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Abstract

In this thesis we present some novel approaches in the field of camera calibration and
high-accuracy scene acquisition. The first part is devoted to the camera calibration
problem exploiting targets composed by circular features. Specifically, we start by im-
proving some previous work on a family of fiducial markers which are leveraged to be
used as calibration targets to recover both extrinsic and intrinsic camera parameters.
Then, by using the same geometric concepts developed for the markers, we present a
method to calibrate a pinhole camera by observing a set of generic coplanar circles.

In the second part we move our attention to unconstrained (non-pinhole) camera
models. We begin asking ourselves if such models can be effectively applied also to
quasi-central cameras and present a powerful calibration technique that exploit active
targets to estimate the huge number of parameters required. Then, we apply a similar
method to calibrate the projector of a structured-light system during the range-map
acquisition process to improve both the accuracy and coverage. Finally, we propose
a way to lower the complexity of a complete unconstrained model toward a pinhole
configuration but allowing a complete generic distortion map.

In the last part we study two different scene acquisition problems, namely: Accu-
rate 3D shape reconstruction and object material recovery. In the former, we propose
a novel visual-inspection device for the dimensional assessment of metallic pipe in-
takes. In the latter, we formulate a total-variation regularized optimization approach
for the simultaneous recovery of the optical flow and the dichromatic coefficients of a
scene by analyzing two subsequent frames.





Sommario

In questa tesi sono proposti nuovi approcci nel campo della calibrazione di video-
camere digitali e ricostruzione accurata della scena. La prima parte è dedicata al prob-
lema della calibrazione, affrontato sfruttando target composti da pattern di features
circolari. Nello specifico vengono dapprima approfonditi degli approcci precedente-
mente pubblicati dall’autore su famiglie di fiducial markers basati su schemi di punti
circolari e studiato il loro utilizzo come target di calibrazione. Successivamente, sfrut-
tando alcuni concetti di geometria proiettiva introdotti per i markers, viene discusso
un metodo per la calibrazione di videocamere pinhole attraverso l’analisi di insiemi di
generici cerchi coplanari.

Nella seconda parte della tesi vengono approfondite tematiche riguardanti la cal-
ibrazione di videocamere assumendo un modello a raggi liberi non pinhole. La trat-
tazione inizia ponendosi il quesito se tali modelli possano efficacemente essere sfrut-
tati (in termini di accuratezza e facilità di calibrazione) anche nei contesti in cui il
modello pinhole con distorsione radiale è globalmente considerato ottimale. Nello
studio della questione viene proposta una tecnica di calibrazione basata su un ot-
timizzazione alternata di un funzionale che permette la stima dei parametri che de-
scrivono ciascun raggio sfruttando corrispondenze ricavate da target attivi. Successi-
vamente, la stessa tecnica viene utilizzata per calibrare il proiettore di un sistema di
scansione a luce strutturata in contemporanea con il processo di acquisizione. Infine,
viene proposto un modello a raggi liberi vincolati a passare per un unico centro ot-
tico, fornendo quindi una metodologia per creare camere pinhole virtuali dotate di una
mappa di distorsione completamente non vincolata. L’approccio combina la potenza
del modello pinhole (offrendo tutti gli strumenti matematici di geometria proiettiva)
con l’accuratezza di un modello a raggi liberi.

Infine, nell’ultima parte vengono affrontati due diversi problemi di acquisizione.
Nel primo, viene proposto un sistema industriale di misurazione di imboccature el-
littiche di tubature. Nel secondo viene presentato un algoritmo per la stima simul-
tanea dei parametri del modello dicromatico e dell’optical flow a partire da dati multi-
spettrali acquisiti da una scena.
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Preface

My journey as a young researcher started almost 5 years ago. It was back in 2009 when
I started working with a young but really motivated team of students, researchers and
enthusiasts at Ca’Foscari University of Venice. At that time, I’ve been involved into the
development of minor parts of a complete structured-light scanning solution for a big
company in Italy.

Many things changed since that time, someone in the group left and someone new
arrived. Still, the original spirit that drove us in the search of excellence, the desire
of undertake new challenges and the positive inspiration that you could breath is still
here. For this reason, this thesis is dedicated to you all. What you will find here is a
subset of many things that I had the possibility to explore during my PhD while working
on new state-of-the-art ideas and techniques in the field of camera calibration and
scene reconstruction. I did my best to carefully collect and present our work into a
coherent and pleasant discussion so that it could be a basis for future insights and
enhancements. But. . . for me is far more than that. I’d like to think at this thesis as
a summary of all the great times I had in the last 4 years that really influenced my
passions and shaped my aspirations to what I hope gonna be a brilliant future.

“The only true voyage of discovery, the only fountain of Eternal Youth, would be not
to visit strange lands but to possess other eyes, to behold the universe through the eyes
of another, of a hundred others, to behold the hundred universes that each of them
beholds, that each of them is.”
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1
Introduction

In the recent past, the optical acquisition and measurement of a scene was only vi-
able for research labs or professionals that could afford to invest in expensive and dif-
ficult to handle high-end hardware. However, due to both technological advances and
increased market demand, this scenario has been altered significantly. Indeed, semi-
professional imaging devices can be found at the same price level of a standard work-
station, widely available software stacks can be used to obtain reasonable results even
with low-end hardware and, finally, a constant dramatic improvement of computing
power now allows the addressing of complex (possibly under-constrained) problems
via powerful non-linear optimization approaches.

Moreover, we assisted an advance in digital imaging devices in terms of resolution,
sensitivity, dynamic range and cost. All this factors combined are driving the adop-
tion of vision-based solutions to a broad range of applications, spanning from high
precision photogrammetry and 3D reconstruction to video surveillance and home en-
tertainment. Just to cite few examples, it is now common for the manufacturing sector
to arrange one or more 3D sensors to assess the products dimensional characteris-
tics [34, 127, 17]. Besides, research areas traditionally not devoted to the usage of op-
tical instruments are now able to acquire data with unprecedented resolution and ac-
curacy [30, 94]. Finally, quite remarkable is the recent success of innovative controllers
for the video game industry like Microsoft’s Kinect™ or Sony’s Playstation Move™
which, among many other innovations like gesture-controlled televisions, are leading
the mainstream market to a pervasive adoption of environment-sensing technologies.
However, an accurate modelling of a given imaging machinery and the study of ad-
vanced reconstruction algorithms is still a critical requirement to exploit the full po-
tential of today’s hardware.

In this thesis I present some selected works performed during my PhD studies
mostly devoted to the problem of camera calibration and high-accuracy scene acqui-
sition. The camera calibration problem is firstly discussed for the pinhole case both in
terms of extrinsic and intrinsic parameters estimation exploiting the properties of cir-
cular features that are either specially crafted (in form of fiducial markers) or assumed
to be present (as sets of coplanar circles) in a scene. The former is discussed in Chapter
3 and 4 while the latter is presented in Chapter 5.

Then, we move our attention to a more powerful unconstrained camera model in
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which each single ray entering the camera is independently described. Specifically,
in Chapter 6 we start by proposing an effective way to calibrate such model and ex-
perimentally demonstrate that it can be used with great advantages even for quasi-
pinhole cameras. Subsequently, in Chapter 7 we apply the newly introduced calibra-
tion method to a structured-light 3D scanning setup by means of an on-line calibration
of the projector light path that happens simultaneously with the acquisition. Finally,
in Chapter 8 we propose a way to lower the complexity of a complete unconstrained
model toward a pinhole configuration but allowing a complete generic distortion map-
ping. This would act as a powerful bridge between the simplicity of the central projec-
tion assumption and the flexibility of the unconstrained raxel-based model.

The scene acquisition problem will be discussed both in terms of industry-grade
3D elliptical shape reconstruction (Chapter 9) and surface characteristics recovery, i.e.
reflectance, shading and illuminant spectrum estimation (Chapter 10). In the former,
we propose a novel visual-inspection device for the dimensional assessment of metal-
lic pipe intakes. In the latter, we formulate a total-variation regularized optimization
approach for the simultaneous recovery of the optical flow and the dichromatic coeffi-
cients of a scene by analyzing two subsequent frames.

Before proceeding with the discussion of the main topics of this thesis, we reserved
the following sections to introduce some fundamental concepts and tools. This would
be useful to both the practitioner and experienced reader either to fully understand
the subsequent chapters or to clarify some notations that will be used throughout this
thesis. Furthermore, in Chapter 2 we aim to give a comprehensive review of the existing
literature to better frame the novelty of this thesis with respect with the current state-
of-the-art in each respective fields.

1.1 Camera Modelling and Calibration

While being conceptually as simple as the first stenopeic hole, typical imaging cam-
eras are equipped with complex lens setups, sensible and dense CCD or CMOS sen-
sors, high speed ADC converters and, sometimes, even advanced band-pass filters to
acquire data in a broad range of spectral bands. As a consequence, the ability to ex-
ploit such features at best implies a reasoned and physically accurate description of
their inner working into appropriate mathematical models.

Since the beginning of computer vision, two joint fundamental problems attracted
the attention of the researchers worldwide. First, the definition of mathematical mod-
els that can properly describe the camera image formation process and, second, the
parameters estimation of such model in a practical yet effective way. At its basic level,
a digital camera is composed by an array of light-sensitive cells that transform the
amount of photons hitting their surface (at certain frequencies) into electric signals.
In most of the cases, such basic photons detectors are disposed in a grid producing
a collection of numerical values arranged into one or more (in case of multi-spectral
devices) matrices. Furthermore, to produce sharp and meaningful images, a set of dif-
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Figure 1.2: A representation of the visible light spectrum varying the wavelength (ex-
pressed in nano-meters).

only on the internal geometry and optical behaviour of the camera, is controlled by a
set of Intrinsic Parameters or Internal Camera Parameters whose number and meaning
may vary with respect to the model.

1.2 Multi-Spectral imaging

Cameras discussed so far were simply described as light photons collectors. However,
it’s well known that light can either behave as particles (i.e. photons) or electromag-
netic waves [79]. From the waves point of view, the camera sensor is measuring the
amplitude of electromagnetic waves whose wavelength vary around the so called visi-
ble spectrum (Fig. 1.2).

Usually, for gray-scale cameras no distinction is made at all to the frequency, inte-
grating indifferently over time on a certain spectral range. However, if we discriminate
with respect to the wavelengths, the output of our imaging device would become a
“cube”, where the two dimensions spanning the spatial arrangement of light sensitive
cells are the usual coordinates of the image lattice pixels whereas the third dimension
corresponds to the wavelength (Fig.1.3). Consequently, we can think at each image
pixel located at coordinates (u, v) as a vector in Rn whose components represent the
intensity (Radiance) of the light radiation collected at coordinates (u, v) in the image
plane for a specific wavelength λ ∈ {λ1 . . .λn}.

A common type of multi-spectral imaging device is the RGB color camera that can
be thought as operating on just 3 band ranges spanning around the wavelengths of
450 nm (blue), 550 nm (green) and 600 nm (red). The number of bands, the size
of each wavelength interval and the amount of spectrum covered discriminates be-
tween multi-spectral and hyper-spectral imagery. The first usually refers to devices
designed to cover few (8-16) broad bands, that may be discontinuous. Conversely,
hyper-spectral imaging operates on dozens of narrow-bands covering a continuous
range of different wavelengths.

The availability of multi-spectral data allows a multitude of different scene analy-
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Figure 1.3: Data cube representation of a multi-spectral acquisition device.

sis applications that goes beyond the pure geometrical reconstruction of the surfaces.
Indeed, being able to perform operations either on spatial and spectral bases leverage
the analysis to the physical properties of the objects in a scene. Since the spectral re-
sponse of the electromagnetic waves reflected by an object depends of its material, we
can take advantage of the signal acquired at different bands to discriminate between
different materials. This has huge potential in fields like food security, defense tech-
nologies, earth sciences and many more.

We refer the reader to [153] for a complete discussion of multi-spectral imaging
techniques and applications.
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2
Related Work

2.1 The Pinhole Camera Model

The Pinhole Camera Model assumes that all light rays entering the camera are con-
verged by the lenses to a single point o, called Optical Center, before hitting the sensor
image plane Π which is parallel to the camera x y plane (Fig.2.1 ,Left). All the points in
Π are described by the image coordinate system defined by the versors u⃗, v⃗ . Conven-
tionally, the optical center is placed behind the image plane assuming that light rays
can pass trough it to form the final image (Fig.2.1, Right). Mathematically, this is equiv-
alent to the original case with the difference that, with the optical center behind, the
obtained image is not vertical mirrored1.

The camera z-axis, orthogonal to Π, is called the optical axis. Moreover, the dis-
tance (usually expressed in pixels) between the optical center andΠ is the camera focal
length whereas the projection of o to the image plane (i.e. the intersection between the
optical axis andΠ) is a 2D point c = (cx ,cy ) called principal point.

This model implements a pure central projection in which the image m = (u, v)T

of any 3D point M = (X ,Y , Z )T is formed by the intersection of the straight line be-
tween o and M and the image planeΠ. Consequently, o, m and M are all collinear [65].
In Figure 2.2 the central projection process is illustrated. To describe this projection
mathematically, we consider the point M̂ = (X ,Y , Z ,1)T ∈ R4 in homogeneous coordi-
nates obtained by adding 1 as the last component of M. Then, the equation relating M
to its projection m is given by Equation 2.1.

λm̂ =λ
u

v
1

= m̂s = PM̂ = K

R T⃗


M̂ (2.1)

In the equation, λ is any scale factor,

R T⃗


is the 3×4 matrix of camera extrinsic

parameters and K is the 3×3 matrix of the intrinsic parameters ( fx , fy , s,cx ,cy ) disposed
as in Equation 2.2.

1We also assume the optical center behind the image plane throughout this thesis
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Figure 2.1: Left: Path followed by light rays entering the camera in a pinhole model.
Right: The pinhole model conventionally used with the optical center placed behind
the image plane. Note how the projection is substantially the same but is not vertical-
mirrored.

K =
 fx s cx

0 fy cy

0 0 1

 (2.2)

Here, cx and cy are the coordinates of the principal point described before. To allow
non square pixels, the focal length f is divided into two distinct components, namely
fx and fy . In most cases, it is safe to assume squared pixels so that fx = fy = f holds.
Finally, s is a parameter that controls the skewness of the two image axis. Extrinsic
and intrinsic matrices all together form the Projection Matrix P that contains all the
necessary informations to transform scene points to the image plane.

Expressing points in homogeneous coordinates allows the description of the non-
linear nature of the central projection as a linear operation (See Sec. 2.1.3). However,
since the output of the projection would depend to a scale factor λ, a subsequent di-
vision for the last component of m̂s is required. As discussed before,


R T⃗


is subject

to 6 degrees of freedom whereas K is subject to 5. Consequently, the estimation of 11
independent parameters is required to describe the imaging process.

Sometimes is useful to reason in terms of an idealized coordinate system tran-
scending the specific characteristics of a camera. Specifically, in motion and stereo
applications it is common to operate on a Normalized Coordinate System with unitary
focal length, principal point being at the origin of the image plane and zero skewness.
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Figure 2.2: The projection process of a pinhole camera. First, a 3D point M is trans-
formed trough the rigid motion R, T⃗ . Then, the transformed point is projected so that
m is the intersection between the line connecting o and M and the image plane.

A straightforward change in coordinate system can transform a camera image plane so
that its projection matrix Pn can be written as in Equation 2.3.

Pn =
1 0 0

0 1 0
0 0 1

R T⃗
= HP =


1
f 0 − cx

f

0 1
f − c y

f

0 0 1

P (2.3)

2.1.1 Lens Distortion

The pinhole camera model is by far the most widely used image formation model. The
reasons behind its huge success among researchers and practitioners is due to several
factors. First, its simplicity. In fact, the model is fully determined by its optical center
and principal point. Given this basic information, the whole imaging process can be
modelled as a direct projection of the scene to the image plane. Second, the availability
of mathematical tools. Its plain formulation allows to easily apply a wide spectrum of
powerful and well understood mathematical tools, ranging from epipolar geometry to
projective invariance of conics and straight lines. Finally, its wide range of applicability.

However, due to the optical characteristics of camera lenses, the pure central pro-
jection of the pinhole camera model may not be sufficient to describe the image forma-
tion process. Indeed, especially for low-end hardware or wide-angle cameras a form of
distortion can be observed that displace the points projected on the image plane.

If we include lens distortion, the 3D points transformation onto the image plane
can be divided into 4 subsequent steps [179]:
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1. A rigid motion to transform points from the world to the camera coordinate sys-
tem. As seen in Sec. 2.1, this corresponds to a multiplication by a roto-translation
matrix


R T⃗


2. A perspective projection that maps a 3D point M in camera reference plane to a

2D point q = (x, y) lying on an ideal image plane centered with the optical axis
and placed at distance f from o. Such operation is performed by the Equation
2.4

x = f
X

Z
, y = f

Y

Z
(2.4)

3. A displacement of q into qd = (xd , yd ) to model the lens distortion. Here, the
central projected coordinates of q are transformed to match what is obtained by
the camera real projection. This operation can be mathematically described as
in Equation 2.5

xd = x +δx , yd = y +δy (2.5)

4. A final affine transformation to map 2D points from the ideal image plane to
the sensor image plane. This transformation involves a translation with vector
(cx ,cy ) and an optional scale that maps the measure of f to pixels.

In this setting, the lens distortion described by (2.5) is essentially causing a dis-
placement of points in the idealized plane. Note that, in literature, the distortion can be
defined in terms of a function that maps undistorted coordinates into distorted coun-
terpart, or vice-versa. The latter (2.6) is mostly used because it directly describes the
operation to be performed to undistort an image once taken from the camera. More-
over, the displacement δx ,δy may be expressed as a function for which may not exist a
closed-form inverse.

x = xd +δx , y = yd +δy (2.6)

In the naive case with no distortion, bothδx andδy will be 0 as in the seminal model
described by Toscani [178]. Albeit simpler than previous proposals [40, 41], the model
introduced by Tsai [179] was particularly successful for two reasons. First, is able to
offer a good approximation of the imaging process (at least for moderately distorted
cameras) and, second, an easy calibration procedure was available since its introduc-
tion. In Tsai’s model, only the radial distortion [165] is taken into account so that image
points are radially translated away from the center (Fig. 2.3).

Let r =


x2
d + y2

d being the radial distance of a point. Tsai’s model approximates the

distortion as a polynomial with two non-zero coefficients respectively for the second
and fourth degree terms:

δx = xd (k1r 2 +k2r 4), δy = yd (k1r 2 +k2r 4) (2.7)
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2.1.2 Calibration techniques

Once a camera model is chosen, we are left to the problem to define and evaluate a cal-
ibration procedure apt to estimate the parameters governing its behaviour. Depending
of the complexity of the model and the number of parameters, the task may not be easy
nor numerically stable. In this section we concentrate on different techniques to cal-
ibrate a pinhole camera with various types of lens distortions described in Sec. 2.1.1.
Other types of camera models will be discussed in Sec. 2.3.

Almost any calibration technique works by analyzing the 2D projection of a known
physical Calibration Target once observed by the camera in (possibly) many different
poses. Thereafter, by comparing the observed projection with the known target, the
aim is to estimate the best possible set of parameters that minimize the difference be-
tween the expected and the observed projection.

In this terms, it is quickly clear that part of the process is the definition of a proper
target. To begin with, we can give the following taxonomy on the calibration targets
(and hence the related calibration techniques) which have been proposed over the
years [133]:

3D Calibration targets: composed by a set of points (not collinear nor coplanar) for
which the precise spatial position is known. For instance, a set of chessboard
corners lying onto two or three coplanar planes [65] or a single plane moved back
and forth with a known translation [179]. The accuracy obtainable with these
targets is very high at a price of a difficult manufacturing process.

2D Calibration targets: composed by pattern of points lying on a planar surface [168].
Targets falling to this category are probably the most used and studied for their
simplicity to use. Indeed, the manufacturing can be performed with a consumer
ink-jet printer and, differently from [179], no complicated machinery to control
the motion of the target is needed.

1D Calibration targets: composed by a sets of collinear features possibly moving in
a line around a point [207]. Such targets are the weapon of choice to calibrate
complex camera networks for which the simultaneous observation of a planar
target by all the cameras is not feasible.

Finally, it worth to be noted that camera calibration can be performed with no tar-
get at all by observing a static scene from different point of views. The process is based
on the ability to recognize same (unknown) 3D points on a scene from the relative pro-
jections into the sequence of different poses [131].

The vast majority of calibration methods [191, 206, 178, 157] assume a known set
of 3D-2D points correspondences and start by an initial linear estimation of the pro-
jection matrix P. Thereafter, R, T⃗ and K are recovered by factorizing P and a non-linear
refinement optimization is performed to minimize the geometric error between the
observed 2D points and the projection of the 3D target points using the estimated cal-
ibration.
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Since the target is known, the 3D position of each feature in world reference frame
can be related to its 2D projection on the image. Many different targets have been pro-
posed in literature mostly composed by corner or circular based features [184]. For
example, in the camera calibration chapter of [133], a checker pattern is used. Con-
versely, in [50] a pattern composed by circular control points is used together with a
bias correction method to improve the accuracy. Finally, in [19] a bundle adjustment
step is performed to reduce the manufacturing error of a chessboard target. In Chap-
ters 3 and 4 some novel circular features based targets (originally designed for camera
pose estimation) are proposed and evaluated.

After collecting such correspondences, almost all methods starts by estimating the
matrix P. Indeed, the direct recovery of R, T⃗ and K is quite non-linear hence causing
the problem being very difficult to optimize whereas the recovery of whole coefficients
of P is linear. These methods start by linearize P into the vector p⃗ = (P1,1,P1,2, . . . ,P3,4)T

where Pi , j is the element of P at row i and column j . Then, for each 3D point Mi =
(Xi ,Yi , Zi )T and its corresponding 2D point mi = (ui , vi )T , Equation 2.1 can be re-
written as in (2.11).

ui = P1,1Xi +P1,2Yi +P1,3Zi +P1,4

P3,1Xi +P3,2Yi +P3,3Zi +P3,4

vi = P2,1Xi +P2,2Yi +P2,3Zi +P2,4

P3,1Xi +P3,2Yi +P3,3Zi +P3,4
(2.11)

Whence, by re-arranging the factors with respect to p⃗, we obtain the formulation in
(2.12) which gives 2 equations in 12 unknowns:

Di p⃗ =


Xi Yi Zi 1 0 0 0 0 ui Xi ui Yi ui Zi ui

0 0 0 0 Xi Yi Zi 1 vi Xi vi Yi ui Zi vi


p⃗ = 0⃗ (2.12)

By considering n different correspondences, a matrix A is created by stacking D1 . . .Dn

by rows obtaining a linear system of 2n equations in 12 unknowns. Since P is defined
up to scale, an additional normalization constraint has to be applied to the solution to
avoid the trivial case p⃗ = 0⃗. Usually, unitary ∥p⃗∥ = 1 is imposed resulting the optimiza-
tion problem in (2.13) whose optimal is given by the singular vector associated with
the smallest singular value of A [133].

min
p⃗

∥Ap⃗∥2 subject to ∥p⃗∥ = 1 (2.13)

A similar procedure, but using homographic constraints, is given by Zhang [206]
when dealing with 2D planar targets. If all the target points are not coplanar, the esti-
mated matrix P can be factorized into extrinsic and intrinsic matrices by considering
that P = K


R T⃗


and dividing P into the sub-matrix B and the vector b⃗ composed

respectively by the first three columns and the last column of P.
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B = KR

b⃗ = AT⃗ (2.14)

Consequently, from (2.14), the matrix K can be obtained as K = BBT with a subse-
quent normalization so that the last element K3,3 = 1. At this point, the extrinsics are
obtained as:

R = K−1B

T⃗ = K−1b⃗ (2.15)

This estimation of camera parameters minimize the algebraic error obtained from
point correspondences. However, to obtain a physically meaningful geometric error
between all the pairs, a non-linear optimization step is performed via Levemberg-
Marquardt [138] that can also include a non-linear distortion function discussed in
Section 2.1.1.

2.1.3 Projective planes, conics and ellipse fitting

The central projection assumed by the pinhole camera model allows the description
of the image formation process by means of the mathematical framework of projec-
tive geometry [85]. Projective geometry can be defined in any numbers of dimensions
but, for the sake of this introductory part, we will restrict to the two dimensional pro-
jective plane P2 related to the two dimensional euclidean space. In this sense, when
we observe a geometric primitive lying on a two-dimensional subspace of a three di-
mensional scene, its projection to the image plane can be described as a projective
transformation of planes from which we can derive some interesting properties.

Points lying on an euclidean plane can be described as vectors p = (x, y)T ∈ R2. As
briefly introduced in previous sections, to represent points lying on a projective plane
we take advantage of homogeneous coordinates that allow the definition of projectiv-
ities (i.e. invertible mappings between P2 to itself) in term of non-singular 3×3 ma-
trices. In homogeneous coordinates, we represent p as all vectors in R3 in the form
ph = (kx,k y,k)T for any k ̸= 0. Consequently, points in euclidean space are repre-
sented by all the equivalence classes of three dimensional vectors where two elements
are in the same class if they differ by a non zero scale factor. It is easy to go back and
forth from P2 to R2 with simple operations. Specifically, to describe p in P2 we just
add a unitary third component (i.e. ph = (x, , y,1)T ). Conversely, a point in homo-
geneous coordinates can be transformed in euclidean 2D space by considering only
the first two components divided by the third (i.e. if ph = (X ,Y ,W T ),W ̸= 0, then
p = (X /W,Y /W )T ).

A line in R2 is represented by the locus of points p = (x, y) so that ax +by + c = 0
holds. In projective space P2, the same line can be described as (X ,Y ,W )(a,b,c)T = 0
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where u⃗ = (a,b,c)T represent the line and x⃗ = (X ,Y , Z )T represent each point on a line.
If we observe u⃗, we realize that in P2 points an lines are described in the same way,
which leads to a simple expression to find the intersection x of two lines u⃗ and u⃗′ by
means of vector cross product:

x = u⃗ × u⃗′ (2.16)

Furthermore, if we try to compute the intersection between two parallel lines u⃗ =
(a,b,c) and u⃗′ = (a,b,c ′) using (2.16) we obtain (discarding the scale factor c − c ′) x =
(b,−a,0). Clearly, this point cannot be transformed back toR2 since the last coordinate
is zero. This agrees to the fact that two parallel lines have no intersection point in
the euclidean space. However, in projective geometry we have a concise yet powerful
way to reason about normal points and points lying at the infinite, called ideal points.
Finally, all ideal points line on a ideal line represented by the vector (0,0,1)T which,
once again, is threated in the same way of all other non-ideal lines.

A planar projective transformation is a linear transformation that can be repre-
sented by any non-singular 3x3 matrix H:X ′

Y ′

W ′

= Hx =
h11 h12 h13

h21 h22 h23

h31 h32 h33

X
Y
W

 (2.17)

Consequently, any projective transformation transform lines in lines and preserve
the incidence.

Similarly as we did before, we can now focus our attention on conics that can be
represented by second degree polynomials in the form ax2+bx y+c y2+d x+e y+ f = 0.
In homogeneous matrix form the conic ξ is represented by a matrix:

Q =
 a b d

b c f
d f g


such that, for each point x = (x, y,1)T ∈ ξ, it holds that xT Qx = 0. Different values of

the parameters will lead to different type of conics (i.e. circles, ellipses or hyperbolas).
Again, any projectivity transforming the projective space P2 in which the conic lie will
result in (possible different) type of conic. For this reason, ellipses present in a scene
(and circles, as special case) are interesting geometric primitives since they remain el-
lipses after being projected into the image plane. Since Q is defined up to any non-zero
scale, it is subject to 5 degrees of freedom and, consequently, can be estimated by at
least 5 points lying on that conic.

Different approaches have been proposed in literature to provide a robust and pre-
cise estimation of ellipse parameters from its projection on the image plane. The semi-
nal work by Bookstein [35] implementing a least square fitting of ellipse parameters has
been extended by Cabrera and Meer [46] my means of a general method for eliminat-
ing the bias of nonlinear estimators. Furthermore, Fitzgibbon et. al. [72] incorporate
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the ellipticity to normalization so that is ellipse-specific and far more robust and com-
putationally inexpensive than estimating a general conic. More recently, is worth to
be noted the maximum likelihood method by Kanatani [100] and Ouellet’s estimator
defined as linear operator [146].

2.2 Camera pose estimation

Sometimes it might be the case that the intrinsic parameters of the camera are known
whereas the rigid motion that localize the device with respect to the world reference
frame is not. This is usually the case in which the camera internal geometry is not
changing, for example if using fixed lenses, but its motion with respect to the scene
must be recovered to localize the observer.

The camera rigid motion recovery techniques can be divided into two classes, namely:
Absolute Orientation (AO) and Perspective-n-Point (PnP) [21]. The first class assume a
set of 3D points expressed in a coordinate frame Φ1 and a corresponding set of 3D
points expressed in a coordinate frameΦ2. The goal is to recover the rigid motion that
registers all the points in Φ1 with the points in Φ2 assuming a noise term ϵ. Formally,
we seek for a rotation matrix R and a translation vector T⃗ such that the squared dis-
tance between the points inΦ1 (p1 . . . pn) and the corresponding points inΦ2 (q1 . . . qn),
transformed trough


R T⃗


, is minimum:

argmin
R,T⃗

N
i
∥pi − (Rqi + T⃗ )∥2 (2.18)

In this class we mention the method by Horn et. al. [92], Horn [90], Arun et. al [24]
and Walker et. al. [186]. On the other hand, in the Perspective-n-Point pose estima-
tion we assume to know a set of 3D points (p1 . . . pn) in Φ1 reference frame and their
relative 2D projections (u1 . . .un) onto the camera image plane in a calibrated (i.e. in-
trinsics parameters are known) environment. Most of PnP approaches differentiate on
the optimization type (i.e. linear vs. non-linear) and on the number of points used. A
linear solution to the problem with n = 3 was the first studied [22] but can find optimal
solutions only up to 4 different configurations. Conversely, if more than 3 points are
taken into account, there exists linear methods that are guaranteed to find a unique
solution [150, 152]. Furthermore, linear models with 5 or even more than 6 points have
been proposed [86] but are rarely used because minor improvements of pose accu-
racy come at the cost to find many correct point-to-point correspondences that may
become an expensive task in case of outliers.

Finally, non-linear iterative solutions to PnP problem have been proposed in [115,
123]. For an evaluation of some of the pose estimation algorithms we refer the reader
to [21].
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2.2.1 Fiducial Markers

Similar to the complete camera calibration case, pose estimation methods rely on a set
of 3D-2D correspondences that must be provided. This implies the ability to identify
objects present in a scene or, at least, to recognize similar features from different point
of views. The most reliable way to provide such correspondences is to place artificial
objects in a scene with known geometry so that the identification of the composing
points is fast, simple and reliable.

In this contest, we call fiducial marker any artificial object consistent with a known
model that is placed into a scene in order to supply a reference frame. Currently, such
artefacts are unavoidable whenever a high level of precision and repeatability in image-
based measurement is required, as in the case of vision-driven dimensional assess-
ment task such as robot navigation and SLAM [187, 60, 66], motion capture [202, 47],
pose estimation [203, 199], camera calibration [62, 99] and of course in field of aug-
mented reality [205, 107].

