M ]
n

)

 

(

C,C[1], . . . ,C[M ]
)

(3.30)
(

ˆ̄
Cn,

˜̄
C

[1]

n , . . . ,
˜̄
C

[M ]

n

)

 

(

C̄, C̄[1], . . . , C̄[M ]
)

(3.31)

where C[1], . . . ,C[M ] are M independent copies of C and C̄[1], . . . , C̄[M ] of C̄

3.3.3 Test Statistic

We want to test the null hypothesis

H0 : C (u1, . . . , uD) = C̄ (u1, . . . , uD) (3.32)

against the alternative

H1 : C (u1, . . . , uD) 6= C̄ (u1, . . . , uD) (3.33)

We choose a Cramer-Von Mises test statistic under the random measure generated by
the empirical copula:

Tn =

∫

(0,1]D

(

Ĉn − ˆ̄Cn

)2

dĈn =
1

n

n
∑

i=1

(

Ĉn

(

Ûi

)

− ˆ̄Cn

(

Ûi

))2

(3.34)

The main motivation for using the random measure associated with the empirical copula,
instead of using the the uniform measure, as for example in [27], is that, in the case
of goodness of fit test statistics, the use of a Cramer-Von Mises statistic based on the
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empirical copula measure leads to a more powerful test than competitors [39]. In [27]
and [69], there is a study of the extremes of reflection asymmetry, in the bivariate case.
Those results, allow for a proper normalizzation of measures of asymmetries proposed
there. The equivalent multivariate results, for our measure, are not available and their
derivation, although of great importance, are outside the scope of this paper and will be
left for future research. This makes the range of our test statistic unknown, but does not
alter the conclusion of our testing procedure.
Under the null we have:

nTn =

∫

(0,1]D

(

Ĉn − ˆ̄
Cn

)2

dĈn (3.35)

And we can construct multiplier copies

nT̃[m]
n =

∫

(0,1]D

(

C̃
[m]
n − ˜̄

C
[m]
n

)2

dĈn (3.36)

In the following proposition we obtain the weak limits under the null

proposition 5 If C is a normalized rank reflection symmetric copula i.e. C = C̄ we
have

(

nTn, nT̃
[1]
n , . . . , nT̃

[M ]
n

)

 

(

T,T[1], . . . ,T[M ]
)

(3.37)

T =

∫

(0,1]D

(

Cn − C̄n

)2
dC (3.38)

where T[1], . . . ,T[M ] are independent copies of T

It follows from proposition 5 that approximate P values for the tests of H0 based on Tn

are given by

1

M

M
∑

m=1

I

(

T̃
[m]
n > Tn

)

(3.39)

Our inference procedure is robust, both under the null and under the alternative, for a
data generating process whose dynamics can be modeled by strictly stationary strongly
mixing processes, thanks to a CTL for strongly mixing empirical processes and the de-
pendent multiplier bootstrap. Even if we are not aware of a data driven procedure for
investigating the strongly mixing condition on real data we remark that the most used
linear and non linear stationary time series models, usually satisfy this assumption [15].
The residual dependence, in addition, can be described through, the vast majority of cop-
ula parametric models, being the Segers condition on derivatives valid for them. For a
clear exposition of this point and several examples we refer to the original paper[76]. The
proposed, non parametric, statistical methodology, can, in this way,be applied jointly to
any number of random variables that satisfy the assumption of most common parametric
time series models and for this reason is suited for multivariate financial and economic
datasets.
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3.4 Simulation Study

In this section, we report the results for the empirical power and size of our non parametric
test for different number of observations , for 2 and 10 dimensions. All the test use
the dependent multiplier bootstrap of [11], in their moving average approach with the
Bartlett kernel and are conducted at the 5% nominal level. We, slightly, modified the
bandwidth selection procedure,integrating with respect to the empirical copula measure
and not with respect to the uniform one, as in[11]. This choice is, once again, equivalent
to averaging on pseudo observations, and we can avoid using an uniform grid for the
approximation of the integrals. We postpone the description of the alghorithm used to the
appendix B.3 and refer to [11], that introduced this methodology, for additional details.
All the copula simulations are obtained by the use of the copula R package [53],with D =
2, 10, diferent number of observations N , Ns = 1000 simulations,M = 2500 multiplier
replicates, Kendall’s τ equal to 0.1, 0.3, 0.5, 0.7, 0.9 and five different copula families, two
elliptic: the Gaussian and the t with one degree of freedom, and three Archimedean:
Frank Clayton and Gumbel. The elliptic copulas are radially symmetric, Gumbel and
Clayton are not, the Frank Copula is radially symmetric only in two dimensions. Under
Gaussian and t copula, which satisfy the null we are computing the percentage of times
the test is rejecting the symmetry hypothesis when it is true, i.e. the size of the test,
and this should be close to the 5% nominal level. When simulating under Clayton or
Gumbel copula, that are not symmetric, we are computing the number of times the test
is rejecting the null under the alternative, i.e. the power of the test. In the case of Frank
copula we are computing the size in 2 dimensions and the power in 10 dimensions.
We use three different data generating processes.

3.4.1 i.i.d. Data Generating Process

The first one is the i.i.d. case, where we draw the Ui,d with i ∈ {1, . . . , n} and d ∈
{1, . . . , D} from the choosen copula model C and put

Xid = Uid (3.40)

In table 3.1 we show the results in case the simulated data are i.i.d. The size of the test
is close to the nominal value of 5%, also for a moderate number of observation, but is
lower for the Frank copula than for elliptical copulas and in general for high values of τ ,
and it is also lower in 10 dimensions. The empirical power increases, not only, with the
number of observations, but also with the number of dimensions.

3.4.2 AR(1) Data Generating Process

For the second DGP again we draw Ui,d from a copula C , but now with i ∈ {−100, . . . , n}
and d ∈ {1, . . . , D}. Then we impose Gaussian marginal innovations, applying Φ−1 the
inverse of standard normal cumulative distribution, and an AR1 dynamic on the marginal
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Table 3.1: Power/Size of the test i.i.d. case, Ns=1000 M=2500

D 2 10

N Size Power Size Power
250 τ Gaussian t Frank Clayton Gumbel τ Gaussian t Frank Clayton Gumbel

0.1 0.055 0.077 0.042 0.237 0.055 0.100 0.011 0.018 0.992 0.503 0.949
0.3 0.048 0.065 0.052 0.894 0.245 0.300 0.019 0.036 1.000 1.000 1.000
0.5 0.050 0.061 0.048 0.998 0.431 0.500 0.028 0.019 1.000 1.000 1.000
0.7 0.038 0.049 0.029 1.000 0.404 0.700 0.009 0.002 0.697 1.000 1.000
0.9 0.015 0.016 0.016 1.000 0.137 0.900 0.000 0.000 1.000 0.000 0.000

500 τ Gaussian t Frank Clayton Gumbel τ Gaussian t Frank Clayton Gumbel
0.1 0.046 0.050 0.042 0.396 0.097 0.1 0.023 0.033 1.000 0.987 1.000
0.3 0.046 0.042 0.034 0.993 0.557 0.3 0.031 0.040 1.000 1.000 1.000
0.5 0.049 0.042 0.034 1.000 0.781 0.5 0.032 0.028 1.000 1.000 1.000
0.7 0.050 0.045 0.031 1.000 0.810 0.7 0.015 0.002 1.000 1.000 1.000
0.9 0.014 0.028 0.011 1.000 0.498 0.9 0.000 0.000 1.000 0.435 0.000

1000 τ Gaussian t Frank Clayton Gumbel τ Gaussian t Frank Clayton Gumbel
0.1 0.047 0.048 0.051 0.609 0.199 0.1 0.035 0.045 1.000 1.000 1.000
0.3 0.048 0.052 0.048 1.000 0.877 0.3 0.039 0.047 1.000 1.000 1.000
0.5 0.037 0.049 0.043 1.000 0.989 0.5 0.028 0.036 1.000 1.000 1.000
0.7 0.043 0.053 0.040 1.000 0.993 0.7 0.028 0.020 1.000 1.000 1.000
0.9 0.020 0.033 0.024 1.000 0.952 0.9 0.000 0.000 1.000 1.000 1.000

processes:

ǫi,d = Φ−1 (Ui,d)

Xi,d = 0.5Xi−1,d + ǫi,d

X−100,d = ǫ−100,d

and then, we discard the first 100 observations from the sample.
In table 3.2 we show the results the AR(1) copula DGP of [11]. All the remarks done
for the independent case remain valid, but as can be seen the test is less powerful for
dependent data requiring a greater number of observations to be reliable.

3.4.3 GARCH(1,1) Data Generating Process

The third choice of DGP is the same as the second one but now we impose a GARCH
dynamics on the marginal processes.

ǫi,d = Φ−1 (Ui,d)

Xi,d = h
− 1

2
i,d ǫi,d

hi,d = ω + αǫ2i−1,d + βhi−1

hi−100 =
ω

1− α− β

and we discard the first 100 observations as before. The value of parameters used are
α = 0.919,β = 0.072,ω = 0.012 as estimated from [51] for the S&P500 and already used
in the simulations in [12] and [11].
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Table 3.2: Power/Size of the test with marginal AR(1) dependence Ns=1000 M=2500

D 2 10

N Size Power Size Power
250 τ Gaussian t Frank Clayton Gumbel τ Gaussian t Frank Clayton Gumbel

0.1 0.050 0.072 0.049 0.118 0.032 0.1 0.000 0.010 0.486 0.026 0.529
0.3 0.047 0.053 0.042 0.396 0.080 0.3 0.013 0.021 0.986 0.793 0.992
0.5 0.043 0.058 0.045 0.552 0.087 0.5 0.014 0.018 0.889 0.940 0.977
0.7 0.025 0.034 0.018 0.640 0.066 0.7 0.004 0.001 0.104 0.686 0.444
0.9 0.010 0.010 0.006 0.263 0.012 0.9 0.000 0.000 1.000 0.000 0.000

500 τ Gaussian t Frank Clayton Gumbel τ Gaussian t Frank Clayton Gumbel
0.1 0.037 0.067 0.060 0.160 0.053 0.1 0.007 0.016 0.976 0.151 0.992
0.3 0.040 0.071 0.035 0.604 0.125 0.3 0.011 0.026 1.000 1.000 1.000
0.5 0.051 0.070 0.037 0.861 0.167 0.5 0.020 0.027 1.000 1.000 1.000
0.7 0.032 0.032 0.023 0.934 0.144 0.7 0.006 0.004 0.921 1.000 0.998
0.9 0.006 0.013 0.005 0.690 0.019 0.9 0.000 0.000 1.000 0.000 0.000

