Universita
Ca'Foscari
Venezia

Scuola Dottorale di Ateneo
Graduate School

Dottorato di ricerca

in Informatica

Ciclo XXVII

Anno di discussione 2014

Analysis and Fast Querying of Mobility Data

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: INF/01
Tesi di Dottorato di Francesco Lettich, matricola 819700

Coordinatore del Dottorato Tutore del Dottorando

Prof. Riccardo Focardi Prof. Salvatore Orlando

UNIVERSITA CA’ FOSCARI DI VENEZIA

DOTTORATO DI RICERCA IN INFORMATICA, XXVII CICLO

PH.D. THESIS

Analysis and Fast Querying
of Mobility Data

Francesco Lettich

SUPERVISOR

Salvatore Orlando

PHD COORDINATOR

Riccardo Focardi

REFEREE REFEREE

Gianluigi Greco Yannis Theodoridis

Author’s Web Page: http://informatica.dais.unive.it /~lettich

Author’s e-mail: lettich@dais.unive.it

Author’s address:

Dipartimento di Informatica
Universita Ca’ Foscari di Venezia
Via Torino, 155

30172 Venezia Mestre — Italia
tel. +39 041 2348411

fax. +39 041 2348419

web: http://www.dsi.unive.it

http://informatica.dais.unive.it/~lettich
lettich@dais.unive.it

To my father, Giulio, and my mother, Rosa.

Abstract

Mobility data represents a widely used term to indicate sources of information,
possibly structured in many different ways - depending on technologies and formats
used - describing the localization or the movement, in time and space, of sets of
entities. Regardless of specific ways through which mobility data is represented, this
class of information is nowadays pervasive since it is massively produced, processed
and analyzed for many different purposes. The importance of mobility data is going
to increase even further in the future, given the ever growing diffusion of the internet
of devices and the progressive introduction of the internet of things paradigm. In
this thesis we contribute to mobility data research by addressing separately two
distinct problems.

The first one is related to the on-line processing of streams of mobility data com-
ing from massive amounts of moving objects, where such streams contain location
updates and some kind of queries continuously and periodically issued by the ob-
jects. This problem is frequently met, nowadays, in the context of Location-Based
Services (LBS) or Location-Based Social Networking applications (LBSN), even if
one has to observe that the nature of the problem allows it to be possibly found
in quite diverse domains, such as massively multiplayer online games, anti-collision
detection systems, behavioural simulations and so on. More precisely, we focus on
the problem of computing massive range and k-nearest neighbour queries, which
represents the time-dominant phase of the whole processing. In order to tackle ef-
fectively the problem we exploit the remarkable - yet cheap - computational power
of modern GPUs by introducing novel algorithms and data structures, and we prove
the effectiveness of our solutions through an extensive series of experiments.

The second problem relates to the domain of mobility data mining. In this con-
text the main goal is to devise novel, off-line analyses able to extract previously
unknown and interesting patterns from raw mobility data. This kind of research
is, in general, very interesting since it allows to gain new insights on mobility data.
We address the problem of detecting avoidance behaviours between moving objects
from historical movement traces. To this end, we first introduce a framework which
formally defines what is an avoidance behaviour between moving objects; subse-
quently, on the basis of such framework we provide an algorithm which is able to
extract these patterns. Finally, we experimentally prove the effectiveness of our
solution with real-world datasets.

Acknowledgments

I would like to thank my family and Letizia, since they fully supported me along
this path...I will always be grateful to you.

I would also like to thank my supervisor, Salvatore Orlando, along with Claudio
Silvestri and Alessandra Raffaeta, since their guidance and patience were funda-
mental during these three, long years; I'm also grateful to Christian Jensen for the
beautiful stay I had at the computer science department in Aarhus.

I thank Gianluigi Greco and Yannis Theodoridis for having accepted to review
my thesis and provide useful comments, suggestions and corrections.

Finally, I would like to thank my colleagues, as well as the fantastic folks I met
in Aarhus, with whom I shared many beautiful moments.