While in some scenarios approaches based on naturally occurring features have
been shown to yield satisfactory results, they still suffer from shortcomings that severely
limit their usability in uncontrolled environments. Specifically, the lack of a well known
model limits their use in pose estimation. In fact, while using techniques like bundle
adjustment can recover part of the pose, the estimation can be only up to an unknown
scale parameter; further, the accuracy of the estimation heavily depends on the cor-
rectness of localization and matching steps.

Moreover, the availability and distinctiveness of natural features is not guaranteed
at all. Indeed the smooth surfaces found in most man-made objects can easily lead to
scenes that are very poor in features.

Finally, photometric inconsistencies due to reflective or translucent materials severely
affect the repeatability of the point descriptors, jeopardizing the correct matching of
the detected points. For this reasons, it is not surprising that artificial fiducial tags con-
tinue to be widely used and are still an active research topic.

Markers are generally designed to be easily detected and recognized in images pro-
duced by a pinhole camera. In this sense they make heavy use of the projective invari-
ance properties of geometrical entities such as lines, planes and conics.

One of the earliest invariance used is probably the closure of the class of ellipses
to projective transformations. This implies that ellipses (and thus circles) in any pose
in the 3D world appear as ellipses in the image plane. This allows both for an easy
detection and a quite straightforward rectification of the plane containing any circle.

With their seminal work, Gatrell et al. [77] propose to use a set of highly contrasted
concentric circles and validate a candidate marker by analyzing the compatibility be-
tween the centroids of the detected ellipses. By alternating white and black circles a few
bits of information can be encoded in the marker itself. In the work proposed in [54]
the concentric circle approach is enhanced by adding colors and multiple scales. Later,
in [109] and [140], dedicated “data rings” are added to the marker design.

A set of four circles located at the corner of a square is adopted in [56]: in this case
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(a) Concentric
Circles

(b) Intersense (c) ARToolkit (d) ARTag (e) RUNE-43 (f) RUNE-129

Figure 2.4: Some examples of fiducial markers that differ both for the detection tech-
nique and for the pattern used for recognition. In the first two, detection happens by
finding ellipses and the coding is respectively held by the color of the rings in (a) and
by the appearance of the sectors in (b). The black square border enables detection in
(c) and (d), but while ARToolkit uses image correlation to differentiate markers, ARTag
relies in error-correcting binary codes. Finally, in (e) and (f) we show two classes of
RUNE-Tags fiducial markers described in Chapter 4.

an identification pattern is placed in the middle of the four dots in order to distinguish
between different targets. This ability to recognize all the viewed markers is really im-
portant for complex scenes where more than a single fiducial is required; furthermore,
the availability of a coding scheme allows for an additional validation step and thus
lowers the number of false positives.

Circular features are also adopted in [181], where a set of randomly placed dots are
used to define distinguishable markers that can be detected and recognized without
the need for a frame. In this case, to attain robustness and to avoid wrong classification
a large number of dots is required for each marker, thus leading to a likely high number
of RANSAC iterations.

Collinearity, that is the property of points that lie on a straight line of remaining
aligned after any projective transformation, is another frequently used invariant. Al-
most invariably this property is exploited by detecting the border edges of a highly
contrasted quadrilateral block. This happens, for instance, with the very well known
ARToolkit [103] system which is freely available and has been adopted in countless vir-
tual reality applications. Thanks to the ease of detection and the high accuracy pro-
vided in pose recovery [126], this solution is adopted also in many recent marker sys-
tems, such as ARTag [67] and ARToolkitPlus [185]. The latter two methods replace the
recognition technique of ARToolkit, which is based on image correlation, with a binary
coded pattern.

Finally, many papers suggest the use of the cross-ratio among detected points [175,
180, 117, 122], or lines [183] as invariant properties around which to build marker sys-
tems. A clear advantage of the cross-ratio is that, being a projective invariant, the
recognition can be made without the need of any rectification of the image. Unfor-
tunately, the ease of detection offered by the use of the cross-ratio often comes at the
price of a high sensitivity to occlusions or misdetection. In fact, spurious or miss-
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Figure 2.5: Example of a fish eye lens (Left) with a sample picture of the result obtain-
able (Right). Note the severe distortion that cause straight lines to appear curved.

ing detection completely destroy the invariant structure. Further, cross-ratios exhibit
a strongly non-uniform distribution [98], which in several situation limits the overall
number of distinctively recognizable patterns.

2.3 Non-Pinhole Models

As discussed in section 2.1, the simplest formalization of the imaging process is the
pinhole camera. This basic model can be calibrated by solving a linear system that
relates the coordinates of reference point in the scene with their projections on the
image plane. Nevertheless, the range of possible imaging capabilities of a pure pinhole
model are quite limited since it is quickly clear that increasing the field of view requires
a reduction of the focal length that is bounded by geometric factors. For this reason,
camera lenses introduce different types of radial distortion as a trade-off between the
field of view and the central projection constraint. Regardless its level of sophistication,
any pinhole-based model is geometrically unable to properly describe cameras with a
frustum angle that is near or above 180 degrees.

In addition to pinhole models with lens distortion, in the recent past many non-
pinhole imaging devices have been proposed (See Sec. 2.3.2). These special types of
cameras can provide a projection from different points of view of the same scene. This
can be exploited to implement single lens stereoscopy [15] or digital refocusing [70].

2.3.1 Wide-angle, Fish eye and Catadioptric Cameras

Wide-angle and Fish eye lenses [136] are widely used in many application for which a
wide field of view is needed (Fig. 2.5). The projection model involved introduces severe
distortion so that straight lines appear curved into the image plane. To overcome this,
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the ray passing trough a point p, travelling along the direction d at a time t for a spe-
cific wavelength λ. It’s clear that, if an estimation of such function inside a volume is
known, a complete three-dimensional holographic reconstruction of a dynamic scene
would be possible. Practically speaking, a sparse estimation of this function is usually
recovered by considering a set of micro pinhole cameras (i.e. composed by only few
measured exiting rays) overlapping each other.

2.3.3 Raxel-based Unconstrained Imaging Models

Given this proliferation of different models, the desire for an unifying approach is quite
natural. The most general imaging model, that associates an independent 3D ray to
each pixel, would in principle be able to describe any kind of imaging system, regard-
less of the optical path that drives each ray to the sensitive elements of the device.
However, the complete independence of millions of rays makes its calibration a daunt-
ing task as each of them needs several 2D to 3D correspondences to be properly con-
strained.

This problem was first addressed in [80], where unconstrained rays (here called rax-
els) are calibrated exploiting their intersections with a target (an encoded laptop mon-
itor) that moves along a translating stage. Such intersections are identified by means
of Gray coding and are evaluated as the average over several different shots. This ap-
proach is somewhat limited by the fact that the pose of the calibration planes must
be known (i.e. the method depends on the accuracy of the translating stage), and the
paper does not assess the accuracy of the obtained calibration.

A method for the calibration of the general model and unknown poses is proposed
in [170]. The authors discuss both the case of non-central and perspective camera,
however, in the latter case, the parametrization process has proven to be rather com-
plicated when using planar calibration objects [169]. Further, the paper does not de-
scribe a specific systematic setup for gathering 2D to 3D correspondences for all the
camera rays and the experimental evaluation is performed qualitatively in a subset of
the imaging sensor. The practical usage of multiple grids for calibrating generic non-
perspective device is investigated in [151]. Again, the method is designed and well-
suited for catadioptric, spherical, multiview and other types of non-central cameras.

In Chapter 6 we propose the use of an unconstrained model even in standard cen-
tral camera settings dominated by the pinhole model, and introduce a novel calibra-
tion approach that can deal effectively with the huge number of free parameters asso-
ciated with it, resulting in a higher precision calibration than what is possible with the
standard pinhole model with correction for radial distortion. This effectively extends
the use of general models to settings that traditionally have been ruled by parametric
approaches out of practical considerations.
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Figure 2.7: An example of optical flow estimation from two images (Left and Center)
taken from a moving camera. At each point of the first image is associated a displace-
ment (flow) vector to the corresponding point on the second.

2.4 Optical Flow Estimation

Optical Flow estimation is historically one of the most studied problems in computer
vision. Following Horn’s definition [89], the Optical Flow is “the appartent motion of
brightness patterns in the image”. Thus, given two projections of a same scene, its es-
timation is essentialy the problem of finding a dense correspondence between all the
pixels of the first image to the second (i.e. the apparent pixel motion from the first to
the second image). For instance, in Fig. 2.7 an example of optical flow is shown from
two images taken at different camera poses.

Typical applications can be found in image segmentation [189], multiple-object
detection and tracking [159], visual odometry for robots [48] and video compression
[139].

Most of the approaches to optical flow estimation consider the problem in terms of
a global energy minimization of a functional defined as a combination of a data and a
regularization (or prior) term:

Eglobal = Edata +λEreg (2.19)

The Edata term measures the photometric consistency of the corresponding pixels
mapped by the flow whereas Ereg favors smoothly varying flow fields. Most of the time,
the data term is designed by assuming that the brightness intensity of a pixel is main-
tained across the two images (brightness constancy assumption). If we denote with
I (x, y) the intensity of a pixel at coordinates x, y in the image I and the flow as a func-
tion f : R2 → R2, the brightness constancy can be written as in Equation 2.20 which is
usually linearized considering the first order Taylor expansion yielding the approxima-
tion described by Equation 2.21.

I1(x, y) = I2( f (x, y)) (2.20)
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I2(x, y) = I1(x, y)+ f (x, y)T


∂I
∂x
∂I
∂y


(2.21)

The seminal formulation by Horn and Schunck [93] was based on this assumption.
Hoverer, since the brightness intensity of pixels can vary for changes in illumination
(i.e. shadows, specular highlights, etc.) it has been proposed to use different robust
photometric features like image gradients [43] or SIFT descriptors[121].

In its simplest formulation, the regularization term Ereg is defined in term of the
squared (L2) norm of the gradient of the function f :

Ereg =


x


y
∥∇ f (x, y)∥2d yd x (2.22)

but recent proposed algorithms use a robust (L1) norm [43] or Total Variation [190].
The choice of a regularization function that is not penalized by occlusion boundary
regions is of pivotal importance to estimate a high-quality optical flow and for which
great efforts have been devoted in the past.

Finally, a huge selection of optimization strategies have been proposed over the
years. Some authors propose to use a gradient descent algorithm which updates the
flow function by taking incremental steps to the negative direction of the energy func-
tion gradient [26]. Since the regularization function is often described in terms of high
order derivatives of f , many authors [209, 43, 196] treat the optimization as a calculus
of variations. Specifically, they assume an energy functional that can be written as a

function of the coordinates (x, y), the flow f (x, y) =  fu(x, y) fv (x, y)
T

and the first
order partial derivatives of the flow function:

Eglobal =


x


y

E

x, y, fu(x, y), fv (x, y),

∂ fu

∂x
,
∂ fu

∂y
,
∂ fv

∂x
,
∂ fv

∂y


d y d x (2.23)

Such formulation can be transformed in terms of Euler-Lagrange equations (2.24)
that can be solved as a system of partial differential equations.

∂Eglobal

∂ fx
− ∂

∂x

∂Eglobal

∂ fu
∂x

− ∂

∂y

∂Eglobal

∂ fu
∂y

= 0

∂Eglobal

∂ fy
− ∂

∂x

∂Eglobal

∂ fv
∂x

− ∂

∂y

∂Eglobal

∂ fv
∂y

= 0 (2.24)

Furthermore, sparse-to-dense approaches can start from an initial sparse estima-
tion of the flow that can easily handle large motions of scene objects. Then, the flow is
diffused to all the image regions taking advantage of the smoothness prior [44, 196].

For a complete in-depth taxonomy of the most important optical flow methods, we
refer the reader to [27].
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2.5 Reflectance Modelling

In computer vision, the modelling and recovery of photometric parameters is a topic
of pivotal importance for purposes of surface analysis and image understanding. In
Section 2.1 we focused out attention on geometric aspects of image formation process,
specifically, how points in 3D world reference frame get mapped into the image plane.
However, when we start reasoning on the intensity and frequency of light radiation that
is acquired by the camera, we enter in the field of Radiometry that describes energy
transfers, in terms of electromagnetic waves, that occur from light sources, various
surface areas and the imaging sensor.

Our analysis starts from a certain amount of incoming energy, called Irradiance,
that is collected by the imaging sensor at a certain wavelength I (λ). This energy is a
result of the emission performed by an Illuminant L(λ) (whose intensity is also wave-
length dependent) and the fraction of incident light on a scene surface that gets re-
flected and scattered toward the image sensor. This scattering process depends on the
foreshortening of each surface patch (i.e. the area of the surface viewed from a light
source), the angle with respect to the observer (i.e. the camera) and, finally, by intrinsic
properties of the surface such the material. A Reflectance Model describes the fraction
of energy that is reflected from a surface that gets illuminated by a light source L(λ),
as a function of the illuminant, the local surface geometry (shading) and the object
material (reflectance).

Since the estimation of illuminant and material reflectance are mutually interde-
pendent, the problem of recovering physically meaningful parameters that govern the
image formation process is closely related to the ability to resolve the intrinsic mate-
rial reflectance from their trichromatic colour images captured under varying illumi-
nation conditions. Existing methods often rely upon the use of statistics of illuminant
and material reflectance or draw upon the physics-based analysis of local shading and
specularity of the objects in the scene.

Statistics-based approaches often employ Bayes’s rule [37] to compute the best es-
timate from a posterior distribution by standard methods such as maximum a poste-
riori (MAP), minimum-mean-squared error (MMSE) or maximum local mass (MLM)
estimation. The illuminant and surface reflectance spectra typically take the form of
a finite linear model with a Gaussian basis [28, 69], where a correlation matrix is built
for a set of known plausible illuminates to characterise all the possible image colours
(chromaticities) that can be observed.

Contrary to these statistics-based approaches, physics-based colour constancy anal-
yses the physical processes by which light interacts with the object surface [112, 111,
162].

Probably the simplest but effective model was proposed by Lambert [110]. Such
model is based on two simple assumptions formally described in equation (2.25). First,
the reflected energy (radiance) is proportional to the illuminant L(λ) (depending only
on the wavelength) and the material reflectance function S(u,λ) (depending by the
location u and the wavelength λ). Second, the amount of reflected energy is a function
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of the cosine angle θ between the light position and the surface normal.

I (u,λ) = 1

π
L(λ)S(u,λ)cos(θ) (2.25)

Lambertian model accounts only for pure diffusive surface reflection. To include
also a specular component, the dichromatic model has been introduced by Shafer [163].
This model assumes a direction-independent diffuse component whereas the specular
part is a function of the observer direction, as described by equation (2.26).

I (u,λ) = g (u)L(λ)S(u,λ)+k(u)L(λ) (2.26)

The wavelength-dependent illuminant contributes to the final irradiance with two
components. The former depends on the reflectance S(u,λ) and is weighted by a shad-
ing factor g (u) that varies within the surface. The latter is just the pure illuminant
weighted by a specular factor k(u) that also varies within the surface as it depends on
the observer direction. For diffuse lambertian surfaces, the shading factor is usually a
function of the cosine between the light and the surface normal whereas the specular
factor is related to the Fresnel Reflection Coefficients.

Regarding specularities and shading, there have been several attempts to remove
specular highlights from images of non-Lambertian objects. For instance, Brelstaff and
Blake [38] used a thresholding strategy to identify specularities on moving curved ob-
jects. Conversely, Narasimhan et al. [141] have formulated a scene radiance model
for the class of “separable” Bidirectional Reflectance Distribution Functions (BRDFs).
More recently, Zickler et al. [208] introduced a method for transforming the original
RGB colour space into an illuminant-dependent colour space to obtain photometric
invariants.

Other alternatives elsewhere in the literature aiming at detecting and removing
specularities either make use of additional hardware [143], impose constraints on the
input images [119] or require colour segmentation [108].
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3
A Projective Invariants Based

Fiducial Marker Design

Visual marker systems have become an ubiquitous tool to supply a reference frame
onto otherwise uncontrolled scenes. Throughout the last decades, a wide range of dif-
ferent approaches have emerged, each with different strengths and limitations. Some
tags are optimized to reach a high accuracy in the recovered camera pose, others are
based on designs that aim to maximizing the detection speed or minimizing the effect
of occlusion on the detection process. Most of them, however, employ a two step pro-
cedure where an initial homography estimation is used to translate the marker from
the image plane to an orthonormal world where it is validated and recognized.

In this chapter we present a general purpose fiducial marker system that performs
both steps directly in image-space. Specifically, by exploiting projective invariants
such as collinearity and cross-ratios, we introduce a detection and recognition algo-
rithm that is fast, accurate and moderately robust to occlusion. Moreover, several real-
world applications are proposed, ranging from camera calibration to projector-based
augmented reality.
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3.1 Introduction

In this chapter, we introduce a novel visual marker system that uses the cross-ratio
and other projective invariants to perform both detection and recognition in the image
plane, without requiring the estimation of an homography or any other technique of
perspective correction. Further, our approach introduces some redundancy by repli-
cating the same pattern on different sides, which can be exploited to obtain a mod-
erated robustness to occlusion or to lower the false positive rate. In addition, the de-
tection and recognition algorithms are both efficient and very simple to implement.
In the experimental section we validate the proposed approach by comparing its per-
formance with two widely used marker systems under a wide range of noise sources
applied to synthetically generated scenes. Finally, we also tested the effectiveness of
the novel marker when dealing with real images by using it to solve a number of differ-
ent real-world measurement tasks and applications.

3.2 Image-Space Fiducial Markers

The proposed marker, which we named Pi-Tag (Projective invariant Tag), exhibits a
very simple design. It is made up of 12 dots placed on the sides of a square: four dots
per side, with the corner dots shared. There are two distinct configurations of the dots
and each is repeated in two adjacent sides. See for example the marker in Figure 3.2(a):
The top and left sides show the same configuration, and so do the bottom and right
ones. The two different configurations are not random. In fact they are created in such
a way that the cross-ratio of the two patterns is proportional via a fixed constant δ.

The interplay between the detection of these cross-ratios in the image plane and
other invariants such as straight lines and conics projections allows for a simple and
effective detection and recognition approach for the Pi-Tag.

3.2.1 Projective invariants

Our approach relies on four type of projective invariants. Namely, the invariance of the
class of ellipses, collinearity, angular ordering (on planes facing the view direction) and
cross-ratio.

The invariance of the class of ellipses has been extensively exploited in literature.
Circular dots are easy to produce and, since they appear as ellipses under any projec-
tive transformation, they are also easy to detect by fitting on them a conic model with
a low number of parameters. In addition, while the center of the detected ellipses is
not preserved under perspective, if the original dots are small enough, the localization
error has been shown to be negligible for most practical purposes [129].

Other advantages of the elliptical fitting include the ability of using the residual er-
ror to filter out false detections and to perform gradient-based refinements. For this



3.2. Image-Space Fiducial Markers 31

A B C D

A' B' C' D'

M

Figure 3.1: The cross-ratio of four collinear points is invariant to projective transfor-
mations. cr (A,B ,C ,D) = cr (A′,B ′,C ′,D ′)

and other reasons, dots are widely adopted also for accurate tasks such as lens distor-
tion correction, and stereo calibration.

Given a set of points, projective geometry preserves neither distances nor the ratios
between them. Fortunately, there are some interesting properties that remain invariant
and can be put to use. One is the angular ordering of coplanar points. That is, if we
take three points defining a triangle, once we have established an ordering on them
(either clockwise or anti-clockwise), such ordering is maintained under any projective
transformations that looks down to the same side of the plane.

The second invariant is collinearity and derives from the fact that straight lines re-
main straight under perspective transformations. Almost all rectangular fiducial mark-
ers rely on this property in the detection stage by finding lines in a scene using a wide
range of different techniques.

Finally, we use the cross-ratio of four collinear points A,B ,C and D , a projective
invariant defined as:

cr (A,B ,C ,D) = |AB |/|BD|
|AC |/|C D| (3.1)

where |AB | denotes the Euclidean distance between points A and B (see Figure 3.1).
The cross-ratio does not depend on the direction of the line ABC D , but depends

on the order and the relative positions between the points. The four points can be
arranged in 4! = 24 different orderings which yield six different cross-ratios. Due to this
fact, the cross-ratio is unlikely to be used directly to match a candidate set of points
against a specific model, unless some information is available in order to assign an
unique ordering to such points.

Many fiducial marker systems use projective and permutation P 2-invariants [134]
to eliminate the ambiguities of the different orderings. For example this invariants are
used to track markers or interaction devices for augmented reality in [117] and [116]. It
has to be noted, however, that permutation invariance results in the inability to estab-
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i j

k h

(a) Search for a feasible starting
side

i j

k h

(b) Second side and corner label-
ing

i j

k h

(c) Completion of the marker (if
possible)

Figure 3.2: Steps of the marker detection process: in (a) a good candidate for a side is
found by iterating through all the point pairs (O(n2)). In (b) another connected side is
searched for and, if found, the resulting angular ordering is used to label the corners
found (O(n)). Note that the labeling is unambiguous since the corner i is associated
with the lowest cross ratio. Finally, in (c) the marker is completed (if possible) by find-
ing the missing corner among all the remaining dots. (image best viewed in colors)

lish correspondences between the detected features and points in the reference model,
making it impossible to fully estimate the camera pose without relying to stereo image
pairs or other features in the markers.

The main idea behind the design of the proposed Pi-Tags is to combine all the
aforementioned invariants to identify each dot without ambiguities, even in presence
of moderate occlusions, thus allowing fast and accurate pose estimation. To this end, it
should be noted that we assume the imaging process to be projective. While this holds
to a reasonable approximation with many computer vision devices with good lens and
moderate focal length, wide angle cameras could hinder our assumption due to lens
distortion. In this case, a proper distortion-correcting calibration step [176] should be
performed before processing.

3.2.2 Marker Detection and Recognition

In our design each marker is characterized by properties that are common to all tags.
Specifically, each side of the marker must be made up of exactly four dots, with the
corner dots being shared and labeled as in Fig.3.2(a). For a given constant δ, a set of
Pi-Tags is generated by varying the dots position constrained by the following property:

cri j = cri k = δcrkh = δcr j h (3.2)

All these properties allow to decouple the detection and recognition pipeline into
two separate steps. In the detection process a set of possible marker candidates are
localized in the image by exploiting the projective invariants described in the previous
section.
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First,the dots are located by searching for the ellipses present in the image (pro-
jective invariance of conics). To this end we use the ellipse detector supplied by the
OpenCV library [36] applied to a thresholded image. To be resilient to variations in il-
lumination, a locally adaptive threshold is applied by [158]. Some of the ellipses found
at this stage may belong to a marker in the scene (if any), others could be possibly
generated by noise or clutter.

Next we group the detected ellipses into potential marker candidates. This is done
considering only the centroids of the ellipses (which are a very good approximation
for original circle points). The first step to gather all the points belonging to a tag is to
find a viable marker side, which can be done by exploiting the straight line invariance
(collinearity). For this purpose, we iterate over all the unordered pairs of dots and then,
for each pair considered, we check if they are likely to be two corner points (see Fig. 3.2
a). This check is satisfied if exactly two other dots can be found lying within a fixed dis-
tance to the line connecting the first two candidate corners. The distance parameter is
expressed in pixels and, since the accuracy of the estimated ellipse center is expected
to be subpixel, a threshold of one or two pixels is usually enough to avoid false neg-
atives without the risk of including misdetected ellipses. In order to obtain a better
performance, this step can be accelerated using a spatial index, such as a quad-tree,
rather than by testing all the ellipses found.

At this point we have identified a candidate side of the marker. Next, we validate the
candidate by finding a third corner of the marker. Again, this is done by iterating over
all the dots left and, for each one, by testing if it forms a candidate side with one of the
current corner points (i.e. by checking that the line connecting them passes through
exactly two ellipses). If a pair of sides is found then it is possible to test if they belong to
a known marker and give a label to each corner. The test is carried on by verifying that
the proportion between the cross-ratios of the sides is approximately 1 (in this case we
are dealing with ki j or j hk adjacent sides) or δ (in this case we are dealing with i j h or
hki ). The labeling happens by observing the ordering of the sides, which is conserved
since always the same face of the tag is seen (see Fig. 3.2 b).

With two sides detected and labeled, we can recognize the marker by comparing
the measured cross-ratio with the database of current markers. However, to be more
robust, we search for the fourth corner with the same line-based technique. Depend-
ing on the application requirements, the search for the fourth point can be mandatory
(to reduce the number of false positives and get a more accurate pose) or optional (to
allow for the occlusion of at most two sides of the marker).

Once the points are detected and labeled it is possible to test if they belong to an
expected marker. This final step is done by computing the average between the two or
four obtained cross-ratios (divided by δ if needed) and by comparing it with all the val-
ues in the database of the tags to be searched. If the distance is below a fixed threshold,
the marker is then finally recognized. Note that to avoid any ambiguity between tags,
the proportion between the cross-ratios of i j sides of any pair should be different from
δ.

Regarding the computation complexity of the approach, it is easy to see that find-
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Figure 3.3: Evaluation of the accuracy of camera pose estimation with respect to differ-
ent scene conditions. The first row plots the angular error as a function of view angle
and Gaussian blur respectively, while the second row plots the effects of Gaussian noise
(left) and illumination gradient (right, measured in gray values per image pixel). The
proposed method is tested both with and without refinement. Comparisons are made
with ARToolkit and ARToolkit Plus.

ing a starting side is O(n2) with the number of ellipses, while the two subsequent steps
are both O(n). This means that if each detected point triggers the full chain the total
complexity of the algorithm could be theoretically as high as O(n4). However, in prac-
tice, given the relatively low probability of getting four ellipses in line with the correct
cross ratio, most of the starting side found lead to a correct detection. In addition, even
when the starting side is not correct, it is highly probable that the cross-ratio check will
stop the false matching at the second step.

While a full probabilistic study would give a more formal insight, in the experimen-
tal section we will show that even with a large number of false ellipses the recognition
is accurate and it is fast enough for real-time applications.

3.2.3 Estimation of the Camera Pose

Having detected and labeled the ellipses, it is now possible to estimate the camera
pose. Since the geometry of the original marker is known, any algorithm that solves
the PnP problem can be used. In our tests we used the solvePnP function available in
OpenCV. However, it should be noted that, while the estimated ellipse centers can be
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Figure 3.4: Some examples of artificial noise used for synthetic evaluation. The arti-
ficial noise is, respectively, light Gaussian noise at grazing view angle (first column),
blur (second column), strong Gaussian noise (third column) and illumination gradient
(fourth column). The tested markers shown are ARToolkit Plus (first row) and Pi-Tag
(second row).

good enough for the detection step, it is reasonable to refine them in order to recover
a more accurate pose. Since this is done only when a marker is found and recognized,
the computational cost is limited. In our experiments we opted for the robust ellipse
refinement approach presented in [147].

In addition, to obtain a more accurate localization, one might be tempted to correct
the projective displacement of the ellipses centers. However, according to our tests,
such correction in general gives little advantage and sometimes leads to a slightly re-
duction in accuracy. Finally, we also tried the direct method outlined in [101], but we
obtained very unstable results, especially with small and skewed ellipses.

3.3 Experimental Validation

In this section we evaluate the accuracy and speed of the Pi-Tag fiducial markers and
compare them with ARToolkit and ARToolkitPlus.

A first batch of tests is performed with synthetically generated images under differ-
ent condition of viewing direction, noise, and blur. This allows us to compare the dif-
ferent techniques with a perfect ground truth for the camera pose, so that even slight
differences in precision can be detected. The accuracy of the recovered pose is mea-
sured as the angular difference between the ground truth camera orientation and the
obtained pose. While this is a subset of the whole information related to the pose, this
is an important parameter in many applications and allows for a concise analysis.
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A second set of experiments is aimed at characterizing the behaviour of Pi-Tags
with respect to its resilience to occlusion, the presence of false positives, and the sensi-
tivity to the threshold parameters, as well analyze computational time required by the
approach.

Finally, four real-world application of the proposed tag are studied. Namely, we
show the effectiveness of these markers as tools for contactless measurement, camera
calibration, and 3D surface alignment. In addition, we also describe a possible use of
Pi-Tags with non-square aspect ratio for projected augmented reality applications.

The implementations of ARToolkit and ARToolkitPlus used are the ones freely avail-
able at the respective websites. The real images are taken with a 640x480 CMOS web-
cam for the occlusion test and with a higher resolution 1280x1024 CCD computer vi-
sion camera with a fixed focal length lens for the measurement tests.

All the experiments have been performed on a typical desktop PC equipped with a
1.6Ghz Intel Core Duo processor and 2GB of RAM.

3.3.1 Accuracy and Baseline Comparisons

In Fig. 3.3 the accuracy of our markers is evaluated. In the first set of experiments the
marker is tested at increasing grazing angles and with a minimal additive Gaussian
noise. It is interesting to note that oblique angles lead to a higher accuracy for all the
methods, as long as the markers are still recognizable. This is explained observing that
large angles of view constraint of the reprojections of the points to the image plane
more than almost orthogonal views. Pi-Tag shows better results both when the pose is
evaluated with the original thresholded ellipses and after the refinement.

In the second test we evaluated the effects of Gaussian blur, which appears to have
a limited effect on all the techniques. This is mainly related to the fact that all methods
perform a preliminary edge detection step, which in turn applies a convolution ker-
nel. Hence, it is somewhat expected that an additional blur does not affect much the
marker localization. In the third test an additive Gaussian noise was added to images
with an average view angle of 0.3 radians and no artificial blur was added.

The performance of all methods decreases with increasing levels of noise and AR-
ToolkitPlus, while in general more accurate than ARToolkit, breaks when dealing with
a noise with a standard deviation greater than 80 (pixel intensities goes from 0 to 255).
Finally, the effect of illumination gradient is tested only against ARToolkitPlus (since
ARToolkit cannot handle this kind of noise), which, again, exhibits lower accuracy and
breaks with just moderate gradients.

Overall, these experiments confirm that Pi-Tag outperforms the alternative marker
systems. This is probably due both to the higher number of pinpointed features and to
the better accuracy attainable using circular patterns rather than corners [129].

In practical terms, the improvement is not negligible. In fact an error as low as
10−3 radians still produces a jitter of 1 millimetre when projected over a distance of 1
meter. While this is a reasonable performance for augmented reality applications, it is
unacceptable for precise contactless measurements.
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Figure 3.5: Left (a): Evaluation of the accuracy of the estimated camera pose when
some dot of the marker are occluded (note that if more than 5 dots are missing the
marker is not detected). Right (b): Evaluation of the number of false positive markers
detected as a function of the number of false ellipses introduced in the scene and the
threshold applied to the cross-ratio.

3.3.2 Resilience to Occlusion and False Ellipses

One of the characteristics of Pi-Tag is that it can deal with moderate occlusion. In
Fig. 3.5(a) we show how occlusion affects the accuracy of the pose estimation (i.e., how
well the pose is estimated with a subset of the dots, regardless to the possibility of rec-
ognizing the marker with those dots).

