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Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it



To Laura, the reason why this work exists.





Abstract

Natural language, spoken and written, is the most important way for humans
to communicate information to each other. In the last decades natural language
processing (NLP) researchers have studied methods aimed at making computers
“understand” the information enclosed in human language. Information Extraction
(IE) is a field of NLP that studies methods aimed at extracting information from
text so that it can be used to populate a structured information repository, such as a
relational database. IE is divided into several subtasks, each of which aims to extract
different structures from text, such as entities, relations, or more complex structures
such as ontologies. In this thesis the term “information extraction” is (somehow
arbitrarily) used to identify only the subtasks that are formulated as sequence labeling
tasks.

Recently, the main approaches by means of which IE has been tackled rely on
supervised machine learning, which needs human-labeled data examples in order
to train the systems that extract information from yet unseen data. When IE is
tackled as a sequence labeling task (as in e.g., named-entity recognition, concept
extraction, and in some cases opinion mining), among the best-performing supervised
machine learning methods are certainly probabilistic graphical models, and, specifically,
Conditional Random Fields (CRFs). In this thesis we investigate two major aspects
related to information extraction from text via CRFs: the creation of CRFs models
that outperform the commonly adopted, state-of-the-art, “linear-chain” CRFs, and
the impact of the quality of training data on the accuracy of CRFs system for IE. In
the first part of the thesis we use the capabilities of the CRFs framework to create
new kinds of CRFs (i.e., two-stage, ensemble, multi-label, hierarchical), that unlike
the commonly adopted linear-chain CRFs have a customized structure that fits the
task taken into consideration. We exemplify this approach on two different tasks,
i.e., IE from medical documents and opinion mining from product reviews. CRFs,
like any machine learning-based approach, may suffer if the quality of the training
data is low. Therefore, the second part of the thesis is devoted to (1) the study of
how the quality of the training data affects the accuracy of a CRFs system for IE;
and (2) the production of human-annotated training data via semi-supervised active
learning (AL).

We start in Chapter 2 by facing the task of IE from medical documents written
in the Italian language; this consists in extracting chunks of text that instantiate



concepts of interest for medical practitioners, such as drug dosages, pathologies,
treatments, etc.. We propose two novel approaches: a cascaded, two-stage method
composed by two layers of CRFs, and a confidence-weighted ensemble method that
combines standard linear-chain CRFs and the proposed two-stage method. Both the
proposed models are shown to outperform a standard linear-chain CRFs IE system.

In Chapter 3 we investigate the problem of aspect-oriented sentence-level opinion
mining from product reviews, that consists in predicting, for all sentences in the
review, whether the sentence expresses a positive, neutral, or negative opinion (or no
opinion at all) about a specific aspect of the product. We propose a set of increasingly
powerful models based on CRFs, including a hierarchical multi-label CRFs scheme
that jointly models the overall opinion expressed in a product review and the set
of aspect-specific opinions expressed in each of its sentences. Also in this task the
proposed CRF models obtain better results than linear-chain CRFs.

In Chapter 4 we move to studying the impact that the quality of training data
has on the learning process and thus on the accuracy of a classifier. Low quality in
training data sometimes derives from the fact that the person who has annotated
the data is not an expert of the data domain. We test the impact of training data
quality on the accuracy of IE systems oriented to the clinical domain.

Finally, in Chapter 5 we investigate the process of AL in order to obtain good-
quality training data with minimum human annotation effort. We propose several AL
strategies for a type of semi-supervised CRFs specifically devised for partially labeled
sequences. We show that, with respect to the proposed strategies, margin-based
strategies always obtain the best results on the four tasks we have tested them on.
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Introduction

Language is the main structured means with which humans, and non-humans as well,
convey information. Natural language, spoken and written, can be considered the
most important way for humans to communicate information with each other. During
the past ages, different cultures have built their own languages, each of which is
subject to well-defined rules that give some kind of structure to the abstract concept
one may want to express. Basically, humans have found a set of common rules to
understand each other and express concepts and information. In the modern era,
with the rise of automation and the invention of computers, humans have wondered
whether an automatic system could understand the natural language of a human
being. Natural Language Processing (NLP) can be considered as the field that studies
methods aimed at extracting some kind of “structure” from a text written in natural
language so that a computer could manage the information enclosed in it.

I.1 Natural Language Processing Tasks

The concept of “structure” in a natural language text depends on what one is looking
for: the grammatical structure of a sentence, the concepts represented by the entire
text, the concepts instantiated by the words in the text, the sentiment conveyed by
a word, and so on. The extraction from text of each of these types of information
has been tackled in different tasks that we briefly summarize1, in order of increasing
difficulty, as follows:

• The most basic type of text analysis is part-of-speech (POS) tagging. This task
aims to find, for each word in a text, its corresponding part of speech, i.e.,
understand if a word is a noun, an adjective, a verb, etc.

• Slightly more complex than POS tagging is phrase chunking. Phrase chunking
aims to segment a piece of text, usually a sentence, into chunks, i.e., sequences of
contiguous words that constitute the basic non-recursive phrases corresponding
to the major part-of-speech categories.

• Information extraction aims to extract factual structured information from text.
Depending on the type of structure one wants to extract, different subtasks
are taken into consideration. The subtask that has to do with the extraction
of instance of categories such as Location, Person, and Organization, is called
named-entity recognition. Similar to named-entity recognition is the concept

1Note that this is not meant to be an exhaustive list of NLP tasks, but only a list of the tasks
taken into consideration in this thesis.
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extraction subtask, in which the elements to extract are instances of larger
concepts (e.g., clinical concepts) that, differently from entities, can span several
tokens and are usually domain-dependent. Both of these subtasks can be
tackled as sequence labeling problems. The subtask aimed at the extraction of
relations between entities, e.g., is-employee-of for person-organization entity
pairs, is the relation extraction task. More complex subtasks of information
extraction have to do with the extraction of more complex structure from text,
e.g., trees, ontologies, etc.

It is worth to notice that in this dissertation we will use the term “information
extraction” to refer to the sequence labeling subtasks (e.g., named-entity
recognition, concept extraction) instead of its broader meaning.

• The problems tackled by NLP go beyond the recognition of the factual infor-
mation expressed in a text. Sentiment analysis, in its most traditional setting,
aims to recognize if in a text there is some kind of opinion, expressed by an
opinion holder, toward a certain object.

I.2 Sequence Labeling

Given the sequential nature of written language, many NLP tasks are best formulated
as sequence labeling problems. Part-of-speech tagging aims to label a sequence of
words with their parts of speech; phrase chunking aims to assign to each word their
membership in a certain kind of phrase; named-entity recognition aims to recognize if
a word or a sequence of words are instances of some predefined concept. In the early
years of NLP, sequence labeling problems have been solved with automatic systems
based on hand-crafted rules. Hand-crafted rules systems, although efficient, are very
expensive: the production of rules requires the joint work of a domain expert and a
language engineer. An alternative approach that partially solved this issue is the
adoption of machine learning systems. In the machine learning scenario a domain
expert is certainly needed, but only in order to annotate training data necessary
to the machine learning algorithm. For a domain expert the effort of annotating
data is much lower than the effort of creating a set of rules. Nowadays the machine
learning approach is the most frequently used and most efficient approach for dealing
with sequence labeling tasks. Probabilistic graphical models such as Hidden Markov
Models (HMMs) and, in particular, Conditional Random Fields (CRFs) are the state
of the art in sequence labeling problems. One of the main features of probabilistic
graphical models such as Conditional Random Fields is the capability to let the
language engineer not only decide the features that model the problem, but also
decide how to model the interaction and dependencies among such features and
between the features and the elements to classify. These features are common to
the algorithms that belong to the family of structured learning algorithms which
comprise the structured perceptron, structured Support Vector Machines (SVMs) (a
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structured version of the traditional SVMs) and all the maximum-margin approaches
using structure prediction frameworks, etc.

Probabilistic graphical models, like any machine learning-based approach, may
suffer if the quality of training data is low. Low quality in training data generally
arise when the data are annotated by coders that are not expert in the domain, e.g.,
the medical domain. This lack of experience usually brings about annotation errors
in the training data. The use of training data of bad quality will generate trained
models of bad quality, that will produce annotation errors similar to those present in
the training data. The quality of training data is thus a crucial aspect of the problem,
and the creation of high-quality training data is an integral part of the learning
process. For this reason research has explored methods, such as active learning, that,
given a certain amount of effort spent for training data creation, allow to maximize
the quality of the training data with respect to the effectiveness potentially produced
by models learnt on them.

I.3 Structure of the Thesis

This dissertation faces the sequence labeling task in NLP in two contingent problems:
(1) the modeling of the task using CRFs, and (2) the quality of data used to
train such models. It is composed by four main chapters, plus an introductory
chapter on probabilistic graphical models and their notation, and a conclusions
chapter. Chapters 2 and 3 are devoted to the study of novel CRFs structures for
the problems of information extraction from clinical text and aspect-related opinion
extraction, pushing the capabilities of CRFs beyond those typical of the classic
linear-chain structure. Chapters 4 and 5 are devoted to studying the impact of the
quality of training data on the learning process. In particular, Chapter 4 shows how
poorly annotated data can affect the performance of a CRF classifier on the task of
information extraction from clinical text, while Chapter 5 proposes active learning
techniques for creating high-quality training data in the context of semi-supervised
CRFs.

The outline of this dissertation is thus the following:

• Chapter 1 is a preliminary introduction to probabilistic graphical models and
CRFs. It is devoted to introducing the basic techniques of inference and learning
on CRFs with the mathematical notation that will be adopted throughout the
dissertation.

• In Chapter 2 we discuss the problem of performing information extraction
from free-text medical reports via supervised learning. We present two novel
approaches to IE for radiology reports: (i) a cascaded, two-stage method based
on the well known linear-chain Conditional Random Fields (LC-CRFs), and
(ii) a confidence-weighted ensemble method that combines standard LC-CRFs
and the proposed two-stage method. We also report on the use of “positional
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features”, a novel type of feature intended to aid in the automatic annotation
of texts in which the instances of a given concept may be hypothesized to occur
in specific areas of the text.

• In Chapter 3 we study the finer-grained problem of aspect-oriented opinion
mining at the sentence level, which consists of predicting, for all sentences in a
product review, whether the sentence expresses a positive, neutral, or negative
opinion (or no opinion at all) about a specific aspect of the product. For this
task we propose a set of increasingly powerful models based on Conditional
Random Fields, including a hierarchical multi-label CRFs scheme that jointly
models the overall opinion expressed in the review and the set of aspect-specific
opinions expressed in each of its sentences. In order to cope with the complex
structure of the multi-label models, where exact inference is not possible, we
revert to approximate inference via Gibbs sampling. We evaluate the proposed
models against a newly created dataset of hotel reviews in which the set of
aspects and the opinions expressed concerning them are manually annotated
at the sentence level.

• In Chapter 4 we test the impact of training data quality on the accuracy of
information extraction systems oriented to the clinical domain. Low quality
in training data sometimes derives from the fact that the person who has
annotated the data is different (e.g., more junior) from the one against whose
judgment the automatically annotated data must be evaluated. We compare
the accuracy deriving from training data annotated by the authoritative coder
(i.e., the one who has annotated the test data), with the accuracy deriving
from training data annotated by a non-authoritative coder.

• In Chapter 5 we study the behaviour of several active learning strategies in a
semi-supervised learning scenario. We test the effectiveness of these strategies
on different sequence labeling tasks, such as phrase chunking, part-of-speech
tagging, named-entity recognition, and biomedical-entity recognition. We find
that margin-based strategies constantly achieve good performance in all such
tasks. The results also show that the choice of the single-token annotation
strategy can bring to unpredictable results on sequence labeling tasks where
the structure of the sequences is not regular, as in named-entity recognition.

• Finally, Chapter 6 sums up the topics embraced in this dissertation and proposes
new directions for future work.

I.4 Key Publications

The material in this dissertation, and in particular the material in Chapters 2 to 4,
is based on the following publications:
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1
Graphical Models

and Conditional Random Fields

In this chapter we introduce the theoretical framework that we use throughout this
dissertation: graphical models and, in particular, conditional random fields. We first
briefly introduce graphical models, and then we deeply dig into conditional random
fields in order to present the basis of the framework we adopt and extend in the rest
of this thesis. In this chapter we explain the main techniques to perform the most
important machine learning operations with conditional random fields, i.e., training
the model and label prediction for unseen data.

1.1 Graphical Models

Graphical models (GMs), or probabilistic graphical models (PGMs) [61], are a
formalism used to easily describe a probabilistic distribution by using graphs and
allowing inference on them. The main advantage of GMs is that they can model a
distribution over many variables, partitioning these variables and dealing with them
in modeling a small, “local” subset of variables, instead that modeling everything
together.

There are two main kinds of GMs, undirected models and directed models. The
main difference between the two classes of models is that they are represented by
different graphs, undirected the first and directed the second. This difference means
that probability distributions are modeled differently. Before describing undirected
and directed graphical models, we need to introduce some notation that is common
to both types of model1.

Let Y be a set of random variables whose values come from set Y . An assignment
of values from Y to Y is denoted by y. We consider ys as the value assigned to the
s-th random variable Ys.

We will use this notation throughout this chapter to define GMs and how they
work.

1In this chapter and in the rest of the thesis we adopt the same standard notation used in [134].
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1.1.1 Undirected Models

In order to define an undirected model (also called Markov network or Markov
random field) we need to introduce other concepts, that can be seen as the bricks
with which we can build an undirected model. We define a factor as a local function
of the form Ψc(yc) where the index c ranges from 1 to C, where C is the total
number of factors necessary to model the probability distribution p over sets of
random variables Y . The factor Ψc(yc) is defined by a subset yc of variables, and its
outcome is a non-negative scalar that represents the compatibility of the variables in
yc; the higher is the compatibility of the assignment, the higher is the probability of
the assignments. An undirected graphical model can define a family of probability
distributions that factorize according to a given set of factors F = {Ψc}, that is:

p(y) =
1

Z

C∏
c=1

Ψc(yc) (1.1)

Given that the factors are non-negative functions, the product of factors is positive
but may not sum to 1. Thus the role of Z is to make sure that the probability p
sums to 1:

Z =
∑
y

C∏
c=1

Ψc(yc) (1.2)

When Z is expressed as a function of the set of factors F is called partition function.
Notice that the summation on y represents the summation over all the possible
assignments of the sequence, and so, computing Z is in general intractable.

A random field is a particular distribution among those defined by an undirected
graphical model formalized by Equation (1.1).

Graphical models are so called because the probability distributions they define are
prone to be represented as graphs. In fact, the distribution defined in Equation (1.1)
can be represented easily by a graph and, more exactly, by a factor graph [63].

A factor graph is a bipartite graph G = (V, F,E) where the set V = {1, ..., |Y |}
represents the nodes that correspond to the random variables of the model, the set
F = {1, ..., C} represents the other kinds of nodes that corresponds to the factors,
and E is the set of edges that link the random variable nodes to the factor nodes. If
there is an edge between a random variable node corresponding to a random variable
Ys and a factor node corresponding to a factor Ψc, then Ys is one of the arguments
of Ψc.

The graph in Figure 1.1 is a factor graph that describes all the distributions over
three random variables, y1, y2, y3, that is

p(y1, y2, y3) =
1

Z
Ψ1(y1, y2)Ψ2(y2, y3)Ψ3(y1, y3) (1.3)



1.1. Graphical Models 3

y1 y2

y3

 1

 2 3

Figure 1.1: Example of a factor graph

As we can see the factor graph reflects precisely the factorization in Equation (1.3).
In fact the round nodes represent the random variables, while the squared black
nodes represent the factors; finally the edges that connect factor nodes and random
variable nodes make explicit the association of variables as factor arguments.

Undirected models have been used in a large span of tasks, from image analysis to
term dependencies modeling. Probably the most popular form of undirected model
is the Conditional Random Field that, as we will see in Section 1.2, has been used to
solve lots of natural language processing tasks and image classification tasks as well.

1.1.2 Directed Models

Differently from undirected models, where we cannot interpret the probabilistic
interactions between single variables, in directed models this is possible. In fact,
instead of using local functions, directed models factorize the probability distribution
into local conditional probability distributions. In this section we define G as a
directed acyclic graph (DAG), where π(s) represents the indices of parents of Ys in
G. Formally, a directed graphical model is a family of distributions that factorize as:

p(y) =
S∏
s=1

p(ys|yπ(s)) (1.4)

The distribution p(ys|yπ(s)) is called local conditional distribution and is the locally
normalized equivalent of a factor, the undirected local functions. In fact the local
conditional distribution is an actual probability distribution, and there is no need of
a normalization factor Z.

Figure 1.2 is an example of a directed graphical model (also called Bayesian
network) that describes the family of distributions over variables y1, y2, y3, namely:

p(y1, y2, y3) = p(y3|y1, y2)p(y2|y1)p(y1) (1.5)
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y1 y2

y3

Figure 1.2: Example of a Bayesian network

As we can see from Equation (1.5), variable y3 depends on both y1 and y2; this is
reflected on the graph where the node that represents y3 has two incoming edges,
one from node y1, and one from y2.

Directed models have been used as a framework over the years to build several
supervised, semi-supervised and unsupervised learning algorithms. The most famous
such models are probably Hidden Markov Models (HMM) [105] used in many impor-
tant works on information extraction such as [119, 33] but also in other fields such
as speech recognition and Maximum Entropy Markov Models (MEMM) [79], used
in many information extraction works [60] as well as in other fields [127]. Also the
Latent Dirichlet Allocation (LDA) [9] algorithm for topic modeling belongs to the
category of directed graphical models.

1.2 Conditional Random Fields

Conditional random fields (CRFs) [64] belong to a class of learning algorithm that
are specifically devised for learning and predicting structures, such as sequences,
trees, and also more complex structures namely the structured learning algorithms.
This class of algorithms in addition to CRFs includes structured maximum margin
methods (i.e., structured SVMs) [51, 141, 150, 151], structured perceptron [18], and
methods based on reranking approaches [16, 24, 40, 52, 88, 89, 93, 118].

In this dissertation we will make extensive use of CRFs as the machine learning
framework to learn and predict different labeled structures. In order to use CRFs as
a machine learning tool for learning and predicting random variables, we need to
introduce a distinction among random variables. From now on we consider X as the
set of input variables, that we assume are always observed, while we consider Y as
the set of output variables from which we learn the model during the learning phase
and we wish to predict during the classification phase.
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CRFs are a particular instance of undirected models, used for defining the
conditional probability p(y|x), where y is an assignment for the output variables
(also identified as the classes, or tags, or labels), and x is the assignment for the input
variables, namely, the features. Let us take as an example the task of part-of-speech
(POS) tagging, where to each word or token of a sentence we need to associate the
correct POS label. In such scenario we will have that y is an assignment of POS
labels for the associated vector of tokens x.

Recalling the Equation (1.1), the general formula that defines a CRF is the
following:

p(y|x) =
1

Z(x)

C∏
c=1

Ψc(yc,xc) (1.6)

Equation (1.6), even if apparently very similar to Equation (1.1), has one important
difference: now as normalization factor we have Z(x), a function of the input variables
x:

Z(x) =
∑
y

C∏
c=1

Ψc(yc,xc) (1.7)

Assuming to have two GMs with the same variables and the same interactions
between them, and that in one GM we condition on part of the variables, the
GM with conditioned variables will be “simpler” than the other one, given that
conditioning on part of the variables is equivalent to constraining some variables to
assume a specific value. Thus, in general, given that x are the variables on which we
condition on, calculating Z(x), as function of x, is easier than calculating Z.

The factors Ψc adopted in CRFs are defined as:

Ψc(yc,xc) = exp


K(c)∑
k=1

θckfck(yc,xc)

 (1.8)

where:

• θ is the parameters vector of the model and is typically learnt from the training
data;

• f(yc,xc) is a feature function i.e., functions that return 0 or 1 depending on the
values of their arguments (see Section 1.2.1 for a more detailed explanation);

• k is an index that ranges on [1, K(c)], the number of feature functions and
associated parameters relative to factor Ψc. The quantity K(c) is determined
by the dimension of the vectors yc and xc;

• the subscript ck, of both parameters and feature functions, tells us that each
factor has its own set of feature functions and associated parameters.
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The last observation is true in general, but it is often the case, that models rely on
parameter tying. Using parameter tying means that we can define different subsets of
factors that share common feature functions and the relative parameters. In order to
do this, we define a subset of all the factors D in G such that D = {D1, D2, ..., DP}
where each Dp is a factor template, that is, a set of factors that share the same
feature functions and parameters.

The CRFs that use parameter tying can be defined as:

p(y|x) =
1

Z(x)

∏
Dp∈D

∏
Ψc∈Dp

Ψc(yc,xc; θp) (1.9)

where the “tied” factors are defined as:

Ψc(yc,xc; θp) = exp


K(p)∑
k=1

θpkfpk(yc,xc)

 (1.10)

Equation (1.10) makes explicit how parameter tying works. For each factor template
Dp, with associated feature functions and parameters, there are many factors Ψc

with their associated random variables. The random variables of each factor will
affect the parameters and feature functions that define factor template Dp.

Parameter tying is useful when we need to model structures with repeated
elements; in this case it is better to have the same parameters describing every single
element of the structure instead of having each element described by its own set of
parameters.

All these concepts will be explained in more detail in the next section, where we
will describe the most frequently used instance of CRFs, Linear-Chain CRFs.

1.2.1 Linear-Chain Conditional Random Fields

Linear-Chain (LC) CRFs are probably the most frequently used CRF in the field of
sequence labeling tasks of information extraction [80, 86, 93, 94, 100, 102, 112, 115,
132]. The LC-CRF is tailored to deal with labeled sequences, so it is not surprising
that it has been successfully used in tasks such as part-of-speech tagging [64], phrase
chunking [120, 135], negation detection [19], and spoken language understanding
along with reranking methods [24].

The graph structure of the LC-CRF (Figure 1.3) is the reason why this model
works so well on sequences; in fact, it is composed of two factors that describe the
interactions between input variables and output variables associated with an element
of the sequence, and between output variables associated with contiguous elements
of the sequence.

Formally, the equation that defines the LC-CRFs of Figure 1.3 is the following:

p(y|x) =
1

Z(x)

T∏
t=1

Ψu(yt,xt, θτ )
T∏
t=2

Ψb(yt, yt−1, θξ) (1.11)
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Figure 1.3: Linear-chain CRF

where we have two factor templates: the first one ranges over all the input variables
that compose the sequence T (where T = |x|), and the second one ranges over all the
input variables minus one, given that it models pairs of contiguous output variables
yt and yt−1.

It is worth noticing that the assignment vector of input variables x is a vector of
vectors. In fact for each element of the sequence we have a vector of observations
(features) xt of length Ω. Differently from HMMs, CRFs allow to use rich sets of
features associated with each element of the sequence. For example, in the POS
tagging scenario introduced in Section 1.2, vector y would be composed by POS
labels while each element xt of the input vector x would be composed by several
input variables representing the word at position t in the sequence, the lemma of the
word, its prefixes, its suffixes, and so on.

The first factor template in Equation (1.11) models the co-occurrence between
input variables and output variables. The factors belonging to the unigram factor
template are defined as:

Ψu(yt,xt; θτ ) = exp

K(τ)∑
k

θτkfτk(yt,xt) (1.12)

The second factor template in Equation (1.11) models the co-occurrence between
contiguous output variables. The factors belonging to the bigram factor template
are defined as:

Ψb(yt, yt−1; θξ) = exp

K(ξ)∑
k

θξkfξk(yt, yt−1) (1.13)
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As we can notice from Equation (1.12) and Equation (1.13), the sets of feature
functions used and the parameters affected by the two factor templates are not the
same. One factor template shares a set of feature functions and parameters and
the other template factor another set. This is a design strategy that allows the
designer of the CRFs to model different “aspects” of the distribution in different
ways, given that the interaction/dependency between observed variables and output
variables, and between contiguous output variables, has a different meaning, so that
they cannot be mixed.

Feature Functions

Probably one of the hardest aspects to understand for someone who approaches for
the first time CRFs are the feature functions. Feature functions, to put it in an
easy and informal way, are the tools with which we encode input variables, output
variables, and combinations of them, in order to create a binary vector used to fit
the associated parameters and create the CRF model.