1000 τ Gaussian t Frank Clayton Gumbel τ Gaussian t Frank Clayton Gumbel
0.1 0.047 0.048 0.043 0.645 0.210 0.1 0.044 0.036 1.000 0.776 1.000
0.3 0.056 0.055 0.047 1.000 0.891 0.3 0.034 0.038 1.000 1.000 1.000
0.5 0.047 0.040 0.048 1.000 0.981 0.5 0.038 0.041 1.000 1.000 1.000
0.7 0.047 0.051 0.043 1.000 0.993 0.7 0.018 0.028 1.000 1.000 1.000
0.9 0.019 0.029 0.016 1.000 0.966 0.9 0.000 0.000 1.000 0.194 0.003

We report in a different tables results with innovations, linked by t copula with 1 and 5
degrees of freedom. Using 1 degree of freedom, so drawing from a Cauchy copula, it seems
that the symmetry is changed by the GARCH dynamics. This is in contrast to what we
remarked at the end section 3.2. This rather surprising result is in our opinion due to the
fact that we the parameters used for the GARCH with those kind of innovations leads to
a non stationary process (see [60] and [3]).
Table 3.3 reports results for marginal GARCH(1,1) processes. The greater persistence in
those models leads to an additional power reduction and we need, still more observations
for proper inference, in particular for Gumbel distributed innovations.
We report, in table 3.4, the results with t student innovations. In this case, it seems that
GARCH dynamics alters the simmetry properties of the innovations, in fact, the number
of times we reject the symmetry is, in the vast majority of the times, higher than the
nominal level and this discrepance grows with the number of observations.

In table 3.4, the results with t student innovations with 1 and 5 degrees of freedom,
shows instead that reducing the tail dependence to values, usually seen in financial data,
[31] results in a better size for the test. We conjecture that this is impacting the sta-
tionarity of the GARCH process,for the actual values of parameters choosen ([60], [3]),
bringing us outside the hypothesis of validity of our methodology, but futrher investiga-
tions of those issues are deferred to future research.

3.5 Data Applications

In this section, we report the application of our testing procedure to real data. Dataset
have been choosen in order to have more than 1000 observation, an high number of vari-
ables , and for some of them temporal dependence. In this way, we hope to highlight, the
advantages of using a non parametric, high dimensional and dependence robust, test of
reflection symmetry. Bandwidth selection is done as in previous section and Pvalues are
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Table 3.3: Power/Size of the test with GARCH(1,1) marginal dependence Ns=1000
NB=2500

D 2 10

N Size Power Size Power
250 τ Gaussian Frank Clayton Gumbel τ Gaussian Frank Clayton Gumbel

0.1 0.050 0.042 0.122 0.038 0.1 0.003 0.642 0.062 0.638
0.3 0.056 0.048 0.425 0.084 0.3 0.011 0.997 0.946 0.998
0.5 0.049 0.031 0.605 0.064 0.5 0.017 0.969 0.979 0.998
0.7 0.031 0.033 0.697 0.061 0.7 0.006 0.315 0.801 0.699
0.9 0.006 0.008 0.331 0.015 0.9 0.000 1.000 0.000 0.000

500 τ Gaussian Frank Clayton Gumbel τ Gaussian Frank Clayton Gumbel
0.1 0.062 0.053 0.173 0.052 0.1 0.008 0.997 0.342 0.997
0.3 0.062 0.039 0.673 0.097 0.3 0.024 1.000 1.000 1.000
0.5 0.055 0.046 0.895 0.140 0.5 0.033 1.000 1.000 1.000
0.7 0.037 0.044 0.958 0.134 0.7 0.011 0.995 1.000 1.000
0.9 0.007 0.018 0.818 0.033 0.9 0.000 1.000 0.000 0.000

1000 τ Gaussian Frank Clayton Gumbel τ Gaussian Frank Clayton Gumbel
0.1 0.055 0.053 0.253 0.058 0.1 0.016 1 0.918 1
0.3 0.054 0.045 0.909 0.210 0.3 0.035 1 1 1
0.5 0.064 0.058 0.996 0.320 0.5 0.049 1 1 1
0.7 0.047 0.089 0.999 0.332 0.7 0.028 1 1 1
0.9 0.016 0.047 0.999 0.141 0.9 0 1 0.274 0.09

1500 τ Gaussian Frank Clayton Gumbel τ Gaussian Frank Clayton Gumbel
0.1 0.045 0.057 0.371 0.1 0.1 0.024 1 1 1
0.3 0.051 0.037 0.987 0.297 0.3 0.043 1 1 1
0.5 0.066 0.054 1 0.493 0.5 0.076 1 1 1
0.7 0.049 0.104 1 0.517 0.7 0.059 1 1 1
0.9 0.016 0.072 1 0.269 0.9 0 1 1 0.998
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Table 3.4: Test with GARCH(1,1) dependence and t-student innovations, Ns=1000
NB=2500

D 2 10

N
250 τ t t

0.1 0.095 0.030
0.3 0.087 0.033
0.5 0.088 0.028
0.7 0.052 0.004
0.9 0.017 0.000

500 τ
0.1 0.097 0.067
0.3 0.092 0.095
0.5 0.082 0.070
0.7 0.061 0.023
0.9 0.029 0.000

1000 τ
0.1 0.135 0.265
0.3 0.130 0.277
0.5 0.124 0.19
0.7 0.079 0.076
0.9 0.032 0

1500 τ
0.1 0.165 0.485
0.3 0.176 0.456
0.5 0.155 0.283
0.7 0.104 0.163
0.9 0.052 0
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Table 3.5: Test with GARCH(1,1) dependence and t-student innovations, Ns=1000
NB=2500 with 1 and 5 degree of freedom i 2 dimensions

D.O.F 1 5

N
250 τ

0.1 0.095 0.064
0.3 0.087 0.058
0.5 0.088 0.045
0.7 0.052 0.040
0.9 0.017 0.012

500 τ
0.1 0.097 0.058
0.3 0.092 0.066
0.5 0.082 0.069
0.7 0.061 0.040
0.9 0.029 0.006

1000 τ
0.1 0.135 0.063
0.3 0.130 0.071
0.5 0.124 0.062
0.7 0.079 0.062
0.9 0.032 0.025
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approximated using the same number of multipliers M = 2500. As a first, simple illus-
tration of the methodologies described , we apply the rank reflection test to the dataset
introduced in [21],[22], as an example of non elliptically distributed multivariate data.
This seven-dimensional data set contains the log-concentration of uranium (U), lithium
(Li),cobalt (Co), potassium (K), cesium (Cs), scandium (Sc) and Titanium (Ti) measured
in n = 655 data samples taken near Grand Junction, Colorado, US. Recently, the pairs
of this data set have been tested for a possible modeling by certain selected Archimedean
copula models (Ali–Mikhail–Haq, Clayton, Frank, Gumbel–Hougaard) in [38]. [4] and
[65] carried out various tests on the same data set for the hypothesis that the pairs can
be modeled by an arbitrary extreme-value copula. In table 3.6, we report the Pvalues for

Table 3.6: Pairwise and all variables test Pvalues for the Cook & Johnson Database

Li Co K Cs Sc Ti

U 0.709 0.178 0.064 0.286 0.469 0.168
Li 0.109 0.176 0.189 0.120 0.214
Co 0.008 0.010 0.572 0.241
K 0.076 0.000 0.034
Cs 0.001 0.000
Sc 0.010

All 0.238

all pairwise rank reflection test and the pvalue for the test of rank reflection on the joint
distribution of all variables. As can be seen we are not able to reject the rank reflection
symmetry for most of the pairs with the exception of pairs with titanium and scandium.
If we make a comparison with the goodness of fit test reported in [38], where the only
rank reflection symmetric copula considered is the Frank copula, we see that we accept
the null of radial symmetry for the couples (U,Li),(U,SC),(Li,Ti) and (Co,Ti) where the
best model chosen by their test is the Frank Copula. For two out of four cases when the
best model chosen by their procedure is not radially symmetric i.e. (Co,Cs)and (Cs,Sc)
we reject the null at 5% level and for the other two cases i.e. (U,Co) and (Li,Sc), even
if we are not able to reject the null at 5% we have moderately low p-value. We cannot,
also , reject the rank reflection symmetry for the distribution of all the variables. Next,
We consider financial data that are usually assumed to be dependent. First of all, we
use the dataset of international financial indexes, introduced in [16], where he propose a
moment based test in a dynamic copula framework to discriminate between different dy-
namic copula models. The Dataset includes log returns from six stock indexes taken from
yahoo! finance: CAC40(France), The FTSE1000(UK),The Hang Seng Index (China) ,
Nikkei (Japan), S&P500(US),Russel2000(US) and TWSE(Taiwan) from July 7 1997 to
December 30,2003.1

In table 3.7 we show the pvalues for the pairwise test of rank reflection. We have three re-
jection of rank reflection at 5% level. The first one is Russel2000-TWSE that is one of the

1In the original article [16] the sample was from January 1, 1995 to December 31, 2003 but we were
not able to find in yahoo! finance the time series of TWSE preceding July 7 1997. We think this sample
reduction cannot qualitatively change the results
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four couples for which a Gaussian copula (rank reflection symmetric) is rejected in [16].
The second one S&P500-TWSE is one of the three couples for which in the same paper
a Gumbel(not rank reflection symmetric) copula is accepted. The third case, HangSeng-
S&P500, they accept the Survival Gumbel (not rank reflection symmetric). So at least
for the rejected couples we are in agreement with the conclusion of [16]. As an additional

Table 3.7: Pairwise variables test Pvalues for the international Stock indexes returns used
in [16]

UK China Japan US Broad US Top Taiwan

FTSE Hang Seng Nikkei Russel2000 S&P500 TWSE
France CAC 0.723 0.053 0.055 0.846 0.554 0.207

UK FTSE 0.561 0.252 0.962 0.783 0.668
China HangSeng 0.297 0.058 0.009 0.690
Japan Nikkei 0.255 0.111 0.452

US Broad Russel2000 0.078 0.000
US Top S&P500 0.001

check we conducted the test also for the selected terns of indexes they choose. Results
are in table 3.8 together with the test on all the variables. The table shows three rejec-

Table 3.8: Selected Terns and all variables test Pvalues for the Stock index returns used
in [16]

S&P500 Russel2000 FTSE100 0.657
S&P500 Russel2000 Nikkei 0.044

Russel2000 FTSE100 CAC40 0.866
Russel2000 FTSE100 Nikkei 0.110
Russel2000 FTSE100 TWSE 0.023
FTSE100 CAC40 Nikkei 0.075
FTSE100 CAC40 TWSE 0.294
CAC40 Nikkei Hang Seng 0.020
CAC40 Nikkei TWSE 0.092

