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Preface

The present dissertation is the outcome of studies on group structure and its
effects on collective behavior. Its underlying concern is that individual behaviors do
not merely depend on self-interested motives, but group structure should be equally
important, as if, in some extreme situations, individual intentions even did not take
any effect at all. Although the main topic of the dissertation should be well-defined,
different chapters might still seem diverse for some readers. However, I wish people
would not ask for its completeness and consistency as much as a book.

The first part of the dissertation including Chapter 1 and 2 investigates group
structures in a more mathematical sense. Chapter 1 studies a time-dependent group
which can be formalized as a dynamical system, and in particular, discusses its
dynamics, stability, chaos, and some other properties in great detail. Chapter 2
studies a preference-dependent group whose welfare states can be characterized by
some aggregation rule, and develops a number of assertions on its separable and
additive representations. The second part containing Chapter 3 and 4 is devoted to
studies on concrete groups which emerge institutionally from our society, viz., the
centralized limit order market with its roots in equity markets, and the hierarchical
government network with its roots in political systems and organizations.

Some reported results in this dissertation have already been published, although
they entailed minor revisions to maintain a higher typographical quality. Concretely,
Section 3 and 4 of Chapter 1 were once integrated into an independent article, and
published as a preprint on arXiv; Chapter 3 was published as a preprint on arXiv,
and later as a research paper in the journal Algorithmic Finance (Wang [66]).

It might be noted that these chapter headings are shortened so as to reflect the
main “objects” of the studies. To be more precise, each chapter had ever longer
title when being prepared initially, that is, “On the iterative nature of economic
dynamics” for Chapter 1, “On the axiom of separability” for Chapter 2, “Dynamical
trading mechanism in limit order markets” for Chapter 3, and “A theory of local
public good provision in distributed political systems” and “Complex interactions in
large government networks” for Chapter 4.

In the period of preparing this dissertation, there are people I am deeply indebted
to, and some I even did not realize clearly at this stage. For this reason, I hesitate

iii



iv Preface

to write all their names here. But people who naturally own something never claim
that fact, do they? It surely applies here, and would help me do this usually difficult
task in a preface.

Venice, November 2014 S. Wang
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CHAPTER 1

On Dynamics and Chaos

We begin with a treatment of dynamical system, as an abstract representation
of time-dependent group.

1. Introduction

1.1. Determinism and Chaos. In economic science, studies are framed a lot
by the philosophy of determinism, or more precisely, by causal determinism in terms
of Laplace’s demon. For instance, economists describe individuals as rational agents,
whose choices and social behaviors are determined by a set of fixed economic laws;
the motion of an economic system is either totally determined by a representative
agent, or deterministic as well by the belief that the economic system would be
essentially rational in the whole. The only indeterminacy is usually described by the
vague concept randomness, and people try to add it to the economic system so as to
have a more general sense of determinism.

In this consideration, if there is a cause c, there will definitely be an effect e,
simply as there exists a deterministic causal law L. But D. Hume argued that this
kind of determinacy is effective only up to empirical induction. Again, suppose c is
a cause, and one observes that c always leads to an effect e in the past, then one
normally infers that c causes e, i.e., there näıvely exists a causal law L, such that
c causes e if and only if L is the causal law linking c and e. Unfortunately, our
observations happen always in finite times, so the causal law L will not be logically
true, but approximately or even empirically true. From this perspective, the causality
which is so important in the philosophy of determinism should be thought of to be
a metaphysical principle.

However, even if one had the logically true laws in a system, the outcomes might
still not be deterministic. Suppose one has a set of fixed causal laws denoted by
L again in a system, and there is a cause or an initial condition c, then by L one
predicts that there will be a result e = L(c). It might be noted that the cause c
can be known and realized only as a measurable cause m(c), which is approximately
close to the true c, but there is no reason that m(c) ≡ c. Then one will predict a
result L

(
m(c)

)
, which could be totally different from the true result e = L(c), as the

error between L
(
m(c)

)
and L(c) may not be linearly proportional to the difference
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2 On Dynamics and Chaos

between m(c) and c. Consequently, the deterministic nature of a system may not
generate fully predictable happenings in the future, or we can say a slight piece of
imprecise measurability in a system could eventually make the system unpredictable
at all.

Such a somewhat peculiar fact was realized first by H. Poincaré when he studied
the three-body problem in the 1890s. As he wrote in the book “Science and Method”
(Poincaré [52], p. 68):

But it is not always so; it may happen that small differences in the
initial conditions produce very great ones in the final phenomena.
A small error in the former will produce an enormous error in the
latter. Prediction becomes impossible, and we have the fortuitous
phenomenon.

We can notice that this kind of (dynamical) instability in a system does not come
from any stochastic or random factors, but from small measurable errors enlarged
by certain deterministic laws. Such an unpredictable property of a system is called
deterministic chaos , or simply just chaos .

Moreover, when one says there is a system with deterministic laws, it means that
one holds a belief that she has a full knowledge of that system as it exists, and
consistently also the chaotic properties it might have. When such a belief is neither
perfect nor absent, one should be aware that her knowledge of the system is only
partial. One then introduces the randomness in order to smooth the relation between
her belief and the truth, in consequence, the pseudo-chaos as is mixed by chaos and
randomness would conceptually emerge.

Suppose noises as a special form of randomness can be introduced intentionally
into a chaotic system, so that only the laws of the system would be affected, but
its states remain unchanged. Under some restricted assumptions, that system with
noises could then be characterized by a certain stochastic process, for instance, an
iterated random function system might be equivalent to some Markov chain, as will
be discussed in Section 3.2 of this chapter. On the other hand, if introduced noises
only affect the states in a chaotic system, but do not modify its laws, then the basic
deterministic skeleton could be thought of to be stable as if the noises had not been
introduced. To a certain extent, it seems however impossible to separate noises from
chaos or vice versa, because noises entering at different times would adhere to the
states and also evolve according to the laws of the system.

1.2. Order in Chaotic System. The order in a system can be attached to
some basic properties of existent mathematical objects in that system, where the
existence of an object means that it can be defined. For instance,

(i) a function should be differentiable on its domain;
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(ii) the time domain, normally Z or R, should be transitive, otherwise the
dynamics driven by iteration would be impossible;

(iii) the state transition function ϕt(x), which maps the initial state x into the
state ϕt(x) at t, should satisfy

ϕs(ϕt(x)) = ϕs+t(x), or ϕs ◦ ϕt = ϕs+t,

so that the state transition operator preserves the additive structure of the
time domain.

Many well-defined systems can be thought of having an appropriate order in
the above sense, because the laws that govern these systems are fairly normal in
mathematical terms. However, with respect to the stability of these systems or their
possible states after evolving for a sufficiently long time, there could still exist some
mathematical objects not having a nice order, especially when the laws are nonlinear
and can not be properly linearized.

Let us consider a system which has a set of fixed laws L, a state space X, and
a time domain T such that the time t can be forward to s > t, or backward to
r < t. The set of states A ⊆ X in the system is called an attractor , if A is invariant
under L with forward iteration, or L(A) = A, and there exists a neighborhood of A,
N(A) such that all state in N(A) will converge to some state in A under L after a
sufficiently long time, and moreover, any proper subset of A has no such properties.
The essential property of the attractor A and its neighboring trajectories in N(A)
is stability. For any two close enough states x, y ∈ N(A), the stability of A requires
that these two iterated forward motions should be uniformly close to each other.
Yet such property can not be satisfied by a lot of systems, and in these hence so-
called unstable systems, the attractors will very likely demonstrate bizarre geometric
representations. Such attractors are called strange attractors , or notably fractals as
was coined by Mandelbrot [41, 42]. Nevertheless, there is still no necessary relation
between instability and fractals, as some stable systems could also have fractals, and
meanwhile, some unstable systems could have normal attractors (cf., Milnor [45]).

That being stated, unstable systems can yet preserve an order which is partly
indicated in some nice properties of their fractals. For instance,

(i) fractals fully embedded in the n-dimensional Euclidean space can have a
Hausdorff-Besicovitch dimension between n − 1 and n for n ≥ 1, e.g., the
Koch curve has a dimension log 4/ log 3 ≈ 1.262 in the Euclidean plane;

(ii) fractals are continuous and nowhere differentiable;
(iii) most fractals are self-similar, and their scaled parts always have similar

structures to the wholes.

1.3. Chaos in Social System. Unlike mathematically-defined systems, social
systems, such as social groups, social networks, and organized markets, are complex
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by nature. In general, the governing laws for a social system can not be directly
derived by aggregation of the laws for its agents, even if one could have a perfect
knowledge of the social system. What’s more, repeated interactions among many
agents, learning to adapt their strategies, and self-organization pattern formations
in a large social system will make its laws evolve themselves, and therefore agents’
knowledge may not necessarily match the laws time by time. As a social system is
now investigated from a complex perspective, its properties such like self-adaptation
and self-regulation would turn out to be evidently important, and its different scales
may show a disordered structure or even random pattern. If the disordered structure
rooted in different scales could be ideally removed, then the relation between the
whole social system and its parts would be stable, and thus the complex social
system could be refined to a chaotic social system. The finer chaotic social system
should be more easily represented by some mathematically-defined system, in case
its social attributes could be formalized to some extent1.

Example 1.1. The cobweb theorem was first studied by Leontief [37], Kaldor
[31], and Ezekiel [17] in the 1930s, when they investigated the interactive dynamics
of price and quantity in a single market. Let (pt, qt) denote the pair of price and
quantity in a market at time t. Suppose the market is controlled by the demand law
D and the supply law S in a delayed way, that is,

pt = D(qt), qt+1 = S(pt),

then pt+1 = D
(
S(pt)

)
, or pt+1 = C(pt) for C = D ◦ S.

Assume C takes the form of Logistic map, then

(1.1) pt+1 = rpt(1− pt) (r > 0).

Suppose the price is normalized so that it is in the real interval [0, 1]. Notice that
pt(1 − pt) ≤ 1/4 for all pt ∈ [0, 1], so we need r ∈ (0, 4] to ensure that pt is always
in [0, 1]. If r ∈ (0, 1], pt will converge to 0 and the good in the market will be free
in the long term. If r ∈ (1, 3], pt will converge to either 0 or some stable price in
(0, 1). However, if r ∈ (3, 4], the market will have bifurcations. The cardinality of
its attractor can be 2n(r), where n(r) ∈ N is a function of r. Once n(r) is sufficiently
large, the attractor would be almost dense on [0, 1], and hence the market would be
chaotic.

Example 1.2. The price dynamics in a speculative market was first studied by
Bachelier [3]. One now knows that the fair price process is actually a martingale,

1There are many literatures on complex and chaotic social system in such fields of research like
systems biology, swarm intelligence, and social psychology. Since our studies in this chapter will
focus on economic and financial systems, they are not cited here, though some are quite insightful.
Besides, the author should acknowledge one reviewer of this dissertation for suggesting literatures
on dynamic psychological system.
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so that there is no further arbitrage opportunity on the market at any time. In
practice, it was initially assumed that the underlying price P (t) moves approximately
as a Brownian motion, i.e., P (t + dt) − P (t) is Gaussian with the mean 0 and the

volatility
√
dt. Later on, Osborne [50] showed that P (t) should follow a geometric

Brownian motion, i.e., log
(
P (t)

)
is a Brownian motion.

As one may know, a Brownian motion is almost surely continuous and nowhere
differentiable, and thus its possible realization is essentially a fractal. Suppose there
is a dynamical system with a price space R and a time domain [0,+∞), which has an
attractor R, then its price dynamics is a priori chaotic. A motion of the system can
then be represented by a realization p(t) of the stochastic process P (t). Clearly, p(t)
should have some scaling properties, and might maintain a thick tail and a persistent
long-memory volatility, as are constantly observed in real financial markets (see for
example, Mandelbrot [40], and Calvet and Fisher [11]).

Recall that a Brownian motion B(t) must be invariant under any scaling, that’s

to say, B(λt) =
√
λB(t) for all λ > 0. A quite natural generalization for B(t) is the

fractional Brownian motion Bh(t) for h ∈ (0, 1), as was proposed by Mandelbrot and
Van Ness [43], such that Bh(λt) = λhBh(t), and hence its volatility is equal to th.
Another helpful consideration is to replace the real time t by a trading time τ(t),
which potentially has different values at different real times.

In case h = 1/2 and τ(t) = t, one then has the Brownian motion B(t). In general,
one would have a compound stochastic process Bh

(
τ(t)

)
, which can hopefully serve

as a bridge connecting randomness to chaos, with a fair ability to catch the patterns
in the price dynamics.

2. Dynamical System

2.1. General Definition. Throughout this chapter, we will use R+ and R− to
mean the nonnegative and nonpositive real numbers, and use Z+ and Z− to mean
the nonnegative and nonpositive integers. For any sets X and Y , X × Y denotes
their Cartesian product. The closure of a set X is denoted by cl(X). I denotes an
index set, whose cardinality is at least 2 and at most ℵ0.

Let X be a metric space with the metric d : X ×X → R+, or simply let X be a
subset of the n-dimensional Euclidean space. We call X a state space. Let T be a
subset of R. If (T,+) is a semigroup, i.e., (r + s) + t = r + (s+ t) for all r, s, t ∈ T ,
then we say T is a time domain. Usually, it can be R, Z, R+, or any interval in R.

The abstract definitions of continuous dynamical system can be found in the
books by Bhatia and Szegö [8], Krabs and Pickl [33], and Teschl [61]. We shall
make the definition of general dynamical system in a similar way.

Definition. A dynamical system on X is a triplet (X,T, ϕ), which is governed
by the function ϕ : X × T → X with the properties:
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(i) ϕ(x, t0) = x for all x ∈ X and any initial time t0 ∈ T ,
(ii) ϕ(ϕ(x, s), t) = ϕ(x, t+ s) for all x ∈ X and all s, t ∈ T .

The function ϕ in a dynamical system (X,T, ϕ) is called a flow . For any given
state x ∈ X we define a motion ϕx : T → X passing through x as ϕx(t) = ϕ(x, t),
and for any t ∈ T we define a transition ϕt : X → X between the states at t0 and t
as ϕt(x) = ϕ(x, t). Note that

ϕ(ϕ(x, s), t) = ϕ(ϕs(x), t) = ϕt(ϕs(x)),

and also ϕ(x, t+ s) = ϕt+s(x), thus ϕt ◦ϕs = ϕt+s by property (ii) of the function ϕ
in the above definition, and hence ϕ is a homomorphism between (T,+) and (X, ◦).

Suppose T = R, then the motion ϕx(t) passing through x at the initial time t0 is a
continuous function of t. We hence call the dynamical system a continuous dynamical
system, and replace ϕx(t) by x(t). As for the transition function ϕt(x), since T is
now dense, we adopt its differential term as a measure for its movement. We thus
define ẋ = ∂ϕt(x)/∂t = g(x, t), with the initial condition x(t0) = ϕ(x(t0), t0) = x0.
Consequently, a continuous dynamical system can also be defined by an ordinary
differential equation ẋ = g(x, t) with x(t0) = x0.

Let W be an open subset of X × T , and (x0, t0) ∈ W . If g(x, t) is continuous on
W , then by the Peano existence theorem, there exists at least one solution to make
such a dynamical system work at a time domain [t0, t1] ⊆ T , where t1 > t0, or there
is at least one function y : [t0, t1] → X, such that ẏ(t) = g(y(t), t) and y(t0) = x0.
Moreover, if g(x, t) is Lipschitz continuous in x, i.e., there is a piecewise continuous
function `(t) such that for all t ∈ T and all x, y ∈ X,

(1.2) d
(
g(x, t)− g(y, t)

)
≤ `(t)d(x, y),

then by the Picard existence theorem, the solution y(t) is also unique.
Suppose T = Z, then the motion ϕx(t) will be discrete, as it has values only at

dispersed times. We hence call that system a discrete dynamical system, and replace
ϕx(t) by xt. As for the transition rule, we take t0 = 0, and define

f(x) = ϕ1(x) = ϕ(x, 1),

then by the fact that ϕt ◦ ϕs = ϕt+s, we have ϕt(x) = f t(x) for all t ∈ Z+. Here, f t

is defined by the recursion f t = f ◦f t−1 with f 0 = idX , where t ∈ N and idX denotes
the identity function on X. If t ∈ Z−, then −t ∈ Z+. Note that

ϕ−t
(
ϕt(x)

)
= ϕ−t

(
ϕ(x, t)

)
= ϕ

(
ϕ(x, t),−t

)
= ϕ(x, 0) = x,

so ϕt is the inverse function of ϕ−t, and hence

ϕt = (ϕ−t)
−1 = (f−t)−1 = (f−1)−t = f t,

which yields that ϕt = f t for all t ∈ Z. The dynamics driven by ϕt is called forward
for t ∈ Z+, and backward for t ∈ Z−.
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Notice that a discrete dynamical system can be completely determined by the
transition rule f : X → X between two consecutive time points. We then have the
motion xt = f t(x), where t0 = 0 and x0 = ϕ(x0, 0) = x, and usually f is assumed to
be continuous.

2.2. Basic Properties. In this subsection, we will use the notation x〈t〉 in some
definitions to denote a generic motion ϕx(t), which can be either continuous as x(t),
or discrete as xt.

Definition. For all deterministic x, the trajectory passing through x is the set
of states γ(x) = {x〈t〉 : t ∈ T}.

Since T can be partitioned into T+ = T ∩ R+ and T− = T ∩ R−, γ(x) can also
be partitioned into two semi-trajectories,

γ+(x) = {x〈t〉 : t ∈ T+}, γ−(x) = {x〈t〉 : t ∈ T−},

such that γ+(x) ∪ γ−(x) = γ(x) and γ+(x) ∩ γ−(x) ⊇ {x}.
If γ(x) = {x}, x is called an equilibrium state. In terms of motion, if x is an

equilibrium state, then ϕx(t) = x〈t〉 = x for all t ∈ T . If a dynamical system starts
from a state not in equilibrium, say y, then its trajectory γ(y) can not contain any
equilibrium state in a finite time. We can prove this claim by contradiction. Suppose
an equilibrium state x enters into γ(y) at a time t, which means ϕy(t) = x, then
ϕt(y) = x, and thus ϕ−t(x) = y = ϕx(−t). But by the definition of equilibrium state,
we should have ϕx(t) = x for all t ∈ T , a contradiction. Therefore, the motion ϕx(t)
in a dynamical system either remains at the initial state x, or evolves forever.

Definition. A set of states S ⊆ X is invariant , if ϕt(S) = S for all t ∈ T .

Alternatively, we say S as a subset of X is invariant if γ(x) ⊆ S for all x ∈ S. And
these two definitions are actually equivalent. To see this fact, suppose ϕt(S) = S,
then for all x ∈ S we have ϕt(x) ∈ S for all t ∈ T , so ϕx(t) ∈ S for all t, and hence
γ(x) ⊆ S for all x ∈ S. On the other hand, suppose γ(x) ⊆ S for all x ∈ S, but
ϕt(S) 6= S, then there is at least one pair (y, t) for y ∈ S with ϕt(y) /∈ S, which
hence implies that γ(y) * S, a contradiction.

Suppose S is an invariant set of states, and y /∈ S, then γ(y) will not move into
S in a finite time, otherwise y should be contained in S. This fact is very similar to
the reachability of an equilibrium state, but if we notice that an invariant set itself
is an equilibrium set of states, it should be not surprising. Note that any singleton
{x} with an equilibrium state x is invariant, so if S is invariant, then S ∪ {x} will
be invariant again. It is thus essential to identify the kernel of an invariant set S,
which should be minimal. And in general, an invariant set S is called minimal , if S
has no proper subset that is again invariant.
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It can be shown that any bounded invariant set must have a kernel. In a discrete
dynamical system, any invariant set has finite or countably infinite states, thus we
can always find its minimally invariant kernel by backward induction. In a continuous
dynamical system with a state space X ⊆ Rn, any invariant set should be closed and
hence compact because of its boundedness, thus by Zorn’s Lemma it’s not hard to
see that its minimally invariant kernel also exists.

Definition. A motion ϕx(t) passing through x is called periodic, if there exists
some s 6= 0 such that ϕx(t+ s) = ϕx(t) for all t ∈ T .

If a motion ϕx(t) is periodic, then the state x is called periodic as well, and its
trajectory γ(x) is called a limit cycle. The minimal s 6= 0 satisfying ϕx(t+s) = ϕx(t)
for all t ∈ T is called the period of the motion ϕx(t). In particular, if the period
of ϕx(t) is close enough to 0, then x will be nearly an equilibrium state, and if its
period tends to be infinite, then the motion will be almost nonperiodic.

Definition. A state y is called an ω-limit state, if there is a sequence (ti, i ∈ I)
where ti ∈ T for all i ∈ I, such that limti↑+∞ x〈ti〉 = y, and similarly, a state z is
called an α-limit state, if limti↓−∞ x〈ti〉 = z.

The set of all the ω-limit states for a state x is called an ω-limit set , and we use
ω(x) to denote it. The set of all the α-limit states for a state x is called an α-limit
set , and we use α(x) to denote it.

Any ω-limit set must be invariant. To show this assertion, consider ω(x), then
for all y ∈ ω(x) there must be a sequence (ti, i ∈ I) such that limti↑+∞ x〈ti〉 = y,
and thus for all s ∈ T we have limti↑+∞ ϕs(ϕti(x)) = ϕs(y), which directly yields that
limti↑+∞ x〈ti + s〉 = ϕs(y). Since (ti + s, i ∈ I) is again a sequence in T , we have
ϕs(y) ∈ ω(x) for all s ∈ T , and hence γ(y) ⊆ ω(x) for all y ∈ ω(x), which implies
ω(x) is invariant by definition.

Also, we can define these two limit sets by means of the notion semi-trajectory.
In a continuous dynamical system with T = R, an ω-limit set ω(x) can be defined
to be

ω(x) =
⋂
t∈T

cl
(
γ+(x(t))

)
=

⋂
y∈γ(x)

cl
(
γ+(y)

)
,

and an α-limit set α(x) can be defined to be

α(x) =
⋂

y∈γ(x)

cl
(
γ−(y)

)
.

If the motion ϕx(t) passing through x is periodic, then ω(x) = α(x) = γ(x), and
ω(x) and α(x) are thus both limit cycles. The reason that ω(x) and α(x) are identical
when the motion ϕx(t) is periodic is quite direct, that is, any state y ∈ γ(x) can be
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reached with infinite times, and hence is essentially a limit state. On the other hand,
if γ(x) = ω(x) = α(x), then either ϕx(t) is periodic, or x is an equilibrium state.

Let’s now consider a continuous dynamical system (X,T, ϕ) on the Euclidean
plane. The following theorem on the possibilities of ω(x) can be stated:

Theorem 1.1 (Poincaré-Bendixson). In a planar dynamical system with an open
state space X ⊆ R2, a time domain R and an ODEs transition rule ẋ = g(x), where
g : X → X is of class C1, if ω(x) 6= ∅ is compact and contains no equilibrium state,
then ω(x) is a closed limit cycle.

Proof. Let y ∈ ω(x), then ω(y) 6= ∅ and ω(y) ⊆ ω(x). Assume z ∈ ω(y), then
also z ∈ ω(x), and hence z is not an equilibrium state. Consider a Poincaré section J
passing through z, then on R2, J is a transversal segment to g, and it always exists as
z is not an equilibrium state. y(t) will cross J with infinite times. Consider a sequence
(ti, i ∈ I) in R, such that y(ti) ∈ J for all i ∈ I and limti↑+∞ y(ti) = z, where the
Poincaré map y(ti) = ϕ(y, ti) is ordered, and hence the sequence

(
y(ti), i ∈ I

)
along

J must be monotonic. Note that ω(x) is invariant, and y ∈ ω(x), so y(ti) ∈ ω(x) for
all ti ∈ R. Hence y(ti) ∈ J ∩ ω(x).

We now show J ∩ ω(x) can not have more than one state. Suppose it has two
different states, say z1 and z2, then there must exist two different sequences x(ri)
and x(si) converging to z1 and z2, respectively, where x(ri) and x(si) are ordered
intersections of x(t) and J . But we can only have one monotonic sequence x(ti) along
J , because all the subsequences of any monotonic sequence should have a same limit.
Thus z1 must be equal to z2, a contradiction. Consequently, J ∩ ω(x) is either ∅ or
a singleton.

Since z ∈ J ∩ ω(x), it must be J ∩ ω(x) = {z}, and thus y(ti) = z for all ti ∈ R.
It hence suggests that γ(y) should be periodic, and γ(y) ⊆ ω(x). For all w ∈ γ(y),
there always exists a Poincaré section J ′ passing through w, and also a sequence
x(ti) which converges to w. By the same arguments as above, we can directly have
J ′ ∩ γ(y) = {w}, and hence γ(y) ⊇ ω(x). Recall that γ(y) ⊆ ω(x), so ω(x) = γ(y)
must be a limit cycle, which completes the proof. �

Suppose now ω(x) contains equilibrium states. If ω(x) contains only equilibrium
states, then it must be a singleton with one equilibrium state, otherwise we would
have a connected limit set with isolated states. If ω(x) contains both equilibrium
and non-equilibrium states, then for all non-equilibrium state y ∈ ω(x), ω(y) must
be a singleton having one of the equilibrium states in ω(x).

In general, if ω(x) 6= ∅ is compact and contains finite states, then ω(x) can be

(i) ω(x) = {y}, where y is an equilibrium state;
(ii) ω(x) is a limit cycle, and contains no equilibrium state;
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(iii) ω(x) = {y1, y2, . . . , ym} ∪ γ(z1) ∪ γ(z2) ∪ · · · ∪ γ(zn), in which yi is an
equilibrium state for all i ∈ {1, 2, . . . ,m}, and γ(zj) is a trajectory for all
j ∈ {1, 2, . . . , n}, such that either ω(zj) or α(zj), or both are singletons
have an equilibrium state in {y1, y2, . . . , ym}.

However, if a dynamical system has a state space X ⊆ Rn for n ≥ 3, its long-term
behavior of trajectory will then begin to be quite hard to characterize.

2.3. Stability and Local Behavior. In this subsection, we focus on continuous
dynamical systems, and introduce a number of concepts about stability, so that we
can use them to investigate local behaviors in a dynamical system.

The δ-neighborhood of a set S in the metric space (X, d) is defined by

N(S, δ) = {x ∈ X : d(x, S) < δ},
where d(x, S) = infy∈S d(x, y). If S is occasionally a singleton, say S = {s}, we will
then have N(s, δ) = {x ∈ X : d(x, s) < δ}.

Definition. A set of states S ⊆ X is called weakly stable, if γ(x) is compact for
all x ∈ S.

Once the state space X is weakly stable in a dynamical system, the system itself
will be called weakly stable. If X ⊆ Rn, and x belongs to some weakly stable set,
then the motion ϕx(t) should be bounded.

Definition. A closed set A ⊆ X is called an attractor , if it has the following
properties:

(i) there is a set B(A) ⊆ X, such that ∅ 6= ω(x) ⊆ A for all x ∈ B(A),
(ii) there is a δ > 0 such that the δ-neighborhood of A is a subset of B(A), i.e.,

N(A, δ) ⊆ B(A),
(iii) there is no proper subset of A satisfying property (i) and (ii).

Here, the set B(A) is called a basin of the attractor A. If we replace property (i)
and (ii) by a weaker statement that there is a δ > 0 such that ω(x) ∩ A 6= ∅ for all
x ∈ N(A, δ), then A will be called a weak attractor .

Definition. An attractor A ⊆ X is called Lyapunov stable, if for all ε > 0 there
is a δ > 0, such that γ+(x) ⊆ N(A, ε) for all x ∈ N(A, δ).

Lyapunov stability states that any state in a δ-neighborhood of A will converge
to some state in a corresponding ε-neighborhood of A. If there is some state in A
which converges to a state not in A, we then shall say A is unstable. More precisely,
A is called unstable, if there is a state x /∈ A such that α(x)∩A 6= ∅. Clearly, even if
A is Lyapunov stable, there still could be some x /∈ A such that α(x) ∩N(A, ε) 6= ∅
for ε > 0, and hence the ε-neighborhood of A is unstable. For this reason, we may
need a stronger concept of stability:
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Definition. An attractor A ⊆ X is called asymptotically stable, if A is Lyapunov
stable, and there is a ξ > 0, such that α(x) ∩ A = ∅ for all x ∈ N(A, ξ) \ A.

In particular, suppose {x} is an attractor in some dynamical system, then there
should be a basin B(x) such that ω(y) = {x} for all y ∈ B(x). Lyapunov stability
requires that the trajectory of any state in an ε-neighborhood of {x} should stay
close enough to x, while asymptotic stability requires that γ+(x) = {x}. If x is
the unique equilibrium state in the dynamical system, and {x} is an asymptotically
stable attractor, then ω(y) = {x} and α(y) ∩ {x} = ∅ for all y ∈ B(x) \ {x}.

Let’s now consider a dynamical system (X,T, ϕ) with a state space X ⊆ Rn and
an ODEs transition rule ẋ = g(x), where g : X → X is of class C1.

A state x ∈ X is called Lyapunov stable, if for all neighborhood N(x, ε), there is
a neighborhood N(x, δ) ⊆ N(x, ε), such that y(t) ∈ N(x, ε) for all y ∈ N(x, δ) and
all t ∈ T .

A state x ∈ X is called asymptotically stable, if it is Lyapunov stable, and there
is a neighborhood N(x, ξ), such that limt ↑+∞ d(x, y(t)) = 0 for all y ∈ N(x, ξ).

A state x ∈ X is called exponentially stable, if there is a neighborhood N(x, ε)
and two constants k, λ > 0, such that when t tends to be sufficiently large, for all
y ∈ N(x, ε),

(1.3) d(x, y(t)) ≤ ke−λtd(x, y).

If x is an equilibrium state in the dynamical system (X,T, ϕ), then the motion
x(t) around x can be approximated by its linearization. Let x(t) = x + µ(t), where
µ(t) is a small perturbation, then

µ̇ = g(x+ µ) ≈ g(x) +Dg(x)µ,

with g(x) = 0. We therefore have a linear dynamical system

(1.4) µ̇ = Dg(x)µ,

which is determined by the Jacobian Dg(x). If all the eigenvalues of Dg(x) have
negative real parts, then d(µ(t), 0) will exponentially converge to 0 when t goes to
+∞. It thus suggests that the equilibrium state x should be exponentially stable,
and surely Lyapunov stable.

2.4. Chaos. A quite popular definition of chaos is given by Devaney [16], which
states that a dynamical system is chaotic if

(i) its dynamics sensitively depends on the initial state,
(ii) it is topologically transitive,

(iii) its periodic states are dense in the state space.

However, these three conditions are actually not completely independent of each
other, as we might notice that condition (ii) and (iii) can imply condition (i) in a
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discrete dynamical system (cf., Banks et al. [4]). It thus seems natural to remove
one likely unnecessary condition in the above definition. Notice that some dynamical
systems can be in disorder, even if they have no periodic state at all. In consideration
of this fact, we remove condition (iii), and give the following definition.

Definition. A dynamical system (X,T, ϕ) is called chaotic if

(i) for all x ∈ X and ε > 0, there is a δ > 0 such that d
(
ϕt(x), ϕt(y)

)
> ε for

all y ∈ N(x, δ) at some t ∈ T ,
(ii) for all open S1, S2 ⊆ X, there is some t ∈ T such that ϕt(S1) ∩ S2 6= ∅,

where ϕt(S1) = {ϕt(x) : x ∈ S1}.

The chaotic property can be preserved for all topologically conjugate dynamical
systems, that’s to say, a dynamical system is chaotic if and only if its topologically
conjugation is chaotic. Suppose two dynamical systems (X1, T1, ϕ) and (X2, T2, ψ)
are topologically conjugate, then their transition functions

ϕt : X1 → X1, and ψt : X2 → X2

should satisfy

(1.5) ϕt = φ−1 ◦ ψt ◦ φ,

where φ : X1 → X2. Assume X1 and X2 are both compact, then (X1, T1, ϕ) is chaotic
should directly imply (X2, T2, ψ) is chaotic too, and vice versa.

The sensitivity to the initial state in a chaotic dynamical system can be measured
by the Lyapunov exponent. To some extent, the Lyapunov exponent is determined
by the exponential rate of deviation caused by a small perturbation to the initial
state. Evidently, it does not directly rely on the transition function and the motion,
but on the vector field of the transition and motion. For instance, in a dynamical
system with an ODEs transition rule ẋ = g(x), the Lyapunov exponent at a state
x ∈ X can be obtained by the Jacobian Dg(x).

Generally, in a dynamical system (X,T, ϕ), the Lyapunov exponent at a state
x ∈ X is defined by

(1.6) χ(x) = lim sup
t ↑+∞

log d(x(t), 0)

t
,

where x(t) is the motion ϕx(t) mapping T into X. Moreover,

Definition. A function χ : X → R ∪ {−∞} is called the Lyapunov exponent if

(i) χ(λx) = χ(x) for all x ∈ X and all λ ∈ R \ {0},
(ii) χ(x+ y) ≤ max{χ(x), χ(y)} for all x, y ∈ X,

(iii) χ(0) = −∞.
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3. Iterated Function System

3.1. Discrete Dynamical System. As discussed in Section 2.1 of this chapter,
the transition rule in a discrete dynamical system can be completely determined by
one mapping defined on its state space. Let’s now suppose the state space X is a
metric space with a metric d, and the time domain T is Z.

Definition. A discrete dynamical system on X is a pair (X, f) with xn+1 =
f(xn) for all xn, xn+1 ∈ X and all n ∈ Z, where f : X → X is of class C0.

The trajectory passing through a state x ∈ X is

γ(x) = {fn(x) : n ∈ Z},

and its positive and negative semi-trajectories are

γ+(x) = {fn(x) : n ∈ Z+}, γ−(x) = {fn(x) : n ∈ Z−}.

Evidently, the positive semi-trajectory γ+(x) also represents the motion starting from
the state x.

A state x is an equilibrium state, if γ(x) = {x}, or f(x) = x. A set of states
S ⊆ X is invariant if f(S) = S. Recall that any nonempty ω-limit set should be
invariant, and thus here, we have f

(
ω(x)

)
= ω(x) for all ω(x) 6= ∅.

A set of states A ⊆ X is an attractor, if there is a neighborhood N(A, ε) such
that f(N(A, ε)) ⊆ N(A, ε), and

ω
(
N(A, ε)

)
=
⋂
n∈Z+

fn
(
N(A, ε)

)
= A,

but no proper subset of A has such properties.
A state x (and also the motion γ+(x)) is periodic, if there is a k ∈ Z+ such that

fk(x) = x, and the minimal k ∈ Z+ satisfying fk(x) = x is the period of γ+(x). If
the period of γ+(x) is 1, then f(x) = x, and thus x is actually an equilibrium state.
If the period of γ+(x) is p < +∞, then

(1.7) γ+(x) = {x, f(x), . . . , f p(x)}.