More formally, feature functions are binary functions that describe dependencies
between input variables and output variables as detected in the training data. In
LC-CRF the following two types of feature function are commonly used:

fidv(yt,xt) =

{
1 if yt = i and xtd = v
0 otherwise

(1.14)

fij(yt, yt+1) =

{
1 if yt = i and yt−1 = j
0 otherwise

(1.15)

where there is a function of type fidv(yt,xt) and a function of type fij(yt, yt−1)
for each combination of i ∈ Y, j ∈ Y, d ∈ Ω, and actual value v of the input
variable, taken from the data. d ∈ Ω represents the type of input variable that
feature functions take into consideration. Taking as example the POS scenario, the
types of input variables are the different types of features adopted, e.g., ΩPOS =
{word, lemma, prefix, suffix}. For simplicity of notation, in Equation (1.12) and
Equation (1.13) we have used indexes τk and ξk to range on all the possible values
of the triple (i, d, v) and of the pair (i, j), respectively.

The following is an example of a feature function of the type described in
Equation (1.14) in the context of POS tagging:

fNN,word,guitar(yt,xt) =


1 if yt = NN

and xt,word = guitar

0 otherwise
(1.16)

where NN is a POS label indicating a noun, word is a type of feature, and guitar

an actual value that occurs for the type word in the training/test data. It can be
paraphrased as saying “If the label of the current token is NN , and the current
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token is an occurrence of the word guitar, then return 1, else return 0”. An example
feature function of the type described in Equation (1.15) is instead

fNN,JJ(yt, yt−1) =


1 if yt = NN

and yt−1 = JJ
0 otherwise

(1.17)

where JJ is a POS tag indicating an adjective; the meaning of this feature function
is straightforward.

Summing up, functions of the type formalized by Equation (1.14) describe the
relation that occurs between an output variable and the input variable of type d at
position t in the sequence, whereas functions of the type formalized by Equation (1.15)
describe instead the relation that occurs between the output variable at position t in
the sequence and the output variable at position t− 1.

In the next subsections we will explain how to perform inference on a CRF in
order to train a CRF model and use this model to make predictions over unobserved
data.

1.2.2 Inference in Linear-Chain CRFs

In supervised machine learning there are two main tasks, parameter learning and
prediction. In CRFs, in order to accomplish these two tasks we need to perform
inference on the model. Inference is used in parameter learning as a subroutine, while
it is used directly on unobserved data during prediction. In general, given a fixed
parameter vector θ, inference in CRFs consists in predicting the values of a sequence
y given an observed input x. The inference used in parameter learning computes the
marginal distribution p(yc|x, θ) where yc can be either a single variable or a set of
variables that share a factor. On the other hand, the inference used in prediction
computes the most likely assignment y∗ for a new input x. In a LC-CRF, in order
to compute the marginal distributions and the most likely assignment it is possible
to adopt the same dynamic-programming algorithms adopted in HMM [105], i.e.,
the forward-backward algorithm and the Viterbi algorithm. These two algorithms
are special cases for chain-structured models of the belief-propagation algorithm [63].

Forward-Backward Algorithm

The forward-backward algorithm is used to calculate the marginal distributions
needed in the parameter learning procedure; in the case of LC-CRFs these are,
p(yt|x) and p(yt, yt−1|x). In order to do so, the first thing that we need to calculate
in order to compute the two marginal distributions is the normalization function
Z(x).
In order to simplify the notation, let

Ψt(yt, yt−1,xt) = Ψu(yt,xt, θτ )Ψb(yt, yt−1, θξ) (1.18)



10 1. Graphical Models and Conditional Random Fields

Given Equation (1.18) we can re-define Equation (1.11) as:

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt) (1.19)

with the normalization factor of Equation (1.7) re-defined as:

Z(x) =
∑
y

T∏
t=1

Ψt(yt, yt−1,xt) (1.20)

Naively, the function in Equation (1.20) would be calculated as:

Z(x) =
∑
yT

∑
yT−1

ΨT (yT , yT−1,xT )
∑
yT−1

ΨT−1(yT−1, yT−2,xT−1)∑
yT−2

ΨT−2(yT−2, yT−3,xT−2)...
(1.21)

As we can see, calculating Z(x) in a naive way is exponentially expensive. However,
it is worth noticing that in Equation (1.21) the intermediate sums are calculated
several times during the computation of the outer sums. In this case a dynamic
programming approach that keeps trace of the inner sums can save an exponential
amount of computations. A way to exploit this situation is to introduce for each
element of the sequence t, a forward vector αt that keeps trace of the intermediate
sums for each possible value of the output variables S. The forward vector αt is
calculated by a recursive function called alpha recursion that takes into consideration
also the forward vector of the elements before t, i.e., t− 1, t− 2, ..., 1 . The alpha
recursion is defined as:

αt(j) =
∑
i∈S

Ψt(j, i,xt)αt−1(i) (1.22)

with the initialization vector equal to

α1(j) = Ψ1(j, y0,x1) (1.23)

where y0 is an initial variable with a fixed value.
In the same way, but starting the computation from the end of the sequence

instead of the beginning, we define a backward vector βt that, as the forward vector,
keeps trace of the intermediate sums. Similarly to the forward vector, the backward
vector is calculated with a recursive function called beta recursion. The beta recursion
is defined as:

βt(i) =
∑
j∈S

Ψt+1(j, i,xt+1)βt+1(j) (1.24)
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Analogously to the alpha recursion, the initialization vector is:

βT (i) = 1 (1.25)

The computation of Z(x) adopting the alpha recursion is:

Z(x) =
∑
yT

αT (yT ) (1.26)

while adopting the beta recursion is:

Z(x) =
∑
y1

Ψ1(y1, y0,x1)β1(y1) = β0(y0) (1.27)

The two recursions are also used to calculate the marginal distributions p(yt|x) and
p(yt, yt−1|x) that, as we will see in Section 1.2.3, are necessary in the parameter
learning phase. Both the marginal distributions p(yt|x) and p(yt, yt−1|x) are given
by the combination of the results of the alpha and beta recursions as:

p(yt|x) =
1

Z(x)
αt(yt)βt(yt) (1.28)

p(yt, yt−1|x) =
1

Z(x)
αt−1(yt−1)Ψt(yt, yt−1,x)βt(yt) (1.29)

Putting everything together, the forward-backward algorithm consists of calculating
the forward vectors (Equations (1.22) and (1.23)), computing the backward vectors
(Equations (1.24) and (1.25)) calculating Z(x) and then applying Equation (1.28)
and Equation (1.29) in order to obtain the marginals.

Viterbi Algorithm

The other important inference task in CRFs is what is called maximum-a-posteriori
(MAP) assignment. This inference task is performed in the context of LC-CRF by
the max-product algorithm, also called Viterbi algorithm [32].

The Viterbi algorithm substitutes the sum from the alpha recursion in Equa-
tion (1.22) with a maximization; this modification yields the Viterbi recursion:

δt(j) = max
i∈S

Ψt(j, i,xt)δt−1(i) (1.30)

In order to obtain the maximum assignment, after the computation of the δ variables
we need to compute the backward recursion given by:

y∗T = arg max
i∈S

δT (i) (1.31)

y∗t = arg max
i∈S

Ψt(y
∗
t+1, i,xt+1)δt(i) (1.32)

The two recursions form the Viterbi algorithm are used in prediction phase to obtain
the actual predictions of unobserved data.
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1.2.3 Parameter Learning in Linear-Chain CRFs

Parameter learning in CRFs is the task of estimating the vector parameter θ so that
the resulting conditional distribution p(y|x, θ) fits, in the best possible way, the data
examples D = {x(n),y(n)}Nn=1, which have both input and output variables observed.
What one would like to obtain with parameter learning is that, having observed the
input variables of one of the examples in D, the distribution p(y|x(n), θ) obtained
after parameter learning is close to the real distribution p(y(n)|x(n)) with the true
output y(n).

The standard way to achieve this in CRFs is estimating the parameters θ that
maximize the conditional log-likelihood :

`(θ) =
N∑
n=1

log p(y(n)|x(n); θ) (1.33)

Expanding Equation (1.33), by adopting Equation (1.18) for the sake of simplicity,
and thus using a feature function fk that ranges over both the feature functions of
Equations (1.14) and (1.15) with associated parameter θk, we obtain:

`(θ) =
N∑
n=1

T∑
t=1

K∑
k=1

θkfk(y
(n)
t , y

(n)
t−1,x

(n)
t , )−

N∑
n=1

logZ(x(n)) (1.34)

It could happen that, in order to model a problem, a large number of parameters
can be necessary. In order to avoid overfitting, (i.e., a model that is too specific on
the training data and fails to generalize to other unseen data), regularization is often
used. The regularized log-likelihood is:

`(θ) =
N∑
n=1

T∑
t=1

K∑
k=1

θkfk(y
(n)
t , y

(n)
t−1,x

(n)
t )−

N∑
n=1

logZ(x(n))−
K∑
k=1

θ2
k

2σ2
(1.35)

where σ is a regularization parameter that determines how much θ is penalized in
order to avoid overfitting.

In order to maximize `(θ) a numerical optimization must be adopted, given that
it cannot be maximized in closed form. The partial derivative of Equation (1.35) to
be given as input to a numerical optimization algorithm is:

∂`

∂θk
=

N∑
n=1

T∑
t=1

fk(y
(n)
t , y

(n)
t−1,x

(n)
t )−

N∑
n=1

T∑
t=1

∑
y,y′

fk(y, y
′,x

(n)
t )p(y, y′|x(n))− θk

σ2
(1.36)

The meaning of Equation (1.36), that can be considered the loss function that we
want to be as close as possible to zero, is straightforward. The first term represents
the value of the feature functions fk obtained from the training data. The second
term represents the expected value obtained from the model. The expectation of
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the feature function fk given the model, is obtained by calculating the marginal
probability p(y, y′|x(n)) with the forward-backward algorithm of Section 1.2.2. In an
unregularized scenario the gradient would be zero when the two terms have the same
value, that is, when the model perfectly fits the data. In this borderline situation
the trained model would probably suffer from overfitting; the regularization term
will help preventing such an undesirable situation.

Finally, the optimization of `(θ) can be done with several well known optimization
algorithms, such as steepest gradient ascent, Newton’s method [7], conjugate gradient
[166] and limited-memory BFGS [14]. It is worth noticing that in the case of LC-
CRF the function `(θ) is concave, which means that every local optimum is a global
optimum.

1.3 Inference in General CRFs

Getting out from the comfort zone of the LC-CRFs, inference starts to be a little
bit more problematic. In Section 1.2.2 we described inference algorithms such as
the forward-backward and the Viterbi algorithm, that belong to the class of exact
inference algorithms. The forward-backward algorithm and the Viterbi algorithm are
a specialization, for chain-structured graphs, of two general algorithms of the family
of belief propagation algorithms [63] for tree-structured graphs, the sum-product
algorithm, and the max-product algorithm. In fact, exact inference is possible and
relatively easy in GMs, and in particular in CRFs, only when the CRF graph
structure is a tree, i.e., a chain is a particular type of tree. When the CRF graph
structure is more complex than a tree, that is, a graph with cycles, then we have
two choices: the first is using the junction tree algorithm, the second is relying on
approximate inference algorithms. The junction tree algorithm [61] creates, from
a graph with cycles, an equivalent tree-shaped graph. This transformation is done
removing the cycles from the original graph and grouping variables into clusters.
Once the structure of the original graph is transformed into a more manageable
shape, exact inference algorithms are applied to get the marginal probabilities. The
problem with the junction tree algorithm is that for complex graphs the creation of
a tree is exponentially complex in the worst case, i.e. is often not applicable, leaving
the approximate inference as the only suitable route.

The most important families of approximate inference algorithms for GMs are
the Markov-Chain Monte Carlo (MCMC) algorithms [106], and the variational
algorithms [157]. The MCMC algorithms belong to the broader family of sampling
algorithms. These algorithms generate samples from the distribution of interest, that
in the case of CRFs is the conditional distribution p(y|x), in order to approximate the
marginal distributions of the type p(yt|x). The most popular sampling algorithms for
inference in graphical models are Gibbs sampling and Metropolis-Hasting sampling
[8]. They have been successfully adopted to perform approximate inference in CRFs
[45, 124, 125].
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Variational algorithms convert the inference problem into an optimization prob-
lem. This family includes the loopy belief propagation algorithms [90], that are the
approximate counterpart of the belief propagation algorithms where the sum-product
and max-product algorithms are applied regardless the presence of cycles in the
graph. The algorithms are usually stopped when a stopping condition is reached or
after a certain number of epochs [103, 135].

1.4 Summary

In this chapter we introduced the theoretical basis and the notation of the framework
we will use in the rest of the thesis, namely, the CRFs. We first introduced the
broader family of probabilistic graphical models, distinguishing between directed
and undirected methods. As special case of undirected models we described CRFs in
general and its most popular variation, linear-chain CRF, with the main inference
techniques necessary to perform parameter learning and prediction. Finally, we briefly
explained the main inference techniques in CRFs with a general graph structure.



2
Information Extraction
from Medical Reports

In this chapter we adopt CRFs as the learning algorithm to extract information
from texts written in natural language. In particular, we discuss the problem of
performing information extraction from free-text radiology reports via several types
of CRFs. In this task, segments of text (not necessarily coinciding with entire
sentences, and possibly crossing sentence boundaries) need to be annotated with
tags representing concepts of interest in the radiological domain. We present two
novel approaches to IE for radiology reports: (i) a cascaded, two-stage method based
on pipelining two taggers generated via the well known linear-chain conditional
random fields (LC-CRFs) learner, and (ii) a confidence-weighted ensemble method
that combines standard LC-CRFs and the proposed two-stage method. We compare
these two novel approaches against traditional LC-CRFs. We also report on the use
of “positional features”, a novel type of feature intended to aid in the automatic
annotation of texts in which the instances of a given concept may be hypothesized
to systematically occur in specific areas of the text. We present experiments on
a dataset of mammography reports in which the proposed ensemble is shown to
outperform a traditional, single-stage CRFs system in two different, applicatively
interesting scenarios.

2.1 Introduction

Information Extraction (IE – sometimes also referred to as concept extraction [10,
25, 55, 149]) is the discipline concerned with the extraction of natural language
expressions (and relations between them)1 from free text, where these expressions
instantiate concepts of interest in a given domain (see e.g., [78, 111]).

For instance, given a corpus of job announcements, one may want to extract
from (or: “identify in”, “annotate in”) each announcement the natural language
expressions that describe the nature of the job, the promised annual salary, the

1As pointed out in Section I.1, in this dissertation we use the term information extraction (IE)
referring to the sequence labeling subtasks of information extraction.
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job location, etc. Another instance of IE is searching free text for named entities,
i.e., names of persons, locations, geopolitical organizations, and the like [92]. Put
another way, IE may be seen as the activity of populating a structured information
repository (such as a relational database of job announcements, where individual
announcements are tuples and “job”, “annual salary”, “job location” are attributes)
from an unstructured information source such as a corpus of free text.

An application of great interest is extracting information from free-text clinical
narratives, such as medical reports, admission / discharge summaries, and clini-
cal notes in general. These narratives are unstructured in nature, since they are
written in free text by medical personnel, and because of their informal nature are
particularly difficult to handle automatically. Medical reports and clinical narratives
are characterized by informal language, and are usually fraught with abbreviations
(sometimes idiosyncratic to the specific hospital or department where they originated),
ungrammatical language, acronyms (even non-standard ones), and typos; this is
due to the fact that clinical narratives are often the result of hasty compilation, or
dictation, or the application of speech recognition technology. As a result, the correct
identification of expressions (e.g., named entities, phrases, sentences, or other) that
instantiate concepts of interest (such as drugs, drug dosages, pathologies, treatments,
and the like) is more difficult than, say, in the domain of medical literature (e.g.,
books, abstracts, scientific articles), where language is usually tighter.

Nonetheless, performing information extraction on these narratives would be
extremely beneficial, since extracting key data and converting them into a structured
(e.g., tabular) format would greatly contribute towards endowing patients with
truly actionable electronic medical records. These records, aside from improving
interoperability among different medical information systems, could be used in a
variety of applications, from patient care, to decision support, to epidemiology and
clinical studies. Of particular interest is the fact that automatically spotting personal
information in narratives may be used for their automatic de-identification (i.e.,
anonymization) [154], an important task given the confidential nature of clinical
narratives.

This chapter describes our efforts towards automatically extracting information
from radiology reports.

Nowadays, the dominant machine learning method for IE from clinical narratives
is conditional random fields [64, 133, 134], a method explicitly devised for sequence
learning, i.e., for learning to classify items that naturally occur in sequences (the
words that make up the clinical narratives obviously have this property). Most
authors that have participated in the recent i2b2 challenges devoted to IE from
clinical narratives (see [155, 156]) have indeed used CRFs [49, 53, 99, 149], often in
their simple “linear chain” form (LC-CRFs). In this chapter we present two novel
approaches to using LC-CRFs for clinical text IE: (i) a cascaded, two-stage method
based on pipelining two LC-CRFs systems, one that analyses text at the clause level
and a second one that analyses it at the token (word) level, and (ii) a confidence-
weighted ensemble method that combines a standard, token-level LC-CRFs and the
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proposed cascaded method.

When input to a CRFs learner, each token (i.e., word instance) occurring in the
narrative must be represented as a vector of features. Typical features that are used
in CRFs for clinical IE are the word itself, its morphological root (stem), its part of
speech, its prefixes and suffixes, and other information that can directly be extracted
from the text; the features of the surrounding tokens are also usually added to the
vector representing a token. If specialized lexical resources are available (e.g., the
UMLS metathesaurus), entries from these resources can also be usefully added to
the representation of a token whenever the token, or a larger sequence of tokens that
includes it, is recognized as standing in certain relationships with those entries. In
this chapter we report on the additional use of “positional features”, a novel type of
features intended to aid in the automatic annotation of texts in which the instances
of a given concept tend to systematically occur in specific areas of the text (e.g.,
towards the beginning of the text, towards the middle of the text, etc.).

We experimentally validate our newly introduced methods on a dataset of 500
mammography reports written in Italian. Two applicatively interesting scenarios
are tested. The first scenario simulates the existence of a single human annotator
who provides the training data and whose classification decisions are to be taken as
the gold standard. The second scenario simulates the existence of multiple human
annotators; a mix of training examples from each annotator are thus used, and a mix
of the classification decisions of each of them is used as the gold standard. This also
represents a novelty in the literature on clinical IE, since this literature has never
(to the best of our knowledge) taken up the issue of distinguishing, and separately
addressing, these two applicative scenarios. The only work that propose a similar
scenario is [73] in which, in a text classification task, an automatic classification
system is compared with two different human annotators in order to assess the
system accuracy against the naturally varying performance of two independent
human annotators.

The results of our experiments show that our two proposed LC-CRFs systems
outperform, in both scenarios, a baseline system consisting of linear-chain CRFs,
and show that in most cases the performance of our systems even exceeds human
performance, as measured by inter-annotator agreement. The results obtained from
the use of positional features are instead less conclusive.

The rest of the chapter is organized as follows. In Section 2.2.3 we describe the
LC-CRFs system and the set of features that constitute our baseline. In Section 2.2.4
we turn to describing our proposed novel methods: the cascaded LC-CRFs system
(Section 2.2.3), the ensemble of LC-CRFs learners (Section 2.2.4), and the positional
features (Section 2.2.5). Section 2.3 is devoted to describing our experiments and
commenting on their results. Section 2.4 discusses related work, while Section 2.5
concludes, pointing at avenues for future research.
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2.2 CRF Models and Algorithms

2.2.1 Preliminaries and Notation

Let X be a set of texts. Let a text x ∈ X consist of a vector x = 〈x1, . . . , x|x|〉, where
each xt is a token (i.e., a word occurrence), |x| denotes the dimensionality of vector
x (in this case: the length of the text), and xt1 occurs before xt2 in the text (noted
xt1 � xt2) if and only if t1 ≤ t2.

Let C = {c1, . . . , cm} be a predefined set of tags (a.k.a. concepts, or markables),
or tagset. We will take information extraction (IE) to be the task of determining, for
each x ∈ X and for each cr ∈ C, a vector yr = 〈yr1, . . . , yr|x|〉 of labels yrt ∈ {cr, cr},
which indicates which tokens in the text are labeled with tag cr. Since each cr ∈ C
is dealt independently of the other tags in C, we will hereafter drop the r subscript
and treat IE as the binary task of determining, given text x and given tag c, a vector
y = 〈y1, . . . , y|x|〉 of labels yt ∈ {c, c}.

We assume each token xt to be itself represented by a vector xt of Ω = |xt|
features.

Tokens labeled with a tag c usually come in coherent sequences, or “segments”.
Hereafter, a segment ζ of text x for tag c will be a pair (xt1 , xt2) consisting of a start
token xt1 and an end token xt2 such that (i) xt1 � xt2 , (ii) all tokens xt1 � xt � xt2
are labeled with tag c, and (iii) the token that immediately precedes xt1 and the one
that immediately follows xt2 are not tagged with tag c. For example, in the excerpt

Da ambo i lati si apprezzano<PAE>formazioni nodulari solide

</PAE>, a margini sostanzialmente regolari.

the markers <PAE>and </PAE>are meant to indicate that all the tokens between
them are to be understood as tagged with the PresenzaAssenzaEnhancement (PAE)
tag. In this case, (formazioni, solide) is a segment for the PAE tag. In general, a
text x may contain zero, one, or several segments for tag c.

2.2.2 A Baseline CRFs System for IE

As a baseline learning algorithm we have used linear-chain conditional random fields
(LC-CRFs - [64, 133, 134]), in Charles Sutton’s GRMM implementation2.

p(y|x) =
1

Z(x)

|x|∏
t=1

Ψu(yt,xt)

|x|−1∏
t=1

Ψrb(yt, yt+1,xt) (2.1)

Differently from the LC-CRF introduced in Equation (1.11) the structure of the model
adopted in this work is slightly different. In fact, the CRFs in Equation (2.1) employ
a slightly different factor template respect to the model in Equation (1.11). Here

2http://mallet.cs.umass.edu/grmm/

http://mallet.cs.umass.edu/grmm/
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we use a bigram factor, that we called enriched bigram, that take into consideration
not only the co-occurrence of two adjacent output variables yt and yt+1, but also
the input variables xt Formally, the factors belonging to the enriched bigram factor
template are defined as:

Ψrb(yt, yt+1,xt) = exp
∑
hk

θhkfhk(yt, yt+1xt) (2.2)

with a notation lighter than Equations (1.12) and (1.13) the index hk represents, all
the possible value of the quadruple (i, j, d, v) as defined in Section 1.2.1.
In this work we have used a base set of features which includes:

1. one feature representing the word of which the token is an instance;

2. one feature representing its stem;

3. one feature representing its part of speech;

4. eight features representing its prefixes and suffixes (the first and the last n
characters of the token, with n = 1, 2, 3, 4);

5. one feature representing information on token capitalization, i.e., whether the
token is all uppercase, all lowercase, first letter uppercase, or mixed case.

Vector xt includes the above information for each of xt−1, xt and xt+1, for a total of
36 features.

All of these features are fairly standard in several instances of the information
extraction task, including e.g., named-entity recognition. The IE system we will use
as a baseline in the experiments of Section 2.3 will thus consists of the LC-CRFs
learning system using as input the text represented via the features discussed in the
present section.

Figure 2.1 is the factor graph that represent the CRF of Equation (2.1).

2.2.3 A Two-Stage CRFs System for IE

In medical reports it is often the case that the segments of interest are not short
pieces of text scattered throughout the sentence, but span several clauses (or even
several sentences). A given tag may be expected to be instantiated by an expression
that spans several clauses, maybe cutting across sentence borders. This suggests the
adoption of a cascaded, two-stage tagging scheme, in which

1. the first stage consists of tagging entire clauses; this acts as a coarse-grained
filter, with the goal of removing from consideration clauses that are evidently
irrelevant to the tag of interest;
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Figure 2.1: Baseline linear-chain CRF

2. the second stage consists of tagging individual tokens belonging to the clauses
that have been attributed the tag in the first stage; this acts as a fine-grained
tagger, with the goal of examining in detail the clauses that the previous phase
has deemed of potential interest.

For the purpose of this chapter we heuristically define a clause as a set of tokens
delimited both to the right and to the left by a punctuation symbol in the set
{comma, period, colon, semicolon, question mark, exclamation mark}, and such that
no punctuation symbol from this set appears inside it. For example, in the excerpt

Da ambo i lati si apprezzano<PAE>formazioni nodulari solide

</PAE>, a margini sostanzialmente regolari.

already quoted in Section 2.2.1, the clauses are Da ambo i lati si apprezzano

formazioni nodulari solide and a margini sostanzialmente regolari.
As for the first stage, we implement it via a LC-CRFs tagger that, unlike the one

described in Section 2.2.2, has the formulation

p(y|s) =
1

Z(s)

D∏
d=1

Ψu(yd, sd)
D−1∏
d=1

Ψb(yd, yd+1, sd) (2.3)

Here, the sequence of tokens x = 〈x1, . . . , x|x|〉 has been replaced with a sequence
of clauses s = 〈s1, . . . , s|s|〉, represented by feature vectors s1, . . . , s|s|, with all the
equations of Section 2.2.2 rewritten accordingly.
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We see the first stage as a sort of text classification phase, where entire texts (in
this case: clauses) need to be classified, using the tags in our tagset as the classes.
Accordingly, we opt for a “bag of words” (and word bigrams) representation, thus
using as only features the tokens in the clause, and their bigrams. As a consequence,
the st feature vector is the traditional sparse vector of text classification, whose
dimensionality is the number of unique words and bigrams that occur at least once
in the training set, and where 0 and 1 represent absence and presence of the word or
bigram in the clause. However, note that we are not classifying a clause in isolation
of the clauses that precede and follow it. The very fact that we are using a LC-CRFs
approach, and that this involves the factors of the kind of Equation (2.2), means
that the tag that will be attributed to a given clause will also depend on the tag
that is probabilistically attributed to the clauses around it.