While we observe a decrease in the accuracy as we increase the occlusion, the pre-
cision is still acceptable even when almost half of the of the dots are not visible, espe-
cially for the refined version of the tag. In Fig. 3.5(b) we evaluate the proportion of false
marker detections obtained by introducing a large amount of false ellipses at random
position and scale. When the threshold on the cross-ratio is kept tight it is possible to
obtain a very low rate of false positives even with a large number of random dots.

3.3.3 Performance Evaluation

Our tag system is designed for improved accuracy and robustness to occlusion rather
than for high detection speed. This is quite apparent in Fig. 3.6(a), where we can see
that the recognition could require from a minimum of about 10 ms (without false el-
lipses) to a maximum of about 150 ms.

By comparison, ARToolkit Plus is about an order of magnitude faster [185]. How-
ever, it should be noted that, despite being slower, the frame rates reachable by Pi-Tag
(from 100 to about 8/10 fps) is still sufficient for real-time applications (in particular
when few markers are viewed at the same time). Further, our code is not as heavily
optimized as ARToolkitPlus, which gained a factor of 10 performance gain with respect
to ARToolkit. It is reasonable to assume that a similar optimization effort would result
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Figure 3.6: Left (a): Evaluation of the detection and recognition time for the proposed
marker as random ellipses are artificially added to the scene. Right (b): Evaluation
of the recognition rate achieved on a real video of about ten minutes in length, with
respect to different thresholds applied to the cross-ratio.

Figure 3.7: Recognition fails when the marker is angled and far from the camera as the
ellipses detectors cannot detect the circular features.
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(a) (b) (c)

Figure 3.8: Some examples of the behaviour in real videos: In (a) the marker is not
occluded and all the dots contribute to the pose estimation. In (b) the marker is recog-
nized even if a partial occlusion happens. In (c) the marker cannot be detected as the
occlusion is too severe and not enough ellipses are visible.

in a similar gain in performance.

3.3.4 Behavior on Real Videos

In addition to the evaluation with synthetic images, we also performed some qualita-
tive and quantitative tests on real videos. In Fig. 3.8 some experiments with common
occlusion scenarios are presented. Note that when at least two sides are fully visible
the marker is still recognized and the correct pose is recovered.

In Fig. 3.6(b) we plot the recognition rate of the markers as a function of the cross-
ratio threshold. this was computed from a ten minute video presenting several differ-
ent viewing conditions. It is interesting to note that even with a small threshold we can
obtain a complete recall (compare this with the threshold in Fig. 3.5(b)).

Finally, Fig. 3.7 highlights an inherent shortcoming of our design: The relatively
small size of the base features may result in a failure of the ellipse detector when the
tag is far away from the camera or very angled, causing the dots to become too small
or to blended together.

3.3.5 Using Pi-Tag for camera calibration

Camera calibration is a fundamental task whenever imaging devices are to be used in
measurement applications. In fact, if the intrinsic parameters of the devices (and thus
the image formation process) are not known with high accuracy, it is not possible to
relate the points on the image plane to the phenomena that generated them. In the
case of Pi-Tags, detection and recognition entirely happen in the image plane, for this
reason calibration is not needed per se. However, a calibration procedure based solely
on Pi-Tags provides a useful testbed.
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Figure 3.9: Evaluation of the quality of mono and stereo calibration obtained using
Pi-Tags as fiducial markers.
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Figure 3.10: Performance of the proposed fiducial marker as a tool for image-based
measurement.

Figure 3.11: Analysis of the measurement error committed with respect to different
positions of the marker pair.

There are many different image formation models and of course each one comes
with a different set of parameters. In the following tests we adopted the model pro-
posed by [88]. In this model the imaging device is represented as a pinhole camera
whose incoming rays are displaced on the image plane through a polynomial distor-
tion. Such distortion is parametrized by three coefficient of the polynomial usually
labeled k1, k2 and k3, being k1 the most relevant (in terms of displacement) and k3 the
least relevant.

Once the distortion is factored out, the pinhole part of the model is defined through
the principal point (i.e. the projection on the image plane of the projective center) la-
beled as (cx,c y) and the focal length ( f x, f y) (which are two parameters to account for
non-square pixels). Since we are dealing with low distortion cameras that are equipped
with sensors with square pixels, we considered only the first distortion coefficient k1

and we assumed f x = f y .

The first set of calibration experiments was performed using a target made up of
Pi-Tags placed according to a known geometry and printed on an A3 sheet with a stan-
dard inkjet printer (see Fig. 3.9). Several shots of the target were captured with differ-
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ent viewing angles and at different distances. For each shot the tags were detected and
recognized, and an association between the 2D points on the image plane and the 3D
point of the known model was stored. This data was finally fed to the camera calibra-
tion procedure available in the OpenCV library. Since both the target viewing angle and
the number of shots are relevant factors for the quality of the calibration we studied the
effect of both.

In the first four graphs of Fig. 3.9 we show the absolute distance between the pa-
rameters recovered with the described procedure and a ground truth calibration per-
formed with a full checkerboard pattern with about 600 reference corner and using
200 shots. Specifically, for each number of shots and maximum angle we selected 30
random set of images to be used for calibration.

The distance plotted in the graph is the maximum absolute error committed in the
30 calibrations. From these graphs it is possible to see that taking shots with a large
enough viewing angles is important. This is due both to the stronger constraint offered
to pinhole parameters by angled targets, and to the more accurate pose estimation
offered by Pi-Tag when the angle of view is not negligible (see Fig. 3.3). In addition we
can also observe that taking a large number of samples increases monotonically the
accuracy obtained.

In the second set of calibration experiments the tags were used to estimate the rel-
ative pose between two cameras of known intrinsic model. This stereo calibration is
useful in many reconstruction tasks where the epipolar geometry between more than
one camera can be exploited to fully localize the 3D points that are imaged (see [86]).

Again, we estimated a ground truth relative pose between a pair of identical fixed
cameras using a specialized target and plotted on the bottom row of Fig. 3.9 the max-
imum absolute error between the ground truth and the values obtained in 20 calibra-
tions performed on randomly selected shots with a given maximum viewing angle. In
this condition the viewing angle is less important, but still a large number of shots gives
better results.

3.3.6 Contactless measurements

A calibrated camera can be used in conjunction with any detectable marker of a known
size as a contactless measurement tool. To assess the precision offered for this use
scenario, we printed two Pi-Tags and two ARToolkitPlus tags at a distance (center to
center) of 200 millimetres (see Fig. 3.10). Subsequently, we took several shots and es-
timated such distance. In the graph displayed in Fig. 3.10 we plotted the difference
(with sign) between the measured and real distance between tags at several viewing
angles. Pi-Tag consistently exhibits smaller errors and a smaller variance. As usual, the
measure improves slightly as the viewing angle increases. It is interesting to note that,
according to our measurements, Pi-Tag has a tendency to underestimate the distance
slightly, while ARToolkitPlus do exactly the opposite.

In Fig. 3.11 we show two scatter plots that depict respectively the error in localiza-
tion on the x/y plane (as the norm of the displacement vector) with respect to the po-
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Figure 3.13: Relation between recognition margin and cross-ratio separation among
markers.
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In addition, given a minimum separation between cross-ratios in the database of δ
(assumed to be bigger that ϵ), the probability of a wrong classification is upper bounded
by:
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By choosing apt values for ϵ and δ it is possible to set the sought balance between
an high recognition ability and a low number of misclassifications. For instance, as the
measured standard deviation in our test video was σcr = 6 ·10−4 a choice of ϵ= 2 ·10−3

would grant an expected percentage of false negative lower than 0.1%. At the same
time, a choice of δ= 4 ·10−3 would set the rate of wrong classifications below 0.01%.

To translate these numbers into a feasible database size, it is necessary to account
for the physical size of the marker and of the dots. In our test video we used a square
marker with a side of 10cm and with a dot diameter of 1cm.

Within these conditions we were able to obtain cross-ratios from 0.026 to 1.338
keeping enough white space between dots to make them easily detectable by the cam-
era. Assuming that the cross-ratios in the database are produced to be are evenly dis-
tributed, a span of about 1.3 grants for a total of about 300 distinct markers with the
above mentioned levels of false negatives and wrong classifications.
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Figure 3.14: Examples of surface reconstructions obtained by acquiring several ranges
with a structured-light scanner and by using Pi-Tag markers to set a common reference
(image best viewed in color).
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Figure 3.15: Actual setup and examples of usage by moving the controller above the
printed map.

3.3.8 Registration of 3D surfaces

In order to further evaluate the utility of the new marker design in practical scenar-
ios we performed a last set of qualitative experiments. To this end, we captured sev-
eral range images from different objects using a 3D scanner based on structured light.
These objects were placed on a turntable and surrounded with Pi-Tags (see Fig. 3.14).
During each acquisition step we took an additional shot that captures the Pi-Tags in
natural lighting, thus allowing us to use them to recover the pose of the object on the
turntable. This is a typical application of artificial markers, since most algorithms used
to align 3D surfaces need a good initial motion estimation to guarantee a correct con-
vergence. In the second row of Fig. 3.14 we show the overlap of several ranges using
the pose estimated with Pi-Tags, without any further refinement. In the third row the
initial alignment is refined using a state-of-the-art variant of the well-known ICP al-
gorithm (see [156]). After the refinement, slight improvements in the registration can
be appreciated, especially in the “hemisphere” object. The smooth blending of colors
obtained means that ICP was able to obtain a good alignment, which in turn testifies
the quality of the initial pose estimated using the Pi-Tags. In the last row we present
the watertight surface obtained after applying the Poisson surface reconstruction al-
gorithm [105] to the aligned range images. Overall, the surfaces are smooth and do not
exhibit the typical artefacts related to misalignment. In addition, the fine details of the
first object are preserved.

3.3.9 Applications in Projected Augmented Reality

An interesting property of the proposed tag design is that there is no need for it to be
square. In fact, any aspect ratio can be adopted without compromising the properties
of the cross ratio that are needed for the recognition of the tag and for the pose estima-
tion. We combined this exact property with the fact that the inside of the tag is blank
(as with other frame-based designs [184]) to build an additional application within the
domain of the Projected Augmented Reality.

Specifically, we built a system where a Pi-Tag is used both as a passive input device
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Figure 3.16: A schematic representation of the setup.

and as a display. The input device can be regarded as a 3D mouse that can be used to
explore interactive content. The ability to display data on the tag is obtained by using
an external projector that is aimed toward the white surface internal to the tag.

A schematic representation of the setup can be seen in Fig. 3.16. From a technical
stand-point the system is made up of a digital projector, a camera, a board where the
map of interest is physically printed and a navigation device. The projector and the
camera are rigidly mounted on a stand and are both oriented toward the table so that
their frustum covers the entire area of interest. The navigation device is basically a
rectangular rigid board that exhibits a white matte projection area and a frame that
contains the fiducial marker to track. Since the rigid transform that binds the camera
to the projector is known and the projector frustum itself corresponds to the map area,
all the parameters are available to reconstruct the position of the navigation device
with respect to the map and to the projector and thus to display on the matte area
some contextual data related to the location observed by the user.

The geometrical relation between the projector and the navigation device is used to
rectify the displayed image so that it appears exactly as if it was formed on the screen
of an active device. By printing different markers, more than one navigation device
can be used simultaneously, thus allowing many users to operate on the table. Finally,
since the marker position is determined in 3D, additional functions such as zooming
can be controlled through the vertical position of the device. In Fig. 3.15 an actual
implementation of the setup and the zooming effect attainable are shown.

The main challenge of the projection calibration is to estimate its projection matrix
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P = Kp [Rp |Tp ], where

Kp =
 f xp 0 cxp

0 f yp c yp

0 0 1


are projector intrinsic parameters, and [Rp |Tp ] is the relative pose of the projector with
respect to the marker, or the extrinsic parameters. Once the matrix P has been esti-
mated, a 3D point pm lying on the marker plane can be projected by transforming its
3D coordinates [xw yw 0]T to projector image-space pixel coordinates [up vp ]T with the
following equation:

Kp =
up

vp

1

= P


xw

yw

0
1

= P pw

Unfortunately, the projector cannot estimate the relative pose [Rp |Tp ] by itself because
it is a pure output device. To provide that data, a camera is placed nearby ensuring
that the viewing frustum of the projector is contained in the viewing frustum of the
camera. As long as the relative position between the camera and projector remains
unchanged, [Rp |Tp ] can be estimated in terms of the camera pose [Rc |Tc ] obtained via
fiducial markers in the following way:


Rp Tp

0⃗ 1


=


Rc p Tc p
0⃗ 1


Rc Tc

0⃗ 1



The estimation of Kp and [Rcp |Tcp ] can be obtained from a set of known 3D-2D cor-
respondences as in subsection 3.3.5, however, as the projector cannot "see" the mark-
ers and retrieve 3D positions of dots in the calibration target, an alternative method is
used to provide this mapping. A big square Pi-Tag marker is printed on a planar surface
and placed under the camera/projector frustum (Fig. 3.17). Once the tag is placed, a
snapshot is taken by the camera and used for background subtraction. This allow us
to project a dot with the projector by randomizing its 2D position in projector plane,
and detect its center with no ambiguity using the camera. If the camera detects that
the projected dot lies inside the marker, the 3D position of the dot can be recovered
because the marker plane position is known with respect to the camera via Pi-Tag pose
estimator. The whole process can be summarized as follows:

1. A planar surface with a Pi-Tag marker is placed randomly under camera/projector
frustum, and a snapshot is taken.

2. A dot pp = [up vp ]T is projected randomly by the projector. Via background sub-
traction the camera can identify the dot projected and determine its 2D position
pc = [uc vc ]T in the camera image plane.



3.3. Experimental Validation 49

Figure 3.17: Geometric relation between the entities involved in the projector calibra-
tion procedure.

3. If the 2D position of the dot lies inside the marker, its 3D position pw = [xw yw zw ]T

(in camera world) can be recovered as the intersection of the line from the cam-
era center of projection 0⃗ and the point [ uc−cxc

f xc

vc−c yc
f yc

1]T and the marker plane,
computed using Pi-Tag pose estimator.

4. Steps 2 and 3 are repeated to collect hundreds of 3D-2D correspondences (pw , pp )
from this point of view

5. Steps 1 to 4 are repeated to collect correspondences between different point of
views. For our purposes, about half a dozen of different point of views is usually
enough.

6. OpenCV calibrateCamera function is used to estimate Kp and the rigid motion
[Rcpi |Tcpi ] between the randomly-projected 3D points in camera world from
each point of view and the projector. As final [Rcp |Tcp ] we simply choose the rigid
motion with respect to the first point of view [Rcp0|Tcp0] but different strategies
may be used.

Only the first step requires human intervention instead of points 2 and 3 that needs
to be iterated thoroughly to collect a large set of correspondences. Even if the process
is automatic, steps 2 and 3 may require a very long time depending by the probability
that the random dot pp will lie inside the marker at each iteration. To speed up the
calibration procedure, for each point of view, after at least 4 projections lying inside
the marker, an homography H can be computed that maps points from camera image
plane to projector image plane. With the homography H , each point pp can be ran-
domized directly lying inside the marker thus eliminating the waste of time required
to guess the correct set of positions. In our setup we are able to collect more than 10
correspondences per second, for an average calibration time of less than 15 minutes.
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3.4 Conclusions

The novel fiducial marker proposed in this chapter exploits the interplay between dif-
ferent projective invariants to offer a simple, fast and accurate pose detection without
requiring image rectification. Our experimental validations shows that the precision of
the recovered pose outperforms the current state-of-the-art. In fact, even if relying only
on a maximum on 12 dots, the accuracy achieved by using elliptical features has been
proven to give very satisfactory results even in presence of heavy artificial noise, blur
and extreme illumination conditions. This accuracy can be further increased by us-
ing an ellipse refinement process that takes into account image gradients. The marker
design is resilient to moderate occlusion without severely affecting pose estimation
accuracy. The internal redundancy exhibited by its design allows to compensate the
strongly non-uniform distribution of cross-ratio and also permits a good trade-off be-
tween the recognition rate and false-positives. Even taking into account the limited
number of discriminable cross-ratios, the design still offers a reasonable number of
distinct tags. Further, the proposed design leaves plenty of space in the marker inte-
rior for any additional payload. Since it works entirely in image-space, our method is
affected by image resolution only during the ellipse detection step, and is fast enough
for most real-time augmented reality applications.

Of course those enhancements do not come without some drawbacks. Specifically,
the small size of the circular points used can lead the ellipse detector to miss them
at great distance, low resolution, or if the viewing point is very angled with respect
to the marker’s plane. This limitations can be partially overcome by increasing the
ratio between the size of the ellipses and the size of the marker itself, thus limiting the
range of possible cross-ratio values and the total number of different tags that can be
successfully recognized.



4
Robust Fiducial Marker
Based on Cyclic Codes

In this chapter we introduce a general purpose fiducial marker which exhibits many
useful properties while being easy to implement and fast to detect. The key ideas un-
derlying our approach are three. The first one is to exploit the projective invariance of
conics to jointly find the marker and set a reading frame for it. Moreover, the tag iden-
tity is assessed by a redundant cyclic code defined through the same circular features
used for detection. Finally, the specific design and feature organization of the marker
are well suited for several practical tasks, ranging from camera calibration to holding
information payloads.
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4.1 Introduction

In this chapter we introduce a novel fiducial marker system that takes advantage of the
same basic features for detection and recognition purposes. The marker is character-
ized by a circular arrangement dots at fixed angular positions in one or more concen-
tric rings. Within this design, the projective properties of both the dots and the rings
they compose are exploited to make the processing fast and reliable. In the following
section we describe the general nature of our marker, the algorithm proposed for its
detection and the coding scheme to be used for robust recognition. In the experimen-
tal section we validate the proposed approach by comparing its performance with two
widely used marker systems and by testing its robustness under a wide range of noise
sources.

4.2 Rings of UNconnected Ellipses

We design our tags as a set of circular high-contrast features (dots) spatially arranged
into concentric levels (See Fig. 4.1). The tag internal area, delimited by the outer level,
is divided into several evenly distributed circular sectors. Each combination of a level
and a sector defines a slot that may or may not contain a dot.

In a tag composed by m levels and n sectors, we can encode a sequence of n sym-
bols taken from an alphabet of 2m elements. Each element of the alphabet is simply
defined as the number binary encoded by the presence or absence of a dot. For exam-
ple, if the 14th sector of a 3−levels tag contains a dot in the first and the last level, we
encode the 14th symbol with the number 510 = 1012. In this chapter we propose two
instances of such design, namely RUNE-43 and RUNE-129. The first is composed by
a single level divided into 43 slots. Since the alphabet contains only 2 elements, each
RUNE-43 encodes a sequence of 43 binary symbols. Conversely, the latter is composed
by 3 levels divided into 43 sectors. Three slots for each sector allow to encode a se-
quence of 43 symbols from an alphabet of 23 = 7 elements. Not surprisingly, not all the
possible codes can be used as valid codes for the tag. For instance, the tag composed
by only empty slots does not make any sense. Therefore, we require the coding strat-
egy to respect some properties to uniquely identify each dot regardless the projective
transformation involved. We discuss this topic in detail in section 4.2.3.

Finally, we set the dot radius equals to κ-times to the radius of the level at which
the dot is placed. We can take advantage of this property to dramatically speed up the
detection as explained in section 4.2.1.

4.2.1 Candidate selection with a calibrated camera

One of the core features of every fiducial marker system is its ease of detection. Even if
one of our principles is to promote accuracy over speed, we still need to setup an effi-
cient way to identify each circular feature among the tags. Given an image, we start by
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Figure 4.1: Our proposed marker design divided into its functional parts. An instance
of a RUNE-129 with 3 levels is displayed.

extracting a set of candidate dots. To do this, we use a combination of image threshold-
ing, contour extraction and ellipse fitting provided by the OpenCV library. Additionally,
a subsequent naive filtering step based on dot eccentricity and area keeps only features
respecting a reasonable prior. Finally, each extracted ellipse can be further refined by
using common sub-pixel fitting techniques such the one proposed in [147]. We give no
additional details on the specific procedure we follow since is not important for all the
subsequent operations. Any suitable technique to extract a set of circular dots from a
generic scene would be fine.

At this point, we need a method to cluster all the candidate dots into different pos-
sible tags and discard all the erroneous ones that are originated by noise or clutter in
the scene. Since we arranged the dots into circular rings, we expect that dots belong-
ing to the same level would appear disposed around an elliptical shape once observed
through a central projection. Therefore, dots in the same level can be identified by fit-
ting an ellipse through their 2D image coordinates and verifying the distance assuming
this model.

A common approach would consist in the use of a RANSAC scheme that uses a set
of 5 candidate dots to estimate the model (i.e. the ellipse) against which quantify the
consensus of all the others. Unfortunately, since 5 points are needed to characterize
an ellipse into the image plane, the use of RANSAC in a scenario dominated by false
positives (even without clutter we expect the majority of dots to belong to different tag
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Total ellipses 10 50 100 500

Full (RANSAC) 252 2118760 75287520 > 1010

Proposed method 45 1225 4950 124750

Figure 4.2: Number of maximum steps required for ellipse testing.

or even level) would quickly lead to an intractable problem (See Table 4.2). A possible
alternative could be the use of a specialized Hough Transform [204], but also this solu-
tion would not be effective since it suffers by the relative low number of samples and
the high dimensionality of the parameter space.

What makes possible the detection of our tags in reasonable time is the observa-
tion that there exist a relation between the shape of a dot and the shape of the ring in
which is contained. Specifically, they both appear as ellipses (since they originate from
a projection of two circles) and the parameters of both curves depend on the relative
angle between the camera and the plane in which they lie. Even if from a single conic
is not possible to recover the full camera pose, there is still enough information to re-
cover (up to a finite set of different choices) a rotation that transform that conic into a
circle. This, combined with a known relation between the relative size of the dots and
the rings, can give clues of the geometry of a level and so ease the clustering process.

In this section, we give a detailed description on how the recovering of such rota-
tion is done assuming a known camera matrix. In many situations, the requirement of
a calibrated camera is not particularly limiting. For instance, if our tags would be used
as a coarse registration method for a structured-light scanner solution (we give exam-
ples of this in section 4.3), the camera would certainly be calibrated as implied by the
reconstruction process. However, for the high accuracy exhibited in points localiza-
tion, it would be interesting to use our tags as a calibration target instead of a classical
chessboard. To deal with this situations, we propose a way to still use our tags in an
uncalibrated scenario in section 4.2.2.

Given the set of initial dot candidates, we start by recovering the parameters de-
scribing their elliptical shape. Specifically, we translate the image reference frame so
that the principal point coincides with the origin, and parametrize each conic as the
locus of point such that:

x⃗T Qx⃗ = u v 1
 A B −D

f

B C −E
f

−D
f −E

f − F
f 2


u

v
1

= 0 (4.1)

Where f is the camera focal length and u, v are pixel coordinates with respect to
the optical center.

We follow [50] to estimate a rotation around the camera center that transforms the
ellipse described by Q into a circle. Specifically we decompose Q via SVD
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Figure 4.3: The four possible camera orientations that transform an observed ellipse
into a circle

Q = VΛVT with Λ= diag(λ1,λ2,λ3)

and compute the required rotation as:

RQ = V

 g cosα s1 g sinα s2h
sinα −s1 cosα 0

s1s2h cosα s2h sinα −s1g

 (4.2)

g =

λ2 −λ3

λ1 −λ3
, h =


λ1 −λ2

λ1 −λ3

where s1 and s2 are two free signs, leaving 4 possible matrices, andα is any arbitrary
rotation aroud the normal of the plane which remains constrained as long as we are
observing just a single ellipse. At this point, if we fix α= 0, each detected ellipse Q may
spawn four different rotation matrices Ri

Q, i = 1. . .4 that transforms the conic into a
circle (Fig. 4.3).

Since two of this four candidates imply a camera observing the back-side of the

marker, we can safely discard all the Ri
Q for which the plane normal N i

Q = Ri
Q


0 0 1

T
is facing away from the camera (i.e. the last component is positive).

At this point, we search for whole markers by simultaneously observing the rotation
matrices of couple of ellipses. Specifically, for each pair Qk and Qw , we produce the

set of the four possible rotation pairs ℜ = {(Ri
Qk

,R j
Qw

); i , j = 1. . .2}. From this set, we
remove the pairs for which the inner product of the relative plane normals is below
a fixed threshold and average the remaining rotation pairs by means of quaternion
mean. Finally, we keep the best rotation average by choosing the one that minimize
the difference between the radii of Qk and Qw after being transformed by such rotation.
The rationale is to avoid to choose ellipses with discordant orientations (as the marker
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Figure 4.5: Estimated normals orientation in spherical coordinates of three coplanar
ellipses spanning positive (Left) and negative (Right) focal length values. Note how
one of the two possible orientations converge to a common direction while the other
does the opposite.

4.2.2 Dealing with the uncalibrated case

The approach described so far assumed a calibrated camera setup. Indeed, all the ro-
tation matrices RQ were designed to transform conics lying on the normalized image
plane (hence requiring the focal length) around the camera optical center. It has to be
noted, however, that camera intrinsics are not an implied requirement of the tag itself
but just a powerful tool to dramatically speed-up the detection. As a consequence, we
would be satisfied to just guess a raw estimation of the focal length and principal point
good enough to still produce rotation matrices able to sustain the detection procedure.

We decided to use the image center as our guess of the principal point. Even if it
appears a bold assumption, we observed that this holds for most cameras. Diversely,
the focal length is difficult to guess as it depends on the lens mounted. However, also in
this case we can take advantage on the geometric properties involved when observing
a set of coplanar circles.

In Section 4.2.1 we discussed how two feasible plane normals can be estimated
from each conic. It’s crucial to observe that, if we apply the same projective transfor-
mation to two circles lying on the same plane, only one plane normal estimated from
the first circle will be parallel to a normal extracted from a second, whereas the other
two will diverge [50]. Furthermore, this property holds only for the correct focal length
and optical center and can be naturally expanded to multiple coplanar conics.

To better explain this behaviour, we extracted all orientations from a set of 3 copla-
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nar circles assuming to know the optical center and varying the focal length. In fig.
4.5 (Left) we plotted the values of such orientations in spherical coordinates spanning
positive values of f from almost zero to 5 times the known correct value. For the right
plot we did the same procedure but with negative values. In general, each ellipse pro-
duces two different traces in (φ,θ)-plane as a function of the focal length. Since all
correct orientations have to be parallel to each other when the correct focal length is
used, traces that are relative to the correct orientation will converge to a same point
as f get closer to the expected value. On the other hand, all other traces will follow
different paths and will diverge to different directions. It’s clear form the plot that for
positive values of the focal length there is only one intersection point (in this exam-
ple φ≃−0.76,θ ≃ 0.83). Also, since the other possible intersection only happens when
f becomes negative, the wrong orientation will never be present in the set of feasible
solutions.

This means that we can both estimate the correct focal length and extract sets of
coplanar circles by solving a clustering problem among all the generated plane nor-
mals. However, there is no simple closed form solution to reverse the process and ob-
tain the best possible focal length that would have produced a given normal. There-
fore, we restrict our estimation to a discrete set of n f possible focal length values fi , i =
1. . .n f equally spaced inside the range fmin . . . fmax. At this point, for each dot Q de-
tected in a scene and for each fi , exactly two feasible plane normals N 1

Qfi
, N 2

Qfi
can be

computed as described in section 4.2.1. All such normals will exhibit two degrees of
freedom and hence can be easily parametrized in spherical coordinates with azimuth
φ and elevation θ as vectors in R2. Then, all these vectors are collected in a 2D accu-
mulator whose bins are divided into equal angular ranges.

Once the accumulator is completely filled with values extracted from all the dots,
local maxima with respect of the cardinality of the bins will represent clusters of nor-
mals oriented almost in the same direction1. Finally, once a maximum is selected, we
take the median focal length of all the candidates contained in a bin as our sought focal
length estimate. Moreover, the candidates contained in a winning bin are all coplanar
and thus the dots search phase can be restricted on such set.

An example of the proposed focal length estimation method is given in Fig. 4.6. We
started by rendering a synthetic image of a RUNE-149 tag trough a virtual camera of
known focal length fvc = 1000 px and with principal point being exactly the center of
the image (First row of Fig. 4.6). In the middle of the figure, we plotted the accumula-
tor values projected on the front and back side of a hemisphere. As expected, a clear
accumulation of votes can be observed in the bin containing the combination of φ,θ
corresponding to the normal of the plane on which the tag lie. On the right, we plotted
the distribution of the focal length candidates of the winning bin, highlighting a clear
maximum around the correct value of fvc . Conversely, we repeated the same test with
two tags on the same image lying into two different planes (Second row of Fig. 4.6).
This time, the accumulator shows two clear maxima corresponding to the plane nor-

1more precisely, the variability inside the bin depends on the bin size itself





60 4. Robust Fiducial Marker Based on Cyclic Codes

4.2.3 Marker Recognition and Coding Strategies

Once a candidate marker has been detected, dots distribution among the slots pro-
duces a sequence of symbols that can be subsequently used to identify each tag. How-
ever, two coupled problems raise. First, we don’t have a starting position of the sym-
bols sequence since the detection step can only identify each candidate up to a rota-
tion around the normal of the plane2. Consequently, any cyclic shift of the sequence
is equally possible and must be recovered. Second, some dots may be missing or as-
signed to wrong slots thus requiring the identification procedure being somehow ro-
bust to this situations.

We decided to cast the problem into the solid mathematical framework of coding
theory. Specifically, dot patterns of the tags corresponds to codes generated with spe-
cific properties and error-correcting capabilities. In section 4.2.3 we briefly discuss the
mathematical theory involved in the generation of the codes while in section 4.2.3 we
give a closed form solution to decode each code block in case of erasures and errors.
We refer the reader to [120] for a in-depth investigation of the field.

Code generation

We start by defining a block code of length n over a set of symbols S as the set C ⊂ Sn .
The elements of C are called codewords.

Let q = pk ∈ N be a power of a prime number p and an integer k > 1. We denote
with Fq the finite field with q elements. A linear code C is a k−dimensional vector sub-
space of (Fq )n where the symbols are taken over the field Fq . A linear code is called
cyclic if any cyclic shift of a codeword is still a codeword, i.e.

(c0, . . . ,cn−1) ∈C ⇒ (cn−1,c0, . . . ,cn−2) ∈C

If we consider the field Fq [x]/(xn−1) obtained by the polynomial ring Fq [x] modulo
division by xn −1, there exists a bijection to the vectors in (Fq )n :

(v0, . . . , vn−1) ⇔ v0 + v1x + . . .+ vn−1xn−1

Furthermore, C is a cyclic code if and only if C is an ideal of the quotient group of
Fq [x]/(xn −1). This means that all cyclic codes in polynomial form are multiples of a
monic generator polynomial g (x) of degree m < n which divides xn −1 in Fq [x]. Since
multiplying a polynomial form of a code by x modulo xn − 1 corresponds to a cyclic
shift

x(v0 + v1x + . . .+ vn−1xn−1) mod (xn −1) = vn−1 + v0x + . . .+ vn−2xn−2 (4.3)

2Note that, conversely, the verse of the sequence is induced by the counter-clockwise ordering of the
sectors that is preserved since we always observe the frontal face of the marker plane.