A state x is called finally periodic, if there is an m ∈ Z+ such that fn(x) is a
periodic state for all n ≥ m, or equivalently stating, there is some p ∈ Z+ such that
fn+p(x) = fn(x) for all n ≥ m. A state x is called asymptotically periodic, if there
is a y ∈ X such that

(1.8) lim
n ↑+∞

d
(
fn(x), fn(y)

)
= 0.

If the state space X ⊆ R and it is compact, we will have the following theorem:
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Theorem 1.2 (Li-Yorke). Suppose X is an interval in R, and f : X → X is of
class C0. If there exists a motion of period 3 in (X, f), viz., there are three distinct
states x, y, z ∈ X such that f(x) = y, f(y) = z, and f(z) = x, then there is some
motion of period n in (X, f) for all n ∈ N.

Proof. Let <S denote Sarkovskii’s order on N, then we have

3 <S 5 <S 7 <S · · · <S 2n <S 2n−1 <S · · · <S 22 <S 2 <S 1.

By Sarkovskii’s theorem, if (X, f) has a motion of period m, then it must have some
motion of period m′ with m <S m

′. Since 3 <S n for all n 6= 3, and there is a motion
of period 3 in (X, f), the statement will thus directly follow. �

As defined in Section 2.4 of this chapter, a dynamical system is chaotic if its
dynamics sensitively depends on the initial state, and its states are transitive. For
the moment, a discrete dynamical system (X, f) is called chaotic if it satisfies

(i) for all x ∈ X and any ε > 0, there is a δ > 0 such that d
(
fn(x), fn(y)

)
> ε

for all y ∈ N(x, δ) and some n ∈ Z+,
(ii) for all S1, S2 ⊆ X, there is an n ∈ Z+ such that fn(S1) ∩ S2 6= ∅.

In particular, when X ⊆ R is compact, and f is of class C0, an alternative
definition of chaos can be proposed in the sense of Li and Yorke [38].

Definition. A discrete dynamical system (X, f) is nonperiodically chaotic, if
there is an uncountable set S ⊆ X such that

(i) lim supn ↑+∞ d
(
fn(x), fn(y)

)
> 0 for all distinct x, y ∈ S,

(ii) lim infn ↑+∞ d
(
fn(x), fn(y)

)
= 0 for all distinct x, y ∈ S,

(iii) for all z ∈ X periodic, lim supn ↑+∞ d
(
fn(x), fn(z)

)
> 0 for all x ∈ S.

It might be noticed that nonperiodic chaos is a slightly weaker concept than
chaos itself. That’s to say, if a discrete dynamical system on X ⊆ R is chaotic,
then it must be nonperiodically chaotic as well; but if a discrete dynamical system
is nonperiodically chaotic, it may not be chaotic.

The reason behind such an assertion is constructive. If (X, f) is nonperiodically
chaotic, then there is at most one asymptotically periodic state in S. Now suppose
a state u ∈ X is not asymptotically periodic, then ω(u) should have infinitely many
states. Let V ⊆ ω(u) be the (minimally invariant) kernel of ω(u), and suppose there
is some v ∈ X such that V = ω(v), which hence again contains infinitely many
states. Let U = X \ V , then fn(V ) ∩ U = ∅ for all n ∈ Z+, and therefore V and U
are not transitive, which then implies (X, f) is not chaotic.

3.2. Iterated Function System. Let’s now consider a collection of contractive
functions defined on the state space X with a metric d. Here, a function f : X → X
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is called contractive, if there is a λ ∈ (0, 1) such that d
(
f(x), f(y)

)
≤ λd(x, y) for all

x, y ∈ X.
Let IN denote an index set with N elements for N ≥ 2 finite. Let

F = {fi : i ∈ IN},
where fi : X → X is contractive and of class C0 for all i ∈ IN .

Definition. The pair (X,F ) is called an iterated function system, if (X, fi) is
a discrete dynamical system for all i ∈ IN .

Suppose X is compact, and let Q(X) denote the collection of all the nonempty
compact subsets of X. Then Q(X) with the Hausdorff metric dH is a compact metric
space, where the Hausdorff metric dH on Q(X) can be defined by the metric d on
X, i.e., for all U, V ∈ Q(X),

(1.9) dH(U, V ) = sup
u∈U, v∈V

{d(u, V ), d(v, U)},

in which d(u, V ) = infv∈V d(u, v) and d(v, U) = infu∈U d(v, u).
Define a mapping H : Q(X)→ Q(X), such that for all B ∈ Q(X),

(1.10) H(B) =
⋃
i∈IN

fi(B).

Here, H is called the Hutchinson operator . Moreover, define Hn by the recursion
Hn = H ◦ Hn−1 with H0 = idQ(X), where n ∈ Z and idQ(X) denotes the identity
mapping on Q(X).

Definition. A ∈ Q(X) is called an attractor of (X,F ), if there is a neighborhood
N(A, ε) ∈ Q(X) such that

H
(
N(A, ε)

)
⊆ N(A, ε),

⋂
n∈Z+

Hn
(
N(A, ε)

)
= A,

and no proper subset of A in Q(X) has such properties.

Theorem 1.3. (X,F ) has a unique attractor A with H(A) = A.

Proof. For all fi ∈ F , there is a λi ∈ (0, 1) such that for all x, y ∈ X,

d
(
fi(x), fi(y)

)
≤ λid(x, y).

Let λ = maxi∈IN λi, then λ ∈ (0, 1) as well. Note that for all U, V ∈ Q(X) we have

dH
(
H(U), H(V )

)
≤ sup

i∈IN
dH
(
fi(U), fi(V )

)
≤ sup

i∈IN
λidH(U, V ) ≤ λdH(U, V ),

thus by the Banach fixed point theorem, there is a unique A ∈ Q(X) such that
H(A) = A, and limn ↑+∞H

n(B) = A for all B ∈ Q(X). And clearly, there exists a
neighborhood N(A, ε) ∈ Q(X) serving as a basin of A.
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We then show that any B 6= A in Q(X) can not be an attractor of (X,F ), which
would imply A is the unique attractor of (X,F ), and thus completes our proof. First,
any B ⊃ A can not be an attractor of (X,F ), as for all ε > 0,⋂

n∈Z+

Hn
(
N(B, ε)

)
⊆ A ⊂ B.

Next, any B ⊂ A also can not be an attractor of (X,F ), otherwise we would have

lim
n ↑+∞

Hn
(
N(B, ε)

)
= B ⊂ A,

a contradiction. �

Now consider the space IωN , and for all µ ∈ IωN write

µ = (µn, n ∈ N) = (µ1, µ2, . . . , µω),

where µn ∈ IN for all n ∈ N. The Baire metric between all µ, υ ∈ IωN is

dB(µ, υ) = 2−m,

where m = min{n ∈ N : µn 6= υn}. Clearly, (IωN , dB) is a compact metric space. Let’s
define a mapping C : IωN ×Q(X)→ Q(X), such that for all µ ∈ IωN and S ∈ Q(X),

(1.11) C(µ, S) =
⋂
n∈N

fµω ◦ · · · ◦ fµn+1 ◦ fµn(S).

Note in addition that the motion of any state x ∈ S can be expressed as

(1.12) γ+(x) = {fµn ◦ · · · fµ2 ◦ fµ1(x) : n ∈ N}.

Suppose B(A) = N(A, ε) for some ε > 0 is a basin of the attractor A, then for
all S ⊆ B(A) and µ ∈ IωN , we have C(µ, S) ⊆ A, and hence we can write

(1.13) C
(
IωN , B(A)

)
= A.

It therefore suggests that the attractor A of (X,F ) could be practically attained by
all the ω-permutations of the transition rules in F .

Suppose there is some probability measure on IωN , and in particular, we shall
assume it is stationary, so that it can be fully characterized by a discrete probability
measure on IN . Let π : IN → [0, 1] denote such a probability measure, which satisfies∑

i∈IN π(i) = 1. Thus at any time a function fi stands out in F with a probability
π(i) for all i ∈ IN .

Definition. The triplet (X,F, π) is called an iterated random function system.

Let σn be a random variable, such that Prob(σn = i) = π(i) for all i ∈ IN . The
transition function at a time n ∈ Z can thus be denoted by a randomly indexed
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function fσn . Let a random variable Zn denote the stochastic state in the system
(X,F, π) at the time n ∈ Z, then we have

(1.14) Zn+1 = fσn+1(Zn).

Suppose the initial time is 0, and the initial state is x ∈ X, then the random
motion can be written as

Γ+(x) = {Zn : n ∈ Z+},
in which Z0 = x, Z1 = fσ1(x), and Zn = fσn(Zn−1) for all n ≥ 2. Note that the
stochastic process (Zn, n ∈ N) is a Markov chain, and it is equivalent to the iterated
random function system (X,F, π). Suppose Zn = z, then Prob(Zn+1 ∈ S) for some
S ⊆ X takes the value

(1.15) P (z, S) =
∑
i∈IN

π(i)1S
(
fi(z)

)
,

where

1S(x) =

{
1 if x ∈ S
0 if x /∈ S

When S is a Borel subset of X, there should be an invariant probability measure
ρ, such that

(1.16) ρ(S) =

∫
X

P (z, S)dρ(z) =
∑
i∈IN

π(i)ρ
(
f−1i (S)

)
.

Here, ρ is called a π-balanced measure for (X,F, π), as was proposed by Barnsley
and Demko [5].

Let R(ρ) denote the support of ρ, then R(ρ) = {x ∈ X : ρ(x) 6= 0} and hence

(1.17) R(ρ) =
⋃
i∈IN

fi
(
R(ρ)

)
= H

(
R(ρ)

)
.

By Theorem 1.3, it directly appears that R(ρ) = A, and therefore the support of a
π-balanced measure for (X,F, π) is exactly the unique attractor A of (X,F ) for all
π. As a result, we can see that the attractor A of (X,F ) can also be attained by a
random ω-permutation of the transition rules in F .

Example 1.3. Let’s assume X = [0, 1], I2 = {a, b}, π(a) = π(b) = 0.5, and
F = {fa, fb} with

fa : x 7→ x/3, fb : x 7→ x/3 + 2/3.

The iterated random function system (X,F, π) is clearly equivalent to the following
autoregressive process,

(1.18) Zn+1 = Zn/3 + εn+1 (n ∈ Z+),



18 On Dynamics and Chaos

where Z0 is deterministic, and for all n ∈ N,

Prob(εn = 0) = Prob(εn = 2/3) = 0.5.

The iterated function system (X,F ) has a unique attractor A as a Cantor ternary
set, that is,

(1.19) A =
{∑
n∈N

xn/3
n : (xn, n ∈ N) ∈ {0, 2}ω

}
.

Let

Bk =
{∑
n≥k

xn/3
n : (xn, n ≥ k) ∈ {0, 2}ω

}
(k ∈ N),

then B1 = A and B2 = A/3, and thus

fa(A) = B2, fb(A) = B2 + 2/3,

which yield fa(A)∪ fb(A) = B1. Recall that H = fa ∪ fb is the Hutchinson operator
for (X,F ), we can thus write H(A) = A.

In practice, the attractor A can be realized by a random motion with any initial
state x ∈ [0, 1] in (X,F, π). There are two cases to consider.

If x ∈ A, then Γ+(x) = A almost surely. If x /∈ A, then there should be a finite
sequence (x1, x2, . . . , xk) ∈ {0, 2}k, such that

x =
k∑

n=1

xn/3
n + rk(x),

where rk(x) ≤ 1/3k. Clearly, rk(x) will tend to be 0 when k goes to infinity. Now

we have Z1 = x/3 + ε1 = Y1 + rk(x)/3, where Y1 =
∑k

n=1 xn/3
n+1 + ε1 ∈ A, and in

general, Zm = Ym + rk(x)/3m, where Ym ∈ A and rk(x)/3m ≤ 1/3m+k. Evidently,
there should be an ` such that Z` ∈ A, which suggests Γ+(Z`) = A almost surely.

3.3. Strange Attractor. The notion strange attractor first appeared in a paper
on turbulence by Ruelle and Takens [56], but it was not precisely defined. A formal
definition later was made by Ruelle [55], according to which, however, any attractor
of a chaotic dynamical system would be strange. With further restrictions, we shall
say an attractor of a dynamical system is strange if the dynamical system is chaotic,
and it is a fractal.

Definition. A set is called a fractal , if its Hausdorff-Besicovitch dimension is
greater than its topological dimension.

For all set Z ⊆ X, where X is a metric space with some metric, its topological
dimension dimL(Z) should be in N ∪ {−1, 0,+∞}. In particular, if Z = ∅, then
dimL(Z) = −1; if Z is discrete, then dimL(Z) = 0. In general, if all z ∈ Z can be
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contained in at most n + 1 open sets in any open cover of Z, then dimL(Z) = n; if
there is no such a finite n, then dimL(Z) = +∞.

Let Hd(Z) denote the d-dimensional Hausdorff measure of Z for d ≥ 0, then the
Hausdorff-Besicovitch dimension of Z, denoted by dimH(Z), can be defined by

dimH(Z) = inf{d : Hd(Z) = 0} = sup{d : Hd(Z) = +∞}.
In practice, a more useful notion that can be used to describe the dimension of a

fractal is the box-counting dimension. The lower and upper box-counting dimensions
of a set Z ⊆ X are defined to be

dimB(Z) = lim inf
ε ↓ 0

log n(Z, ε)

log(1/ε)
, dimB(Z) = lim sup

ε ↓ 0

log n(Z, ε)

log(1/ε)
,

where n(Z, ε) denotes the minimal number of sets required for an open ε-cover of Z.
If X is an Euclidean space, and ε is close to 0, we would have

n(Z, ε) ≈ λ(1/ε)d,

where λ > 0 and d ≥ 0.
If dimB(Z) = dimB(Z), the box-counting dimension of Z is said to exist, and can

be defined as
dimB(Z) = dimB(Z) = dimB(Z).

In general, it holds that

dimH(Z) ≤ dimB(Z) ≤ dimB(Z),

and hence we have dimH(Z) ≤ dimB(Z) if dimB(Z) exists.
Let’s return back to the iterated function system (X,F ), and assume X ⊆ Rn.

With regards its unique attractor A, we have dimH(A) = dimB(A), and when A is
strange, by definition we should have

dimB(A) = dimH(A) > dimL(A).

Suppose all fi ∈ F is affine, and moreover, all distinct fi(A) and fj(A) do not
overlap, that’s to say, there is an open set D ⊆ A, such that fi(D)∩fj(D) = ∅ for all
distinct i, j, and

⋃
i∈IN fi(D) ⊆ D. Then dimB(A) = dimH(A) is the unique solution

of the following equation,

(1.20)
∑
i∈IN

λdi = 1,

where λi ∈ (0, 1) is the Lipschitz constant of fi for all i ∈ IN .
A quite intuitive verification of (1.20) is as follows. Note that A =

⋃
i∈IN fi(A),

and all distinct fi(A) and fj(A) do not overlap, thus we have

n(A, ε) =
∑
i∈IN

n
(
fi(A), ε

)
.
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By scaling fi(A) and ε by λi simultaneously, we should see n
(
fi(A), ε

)
= n(A, ε/λi),

and therefore

n(A, ε) =
∑
i∈IN

n(A, ε/λi).

Since n(A, ε) ≈ λ(1/ε)d, we then have (1/ε)d =
∑

i∈IN (λi/ε)
d for ε close to 0, which

directly yields the equation (1.20).

Example 1.4. Let X = [0, 1], and pick c ∈ (2,+∞). We remove the interval
(1/c, 1− 1/c) from [0, 1] to have

C1 = [0, 1/c] ∪ [1− 1/c, 1].

We then remove some middle parts from [0, 1/c] and [1− 1/c, 1] to have

C2 = [0, 1/c2] ∪ [1/c− 1/c2, 1/c] ∪ [1− 1/c, 1− 1/c+ 1/c2] ∪ [1− 1/c2, 1].

In general, Cn+1 = Cn/c∪
(
Cn/c+ (1− 1/c)

)
for all n ∈ N. When n goes to infinity,

we obtain the Cantor set

(1.21) C =
{∑
n∈N

xn/c
n : (xn, n ∈ N) ∈ {0, c− 1}ω

}
,

which is the attractor of (X,F ) for F = {x/c, x/c+ (1− 1/c)}.
Let ε = 1/cn for some n ∈ N, then n(C, ε) = 2n, because we need at least 2n

pairwise disjoint intervals for an open ε-cover of C. It thus appears that

dimB(C) = lim
n ↑+∞

log 2n/ log cn = log 2/ log c.

Since c ∈ (2,+∞), we have dimB(C) ∈ (0, 1). Notice that (X,F ) is an iterated affine
function system, in which these two Lipschitz constants are both 1/c, so dimB(C) is
the unique solution of the equation

(1/c)d + (1/c)d = 1,

which also yields dimB(C) = log 2/ log c.
As for a Cantor ternary set that appeared in Example 1.3, its dimension is equal

to log 2/ log 3 ≈ 0.631 for c = 3.

Example 1.5 (De Rham [13]). Let X ⊆ C be a triangle with vertices 0, a, and
1, such that |a| < 1 and |1− a| < 1. Suppose F = {f1, f2} with

f1(z) = az, f2(z) = (1− a)z + a,

where z denotes the complex conjugate of z. (X,F ) is thus an iterated affine function
system on the complex (Gaussian) plane.
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Suppose a = 1/2 + i
√

3/6, then X is equilateral, and the attractor of (X,F ) is
the Koch curve K. Note that |a| = |1− a| = 1/

√
3, so these two Lipschitz constants

are both 1/
√

3. The dimension of K is the unique solution of the equation

(1/
√

3)d + (1/
√

3)d = 1,

which directly yields dimB(K) = 2 log 2/ log 3 ≈ 1.262.
Suppose |a− 1/2| = 1/2, e.g., a = 1/2 + i/2, then the attractor of (X,F ) turns

out to be the Peano curve P . Since these two Lipschitz constants are now both 1/
√

2,
the dimension of P is the unique solution of the equation (1/

√
2)d + (1/

√
2)d = 1,

and thus dimB(P ) = 2.

4. Application

4.1. Random Utility. Consider a generic agent w in a large group W , and
suppose w has a preference relation by nature. Let X denote a decision state space
for the group W , and let & be a weak order on X such that

(i) either x & y or y & x for all x, y ∈ X,
(ii) x & y and y & z implies x & z for all x, y, z ∈ X.

So & can serve as a rational preference relation for w. In particular, we shall assume
that there is a utility function u : X → R such that for all x, y ∈ X,

x & y ⇐⇒ u(x) ≥ u(y).

Let P(X) be the power set of X. A mapping C : P(X) → P(X) is called a choice
function if ∅ 6= C(Y ) ⊆ Y for all nonempty Y ∈ P(X).

If y ∈ C(Y ) for some y ∈ Y , and meanwhile, u(y) ≥ u(x) for all x ∈ Y , we
say the choice made by w matches to her preference relation. It should be noted
that there are two implicit assumptions under this statement, i.e., the choices made
by w can be perfectly observed, and w can perfectly identify and also intentionally
apply her preference relation. However, it seems that empirical verifications would
be unable to simultaneously support these two intertwined assumptions. The reason
is that observations about the choices made by w are reasonable only if w does make
her choices complying with her preference relation, and on the other hand, the true
preference relation of w can be thought of as identifiable only if observations about
her choices are perfect.

To overcome such difficulties in empirical verifications of consistency of choice and
preference, we have to set one assumption ad hoc true, so that we could verify the
other one. To begin with, if the preference relation of w is supposed to be perfectly
identifiable and intentionally applied by w herself, then it will become possible to infer
it from observations about her choices with some confidence level. This approach
appeared in a study on stochastic utility model estimation by Manski [44].
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Let v : X → R denote a utility function consistent with observations about the
choices made by w. And we shall say v(x) is the observed utility if a choice x ∈ X
has been observed. It thus appears to us that

(1.22) u(x) = v(x) + ε(x),

where ε(x) denotes a “noise” function that might be independently distributed for
all x ∈ X. In particular, the choice x can be assumed to be characterized by n
independently observed attributes, J(x) ∈ Rn, thus v(x) admits a linearly parametric
model v(x) = β′J(x) for β ∈ Rn. In consequence, we have

(1.22′) u(x) = β′J(x) + ε(x),

in which the estimation β̂ is determined by the observed data J(x) for x ∈ S, where
S ⊆ X is a certain sample.

On the other hand, if the choices made by w are supposed to be perfectly observed,
then we could discuss her identification of the true preference relation. In practice,
the true preference relation might be only partially identified by w, but it should
not be totally vague to her, even if she had an extremely limited cognitive ability.
Suppose w has a collection of observable utility functions, which can represent her
identified preference relations in different situations, and all these utility functions
have an identical kernel as her invariant knowledge of her true preference relation.

Let IN be a finite index set with |IN | = N ≥ 2, and let vi : X → R be a utility
function of w for all i ∈ IN . Suppose u : X → R is the kernel utility function of all vi
for i ∈ IN . Let Xu = u(X), then Xu ⊆ R. And for all i ∈ IN , there is a contractive
function fi : Xu → Xu such that vi = fi ◦ u, or vi(x) = fi

(
u(x)

)
for all x ∈ X.

Clearly, {vi : i ∈ IN} on the domain X is now equivalent to F = {fi : i ∈ IN} on the
domain Xu.

Suppose w makes her choices along the time domain Z+ in such a way that at
each time t ∈ N, she picks a function fi ∈ F to form her utility function

(1.23) ut = fi ◦ ut−1,

where ut−1 is her utility function at the time t−1. More concretely, at the initial time
0, the utility function of w is set as her kernel utility function, i.e., u0(x) = u(x), and
at the time 1, her utility function is u1(x) = fi

(
u(x)

)
for some i ∈ IN . In general, at

any time t ∈ N, her utility function is ut(x) = fi
(
ut−1(x)

)
for some i ∈ IN . Here, the

sequence of utility functions (ut(x), t ∈ Z+) can be considered as a general extension
of a normal discounted utility function series, and in terms of time preference, we
actually generalize (&, t ∈ Z+) to (&t, t ∈ Z+), where &t varies across time.

For the moment, we should notice that (ut(x), t ∈ Z+) is completely determined
by the iterated function system (Xu, F ). By Theorem 1.3, we directly see (Xu, F )
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has a unique attractor, say A ⊆ Xu, such that A =
⋃
i∈IN fi(A). It thus suggests

that some kernel utilities in A could be reached by w in the long term.
Let π denote a probability measure on IN , then an iterated random function

system (Xu, F, π) will emerge. By (1.14), we obtain

(1.24) Ut+1(x) = fσt+1

(
Ut(x)

)
(t ∈ Z+),

where U0(x) = u(x), and Ut(x) denotes the random utility function at any t ∈ N.
If fi(x) = ρix for all i ∈ IN , where ρi ∈ (0, 1) and ρi 6= ρj for all distinct i, j ∈ IN ,

then (1.24) will be

(1.24′) Ut+1(x) = ξt+1Ut(x) (t ∈ Z+),

where Prob(ξt = ρi) = π(i) for all i ∈ In and all t ∈ N. Thus at any time t ∈ N, the
random utility function of w is

Ut(x) =
( t∏
n=1

ξn

)
u(x) = exp

( t∑
n=1

log ξn

)
u(x) = exp

(
−

t∑
n=1

log(1/ξn)
)
u(x).

Let δt =
∑t

n=1 log(1/ξn), then the random utility function of w at t ∈ N can be
written as

(1.25) Ut(x) = e−δtu(x).

When t goes to infinity, δt will approach infinity, and thus Ut(x) will approach zero
almost surely for all choice x.

If fi(x) = ρx + ri for all i ∈ IN , where ρ ∈ (0, 1), ri > 0, and ri 6= rj for all
distinct i, j ∈ IN , then (1.24) will be

(1.24′′) Ut+1(x) = ρUt(x) + θt+1 (t ∈ Z+),

in which once more Prob(θt = ri) = π(i) for all i ∈ IN and all t ∈ N. At any time
t ∈ N, the random utility function of w is

(1.26) Ut(x) = ρtu(x) +
t∑

n=1

ρt−nθn.

Note that ρtu(x) will vanish when t goes to infinity, but the remaining part will not
converge almost surely, as a new piece of randomness θt will emerge at each time t.

4.2. Stochastic Growth. Consider an economy with a production function
Y = F (K,L), where Y , K, and L denote the total production, the capital input,
and the labor supply in the economy, respectively. Let y = Y/L and k = K/L, and
suppose F (K,L) is a homogeneous function of degree 1, then Y/L = F (K/L, 1).
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Define f(k) = F (K/L, 1), thus the production technology of a generic agent w in
that economy can be represented by

(1.27) y = f(k) (k ∈ R+).

As typically assumed, f(k) should satisfy that for all k ∈ R+,

f ′(k) > 0, f ′′(k) < 0,

and the following Inada conditions (which are usually named after K. Inada, but also
partly attributed to H. Uzawa [64]),

lim
k ↓ 0

f ′(k) = +∞, lim
k ↑+∞

f ′(k) = 0.

Let’s now introduce a stochastic factor ξ into the economy, so that the production
technology of w can be expressed as

(1.28) y = f(k, ξ) (k ∈ R+).

In case k and ξ are separable, we could consider two fundamental cases, i.e., ξ is an
additive shock to f(k), and ξ is a multiplicative shock to f(k). Similar to the studies
by Mitra, Montrucchio, and Privileggi [46], and Mitra and Privileggi [47], we shall
focus on the latter case, and rewrite the technology (1.28) as

(1.28′) y = ξf(k) (k ∈ R+),

where ξ > 0 is a random variable. In practice, we can assume that the support of
ξ is {λi : i ∈ IN}, where IN is a finite index set with |IN | = N ≥ 2, and there is a
probability measure π on IN , such that Prob(ξ = λi) = π(i) for all i ∈ IN .

In addition, the consumption and investment which are both necessary parts of
a sustainable economy, are denoted by C and E, thus we should have Y = C + E.
Let c = C/L and e = E/L, then the income identity for w is y = c+ e. Suppose the
economy functions on the time domain Z+, so that the economic variables all become
time-dependent, i.e., yt, kt, ct, et, ξt for t ∈ Z+, then the economy can be represented
by the following system, 

yt = ξtf(kt)

yt = ct + et

kt+1 = et

in which k0 6= 0 is the initial capital input, and ξt, ξt′ are independent for all distinct
t, t′ ∈ Z+.

Suppose w has a stationary utility function in her consumption c, u(c) such that
u′(c) > 0 and u′′(c) < 0 for all c ∈ R+, and limc ↓ 0 u

′(c) = +∞, then it clearly appears
that ct > 0 at any time t ∈ Z+. Assume the time preference of w can be characterized
by a regular discounting ρ ∈ (0, 1), then her additive utilities from a deterministic
consumption flow (c0, c1, . . . , ct) for t ∈ Z+, can be written as

∑t
n=0 ρ

nu(cn).
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The steady growth path of the economy is thus determined by the equilibrium of
the decision-making process for w, that is, w maximizes

(1.29) E0

∑
t∈Z+

ρtu(ct),

subject to ct = ξtf(kt) − kt+1 for all t ∈ Z+ with k0 > 0 initially given. Here, Et

denotes the expectation operator at a time t ∈ Z+.
Recall that an optimal consumption flow (ct, t ∈ Z+) should satisfy the following

Euler equation,

(1.30) u′(ct) = ρEt

(
ξt+1f

′(kt+1)u
′(ct+1)

)
.

Since kt+1 = yt − ct, (1.30) is equivalent to

(1.30′) u′(ct) = ρf ′(yt − ct) Et

(
ξt+1u

′(ct+1)
)
,

there should exist a real function ϕ(y) such that ct = ϕ(yt) for all ct in the optimal
consumption flow, which yields kt+1 = yt − ϕ(yt), and thus

yt+1 = ξt+1f(kt+1) = ξt+1f
(
yt − ϕ(yt)

)
.

Let ψ(y) = f
(
y − ϕ(y)

)
, then we have the following stochastic growth process,

(1.31) yt+1 = ξt+1ψ(yt) (t ∈ Z+).

Let XY ⊆ R+ be an invariant support set for yt driven by the process (1.31), so that
yt ∈ XY at any t ∈ Z+. Define gi(y) = λiψ(y) for all y ∈ XY . Let G = {gi : i ∈ IN},
then the stochastic growth sequence (yt, t ∈ Z+) as is determined by (1.31) should
be equivalent to the iterated random function system (XY , G, π).

Corresponding to the optimal consumption flow, the following optimal capital
flow would directly come out,

(1.32) kt+1 = yt − ϕ(yt) = ξtf(kt)− ϕ
(
ξtf(kt)

)
,

which can also be supposed to admit an invariant support set XK ⊆ R+. Define

mi(k) = λif(k)− ϕ
(
λif(k)

)
,

and let M = {mi : i ∈ IN}, then we have another iterated random function system
(XK ,M, π), which in a sense is conjugate to the above one (XY , G, π).

Example 1.6. Assume IN = {a, b}, f(k) = 3
√
k, and u(c) = log c. Let’s suppose

(ξt, t ∈ Z+) is a Bernoulli process with

Prob(ξt = λa) = q, Prob(ξt = λb) = 1− q,
where q ∈ (0, 1), and

1/λ2a < λb < 1 < λa < 1/λb.
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It thus suggests that the shock is either positive or negative, while the negative shock
would not make the economy vanish as λbλ

2
a > 1, and the positive shock would not

make it too expansive as λaλb < 1.
In the optimal consumption flow (ct, t ∈ Z+), we might see that ct = (1−ρ/3)yt,

which yields ϕ(yt) = (1− ρ/3)yt, and thus the optimal capital flow is determined by
the formula

kt+1 = ρyt/3 = ρξt
3
√
kt/3.

Let κt = log kt for all t ∈ Z+, then we have

(1.33) κt+1 = κt/3 + log ξt + log(ρ/3),

which should have an invariant support interval [α, β].
We now have two affine functions,

`a(κ) = κ/3 +
(

log λa + log(ρ/3)
)
, `b(κ) = κ/3 +

(
log λb + log ρ/3)

)
.

Let Λ = {`a, `b}, then ([α, β],Λ) is an iterated function system. Notice that

β/3 +
(

log λa + log(ρ/3)
)

= β, α/3 +
(

log λb + log(ρ/3)
)

= α,

so log λa + log(ρ/3) = 2β/3 and log λb + log(ρ/3) = 2α/3, and thus `a(κ) and `b(κ)
can be also written as

`a(κ) = κ/3 + 2β/3, `b(κ) = κ/3 + 2α/3,

where β > α because of λa > λb. Let z = (κ − α)/(β − α), then Λ on [α, β] can be
transformed into a pair of functions defined on [0, 1], i.e.,

Z = {z/3, z/3 + 2/3}.
It therefore appears that ([α, β],Λ) is equivalent to the iterated function system

([0, 1], Z). By Example 1.3, we know that the unique attractor of ([0, 1], Z) is the
Cantor ternary set, and therefore the attractor of ([α, β],Λ) should be also a Cantor
set, which then conveys that the dynamics of the optimal stochastic growth in the
economy should be essentially chaotic.



CHAPTER 2

On Separability

In the last chapter, we studied a generic time-dependent group whose structure
can be characterized by a dynamical system. However, the collective behavior in such
a group was implicitly assumed to exist independently of its single agents, as if the
group itself were an intentional individual. In this chapter, we shall take a different
perspective to investigate collective behavior in some structured group. In particular,
the structure of a group is assumed to be characterized by the preference relations of
its agents, so that such a group is preference-dependent, and its collective behavior
would now not naturally emerge, but be determined by some embedded aggregation
rule.

Here, we will focus on the aggregation rule to investigate how collective behavior
of a preference-dependent group could be derived from individual behaviors. For the
reason of simplicity, we will study preference relations defined on a multi-dimensional
domain (as a peculiarly simplified representation of group), but not mention at times
that our study has been rooted in group.

1. Introduction

Consider a general domain Σ, on which a rational preference relation can be
defined. Suppose Σ can be formalized as a product set,

Σ =
n∏
i=1

Xi (n ∈ N).

Example 2.1. Let Σ = X1 ×X2 × · · · ×Xn, where Xi ⊆ R for all i, and n ∈ N.
σ ∈ Σ can be a bundle of n different commodities, or an array of n independent
stimulus variables affecting a certain attribute of an observable object.

Let Σ = X × X, where X is a set of sure prospects, then any (x1, x2) ∈ Σ can
represent an uncertain prospect of being x1 and x2 with some allocated probabilities.

Let Σ = X × T , where X is a set of events, and T is a time domain, then any
(x, t) ∈ Σ denotes a realization x at a specific time t ∈ T .

Let Σ = X ×Q, where X ⊆ R+ and Q ⊆ [0, 1], then any (x, q) ∈ Σ can represent
such a gambling that a gambler wins x and loses

√
x with probability q and 1 − q,

respectively.

27



28 On Separability

We will then study rational preferences on such product sets, and in particular,
be interested in such properties as separability and additivity per se in their utility
(value) representations. Such investigations can be found in the books by Fishburn
[19, Chapter 4 & 5], Krantz et al. [34, Chapter 6 & 7], Roberts [54, Chapter 5],
and Wakker [65, Chapter II & III], as well as the contributions by Gorman [26],
Debreu [14], Luce and Tukey [39], Fishburn [20], Karni and Safra [32], Bouyssou
and Marchant [10], and many other authors.

A utility function u : Σ → R is called an additive conjoint representation of a
preference relation on Σ =

∏n
i=1Xi, if for all (x1, x2, . . . , xn) ∈ Σ,

(2.1) u(x1, x2, . . . , xn) =
n∑
i=1

ui(xi),

where ui : Xi → R for all i. A preference relation that admits an additive conjoint
representation is then called additively separable or just additive.

More generally, a utility function u : Σ → R is called a separable representation
of a preference relation on Σ =

∏n
i=1Xi, if there is a function v : Rn → R, such that

for all (x1, x2, . . . , xn) ∈ Σ,

(2.2) u(x1, x2, . . . , xn) = v
(
u1(x1), u2(x2), . . . , un(xn)

)
,

where ui : Xi → R for all i. The aggregation operator v in a separable utility function
is called a separability rule. As a special case, the summation operator in an additive
utility function is an additive separability rule. We shall call a preference relation
that admits a separable representation generally separable or just separable.

The structure of this chapter is arranged as follows. Section 2 aims to connect
the existing studies to our proposed investigations. Four distinct axiomatic systems,
which are respectively based on the solvability, the Thomsen condition, the double
cancellation condition, and the stationarity, are constructed so that they can all
sufficiently generate additive preference structures, with differential capabilities yet.

In Section 3, the Thomsen condition on the plane is studied from the perspective
of web geometry. We first make a more intuitive definition for the Thomsen condition
by employing a transformation operator in the web-covered plane. We next show a
critical lemma stating that a preference relation satisfies the Thomsen condition if
and only if its corresponding 3-web on the plane is hexagonal.