Quite obviously, we also implement the second stage via the standard LC-CRFs
system described in Section 2.2.3, with the difference that clauses, instead of entire
texts, are the object of tagging. Only the clauses that have passed through the
filter of the first-stage system are tagged (at the token level). The evaluation of the
cascaded system is performed by considering the token-level representation of the
clauses discarded in the first stage as labeled with tag c.

2.2.4 A Confidence-Weighted Ensemble
of CRFs systems for IE

The two-stage CRFs described in Section 2.2.3 trades precision for recall. In fact, it
can be expected to have better precision than the single-stage system, since all the
clauses that are ruled out from consideration in the first stage may contain tokens
that are erroneously attributed the tag by the single-stage system; by removing
these clauses from consideration, a number of potential false positives become true
negatives, thereby improving precision. However, by the same argument, the cascaded,
two-stage system may be expected to have worse recall then the single-stage system,
since the ruled-out clauses may contain tokens to which the single-stage system
would have correctly attributed the tag; this generates false negatives that would
otherwise have been true positives.

In sum, better precision but worse recall may be expected from going two-stage.
Whether the two-stage system is better than the single-stage one thus comes down
to understanding whether, by which amount, and for which tags, the improvement
in precision outweigh the deterioration in recall.

One may want to try to obtain the best of both worlds by having a committee
(or ensemble) of two taggers (a single-stage one and a two-stage one), where the final
decision is also based on how confident each of the two taggers is in tagging a given
token.

More specifically, let us note that the Viterbi algorithm used in both the single-
stage and the cascaded, two-stage systems for maximizing p(y|x), also maximizes,
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as an intermediate result, the conditional probabilities p(yt|x) of the individual
tokens xt. Let pss(yt|x) and pts(yt|x) denote these probabilities as maximized by
the single-stage and the two-stage methods, respectively. We define the conditional
probability pen(yt|x) of the individual token xt as maximized by our ensemble, as
the average of the conditional probabilities computed by the single-stage and the
two-stage methods, i.e.,

pen(yt|x) =
1

2
(pss(yt|x) + pts(yt|x)) (2.4)

Since the conditional probability p(yt|x) may obviously be interpreted as the system’s
confidence in the fact that the label of xt is yt, Equation (2.4) formalizes a confidence-
weighted ensemble [107]. Note that pts(yt|x) is obtained by the cascaded, two-stage
tagger in the second stage whenever the clause that contains xt has not been ruled
out in the first stage. Otherwise, pts(yt|x) is in fact the probability that the first-stage
tagger has attributed yt to the entire clause which contains xt, since all of the tokens
in that clause obtain the same probability.

Therefore, our ensemble-based method consists of computing

y∗t = arg max
yt

pen(yt|x) (2.5)

for each token xt.

2.2.5 Positional Features

As for representing tokens xt via feature vectors xt, we think that there are margins of
improvement over the choices discussed in Section 2.2.2. In particular, we observe that
medical reports are often written according to a fairly standard pattern, according
to which some tags are instantiated earlier on in the report, while some others are
instantiated later. For instance, it is reasonable to suppose that clinical observations
are presented at the beginning of the report, while a diagnosis and a prognosis are
discussed later on.

In order to capture these recurring patterns, we introduce positional features that
model the position of a token in the text. For instance, we might want to introduce
a 4-ary feature that indicates whether token xt occurs in the 1st quarter of the text,
or in the 2nd, or in the 3rd, or in the 4th. In this way, if a given tag tends to be
instantiated, say, in the 1st quarter of the report, this tendency will be detected
during training, and will be brought to bear in the test phase, e.g., by using the
fact that test token xt occurs in the 1st quarter of the text as contributing evidence
that xt should be assigned the tag. In general, our positional features are k-ary
features which, assuming that the text is divided into k consecutive, equal-sized
parts, indicate in which of the k parts the token occurs.

In our experiments we use all positional features for k = 2, 3, 4, 5.
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2.3 Experiments

2.3.1 Dataset

The dataset we have used to test the ideas presented in Section 2.2.4 (hereafter called
the UmbertoI(RadRep) dataset) consists of a set of 500 free-text mammography
reports written (in Italian) by medical personnel of the Istituto di Radiologia of
Policlinico Umberto I, Roma, IT. The number of different radiologists who authored
the reports is not known. The length of the reports ranges between 67 and 537 words;
the mean and the variance of such length is 199 and 8786, respectively.

The reports have been subsequently annotated by two equally expert radiologists
from the same institute; 191 reports have been annotated by annotator 1 (A1) only,
190 reports have been annotated by annotator 2 (A2) only, and 119 reports have been
annotated independently by A1 and A2. From now on we will call these sets A1-only,
A2-only and Both, respectively; Both(1) will identify the Both set as annotated by
A1, and Both(2) will identify the Both set as annotated by A2. The annotation
activity was preceded by an alignment phase, in which A1 and A2 jointly annotated
20 reports (not included in this dataset) in order to align their understanding of the
meaning of the tags.

Table 2.1: Per-tag statistics for the UmbertoI(RadRep) dataset. Column 2 and
Column 3 indicate the number NT (i) of tokens and the number NS(i) of segments
contained in the dataset for the given tag, Column 4 the number ND(i) of documents
with at least one segment for the given tag, Column 5 the average number ANS(i)
of segments per document for the given tag, Column 6 the average segment length
ASL(i) for the given tag (segment length is the number of tokens contained in it).

NT (i) NS(i) ND(i) ANS(i) ASL(i)

BI-RADS (BIR) 1544 400 293 0.65 3.86
InformazioniTecniche (ITE) 24301 615 614 0.99 39.51
IndicazioniEsame (IES) 5159 475 469 0.77 10.86
TerapieFollowup (TFU) 7137 523 458 0.84 13.65
DescrizioneEnhancement (DEE) 19795 803 440 1.30 24.65
PresenzaAssenzaEnhancement (PAE) 8461 588 439 1.94 7.04
EsitiChirurgici (ECH) 2068 230 203 0.37 8.99
DescrizioneProtesi (DEP) 2532 72 61 0.12 35.17
LinfonodiLocoregionali (LLO) 6602 537 509 0.87 12.29

Average 8622 471 387 0.87 17.33

The tagset is formed by 9 tags: BI-RADS (hereafter shortened as BIR)3, In-

3BI-RADS indicates the mammography assessment categories from the Breast Imaging-Reporting
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Figure 2.2: Distribution of report lengths: the X axis represents ranges of lengths,
while the Y axis represents the number of reports whose length falls in the given
range.

formazioniTecniche (ITE – “Technical Info”), IndicazioniEsame (IES – “Indications
obtained from the Exam”), TerapieFollowup (TFU – “Followup Therapies”), De-
scrizioneEnhancement (DEE – “Description of Enhancement”), PresenzaAssenzaEn-
hancement (PAE – “Presence/Absence of Enhancements”), EsitiChirurgici (ECH -
“Outcomes of Surgery”), DescrizioneProtesi (DEP – “Prosthesis Description”), and
LinfonodiLocoregionali (LLO – “Locoregional Lymph Nodes”). On average, there are
0.87 segments for each tag in a given report, and the average segment length is 17.33
words. Table 2.1 reports additional statistics on the dataset; Figure 2.2 illustrates,
in histogram form, the variability in report length across the dataset.

A closer inspection of this dataset reveals that

• it is not the case that for each tag cr ∈ C there is at least one segment ζrj in
each report. For example, the only tags that are instantiated in Report 114

and Data System published by the American College of Radiology (ACR). These are standardized
numerical codes typically assigned by a radiologist after interpreting a mammogram, which allow
for concise and unambiguous understanding of patient records among doctors.
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are BIR, PAE, ITE, and TFU;

• segments for different tags may overlap, i.e., the same token xt may belong
to two or more segments each pertaining to a different tag. For example, in
Report 452 all the tokens in the sequence in paziente con pregressa QUART

sinistra mastoplastica additiva bilaterale are tagged with both tags
ECH and IES;

• two or more segments for the same tag cr may be present in the same report.
For instance, in Report 180 the two non-overlapping segments un’area di

potenziamento dopo contrasto and alcuni millimetrici foci di po-

tenziamento are both tagged with tag PAE;

• the “order of appearance” of the tags in a report is not fixed, i.e., given tags c′

and c′′ it is not the case that segments for tag c′ always precede the segments
for tag c′′. For example, in Report 452 tag PAE appears after tag DEE, while
in Report 180 it appears before it.

2.3.2 Evaluation Measures

As the evaluation measure we use the token-level variant (proposed in [28]) of the
well-known F1 measure, according to which a tagger is evaluated on an event space
consisting of all tokens in the text. In other words, each token xt (rather than each
segment, as in the traditional “segmentation F-score” model [136]) counts as a true
positive, true negative, false positive, or false negative for a given tag cr, depending
on whether xt belongs to cr or not in the predicted annotation and in the true
annotation. As argued in [28], this model has the advantage that it credits a system
for partial success (i.e., non-null overlap between a predicted segment and a true
segment for the same tag), and that it penalizes both overtagging and undertagging.

As is well-known, F1 combines the contributions of precision (π) and recall (ρ),
and is defined as

F1 =
2πρ

π + ρ
=

2TP

2TP + FP + FN

where TP , FP , and FN stand for the numbers of true positives, false positives, and
false negatives, respectively. Note that F1 is undefined when TP = FP = FN = 0;
in this case we take F1 to equal 1, since the tagger has correctly tagged all tokens as
negative.

We compute F1 across the entire test set, i.e., we generate a single contingency
table by putting together all tokens in the test set, irrespectively of the text they
belong to. We then compute both microaveraged F1 (denoted by F µ

1 ) and macroav-
eraged F1 (FM

1 ). F µ
1 is obtained by (i) computing the tag-specific values TPr, FPr

and FNr, (ii) obtaining TP as the sum of the TPr’s (same for FP and FN), and
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then (iii) applying the F1 =
2TP

2TP + FP + FN
formula. FM

1 is obtained by first

computing the tag-specific F1 values and then averaging them across the cr’s.

An advantage of using F1 as the evaluation measure is that it is symmetric, i.e.,
its values do not change if one switches the roles of the human annotator (i.e., the
gold standard) and the automatic annotator (i.e., the system). This means that F1

can also be used as a measure of agreement between any two annotators, regardless
of whether they are human or machine, since it does not require one to specify who
among the two is the gold standard against which the other needs to be checked. For
this reason, in the following section we will use F1 both (a) to measure the agreement
between our system and a human annotator, and (b) to measure the agreement
between two human annotators.

2.3.3 Experimental Setting

We have tested three different learning systems. The first is the LC-CRFs system
described in Section 2.2.2, which we use as the baseline, while the second and the third
are our cascaded, two-stage LC-CRFs system and our ensemble of taggers described
in Section 2.2.3 and Section 2.2.4, respectively. In combination with each of the
three learning systems we have also tested two different feature representations, one
consisting of the baseline features described in Section 2.2.2, and one also including
the positional features discussed in Section 2.2.5. Concerning these latter, note that
in the first stage of the cascaded system (when used by itself and when used in the
ensemble system) we have used positional features for the clauses, defined as the
positional feature of their middle tokens.

We have optimized the regularization parameter σ of Equation (1.35) individually
for both the baseline system of Section 2.2.2 and the two-stage system of Section 2.2.3,
and individually for each experiment reported in this chapter. We have always carried
out this optimization on a held-out validation set consisting of a randomly selected
10% of the original training set; after parameter optimization, the tagger has then
been retrained on the entire training set. As a POS tagger we have used the one
contained in the TextPro system [101].

We have run two main sets of experiments, each simulating a different operational
scenario.

The first such set of experiments simulates a single-annotator scenario, i.e., an
operational situation in which the organization has a single person in charge of
annotating the reports. Simulating this scenario thus means using training and
test documents annotated by the same person, since it is this person who would
annotate the training data to be fed to a learning algorithm, and it is this person
who would judge the accuracy of the automatically tagged data. We have thus run (i)
an experiment in which we train the system on A1-only and test it on Both(1), and
(ii) an experiment in which we train the system on A2-only and test it on Both(2).
Since there is not much value in presenting the results of these two experiments
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separately, in Table 2.2 we report accuracy figures obtained by averaging the results
of the two experiments (or, equivalently, by merging, for each tag in the tagset, the
two contingency tables obtained in the two experiments into a single contingency
table and evaluating the results).

The second set of experiments simulates instead a multiple-annotator scenario,
i.e., one in which there are several, equally trustworthy persons in the organization
who are in charge of annotation. Simulating the latter scenario thus means using a
mix of training documents from different annotators (since it is not a single person
who would annotate the training data to be fed to the learning algorithm) and a
mix of test documents from different annotators (since it is not according to the
judgment of a single person that the accuracy of the automatically tagged data
should be measured). We have thus run an experiment in which we train the system
on the union of A1-only and A2-only, and test it on the union of Both(1) and
Both(2). Note that the union of Both(1) and Both(2) contains “contradictory
information”, since it contains two copies of each report in Both, and these two
copies may contain annotations that contradict each other. This is very much in
keeping with the fact that there are multiple, equally trustworthy annotators in the
scenario we are simulating. The only practical consequence is that, in the presence
of even the slight disagreement between Both(1) and Both(2), a value of F1 = 1 is
unattainable even in theory. However, this is not problematic for our experiments,
and the value of inter-annotator agreement of A1 and A2 as measured on Both via
F1 may be assumed as the “reasonable” accuracy upper bound that an automatic
system cannot be expected to exceed. Table 2.3 reports the results obtained in this
experiment.

Note that the two experiments are different in terms of both (i) training data
consistency (since in the single-annotator experiments the annotations are all by
the same person, hence are likely more consistent than in the multiple-annotator
experiments), and (ii) training data quantity (since in the multiple-annotator experi-
ment there are twice as many training data than in the single-annotator ones). This
means that a comparison between the accuracy values obtained by a given system in
these two sets of experiments will allow us to determine whether, for training data,
consistency is a more important parameter than sheer quantity.

Note also that in both experiments the test documents are those in Both, i.e.,
those that have been annotated independently by both A1 and A2. In each such
experiment we are thus in a position to compare the results of the experiments with
the value of inter-annotator agreement obtained by A1 and A2 on the very same
data. We are thus able to directly compare human accuracy with machine accuracy
in a meaningful way, since, as argued in Section 2.3.2, F1 can be used to measure the
agreement between any two annotators, be them human or machine. More precisely,

• in the single-annotator experiment in which we train the system on A1-only

and test it on Both(1), comparing the results of the experiment with the value
of inter-annotator agreement means comparing, using Both(1) as the common
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testbed (i.e., using A1 as the judge), an automatic system trained on A1-only

against human annotator A2 (analogously for the experiment in which we train
on A2-only and test on Both(2));

• in the multiple-annotator experiment in which we train the system on the union
of A1-only and A2-only, and test it on the union of Both(1) and Both(2),
comparing the results of the experiment with the value of inter-annotator
agreement means comparing, using the union of Both(1) and Both(2) as the
common testbed (i.e., using a mix of A1 and A2 as the judges), an automatic
system trained on the union of A1-only and A2-only against a mix of A1 and
A2.

We have also tested the statistical significance of the improvements obtained by our
proposed methods with respect to the baseline. Specifically, we have compared the
F1 values as measured on each report, for each tag and for each pair of methods we
compare. Given that we can exactly pair the F1 value for a given method to the
corresponding F1 value for the other method, we have used a paired t-test.

2.3.4 Results

Single-annotator results

The first observation we can make from Table 2.2 is that both the F µ
1 and FM

1

values obtained by all the tested machine-learned systems are clearly higher than
the corresponding inter-annotator agreement values. This indicates that, in our
single-annotator scenario experiments, all our systems have proven to be even more
accurate than humans. The difference between human performance and system
performance is actually quite varied across the nine tags. In general, it seems that
the system has a more uniform performance across the tags than the humans, who
instead perform very well on some tags (e.g., ITE and DEP) and very bad on others
(e.g., BIR and ECH)4.

The results of the systems that make use of positional features (indicated as “+
PFs” in Table 2.2) are not statistically significantly different from the analogous
systems that make no use of such features. A more fine-grained analysis does not
seem to reveal any discernible pattern concerning which tags benefit from positional
features and which do not. In fact, it might seem plausible to hypothesize that the
tags whose instances tend to be more heavily concentrated in a specific quantile of the

4The reason why there is such a large disagreement between A1 and A2 on BIR seems to be
that A2, differently from A1, tends to always tag with BIR expressions relative to histological
evaluation and expressions relative to benign diseases; this is likely an indication that the two
annotators went through an insufficient alignment phase before starting the annotation. The high
disagreement between the two annotators on the tag ECH can be instead due to the fact that it is a
very infrequent tag, and it may be the case that too few instances of this tag were encountered in
the alignment phase.
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Figure 2.3: Histogram representing, for each of the nine tags, the percentage of
segments for the tag that occurs in a given quintile of the text. E.g., the leftmost
group of bars indicates the percentages of segments for each tag that occurs in the
first 20% of the text.

text (such as, e.g., tag ITE, which is heavily concentrated in the 1st and 2nd quintiles
– see Figure 2.3) ) are the ones who benefit most from positional features. This
hypothesis is not confirmed by the results. For instance, for the above-mentioned tag
ITE, F1 = .987 for both versions with and without positional features of the baseline
system. Two tags such as IES and ECH which, as evident from the histogram, seem
to be distributed in a similar way, obtain a very different contribution from positional
features, with the former improving from F1 = .772 to F1 = .810 and the latter
deteriorating from F1 = .667 to F1 = .614.

Whether positional features are used or not, the baseline system and the two-
stage system bring about similar accuracy in terms of FM

1 , but the two-stage system
clearly outperforms the baseline in terms of F µ

1 (with a statistical significance level
of p < 0.1). This indicates that the two-stage configuration performs better than
the baseline at annotating frequent tags, and worse than the baseline at annotating
rare tags, since microaveraged metrics are heavily influenced by the performance
of the system on frequent tags (macroaveraged effectiveness measures pay instead
equal attention to each tag independently of frequency). A clear example is the tag
DEP, which is the rarest of all tags in our dataset (see Table 2.1), and on which the
two-stage system performs radically worse than the baseline system.
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Table 2.2: Results of the single-annotator experiments. Results are averages across
two experiments, (i) train the system on A1-only and test it on Both(1), and (ii)
train the system on A2-only and test it on Both(2). The first row reports the
inter-annotator agreement values for A1 and A2 as measured on Both.

BIR ITE IES TFU DEE PAE ECH DEP LLO F µ
1 FM

1

A1 vs. A2 0.492 0.993 0.778 0.815 0.660 0.694 0.574 0.912 0.884 0.812 0.756

Baseline 0.583 0.987 0.772 0.872 0.745 0.717 0.667 0.812 0.848 0.846 0.778
Two-Stage 0.582 0.993 0.792 0.845 0.746 0.694 0.666 0.772 0.852 0.873 0.771
Ensemble 0.601 0.991 0.814 0.873 0.772 0.730 0.679 0.823 0.853 0.858 0.793

Baseline + PFs 0.537 0.987 0.810 0.872 0.742 0.717 0.614 0.803 0.872 0.848 0.773
Two-Stage + PFs 0.480 0.991 0.812 0.825 0.736 0.691 0.664 0.890 0.853 0.870 0.771
Ensemble + PFs 0.551 0.991 0.821 0.865 0.775 0.719 0.673 0.881 0.861 0.859 0.793

Instead, the ensemble system obtains F µ
1 values close to the averages of the values

obtained by the baseline and two-stage systems, and FM
1 values higher than those

obtained by both systems. This indicates that the ensemble system is, on the whole,
better than both its constituent systems, since it is better than the baseline when
the tag is a frequent one, and it is much better than both systems on rare tags. In
the configuration that does not use positional features, the ensemble system obtains
F µ

1 = 0.858 and FM
1 = 0.793, with an error reduction with respect to the baseline

of 7.79% in terms of F µ
1 and of 6.75% on in terms of FM

1 . This improvement is
confirmed to be significant by the statistical significance test with respect to both
the baseline and the two-stage system (with p < 0.005 in both cases).

Concerning the difference among the performance obtained for the single tags,
it is interesting to observe that the three tags for which the worst performance is
obtained (BIR, ECH, and PAE) are also the ones (see Table 2.1) for which the segments
have the smallest average length.(The same phenomenon will also be observed in
the multiple-annotator experiments.) That long segments tend to be “easier” is
explained by the fact that our evaluation measure is at the token level: since the
difficult aspect in correctly tagging a segment is correctly spotting where the segment
begins and ends, longer segments are evidently conducive to higher performance.

Multiple-annotator results

In the multiple-annotation scenario, the training set contains reports annotated by
different annotators. Notwithstanding the alignment phase which the two annotators
went through before starting their annotation work, each annotator may have a
different annotation style, or a different understanding of the concepts which the tags
represent. Therefore, similar segments may give rise to different tagging decisions by
the two annotators. As a consequence, it is reasonable to assume that the resulting
training set may possess a smaller internal consistency than in the single-annotator
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scenario; other things (e.g., number of training examples) being equal, this yields a
more difficult task for the learning system.

The results of the multiple-annotation experiments are displayed in Table 2.3.
The first observation we can make is that values are generally lower (the relative
deterioration being mostly around 2%) than the corresponding values in Table 2.2.
This indicates that, in the tradeoff between training data consistency and training
data quantity mentioned in the previous section, the former seems to be more
important: notwithstanding the fact that twice as many training examples are used
in the multiple-annotator experiments, performance decreases, due to the higher level
of internal inconsistency of the training set. The topic of the quality of training data
and the impact they have on the performance of an IE system will be thoroughly
analyzed in the Chapter 4.

Concerning positional features, the multiple-annotator experiments confirm the
results obtained in the single-annotator ones, since the use of positional features
again does not bring about substantial differences. Significance tests confirms
that the variations are not statistically significant. As in the single-annotator
experiments, patterns are difficult to discern. Again, tags whose occurrence tends
to be concentrated in a specific quantile of the texts do not seem to systematically
benefit from the presence of positional features, and the very same tag (ECH) for
which the positional features brought about a deterioration in F1 from .667 to .614
in the single-annotation scenario, now even witnesses an improvement in F1, from
.618 to .645. The only conclusion one can draw is that more research needs to be
done in order to assess how and whether positional features might benefit IE.

The improvement of the machine-learned systems with respect to the values
of inter-annotator agreement are smaller in magnitude than those observed in the
single-annotator scenario, but are still substantial. This indicates that the learning
algorithms are good at mediating between the different, sometimes contradictory
information received from the annotators at training time, thus producing automatic
annotations that mediate between the annotation styles of the individual annotators.

Concerning the comparison among the three learning methods, the results confirm
those of the single-annotator scenario, with the two-stage method obtaining higher
F µ

1 and lower FM
1 than the baseline, and the ensemble method mediating between

the F µ
1 values obtained by the other two systems and obtaining the best FM

1 value.
The ensemble method obtained an F µ

1 value of .838 and an FM
1 value of .774, thus

bringing about an error reduction with respect to the baseline of 9.50% for F µ
1 and

of 6.61% for FM
1 .

Here too, we have tested the statistical significance of the observed improvements
using the same method discussed for the single-annotator experiments. In this case
the test shows that the improvement of the two-stage method over the baseline is
statistically significant with p < 0.05. The observed improvement of the ensemble
method is statistically significant with respect both to the baseline (p < 0.01) and
the two-stage method (p < 0.05).
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Table 2.3: Results of the multiple-annotator experiment: train the system on the
union of A1-only and A2-only, and test it on the union of Both(1) and Both(2).
The first row reports the inter-annotator agreement values for A1 and A2 as measured
on Both.