All 0.016

tion at 5% level, S&P500-Russel2000-Nikkei, Russel2000-FTSE100-TWSE and CAC40-
Nikkei-HangSeng. Of those three only for S&P500-Russel2000-Nikkei some of the test for
trivariate Gaussian copula reject the hypothesis in [16], so we have a partial agreement.
We must stress that all their test with t copula accept the null and that they do not test
in the trivariate setting for non elliptical copulas. In addition the test for all the variables
reject the rank reflection symmetry so that overall our conclusion is the opposite of that
reported in [? ] and is in favor of asymmetric dependence in stock returns as reported
by older studies [57], [1] and [49].
To further explore this issue, we apply the proposed test to log returns of stocks indexes of
Belgium,France,Germany,Greece,Ireland,Italy,Netherlands,Portugal,Spain United King-
dom from January 2,2007 to May 20, 2014,during the past subprime and sovereign debt
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crisis. The prices are total return index net of dividends, taken from Bloomberg. As can

Table 3.9: Pairwise and all variables test Pvalues for European Stock index returns
Germany UK Netherlands Belgium Ireland Greece Spain Italy Portugal

DAX FSTE AEX BEL20 ISEQ ASE IBEX FTSEMIB PSI20
France CAC 0.913 0.496 0.451 0.608 0.814 0.013 0.692 0.453 0.006

Germany DAX 0.281 0.384 0.489 0.791 0.090 0.632 0.174 0.022
UK FSTE 0.598 0.755 0.094 0.004 0.835 0.559 0.029

Netherlands AEX 0.415 0.494 0.024 0.983 0.882 0.035
Belgium BEL20 0.260 0.019 0.985 0.686 0.001
Ireland ISEQ 0.063 0.413 0.496 0.448
Greece ASE 0.019 0.011 0.083
Spain IBEX 0.512 0.001
Italy FTSEMIB 0.055

All 0.018

be seen in 3.9, at 5% level, most of the couples with Greece and Portugal are not rank
reflection symmetric and the test for all the variables is rejected. This is again in favor of
dependence asymmetry and contagion in the euro area during the last crisis. To further
investigate this finding, we computed our statistic from all the european index on rolling
window of 1500 observations on a dayly basis, starting from 1/5/1998 to 5/20/2014. As

Figure 3.1: Daily Rolling Statistic
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fig 3.1 shows for most of the sample data shows asymmetry at the 5% level and during
the crisis period the test is significant 1% level. In addition, the statistic has a smooth
behaviour, increasing inthe first part of the sample peaking in the end of 2008 after the
AIG bailout and other FED intervention measure and then decrease. It, then, reincreases,
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again, during the sovereign debt crisis, in 2010 and, to a lesser extent, in the second part
of 2011. Those preliminar results, seems to suggest that a properly normalized asymme-
try measure could be used as a stress indicator for contagion in financial markets. Further
investigation of this possibility, on different time periods and datasets, are left for future
research.

3.6 Conclusions

In this article we propose a test for normalized rank reflection symmetry. This property of
copula functions, was known under the name of radial symmetry. We motivate our choice
of name, by distinguishing it from the stronger radial symmetry property of multivariate
distribution, giving a probabilistic interpretation and some of its consequences. Our
test is easier to extend to more than two dimensions than previously proposed test of
this type, in addition the use of probabilistic result for the CLT of multivariate empirical
processes for strongly mixing data and of a new multiplier bootstrap procedure allows the
application of the test to dependent data, covering most of known stationary parametric
models. This is particularly important in light of the application of the test, we have
done, to financial contagion issues. Our extensive simulation study showed that the
test is enough powerful with a moderate number of observation and that increasing the
dimension make the test more powerful. Dependence in the data lower the power, but
with more than 1000 observations the test appears reliable for most of the DGP used.
We must remark that the use of the dependent bootstrap in case of i.e. data come at
the cost of losing power with respect to the simple multiplier bootstrap [11]. Even with
this cost in mind, in our opinion this approach is favorable to the usual one that tend to
apply the test to the residuals of some parametric model. In our application to financial
time series, we showed that our test could be used to detect dependence asymmetries.
Our application to European Stock indexes hints, also, to a link to financial contagion,
being able to isolate Greece and Portugal as two of the most contagious countries during
the sovereign debt crisis. This connection with contagion and the consequent possibility
of using the test statistic as stress indicator for contagion is, partly, explored computing
our statistic on a rolling window and will explored further in future research, given the
encouraging behaviour showed in fig. 3.1. We hope ,that the importance of the normalized
rank reflection symmetry, in correctingly evaluating, the risk of the joint extreme events
and the reliability of our test procedure for dependent high dimensional data, showed in
our simulation study and our empirical applications, will make this test widespread and
used.
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Chapter 4

Discrete Orthogonal Polynomials
Derivatives for Empirical Copula
process

4.1 Introduction

The empirical copula process has important statistical applications in non parametric
testing. Independence [26], goodness of fit [39] ,radial symmetry [8], global symmetry,
associativity, archimedianicity , max-stability ([56] and reference therein) are only some
examples of test procedures proposed in the literature. The underlying assumption for
those inference procedures are usually weaker than most of the non copula based methods
and usually are more powerful with respect to the alternative test based on the multi-
variate empirical process.
With the exception of independence and goodness of fit tests, in all the other cases, the
true copula is unknown, even under the null hypothesis, and inference procedures should
be based on bootstrap. Although several approaches has been proposed for bootstrap-
ping from the asymptotic distribution of the process, the most reliable is the multiplier
bootstrap approach with derivative estimation, even if it requires the estimation of the
unknown copula derivatives [10]. In the literature, the only approach to copula derivatives
estimation is through central two point finite differences :

DFD
x f (x) ≡ (f (x+ h)− f (x− h))

2h
=
∂f (x)

∂x
+ o (h) (4.1)

with step h proportional to the square root of the number of observations N . In this
paper, instead, we propose the use of discrete orthogonal polynomials derivatives, pro-
posed in[28], as a generalization of Savitzky-Golay method [72]. The main theoretical
advantages of this method are the possibility of considering more than two point in the
approximation, and the possibility of weighting, through the orthogonality measure, dif-
ferent points in different ways. Those theoretical advantages will be checked through
simulation on copula derivatives estimation through the empirical copula and multiplier
bootstrap method on radial symmetry test.
The paper is structured as follows: In Section 4.2 we summarize recent findings of [28],
derive the convergence in probability of our proposed estimator and outline the algorithm
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for its computation. Then in Section 4.3 we evaluate the efficiency of the proposed method
through an extensive simulation study, discuss results and suggest possible extension of
our efforts.

4.2 Orthogonal polynomials Derivatives and Empir-

ical copula process

In this section we recall the definition of orthogonal polynomials and introduce the or-
thogonal polynomials derivative. Then, after introducing the copula, the empirical copula
and the empirical copula process, we will state in proposition 6 that the Diekema deriva-
tive applied on the empirical copula converge in probability to the copula derivative, and
give details of the algorithmic procedure to estimate the derivative on data.

Given a positive Borel measure on R,µ (x) such that

∫

R

|x|n dµ (x), with n ≥ 0, orthogonal

polynomials with respect to µ are defined as the set polynomials pi ≡ qc =
∑∞

k=0 ckx
k =

∑i
k=0 ckx

k of degree exactly i s.t.

〈pi, pj〉 =
∫

R

pi (x) pj (x) dµ (x) = 0 i 6= j (4.2)

If the measure has finite discrete support dµ (x) =
∑K

k=1 δ (x− xk)wkdx, with δ (x− xk)
the point mass Dirac delta centered in xk, we can use sums instead of integrals:

〈pi, pj〉 =
∫

R

pi (x) pj (x) dµ (x) =
K
∑

k=1

pi (xk) pj (xk)wk = 0 i 6= j (4.3)

and, in this case, there are only K orthogonal polynomials.
The orthonormal polynomials used in this paper satisfy the three term recurrence relation:

√

βj+1pj+1 (x) = (x− αj) pj (x)−
√

βjpj−1 (x) , p−1 (x) = 0, p0 (x) =
1√
β0
.

Analogous recurrences for polynomial derivatives can be obtained by deriving both sides
of the three terms recurrence.
Using orthonormal polynomials and their derivatives it is possible to define an m-degree
polynomial approximation for the first derivative ∂xf (x) and prove, under the existence
of m-th derivative at x, the following [28]:

DOP
x,mf (x) ≡

m
∑

j=1

1

h

∂pj
∂x

∣

∣

∣

∣

x=0

∫

R

f (x+ hξ) pj (ξ) dµ (ξ) =
∂f (x)

∂x
+ o

(

hm−1
)

(4.4)

We, now, recall some definition and results concerning the empirical copula. Given D
random variables {Xi}Di=1, with marginals P (Xi ≤ xi) = Fi (xi), i = 1, . . . , D and joint
cumulative distribution P (X1 ≤ x1, . . . , XD ≤ xD) = F (x1, . . . , xD) by Sklar’ s theorem
in D dimensions [59] we know it exists a copula function C : [0, 1]D 7→ [0, 1] such that
F (x1, . . . , xD) = C (F1 (x1) , . . . , FD (xD)).
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Let (X11, . . . , XN1) . . . (X1N , . . . , XDN) be a random sample, distributed according to F ,
the empirical distribution function and its margins are

F̂N (x1, . . . , xD) =
1

N

N
∑

j=1

D
∏

i=1

I (Xij ≤ xi) (4.5)

F̂Ni (xi) =
1

N

N
∑

j=1

I (Xij ≤ xi) (4.6)

The empirical copula is :

ĈN (u1, . . . , uD) =
1

N

N
∑

j=1

D
∏

i=1

I

(

ÛNij ≤ ui

)

(4.7)

with the pseudo-observations given by ÛNij = F̂Ni (Xij). Several authors ([76] and refer-
ences therein) have studied the weak convergence of the associated empirical process

ĈN (u1, . . . , u3) =
√
N
(

ĈN (u1, . . . , uD)− C (u1, . . . , uD)
)

(4.8)

, and under nonrestrictive assumptions on copula derivatives they prove for N → ∞:

ĈN (u1, . . . , uD) αC (u1, . . . , uD) +
D
∑

i=1

βiC (ui) ∂uiC (u1, . . . , uD) (4.9)

where denotes weak convergence and αC (u1, . . . , uD) is a C-Brownian Bridge on [0, 1]D

and βiC (ui) are its margins. From the last expression it is evident how a good test on
copula characteristics depends on good estimations of derivatives and this becomes the
more important the higher is the copula dimension D.
We state our main proposition on orthogonal polynomials derivative estimator:

proposition 6 Assuming h = N− 1
2 ,let µN be a sequence of measure with limiting mea-

sure µ such that for each N supp (µN) ⊂ [a, b] with a, b ∈ R not dependent on N and a

constant B ∈ R, under the existence of
∂mC

∂umi
on the set VD,i ≡

{

u ∈ [0, 1]D : 0 < ui < 1
}

,

we have:
∣

∣

∣
DOP
ui,m

ĈN

∣

∣

∣
≤ B sup

u∈VD,i

∣

∣

∣
DOP
ui,m

ĈN − ∂uiC
∣

∣

∣

P→ 0 i, u1, . . . , uD (4.10)

The hypothesis on copula derivatives for m > 1 are slightly more restrictive than in [76]
but needed for the validity of (4.4) and satisfied by the copula families and values of m
used in the following. The use of this proposition in conjunction with proposition 3.2
in[76] justify the use of multiplier based inference procedures adopted in the second part
of the simulation study.
We, now, introduce our choice of discrete orthogonal measure. The use of a discrete mea-
sure is, mainly, motivated by numerical methods for obtaining orthogonal polynomials.
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Apart from classical orthogonal polynomials, for which everything is known, methods
for determination of recurrence coefficients in (4.4) from their orthogonality measure are
computationally feasible only for measures with discrete supports, measures over a con-
tinuum, usually, are discretized and then those methods are applied [34]. In this paper the
recurrence coefficients are obtained, using the matlab implementation of Lanczos method
described in [34].
First of all to satisfy the hypothesis of the previous proposition 6, and to compare directly
with finite differences (4.1) we choose the point of the support such that −1 ≤ ξk ≤ 1.
In this way finite difference can be interpreted as ξk ∈ {−1, 0, 1} and constant orthog-
onality measure. Instead we consider a subsample of points equally spaced with space
N−1/2 so that the empirical copula is computed on points spaced by N−1 and this is the
minimum spacing that results in different value of this function. In particular since it is
well known that higher order polynomial approximation in presence of noise are subject
to the Runge phenomenon, that could greatly deteriorate the approximation, we choose
the subsample that better resembles Chebycev points according to the mock Chebycev
scheme proposed in [9]. In this paper we report only results obtained by the orthogonality
measure characterized by the weights wk:

w̃k =
∣

∣

∣
ĈN (. . . , ui + ξkh, . . .)− ĈN (. . . , ui, . . .)

∣

∣

∣
+

1

N

wk =
w̃k

∑⌊
√
N⌋

k′=−⌊
√
N⌋ w̃k′

(4.11)

In the previous expression, the first term on the right hand side weights more points
with an empirical copula value more different from the empirical copula value at which
the derivative is computed and the second term is introduced to avoid numerical issues
associated with zero measure point and is set to the minimum value of the first term
different form zero. This measure is a first heuristic attempt to discriminate noise induced
variation of empirical copula values from true ones. We stress that our proposition 6 is
valid for a wide range of continous and discrete orthogonality measures and that the
investigation of different measures from the one used in this paper could lead to even
better gain in the reliability of test procedures.

4.3 Simulation Study

In this section we report the results from the simulation study comparing finite difference
derivatives with our proposed orthogonal polynomials derivatives. All simulations are
obtained by the use of the copula R package [48],with D = 2, N = 100, 1000 simula-
tions, Kendall’s τ equal to 0.1, 0.5, 0.9 and four different copula families, two elliptic: the
Gaussian and the t with one degree of freedom, and three Archimedean: Frank Clayton
and Gumbel. The first comparison is done computing the difference between true cop-

ula derivative
∂C (u, v)

∂u
and two derivatives approximations (4.1),(4.4) applied empirical

copula, that we, with an abuse of notation, denote together by DuĈN (u, v), using the L2
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distance based on the empirical copula measure:

∥

∥

∥

∥

∂C

∂u
−DuĈN

∥

∥

∥

∥

2,ĈN

=

√

∫

[0,1]2

(

∂C (u, v)

∂u
−DuĈN (u, v)

)2

dĈN (u, v) (4.12)

The resulting measure is then averaged over the simulations.
For the second comparison we report the size/power of the reflection symmetry test based

Table 4.1: Average over 1000 simulations of

∥

∥

∥

∥

∂C

∂u
−DuĈN

∥

∥

∥

∥

2,ĈN

with D = 2, N = 100

Gaussian t Frank Clayton Gumbel
τ m FD OP FD OP FD OP FD OP FD OP

0.1 1 0.1046 0.1008 0.1086 0.1050 0.1079 0.1053 0.1082 0.1082 0.1051 0.1032
2 0.1046 0.1025 0.1086 0.1065 0.1079 0.1053 0.1082 0.1082 0.1051 0.1032
3 0.1046 0.1550 0.1086 0.1574 0.1079 0.1503 0.1082 0.1702 0.1051 0.1504

τ m FD OP FD OP FD OP FD OP FD OP
0.5 1 0.1098 0.1084 0.1216 0.1200 0.1060 0.1122 0.1251 0.1200 0.1090 0.1064

2 0.1098 0.1074 0.1216 0.1183 0.1060 0.1122 0.1251 0.1200 0.1090 0.1064
3 0.1098 0.1588 0.1216 0.1626 0.1060 0.1122 0.1251 0.1523 0.1090 0.1484

τ m FD OP FD OP FD OP FD OP FD OP
0.9 1 0.1540 0.1594 0.1907 0.1977 0.1529 0.1406 0.1726 0.1612 0.1582 0.1473

2 0.1540 0.1442 0.1907 0.1811 0.1529 0.1406 0.1726 0.1612 0.1582 0.1473
3 0.1540 0.1589 0.1907 0.1856 0.1529 0.1317 0.1726 0.1436 0.1582 0.1364

on the A5,n statistic of [8] computed using B = 1000 multiplier bootstrap replicates. The
elliptic copulas and the Frank copula are reflection symmetric, Gumbel and Clayton are
not. From Table 4.1, we can see that OP derivatives generally outperforms FD for at

Table 4.2: Reflection symmetry test size/power D = 2, N = 100, B = 1000,1000 simula-
tions

Size Power
Gaussian t Frank Clayton Gumbel

τ m FD OP FD OP FD OP FD OP FD OP
0.1 1 0.048 0.046 0.065 0.067 0.045 0.044 0.100 0.098 0.06 0.058

2 0.048 0.048 0.065 0.067 0.045 0.044 0.100 0.099 0.06 0.058
3 0.048 0.026 0.065 0.04 0.045 0.025 0.100 0.064 0.06 0.036

τ m FD OP FD OP FD OP FD OP FD OP
0.5 1 0.043 0.04 0.05 0.051 0.043 0.041 0.775 0.775 0.208 0.199

2 0.043 0.042 0.05 0.049 0.043 0.044 0.775 0.776 0.208 0.201
3 0.043 0.021 0.05 0.021 0.043 0.022 0.775 0.682 0.208 0.125

τ m FD OP FD OP FD OP FD OP FD OP
0.9 1 0.011 0.006 0.03 0.012 0.018 0.008 0.638 0.369 0.09 0.057

2 0.011 0.013 0.03 0.031 0.018 0.019 0.638 0.672 0.09 0.097
3 0.011 0 0.03 0.002 0.018 0.001 0.638 0.136 0.09 0.003

least one choice of m, the only exception being the Frank copula with τ = 0.5. For
what concern the choice of m Archimedean copulas gave the same results for m = 1, 2
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and that outperform m = 3 with low and medium association but do worst for τ = 0.9.
Considering also the elliptic copulas makes m = 2 the most convenient choice. Table 4.2
confirms that m = 2 is the best choice, but the OP derivative outperform FD only for
τ = 0.9. However differences in size/power are really small across all the table and further
investigation in terms of different values of N ,D and different test statistics are needed
to better understand the impact of different approximations on inference procedures.

4.4 Concluding Remarks

The use of empirical copula based test is becoming, quickly, an active part of multivariate
statistic. For this reason, better ways of evaluating the limiting asymptotic process are
becoming, incresingly, important. Since the best known method is the multiplier method
with derivative estimation, we tried to contribute proposing a new estimator, based on
orthogonal polynomials.In addition, recent methodologies [45] are directly based on con-
ditional copulas for which the estimator is directly an estimator of copula derivatives and
in those cases is even more important to have a reliable derivative estimator.In this paper
we were able to show that, at least for high association, that is the case where the use of
copulas matter the most, our proposed orthogonal polynomials derivative do better than
the finite difference benchmark, and given the possibility of using different orthogonality
measures, the application of orthogonal polynomials derivatives to the empirical copula
is an idea worth of further exploration.
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Appendix A

Appendix of Chapter 2

A.1 Derivatives

In the following, we introduce our definition of finite difference derivatives and then
show they satisfy the requirements to be copula consistent derivatives. This is done to
show that the simplest possible estimator of derivatives can be used for constructing the
projected empirical copula process, if the true copula satisfies A3 and A4.
Slightly adapting our definitions from [76] we have

∂iC (u) = lim sup
h↓0

{

C (u+ ei2h)

2h
I (ui = 0)

+
C (u+ eih)− C (u− eih)

2h
I (0 < ui < 1)

+
C (u)− C (u− ei2h)

2h
I (ui = 1)

}

(A.1)

where u = (u1, . . . , uD) and ei is the i-th D-dimensional basis vector.
In this way, it is easy to obtain the finite difference approximation used in [36]:

D(1)
N,iC (u) =

{

C (u+ ei (2h− ui))

2h
I (ui ≤ h)

+
C (u+ eih)− C (u− eih)

2h
I (h < ui < 1− h)

+
C (u− ei (ui − 1))− C (u− ei (ui − (1− 2h)))

2h
I (ui ≥ 1− h)

}

If we define forward, backward and central differences as

∆2h
i f (u) =

f (u+ ei2h)− f (u)

2h
(A.2)

∇2h
i f (u) =

f (u)− f (u− ei2h)

2h
(A.3)

δ2hi f (u) =
f (u+ eih)− f (u− eih)

2h
(A.4)
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(A.1) could be rewritten

∂iC (u) = lim sup
h↓0

{

∆2h
i C (u)

2h
I (ui = 0) +

δ2hi C (u)

2h
I (0 < ui < 1)

+
∇2h
i C (u)

2h
I (ui = 1)

}

(A.5)