In Section 4, we could then show that the Thomsen condition is also a necessary
condition for the additivity of a preference structure on a general domain. And finally,
we state a theorem to provide an identification rule to check whether a separable
preference structure is actually additive.
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2. Axiomatic Systems

In this section, we will summarize some developed axiomatic systems that can
sufficiently ensure separable preference structures. Before we state these results, we
have to make some formal definitions.

Let & denote a binary relation on the product set Σ =
∏n

i=1Xi. & is called

(i) reflexive, if σ & σ for all σ ∈ Σ,
(ii) transitive, if σ1 & σ2 and σ2 & σ3 imply σ1 & σ3 for all σ1, σ2, σ3 ∈ Σ,
(iii) complete, if either σ1 & σ2 or σ2 & σ1 for all σ1, σ2 ∈ Σ.

A preference relation & on Σ is essentially a binary relation on the same Σ.

Definition. A preference relation & on a domain Σ is rational , if it is reflexive,
transitive, and complete.

If Σ is countable, or Σ is uncountable but & is dense on it, there should be an
isomorphism u : Σ→ R such that & on Σ can be preserved by ≥ on R, or in terms
of utility theory, there is an equivalent utility function u : Σ→ R, such that σ1 & σ2
if and only if u(σ1) ≥ u(σ2) for all σ1, σ2 ∈ Σ.

Suppose & is a rational preference on Σ =
∏n

i=1Xi. If σ1 & σ2 as well as σ2 & σ1,
we shall write σ1 ∼ σ2, where ∼ is called the indifference relation corresponding to &.
Let &i denote the rational preference on Xi induced from & on Σ, and let &−i denote
the rational preference on

∏
j 6=iXj induced from & on Σ, where i ∈ {1, 2, . . . , n}. For

all σ = (x1, x2, . . . , xn) in Σ, one can also write σ = (xi, x−i) for all i ∈ {1, 2, . . . , n},
where x−i denotes the tuple of all the ordered elements in σ except xi.

Definition. A preference relation & on Σ is independent , if (xi, x−i) & (yi, x−i)
is equivalent to xi &i yi for all i ∈ {1, 2, . . . , n}.

Definition. A preference relation & on Σ is solvable, if (xi, x−i) & σ & (yi, x−i)
implies there exists a zi ∈ Xi such that (zi, x−i) ∼ σ for all i ∈ {1, 2, . . . , n}.

We can then construct a somewhat restricted axiomatic system for an additive
preference structure,

Theorem 2.1. If a preference relation & is rational, independent, and solvable
on Σ =

∏n
i=1Xi, then it is additive, and admits an additive conjoint representation.

Sketch of Proof. By the independence condition, (xi, x−i) & (yi, x−i) if and
only if xi &i yi for all i. Since & is solvable on Σ, &i is dense on Xi. Thus there exists
a utility function ui : Xi → R representing &i. By the solvability condition, each xi
is essential, so for all σ ∈ Σ, we can have (xi, x−i) & σ & (xi, y−i). Then we can find
a z−i such that σ ∼ (xi, z−i) by applying the solvability condition n − 1 times. So
there also exists a function u−i :

∏
j 6=iXj → R representing &−i. We hence obtain 2n

functions, u1, u2, . . . , un, and u−1, u−2, . . . , u−n. Note that u−i must be composed of
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all the uj’s for j 6= i, otherwise some xj’s would not be essential. The utility function
u : Σ → R representing & is thus determined by n functions, u1, u2, . . . , un. Notice
that the role of ui in u−j and that of uj in u−i is inverse to each other for all i 6= j,
but the function form of u is constant, thus we must have ui + uj in u. It therefore
comes to us that u =

∑n
i=1 ui, which completes the proof. �

Note that the condition of solvability is a rather strong axiom of separability, as
any factor can be separated from the other n− 1 factors. Debreu [14] presented an
axiomatic system with a weaker separability condition for preference relations on a
two-dimensional domain. To follow this tradition and also to simplify our analysis,
we will focus on two-dimensional domains in the remaining parts of this chapter.

Let Σ = X1 ×X2, where X1 and X2 are general topologically connected spaces,
as was similarly assumed by Debreu [14].

Definition. A preference relation & on X1×X2 satisfies the Thomsen condition,
if (x1, y2) ∼ (y1, x2) and (y1, z2) ∼ (z1, y2) imply (x1, z2) ∼ (z1, x2) for all x1, y1, z1 ∈
X1 and x2, y2, z2 ∈ X2.

If a preference relation & on X1 ×X2 is rational, independent, and satisfies the
Thomsen condition, then it must have an additive structure, and could be represented
by a certain additive utility function. Fishburn [19] generalized the two-dimensional
domain in Debreu’s axiomatic system to an n-dimensional domain for n ≥ 2 finite,
on which the general Thomsen condition can be defined by the relation between
each pair of factors (see Theorem 5.5 in Fishburn [19], pp. 71–76). As a graphic
illustration, Figure 2.1 shows a preference relation satisfying the Thomsen condition
on the real plane R2.

Definition. A preference relation & on X1×X2 satisfies the double cancellation
condition, if (x1, y2) & (y1, x2) and (y1, z2) & (z1, y2) imply (x1, z2) & (z1, x2) for all
x1, y1, z1 ∈ X1 and x2, y2, z2 ∈ X2.

Luce and Tukey [39] proposed a similar axiomatic system to Debreu’s, in which
the Thomsen condition is replaced by the double cancellation condition. The double
cancellation condition is slightly stronger than the Thomsen condition, but again
weaker than the solvability condition. So the range of preference relations that can
be captured by the axiomatic system in Theorem 2.1 is smaller than that proposed
by Luce and Tukey, and even much smaller than that proposed by Debreu.

As a special case of Debreu’s axiomatic system, Fishburn and Rubinstein [21]
stated an axiomatic system on the domain X × T , where X ⊆ R, and T is the time
domain, either discrete as Z or dense on R. According to Debreu’s theorem, if the
time preference & on X × T is rational, independent, and satisfies the Thomsen
condition, there should be an additive conjoint representation µ : X × T → R, such
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that for all (x, t) ∈ X × T ,

(2.3) µ(x, t) = ν(x) + %(t),

where ν : X → R and % : T → R.
Recall that an ordinal utility representation must be invariant to any positively

monotonic transformation, thus we can have another equivalent utility representation
u(x, t) = exp

(
µ(x, t)

)
, such that for all (x, t) ∈ X × T ,

(2.4) u(x, t) = ρ(t)v(x),

where ρ = exp(%) and v = exp(ν).

Definition. A time preference & on X×T is stationary , if (x, t) ∼ (y, s) implies
(x, t+ τ) ∼ (y, s+ τ) for all x, y ∈ X and all t, s, t+ τ, s+ τ ∈ T .

Notice that the stationarity condition means that the induced preference &t on
the time dimension (as a näıve time preference) is linear and independent of the
dimension x, so it is much stronger than the solvability condition.

As shown by Fishburn and Rubinstein [21], if the time preference & on X × T
is rational, independent, and stationary, the additive utility representation will be
quasi-linear, viz., %(t) = αt for α < 0. Thus µ(x, t) = ν(x) + αt. Let β = eα, then
ρ(t) = exp(αt) = βt, where β ∈ (0, 1), and hence the following exponentially scaled
utility representation stands out:

(2.4′) u(x, t) = βtv(x).
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Here, β is the discounting that measures the impatience of the time preference.
In sum, four axiomatic systems that are sufficient for additive representation of a

preference relation on product sets have been presented, viz., these ones based on the
stationarity condition, the solvability condition, the double cancellation condition,
and the Thomsen condition, respectively. Among them, the Thomsen condition is
the weakest one, while the stationarity condition is the strongest one. Once we plan
to study the necessary condition for the additivity and separability of preference
relations on product sets, we should first study the Thomsen condition. In case the
Thomsen condition is not necessary for an additive or separable preference structure,
then all the other stronger ones could not be, either.

3. Thomsen Condition

In this section, we want to reconstruct the Thomsen condition by the theory of
web geometry. We will again consider a two-dimensional domain Σ = X1×X2, where
X1 and X2 are now general metric spaces.

Assume there always exists a diffeomorphism f : Σ → R2 transforming Σ to an
affine domain Σ′ = X × Y of the plane R2. Under the diffeomorphism f , any point
(x1, x2) ∈ Σ is mapped uniquely to a corresponding point (x, y) = f(x1, x2) in Σ′,
and also any smooth curve in Σ is transformed into a corresponding smooth curve
in Σ′. A preference relation & on Σ is again a preference relation on Σ′, as σ1 & σ2
if and only if f(σ1) & f(σ2) for all σ1, σ2 ∈ Σ, where f(σ1), f(σ2) ∈ Σ′.1 Therefore,
the Thomsen condition is satisfied by & on the domain Σ, if and only if it can be
satisfied by the same preference relation on the affine domain Σ′.

In Σ′ = X × Y , through a given point (x, y) there exist infinitely many smooth
curves, each of which can be determined by a mapping g : Σ′ → R, such that g(x, y)
is a constant for all (x, y) on a same curve. Thus any mapping g : Σ′ → R actually
determines a family of smooth curves on Σ′. Let γ denote a regular family of smooth
curves on Σ′. Suppose the collection of all the regular families of smooth curves on
Σ′ can be expressed as

Γ(Σ′) = {γi : i ∈ I},
where I denotes an index set. The mapping that determines the family γi ∈ Γ(Σ′)
is denoted by gi : Σ′ → R for all i ∈ I. We thus have an equivalent collection of
mappings {gi : i ∈ I}, in other words, Γ(Σ′) ' {gi : i ∈ I}.

Definition. {γ1, γ2, γ3} is called a 3-web on Σ′, if γ1, γ2, γ3 ∈ Γ(Σ′).

1It means that an agent’s preference relation as her subjective knowledge over Σ is shaped after
her knowledge on the domain Σ and a generic transformation rule f on such a domain. So her
preference relation can be kept over the domain Σ′ = f(Σ).
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Since γi is solely determined by the mapping gi(x, y) for all i ∈ I, we can also
use {g1, g2, g3} to denote a 3-web {γ1, γ2, γ3}.

Example 2.2. Suppose

g1(x, y) = x+ y, g2(x, y) = x− y, g3(x, y) = xy,

then {x+ y, x− y, xy} is a 3-web on X × Y .
Suppose

gi(x, y) = x+ aiy (i = 1, 2, 3),

where a1 6= a2 6= a3 6= a1, then {x+a1y, x+a2y, x+a3y} is a linear 3-web on X×Y ,
in which all the curves are lines.

A 3-web {γ1, γ2, γ3} is called complete, if

(i) there exists only one curve in the family γi passing any point σ ∈ Σ′,
(ii) any two distinct curves in the same family γi are disjoint,
(iii) any curve in a family γi has only one intersection with any curve in another

family γj, for i, j ∈ {1, 2, 3} distinct.

Note that in a complete 3-web {γ1, γ2, γ3}, there exist exactly three different curves
passing a given point in Σ′.

Now suppose there are three curves Li ∈ γi for i = 1, 2, 3 in a complete 3-web
{γ1, γ2, γ3}, such that L1 ∩L2 ∩L3 = {σ}. For any point σ′ 6= σ on the curve Li, we
define a rule,

(2.5) pij : Li → Lj,

such that a curve in γk passes both σ′ and pij(σ
′) for all distinct i, j, k ∈ {1, 2, 3}.

Notice that pij = p−1ji , so pij ◦ pji is an identity function on Li for all j 6= i.
Although pki ◦ pjk ◦ pij and pji ◦ pkj ◦ pik will both return back to a point in Li,

they are not necessarily identical.
For instance, if we start from a point σ1 ∈ L1, then

p12(σ1) = σ2 ∈ L2, p23(σ2) = σ3 ∈ L3, p31(σ3) = σ4 ∈ L1,

p12(σ4) = σ5 ∈ L2, p23(σ5) = σ6 ∈ L3, p31(σ6) = σ7 ∈ L1.

We shall call the region shaped by the points σ1, σ2, σ3, σ4, σ5, σ6, σ7 a sequentially
constructed hexagon. If σ7 = σ1, such a hexagon is then called closed . In effect, we
can see if p31 ◦ p23 ◦ p12 = p21 ◦ p32 ◦ p13, then

p31 ◦ p23 ◦ p12 ◦ p31 ◦ p23 ◦ p12 = p31 ◦ p23 ◦ p12 ◦ (p21 ◦ p32 ◦ p13)−1

will be an identify function, and thus any sequentially constructed hexagon will be
closed. The next Figure 2.2 shows a closed sequentially constructed hexagon on the
plane which is embedded with a linear 3-web.
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Definition. A 3-web on Σ′ is called hexagonal , if any sequentially constructed
hexagon in Σ′ is closed.

Thomsen [62] proved that a planar 3-web is hexagonal if and only if it is equivalent
to some linear 3-web on the plane. The Thomsen condition for a preference relation
is proposed, largely because it is rather hard to geometrically identify equivalence
conditions between different 3-webs before we know their algebraic representations.

Lemma 2.2. Assume a preference relation & on Σ′ has a utility representation
u : Σ′ → R. & on Σ′ satisfies the Thomsen condition, if and only if the 3-web
{x, y, u(x, y)} on Σ′ is hexagonal.

Let {x, y, w(x, y)} be a complete 3-web on Σ′ = X×Y , where w : Σ′ → R. Define
a transformation operator ./, such that for all (x1, y1) and (x2, y2) in Σ′,

(2.6) (x1, y1) ./ (x2, y2) = (x1, y2),

where x1, x2 ∈ X and y1, y2 ∈ Y . Note that (x1, y2) and (x1, y1) are on a same curve
x = x1 in the family x, and (x1, y2) and (x2, y2) are on a same curve y = y2 in the
family y, then we can set rules so that (x1, y1) on a curve in the family y moves
to (x1, y2) on a curve in the family w(x, y), and moves to (x2, y2) on a curve in the
family x. Thus (x1, y1), (x1, y2), and (x2, y2) will be consecutive in a sequentially
constructed hexagon on {x, y, w(x, y)}.
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Proof of Lemma 2.2. We have three regular families of smooth curves,

g1(x, y) = x, g2(x, y) = y, g3(x, y) = u(x, y),

where x and y are coordinate bases of Σ′, and u(x, y) is determined by the preference
relation & on Σ′, thus {x, y, u(x, y)} is a complete 3-web on Σ′.

If {x, y, u(x, y)} on Σ′ is hexagonal, then we need to show that (x1, y2) ∼ (x2, y1)
and (x2, y3) ∼ (x3, y2) can sufficiently imply (x1, y3) ∼ (x3, y1) for all x1, x2, x3 ∈ X
and all y1, y2, y3 ∈ Y . Note that

(x1, y2) ./ (x2, y3) = (x1, y3), (x2, y3) ∼ (x3, y2),

and also

(x3, y2) ./ (x2, y1) = (x3, y1), (x2, y1) ∼ (x1, y2).

Thus the two sequences of consecutive points (x1, y2), (x1, y3), (x2, y3), and (x3, y2),
as well as (x3, y2), (x3, y1), (x2, y1), and (x1, y2) are in certain sequentially constructed
hexagons. Since {x, y, u(x, y)} is hexagonal, those two sequences should form a closed
hexagon in Σ′. Since (x2, y3) ∼ (x3, y2) and (x2, y1) ∼ (x1, y2), both pairs of points
should be on same curves in the family u(x, y). Thus the remaining two points,
(x1, y3) and (x3, y1), must be also on a same curve in u(x, y), as any closed hexagon
is shaped by 3 curves in x, 3 curves in y, and 3 curves in u(x, y). It now appears that
(x1, y3) ∼ (x3, y1), and thus the Thomsen condition is satisfied by & on Σ′, which
completes the proof of the sufficient part.

If & satisfies the Thomsen condition on Σ′, then

(x1, y2) ∼ (x2, y1), (x2, y3) ∼ (x3, y2), (x1, y3) ∼ (x3, y1),

for all x1, x2, x3 ∈ X and all y1, y2, y3 ∈ Y . We again have

(x1, y2) ./ (x2, y3) = (x1, y3), (x3, y2) ./ (x2, y1) = (x3, y1).

So the sequence of (x1, y2), (x1, y3), and (x2, y3), and also that of (x3, y2), (x3, y1),
and (x2, y1) are on sequentially constructed hexagons.

Note that (x2, y1) and (x3, y1) are on a same curve in y, and (x2, y1) and (x1, y2)
are on a same curve in u(x, y), so (x3, y1), (x2, y1), and (x1, y2) are consecutive points
in a sequentially constructed hexagon. Similarly, (x2, y3), (x3, y2), and (x3, y1) are in
a sequentially constructed hexagon as well. Thus the sequence of the seven points

(x1, y2), (x1, y3), (x2, y3), (x3, y2), (x3, y1), (x2, y1), (x1, y2)

form a closed sequentially constructed hexagon. Since x1, x2, x3 and y1, y2, y3 are all
picked arbitrarily, the 3-web {x, y, u(x, y)} must be hexagonal, which completes the
proof of the necessary part. �
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By applying the transformation operator ./ on Σ′, we can have a more intuitive
illustration of the Thomsen condition.

Let σ1 = (x1, y2), σ2 = (x2, y1), σ3 = (x2, y3), and σ4 = (x3, y2). So σ1 and σ4 are
on the same curve y = y2 in the family y, and σ2 and σ3 are on the same curve x = x2
in the family x. A preference relation & on Σ′ satisfies the Thomsen condition, if
σ1 ∼ σ2 and σ3 ∼ σ4 imply

σ1 ./ σ3 ∼ σ4 ./ σ2,

where σ1 ./ σ3 = (x1, y3) and σ4 ./ σ2 = (x3, y1). Its graphic illustration has been
shown in Figure 2.3.

X

Y

x1 x2 x3

y1

y2

y3

σ1

σ2

σ3

σ4

σ1 ./ σ3

σ4 ./ σ2

Figure 2.3.

Note that

σ3 ./ σ1 = σ2 ./ σ4 = (x2, y2),

and in addition,

σ1 ./ σ4 = σ1, σ3 ./ σ2 = σ2, σ4 ./ σ1 = σ4, σ2 ./ σ3 = σ3.

Let δ ∈ {σ1, σ2} and δ′ ∈ {σ1, σ2} \ {δ}. Let κ ∈ {σ3, σ4} and κ′ ∈ {σ3, σ4} \ {κ}.
We therefore have a more general invariant relation between those two indifference
sets {σ1, σ2} and {σ3, σ4}: for all δ and κ,

(2.7) δ ./ κ ∼ κ′ ./ δ′,

by which the specific implication of the Thomsen condition can be clearly included.
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4. Necessary Condition

The main result of this section is that the Thomsen condition on a general domain
Σ = X1 × X2, which is equivalent to Σ′ ⊆ R2 through a diffeomorphism, is also
necessary for a preference structure on Σ being additive. Thus a rational preference
is additive on Σ can be totally captured by a pair of axioms, viz., the independence
condition and the Thomsen condition.

Theorem 2.3. If a preference relation & on Σ′ = X × Y is additive, then &
must satisfy the Thomsen condition.

Note that any 3-web {γ1, γ2, γ3} ' {x, y, u(x, y)} on Σ′ can represent a certain
class of rational preferences on Σ′, where u : X×Y → R serves as the utility function
representing the family of indifference curves γ3. A 3-web {x, y, u(x, y)} is hexagonal,
if and only if its curvature is zero (cf., Akivis and Goldberg [1], p. 207). Recall that
the curvature of the 3-web {x, y, u(x, y)} can be defined as

(2.8) k(u) = − 1

uxuy

∂2

∂x∂y
log(ux/uy),

where ux = ∂u/∂x and uy = ∂u/∂y.
If u(x, y) is additive, i.e., u(x, y) = u1(x) + u2(y), then

ux/uy = u′1(x)/u′2(y),

where u′1 = du1/dx and u′2 = du2/dy, and thus its curvature k(u) = 0. However, if
u(x, y) is just in general separable, i.e., u(x, y) = v

(
u1(x), u2(y)

)
, where v : R2 → R,

k(u) will not be necessarily zero. For instance, consider

(2.9) u(x, y) = u1(x) + log
(
u1(x) + u2(y)

)
,

in which ux/uy = (u1 + u2 + 1)u′1/u
′
2, then clearly, its curvature

(2.10) k(u) =
(u1 + u2)

2

(u1 + u2 + 1)3
6= 0.

Proof of Theorem 2.3. By the definition of additive preference relation, &
on Σ′ = X × Y admits at least one additive conjoint representation. Let u(x, y) =
u1(x)+u2(y) be such a utility representation, then {x, y, u1(x)+u2(y)} is a 3-web on
Σ′. Define a mapping g that maps any (x, y) ∈ Σ′ to

(
u1(x), u2(y)

)
, then it appears

that g is bijective. Let the image of g be Σ∗ = Z1 ×Z2. We then have an equivalent
3-web {z1, z2, z1 + z2} on Z1 ×Z2. The linear 3-web {z1, z2, z1 + z2} is hexagonal, so
is {x, y, u1(x) + u2(y)} on Σ′. By Lemma 2.2, & satisfies the Thomsen condition on
Σ′, which hence completes the proof. �
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Corollary 2.4. If a preference relation & is additive on a domain Σ which
could be transformed to an affine domain Σ′ ⊆ R2 by some diffeomorphism, then &
satisfies the Thomsen condition.

Proof. Suppose there exists a diffeomorphism f : Σ→ R2, which transforms Σ
to Σ′ = X ×Y . The preference relation & will be again additive on Σ′. By Theorem
2.3, & satisfies the Thomsen condition on Σ′, thus & also satisfies the Thomsen
condition on Σ, as f is bijective between Σ and Σ′. �

As a result, if a rational preference relation & is independent on a general domain
Σ = X1×X2, the Thomsen condition is not only sufficient but also necessary for its
additive structure. By the discussion above based on the curvature, we should see
that the Thomsen condition on Σ′ is too strong for its separability. However, there
still exists some general relation between the separability and the Thomsen condition.
In effect, we will next show that a separable preference structure is additive if and
only if its separability rule can represent an additive preference structure on a proper
subset of R2.

Theorem 2.5. A separable preference relation & on Σ = X1 × X2 with some
separability rule v : R2 → R is additive, if and only if v can represent a preference
relation on u1(X1) × u2(X2) satisfying the Thomsen condition, where ui : Xi → R
for i = 1, 2.

Proof. If v : R2 → R can represent a preference relation &′ on the domain Σ′ =
u1(X1)× u2(X2) satisfying the Thomsen condition, then by Debreu’s theorem [14],
&′ must be additive on Σ′. Thus &′ on Σ′ admits an additive conjoint representation,
v1(x) + v2(y) for all (x, y) ∈ Σ′, where vi : ui(Xi)→ R for i = 1, 2. There then must
be a positively monotonic function g : R → R, such that v(x, y) = g

(
v1(x) + v2(y)

)
can also represent &′ on Σ′ for all (x, y) ∈ Σ′.

Note that for all x = u1(x1) and y = u2(x2), we have the utility representation
for &,

g
(
v1 ◦ u1(x1) + v2 ◦ u2(x2)

)
= v(u1(x1), u2(x2)),

where (x1, x2) ∈ Σ. Scaling v(u1(x1), u2(x2)) by the positively monotonic function
g−1, we obtain another utility representation for &,

u(x1, x2) = v1 ◦ u1(x1) + v2 ◦ u2(x2),
which suggests that & is actually additive on Σ.

On the other hand, if & is separable on Σ with a separability rule v, then &
should admit the specific utility representation u(x1, x2) = v

(
u1(x1), u2(x2)

)
, where

(x1, x2) ∈ X1×X2. Suppose v is not additive on Σ′ = u1(X1)×u2(X2), then v(x, y),
where (x, y) ∈ Σ′, can not be any function like v1(x) + v2(y) up to all positively
monotonic transformation. But it would imply & on Σ can not admit any utility
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function like v1 ◦ u1(x1) + v2 ◦ u2(x2) up to all positively monotonic transformation,
which means& can not be additive, a contradiction. Therefore, v must be additive on
u1(X1)× u2(X2), and by Theorem 2.3, it should satisfy the Thomsen condition. �

Example 2.3. Consider the Cobb-Douglas utility function u(x1, x2) = xα1x
β
2 on

the domain Σ = R+ × R+, where α, β ∈ (0, 1). It can be equivalently expressed as

(2.11) u(x1, x2) = exp(α log x1 + β log x2),

where (x1, x2) ∈ Σ. Note that exp(x+ y) is additive on Σ′ = log(X1)× log(X2), as it
is equivalent to x+ y on Σ′ by the positively monotonic transformation “log”. Thus,
the Cobb-Douglas utility function represents an additive preference relation on Σ.
Evidently, we know it is equivalent to the utility function α log x1 + β log x2.

Example 2.4. Consider a utility function

(2.12) u(x1, x2) = min{αu1(x1), βu2(x2)}
on a general domain Σ = X1 ×X2, where α, β 6= 0, and ui : Xi → R for i = 1, 2. It
is a representation of the Leontief class of utility functions. We can observe that u
is separable with a separability rule “min”. However, it is not additive, as min{x, y}
can not be additive on u1(X1)× u2(X2).





CHAPTER 3

Trading in Limit Order Market

We now move to study some concrete structured group, which usually exists as an
institution in human society, either designed consciously or emerging spontaneously.
For instance, a large group of traders has a structure characterized by the financial
market shaped by such a group, and a group of governments has its essential structure
characterized by a political network with hierarchical connections.

In this chapter, we shall study a specific equity market, the limit order market,
and investigate its price formation and dynamics as the performance of its collective
behavior. In the next chapter, the study will then be devoted to political network.

1. Introduction

This chapter1 aims to investigate and understand the price dynamics in a generic
limit order market, in which the best quotes, as well as the induced spread and mid-
price, are evidently important information carriers for both traders and analysts.
Early studies of prices formation in these financial markets mainly concentrated on
their economic natures, for instance, Demsetz [15] considered the bid-ask spread as a
markup “paid for predictable immediacy of exchange in organized markets” (Demsetz
[15], p. 36), and regarded it as an important source in transaction costs. However,
more recent studies started to explore the dynamics and evolutions appearing in
these financial markets, partly because people might realize that understanding the
processes and dynamics seems very likely more important and more useful than
merely explaining the equilibrium states. And such a tendency seems to be necessary
as well, since the real financial markets created a few catastrophes in the past century,
say in particular, the crash of October 1929, and the crash of October 1987 (cf.,
Sornette [60], pp. 5–7 & 12–15). The present investigations will also follow such a
transformation and, as we have put at the very beginning, study trading processes
in the limit order market.

Most modern stock exchanges adopt electronic order-driven platforms, in which
limit order books operate to match demand with supply, and shape value for time and

1The author would like to acknowledge P. Z. Maymin, P. Pellizzari, M. Tolotti, and the reviewers
of the journal Algorithmic Finance for their comments at different stages when writing and revising
this chapter.
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liquidity. They surely provide opportunities to obtain stylized empirical observations
of the limit order market. There are plenty of investigations published in past few
years. For instance, Lehmann and Modest [36] studied the trading mechanism and
the liquidity in the Tokyo Stock Exchange, Biais, Hillion, and Spatt [9] studied the
limit order book and the order flow in the Paris Bourse, Harris and Hasbrouck [29]
measured the performance of the SuperDOT traders in the NYSE, and Al-Suhaibani
and Kryzanowski [2] analyzed the order book and the order flow in the Saudi Stock
Exchange.

As for theoretical understandings of the limit order market, the approaches of the
existing studies might be roughly separated into two distinct categories, fortunately,
which would also supply concrete cases in that methodological transformation as
we mentioned before. Namely, one is to explain the performance of a limit order
market and its stable states by modeling the behavior of traders in equilibrium.
While the other is to consider the limit order market as a “super-trader” in order to
either explain or predict its behavior statistically. The first category understands the
strategic behavior of traders and generates testable implications by capturing some
attributes of traders, for instance, being informed versus being uninformed as used
by Kyle [35], and also Glosten and Milgrom [25], time preference used by Parlour
[51], and patience versus impatience used by Foucault, Kadan, and Kandel [22].
The second category analyzes the limit order market by assuming there exist a few
statistical laws for the dynamics or processes in the market. It is somewhat able to
catch certain profiles of the market, say notably, fat tails of the price distribution,
concavity of the price impact function, and the scaling law of spread to orders (see
Smith et al. [59], and Farmer, Patelli, and Zovko [18]).

Here, we will take an intermediary position between these two quite different
methodologies. That’s to say, we not only agree that the performance of a limit
order market and its evolution can be determined by the behavior of rational traders
involved in the market, but also keep in mind that statistical mechanics could be
fairly important in its dynamics and process. For this reason, we would suppose
there is a large population of traders in a limit order market, and assume each trader
in the population is rational, in the sense that her behavior is always strategically
optimal in any game-theoretic framework. In practice, we assume that a rational
trading decision in a very short time interval, as a quasi-static equilibrium, can be
represented in terms of conformity with the optimal price distribution of the order
book, which has a fine meaning of collective rationality. Evidently, the notions of
individual rationality and collective rationality are thus supposed to be determined
interchangeably.

In general, we will study how individual traders affect the price dynamics in
the limit order market, how different trading blocks influence the stability of the
market, how a piece of randomness in a trading system can stochastically enhance
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its systemic stability, and why the market would evolve more predictably, in case
we can control certain factors of the market. In brief, it aims to clarify a dynamical
trading mechanism in the limit order market.

The writing is organized as follows. The first section is a general introduction
to the literature, the methodology, the structure, and some awaiting questions. And
the last section is mixed of a summary and some additional remarks on instability
and stochastic stability.

In Section 2, we first construct a basic modeling framework, and introduce atomic
trading schemes as the necessary knowledge for traders in the limit order market.
We then develop the switching laws for appearances of different types of traders, and
show that the market capacities of accepting limit-type and market-type traders can
be measured by floor functions of the log-scaled spread, and similarly the capacities
of accepting buy-type and sell-type traders can be measured by floor functions of the
log-scaled mid-price. These results are critical to the upcoming probabilistic setting
of a random trading process.

In Section 3, we first study deterministic trading processes in a dynamical trading
system from a combinatorial perspective. We recognize sufficient conditions for its
general instability, and identify the necessary condition for its stability — any trading
process should contain at least one reducible trading block. We next study stochastic
trading processes with some certain probabilistic structures. We practically introduce
two fundamental concepts — kernel region and buffering region — and show that
the dynamical trading system will be stochastically stable in the kernel region, if its
kernel region is moderately large and its buffering region is nonempty.

In Section 4, we would check the robustness of stochastic stability for a regular
uncontrolled trading system, by setting its kernel region controlled to have some
restricted properties. We show that the controlled dynamical trading system could
be still stochastically stable, even if either its range of the spread or its range of the
mid-price is extremely small. And thus, in a general sense, the stochastic stability
of a regular trading system is robust.

2. Atomic Trading Scheme

2.1. Preliminary Framework. Consider a generic order-driven market with a
large population of traders, whose attributes can be characterized by their trading
directions and demands for the liquidity. As usual, the trading direction is either
buying or selling initiation, while the liquidity demand determines the type of a
submitted order, namely either a limit order or a market order.

The group of traders can thus be partitioned into four pairwise disjoint subgroups,
each of which includes homogeneous traders, according to these two kinds of binary
classification. It then appears that we have only four different types of traders:
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(i) a buyer submitting a limit order,
(ii) a buyer submitting a market order,

(iii) a seller submitting a limit order,
(iv) a seller submitting a market order.

Let σ(1), σ(2), σ(3), and σ(4) denote these four types, where σ : i 7→ σ(i) is a normal
permutation function defined on {1, 2, 3, 4}. Let the type space be Σ4, then

Σ4 = {σ(1), σ(2), σ(3), σ(4)}.

Evidently, any trader in the population must be of a unique type in Σ4.
Assume that the depth of the limit order book is equal to the trading volume of

any new order, thus a new transaction will either clear a limit order or add a more
attractive limit order on the market, once there do not exist queued and hidden
orders. So traders of any type in Σ4 must affect the limit order book. We therefore
call such traders marginal traders , in the sense that the (best) quotes will be definitely
updated by their submitted orders.

Let the best bid, best ask, bid-ask spread, and mid-price in an order book be b,
a, s, and m. The (best) bid-ask pair is denoted by (b, a) or w. Note that s = a− b
and m = (b+ a)/2. More generally, we define a spread function

s : w 7→ s(w),

such that s(w) = a− b, and define a mid-price function

m : w 7→ m(w),

such that m(w) = (b+ a)/2, where w = (b, a).
Let the time domain be Z. At each time t ∈ Z, the time-dependent bid-ask pair

will be denoted by (bt, at) or wt. Once the time t is in the future, we introduce a two-
dimensional random variable Dt to represent that unrealized bid-ask pair (Bt, At),
where Bt and At are stochastic versions of bt and at, respectively. Here, the normal
notions of volatility and unpredictability could apply to Bt, At, and even Dt.

Observe that there typically exists a tick size as the minimal change of prices in
the market. Let τ > 0 denote it, then we have s > 0, and moreover, s ≥ τ . Here,
we shall set a stricter condition for the lower bound of the bid-ask spread, that’s to
say, there is a lower bound s > τ , such that s ≥ s at any time.

Naturally, there also exists an upper bound of the best ask a, in virtue of the
limited value of any security for all trader. Let a denote it. Besides that, note that
b ≥ 0, otherwise there would be no demand in the market, as the inverse of even the
best bid would exist as a part of the ask side of the market. As a result, the bid-ask
pair (b, a) should be located within a compact domain W ⊂ R2, which is defined by
b ≥ 0, a ≤ a, and a − b ≥ s. In the b-a plane, W can be geometrically represented
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by a triangle, whose vertices are (0, s), (0, a), and (a − s, a), which has been shown
in Figure 3.1.

b

a

0

s

a

a− s

W

Figure 3.1.

Suppose that the ordered quotes on both sides of the order book are näıvely
distributed over [0, b] and [a, a]. In addition, we assume that the difference between
adjacent quotes on the same side of the order book should be proportional to the
bid-ask spread. This assumption as an empirical fact was found and statistically
tested by Biais, Hillion, and Spatt [9] using data from the Paris Bourse, and also
supported by Al-Suhaibani and Kryzanowski [2] with evidence from the Saudi Stock
Exchange. Furthermore, we set the difference of adjacent quotes equal to α(a−b) on
the ask side of the book, and β(a−b) on the bid side of the book, where α, β ∈ (0, 1).

The upper quote next to the best ask a is thus equal to a+ = a + α(a− b), and
the lower quote next to the best bid is equal to b− = b− β(a− b). Let’s assume the
ratio 〈β, 1, α〉 of the differences between these four consecutive prices b−, b, a, a+ in
the order book (see Figure 3.2) is an indicator of optimal information aggregation or
market efficiency in a very short time interval. That’s to say, prices, which conform
to such a ratio, suggest that the market should be in a quasi-static equilibrium, so
that there is no profitable perturbation that could emerge in that short time interval.
In practice, the values of α and β can be roughly set as 1/2, which was proposed by
Biais, Hillion, and Spatt [9].
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0 b− b a a+ a

β 1 α

Figure 3.2.