BIR ITE IES TFU DEE PAE ECH DEP LLO F µ
1 FM

1

A1 vs. A2 0.492 0.993 0.778 0.815 0.660 0.694 0.574 0.912 0.884 0.812 0.756

Baseline 0.537 0.994 0.768 0.866 0.710 0.688 0.618 0.775 0.863 0.821 0.758
Two-Stage 0.557 0.991 0.794 0.851 0.713 0.673 0.568 0.860 0.813 0.860 0.758
Ensemble 0.530 0.992 0.825 0.851 0.721 0.693 0.640 0.877 0.836 0.838 0.774

Baseline + PFs 0.516 0.983 0.794 0.873 0.698 0.679 0.645 0.843 0.861 0.828 0.766
Two-Stage + PFs 0.514 0.986 0.816 0.826 0.711 0.666 0.550 0.918 0.822 0.858 0.756
Ensemble + PFs 0.513 0.989 0.823 0.853 0.715 0.684 0.620 0.879 0.837 0.834 0.768

2.3.5 A note on IE in Resource-Scarce Languages

One of the main differences between the literature on information extraction from
clinical texts (see Section 2.4) and our work, is that most of the former targets
medical reports written in English, and as a consequence can leverage on the wide
availability, for the English language, of lexical resources or “ontologies” specific
to the domains of medicine or radiology. The present work may thus be taken as
indicative of the level of extraction accuracy that can be attained for resource-scarce
languages.

The availability of hierarchically organized domain-specific lexical resources is
known to lead to higher accuracy in IE tasks. For instance, [49] reports obtaining
a F1 = .800 value on the i2b2 2010 challenge [156] by using CRFs with a standard
set of features, and obtaining a F1 = .846 value (thus reducing error by 23%) when
features obtained by language-specific resources are brought into play. The reason is
that, once such a resource is available, the vectorial representation of a token may be
enhanced by using as features, additionally to the word the token is an instance of,
its superordinate words in the hierarchy. This brings in higher statistical robustness
(since the superordinate words, being more general, will tend to occur often), and
reduces feature sparsity, which is beneficial to learning. Note that the same process
of bringing in superordinate words cannot reliably be done via lexical resources that
are not domain-specific, since non-technical terminology is more ambiguous, which
may lead to selecting the wrong superordinates.

In additional experiments that we do not report here we have used “It(GT)-
RadLex”, a version of RadLex (a hierarchically organized controlled dictionary of
radiology terms produced by the Radiological Society of North America5) that we
have obtained by automatically translating RadLex into Italian via Google Translate.

5http://rsna.org/RadLex.aspx

http://rsna.org/RadLex.aspx
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For each lexical expression (i.e., word or word n-gram) found in a report which
exactly matched an entry in It(GT)-RadLex, the depth-k ancestor of the entry in
It(GT)-RadLex (with depth 1 indicating the root) was added to the feature vectors
representing the tokens in the lexical expression, for all k = 2, 3, 4. No improvement
was observed in our experiments with respect to not using It(GT)-RadLex, which
may indicate that more careful translations of the technical terms in a specialized
dictionary are needed in order to make an impact on this IE task.

To the best of our knowledge no system for IE from radiology reports for the
Italian language has been reported yet in the literature.

2.4 Related Work

Information extraction from text. Gaizauskas et al. [36] give a good introduction
to IE research carried out in the ’90s, including work spawned by the MUC series
of evaluation challenges, while Sarawagi presents a more up-to-date survey [111].
McCallum [78] gives an excellent introduction to IE aimed at the non-specialist.
Information extraction from clinical text. The literature on IE from texts
of medical interest can be roughly subdivided into (a) works about extracting
information from the (bio-)medical literature (books, scientific articles, and the
like), and (b) works about extracting information from texts generated during
clinical activity (such as admission summaries, discharge summaries, clinical notes,
radiological reports, and the like). The former is an easier task than the latter, since
clinical texts, unlike texts from the biomedical literature, are more informal, and thus
abound in abbreviations (sometimes specific to the particular hospital or department
where they originated), ungrammatical text, acronyms (even non-standard ones),
and misspellings. Meystre et al. [85] review IE work specifically addressed to clinical
narratives in the electronic health record6, while McNaught and Black [84] do the
same for IE work addressed to biomedical literature. Note that the term “concept
extraction” is often used in the biomedical area to actually refer to information
extraction (see e.g., [10, 25, 55, 149]); the latter is instead the standard name of the
task, at least in the NLP community, where the task was first investigated.

Several works have been carried out in the field of information extraction from
clinical narratives, and many of them use rule-based or dictionary-based systems in
which the rules and dictionaries have been manually generated. Soderland et al. [129]
extract instances of two concepts of medical interest, “diagnosis” and “symptoms”,
using a text analysis system and a dictionary induction system. Evans et al. [31]
extract information about drug dosage, such as drug, dose level, and frequency, using
a pattern-matching system. Harkema et al. [44] use an IE framework that selects
relevant entities from a medical dictionary and then performs syntactic and semantic
analyses over the text; the resulting information is then stored into a template that

6It has to be noted, however, that [85] takes a much wider view of what IE means, since it takes
IE to also encompass other text-related tasks such as text classification.
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represents domain-specific entities and their properties and relations between them.
Sotelsek-Margalef and Villena-Román [130] present a framework that uses IE from
clinical reports to suggest medical diagnoses. Mykowiecka et al. [91] use a rule-based
system that extracts information from clinical records written in Polish. Grishman et
al. [42] use a rule-based system to detect disease outbreaks from clinical narratives.

Some works use a hybrid approach that combines the rule-based and the machine
learning approaches. For example, Zhou et al. [169] extract three different types of
information from semistructured medical records, i.e., numerical values (e.g., age,
blood pressure), medical terms (as from a patient’s medical history), and categorical
values (e.g., smoker/nonsmoker), for a total of twenty-four fields. They use two
different approaches: for the first two types of information they use a combination of
unsupervised pattern-matching methods, domain ontologies, and NLP techniques,
while for the third type of information they use a machine learning method with
input generated via NLP techniques. As another example, Taira et al. [140] use a
hybrid rule-based / machine learning system to extract findings and their related
properties using lexical resources and semantic parsing.
ML-based approaches to IE from clinical text. Only in recent years, also
thanks to the interest generated by the i2b2 (“Informatics for Integrating Biology
and the Bedside”) challenges [155, 156], researchers involved in IE from clinical
narratives have started to massively use machine learning techniques. The first task
of the 2011 i2b2/VA challenge [156] is indeed similar to the task we have faced in
the present work, but is a bit simpler since (a) the concepts involved are neither
nested nor potentially overlapping, and (b) the narratives are in English, which is a
resource-rich language.

There may be several reasons for the above-mentioned slow takeup of machine
learning technology by the clinical NLP community. Torii et al. [149] conjecture
that one of the reasons may be the fact that “phrases extracted from clinical text
need to be normalized to fine-grained concepts, such as those defined in SNOMED
CT and the Unified Medical Language.” Certainly, one of the reasons is the fact
that training data for clinical text has traditionally been scarce, often because of
privacy and confidentiality issues; the datasets release within the context of the i2b2
challenge are probably the first publicly available datasets of their kind.

Most of the i2b2 participants that adopt a machine learning approach use CRFs of
some sort. Torii et al. [149] use CRFs in a study of the portability of IE systems across
multiple sources of clinical text; their CRFs system uses, aside from a standard set
of text-derived features, features obtained via the use of the UMLS metathesaurus.
Jiang et al. [49] use a CRFs system to perform named-entity recognition as a
preliminary step towards extracting concepts of clinical interest from discharge
summaries. Jonnalagadda et al. [53] use a CRFs system in which the feature
representation of a token is augmented with words that are “similar” to the word
the token is an instance of, and where “similarity” is measured via distributional
semantics. Patrick and Li [99] were the best performers in the i2b2 2009 challenge
on extracting medication-related concepts from discharge summaries, by using CRFs
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to detect named entities and SVMs to further classify them. All of the above
publications do not dwell on the details of the specific type of CRFs they actually
use, which seems to indicate that they use the simple LC-CRFs type.

In terms of efforts not strictly related to i2b2, Li et al. [69] compare support vector
machines (SVMs) and CRFs in the extraction of names of disorders from clinical text,
and find that the latter are markedly superior to the former, obviously thanks to the
fact that the former cannot encode dependencies among the labels of different tokens
in the sequence. Wang and Patrick [160] use CRFs for named-entity recognition
in admission summaries; further application of a classifier committee formed by an
SVMs classifier and a maximum entropy classifier, classifies the recognized named
entities into classes.

Cascaded information extraction systems. Cascaded, multi-stage systems have
been proposed in the past for several NLP tasks as applied to clinical texts. For
instance, Jonnalagadda et al. [54] describes a multi-stage algorithm for coreference
resolution (i.e., detecting if two linguistic expressions actually refer to the same entity)
as applied to analyzing medical discharge reports. In an attempt to automatically
extract medication information from clinical records, Patrick and Li [99] use a
CRFs learner and an SVMs learner arranged in a cascade, the CRFs learner being
entrusted with recognizing named entities and the SVMs learner being entrusted with
recognizing the relationship between two recognized entities. The above-mentioned
work by Wang and Patrick [160] is in a similar vein. Outside the scope of the clinical
IE, a classical two-stage approach is the reranking method [24, 40, 88, 89, 93]. In the
first stage of the reranking approach a classifier is used to generate a list of candidate
hypotheses for each unlabeled example. In the second stage each hypothesis is
enriched with new features associated to the structure predicted in the first stage;
then a second classifier i.e., the reranker, is used to rank the hypotheses list. Finally
the best hypothesis is selected. This is different from what we do, since our system
revolves around the notion of using CRFs in both phases: a first phase where clauses
are the units of interest, and a second phase in which such units are the individual
tokens.

Positional features in information extraction. To the best of our knowledge,
only another paper in the IE literature uses positional features: for a task of
automatically extracting pros and cons of products from product reviews, Kim and
Hovy [59] use positional features that indicate the first, the second, the last, and
the second last sentence in a paragraph. Here the intuition is that, in a product
review, pros and cons are important sentences that summarize the main point of the
review. Our use is different, in the sense that we do not make any hypothesis of
where important information for a given tag is located in a document, and simply
record the relative position (as a percentage of the document length) in which the
tagged segment is located. A fairly similar use of positional features is to be found in
the work of Bramsen et al. [13]; however, the task addressed in [13] is not information
extraction, but automatic segmentation of a document into temporally coherent
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segments.

2.5 Summary

In this chapter we have presented novel solutions to the problem of extracting
information from radiological reports (i.e., automatically annotating word sequences
occurring in such reports according to a predefined set of concepts of interest) via
supervised machine learning. Specifically, we have modified a standard linear-chain
CRFs learning system in two novel ways, (i) cascading a clause-level LC-CRFs tagger
and a token-level LC-CRFs tagger to obtain a two-stage system, and (ii) organizing
the resulting two-stage system and a traditional token-level LC-CRFs system into a
confidence-weighted ensemble. We have also reported novel work in representing text
by introducing “positional” features, i.e., features aiming to represent the quantiles
of the text in which the instances of a given concept mainly tend to occur.

The single-annotator and multiple-annotator experiments we have conducted have
shown that the positional features do not bring any substantial advantage. While the
intuition that underlies them seems correct and promising, further experimentation
will be needed to check if they can be of real use in some application context.

The same experiments have also shown (as also confirmed by statistical significance
tests) that (i) the two-stage method is clearly superior to the baseline method for the
most frequent tags, but is slightly inferior to it on the less frequent ones, and that (ii)
the ensemble method is superior to the baseline on both frequent and infrequent tags.
Interestingly, the accuracy levels obtained via these technologies are higher than the
inter-annotator agreement levels, as measured on the same test data and according
to the same measure of agreement/accuracy. This is especially noteworthy since the
feature set used in our work is fairly standard, and since it is widely believed that, as
remarked by [149], “A tagger exploiting generic features can yield good performance,
yet customized tokenization, features based on domain knowledge, hand-coded post-
processing rules, and other fine-tuning can help improve performance”. Our results,
obtained via systems that use none of the above enhancements, show that machine-
learned solutions nowadays reach effectiveness levels comparable to those of human
experts. In particular, the experiments we have conducted do not use any specialized
lexical resource or ontology, and are thus indicative of the level of accuracy that can
be obtained in information extraction for resource-scarce languages.



3
Conditional Random Fields

for Extracting
Aspect-Related Opinions

From the factual IE of the previous chapter we move to a different applicative task,
where the type of information to extract is not factual but subjective, namely, opinion
mining. In this chapter we study the problem of aspect-oriented opinion mining from
product reviews at the sentence level, which consists of predicting, for all sentences
in the review, whether the sentence expresses a positive, neutral, or negative opinion
(or no opinion at all) about a specific aspect of the product. For this task we
propose a set of increasingly powerful models based on CRFs, including a hierarchical
multi-label CRFs scheme that jointly models the overall opinion expressed in the
review and the set of aspect-specific opinions expressed in each of its sentences. We
evaluate the proposed models against a dataset of hotel reviews in which the set
of aspects and the opinions expressed concerning them are manually annotated at
the sentence level. We find that both hierarchical and multi-label factors lead to
improved predictions of aspect-oriented opinions.

3.1 Introduction

Sharing textual reviews of products and services is a popular social activity on the
Web. Some websites (e.g., Amazon, TripAdvisor1) act as hubs that gather reviews
on competing products, thus allowing consumers to compare them. While an overall
rating (e.g., a number of “stars”) is commonly attached to each such review, only a
few of these websites (e.g., TripAdvisor) allow reviewers to include aspect-specific
ratings, such as distinct ratings for the Value and Service provided by a hotel.

The overall and the aspect-specific ratings may help the consumer to perform
a first screening of the product, but they are of little use if she is interested in the
comments about specific aspects of the product. For example, a low rating for the
Rooms aspect of a hotel may be due to the small size of the room or to the quality

1http://www.amazon.com/, http://www.tripadvisor.com/

http://www.amazon.com/
http://www.tripadvisor.com/
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Title: Good vlue [sic], terrible service Value: Positive Service: Negative

OK the value is good and the hotel is reasonably priced, but 
the service is terrible. Value: Positive Service: Negative

I was waiting 10 min at the erception [sic] desk for the guy to 
figure out whether there was a clean room available or not. Checkin: Negative Service: Negative

That place is a mess. Service: Negative

Rooms are clean and nice, but bear in mind you just pay for 
lodging, service does not seem to be included. Cleanliness: Positive Service: Negative

Overall rating: Aspect-specific opinions

Figure 3.1: An example hotel review annotated with aspect-specific ratings at the
sentence level.

of the furniture; different issues may be of different importance to different persons.
In this case the user may have to read a large amount of text in order to retrieve the
relevant information that is relevant to her.

Opinion mining research [72] has frequently considered the problem of predicting
the overall rating of a review [97] or the ratings of its individual aspects [46]. While
these are interesting research challenges, their practical utility is somewhat limited,
since it is often the case that this information is already made explicit by the
reviewers. Our goal is instead to build an automatic system that, given a sentence in
a review and one of the predefined aspects of interest, (a) predicts if in the sentence
an opinion concerning that aspect is expressed, and (b) if so, predicts the polarity
of the opinion (i.e., if the opinion is positive, neutral/mixed, or negative). In the
setup we consider a sentence may be relevant for (i.e., contain opinions concerning)
zero, one, or several aspects at the same time, and the opinions contained in the
same sentence and pertaining to different aspects may have different polarities. For
example, the room was spacious but the location was horrible expresses a positive
opinion for the Rooms aspect and a negative opinion for the Location aspect, while
the remaining aspects are not touched upon.

The contribution of this study is twofold. First, inspired by the “coarse-to-fine”
opinion model of [83] we develop an increasingly powerful set of multi-label conditional
random field (CRF) schemes [64] that jointly model the overall, document-level
opinion expressed by a review together with the aspect-specific opinions expressed
at the sentence level. Our models are thus able to also predict the document-level
ratings. However, as already pointed out, these ratings are of smaller practical
interest, because they are often explicitly provided by the reviewers, whereas the
aspect-level predictions are often not available and the sentence-level annotations
(i.e., the indication of which sentences justify the aspect-level ratings) are never
available. The use of a conditional model for this task is in contrast with previous
work in this area, which has focused on generative models, mostly based on Latent
Dirichlet Allocation, with strong independence assumptions [66, 87, 142, 158].

This problem has also been tackled via supervised learning methods in [70]. Like
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us, this work relies on CRFs to model the structure of the reviews, but is however
unable to cater for sentences that are relevant to more than one aspect at the same
time, which is a strong limitation. Two works that are close in spirit to ours are
[66, 158], and they may be considered the “generative counterparts” of our approach.

Second, we describe a dataset (that we make publicly available) of hotel reviews
that we have annotated with aspect-specific opinions at the sentence level.2 A
previous dataset annotated by opinion at the sentence level exists [138], but the
dataset introduced here also adds the aspect dimension and has a multi-label nature
(i.e., allows sentences to be relevant to more than one aspect at the same time).
Only very recently, and after we created our dataset, a dataset similar to ours
has been presented [66], in which elementary discourse units (EDUs), which can
be sub-sentence entities, are annotated using a single-label model. This dataset is
composed of only 65 reviews, with a total of 1541 EDUs, while our dataset annotates
442 reviews, with a total of 5799 sentences.

The evaluation of generative models is often based on unannotated datasets
[87, 158], and thus only on a qualitative analysis of the generated output. We believe
that our dataset will be a valuable resource to fuel further research in the area by
enabling instead a true quantitative evaluation, which enables a scientific comparison
of different models.

3.1.1 Problem Definition

Before formally defining the task that we are going to tackle, we informally describe
the principal components of the problem:

• A review is the text written by a human reviewer that describes (and comments
on) the object of the review, e.g., a hotel, a restaurant, a smart-phone, and
the like. It is composed by one ore more segments.

• A segment is a piece of text that is part of the review, and is typically
bounded by two periods (e.g., a sentence).

• Aspects are the feature of the object of the review that the reviewer has
written about, i.e., Room and Service are possible aspects of a hotel, while
Screen and Battery are possible aspects of a smart-phone.

• Aspect-related opinion is the polarity of the opinion (e.g., positive, neutral,
negative) expressed in a segment toward a specific aspect.

• Overall rating is the rating (e.g., 1 to 5 stars) expressed by the reviewer
about the whole object of the review.

2The dataset can be freely downloaded at http://nemis.isti.cnr.it/~marcheggiani/

datasets/

http://nemis.isti.cnr.it/~marcheggiani/datasets/
http://nemis.isti.cnr.it/~marcheggiani/datasets/
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In order to formally model the problem, all the components listed above are formalized
as different variables. These variables are then used to create the CRF structures we
have adopted to solve this task.

• A segment variable x is an observed variable, that is, a feature of one of
the segments that compose the review. The t-th segment of review x (which is
composed by T consecutive segments) is modeled by a feature vector xt.

• A segment opinion variable yat models the opinion related to a specific
aspect a ∈ A of segment t ∈ {1, ..., T}, where A is the set of all possible aspects.
The domain of the segment opinion variable is Y ∪ {No-op}. The No-op value
(that stands for “no opinion”) is used when none of the “real” opinion values
of the domain Y hold. For each segment xt we have as many of these variables
as the number of aspects in A.

• An overall segment variable xo is an observed variable that models a single
feature that describes the overall opinion. The overall review is modeled by an
overall feature vector xo.

• An overall opinion variable yo is the variable that represents the overall
rating given by the reviewer. The domain of this variable is Y.

Given a review x, we seek to infer the values of the variables: yo ∈ Y and the opinion
yat for each segment t ∈ {1, ..., T} and each aspect a ∈ A. This is a multi-label
problem, since each segment t can be assigned up to |A| different opinions.

To model these variables we assume a feature vector xt representing review
segment t and a feature vector xo representing the full review. For our experiments,
that we report in Section 3.3, we adopt a dataset of hotel reviews. We define
segments to correspond to sentences that compose a review. We define the sets
of opinion labels Y and aspects A respectively as: Y = {Positive, Negative, Neutral}
and A = {Rooms, Cleanliness, Value, Service, Location, Check-in, Business, Food, Building,
Other}. However, we want to stress that the proposed models are flexible enough to
incorporate arbitrary sets of aspects and opinion labels, and to use a different type
of segmentation.

3.2 CRFs Models and Algorithms

Previous work on aspect-oriented opinion mining has focused on generative proba-
bilistic models [66, 142, 158]. Thanks to their generative nature, these models can
be learnt without any explicit supervision. However, at the same time they make
strong independence assumptions on the variables to be inferred, which is known to
limit their performance in the supervised scenario considered in this study. Instead,
we explore the use of CRFs. Specifically, we propose a hierarchical multi-label CRF
model that jointly models the overall opinion of a review together with aspect-specific
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opinions at the segment level. This model is inspired by the fine-to-coarse opinion
model [83], which was recently extended to a partially supervised setting [138].3

However, while previous work only takes opinion into account, we jointly model
both sentence-level opinion and aspect, as well as overall review opinion. Below, we
introduce a sequence of increasingly powerful CRF models for aspect-specific opinion
mining, leading up to the full hierarchical sequential multi-label model.4

3.2.1 Models

Taking into consideration the CRFs of Equation (1.6), in this study we defined,
y = {yo} ∪ {yat : t ∈ [1, T ], a ∈ A}. The models described in what follows differ in
terms of their factorization of Equation (1.6), that is, in the structure of the graph
underlying the distribution.

Linear-chain CRFs as a Baseline Model

As a baseline model, we take a simple first-order linear-chain CRFs (LC) in which a
separate linear chain over opinions at the segment level is defined for each aspect.
This model is able to take into account sequential dependencies between segment
opinions [83, 95] specific to the same aspect, whereas opinions related to different
aspects are assumed to be independent. Formally, the LC model is defined as:

p(y|x) =
1

Z(x)

∏
a∈A

T∏
t=1

Ψs(y
a
t ,xt)

T∏
t=2

Ψy(yat , y
a
t−1) (3.1)

The factors of the two factor templates in LC have this form:

Ψs(y
a
t ,xt) = exp

∑
sk

θskfsk(y
a
t ,xt) (3.2)

Ψy(yat , y
a
t−1) = exp

∑
yk

θykfyk(y
a
t , y

a
t−1) (3.3)

Similarly to the factors in Section 1.2.1 this two factors respectively models the aspect-
specific opinion of the segment at position t (Equation (3.2)), and the transition
between the aspect-specific opinion variables at position t − 1 and t in the linear
chain corresponding to aspect a (Equation (3.3) 5 ).

Differently from Section 1.2.1 the random variables here have the superscript a
that means that we want to model not one, but several sequences.

3While we only consider the supervised scenario in this study, our model is readily extendable
to the partially supervised setting by treating a subset of the fine-grained variables as latent.

4All models were implemented using Factorie [82].
5The symbol y just identifies the “transition” factor.
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Multi-label Models

The assumption of the LC model that the aspect-specific opinions expressed in each
segment are independent of each other may be overly strong for two reasons. First,
only a limited number of aspects are generally expressed in each segment. Second,
when several aspects are mentioned, it is likely that there are dependencies between
them based on discourse structure considerations. To address these shortcomings, we
propose to model the dependencies between aspect-specific opinion variables within
each segment, by adopting the multi-label pairwise CRFs formulation of [38, 135].

The CRFs multi-label models are characterized by the pairwise multi-label factor
of Equation (3.4).

Ψm(yat , y
b
t ) = exp

∑
mk

θmkfmk(y
a
t , y

b
t ) (3.4)

This factor models the interdependence between opinion variables yat and ybt of
different aspects, a and b of the segment at step t with b ∈ A and a 6= b.

We first consider the Independent Multi-Label (IML) model, in which there
are factors between the opinion variables within a segment, while each segment is
independent from each other. In terms of Equation (1.6), the IML model factors as

p(y|x) =
1

Z(x)

∏
a∈A

T∏
t=1

Ψs(y
a
t ,xt)

∏
b∈A\a

Ψm(yat , y
b
t ) (3.5)

To allow for sequential dependencies between segments, the IML model can naturally
be combined with the LC model (Figure 3.4). This yields the Chain Multi-Label
(CML) model:

p(y|x) =
1

Z(x)

∏
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∏
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Ψm(yat , y
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Ψy(yat , y
a
t−1, a) (3.6)

Hierarchical (Multi-label) Models

Thus far, we have only modeled the aspect-specific opinions expressed at the segment
level. However, many online review sites ask users to provide an overall opinion in
the form of a numerical rating as part of their review. As shown by [83, 138], jointly
modeling the overall opinion and the segment-level opinions in a hierarchical fashion
can be beneficial to prediction at both levels.