4.2. Rings of UNconnected Ellipses 61

all codewords can be obtained by mapping any polynomial p(x) ∈ Fq [x] of degree
almost n −m −1 into p(x)g (x) mod (xn −1).

Since all the cyclic shift are codes, we can group the codewords into cyclic equiv-
alence classes such that two codewords are in the same class if and only if one can be
obtained as a cyclic shift of the other. Since the number of elements in a cyclic equiva-
lence class divides n, by choosing an n prime we only have classes either composed by
a single element (constant codewords with n repetitions of the same symbol) or where
all codewords are distinct. The first can be easily eliminated since it involves in at most
q codewords.

In our marker setting, the identity of the marker is encoded by the cyclic equiva-
lence class while the actual alignment of the circles (i.e. its rotation around the plane
normal) can be obtained from the detected element within the class. Using coding
theory enable us to balance the trade-off between the number of errors that can be
handled with respect to the number of possible valid tags (i.e. the number of equiva-
lence classes) granted. This, to our knowledge, is the first fiducial marker system that
provides such feature.

The Hamming distance d H : S × S → N is the number of symbols that differ be-
tween two codewords. Similarly, the hamming distance of a code C is the minimum
distance between all the codewords: d H(C ) = minu,v∈C d H(u, v). The hamming dis-
tance plays a crucial role on the number of errors that can be detected and corrected.
Indeed, a code with a hamming distance d can detect d−1 errors and correct ⌊(d−1)/2⌋
erasures. When we consider a linear code of length n and dimension k, the singleton
bound d ≤ n −k −1 holds. Thus, with a fixed code length n the error correcting codes
capabilities are payed with a smallest number of available codewords. In our setting we
restrict our analysis to the correction of random errors or erasures but the same math-
ematical framework can be used to improve the detection resilience while correcting
burst errors (i.e. errors that are spatially coherent, like we have in case of occlusions).

For the proposed RUNE-Tags, we experiment on two specific codes instances. In
the first one (RUNE-43) we encode the single-layer circular pattern as a vector in (Z2)43,
where Z2 is the remainder class modulo 2. For this code we use the generator polyno-
mial (4.4) which provides a cyclic code of dimension 15, 762 different markers (equiv-
alence classes) with a minimum hamming distance of 13, allowing us to correct up to
6 errors.

g (x) = (1 + x2 + x4 + x7 + x10 + x12 + x14)(1 + x + x3 + x7 + x11 + x13 + x14) (4.4)

In the second (RUNE-129) we have 8 different patterns (since is a 3-layers tag) in
a sequence of 43 sectors. We hold out the pattern with no dots to detect erasures due
to occlusions and we encode the remaining 7 patterns as vectors in Z7. For the whole
target, the code is represented as vectors in (Z7)43 using the generator polynomial (4.5).
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g (x) = (1+4x +x2 +6x3 +x4 +4x5 +x6)(1+2x2 +2x3 +2x4 +x6)

(1+x +3x2 +5x3 +3x4 +x5 +x6)(1+5x +5x2 +5x4 +5x5 +x6)

(1+6x +2x3 +6x5 +x6)(1+6x +4x2 +3x3 +4x4 +6x5 +x6) (4.5)

This provides a cyclic code of dimension 7 giving 19152 different markers with a
minimum hamming distance of 30, allowing us to correct up to 14 errors, or 29 erasure,
or any combination of e errors and c erasures such that 2e + c ≤ 29.

Decoding

The field F76 splits xn − 1 into n linear terms and there exists an α ∈ F76 such that 28
consecutive powers of α (α8 . . .α36) are roots of the generator polynomial (4.5). Thus,
for RUNE-129 we can use the BCH decoding algorithm [125, 58] to correct up to 14
errors or any combination of e errors and c erasures such that 2e + c ≤ 28.

Once we have decode the codeword, we can use integer Fourier Transform to find
the cyclic shift of the observed code by setting zero the phase of the lowest non-zero
frequency (AC) with non-zero amplitude.

While RUNE-43 is not a BCH code, a similar approach can be used to correct up to
5 errors. Note that, in both cases, our decoding procedure is not able to exploit the full
error correcting capabilities of the code whereas we can still identify all the errors.

4.3 Experimental Validation

We tested our proposed fiducial markers in many different ways. To start, in section
4.3.1 and 4.3.2 we assessed the pose estimation accuracy compared to the ARToolkit[103]
and ARToolkitPlus[185] which are deemed as a de-facto standard markers for aug-
mented reality applications. Such tests are performed synthetically by rendering differ-
ent frames varying an additive Gaussian noise, blur, illumination gradient and random
occlusions.

Furthermore, driven by the good localization accuracy and occlusion resilience of
the composing circular features, we tested RUNE-Tags as targets for camera calibration
and object measurement. In section 4.3.3 we simulated a mono camera calibration
scenario while in 4.3.4 we compared the camera pose estimation for both the mono
and the stereo case. Also, we assessed the repeatability achievable while estimating
the distance between two joint tags moving in a scene.

Finally, in addition to the evaluation with synthetic images, in section 4.3.6 we per-
formed some qualitative tests on real videos.
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Figure 4.7: Evaluation of the accuracy in the camera pose estimation with respect to
different scene conditions. Examples of the detected features are shown for RUNE-129
(first image column) and ARToolkitPlus (second image column).

(a) (b) (c) (d)

Figure 4.8: Some examples of behaviour in real videos with occlusion. In (a) and (b) an
object is placed inside the marker and the setup is rotated. In (c) and (d) the pose is
recovered after medium and severe occlusion.
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Figure 4.9: Evaluation of the accuracy in the camera pose estimation of RUNE-Tag with
respect to occlusion (left column) and illumination gradient (right column).

4.3.1 Accuracy and Baseline Comparisons

In Fig. 4.7 the accuracy of our markers is evaluated. In the first test, an additive Gaus-
sian noise was added to images with an average view angle of 0.3 radians and no arti-
ficial blur added. The performance of all methods get worse with increasing levels of
noise and ARToolkitPlus, while in general more accurate than ARToolkit, breaks when
dealing with a noise with a std. dev. greater than 80 (pixel intensities goes from 0 to
255). Both RUNE-43 and RUNE-129 always recover a more faithful pose. We think
that this is mainly due to the larger number of correspondences used to solve the PnP
problem. In fact, we can observe that in all the experiments RUNE-129 performs con-
sistently better than RUNE-43. Unlike additive noise, Gaussian blur seems to have a
more limited effect on all the techniques. This is mainly related to the fact that all of
them performs a preliminary edge detection step, which in turn applies a convolution
kernel. Thus is somewhat expected that an additional blur does not affect severely
the marker localization. Finally, it is interesting to note that oblique angles lead to
an higher accuracy (as long as the markers are still recognizable). This is explained
by observing that the constraint of the reprojection increases with the angle of view.
Overall, these experiments confirm that Rune-Tag always outperforms the other two
tested techniques by about one order of magnitude. In practical terms the improve-
ment is not negligible, in fact an error as low as 10−3 radians still produces a jitter of 1
millimeter when projected over a distance of 1 meter. While this is a reasonable perfor-
mance for augmented reality applications, it can be unacceptable for obtaining precise
contactless measures.

4.3.2 Resilience to Occlusion and Illumination

One of the main characteristics of Rune-Tag is that it is very robust to occlusion. In sec-
tion 4.2.3 we observed that RUNE-129 can be used to distinguish between about 20.000
different tags and still be robust to occlusions as large as about 67% of the dots. By
choosing different cyclic coding schemes is even possible to push this robustness even
further, at the price of a lower number of available tags. In the first column of Fig. 4.9
we show how occlusion affects the accuracy of the pose estimation (i.e. how well the
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Figure 4.10: Evaluation of the recognition time respectively when adding artificial false
ellipses in the scene (left column) and with several markers (right column).

Occlusion 0% 10% 20% 50% 70%

RUNE-43 100% 69% 40% 0% 0%
RUNE-129 100% 100% 100% 100% 67%

Figure 4.11: Recognition rate of the two proposed marker configurations with respect
to the percentage of area occluded.

pose is estimated with fewer dots regardless to the ability of recognize the marker). Al-
beit a linear decreasing of the accuracy with respect to the occlusion can be observer,
the precision is still quite reasonable also when most of the dots are not visible. In
Fig. 4.11 we show the recognition rate of the two proposed designs with respect to the
percentage of marker area occluded. In the second column of Fig. 4.9 the robustness
to illumination gradient is examined. The gradient itself is measured unit per pixel (i.e.
quantity to add to each pixel value for a each pixel of distance from the image center).
Overall, the proposed methods are not affected very much by the illumination gradient
and break only when it become very large (in our setup an illumination gradient of 1
implies that pixels are completely saturated at 255 pixels from the image center).

4.3.3 RUNE Tags for camera calibration

Since RUNE-129 provides an extremely robust yet precise way to localize many cir-
cular features we tried to use the proposed markers as a calibration target. In most
cases, camera calibration is performed by exposing a well known pattern to the cam-
era in many different point of views. This allows the gathering of many 3D-2D point
correspondences used to simultaneously recover the target pose, camera intrinsics pa-
rameters, and the lens distortion. Most of the time, a chessboard pattern is used since
it provides a good set of feature points in the form of image corners. However, a man-
ual chessboard boundary identification process is required for the limited robustness
of such patterns against occlusions or illumination gradients. As a consequence, our
fiducial markers may provide a very interesting alternative when an automatic calibra-
tion procedure is sought or an optimal visibility of the target cannot be guaranteed.
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In Fig.4.12 we show the calibration results while calibrating a camera using a single
RUNE-129 as calibration target and by varying the number of exposures used for each
calibration. Specifically, we divided the camera poses (as given by PnP) into 3 major
groups with respect to the angle between the camera z-axis and the marker plane nor-
mal. For each group, more than 200 photos are taken and a random subset of them are
selected for each test to compose the plot. The ground truth is provided by a calibra-
tion performed with a 20×20 chessboard target exposed in 200 different poses using
the method described in [19] to limit the errors due to printing misalignments. Cam-
era calibration is performed by using the common technique described in [206] imple-
mented by the OpenCV library [36].

Some interesting facts can be observed. First, the standard deviation of all the es-
timated parameters decrease by increasing the number of photos. This is an expected
behaviour that agrees with the accuracy experiments presented in section 4.3.1. In-
deed, the more the number of target feature points given, the more the calibration error
can be reduced by the non-linear optimization process. Second, the focal length esti-
mation tends to be more accurate while considering the target poses spanning trough
a greater range of angles (i.e. between 0 and 60 degrees). Differently, optical center
seems to behave in the opposite way, giving better results when keeping the target
plane more parallel to the image plane. This is probably due to the well known lo-
calization bias of the ellipse centers [129]. Third, the first two radial distortion param-
eters (i.e. k1 and k2) behave respectively like the optical center and the focal length.
It has to be noted that a precise localization of the ellipse centers is only achievable
in absence of distortion since the projective invariance of conics holds only for pure
central projections. Therefore, we think that the calibration performance can be im-
proved by estimating an initial calibration assuming no radial distortion followed by an
iterative undistortion and re-localization of the circular features and a re-calibration of
the camera intrinsics. Finally, we obtained no completely wrong calibrations due to
mis-detections of the target thanks to the extremely resilient coding scheme used for
markers identification.

4.3.4 Mono vs. Stereo Pose Estimation

To further test the camera pose estimation accuracy we compared the results achiev-
able comparing a single camera setup (using PnP algorithm) with a calibrated stereo
setup that can recover the pose by means of a 3D reconstruction of the marker followed
by an estimation of the rigid motion with respect to the known model.

We started by calibrating a stereo rig using a marker-based target as described in
section 4.3.3. Then, we firmly positioned two RUNE-129 tags to a rigid metal rod so
that they could only be moved without changing their relative position.

In the first experiment (Fig. 4.13, Left) we plotted the unknown distance between
the two markers as estimated only by the first camera (in red), by the second (in green)
and by using stereo reconstruction (blue) as a function of the angle between the first
marker and the first camera. It can be noted that the stereo case exhibit lower vari-
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Figure 4.12: Accuracy of camera calibration while using a single RUNE-129 as a dot-
based calibration target. Camera poses has been divided into 3 groups based on the
maximum angle between the camera z-axis and the marker plane. A random subset of
photos is used to test the calibration varying the number of target exposures. In all the
experiments we achieve a good accuracy with a decreasing st.dev. when increasing the
number of photos.

Figure 4.13: Comparison between the pose accuracy for a single or stereo camera
setup. Left: distance between two jointly moving markers as a function of the angle
with respect to the first camera. Right: Angle around the marker plane normal as esti-
mated by the first camera versus the stereo setup. Ideally, all the measures should lie
on the 45 degrees red line.
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ance with respect to both only the first and the second camera. Moreover, the distance
measured by the mono case tends to be a little lower than the stereo one if the angle
is below 30 degrees while increasing significantly for higher angles. This behaviour is
probably due to the PnP algorithm that suffers for a non-isotropic error with respect to
the three camera axis (i.e. the localization error on the camera z-axis is higher than the
other two).

In (Fig. 4.13, Right) we compared the angle around the plane normal of a single
RUNE-129 tag for mono (using the first camera) versus the stereo case. Ideally, the ratio
between the two measures should be exactly 1 and so all the points should be disposed
on the 45 degrees red line shown in the plot. We can observe that most of the measures
are equally distributed above and below such line indicating no significant bias. This
behaviour is consistent for all the angles spanning between 10 and 60 degrees since
the overall geometrical shape of all the dots (i.e. minor and major axis length) remains
constant if a rotation around the marker plane normal is applied. This suggests that
the proposed tags may be used as a coarse registration initialization for a 3D scanner
turntable.

4.3.5 Performance Evaluation

Our tag system is designed for improved accuracy and robustness rather than for high
detection speed. This is quite apparent in Fig. 4.10, where we can see that the recogni-
tion could require from a minimum of about 15 ms (RUNE-43 with one tag an no noise)
to a maximum of about 180 ms (RUNE-129 with 10 tags). By comparison ARToolkitPlus
is about an order of magnitude faster [185]. However, it should be noted that, despite
being slower, the frame rates reachable by Rune-Tag (from 60 to about 10 fps) can still
be deemed as usable even for real-time applications (in particular when few markers
are viewed at the same time).

4.3.6 Shortcomings and Limitations

In Fig. 4.8 some experiments with common occlusion scenarios are presented. In the
first two shots an object is placed inside a RUNE-43 marker in a typical setup used for
image-based shape reconstruction. In the following two frames a RUNE-129 marker
is tested for its robustness to moderate and severe occlusion. At last, in Fig. 4.14 an
inherent shortcoming of our design is highlighted. The high density exhibited by the
more packed markers may result in a failure of the ellipse detector whereas the tag is far
away from the camera or very angled, causing the dots to become too small or blended.

4.4 Conclusions

In this chapter we described a novel fiducial marker system which heavily relies on
the robust framework of cyclic codes to offer superior occlusion resilience, accurate
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Figure 4.14: Recognition fails when the marker is angled and far away from the camera
and the ellipses blends together.

detection and robustness against various types of noise. We improved on the seminal
version proposed in [31] by investigating their usage even for the uncalibrated case
and developed a fast technique to directly decode the symbol sequence encoded in
each tag.

Moreover, we expanded the experimental evaluation by testing its adequacy to be
used as a typical dot-based camera calibration target. This is supported by also exper-
iments to evaluate its behaviour comparing the pose estimation with both the mono
and the stereo scenario.

Overall, RUNE-Tags offer many advantages over the existing fiducial marker sys-
tems. First, it gives the user the flexibility to trade-off the occlusion resilience with
respect to the number of simultaneously detectable tags in a scene. Consequently,
if one favors robustness against diversity, a very limited set of tags can be generated
with high hamming distance to guarantee extremely high error recovery rates. Sec-
ond, the design itself may vary in the number of possible layers. The proposed single-
layered RUNE-43 exhibit limited occlusion resilience while offering plenty of space in
the marker interior for any additional payload or even for placing a phisical object for
reconstruction task. Third, by providing many circular features on a single tag we not
only achieve an order of magnitude better pose recovery with respect to other tags but
we managed to use the tag itself as a calibration target. So, we imagine RUNE-Tag being
possibly used for measuring large distances or objects.

Finally, while slower than other techniques, our method is fast enough to be used
in real-time applications. However, the severe packing of circular points may cause
the ellipse detector to fail especially when dealing with low resolution, high angles
or motion-blurred images. This limitation can be easily relieved by using a simpler
marker, such as RUNE-43, which allows for a more extended range while still providing
a satisfactory precision.
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5
Camera Calibration

from Coplanar Circles

In this chapter we exploit the projective properties of conics to estimate the focal length
and optical center of a pinhole camera just by observing a set of coplanar circles, where
neither the radius nor the reciprocal position of each circle has to be known a-priori.
This make such method particularly interesting whenever the usage of a calibration
target is not a feasible option.

The contribution presented in this chapter is twofold. First, we propose a reliable
method to locate coplanar circles from images by means of a non-cooperative evo-
lutionary game. Second, we refine the estimation of camera parameters with a non-
linear function minimization through a simple yet effective gradient descent. Perfor-
mance of the proposed approach is assessed through an experimental section consist-
ing on both quantitative and qualitative tests.
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5.1 Introduction

The recovery of all parameters that determine the inner working of an imaging device
is often a mandatory step to allow further analysis of a scene. For instance, 3D recon-
struction, photogrammetry and in general every process that involves geometrical rea-
soning on objects deeply rely on such knowledge. For many applications, it is a good
assumption to consider the camera to behave according to the pinhole model, thus
requiring only the estimation of the focal length (the distance between the projection
center and the image plane) and the optical center (coordinates of the intersection of
the optical axis with the image plane). Moreover, if we are dealing with a generic cam-
era, this model can be further improved by considering non-square pixels (thus dis-
criminating between horizontal and vertical focal length), skewness (non rectangular
pixels) or radial distortion modelled in a number of different ways.

If we aim at the best possible accuracy, it is universally considered a successful ap-
proach to rely on a known calibration target and exploit techniques that are able to re-
cover camera parameters by exposing such object to the camera under different poses.
A widely adopted technique is the one introduced in [206] based on a planar pattern
composed by hundred of corner points for easy localization. Furthermore, Heikkilä
[88] exploit a grid of circular points to accurately reverse the distortion model. An inter-
esting variation on the theme is proposed in [19] with a technique that can simultane-
ously optimize camera and target geometry to overcome manufacturing imperfections
of the target.

However, equally interesting are self-calibration methods that just rely on rigid-
ity of the scene or known geometric primitives that are assumed to be present. Good
candidates for such primitives are lines and conics since they are all invariant to any
projective transformation. For example, [198] assumes a scene in which a circle and a
coplanar point at infinity can be detected. In [135] the authors use a similar setting but
with a pencil of lines passing through its center. For their interesting properties, circles
are besides used in [57] and [50] assuming such primitives to be coaxial or coplanar.

Our work falls also in this category. Specifically, we exploit a scene in which we
assume some coplanar circles are visible and relate the shape of such conics with the
parameters of a zero-distortion pinhole camera. We believe that this setting is com-
mon (or anyway simple to setup) in many urban and indoor scenarios, so offering a
good trade-off between estimation accuracy and method feasibility. Despite the afore-
mentioned methods, that aim to depend on as few primitives as possible, we exploit
all circular features available in a scene to minimize the estimation error.

This chapter is organized as follows. In Section 5.2 we propose a novel technique
to extract a reliable cluster of coplanar circles from a general scene, together with an
initial guess of the camera parameters. In section 5.3 we refine such guess by means of
a gradient descent minimization of an energy functional that accounts for the eccen-
tricity of ellipses undergoing a central projection. Finally, in section 5.4 we show some
experimental results obtained with different synthetically generated images together
with a qualitative evaluation of its behaviour when applied to real world scenarios.
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Figure 5.1: A possible calibration target composed by some coplanar circles.

5.1.1 Our approach

In this work we generalize the concepts previously introduced in the uncalibrated case
of RUNE-Tags dection (Section 4.2.2) by taking into account multiple shots of a scene
in which many coplanar circles can be seen. Not the camera parameters, nor the ori-
entation for each pose are known. We just assume that the camera focal length and
optical center do not change among the shots.

After detecting all the ellipses for each scene, we exploit the normal alignment
property to obtain an initial guess of all the orientations and camera parameters. Dif-
ferently from the accumulator approach presented before, we follow [18, 20] to cast the
problem in a framework in which each possible camera orientation plays as a strategy
in a sequence of non-cooperative games. The outcome of such process is twofold.
First, ellipses originated from non-coplanar circles will generate uncorrelated orienta-
tions with the others and they will be likely be excluded from the winning strategies. As
a result, a very reliable set of coplanar circles can be clustered from each shot. Second,
since such orientations depend on the camera intrinsic parameters, we get an initial
guess by selecting the parameters providing the best alignment among the selected
orientations.
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5.1.2 Ellipse detection and refinement

Our calibration method starts by extracting all possible ellipses from each scene. Many
different methods have been proposed in literature, for instance in [194, 144] and [166].
To maintain the whole method simple, we just opted for a combination of image thresh-
old, closed-contour extraction and ellipse fitting. To keep the detection independent
from threshold parameters and ensure a precise sub-pixel fitting of the contour, we
further refine the coefficients of each ellipse as described in [147]. In general, we don’t
require a specific detection procedure as long as special care is taken to use methods
that are able to precisely estimate the size of the extracted ellipses.

5.2 Selecting Coplanar Circles
with a Non Cooperative Game

After the ellipse detection step, we obtain a set of N ellipse matrices for each image.
Hopefully, some of those describe coplanar circles actually present in the scene, while
others just resulted from different visible curvilinear objects, mis-detections and so on.
Since the subsequent optimization procedure cannot implicitly handle any outlier, it
is crucial to select only a reliable set of trusted coplanar circles. Moreover, we need to
give a rough guess of the initial focal length, optical center, and camera orientations.

For optical center, we just guess its initial value in pixel as the center of the image,
i.e. half image width and height. Despite being a naive approximation, we found that
it’s a reasonable starting point for most of typical camera optics and we experimentally
observed that the optimization is not very sensible to this parameter (See sec. 5.4).

Then, we proceed by discretizing a range of possible focal length values in k equal
intervals. For example, if we expect that f may be contained in the interval [ fmin . . . fmax]
we create a set of k candidate focal length values fi = fmax

i
k−1+ fmin(1− i

k−1 ), i = 0. . .k−
1. For each candidate focal length fi , a set of 2N possible orientations Os = o1 . . .o2N

can be computed from all the ellipses, as described before. These orientations are vec-
tors in R3 representing the plane normal in which each ellipse lie in the 3D-space.

We then define a payoff function between pairs of orientations as:

π(oi ,o j ) = 〈oi ,o j 〉
where 〈., .〉 is the standard vector inner product. We further arrange all possible

payoff values in a symmetric square matrix

Π ∈R(2N×2N ),Πi , j =π(oi ,o j )

Since we expect all the correct orientations be parallel to each other, we aim to ex-
tract the largest possible subset of Os for whichπ is maximized between all the couples.

To select the compatible orientations we adopt the Game-Theoretic matching and
selection process presented in [18, 154]. We run a different game for each candidate fo-
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Figure 5.2: Left: Score obtained by a set of games played for different candidate focal
length spanning around the correct known value of 1500. Note the clear maximum
obtained around such value. Right: Final population after two non-cooperative games
with the correct focal length value (f=1500) and a wrong value (f=1000). In the correct
case, almost all winning strategies will exhibit the same value.

cal length fi , and select the focal length, the orientation and the set of coplanar circles
from the game with the maximum average support

scor e( fi ) = x⃗T Π x⃗

where x⃗ the stable mixed strategy selected by the evolutionary process.

In fig. 5.2 (left) we plotted an instance of such score for a set of fi candidates span-
ning from 1000 to 2000 around the ground truth correct value of 1500. The curve orig-
inated by the function appears smooth with a clear maximum on the desired value.
Moreover, it’s interesting to observe that the more fi gets closer to the real value, the
more the winning strategies in x⃗ will exhibit the same contribution since all equally
important for the equilibrium of the game. An example of this behaviour is shown in
fig. 5.2 (right).

5.3 Camera parameters optimization

After clustering coplanar circles and guessing initial camera parameters, a fine estima-
tion is performed by optimizing an energy function that accounts for the eccentricity
variation of the ellipses with respect to such parameters.
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5.3.1 Problem formulation

Let Em
1 . . .Em

N (m) be the 3× 3 matrices describing the N (m) ellipses representing each
coplanar circle found in the image m after the game-theoretic clustering. Let f ′,c ′x and
c ′y be the initial camera intrinsic guesses, and (αi ,αi+1), i = 1. . .2M be the euler angles
with respect to x and y axis for camera orientation in the image f loor ((i −1)/2+1).

Moreover, let:

α⃗ = (α1,α2, . . . ,α2M )T ∈R2M

x⃗ = (φ1,φ2,φ3) = (
c ′x
f ′ ,

c ′y
f ′ ,

1

f ′ )

Cf =
 1 0 φ1

0 1 φ2

0 0 φ3


Under the assumption that each Em

i is effectively representing circle Qm
i in the 3D

world space, its equation can be expressed as a function of the camera parameters and
rotations around the optical center through the following transformation:

Qm
i (Rc, x⃗) = Rc

T Cf
T Em

i Cf Rc (5.1)

where Rc is the rotation matrix that lets the circles plane be parallel to the image
plane. Since the transformation has the same effect up to any rotation around the axis
(0,0,1)T , we define:

Am
i (α⃗, x⃗) = RT

m Cf
T Em

i Cf Rm (5.2)

Rm =
 cos(α2m+1) 0

sin(α2m)sin(α2m+1) cos(α2m)
−cos(α2m)sin(α2m+1) sin(α2m)


If Qm

i describes a non singular circle, the two eigenvalues of Am
i (α⃗, x⃗) must be real

and equal. For each ellipse i in the image m, the two eigenvalues of Am
i (α⃗, x⃗) can be

easily computed in a closed form as:

λ1,2 = tr (A)±


tr (A)2 −4det (A)

2

Moreover, we define g ap(Am
i (α⃗, x⃗)) as the square of the distance between the two

eigenvalues:

g ap(Am
i (α⃗, x⃗)) = tr (A)2 −4det (A) (5.3)

Given that, for each possible real matrix M, it holds that
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tr (M) = log (det (exp(M))

and so the determinant can also be expressed as

det (M) = tr (M)2 − tr (M2)

2
Hence, we can re-write the equation (5.3) as:

g ap(Am
i (α⃗, x⃗)) = 2tr (Am

i (α⃗, x⃗)2)− tr (Am
i (α⃗, x⃗))2 (5.4)

5.3.2 Energy minimization

Let

Ener g y(α⃗, x⃗) =
M−1
m=0

N (M)
i=1

g ap(Am
i (α⃗, x⃗)) (5.5)

It is possible to estimate the focal length f , the optical center (cx ,cy ) and the ro-
tation angles with respect to (1,0,0)T and (0,1,0)T axes by solving the following mini-
mization problem:

argmin
α⃗,⃗x

Ener g y(α⃗, x⃗) (5.6)

Indeed, the energy functional is minimized when each matrix Am
i (α⃗, x⃗) has two

equal eigenvalues, namely when g ap(Am
i (α⃗, x⃗)) = 0.

We implemented a gradient descent scheme to optimize the given functional start-
ing from the guesses obtained from the game-theoretic step. Moreover, no approxi-
mation of the function partial derivatives is needed since ∇Ener g y(α⃗, x⃗) can be easily
obtained in a closed form with any symbolic math tool.

5.4 Experimental Evaluation

We decided to give more emphasis to experiments performed on synthetically gen-
erated images since the ground truth is known and we can better highlight various
aspects of the approach. Qualitative experiments were also performed on real world
data to demonstrate its feasibility in different possible scenarios.

Synthetic Data

We rendered synthetic scenes composed by coplanar circles with random radius and
position in images 800 pixels wide and 600 pixels high. We simulated a pinhole camera
with no distortion, a focal length of 1500 px and optical center c = (400,300). Rasteri-
zation was performed using Qt libraries with anti-aliasing hinting enabled.
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We started by testing the sensitivity of the refinement step to the initial intrinsic
guess. This is an important assessment because, even if the inlier selector does a great
job in clustering the ellipses, it still depends on how we discretize the focal length
search domain. A coarse discretization of a very broad range will probably cause a
guess quite far from the correct one. In fig. 5.4 we plotted the absolute error obtained
for the focal length as a function of the distance between the correct and the guessed
focal length while in fig. 5.5 we did the same varying the optical center. From the
experiment, there appear no evident correlation between them, proving that the op-
timization is still able to converge close to the correct solution while not suffering so
much for local minima.

In fig. 5.6 we assessed the calibration accuracy varying the number of poses and
inserting additive gaussian noise to the image. Specifically, in the first row we plotted
the obtained average and standard deviation of focal length and optical center while
calibrating 7 different sets of 24 coplanar circles varying the number of poses. No par-
ticular improvement is observable giving almost the same results ranging from 6 to 27
different poses. This is somehow expected since it’s in theory possible to calibrate with
just one shot. In the second row we have perturbed each image pixel with zero-mean
gaussian noise and given sigma. Also in this case, we repeated the experiment many
times with different set of circles. The obtained result do not deviate much from the
expected value but we can observe a variance increase as the noise become more and
more effective.

From all the tests performed emerge a little calibration bias due to the high sen-
sitivity of the method to the size of the ellipses. Since those sizes depend on image
blurring and is not isotropic over the circle plane as is not parallel to the camera image
plane, we feel that great care have to be taken while detecting and fitting ellipses on the
image. As a result, for any application requiring very small calibration error, the usage
of a precise well-crafted known target is unavoidable. However, the proposed method
offers a good balance between the accuracy (relative error obtained in our tests was
always less than 1%) and flexibility offered by the fact that requires no previous knowl-
edge of the scene.

Real-world scenarios

Our proposed calibration pipeline was also tested with some real world pictures freely
accessible from the web. Since ground truth was not available, we just rectified such
images from the estimated parameters to give a qualitative overview of the achievable
results. We point out that no particular care was used to tune the ellipse detection
stage. Still, the coplanar inlier selector was able to correctly identify a reliable cluster to
perform the estimation. The input images used, along with the computed rectification,
are shown in fig. 5.3.
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Figure 5.3: Some qualitative calibration examples on real world scenes. Left: Original
images. Right: Rectified images obtained from the estimated camera intrinsics and
orientation.
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Figure 5.6: Estimated focal length (Left), optical center x (Center) and optical center y
(Right) with respect of the number of poses (Top row) and noise (Bottom row). Ground
truth is indicated with a dashed line.