2.2. Evolution of Bid-Ask Pair. Suppose that a marginal trader gets to the
market at the time t, just after the bid-ask pair (bt, at) forms, thus she has all the
information on the market, at and before the time t. Her trading decision at t can
be denoted by a price, say pt. If she submits a limit order, then bt < pt < at, while
if she submits a market order, we have either pt ≥ at or pt ≤ bt. If she is a buyer,
then pt ≤ at, while if she is a seller, then pt ≥ bt. Recall that we have assumed the
order book’s depth at the quotes is equal to the trading volume of any new order.
So a market order will definitely clear one of the two limit orders at the best quotes,
and the cleared previous limit order will be replaced by a less attractive one. And a
limit order will surely lower the bid-ask spread, and improve one of the best quotes.

Type σ(1). If the marginal trader is a buyer and submits a limit order, then the
best bid bt+1 at the time t + 1 will be pt = bt + ρ, where ρ > 0, and the best ask
at+1 at the time t+ 1 will remain unchanged. Suppose the marginal trader’s decision
process can be described by her maximizing the utility function of pt or equivalently
ρ, say u(pt) = u(ρ + bt), where u is concave in ρ. By the requirement of rationality,
we have ρ∗ ∈ argmaxρ u(pt), subject to ρ∗ > 0 and at − bt − ρ∗ ≥ s. According to
our assumption on the optimal structure of the limit order book in a very short time
interval around t, ρ∗ should comply with the ratio 〈β, 1〉 on the bid side, which hence
implies

(3.1) ρ∗ = β(at − bt − ρ∗),
so ρ∗ = β

1+β
(at − bt). Thus bt+1 = 1

1+β
bt + β

1+β
at, and at+1 = at. Or wt+1 = wtS1,

where

S1 =

(
1

1+β
0

β
1+β

1

)
,

and wt+1 is the realization of the random variable Dt+1.
After this trade of limit order on the bid side, the spread st = at−bt and mid-price

mt = (bt + at)/2 will be updated respectively to

st+1 =
1

1 + β
st, mt+1 = mt +

β

2(1 + β)
st.

Note that st+1 ≥ s, so st ≥ (1 + β)s. The marginal trader is of type σ(1), only if
st ≥ (1 + β)s. And if she is of type σ(1), she will choose an optimal improvement
ρ∗ ≥ βs.
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Type σ(2). If the marginal trader is again a buyer, but now she submits a market
order hitting at, then the best ask at+1 at the next period will be at + α(at − bt),
and the best bid bt+1 will remain same as bt. Here, her decision process is overlaid
with the principle of price-time priority employed in the limit order market. So her
decision set is the singleton {at}, which then implies that pt = at. Consequently, we
have bt+1 = bt and at+1 = −αbt + (1 + α)at. Or wt+1 = wtS2, where

S2 =

(
1 −α
0 1 + α

)
.

After this trade of market order on the bid side, the new spread and mid-price
will be

st+1 = (1 + α)st, mt+1 = mt +
α

2
st.

Note that st+1 ≤ a, so st ≤ a/(1 + α). The marginal trader is of type σ(2), only if
st ≤ a/(1 + α).

Type σ(3). If the marginal trader is a seller, and she submits a limit order, then
the best ask at+1 at the time t + 1 will be at − θ, where θ > 0, and the best bid
bt+1 at the time t + 1 will remain same as bt. Similar to the type σ(1), this type
of marginal trader’s decision process can be described as maximizing her utility
v(pt) = v(−θ + at), where v is convex in θ. Her decision will admit the optimal
choice θ∗ ∈ argmaxθ v(pt), subject to θ∗ > 0 and at− θ∗− bt ≥ s. By the assumption
that the optimal ratio 〈1, α〉 on the ask side represents the quasi-static equilibrium
around the time t in the market, we have

(3.2) θ∗ = α(at − θ∗ − bt),

so θ∗ = α
1+α

(at − bt). Thus bt+1 = bt, and at+1 = α
1+α

bt + 1
1+α

at. Or more concisely,
wt+1 = wtS3, where

S3 =

(
1 α

1+α

0 1
1+α

)
.

After this trade of limit order on the ask side, the spread and mid-price will be
updated to

st+1 =
1

1 + α
st, mt+1 = mt −

α

2(1 + α)
st.

Similar to the type σ(1), we have st ≥ (1 + α)s, since st+1 can not be less than s.
The marginal trader is of type σ(3), only if st ≥ (1 +α)s. And if she is of type σ(3),
she will choose an optimal improvement θ∗ ≥ αs.
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Type σ(4). If the marginal trader is a seller and submits a market order hitting
bt, then the best bid bt+1 at the time t + 1 will be bt − β(at − bt), and the best
ask at+1 will remain unchanged as at. Her decision is restricted to choosing pt to
maximize her utility subject to pt ∈ {bt}, so the optimal choice is pt = bt. We have
bt+1 = (1 + β)bt − βat and at+1 = at. Or wt+1 = wtS4, where

S4 =

(
1 + β 0
−β 1

)
.

After this trade of market order on the ask side, we will have

st+1 = (1 + β)st, mt+1 = mt −
β

2
st.

Similar to the type σ(2), we should have st ≤ a/(1 + β). And only if st ≤ a/(1 + β),
the marginal trader could be of type σ(4).

Type Space. Observe that any spread s can increase to (1 + α)s or (1 + β)s,
and decrease to s/(1 + α) or s/(1 + β) after a new order, so the maximal difference
generated by α and β could be |α − β|s. Since a � s in most normal limit order
markets, and both α and β are roughly close to 1/2, |α−β|s will be extremely small
in regard to a − s. Therefore, we can, without loss of generality, assume α = β to
set |α − β|s exactly equal to 0. The ratio of 〈β, 1, α〉 will then be replaced by the
simpler one, 〈α, 1, α〉.

Consider an arbitrary initial bid-ask pair (b, a). If a marginal trader of type σ(1)
comes to the market, the bid-ask pair in the next period will be (b+, a), where b+ > b.
If the marginal trader is of type σ(2), it will be (b, a+), where a+ > a. If the marginal
trader is of type σ(3), it will be (b, a−), where a− < a. Finally, if the marginal trader
is of type σ(4), it will be (b−, a), where b− < b. Note that

b+ − b = a− a− =
α

1 + α
s, a− b+ = a− − b =

s

1 + α
,

and also

a+ − a = b− b− = αs, a+ − b = a− b− = (1 + α)s.

The types σ(2) and σ(4) will cause a greater bid-ask spread than s, namely (1 +α)s,
while the types σ(1) and σ(3) will cause a smaller bid-ask spread than s, namely
s/(1+α). In fact, σ(2) and σ(4) are both market-type, while σ(1) and σ(3) are both
limit-type (see Figure 3.3).

By similar computations as above, we can obtain

a+ b+ = 2m+
α

1 + α
s, a+ + b = 2m+ αs,

and also

a− + b = 2m− α

1 + α
s, a+ b− = 2m− αs.
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The types σ(1) and σ(2) will generate a new mid-price greater than m, while the
types σ(3) and σ(4) will generate a new mid-price smaller than m. We clearly see
that σ(1) and σ(2) are both buy-type, while σ(3) and σ(4) are both sell-type (see
again Figure 3.3).

(b, a) (b+, a)

(b, a+)

(b, a−)

(b−, a)

Limit

Market Buy

Sell

σ(1)

σ(2)

σ(3)

σ(4)

Figure 3.3.

2.3. Capacity and Switching Law. From the discussions on trading decisions
of different marginal traders, we can see how the bid-ask spread and mid-price develop
in an iterative way. Notice that a limit order will change the bid-ask spread from s
to s/(1 + α), while a market order will change it from s to (1 + α)s. It appears that
any s will converge to infinity after sufficiently many market orders, and any s will
converge to zero after infinitely many limit orders. Recall that s should be bounded
within the interval [s, a] (a line a = b + s should pass W , see Figure 3.1), so when
s is too close to its bounds, the market should have stability incentives to make s
bounce away against them. The mid-price m has a similar internal stability scheme,
as m should be bounded within the interval [s/2, a− s/2] (a line a+ b = 2m should
pass W , see also Figure 3.1). Quite intuitively, we shall say such internal stability
schemes originate in some hidden “gravitational forces” in the market, in the sense
that they can control the appearances of different types of orders, and determine
their switching possibilities.
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We should admit that the force related to the bid-ask spread and that related
to the mid-price should have different actions on the market, but similar analytical
natures. In consideration of such facts, we will mainly study the force related to the
bid-ask spread, and yet we will directly state similar results on the force related to
the mid-price at the end of this subsection.

To investigate the gravitational force for the bid-ask spread, we first concentrate
on such spreads that are very close to either s or a, so that we could easily see its
working principles.

If the spread is sufficiently great, the hidden force will attract limit-type traders,
σ(1) and σ(3), and repel market-type traders, σ(2) and σ(4), but of course doesn’t
necessarily reject them until the spread is close enough to the upper bound a.

On the other hand, if the bid-ask spread is extremely small, then such a hidden
force will attract market-type traders and repel limit-type traders, and it will reject
limit-type traders once the spread is close enough to s.

Formally stating, the market with a spread s only accepts traders of type σ(2)
and type σ(4), if

s ≤ s < (1 + α)s.

Suppose there exists a nonempty interval ((1 − γ)a, a], where 0 < γ < 1 and
(1− γ)(1 + α) ≤ 12, or equivalently,

α/(1 + α) ≤ γ < 1,

under which the market will never accept any more market-type trader. Thus the
market with a spread s only accepts traders of type σ(1) and type σ(3), if

(1− γ)a < s ≤ a.

In the remaining interval,

(1 + α)s ≤ s ≤ (1− γ)a,

the market can accept traders of any type in Σ4. In fact, [s, a] is now partitioned
into three pairwise disjoint intervals, as shown in Figure 3.4.

sτ s (1 + α)s (1− γ)a a

σ(2)/σ(4) σ(1)/σ(3)

Figure 3.4.

2This inequality gives a necessary condition for a zero-capacity of accepting market-type traders.
If we assume (1− γ)(1 + α) = 1, although we could have less parameters, there would be also less
room for interesting analysis.
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We then establish a result stating that the capacity of accepting limit-type traders
in the limit order market can be measured by a function of the bid-ask spread.

Proposition 3.1. The maximal number of limit-type traders that can be accepted
continuously by a limit order market with a spread s, is determined by the function

(3.3) z(s) =

⌊
log s− log s

log(1 + α)

⌋
.

Proof. Define a sequence of consecutive intervals,

[(1 + α)is, (1 + α)i+1s),

for i ∈ {0, 1, . . . , n}, and

n = max{i ∈ Z : (1 + α)i ≤ a} − 1.

For all s ∈ [s, (1 + α)n+1s), there is a unique j(s) ∈ {0, 1, . . . , n}, such that

s ∈ [(1 + α)j(s)s, (1 + α)j(s)+1s).

We want to show that z(s) = j(s) by induction. If j(s) = 0, then s ∈ [s, (1+α)s),
and the limit order market will reject limit-type orders, so z(s) = 0. Assume z(s) =
j(s) for all j(s) ≤ k, and consider j(s) = k+1 such that s ∈ [(1+α)k+1s, (1+α)k+2s).
After a marginal trader of type σ(1) or type σ(3) comes to the market, s will be
updated to s′ = s/(1 + α) ∈ [(1 + α)ks, (1 + α)k+1s). By the assumption, we know
z(s′) = k, so z(s) = z(s′) + 1 = k + 1 = j(s).

If s ∈ [(1+α)n+1s, a], then s ∈ [(1+α)n+1s, (1+α)n+2s), as (1+α)n+2s > a. Here
j(s) = n + 1, so we have z(s) = n + 1 = j(s) by induction, simply as z(s′) = j(s′)
for all j(s′) = n.

Therefore, z(s) satisfies

(1 + α)z(s)s ≤ s < (1 + α)z(s)+1s,

and thus we have

z(s) ≤ log s− log s

log(1 + α)
< z(s) + 1,

which exactly defines the floor function. �

We can thus state that there is an exponential law of the bid-ask spread s to the
market’s capacity of accepting limit-type traders n,

(3.4) s = (1 + α)ns,

where n ∈ [z(s), z(s) + 1).
To a certain extent, the appearance probability of a new limit-type trader should

be simply determined by its capacity of accepting limit-type traders. Since the
capacity is a function of the spread, that probability should be also a function of the
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spread. Let f : [s, a] → [0, 1] be such a function3. Since the log-scaled spread has
been used to measure the capacity, f(s) is actually a function of log s, and moreover,
we suppose f(s) is positively linear in log s. Thus we could define f(s) more precisely
in the following way. If s ∈ [(1 + α)s, (1− γ)a], then

(3.5) f(s) = k1 log s+ k2,

where k1 ≥ 0 and k2 are constants depending on s, a, α, γ. If s ∈ [s, (1 + α)s), then
f(s) = 0. And if s ∈ ((1− γ)a, a], then f(s) = 1.

Similar to Proposition 3.1, a result on the capacity of accepting market-type
traders in the market can be proposed, and yet its proof will not be provided, as its
logic is nearly the same as that of Proposition 3.1.

Proposition 3.2. The maximal number of market-type traders which can be
accepted continuously by a limit order market with a spread s, is determined by the
function

(3.6) y(s) =

⌊
log((1− γ)a)− log s

log(1 + α)
+ 1

⌋+
,

where bxc+ = max{bxc, 0}.

Evidently, there is also an exponential law of the bid-ask spread s to the market’s
capacity of accepting market-type traders n,

(3.7) s ∝ (1 + α)−na,

where n ∈ [y(s), y(s) + 1).
The appearance probability function g : [s, a]→ [0, 1], which assigns a probability

of a new market-type trader appearing in the market to any spread s, can be defined
as a negatively linear function of log s. Concretely, if s ∈ [(1 + α)s, (1− γ)a], then

(3.8) g(s) = k3 log s+ k4,

where k3 ≤ 0 and k4 are again constants determined by s, a, α, γ. If s ∈ ((1−γ)a, a],
then g(s) = 0. And if s ∈ [s, (1 + α)s), then g(s) = 1.

Note that, in any case, a new trader appearing in the market is either limit-type
or market-type, that’s to say, we have f(s) + g(s) = 1 for all s. Intuitively, the
probabilities f(s) as well as g(s) at any s can be thought of to be a measure of
switching possibility between the limit-type and market-type traders in the market.
We can thus rigorously state such a switching law between limit type and market
type as follows:

3Note that f(s) is not a probability measure over the spread domain [s, a], as we are not
considering the uncertainty in the spread, but the uncertainty in the appearance of different types
of traders at any deterministic spread s.
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(i) If s ∈ [s, (1 + α)s), the probability of switching from limit type to market
type is 1, and that of switching from market type to limit type is 0.

(ii) If s ∈ ((1− γ)a, a], the probability of switching from market type to limit
type is 1, and that of switching from limit type to market type is 0.

(iii) If s ∈ [(1 + α)s, (1 − γ)a], the probability of switching from limit type
to market type is decreasing according to g(s), while the probability of
switching from market type to limit type is increasing according to f(s).

As for the mid-price as the counterpart of the spread, we can also develop, through
a highly similar reasoning process, the switching law between buy type (i.e., type
σ(1) and σ(2)) and sell type (i.e., type σ(3) and σ(4)). Once again, we partition the
mid-price domain [s/2, a− s/2] into three pairwise disjoint intervals,

[s/2, (1 + δ)s/2), [(1 + δ)s/2, (1− ε)(a− s/2)], ((1− ε)(a− s/2), a− s/2],

where δ > 0 and δ/(1 + δ) ≤ ε < 1, as we need initially assume 0 < ε < 1 and
(1 + δ)(1− ε) ≤ 1. In short, we shall directly state that switching law between buy
type and sell type as follows:

(i) If m ∈ [s/2, (1 + δ)s/2), sell type will switch to buy type for sure.
(ii) If m ∈ ((1− ε)(a− s/2), a− s/2], buy type will switch to sell type for sure.
(iii) In the remaining domain of m, the probability of switching from buy type

to sell type is increasing with logm, and that of switching from sell type to
buy type is decreasing with logm.

3. Iterated Trading Process

3.1. Sequential Trading. Define four linear functions mapping W to itself,

fi(w) = wSi (i ∈ {1, 2, 3, 4}),
where S1, S2, S3, S4 are 2×2 matrices as defined in Section 2.2 of this chapter. Recall
that β in S1 and S4 are now replaced by α. Let F be the collection of these four
functions, then F = {f1, f2, f3, f4}.

For each i ∈ {1, 2, 3, 4}, and all given w ∈ W , define a convex set

Li(w) = {λw + (1− λ)wSi : 0 ≤ λ ≤ 1}.
Notice that Li(w) is actually the line segment between w and wSi in the b-a plane.
More precisely, we redefine fi(w) to be

fi(w) ∈
{ {wSi} if wSi ∈ W
Li(w) ∩ ∂W if wSi /∈ W

where ∂W denotes the boundary of the closed domain W . Since both {wSi} and
Li(w) ∩ ∂W are singletons, fi(w) will take either the value of wSi or the unique
element in Li(w) ∩ ∂W , hence it is essentially a well-defined function.



54 Trading in Limit Order Market

We should notice that the domain W will then have an absorbing barrier, in such
a sense that the dynamics induced by any fi ∈ F will be always bounded within
W . To state the sharp distinction between a state absorbed on ∂W and a state in
W \ ∂W , we shall propose two useful notions to describe the states in ∂W . If the
state of a limit order market is first absorbed on ∂W at a time t, we say the market
is unstable before the time t, and it is in a crash or catastrophe at and after the time
t.

Definition. The pair (W, fi) is called a trading system generated by the trader
of type σ(i) for all i ∈ {1, 2, 3, 4}.

Each trading system (W, fi) for i ∈ {1, 2, 3, 4} can create a certain dynamics of
bid-ask pairs in the domain W . For any initial state w ∈ W , the bid-ask pair in the
trading system (W, fi) will eventually hit the point wi ∈ ∂W , where

w1 = (a− s, a), w2 = (b, a), w3 = (b, b+ s), w4 = (0, a).

These generic states are also shown geometrically in the b-a plane (see Figure 3.5).
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w w1
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Figure 3.5.

Proposition 3.3. If a fixed-type marginal trader repeatedly comes to a limit
order market, then the market starting from any initial state in W is unstable.
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Proof. Consider any initial state w = (b, a) in W . After n forward periods with
the marginal trader of type σ(1), the bid-ask pair will be wSn1 , which will converge
to (a, a), if n goes to infinity. But in the trading system (W, f1), the bid-ask pair
should always stay in W , thus the last bid-ask pair remaining in the trading system
is (a − s, a) ∈ ∂W . It means that the trading system will monotonically move to a
crash, and hence it is unstable. Similar arguments can be made for the other three
types, and they will complete the proof. �

In Proposition 3.3, we actually consider a countably infinite sequence of marginal
traders with a constant type, {q, q, . . . } for all q ∈ Σ4. It appears to us that the
trading system involved with {q, q, . . . }must be unstable. In general, we can consider
a countably infinite sequence of marginal traders with variable types, {qt, t ∈ Z},
where qt ∈ Σ4 for all t ∈ Z, and investigate the stability of the trading system
involved with {qt, t ∈ Z}. Evidently, the set of all such {qt, t ∈ Z} can be denoted
by Σω

4 .
If the type of marginal trader at a time t is qt = σ(i), the atomic trading scheme

functioning at that time will be fi for all i ∈ {1, 2, 3, 4}. Thus the permutation
function σ can relate the functioning scheme fi ∈ F to the marginal trader of type
σ(i) ∈ Σ4.

Definition. The triplet (W,F, σ) is called a dynamical trading system or an
iterated trading system.

Since (W, fi) is a discrete dynamical system for all fi ∈ F , (W,F ) is essentially
an iterated function system. In the definition of dynamical trading system, σ is
introduced additionally so as to determine the functioning schemes in (W,F ) for all
sequence of marginal traders in Σω

4 . Recall that F has a parameter α ∈ (0, 1), so the
dynamical trading system (W,F, σ) depends on α as well.

First of all, we are interested in identifying certain trading blocks in a sequence
of traders that will never change the state of the dynamical trading system (W,F, σ).
Notice that S1S4 = I and S2S3 = I for all α ∈ (0, 1), where I denotes the identity
matrix of order 2, thus {σ(1), σ(4)}, {σ(4), σ(1)}, {σ(2), σ(3)}, and {σ(3), σ(2)} are
all such trading blocks for all α ∈ (0, 1).

Definition. A periodic block is a consecutive trading block that will not change
any bid-ask pair in a specific dynamical trading system.

Notice that any combination of periodic blocks is again periodic. For instance,

{σ(1), σ(4), σ(2), σ(3)}

is a periodic block for all α ∈ (0, 1), as {σ(1), σ(4)} and {σ(2), σ(3)} are both general
periodic blocks. So we need to catch the invariant part of a periodic block.
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Definition. A periodic block is called minimal , if it has no proper subtuple
that is again a periodic block.

Any periodic block can be reduced into a series of minimal ones. Note that a
periodic block C is either minimal or not. If C is minimal, it is equivalent to itself.
If C is not minimal, we can always find a proper subtuple C ′ ⊂ C such that both
C ′ and C \ C ′ are still periodic blocks. We can eventually have a series of minimal
periodic blocks by applying this process recursively.

Example 3.1. If α ∈ (0, 1), the periodic block

{σ(1), σ(2), σ(3), σ(4)}
has two minimal ones, {σ(2), σ(3)} and {σ(1), σ(4)}, while the minimal periodic
blocks of

{σ(4), σ(1), σ(1), σ(4), σ(4), σ(1)}
are {σ(1), σ(4)} and double {σ(4), σ(1)}.

If α = 1/2, the consecutive trading block

{σ(2), σ(1), σ(2), σ(1), σ(3), σ(4), σ(3), σ(4), σ(3), σ(4)}
is periodic, and it is also minimal.

If α = 1/3,

{σ(1), σ(2), σ(1), σ(2), σ(1), σ(2), σ(1), σ(2), σ(4), σ(3), σ(4), σ(3), σ(4), σ(3)}
is a minimal periodic block.

Lemma 3.4. The number of marginal traders in any minimal periodic block is
finite and even.

Proof. Consider a minimal periodic block C, and assume the number of traders
in C is infinite. Then C must pass infinite bid-ask pairs. If not, we suppose C passes
finite bid-ask pairs. Since the number of traders in C is infinite, there must exist a
closed route, such that a related subset of C is a periodic block, which contradicts
that C is minimal.

Assume the initial condition of C is w ∈ W with a bid-ask spread s. Note that s
can be updated into either (1+α)s or s/(1+α), so any bid-ask pair on the trajectory
will have a spread in the set

Sw =
{

(1 + α)is : −N1 ≤ i ≤ N2 and i ∈ Z
}
,

where N1, N2 ∈ Z+ are finite, as W is bounded. Let the bid-ask pair wr be the
first state with a spread r on the trajectory starting from w for all r ∈ Sw, where
wr = w if r = s. wr will be updated to wr ± (αr/(1 + α), αr/(1 + α)) by the
block {σ(1), σ(2)} or {σ(3), σ(4)}, and to wr ± (αr, αr) by the block {σ(2), σ(1)} or
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{σ(4), σ(3)}. So at the constant-spread line a− b = r, all the possible states on the
trajectory have the form

wr + k1(αr, αr) + k2

( α

1 + α
r,

α

1 + α
r
)

= wr +
(
k1α +

k2α

1 + α
, k1α +

k2α

1 + α

)
r,

where k1, k2 ∈ Z and they are finite, as W is bounded. Since α, k1, k2 are finite, all
the possible states with a given spread r on the trajectory are finite, and hence all
the states in W starting from w are finite. So C can not pass infinite bid-ask pairs,
which implies the number of marginal traders in C must be finite.

Suppose C has 2n+ 1 traders, where n ∈ Z+, and assume it will pass x different
bid-ask pairs, the collection of which is denoted by the set P . By Proposition 3.3,
any trader of type σ(i) will definitely update the bid-ask pair in a trading system
(W, fi), so 1 < x <∞. Let P be the set of nodes in a graph, so any trader in C will
link two different nodes in P . Since there are 2n+ 1 traders, we have 2n+ 1 links in
this graph. But if there exists a directed circle, such that the bid-ask pair after this
block will not be changed, then the number of links of any node in P should be even.
So the total links in this graph should be even, which contradicts that the number
of links is 2n+ 1. Therefore, a block with 2n+ 1 traders can not be periodic, which
completes the proof. �

Note that we can have an equivalent reduced sequence of traders by identifying
and then removing (minimal) periodic blocks iteratively in any sequence of traders,
as we just delete some closed routes of bid-ask pairs, which will not change the
dynamics in the dynamical trading system as a whole.

Definition. A sequence of marginal traders is called irreducible, if it contains
no minimal periodic block.

Proposition 3.5. A limit order market that accepts any irreducible sequence of
traders is unstable.

Proof. Note that a market functioning for infinite periods must contain several
minimal periodic blocks, otherwise it is a minimal periodic block with infinite traders,
which contradicts Lemma 3.4. Since any irreducible sequence of marginal traders
contains no minimal periodic block, the number of marginal traders in any irreducible
sequence must be finite, otherwise we have a market functioning for infinite periods
has no minimal periodic block. If the number of marginal traders in a sequence is
finite, then the market must function only for finite periods. So the bid-ask pair in
the market must be absorbed on ∂W , and hence the market will be in a crash, which
implies that the market must be unstable. �

It is clear that any market functioning for infinite periods will never accept an
irreducible sequence of marginal traders. Or we can say the sequence of marginal
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traders in a stable market should be infinite and reducible, so that we can always
find some minimal periodic blocks that stay in the market for finite periods.

A similar concept to periodic block is the well-known notion of hedge, as the
role of risk sharing through assets diversification has a counterpart here, namely,
instability sharing through orders grouping in the limit order market. Our result
suggests that periodic blocks as the “hedging” units in a limit order market should
be necessary for its dynamic stability.

3.2. Stochastic Trading. So far, we have studied a dynamical trading system
from a combinatorial perspective. In effect, we consider all possible permutation of
countably infinite marginal traders, which form the space Σω

4 . We find two general
categories of sequences of marginal traders in Σω

4 , which can sufficiently cause an
unstable limit order market. That’s to say, the sequence of marginal traders with
a constant type, as stated in Proposition 3.3, and any irreducible sequence that
contains no minimal periodic block, as stated in Proposition 3.5. In addition, if we
might realize that a sequence of marginal traders with a constant type is certainly
irreducible, Proposition 3.3 would then become a natural corollary of Proposition 3.5
at this stage.

In this subsection, we will take a different perspective to study sequential trading
processes in the limit order market. We assume there is a certain probability structure
over the space Σω

4 , and hence the dynamics of bid-ask pairs in the dynamical trading
system (W,F, σ) is random. Not surprisingly, the related limit order market would
be stochastically stable, in the sense that the random trajectory in (W,F, σ) would
not be absorbed on ∂W almost surely, in other words, the market would not be in a
crash almost surely.

Assume the appearance probability of any type in Σ4 at any state w ∈ W is
stationary, i.e., independent of the time. Define a function

π : W → [0, 1]4,

such that, at any state w ∈ W , π(w) is the 4-tuple of the appearance probabilities
of type σ(1), type σ(2), type σ(3), and type σ(4), or

π(w) =
(
π1(w), π2(w), π3(w), π4(w)

)
,

with
∑4

i=1 πi(w) = 1, where πi(w) denotes the appearance probability of type σ(i)
at the state w.

We can therefore have four aggregated appearance probability functions, which
can be directly induced from the original π(w), and they are

(i) the market-type appearance probability function πM(w) = π2(w) + π4(w),
(ii) the limit-type appearance probability function πL(w) = π1(w) + π3(w),

(iii) the buy-type appearance probability function πB(w) = π1(w) + π2(w),
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(iv) the sell-type appearance probability function πS(w) = π3(w) + π4(w).

Here, we have πM(w) + πL(w) = 1 and also πB(w) + πS(w) = 1 for all w ∈ W .
Note that the value of πL(w) only depends on the spread of w, and moreover,

πL(w) = f
(
s(w)

)
, where f : [s, a]→ [0, 1] was defined in Section 2.3 of this chapter.

Similarly, the value of πB(w) only depends on the mid-price of w, and specifically,
we let πB(w) = h

(
m(w)

)
, where h : [s/2, a− s/2]→ [0, 1].

Recall that f(s) is an increasing function of log s, so πL(w) is increasing with
log s(w), and πM(w) is decreasing with log s(w). Moreover, if w belongs to the
region

WM = {w : s ≤ s(w) < (1 + α)s},
we have πM(w) = 1 and πL(w) = 0. If w belongs to the region

WL = {w : (1− γ)a < s(w) ≤ a},
we have πL(w) = 1 and πM(w) = 0. Here, 0 < α < 1 and α/(1 + α) ≤ γ < 1.

Notice that h(m) is a decreasing function of logm, so πB(w) is decreasing with
logm(w), and πS(w) is increasing with logm(w). Moreover, if w belongs to the
region

WB = {w : s/2 ≤ m(w) < (1 + δ)s/2},
we have πB(w) = 1 and πS(w) = 0. If w belongs to the region

WS = {w : (1− ε)(a− s/2) < m(w) ≤ a− s/2},
we have πS(w) = 1 and πB(w) = 0. Here, 0 < δ < 1 and δ/(1 + δ) ≤ ε < 1.

Definition. The buffering region of W is the largest nonclosed subset H ⊂ W
with the property that

∏
x∈{L,M,B,S} πx(w) = 0 for all w ∈ H.

At any state w ∈ H, there exists at least an x ∈ {L,M,B, S} such that πx(w) =
0. Since πL + πM = πB + πS = 1, there also exists at least a y ∈ {L,M,B, S}
such that πy(w) = 1 at the state w. So we can have at most two elements, say
x1 ∈ {L,M} and x2 ∈ {B, S}, such that πx1(w) = πx2(w) = 0, and πy(w) = 1 for
y /∈ {x1, x2}.

Definition. The kernel region of W is the largest closed subset K ⊆ W with
the property that πx(w) 6= 0 for all x ∈ {L,M,B, S} and for all w ∈ K.

Note that for all w ∈ K we also have πx(w) 6= 1 for all x ∈ {L,M,B, S}, as
there exists a unique y such that πx(w) = 1− πy(w), where πy(w) 6= 0.

In general, we have K = W \H and K ∩H = ∅. Thus we have a bipartition of
the domain W , as K ∪ H = W and K ∩ H = ∅. Since K is defined to be closed,
and H is defined to be nonclosed, H may be empty, but H 6= W , and hence K is
always nonempty. If K = W , then H = ∅. If K = {w}, for some w ∈ W certain,
then H = W \ {w}.
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In our framework, we have πL(w) = 0 for all w ∈ WM , πM(w) = 0 for all
w ∈ WL, πB(w) = 0 for all w ∈ WS, and πS(w) = 0 for all w ∈ WB. Thus

(3.9) H = WL ∪WM ∪WB ∪WS,

and K = W \H, where WL ∩WM = ∅ and WB ∩WS = ∅ (see Figure 3.6).

b

a

0

WB

WS

WL

WM

K

Figure 3.6.

Note that K is closed, while H is not closed, but H ∪ ∂K is also closed, where
∂K denotes the boundary of the kernel region K.

Definition. The s-range of R ⊆ W is

(3.10) rs(R) = sup
w∈R

s(w)− inf
w∈R

s(w).

Definition. The m-range of R ⊆ W is

(3.11) rm(R) = sup
w∈R

m(w)− inf
w∈R

m(w).

Proposition 3.6. If the buffering region H 6= ∅, and the kernel region K satisfies

(3.12) min{rs(K), rm(K)} > α(1 + α)(2 + α)s,

the dynamical trading system (W,F, σ) is stochastically stable within K.
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Proof. For any trajectory starting from a bid-ask pair w ∈ W , all the possible
states in W are finite, as shown in the proof of Lemma 3.4. The set of all the possible
states for any initial state w can be denoted by a corresponding lattice Λ(w). Let
the neighborhood of any v ∈ Λ(w) be

N(v) = {vS1,vS2,vS3,vS4} ∩W.

Observe that Λ(w) is globally defined on W = K∪H, so there exist states v ∈ Λ(w)
near ∂K, such that N(v) ∩H 6= ∅ and N(v) ∩K 6= ∅.

Note that the spread s(v) of the state v can be updated to either s(v)/(1 +α) or
(1 + α)s(v), and its mid-price m(v) can be updated to maximally m(v) + αs(v)/2
and minimally m(v)− αs(v)/2, so

rs(N(v)) =
α(2 + α)

1 + α
s(v), rm(N(v)) = αs(v).

Suppose s(v)/(1 +α) ≥ (1 +α)s, where (1 +α)s is the lower bound of the spread in
K, so we have

rs(N(v)) ≥ α(1 + α)(2 + α)s, rm(N(v)) ≥ α(1 + α)2s,

and hence

rs(K) > inf
v∈K

rs(N(v)), rm(K) > inf
v∈K

rm(N(v)).

So for any initial state w ∈ W , there exists at least a v ∈ Λ(w) ∩ K such that
N(v) ⊂ K.

Note that W = K ∪H, and both K and H are nonempty, so both H and K are
proper subsets of W . Suppose w ∈ H. We know H = WL∪WM ∪WB ∪WS, so there
exists at least an x ∈ {L,M,B, S} such that w ∈ Wx. Note that πx(v) = 1 for all
v ∈ Wx, thus w will move towards K along a continuous flow in Λ(w) ∩ H. Since
the number of states in Λ(w)∩H is finite, w will move into the closed kernel region
K after finite periods. If the market is stochastically stable within K once w ∈ K,
the market will function for infinite periods, and hence it is also stochastically stable
with the initial state w ∈ H. Thus we only need to show the trading system is
stochastically stable for any initial state w ∈ K. Let p(w) denote the probability
that bid-ask pairs stay in H with an initial state w. We need to show that p(w) = 0
for all w ∈ K.

Suppose w ∈ K, then we have two possibilities, N(w) ⊂ K, and N(w)∩H 6= ∅.
If N(w) ∩ H 6= ∅, then N(w) ∩ K 6= ∅, otherwise w ∈ H. There exist some
x ∈ {L,M,B, S}, such that πx(v) = 0 for all v ∈ N(w)∩H, and πx(v) = εx ∈ [0, 1]
for all v ∈ N(w) ∩K. πx(v) 6= 1 for all v ∈ K and all x ∈ {L,M,B, S}, otherwise
there must exist a y ∈ {L,M,B, S} such that πy(v) = 1 − πx(v) = 0, which then
implies v ∈ H, a contradiction. Hence εx 6= 1 for all x ∈ {L,M,B, S}.
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If w moves to v ∈ N(w) ∩ H with a probability εx, it will return back to
v′ ∈ N(v) ∩ K with probability 1 in the next period, where N(v′) ∩ H 6= ∅ as
v ∈ N(v′). If w moves to v ∈ N(w)∩K with a probability 1−εx, it can stay within
Λ(w) ∩ K with k(w) consecutive periods, and then move into a state v′ such that
N(v′) ∩H 6= ∅. Recall that, for all w ∈ K, we have

{v ∈ Λ(w) ∩K : N(v) ⊂ K} 6= ∅,
so k(w) ≥ 0. Then we have

p(w) = lim
T ↑∞

εxp(w)
(

1− 2

T

)
+ (1− εx)p(w)

(
1− k(w) + 1

T

)
,

where 0 ≤ k(w) ≤ T − 1. When k(w) = T − 1,

p(w) = lim
T ↑∞

εxp(w)
(

1− 2

T

)
= εxp(w),

which generates (1 − εx)p(w) = 0. Since 1 − εx 6= 0, p(w) = 0 for all w ∈ K with
N(w) ∩H 6= ∅.