The LC, IML and CML models can be adapted to include the overall rating
variable in a hierarchical model structure analogous to that of the “coarse-to-fine”
opinion model of [83]. This is accomplished by adding the following two factors to
the three models above:

Ψo(yo,xo) = exp
∑
ok

θokfok(yo,xo) (3.7)
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Figure 3.2: LC CRF model. The plate around the graph stands for “replication”
∀a ∈ A.

Ψh(y
a
t , yo) = exp

∑
hk

θhkfhk(y
a
t , yo) (3.8)

The factor template described in Equation (3.7) has the same use of the unigram
template in Equation (3.2). The factor template of the form described in Equa-
tion (3.8) captures the dependence that exists between the overall opinion variable
and the segment opinion variables, taking into account the aspects related to the
segment opinion variables. The rationale behind the use of the overall opinion
variable to calculate the segment opinion variable of each aspect is that having a
hint of the overall opinion of a review can help (as in [83]) to better recognize the
finer-grained sentiment, namely, the value of the segment opinion variable. In this
work, differently from [83], we do not only connect the overall opinion variable with
the segment opinion variables (Equation (3.8)), but we model the overall opinion
variable through overall features (Equation (3.7)). In fact, given the generality of
the overall opinion whose polarity is related to the object of a review as a whole (as
opposed to the specificity of the aspect-related opinions whose polarities are related
to specific aspect) the features that describe the two kinds of opinion are different.
Therefore, the overall opinion variable cannot be “modeled” by the same features
that model the segment opinion variables, but it needs a specific set of features.
It is worth to notice, though, that even if we make use of the overall opinion, our
goal is to recognize the aspect-related segment opinions. So, in general we are not
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Figure 3.3: IML CRF model. The plate around the graph stands for “replication”
∀t ∈ T .

interested in obtaining the best possible performance on the overall opinion, as long
as we obtain the best possible performance on the aspect-related segment opinions.
Basically the overall opinion is just a way to obtain a more accurate model of the
problem.

We joined the overall factor templates in Equations (3.7) and (3.8) to the three
previous models, linear-chain, independent-loopy and loopy-chain to create three
new models: Linear-Chain-Overall (LCO) (Equation (3.9), Figure 3.5), Independent-
Multi-Label-Overall (IMLO) (Equation (3.10), Figure 3.6), and Chain-Multi-Label-
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Figure 3.4: CML CRF model.

Overall (CMLO) (Equation (3.11), Figure 3.7).
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3.2.2 Training via Sampling

While the maximum-a-posteriori (MAP) assignment y∗ and factor marginals can be
inferred exactly in the LC and LCO models by means of variants of the Viterbi and
forward-backward algorithms [83], exact inference is not tractable in the remaining
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Figure 3.5: LCO CRF model. The plate around the graph stands for “replication”
∀a ∈ A.

models. This is due to an exponential increase in the number of variable subsets to
be enumerated (IML) and to the presence of loops in the graph structure (CML,
IMLO and CMLO). We thus revert to approximate inference via Markov-Chain
Monte Carlo (MCMC) sampling, specifically, via Gibbs sampling (see e.g., [8, 37]).

We train all models to approximately minimize the Hamming loss over the training
set D = {(x(i),y(i))}Ni=1 by using the SampleRank algorithm [163, 164], which is a
natural fit for sampling-based inference.6

6While inference and learning algorithms are likely to impact results, we view this decision as
largely without loss of generality, since the focus of this study is on comparing model structures.
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SampleRank

SampleRank [163, 164] is a rank-based learning algorithm that updates the model
parameters θ after each MCMC sampling iteration. Each pair of consecutive samples
in the MCMC chain is ranked according to two criteria, the model score and the
objective score. If the two rankings disagree the model parameters are updated. The
model score is the score returned by the current model p(y|x) having θ as parameter
vector. The objective score is obtained by a truth function F(y), defined as

F(y) = −
T∑
t=1

L(yt, y
V
t ) (3.12)

which is the sequence-wise negative loss between the proposed assignment y and the
true assignment yV . The element-wise loss function is defined as the Hamming loss,
that is,

L(y, yV ) =

{
1 if y 6= yV

0 otherwise
(3.13)

The update of the model parameters θ is performed locally, that is, at each iteration
the only parameters that are updated are the ones in the gradient:

∆ = f(y(i),x(i))− f(y′(i),x(i)) (3.14)



48 3. Conditional Random Fieldsfor Extracting Aspect-Related Opinions

xt

ya
t

yc
t

yb
t

xo yo

 o

 s  s  s

 m

 m

 m

 h

 h

 h

 y

 y

 y

 m

 m

 m

 s s s

 h

 h

 h

ya
t�1

yb
t�1

yc
t�1

xt�1

Figure 3.7: CMLO CRF model.

Here, f(y(i),x(i)) is the complete feature vector of the example (y(i),x(i)). It takes
into consideration all the feature functions of all the factor templates of a given
model, i.e.,

∑
sk fsk +

∑
yk fyk of the LC factors of Equations (3.2) and (3.3). As an

MCMC sampling algorithm to plug into SampleRank in order to draw the samples
needed for the parameters update, we adopt Gibbs sampling.

Gibbs sampling

In general, MCMC sampling algorithms sample from a proposal distribution that
maintains a record of the last sample. In this way each new distribution depends on
samples drawn from the previous distribution. With Gibbs sampling [37], a particular
instance of the class of MCMC sampling algorithms, the general steps to sample a
new assignment ye+1 from an existing one ye, according to a CRF distribution such
as the one in Equation (1.6) are the following ones:

1. Pick a variable at time t from the current sampled assignment ye whose current
value is yt curr; this step can be done randomly or with a particular strategy in
mind.

2. Create the Gibbs sampling distribution:

p(yt|ye\yt curr,x) =
1

Z(x)

∏C
c Ψc(yc\yt curr ∪ yt,xc)∑

yt

∏C
c Ψc(yc\yt curr ∪ yt,xc)

(3.15)
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Algorithm 1 SampleRank algorithm

Require: Training data D = {(x(1),y(1))...(x(n),y(n))}
Initial parameters θ0

1: for i← 1 until convergence do
2: θcur = θi−1

3: for training example (y(j),x(j)) in D do
4: y′ ← GibbsSampling(y,x(j), θcur)
5: ∆ ← f(y,x)− f(y′,x)

6: if p(y|x)
p(y′|x)

< 1 ∧ F(y) > F(y′) then
7: θcur = θcur + α∆
8: else if p(y|x)

p(y′|x)
> 1 ∧ F(y) < F(y′) then

9: θcur = θcur − α∆
10: else
11: θcur = θcur + 0

12: y ← y′

13: θi = θcur
14: if ‖θi−1 − θi‖2 < ε then
15: convergence = true

3. Sample a new assignment for yt according to the Gibbs sampling distribution,
yt new ∼ p(yt|ye\yt curr,x).

4. Create the new sample y(e+1) = (ye\yt curr) ∪ yt new

Stopping criterion

In its traditional formulation, SampleRank does not have a stopping criterion. A
fixed number of iterations must be specified before the training process begins [82].
With this setting one could either perform too many training iterations, thus spending
computational time in vain, or perform too few iterations, thus obtaining a parameter
vector that is not adequately fitted to the training data. In this work, instead of using
a fixed number of iterations, at the end of each iteration we check if the `2-norm of
the sum of the atomic gradients is smaller than a fixed value ε. When the `2-norm is
below the threshold ε, i.e., there have not been significant updates in the parameter
vector θ, we consider the SampleRank algorithm has reached convergence.

Algorithm 1 puts everything together, showing the version of SampleRank algo-
rithm adopted in this work.
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3.2.3 Maximum-A-Posteriori Inference

In this scenario, in which exact inference is unfeasible, in order to obtain the most
likely configuration p(y∗|x), instead of the well-known Viterbi algorithm we adopt
a sampling approach. The Maximum-A-Posteriori (MAP) inference with sampling
consists in a certain number of sampling (Gibbs sampling in this work) iterations
in which, after each iteration, the posterior probability of the assignment given the
learnt parameters p(y|x) is calculated. The assignment with maximum posterior
probability is selected after a fixed number of sampling iterations. The outcome
of this process is the most likely configuration y∗ and its conditional probability
p(y∗|x).

3.3 Experiments

In this section we study the proposed models empirically. After discussing our
evaluation strategy, we describe and evaluate the creation of a new dataset of hotel
reviews, which we have manually annotated with aspect-specific opinion at the
sentence level. Finally, we compare the proposed models quantitatively by their
performance on this dataset.

3.3.1 Evaluation Measures

When evaluating system output and comparing human annotations below, we first
evaluate the capability of the system to correctly recognize if a segment carries an
opinion for a certain aspect or not, and then the capability of the system to correctly
recognize the opinion expressed towards each applicable aspect. In other words, we
view the task as composed of the following two subtasks:

Aspect identification: for each segment and for each aspect, predict if there
is any opinion expressed towards the aspect in the segment. Since each of these
aspect-specific tasks is a binary problem, for this subtask we adopt the standard F1

evaluation measure. The F1 measure is the same as Section 2.3.2. The evaluation is
performed for each aspect, and in order to have an overview on the overall accuracy
of the system on all the aspects, we calculate the Macro F1.

Opinion prediction: for each segment and each applicable (true positive) aspect
for the segment, predict the opinion expressed towards the aspect in the segment.
Since opinions are placed on an ordinal scale, as an evaluation measure we adopt
macro-averaged mean absolute error (MAEM) [3], a measure for evaluating ordinal
classification that is also robust to imbalanced datasets.

Let T be the correct label assignments and let T̂ be the corresponding model
predictions. Let Tj = {yi : yi ∈ T, yi = j} and let n be the number of unique labels
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in T. The macro-averaged mean absolute error is defined as

MAEM(T, T̂) =
1

n

n∑
j=1

1

|Tj|
∑
yi∈Tj

|yi − ŷi| (3.16)

This is suitable for evaluating the overall review-level opinion predictions. However,
when evaluating the aspect-specific opinions at the segment level, we instead report
MAEM (TÎa

, T̂Îa
), where Îa is the indices of segment opinion labels that were predicted

as true positive for aspect a and TÎa
is the set of true positive opinion labels for

aspect a.

We calculated the Macro MAEM as well, in order to have an overview of the
performance of the system on all the aspects together.

Inter-annotator Agreement Measures

We also use the F1 and MAEM measures to assess inter-annotator agreement, by
computing the average of these measures over all pairs of annotators. While the F1

measure and the micro-averaged version of MAE are both symmetric, the use of
macro-averaging makes MAEM asymmetric, i.e., switching the predicted labels with
the gold standard labels may change the outcome. This is problematic when used
to measure inter-annotator agreement, since no annotator can be given precedence
over the others. A reasonable strategy is to symmetrize the measure by treating
each annotator in turn as the gold standard, and by averaging the two sets of results.
This yields

sMAEM(T, T̂) =
1

2

(
MAEM(T, T̂) + MAEM(T̂,T)

)
(3.17)

3.3.2 Dataset

To facilitate a quantitative empirical evaluation of our proposed models, we have
produced a new dedicated dataset of manually annotated hotel reviews. Three
equally experienced annotators provided sentence-level annotations of a subset of
500 randomly selected reviews from the publicly available TripAdvisor dataset [158].
The full TripAdvisor dataset consists of 235,793 hotel reviews crawled over a period
of one month. In addition to the review text, each review comes with a hotel
identifier, an overall rating and optional aspect-specific ratings for the following
seven aspects: Rooms, Cleanliness, Value, Service, Location, Check-in, and Business. All
review-level ratings are on a discrete ordinal scale from 1 to 5 (with -1 indicating
that an aspect-specific rating was not provided by the reviewer). Each review was
split into sentences using the sentence splitter from [39] (plus a small number of
regular expressions so as to deal with the unarticulated shape of some reviews).
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Table 3.1: Number of opinion expressions at the sentence level, broken down by
aspect and opinion. Out of 5799 annotated sentences, 4810 sentences contain at least
one opinion-laden expression.

Other Service Rooms Clean. Food Location Check-in Value Building Business NotRelated Total

Pos 893 513 484 180 287 435 93 188 185 23 63 3344
Neg 353 248 287 66 127 51 56 87 62 3 40 1377
Neu 167 40 111 5 82 38 12 35 22 4 350 866

Total 1413 801 882 251 496 524 161 310 269 30 453 5134

Annotation

The annotations are related to nine aspects typically mentioned in hotel reviews.
In addition to the seven aspects explicitly present (at the review level) in the
TripAdvisor dataset, we decided to add two other aspects (Food and Building), since
many comments in the reviews refer to them. Furthermore, the “catch-all” aspects
Other and NotRelated were added, for a total of eleven aspects. Other captures those
opinion-related aspects that cannot be assigned to any of the first nine aspects, but
which are still about the hotel under review, for example, Extremely friendly place.
The NotRelated aspect captures those opinion-related aspects that are not relevant to
the hotel under review, as for example in The crew on our flight were wonderful. In
what follows, segments marked as NotRelated are treated as non-opinionated.

The annotation distinguishes between Positive, Negative and Neutral/Mixed opinions.
The Neutral/Mixed label is assigned to opinions that are about an aspect without
expressing a polarized opinion, and to opinions of contrasting polarities, such as The
room was average size (neutral) and Pricey but worth it! (mixed). The annotations
also distinguish between explicit and implicit opinion expressions, that is, between
expressions that refer directly to an aspect and expressions that refer indirectly to an
aspect by referring to some other property/entity that is related to the aspect. For
example, Fine rooms is an explicitly expressed positive opinion concerning the Rooms

aspect, while We had great views over the East River is an implicitly expressed
positive opinion concerning the Location aspect, and All doors seem to have to slam
to close is an implicit negative opinion concerning the Rooms aspect.

Each of the three annotators was assigned 139 unique reviews, plus 83 reviews
which all three annotators independently annotated, for a total of 500 annotated
reviews. The 83 shared reviews were used to measure inter-annotator agreement, as
described below. To minimize bias in these measurements, the reviews were ordered
in such a way that every eighth reviews, one review was shared between all the
annotators; this ensured that each annotator had the same amount of annotation
experience when annotating the same shared review.

During the annotation process, the annotators identified a number of corrupted
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Table 3.2: Inter-annotator segment-level aspect agreement, expressed in terms of F1

(higher is better).

Other Service Rooms Clean. Food Location Check-in Value Building Business Avg

Overall .607 .719 .793 .733 .794 .795 .464 .575 .553 .631 .675
Implicit .167 .123 .263 .111 .306 .286 .061 .131 .095 .333 .188
Explicit .479 .684 .706 .739 .741 .710 .481 .560 .521 .624 .625

Table 3.3: Inter-annotator segment-level opinion agreement (restricted to the true
positive aspects for each segment), expressed in terms of sMAEM (lower is better).

Other Service Rooms Clean. Food Location Check-in Value Building Business Avg

Overall .308 .219 .191 .114 .234 .259 .003 .202 .150 .029 .171
Implicit .167 .000 .000 .000 .074 .061 .000 .000 .000 .000 .030
Explicit .262 .167 .147 .064 .190 .119 .000 .179 .092 .000 .122

reviews (primarily caused by site scraping errors in the original TripAdvisor data set).
These reviews were subsequently removed from the final dataset, which as a resulted
of 442 reviews, of which 73 shared among all three annotators. The remaining 369
unique reviews were partitioned into a training set (258 reviews, 70% of the total)
and a test set (111 reviews, 30% of the total). The data was split by selecting reviews
for each subset in an interleaved fashion, so that each subset constitutes a minimally
biased sample both with respect to the full dataset and with respect to annotator
experience.

Table 3.1 shows, for each aspect and for each opinion type, the number of segments
annotated with that aspect and that opinion type (across the unique reviews and
averaged across the shared reviews). Both opinions and aspects have a markedly
imbalanced distribution in the dataset. As expected, the imbalance with respect to
opinion is towards the Positive label. In terms of aspects, the Rooms, Service and Other

aspects dominate.

Inter-annotator Agreement

We perform an inter-annotator agreement evaluation on the 73 shared reviews which
all of the annotators annotated independently. We use the evaluation measures of
Section 3.3.1 F1 and sMAEM .

For each aspect we have measured the agreement on implicit opinions only, on
explicit opinions only, and on overall opinions, (i.e implicit and explicit opinions
jointly). Table 3.2 shows the agreement on the task of annotating a segment as
opinionated or not, computed by means of the F1 measure. Table 3.2 shows two
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interesting fact. The first is that, on average, there is a high disagreement if we take
into consideration the agreement on implicit opinions; this result tells us that implicit
opinions are very hard to spot. The second is that, by evaluating agreement jointly,
we can see that it is higher than the single agreements separately. It is clear thus
that it has been difficult for the human annotators to distinguish between implicit
and explicit opinions, and that often the difference between them is too subtle to be
recognized, even by a human annotator. For this reason, we have decided to take
into consideration for this work the overall opinions without making any difference
between implicit and explicit ones.

From Table 3.2 we can see that the worst level of agreement is obtained on
the aspects Building, Value, Other, and Check-In. Other is a special aspect that the
annotators used when they were not confident enough about using one of the nine
main aspects. The aspects on which the annotators have been more uncertain are
Value and Building. The disagreement on Building is due to the fact that has not been
clear to an annotator what is and what is not part of a building, (for example, whether
the pool is part of the building or not). The same happens for the Value aspect;
here the disagreement evaluated by F1 is mostly due to the confusion between Other

and Value, since some annotators tended to annotate with the Value aspect sentences
about the price of the Internet connection, while some annotators annotated them
with the aspect Other, for instance, i.e., Still ticks me off that the Ritz and other 4/5
star hotels charge an extra $10 for internet access is annotated by one annotator as
Other and by another annotator as Value. For the aspect Check-In, the reason of this
low agreement is due to the misconception that some of the annotators have on the
aspect Check-In and the aspect Service. Looking at the data, two annotators tended
to annotate as Check-In all the sentences where a front-desk employee is mentioned,
even when not engaged in a check-in activity, while the third annotator considered
this expression as referring to the aspect Service, i.e., the sentence the front desk
manager is very helpful and always willing to go out of his way to get what you need
is annotated by two annotators as Check-In and by one as Service.

Table 3.3 shows the agreement on annotations that have been evaluated as true
positive in the previous evaluation, that is, the sentences in which two annotators
agree on the aspect. The disagreement in this section is generally quite low. The
aspects with higher disagreement are Location, Food, and Other. The disagreement is
mainly due to neutral-positive or neutral-negative errors, decisions about which the
annotators had some small uncertainty. For example, regarding the aspect Location,
in sentences in which just the walking distance from the hotel to some place of interest
is mentioned, without any clue about the real opinion of the reviewer, the personal
opinion of the annotator is used as the opinion label. So it can happen that Close
to shops, etc. is a good location for an annotator and a bad location for another
one. Detailed tables on inter-annotator agreement are included in Appendix A, in
Tables A.1 and A.2.
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Table 3.4: The collection of model factors and their corresponding features. Feature
vectors: xt: {words, bigrams, SWN/MPQA/GI bigrams, χ2 lexicon matches} in the
t-th segment in review x; xo: {words, bigrams, SWN/MPQA/GI bigrams} in x.

Factor Description Features

Ψs(y
a
t ,xt) Segment aspect-opinion xt ⊗ yat ⊗ a

Ψo(yo,xo) Overall opinion xo ⊗ yo
Ψy(yat , y

a
t+1) Segment aspect-opinion transition yat ⊗ yat+1 ⊗ a

Ψm(yat , y
b
t ) Multi-label segment aspect-opinion yat ⊗ ybt ⊗ a⊗ b

Ψh(yat , yo) Hierarchical overall / segment aspect-opinion yat ⊗ yo ⊗ a

3.3.3 Features

The joint problem of aspect-oriented opinion prediction requires to model features
that help to discriminate opinions and aspects, as well as opinions specific to a
particular aspect. In the experiments that follow we use both word and word bigram
identity features, as well as a set of polarity lexicon features based on the General
Inquirer (GI) [131], the MPQA [165], and the SentiWordNet (SWN) [4] lexicons. The
numerical polarity values of these lexicons are mapped into the set {Positive, Negative,
Neutral}. The mapped lexicon values are used to generalize word bigram features
by substituting the matching words of the bigram with the correspondent polarity.
For example, the bigram nice hotel is generalized to the bigram SWN:positive hotel,
from looking up nice in SentiWordNet. In order to move from the SWN synsets to
real words, we applied a traditional transformation. For each <word, POS>pair in
the SWN lexicon we summed the positive (negative) scores of each synset associated
with it, divided by the ranking of the synset7 in a global positive (negative) score.
The polarity of the word for a given POS is obtained by the higher global score,
i.e., positive score larger than negative score means Positive polarity, and two equal
scores mean Neutral polarity. These features are used both with segment-level and
review-level factors; see Table 3.4.

In order to better discriminate to which aspect an opinion is referred, we created
a new aspect-specific lexicons, the χ2 lexicon. The entries of this lexicons are the
words obtained from the aspect segmentation algorithm proposed in [158]. This
iterative algorithm uses χ2 statistics to calculate the co-occurrence between some
words that are used to describe certain aspects and the words that compose the
reviews. The process start with a seed set of describing words for each aspect, then
it calculates the dependence with χ2 of each word in a review with the words in the
seed sets, at the end of the iteration adds the words with the higher correlation to a
specific aspect, in the seed set of that aspect. After that, the process starts again

7The ranking of the synset is computed by taking into consideration the frequency of use of the
word relatively to each synset.
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with bigger seed sets. The words obtained after this process are the words that are
used in a review to describe a certain aspect. We use the output of this algorithm
to create what we call the χ2 lexicon, in which each word is associated with the
(normalized) frequency with which the word is used to describe a certain aspect.

3.3.4 Experimental Setting

We use Factorie [82] as CRFs framework in order to easily design CRFs with arbitrary,
non-standard, graph structures. Factorie8 is general machine learning framework
written in Scala. It offers programming tools to design probabilistic graphical models
and to perform inference and parameters learning on them as the SampleRank
algorithm and various sampling strategies.

We showed in Section 3.2.2 how SampleRank requires some hyper-parameters do
be set. We fixed the learning rate to α = 1, the gradient threshold ε = 0.1−5 and the
Gibbs sampling iterations for the MAP inference at 100.

We trained our models on the training set described in Section 3.3.2, for a total of
258 unique reviews. We have run two sets of experiments. The first set of experiments
evaluates the proposed models in order to compare them with the baseline, testing
them on the test set composed by 111 reviews. The second set of experiments
evaluates how the best model performs compared with human annotators on the
three shared sets composed by 73 reviews.

The aim of these two sets of experiments is evident. In the first set of experiments
we want to understand how good our proposed systems are with respect to the state
of the art, and to check if adding information on the structure of the problem helps
to solve it better. In the second set of experiments we want to check how close our
best system is to the behavior of a human annotator.

3.3.5 Results

In this section we will present two evaluation scenarios, the first one evaluates the
improvement of performance of the newly proposed methods with respect to the
LC baseline, while the second evaluation is meant to compare the best automatic
annotator with the human annotators.

System comparison

As shown in Tables 3.5 and 3.6, the multi-label and hierarchical models outperform
the LC baseline in both aspect identification and opinion prediction. In particular,
the multi-label models (IML, CML) significantly outperform the baseline on both
subtasks, which shows the importance of modeling the interdependence of different
aspects and their opinions within a segment. On the other hand, combining both
multi-label and transition factors in the hierarchical model (CMLO) leads to worse

8http://factorie.cs.umass.edu/
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Table 3.5: Results for different CRF models averaged on five experiments with five
different random seeds. Segment-level aspect identification results in terms of F1

(higher is better).

Other Service Rooms Clean. Food Location Check-in Value Building Business Avg

LC .499 .606 .662 .700 .579 .623 .329 .395 .298 .000 .469
IML .542 .597 .664 .732 .605 .668 .371 .373 .363 .000 .491
CML .489 .645 .655 .708 .605 .673 .327 .408 .358 .076 .494

LCO .515 .586 .661 .697 .582 .611 .301 .384 .368 .173 .488
IMLO .513 .621 .685 .702 .593 .614 .370 .363 .348 .040 .485
CMLO .531 .629 .663 .706 .602 .618 .271 .393 .350 .081 .485

Table 3.6: Results for different CRF models averaged on five experiments with five
different random seeds. Segment-level opinion prediction results (restricted to the
true positive aspects for each segment) in terms of MAEM (lower is better).