5.5 Conclusion

In this chapter we described a novel method to estimate the focal length and the op-
tical center of a pinhole camera by exploiting the projective features of a generic set
of coplanar circles. Since circular coplanar features are quite common in human-
made environments, we believe that such tool should come in handy when camera
calibration must be performed on-the-field and a known calibration target cannot be
used. For instance, it may be the case that the camera optical geometry changes dur-
ing the operation, for example when varying the focal length by using zoom lenses or
if the device undertake mechanical stress (i.e vibrations, shocks, etc.). Another sce-
nario that makes our approach appealing rise when we need to calibrate a camera that
was not originally meant to be used for computer vision applications, like performing
structure-from-motion from publicly available on-line pictures.

To letting the system even more robust, we developed an inlier selection process
to discriminate a good cluster of coplanar circles from each image. Moreover, this ap-
proach do not require delicate tuning of parameters and produces a fair initial intrin-
sics calibration to be used as a good starting point for the subsequent refinement.

After the initial guess, a refinement of such estimation is performed by minimiz-
ing an energy function that accounts for the eccentricity variation of the ellipses with
respect to the pinhole model parameters. Specifically, through a non-linear gradient
descent, we modify the initial estimation taking into account the energy gradient that
can be analytically computed inside the optimization domain.
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II
Model-free camera calibration





6
Can an Unconstrained Imaging

Model be Effectively Used
for Pinhole Cameras?

Traditional camera models are often the result of a compromise between the ability to
account for non-linearities in the image formation model and the need for a feasible
number of degrees of freedom in the estimation process. These considerations led to
the definition of several ad hoc models that best adapt to different imaging devices,
ranging from pinhole cameras with no radial distortion to the more complex catadiop-
tric or polydioptric optics.

In this chapter we propose the use of an unconstrained model even in standard
central camera settings dominated by the pinhole model, and introduce a novel cal-
ibration approach that can deal effectively with the huge number of free parameters
associated with it, resulting in a higher precision calibration than what is possible with
the standard pinhole model with correction for radial distortion. This effectively ex-
tends the use of general models to settings that traditionally have been ruled by para-
metric approaches out of practical considerations. The benefit of such an uncon-
strained model to quasi-pinhole central cameras is supported by an extensive experi-
mental validation.



866. Can an Unconstrained Imaging Model be Effectively Used for Pinhole Cameras?

6.1 Introduction

The literature has deemed the unconstrained model and related calibration proce-
dures a last resort to be adopted only when traditional approaches fail due to either
geometrical or methodological issues. For this reason the pinhole model, augmented
with a proper distortion correction, dominates the application landscape whenever
its use is feasible. In this chapter we explore the opposite direction. Specifically, we
ask ourselves (and the reader) whether even the most traditional perspective camera
could benefit of the adoption of a non-parametric model. For this to be the case, the
calibration must be both effective and reasonably easy to perform.

In the following sections we briefly describe our generic model (which is indeed
pretty standard) and we introduce a practical calibration method. The impact on the
calibration accuracy with respect to the pinhole model is evaluated with a wide set of
experiments. Finally, aspects and implications related to the use of an unconstrained
model with common computer vision tasks are discussed.

6.2 Imaging Model and Calibration

In this work we explore the possibility of using a fully unconstrained camera model
even for central cameras. In the proposed model each pixel is associated with the light
ray direction from the object to where the ray hits the optics, rendering completely
irrelevant how the optics bend the light to hit the CCD. This ray can be formalized as
a line in the Euclidean space which, in the unconstrained model, is independent on
the lines assigned to the other pixels and completely free with respect to direction and
position. Under these assumptions, pixels cease to hold a precise geometrical meaning
and they become just indexes to the imaging rays, having completely hidden the path
that the ray has to go through inside the optics to hit the right cell in the CCD.

In what follows, index i ranges over camera pixels. The ray associated with camera
pixel i can be written as r⃗i = (d⃗i , p⃗i ), where d⃗i , p⃗i ∈ IR3 represent direction and position
of the ray respectively (see Figure 6.1). These vectors satisfy ||d⃗i || = 1, (normalized
direction) and d⃗ T

i p⃗i = 0 (orthogonal position vector). Any point x⃗ in the ray r⃗i satisfies

the parametric equation x⃗ = d⃗i t + p⃗i for some t ∈ R.
This model has 4 degrees of freedom per pixel, resulting in several million param-

eters to be estimated for current cameras, a dimensionality that is beyond the possi-
bilities of the most commonly used calibration processes. Note, however, that the ray
independence assumptions allows for (conditionally) independent estimation of each
ray, allowing us to measure the convergence of the estimate as a measure of per-pixel
observation. One problem with the commonly used target-based calibration systems
(be them chessboard-based, dot-based, or based on any other pattern) is that they pro-
vide sparse localization points, resulting in rather low numbers of per-pixel observa-
tions. We argue that it is this situation that forces the use of a low dimensional imaging
model as the unconstrained model would not converge for every ray, even with a very
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large number of poses.
We propose to solve this problem by providing dense localization on the target,

thus resulting in one observation per pixel in each pose of the calibration target. This
dense calibration target is obtained through the use of structured light pattens on a
normal LCD display, allowing us to assign to each camera pixel the 2D coordinate in
the target planar reference frame of the location where the ray associated to the pixel
hits the target. In particular, we use phase coding with the number-theoretical phase
unwrapping approach presented by Lilienblum and Michaelis [118] to encode both the
horizontal and vertical coordinate of each pixel of the target display. Each camera pixel
integrates this signal over all the incoming rays incident that CCD cell, resulting in a
high precision sub-pixel localization of the average incident ray and thus a localization
in the target’s surface with a precision that is sub-pixel with respect to the target’s pixel
dimension.

Let index s range over the calibration shots, with Θs = (Rs , t⃗s) we denote the pose
parameters of the calibration target in shot s, transforming the target’s coordinate sys-
tem onto the camera coordinates. The u⃗s , v⃗s , and n⃗s base vectors of the target coordi-
nate system expressed in the camera coordinate system correspond to the first, second
and third columns of Rs respectively, i.e., Rs = (u⃗s v⃗sn⃗s).

Further, let Cos
i ∈ IR2 denote the code (target 2D location) measured at camera pixel

i in shot s, while with Ce(⃗ri |Θs) ∈ IR2 we denote the expected code at pixel i , given ray r⃗i

and target poseΘs (see Figure 6.1). Ignoring possible refraction effects on the monitor’s
surface this corresponds simply to the surface coordinates (u, v) of the intersection
between the ray and the target plane. To add the effects of refraction, we need to add a
correction term accounting for Snell’s law. For the moment we will concentrate on the
refraction-less case, and add the refraction term and analyze its effects on Subsection
6.2.4. In the refraction-less case, we have:

Ce(⃗ri |Θs) = Pu⃗v⃗


d⃗i tint + p⃗i


= (u⃗s v⃗s)T


n⃗T

s (⃗ts − p⃗i )

n⃗T
s d⃗i

d⃗i + (p⃗i − t⃗s)


, (6.1)

where Pu⃗v⃗ denotes the projection onto the (u, v) planar coordinates, and

tint =
n⃗T

s (⃗ts − p⃗i )

n⃗T
s d⃗i

(6.2)

is the intersecting parameter for the equation of ray r⃗i , i.e., the value such that d⃗i tint+p⃗i

lies on the target plane.
Under this setup the calibration process can be cast as a joint estimation of the r⃗

andΘ parameters.

6.2.1 Least Squares Formulation

We express the calibration process as a generalized least squares problem [102]. Gen-
eralized least squares is a technique for estimating the unknown parameters from a
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Figure 6.1: Schema of the general camera model and calibration target described in this
chapter. Note that the Mahalanobis distance between observed and expected code is
equal to the 3D distance of observed code to the ray.

(non-)linear model in presence of heteroscedasticity, i.e., where the variance of the
observations are unequal and/or correlated. In such a situation ordinary least squares
can be statistically inefficient, while the general least squares estimator provides an
efficient estimator. The approach accounts for heteroscedasticity by normalizing the
residuals through the inverse of the covariance of the measurements Σ, thus minimiz-
ing the sum of the squared Mahalanobis lengths of the residuals:

k
(yk − f (xk , θ⃗))Σ−1

k (yk − f (xk , θ⃗))T . (6.3)

Let εs
i = Cos

i −Ce(⃗ri |Θs) be the code residuals, then the generalized least squared
estimate of the rays and pose parameters r⃗,Θ is:

(ˆ⃗r,Θ̂) = argmin
r⃗,Θ


i , j ,s

(εs
i )T (Σs

i )−1
εs

i , (6.4)

where Σs
i is the (conditional) error covariance matrix under the given pixel-pose com-

bination.
In this context the main source of heteroscedasticity derives from the directional

correlation of code errors when rays hit the target plane at an angle. In fact, let φ be
the angle between the ray direction d⃗ and the normal to the target n⃗, and let r⃗ ∥s

i =
(u⃗s v⃗s )T d⃗i

||(u⃗s v⃗s )T d⃗i ||
be the direction of the ray projected onto the target’s planar coordinates,

then measurement errors will be amplified by a factor of 1
cos2φ

along r⃗ ∥s
i due to the ef-

fects of the grazing angle, while will remain unchanged along the orthogonal direction.
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Hence, we obtain

(Σs
i )−1 = I + (cos2φs

i −1)⃗r ∥s
i (⃗r ∥s

i )T

= I − (u⃗s v⃗s)T d⃗i d⃗ T
i (u⃗s v⃗s) . (6.5)

In the standard pinhole model the effect of eliminating the correlation of the errors
is obtained by re-projecting the residuals onto the image plane, i.e., by minimizing the
reprojection error rather than the planar displacement over the target. In this sense,
normalizing over the inverse error covariance is as close as one can get to the min-
imization of the reprojection (or geometrical) error in an unconstrained system that
loses any direct geometrical connection between rays and pixels.

It is worth mentioning that the reprojection error in the pinhole model accounts
for another source of heteroscedasticity, i.e., a change of scale in the covariance as the
targets moves away from the camera as a consequence of foreshortening. In the un-
constrained model this would imply an unknown scale term on the covariance Σ that
would require inter-ray interaction in order to be estimated, complicating the least
square formulation and hindering our ability to estimate the parameters effectively
and/or with reasonable computational effort. For this reason in the formulation we
are ignoring the depth-related change of scale in the error variance. We note, however,
that this effect is relatively limited, since it would induce a variation in the scale of the
error covariance proportional to ∆z

z̄ (depth variability over average depth) which in our
setup reduces to a variability within approximately ±10% of the average.

To optimize the least squares formulation efficiently, we make use of the condi-
tional independence of the ray parameters r⃗ given the poses Θ and of the poses given
the rays. We do this by performing a two-step optimization process in which we alter-
natively optimize all the ray parameters in parallel keeping the pose parameters fixed,
and then optimize the poses keeping the rays fixed. This way, the large scale estimation
part, i.e., the optimization of the ray parameters, becomes massively parallel and can
be computed very efficiently in GPU. In our experiments the optimization process is
initialized with the normal pinhole model with polynomial radial distortion.

6.2.2 Ray Calibration

As we fix the pose parameters, all the rays depend only on the observed coordinates
Co associated with each of them and can be estimated independently. Further, with
the pose parameters at hand, these observed 2D coordinates can be transformed into
3D points in the camera coordinate frame. As can be seen in Figure 6.1, given a ray r⃗
intersecting the target plane at 2D coordinate Ce, we can divide the residual ε= Ce−Co
into the orthogonal vectors ε∥ = Ce−Co∥ and ε⊥ = Co∥−Co, where ε∥ is parallel to r⃗ ∥.
Clearly, since ε⊥ is orthogonal to the plane spanned by d⃗ and n⃗, the point in r⃗ closest
to Co is also the one closest to Co∥. Further, let h⃗ be this point, we have

||⃗h −Co||2 = ||⃗h −Co∥||2 +||ε⊥||2 . (6.6)
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It is easy to show that, ||⃗h −Co∥|| = cosφ||ε∥||, where φ is the angle between d⃗ and n⃗.
Hence, the squared distance between r⃗ and Co equals

d 2(⃗r ,Co) = cos2φ||ε∥||2 +||ε⊥||2 = εTΣ−1ε , (6.7)

thus the generalized least squares formulation with respect to the target coordinates
corresponds to the standard linear least squares with respect to the 3D points asso-
ciated with each ray. The linear least squares problem is then solved by a ray with
parametric equation ¯⃗x + w⃗ t , where ¯⃗x = 1

n

n
i=1 x⃗i is the barycenter of the observed 3D

points, and w⃗ is the eigenvector of their covariance matrix corresponding to the small-
est eigenvalue.

6.2.3 Estimation of the Poses

The second step in the alternating calibration process is the optimization of the tar-
get poses keeping the rays fixed. Also in this step we can make use of a conditional
independence; in fact, with the rays fixed, the pose parameters from different shots
become independent and can be optimized in parallel. Further, just like in the ray
calibration step, we make use of the equivalence between the Mahalanobis distance
over the 2D core errors Ce−Co with the 3D Euclidean distance between observed po-
sition and ray. In this situation the estimation of pose Θs reduces to the search for the
rigid transformation that minimizes the distance between the (transformed) observa-
tions ΘsCos

i and the ray r⃗i . This minimization problem shares several similarities with
surface alignment, where we seek to find the rigid transformation that minimizes the
Euclidean distance between a set of points on a surface to points on another surface.

It is not surprising, then, that a straightforward modification of the Iterative Clos-
est Point (ICP) algorithm [33] can be used to find a (local) optimum for our problem.
The modification lies in how the closest points are sought: In our context instead of
searching for the closest point in a single given 2D surface common for all the points,
we select the closest point in the unique 1D ray associated with the given observation.
The iterative selection of all the closest points for all the pixels in each shot and appli-
cation of Horn’s alignment algorithm [91] converges to a locally optimal pose.

Clearly, given the generality of the imaging model, the optimization problem is not
convex, thus we cannot guarantee a global optimum like in the case of the pinhole
model. However, under the assumption of a central quasi-pinhole camera, we can
obtain a very good initialization and be confident about the quality of the final solution
found.

6.2.4 Accounting for Refraction

In our formulation we have ignored the possible effects of refraction on the monitor’s
surface.

In [161] it was shown that refraction had a small but noticeable effect when cali-
brating using LCD displays, so we extended the least square formulation to incorporate
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Schmalz et al. when using few points to perform the calibration, and showing no effect
when using more points. This can be explained by the fact that target shots are mostly
frontal to the camera and thus the effect of refraction is mostly radial. Hence, adding
a refraction term changes (possibly enlarging) the space of radial functions used for
eliminating distortion with the pinhole model. Using more points to perform the cal-
ibration constrains the model more, resulting in no additional advantage. Our model,
not having an explicit radial distortion term, is not affected by this phenomenon.

To push this finding to the extreme, we placed a 0.75mm glass layer (the front glass
of a photo frame) in front of the LCD display in an attempt to produce a much stronger
refraction effect. Even in this condition no effect could be measured both in the un-
constrained and in the dense pinhole case.

While the estimation of the λ and µ parameters could be incorporated into the cal-
ibration process as a third stage performing gradient descent over the parameter λ, the
fact that we could not observe any effect moved us to ignore refraction altogether in
the experimental evaluation of our approach.

6.3 Working with the Unconstrained Camera

By alternating the two estimation process we obtain the generalized least squares es-
timation of both rays and poses, and with that a full calibration of the unconstrained
camera model. However, for the unconstrained model to become an effective alterna-
tive to the pinhole model several problems must be solved. In particular, if we want
to use the model for high precision 3D reconstruction, we need at the very least an
effective algorithm for stereo calibration as well as a way to interpolate rays at non-
integer coordinates. Potentially we also need a wider set of geometrical and algorith-
mic tools that are either straightforward of well studied for the pinhole model. In fact,
the parametric nature of the pinhole model offers a direct solution the interpolation
problem, while there is a ample body of work on how to estimate the motion between
two calibrated cameras. As a matter of fact, the pinhole model also allows for useful
processes like rectification that even conceptually does not have a counterpart in the
unconstrained model. However, arguably any measurement or reconstruction process
can be reformulated based on only extrinsic calibration and ray interpolation, which
incidentally is the minimal requirement to perform triangulation effectively.

For the stereo calibration we adopt a quite crude approach: We take several shots
of our active target with both cameras and use the modified ICP algorithm to estimate
the poses for each camera. As usual we initialize the poses with the pinhole model to
guarantee convergence. With the poses of the first camera at hand, we can construct
a set of 3D points x⃗s

i in the first camera’s coordinate system where ray r⃗i intersects the
target plane at shot s. Further, given the codes Cos

i observed in pixel i at shot s and the
pose Θ′

s of the target according to the second camera, we can computer the points y⃗ s
i

which represent the points x⃗s
i in the coordinate system of the second camera. once we

have computed these pairs of points for all camera pixel and shots, we can use Horn’s
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Figure 6.3: Manifold interpolation of free rays.

alignment algorithm [91] to estimate the transformation between the two coordinate
systems. Clearly this approach has limits, as it does not attempt to reduce the sources
of heteroscedasticity, but merely averages over the pose estimations that are by their
nature affected by noise, while a more principled approach should pose the problem
as global optimization over the observables. However, it is enough to test the feasibility
of the unconstrained model and, in conjunction with the unconstrained model, does
provide, as will be shown in the experimental section, more precise and repeatable 3D
measures than what can be obtained with state-of-the-art approaches based on the
pinhole model.

6.4 Rays interpolation

One reason that lets the pinhole camera model so effective in practice is that exists a
simple mapping between any point p in the normalized image plane and the corre-
sponding ray entering the camera. Indeed, since all rays are forced to pass trough the
optical center o, the unique straight line connecting o and p defines the light ray that
the camera can sample at p. Consequently, many fundamental problems like 3D point
triangulation can be solved in a multitude of simple and powerful ways [86].

Diversely, if we model our camera as a generic sparse bundle of probing rays, there
is no trivial way to recover the ray entering our imaging device at any (possibly sub-
pixel) CCD point p. To be honest, there is neither a concept of CCD or image plane
but just some existing calibrated rays in space each one sampling an intensity value or,
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if we use a structured-light system, a two-dimensional phase code. Still, there is the
basic need to estimate a ray r⃗ at any point in space assuming a concept of continuity
in the camera rays bundle hence expressing r⃗ via some sort of interpolation of a set of
known calibrated rays.

Despite the specific goal to achieve while estimating an unknown ray r⃗ℓ, we need
to tackle two equally important problems. First, we need to select a non-empty set of
already known rays together with a vector of weights w⃗ that affects how strongly a spe-
cific ray is involved in the estimation of r⃗ℓ. Second, we need to define an interpolation
function that performs the estimation possibly exhibiting some physically meaningful
properties. We start by proposing a solution for the latter problem in Sec.6.4.1 while
the former is discussed in Sec.6.4.2.

6.4.1 Rays manifold interpolation function

Let Rd = {⃗ri } a set of n known camera rays, and w⃗ = (w1, . . . , wn) ∈ Rn ,
n

i=1 wi = 1 a
convex combination of weights.

We start by reasoning on the simple case in which n = 2 and w⃗ = (1−t , t ), t ∈ [0 . . .1].
Any valid interpolation function r⃗ℓ = Ψ(⃗r1, r⃗2, t ) should be such that: for t = 0 and
t = 1 it returns the original r⃗1 and r⃗2 respectively (6.9), the interpolation is independent
on the order of the transformations (6.10) and, finally, a valid ray is obtained for each
possible value of t .

Ψ(⃗r1, r⃗2,0) = r⃗1,Ψ(⃗r1, r⃗2,1) = r⃗2 (6.9)

Ψ(⃗r1, r⃗2, t ) = Ψ(⃗r2, r⃗1,1− t ) (6.10)

We pose the ray interpolation problem in terms of rigid motions blending. Let K ∈
SE(3),K (⃗ra) = r⃗b the rigid motion that transforms a ray r⃗a into r⃗b . Such motion can be
decomposed into 3 distinct motions:

1. A rotation QrK (around an arbitrary axis) that aligns d⃗a and d⃗b . i.e. d⃗ ′
a = RK (d⃗a) =

d⃗b

2. A translation QtK that lets the ray r⃗a coincide with r⃗b . i.e. p⃗ ′
a = TK (p⃗a) = κd⃗b +

p⃗b , κ ∈R.

3. Any rotation around d⃗ ′
a = d⃗b and a translation along the same direction.

Note that the first two operations are the ones required to effectively transform the
ray while the latter is invariant to the transformation since it rotates and the translate
the resulting ray along its direction (i.e. the set of 3D points composing the ray is not
changing).

At this point, the function Ψ can be implemented in terms of any rigid-motion
blending function Φ that interpolates K according to t . Still, we are left with the prob-
lems of choosing a specific transformation K (for instance, there are many alternative
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axis for QrK ) and motion interpolationΦ. Among the infinite set of possible choices, it
seems reasonable trying to minimize the path traced by the points of r⃗a while moving
toward r⃗b according toΨ.

For the blending function Φ, we choose the Dual-quaternion Iterative Blending
(DIB) that interpolates a roto-translation in terms of a screw motion [104], exhibit-
ing many useful properties such being constant speed, shortest path and coordinate
system independent. Therefore, we describe all the roto-translations as unitary dual
quaternions and measure the path length of points undertaking a rigid motion with
the length of the screw motion involved. Concerning the choice of K we observe that,
when applied to rays, pure translations move all the ray points trough a path as long as
the translation vector’s length whereas, for pure rotations, the farther a point is from
the rotation axis the longer its path would be. Consequently, it makes sense to give
more weight to motions with smaller rotation angles with respect to the amount of
translation. In other terms, given two motions K1 and K2, we establish a total ordering
so that K1 < K2 if and only if K1 has smaller rotation angle or, if the two angles are the
same, the translation vector of K1 is shorter than the one of K2.

From the aforementioned statement is straightforward to see that the best possible
rotation angle is the one between the two vectors d⃗a and d⃗b (i.e. acos(d⃗ T

a d⃗b)) that ro-
tates the first ray around the axis given by d⃗a × d⃗b . When the rotation angle and axis
is chosen, the minimum translation QtK is the one moving r⃗a according to a vector T
orthogonal to d⃗ ′

a = d⃗b whose length is equal of the distance between the two rays. In
other terms, the best tranlsation is the vector that connects the two nearest points s⃗1

and s⃗2 lying on r⃗1 and r⃗2 respectively. To summarize, given two rays, we choose K as:

1. The rotation RK around the axis d⃗a × d⃗b with angle acos(d⃗ T
a d⃗b)

2. The translation TK = s⃗2 − s⃗1

as the minimum motion transforming the first into the second.
Since we only defined the interpolation in terms of pair-wise motions, we general-

ize the case of n > 2 trough a simple iterative procedure. Specifically, we start with an
initial estimate of r⃗ℓ as the linear combination r⃗ℓ =

n
i=1 wi r⃗i followed by a reprojec-

tion on the rays manifold (i.e. a normalization of d⃗i and a reparametrization of p⃗i such
that d⃗ T p⃗ = 0). Then, we compute the rigid transformations Kℓ,i as the screw motion
between r⃗ℓ and each r⃗i according to the procedure stated before. Once computed, all
the Kℓ,i are averaged via DIB with the weights w⃗ to obtain Kav g . Finally, Kav g is applied
to r⃗ℓ to obtain a better estimate, and the procedure is repeated until the length of the
path induced by Kav g is less than a fixed threshold.

6.4.2 Selecting the interpolation data

Once an interpolation strategy is defined, we are left with the problem to select a mean-
ingful set of rays (with associated weights) to perform the interpolation. In this case,
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since we don’t pose assumptions on the neighborhood relations among the rays, we
can only rely on the code observed during the calibration. Specifically, we select the
k-nearest (in terms of code distance) rays to the sought code cg with their respective
code distances d1 . . .dn . Then, we perform the interpolation by using the inverse of the
squared distance as interpolation weights1:

wi =
1

d 2
ik

i=1
1

d 2
i

, i = 1. . .k

6.5 Experimental Evaluation

In order to evaluate the effectiveness of our calibration approach and the usefulness
of the unconstrained model for high-precision vision applications with quasi-pinhole
central cameras, we performed several calibration with our method based on a training
set of 40 shots of the active target, and tested them on a test set composed of 40 shots.

For the active target we used an LCD display with a resolution of 1280x1024 pix-
els, while we used a professional entry level 1 megapixel computer vision camera with
variable focal length optics set close to the shortest available length in order to have no-
ticeable, but not extreme distortion. The rays and poses where initialized performing a
pinhole calibration using the OpenCV library [36] and adopting a 5th order polynomial
model for the radial distortion.

Figure 6.4 plots the root mean squared error between expected and observed codes
as a function of the number of iterations of the calibration algorithm. While the itera-
tion of the calibration procedure was performed on the training set, the computation
of the error was performed on the test set by running only the pose estimation without
changing the rays. The top figure plots the error averaged over all the pixels and poses,
and clearly shows that the estimated model exhibits an order of magnitude lower error
than the pinhole model, which is the initialization model ans thus the first entry in the
plot. The images in the bottom row display the error for each pixel, averaged over the
poses. The leftmost image refers to the initial pinhole model, while the middle and
right image refer to the model after 2 and 21 iterations of the calibration procedure.
Red pixels represent high error, while blue pixels represent low error. It is immediately
apparent that there is still some residual structured error in the pinhole model that the
polynomial radial distortion term was not able to correct, resulting in radial waves of
high and low error corresponding to areas where the estimated polynomial fits more
or less accurately the model. Apart from the radial distortion, however, there is still
some error that is not radially symmetric, as can be seen by the different levels of blue
and green around the low-error ring. The unconstrained model, on the other hand,

1We safely assume that all the distances are greater than zero. Otherwise, the interpolation itself is
meaningless since we already know the exact ray for a specific code



6.5. Experimental Evaluation 97

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

R
M

S

Figure 6.4: Root mean squared error between expected and observed codes as a func-
tion of the number of iterations of the calibration algorithm. The top plot shows the
error averaged over all the pixels and poses, while the bottom pictures show for each
pixel the error averaged over all the poses at iteration 0 (pinhole model), 2, and 21.
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Figure 6.5: Comparison of the error obtained with the pinhole model calibrated with a
chessboard and dense target, and with our calibration approach for the unconstrained
model.
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Figure 6.6: Scatter plot of the measured distances between pairs of points taken in the
top part (left) and bottom part (right) of the target. The points where 620 target pixels
apart.
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not only dramatically reduces the error, but also mitigates the spatial coherency of the
error.

Figure 6.5 plots the RMS error on the test set obtained with our model as we in-
crease the number of poses in the training set. The plot is compared against the results
obtained with a pinhole model calibrated with a standard chessboard pattern and us-
ing the same LCD-based active dense target used to calibrate the unconstrained model.
We can see that the dense target offers a marginal advantage over the chessboard tar-
get for the pinhole model. Note, however, that this is most likely due to the increased
precision in the localization of the point offered by the phase shift encoding rather
than to the increase in number of points. In fact, no advantage can be seen in adding
more shots, since the low dimensional model is already well constrained with a very
limited number of poses. The unconstrained model, on the other hand, clearly needs
more shots to fully estimate the huge number of free parameters, exhibiting a very large
variance when calibrated with few shots, and only really settling down to a precise es-
timation when at least 20 target points are observed for each pixel. However, while ex-
hibiting large variance, the unconstrained model has a lower average RMS error even
with as few as 4 shots, reaching an error when estimated with a sufficient number of
shots that is approximately an order of magnitude lower than what can be obtained
with the pinhole model.

In order to assess the advantage that the unconstrained model offers over the pin-
hole one in high precision tasks, we performed a very basic 3D measurement task on a
calibrated camera pair. Both cameras where calibrated with the pinhole model (both
intrinsic and extrinsic parameters) using the OpenCV library [36], and using the pro-
posed approaches for unconstrained camera and stereo calibration. With the calibra-
tion parameters at hand, we triangulated two known points on the calibration target in
20 different shots in the test set, and computed their distance as a function of their dis-
tance from the camera. Figure 6.6 shows two scatter plots obtained from two different
pair of points located in different parts of the target. The target points where, in both
cases 620 target pixels apart and the spatial unit of the plot is target pixel width.

From the plot we immediately see that with the pinhole model there is a corre-
lation between depth and measured size, clear indication of an imperfect image for-
mation model, and resulting in a relatively large overall variance of the measure. The
unconstrained model, on the other hand, does not exhibit this positional dependency
resulting on a much smaller variance in the measurement.

It is worth noting that there is a small bias in the estimated distance. In fact we
underestimate the measure of approximately 0.1 pixel out of 620 (about 0.015% or
0.03mm out of a length of approximately 180mm) on the leftmost plot which was drawn
from points on the top part of the target, while we overestimate by approximately the
same amount on the rightmost plot, taken from points on the bottom part of the tar-
get. This can be the result of a non-perfectly rectangular monitor (an error of 0.015% is
well within the construction tolerances) and can be seen in the pinhole model as well.
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6.6 Discussion

In this part of the thesis we investigated the use of an unconstrained camera model
to calibrate central quasi-pinhole cameras for high precision measurement and recon-
struction tasks, and provided an effective approach to perform the calibration. The
basic ingredient for the calibration process is the use of a dense target which allows us
to attain a favorable parameters to measurements ratio, guaranteeing a stable calibra-
tion with a limited number of shots, and thus rendering the process operationally not
much more complex than standard pinhole calibration with sparse passive targets.

The resulting model can successfully eliminate the spatial coherence of the error,
resulting in more precise and repeatable measures than what is achieved with the pin-
hole model. In fact there is a clear indication that the estimated models are substan-
tially different from a radially undistorted pinhole model. To see this difference, we
can visualize how far the rays are from passing through a single point. To this effect,
for each pixel and its 4-neighborhood, we define a local pinhole as the point that has
minimal sum of squared distances from the five rays.

Figure 6.7 shows the spatial distribution of these local pinholes, sub-sampled for
display purposes. It is clear that the distribution is quite different from a random
spreading of coincident points, exhibiting a very distinctive spatial coherency, as teh
points lay quite tightly on a clear manifold linked with the evolute of the calibrated
rays.

Clearly, this is only a preliminary analysis, and much work still needs to be done be-
fore the unconstrained model can substitute effectively the pinhole model. In particu-
lar, more principled approaches to stereo calibration are needed, as well as alternatives
for those algorithms that rely on geometrical processes that do not have a counter-
part on the unconstrained model. However, we feel that there is much to be gained by
moving towards non-parametric camera models, espetially in high precision 3D vision
tasks.
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Figure 6.7: Spatial distribution of the local pinholes, i.e., of the closet point to the rays
in a local neighborhood. In a pinhole model all the points would coincide. For display
purposes the points are sub-sampled.
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7
High-Coverage Scanning trough

Online Projector Calibration

Many 3D scanning techniques rely on two or more well calibrated imaging cameras
and a structured light source. Within these setups the light source does not need any
calibration. In fact the shape of the target surface can be inferred by the cameras ge-
ometry alone, while the structured light is only exploited to establish stereo correspon-
dences. Unfortunately, this approach requires each reconstructed point to exhibit an
unobstructed line of sight from three independent points of views. This requirement
limits the amount of scene points that can be effectively captured with each shot. To
overcome this restriction, several systems that combine a single camera with a cali-
brated projector have been proposed. However, this type of calibration is more com-
plex to be performed and its accuracy is hindered by both the indirect measures in-
volved and the lower precision of projector optics.