If w ∈ K and N(w) ⊂ K, its trajectory can either achieve a state w′ ∈ Λ(w)∩K
such that N(w′)∩H 6= ∅ after h(w) periods, where h(w) ≥ 1, or never move to such
a state w′ and thus stay within K for ever. Note that p(w′) = 0, if w′ ∈ K and
N(w′) ∩H 6= ∅. So p(w) ≤ p(w′) = 0, but p(w) ≥ 0, hence p(w) = 0 for all w ∈ K
with N(w) ⊂ K.

As a result, p(w) = 0 if w ∈ K, and thus p(w) = 0 for all w ∈ W . So the
dynamical trading system is stable within K almost surely. �

Since (bt, at) will stay within K almost surely, the random trajectories of bt and
at will also stay within bounded intervals. Note that

(3.13) (1 + α)s ≤ st ≤ rs(K) + (1 + α)s,

and

(3.14) (1 + δ)s/2 ≤ mt ≤ rm(K) + (1 + δ)s/2,

almost surely for all t ∈ Z, so we almost surely have

(3.15) at ≤ rm(K) + rs(K)/2 + (2 + α + δ)s/2 < rm(K) + rs(K)/2 + 2s,

and

(3.16) bt ≤ rm(K) + (2 + α + δ)s/2 < rm(K) + 2s,

where α, δ ∈ (0, 1), so (2 + α + δ)/2 < 2.
The upper bounds of bt and at both have interesting implications on the roles of

s-range and m-range in the limit order market. The upper bound of the best bid bt
in the market is solely determined by the m-range of the kernel region K, rather than
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any property of the whole domain W . The upper bound of the best ask at is also
only related to the kernel region K, and yet it is determined by both the m-range
and the s-range of K. Notice that the lower bounds of bt and at are both close to 2s,
so the bid-range in the market is approximately equal to rm(K), and the ask-range
is roughly rm(K) + rs(K)/2. Evidently, the ask side of the limit order book should
be more volatile than its bid side, in case that the range of a price is a meaningful
indicator of its volatility.

4. Controlled Trading System

In this section, we assume again H 6= ∅, but either the s-range or the m-range
of K will be less than α(1 + α)(2 + α)s. So the condition on the kernel region in
Proposition 3.6 is no longer satisfied. We would like to check whether a random
trajectory of bid-ask pairs can maintain the property of stochastic stability within
certain bounded domains.

Let U1 = WL∪WM . Since K 6= ∅, we have WL∩WM = ∅ and W \U1 6= ∅. Define
U2 = W \ U1, so W = U1 ∪ U2 and U1 ∩ U2 = ∅.

Similarly, let V1 = WB∪WS, again W \V1 6= ∅. Define V2 = W \V1, so W = V1∪V2
and V1 ∩ V2 = ∅.

Note that K = U2 ∩ V2 and H = U1 ∪ V1. Also observe that rs(K) = rs(U2) and
rm(K) = rm(V2).

4.1. Controlled Spread Dynamics. By the condition WL∩WM = ∅, we have
rs(U2) ≥ 0, so (1 + α)s ≤ (1− γ)a, or

s/a ≤ 1− γ
1 + α

.

At the same time, we assume that the s-range of U2 is sufficiently small, namely,
rs(U2) < α(1 + α)s, so

(1− γ)a− (1 + α)s < α(1 + α)s,

which implies that s/a has a lower bound,

s/a >
1− γ

(1 + α)2
.

Intuitively, the upper bound of the s-range of U2 gives such a sufficient condition
that any type of marginal trader will definitely update any w ∈ U2 to some w′ ∈ U1.

In brief, if 0 ≤ rs(U2) < α(1+α)s, the domain W will have the following property,

(3.17)
1− γ

(1 + α)2
< s/a ≤ 1− γ

1 + α
.
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Once the above inequality is satisfied by the domain W , we have U2 6= ∅, and

U2 = {w : (1 + α)s ≤ s(w) ≤ (1− γ)a},
where s(w) is the spread function. Let the boundary of U2 be ∂U2, then

∂U2 = {w : s(w) = (1 + α)s} ∪ {w : s(w) = (1− γ)a}.

Proposition 3.7. If the buffering region H = U1 ∪ V1 is nonempty, and the
kernel region K = U2 ∩ V2 satisfies

0 ≤ rs(U2) < α(1 + α)s, rm(V2) > α(1 + α)(2 + α)s,

the dynamical trading system (W,F, σ) is stochastically stable within the region

{w : s ≤ s(w) < (1 + α)3s} ∩ V2.

Proof. Since U2 6= ∅ and its s-range is less than α(1 + α)s, we obtain

(1 + α)s ≤ (1− γ)a < (1 + α)2s.

Note that
min
w∈U2

s(w) = (1 + α)s, max
w∈U2

s(w) = (1− γ)a,

so we have

s ≤ (1− γ)a

(1 + α)
< (1 + α)s = min

w∈U2

s(w),

and also
(1 + α)2s > (1− γ)a = max

w∈U2

s(w).

Since any initial state w ∈ H will definitely move into K after finite periods, we
only need to show the statement is true when the initial state w ∈ K. Consider
any initial state w ∈ U2 ∩ V2, we have (1 + α)s ≤ s(w) ≤ (1 − γ)a. Note that
πL(w) > 0 and πM(w) > 0 for all w ∈ K, so πi(w) 6= 0 for all w ∈ K and all
i ∈ {1, 2, 3, 4}. Suppose w is updated to v = wS1 by a marginal trader of type σ(1),
s(v) = s(w)/(1 + α), which is greater than s and less than (1− γ)a/(1 + α). Since
(1 − γ)a/(1 + α) < minw∈U2 s(w), we should have v ∈ WM , and hence πM(v) = 1.
The trader in the next period will be market-type, namely, either type σ(4) or type
σ(2). If she is of type σ(4), v will then become wS1S4 = w, since {σ(1), σ(4)} is a
minimal periodic block. If she is of type σ(2), v will become v′ = wS1S2, where

S1S2 =

(
1

1+α
0

α
1+α

1

)(
1 −α
0 1 + α

)
=

1

1 + α

(
1 −α
α 1 + 2α

)
,

so s(v′) = s(w). Thus after two periods, w will return back to itself or move to a
state with the same spread as itself.

If w is updated to v = wS2 by a marginal trader of type σ(2), then v ∈ WL. So
in the next period, there will come either type-σ(3) trader or type-σ(1) trader. The
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type-σ(3) trader will update v to wS2S3 = w, as {σ(2), σ(3)} is a minimal periodic
block. The type-σ(1) trader will update v to wS2S1 that has the same spread as w.
If w is updated to wS3 by a marginal trader of type σ(3), wS3 will then be updated
either to wS3S2 = w, or to wS3S4 that have the same spread as w. Finally, if w
is updated to wS4 by a marginal trader of type σ(4), wS4 will then move either to
wS4S1 = w, or to wS4S3 such that s(wS4S3) = s(w).

Therefore, any initial state w ∈ U2 ∩V2 will be updated to a state with the same
spread as itself after two consecutive periods. Note that the dynamics in (W,F, σ)
is repeatedly composed of those two-period dynamical blocks, thus the spread that
can be achieved in such a dynamical trading system will be greater than or equal to

min
w∈U2

s(w)/(1 + α) = s,

and less than or equal to

(1 + α) max
w∈U2

s(w) < (1 + α)3s,

as maxw∈U2 s(w) < (1 + α)2s.
So the trajectory of bid-ask pairs starting from any initial state w ∈ W will be

bounded in the region {w : s ≤ s(w) < (1 + α)3s} ∩ V2 almost surely. �

If 0 ≤ rs(U2) < α(1 + α)s, there exists a unique exponent l ∈ [1, 2), such that

(3.18) s/a =
1− γ

(1 + α)l
.

Note that the upper bound of the bid-ask spread in W is a, so (1 + α)3s should be
no greater than a, or equivalently,

s/a ≤ 1

(1 + α)3
.

Thus we need (1− γ)(1 + α)h ≤ 1, where h = 3− l, so h ∈ (1, 2]. It appears to be a
slightly stricter requirement than (1− γ)(1 +α) ≤ 1 that we have used before, since
(1 + α)h > 1 + α for h > 1.

Recall that U2 = {w : (1 + α)s ≤ s(w) ≤ (1− γ)a}, we thus have two nonempty
regions in U1, which will contain buffering overflows,

{w : s ≤ s(w) < (1 + α)s}, {w : (1− γ)a < s(w) < (1 + α)3s}.

Evidently, the trajectory of bid-ask pairs will not stay exactly within the kernel
region K = U2 ∩ V2, but within K and parts of the buffering region U1 ∩ V2 in H.

As we can see from the proof of Proposition 3.7, there are in fact eight possible
two-period dynamical blocks for all w ∈ U2 ∩ V2. Half of them are minimal periodic
blocks, so the bid-ask pair driven by each of them will return back to w. While the
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remaining ones will update w to w′ 6= w, with s(w′) = s(w) (see Figure 3.7, where
s(w) is replaced simply by s).

w

s

(1 + α)s

s/(1 + α)

Figure 3.7.

If w′ 6= w, the distance (in the b-a plane) between w and w′ is
√

2α

1 + α
s(w) or

√
2αs(w),

and the absolute difference between m(w) and m(w′) is

α

1 + α
s(w) or αs(w).

The possible trajectories in the dynamical trading system (W,F, σ) are now
consecutive combinations of those eight two-period dynamical blocks. Recall that
s(w) ∈ [(1 + α)s, (1− γ)a] for all w ∈ U2 ∩ V2. The trajectory starting from w will
be bounded within the region

{v : s(w)/(1 + α) ≤ s(v) ≤ (1 + α)s(w)},

where

(1 + α)s ∈ (s(w)/(1 + α), s(w)], (1− γ)a ∈ [s(w), (1 + α)s(w)).
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So the region containing buffering overflows are

{v : s(w)/(1 + α) ≤ s(v) < (1 + α)s}, {v : (1− γ)a < s(v) ≤ (1 + α)s(w)},

where s(w)/(1+α) ≥ s and (1 +α)s(w) < (1+α)3s. We shall show two trajectories
starting from w with seven periods on the b-a plane in the following Figure 3.8,
where s = s(w).

w

s

(1 + α)s

s/(1 + α)

∂U2

∂U2

Figure 3.8.

4.2. Controlled Mid-Price Dynamics. If the m-range of V2, rather than the
s-range of U2, is sufficiently small, we may establish a similar result to Proposition
3.7. Assume 0 ≤ rm(V2) < α(1 + α)s/2. By the condition rm(V2) ≥ 0, we have
V2 6= ∅ and WB ∩WS = ∅, so (1 + δ)s/2 ≤ (1− ε)(a− s/2), or

s/2

a− s/2
≤ 1− ε

1 + δ
,

where δ ∈ (0, 1) and ε ∈ [δ/(1 + δ), 1). On the other hand, if rm(V2) < α(1 + α)s/2,
then

(1− ε)(a− s/2)− (1 + δ)s/2 < α(1 + α)s/2,
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which implies

s/2

a− s/2
>

1− ε
1 + δ + α(1 + α)

.

As a result, if 0 ≤ rm(V2) < α(1 + α)s/2, the domain W will have the following
property,

(3.19)
1− ε

1 + δ + α(1 + α)
<

s/2

a− s/2
≤ 1− ε

1 + δ
.

Under that condition, we have a nonempty V2,

V2 = {w : (1 + δ)s/2 ≤ m(w) ≤ (1− ε)(a− s/2)}.

Let the boundary of V2 be ∂V2, then

∂V2 = {w : m(w) = (1 + δ)s/2} ∪ {w : m(w) = (1− ε)(a− s/2)}.

The lower bound in the condition (3.19) is a sufficient condition for the existence
of dynamical two-period switching blocks, by which any state in V2 ∩ U2 can return
back into V2 ∩ U2 after two periods. To confirm this claim, we only need to show
that any state w in ∂V2∩U2 at a time t will be updated to some w′ ∈ V1 at the time
t+ 1. Note that

max
v∈V2

m(v) = (1− ε)(a− s/2), min
v∈V2

m(v) = (1 + δ)s/2,

and they can be achieved by the states in ∂V2.
Consider a generic state w ∈ ∂V2 ∩ U2 with m(w) = maxv∈V2 m(v). A buy-type

trader will induce a greater mid-price, which means that the next state will be in V1.
A sell-type trader can generate a new mid-price,

m(w)− α

2
s(w) or m(w)− α

2(1 + α)
s(w).

A sufficient condition for the new state will be in V1 is that the greatest mid-price
should be less than minv∈V2 m(v), that’s to say,

(3.20) max
v∈V2

m(v)− α

2(1 + α)
min
w∈∂V2

s(w) < min
v∈V2

m(v).

Note that s(w)/(1+α) ≥ (1+α)s for all w ∈ V2∩U2, so minw∈∂V2 s(w) = (1+α)2s.
Then we obtain

(1− ε)(a− s/2)− α(1 + α)s/2 < (1 + δ)s/2,

which is exactly equivalent to the condition rm(V2) < α(1 + α)s/2.
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Now if w ∈ ∂V2 ∩U2 with m(w) = minv∈V2 m(v), a sell-type trader will induce a
smaller mid-price, and hence the next state must be in V1. While the new mid-price
generated by a buy-type trader can be

m(w) +
α

2
s(w) or m(w) +

α

2(1 + α)
s(w).

A sufficient condition ensuring the new state will be in V1 is that the smallest
mid-price should be greater than maxv∈V2 m(v), that’s to say,

(3.21) min
v∈V2

m(v) +
α

2(1 + α)
min
w∈∂V2

s(w) > max
v∈V2

m(v),

which is again equivalent to rm(V2) < α(1 + α)s/2.

Proposition 3.8. If the buffering region H = V1 ∪ U1 is nonempty, and the
kernel region K = V2 ∩ U2 satisfies

0 ≤ rm(V2) < α(1 + α)s/2, rs(U2) > α(1 + α)(2 + α)s,

the dynamical trading system (W,F, σ) is stochastically stable within the region

{w : m ≤ m(w) < m} ∩ U2,

where m and m are constants in the trading system.

The proof of Proposition 3.8 is roughly similar to that of Proposition 3.7, and thus
not provided here. Once again, its trajectory of bid-ask pairs will not be bounded
within the kernel region K = V2∩U2, but within K and parts of the buffering region
V1∩U2, so that the trading system can contain certain buffering overflows to support
its stability. In the limit, each state on the trajectory will be either in K = V2 ∩ U2

or in the buffering region V1 ∩ U2 with equal probability.
Since the updating process of the mid-price also depends on the spread of the

states on the trajectory, the buffering region used to hold the buffering overflows is
quite wide. We can see that the m-range of the region {w : m < m(w) < m} ∩ U2

is very large, by virtue of

m = (1 + δ)s/2− α(1− γ)a/2, m = (1− ε)(a− s/2) + α(1− γ)a/2,

where (1− γ)a = maxw∈U2 s(w). In fact, its m-range is equal to

(3.22) m−m = rm(V2) + α(1− γ)a,

which is greater than or equal to α(1− γ)a, and less than α(1− γ)a+ α(1 + α)s/2.
So m−m = O(a). On the other hand, in Proposition 3.7, the s-range of the region

{w : s ≤ s(w) < (1 + α)3s} ∩ V2
is only ((1 + α)3 − 1)s = O(s), where O(s)� O(a).
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Proposition 3.7 and 3.8 collectively produce interesting observations about the
volatilities of the mid-price and the bid-ask spread on a limit order market. If the
spread s in the kernel region K = U2 ∩ V2 is required to be ex ante stable, then the
random trajectory in the dynamical trading system will be bounded within a certain
region with a sufficiently small s-range. However, if the mid-price m in K is required
to be ex ante stable, the random trajectory can not remain in a certain region with
a small m-range.

Suppose again the range of a time-dependent price can be thought of to be an
indicator of its volatility. Let us adopt an artificial concept of “disorder” to describe
the origins of price volatility, and yet we leave such an introduced concept in its
obscurity. Moreover, imagine the disorder in a trading system could be classified
into one intrinsic part and another external part (which are evidently similar to the
terms of “self-generated disorder” and “quenched disorder” in physics), such that
the intrinsic disorder has an ex ante controllable nature, while the external disorder
has an ex ante uncontrollable nature, and hence carries a high volume of potential
information in the trading system. In practice, more intrinsic disorder should make
a price in the trading system less unpredictable, while more external disorder could
make the price more unpredictable. And thus a price volatility that can be partially
characterized by its unpredictability should be lower if the disorder is rather intrinsic,
and higher if that is rather external.

Quite directly, we say that the disorder in the bid-ask spread is mainly intrinsic
or self-generated, as we find that the bid-ask spread has an ex ante controllable
nature. On the other hand, most of the disorder in the mid-price should be external
or quenched, since we show that the mid-price has an ex ante uncontrollable nature.
For this reason, we conclude that the volatility of the bid-ask spread should be lower
than that of the mid-price in the dynamical trading system.

5. Final Remarks

In our studies, we take a dynamical perspective to investigate the microstructure
of the limit order market. A limit order market is theoretically thought of to be
a dynamical trading system, in which sequential trading processes are determined
by either deterministic or probabilistic switches between different types of traders
(represented by their optimal trading decisions in a very short time interval). In
our analysis, the perfect information usually required to model traders’ strategic
behavior is loosened to the knowledge of the so-called atomic trading schemes. We
thus set less assumptions for traders and the market, and yet still obtain a powerful
ability to understand and even predict the order flow and the order book evolution in
a generic limit order market. Some interesting and hopefully insightful conclusions
have developed, for instance, the best ask is more volatile than the best bid, the
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mid-price is more volatile than the spread, and the best ask seems to have more
determinants than the best bid.

To close this chapter, we would like to make some concluding remarks on these two
critical notions appearing in our main results — general instability in a deterministic
trading system, and stochastic stability in a stochastic trading system.

The stability of a deterministic trading system means that there should exist
some bid-ask pairs such that certain trading blocks can generate convergent limit
cycles attracted to them. We show that a necessary condition for general stability of
the trading system is the trading block must be reducible, so that they can generate
periodic bid-ask pair dynamics. Thus the notion of general instability implies that
there is no stable bid-ask pair in the trading system, and it happens if the trading
block is irreducible.

Once the trading block in the dynamical trading system stochastically emerges
from Σω

4 with a certain stationary probability measure, the trading system will not be
unstable for sure. One intuitive reason is that a countably infinite random trading
block will be reducible almost surely. Therefore, we state that the bid-ask pair
dynamics will be bounded within the domain W for sure, which gives meanings to
stochastic stability of the dynamical trading system. More strictly, we show that
the domain that serves for stochastic stability is only a proper subset of W , which
is defined as its kernel region. However, in the meantime, the buffering region of W
still has a positive role for stochastic stability, as it occasionally holds states on the
bid-ask pair trajectory.

Finally, it might be worth figuring out one practical application of the notions
of kernel region and buffering region. They could be used to measure the risk of
systemic instability in a real market. Say, the market would have a high risk of
systemic instability, if its state moves into the buffering region, while the risk of
systemic instability should be acceptable with a certain confidence level, if the state
stays in the kernel region.





CHAPTER 4

Collective Decision on Political Network

In this chapter, we shall study a group of governments structured as a generic
political network, and investigate collective decision-making process thereof with
certain economic meanings conveyed by the local public good provision.

Although the political network seems like a rather specific group structure by
nature, we still formalize it in a general sense, so that we could add a third abstraction
“relation-dependent group” to the former two, “time-dependent group” as studied
in Chapter 1, and “preference-dependent group” as studied in Chapter 2.

1. Introduction

This chapter aims to explore and solve the optimal provision problem raised in
the economic theory of public good provision. In a study of public expenditure
on collective consumption by Samuelson [57], he claimed that there does not exist
any “decentralized pricing system can serve to determine optimally these levels of
collective consumption” (Samuelson [57], p. 388). However, that impossibility result
depends on that the public expenditure can only be manipulated by the central
government in an economy, and the economy relies exclusively on market mechanism.
In the meanwhile, Samuelson equally admitted that the optimal decisions of collective
consumption would exist, in case sufficient knowledge and ethical welfare function
for the economy could be obtained. As he wrote in the article “The pure theory of
public expenditure” (Samuelson [57], p. 389):

The failure of market catallactics in no way denies the following
truth: given sufficient knowledge the optimal decisions can always
be found by scanning over all the attainable states of the world and
selecting the one which according to the postulated ethical welfare
function is best. The solution “exists”; the problem is how to
“find” it.

Tiebout [63] took a different perspective to frame such a public expenditure
problem. He introduced the notion of local expenditure, and then developed a simple
model which can yield a solution for optimal (local) public expenditure. Since the
mechanism in Tiebout’s model is purely political, and also the optimality in his

73
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model is kept to local levels, the solution proposed by Tiebout in effect has a rather
different nature to that of Samuelson.

In the present chapter, we shall take a perspective that combines the approaches
of Samuelson and Tiebout to study the public good provision problem, so that we
could propose some solutions to the optimal provision problem. With this respect,
the mechanism to determine the optimal public good provisions will then have both
economic and political natures, and the attained optimality will be not only local but
also global. To achieve these objectives, we first introduce a political system into a
typical economy, such that it has a group of economic planners (local governments)
forming a government network, it has a distribution rule of political powers over the
government network, and it has a collection of pairwise disjoint districts, populated
by fixed citizens and administered by distinct local governments. After that, we
propose a formal definition to the local public good in the economy, and give economic
meanings to decision-making processes and corresponding games appearing in the
political system.

A well-studied topic related to this study is comparative economic performances
under different governance structures. Most studies suggest that the decentralized
public good provision scheme should be more efficient than the centralized provision
scheme owing to various economic reasons. For example, the dominant efficiency
of the decentralized scheme comes from its adaptation to local consumer-voters
(Tiebout [63]); the decentralization theorem dominates citizen-oriented decision-
making processes (Oates [48, 49]); the decentralized scheme promotes the emergence
and maintenance of an efficient market (Weingast [67]); the decentralized scheme
preserves market incentives (Qian and Weingast [53]). Even if we do not develop a
normative principle to compare decentralized and centralized governance structures,
we do obtain, under a set of restricted assumptions, a same efficiency judgement
on the decentralized and centralized public good provision schemes to the popularly
accepted one.

What’s more, this chapter might also contribute partly to studies on a number of
other topics. To wit, positive applications of the concept authority in organizations
and partnerships, e.g., the authority relationship in employment contracts (Simon
[58]), and the optimal authority allocation in complex partnerships (Francesconi
and Muthoo [23]); social network game and communication, e.g., information (as a
public good) acquisition and communication structure on social networks (Galeotti
and Goyal [24]); private provision of public good and market institution design,
e.g., truthful revelation mechanism that can admit Pareto optima (Groves and Loeb
[27]), and noncooperative solution with a neutral property of income redistribution
(Bergstrom, Blume, and Varian [7]).

The writing of the present chapter shall be organized as follows. This section is
a general introduction, while the last section provides some additional remarks.



Introduction 75

In Section 2, we give formal definitions to related economic and political objects in
the political system. Concretely, a government network is defined to be a graph that
admits a hierarchical structure in whole. By introducing an authority allocation rule
to the government network, we can then accordingly define centralized, autonomous,
and decentralized governance structures. Besides, a local public good is characterized
by its partial provision capacity (viz., the ability of benefit exclusion) with regards its
provision district, and thus it will be defined as a two-dimensional economic object
and measured by its provision level and provision capacity.

In Section 3, each government in the political system will be simplified to be a
political agency with a utilitarian welfare function. We could then show two basic
propositions on optimal local public good provision states under the centralized and
decentralized provision schemes. These arguments will also become our fundamental
knowledge prepared for the studies in the next three sections, which constitute the
most significant parts of this chapter.

Section 4 and 5 will be devoted to extensive studies of the H-form game and
M-form game, respectively. Roughly speaking, an H-form game is another word of
a negotiation game with “hierarchical interactions”, and an M-form game can be
represented by a collection of parallel negotiation games which are connected by a
noncooperative game with “coordinated interactions”. In Section 4, we show that
any Pareto efficient solution to an H-form game is determined by two hierarchically
consecutive governments, which therefore have the greatest enforceable authorities
in the political system. Moreover, the utilitarian solution of an H-form game can
be characterized by some polynomial in the political discounting. In Section 5, we
mainly study “degenerate” and “analytic” M-form games under the assumption that
the provision cost function is separable. The solution to a degenerate M-form game
is actually such a strategic equilibrium that is determined by a system of marginal
conditions. Although the (utilitarian) solution to an analytic M-form game does not
directly have computational properties, we still propose an interval representation,
and develop a number of propositions on its bounds.

In Section 6, the more general mixed-form game (usually with great complexity)
will be discussed. We define a mixed-form game in such a way that we could have a
complete classification of games on a compact government network, viz., any game
on a compact government network must be in one of the following three classes —
H-form game, analytic M-form game, and mixed-form game. Since any incompact
government network could be reduced to a compact one by identifying and removing
its authority gaps, we actually have developed a full knowledge of games on any
government network. After defining the indicator matrix for a compact government
network, we clarify the equivalence relations among the three mathematical objects,
that is, graph, game, and matrix. Lastly, we propose a pragmatic solution concept



76 Collective Decision on Political Network

to the mixed-form game, which hopefully can help capture complex interactions in
a complex political system.

2. Basic Definitions

2.1. Government Network. Consider a group of n governments

N = {r0, r1, r2, . . . , rn−1},

in which r0 is the central government , while r1, r2, . . . , rn−1 are all local governments .
Let c = r0, then we can also write

N = {c, r1, r2, . . . , rn−1}.

Let I = {0, 1, . . . , n − 1} be the index set of N . Define a mapping f : I × I →
{0, 1}, and let fij = f(i, j) for all i, j ∈ I. Then we have a graph (N, f), whose
structure is determined by the n× n matrix (fij). We shall say that

(i) (N, f) has no loop, if fii = 0 for all i ∈ I.
(ii) (N, f) is undirected , if fij = fji for all i, j ∈ I.

(iii) ri1ri2 · · · ril is an l-cycle in (N, f), if fi1i2 = fi2i3 = · · · = fili1 = 1, where
l ≥ 3 and i1, i2, . . . , il are distinct.

(iv) (N, f) is acyclic, if it does not have any l-cycle for 3 ≤ l ≤ n.

Definition. (N, f) is called a government network , if it is undirected, acyclic,
and without loops.

For all government ri, rj ∈ N , the distance (that is, the number of edges on the
shortest path) between them is denoted by dij. Define the hierarchical level of a
government ri ∈ N to be the value of di0. Let d00 = 0, and di0 = ∞ if there does
not exist any path between ri and c. Thus di0 ∈ {0, 1, . . . , n− 1,∞} for all ri ∈ N .
If (N, f) is connected, di0 6=∞ for all ri ∈ N .

There are two fundamental connected government networks which can be defined
as follows:

(i) If there is a unique ri such that di0 = k for all k ∈ {0, 1, . . . , n− 1}, we say
(N, f) is an H-form government network or government line.

(ii) If di0 = 1 for all ri 6= c, we say (N, f) is an M-form government network or
government star .

Evidently, any connected government network (N, f) has a collection of blocks, each
of which is an H-form or M-form government network.

On a government network (N, f), the group of level-k governments is

Nk = {ri ∈ N : di0 = k},
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where k ∈ {0, 1, . . . , n−1,∞}. Note that N0 = {c}, and N∞ contains all the isolated
governments which do not connect with the central government c. Clearly, N \N∞
is the connected part of N . If (N, f) is connected, then N∞ = ∅.

Let the group of the directly subordinate governments to ri ∈ N be Di, then

Di = {rj ∈ N : dij = 1 and dj0 ≥ di0}.

Note that D0 = N1. If ri ∈ Nk, then Di ⊆ Nk+1, where k ≤ n − 2. As for any
ri, rj ∈ N∞ with dij = 1, by definition we have both rj ∈ Di and ri ∈ Dj, and
thus we shall say all the governments in N∞ have identical roles on the hierarchical
structure of (N, f).

Let the group of all the subordinate governments to ri ∈ N be Di, then

Di = {rj ∈ N : 0 < dij <∞ and dj0 ≥ di0}.

Note that {c} ∪ D0 = N \ N∞, and Di ⊇ Di for all ri ∈ N . If ri ∈ N∞, then Di is
either empty or the connected block (in N∞) to ri.

Let the group of bottom governments be Nb, then

Nb = {ri /∈ N∞ : Di = ∅}.

If (N, f) is connected, we can write Nb = {ri ∈ N : Di = ∅}. Note that Di = ∅ for
all ri ∈ Nb.

Example 4.1. Let N = {c, r1, r2, . . . , r12}, and define a graph (N, f) as shown
in Figure 4.1. Observe that (N, f) is a connected government network. We have

N0 = {c}, N1 = {r1, r2, r3, r4}, N2 = {r5, r6, r7, r8, r9, r10}, N3 = {r11, r12}.

Notice that D0 = N1, D2 = {r5}, D3 = {r6, r7, r8}, D4 = {r9, r10}, and D10 =
{r11, r12}. Since Di = ∅ for all ri /∈ {c, r2, r3, r4, r10}, we have

Nb = {r1, r5, r6, r7, r8, r9, r11, r12}.

Finally, we have Di = Di for all ri /∈ {c, r4}, while

D0 = {r1, r2, . . . , r12}, D4 = {r9, r10, r11, r12}.

Example 4.2. Let N = {c, r1, r2, r3, r4, r5}, and define an H-form government
network (N, f) as shown in Figure 4.2. Observe that N0 = {c}, and Ni = {ri} for
all i ∈ {1, 2, 3, 4, 5}. Note that for all i ∈ {0, 1, 2, 3, 4},

Di = {ri+1}, Di = {ri+1, ri+2, . . . , r5},

while Nb = N5 = {r5}.
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Figure 4.1.

c r1 r2 r3 r4 r5

Figure 4.2.

Example 4.3. Let N = {c, r1, r2, . . . , r6}, and define an M-form government
network (N, f) as shown in Figure 4.3. Observe that

N0 = {c}, N1 = {r1, r2, r3, r4, r5, r6}.
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Note that D0 = N1, D0 = D0, and Nb = N1; in effect, they are all generic for any
M-form government network.

c
r1

r2 r3

r4

r5r6

Figure 4.3.

2.2. Governance Structure. In order to make formal definitions and develop
identification principles for different governance structures, we need a prerequisite
notion, authority. That’s because the governance arrangements would not set up
stable institutional regulations for collective actions in the political system, unless the
distributed authorities have been clarified. Here, we shall interpret the authority as
the power to make favorable decisions in a decision-making process, and any decision-
making process ought to be designed to decide actions for a certain government on
the government network.

If a decision-making process aims to decide actions for ri /∈ N∞, the authority
in that process will be shared by a group of governments that participate in the
process, such that it is a connected block, and it contains ri and governments with
hierarchical levels lower than that of ri. In particular, we are interested in the finest
group of participating governments which minimizes the ex ante transaction costs,
though the ex post negotiation is assumed to be Coasian. Let Li denote such a unique
group, then

(4.1) Li = {rj ∈ N : ri ∈ Dj} ∪ {ri},

which actually represents a path connecting ri to c.
If a decision-making process aims to decide actions for ri ∈ N∞, we then directly

set Li = {ri}, by virtue of all the governments in N∞ having identical roles on the
hierarchical structure of (N, f) (cf., the notion of directly subordinate government).
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Properly speaking, any decision-making process in the political system could then
be represented by its participating government path in (N, f). For example, with
regards a decision-making process deciding actions for a level-k government, ri ∈ Nk

for k 6=∞, we can write

Li = {c, ri1 , ri2 , . . . , rik−1
, ri},

where rix ∈ Nx for all x ∈ {1, 2, . . . , k − 1}. Let the authority shared by rix be γx
for all x, and the authorities shared by c and ri be γc and γk, respectively. Suppose
the absolute authority for any decision-making process in the political system is
normalized to 1, and its distributed parts to distinct governments are homogeneous.
It then appears that

(4.2) γc +
k∑
x=1

γx = 1,

where γx ∈ [0, 1] for all x ∈ {c, 1, 2, . . . , k}.
In general, distributed authorities might not be normally homogeneous in the

decision-making process, so there should be a nonlinear authority allocation rule,
say Γ, such that

(4.3) Γ(γc, γ1, γ2, . . . , γk) = 1.

However, in the present studies, we will simply assume Γ is linearly additive, and
use γ to denote such an authority allocation rule.

Definition. The governance structure of (N, f) is called centralized , if N∞ = ∅
and γc = 1 for all decision-making process in (N, f).

Once (N, f) has a centralized governance structure, it must be connected, and
the authority will be exclusively allocated to the central government c, so that all
the local governments are confined to the monolithic authority.

Definition. The governance structure of (N, f) is called autonomous , if N∞ =
N \ {c}.

Once (N, f) has an autonomous governance structure, all the local governments
should be on the∞-level, and hence isolated from c. Moreover, any decision-making
process aiming to decide actions for ri 6= c has Li = {ri} and thus γi = 1, which
therefore means that each government in N∞ has full sovereignty of its own.

Definition. The governance structure of (N, f) is decentralized , if it is neither
centralized nor autonomous.

If (N, f) has a decentralized governance structure, two cases could be classified
as follows:
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(i) N∞ 6= ∅, and N \ ({c} ∪N∞) 6= ∅.
(ii) N∞ = ∅, but there exists at least one decision-making process with the

group Li, such that γc 6= 1.

In case (i), (N, f) is disconnected, and there exists at least one local government
ri ∈ N∞ with γi = 1 for the decision-making process deciding its own actions. In
case (ii), (N, f) is connected, and there exists at least one local government in Li
with γi 6= 0 for the decision-making process represented by Li. Thus in any case
the authority will be always allocated to at least one local government, when (N, f)
adopts a decentralized governance structure. In addition, it might be noted that
the governance structure of a connected government network is either centralized or
decentralized.

Let’s consider a decision-making process in (N, f) with a decentralized governance
structure, and suppose it can be represented by the path

Li = {c, ri1 , ri2 , . . . , rik},

where rix ∈ Nx for all x ∈ {1, 2, . . . , k}. If the authority is allocated solely to the
uppermost-level government rik in Li, then the decision-making process is called
purely decentralized .