(A.5) can be generalized to:

∂
(n)
i C (u) = lim sup

h↓0

{

(

∆2h
i

)n
C (u)

(2h)n
I (ui = 0) +

(

δ2hi
)n
C (u)

(2h)n
I (0 < ui < 1)

+

(

∇2h
i

)n
C (u)

(2h)n
I (ui = 1)

}

(A.6)

From this expression the approximation is:

D(n)
N,iC (u− eiui) =

{

(

∆2h
i

)n
C (u− eiui)

(2h)n
I (ui ≤ nh) +

(

δ2hi
)n
C (u)

(2h)n
I (nh < ui < 1− nh)

+

(

∇2h
i

)n
C (u− ei (ui − 1))

(2h)n
I (ui ≥ 1− nh)

}

(A.7)

A.1.1 Finite difference Approximation satisfies A5 and A6

In this paragraph, we will show that finite difference approximations are uniform approx-
imations of the derivatives for derivable functions (i.e. assumption A5) and that are a
consistent estimators for copula derivatives (i.e. assumption A6)
Let us start with A5, it is well known that for n times differentiable functions G

(

(

∆2h
i

)n
G (u)

(2h)n
− ∂

(n)
i G (u)

)

= o (1)

(

(

∇2h
i

)n
G (u)

(2h)n
− ∂

(n)
i G (u)

)

= o (1)

(

(

δ2hi
)n
G (u)

(2h)n
− ∂

(n)
i G (u)

)

= o (1)

thus
(

D(n)
N,iC (u)− ∂

(n)
i C (u)

)

= (A.8)

=
(

o (1) + ∂
(n)
i C (u− eiui)− ∂

(n)
i C (u)

)

I (u3 ≤ nh)

+ o (1) I (nh < u3 < 1− nh)

+ o (1)
(

∂
(n)
i C (u− ei (ui − 1))− ∂

(n)
i C (u)

)

I (u3 > 1− nh)
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When ui ∈ {0, 1} the derivative difference (A.8) is 0 otherwise is o (1) by the continuity
in ui, so in the end the difference between the approximation and the derivative is o (1).
Then, using the previous result, A6 follows:

(

D(n)
N,iĈN (u)− ∂

(n)
i C (u)

)

=
(

D(n)
N,iĈN (u)−D(n)

N,iC (u)
)

+ o (1)

=
1√
N
D(n)
N,iĈN (u) + o (1)

=

{

(

∆2h
i

)n
ĈN (u− eiui)√
N (2h)n

I (ui ≤ nh)

+

(

δ2hi
)n

ĈN (u)√
N (2h)n

I (nh < ui < 1− nh)

+

(

∇2h
i

)n
ĈN (u− ei (ui − 1))√

N (2h)n
I (ui ≥ 1− nh)

}

+ o (1)

=

=















∑n
j=1 (−1)j

(

n
j

)

ĈN (u− ei (ui + (n− i) 2h))

√
N (2h)n

I (ui ≤ nh)

+

∑n
j=1 (−1)j

(

n
j

)

ĈN

(

u− ei
(

n
2
− j
)

2h
)

√
N (2h)n

I (nh < ui < 1− nh)

+

∑n
j=1 (−1)j

(

n
j

)

ĈN (u− ei (ui − 1− j2h))

√
N (2h)n

I (ui ≥ 1− nh)















+ o (1)

Since
∑n

j=1 (−1)j
(

n
j

)

= 0,if hn = O
(

1√
N

)

, it goes to zero in probability by the

continuity of the paths of C

A.1.2 Finite Difference Approximations satisfies A8

Finite difference approximation satisfies also the integrated difference rate of convergence
condition A8.
Under hypothesis A3 and A4 on copula derivatives needed for theorem 1, by Taylor
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expansion we can show:

(

(

∆2h
i

)

C (u)

(2h)
− ∂iC (u)

)

= O (h)

(

(

∇2h
i

)

C (u)

(2h)
− ∂iC (u)

)

= O (h)

(

(

δ2hi
)

C (u)

(2h)
− ∂iC (u)

)

= o (h)

Then we have

√
N

∫ u3

0

dv3

(

D(1)
N,3C (u1, u2, v3)− ∂3C (u1, u2, v3)

)

=
√
N

∫ u3∧h

0

dv3O (h) + I (u3 ≥ 1− h)
√
N

∫ u3

1−h
dv3O (h) +

√
No (h)

=
√
Nu3 ∧ hO (h) + I (u3 ≥ 1− h)

√
N ((1− h)− u3)O (h) +

√
No (h)

=
√
No (h) = o (1)

A.1.3 Finite Difference Approximations Allows A7

The most challenging requirement is asymptotic integration by part given in the as-
sumption A7. We, now, show that finite difference approximation are asymptotically
integrable by part.
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Let F (u1, u2, u3) =

∫ u3

0

f (u1, u2, v3) dv3 + k (u1, u2), then:

∫ u3

0

dv3f (u
′
1, u

′
2, v3)D

(1)
N,3ĈN (u1, u2, v3)

+

∫ u3

0

dv3D(1)
N,3f (u

′
1, u

′
2, v3) ĈN (u1, u2, v3)

− f (u′1, u
′
2, u3) ĈN (u1, u2, u3)

=

∫ u3∧h

0

dv3f (u
′
1, u

′
2, v3)

ĈN (u1, u2, 2h)

2h

+

∫ u3∧(1−h)

h

dv3f (u
′
1, u

′
2, v3)

ĈN (u1, u2, v3 + h)− ĈN (u1, u2, v3 − h)

2h

+ I (u3 ≥ (1− h))

∫ u3

(1−h)
dv3f (u

′
1, u

′
2, v3)

ĈN (u1, u2, 1)− ĈN (u1, u2, 1− h)

2h

+

∫ u3∧h

0

dv3
f (u′1, u

′
2, 2h)

2h
ĈN (u1, u2, v3)

+

∫ u3∧(1−h)

h

dv3
f (u′1, u

′
2, v3 + h)− f (u′1, u

′
2, v3 − h)

2h
ĈN (u1, u2, v3)

+ I (u3 ≥ (1− h))

∫ u3

(1−h)
dv3

f (u′1, u
′
2, 1)− f (u′1, u

′
2, 1− h)

2h
ĈN (u1, u2, v3)

− f (u′1, u
′
2, u3) ĈN (u1, u2, u3)

= ĈN (u1, u2, 2h)
F (u′1, u

′
2, u3 ∧ h)− F (u′1, u

′
2, 0)

u3 ∧ h
u3 ∧ h
2h

(A.9)

+

∫ u3∧(1−h)−h

0

dv3f (u
′
1, u

′
2, v3 − h)

ĈN (u1, u2, v3)

2h
(A.10)

−
∫ u3∧(1−h)+h

2h

dv3f (u
′
1, u

′
2, v3 + h)

ĈN (u1, u2, v3)

2h
(A.11)

+
(

ĈN (u1, u2, 1)− ĈN (u1, u2, 1− h)
)

I (u3 ≥ (1− h))×

× f (u′1, u
′
2, (1− h))− f (u′1, u

′
2, u3)

(1− h)− u3

(1− h)− u3
2h

(A.12)

+

∫ u3∧h

0

dv3
f (u′1, u

′
2, 2h)

2h
ĈN (u1, u2, v3) (A.13)

+

∫ u3∧(1−h)

h

dv3
f (u′1, u

′
2, v3 + h)− f (u′1, u

′
2, v3 − h)

2h
ĈN (u1, u2, v3) (A.14)

+ I (u3 ≥ (1− h))

∫ u3

(1−h)
dv3

f (u′1, u
′
2, 1)− f (u′1, u

′
2, 1− h)

2h
ĈN (u1, u2, v3)

(A.15)

− f (u′1, u
′
2, u3) ĈN (u1, u2, u3) (A.16)

51



When N → ∞ we have that

u3 ∧ h
2h

→ 1

2
F (u′1, u

′
2, u3 ∧ h)− F (u′1, u

′
2, 0)

u3 ∧ h
→ f (u′1, u

′
2, 0)

ĈN (1, u2, 2h)  C (1, u2, 0) = 0

where the last term follows from the continuity of the sample paths of C. So (A.9) goes
to zero.
Analogously (A.12) goes to zero since:

I (u3 ≥ 1− h) → I (u3 = 1)

u3 − 1 + h

2h
I (u3 ≥ 1− h) → 1

2
I (u3 = 1)

F (u′1, u
′
2, u3)− F (u′1, u

′
2, 1− h)

u3 − 1 + h
I (u3 ≥ 1− h) → f (u′1, u

′
2, 1)

ĈN (u1, u2, 1)  C (1, u2, 1)

ĈN (u1, u2, 1− 2h)  C (u1, u2, 1)

For (A.13) and (A.15) we recall a rough bound
∣

∣

∣
ĈN

∣

∣

∣
≤

√
N
(∣

∣

∣
ĈN

∣

∣

∣
+ |C|

)

≤ 2
√
N

so that
∣

∣

∣

∣

f (u′1, u
′
2, 2h)− f (u′1, u

′
2, 0)

2h

∫ u3∧h

0

dv3ĈN (u1, u2, v3)

∣

∣

∣

∣

≤ 2 |f (u′1, u′2, 2h)− f (u′1, u
′
2, 0)|

√
N

2h
u3 ∧ h

∣

∣

∣

∣

I (u3 ≥ (1− h))
f (u′1, u

′
2, 1)− f (u′1, u

′
2, 1− h)

2h

∫ u3

(1−h)
ĈN (u1, u2, v3) dv3

∣

∣

∣

∣

≤ |f (u′1, u′2, 1)− f (u′1, u
′
2, 1− h)|

√
N

2h
2 ((1− h)− u3) I (u3 ≥ (1− h))

By the continuity of f the limit is zero in both cases.
If we sum (A.10),(A.11) and (A.14) we obtain

∫ u3∧(1−h)

u3∧(1−h)−h
dv3f (u

′
1, u

′
2, v3 − h)

ĈN (u1, u2, v3)

2h

−
∫ 2h

h

dv3f (u
′
1, u

′
2, v3 − h)

ĈN (u1, u2, v3)

2h

+

∫ u3∧(1−h)+h

u3∧(1−h)
dv3f (u

′
1, u

′
2, v3 + h)

ĈN (u1, u2, v3)

2h

−
∫ h

0

dv3f (u
′
1, u

′
2, v3 + h)

ĈN (u1, u2, v3)

2h
(A.17)
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All those terms can be written as particular instances of the following integral

1

k

∫ a+k

a

dv3f (u
′
1, u

′
2, v3)CN (u1, u2, v3)