In this chapter we propose an online calibration method for structured light sources
that computes the projector parameters concurrently with regular scanning shots. This
results in an easier and seamless process that can be applied directly to most current
scanning systems without modification. Moreover, we attain high accuracy by adopt-
ing an unconstrained imaging model that is able to handle well even less accurate op-
tics. The improved surface coverage and the quality of the measurements are thor-
oughly assessed in the experimental section.
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7.1 Introduction

Structured light 3D scanners have recently become very popular due to their con-
stantly improving accuracy and affordability. Many of such devices are based on a pair
of cameras for point triangulation and on a pattern projection to fix correspondences
between observed points. This kind of configuration requires a rather strict condition
to hold for a point to be triangulated. Namely, it must be illuminated by the projec-
tor and seen by both cameras. The consequences of this requirement are illustrated in
Fig. 7.1. In the shown scenario, the relative position of the projector and the camera
pair allows to reconstruct only the portion of the surface represented with the thick
blue line. In fact the remaining part, depicted with the thin red line, cannot be mea-
sured since self-occlusion happens for at least one of the three required lines of sight.
By converse, if the system was able to work with just one camera the captured surface
would have been much more extended. With this latter scenario, which implies pro-
jector calibration, all the non-dashed surface in Fig. 7.1 could have been recovered.

This higher coverage of the imaged surface, combined with the implicit lower costs,
asserts the potential usefulness of a camera-projector system. Of course those benefits
can be exploited only through an accurate projector calibration which, aptly, is a very
well covered topic within literature. Many approaches involve the projection of some
special pattern over a known planar target. The underlying idea is to allow the camera
to localize the target, while using the pattern to map individual projector pixels.

This is the case, for instance, with the approach recently proposed by Chien et
al. [49], where a virtual checkerboard is projected onto a real one and an iterative cor-
rection loop is performed on the projector parameters until the camera detect a per-
fect overlap between the virtual and physical target. Chen and Xi [51] adopt a target
made up of a grid of regular dots, which are easy do detect and located accurately. The
projector rays are located by using a standard Gray-coded pattern sequence to assign
a projector coordinate to each image pixel. Very similar methods are also proposed
(among many others) by Huang et al. [95] (using dots and Gray coding), Moreno and
Taubin [137] (using checkerboard and Gray coding), and Audet and Okutomi [25] (us-
ing physical augmented reality tags together with projected tags).

While the combination of physical and projected target is extensively adopted to
calibrate projector-camera systems, several alternative approaches have been explored.
A specially crafted light sensor, made with optical fibers, is used by Lee et al. [113]. The
individual sensors embedded in the target are used to discover its location by locally
decoding a Gray-coded binary pattern projected over them. This way there is no need
for the camera to estimate the pose of the target plane. Kimura et al. [106] drops the
need for a special reference object, although this advantage is obtained by assuming
that the camera has been previously calibrated. The process requires to project onto a
plane of unknown pose and uses projective geometry constraints between camera and
projector to optimally calibrate the latter. A planar featureless target is also used in the
more recent method proposed by Yousef et al. [201]. Here two calibrated cameras are
required and passive stereo is performed onto a projected checkerboard in order to es-
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Figure 7.1: The incomplete coverage problem that affects many structured light sys-
tems. See the text for details. (image best viewed in color)

tablish correspondences. Differently, Okatani and Deguchi [145] demonstrate how to
obtain the homographies that relate a plane, a projector and a camera when just the
intrinsic parameters are known.

Finally, some methods provide for auto-calibration. That is, the projector calibra-
tion happens during the scanning process itself. Most of these approaches are adapted
from classical uncalibrated stereo techniques [83, 65, 73] where the second camera
is replaced by the projector. A drawback of these methods is that the actual scale of
the scene cannot be inferred, however Furukawa and Kawasaki [76] suggested how to
augment the system with a laser pointer to recover the correct Euclidean reconstruc-
tion. Yamazaki et al. [197] propose an online method that exploits the dense corre-
spondences produced by structured light to compute radial fundamental matrix that
is then decomposed into intrinsic and extrinsic parameters for both camera and pro-
jector. This way they can account for some lens distortion, however they do not address
the scale ambiguity.

With this chapter we introduce a projector calibration technique that does not re-
quire to adopt special devices or targets. Neither an explicit calibration procedure is
needed. In fact, our approach is an online method that can be performed directly dur-
ing the normal system usage. Differently from other online methods it is able to auto-
matically recover the scene scale and to deal even with severely distorted lens. However
this comes at the price of requiring two calibrated cameras to be paired with the pro-



106 7. High-Coverage Scanning trough Online Projector Calibration

Figure 7.2: The bundles of rays that can be obtained after calibration of the pro-
jector using the reconstructed 3D points. In the first image we adopted the pin-
hole+distortion model. The second and third image show the results obtained using
the unconstrained model respectively with and without outlier correction. Note that
the pinhole model is able to calibrate all the rays, while the unconstrained model can
be populated only by the rays that hit the scanned surface, thus they are a bit less. Also
note that all the miscalibrated rays have (apparently) disappeared after outlier removal.

jector. While this could seem to be a limitation, it should be noted that our approach
is designed for a very specific, yet critical, scenario. Namely, our goal is to augment
the coverage of standard 3D scanners that are designed to use a pair of stereo cam-
eras cupled with non-calibrated projector, which are very common among commercial
products. To validate our method, we will perform specific experiments to show that
it is indeed able to significantly increase the number of acquired points. This happens
without sacrificing quality and without any modification for off-the-shelf systems.

7.2 High-Coverage 3D Scanning

The main idea of our approach is to exploit the 3D points triangulated by two cali-
brated cameras to get insight about the projector geometry. Basically, this happens
by collecting among subsequent shots the coordinates 3D points that reproject exactly
over the same projector pixel and then using a simple least square fitting to fix the
parameters of the projector ray associated to that pixel. In order to easily perform this
step and to cope well with commercial quality projector optics, we adopted the general
unconstrained camera model. In Chapter 6 we already studied a method for effectively
calibrating such model and now we are extending it to deal with this new application.

7.2.1 Online Projector Calibration

Our goal is to calibrate the rays of the projector as if it was a camera that always re-
captures the exact pattern that is projected. This assumption, which is similar to many
other projector calibration methods, allows to implicitly know exactly the observed
codes Co. By contrast, the expected code Ce must be obtained from the scene. Most
approaches found in literature solve this problem by projecting some pattern on a
known target and using the features of the target as references. In our case, since we
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have two calibrated cameras available, we can obtain the 3D reference points by col-
lecting them during the scanning process.

The triangulation of each point of the scene happens by finding the same code
(computed from the sequence of patterns [118]) on both cameras. This will produce
3D points that are associated to codes observed by camera pixels, that in general do not
correspond to the expected code Ce for any projector ray. For this reason, we cannot
directly use the 3D points belonging to the acquired surface, rather we must produce
additional points corresponding exactly to the (virtually) observed codes. This can be
done easily by interpolating the camera rays whose codes encompass the observed
code Co with weights inversely proportional to the distance from Co of their respective
measured codes, as described previously in Section 6.4.

With this interpolation strategy we make no assumption on the topological struc-
ture of the rays thus the only way to define a notion of nearest neighbours is trough the
observed codes itself. However, if we assume the ordering induced by the lattice topol-
ogy of the CCD, we can reason on an interpolation function that uses the 4 neighbour-
ing rays strictly containing the interpolated code. The four codes Co1 . . .Co4 observed
by the 4 nearest rays form a quadrilateral in the two-dimensional code space. Con-
sequently, they can be remapped trough an homography H to the normalized space
given by the versors (1,0)T and (0,1)T . At this point, the expected code Ce can be it-
self mapped to the normalized space trough H producing a normalized expected code
Cen that, by construction, will be contained into the square S given by the vertices
(0,0), (1,0), (1,1), (0,1). Finally, the interpolation weights associated to each of the four
rays are the same ones that would be used for a bilinear interpolation inside S.

Despite the specific interpolation data and weights used, two virtual rays are ob-
tained from the camera stereo pair. These newly obtained virtual rays can finally be
used to triangulate the expected point Ce corresponding to Co and use it to perform
the same optimization described in Chapter 6. Note, however, that equation (6.7) holds
only for locally planar surfaces. Generally speaking, this is not guaranteed if the points
Ce are obtained from the scanning of random objects. Still, since both man-made and
natural objects usually exhibits several low frequency areas, it is reasonable to guess
that at least a sizeable portion of the obtained expected points will be accurate enough.
Moreover, the scanned object will likely move during different shots, enhancing the
coverage of the projector frustum and eventually adding redundancy. Finally, even
if some Ce could suffer from bad estimation, in the next section we suggest an apt
method to filter outliers.

7.2.2 Outliers Filtering

After estimating the projector rays, we can assess their quality by means of their fit-
ting residual. Specifically, we can set a badness threshold that can be used to deem as
unreliable rays that obtain a bigger residual. Such rays can be removed, in which case
they will be simply unavailable for triangulation (note that there is no need to estimate
all of the projector rays). Otherwise, it is indeed possible to still recover them by filter-
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Figure 7.3: Coverage difference between the baseline (top row) and the unconstrained
method (bottom row) for some different subjects.

ing inaccurate Ce points that could possibly be the cause of the bad estimation. To do
this, we crate a tentative ray candidate by interpolating its available neighbours. After-
wards, this candidate is used to gather associated Ce that are near a given threshold to
it, which in turn can be used to obtain a new estimate for the original ray. The rationale
of this method is that the interpolation of the neighbours (if any) would result in a puta-
tive ray good enough for an effective inlier selection. In Fig. 7.2 we show the bundles of
projector rays obtained after calibration. The first image depicts the bundle obtained
by calibrating the projector with a standard pinhole model. This happens by using the
estimated Ce as the 3D points of a virtual calibration objects and the associated projec-
tor codes as their reprojections. While this could seem a good approximation, we will
show in the experimental section that the pinhole model is not able to fully deal with
the imperfection of commercial quality lenses (as also observed in Chap. 6). The other
two show the bundles obtained using the described unconstrained model respectively
before and after outlier filtering and ray correction.

7.3 Experimental Evaluation

In order to evaluate the proposed method we built an experimental setup similar to
many off-the-shelf structured light 3D scanners (see Fig. 7.4). We accurately calibrated
the two 1280x1024 pixels cameras for both intrinsic and extrinsic parameters according
to both the pinhole model and to the unconstrained model. The projector used is an
SVGA Dlp micro projector. We implemented three reconstruction models:

• Baseline: the unconstrained stereo camera reconstruction model that works with-
out needing projector calibration presented in Chapter 6. We expect this to be
the most accurate but to exhibit less coverage;
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Figure 7.4: Scanner head with 2 calibrated cameras and an uncalibrated projector.

• Pinhole: a reconstruction configuration that uses the projector calibrated ac-
cording to the pinhole model (including distortion) to enhance coverage. We
expect this to be less accurate due to the limitation of the pinhole model, espe-
cially for the cheap optics of commercial-quality projectors;

• Unconstrained: the reconstruction model using the unconstrained projector cal-
ibrated with the approach described in this chapter.

We tested these models by scanning three different objects: a small figurine of
Ganesha, which exhibits small details and thus many high frequency areas, a regu-
lar sphere, which is rather smooth and includes only low frequencies, and finally a flat
plane, used as a featureless reference object. For each object we acquired about 100
scans covering almost all the projector frustum, and we compared the results obtained
by calibrating the projector with different amounts of randomly selected shots sub-
sets. We adopted four different evaluation criteria that are described in the following
subsections.

7.3.1 Enhanced Coverage

With this test we measure the ratio between the area of the surface obtained with the
calibrated projector methods and with baseline. This metric represents the enhance-
ment in terms of coverage. In Fig. 7.5 we plot the coverage increment with respect to
the number of shots used to calibrate (which correspond to the total number of scans,
since the method is online). Of course we show only the curves for the Sphere and
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Figure 7.5: Increment in the coverage with respect to the number of scans.
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Figure 7.6: Accuracy of the reconstruction with respect to the baseline method. The
close-ups on the left part of the figure show a detail of the reconstruction obtained
respectively with the baseline, unconstrained and pinhole methods.
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Figure 7.7: Repeatability of the reconstruction for different scans of the same subject.
On the right part of the figure we show some slices from the acquired meshes to illus-
trate the alignment between subsequent scans respectively with the baseline, pinhole
and unconstrained methods.

Ganesha objects, since there is no increment for the plane (which is equally well seen
by both cameras). Note that the latter object obtains a larger advantage since it con-
tains many convoluted areas that are hard to capture at the same time by two cameras
and the projector. Note also that the pinhole model reaches immediately the maxi-
mum increment while the unconstrained model requires from 15 to 30 shots to per-
form equally well. This is expected since in this case the calibration includes all the
rays from the start. However, we will see in the next test that this advantage comes at
the cost of a lower accuracy. Some qualitative examples of the coverage are shown in
Fig. 7.3. Here the scattered edges of the plane are due to the fact that not all the projec-
tor rays have been recovered. This happens simply because the rays on the periphery
of the frustum appears in fewer scans of the subject, which is expected. If a full cover-
age of the projection must be guaranteed, this can be obtained offline using a bigger
planar object encompassing the whole frustum.

7.3.2 Reconstruction accuracy

To give a reasonable accuracy measure, we decided to adopt the baseline method as
a reference. This is a reasonable choice since we already discussed the accuracy of a
camera pair calibrated with the unconstrained model. In this regard, we express the ac-
curacy as the RMS error, after ICP registration [33], between the acquired surface and
the "ground truth" offered by the baseline. Note that such RMS is expressed in world
unit, which, since the cameras have been calibrated with a computer monitor, corre-
sponds to the size of a pixel on that specific screen (approximately 0.2 mm). In Fig. 7.6
we show the obtained accuracy after different amounts of scans. The pinhole method
requires few shots to reach its maximum accuracy. However it always performs worse
that the unconstrained method. Furthermore the standard deviation of the pinhole
curve is narrower. These phenomena can be explained respectively by the fact that the
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Figure 7.8: Coherence of the reconstructed surface with a planar reference target.

pinhole model is not able to fully handle the imperfections of a real lens and that its
statistical nature makes it very stable with respect to the set of shots selected for cali-
bration. The unconstrained method, albeit after several shots, allows for a significantly
better accuracy.

7.3.3 Surface Repeatability

While the accuracy measures the compliance of the results with respect to the ground
truth, we are also interested in the repeatability of the reconstruction within the same
method. To evaluate this metric we took several scans of the same subject with slightly
different poses and we computed the average RMS error, after ICP registration, be-
tween the surfaced acquired using the same method. Basically, this measure gives us
an insight about the resilience of the method to random noise and to aliasing error
generated by the interplay between camera and projector rays. In Fig. 7.7 we plot such
measure for the baseline method (which appears as a horizontal line since it does not
depends on the number of scans) and of the other two methods. We can conclude
that all the tested approaches exhibit a good repeatability, in the order of hundredths
of a millimetre. This repeatability appears to be not strongly sensitive to the number
of scan used to calibrate, with the possible exception of the pinhole method that per-
forms less well with few shots.
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7.3.4 Planarity

Finally, we measured the planarity of the reconstruction of a reference plane made by
coating with matte paint a float glass. This is done by computing the average RMS er-
ror with respect to a a general plane that has been fitted to the data. The rationale of
this measure is to assess spatial distortions that usually characterizes imperfect cali-
brations. The results obtained are shown in Fig. 7.8. We can observe that the pinhole
method produces the surface with larger distortion. This is certainly attributable to the
inherently imperfect correction of the distortion.

7.4 Conclusion

In this chapter we introduced an online projector calibration method based on the un-
constrained imaging model that can be seamlessly applied to many commonly avail-
able 3D scanning systems. The main advantage of this method is that it can be per-
formed during the normal scanning process, allowing an improved scene coverage
with little or no additional effort. Furthermore, we have shown by extensive experi-
ments that an increase ranging from 30 to 60 percent in the recovered surface area can
be easily obtained without sacrificing the reconstruction accuracy.
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8
Non-Parametric Lens Distortion
Estimation for Pinhole Cameras

In this chapter we propose a raxel-based camera model where each imaging ray is
constrained to a common optical center, thus forcing the camera to be central. Such
model can be easily calibrated with a practical procedure which provides a convenient
(model-free) undistortion map that can be used to obtain a virtual pinhole camera.
The proposed method is so general that can also be adopted to calibrate a stereo rig
with a displacement map that simultaneously provides stereo rectification and cor-
rects lens distortion.
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8.1 Introduction

Given the high variability of non-pinhole cameras, it has been proven to be very dif-
ficult to define a parametric distortion model able to accommodate the diverse be-
haviour of physical lenses. This hindrances has been addressed by introducing general
camera models based on unconstrained rays (usually called raxels) [80, 169] as well as
non parametric (albeit still radial) distortion models [84, 174].

Traditionally, the literature has deemed the unconstrained models and related cal-
ibration procedures a last resort to be adopted only when traditional approaches fail
due to either geometrical or methodological issues. This is due to the fact that their
flexibility comes at the price of a higher calibration complexity and (sometimes) cruder
approximations. Recent research, however, shows that, with the aid of a dense coded
target, a fully unconstrained imaging model can be applied effectively to real-world
pinhole cameras obtaining better accuracy and without needing a complex calibration
procedure [32]. However, the advantages in terms of precision, are partially offset by
the inability to use the wide mathematical toolset devised for the pinhole model. This
is unfortunate, since when dealing with most standard cameras without extreme dis-
tortions, the central model is still reasonable.

With this study, we try to fill the gap between traditional pinhole calibration tech-
niques and unconstrained models. Namely, we propose a model where the only con-
straint applied to raxels is that they are required to cross a common projection center.
Under this assumption, after performing a proper calibration, it is very easy to define
a non-parametric displacement map over the image plane that can be used to move
back and forth from the unconstrained model to a virtual pinhole camera. This, in
turn, allows to exploit the full arsenal of tools designed to work with pinhole cameras.
To this end, the contribution of this work is threefold. First, we introduce an effec-
tive and practical calibration procedure and optimization schema for the proposed
semi-constrained model. Second, we define an optimal approach to create a virtual
pinhole camera from the calibrated model. Finally, we show how to naturally extend
the method to the calibration and rectification of a stereo pair. The accuracy and effec-
tiveness of our proposal is experimentally assessed and compared with both the fully
unconstrained camera and the current state-of-the-art parametric distortion models.

8.2 Unconstrained Distortion Map for Central Camera Cal-
ibration

To estimate a dense non-parametric lens distortion we start by recovering the 3D light
rays associated to each image pixel. Specifically, we formalize the light path entering
the lens and hitting the sensor at discrete pixel coordinate (u, v) with the straight line
r(u,v) = (o,d(u,v)) passing trough the point o and oriented along the direction d(u,v). The
common point o constrains our model to be central while no restriction is enforced on
the directions d(u,v). Also, the uniform-spaced grid of the CCD provides an ordering on
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Figure 8.1: Schema of the optimized camera model involving the optical center o, the
ray direction, the observed and expected code and a target pose

the rays spatial topology.
Since the model implies 3 degrees of freedom for each pixel, plus additional 3 for

the optical center o, standard point-to-point calibration approaches like [206, 179, 55]
cannot provide enough data to recover a valid solution. We solve this by adopting the
dense structured-light target proposed in [32]. Specifically, we use an high-resolution
LCD screen displaying phase shift patterns to uniquely localize each target point seen
by the camera. This has a strong advantage with respect to common calibration tar-
gets composed by a discrete set of features: unlike methods based on corner or ellipse
localization, we can reason in terms of discrete camera coordinates. Indeed, for each
camera pixel (u, v) a precise sub-pixel localization of the 2D target-space coordinate of
the observed point can be recovered from the phase unwrapping process.

To estimate the optical center and the direction of each ray, the calibration target is
exposed to the camera in different positions and orientations. We denote with RTs the
3×4 matrix describing the roto-translation of the target with respect to the camera in
the pose s, assuming the target reference frame located in the upper left monitor pixel
with i⃗ , j⃗ , k⃗ versors being respectively the monitor columns, rows and normal. For each
pose, let Cos

(u,v) ∈ R2 be the code observed by the ray (u, v) in shot s. Since the LCD
geometry and the displayed codes are known, the intersection between a ray r(u,v) and
the target plane defined by a pose RTs yields to the expected code Ce(r(u,v),RTs) ∈ R2

that the ray should have observed (Fig 8.1).

8.2.1 Single Camera calibration

Following [32], we recover the geometry of the rays entering the camera as the gener-
alized least-squares minimization problem:
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argmin
r(u,v),RTs


u,v,s

(εs
(u,v))

T (Σs
(u,v))

−1
εs

(u,v) (8.1)

where εs
(u,v) = Cos

(u,v) −Ce(r(u,v),RTs) are the residuals between the observed and

expected codes and (Σs
(u,v))

−1 is the error covariance matrix for the given ray-pose com-
bination.

In our setting, we aim to simultaneously minimize the optical center o, the direc-
tion d(u,v) of all rays and the pose RTs for each exposure of the target. Similarly to
[32], we can also take advantage of the conditional independence of the parameters to
implement an alternating optimization scheme that seeks optimal o and d(u,v) assum-
ing last estimation of RTs fixed, and vice-versa. While our optimization involves less
parameters, the optimization itself is more complex since the common optical cen-
ter introduces a coupling between the rays which cannot be estimated independently
anymore. As a consequence, the rays optimization step simultaneously estimates the
optical center o and the ray directions d(u,v) for each pose set, while we adopt the same
ICP-based poses estimation step introduced in [32]. The former step is discussed in
detail in section 8.2.1 while, for the latter, we refer the reader to the original paper.

To start the alternating optimization we need a good initial approximation for the
involved parameters. To provide such data, we gather a set of 3D-2D point correspon-
dences assuming a discrete grid of target points similar to what can be commonly ob-
tained with a chessboard. Then, we use calibrateCamera function provided by OpenCV
[36] to obtain target poses for each exposure and the direction of each ray.

Optical Center and Rays Direction Optimization

In the o and d(u,v) optimization step we consider target poses constant. Let

xs
(u,v) = RTs

Cos
(u,v)
0
1


be the 3D coordinates of the observed code Cos

(u,v) transformed trough the pose
RTs . Since the generalized least squares formulation with respect to the target coor-
dinates corresponds to a linear least squares with the distance of each ray and its as-
sociated 3D point xs

(u,v)
1, we can formulate the estimation of the optical center o as

following:

argmin
o


u,v

min
d(u,v)


s
∥(hs

(u,v))
T (I −d(u,v)d

T
(u,v))∥2 (8.2)

where hs
(u,v) = (xs

(u,v)−o). We start by re-writing the squared norm in (8.2) as (hs
(u,v))

T (I−
d(u,v)d T

(u,v))hs
(u,v) to obtain

1For a complete proof see [32]
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argmin
o


u,v


s
∥hs

(u,v)∥2 −max
d(u,v)


s


d T

(u,v)h
s
(u,v)

2 (8.3)

Let x̄(u,v) be the centroid of the point cloud generated by the intersections of the ray
(u, v) and the target for each observed pose. Also, let h̄(u,v) = (x̄(u,v)−o) be the distance
vector between o with such centroid. By expressing hs

(u,v) as the summation of the two
components:

hs
(u,v) = (xs

(u,v) − x̄(u,v))+ h̄(u,v)

and expanding the formulation in (8.3) we obtain:

argmin
o


u,v

N(u,v)

tr (S(u,v))+∥h̄(u,v)∥2− (8.4)

−max
d(u,v)

d T
(u,v)


N(u,v)S(u,v) +N(u,v)h̄(u,v)h̄

T
(u,v)


d(u,v) (8.5)

where S(u,v) and N(u,v) are respectively the covariance matrix and the cardinality of
the point cloud generated by r(u,v).

Since we start our optimization with a configuration close to the optimum, we ex-
pect that the distance between each ray and its expected code is as small as few target
pixels. This implies that the spatial extent of each point cloud is order of magnitude
smaller than the distance h̄(u,v). Under this assumption, an approximate maximizer
for (8.5) is given by

d(u,v) =
h̄(u,v)

∥h̄(u,v)∥2
(8.6)

.
By substituting (8.6) into (8.4) and (8.5), after some simplifications, we obtain the

following alternative formulation

argmax
o


u,v

N(u,v)

h̄T
(u,v)S(u,v)h̄(u,v)

∥h̄(u,v)∥2
(8.7)

Problem (8.7) cannot be solved in a closed form. To provide a good approximate
solution we compute the derivative with respect to o:

∂
∂o


u,v N(u,v)

h̄T
(u,v)S(u,v)h̄(u,v)

∥h̄(u,v)∥2 (8.8)

=u,v 2N(u,v)K(u,v)h̄(u,v)

K(u,v) =

−S(u,v)∥h̄(u,v)∥2+I


h̄T

(u,v)S(u,v)h̄(u,v)


∥h̄(u,v)∥4 (8.9)
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Figure 8.2: RMS of the error between the observed and the expected code for each
r(u,v) at the first (left image) and last (right image) iteration of the optimization process
of rays, optical center, and poses.

If K(u,v) is known, o can be obtained by setting to zero Equation (8.8) and solving
the resulting linear system:

u,v
2N(u,v)K(u,v)o =

u,v
2N(u,v)K(u,v)x̄(u,v) (8.10)

Since K(u,v) is itself a function of o, the maximization problem (8.7) is tackled itera-
tively by computing K(u,v) with the estimate of o at iteration t−1 and then solving (8.10)
to obtain a new estimate at iteration t and repeating this process until ∥o(t )−o(t−1)∥ < ϵ.

When the optical center is found, the direction of each ray is computed with equa-
tion (8.6). A qualitative result of the effect of the optimization process is shown in Fig-
ure 8.2.

From ray bundle to virtual pinhole camera

After the optimization of rays, optical center and poses we obtain a detailed model
describing the light path entering the camera. Next, we need to choose a convenient
image plane that define the intrinsic parameters of a new virtual pinhole camera, along
with a non-parametric dense undistortion function to be applied to the acquired im-
ages.

As a preliminary step, all rays are translated so that their unique intersection point
o lies at the origin. After that, we define a plane ℘ as the locus of points x satisfying
〈x − v℘,n℘〉 = 0, with n℘ = v℘

∥v℘∥ . As soon as an image plane ℘ is chosen, it generates

a virtual camera with the z-axis oriented as the vector n℘ and with a focal length f =
∥v℘∥. When choosing any ℘ intersecting the ray bundle, all the intersection points
inherit the lattice topology from the camera sensor. By re-sampling this lattice in a
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Figure 8.3: Spatial configuration of the optimized camera. Camera z-axis is aligned
with the plane v℘. The intersection between all rays and the plane inherits the lat-
tice topology of the camera sensor. The points lattice (in black) on the image plane is
resampled in a uniform grid (in red) to create the undistortion function.

uniform grid, a new undistorted image can be created. Additionally, the grid position
and size define the projection of the optical center on the image plane (i.e. the pinhole
parameters cx and cy ) and the undistorted image size (Fig. 8.3).

Image Plane Estimation

Virtually any plane ℘ intersecting the ray bundle can be used to generate a valid new
virtual camera. However, the shape of intersections lattice strongly depends on the
plane normal n℘ whereas its size is proportional to the plane distance from the origin
∥v℘∥. As a consequence, choosing a good plane is crucial to ensure the lattice be as
regular as possible and reduce the approximation error made by the subsequent re-
sampling and interpolation processes.

We tackle these two problems in two subsequent steps. First, we estimate the plane
orientation (i.e. assuming an unitary distance from the origin) to minimize the vari-
ance of the squared distance between each plane-ray intersection point and its neigh-
bours. This ensure the lattice to be as regularly shaped as possible. After that, the
scaling factor (i.e. the distance of the plane) is computed so that the average distance
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between all the points is equal to 1.
Let Id ∈ R2 be the set of all valid (u, v) indices of the rays. Let U (i ∈ Id ) =U (u, v) =

{(u−1, v), (u+1, v), (u, v −1), (u, v +1)} the function defining the set of four neighbours
of a ray indexed by i . The squared distance between the 3D intersections generated by
two rays ri and r j∈Id with a plane ℘ lying at unitary distance from the origin is given
by:

D2
i , j = ∥ di

nT
℘di

− d j

nT
℘d j

∥2 (8.11)

Consequently, the variance of the squared distances D2
i , j between each ray and its

neighbours is given by the function

fD =
i


j∈U (i )


D2

i , j

2
−


i


j∈U (i )

D2
i , j

2
(8.12)

We cast the plane orientation problem as the minimization

argmin
n℘

fD

subject to ∥n℘∥ = 1
(8.13)

solved via geodesic steepest descent. We start with an initial estimate of n(0)
℘ =

0 0 1
T

. For each iteration t , we update the estimate of n(t )
℘ enforcing the constraint

of ∥n℘∥ = 1 by rotating n(t )
℘ around the rotation axis Ψ = ∇ f (t−1)

d ×n(t−1)
℘ for an angle

θ =λmin(∥Ψ∥,ϵ). The constantλ affects the speed of the gradient descent while ϵ gives
an upper bound on the amount of rotation to avoid instabilities.

To perform effectively the optimization, ∇ fd can be analytically computed as fol-
lows:

∇ fd = 
i


j∈U (i )

2D2
i , j

∂

∂n℘
D2

i , j − (8.14)

−
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∂
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℘d j

− d T
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di + (8.15)

+ 2

(nT
℘d j )2

d T
j di

nT
℘di

−
d T

j d j

nT
℘d j


d j

Generating the Undistortion Map

Once an optimal plane has been found, we setup an interpolation procedure to re-
sample the points on a regular grid. Let p(u,v) be the intersection of r(u,v) with the
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optimized plane ℘. First, all the points p(u,v) are rotated around the origin so that the
principal point v℘ coincides with the z-axis. After discarding the third component of all
the points (all equal to 1 after the rotation), we compute the integral coordinates of the
top-left t lp ∈ Z2 and bottom right brp ∈ Z2 corners of the containing bounding-box.
After this step, we can provide the intrinsic matrix of the new virtual pinhole camera as

K =
 ∥v℘∥ 0 −t lp

0 ∥v℘∥
0 0 1

 (8.16)

The undistorted image associated to the camera described by K corresponds to a
unit-spaced grid inside the area of the bounding box. This leads to the construction
of a dense displacement function Ud : B →R2 that maps the coordinates of the output
undistorted image B ⊂N2 to sub-pixel coordinates of the input image2.

To produce the displacement map Ud , we generate the quadrilaterals q1 . . . qn formed
when considering the 4-neighbours connectivity of the points p(u,v) with the topology
induced by the rays lattice. For each quadrilateral qi , we compute the homography Hi

that transform the inner space bounded by its four vertices into the square defined by
the CCD location of the four rays associated to each vertex. Then, the displacement
map Ud can be simply obtained by:

Ud (u′, v ′) = HQ(u′,v ′)(u′, v ′,1)T (8.17)

where Q(u′, v ′) is the function that returns the index of the quadrilateral containing

the point

u′ v ′T , if exists.