Other Service Rooms Clean. Food Location Check-in Value Building Business Avg

LC .526 .721 .572 1.00 .566 .932 .644 .616 .693 .000 .627
IML .520 .659 .494 .956 .377 .939 .670 .700 .668 .000 .598
CML .492 .681 .613 .978 .482 .906 .735 .691 .377 .000 .595

LCO .482 .626 .398 1.00 .633 .903 .690 .490 .233 .000 .546
IMLO .473 .615 .398 1.00 .457 .970 .343 .469 .269 .000 .500
CMLO .499 .626 .428 1.00 .711 .906 .536 .552 .232 .000 .549

predictions compared to only including the multi-label factors (IMLO) or the tran-
sition factors. We hypothesize that this is due to inference errors, where the more
complex graph structure causes the Gibbs sampler to converge more slowly. Further-
more, while the hierarchical models provide a significant improvement compared to
their non-hierarchical counterparts in terms of opinion prediction, modeling both
the overall and segment-level opinions is not helpful for aspect identification. This
is not too surprising, given that the overall opinion contains no information about
aspect-specific opinions.

The overall review-level opinion prediction results (not shown in Tables 3.5 and 3.6)
are in line with the segment-level results. The IMLO model (.504) outperforms the
LCO baseline (.518), as measured with MAEM . However, as with the segment-level
predictions, including both multi-label and transition factors in the hierarchical
model (CMLO) hurts overall opinion prediction (.544).
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Table 3.7: F1 comparison between the best-performing model (IMLO) and the human
annotators with IMLO results averaged on five experiments with five different random
seeds.

Other Service Rooms Clean. Food Location Check-in Value Building Business Avg

Human .607 .719 .793 .795 .553 .575 .794 .464 .733 .631 .675
IMLO .479 .585 .606 .614 .536 .673 .407 .429 .208 .190 .473

Table 3.8: sMAEM comparison between the best-performing model (IMLO) and the
human annotators with IMLO results averaged on five experiments with five different
random seeds.

Other Service Rooms Clean. Food Location Check-in Value Building Business Avg

Human .308 .219 .191 .259 .150 .202 .234 .003 .114 .029 .171
IMLO .676 .498 .445 .142 .451 .704 .212 .387 .025 .415 .396

Human comparison

We now turn to a comparison between the best-performing model (IMLO) and
the human annotators, treating the model as a fourth annotator when computing
inter-annotator agreement. This allows us to assess how far our model is from
human-level performance. Tables 3.7 and 3.8 clearly show that much work remains
to be done for both subtasks. The aspects Building and Business are difficult to detect
for the automatic system, while a human identifies them with ease. We believe that
the reasons for the poor performance may be different for the two aspects. For the
Business aspect, the reason is likely the scarcity of training annotations, whereas for
the Building aspect the reason may be lexical promiscuity (that is, a hotel building
may be described by a multitude of features, such as interior, furniture, architecture,
etc.).

Interestingly, the ability of the system in identifying the Value aspect is close to
human level, on the other hand, it performs dramatically worse on opinion prediction
on the same aspect. We suggest that this is because assessing the value of something
coined in absolute terms (for example, that a $30 room is cheap) requires world
knowledge (or feature engineering).

3.4 Related Work

From the seminal works of [153] and [97] the field of sentiment analysis has witnessed
a continuing growth. Much of the work done in the past ten years is summarized in
[72, 96]. Specifically, the first work to tackle the problem of extracting aspect-related
opinions from reviews is [46]. The authors detect the aspects of an object in a
review by looking for the most frequent noun phrases in the dataset. A “sentiment
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orientation” is then associated with each detected aspect by employing a method
that exploits a seed set of positive and negative adjectives, and the relations with
other adjectives in WordNet.

This problem has been fertile soil for generative learning methods. Many works
that approach this problem in fact make an extensive use of topic modeling methods,
such as Latent Dirichlet Allocation (LDA). The most representative works using
topic modeling are [159] (that represents the topic-modeling extension of [158]), [142]
(that adopts an extension of LDA to discover aspects and then rate them), and [87]
(where the authors extend LDA by introducing the interdependence between aspects
and ratings). In [158] the authors first segment a review according to predefined set
of keywords, and then adopt a generative model that, by using the overall rating,
calculates the emphasis and the opinion polarity of a user toward a specific aspect. In
[159] the authors extend their generative model with a topic modeling approach that
allows them to segment the review into aspects in an unsupervised fashion. [142]
uses an extended version of the Multi-Grain LDA introduced in [143] to discover
aspects in online reviews. [87] introduces an extension of LDA called Interdependent
LDA (ILDA). ILDA is a generative model that, in order to generate an opinion
phrase, first generates the aspect and then generates the rating by conditioning on
the generated aspect. The term that describes the aspect and the sentiment term
are then generated by conditioning respectively on the aspect and the rating. The
problem has also been faced with supervised learning methods. OpinionMiner [50]
uses a variation of HMMs that incorporates POS labels and lexical patterns in order
to extract opinions, distinguishing between explicit and implicit, from different class
of aspects. In [70] the authors propose two CRFs structures, a variant of Skip-chain
CRFs that links words connected by a conjunction, and a Tree CRFs that follows the
shape of the semantic tree of the sentences. Unlike us they extract negative opinions,
positive opinions, and their related aspects, without considering the neutral opinions.

3.5 Summary

In this chapter we have considered the problem of aspect-oriented opinion mining at
the sentence level. Specifically, we have devised a sequence of increasingly powerful
conditional random field models, culminating in a hierarchical multi-label model
that jointly models both the overall opinion expressed in a review and the set of
aspect-specific opinions expressed in each sentence of the review. Moreover, we have
produced a manually annotated dataset of hotel reviews in which the set of relevant
aspects and the opinions expressed concerning these aspects are annotated for each
sentence; we make this dataset publicly available with the hope to spur further
research in this area. We have evaluated the proposed models on this dataset; the
empirical results show that the hierarchical multi-label model outperforms a strong
comparable baseline. We also compared the performances of the best-performing
model against the average inter-annotator agreement among the three annotators.
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This comparison clearly shows that there is still much work to do to reach human-like
performance in this task.



4
Training Data Quality

in Information Extraction

Supervised machine learning-based systems such as the ones presented in Chapters 2
and 3 rely extensively on training data. While a lot of work has been devoted
to devising learning methods that generate more and more accurate information
extractors, on the other hand, little work (if any) has been devoted to investigating
the effect of the quality of training data on the learning process. Low quality in
training data sometimes derives from the fact that the person who has annotated
the data is different (e.g., more junior) from the one against whose judgment the
automatically annotated data must be evaluated. In this chapter we test the impact
of such data quality issues on the accuracy of information extraction systems oriented
to the clinical domain. We do this by comparing the accuracy deriving from training
data annotated by the authoritative coder (i.e., the one who has also annotated the
test data), with the accuracy deriving from training data annotated by a different
coder. The results indicate that, although the disagreement between the two coders
(as measured on the training set) is substantial, the difference in accuracy is not so.
This suggests that current learning technology is robust to the use of training data
of suboptimal quality.

4.1 Introduction

In the last five years there has been a flurry of work on information extraction
from clinical documents, i.e., on algorithms capable of extracting, from the informal
and unstructured texts that are generated during everyday clinical practice (e.g.,
admission reports, radiological reports, discharge summaries, clinical notes), mentions
of concepts relevant to such practice [27, 49, 53, 69, 85, 99, 149, 156, 160]. Most
of this literature is about methods based on supervised learning, i.e., methods for
training an information extraction system from manually annotated examples. The
use of learning algorithms based on support vector machines (SVMs – [49, 69, 123]),
hidden Markov models (HMMs – [71]), and conditional random fields (CRFs –
[27, 49, 53, 69, 99, 149, 160]) has been proposed; of these, CRFs have lately become
the most popular, and have become the de facto standard in clinical information
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extraction.
While a lot of work has been devoted to devising text representation methods

and variants of the aforementioned supervised learning methods that generate more
and more accurate information extractors, little work (if any) has been devoted to
investigating the effects of the quality of training data on the learning process. Issues
of quality in the training data may arise for different reasons:

1. In several organizations it is often the case that the original annotation is
performed by coders (a.k.a. “annotators”, or “assessors”) as a part of a daily
routine in which fast turnaround, rather than annotation quality, is the main
goal of the coders and/or of the organization. An example is the (increas-
ingly frequent) case in which annotation is performed via crowdsourcing (e.g.,
Mechanical Turk, CrowdFlower, etc.1) [41, 128].

2. In many organizations it is also the case that annotation work is usually
carried out by junior staff (e.g., interns), since having it accomplished by senior
employees would make costs soar.

3. It is often the case that the coders entrusted with the annotation work were
not originally involved in designing the tagset (i.e., the set of concepts whose
mentions are sought in the documents). As a result, the coders may have an
imperfect understanding of the true meaning of these concepts, or of how their
mentions are meant to look like, which may negatively affect the quality of
their annotation.

4. The data used for training the system may sometimes be old or outdated, with
the annotations not reflecting the current meaning of the concepts anymore.
This is an example of a phenomenon, called concept drift [104, 110], which is
well known in machine learning.

We may summarize all the cases mentioned above by saying that, should the training
data be re-annotated by an authoritative coder (hereafter indicated as Cα), the
resulting annotations would be, to a certain extent, different. We would also be able
to precisely measure this difference, by measuring the inter-coder agreement (via
measures such as Cohen’s kappa – see e.g., [2, 30]) between the training data Tr as
coded by Cα and the training data as coded by whoever else originally annotated
them (whom we will call, for simplicity, the alternative coder – hereafter indicated
as Cβ). In the rest of this chapter we will take the authoritative coder Cα to be the
coder whose annotations are to be taken at face value, i.e., considered as the “gold
standard”. As a consequence we may assume that Cα is the coder who, once the
system is trained and applied, has also the authority to evaluate the accuracy of
the automatic annotation (i.e., decide which annotations are correct and which are

1https://www.mturk.com/, http://crowdflower.com/

https://www.mturk.com/
http://crowdflower.com/
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not)2. In this case, inter-coder disagreement measures the amount of noise that is
introduced in the training data by having them annotated by a coder Cβ different
from the authoritative coder Cα.

It is natural to expect the accuracy of an information extraction system to be
lower if the training data have been annotated by an alternative coder Cβ, and
higher if they have been annotated by Cα herself. However, note that this is not a
consequence of the fact that Cα is more experienced, or senior, or reliable, than Cβ.
Rather, it is a consequence of the fact that standard supervised learning algorithms
are based on the assumption that the training set and the test set are identically
and independently distributed, i.e., that both sets are randomly drawn from the
same distribution. As a result, these algorithms learn to replicate the subjective
annotation style of their supervisors, i.e., of those who have annotated the training
data. This means that we may expect accuracy to be higher simply when the coder
of the training set and the coder of the test set are the same person, and to be
lower when the two coders are different, irrespective of how experienced, or senior,
or reliable, they are. In other words, the very fact that a coder is entrusted with the
task of evaluating the automatic annotations (i.e., of annotating the test set) makes
this coder authoritative by definition. For this reason, the authoritative coder Cα
may equivalently be defined “the coder who has annotated the test set” (or: “the
coder whose judgments we adhere to when evaluating the accuracy of the system”),
and “alternative coder” to mean “a coder different from the authoritative coder”.

The above arguments point to the fact that the impact of training data quality
(under its many facets discussed in items (1)-(4) above) on the accuracy of information
extraction systems may be measured by

1. evaluating the accuracy of the system in a homogeneous setting (i.e., both
training and test sets annotated by the authoritative coder Cα), and then

2. evaluating the loss in accuracy, with respect to the homogeneous setting, that
derives from working instead in a heterogeneous setting (i.e., test set annotated
by Cα and training set annotated by an alternative coder Cβ)3.

4.1.1 Our Contribution

In this chapter we test the impact of training data quality on the accuracy of
information extraction systems oriented to the clinical domain. We do this by testing

2In some organizations this authoritative coder may well be a fictional entity, e.g., several coders
may be equally experienced and thus equally authoritative. However, without loss of generality we
will hereafter assume that Cα exists and is unique.

3In the domain of classification the homogeneous and heterogeneous settings have also been
called self-classification and cross-classification, respectively [162]. We depart from this terminology
in order to avoid any confusion with self-learning (which refers to retraining a classifier by using,
as additional training examples, examples the classifier itself has classified) and cross-lingual
classification (which denotes a variant of text classification which exploits synergies between
training data expressed in different languages).
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the accuracy of a state-of the-art, CRFs-based system on a dataset of radiology
reports (originally discussed in [27]) in which a portion of the data has independently
been annotated by two different experts. In other words, we try to answer the
question: “What is the consequence of the fact that my training data are not sterling
quality? that the coders who produced them are not entirely dependable? How much
am I going to lose in terms of accuracy of the trained system?”

In these experiments we not only test the “pure” homogeneous and heterogeneous
settings described above, but we also test partially heterogeneous settings, in which
increasingly large portions of the training data as annotated by Cα are replaced
with the corresponding portions as annotated by Cβ, thus simulating the presence
of incrementally higher amounts of noise. For each setting we compute the inter-
coder agreement between the two training sets; this allows us to study the relative
loss in extraction accuracy as a function of the agreement between authoritative
and alternative assessor as measured on the training set. Since in many practical
situations it is easy to compute (or estimate) the inter-coder disagreement between
(a) the coder to whom we would ideally entrust the annotation task (e.g., a senior
expert in the organization), and (b) the coder to whom we can indeed entrust it
given time and cost constraints (e.g., a junior member of staff), this will give the
reader a sense of how much inter-coder disagreement generates how much loss in
extraction accuracy.

The rest of the chapter is organized as follows. In Section 4.2 we describe
experiments that attempt to quantify the degradation in extraction accuracy that
derives from low-quality training data, with Section 4.2.2 devoted to spelling out the
experimental setting and Section 4.2.3 devoted instead to presenting and discussing
the results. Section 4.3 reviews related work in information extraction from clinical
documents and on establishing the relations between training data quality and
extraction accuracy. Finally, Section 4.4 concludes, discussing avenues for further
research.

4.2 Experiments

In this chapter we adopt the same experimental setting of Chapter 2. We employ
the LC-CRF model of Section 2.2.2 using the positional features of Section 2.2.5.
We conducted our experiment on the UmbertoI(RadRep) dataset described in Sec-
tion 2.3.1 and evaluated the performance with the token-level variant of the F1

measure described in Section 2.3.2.

4.2.1 Inter-coder agreement

As a measure of inter-coder agreement we use Cohen’s kappa (noted κ), defined as

κ =
P (A)− P (E)

1− P (E)
(4.1)
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where P (A) denotes the probability (i.e., relative frequency) of agreement calculated
as:

P (A) =
TP + TN

TP + TN + FP + FN
(4.2)

and P (E) denotes the probability of chance agreement calculated as:

P (E) =
(TP + FP )(TP + FN) + (TN + FP )(TN + FN)

TP + TN + FP + FN
(4.3)

where, TP , TN , FP and FN stand for the numbers of true positives, true negatives
false positives, and false negatives, respectively (see [2, 30] for more details).

We opt for kappa since it is the most widely known, and best understood, measure
of inter-coder agreement. For Cohen’s kappa too we work at the token level, i.e., for
each token xt we record whether the two coders agree on whether xt is labeled or
not with the concept c of interest.

Incidentally, note that (as observed in [28]) we can compute Cohen’s kappa only
thanks to the fact that we conduct our evaluation at the token level. Those who
conduct their evaluation at the segment level (e.g., [15]) find that they are unable to
do so, since in order to be defined kappa needs the notion of a true negative to be
also defined, and this is undefined at the segment level. Evaluation at the segment
level thus prevents the use of kappa and leaves F1 as the only choice.

4.2.2 Experimental Protocol

In Chapter 2, experiments on the UmbertoI(RadRep) dataset were run using either
1-only and/or 2-only (i.e., the portions of the data that only one coder had
annotated) as training data and Both(1) and/or Both(2) (i.e., the portion of the
data that both coders had annotated, in both versions) as test data.

In this chapter we switch the roles of training set and test set, i.e., use Both(1) or
Both(2) as training set (since for the purpose of this work we need training data with
multiple, alternative annotations) and 1-only or 2-only as test set. Specifically, we
run two batches of experiments: in Batch 1 Coder1 plays the role of the authoritative
coder (Cα) and Coder2 plays the role of the alternative coder (Cβ), while in Batch
2 Coder2 plays the role of Cα and Coder1 plays the role of Cβ. Each of the two
batches of experiments is composed of:

1. An experiment using the homogeneous setting, i.e., both training and test data
are annotated by Cα. This means training on Both(1) and testing on 1-only

(Batch 1) and training on Both(2) and testing on 2-only (Batch 2).

2. An experiment using the heterogeneous setting, i.e., training data annotated
by Cβ and test data annotated by Cα. This means training on Both(2) and
testing on 1-only (Batch 1) and training on Both(1) and testing on 2-only

(Batch 2).
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3. Experiments using the partially heterogeneous setting, i.e., test data annotated
by Cα, and training data annotated in part by Cβ (ω% of the training documents,
chosen at random) and in part by Cα (the remaining (100−ω)% of the training
documents). We call ω the corruption ratio of the training set; ω = 0 obviously
corresponds to the fully homogeneous setting while ω = 100 corresponds to
the fully heterogeneous setting.

We run experiments for each ω ∈ {10, 20, ..., 80, 90} by monotonically adding,
for increasing values of ω, new randomly chosen elements (10% at a time) to
the set of training documents annotated by Cβ. Since the choice of training
data annotated by Cβ is random, we repeat the experiment 10 times for each
value of ω ∈ {10, 20, ..., 80, 90}, each time with a different random such choice.

For each of the above train-and test experiment we compute the inter-coder agreement
κ(Tr, T̃ r) between the non-corrupted version of the training set Tr and the corrupted

version T̃ r. We then take the average among the 10 values of κ(Trα, T̃ rα) deriving
from the 10 different experiments run for a given value of ω and denote it as κ(ω);
this value indicates the average inter-coder agreement that derives by “corrupting”
ω% of the documents in the training set, i.e., by using for them the annotations
performed by the alternative coder.

For each of the above train-and test experiment we also compute the extraction
accuracy (via both F µ

1 and FM
1 ) and the relative loss in extraction accuracy that

results from the given corruption ratio.

4.2.3 Results

Figures 4.1 and 4.2 illustrate the results of our experiments by plotting F1 as a
function of the corruption ratio ω. For each value of ω, the corresponding level of inter-
coder agreement κ(ω) (as averaged across the two batches) is also indicated. Table 4.1
reports precise extraction accuracy figures for the homogeneous and heterogeneous
settings, for both batches of experiments and along with the resulting inter-coder
agreement values.

A first fact that emerges is that macroaveraged (FM
1 ) results are lower than the

corresponding microaveraged (F µ
1 ) results. This is unsurprising, and conforms to a

well-known pattern. In fact, microaveraged effectiveness scores are heavily influenced
by the accuracy obtained on the most frequent concepts (i.e., on the ones that
label many tokens), which tends to be higher, since for frequent concepts training
data abound. Conversely, in macroaveraged effectiveness measures each concept
counts the same, which means that the low-frequency concepts (which tend to be
the low-performing ones too) have as much of an impact as the high-frequency ones.
See [23, pp. 591–593] for a thorough discussion of this point in a text classification
context.

A second fact that may be noted is that there is a substantive difference in
accuracy values between the two batches, with Batch 1 generating much higher
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Figure 4.1: Microaveraged F1 as a function of the fraction ω of the training set that
is annotated by Cβ instead of Cα (“corruption ratio”). The dashed line represents
the experiments in Batch 1, the dotted line represents those in Batch 2, and the solid
one represents the average between the two batches. The vertical bars indicate, for
each ω ∈ {10, 20, ..., 80, 90}, the standard deviation across the 10 runs deriving from
the 10 random choices of the elements in Trβ.

accuracy than Batch 2. This fact can be especially appreciated at the microaveraged
level, which indicates that the most affected codes are the high-frequency ones.
However, it is not possible to attribute this fact to the different behaviour of the two
alternative coders, since this substantive difference is already present for ω = 0, i.e.,
in the fully homogeneous case. It is thus likely that the difference is more simply
due to Coder1 being more self-consistent in her annotation style than Coder2, or to
the fact that 1-only contains richer information than 2-only.

A third fact that emerges is that, for both F µ
1 and FM

1 , there is (as could be
expected, and notwithstanding some oscillations) a clear decreasing pattern for
accuracy as a function of ω.

However, the most important (and perhaps surprising) fact is that this decrease
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Figure 4.2: Macroaveraged F1 as a function of the fraction ω of the training set that
is annotated by Cβ instead of Cα (“corruption ratio”). The dashed line represents
the experiments in Batch 1, the dotted line represents those in Batch 2, and the solid
one represents the average between the two batches. The vertical bars indicate, for
each ω ∈ {10, 20, ..., 80, 90}, the standard deviation across the 10 runs deriving from
the 10 random choices of the elements in Trβ.

is not dramatic. As specified in Table 4.1, a decrease in kappa values from 1.000 to
0.742 (a quite substantive decrease) determines a decrease in FM

1 (average across
the two batches) from 0.538 to 0.501 (-6.87%) and from 0.651 to 0.634 (-2.61%).

This seems to suggest that current learning technology is robust to the use of
training data of suboptimal quality. The fact that the decrease is more marked for
FM

1 than for F µ
1 suggests that the most frequent codes are less affected than the

most infrequent ones; this could be expected, since the most frequent codes have
more training data, which somehow compensates for the suboptimal quality of these
data.

This comparatively small decrease in accuracy might seem somehow surprising
in the light of the results of [29], who show that, in a text classification context,
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Table 4.1: Extraction accuracy for the homogeneous setting (ω = 0) and hetero-
geneous setting (ω = 100), for both batches of experiments (and for the average
across the two batches), and along with the resulting inter-coder agreement values
expressed as κ(ω).

x κ(ω) F µ
1 FM

1

Batch 1
0 1.00 0.685 0.538

100 0.742 0.681 0.521

Batch 2
0 1.00 0.617 0.537

100 0.742 0.586 0.497

Average
0 1.00 0.651 0.538

100 0.742 0.634 0.501

minimal quantities of training noise can give rise to extremely substantial losses
in classification accuracy. However, the key difference is that [29] uses artificially
generated noise (since the datasets the authors use do not contain multiply annotated
documents), and it is not clear that the noise model the authors use well represents
the kind of noise we want to deal with here. Unfortunately the results obtained in
Chapter 2 cannot be directly compared with the ones obtained in this chapter. The
reason is the fact that for the training data adopted in Chapter 2 we do not have an
assessment of inter-coder agreement. Thus, the decrease in accuracy that we observed
in the multiple-annotator scenario (Section 2.3.4) with respect to the results obtained
in the single-annotator scenario (Section 2.3.4), cannot be thoroughly evaluated as a
function of the disagreement between coders.

4.3 Related Work

4.3.1 Inter-coder Agreement

Inter-coder agreement, or the lack thereof, has been widely studied for over a century
(see e.g., [62] for an introduction). As a phenomenon, disagreement among coders
naturally occurs when units of content need to be annotated by humans according to
their semantics (i.e., when the occurrences of specific concepts need to be recognized
within these units of content). Such disagreement derives from the fact that semantic
content is a highly subjective notion: different coders might disagree with each other
as to what the semantics of, say, a given piece of text is, and it is even the case that
the same coder might at times disagree with herself (i.e., return different codes when
coding the same unit of content at different times).
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Inter-coder agreement may be measured by the relative frequency of the units
of content on which coders agree, usually normalized by the probability of chance
agreement. Many metrics for inter-coder agreement have been proposed over the
years, “Cohen’s kappa” probably being the most famous and widely used (“Scott’s
pi” and “Krippendorff’s alpha” are others); sometimes (see e.g., [15, 27]) functions
that were not explicitly developed for measuring inter-coder agreement (such as F1,
that was developed for measuring binary classification accuracy) are used. Recently,
the authors of [98] adopted a probabilistic model that assess the agreement between
coders by measuring the uncertainty associated with each annotation, and the bias
toward specific categories. The levels of inter-coder agreement that are experimentally
recorded in actual experiments vary a lot across experiments, types of content, and
types of concepts that are to be recognized in the units of content under investigation.
This extreme variance depends on factors such as “annotation domain, number of
categories in a coding scheme, number of coders in a project, whether coders received
training, the intensity of coder training, the annotation purpose, and the method
used for the calculation of percentage agreements.” [6]. The actual meaning of the
concepts the coders are asked to recognize is a factor of special importance, to the
extent that a concept on which very low levels of inter-coder agreement are reached
may be deemed, because of this very fact, ill-defined.

4.3.2 Effects of Low-Quality Training Data

The literature on the effects of imperfect training data quality on prediction accuracy
is extremely scarce, even within the machine learning literature at large. An early
such study is [108], who look at these issues in the context of learning to predict prices
of mutual funds from economic indicators. Differently from us, the authors work
with noise artificially inserted in the training set, and not with naturally occurring
noise. From experiments run with a linear regression model they reach the bizarre
conclusion that “the predictive accuracy (...) is better when errors exist in training
data than when training data are free of errors.”, while the opposite conclusion is
(somehow more expectedly) reached from experiments run with a neural networks
model. A similar study, where the context is predicting the average air temperature
in distributed heating systems, was carried out in [48]; yet another, where the goal
was predicting the production levels of palm oil via a neural network, is [56].