=
1

k

[√
N

∫ a+k

a

dv3f (u
′
1, u

′
2, v3)C (u1, u2, v3)

−
√
N

∫ a+k

a

dv3f (u
′
1, u

′
2, v3) ĈN (u1, u2, v3)

]

Since both C and ĈN are bounded monotonic non decreasing non negative function, and
f is a bounded integrable function, we can use the second mean value theorem [42]. For
some η, η′ ∈ [0, k] we have:

=
1

k

[√
NC (u1, u2, a+ k)

∫ a+k

a+η

dv3f (u
′
1, u

′
2, v3)

−
√
NĈN (u1, u2, a+ k)

∫ a+k

a+η′
dv3f (u

′
1, u

′
2, v3)

]

=
1

k

[

ĈN (u1, u2, a + k)

∫ a+k

a

dv3f (u
′
1, u

′
2, v3 − k)

−
√
NC (u1, u2, a+ k)

∫ a+η

a

dv3f (u
′
1, u

′
2, v3)

+
√
NĈN (u1, u2, a+ k)

∫ a+η′

a

dv3f (u
′
1, u

′
2, v3)

]

=
1

k

[

ĈN (u1, u2, a+ k) k [f (u′1, u
′
2, a) +O (k)]

−
√
NC (u1, u2, a+ k) η [f (u′1, u

′
2, a) +O (η)]

+
√
NĈN (u1, u2, a+ k) η′ [f (u′1, u

′
2, a) +O (η′)]

]

= ĈN (u1, u2, a+ k) [f (u′1, u
′
2, a) +O (k)]

Applying this result to (A.17), subtracting (A.14) we get a zero limit by the continuity
of the paths of C, so that A7 is verified.

A.1.4 Explicit Expressions

In this section, we compute explicit expression for the Empirical Projected Copula and
a Cramer Von Mises statistics for testing conditional independence, when we use finite
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difference derivative estimators

Π̂N |3

(

ĈN (u1, u2, u3)
)

=

∫ u3

0

dv3D(1)
N,3ĈN (u1, 1, v3)D(1)

N,3ĈN (1, u2, v3)

=

N
∑

i,j=1

I (U1i ≤ u1) I (U2j ≤ u2)

{

1

(2Nh)2
I (U3i ≤ 2h) I (U3j ≤ 2h)

∫ u3

0

I (v3 < h) dv3

+
1

(2Nh)2

∫ u3

0

I (U3i − h ≤ v3 < U3i + h) I (U3j − h ≤ v3 < U3j + h) I (h ≤ v3 < 1− h) dv3

+
1

(2Nh)2
I (1− 2h ≤ U3i < 1) I (1− 2h ≤ U3i < 1)

∫ u3

0

I (v3 ≥ 1− h) dv3

}

=
N
∑

i,j=1

I (U1t ≤ u1) I (U2s ≤ u2)

{

1

(2Nh)2
I (U3i ≤ 2h) I (U3j ≤ 2h) u3 ∧ h

+
1

(2Nh)2
[u3 ∧ (1− h) ∧ (U3i ∧ U3j + h)− h ∨ (U3i ∨ U3j − h)] ∨ 0

+
1

(2Nh)2
I (1− 2h ≤ U3i) I (1− 2h ≤ U3i) (u3 − 1 + h) ∧ 0

}

=
N
∑

i,j=1

I (U1i ≤ u1) I (U2j ≤ u2)K (u3, U3i, U3j, h)

We have used the following integral of a variable v ∈ [0, 1]

∫ u

0

dv
m
∏

i=1

I (ai ≤ v < bi) = [1 ∧ u ∧ b1 ∧ . . . ∧ bm − 0 ∨ a1 ∨ . . . ∨ am] ∨ 0

The Cramer Von Mises statistic is:
∫

[0,1]3
d3u

(

ĈN − Π̂N |3

(

ĈN

))2

=

∫

[0,1]3
d3u

(

ĈN

)2

− 2

∫

[0,1]3
d3u

(

ĈT Π̂N |3

(

ĈN

))

+

∫

[0,1]3
d3u

(

Π̂N |3

(

ĈN

))2

∫

[0,1]3
d3u

(

ĈN

)2

=
1

N2

N
∑

i,j=1

3
∏

d=1

∫ 1

0

dudI (Udi ≤ ud) I (Udj ≤ ud)

=
1

N2

N
∑

i,j=1

3
∏

d=1

[1− Udi ∨ Udj ]
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∫

[0,1]3
d3u

(

ĈN Π̂N |3

(

ĈN

))

=
1

N

N
∑

k,i,j=1

∫ 1

0

I (U1i ≤ u1) I (U1k ≤ u1) du1

∫ 1

0

I (U2k ≤ u2) I (U2j ≤ u2) du2

∫ 1

0

I (U3k ≤ u3)

{

1

(2Nh)2
I (U3i ≤ 2h) I (U3j ≤ 2h)u3 ∧ h

+
1

(2Nh)2
[u3 ∧ (1− h) ∧ (U3i ∧ U3j + h)− h ∨ (U3i ∨ U3j − h)] ∧ 0

+
1

(2Nh)2
I (1− 2h ≤ U3i) I (1− 2h ≤ U3i) (u3 − 1 + h) ∧ 0

}

=
1

N

N
∑

k,i,j=1

[1− U1t ∨ U1r] [1− U2r ∨ U2s]

∫ 1

0

I (U3k ≤ u3)

{

1

(2Nh)2
I (U3i ≤ 2h) I (U3j ≤ 2h)u3 ∧ h

+
1

(2Nh)2
[u3 ∧ (1− h) ∧ (U3i ∧ U3j + h)− h ∨ (U3i ∨ U3j − h)] ∧ 0

+
1

(2Nh)2
I (1− 2h ≤ U3i) I (1− 2h ≤ U3i) (u3 − 1 + h) ∧ 0

}

So let’s consider integral of the type

k (a, b, c, d) =

∫ 1

0

I (a ≤ v < b) [v ∧ c− d] ∨ 0

=

∫ 1

0

I (a ≤ v < b) I (v ≤ c) I (v − d ≥ 0) [v − d] dv

+

∫ 1

0

I (a ≤ v < b) I (v > c) I (c− d ≥ 0) [c− d] dv

=

∫ 1

0

I (a ∨ d ≤ v < b ∧ c) [v − d] dv

+ 0 ∨ [b− c ∨ a] [c− d] ∨ 0

=

[

(b ∧ c)2 − (a ∨ d)2
]

∨ 0

2
− d [b ∧ c− a ∨ d] ∨ 0

+ 0 ∨ [b− c ∨ a] [c− d] ∨ 0
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We have

∫

[0,1]3
d3u

(

ĈN Π̂N |3

(

ĈN

))

=
1

N

N
∑

k,i,j=1

[1− U1t ∨ U1r] [1− U2r ∨ U2s]

{

I (U3i ≤ 2h) I (U3j ≤ 2h)
k (U3k, 1, h, 0)

(2Nh)2

+
k (U3k, 1, (1− h) ∧ (U3i ∧ U3j + h) , h ∨ (U3i ∨ U3j − h))

(2Nh)2

+
I (1− 2h ≤ U3i) I (1− 2h ≤ U3i) k (U3k, 1, 0, (1− h))

(2Nh)2

}

Finally

∫

[0,1]3
d3u

(

Π̂N |3

(

ĈN

)

Π̂N |3

(

ĈN

))

=

N
∑

l,k,i,j=1

[1− U1i ∨ U1l] [1− U2k ∨ U2j ]

∫ 1

0

{

1

(2Nh)2
I (U3k ≤ 2h) I (U3l ≤ 2h) u3 ∧ h

+
1

(2Nh)2
[u3 ∧ (1− h) ∧ (U3k ∧ U3l + h)− h ∨ (U3k ∨ U3l − h)] ∧ 0

+
1

(2Nh)2
I (1− 2h ≤ U3k) I (1− 2h ≤ U3k) (u3 − 1 + h) ∧ 0

}

{

1

(2Nh)2
I (U3i ≤ 2h) I (U3j ≤ 2h) u3 ∧ h

+
1

(2Nh)2
[u3 ∧ (1− h) ∧ (U3i ∧ U3j + h)− h ∨ (U3i ∨ U3j − h)] ∧ 0

+
1

(2Nh)2
I (1− 2h ≤ U3i) I (1− 2h ≤ U3i) (u3 − 1 + h) ∧ 0

}

du3

let’s define

blm = (1− h) ∧ (U3l ∧ U3m + h) (A.18)

alm = h ∨ (U3l ∨ U3m − h)
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The integrals are all of the following type

k2 (a, b, c, d) =

∫ 1

0

0 ∨ [v ∧ b− a] [v ∧ c− d] ∨ 0dv

=

∫ 1

0

0 ∨ [v ∧ b− a] I (v > c) [c− d] ∨ 0dv

+

∫ 1

0

0 ∨ [v ∧ c− d] I (v > b) [b− a] ∨ 0dv

+

∫ 1

0

I (v ≤ c) I (v ≤ b) I (v − a ≥ 0) I (v − d ≥ 0) [v − a] [v − d] dv

= k (c, 1, b, a) [c− d] ∨ 0 + k (b, 1, c, d) [b− a] ∨ 0

+ I (a ∨ d < b ∧ c)
∫ b∧c

a∨d
[v − a] [v − d] dv

= k (c, 1, b, a) [c− d] ∨ 0 + k (b, 1, c, d) [b− a] ∨ 0

+ I (a ∨ d < b ∧ c)
{

1

3

[

(b ∧ c)3 − (a ∨ d)3
]

− (a + d)
1

2

[

(b ∧ c)2 − (a ∨ d)2
]

+ ad [(b ∧ c)− (a ∨ d)]
}

∫

[0,1]3
d3u

(

Π̂N |3

(

ĈN

)

Π̂N |3

(

ĈN

))

=
1

(2Nh)4

N
∑

l,k,i,j=1

[1− U1t ∨ U1q] [1− U2r ∨ U2s] {

I (U3k ∨ U3l ≤ 2h)
[

I (U3i ∨ U3j ≤ 2h) k2 (0, h, 0, h)

+ k2 (0, h, ats, bts)

+ I (U3i ∧ U3j ≥ 1− 2h) k2 (0, h, 1− h, 0)
]

+
[

I (U3i ∨ U3j ≤ 2h) k2 (arq, brq, 0, h)

+ k2 (arq, brq, ats, bts)

+ I (U3i ∧ U3j ≥ 1− 2h) k2 (arq, brq, 1− h, 0)
]