Definition. A decentralized governance structure of (N, f) is called pure, if all
decision-making process in (N, f) is purely decentralized.

Notice that any decision-making process aiming to decide actions for ri ∈ N∞ is
näıvely a purely decentralized one, as its participating group is Li = {ri}. Thus it’s
sufficient to just use the verification that all decision-making process in N \ N∞ is
purely decentralized.

As a further remark on all these above definitions, we would like to comment
on the stability of a governance structure which would be implicitly adopted in our
investigations. Although the formation process of a governance structure could have a
few complex features (see e.g., Wibbels [68]), the structure, once it had been shaped,
will be assumed to be stable for a sufficiently long time. Thus such a statement that
a political system adopts a certain governance structure means that the structure
itself is exogenous and will be stable at least in our reasoning framework.

2.3. Local Public Good. Let R denote the region collectively administered by
the government network (N, f). Each element s ∈ R denotes a place in the region
R, and each subset S ⊆ R denotes a district of R. Suppose there is a topology, i.e.,
a collection of subsets of R, such that for every two distinct places s and s′ in R,
there exist two disjoint districts S and S ′ of R satisfying s ∈ S and s′ ∈ S ′. The
topology on R is actually Hausdorff, and the region R described as above is thus a
Hausdorff space.
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Let |Nk| denote the number of level-k governments for all k ∈ {0, 1, . . . , n−1,∞},
then

n−1∑
k=0

|Nk|+ |N∞| = n,

where |N0| = 1 always. If (N, f) is connected, then we have |N∞| = 0. If (N, f)
has an autonomous governance structure, then |N∞| = n − 1, and |Nk| = 0 for all
k /∈ {0,∞}.

Let the district directly administered by ri ∈ N be Ri. On each hierarchical level
k with Nk 6= ∅, there are |Nk| governments sharing the control rights over the district⋃
ri∈Nk

Ri, where Ri ∩Rj = ∅ for all distinct ri, rj. It is direct to see that⋃
ri∈Nb∪N∞

Ri = R.

If (N, f) is connected, we have
⋃
ri∈Nb

Ri = R, which thus means all the bottom
governments make a partition of R.

With regards a level-k government ri ∈ Nk having a nonempty Di ⊆ Nk+1, we
have a partition of Ri,

Ri =
⋃
rj∈Di

Rj,

where Rj ∩ Rj′ = ∅ for all distinct rj, rj′ . The district Ri administered by ri thus
contains |Di| (no greater than |Nk+1|) disjoint districts, which are administered by
the governments in Di, separately. In particular, in a connected (N, f), the central
government c administers the whole region R which is also fully administered by all
the level-1 governments in N1, by virtue of R =

⋃
ri∈N1

Ri for D0 = N1.
Let the population of the region R be P . Define a mapping

P : S 7→ P (S),

so that it generates a population P (S) ⊆ P for all district S ⊆ R. Since the
population of a district is an invariant representation for the district, the mapping
should satisfy

(i) P (∅) = ∅ and P (R) = P ,
(ii) P (S) ⊆ P (T ) if S ⊆ T ,

(iii) P (S ∪ T ) = P (S) ∪ P (T ) for all S, T ⊆ R.

Let P (Ri) = Pi for all ri ∈ N , then each district Ri has a population Pi. It can be
claimed that Pi 6= ∅ for all ri ∈ N , because there is no reason to place a government
for a district without citizen, and hence without decision-making process. When
(N, f) is connected, we have

⋃
ri∈Nb

Pi = P , where Pi ∩ Pj = ∅ for all distinct ri, rj.
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Definition. A public good G is called local , if there exist nonempty districts
S, T ⊂ R, such that P (S) can consume G but P (T ) is excluded from the benefits of
G.

A pure (or global) public good can be defined by such properties as “jointness
of supply” and “impossibility of exclusion” (see Hardin [28], p. 17). Our definition
of local public good generalizes the assumption about the exclusion ability, in such
a way that the partial exclusion impossibility replaces the absolute one adopted in
the definition of public good.

By means of the definition of local public good, we are able to bridge the gap
between private good and public good, and think of private good and pure public
good as two special cases of regular local public good. In fact, if G is provided to
cover the region R, and no citizen in P is excluded from its benefits, then G is clearly
a pure public good. On the other hand, if G is provided to cover a (virtual) district
S with a single citizen, and all the population P except that citizen living in S can
be excluded from its benefits, then G is actually a typical private good. In general,
G is a regular local public good if it is neither private nor purely public; here, “local”
means it partially excludes a proper and nonempty subset of P from its benefits.

To treat the definition of local public good analytically, we gauge the provision
ability of a local public good using a measure of analytic sets of the Hausdorff space
R, which is in essence a capacity monotone of order 2 in Choquet’s [12] term. Let
℘(R) denote the power set of R, and define a mapping λ : ℘(R)→ [0, 1] such that

(i) λ(∅) = 0 and λ(R) = 1,
(ii) λ(S) ≤ λ(T ) if S ⊆ T ,

(iii) λ(S ∪ T ) + λ(S ∩ T ) ≥ λ(S) + λ(T ) for all S, T ⊆ R.

If λ satisfies property (iii), it is called superadditive. It can be noted that for any
superadditive λ, λ(S ∪ T ) ≥ λ(S) + λ(T ) for all disjoint S, T ⊆ R.

The capacity λ as a measure of provision ability is assumed to be superadditive
rather than subadditive, because a local public good provided to S ∪ T seems to
need a less exclusion ability than that needed by two local public goods, which are
provided to S and T , separately.

The provision state of a local public good G can thus be characterized by the pair
(g, S), where g ∈ R+ denotes the provision level, and S ⊆ R denotes the provision
district. Since a district S can now be measured by its provision capacity λS = λ(S),
the provision state of G can be equivalently characterized by the real pair (g, λS),
where λS ∈ [0, 1]. We shall see that

(i) If g = 0, G is in fact not provided at all.
(ii) If g > 0 and λS = 1, then G is actually a pure public good.
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(iii) If g > 0 and λS = 01, then G turns out to be a private good.
(iv) If g > 0 and λS ∈ (0, 1), then G is a regular local public good which

partially excludes P \ P (S) from its benefits.

Suppose the local public good provision is implemented by the governments in
Nb∪N∞ (i.e., either bottom or isolated), and all the implementing governments have
a same real provision cost function2 M(g, λ), where (g, λ) ∈ R+× [0, 1] measures the
provision state. Once the real pair (g, λ) is replaced with its initial pair (g, S),
the provision cost function should then be written as M(g, λ(S)), or M(g, λS) for
λS = λ(S).

Moreover, we shall assume

Mg ≥ 0, Mλ ≥ 0, Mgg ≥ 0, Mλλ ≥ 0,

where all these inequalities will be strict if g > 0 and λ > 0. It thus directly suggests
that M(g, λ) is convex in both g and λ. Additionally, to get rid of such an optimal
provision state as (∞, λ) or (g, 1), that is, an infinite provision level or a perfect
provision capacity, we ought to set the following boundary conditions,

Mg(0, λ) = 0, Mg(∞, λ) =∞, Mλ(g, 0) = 0, Mλ(g, 1) ≤ ∞.

Example 4.4. Consider M(g, λ) = ϕ(g) + ψ(λ), where ϕ(g) and ψ(λ) are both
convex functions. Assume ϕ′(0) = 0, ϕ′(∞) = ∞, ψ′(0) = 0, and ψ′(1) ≤ ∞, then
M(g, λ) is clearly a provision cost function. Note that Mgλ = 0. For example, let
ϕ(g) = β1g

2 and ψ(λ) = β2 exp(λ2) for β1, β2 > 0, then the provision cost function
is written in the form

(4.4) M(g, λ) = β1g
2 + β2 exp(λ2).

Example 4.5. Consider M(g, λ) = ϕ(g)ψ(λ), where ϕ(g) and ψ(λ) are both real
and convex. Assume ϕ′(0) = ψ′(0) = 0 and ψ′(1) ≤ ϕ′(∞) = ∞. In this case, we
have Mgλ = ϕ′(g)ψ′(λ) which is normally nonzero. For example, let ϕ(g) = β1g

2/2
and ψ(λ) = β2λ

2/2 for β1, β2 > 0, then

(4.5) M(g, λ) = β(λg)2/4,

where β = β1β2. Note that Mgλ = βλg ≥ 0.

1More precisely, we should write λS = o(1), as λS is an infinitesimal quantity but should not
be equal to zero.

2It implicitly implies the technology for providing the local public good is identical for all the
implementing governments. On a connected government network with a hierarchical (or vertical)
structure, it is evidently true by the fact that the diffusion of a technology could be thought of to
be immediate, for example, its spread from the level k to the level k+ 1, or from the level k to the
level 0 and then directly to the level k − 1, where 1 ≤ k ≤ n− 2.
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3. Local Provision

3.1. Political Agency. A government ri ∈ N in the political system will be
considered as a governmental agent of the population Pi living in its administered
district Ri. Since we have already set up the economic context in the political system,
viz., local public good provision, a decision-making process that aims to decide the
provision state for ri should exclusively have economic natures. After clarifying
the political aggregation law on Pi adopted by ri, we will perceive, at the end of
this subsection, that ri is actually thought of as an economic agent which therefore
replaces the initial governmental one.

Suppose the population P of the region R can be partitioned into a collection of
disjoint groups according to a combination of social attributes of the citizens, such
as age, profession, income, and so on. Let J denote a finite index set such that

P =
⋃
j∈J

Pj,

where |J | � |P |. Each population Pi of the district Ri will then also be partitioned
into a collection of groups {Pi ∩ Pj : j ∈ J}. Let P j

i = Pi ∩ Pj for all j ∈ J , then

Pi =
⋃
j∈J P

j
i for all ri ∈ N . Notice that Pc = P , and hence P j

c = Pj for all j ∈ J .
Assume each government ri ∈ N adopts a political aggregation law on Pi in order

to generate a unique citizen pji ∈ P
j
i as a representative of P j

i for all j with P j
i 6= ∅.

Let P r
i denote the committee of all the representatives of Pi, then

P r
i = {pji ∈ P

j
i : j ∈ J and P j

i 6= ∅}.

In case ri happens to be the central government c, we will take the notation P r

instead of P r
c , and pj instead of pjc.

Recall that we claim Pi 6= ∅ for all ri ∈ N , so any ri has at least one nonempty
P j
i , and thus P r

i 6= ∅ for all ri ∈ N . Evidently, 1 ≤ |P r
i | ≤ |J | for all ri ∈ N , and

|P r| = |J |. Once |P r
i | = |J |, we simply set P r

i = P r, so that the political aggregation
laws of ri and c should in principle generate a same representative committee.

Suppose every citizen in P j
i has a rational preference for the local public good, in

the sense that the representative pji ∈ P
j
i has a utility function of local public good

provision state in Ri,

(4.6) vji (g, S) =

{
uji (g) if pji ∈ P (S)

0 if pji /∈ P (S)

where P (S) is the population of the district S, and uji (g) is a concave utility function.

If P r
i = P r, we use the notations vj(g, S) and uj(g) to replace vji (g, S) and uji (g),

respectively. As usual, we assume u′j(0) =∞ and u′j(∞) = 0, so that any pj should
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require a nonzero and finite provision level to have a reasonable marginal utility
balancing her satiable wants.

Each government ri is supposed to take a normative utilitarianism perspective
towards its committee P r

i . In particular, the welfare of ri is assumed to be equal to
the weighted average of its representatives’ utilities, in other words, it is determined
by the societal utility function of the committee P r

i which admits a functional form
as was proposed by Harsanyi [30]. Consequently, the welfare function of ri can be
written as

(4.7) Vi(g, S) =
∑
pji∈P r

i

αjiv
j
i (g, S),

where αji ∈ (0, 1) for all pji , and
∑

pji∈P r
i
αji = 1. Let

(4.8) Ui(g) =
∑
pji∈P r

i

αjiu
j
i (g).

If P (S) ⊇ Pi or S ⊇ Ri, we will definitely have Vi(g, S) = Ui(g). Note that Vi(g, S) ≤
Ui(g) for all g ≥ 0 and all S ⊆ R.

In case P r
i = P r, we will use the notations αj, V (g, S), and U(g) instead of αji ,

Vi(g, S), and Ui(g), simply as the committee of ri now coincides with that of c. So
we will have

V (g, S) =
∑
pj∈P r

αjvj(g, S), U(g) =
∑
pj∈P r

αjuj(g).

As a result, a government ri ∈ Nb ∪N∞, which implements provision actions to
provide the local public good, will have an objective function of the provision state
(g, S),

(4.9) Πi(g, S) = Vi(g, S)−M(g, λ(S)).

If S ⊇ Ri and P r
i = P r, the above objective function (4.9) will become a uniform

one,

(4.9′) Πi(g, S) = U(g)−M(g, λ(S)).

However, the objective function of a government ri /∈ Nb∪N∞ can not be specified
by a general functional form at this moment, because its (shared, but not direct)
provision cost function should depend on the structure of (N, f).

3.2. Optimal Provision State. The main goal of this subsection is to show
two propositions on optimal states of the local public good provision in a government
network when its governance structure is centralized or purely decentralized. With
either governance structure, the authority for any decision-making process will be
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absolutely allocated to a single government, that is, either the central government c
if centralized, or a government in Nb ∪N∞ if purely decentralized.

Proposition 4.1. If ri ∈ Nb has γi = 1 in the local public good provision
decision-making process for ri, the provision district decision will be exactly Ri.

Proof. Let the decision on the local public good provision state for ri be (g, S),
where g ≥ 0 and S ⊆ R. We first show S ⊇ Ri. Suppose not, we would have S ⊂ Ri

and thus Ri \ S 6= ∅. But then P (Ri \ S) 6= ∅, otherwise the administered district of
ri would be S rather than Ri. In the meantime, we should see P (S) = Pi, otherwise
the population in Ri \ S would be attracted to the provision district S. It therefore
appears that P (Ri \ S) = Pi \ P (S) = ∅, a contradiction.

Now that S ⊇ Ri, we have Vi(g, S) = Ui(g). Let λ = λ(S), then the objective
function of ri can be written as

Πi(g, S) = Ui(g)−M(g, λ).

If γi = 1 in the provision decision-making process for ri, its decision should directly
maximize Πi(g, S). Recall that U ′i(0) =∞ and Mg(0, λ) = 0, thus (∂Πi/∂g)(0, S) =
∞ which implies the provision level decision g > 0. Since Mλ ≥ 0, ∂Πi/∂λ = −Mλ ≤
0, where the inequality will be strict if λ 6= 0. By S ⊇ Ri we have λ = λ(S) ≥ λ(Ri),
and hence Πi(g, S) ≤ Πi(g,Ri). Moreover, Πi(g, S) < Πi(g,Ri) if S ⊃ Ri for λ(Ri) 6=
0. Consequently, the provision district decision S = Ri, which then completes the
proof. �

A direct corollary of Proposition 4.1 is that the provision district decision for any
ri ∈ N∞ must be Ri. The reason is that the group of participating governments in
the provision decision-making process for ri is the singleton Li = {ri}, in which ri
should naturally have the absolute authority and hence γi = 1.

It comes to be realized that any government ri ∈ Nb ∪ N∞ with γi = 1 in the
decision-making process for ri will make a provision decision (g,Ri), or (g, λi) for
λi = λ(Ri). Clearly, the objective function of ri ∈ Nb ∪N∞ is now written as a real
function in g,

(4.10) Λi(g) = Πi(g,Ri) = Ui(g)−M(g, λi).

Since U ′i(0) =∞, Mg(0, λi) = 0, U ′i(∞) = 0, and Mg(∞, λi) =∞, we have

Λ′i(0) =∞, Λ′i(∞) = −∞.

Recall also that U ′′i ≤ 0 and Mgg ≥ 0, so Λ′i(g) should be monotonic in g, and thus
there exists a unique gi ∈ (0,∞) such that Λ′i(gi) = 0, or equivalently,

(4.11) U ′i(gi) = Mg(gi, λi).



88 Collective Decision on Political Network

So far, we could arrive at a significant conclusion that the unique equilibrium
provision states in (N, f) with a pure decentralized governance structure can be
described by the collection {

(gi, Ri) : ri ∈ Nb ∪N∞
}
,

where
⋃
ri∈Nb∪N∞ Ri = R and gi ∈ (0,∞) for all ri. In this respect, such a systematic

provision arrangement is called the decentralized provision scheme.
If a government network takes a centralized governance structure, then the central

government c has the absolute authority (i.e., γc = 1) in any provision decision-
making process for ri ∈ Nb. In practice, c makes a provision decision for each
ri ∈ Nb, and each ri ∈ Nb will then implement provision actions according to the
decision approved by c. Suppose c decides a uniform provision level for all ri ∈ Nb,
and perfectly identifies provision costs as if c itself implemented provision actions in
the whole region R, then c would have an objective function of provision state (g, S),

(4.12) Πc(g, S) = V (g, S)−M(g, λ(S)).

The provision decision procedure behind (4.12) is called the centralized provision
scheme.

Proposition 4.2. In a connected government network (N, f) the decentralized
provision scheme is more efficient than the centralized provision scheme, if P r

i = P r

for all ri ∈ Nb and Mgλ = 0.

Proof. By similar arguments developed in the proof of Proposition 4.1, the
provision district decision under the centralized provision scheme is R which has a
capacity λ(R) = 1. c thus has the objective function Πc(g,R) = U(g) −M(g, 1) as
per (4.12), so the provision decision is (gc, R) such that U ′(gc) = Mg(gc, 1).

Since P r
i = P r for all ri ∈ Nb, we have Ui(g) = U(g) for all ri ∈ Nb. The provision

decision for ri ∈ Nb under the decentralized provision scheme is (gi, Ri) such that
U ′(gi) = Mg(gi, λ(Ri)) as per (4.11), where

⋃
ri∈Nb

Ri = R. By Mgλ = 0 we should
see

U ′(gi) = Mg(gi, λ(Ri)) = Mg(gi, 1),

and thus gi = gc for all ri ∈ Nb. Recall that the capacity λ is superadditive, so∑
ri∈Nb

λ(Ri) ≤ λ
( ⋃
ri∈Nb

Ri

)
= λ(R) = 1.

By virtue of Mλ ≥ 0 and Mλλ ≥ 0,∑
ri∈Nb

M(gi, λ(Ri)) =
∑
ri∈Nb

M(gc, λ(Ri)) ≤M
(
gc,
∑
ri∈Nb

λ(Ri)
)
≤M(gc, 1).
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It is now evident that these two provision schemes yield a same social welfare
U(gc), but different provision costs. The judgement on their efficiencies should then
be direct to derive. �

In addition, at the equilibrium provision state (gi, Ri) the following comparative
statics can be acquired:

(4.13)
dgi
dλi

=
Mgλ(gi, λi)

U ′′(gi)−Mgg(gi, λi)
,

where λi = λ(Ri). In Proposition 4.2, we assume Mgλ = 0 to have dgi/dλi = 0, so
that gi = gc for all ri ∈ Nb. If Mgλ < 0, then dgi/dλi > 0 and hence gc > gi for all
ri ∈ Nb, which means the local public good will be over-provided and require much
more provision costs under the centralized provision scheme. On the other hand,
if Mgλ > 0, then dgi/dλi < 0 and hence gi > gc for all ri ∈ Nb, which means the
local public good will be over-provided under the decentralized provision scheme.
However, the efficiency judgement on these two provision schemes when Mgλ 6= 0
seems unlikely in general.

4. Hierarchical Interaction

We now advance to study collective decision-making processes on a government
network in which at least two governments share the authority. A collective decision-
making process is clearly much more complicated than what we studied in the last
“preparation” section, in which only one government has the authority and provision
decisions are always kept to the local administration. As we have mentioned in the
very beginning, two quite fundamental connected government network will be studied
in the present chapter, viz., the H-form government line and the M-form government
star. This section will be devoted to a formal study of the H-form government line
and games emerging on it, while the next section will investigate in detail the M-form
government star and its associated games. Properly speaking, we shall call a game
emerging on an H-form government line an H-form game, and similarly, a game on
an M-form government star can be named as an M-form game.

4.1. H-form Game. Recall that N = {c, r1, r2, . . . , rn−1}, where c = r0 and
I = {0, 1, . . . , n − 1} denotes the index set of N . Suppose (N, f) is an H-form
government line, then |Ni| = 1 for all i ∈ I. Without loss of generality, we assume
Ni = {ri} for all i ∈ I, so that Di = {ri+1} for all i ∈ I \ {n− 1}, and Dn−1 = ∅, and
hence Nb = {rn−1}. Evidently, an H-form government line is actually a chain with a
simple and complete order over N , for this reason, we shall simply use N to denote
it. Besides, we should notice that Ri = R and Pi = P for all ri ∈ N in the H-form
government line N .
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If any decision-making process in the political system is intentionally designed
to decide the local public good provision for the bottom government rn−1 which in
practice implements provision actions thereafter the decision, there will be a unique
decision-making process with a group of participating governments Ln−1 = N . The
authority for that decision-making process is distributed over N , such that ri has
an authority γi, and

∑
ri∈N γi = 1. Clearly, there is at least one government with

a nonzero authority, and possibly γi 6= 0 for all ri ∈ N . If γc = 1, the governance
structure of N will be centralized; if γn−1 = 1, its governance structure will be
purely decentralized; if there are at least two governments with nonzero authorities,
its governance structure will be decentralized but impure.

Let rt and rb be the lowermost-level government and uppermost-level government
among the governments with nonzero authorities in N , then the indices t, b can be
defined by

t = min{i ∈ I : γi 6= 0}, b = max{i ∈ I : γi 6= 0},
where 0 ≤ t ≤ b ≤ n − 1. Once t = b, the authority will be solely allocated to the
unique government rt = rb. If t 6= b, there should be at least two governments with
nonzero authorities.

Definition. If there is a government rm in the H-form government line N such
that γm = 0 for t < m < b, N is then said to have an authority gap.

Notice that if t 6= 0 and b 6= n − 1, all government rm for 0 ≤ m < t and
b < m ≤ n − 1 will have no authority at all, however, they do not shape any
authority gap in N by the above definition. In a much stricter sense, we shall say N
has no authority gaps , if γi 6= 0 for all 0 ≤ i ≤ n− 1.

More generally, we say a government network (N, f) has an authority gap on
a path, if there is a government on the path (as a local H-form government line)
satisfying the above definition. And we say (N, f) has no authority gaps, if the
authority for any decision-making process which aims to decide actions for some ri,
will be allocated to all the governments in Li.

To simplify our analysis, we shall claim that an authority gap does not affect
negotiations or interactions in the H-form government line N at all. Now suppose
N has some authority gaps (between rt and rb), then the participating group in the
collective decision-making process must have at least two governments with nonzero
authorities, and some “active” governments in the group are not connected directly
but through certain intermediary “inactive” governments which in this case have
zero authorities. Since the decision-making process does not depend on any private
information of the intermediary governments situated in authority gaps, information
transmission over N should be näıvely equivalent to transmissions over just the group
of these governments with nonzero authorities. Consequently, a game on the H-form
N should be completely determined by a certain authority allocation rule γ, and
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two games on N would have a similar structure if the numbers of nonzero-authority
governments of these two games are same. It then appears to us that there are in
total n classes of game structure on N , and each can be characterized by the fact that
the authority for the collective decision-making process is shared by k consecutive
governments for k ∈ {1, 2, . . . , n}.

If there is a single government ri ∈ N with γi = 1, then the provision district
decision will be R with a capacity λ(R) = 1. So the objective function of ri is written
as Ui(g)−M(g, 1), whether the provision scheme is decentralized or centralized, and
the provision level decision is gi such that for all g ≥ 0,

Ui(gi)−M(gi, 1) ≥ Ui(g)−M(g, 1),

where Ui = U , as Pi = P and hence P r
i = P r. By the marginal condition (4.11), gi

should be the unique solution of the following equation,

U ′(g)−Mg(g, 1) = 0.

The provision decision of ri will be the pair (gi, R), where gi = gn−1 for all ri ∈ N .
However, if the provision decision of ri 6= rn−1 is not simply determined through the
decentralized or centralized provision scheme, it is very likely that gi 6= gn−1.

If there are at least two governments with nonzero authorities, the collective
decision-making process will turn out to be a negotiation game, in which governments
bargain to reach agreement on the local public good provision decision, and the
bargaining power of each government is assumed to be equal to its allocated authority.

Suppose k consecutive governments in N share the authority for the negotiation
game, where 2 ≤ k ≤ n. There are n− k + 1 possible combinations,

{ri, ri+1, . . . , ri+k−1} for i ∈ {0, 1, . . . , n− k}.

Since they are all in a same class of game structure, we can focus on the specific one,
to which the bottom government rn−1 always belongs, that is,

{rn−k, rn−k+1, . . . , rn−1}.

It comes out to be an H-form government line as well, and clearly equivalent to
{c, r1, r2, . . . , rk−1}, in which γi 6= 0 for all ri. By taking a different notation, we can
therefore directly concentrate on the H-form government lineN = {c, r1, r2, . . . , rn−1}
for n ≥ 2, in which γi 6= 0 for all ri.

4.2. Negotiation Game. Note that Pn−1 = P and hence P r
n−1 = P r, then the

welfare function of the bottom government rn−1 can be written in the form

V (g, S) =
∑
pj∈P r

αjvj(g, S),
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where αj ∈ (0, 1) for all pj, and
∑

pj∈P r αj = 1. Since rn−1 is the only government

that really implements local public good provision actions in the political system,
its (direct) provision cost function ought to be M(g, λ(S)). Finally, we obtain its
objective function,

(4.14) Πn−1(g, S) = V (g, S)−M(g, λ(S)).

Recall that Di = {ri+1} for all ri 6= rn−1. Assume each government ri 6= rn−1 has
such an objective function that is a convex combination of its own welfare function
and the objective function of its directly subordinate government ri+1. Since P r

i = P r

for all ri, the welfare function of ri is also V (g, S). The objective function of ri can
therefore be expressed as

(4.15) Πi(g, S) = (1− δ)V (g, S) + δΠi+1(g, S),

where 0 ≤ i ≤ n− 2 and δ ∈ [0, 1].
Here, the constant δ is called the political discounting in the political system,

in the sense that any government can only partially identify the welfare states of
its directly subordinate governments. If δ = 1, then Πi(g, S) = Πi+1(g, S), and
thus all the governments in N would have a same objective function Πn−1(g, S). If
δ = 0, then Πi(g, S) = V (g, S) for all ri 6= rn−1, which thus means all the nonbottom
governments would directly take the welfare function V (g, S) as their own objective
functions. In most discussions, a regular political discounting will be assumed in
advance however, in order to keep δ ∈ (0, 1).

According to the recursive formula (4.15) and the initial condition (4.14), we can
obtain

(4.16) Πi(g, S) = V (g, S)− δn−1−iM(g, λ(S)),

where 0 ≤ i ≤ n− 1. In particular, the objective function of the central government
c now takes the form

Πc(g, S) = V (g, S)− δn−1M(g, λ(S)).

Despite none of the governments has the absolute authority, the provision district
decision of the negotiation game should be R, as all the governments unanimously
agree on that (cf., arguments in the proof of Proposition 4.1). The welfare function
V (g,R) then becomes

U(g) =
∑
pj∈P r

αjuj(g),

and the provision cost function of rn−1 becomes M(g, 1). The objective function of
each ri ∈ N can thus be rewritten as

(4.16′) Πi(g,R) = U(g)− δn−1−iM(g, 1).
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The status quo provision level of each ri denoted by gi can be directly thought of as
the provision state maximizing its objective function Πi(g,R). It is clear that gi is
the unique provision level that satisfies the following marginal condition,

(4.17) U ′(gi) = δn−1−iMg(gi, 1).

In case the political discounting δ is irregular, i.e., δ ∈ {0, 1}, the status quo
provision level would either be trivial or not make sense in the political system. In
more detail, if δ = 1, we would have gi = gn−1 for all ri 6= rn−1, yet the negotiation
game would then have no reason to exist; if δ = 0, we would have gi = ∞ for all
ri 6= rn−1, but it were clearly impossible for them to stand as the status quo. This
gives us another reason to set δ ∈ (0, 1) so as to keep the political discounting regular.

If δ ∈ (0, 1), it then finely appears that gi 6= gi+1 for all 0 ≤ i ≤ n − 2. So for
each ri 6= rn−1, there exist two provision levels between gi and gi+1, say gı and gı̂
such that

U ′(gi)− U ′(gi+1) = U ′′(gı)(gi − gi+1),

Mg(gi, 1)−Mg(gi+1, 1) = Mgg(gı̂, 1)(gi − gi+1).

By the formula (4.17), U ′(gi) and U ′(gi+1) can be substituted in terms of Mg(gi, 1)
and Mg(gi+1, 1), thus

gi − gi+1 =
(δ − 1)δn−2−iMg(gi, 1)

U ′′(gı)− δn−2−iMgg(gı̂, 1)
.

Since U ′′ < 0, Mgg > 0, and Mg > 0 for all positive provision level, gi − gi+1 > 0,
and therefore gi > gi+1 for all 0 ≤ i ≤ n− 2, which then yields

gc > g1 > g2 > · · · > gn−2 > gn−1 > 0.

Lemma 4.3. Any Pareto efficient bargaining solution to the negotiation game on
N must be a convex combination of gi+1 and gi for some 0 ≤ i ≤ n− 2.

Proof. Note that all Πi(g,R) is concave in g, and achieves its maximum at gi, so
any provision level g > gc or g < gn−1 is clearly not Pareto efficient. Thus any Pareto
efficient bargaining solution to the negotiation game should be a convex combination
of gn−1 and gc. Since all the n status quo provision levels gc, g1, g2, . . . , gn−1 are
pairwise distinct, the interval (gi+1, gi) for 0 ≤ i ≤ n− 2 is dense.

A Pareto efficient bargaining solution is therefore either equal to such a status quo
provision level as gi, or located in such an interval as (gi+1, gi). In either case, there is
a constant εi ∈ [0, 1] such that this bargaining solution is equal to (1− εi)gi+1 + εigi,
where 0 ≤ i ≤ n− 2 fixed, which then completes the proof. �

No matter which Pareto efficient bargaining solution concept we take, by Lemma
4.3, there is always an interval [gi+1, gi] for some 0 ≤ i ≤ n − 2, which can serve as



94 Collective Decision on Political Network

the negotiation set for the game. It helps us notice that a negotiation game with
more than two government players can be in practice reduced to an equivalent one
with just two government players, in case we could identify its ad hoc negotiation
set. The basic but rather critical feature of a negotiation game thus lies in political
interactions between each pair of consecutive governments in N . In consideration of
this fact, we shall first study in detail the negotiation game that appears on {c, r1}.

4.3. Utilitarian Solution. Let’s now take the utilitarian bargaining solution
concept for the two-government negotiation game on {c, r1}. The solution to that
negotiation game can be captured by a procedure that c and r1 jointly minimize
the weighted average of their welfare losses with respect to their status quo welfare
states, where a status quo welfare state is determined by its corresponding status quo
provision level, and the weighting factor of a government is equal to its corresponding
allocated authority.

The status quo provision levels of c and r1 are gc and g1 with gc > g1 > 0, and
according to (4.17) for n = 2 here, they should satisfy

U ′(gc) = δMg(gc, 1), U ′(g1) = Mg(g1, 1).

These two status quo states can be denoted by Π∗c = Πc(gc, R) and Π∗1 = Π1(g1, R).
In addition, the authority allocation rule γ over {c, r1} delivers γc and γ1 to c and
r1, where γc, γ1 > 0 and γc + γ1 = 1.

The collective strategy space of the negotiation game between c and r1 is in effect
the Pareto efficient negotiation set [g1, gc]. Let gu denote the utilitarian bargaining
solution to that negotiation game, then it should be the argument

(4.18) min
g∈[g1,gc]

γc
(
Π∗c − Πc(g,R)

)
+ γ1

(
Π∗1 − Π1(g,R)

)
,

or equivalently,

(4.18′) max
g∈[g1,gc]

γcΠc(g,R) + γ1Π1(g,R).

Proposition 4.4. gu = (1 − ε)g1 + εgc, in which ε ∈ (0, 1) and moreover, ε
increases when γcδ + γ1 decreases.

Proof. Recall that

Πc(g,R) = U(g)− δM(g, 1), Π1(g,R) = U(g)−M(g, 1).

gu is then the argument

(4.18′′) max
g∈[g1,gc]

U(g)− (γcδ + γ1)M(g, 1),

and thus gu satisfies the following marginal condition,

(4.19) U ′(gu) = (γcδ + γ1)Mg(g
u, 1).
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Since δ ∈ (0, 1), γc, γ1 > 0 and γc + γ1 = 1, we have

δMg(g
u, 1) < U ′(gu) < Mg(g

u, 1).

Notice that

U ′(gc) = δMg(gc, 1), U ′(g1) = Mg(g1, 1),

so gu 6= gc, g1, simply as U ′′ < 0 and Mgg > 0 at all g > 0.
Since a utilitarian bargaining solution is Pareto efficient, by Lemma 4.3, gu must

be a convex combination of g1 and gc. Thus there exists a unique constant ε ∈ (0, 1)
such that

gu = (1− ε)g1 + εgc,

which yields dgu/dε = gc − g1 > 0. By (4.19), it is not hard to see that

dgu

d(γcδ + γ1)
=

Mg(g
u, 1)

U ′′(gu)− (γcδ + γ1)Mgg(gu, 1)
< 0,

which then completes the proof. �

Let us return back to the two-government negotiation game, as if Proposition
4.4 had not been developed to characterize its utilitarian solution. Alternatively, we
shall propose an intuitive method to find such a solution.

Note that at any g ∈ [g1, gc], the marginal welfare states of c and r1 are

U ′(g)− δMg(g, 1) ≥ 0, U ′(g)−Mg(g, 1) ≤ 0,

whose difference is equal to (1−δ)Mg(g, 1). Any collective strategy g will divide that
difference into two parts to be shared by c and r1 separately. Define a “parameter”
function

β : [g1, gc]→ [0, 1],

such that at any g the ratio of the part shared by c to the remaining part shared
by r1 is exactly β(g) to 1 − β(g). By (4.18), gu is the equilibrium if and only if
β(gu) = γ1 and 1− β(gu) = γc. In other words,

U ′(gu)− δMg(g
u, 1) = γ1(1− δ)Mg(g

u, 1),

U ′(gu)−Mg(g
u, 1) = −γc(1− δ)Mg(g

u, 1),

in fact, both of which are equivalent to the marginal condition (4.19). The following
Figure 4.4 gives a graphic illustration of this method.

With regards some negotiation game emerging on the H-form government line N
with n ≥ 3 governments, thought Lemma 4.3 is a quite useful statement, finding the
critical ri should be very likely hard. However, if we consider a general n-government
negotiation game simply as a “linear” extension of a 2-government negotiation game,
we could still have a few interesting results which might be unexpected at this stage.
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gg1 gcgu

γ1

γc

U ′(g)− δMg(g, 1)

U ′(g)−Mg(g, 1)

c

r1

Figure 4.4.