Filtering data outliers

Apart for being central, our model gives no constraint on the relative position of the
rays. As a consequence, erroneous data caused by failures in the phase decoding pro-
cess may lead to outliers in the ray estimation. Since no regularization is involved, we
included a data filtering step at each alternation of rays-poses optimization. Specifi-
cally, we define the function E(u, v)s : Id → R as the point-line distance between the
ray r(u,v) and the point xs

(u,v). We then filter the observed codes Cos
(u,v) by considering

the median of the error function E in a squared neighbourhood of each point (u, v). If
E(u, v)s is greater than κ times the median, Cos

(u,v) is marked as invalid an not used any
more in the subsequent iterations. Rays with less than 5 observed codes are completely
removed from the optimization. A qualitative example of the output of the filtering
process is shown in Figure 8.4.

Even if we filter erroneous observed codes, it may happen to obtain some quadri-
laterals qi for which the topological order of the vertices is not coherent with the order
of the relative rays. Since this would lead to a non-injective displacement map Ud , we

2The size of the produced undistorted image is equal to the size of the bounding box
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Figure 8.4: The effect of the observed codes filtering step displayed by accumulating
the value E(u, v) among all the poses s. Left: original data may contain clear outliers
near the boundary of the target. Right: after the filter almost all the spikes are no more
visible.

selectively replace the rays associated to that quadrilateral with a linear interpolation
of the neighbours.

8.2.2 Dealing with Stereo Cameras

Since each ray acts independently with respect to the others, our approach can be eas-
ily extended to simultaneously calibrate and rectify a stereo rig. The pose optimization
step remains exactly the same with the foresight to merge the two bundle of rays asso-
ciated to each camera. Conversely, the optical centre and rays direction optimization
can be performed independently on the two sets operating the same instance of target
poses.

As a starting configuration for the subsequent optimization we performed the in-
trinsic and extrinsic calibration of the camera rig using the function provided by OpenCV
library. Then, we consider the two cameras as one by moving the rays originating by
the right camera to the reference frame of the other. At the end of the optimization, we
obtain an estimate of the two optical centres o1 and o2 and the directions of the rays in
the two bundles. From this point, we roto-translate the rays to let o1 coincide with the
origin and the epipole e = (o2 −o1) being oriented along the x-axis.

Rectification and Undistortion Map

If we constrain the image plane optimization so that n℘ remains orthogonal to e, the
estimated plane would have the property to keep all the epipolar lines for the left and
right cameras being parallel. To achieve this, we slightly modify the optimization dis-
cussed in section 8.2.1 by fixing the rotation axis Ψ = e

∥e∥ and the rotation angle to
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θ =λmin(〈∇ f (t−1)
d ,Ψ×n(t−1)

℘ 〉,ϵ).
After image plane optimization, two sets of points are generated by the intersection

of the two ray bundles with the plane. The set of points generated by the right camera
is translated in the opposite direction of the x-axis by the length of the baseline T = ∥e∥
to let the right optical center coincide with the left one. Subsequently, two different
bounding boxes are generated with the two sets of points. The height of the two boxes
(i.e. the vertical coordinates of the top-left and bottom-right corners) are forced to be
equal so that the epipolar lines are coincident with the rows of the two images. To keep
the largest available common area between the two images, the left edge of the merged
bounding box is taken from the bounding box of the right point set. Symmetrically, the
right edge is taken from the left point set. Note that, this way, the intrinsic matrices of
the two cameras are exactly the same.

Finally, we compute the reprojection matrix

Q =


1 0 0 −t lp

0 1 0
0 0 1 ∥v℘∥
0 0 1/T 0

 (8.18)

so that, given any dimensional image point (u′, v ′) and its associated disparity d , it
can be projected into four-dimensional projective space with

x
y
z
w

=Q


u′

v ′

d
1

 (8.19)

8.3 Experimental Section

In order to assess the performance of the proposed approach, we compared it against
the unconstrained model [32] and the rational distortion model proposed by Claus and
Fitzgibbon [55] in both single camera and stereo setups.

Our test setup included two PointGrey Flea3 1Mp grayscale cameras with approx-
imatively 60o field of view, fastened to a common rigid bar with a disparity of about
5cm. The calibration target was a 380×304mm commercial LCD monitor with a reso-
lution of 1280×1024 pixels.

The cameras have been calibrated using a set of 20 shots and tested over a set com-
posed of 40 different shots of the same active target. These shots have been acquired
both with a single camera and with the complete camera pair, taking care to cover as
much as possible of the respective fields of view.

Using the same data sets, we performed three different calibrations, using respec-
tively the fully unconstrained model presented in Chapter 6 (Unconstrained), the non-
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Figure 8.5: Left plot shows a comparison of our non-parametric distortion model com-
pared with Fitzgibbon’s rational model. For a complete description of the displayed
result see the text. On the right, an example of an undistorted image generated with
our method.

parametric distortion proposed in this chapter (Non-Parametric) and the rational dis-
tortion (Rational).

Finally, we compared the performance of these three methods by means of two dif-
ferent experiments, assessing respectively the ability of providing a strictly projective
virtual camera and to perform an accurate triangulation in the 3D space.

8.3.1 Image Undistortion

With this experiment we are testing the quality of the undistortion, that is how well the
virtual pinhole camera obtained with the different methods approximate an ideal pro-
jective geometry. To this end, we exploited the projective invariance of straight lines.
Specifically, for each horizontal and vertical scanline of the undistorted camera we col-
lect the observed codes and we fit a straight line on them. Since we can assume the
screen pixels to be regular and equally spaced, better pinhole approximation should
exhibit a lower RMS error to the fitted line. Since a virtual pinhole cannot be produced
with the fully unconstrained model, in Figure 8.5 we plotted only the results for the
Non-Parametric and the Rational model. Each point in the plot is the average over 20
shots. While both methods are affected by some error, it is clear that the approxima-
tion given by the Non-Parametric approach yields less distorted lines. Furthermore,
the structured nature of the RMS error obtained with the Rational model strongly sug-
gests a systematic error due to the inability of the model to properly fit the data.

Note that, while our approach yields a much smaller undistortion error than the
Rational model, there is still a strong spatial coherency in the error. This, composed
with the fact that the structure of the error is coherent between the two models hits at
the fact that the target itself might be not perfectly planar. The order of magnitude of
this error is around 0.05mm, which is in line with current manufacturing standards.
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Figure 8.6: In the left-most plot we show the average relative error between the ex-
pected and measured distance of two triangulated points placed at a certain known
distance. In the right we show an example of a stereo-rectified image pair.

8.3.2 3D Measurement

Our second experiment has been designed to investigate the quality of the calibration
of the camera pair. After calibrating and rectifying the camera pair we used it to tri-
angulate the 3D position of two random screen pixels observed by both cameras. We
repeated the experiment for several shots with different positions of the target screen.
In Figure 8.6 we plotted the average relative error between the expected and measured
distance of two triangulated points with respect to the distance of the target from the
camera pair. In this case, the Unconstrained model shows the best performance, in
fact it produces a lower error at any distance and more repeatable measures. The Non-
Parametric model exhibits a slightly higher error. This proves that the additional con-
straint hinders a perfect calibration. Still it is noticeably more reliable than the Rational
model, thus it can be deemed as a reasonable alternative to the totally free model when
high accuracy is needed, but it is not desirable to lose the advantages of the pinhole
model.

Finally, in Figure 8.7 we give a qualitative example of a reconstructed range-map
after stereo rectification provided by the OpenCV stereoRectify function and our cali-
bration pipeline. The better alignment of the epipolar lines with the image rows gives
a more precise and dense reconstruction.

8.4 Conclusions

In this chapter, we proposed a new calibration technique to model a central camera
with a distortion described as a non-parametric dense displacement map on the input
image. This approach combines the simplicity of a central camera model, enabling the
usage of powerful projective geometry tools, while sharing the ability of unconstrained
models to accommodate non-standard lens characteristics. Moreover, the indepen-
dence of each ray entering the camera can be exploited to calibrate a stereo setup with
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Figure 8.7: Reconstructed range-map triangulated from the OpenCV calibration and
rectification (Left) and our proposed method (Right).

minor modifications on the process itself.
We assessed the performance of our method compared with current state-of-the art

parametric and completely unconstrained models, obtaining results lying in-between
the two. Finally, we outperform the rational distortion model on mono camera cali-
bration letting our technique be a viable choice for all applications for which a high
accurate rectification of the camera is required.
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9
Robust Multi-Camera

3D Ellipse Fitting

Ellipses are a widely used cue in many 2D and 3D object recognition pipelines. In fact,
they exhibit a number of useful properties. First, they are naturally occurring in many
man-made objects. Second, the projective invariance of the class of ellipses makes
them detectable even without any knowledge of the acquisition parameters. Finally,
they can be represented by a compact set of parameters that can be easily adopted
within optimization tasks. While a large body of work exists in the literature about the
localization of ellipses as 2D entities in images, less effort has been put in the direct
localization of ellipses in 3D, exploiting images coming from a known camera network.
In this chapter we propose a novel technique for fitting elliptical shapes in 3D space, by
performing an initial 2D guess on each image followed by a multi-camera optimization
refining a 3D ellipse simultaneously on all the calibrated views.

The proposed method is validated both with synthetic data and by measuring real
objects captured by a specially crafted imaging head. Finally, to evaluate the feasibility
of the approach within real-time industrial scenarios, we tested the performance of a
GPU-based implementation of the algorithm.
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Figure 9.1: Schematic representation of a multi-camera system for industrial in-line
pipes inspection.

9.1 Introduction

Among all the visual cues, ellipses offer several advantages that prompt their adop-
tion within many machine vision tasks. To begin with, the class of ellipses is invariant
to projective transformations, thus an elliptical shape remains so when it is captured
from any viewpoint by a pinhole camera [59]. This property makes easy to recog-
nize objects that contain ellipses [130, 82] or partially elliptical features [167]. When
the parameters of one or more coplanar 3D ellipses that originated the projection are
known, the class of homographies that make it orthonormal to the image plane can
be retrieved. This is a useful step for many tasks, such as the recognition of fiducial
markers [31, 140], orthonormalization of playfields [81], forensic analysis of organic
stains [193] or any other planar metric rectification [52]. Furthermore, ellipses (includ-
ing circles) are regular shapes that often appear in manufactured objects and can be
used as optical landmarks for tracking and manipulation [200] or measured for accu-
rate in-line quality assurance [160].

Because of their usefulness and broad range of applicability, it is not surprising
that ellipse detection and fitting methods abound in the literature. In particular, when
points belonging to the ellipse are known, they are often fitted through ellipse-specific
least square methods [71]. In order to find co-elliptical points in images, traditional
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parameter-space search schemas, such as RANSAC or Hough Transform, can be em-
ployed. Unfortunately, the significantly high dimensionality of 2D ellipse parametriza-
tion (which counts 5 degrees of freedom) makes the direct application of those tech-
niques not feasible. For this reason a lot of efficient variants have appeared. Some try
to reduce the number of samples for a successful RANSAC selection [166, 195]. Oth-
ers attempt to escape from the curse of dimensionality that plagues the Hough accu-
mulator [132, 53]. If high accuracy is sought, point-fitted ellipses can be used as an
initial guess to be refined through intensity-based methods. Those approaches allow
to obtain a sub-pixel estimation by exploiting the raw gradient of the image [147] or
by preserving quantities such as intensity moments and gradients [87]. Multiple view
geometry has also been exploited to get a better 3D ellipse estimation. In [182], mul-
tiple cameras are used to track an elliptical feature on a glove to obtain the estimation
of the hand pose. The ellipses fitted in the images are triangulated with the algorithm
proposed in [149] and the best pair is selected. In [128], holes in metal plates and in-
dustrial components are captured by a couple of calibrated cameras and the resulting
conics are then used to reconstruct the hole in the Euclidean space. Also in [64] the
intersection of two independently extracted conics is obtained through a closed form.
All these approaches, however, exploit 3D constraints in an indirect manner, as trian-
gulation always happens on the basis of the ellipses fitted over 2D data.

Here, we present a rather different technique that works directly in 3D space. Specif-
ically, we adopt a parametric level-set appraoch, where the parameters of a single el-
liptical object that is observed by a calibrated network of multiple cameras (see Fig.9.1)
are optimized with respect to an energy function that simultaneously accounts for each
point of view. The goal of our method is to bind the 2D intensity and gradient-based
energy maximization that happens within each image to a common 3D ellipse model.
The performance of the solution has been assessed through both synthetic experiment
and by applying it to a real world scenario. Finally, to make the approach feasible re-
gardless of the high computational requirements, we propose a GPU implementation
which performance has been compared with a well optimized CPU-based version.

9.2 Multiple Camera Ellipse Fitting

In our approach we are not seeking for independent optima over each image plane,
as is the case with most ellipse fitting methods. Rather, our search domain is the
parametrization of an ellipse in the 3D Euclidean space, and the optimum is sought
with respect to its concurrent 2D reprojections over the captured images. In order to
perform such optimization we need to sort out a number of issues. The first problem
is the definition of a 3D ellipse parametrization that is well suitable for the task (that
is, it makes easy to relate the parameters with the 2D projections). The second one, is
the definition of an energy function that is robust and accounts for the usual cues for
curve detection (namely the magnitude and direction of the intensity gradient). The
last issue is the computation of the derivative of the energy function with respect to
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the 3D ellipse parameters to be able to perform a gradient descent.

9.2.1 Parameterization of the 3D Ellipse

In its general case, any 2-dimensional ellipse in the image plane is defined by 5 param-
eters, namely: the length of the two axes, the angle of rotation and a translation vector
with respect to the origin.

In matrix form it can be expressed by the locus of points x⃗ = x1 x2 1
T

in homo-
geneous coordinates for which the equation x⃗T Ax⃗T = 0 holds, for

A =
a b d

b c f
d f g

 (9.1)

with det(A) < 0 and ac −b2 > 0.
In the 3-dimensional case it is subjected to 3 more degrees of freedom (i.e. rotation
around two more axes and the z-component of the translation vector). More directly,
we can define the ellipse by first defining the plane T it resides on and then defining
the 2D equation of the ellipse on a parametrization of such plane. In particular, let
c⃗ = (c1,c2,c3,1)T ∈ T be the origin of the parametrization, and u⃗ = (u1,u2,u3,0)T , v⃗ =
(v1, v2, v3,0)T be the generators of the linear subspace defining T , then each point on
the 3D ellipse will be of the form o⃗+αu⃗+βv⃗ with α and β satisfying the equation of an
ellipse.

By setting the origin o⃗ to be at the center of the ellipse and selecting the directions u⃗
and v⃗ appropriately, we can transform the equation of the ellipse on the plane coordi-
nates in such a way that it will take the form of the equation of a circle. Hence, allowing
the 3D ellipse to be fully defined by the parametrization of the plane on which the el-
lipse resides. However, this representation has still one more parameter than the actual
degrees of freedom of the ellipse. To solve this we can, without any loss of generality,
set u3 = 0, thus, by defining the matrix

Uc =


u1 v1 c1

u2 v2 c2

0 v3 c3

0 0 1

 (9.2)

and the vector x⃗ = (α,β,1)T , we can express any point p in the 3D ellipse as:

p⃗ = Ucx⃗ subject to x⃗T

1 0 0
0 1 0
0 0 −1

 x⃗ = 0. (9.3)

Even if Uc embeds all the parameters needed to describe any 3d ellipse, it is often the
case that an explicit representation through center c⃗ and axes a⃗1, a⃗2 ∈ R3 is needed. Let
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U be the 3×2 matrix composed by the first two columns of UC. The two axes a⃗1, a⃗2 can
be extracted as the two columns of the matrix:

K =
a⃗1 a⃗2

= UφT

where φT is the matrix of left singular vectors of UTU computed via SVD decomposi-

tion. The vector c⃗ is trivially composed by the parameters

c1 c2 c3

T
.

Conversely, from two axes a⃗1, a⃗2, the matrix U can be expressed as:

U = K

α −β
β α



by imposing that


αK31 +βK32 = 0

α2 +β2 = 1
. Finally, once U has been computed, the 3D el-

lipse matrix can be composed in the following way:

Uc =


U c⃗
0⃗ 1


Finally, with this parametrization it is very easy to obtain the equation of the ellipse
projected onto any camera. Given a projection matrix P, the matrix AP describing the
2-dimensional ellipse after the projection can be expressed as:

AP = (PUc)−T

1 0 0
0 1 0
0 0 −1

 (PUc)−1 (9.4)

9.2.2 Energy Function over the Image

To estimate the equation of the 3D-ellipse we set-up a level-set based optimization
schema that updates the ellipse matrix Uc by simultaneously taking into account its
re-projection in every camera of the network. The advantages of this approach are es-
sentially threefold. First, the equation of the 3D ellipse estimated and the re-projection
in all cameras are always consistent. Second, erroneous calibrations that affects the
camera network itself can be effectively attenuated, as shown in the experimental sec-
tion. Third, the ellipse can be partially occluded in one or more camera images without
heavily hindering the fitting accuracy.

In order to evolve the 3D ellipse geometry to fit the observation, we need to define
the level set functions ϕi : R2 → R describing the shape of the ellipse Uc re-projected
to the i th camera. Given each level set, we cast the multiview fitting problem as the
problem of maximizing the energy function:

E I1...In (Uc) =
n

i=1
E Ii (Uc) (9.5)
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Which sums the energy contributions of each camera:

E Ii (Uc) =


R2

〈∇H(ϕ(⃗x)),∇Ii (⃗x)〉2dx (9.6)

=


R2

〈H ′(ϕ(⃗x))∇ϕ(⃗x),∇Ii (⃗x)〉2dx , (9.7)

where H is a suitable relaxation of the Heavyside function. In our implementation, we
used:

H(t ) = 1

1+e− t
σ

(9.8)

where parameter σ models the band size (in pixels) of the ellipse region to be consid-
ered. By varying σ we can manage the trade-off between the need of a regularization
term in the energy function to handle noise in the image gradient and the estimation
precision that has to be achieved.

The level set for a generic ellipse is rather complicated and cannot be easily ex-
pressed in closed form, however, since it appears only within the Heavyside function
and its derivative, we only need to have a good analytic approximation in the boundary
around the ellipse. We approximate the level set in the boundary region as:

ϕi (⃗x) ≈ x⃗T Ai x⃗

2


x⃗T Ai
T I0Aix⃗

(9.9)

Where I0 =
1 0 0

0 1 0
0 0 0

 and Ai is the re-projection of the ellipse Uc into the i th camera

computed using equation (9.4). The function has negative values outside the bound-
aries of the ellipse, positive values inside and is exactly 0 for each point {⃗x |⃗xT Ucx⃗ = 0}.

The gradient of the level set function ∇ϕ : R2 → R2 can actually be defined exactly
in closed form:

∇ϕi (⃗x) = Ai x⃗
x⃗T Ai

T I0Aix⃗
(9.10)

.
Starting from an initial estimation, given by a simple triangulation of 2d-ellipses

between just two cameras, we maximize the energy function (9.5) over the plane pa-
rameters Uc by means of a gradient scheme.

9.2.3 Gradient of the Energy Function

The gradient of the energy function can be computed as a summation of the gradi-
ent of each energy term. This gradient can be obtained by analytically computing the
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Figure 9.2: Evaluation of the accuracy of the proposed method with respect to different
noise sources. The metric adopted is the relative error between the minor axis of the
ground truth and of the fitted ellipse.

partial derivatives of equation (9.6) with respect to the eight parameters (p1 . . . p8) =
(u1, v1,c1,u2, v2,c2, v3,c3):

∂

∂pi
E Ii (Uc) = ∂

∂pi


R2

E Ii (Uc, x⃗)2dx

=


R2

2E Ii (Uc, x⃗)
∂

∂pi
E Ii (Uc, x⃗)dx

Where:

E Ii (Uc, x⃗) = 〈H ′(ϕ(⃗x))∇ϕ(⃗x),∇Ii (⃗x)〉
and

∂

∂pi
E Ii (Uc, x⃗) =(

∂

∂pi
H ′(ϕ(x)))〈∇ϕ(⃗x),∇Ii (⃗x)〉+

+H ′(ϕ(⃗x))〈( ∂

∂pi
∇ϕ(⃗x)),∇Ii (⃗x)〉 .

The derivatives of the parametric level set functions can be computed analytically.
At the beginning of each iteration we compute the derivative of the projected ellipse
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matrices Ai which are constant with respect to x⃗:

∂

∂pi
Ai = T+TT (9.11)

where

T = (
∂

∂pi
[(PiUc)−1])T

1 0 0
0 1 0
0 0 −1

 (PiUc)−1 (9.12)

and
∂

∂pi
[(PiUc)−1] =−(PiUc)−1(Pi

∂

∂pi
Uc)(PiUc)−1 . (9.13)

Then, using (9.11), we can compute the level set derivatives for each pixel:

∂

∂pi
∇ϕ(⃗x) =

( ∂
∂pi

Ai)⃗x
x⃗T Ai

T I0Aix⃗
−

−
Aix⃗ (⃗xT ( ∂

∂pi
Ai)T I0Aix⃗ + x⃗T Ai

T I0( ∂
∂pi

Ai)⃗x)

2(⃗xT Ai
T I0Ax⃗)

3
2

(9.14)

∂

∂pi
ϕ(⃗x) = 1

2
〈⃗x,

∂

∂pi
∇ϕ(⃗x)〉 (9.15)

∂

∂pi
H ′(ϕ(⃗x)) = H ′′(ϕ(⃗x))

∂

∂pi
ϕ(⃗x) . (9.16)

By summing the derivative ∂
∂pi

E Ii (Uc, x⃗) over all images and all pixels in the active
band in each image, we obtain the gradient G =∇E I1...In (Uc). At this point, we update
the 3D ellipse matrix Uc through the gradient step

Uc
(t+1) = Uc

(t ) +ηG (9.17)

where η is a constant step size.

9.3 Experimental evaluation

We evaluated the proposed approach both on a set of synthetic tests and on a real world
quality control task where we measure the diameter of a pipe with a calibrated multi-
camera setup. In both cases, lacking a similar 3D based optimization framework, we
compared the accuracy of our method with respect to the results obtained by triangu-
lating ellipses optimally fitted over the single images.

The rationale of the synthetic experiments is to be able to evaluate the accuracy
of the measure with an exactly known ground truth (which is very difficult to obtain
on real objects with very high accuracy). Further, the synthetically generated imagery
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Figure 9.3: The experimental Multiple-camera imaging head.

permits us to control the exact nature and amount of noise, allowing for a separate and
independent evaluation for each noise source.

By contrast, the setup employing real cameras does not give an accurate control
over the scene, nevertheless it is fundamental to asses the ability of the approach to
deal with the complex set of distractors that arise from the imaging process (such as
reflections, variable contrast, defects of the object, bad focusing and so on).

In both cases the ellipse detection is performed by extracting horizontal and ver-
tical image gradients with an oriented derivative of Gaussian filter. Edge pixels are
then found by non-maxima suppression and by applying a very permissive threshold
(no hysteresis is applied). The obtained edge pixels are thus grouped into contiguos
curves, which are in turn fitted to find ellipses candidates. The candidate that exhibit
the higher energy is selected and refined using [147]. The refined ellipses are then tri-
angulated using the two images that score the lower triangulation error. The obtained
3D ellipse is finally used both as the result of the baseline method (labeled as 2view in
the following experiments) and as the initialization ellipse for our refinement process
(labeled as multiview).

All the experiments have been performed with 3Mp images and the processing is
done with a modern 3.2 Ghz Intel Core i7 PC equipped with Windows 7 Operating Sys-
tem. The CPU implementation was written in C++ and the GPU implementation uses
the CUDA library. The video card used was based on the Nvidia 670 chipset with 1344
CUDA cores.



140 9. Robust Multi-Camera 3D Ellipse Fitting

Figure 9.4: Examples of images with artificial noise added. Respectively additive Gaus-
sian noise and blur in the left image and occlusion in the right image. The red line
shows the fitted ellipse.

9.3.1 Synthetic Experiments

For this set of experiments we chose to evaluate the effect of four different noise sources
over the optimization process. Specifically, we investigated the sensitivity of the ap-
proach to errors on the estimation of the focal length and of the radial distortion pa-
rameters of the camera and the influence of Gaussian noise and clutter corrupting the
images. In Fig. 9.4 examples of Gaussian noise and clutter are shown (note that these
are details of the images, in the experiments the ellipse was viewed in full).

For each test we created 5 synthetic snapshots of a black disc as seen from 5 differ-
ent cameras looking at the disk from different points of view (see Fig. 9.1 and Fig. 9.3).
The corruption by Gaussian noise has been produced by adding to each pixel a normal
distributed additive error of variable value of σ, followed by a blurring of the image
with a Gaussian kernel with σ= 6. The artificial clutter has been created by occluding
the perimeter of the disc with a set of random white circles until a given percentage of
the original border was corrupted. This simulates the effect of local imaging effect such
as the presence of specular highlights that severely affect the edge detection process.
The focal length error was obtained by changing the correct focal length of the central
camera by a given percentage. Finally, the distortion error was introduced by adding
an increasing amount to the correct radial distortion parameter K1.

In Fig. 9.2 we show the results obtained using the baseline triangulation and our
optimization with different values of the parameter σ used for the heavyside function
(respectively 3, 6 and 9 pixels). As expected, in all the tests performed the relative error
grows with the level of noise. In general, all the methods seem to be minimally sen-
sitive to Gaussian noise, whereas the clutter has a big effect even at low percentages.
The baseline method performs consistently worse and, among the multiview configu-
rations, the one with lower heavyside band appears to be the most robust for almost
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Figure 9.5: Comparison between the accuracy of the initial 2D fitting and the proposed
3D optimization.

all noise levels. This is probably due to the fact that the images have already been
smoothed by the gradient calculation step, and thus further smoothing is not required
and, to some degree, leads to a more prominent signal displacement.

9.3.2 Real World Application

For the experiments with real images we built an imaging device that hold 5 PointGrey
Flea3 3.2Mp Monochrome USB3 machine vision cameras (see Fig. 9.3). The 5 cam-
eras were calibrated for both intrinsic and extrinsic parameters. We used an aluminum
pipe for air conditioning system as the object to be measured, and the imaging head
has been supplemented with four high power leds in order to get an even illumina-
tion of the rim. This is a typical scenario for in-line inspection in manufacturing lines.
Additionally, the smooth and polished surface of the pipe offers especially challeng-
ing conditions for ellipse detection and refinement, since reflections and changes of
contrast tend to create a lot of false elliptical sectors and some highly structured noise.

If Fig. 9.5 a complete qualitative example of the refinement process is shown. In the
first two rows of the figure the reprojection of the initially estimated 3D ellipse is over-
layed to both the original images and the intensity-coded gradient magnitude. In the
remaining rows the reprojection of the optimized 3D ellipse is overlayed over the same
images. The images used for the initial triangulation in this specific case were the first



142 9. Robust Multi-Camera 3D Ellipse Fitting

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 0  10  20  30  40  50  60

M
aj

or
-a

xi
s 

le
ng

th
 [m

m
]

Snapshot number

MultiView
2-Views

(a)

 7.2

 7.3

 7.4

 7.5

 7.6

 7.7

 0  10  20  30  40  50  60

M
aj

or
-a

xi
s 

le
ng

th
 [m

m
]

Snapshot number

MultiView(3)
MultiView(5)

(b)

Figure 9.6: Quantitative assessment of the improvement in accuracy (Left) and effect
of the number of views over the measure quality.

and the third. Specifically, the initial guess for the first image was a slightly off-center
ellipse fitted in between the edge response produced by the inner and outer rims of the
pipe opening (see the gradient image). As a matter of fact, it is immediate to note that
these two images exhibits the lower reprojection error, especially for the central cam-
era. However, the other reprojections are rather grossly misaligned with the remaining
three points of view. By contrast, almost all the misalignment has been corrected af-
ter performing the 3D refinement procedure. While some degree of displacement is
still visible in some images, we think that this is mainly due to miscalibration of the
extrinsic parameters of the imaging head.

We manually measured the internal and external diameter of the pipe with a caliper
(with ±0.1mm accuracy) obtaining respectively 13.9 and 16.1 mm. However, since the
optimization process aim to converge toward the middle of the two rims, it would make
no sense to evaluate directly the measurement error committed. Still, the standard de-
viation of the data with respect to several subsequent measures of the same object
from slightly different angles can be considered a good indication of measurement er-
ror. Indeed, even if the final measure can be affected by systematic errors, they can be
estimated and corrected a-posteriori. In Fig. 9.6(a) we plotted the measured length of
the major axis of the detected 3D ellipse for 60 repeated shots of the pipe opening. The
improvement in uncertainty reduction after the refinement step is clearly noticeable as
the variance of the measurements is strongly reduced. Indeed, the standard deviation
went from 0.23 to 0.03.

All the refinements performed so far have been conducted using 5 points of view.
In order to complete our tests it would have been interesting to evaluate if similar ac-
curacy could be obtained using a smaller number of cameras. To this end we disabled
two cameras and took further 60 shots of the pipe. The results are plotted in Fig. 9.6(b).
While the dispersion of the measurements is a little higher using only three points of
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view, it is still noticeably smaller than the one obtained without the optimization step
(note that the scales of Fig. 9.6(a) and Fig. 9.6(b) are different).

9.4 GPU-based Implementation

In a naive implementation, the optimization scheme proposed is quite intensive in
terms of raw computing power. Especially for the gradient computation, which re-
quires several matrix and vector multiplications that may easily sum up to an unac-
ceptable total computation time.

However, the intrinsic structure of the problem leads naturally to an implementa-
tion in which every pixel in the area of interest defined by the Heavyside function are
computed in parallel. After this computation, that can be performed with no required
synchronization between each view, a reduction step is needed to aggregate all terms
and obtain the final value of the energy and gradient in each iteration.

We implemented the algorithm in C++ with no additional external libraries except
for OpenCV for image IO, OpenMP for CPU parallelization and CUDA for GPU com-
puting. Both the CPU and GPU based implementations are essentially the same, ex-
cept for the fact that the latter can exploit the massive computing power of modern
graphics cards. For every algorithm’s iteration, a CPU-based function computes a list
of pixel for each image that will be affected by the computation. This list is generated
by considering a band around each 2d-ellipse reprojection with a thickness of 5σpixels
and is uploaded to the device memory, together with the optimized parameters and the
pre-computed image gradient for each pixel in the list. Once the upload is completed,
all available stream processors are used to compute the energy and the energy gradient
terms. At the end of the computation steps, all threads are synchronized and 9 values
are reduced (energy and the 8 terms of the gradient) to obtain the final values. The
total energy is used to track the optimization status and trigger a termination criteria,
the gradient is used to adjust the 3d ellipse that is being optimized, moving toward a
local maxima.