+ I (U3k ∧ U3l ≥ 1− 2h)
[

I (U3i ∨ U3j ≤ 2h) k2 (1− h, 0, 0, h)

+ k2 (1− h, 0, ats, bts)

+ I (U3i ∧ U3j ≥ 1− 2h) k2 (1− h, 0, 1− h, 0)
]}

=
1

(2Nh)4

N
∑

l,k,i,j=1

[1− U1t ∨ U1q] [1− U2r ∨ U2s] {

I (U3k ∨ U3l ≤ 2h) I (U3i ∨ U3j ≤ 2h) k2 (0, h, 0, h)

+ 2I (U3k ∨ U3l ≤ 2h) k2 (0, h, ats, bts)

+ 2I (U3k ∨ U3l ≤ 2h) I (U3i ∧ U3j ≥ 1− 2h) k2 (0, h, 1− h, 0)

+ k2 (arq, brq, ats, bts)

+ 2I (U3i ∧ U3j ≥ 1− 2h) k2 (arq, brq, 1− h, 0)

+ I (U3k ∧ U3l ≥ 1− 2h) I (U3i ∧ U3j ≥ 1− 2h) k2 (1− h, 0, 1− h, 0)
}
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A.2 Granger Causality and Conditional Independence

This short section is intended to show in an informal way the relationship beetwin Condi-
tional independence as expressed in (2.1) and the lag 1 Granger non causality. Applying
the definition of Granger non causality given in [43] for 1-lag we have:

P (Xt ≤ xt |Xt−1 = xt−1, Yt−1 = yt−1 ) = P (Xt ≤ xt |Xt−1 ≤ xt−1 ) (A.19)

As noted in [30] a necessary condition for Granger non causality is a conditional inde-
pendence requirement of the type of (2.1).
If Xt ⊥ Yt−1|Xt−1 we have

P (Xt ≤ xt |Xt−1 = xt−1, Yt−1 = yt−1 )

= lim
dyt−1→0

P (Xt ≤ xt, yt−1 ≤ Yt−1 ≤ yt−1 + dyt−1 |Xt−1 = xt−1 )

P (yt−1 ≤ Yt−1 ≤ yt−1 + dyt−1 |Xt−1 = xt−1 )

= lim
dyt−1→0

P (Xt ≤ xt, Yt−1 ≤ yt−1 + dyt−1 |Xt−1 = xt−1 )− P (Xt ≤ xt, Yt−1 ≤ yt−1 |Xt−1 = xt−1 )

P (Yt−1 ≤ yt−1 + dyt−1 |Xt−1 = xt−1 )− P (Yt−1 ≤ yt−1 |Xt−1 = xt−1 )

= lim
dyt−1→0

P (Xt ≤ xt |Xt−1 = xt−1 )P (Yt−1 ≤ yt−1 + dyt−1 |Xt−1 = xt−1 )

P (Yt−1 ≤ yt−1 + dyt−1 |Xt−1 = xt−1 )− P (Yt−1 ≤ yt−1 |Xt−1 = xt−1 )

− P (Xt ≤ xt |Xt−1 = xt−1 )P (Yt−1 ≤ yt−1 |Xt−1 = xt−1 )

P (Yt−1 ≤ yt−1 + dyt−1 |Xt−1 = xt−1 )− P (Yt−1 ≤ yt−1 |Xt−1 = xt−1 )

= P (Xt ≤ xt |Xt−1 = xt−1 ) (A.20)

By this relationship, the projected empirical copula process, if valid at least for weakly
dependent random variables, could be also important in testing for Granger non causality
.
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Appendix B

Appendix of Chapter 3

B.1 Inverse of Survival and Univariate Symmetry

To find the inverse of the survival function in terms of the distribution we must solve the
equation

G
(

F̄ (x)
)

= G (1− F (x)) = x (B.1)

This is accomplished by computing (B.1) in F−1 (q)

G
(

1− F
(

F−1 (q)
))

= F−1 (q)

⇔ G (1− q) = F−1 (q)

⇔ G (p) = F−1 (1− p) p = 1− q

F̄−1
(

F̄ (x)
)

= F−1
(

1− F̄ (x)
)

= F−1 (1− (1− F (x))) = F−1 (F (x)) = x (B.2)

so we have

F̄−1 (u) = F−1 (1− u) u ∈ [0, 1] (B.3)

Using this relation we can prove the equivalence

{

Fi (ci − xi) = 1− Fi (ci + xi) = F̄i (ci + xi)

Fi (ci) = 1− Fi (ci) = F̄i (ci) =
1

2

⇔ P (Ui ≤ ui) = P
(

Ūi ≤ ui
)

(B.4)

First the left to right implication. Let us call ui = Fi (ci − xi) = F̄i (ci + xi). Using
the fact that the distribution function is non decreasing and the survival function is non
increasing, We have:

P (Xi ≤ ci − xi) = P (Fi (Xi) ≤ Fi (ci − xi)) = P (Ui ≤ ui) (B.5)

P (Xi > ci + xi) = P
(

F̄i (Xi) ≤ F̄i (ci + xi)
)

= P
(

Ūi ≤ ui
)

(B.6)

For the right to left implication let ui = Fi (ci − xi) we have:

P (Ui ≤ ui) = P
(

F−1
i (Ui) ≤ F−1

i (ui)
)

= P (Xi ≤ ci − xi) (B.7)
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and

P
(

Ūi ≤ ui
)

= P
(

F̄−1
i

(

Ūi
)

> F̄−1
i (ui)

)

= P
(

Xi > F̄−1
i (Fi (ci − xi))

)

(B.8)

It remains only to evaluate F̄−1
i (Fi (ci − xi)):

F̄−1
i (Fi (ci − xi)) = F−1

i (1− Fi (ci − xi)) (B.9)

= F−1
i (1− (Fi (ci)− Fi (xi))) (B.10)

= F−1
i

((

F̄i (ci) + Fi (xi)
))

(B.11)

= F−1
i ((Fi (ci) + Fi (xi))) (B.12)

= F−1
i (Fi (ci + xi)) = ci + xi (B.13)

B.2 Proofs

B.2.1 Proof of proposition 4

Following [80] we can express the empirical survival copula in a more convenient way.
Consider a Sample from the uniform random variables Ū that are distributed according
to C̄.
We define

ˆ̄Gn (u) =
1

n

n
∑

i=1

I
(

Ūi ≤ u
)

(B.14)

=
1

n

n
∑

i=1

D
∏

d=1

I

(

X̂id > F̄−1
d (ud)

)

(B.15)

= ˆ̄F
(

F̄−1
1 (u1) , . . . , F̄

−1
D (uD)

)

(B.16)

the last equality follows from the fact that, by the probability integral transform, X̂id =
F̄−1
d

(

Ūid
)

has the same distribution as Xid. In this way we have:

ˆ̄Gn

(

F̄1 (x1) . . . F̄1 (x1)
)

= ˆ̄F (x1, . . . , xD) (B.17)

ˆ̄Gnd

(

F̄d (xd)
)

= ˆ̄Fd (xd) (B.18)

F̄−1
d

(

ˆ̄G−1
nd (ud)

)

= ˆ̄F−1
d (ud) (B.19)

And we get for the empirical survival copula

C̄ (u1, . . . , ud) =
ˆ̄Gn

(

ˆ̄G−1
n1 (u1) , . . . ,

ˆ̄G−1
nd (ud)

)

(B.20)

We use the map introduced in [13] :

Φ :

{

DΦ 7→ ℓ∞ [0, 1]D

H 7→ H
(

H−1
1 , . . . , H−1

D

) (B.21)
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where DΦ denotes the set of all distribution functions H on [0, 1]D whose marginal cdfs Hd

satisfy Hd (0) = 0. Using this map, the empirical survival copula process can be expressed

as maps from the multivariate empirical processes on [0, 1]D, Ḡn =
√
n
(

ˆ̄Gn − C̄
)

:

ˆ̄
Cn =

√
n
(

Φ
(

ˆ̄Gn (u)
)

− Φ
(

C̄ (u)
)

)

(B.22)

since Ḡn is a multivariate empirical process (not a multivariate survival empirical process)
the already cited results in [68] for strongly mixing data lead directly to the following
weak convergence limit:

Ḡn (u)  BC̄ (u) (B.23)

Cov (BC̄ (u) ,BC̄ (v)) = C̄ (u ∧ v)− C̄ (u) C̄ (v) (B.24)

Theorem 2.4 in [13] implies it that, under A 3, Φ is Hadamard differentiable at C̄ and
the application of the functional delta method to (B.22) yields the result.

B.2.2 Proof of proposition 5

Let C [0, 1]D the space of function f : [0, 1]D → R that are continuous D [0, 1]D the
space of cadlag function on [0, 1]D and BV 1 [0, 1]D as the subspace of D [0, 1]D consisting
of the functions with total variation bounded by one. For notational convenience we
consider only one multiplier replicate, the generalization to M being straightforward.
From continuous mapping theorem we get

(

(

Ĉn − ˆ̄
Cn

)2

,
(

C̃
[1]
n − ˜̄

C
[1]
n

)2

, Ĉn

)

 

(

(

C− C̄
)2
,
(

C
[1] − C̄

[1]
)2
,C
)

(B.25)

on
[

ℓ∞ [0, 1]D
]4

Because we can write

(

(

Ĉn − ˆ̄
Cn

)2

,
(

C̃
[1]
n − ˜̄C [1]

n

)2

, Ĉn

)

=
√
n
((

Ân, Â
[1]
n , Ĉn

)

−
(

A,A[1], C
)

)

(B.26)

where Ân =
√
n
(

Ĉn − ˆ̄Cn

)2

, Â
[1]
n =

1√
n

(

(

C̃
[1]
n − ˜̄

C
[1]
n

)2
)

and A = A[1] = 0 Let us

introduce the map Ψ : ℓ∞ [0, 1]D × ℓ∞ [0, 1]D × BV 1 [0, 1]D −→ R2 defined by

Ψ (α, α̃, β) =

(
∫

(0,1]D
αdβ,

∫

(0,1]D
α̃dβ

)

(B.27)

we have then
(

nT̂n, nT̃
[1]
n

)

=
√
n
(

Ψ
(

Ân, Â
[1]
n , Ĉn

)

−Ψ
(

A,A[1], C
)

)

(B.28)

we state the Hadamard differentiability of Ψ tangentially to C [0, 1]D×C [0, 1]D×D [0, 1]D

at each (α, α̃, β) in ℓ∞ [0, 1]D×ℓ∞ [0, 1]D×BV 1 [0, 1]D such that
∫

|dα| <∞ and
∫

|dα̃| <
∞ in the lemma 3 below. Then an application of the functional delta method gives