In the context of a biomedical information extraction task4 [43] examine the
situation in which training data annotated by two different coders are available, and
they found that higher accuracy is obtained by using both versions at the same time
than by attempting to reconcile them or using just one of them. Their use case is
different from ours, since in the case we discuss only one set of annotations, those of

4Biomedical IE is different from clinical IE, in that the latter (unlike the former) is usually
characterized by idiosyncratic abbreviations, ungrammatical sentences, and sloppy language in
general. See [29, Section 5] for a discussion of this point.
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the alternative coder, are available as training data. Note also that training data
annotated by more than one coder are rarely available in practice.

Closer to our application context, [29] have thoroughly studied the effect of
imperfect training data quality in text classification. However, in their case the
degradation in the quality of the training data is obtained, for mere experimental
purposes, via the insertion of artificial noise, due to the fact that their datasets did
not contain data annotated by more than one coder. As a result, it is not clear how
well the type of noise they introduce models naturally occurring noise. [162] also
address the text classification task (in the context of e-discovery from legal texts),
bur differently from [29] they work with naturally occurring noise. Differently from
the present work, the multiply-coded training data they use were coded by one coder
known to be an expert coder and another coder known to be a junior coder; our work
instead (a) focuses on information extraction, and (b) does not make any assumption
on the relative level of expertise of the two coders.

4.4 Summary

Few researchers, if any, have investigated the loss in accuracy that occurs when a
supervised learning algorithm is fed with training data of suboptimal quality. We do
this in the case of information extraction systems (trained via supervised learning)
as applied to the detection of mentions of concepts of interest in medical notes.
Specifically, we test to what extent extraction accuracy suffers from the fact that
the person who has annotated the test data (the “authoritative coder”), who is
by definition the person to whose judgment we conform irrespectively of her level
of expertise, is different from the person who has labeled the training data (the
“alternative coder”). Our experimental results, that we have obtained on a dataset
of 500 mammography reports annotated according to 9 concepts of interest, are
somehow surprising, in the sense that they indicate that only a marginal decrease in
extraction accuracy follows from a substantial decrease in training data quality. This
seems to indicate that current supervised learning technology (and, in particular, the
conditional random fields technology that we have used here) is robust to the use of
training data of suboptimal quality. Since labeling cost is an important issue in the
generation of training data (with senior coders costing much more than junior ones,
and with internal coders costing much more than “mechanical turkers”), this result
may give important indications as to the cost-effectiveness of low-cost annotation
work.
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5
Active Learning

with Partially Labeled
Sequential Data

This chapter is devoted to the study of how to improve the process of human
annotation of text in order to obtain good-quality training data with minimum effort.
In fact, the annotation of training data is a tedious and expensive work that requires
the effort of expert human annotators. The process of active learning (AL) starts
with a very small training set of annotated data and a large set of unannotated
data. A learner is trained on the training set and the learnt model is used to select a
sample of the unannotated data, via an AL strategy; the sample is then presented
to a human annotator for annotation and subsequent inclusion in the training set.
This process is iterated until some stopping criteria are met, e.g., size of training
set, amount of human effort, effectiveness of the learnt model on a validation set.
AL proved to be effective in optimizing the available human annotation effort with
respect to sampling data to be annotated in random mode. In this chapter we
consider the problem of designing AL strategies for sequence labeling tasks. While
there seems to be agreement on the efficiency of AL strategies for learning classifiers
on vectorial data (e.g., the uncertainty sampling strategy is quite popular), the
case of sequence labeling is more complicated. In particular, one generally does not
want to ask the labeling of full training sequences but instead ask the annotator to
focus on a small part of a sequence, namely, the one with highest ambiguity. We
investigate in this chapter the behavior of some AL strategies for sequence labeling
tasks in a semi-supervised scenario. We compare experimentally the effectiveness of
these strategies and we explore their behavior on different sequence labeling tasks:
phrase chunking, part-of-speech tagging, named-entity recognition, and bio-entity
recognition.

5.1 Introduction

It is a well-consolidated fact that the state-of-the-art methods in natural language
processing tasks are machine learning approaches. The main problem of this kind
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of methods is the cost of the production of human-annotated data to train such
systems. Annotating data is a tedious and expensive work that requires the effort of
one or, better, more than one human annotator, expert in the domain of the task to
solve. This activity is even more expensive when we need training data for structured
learning problems, in which an instance is composed by several annotations, such
as in sequence labeling problems. In general, in order to create a dataset, a certain
amount of data is asked to be labeled by human annotators. In order to minimize the
human effort for annotating such data, several methods have been studied. The most
popular methods, that we jointly use in this chapter, are semi-supervised learning
and active learning. Each of them acts in a different way, both with the aim to
reduce the need of large amounts of human annotated data.

Semi-supervised Learning Semi-supervised learning [170] is a learning model
which starts with an initial training set of human annotated samples that has a
much smaller size than those typically used in traditional supervised learning. The
training set is enriched before been submitted to the learner by fetching new samples
from a large set of unlabeled data and automatically labeling them by using various
strategies that exploit the similarities and relations (when available) between the
labeled and unlabeled data. Different approaches for learning classifiers from labeled
and unlabeled data have been studied. The co-training approach, popularized by
[12], adopts two classifiers that incrementally learn from each other’s most confident
predictions. The self-training approach [167], similarly to the previous method, uses
a small amount of labeled data to create a classifier that will predict labels for the
unlabeled data; the most confident labeled examples are then added to the training
data. Graph-based methods [11, 168] generate graphs in which the nodes represent
the examples, both labeled and unlabeled, and the edges represent the similarity
between examples; then, similarity algorithms that work on graphs are adopted to
select unlabeled examples that can be reasonably labeled as their “similar” labeled
neighbors. For what concerns semi-supervised learning on sequence labeling tasks,
some work has been recently done, especially adopting CRFs [74, 126, 139]. In
particular, [152] introduced what we call in this dissertation the partially-labeled
conditional random fields (PLCRFs), a semi-supervised type of CRFs capable to
train a classifier even with partially-labeled sequences.

Active Learning The process of active learning (AL) asks a human annotator
to annotate not random data, but only the most informative examples, in order to
save human annotation effort. The informativeness of an example is based on the
concept of how much new information the new example would give in learning a
new classifier, once annotated. AL aims to create an annotated dataset composed by
extremely informative examples. AL methods can be coarsely classified according to
two orthogonal dimensions: (1) the AL scenario, and (2) the sampling approach.

The AL scenarios are mainly three, and they depend on how the examples that
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have to be labeled are presented to the human annotator. The less common scenario
is the query synthesis scenario [1], where the learner itself proposes to annotate
examples in the input space, even synthetic ones. This scenario can lead to some
annotation problems when the synthetic examples produced are not intelligible by a
human being. The second most-popular AL scenario is the stream-based scenario [17],
where new examples are proposed to the learner one at time and the learner decides
whether to propose the example to the human annotator or to discard it. A typical
example of this scenario is spam filtering [114], where spam mails are flagged as spam
and then reused to re-train the spam filter. The third and most-common AL scenario
is the pool-based scenario [68], and it is the one we have adopted in this work. The
pool-based scenario reflects a real-world scenario where a large amount of unlabeled
data can be collected at once, but the available resources for human annotation allow
to annotate only a relatively small subset of those data. In this scenario only a small
set of data is labeled and a pool of unannotated data is available. The examples are
sampled from the unannotated set typically by their amount of informativeness, that
can be measured in several ways.

The measure of informativeness that will be associated with unlabeled examples
will determine the sampling approach that one adopts in the AL process. Among
the most popular sampling approaches are:

• Uncertainty sampling [67], which measures the informativeness of an example
by the uncertainty that a classifier has on it.

• Query by committee sampling [34], which selects the examples on which two
different classifiers disagree the most.

• Expected error reduction sampling [109], whose goal is to find examples that
once annotated will reduce the prediction error.

• Density-weighted sampling [35, 65], which exploits the structure of the data,
sampling not just the examples with the higher information content, but also
the ones that are somehow representative of the data distribution.

AL has proved to be useful in sequence labeling tasks [22, 26, 117, 137], in which
researchers have mostly adopted as basic annotation unit the entire sequence. [161]
exploited PLCRFs, so to adopt as basic annotation unit the single token. Further-
more they make use of the concept of field confidence estimation, introduced in
[20], to re-estimate the confidence of the classifier on unlabeled examples after each
token labeling. AL with partially annotated sequences has proven to be effective in
reducing the amount of annotated data with respect to common AL approaches [161].

In this chapter we focus on AL strategies for partially-labeled sequences adopt-
ing the single token as annotation unit and PLCRFs as learning algorithm given its
nature in dealing with partially labeled sequences. We propose several AL strategies
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based on measures of uncertainty adapted for the AL with partially labeled sequences
scenario and tailored on PLCRFs. In addition, we propose two novel AL strategies
that take advantage of the finer granularity given by the partially-labeled AL scenario.
We test the effectiveness of these strategies on four traditional sequence labeling tasks,
showing that the choice of single-token annotation can bring to unpredictable results
on sequence labeling tasks in which the structure of the sequences is not regular,
e.g., named-entity recognition. We propose also a first solution to the problem of
unpredictability.

5.2 Partially-labeled CRFs

Traditional CRFs (see Section 1.2.1) cannot learn a classifier from partially labeled
sequences. [152] introduced the PLCRFs, an approach that allows to learn a CRF
model using partially labeled sequences, marginalizing on those tokens that do not
have an assigned label. In this chapter we propose several AL strategies tailored on
PLCRFs.

In PLCRFs, L is a partially labeled sequence. It consists of a sequence of sets Lt
where Lt = Y (where Y is the set of all the possible labels, as in Section 1.1) if there
is no label information for the token at time t. Lt is a singleton containing yt if the
label of the token at time t is known. With this setup, the probability distribution
p(YL|x) is calculated as:

p(YL|x) =
∑
y∈YL

p(y|x) (5.1)

where p(y|x) is calculated as in Equation (1.19).
In order to perform inference and parameter learning on PLCRFs, some modifi-

cations to traditional inference algorithms are required.

5.2.1 Forward-Backward Algorithm

Differently from traditional CRFs (Equations (1.22) and (1.24)), the forward and
backward score (respectively α and β) are calculated as follows:

αt,L(j) =


0 if j 6∈ Lt
Ψ1(j, y0,x1) if t = 1∑

i∈Lt−1
αt−1,L(i)Ψt(j, i,xt) otherwise

(5.2)

βt,L(i) =


0 if j 6∈ Lt
1 if t = T∑

j∈Lt+1
βt+1,L(j)Ψt+1(j, i,xt+1) otherwise

(5.3)

where y0 is a special label that encodes the beginning of a sequence and Lt is the set
of the applicable labels at time t in the sequence L. If the label is not observed, that
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is, is hidden, then Lt is the entire set of possible labels Y , otherwise it is composed
just of the observed label yt.

The forward and backward recursion of Equations (5.2) and (5.3) allow the
computation of the α and β scores not necessarily on a complete lattice, but on a
constrained lattice with blocked paths on observed labels.

5.2.2 Marginal Probability

The forward and backward scores, calculated in Equations (5.2) and (5.3), allow
the computation of the marginal probability p(yt = j|x,L), that is, the marginal
probability to have label j at time t in the sequence, in a partially labeled scenario.
Differently from the traditional CRFs, here we potentially have a partial annotated
sequence L, which means that the forward and backward scores, and thus the
partition function Z are calculated on a potentially constrained lattice.

Formally:

p(yt = j|x,L) =
αt,L(j) · βt,L(j)

ZL(x)
(5.4)

where

ZL(x) =
∑
j∈Lt

αt,L(j) · βt,L(j) (5.5)

for any value t.

The constrained marginal probability in CRFs has been introduced by [20] with
the name of field confidence estimation. In our case, unlike [20], a “field” can be a
non-contiguous set of annotated tokens of the sequence. In case sequence L does
not have partial annotations, the forward and backward scores and the marginal
probabilities are calculated as in the traditional CRFs.

5.2.3 Viterbi Algorithm

As in the traditional CRFs, the most probable sequence assignment is calculated with
the Viterbi algorithm. The Viterbi recursion is adopted to calculate the posterior
probability of the most probable sequence assignment. From this probability the
backward recursion of the Viterbi algorithm is used to trace the most probable
sequence assignment.

Similarly to the forward score (Equation (5.2)) the Viterbi score for partially
labeled sequences is calculated as follows:

δt,L(j) =


0 if j 6∈ Lt
Ψ1(j, y0,x1) if t = 1
maxi∈Lt−1 δt−1,L(i)Ψt(j, i,xt) otherwise

(5.6)
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Given Equation (5.6) the probability of the most probable assignment is calculated
as:

p(y∗|x,L) = max
y

p(y|x,L) =
maxj∈LT

δT,L(j)

ZL(x)
(5.7)

5.2.4 Log-Likelihood

As in traditional CRFs, in order to learn the model parameters θ, the maximum log-
likelihood approach is adopted. Given the definitions of PLCRFs in Equation (5.1),
the log-likelihood function LL(θ), which has to be maximized in order to estimate
the parameters θ of the model, is calculated as follows:

LL(θ) =
N∑
n=1

log p(YL(n)|x(n))

=
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(5.8)

Even though the log-likelihood in traditional linear-chain CRFs is a concave function,
due to the incomplete labeling, this function is not concave and thus can lead to
local optima during the optimization. However, it is still possible to use optimization
algorithms such as gradient ascent, LBFGS, and the like, in order to maximize the
log-likelihood.

In the following section we present several AL strategies that exploit the properties
of the PLCRFs presented in this section.

5.3 Active Learning Strategies for CRFs

with Partially Labeled Sequences

Pool-based AL ([67]) is probably the most common scenario in AL, where one has
a large amount (pool) of unlabeled examples U1 and a small amount of labeled
examples T1. In this scenario, the process of AL consists in a series of n iterations
where a classifier Φi is trained with labeled examples Ti, and then is used to classify
the unlabeled examples Ui. At this point an AL strategy S will select a number of
examples B that once labeled will hopefully improve the performance of the next
classifier Φi+1.
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Algorithm 2 shows the pool-based AL framework for partially annotated sequences.
Differently from AL for fully labeled sequences [26], thanks to the finer granularity
of the partially labeled model, we use the token as basic annotation unit, instead of
the entire sequence.

The point of using the partial labeling is in saving the request for human anno-
tations on tokens whose labels are already known (inferred) by the classifier and
concentrate on those tokens that the classifier finds hard to label. Using the semi-
supervised approach of the PLCRFs we can take advantage of single-labeled tokens
instead of an entire labeled sequence.

Algorithm 2 Pool-based active learning framework

Require: T1, the initial training set
U1, the initial unlabeled set
S, the selected active learning strategy
n, the number of iterations
B, the dimension of the update batch

1: for i← 1 to n do
2: Φi ← train(Ti)
3: Li ← Φi(Ui)
4: for b← 1 to B do
5: x

(b)
∗ ← arg minxt∈x,x∈Li S(t,x)

6: Li ← Li − x(b) ∪ Φi(x
(b), y∗)

7: Ui ← Ui − x
(b)
∗ ∪ (x

(b)
∗ , y∗)

8: Ti ← Ti − x
(b)
∗ ∪ (x

(b)
∗ , y∗)

9: Ui+1 ← Ui
10: Ti+1 ← Ti

The entire pool-based AL process with partially labeled sequences is summarized
in Algorithm 2. The function S(t,x) is what, hereafter, we call an AL strategy.
S(t,x) takes as input an automatically annotated sequence x and an element t of
this sequence from the set of sequences Li annotated by the PLCRF classifier Φi,
and returns a measure of informativeness as a function of the classifier decision.

For each iteration through the update batch B, the most informative element
x

(b)
∗ , according to the AL strategy, is chosen. The subscript ∗, in this case, represents

the most informative token, while the superscript (b) represents the sequence where
the token appears. After the choice of the most informative token the sets Li, Ui
and Ti are updated. Li is updated by removing the annotated sequence x(b) and
all the information given by the classifier, and by adding the same sequence with
the new manually labeled token (y∗) and all the re-estimated annotation given by
the classifier Φi(x

(b), y∗). In the unlabeled set Ui and the training set Ti the most
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informative token x
(b)
∗ is updated with its manually labeled version (x

(b)
∗ , y∗)

1. After
B token annotations, the unlabeled set and the training set for the next iteration,
respectively Ui+1 and Ti+1, are updated.

The inference methods of Section 5.2 allow not only to train a CRF model with
partially labeled sequences, but give the possibility of classifying partially labeled
sequences, using the known labels as support for the prediction of the other ones.
Thus, in the AL scenario, each time a token is chosen it is immediately labeled, and
this new information, as we can see from line 6 of Algorithm 2, is promptly used to
re-estimate the informativeness of the other tokens in the sequence where the chosen
token appears.

One may argue that, for a human annotator, annotating only one or few tokens,
instead of the entire sequence, is a difficult task. This would be correct in the scenario
in which the text is presented to the human annotator without any visual clue about
the annotations. However, in [21] it is shown that presenting to the human annotator
the highlighted sequence to be annotated along with the associated sequence of
labels obtained by the classifier requires much less effort from the annotator than
performing the annotation without any visual and contextual clue.

5.3.1 Greedy Strategies

In this section we present three AL strategies that select the most informative tokens,
regardless of the assignment performed by the Viterbi algorithm, thus maximizing
the informativeness at token level and not at sequence level as in Section 5.3.2.

The rationale behind all these strategies is that, even though we are looking
for the most probable sequence assignment, we also want to annotate the most
informative tokens individually, and these strategies offer us the opportunity to
annotate the tokens, about which the model, regardless of the Viterbi algorithm, is
most uncertain about.

Minimum Token Probability

The Minimum Token Probability (MTP) strategy employs as measure of informa-
tiveness the probability of the most probable assignment at time t regardless of the
most probable sequence assignment chosen by the Viterbi algorithm, i.e.,

STC(t) = max
j∈Y

p(yt = j|x,L) (5.9)

This strategy, as the others of this section, greedily samples the tokens whose highest
probability among the labels is the lowest.

1In order to have a light notation we omit the fact that when the most informative token is the
first annotated token of a sentence, the whole sentence, with just one annotated token, is added to
the training set Ti
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Maximum Token Entropy

Entropy [121] is a traditional measure for measuring uncertainty [5, 47]. The rationale
of the Maximum Token Entropy (MTE) strategy is that, if more than one label have
the same assigned marginal probability, the entropy will be high, that is,

STE(t,x) =
∑
j∈Y

p(yt = j|x,L) · log p(yt = j|x,L) (5.10)

In order to directly plug the STE function into the AL framework of Algorithm 2,
we removed the minus sign at the beginning of the entropy formula. This allow us to
use the min operator with a maximum entropy approach.

Minimum Token Margin

The Minimum Token Margin (MTM) strategy is a variant of the margin sampling
strategy introduced in [113]. It calculates the informativeness by considering the two
most probable assignments and by subtracting the highest probability by the lowest,
regardless of the most probable sequence assignment; i.e.,

STM(t,x) = max
j∈Y

p(yt = j|x,L)−max
j∈Y

′p(yt = j|x,L) (5.11)

where max ′ calculates the second maximum value.

5.3.2 Viterbi Strategies

Differently from the strategy of Section 5.3.2, the AL strategies described in this
section take into consideration the most probable sequence assignments obtained via
the Viterbi algorithm. The rationale is that, with these strategies, the measure of
uncertainty is chosen according to the outcome of the Viterbi algorithm.

Minimum Viterbi Probability

Minimum Viterbi Probability (MVP) takes as measure of informativeness the prob-
ability of the label chosen by the Viterbi algorithm in order to obtain the most
probable assignment y∗.

Formally:

SV P (t,x) = p(y∗t |x,L) (5.12)

It can be considered as the traditional minimum confidence strategy of [26], and it is
the base of the strategies adopted in [161].
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Minimum Viterbi Margin

The Minimum Viterbi Margin (MVM) strategy calculates the difference of the
sequence probabilities of the two most probable sequence assignments at the variation
of the label at time t. When the difference at time t is low, the Viterbi algorithm, in
that time, chooses between two almost equiprobable sequence assignments.

Formally:
SMVM(t,x) = p(y∗y∗t |x,L)− p(y′∗y′∗t |x,L) (5.13)

where y′∗ is the second most probable assignment when we change the label at time
t, and y∗t and y′∗t are respectively the assignment chosen at time t by the Viterbi
algorithm and the token assignments that returns the second most probable sequence
assignment.

Maximum Viterbi Pseudo Entropy

The Maximum Viterbi Pseudo Entropy (MVPE), as its greedy counterpart, adopts
entropy as the measure of informativeness. This strategy calculates for each token
the “pseudo” entropy of the most probable sequences at the variation of the label
associated with the token at position t. The prefix “pseudo” is used because, even
though it is calculated with the same formula of entropy, the summation is over
all possible labels that can be associated with a token Y, and not all the possible
sequence assignments.

SMV PE(t,x) =
∑
j∈Y

p(y∗yt=j|x,L) · log p(y∗yt=j|x,L) (5.14)

where y∗yt=j represents the most probable assignment with the label at time t
constrained to the value j. As in the MTE strategy (Section 5.3.1) the minus sign is
removed in order to plug the functions directly into the AL framework of Algorithm 2.

Minimum Expectation

PLCRFs allow us to inspect one token at a time in order to decide if it is worth to
annotate. This fact gives us the possibility of exploiting two quantities in order to
estimate the informativeness of a token: the sequence probability, usually adopted
in the traditional AL for sequence labeling, and the marginal probabilities of the
single tokens as in Section 5.3.1. The Minimum Expectation (ME) strategy combines
the marginal probability p(yt = j|x,L), i.e., the probability that a particular label
j is associated with the token at time t, and the maximum sequence probability
p(y∗yt=j|x,L):

SME(t,x) =
∑
j∈Y

p(yt = j|x,L) · p(y∗yt=j|x,L) (5.15)

Here the maximum sequence probability is seen as a function, and what we calculate
is its expected value. The rationale of this strategy is adding to the training set
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those tokens where both the sequence probability returned by the Viterbi algorithm
and the marginal probability of the considered labels is low.

Minimum Expectation Difference

Given that the ME strategy gives a high weight to the sequence probability, one might
expect that tokens that belong to longer sequences are selected more frequently, given
that the sequence probability of longer sequences is usually lower than that of shorter
ones. One way to normalize this difference is subtracting the current maximum
sequence probability, that is, the maximum sequence probability calculated without
any new label estimation, from the expected value obtained from the estimation of
the label assignment of the token.

SMED(t,x) = SME(t,x)− p(y∗|x,L) (5.16)

The rationale of this strategy is that when the expected value is far from the maximum
value (that is, the value returned by the Viterbi algorithm) it means that we have
uncertainty on the token taken into consideration.

5.3.3 Random Strategy

The random strategy represents the naive strategy, that is, sampling random tokens
without any external information. It is used as a baseline to compare the real
effectiveness of the more sophisticated strategies.

5.4 Experiments

5.4.1 Experimental Setting

For the initial training set T1 we chose to annotate the necessary number of sentences
to reach the 100 tokens mark. These first sequences are fully annotated, i.e., each
token in the sequence is annotated with its true label. The dimension of the batch
update B has been chosen with the idea that the work done by the AL process
(retraining, estimation, and the like), with the exception of the annotation phase, is
not comparable with the effort of the human annotators. These assumptions allow
us to adopt a small update batch size, that we fixed at B = 50. A smaller update
batch size would have been impractical and not realistic in a real AL scenario where
actual annotators have to annotate several tokens and then wait, for each annotated
token, the retraining of the classifier. We fixed the number of AL iterations n at 40;
a study on stopping criteria is out of the scope of this work.

For each strategy and for each dataset, we report averaged results of three runs
with a different randomly sampled initial training set T1.
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Table 5.1: Training Data Statistics.

Dataset # sequences # tokens # labels

CoNLL2000 8936 211727 11
CoNLL2000POS 8936 211727 35

CoNLL2003 17290 254979 4
NLPBA2004 18546 492551 5

Dataset avg. ann. len. avg. pos. tok. avg. seq. len.

CoNLL2000 1.6 20.6 24
CoNLL2000POS 1 20.8 24

CoNLL2003 1.4 2.5 15
NLPBA2004 2.5 5.9 27

Dataset avg. pos. ann. % ann. co-occ. % diff. ann. co-occ.