Directly, we shall say that the utilitarian bargaining solution to the n-government
negotiation game on N = {c, r1, r2, . . . , rn−1} is gu ∈ [gn−1, gc], which maximizes

(4.20) γcΠc(g,R) +
n−1∑
i=1

γiΠi(g,R),

where γi > 0 for all i, and γc +
∑n−1

i=1 γi = 1. Equivalently, gu should then maximize

(4.21) U(g)− h(δ, γ)M(g, 1),

where h(δ, γ) is a polynomial in δ of degree n− 1, that is,

(4.22) h(δ, γ) = γcδ
n−1 + γ1δ

n−2 + · · ·+ γn−2δ + γn−1.

Let’s define the characteristic of h(δ, γ) as

(4.23) χ = logδ h(δ, γ).

Note that δn−1 < h(δ, γ) < 1 for all authority allocation rule γ, thus 0 < χ < n− 1,
and hence 0 ≤ bχc ≤ n − 2 as bχc = max{z ∈ Z : z ≤ χ}. Next, let’s define the
conjugate value of bχc (with respect to n− 2) as

(4.24) χ∗ = n− 2− bχc.

It is clear that 0 ≤ χ∗ ≤ n− 2.

Proposition 4.5. gu is a convex combination of gχ∗+1 and gχ∗.
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Proof. Since bχc ≤ χ < bχc+ 1, we have n− 2− χ∗ ≤ χ < n− 1− χ∗. By the
definition of χ, we have h(δ, γ) = δχ, thus

δn−1−χ
∗
< h(δ, γ) ≤ δn−2−χ

∗
.

By (4.17), there are two consecutive governments rχ∗ and rχ∗+1, whose status quo
provision levels are gχ∗ and gχ∗+1 such that

U ′(gχ∗) = δn−1−χ
∗
Mg(gχ∗ , 1), U ′(gχ∗+1) = δn−2−χ

∗
Mg(gχ∗+1, 1).

In the meantime, by (4.21), gu should satisfy

(4.25) U ′(gu) = h(δ, γ)Mg(g
u, 1).

Let Z(g) = U ′(g)/Mg(g, 1), then Z(g) is a decreasing function of g, as U ′′(g) < 0
and Mgg(g, 1) > 0 at all g > 0. Note that

Z(gu) = h(δ, γ); Z(gχ∗) = δn−1−χ
∗
, Z(gχ∗+1) = δn−2−χ

∗
,

which yield

Z(gχ∗) < Z(gu) ≤ Z(gχ∗+1),

thus gχ∗+1 ≤ gu < gχ∗ , which completes the proof. �

By Proposition 4.5, it could be concluded that the 2-government negotiation
game on {rχ∗ , rχ∗+1} stands out to be a reasonable approximation for the original
n-government negotiation game on N . Thus χ∗ appears to be a meaningful indicator
for the focal hierarchical level of a long H-form government line, and these two
governments on the hierarchical levels χ∗ and χ∗ + 1 evidently have the greatest
(enforceable) authorities in the political system.

Example 4.6. Assume uj(g) = log(g + 1) and αj = 1/|J | for all pj ∈ P r, where
|J | = |P r|, thus

U(g) = log(g + 1), U ′(g) = 1/(g + 1).

Assume M(g, λ) = (λg)2/2, then

M(g, 1) = g2/2, Mg(g, 1) = g.

In the H-form government line {c, r1}, set γc = 0.4, γ1 = 0.6, and δ = 0.5. By
solving the following two equations,

1/(g + 1) = 0.5g, 1/(g + 1) = g,

we obtain gc = 1 and g1 = (
√

5 − 1)/2 ≈ 0.618. The utilitarian solution to the
negotiation game on {c, r1} is gu > 0 such that

1/(gu + 1) = 0.8gu,

which yields gu = (
√

6− 1)/2 ≈ 0.725.
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Let gu = (1− ε)g1 + εgc, then

ε =
gu − g1
gc − g1

=

√
6−
√

5

3−
√

5
≈ 0.28.

When γcδ + γ1 decreases, or equivalently γc(1 − δ) increases, ε and gu will both
increase, which means gu gets closer to gc.

Example 4.7. In the H-form government line {c, r1, r2, r3, r4}, set γi = 0.2 for
all i, and δ = 0.8. We have h(δ, γ) = 1− 0.85, thus

χ = log0.8(1− 0.85) ≈ 1.78,

and hence χ∗ = 3 − b1.78c = 2. By Proposition 4.5, we see that the utilitarian
solution of the 5-government negotiation game which is denoted by gu, must be a
convex combination of g3 and g2. In effect, it does happen that g3 < gu < g2, which
thus suggests r2 and r3 have the most powerful authorities in the political system.

Suppose again U ′(g) = 1/(g + 1) and Mg(g, 1) = g, then we should have

1/(g3 + 1) = 0.8g3, 1/(g2 + 1) = 0.82g2,

which yield g3 = (
√

6− 1)/2 ≈ 0.725 and g2 = (
√

29− 2)/4 ≈ 0.846. Meanwhile, gu

satisfies
1/(gu + 1) = (1− 0.85)gu,

which shows gu = (
√

14601/2101 − 1)/2 ≈ 0.818. It seems that r2 plays a more
powerful role than r3 in the negotiation game, as we might observe that gu is much
closer to g2 than to g3.

5. Coordinated Interaction

5.1. M-form Game. Suppose now (N, f) is an M-form government star, then
there are only two hierarchical levels, the level 0 and level 1, and N = N0∪N1, where
N0 = {c} and N1 = N \ {c}. Notice that D0 = N1 and Di = ∅ for all ri ∈ N1, thus
Nb = N1 = N \ {c}. Similar to the case of H-form government line, we shall also
use N to directly denote an M-form (N, f) by virtue of its simple structure. Note
that, related to an M-form government star, the region R is partitioned into n − 1
pairwise disjoint districts, i.e., Ri for all ri ∈ N1, each of which holds a population
P (Ri) = Pi, and is administered by a bottom government ri ∈ N1 which is also local
here.

In an H-form government line, all the governments have a common committee of
representatives, viz., P r

i = P r for all ri ∈ N , because Pi = P for all ri ∈ N . But for
an M-form government star, P r

i is not necessarily identical to P r, simply as now Pi
is only a proper subgroup of P . Recall that P r = {pj ∈ Pj : j ∈ J} and |P r| = |J |.
Since P r

i 6= ∅ and highly likely P r
i ⊆ P r for all ri ∈ N1, any P r

i could be one of
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the nonempty subgroups of P r, and thus it has 2|J | − 1 possible combinations. The
number of composite arrangements of those n− 1 committees for N1 is thus equal to
(2|J | − 1)n−1. In case |J | is designed to be equal to |N1| in the political system, that
is, |J | = n− 1, then that value would be

(2n−1 − 1)n−1 ≈ 2(n−1)2 .

Evidently, it grows exponentially fast with n, and it will become rather great for
even n > 5.

In spite of the existence of enormous possible committee arrangements due to
various population distributions over R, two crucial and yet quite specific cases could
be imaged:

(i) any Pj for j ∈ J is näıvely distributed over R, so that P r
i = P r for all

ri ∈ N ;
(ii) any Pj for j ∈ J is distributed over one district Ri, and any Ri for ri ∈ N1

holds only one population Pj, so that P r = {p1, p2, . . . , pn−1} and P r
i = {pi}

for all ri ∈ N1.

In case (i), |P r
i | = |P r| = |J | for all ri ∈ N1; in case (ii), |J | is designed to be equal

to n− 1, so that |P r| = n− 1, and |P r
i | = 1 for all ri ∈ N1.

Suppose a single decision-making process inN is again designed to decide the local
public good provision for one certain bottom government, and moreover, distinct
decision-making processes do not have any overlapping procedure, then there should
be n−1 distinct collective decision-making processes in the political system for |Nb| =
n − 1. With regards a specific decision-making process that aims to decide actions
for some ri ∈ Nb, there is a group of participating governments, i.e., Li = {c, ri},
and an authority distribution over Li. It is noteworthy that a local government in
N1 is merely involved in one decision-making process, and the central government
c is involved in all the n − 1 decision-making processes. It then turns to be clear
that there are in total n− 1 distinct authority distributions over Li = {c, ri} for all
ri ∈ N1, which on the whole constitute the authority rule γ in the political system.

Let the authority allocated to ri ∈ N1 be γi, then the central government c should
be allocated all the remaining authorities which can be ordered as an (n− 1)-tuple,

Γc = (1− γ1, 1− γ2, . . . , 1− γn−1),
where 1−γi is the authority allocated to c concerning the decision-making process for
ri ∈ N1. Note that γi ∈ [0, 1] for all ri ∈ N1, and Γc ∈ [0, 1]n−1. If Γc = (1, 1, . . . , 1),
or γi = 0 for all ri ∈ N1, N will have a centralized governance structure; if Γc =
(0, 0, . . . , 0), or γi = 1 for all ri ∈ N1, N will have a pure decentralized governance
structure.

An isolated collective decision-making process for some ri ∈ N1 stands out to be
a negotiation game on the H-form government line Li = {c, ri}, and interactions in
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N1, in view of that it can be separated from N0 = {c}, appear to be a noncooperative
game, in which local public good provision is dominated by free-rider inertia. In a
quite practical sense, the M-form game N can then be thought of as a collection
of n normal games, viz., n − 1 two-government negotiation games on {c, ri} for all
ri ∈ N1, and one noncooperative game on N1. Note that the appearances of these
n− 1 negotiation games and the noncooperative game on N1 is fairly determined by
Γc. For example, if Γc = (0, 0, . . . , 0), there will be no negotiation games, but only
the noncooperative game on N1; if Γc = (1, 1, . . . , 1), all the n normal games will
disappear, and hence the M-form game will degenerate into a decision situation for
the central government c.

What’s more, two main (and nearly complete) classes of M-form game can be
discerned by means of Γc, so that M-form games in either class would have a similar
analytical structure. They are

(i) Γc ∈ {0, 1}n−1, so that each decision-making process allocates its absolute
authority to one single government, either central or local, and we call it
the degenerate class;

(ii) Γc ∈ (0, 1)n−1, so that each decision-making process allocates its nonzero
authorities to the central government and a local government, and we call
it the analytic3 class.

Let (gi, Si) denote the local provision state decided by the negotiation game on
{c, ri} for all ri ∈ N1. Let (gc, Sc) denote the global provision state identifiable to
the central government c. We shall assume gc is equal to the weighted average of
these n−1 local provision levels, where the weighting factor of gi is set as its relative
provision capacity µi = λ(Si)/

∑
rj∈N1

λ(Sj), thus

(4.26) gc =
∑
ri∈N1

µigi.

It is direct that Sc =
⋃
ri∈N1

Si, as there ought to be no difficulty in provision district
identifications.

Depending on all (variable) local provision state (gi, Si) for ri ∈ N1, the welfare
function of the local government ri ∈ N1 takes the form Vi(gi, Sc ∩ Ri), which will
be Ui(gi) if Sc ∩ Ri = Ri. And the welfare function of the central government c
is V (gc, Sc), which will be U(gc) if Sc = R. In particular, we assume V (gc, Sc) is
linear in gc, and the welfare state V (gi, Sc) of c is equivalent to the welfare state

3Here, we use the term “analytic class” rather than directly “nondegenerate class” as is the
negation of degenerate class, because this class only contains some nondegenerate M-form games,
though most of them.
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Vi(gi, Sc ∩Ri) of ri, it therefore follows that

(4.27) V (gc, Sc) =
∑
ri∈N1

µiV (gi, Sc) =
∑
ri∈N1

µiVi(gi, Sc ∩Ri).

If Sc = R, we have V (gc, Sc) = U(gc) and Vi(gi, Sc ∩Ri) = Ui(gi), and thus

(4.28) U(gc) =
∑
ri∈N1

µiUi(gi).

It might be emphasized that the relevant provision district to the welfare function
of ri is in effect Sc ∩ Ri rather than Si. Clearly, Si ⊆ Sc ∩ Ri. In case Si ⊂ Sc ∩ Ri,
there must be some other local governments with provisions to cover parts of the
district Ri \Si, and the population in Ri who can benefit from the local public good
is P (Sc ∩Ri) which satisfies

P (Si) ⊂ P (Sc ∩Ri) ⊆ Pi.

Although the local public good provisions in Ri \ Si could then be very likely varied
and different from gi, the identifiable provision level entering the welfare function of ri
is simply its own provision level gi, because the utility functions of its representatives
should basically reflect the provision level of ri.

The objective function of the local government ri ∈ N1 can now be expressed as

(4.29) Πi(gi, Sc) = Vi(gi, Sc ∩Ri)−M(gi, λ(Si)).

The objective function of the central government c is again assumed to be a convex
combination of its own welfare function and the objective functions of its directly
subordinate governments in D0 = N1. It can thus be written as

(4.30) Πc(gc, Sc) = (1− δ)V (gc, Sc) + δ
∑
ri∈N1

µiΠi(gi, Sc),

where δ ∈ (0, 1) is a regular political discounting. By the condition (4.27), we have∑
ri∈N1

µiΠi(gi, Sc) = V (gc, Sc)−
∑
ri∈N1

µiM(gi, λ(Si)),

and therefore we reach the function

(4.31) Πc(gc, Sc) = V (gc, Sc)− δ
∑
ri∈N1

µiM(gi, λ(Si)).

Note that the condition (4.27) is sufficient for c having an objective function like
(4.31), and yet it is surely not necessary. In the remaining discussion of this section,
we shall directly use (4.31), but not require that V be a convex combination of all Vi
for ri ∈ N1. To put it clearer, (4.31) will be supposed to be independent of (4.27),
so that V and Vi’s could have the potential to take forms freely.
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5.2. Degenerate Game. Suppose Γc ∈ {0, 1}n−1, then the M-form game on N
will be degenerate. In this subsection, we shall develop three formal assertions on its
solutions.

Proposition 4.6. If Γc = (1, 1, . . . , 1) and Mgλ = 0, the solution of the M-form
game will be the provision decision (gcc, R) such that U ′(gcc) = δMg(g

c
c, 1).

Proof. If Γc = (1, 1, . . . , 1), the M-form game will degenerate into a decision
situation for the central government c, and its solution should then maximize the
objective function of c. Let (gci , S

c
i ) denote the provision state for ri ∈ N1 decided

by c, then gcc =
∑

ri∈N1
µig

c
i . Since Sci = Ri for all ri ∈ N1 (cf., Proposition 4.1),

Scc =
⋃
ri∈N1

Sci = R. The objective function of c defined by (4.31) will then be
rewritten as a real function in gc,

(4.31′) Λc(gc) = Πc(gc, R) = U(gc)− δ
∑
ri∈N1

µiM(gi, λ(Ri)),

where gc =
∑

ri∈N1
µigi.

It is clear that all gci for ri ∈ N1 should satisfy

dΛc(g
c
c)/dgi = µiU

′(gcc)− δµiMg(g
c
i , λ(Ri)) = 0,

where µi > 0 as λ(Ri) > 0, so it follows that

U ′(gcc) = δMg(g
c
i , λ(Ri)).

Since Mgλ = 0, it clearly happens that Mg(g
c
i , λ(Ri)) = Mg(g

c
i , 1), and thus we have

the following marginal condition for all ri,

(4.32) U ′(gcc) = δMg(g
c
i , 1).

Recall that Mgg > 0 and U ′′ < 0 at all positive provision level, then gci is unique and
also constant for all ri ∈ N1. So gci = gcc for all ri ∈ N1, and hence the provision state
for all ri ∈ N1 is (gcc, Ri), which means the provision decision of c is (gcc, R) such that
U ′(gcc) = δMg(g

c
c, 1). �

If Mgλ 6= 0, it still be true that Scc =
⋃
ri∈N1

Sci = R, however, it now could
happen that Sci 6= Ri for some ri ∈ N1. The provision state (gci , S

c
i ) for ri ∈ N1

satisfies

(4.33) U ′(gcc) = δMg(g
c
i , λ(Sci )).

Two artificial decision procedures without great computing complexity could be
imagined. First, suppose c decides gci = gcc for all ri ∈ N1, then λ(Sci ) must be
constant, which implies these n − 1 provision districts should be fairly divided4.

4Here, the fairness means that each Sc
i has a same provision capacity, say λc. Since the provision

capacity is superadditive, we must have λc ≤ 1/(n− 1).
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Next, suppose c decides Sci = Ri for all ri ∈ N1, then for all distinct ri, rj, the
following relation should hold,

(4.34) (gci − gcj)
(
λ(Ri)− λ(Rj)

)
Mgλ ≤ 0.

In other words, if Mgλ < 0, then gci ≥ gcj for λ(Ri) ≥ λ(Rj), and if Mgλ > 0, then
gci ≥ gcj for λ(Ri) ≤ λ(Rj).

Proposition 4.7. If Γc = (0, 0, . . . , 0), the solution of the M-form game will be
the strategic equilibrium (gri , Ri) for all ri ∈ N1, such that U ′i(g

r
i ) = Mg(g

r
i , λ(Ri)).

Proof. If Γc = (0, 0, . . . , 0), the M-form game will plainly degenerate into a
noncooperative game on N1, and its solution should then be the strategic equilibrium
of that noncooperative game, which can be denoted by the collection{

(gri , S
r
i ) : ri ∈ N1

}
.

Note that Sri ∩ Srj = ∅ for all distinct ri, rj, otherwise some local government would
have incentives to decrease its provision capacity. Meanwhile, Sri ⊇ Ri for all ri ∈ N1

(cf., Proposition 4.1), so Sri = Ri for all ri ∈ N1, and hence
⋃
ri∈N1

Sri = R. gri for
all ri ∈ N1 will then be the optimal provision level in an isolated decision situation
for ri, to wit gri maximizes Πi(gi, R). Recall that

Πi(gi, R) = Ui(gi)−M(gi, λ(Ri)),

so gri is the unique provision level satisfying

(4.35) U ′i(g
r
i ) = Mg(g

r
i , λ(Ri)),

which completes the proof. �

Define

N c
1 = {ri ∈ N1 : γi = 0}, N r

1 = {ri ∈ N1 : γi = 1}.
It should be evident that N c

1 and N r
1 form a bipartition of N1. If Γc = (1, 1, . . . , 1),

then γi = 0 for all ri ∈ N1, and hence N r
1 = ∅. If Γc = (0, 0, . . . , 0), we will have

N c
1 = ∅. We shall next consider such a general tuple Γc that N c

1 and N r
1 could be

both nonempty.

Corollary 4.8. If Γc ∈ {0, 1}n−1 and Mgλ = 0, the solution of the M-form
game will be (gdi , Ri) for all ri ∈ N1, such that U ′i(g

d
i ) = Mg(g

d
i , 1) for all ri ∈ N r

1 ,
and U ′(gdc ) = δMg(g

d
i , 1) for all ri ∈ N c

1 .

Proof. If Γc = (1, 1, . . . , 1), then N c
1 = N1, and Proposition 4.6 shows that

gdi = gdc = gcc such that U ′(gcc) = δMg(g
c
c, 1) for all ri ∈ N1. If Γc = (0, 0, . . . , 0), then

N r
1 = N1, and Proposition 4.7 with the condition Mgλ = 0 shows that gdi = gri such

that U ′i(g
r
i ) = Mg(g

r
i , 1) for all ri ∈ N1.
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With regards all the other Γc ∈ {0, 1}n−1, we have N c
1 6= ∅ and N r

1 6= ∅. The
M-form game will degenerate into a noncooperative game on N r

1 , and a decision
situation concerning N c

1 for c. By Proposition 4.7 with the condition Mgλ = 0, the
provision decision concerning N r

1 will be (gdi , Ri) such that U ′i(g
d
i ) = Mg(g

d
i , 1) for all

ri ∈ N r
1 . By Proposition 4.6, the provision decision concerning N c

1 will be (gdi , Ri)
such that U ′(gdc ) = δMg(g

d
i , 1) for all ri ∈ N c

1 , where gdc =
∑

ri∈N1
µig

d
i . �

Let gc and gr denote the average provision levels in N c
1 and N r

1 , respectively.
Note that gdi = gc for all ri ∈ N c

1 , and gr =
∑

ri∈Nr
1
µig

d
i /
∑

ri∈Nr
1
µi, then it follows

that

(4.36) gdc =
∑
ri∈N1

µig
d
i =

∑
ri∈Nc

1

µi · gc +
∑
ri∈Nr

1

µi · gr,

which means that gdc is a convex combination of gc and gr.
It might be noticed that gcc is also a convex combination of gc and gr. To show

this fact, suppose gdc ≤ gcc, then U ′(gcc) ≤ U ′(gdc ), and thus the following relation
holds,

δMg(g
c
c, 1) = U ′(gcc) ≤ U ′(gdc ) = δMg(g

d
i , 1) = δMg(g

c, 1),

which clearly implies gcc ≤ gc. It then follows that gdc ≤ gc, and hence gdc ≥ gr

according to (4.36). In consequence, it appears to us that

gr ≤ gdc ≤ gcc ≤ gc.

On the other hand, if gdc ≥ gcc, we will have gcc ≥ gc, and hence

gr ≥ gdc ≥ gcc ≥ gc.

Observe that the order on the 3-tuple (gr, gdc , g
c) has a bifurcation at gcc, viz., it would

change from “≤” to its inverse “≥” when gdc moves from the left of gcc to its right in
a real line.

5.3. Analytic Game. If Γc ∈ (0, 1)n−1, the M-form games on N will be clearly
nondegenerate and of the analytic class. We shall assume Mgλ = 0 throughout this
subsection, except the examples thereafter our theoretical investigations.

As we have so far developed, an analytic M-form game can be decomposed of
n− 1 negotiation games on Li = {c, ri} for all ri ∈ N1 and one noncooperative game
on N1. When Mgλ = 0 as is assumed above, the decisions on provision capacity
and provision level are in effect separable, as Mg is independent of λ and also Mλ is
independent of g. Thus the equilibrium arrangement of provision capacities in the
noncooperative game on N1 should comply with the administration regions, that’s
to say, a local government ri ∈ N1 will set its optimal provision district exactly as its
administration region Ri. In this respect, the arrangement of provision levels in the
noncooperative game on N1 will be reduced to n− 1 decision situations without any
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strategic interaction, therefore it should be sufficient to only consider the remaining
n−1 “parallel” two-government negotiation games. As usual, the utilitarian solution
concept will be adopted for any negotiation game, thus the solution to the analytic
M-form game will have utilitarian meanings per se, and for this reason, we shall use
the term utilitarian solution when referring to it.

Let the collection of these n − 1 provision states
{

(gui , S
u
i ) : ri ∈ N1

}
denote

the utilitarian solution to the analytic M-form game, then guc =
∑

ri∈N1
µig

u
i and

Suc =
⋃
ri∈N1

Sui . It is direct by the above treatment of the M-form game, that
Sui = Ri for all ri ∈ N1, which then yields Suc = R. Recall that the following
conditions for gcc and gri where ri ∈ N1 always holds:

U ′(gcc) = δMg(g
c
c, 1), U ′i(g

r
i ) = Mg(g

r
i , 1).

Proposition 4.9. Suppose U(g) and δUi(g) have no crossing point on the plane,
then

max{gui , guc } ≥ min{gri , gcc}, min{gui , guc } ≤ max{gri , gcc}.

Proof. The coordinated decision problem delivered by the negotiation game on
{c, ri} is

max
gi>0

γiΠi(gi, R) + (1− γi)Πc(gc, R),

or equivalently,

max
gi>0

γi
(
Ui(gi)−M(gi, λi)

)
+ (1− γi)

(
U(gc)− δ

∑
rj∈N1

µjM(gj, λj)
)
,

where λi = λ(Ri) for all ri. g
u
i should then satisfy

γi
(
U ′i(g

u
i )−Mg(g

u
i , λi)

)
+ µi(1− γi)

(
U ′(guc )− δMg(g

u
i , λi)

)
= 0,

which directly yields the following marginal condition,

(4.37) γiU
′
i(g

u
i ) + µi(1− γi)U ′(guc ) =

(
γi + δµi(1− γi)

)
Mg(g

u
i , 1),

where Mg(g
u
i , 1) = Mg(g

u
i , λi) as Mgλ = 0, and δ, γi, µi(1− γi) > 0.

First, suppose gui ≤ guc , then

U ′(gui ) ≥ U ′(guc ); U ′i(g
u
c ) ≤ U ′i(g

u
i ), Mg(g

u
i , 1) ≤Mg(g

u
c , 1).

Thus there is a system of inequalities,

γiU
′
i(g

u
i ) + µi(1− γi)U ′(gui ) ≥

(
γi + δµi(1− γi)

)
Mg(g

u
i , 1)(4.38)

γiU
′
i(g

u
c ) + µi(1− γi)U ′(guc ) ≤

(
γi + δµi(1− γi)

)
Mg(g

u
c , 1)(4.39)

Since U(g) and δUi(g) have no crossing point, either U(g) ≥ δUi(g) or U(g) ≤
δUi(g) for all g ≥ 0. If U(g) ≥ δUi(g), then U ′(g) ≥ δU ′i(g) and thus U ′i(g

c
c) ≤

Mg(g
c
c, 1), but U ′i(g

r
i ) = Mg(g

r
i , 1). Notice that Zi(g) = U ′i(g)/Mg(g, 1) is decreasing



106 Collective Decision on Political Network

with g, so gcc ≥ gri . By (4.38), U ′(gui ) ≥ δMg(g
u
i , 1), and hence gui ≤ gcc; by (4.39),

U ′i(g
u
c ) ≤Mg(g

u
c , 1), and hence guc ≥ gri . It then comes to us that

guc ≥ gri , gui ≤ gcc.

If U(g) ≤ δUi(g), then gcc ≤ gri . By (4.38), U ′i(g
u
i ) ≥Mg(g

u
i , 1), and hence gui ≤ gri ;

by (4.39), U ′(guc ) ≤ δMg(g
u
c , 1), and hence guc ≥ gcc. We thus have

guc ≥ gcc, gui ≤ gri .

Next, suppose gui ≥ guc , then

U ′(gui ) ≤ U ′(guc ); U ′i(g
u
c ) ≥ U ′i(g

u
i ), Mg(g

u
i , 1) ≥Mg(g

u
c , 1).

Thus there is another system of inequalities,

γiU
′
i(g

u
i ) + µi(1− γi)U ′(gui ) ≤

(
γi + δµi(1− γi)

)
Mg(g

u
i , 1)(4.40)

γiU
′
i(g

u
c ) + µi(1− γi)U ′(guc ) ≥

(
γi + δµi(1− γi)

)
Mg(g

u
c , 1)(4.41)

If U(g) ≥ δUi(g), we have gcc ≥ gri . By (4.40), U ′i(g
u
i ) ≤ Mg(g

u
i , 1), and hence

gui ≥ gri ; by (4.41), U ′(guc ) ≥ δMg(g
u
c , 1), and hence guc ≤ gcc. So

gui ≥ gri , guc ≤ gcc.

If U(g) ≤ δUi(g), we have gcc ≤ gri . By (4.40), U ′(gui ) ≤ δMg(g
u
i , 1), and hence

gui ≥ gcc; by (4.41), U ′i(g
u
c ) ≥Mg(g

u
c , 1), and hence guc ≤ gri . Thus

gui ≥ gcc, guc ≤ gri .

It is clear that the above classification about the pairs (gui , g
u
c ) and (gri , g

c
c) is

complete, thus the assertion is proven. �

If max{gui , guc } ≥ min{gri , gcc}, it must be true that max{gri , gcc} ≥ min{gui , guc },
and vice versa. It hence shows that the real interval bounded by gui and guc and the
real interval bounded by gri and gcc always have a nonempty intersection. To have
a graphical impression, we can consider one of the four possibilities, gui ≥ guc and
gri ≥ gcc. In the following diagram (see Figure 4.5), we set the interval [gcc, g

r
i ] fixed

on the real line, and show three generic cases of [guc , g
u
i ] which have different relative

positions to [gcc, g
r
i ].

gcc gri

Figure 4.5.
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Moreover, if there exists some ri ∈ N1 such that gui = guc , then max{gui , guc } =
min{gui , guc }, and thus guc (and also that gui ) must be located between gri and gcc, that
is,

(4.42) min{gri , gcc} ≤ guc ≤ max{gri , gcc}.
However, in many cases we may find that gui 6= guc for all ri ∈ N1. Since guc =∑

ri∈N1
µig

u
i , there must exist at least two distinct local governments ri and rj, such

that gui < guc < guj . It thus appears that

guc = min{guj , guc } ≤ max{grj , gcc},
and meanwhile,

guc = max{gui , guc } ≥ min{gri , gcc}.
Without loss of generality, we assume the sequence (gri , ri ∈ N1) could be ordered

as

gr1 ≥ gr2 ≥ · · · ≥ grn−1 > 0.

It then follows that

max{grj , gcc} ≤ max{gr1, gcc}, min{gri , gcc} ≥ min{grn−1, gcc},
and therefore the following assertion has been proven:

Corollary 4.10.

(4.43) min{grn−1, gcc} ≤ guc ≤ max{gr1, gcc}

In a quite ethical sense, U(g) should be neither greater nor smaller than all
δUi(g) for ri ∈ N1, viz., the central government should neither overestimate nor
underestimate all local government’s politically discounted welfare state. Due to
that presumption, there must be two local governments in N1, say again ri and rj,
such that δUi(g) ≤ U(g) ≤ δUj(g) for all g ≥ 0. In other words, it should always
come out that gri ≤ gcc ≤ grj (cf., the proof of Proposition 4.9), and furthermore,
grn−1 ≤ gcc ≤ gr1, which thus gives (4.43) a finer expression,

(4.43′) grn−1 ≤ guc ≤ gr1.

Surprising as it might seem, the global provision level guc in the analytic M-form
game is always confined by the lower and upper bounds of local provision levels
decided through the decentralized provision scheme. As for a specific Γc, there must
be some 1 ≤ i ≤ n− 2 such that gri+1 ≤ guc ≤ gri , which thus means, as we have long
been familiar, that guc is a convex combination of gri+1 and gri .

Corollary 4.11. If min{guc , gcc} ≤ gri ≤ max{guc , gcc}, then

(4.44) (gui − gri )(guc − gcc) ≤ 0.
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Proof. Suppose guc ≤ gcc, then guc ≤ gri ≤ gcc. By Proposition 4.9, we have

max{gui , guc } ≥ min{gri , gcc} = gri ≥ guc ,

thus gui ≥ guc , and hence max{gui , guc } = gui which yields gui ≥ gri .
On the other hand, suppose guc ≥ gcc, then gcc ≤ gri ≤ guc . By Proposition 4.9, we

have

min{gui , guc } ≤ max{gri , gcc} = gri ≤ guc ,

thus gui ≤ guc , and hence min{gui , guc } = gui which yields gui ≤ gri . �

Suppose there are nearly infinite local governments in N1, then the index set I
should be dense almost as Z+. Let’s use a bounded interval I on the real line to
represent I, then gui and gri will be some almost continuous functions of i defined on
I. Note that gri is determinate, while gui is indeterminate but depends on the value
Γc. Just as we have assumed above, gri can be similarly thought of to be decreasing
with i. Then by Corollary 4.11, there is a subinterval of I,

Im =
{
i ∈ I : min{guc , gcc} ≤ gri ≤ max{guc , gcc}

}
,

such that gui is always bounded by gri which could serve as its floor or ceiling. Figure
4.6 shows such two opposite cases, in which we simply set gri linear, and gui partly
linear with only one cusp to gri .

gcc

guc
gri

gui
(i) guc ≤ gcc

gcc

guc

gri

gui

(ii) guc ≥ gcc

Figure 4.6.

Once γi is designed to be sufficiently close to 1 for all i /∈ Im, gui would be nearly
equal to gri for all i /∈ Im. In consequence, if guc ≤ gcc, then guc ≥ grc as gui ≥ gri for all
i ∈ Im (see case (i) in Figure 4.6); if guc ≥ gcc, then guc ≤ grc as gui ≤ gri for all i ∈ Im
(see case (ii) in Figure 4.6). Hence

(4.45) min{grc , gcc} ≤ guc ≤ max{grc , gcc},
and immediately, we can see there might exist some Γc ∈ (0, 1)n−1 with γi ↑ 1 for all
i /∈ Im, such that guc is a certain convex combination of grc and gcc.



Coordinated Interaction 109

To close this section, we shall propose two computational examples, in which the
committee arrangement is described as either one of the two specific cases as was
imagined at the beginning of this section.

Example 4.8. Consider the case that P r
i = P r for all ri ∈ N1, then Ui(g) = U(g)

for all ri ∈ N1. If Γc = (1, 1, . . . , 1), the equilibrium provision states of the degenerate
M-form game will be (gci , S

c
i ) for all ri ∈ N1, such that

U ′(gcc) = δMg(g
c
i , λ

c
i), Mλ(g

c
i , λ

c
i) = Mλ(g

c
j , λ

c
j),

where λci = λ(Sci ) for all ri, and ri, rj are distinct. If Γc = (0, 0, . . . , 0), the equilibrium
provision states will be (gri , Ri) for all ri ∈ N1, such that U ′(gri ) = Mg(g

r
i , λ(Ri)).

Let N = {c, r1, r2}, and assume

U(g) = log(g + 1), M(g, λ) = (λg)2,

then the marginal utility and marginal provision cost functions take the forms

U ′(g) = 1/(g + 1), Mg(g, λ) = 2λ2g.

It should be noted that Mgλ = 4λg 6= 0 for all g, λ > 0. Suppose λ(R1) = 1/2 and
λ(R2) = 1/4, so µ1 = 2/3 and µ2 = 1/3, and hence gc = (2g1 + g2)/3. Besides, set
δ = 0.5 arbitrarily.

If Γc = (1, 1), then we should have λc1 = λc2 and gc1 = gc2. Suppose the two
fairly divided regions for r1 and r2 both have a provision capacity 1/3, that is,
λc1 = λc2 = 1/3, then gc1, g

c
2 should be the positive solution of the equation

1/(g + 1) = g/9,

which yields gc1 = gc2 = (
√

37 − 1)/2 ≈ 2.541, and hence gcc ≈ 2.541. Observe that
λc1 < λ(R1) and λc2 > λ(R2), thus there is a nonempty ∆ ⊂ R1 such that Sc1 = R1 \∆
and Sc2 = R2 ∪∆.

If Γc = (0, 0), then Sr1 = R1 and Sr2 = R2. g
r
1 and gr2 then satisfy the following

two marginal conditions,

1/(gr1 + 1) = gr1/2, 1/(gr2 + 1) = gr2/8,

which yield gr1 = 1 and gr2 = (
√

33 − 1)/2 ≈ 2.372, and hence grc = (
√

33 + 3)/6 ≈
1.457.