(

nT̂n, nT̃
[1]
n

)

 Ψ′
A,A[1],C

(

(

C− C̄
)2
,
(

C
[1] − C̄

[1]
)2
,C
)

(B.29)
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with

Ψ′
A,A[1],C

(

(

C− C̄
)2
,
(

C
[1] − C̄

[1]
)2
,C
)

(B.30)

=

(∫

(0,1]D
AdC+

∫

(0,1]D

(

C− C̄
)2
dC,

∫

(0,1]D
A

[1]dC+

∫

(0,1]D

(

C
[1] − C̄

[1]
)2
dC

)

(B.31)

=

(
∫

(0,1]D

(

C− C̄
)2
dC,

∫

(0,1]D

(

C
[1] − C̄

[1]
)2
dC

)

=
(

T,T[1]
)

(B.32)

Lemma 3 The map Ψ defined in (B.27) is Hadamard Differentiable tangentially to
C [0, 1]D × C [0, 1]D × D [0, 1]D at each (α, α̃, β) in ℓ∞ [0, 1]D × ℓ∞ [0, 1]D × BV 1 [0, 1]D

such that
∫

|dα| <∞ and
∫

|dα̃| <∞ with derivative given by

Ψ′
A,Ã,B

(α, α̃, β) =

(
∫

(0,1]D
Adβ +

∫

(0,1]D
αdB,

∫

(0,1]D
Ãdβ +

∫

(0,1]D
α̃dB

)

(B.33)

where
∫

αβ,
∫

α̃β are defined via the D-dimensional integration by parts formula exem-
plified for 2 dimension in Theorem 8.8 of [47] if β is not of bounded variation.

Lemma 3 is a vectorized D-dimensional version of lemma 3.9.17 in [82] (see also lemma
4.3 of [14])and since the proof is similar, it will be omitted.

B.3 Bandwidth Selection and generation of depen-

dent multiplier sequences

B.3.1 Bandwidth ℓn

In this appendix we give more details on the concrete implementation of the dependent
multiplier bootstrap by considering the bandwidth selection and the generation of the
dependent multiplier sequence. We adapt the procedure introduced in [11] for the esti-
mation of the bandwidth parameter ℓn to be more coherent with our test statistic. In
their paper, the optimal bandwidth is obtained by minimizing the integrated MSE of an
estimator of

σC (u,v) = Cov (BC (u) ,BC (v)) (B.34)

given by

σ̂n (u,v) =

L
∑

k=−L
kF,0.5 (k/L) γ̂n (k,u,v) (B.35)

where L is an integer > 1 to be chosen in the following,

γ̂n (k,u,v) =







n−1
∑n−k

i=1

{

I

(

Ûi < u
)

− Ĉn (u)
}{

I

(

Ûi+k < v
)

− Ĉn (v)
}

k ≥ 0

n−1
∑n

i=1−k

{

I

(

Ûi < u
)

− Ĉn (u)
}{

I

(

Ûi+k < v
)

− Ĉn (v)
}

k < 0
(B.36)
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and kF,c is the flat top kernel

kF,c = {[(1− |x|) / (1− c)] ∨ 0} ∧ 1 (B.37)

In order to obtain the optimal ℓn they minimize

IMSEU (σ̂n (u,v)) =

∫

[0,1]2D
MSE (σ̂n (u,v)) dudv (B.38)

approximating the integral with a finite grid. To avoid the arbitrary choice of the grid
and to be coherent with our test statistic we choose to minimize

IMSEĈn
(σ̂n (u,v)) =

∫

[0,1]2D
MSE (σ̂n (u,v)) dĈn (u) dĈn (v) (B.39)

= n−2

n
∑

i=1

n
∑

j=1

MSE
(

σ̂n

(

Ûi, Ûj

))

(B.40)

In complete analogy with their computations our optimal bandwidth is

ℓopt =

(

4ˆ̄Γn,Ĉn

ˆ̄∆n,Ĉn

)

n1/5 (B.41)

ˆ̄Γn,Ĉn
=

1

4

d2φ (x)

dx2

∣

∣

∣

∣

x=0

n−2
n
∑

i=1

n
∑

j=1

L
∑

k=−L
kF,0.5k

2γ̂n

(

k, Ûi, Ûj

)

(B.42)

ˆ̄∆n,Ĉn
=

{
∫ 1

−1

φ (x)2 dx

}





(

n−1
n
∑

i=1

σ̂n

(

Ûi, Ûi

)

)2

− n−2
n
∑

i=1

n
∑

j=1

σ̂n

(

Ûi, Ûj

)



(B.43)

Then we choose L as the minimum lag for which autocorrelation of all series becomes
negligible using the automatic procedure proposed in [63] in the matlab implementation
that can be found on Andrew Patton website.

B.3.2 Dependent Multiplier sequence ξi,n

Once we have chosen the bandwidth we are ready to generate a dependent multiplier
sequence according to the moving average method introduced in [12] and discussed in
detail in [11]. Let k be some positive bounded real function such that k (x) > 0 for all
|x| < 1. let bn be a sequence of integers such that bn → 0 , bn = o (n) and bn ≥ 1 for
all n ∈ N. Let Z1, . . . , Zn+2bn−2 be i.e. random variables independent of the sample such
that E (Z1) = 0,E (Z2

1) = 1 and E (|Z1|ν) < ∞ for all ν > 2. Then let ℓn = 2bn − 1, for

any j ∈ {1, . . . , ℓn}, let wj,n = k ((j − bn) /bn) and w̃j,n = wj,n

(

∑ℓn
j=1w

2
j,n

)− 1
2

. For each

i ∈ {1, . . . , n} they show that the sequence

ξi,n =
ℓn
∑

j=1

w̃j,nZj+i−1 (B.44)
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is a dependent multiplier sequence as defined in subsection 3.3.2 with function φ given
by

φ (x) =
k ⋆ k (2x)

k ⋆ k (2x)
(B.45)

B.3.3 Additional Details

In all the simulations and data application performed, we draw Zj from a standard normal
distribution and we choose k (x) to be the Bartlett kernel

k (x) = kB (x) = (1− |x|) ∨ 0 (B.46)

with the previous choice it follows that φ is the Parzen kernel

φ (x) = kP (x) =
(

1− 6x2 − 6 |x|3
)

I (|x| ≤ 1/2)

+ 2
(

1− |x|3
)

I (1/2 < |x| ≤ 1) (B.47)

and that the quantities needed for the bandwidth estimation are

d2φ (x)

dx2

∣

∣

∣

∣

x=0

= −12 (B.48)

∫ 1

−1

φ (x)2 dx = 151/280 (B.49)
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Appendix C

Appendix of Chapter 4

C.1 Proof of Proposition 6

First of all we need a bound on j-th recursive coefficents αj , βj. For doing this we use
the matrix relation among the matrix of weights and support points and the matrix of
recursion coefficients of orthonormal polynomials ( c.f. [33])

QT















1
√
w1

√
w2 . . .

√
wN√

w1 x1 0 . . . 0√
w2 0 x2 . . . 0
...

...
...

. . .
...√

w2 0 0 . . . xn















Q =















1
√
β0 0 . . . 0√

β0 α0

√
β1 . . . 0

0
√
β1 α1 . . . 0

...
...

...
. . .

...
0 0 0 . . . αn















QTTQ = J

with QTQ = IN . Analogous result with in general different orthogonal matrices holds
also for the j-th principal minors of the two matrices that involves only weights support
points and recursion coefficent till j:

QT
(j)T(j)Q(j) = J(j) (C.1)

Using some matrix norm inequality we can bound the recursion coefficents by knowing
that the sum of weights is bounded by K1 and that the support points are also bounded
by a and b. We have

max
k,l=1,...,j

J(j)kl ≤
∥

∥J(j)
∥

∥

2
≤
∥

∥(T(j)
∥

∥

2
≤
√

∥

∥T(j)
∥

∥

1

∥

∥T(j)
∥

∥

∞ (C.2)

where ‖‖2 is the spectral radius that it is equal for the two matrices being them linked by
an orthogonal transformation and ‖‖1 , ‖‖∞ are the max row sum and the max column
sum respectively. In the end we have

max
k,l=1,...,j

J(j)kl ≤ max
l=1,...,j

(

max (( 1 +

j
∑

m=1

√
wm ),

√
wl + xl)

)2

≤ K2 (C.3)

K2 ≡ max
((

1 +
√

j
√

K1

)

,
√

K1 +max (|a| , |b|)
)2

65



This means that the recursion coefficent are bounded by K2. It can be shown that the
j-th orthogonal polinomial is a polinomial of j-th degree with coefficents of the power
k given by rational function of product of k recursion coefficents so that the modulus
of the j-th orthogonal polinomial can be roughly bounded by jKj

2 max (|a| , |b|)j that
for j fixed does not depend from N and an analogous bound can be obtained for the
derivatives of the polynomials that being polnomials of lower degree can be bounded by
(j −m)Kj

2 max (|a| , |b|)j−m.
For notational convenience we prove the theorem only for the two dimensional case using
u for u1 and v for u2. The extension to the general case does not present any additional
difficulty.

Regarding the first part of the theorem, from 0 ≤
∣

∣
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And since by construction pj ∈ L2 (R, dµN) we can use Cauchy–Schwarz inequality to

bound
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The last expression come from the following relationship that uses the orthogonality of
polynomials and that the sum over j starts from 1:
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and since finite difference derivative is bounded for every ξ it is in L2 (R, dµN) and we get
the result by Cauchy-Swartz inequality and the bounds on polynomials derived earlier :
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For the second part, we begin proving that that ∆hξĈN (u, v) ≡ ĈN (u+ hξ, v) −
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ĈN (u, v) ∈ L2 (R, dµN). We have:
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∥

∥

∥

2
=

√

∫

R

∣

∣

∣
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where we used the fact that both the copula and the empirical copula are non negative
and bounded by one. Under the assumptions of the proposition we can apply the first
Diekema derivative to the copula obtaining
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Then we must study the probability limit of:
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ĈN (u, v)− C (u, v)
)

= DOP
u,m
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using h =
1√
N

we obtain:
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in the above formula we can rewrite :

ĈN (u+ hξ, v) = ĈN (u, v) + ∆hξĈN (u, v) (C.11)

and we have for a given N :
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Where we have used the orthogonality with respect to a polynomial of minor degree and
again the Cauchy-swhartz inequality. Since by the bounds obtained before the sum is
bounded the result follows by the continuity of the limiting process of ĈN :
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dµ (C.16)
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