CoNLL2000 12 98% 98%
CoNLL2000POS 20.8 100% 99%

CoNLL2003 2.2 45% 32%
NLPBA2004 3.1 72% 47%

Dataset(s)

We have experimented and evaluated the eight AL strategies of Section 5.3 on four
different sequence labeling tasks: part-of-speech tagging, phrase chunking, named-
entity recognition, and bio-entity recognition. In order to do so we employed four
sequence labeling datasets:

• the CoNLL2000 dataset, created for the CoNLL all-phrase chunking shared
task [144];

• the CoNLL2000POS dataset, i.e., the CoNLL2000 dataset annotated with
part-of-speech labels instead of chunking labels;

• the CoNLL2003 dataset, created for the CoNLL named-entity recognition
shared task [145];

• the NLPBA2004 dataset, created for the biomedical entity recognition shared
task [57].

We have processed the CoNLL2000 dataset in order to use it as dataset for the POS
labeling task, setting the POS label already present in the CoNLL2000 dataset as
token label instead of the chunk label.

All the datasets are publicly available and are standard benchmarks in sequence
labeling tasks.

Table 5.1 shows several statistics that characterize each dataset:
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• # sequences is the number of total sequences in the dataset;

• # tokens is the number of tokens in the dataset;

• # labels is the number of positive labels (labels different from the negative
label O) with which the dataset is annotated;

• avg. ann. len. is the average length, in tokens, of the annotations (sequences
of tokens that refer to the same label);

• avg. pos. tok. is the average number of tokens in a sequence annotated with a
positive label;

• avg. seq. len. is the average length of a sequence;

• avg. pos. ann. is the average number of positive annotation in a sequence;

• % ann. co-occ. is the percentage of sequences that have more than one positive
annotation;

• % diff. ann. co-occ. is the percentage of sequences that have two or more
annotation with different labels.

As we can see from the statistics in Table 5.1 the datasets are very different from each
other, in terms of dimensions, number of labels, distribution of the labels, sequence
length, etc. This heterogeneity allowed us to test the AL strategies on different “data
conditions”, thus yielding more robust empirical evaluation.

The test sets we used to evaluate our proposed strategies are composed by 2012
sequences and 47377 tokens for the CoNLL2000 and CoNLL2000POS datasets, by
3452 sequences and 46394 tokens for the CoNLL2003 dataset, and by 3856 sequences
and 101039 tokens for the NLPBA2004 dataset.

Features

The set of features we have used as representation of the tokens that compose the
sequences are different for each dataset, with the exception of the CoNLL2003 dataset
and the NLPBA2004 dataset, that share the same set of features. The features
adopted in every dataset are quite standard for the task they are meant for. In the
following we list the features adopted for each dataset.

CoNLL2000 The words in the [-2, +2] window, word bigrams in the [-1, +1]
window, part-of-speech unigrams, bigrams and trigrams in the [-2, +2] window.

CoNLL2000POS The words in the [-2, +2] window, the character prefixes of
length 1, 2, 3, 4, and the character suffixes of length 1, 2, 3, 4 of the current word,
and a Boolean feature that states if the current word contains a hyphen.
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CoNLL2003 and NLPBA2004 The words in the [-2, +2] window, word 4-grams
before and after the current word, lowercase words and lowercase word bigrams in
the [-2, +2] window, lowercase word trigrams in the [-1, +1] window, POS tag of the
words, word bigrams, and word trigrams in the [-2, +2] window, phrase chunk of the
words, word bigrams, and word trigrams in the [-2, +2] window, the character prefixes
of length 2 and 3 and the character suffixes of length 2 and 3 of the current word. A
feature the encode the word type, e.g., “starts with a capital letter”, “contains only
digits”, “contains punctuation”, etc., is also used.

Evaluation Measures

As evaluation measure we have used the token-level variant of the F1 measure of
Section 2.3.2.

5.4.2 Results

Learning Curves

From the learning curves of Figures 5.1, 5.2, 5.4 and 5.5 it is clear that most of the
strategies have the same trend throughout the different datasets. This results is
somewhat different from the results obtained in [117] in which there is not a clear
winner among the strategies they proposed in a fully-labeled scenario. The strategies
that perform particularly bad (worse than the RAND strategy in CoNLL2000POS and
in CoNLL2003 dataset) in all the datasets are the MTE and MTP. This is expected,
because the choice of the measure of informativeness related to the token without
taking in consideration the Viterbi path is suboptimal in this task. Surprisingly,
the MTM strategy even though based on the same principle of MTE and MTP, is
very effective in most of the datasets. The most effective strategies, that is, the ones
that are the faster to help the classifier to reach a better accuracy are the MTM,
MVM, and MVP, in particular the margin-based strategies perform very good in
all the datasets. The MVPE strategy performs particularly bad in the CoNLL2003
dataset but it performs better than the RAND strategy in the other datasets. The
performance of the ME strategy is always above the average, in particular it is the
best performing strategy in the NLPBA2004 dataset. However, in the CoNLL2003
dataset its performance is similar to the RAND’s performance. Looking at the data,
as expected, ME tend to choose tokens belonging to the longest sequences, regardless
if the sequence is already partially annotated, that is, it tends to choose tokens from
the same sequences. This behavior is not particularly relevant on the CoNLL2003
dataset given that the average number of positive tokens per sentence is not high
(2.5, see Table 5.1). For the other datasets, the average number of positive tokens
per sentence is high, and so the ME strategy is particularly effective. The MED
strategy has the most heterogeneous behavior among the datasets. It shows average
performances in the CoNLL2000 dataset and NLPBA2004 dataset, but is slower
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Figure 5.1: F1 results on the CoNLL2000 dataset. The annotation is done only on the
selected token. The maximum number of annotated tokens used (2100) represents
∼1% of the entire training set.

than the RAND strategy in the CoNLL2003 and CoNLL2000POS datasets.

Performance Drop Phenomenon

The learning curves we obtained by applying the proposed AL strategies on the
CoNLL2003 dataset (Figure 5.2) do not show a monotonic or quasi-monotonic
behavior as in Figures 5.1, 5.4 and 5.5, but instead there are some “random” drops
of performance. In order to explain the phenomenon in Figure 5.2, that we called
performance drop phenomenon, we need to introduce two AL concepts: exploitation
and exploration. In AL a strategy is called exploitative if it inspects regions of the
sample space around the decision boundaries, while an explorative strategy inspects
also regions of the sample space far from the decision boundaries.

The strategies that we have tested so far are highly exploitative, given that the
informativeness measure is given by the classifier decisions on the examples close
to the decision boundaries. We argue that the behavior of the AL strategies on



88 5. Active Learning with Partially Labeled Sequential Data

0 500 1000 1500 2000 2500
number annotated tokens

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1

MTP
MTE
MTM
MVP
MVPE
MVM
ME
MED
RAND

Figure 5.2: F1 results on the CoNLL2003 dataset. The annotation is done only on
the selected token. 2100 annotated tokens represent the ∼0.8% of the CoNLL2003
training set.

the CoNLL2003 dataset (Figure 5.2) is mostly due to two reasons. The first reason
is that named entities are quite sparse, that is, they often appear just once in a
sentence (55% of the CoNLL dataset has only one named entity per sentence), and
have a heterogeneous structure, as opposed to the dense and homogeneous structures
to be found in the chunk and POS datasets, where the co-occurrence of different
annotations in a sentence is around 100% (see Table 5.1). The second is the lack
of exploration around the boundaries, given that the strategies choose only a single
token to annotate and to add to the training set. It happens, as one can see from
Figure 5.2, that after some retraining of the classifier the obtained classifier is actually
less accurate than the previous one. For example, given that a human annotator
does not know the accuracy of a classifier at a given time, she may decide to stop
the annotation at iteration 10. Iteration 10 may be, by chance, a point where the
classifier has a loss of accuracy. Thus, with this particular side effect, AL can be
considered useless.
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Figure 5.3: F1 results on the CoNLL2003 dataset. The annotation is done on the
selected token plus the previous one and the next one. 6100 annotated tokens
represent the ∼2.4% of the entire training set.

A similar phenomenon, called missed class effect [147], happens in AL when the
exploration phase is overtaken by the exploitation phase, which means that regions
far from the decision boundaries are never explored. This leads to a classifier that
is agnostic about a region of the sample space, which thus performs poorly on new
samples that happen to lie in that region. In [147] the missed class effect is solved
by adding an exploratory phase to the AL strategies, that is, choosing an entire
sequence instead of a single token. This solution is not suitable in our context,
given that we will loose all the advantages we have in the partially labeled scenario.
However, a way to damp this effect without renouncing to the partial labeling is
annotating, for each chosen token, the previous token and the next token. This will
give an exploratory phase to the strategies without sensibly increasing the effort of
the human annotators. We argue that, by adopting the annotating system proposed
in [21] as explained in Section 5.3, annotating the tokens around the most informative
token can be only slightly more difficult than annotating only the most informative
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Figure 5.4: F1 results on the CoNLL2000POS dataset. The annotation is done only
on the selected token. 2100 annotated tokens represent ∼1% of the entire training
set.

token. The learning curves of the AL strategies adopting the three tokens annotation
methods are shown in Figure 5.3; as we can see the performance drop phenomenon
has completely disappeared. Anyway, in the curves shown in Figure 5.3 it is possible
to observe the same trend observed in the rest of the datasets. The margin-based
strategies are the best performer along with the MVP strategy. Surprisingly, the
ME strategy, that is among the best-performing strategy in the rest of the datasets,
performs particularly bad in the CoNLL2003 dataset with a three-tokens annotation.

Given the strong similarity between the performance drop phenomenon and the
missed class effect, further studies are necessary to understand if they are indeed the
same phenomenon.
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Figure 5.5: F1 results on the NLPBA2004 dataset. The annotation is done only on
the selected token. 2100 annotated tokens represent the ∼0.4% of the entire training
set.

5.5 Related Work

In this section we summarize the most important works in pool-based AL; for a
more exhaustive survey on other AL scenarios, see [116]. The first works on pool-
based AL have been proposed in the field of text classification. [68] opened the way
for pool-based AL with uncertainty sampling, followed by [81], which adopted a
query-by-committee strategy with an expectation maximization technique in order
to exploit also unlabeled documents. [148] proposed instead an AL technique specific
for support vector machines (SVMs).

AL has also been adopted to help the construction of datasets in sequence labeling
tasks. [22] employed a query-by-committee approach in order to select the most
informative sentence for the part-of-speech tagging task. [58] used entropy as the
measure of informativeness, combined with a coefficient of representativeness so as
to choose the most representative and informative examples for each batch. [113]
adopted as the uncertainty measure the so-called “margin”, that consists in the
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difference between the two highest posterior probabilities.
The works in sequence labeling in which a selection unit smaller than a sequence

is successfully employed are [122], [146] and [161]. In [122], the authors adopt
SVMs as the learning algorithm, and propose two strategies that combine three
criteria: informativeness, representativeness, and diversity. SVMs allow them to
use as selection unit a subset of the token in a sequence, without annotating, in
any way, the other tokens in the sequence. In [146] the most uncertain tokens of
the sequence are individually annotated, but the labels of non-annotated tokens in
the sequence are then chosen by the classifier. The rationale of this is that humans
do not need to annotate tokens which the classifier is certain about. [161] is the
work that inspired our work: the authors adopt a minimum-confidence selection
strategy with re-estimation using PLCRFs. In their most effective method they leave
unannotated the tokens of the sequence not annotated by the human annotator.
Differently from our work, they show that by adopting AL with partially labeled
sequences with re-estimation, the cost of annotation can be dramatically reduced,
thus obtaining the same level of performance of the classifier trained on the entire,
fully-labeled dataset.

5.6 Summary

In this chapter we have presented several AL strategies tailored for the PLCRF in a
pool-based scenario. We have tested the proposed strategies on four different datasets
for four different sequence labeling tasks. We have found that on datasets with certain
characteristics a particular phenomenon that makes the entire AL process useless
shows up. This phenomenon consists in random drops of accuracy of the classifiers
learnt during the AL process. We have proposed a first solution for this problem that
does not have a relevant impact on the human annotation effort. Differently from
other similar work in the field of AL, in this study we have shown that margin-based
strategies constantly achieve good performance on four tasks with very different data
characteristics.



6
Conclusions

6.1 Summary

In this thesis we have started from the study and the application of supervised
machine learning systems for sequence labeling, we have passed through the study of
the quality of training data, including an analysis of the creation of training data via
AL for sequence labeling tasks. The first task we have faced has been the problem
of IE from text in the medical domain, then we have moved to the more complex
problem of aspect-oriented opinion mining from product reviews. After that, we
have shifted to the study of the quality of training data, that in turn brought us
to the study of the creation of training data with techniques of AL applied in a
semi-supervised learning scenario.

In Chapter 2 we have shown that the proposed two-stage method, which extracts
information from medical documents using two levels of granularity, outperforms the
baseline method for the most frequent tags but is slightly inferior on infrequent tags,
while the ensemble method, which merges the outcomes of the proposed two-stage
method and the baseline method, outperforms the baseline on both frequent and
infrequent tags. We also showed that the accuracy levels obtained by the proposed
methods are higher than the inter-coder agreement levels between the two human
coders.

In Chapter 3 we have considered the problem of aspect-oriented opinion mining
at the sentence level, devising a sequence of increasingly powerful CRF models. We
started from the simple linear-chain CRF model and finished with a hierarchical
multi-label model that jointly models both the overall opinion expressed in a review
and the set of aspect-specific opinions expressed in each sentence of the review. We
evaluated the proposed models against a dataset of hotel reviews in which the set of
aspects and the opinions expressed concerning them are manually annotated at the
sentence level. We empirically demonstrated that both hierarchical and multi-label
factors lead to improved predictions of aspect-oriented opinions.

In Chapter 4 we have investigated the impact of the quality of training data on the
accuracy of an IE system in the medical domain. Our experimental results indicate
that only a marginal decrease in extraction accuracy derives from a substantial
decrease in training data quality, which indicates the robustness of the CRFs to the
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use of training data of suboptimal quality.
Finally, in Chapter 5 we empirically studied the behaviour of several AL strategies

for sequence labeling tasks in a semi-supervised scenario. In this semi-supervised
scenario, margin-based strategies proved to be, constantly and considerably, faster to
learn than the other proposed strategies on four common sequence labeling tasks. We
also discovered a particular phenomenon, that consists in random drops of accuracy
of the classifiers learnt during the AL process, that occurs in tasks in which the
elements to extract are sparse and their structure is heterogeneous i.e., named-entity
recognition. This phenomenon makes the AL process in the semi-supervised scenario
very unpredictable and thus useless. We proposed a solution for such problem based
on the annotation of tokens close to the token chosen by the AL strategies, that does
not have a relevant impact on the effort of human annotators.

6.2 Future Directions

There are several avenues for future research that this thesis leaves open.
In Chapter 2, the findings presented would be strengthened if the same results

could be replicated on further clinical datasets, possibly composed by clinical narra-
tives different from mammography reports. The current limited public availability of
datasets of clinical narratives is still an obstacle to progress in this direction, but
initiatives like the i2b2 series of challenges already mentioned in Section 2.4 are a
valiant step towards removing it.

The works that can be undertaken starting from the study presented in Chapter 3
are several. One of them is testing the proposed models on domains different from
hotel reviews, possibly with a higher number of aspects. Another one is improving
the feature engineering phase by taking into consideration features that co-occur
in co-occurring aspects, in order to better recognize the presence of co-occurring
aspects . A third one is studying a method that removes factors between aspects
that never occur together, in order to lighten the multi-label model so as to make it
more scalable on problems with a richer aspect set. However, the most interesting
direction is probably the extension of the hierarchical and multi-label models to a
semi-supervised scenario, thus exploiting also unlabeled data along with the labeled
ones. This extension can be tackled in two main ways. The first, is the adoption
of Hidden Conditional Random Fields (HCRFs), which are capable of learning a
CRF model using unlabeled data and labeled data as well as training data. The
second is the use of a self-training algorithm in order to learn from automatically
annotated training data, i.e., annotating unlabeled data with a classifier trained on
a small amount of labeled data, and then training a new classifier with the original
labeled data plus the automatically annotated data. Both methods allow using a
large amount of unlabeled data, that are obviously cheaper and easier to get than
human-annotated data, to improve the accuracy of the trained CRF model.

Possible future works concerning the theme tackled in Chapter 4 are tightly
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dependent on the availability of IE datasets with assessment of agreement between
coders, which are very hard to find. Moreover it would be interesting to assess
whether the use of artificial noise is plausible, studying methods to produce such
noise and comparing it with the natural noise produced by human coders. It would
be also useful, in this case, to investigate if there is some kind of common pattern or
relation between different types of natural noise.

An interesting extension of the studies conducted in Chapter 5 would be to
support the AL - semi-supervised learning pair with a transfer learning module in
order to further reduce the human annotation effort. The field of transfer learning
studies methods to adapt the data annotated to train a classifier for a source task A,
to a different but similar target task B. Adding a transfer learning layer to the AL
and semi-supervised layers would allow the creation of AL strategies that, taking
into consideration a transformation of the data from the source domain to the target
domain, bring information not only to the classifier meant for the source task but
also to the classifier meant for the target task. In such a scenario the human effort
for annotating training data would be significantly reduced.
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Table A.1: Inter-annotator segment-level aspect agreement, expressed in terms of
F1 (higher is better). 0, 1 and 2 are the different annotators and 0-1 means pairwise
agreement between annotator 0 and annotator 1.

F1

Aspect 0-1 0-2 1-2 Average

Overall : Other 0.649 0.625 0.547 0.607
Implicit : Other 0.201 0.154 0.147 0.167
Explicit : Other 0.529 0.552 0.356 0.479

Overall : Service 0.709 0.701 0.746 0.719
Implicit : Service 0.167 0.100 0.103 0.123
Explicit : Service 0.704 0.682 0.667 0.684

Overall : Room 0.802 0.789 0.788 0.793
Implicit : Room 0.356 0.222 0.211 0.263
Explicit : Room 0.730 0.722 0.667 0.706

Overall : Location 0.844 0.735 0.805 0.795
Implicit : Location 0.415 0.176 0.267 0.286
Explicit : Location 0.829 0.694 0.606 0.710

Overall : Building 0.533 0.527 0.598 0.553
Implicit : Building 0.000 0.286 0.000 0.095
Explicit : Building 0.526 0.524 0.514 0.521

Overall : Value 0.552 0.618 0.556 0.575
Implicit : Value 0.211 0.182 0.000 0.131
Explicit : Value 0.581 0.554 0.545 0.560

Overall : Food 0.807 0.811 0.764 0.794
Implicit : Food 0.324 0.333 0.261 0.306
Explicit : Food 0.806 0.725 0.693 0.741

Overall : Check-in 0.383 0.400 0.609 0.464
Implicit : Check-in 0.000 0.182 0.000 0.061
Explicit : Check-in 0.432 0.410 0.600 0.481

Overall : Cleanliness 0.684 0.766 0.750 0.733
Implicit : Cleanliness 0.000 0.333 0.000 0.111
Explicit : Cleanliness 0.714 0.773 0.730 0.739

Overall : Business 0.727 0.667 0.500 0.631
Implicit : Business 0.000 0.000 1.000 0.333
Explicit : Business 0.800 0.571 0.500 0.624

Overall : Macro 0.669 0.664 0.693 0.675
Implicit : Macro 0.167 0.197 0.199 0.188
Explicit : Macro 0.665 0.621 0.588 0.625
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Table A.2: Inter-annotator segment-level opinion agreement (restricted to the true
positive aspects for each segment), expressed in terms of sMAEM (lower is better).
0, 1 and 2 are the different annotators and 0-1 means pairwise agreement between
annotator 0 and annotator 1.

MAEM

Aspect 0-1 0-2 1-2 Average

Overall : Other 0.200 0.347 0.378 0.308
Implicit : Other 0.379 0.000 0.122 0.167
Explicit : Other 0.140 0.316 0.331 0.262

Overall : Service 0.222 0.189 0.246 0.219
Implicit : Service 0.000 0.000 0.000 0.000
Explicit : Service 0.226 0.094 0.179 0.167

Overall : Room 0.184 0.200 0.189 0.191
Implicit : Room 0.000 0.000 0.000 0.000
Explicit : Room 0.147 0.128 0.166 0.147

Overall : Location 0.210 0.327 0.242 0.259
Implicit : Location 0.183 0.000 0.000 0.061
Explicit : Location 0.172 0.184 0.000 0.119

Overall : Building 0.150 0.219 0.082 0.150
Implicit : Building 0.000 0.000 0.000 0.000
Explicit : Building 0.154 0.123 0.000 0.092

Overall : Value 0.102 0.449 0.054 0.202
Implicit : Value 0.000 0.000 0.000 0.000
Explicit : Value 0.000 0.472 0.065 0.179

Overall : Food 0.079 0.264 0.358 0.234
Implicit : Food 0.000 0.222 0.000 0.074
Explicit : Food 0.098 0.186 0.287 0.190

Overall : Check-in 0.009 0.000 0.000 0.003
Implicit : Check-in 0.000 0.000 0.000 0.000
Explicit : Check-in 0.000 0.000 0.000 0.000

Overall : Cleanliness 0.167 0.175 0.000 0.114
Implicit : Cleanliness 0.000 0.000 0.000 0.000
Explicit : Cleanliness 0.175 0.016 0.000 0.064

Overall : Business 0.087 0.000 0.000 0.029
Implicit : Business 0.000 0.000 0.000 0.000
Explicit : Business 0.000 0.000 0.000 0.000

Overall : Macro 0.141 0.217 0.155 0.171
Implicit : Macro 0.056 0.022 0.012 0.030
Explicit : Macro 0.111 0.152 0.103 0.122
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[139] Oscar Täckström and Ryan T. McDonald. Semi-supervised latent variable
models for sentence-level sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies (ACL 2011), pages 569–574, Portland, US, 2011.

[140] Ricky K. Taira, Stephen G. Soderland, and Rex M. Jakobovits. Automatic
structuring of radiology free-text reports. RadioGraphics, 21(1):237–245, 2001.

[141] Benjamin Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin.
Learning structured prediction models: a large margin approach. In The 22nd
International Conference on Machine Learning (ICML 2005), pages 896–903,
Bonn, DE, 2005.

[142] Ivan Titov and Ryan T. McDonald. A joint model of text and aspect ratings
for sentiment summarization. In Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics (ACL 2008), pages 308–316,
Columbus, US, 2008.

[143] Ivan Titov and Ryan T. McDonald. Modeling online reviews with multi-grain
topic models. In Proceedings of the 17th International Conference on World
Wide Web (WWW 2008), pages 111–120, Beijing, CN, 2008.

[144] Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-
2000 shared task: Chunking. In Proceedings of the 2nd Workshop on Learning
Language in Logic and 4th Conference on Computational Natural Language
Learning (LLL/CoNLL 2000), pages 127–132. Lisbon, PT, 2000.

[145] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition. In Proceedings
of the 7th Conference on Natural Language Learning (CONLL 2003), pages
142–147, Edmonton, CA, 2003.

[146] Katrin Tomanek and Udo Hahn. Semi-supervised active learning for sequence
labeling. In Proceedings of the 47th Annual Meeting of the Association for



Bibliography 115

Computational Linguistics and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP (ACL-IJCNLP 2009), pages 1039–1047,
2009.

[147] Katrin Tomanek, Florian Laws, Udo Hahn, and Hinrich Schütze. On proper unit
selection in active learning: co-selection effects for named entity recognition.
In Proceedings of the NAACL HLT 2009 Workshop on Active Learning for
Natural Language Processing, pages 9–17, Boulder, US, 2009.

[148] Simon Tong and Daphne Koller. Support vector machine active learning with
applications to text classification. Journal of Machine Learning Research,
2:45–66, 2001.

[149] Manabu Torii, Kavishwar Wagholikar, and Hongfang Liu. Using machine
learning for concept extraction on clinical documents from multiple data sources.
Journal of the American Medical Informatics Association, 18(5):580–587, 2011.

[150] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. Support vector machine learning for interdependent and structured
output spaces. In Proceedings of the 21 st International Conference on Machine
Learning (ICML 2004), Banff, CA, 2004.

[151] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Al-
tun. Large margin methods for structured and interdependent output variables.
Journal of Machine Learning Research, 6:1453—1484, 2005.

[152] Yuta Tsuboi, Hisashi Kashima, Hiroki Oda, Shinsuke Mori, and Yuji Mat-
sumoto. Training conditional random fields using incomplete annotations. In
Proceedings of the 22nd International Conference on Computational Linguistics
(COLING 2008), pages 897–904, Manchester, UK, 2008.

[153] Peter D. Turney. Thumbs up or thumbs down? semantic orientation applied
to unsupervised classification of reviews. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL 2002), pages
417–424, Philadelphia, US, 2002.
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