Now keep all the above assumptions unaltered except M(g, λ). Let’s assume
M(g, λ) is separable such that Mgλ = 0 for all g, λ, for example, M(g, λ) = g2/2 +
ψ(λ), and thus Mg(g, λ) = g. It is clear that gc1 = gc2 = gcc and gr1 = gr2 = grc , which
should satisfy

1/(gcc + 1) = gcc/2, 1/(grc + 1) = grc ,

so gcc = 1 and grc = (
√

5− 1)/2 ≈ 0.618.
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If Γc ∈ (0, 1)2, for example, Γc = (1/3, 2/3) which says γ1 = 2/3 and γ2 = 1/3.
By (4.37), there is a system of equations

(4.46)

{
6/(1 + g1) + 2/(1 + gc) = 7g1

3/(1 + g2) + 2/(1 + gc) = 4g2

which yields gu1 ≈ 0.679 and gu2 ≈ 0.729, and hence guc ≈ 0.696. Note that

grc < guc < gcc; gu1 > gr1, gu2 > gr2.

Example 4.9. Consider the case that P r
i = {pi} for all ri ∈ N1, and P r =

{p1, p2, . . . , pn−1}, then we should have Ui(g) = ui(g) for all ri ∈ N1, and U(g) =∑n−1
i=1 αiui(g), where αi ∈ (0, 1) and

∑n−1
i=1 αi = 1.

Let N = {c, r1, r2}, so N1 = {r1, r2}. Assume

u1(g) = 2 log(g + 1), u2(g) = log(g + 1)/2,

and set α1 = 1/3 and α2 = 2/3, then

U(g) = log(g + 1).

Assume M(g, λ) = g2/2 +ψ(λ) so that Mgλ(g, λ) = 0 for all g, λ, then Mg(g, λ) = g.
Let λ(R1) = 1/2 and λ(R2) = 1/4, then µ1 = 2/3 and µ2 = 1/3, and hence gc =
(2g1 + g2)/3. Set once again δ = 0.5.

Clearly, gc1 = gc2 = gcc, and they should satisfy

1/(gcc + 1) = gcc/2,

which yields gcc = 1. With regards gr1 and gr2, they are the solutions of the following
two equations,

2/(g1 + 1) = g1, 1/(g2 + 1) = 2g2,

which yield gr1 = 1 and gr2 = (
√

3−1)/2 ≈ 0.366, and hence grc = (
√

3+3)/6 ≈ 0.789.
As for Γc ∈ (0, 1)2, we can take for example Γc = (1/3, 2/3) which says γ1 = 2/3

and γ2 = 1/3. By (4.37), there is a system of equations

(4.47)

{
12/(1 + g1) + 2/(1 + gc) = 7g1

3/(1 + g2) + 4/(1 + gc) = 8g2

which yields gu1 ≈ 1.008 and gu2 ≈ 0.518, and hence guc ≈ 0.845.
Observe that grc < guc < gcc and gr2 < guc < gr1. Notice also that gu1 > gr1 and

gu2 > gr2, it thus follows that

gr2 < gu2 < grc < guc < gr1 = gcc < gu1 .

It is not hard to see that

[gu2 , g
u
c ] ∩ [gr2, g

c
c] = [gu2 , g

u
c ] 6= ∅, [guc , g

u
1 ] ∩ [gr1, g

c
c] = {gcc} 6= ∅,
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which both comply with Proposition 4.9, and that gu1 > gr1 for guc < gr1 ≤ gcc should
comply with Corollary 4.11.

6. Complex Interaction

When one studies dynamics and processes on a network carrying randomness,
the disorder of the network very often leads to the emergence of complexity (see
for example, Barrat, Barthélemy, and Vespignani [6]). In this respect, the notion
complexity which is usually associated with nonlinear dynamics seems to be closely
related with time and randomness, and thus a complex network means that its
behavior or any performance that could be investigated and gauged should essentially
show complicated and sometimes even chaotic dynamics. In this section, we will
however take a different perspective towards complexity, that’s to say, it could also
exist in a static and deterministic government network, particularly when the number
of governments is extremely great.

6.1. Mixed-form Game. Recall that any isolated government in (N, f) only
participates in the decision-making process deciding actions for itself, so it’s sufficient
to just consider the connected part of (N, f). Also, any government in an authority
gap does not participate in any decision-making process, and even more, holds no
information relevant to any decision-making process, thus a government network can
be reduced to an equivalent one that has no authority gaps, in which the authority
allocation rule should cover all the governments concerning at least one decision-
making process5.

We shall thus focus on government networks that are not only physically connected
(i.e., with no isolated governments), but also politically connected (i.e., with no
authority gaps).

Definition. A government network (N, f) with an authority allocation rule γ
is called compact , if N∞ = ∅ and it has no authority gap under γ.

The compactness of a government network implies its physical connectedness and
political connectedness. Note that the governance structure of a compact government
network must be decentralized, and yet not purely decentralized.

Consider a (physically) connected government network (N, f), then N∞ = ∅ and
Nb 6= ∅. Recall that |N | = n and c /∈ Nb, so 1 ≤ |Nb| ≤ n − 1. If |Nb| = 1, then
(N, f) is an H-form government network, and if |Nb| = n − 1, then it is an M-form

5Here, a government ri is in an authority gap means that there exist some governments with
nonzero authorities on both higher and lower hierarchical levels than that of ri. On the other hand,
there being no authority gaps, however conveys a much stronger condition, that is, any participating
group Li in (N, f) for a certain decision-making process has no zero-authority government.
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government network. If 2 ≤ |Nb| ≤ n−2, we shall say it is a mixed-form government
network .

Definition. A game emerging from a compact mixed-form government network
is called a mixed-form game.

The definition of mixed-form game appears to need much stronger conditions
than the former terms, H-form game and M-form game, as we do not require an
H-form or M-form game should happen on a compact H-form government line or
compact M-form government star. However, we can still focus on the H-form games
on a compact H-form government line, as authority gaps in a government line could
be omitted without loss of generality. Also, we can point up the analytic M-form
games which must be on a compact M-form government star, though the degenerate
M-form games should happen on a politically disconnected and hence incompact M-
form government star. Consequently, the game emerging on a compact government
network must be one of the three possibilities: H-form game, analytic M-form game,
and more generally, mixed-form game. Without generating any confusion, we will
plainly use the group of government players N to denote a certain game on (N, f).

Recall that the group of directly subordinate governments to any ri ∈ N is
denoted by Di. In a mixed-form government network, we have Di 6= ∅ for all ri /∈ Nb.

Definition. {ri} ∪Di in a mixed-form game N is called a simple game for all
ri /∈ Nb.

In particular, if |Di| = 1, we call {ri}∪Di a simple H-form game, and if |Di| ≥ 2,
we call it a simple M-form game. Since there are n−|Nb| governments not in Nb, the
number of simple games in N is exactly equal to n−|Nb|, where 2 ≤ n−|Nb| ≤ n−2,
as 2 ≤ |Nb| ≤ n− 2 for a mixed-form government network.

Notice that, in a simple game {ri} ∪ Di, the government ri is a lower-level one
to all government in Di, on the other hand, each government in Di is an upper-level
one to ri. Here, an upper-level government to ri means it is further to c than ri,
while a lower-level government to ri means it is closer to c than ri.

Lemma 4.12. Any government player ri in a mixed-form game N is engaged in
either one simple game or two distinct simple games.

Proof. We first show that any government player in N should be engaged in at
least one simple game. Suppose not, and there is a government ri not engaged in any
simple game, then we must have Di = ∅, and hence ri ∈ Nb. So there is a lower-level
government to ri, say rj such that ri ∈ Dj, otherwise ri = c would contradict ri ∈ Nb.
It hence appears that Dj 6= ∅ and rj /∈ Nb, thus {rj} ∪Dj must be a simple game.
But ri is then engaged in the simple game {rj} ∪Dj, a contradiction.

We next show that any government player can not be engaged in more than two
distinct simple games, which would complete the proof. Suppose not, and there is a
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government ri engaged in more than two distinct simple games. Notice that ri has a
unique Di, so there is at most one simple game {ri}∪Di, in which ri is on the lower
level. Then there should be at least two distinct simple games, in which ri is on the
upper level, for instance, {rj}∪Dj and {rj′}∪Dj′ , where j 6= j′, and ri ∈ Dj as well
as ri ∈ Dj′ .

Since (N, f) as a mixed-form government network must be (physically) connected,
there exist two paths,

Lj = {c, r, . . . , r̂, rj}, Lj′ = {c, r′ , . . . , r̂′ , rj′},

where |Lj|, |Lj′ | ≥ 2, and thus

fj̂ = · · · = f0 = 1, f0′ = · · · = f̂′j′ = 1.

Since ri ∈ Dj and ri ∈ Dj′ , we have fij = fj′i = 1. Immediately, there would be an
l-cycle in (N, f) for l ≥ 4, i.e., rirj · · · c · · · rj′ , as

fij = fj̂ = · · · = f0 = f0′ = · · · = f̂′j′ = fj′i = 1.

But (N, f) is defined to be acyclic, a contradiction. �

In a mixed-form government network (N, f), there should be |Nb| distinct paths
connecting the central government to the bottom governments, i.e., Li = {c, . . . , ri}
for all ri ∈ Nb, where |Li| ≥ 2. Note that the central government c is always on
the lowermost level 0 in any path Li, while each bottom government ri ∈ Nb is
on the uppermost level |Li| − 1 in the path Li. It plainly implies that merely the
governments in {c}∪Nb are engaged in one simple game, and hence by Lemma 4.12,
all the other governments which are neither central nor bottom, should be engaged
in exactly two distinct simple games.

Recall that the group of all the subordinate governments to any ri ∈ N is denoted
by Di. Properly stating, any Di should be completely determined by all path Lj for
rj ∈ Nb, such that ri ∈ Lj, and more precisely, for all ri ∈ N ,

(4.48) Di =
⋃
Lj3 ri

Lj \
⋂
Lj3 ri

Lj.

Directly, we can hence verify that D0 = N \ {c}, and Di = ∅ for all ri ∈ Nb.

Definition. {ri}∪Di in a mixed-form game N is called an induced subgame for
all ri /∈ Nb.

If ri = c, the induced subgame will then be {c} ∪ D0 = N , which is actually the
mixed-form game N itself. If Di ⊆ Nb for some ri, then we must have Di = Di, and
hence the induced subgame {ri} ∪ Di is also a simple game. If Di 6= Di, or hence
Di ⊃ Di for some ri, we shall call the induced subgame {ri} ∪ Di nonsimple.
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Lemma 4.13. Any nonsimple induced subgame {ri} ∪ Di can be hierarchically
decomposed as a simple game {ri}∪Di and a collection of induced subgames {rj}∪Dj
for all rj ∈ Di.

Proof. Suppose {ri} ∪ Di is a nonsimple induced subgame of N , then we must
have ri /∈ Nb and Di ⊃ Di, and of course, Di 6= ∅. Notice that {ri} and Di form a
simple game {ri}∪Di, and there is still a nonempty group of government players not
engaged in the simple game, i.e., Di \Di, which is the group of all the governments
subordinate to some government in Di. We thus have

Di \Di =
⋃
rj∈Di

Dj,

and as a result of that, each rj ∈ Di serves as a government hub connecting the
induced subgame {rj} ∪Dj to the simple game {ri} ∪Di, which then completes our
proof. �

Proposition 4.14. A mixed-form game N can be hierarchically decomposed as
n− |Nb| simple games.

Proof. Note that N = {c} ∪ D0 is an induced subgame itself, and it is clearly
nonsimple, otherwise N would be an analytic M-form game. By Lemma 4.13, N can
be hierarchically decomposed as a simple game {c}∪D0, or equivalently {c}∪N1 as
D0 = N1, and a collection of induced subgames {ri} ∪ Di for all ri ∈ N1. Note that
Di ⊇ Di for all ri ∈ N1, so either Di = Di, or Di ⊃ Di for each ri ∈ N1. If Di = Di

for some ri ∈ N1, the induced subgame {ri} ∪ Di is actually simple, and hence the
hierarchical decomposition stops there.

If Di ⊃ Di for some ri ∈ N1, the induced subgame {ri} ∪ Di is nonsimple, and
again by Lemma 4.13, it can be hierarchically decomposed as a simple game {ri}∪Di

and a collection of induced subgames {rj} ∪ Dj for all rj ∈ Di. Notice that ri is
now engaged in two distinct simple games, i.e., {c} ∪N1 and {ri} ∪Di. By Lemma
4.12, any government can be engaged in at most two distinct simple games, so the
hierarchical decomposition process at any ri ∈ N1 should be complete.

In general, the hierarchical decomposition process is complete and would continue
until it reaches all government rj with Dj = Dj, or {rj} ∪ Dj is simple. Evidently,
Dj = Dj happens only if Dj ⊆ Nb. Therefore, the hierarchical decomposition process
passes through all the governments except these bottom ones, and hence we will have
1 + 2(n− |Nb| − 1) simple games, among which n− |Nb| − 1 ones are duplicated. It
finally shows that the number of distinct simple games emerging in the hierarchical
decomposition of the mixed-form game N should be equal to

1 + 2(n− |Nb| − 1)− (n− |Nb| − 1) = n− |Nb|,
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which then completes the proof. �

We should admit that the hierarchical decomposition of a mixed-form game is a
rather artificial and yet quite useful notion. A complex mixed-form game could then
have a separable structure with fair simplicity, as any simple game in a mixed-form
game is either H-form or analytic M-form.

Example 4.10. Consider a small mixed-form game on the government network
as defined in Figure 4.1, in which n = 13 and |Nb| = 8. Such a mixed-form game can
be hierarchically decomposed as the following 5 simple games,

{c, r1, r2, r3, r4}, {r2, r5}, {r3, r6, r7, r8}, {r4, r9, r10}, {r10, r11, r12}.

Note that {r2, r5}, {r3, r6, r7, r8}, and {r10, r11, r12} are also induced subgames,
as we have

D2 = D2 = {r5}, D3 = D3 = {r6, r7, r8}, D10 = D10 = {r11, r12}.

Observe that {r4, r9, r10} and {r10, r11, r12} are the outcomes of the hierarchical
decomposition of the (nonsimple) induced subgame {r4, r9, r10, r11, r12}.

6.2. Political Structure. As we have frequently written, any decision-making
process in (N, f) is in practice designed towards local public good provision decisions
for some bottom government in Nb, and distinct decision-making processes have no
overlapping procedures. In that sense, there should be |Nb| distinct decision-making
processes in total, and the authority allocation rule γ is then entirely determined by
|Nb| authority distributions over such path as Lj for all rj ∈ Nb.

Suppose each ri ∈ N would be allocated with an authority γji concerning the

decision-making process aiming to decide provision actions for rj ∈ Nb, then γji ∈
[0, 1), or more precisely, γji could be either 0 for ri /∈ Lj, or within (0, 1) for ri ∈ Lj.
Let

Γi = (γji , rj ∈ Nb),

thus Γi is an |Nb|-tuple. Let zi denote the number of nonzero entries in Γi. Since
(N, f) is compact and hence politically connected, we have 1 ≤ zi ≤ |Nb| for all ri.

For example, for any rj ∈ Nb, we have rj ∈ Lj with γjj 6= 0, and rj /∈ L for all
r ∈ Nb \ {rj} and hence γj = 0, thus zj = 1 for all rj ∈ Nb. As for c, we have

c ∈ Lj for all rj ∈ Nb and hence γj0 6= 0, thus z0 = |Nb|. Moreover, the authority
distribution over a path Lj = {c, . . . , rj} for some rj ∈ Nb should satisfy

(4.49) γj0 + γjj +
∑

ri /∈Nb∪{c}

γji = 1,

where γj0, γ
j
j 6= 0.
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We now have an |Nb| × n matrix

Q =
(
ΓT
0 ,Γ

T
1 , . . . ,Γ

T
n−1
)
,

where ΓT
i denotes the transpose of Γi for all ri. Recall that I = {0, 1, . . . , n − 1} is

the index set of N , we then define a permutation rule σ : I → I, such that

(i) σ(i) ∈ {i ∈ I : ri ∈ N \Nb} for all 0 ≤ i ≤ n− |Nb| − 1,
(ii) σ(i) ∈ {i ∈ I : ri ∈ Nb} for all n− |Nb| ≤ i ≤ n− 1,
(iii) σ(i) < σ(j), if 0 ≤ i < j ≤ n− |Nb| − 1 or n− |Nb| ≤ i < j ≤ n− 1.

Intuitively saying, σ allows us to rearrange Q in such a way that any government in
N \Nb will be placed before all the governments in Nb, and governments in N \Nb

and Nb will both keep their original orders. Let

(4.50) Qσ =
(
ΓT
σ(0),Γ

T
σ(1), . . . ,Γ

T
σ(n−1)

)
.

And we shall partition Qσ into a pair of submatrices, Qσ = (Qσ
a , Q

σ
b ), such that

Qσ
a =

(
ΓT
σ(0),Γ

T
σ(1), . . . ,Γ

T
σ(n−|Nb|−1)

)
,

Qσ
b =

(
ΓT
σ(n−|Nb|),Γ

T
σ(n−|Nb|+1), . . . ,Γ

T
σ(n−1)

)
.

Clearly, Qσ
a is an |Nb|×(n−|Nb|) matrix, and Qσ

b is an invertible |Nb|×|Nb| diagonal
matrix.

Let dΓie = (dγji e, rj ∈ Nb), where dγji e = min{x ∈ Z : x ≥ γji }. Define the
ceiling of Q to be

(4.51) dQe =
(
dΓ0eT, dΓ1eT, . . . , dΓn−1eT

)
.

Since γji ∈ [0, 1), we have dγji e ∈ {0, 1}, and in particular, dγji e = 1 if γji ∈ (0, 1),

and dγji e = 0 if γji = 0. Note that zi now also counts the number of entries equal to
1 in |Γie.

Notice that dQeσ = dQσe. Let Q∗ = dQσe and Q∗a = dQσ
ae. We thus have

(4.52) Q∗ =
(
dQσ

ae, dQσ
b e
)

=
(
Q∗a, I|Nb|

)
,

where I|Nb| is the identity matrix of order |Nb|. Evidently, Q∗a has all the information
about γ carried by Q∗, and thus we could use it to replace Q∗.

Definition. Q∗a is called the indicator matrix of the compact (N, f).

Q∗a contains all the column vectors dΓieT for ri /∈ Nb, and the (i + 1)-th column
of Q∗a for 0 ≤ i ≤ n − |Nb| − 1 is fixed by dΓσ(i)eT, or inversely stating, each dΓieT
for ri /∈ Nb is placed as the (σ−1(i) + 1)-th column of Q∗a.

If (N, f) is H-form, then |Nb| = 1, and hence Q∗a is an (n − 1)-dimensional row
vector. Since zi = 1 for all ri ∈ N , we have Q∗a = (1, 1, . . . , 1). If (N, f) is M-form,
then |Nb| = n − 1, and hence Q∗a is an (n − 1)-dimensional column vector. Notice
that z0 = n− 1, so Q∗a = (1, 1, . . . , 1)T.
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If (N, f) is mixed-form, then 2 ≤ |Nb| ≤ n − 2, and Q∗a is an |Nb| × (n − |Nb|)
matrix. Note that z0 = |Nb|, and 1 ≤ zi ≤ |Nb| for all ri /∈ Nb ∪ {c}, Q∗a should thus
satisfy

(4.53) n− 1 ≤
∑
ri /∈Nb

zi ≤ |Nb|(n− |Nb|).

Example 4.11. We can consider the mixed-form game on (N, f) as defined in
Figure 4.1 once more. The permutation rule σ is defined by σ(0) = 0, σ(4) = 10,
σ(5) = 1, and

σ(i) =


i+ 1 if i = 1, 2, 3

i− 1 if i = 6, 7, 8, 9, 10

i if i = 11, 12

Since n = 13 and |Nb| = 8, Q∗a is an 8× 5 matrix, and moreover,

Q∗a =



1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 1 1
1 0 0 1 1


The (i+1)-th column of Q∗a corresponds to the government rσ(i) for all 0 ≤ i ≤ 4,

that’s to say, these 5 ordered columns of Q∗a are determined by c, r2, r3, r4, and r10,
respectively. Observe that z0 = 8, z2 = 1, z3 = z4 = 3, and z10 = 2, thus there are
17 entries in Q∗a with the value 1.

Let Na
i denote the group of governments in Nb with entries equal to 1 in the

σ−1(i)-th column of Q∗a corresponding to ri ∈ N \ Nb. Let Laj denote the group of

governments in N \Nb with entries equal to 1 in the (σ−1(j)−N + |Nb|+ 1)-th row
of Q∗a corresponding to rj ∈ Nb. Thus for each ri ∈ N \Nb, we have

(4.54) Na
i = {rj ∈ Nb : dγji e = 1},

and in particular, Na
0 = Nb. Note that Na

i 6= ∅ for all ri ∈ N \Nb, as |Na
i | = zi ≥ 1.

And for each rj ∈ Nb, we have

(4.55) Laj = {ri /∈ Nb : dγji e = 1}.

Note that c ∈ Laj and Laj ∪ {rj} = Lj for all rj ∈ Nb.

Lemma 4.15. The following two dual statements hold for all Q∗a:
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(i) If Na
i ∩Na

i′ 6= ∅, then either Na
i ⊆ Na

i′ or Na
i′ ⊆ Na

i ;
(ii) If Laj ∩ Laj′ ⊃ {c}, then either Laj ⊆ Laj′ or Laj′ ⊆ Laj .

Proof. Suppose Na
i ∩ Na

i′ 6= ∅, but neither Na
i ⊆ Na

i′ nor Na
i′ ⊆ Na

i . Then
Na
i \Na

i′ 6= ∅ and also Na
i′ \Na

i 6= ∅, thus there should be at least two distinct bottom
governments, rj and rj′ , such that rj ∈ Na

i but rj /∈ Na
i′ , and rj′ ∈ Na

i′ but rj′ /∈ Na
i .

Let Lj ∩Lj′ = Lı, so Lı ⊇ {c}. If ri ∈ Lı, then Di ⊇ Dı. Since rj′ ∈ Dı, we then have
rj′ ∈ Di, and hence rj′ ∈ Na

i , a contradiction. If ri′ ∈ Lı, we would have rj ∈ Na
i′ ,

again a contradiction. Thus ri, ri′ /∈ Lı. Since Na
i ∩ Na

i′ 6= ∅, there is at least one
bottom government r ∈ Nb, such that r ∈ Na

i and r ∈ Na
i′ . But then the path L

would have two distinct representations,

Lı ∪ {. . . , ri, . . . , r}, Lı ∪ {. . . , ri′ , . . . , r},

and evidently, that fact contradicts L should be unique. Therefore, Na
i must be

either a subset or a superset of Na
i′ , which completes the proof of statement (i).

Since rj ∈ Na
i if and only if ri ∈ Laj for all ri /∈ Nb and rj ∈ Nb, the proof of

statement (ii) is direct. �

Proposition 4.16. The rank of Q∗a is equal to the number of governments that
directly connect with some bottom government.

Proof. Let’s partition Nb into two disjoint groups, N c
b and N r

b , such that Laj =
{c} for all rj ∈ N c

b , and Laj ⊃ {c} for all rj ∈ N r
b . The rows of Q∗a corresponding to

N c
b are thus all (1, 0, 0, . . . , 0), while the row of Q∗a corresponding to some rj ∈ N r

b

can be written as

(1, 0, 0, . . . , 0) + qj,

where qj 6= (0, 0, . . . , 0). It should be direct that (1, 0, 0, . . . , 0) is linearly independent
to all the rows corresponding to N r

b .
Consider rj, rj′ ∈ N r

b with Laj ∩ Laj′ = {c}, then the rows that correspond to
rj and rj′ must be linearly independent, as qj 6= qj′ . Consider rj, rj′ ∈ N r

b with
Laj ∩ Laj′ ⊃ {c}, then by statement (ii) of Lemma 4.15, either Laj ⊆ Laj′ or Laj′ ⊆ Laj ,
and hence the rows corresponding to rj and rj′ are again linearly independent. In
any case, if the rows corresponding to rj and rj′ are not same, they then must be
linearly independent.

In sum, the rows corresponding to all distinct rj, rj′ ∈ Nb are linearly dependent,
if and only if they are exactly same. Consequently, the rank of Q∗a is equal to the
number of distinct, and hence linearly independent, rows in Q∗a. Note that the rows
corresponding to rj and rj′ are same, if and only if Laj = Laj′ , in other words,

Lj \ {rj} = Lj′ \ {rj′},
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which means rj and rj′ connect to a same government. Thus the rank of Q∗a is equal
to the number of distinct governments next to the bottom governments in all Lj for
rj ∈ Nb, which completes the proof. �

The objects of mixed-form game N and indicator matrix Q∗a are both derived
from a compact government network (N, f). In fact, when the compact government
network (N, f) is mixed-form, i.e., 2 ≤ |Nb| ≤ n− 2, the game is a mixed-form one.
Since the authority allocation rule γ in a compact government network fully covers
all Lj for rj ∈ Nb, Q

∗
a as a Boolean matrix is effectively determined by the network

structure of (N, f), which can be characterized by all value dγji e for ri /∈ Nb and
rj ∈ Nb. In addition, we should see that the mixed-form game N can be derived
from the indicator matrix Q∗a by means of Na

i and Laj for ri /∈ Nb and rj ∈ Nb, and
vice versa. It thus suggests that Q∗a should have some invariants with respect to its
corresponding mixed-form game N , and Proposition 4.16 does show that the rank of
Q∗a is such an invariant.

The following diagram (see Figure 4.7) briefly presents these relations among the
three mathematical objects, i.e., the graph (N, f), the game N , and the matrix Q∗a.

(N, f)
2≤|Nb|≤n−2

//

dγji e

��

N==

Na
i , L

a
j

}}
Q∗a

Figure 4.7.

Without any more formal arguments, we can make some observations about the
mixed-form game N based on the indicator matrix Q∗a. First of all, for all ri 6= c
(and not in Nb), if there is no ri′ 6= ri, c with Na

i′ ⊆ Na
i , then

Na
i = Di = Di,

and hence {ri} ∪Na
i is a simple game.

Next, for all ri /∈ Nb, if there are governments ri1 , ri2 , . . . , ril , such that Na
ı̂ ⊆ Na

i

for all ı̂ ∈ {i1, i2, . . . , il}, and there is no other government ri′ with Na
i′ ⊆ Na

i , then

(4.56) Di = {ri1 , ri2 , . . . , ril} ∪Na
i ,

and thus

{ri1 , ri2 , . . . , ril , ri} ∪Na
i = {ri} ∪ Di
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is an induced subgame. In case {ri1 , ri2 , . . . , ril} 6= ∅, such an induced subgame would
be nonsimple.

Last but not least, by statement (i) of Lemma 4.15, Nb can be partitioned into
pairwise disjoint nonempty groups of governments, say,

Na
ı , Na

i1
, Na

i2
, . . . , Na

il
,

such that for all ri 6= c, Na
i ⊆ Na

ı̂ for some ı̂ ∈ {i1, i2, . . . , il}, and

(4.57) Na
ı =

{
rj ∈ Nb : Laj = {c}

}
.

In a mixed-form government network, rı can not be c, as Na
0 = Nb but Na

ı ⊂ Nb,
and can not be any other ri 6= c either, as Na

i ∩ Na
ı = ∅ for all ri 6= c. It therefore

implies that rı does not really exist, and for that reason, we shall call rı an imaginary
government .

It might be noted that Na
ı = N c

b (cf., the proof of Proposition 4.16), and

(4.58) Na
ı ∪ {ri1 , ri2 , . . . , ril} = D0 = N1.

In particular, if Na
ı = ∅, then N1 will contain no bottom government, and hence

N1 ∩ Nb = ∅; if Na
ı = Nb, the partition of Nb will then become trivial, and hence

N1 = Nb, which means the mixed-form game N would degenerate into an analytic
M-form one.

6.3. Pragmatic Solution. In this subsection, we are about to propose one
solution to the mixed-form game N on a large compact government network (N, f).
To deal with the complexity of the game, we shall impose a simplified reasoning
structure on the game, so that its solution could emerge in a rather natural way.
Even though the imposed reasoning structure might have some satisfying features,
we are still unable to predict that complex interactions in a real government network
should generate the same outcome just as we propose.

Let’s introduce a small time interval into our modelling framework, and assume
the mixed-form game would then exist on that time interval. Hence the mixed-form
game would be essentially dynamic, and by Proposition 4.14, the mixed-form game
N could be hierarchically decomposed as n − |Nb| simple games, which can now be
viewed as existing at distinct time points of the time interval. In case a simple game
could be represented by its solution, or more generally, its (integrated) objective
function, then the simple game itself would turn out to be an integrated government
with a certain common objective characterized by its solution. Suppose a simple
game on an upper hierarchical level should also appear relatively earlier in the time
interval, as it is closer to the bottom governments which implement provision actions
in the political system. The mixed-form game will thus become an updating process,
which goes through all the n− |Nb| simple games from Nb to {c}.
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Let k denote the uppermost hierarchical level of (N, f). Since (N, f) is compact,
and hence physically connected, we have 2 ≤ k ≤ n− |Nb|, where 2 ≤ |Nb| ≤ n− 2.
To see this fact, suppose k = 1, then there were n− |Nb| ≥ 2 central governments, a
contradiction; suppose k = n − |Nb| + 1, then there were at most n − k = |Nb| − 1
bottom governments, simply as there were at least k governments not in Nb, again
a contradiction.

Each government in N should be on a certain hierarchical level l for 0 ≤ l ≤ k,
and directly, N can thus be partitioned into the following k + 1 pairwise disjoint
groups,

N0, N1, N2, . . . , Nk,

where N0 = {c} and Nk ⊆ Nb.
Let N l

b denote the group of bottom governments on the hierarchical level l for
1 ≤ l ≤ k, then we have

(4.59) N l
b = {rj ∈ Nb : rj ∈ Nl},

where Nk
b = Nk, and N l

b ⊂ Nl for all 1 ≤ l ≤ k − 1.
It thus appears that Nb can be partitioned into k pairwise disjoint groups,

N1
b , N2

b , . . . , Nk
b .

Notice that N l
b can be equally expressed as

(4.59′) N l
b = {rj ∈ Nb : |Laj | = l},

thus we have N1
b = N c

b and Nb \N1
b = N r

b (cf., the proof of Proposition 4.16), which
yield

N r
b = N2

b ∪N3
b ∪ · · · ∪Nk

b .

The group of the directly subordinate governments to Nl \ N l
b is now another

perspective to interpret the group of governments on the next hierarchical level l+ 1
for all 1 ≤ l ≤ k − 1. Accordingly, the following recursive relation between Nl and
Nl+1 can be derived,

(4.60) Nl+1 =
⋃

ri∈Nl\N l
b

Di,

where 1 ≤ l ≤ k − 1 and for l = 0 we have N1 = D0.
By (4.60), we should see the updating process has k time steps, and the τ -th

time step for 1 ≤ τ ≤ k, will be occupied with such a collection of simple games that
Nk+1−τ is exactly the group of all their upper-level government players. Let ε[τ, τ+1)
denote the τ -th time step, then the introduced short time interval is ε[1, k+1), where
ε > 0 is close enough to 0. The timing representation of the updating process is shown
in the following diagram (see Figure 4.8), in which ε[1, k + 1) is uniformly scaled by
1/ε for transparency.
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1 2 3 4 k − 1 k k + 1

Nk Nk−1 Nk−2 N2 N1
. . . . . .

. . . . . .

Figure 4.8.

At the first time step, Nk = Nk
b is directly subordinate to Nk−1 \ Nk−1

b , so the
involved simple games are {ri} ∪Di for all ri ∈ Nk−1 \Nk−1

b . Each ri ∈ Nk−1 \Nk−1
b

will then become integrated at the second time step, in the sense that each ri would
represent the simple game {ri} ∪Di.

In general, at the τ -th time step, for all 1 ≤ τ ≤ k−1, the involved simple games
are {ri}∪Di for all ri ∈ Nk−τ \Nk−τ

b , while each ri ∈ Nk−τ \Nk−τ
b will then represent

the simple game {ri} ∪Di at the (τ + 1)-th time step.
At the last time step, there is only one simple game remains, that is, {c} ∪D0 =

{c} ∪N1, in which all the governments in N1 \N1
b have already been integrated.

Since any simple game of N is either an H-form game (with only two governments)
or an analytic M-form game, its solutions and properties should be fairly accessible,
especially when they are treated as utilitarian ones in Harsanyi’s [30] sense. Assume
that the collection of simple games at the τ -th time step admits a solution, (gτj , S

τ
j )

for all rj ∈ Nb and 1 ≤ τ ≤ k. The updating process will thus yield the solution
to the original mixed-form game, (gkj , S

k
j ) for all rj ∈ Nb, such that Skj ∩ Skj′ = ∅ for

all distinct rj, rj′ , and
⋃
rj∈Nb

Skj ⊆ R, for the reason that all the provision costs are

aggregated into the objective function of c by the updating process. However, we
can not say anything more about that solution, especially if a general provision cost
function with nonzero Mgλ has been adopted.

7. Final Remarks

We shall close this chapter with three remarks. First of all, we would propose
another pragmatic solution for a complex mixed-form game. Once we take the mixed-
form game N itself as an integrated government rc, the game would then be reduced
to a decision situation for rc. Similar to the polynomial h(δ, γ) in an H-form game,
we can introduce a mapping

H : (δ,Q) 7→ H(δ,Q),

where Q = (γji ) denotes the |Nb| × n authority matrix, and H(δ,Q) ∈ (0, 1). Hence
the objective function of rc takes the form

(4.61) Π(g, S) = V (g, S)−H(δ,Q)
∑
rj∈Nb

µjM(gj, λ(Sj)),
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where g =
∑

rj∈Nb
µjgj and S =

⋃
rj∈Nb

Sj. Clearly, the solution to the game N is

the collection of (gcj , S
c
j ) for all rj ∈ Nb which jointly maximize Π(g, S).

Secondly, it should be stressed that the roles of communication and information
sharing in the games were intentionally neglected. In fact, we have assumed that any
authority gap in a government network does not affect any decision-making process
and hence the entire game. However, governments in some authority gap, thought
with no authority at all, might still play nontrivial roles in some collective decision-
making process, especially when they serve as hubs connecting governments with
enforceable political powers.

Last but not least, the authority allocation rule in a political system has been set
as fixed in our studies. Nevertheless, it seems fairly natural that different political
systems should adopt different authority allocation rules according to their different
normative initiations per se. For example, if a political system is supposed to rely
on economic efficiency and direct democracy more seriously, then more authorities
should be distributed to the bottom governments. If a political system has developed
a rather dominant tendency towards justice, then more authorities might be better
allocated to such governments that have greatest enforceable political powers. As
was demonstrated in an H-form government line, they should be the governments on
the hierarchical levels χ∗ and χ∗ + 1, where χ∗ is defined to be the conjugate value
of blogδ h(δ, γ)c. Overall, it seems quite hard to determine and even to design an
appropriate authority allocation rule for a specific political system.
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