We tested the execution time per iteration for both the CPU and GPU based imple-
mentation of our algorithm (see Fig.9.7) with respect to the average number of pixel
processed. In both cases, the process is fast enough to handle a real-time optimization
in 3 megapixels images with the fitted ellipse spanning into about 50% of the image.

As expected, the GPU implementation performs better than the CPU and exhibits
a more consistent running time throughout the tests. This is probably due to the fact
that we are dealing with a dedicated hardware. Finally, the synchronization overhead
caused by the reductions decreases the performance gap between the two implemen-
tations when a relatively low number of pixels are processed, which in turn becomes
dramatic when an optimization involving more than 105 pixels is needed.
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Figure 9.7: Comparison between the running time of the CPU and GPU-based imple-
mentations of the multiview algorithm. Times are plotted with respect to the number
of pixels in the evaluated mask (i.e. size of the ellipse to be refined).

9.5 Conclusions

In this chapter we presented a novel approach for ellipse fitting that exploits multi-
ple simultaneous calibrated views of the same physical elliptical object. The proposed
technique starts by obtaining an initial estimation of the 3D ellipse using 2D based
fitting methods followed by a pairwise triangulation. This initial guess is then refined
by moving its parameters according to an intensity-based level set approach that ac-
counts for all the images simultaneously. To this end, a specially crafted parametriza-
tion and an apt energy function have been introduced. The effectiveness of the ap-
proach has been evaluated through an extensive experimental section that shows its
resilience to a wide range of noise sources and compares the accuracy obtained with
respect to a baseline approach. Finally, a running time analysis of our GPU-based im-
plementation of the algorithm shows that the proposed method can be effectively used
in real-time applications.



10
Simultaneous Optical Flow
and Dichromatic Parameter

Recovery

In this chapter we propose an approach for the recovery of the dichromatic model from
two views, i.e., the joint estimation of illuminant, reflectance, and shading of each
pixel, as well as the optical flow between the images. The approach is based on the
minimization of an energy functional linking the dichromatic model to the image ap-
pearances and the flow between the images to the factorized reflectance component.
In order to minimize the resulting under-constrained problem, we apply vectorial total
variation regularizers both to the common scene reflectance, and to the flow hyper-
parameters, enforcing the physical priors that the reflectance is constant in all images
across a uniform material, and that the flow varies smoothly within the same rigid ob-
ject. We show the effectiveness of the approach compared with single view model re-
covery both in terms of model constancy and of closeness to the ground truth.
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10.1 Introduction

We depart from the dichromatic model (See Section 2.5)so as to describe the image
radiance as a combination of shading, specular highlights, surface reflectance and the
illuminant power spectrum. Our multi-view dichromatic parameter recovery method
separates the scene illuminant, shading and object surface reflectance by minimis-
ing the total variation subject to the notion that the object reflectance and illuminant
power spectrum across the image sequence under consideration should not change.
This also imposes further constraints on the optical flow which are akin to those im-
posed upon brightness in trichromatic imagery [29]. This leads to an optimisation
problem where a regularisation approach is used to enforce the consistency of the
scene photometric parameters over an image sequence. This contrasts with previ-
ous approaches where the intersection of dichromatic planes [69, 177], assumed chro-
maticities of common light sources [69], or structural optimisation [97] are used on
single images.

The contribution of this work is twofold: First, to the best of our knowledge, this is
the first approach that uses reflectance constancy across multiple images to improve
the recovery of the dichromatic parameters, relating the reflectance to the optical flow
between multiple images. Second, we introduce a novel affine hyper-prior for the flow
similar in spirit to the one presented in [114], but that in combination with a Total
Variation regularization provides a natural piecewise-rigid assumption on the motion,
resulting in an improvement of the optical flow estimation in parallel with the improve-
ment to the photometric parameters. Experiments show that the approach is capable
of providing a more stable recovery of illuminant, reflectance, shading and specular
parameters with respect to the sate of the art.

10.2 Multi-view Dichromatic Parameter Recovery

In this section we will present the multi-view dichromatic model energy functional
joining the dichromatic factorization on each image with the coherency of the reflectance
across corresponding points in multiple images.

10.2.1 Multi-Spectral Imaging and the Dichromatic Model

As mentioned earlier we employ the dichromatic model [162]. By assuming a uniform
illuminant power spectrum across the scene, the dichromatic model expresses the im-
age radiance I (u,λ) at pixel location u = (u1,u2) and wavelength λ as follows:

I (u,λ) = g (u)L(λ)S(u,λ)+k(u)L(λ) (10.1)

where L(λ) and S(u,λ) are the illuminant power spectrum and surface reflectance
at wavelength λ, respectively, g (u) is the shading factor governing the proportion of
diffuse light reflected from the object and k(u) is the specular coefficient at pixel u.
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Here, we also make the assumption that

λS(u,λ)2 = 1. Note that this can be done

without any loss of generality since the illuminant power spectrum can be normalized
such that the shading factor and specular coefficients are rescaled accordingly.

10.2.2 Optical Flow and Reflectance Coherency

One of the main features of the dichromatic model is that the reflectance S(u,λ) is a
characteristic of the object’s material, being invariant to the geometry of the object and
its relative position with respect to the light source and the viewer. As a consequence,
it is preserved across multiple images. We model this correpsondence in a two image
setting by maintaining one single reflectance function on one image and relating it to
the reflectance on a second image through an optical flow function f (u) = u′ :Ω1 →Ω2

which maps points from the first to the second image.
Note that, for the computation of the flow, it is often assumed that the image bright-

ness remains approximately unchanged across the two views under consideration. The
“constant” brightness assumption applies to stereo and multiple-view settings where
the baseline is not overly wide. While effective, this can introduce errors in the estima-
tion of the reflectance about specular spikes and lobes in the scene or where there is
a big change in the relative angle between the objects in the scene and the illuminant
direction. Further, for highly specular pixels, the reflectance information is effectively
lost at capture, i.e. g (u)L(λ)S(u,λ) ≈ 0. For this reason, in our formulation, we make
use of the multiplicative gating function

W (u) = exp(−τ||I (u,λ)−P (I (u,λ))||) (10.2)

where P (I (u,λ)) is the projection of the image radiance I (u,λ) onto the dichro-
matic plane [68] spanned by the radiance over the neighbourhood about pixel location
u. The dichromatic plane can computed using SVD [153].

The gating function above reflects the observation that, as the deviation of the im-
age radiance from the dichromatic plane increases, the diffuse reflection decreases in
importance [68]. Therefore, the function W (u) can be viewed as a weight in the illumi-
nant and reflectance recovery error when applied to the dichromatic energy terms:

EDI1 =

Ω1

W1(u)2

λ


I1(u,λ)−L(λ)


g1(u)S(u,λ)+k1


u
2

du (10.3)

EDI2 =

Ω1

W2

u′2

λ


I2

u′,λ
−L(λ)


g2

u′S(u,λ)+k2


u′2du (10.4)

where the subscript indicate the index for either of the two images. Note that even for
the term related to the second image the integration is performed over the domainΩ1

of the first image whereby the relations withΩ2 is always mediated through the flow f .
Moreover, the gating function W (u) decreases in value for increasingly specular

pixels. This is in accordance with the dichromatic plane formalism used to define
W (u), which implies that, for specular highlights, the gating function tends to zero,
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i.e. the gating function and the specular coefficient are nearly orthogonal with respect
to each other. Hence, in equations (10.3) and (10.4), the contribution of the specular
pixels to the energy functional is negligible. As a result, we remove the specular co-
efficient from further consideration for purposes of our optimization approach and,
instead, compute it analytically at the end of the process, once the reflectance, illumi-
nant power spectrum, and shading are in hand.

10.2.3 Total Variation Regularization

Our goal is, to minimize the energy terms over the flow f (·) and the dichromatic model
parameters. However, the problem is under determined, problem that we address
adding regularization terms to the energy functional above. The Total Variation (TV)
of a function f :Rm ⊇Ω→Rn is an operator defined as

TV( f ) = sup
p1,...,pm


Ω

n
i=1

fi (x)∇·pi (x)dx : p1, . . . , pm ∈C 1(Ω,Rn)


, (10.5)

where C 1(Ω,Rn) is the set of continuously differentiable functions from Ω to Rn , and
p1, . . . , pm satisfy

m
i=1 ||pi (x)||2 ≤ 1 everywhere except at most in a subset of measure

0. Further, if f is a differentiable function, the TV assumes the equivalent form

TV( f ) =

Ω
||D f (x)||2 d x , (10.6)

where D f is the differential or Jacobian matrix of f and || · ||2 denotes the Frobenius
norm.

Used as a regularizer, TV privileges piecewise constant solutions and for this prop-
erty has found a multitude applications ranging from image processing restoration [155],
to segmentation [148], to the estimation of the optical flow [192, 63]. Here we adopt TV
to impose smoothness priors on the reflectance and flow estimates. The reflectance
component is assumed to be constant over image patches of uniform material, thus
TV is directly applicable to S, seen as a function from Ω1 to Rℓ where ℓ is the number
of spectral bands.

For the flow, however, there is no reason to assume a piecewise constant model.
Most approaches in the literature opt to express the flow as a displacement f (u) =
u+T (u) where the displacement is regularized, resulting in a piecewise uniform trans-
lation. Here we opt for a higher order smoothness prior, where the displacement is
assumed to be locally affine

f (u) = u+ A(u)u =
 u

v
1

+
 a1(u) a2(u) a3(u)

a4(u) a5(u) a6(u)
0 0 1

 u
v
1

 . (10.7)

This local affine model can be seen as an approximation of view transformation under
a weak camera model of local planar patches, and thus can be assumed to be piece-
wise uniform on much larger patches within a rigidly moving object. As a result the
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hyperparameters a1(u), . . . , a6(u) can be assumed to be piecewise constant within such
patches.

Finally, we perform a convex relaxation of the total variation functional [39] trans-
forming the TV regularized optimization problem

min
f

E( f )+T V ( f ) (10.8)

into the relaxed problem

min
f , fTV

E( f )+
 || f − fTV||2

δ
+T V ( fTV) . (10.9)

While the size increases with the addition of the auxiliary function fTV, assuming E( f )
convex, the formulation becomes convex for δ> 0 and converges to the original varia-
tional problem as δ→ 0.

10.2.4 Multi-view dichromatic functional

Assembling the data fidelity terms and the regularizers, we obtain the energy Multi-
view dichromatic functional

E = α

µEDI1 + (1−µ)EDI2


(10.10)

+ρS


Ω1

||S(u)−STV(u)||2
δS

du+

Ω1

||DSTV(u)||2 du


(10.11)

+ρ f


Ω1

||A(u)− ATV(u)||22
δ f

du+

Ω1

||D ATV(u)||2 du


(10.12)

which is then minimized over S, f , L, g1, g2, STV, and fTV to obtain simultaneous flow
estimation and joint factorization of the dichromatic model over the two images. Here
α, ρS , and ρ f are constants balancing the data fidelity and regularization terms, while
µ ∈ [0;1] is used to limit the effect that errors in the estimation of the flow can have in
the dichromatic factorization originating form the second image. Note that, as men-
tioned earlier, due to the W (u)k(u) orthogonality we can eliminate the W (u)k(u) terms
thus avoiding the minimization over k, and recover the specular coefficient after the
optimization from the optimal illuminant, refletance, and shading with the relation
k(u) = 1

ℓ


λ

I (u,λ)
L(λ) − g (u)S(u,λ).

10.3 Minimization Process

To optimize E we adopt an alternating minimization procedure, rotating trough the
following steps:



150 10. Simultaneous Optical Flow and Dichromatic Parameter Recovery

1. Minimize with respect to L(λ), g1(u), and g2


f (u)

, keeping S(u,λ), f (u), STV(u,λ)

and ATV(u) fixed;

2. Update S(u,λ) and f (u) through a gradient descent step, keeping all other vari-
ables fixed;

3. Minimize (10.11) and (10.12) to obtain a new estimate of ATV(u) and STV(u).

For the first step, differentiating E with respect to g1(u) and g2


f (u)

, and setting

both equations equal to zero we obtain

g1(u) =

λ I1(u,λ)S(u,λ)L(λ)

λS(u,λ)2L(λ)2
(10.13)

g2


f (u)
 =


λ I2


f (u),λ

S(u,λ)L(λ)

λS(u,λ)2L(λ)2
. (10.14)

Differentiating E =µEDI1+(1−µ)EDI2+const. with respect to L(λ) and setting equal
to zero, we have:

L(λ) =C1


Ω1

S(u,λ)∆I (u,λ)du
Ω1

S(u,λ)2∆S(u,λ)du
, (10.15)

where

∆I (u,λ) = µW1(u)2I1(u,λ)g1(u)+ (1−µ)W2


f (u)
2I2


f (u),λ

g2


f (u)


∆S(u,λ) = µW1(u)2g1(u)2 + (1−µ)W2


f (u)
2g2


f (u)
2

and C1 is a normalizing constant satisfying

λL(λ)2 = 1.

Hence, for the first step of the optimization process, we find the global optimum of
E with respect to g1(u), g2


f (u)

, and L(λ) by alternating Equations (10.13), (10.14), and

(10.15). Note that, while we are estimating g1(u) in the regular lattice of the first image,
we are estimating g2


f (u)


through f . This means that, in a discrete image setting ,the
estimated values of the second image’s shading factor are not aligned with that image’s
regular lattice, but are shifted according to the flow f . This is not in general a problem
because only those point are used in the energy computation, but, as we will see, an
interpolation step will be needed in the update of f .

For the second step, we compute the gradient of E with respect to the reflectance
S(u,λ) and the hyper-parameter A(u). Note that the the data fidelity term only depends
of f (u), thus, using the chain rule for the data fidelity term only, we can write

∂A(u)E = (∂ f (u)E) (∂A(u) f (u))+ρ f
A(u)− ATV(u)

δ f
. (10.16)

Here

∂A(u) f (u) = ∂(a1(u),...,a6(u) f (u) =

u1 u2 1 0 0 0
0 0 0 u1 u2 1


(10.17)



10.3. Minimization Process 151

while

∂ f (u)E = α(1−µ)


W2

u′

λ

2

I2

u′,λ
−L(λ)g2


u′S(u,λ)


· (10.18)

·∂ f (u)I2

u′,λ
−L(λ)S(u,λ)∂ f (u)g2


u′+EDI2 (u)∂ f (u)W2


u′ .

Furthermore, the energy gradient with respect to reflectance can be expressed as:

∂S(u,λ)E = −2αµg1(u)W1(u)L(λ)

I1(u,λ)− g1(u)L(λ)S(u,λ)


(10.19)

−2α(1−µ)g2

u′W2


u′L(λ)


I2

u′, i
−L(λ)g2


u′S(u,λ)


+2ρS

S(u,λ)−STV(u,λ)

δS
.

We approximate ∂ f (u)W2

u′ and ∂ f (u)I2


u′ with central finite differences that are

pre-computed at the beginning of the optimization process. As we mentioned before,
obtaining ∂ f (u)g2


u′ is not straightforward since we never optimize g2(u) in the reg-

ular lattice of the second image but only its representation warped to the first image
through the flow f (u). To overcome this limitation, we consider a linear approxima-
tion of its partial derivatives by extracting a neighborhood of points u1 . . .un in a square
window centered at u and computing a linear least square fit of the corresponding val-
ues g2


f (u1)


, . . . , g2


f (un)


, resulting in a planar fit g2


f (u)
≈ c0+cT

1 u. Then, the plane
linear coefficient c1 is used as an approximation of the gradient ∂ f (u)g2


u′. With the

gradient to hand, we update the estimation of the affine function hyper-parameters
and the reflectance for each point by means of a gradient descent approach with a
constant step size η.

Finally, for the third optimization step, we follow the fast iterative method proposed
by Bresson and Chan [39].

10.3.1 Initialization

Note that our approach relies on an initial estimate of the flow f (u), illuminant power
spectrum and specular highlights. This is since, if the illuminant power spectrum and
the specular coefficient is known, the reflectance and the shading factor can be ob-
tained via algebraic manipulation and normalization operations [96]. Indeed, there
are a number of methods elsewhere in the literature that can be used to obtain these
initial estimates. Here, we use the method in [173] to recover the image highlights and
that in [69] for the recovery of the initial estimate of the illuminant power spectrum.

For the optical flow, we avoid the common coarse-to-fine-approaches, proposing
to rather exploit a small set of initial sparse matches as a starting point for the flow
optimization. This is a similar approach to that used in recent works by Leordeanu et
al.[114] or Brox and Malik [45] which are proven to deal with very large displacements.
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To this end, we compute a small set of reliable sparse matches from an image pair
following the method in [20] and making use of SURF features extracted from the initial
shading factor. We modified the original pay-off function to include a similarity term
that weights the angular error of the reflectance spectra among two matches. As a
consequence, we are better able to select a good set of inliers without epipolar filtering,
which is not a feasible option if the scene objects are allowed to move.

We use these sparse matches to get an initial estimate of the flow around a limited
set of points in our optimization domain. We designed an energy functional composed
by a data term and a simple L2 regularizer on the flow gradient.

Eflow =α

Ω

D(u)H(u)

µ1E s(u)+µ2Er (u)

+||∂uT (u)||22du (10.20)

with

E s(u) = [g1(u)− g2

u+T (u)


]2 (10.21)

Er (u) = e−λ S1(u,λ)S2


u+T (u)),λ


(10.22)

D(u) = e− 1
σ minm∈M ∥u−m∥ (10.23)

H(u) = γ


λ ∥∂uS1(u,λ)∥2

maxu′

λ ∥∂u′S1(u′,λ)∥2

+1 (10.24)

The data term accounts for both the photometric (E s) and material (Er ) consis-
tency between the two images trough an L2-norm penalty function. A spatial weight-
ing term (D) modulate the effect of the regularizer with respect to the data term as a
function of the distance from the closest match in the initial set M whereas (H) is used
to allow discontinuities in the proximity of edges. By gradually changing the radius σ,
we can expand the initial sparse support of the flow to the neighboring pixels. We treat
minimization of such functional as a standard variational problem by solving the set of
associated Euler-Lagrange equations [74].

10.3.2 Effect of the regularization terms

The Total Variation hyper-prior regularization term was introduced to enforce the patch-
wise uniform material assumption and the locally uniform flow assumption formal-
ized in terms of locally-affine transformation. Figure 10.1 shows the effect of the pri-
ors on the regularized parameters on a sample image pair. The top row shows the
color image pair, the second row shows the reflectance as returned by [96] (H&RK)
and as optimized by our process, the third row shows the gradient magnitude of the
reflectances, while the last row shows the Forbenious norm of the differential of the
hyper-parameters A at initialization and after optimization. It is immediately clear
that the algorithm is capable of clustering together regions of uniform material that
had significant variation in the estimated reflectance with H&RK. For example, look
at the gradient magnitude of the reflectance in areas like the roof of the truck on the
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Figure 10.1: Sample image pair showing the effect of the priors on the regularized pa-
rameters. First row: input image pair. Second and third row: Reflectance value and
gradient magnitude computed by H&RK (left) and by our approach (right). Last row:
Forbenious norm of the differential of the hyper-parameters A at initialization and af-
ter optimization.
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Figure 10.2: Reflectance obtained for two sample image pairs from scene 3 (left) and 4
(right). First row: input images. Second row: cromaticity obtained with H&RK and our
method. Third row: gradient magnitude of the reflectances.

right or the wheels of the trick on the left. In both cases the the materials are uni-
form and thus should exhibit uniform reflectance, but the wide variation in shading
leaks into variations in the reflectance estimated with H&RK, on the other hand, our
approach strongly reduces the variation in reflectance, while maintaining sharp vari-
ations across different materials. For the same reason, the regularization of the affine
hyper-parameters significantly improve the details captured by the flow. Look for ex-
ample at the flow around the logos on the two trucks: the logos correspond to a pure
change in material, and should not have any effect on the flow, however, the edges of
the logos are clearly visible in the gradient magnitude of the flow hyper-parameters at
initialization, which indicates a leakage of information from the estimated reflectance
to the estimated flow. After optimization, not only is the flow generally more uniform,
with high gradient mostly in correspondence with depth discontinuities or occluded
pixels, but the boundaries of the logos vanish almost completely.

10.4 Experiments

For purposes of comparison, we have used the method in [96]. Our choice hinges in the
fact that the alternative is aimed at processing imaging spectroscopy data based upon
the dichromatic model. Moreover, the method in [96] is an optimisation approach.
Both our method and the alternative have been initialized using the same estimates of
the illuminant power spectrum and specular highlights.

For our experiments, we have used four image sequences acquired using an uncal-
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Figure 10.3: Shading (top-row) and specular factors (bottom-row) obtained for the
same sample image pairs shown in Figure 10.2.

Table 10.1: RMS and Euclidean angular error for the illuminant recovered by our ap-
proach and the H&RK method for all the four scenes of our dataset.

Scene H&RK Ang. Error Our Ang. Error H&RK RMS Our RMS

1 0.080354 0.080045 0.026777 0.026675
2 0.066695 0.055120 0.023576 0.019485
3 0.076167 0.074565 0.025383 0.024849
4 0.021691 0.020638 0.007669 0.007296

ibrated multispectral camera delivering six channels in the visible spectrum and one
in the near-infrared. It is worth noting in passing that our method can be easily ap-
plied to data comprising any number of wavelength bands, i.e. color, hyperspectral
or multispectral. Each of our image sequences comprises 10 frames, depicting scenes
containing a wide variety of objects made of different materials and depicting a wide
variety of shapes. Each of these scenes is illuminated by different lights, spanning ar-
tificial sunlights, tungsten and incandescent lamps. For each of these, the illuminant
power spectrum has been acquired using a LabSphere Spectralon calibration target.
For our dataset, we have computed reflectance images for groundtruthing purposes
following the procedure in [75].

In the top row of Figure 10.2 we show a pseudo-colour image pair for two sample
scenes in our dataset. Colours are obtained in the same way as in [96]. In the second
row, we show the initial (first and third column) and final (second and fourth columns)
reflectance obtained by our method. The bottom row shows the gradient magnitude
for the reflectance shown in the row above. Note that the total variation regularization
process in our approach has improved the reflectance estimate by removing artifacts
arising from the surface geometry.

Now we turn our attention to the shading factor and specular coefficient recov-
ered by our method with respect to H&RK. Specifically, in Figure 10.3 we compare the
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Figure 10.4: Illuminant power spectra for each scene. First and second column: power
spectrum for each scene image as computed by H&RK and our approach respectively.
Third column: average spectrum with the standard deviation for each band.
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Figure 10.5: Reflectance spectra and the standard deviation for each band for the pixels
inside the respective color tiles.

shading and specular maps delivered by the two approaches for the two scenes already
analyzed in Figure 10.2. Note that the specular highlights delivered by our method are
in better accordance with the input imagery as can be appreciated by observing the
screwdriver box, the jars and the cups present in the scenes.

In Figures 10.4 and 10.5 we illustrate the results yielded by our method and the al-
ternative regarding the recovery of the reflectance and the illuminant power spectrum.
To this end, the left-hand side of Figure 10.4, we plot the illuminant delivered by H&RK
and our method superimposed over the ground-truth (red-line). In the panel, the top
trace depicts the spectrum whereas the bottom bar plot corresponds to the standard
deviation of the illuminant per band over the corresponding image sequence. Note
that the standard deviation for the illuminant power spectrum is much lower for our
method. This is also the case for the reflectance. In Figure 10.5 we show the reflectance
for four colour tiles on an XRite colour checker placed in one of our scenes. For the
sake of clarity of presentation, the figure shows a close up of the color checker and, in

Table 10.2: Average and standard deviation of the RMS and Euclidean angular error of
the estimated reflectance inside the colored tiles shown in Figure 10.5.

H&RK Ang. Error Our Ang. Error H&RK RMS Our RMS

0.075242±0.01740 0.073063±0.02032 0.028431±0.00657 0.027607±0.00767
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a fashion similar to Figure 10.4, the spectrum as a trace at the top of the plots with the
standard deviation at the bottom on a bar plot.

In Table 10.1 we show the RMS and Euclidean angular error for the illuminant
power spectrum recovered by our approach and the H&RK method across all the im-
ages for the four scenes in our dataset. Note that, for both measures, our method ex-
hibits a lower error. This is consistent with our qualitative results showed earlier. Fi-
nally, in Table 10.2, we show the RMS and Euclidean angular error of the recovered
reflectance averaged among each coloured tile shown in Figure 10.5.

10.5 Conclusions

In this chapter we proposed a novel method for dichromatic model recovery from an
image pair by means of an energy minimization that simultaneously take into account
the model parameters and the flow between the images. We introduced a novel affine
hyper-prior for the flow that, in combination with a Total Variation regularization, pro-
vides a natural piecewise-rigid assumption on the motion under a weak camera model.
The same kind of regularizer is used for the reflectance imposing the assumption that
objects are composed by local patches of uniform materials. As a result, we are able to
obtain a better reflectance estimation with respect to the current single-image state
of the art approaches. Moreover, our approach has shown a significant lower vari-
ance while computing the illuminant spectrum over a sequence of images of the same
scene. This behaviour is crucial for many applications for which a coherence of the
dichromatic parameters is advisable when analyzing multiple instances of the same
objects involved in a sequence for which we know that both the reflectance and the
illuminant are constant. Furthermore, qualitative results shows that the method dis-
criminates better between the shading (i.e. the geometrical features of a surface) and
the texture an object.



11
Conclusions

In this thesis we approached different aspects of the camera calibration problem and
presented two different scene acquisition applications.

In the first part of the thesis we covered different aspect of camera calibration using
circular features. In Chapter 3 we presented a fiducial marker that exploits the inter-
play between different projective invariants to offer a simple, fast and accurate pose
detection without requiring image rectification. Moreover, we tested the usage of such
marker as a calibration target and exploited its free internal area to present an effective
technique to calibrate a camera-projector setup. In Chapter 4 we presented a different
type of fiducial marker which heavily relies on the robust framework of cyclic codes to
offer superior occlusion resilience, accurate detection and robustness against various
types of noise. We improved on the seminal version proposed in [31] by investigat-
ing their usage even for the uncalibrated case. Also in this case, the marker itself can
be used as a calibration target with the advantage of being very robust against occlu-
sions or mis-detections thus making it an excellent candidate to automatic calibration
setups. Finally, in Chapter 5 we presented a method to recover the camera intrinsic
parameters by exploiting the projective behaviour of a generic set of coplanar circles.
Additionally, we developed a game-theoretic inlier selection process to discriminate a
good cluster of coplanar circles from each image thus making our method particularly
robust to be used in practice.

In the second part we moved our attention to a more powerful unconstrained cam-
era model in which each single ray entering the camera is independently parametrized.
In Chapter 6 we investigated the use of an unconstrained camera model to calibrate
central quasi-pinhole cameras for high precision measurement and reconstruction
tasks, and provided an effective approach to perform the calibration. Within the ex-
perimental section we showed how an unconstrained model can successfully elimi-
nate the spatial coherence of the error, resulting in more precise and repeatable mea-
sures than what is achieved with the pinhole model. Furthermore, we studied and
presented a valid interpolation function on the ray manifold to reconstruct the light
field for any point in space. In Chapter 7 we exploited the calibration technique pre-
sented in the previous chapter to introduce an online projector calibration method
based on the unconstrained imaging model that can be seamlessly applied to many
commonly available 3D scanning systems. The advantage is an improved object re-
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construction coverage and repeatability of the measures. Finally, in Chapter 8 we in-
troduced a novel approach to lower the complexity of a complete unconstrained model
toward a pinhole configuration but allowing a complete generic distortion map. The
approach combines the simplicity of a central camera model, enabling the usage of
powerful projective geometry tools (i.e triangulation, vanishing point estimation, etc.),
while sharing the ability of unconstrained models to accommodate non-standard lens
characteristics. Moreover, the flexibility of the method allows to simultaneously esti-
mate the rectification and undistortion map of a stereo rig.

In the last part of the thesis we presented two different scene acquisition applica-
tions. In Chapter 9 we described a novel approach for ellipse fitting that exploits multi-
ple simultaneous calibrated views of the same physical elliptical object. The proposed
method has been implemented in an industry-grade aluminum pipe intakes dimen-
sional assessment tool. Furthermore, a complete GPU implementation allows to solve
the level-set energy minimization problem with speedup improvements up to 10x. Fi-
nally, in Chapter 10 we proposed a novel method for dichromatic model recovery from
an image pair by means of an energy minimization that simultaneously take into ac-
count the model parameters and the flow between the images. We exploit the usage of
an affine hyper-prior combined with Total Variation regularization to provide a natural
piecewise-rigid assumption on the motion under a weak camera model and to smooth
the reflectance imposing the assumption that objects are composed by local patches
of uniform materials.

11.1 Future Work

Most of the novel approaches presented in this thesis are no meant to be a complete
exhaustive discussion on the topic. Conversely, we are already working on future pos-
sible improvements. For camera calibration topic, we demonstrated in this thesis how
effective and general can be the usage of a totally unconstrained (raxel-based) model
for any type of camera. We are working to improve the seminal work presented here in
various ways.

First, we are studying a method to calibrate a structured-light system composed by
just one camera and a projector. This would be substantially different from the case
presented in Chapter 7 in which we assumed to have a stereo rig. Indeed, the method
presented in Chapter 6 cannot be applied as is because the projector cannot “acquire”
any information from a known target. Nevertheless, by exploiting the planarity of a
surface, the fact that we know exactly the observed code (i.e. projected) from each pixel
of the projector and a pre-calibration of the camera we are already obtaining some
preliminary encouraging results.

Second, we have already tested our rays calibration method on a Lytro™ plenoptic
camera with very promising results. Therefore, we are experimenting our proposed
rays interpolation approach to determine if the current state-of-the-art performance
on camera refocusing can be improved. Furthermore, we would like to exploit our ray-
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based model to simultaneously estimate the micro-motion of a plenoptic camera and
the de-blurring kernel to improve the quality of images taken from long exposures. The
rationale is the following: there already exists well established methods in literature to
revert the motion blur of a moving camera to restore the focus of the image. However,
they rely on a good estimation of the blur kernel that can be estimated by knowing
the motion performed by the camera during the exposure. But, if the camera is not
central, our guess is that small motions can be estimated with far more accuracy since
we effectively can observe the same scene point from multiple points of view.

Third, we would like to test our non-parametric lens distortion approach in case
of color cameras. In this case, if we perform the calibration on different channels (i.e.
selected pixels on the CCD due to the Bayer filter) we should obtain slightly different
undistortion maps when the mounted lens suffers from color aberration. Therefore, by
computing the undistortion map for each channel, it would be possible to completely
remove the color aberration for any type of lens.

For the topic of optical flow and dichromatic parameter recovery we are working
on improving the formulation (and the total variation regularizer) to use a complete
homography as an high-order smoothing prior. This would have the physical meaning
of assuming the image composed by locally planar patches. However, this approach
would require to leverage the TV optimization from a vector field to a manifold (i.e.
3×3 matrices constrained for example by a unitary Frobenius norm). Moreover, this
approach would require a valid initialization of the supposed homography transforma-
tion for each pixel. We are experimenting different alternatives that exploit the camera
motion recovered by common structure-from-motion techniques.
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