Contents

Introduction 1
[.1 Thesiscontent 2
[.2 Thesis contributions L 3
First part 5
Processing repeated range and k-NIN queries over massive moving
objects 7
1.1 Problem Setting and Statement 9
1.1.1 Problem Setting 9
1.1.2 Batch Processing 11
1.1.3 Query Semantics 11
1.1.4 Quality of Service - Query Latency 12
1.1.5 Problem Statement 13
1.2 Graphics Processing Units 14
1.2.1 Main algorithmic design issues 15
1.3 Related work 15
1.3.1 Processing repeated range queries over massive moving objects
observations L Lo 15
1.3.2 Processing repeated k-NN queries over massive moving objects
observations 17
GPU-Based processing of repeated range queries 21
2.1 Spatial indexing and data structures 22
2.1.1 Design considerations 23
2.1.2 Overview of the methods 23
2.1.3 Space partitioning and indexing 24
2.1.4 Data structures o 26
2.2 Query processing pipeline 28
2.2.1 Pipeline description oL 28
2.2.2 Index creation and indexing in UG and UGpggseiine. - - + - - . . 29
2.2.3 Index Creation and Indexing in QUAD. 31
224 Filteringo 38
2.2.5 Bitmap decoding oo 44
2.2.6 Optimizations 46

2.3 Experimental Setup oo 47

Contents

2.4 Experimental Evaluation 0 L. 48
2.4.1 Analysis on the benefits coming from the usage of bitmaps (S1) 50
2.4.2 Covering subqueries optimization (S2) 51
2.4.3 Task scheduling policy (S3) 53
2.4.4 Data skewness and optimal grid coarseness for UG (S4) 56
2.4.5 Data skewness and optimal cell size for QUAD (S5) 58
2.4.6 Impact of spatial distribution skewness on the performance (S6) 59
2.4.7 Performance analysis for different spatial distributions, amount

of objects, and query areas (S7) 61
2.4.8 Bandwidth analysis (S8) 63
3 GPU-Based processing of repeated k-INN queries 69

3.1 K-NNgpy overview e 70
3.1.1 Motivating challenges 70
3.1.2 Relevant data structures 71

3.2 Processing Pipeline oo 73
3.2.1 Index Creation and Moving Objects Indexing. 73
3.2.2 [Tterative k-NN queries computation 75

3.3 Experimental Setupo oo 92

3.4 Experimental Evaluation 0. 93
3.4.1 (S1) Tree height, neighbours list size, query rate and spatial

skewness impacts on K-NNgpy’s performance 95

3.4.2 (82) K'NNGPU VS K'NNBASELINE 98

3.4.3 (S?)) K'NNGPU VS K‘NNCPU 99

3.44 (S4) Bandwidth analysis 105

II Second part 109
4 Detecting avoidance behaviours between moving objects 111

4.1 Introduction and Motivation 111

4.2 Related Work 113

4.3 Preliminaries 115

4.4 Avoidance 116
4.4.1 Avoidance Classification 119
4.4.2 Problem Statement L. 121

4.5 Algorithmic Framework 123
4.5.1 An Algorithm for Avoidance Detection 123
4.5.2 Avoidance Detectors 125

4.6 Experimental Evaluation 000 0L 126
4.6.1 Experimental Setupo 127
4.6.2 Analysis of the Ground Truth Dataset 130

4.6.3 Analysis of a Real World Unannotated Dataset 134

Contents iii

Conclusions 141

Bibliography 143

Contents

1.1
1.2
1.3

2.1
2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

List of Figures

Moving objects, issued queries ¢ and position updates u. 7
Example of a set of moving objects issuing k-NN queries. 8
Timeline e 11
Simple mapping example over a quadtree-induced grid. 26
Example of a structure of vectors used on a set of objects described

by 3-tuples. 27
A simple example of a GPU-based sorting, based on the structure of

vectors representation, of 8 entities according to their Morton codes.
The discontinuities among the codes (thicker lines) determine the set

of entities belonging to each cell. 31
Example of quadtree construction with 7 objects, thguea = 1 and
Lnaz = 2. o o 34

Example of the mapping established by 2,4, between the quadtree-
induced grid C (left side) and the uniform grid Cleer (right side) re-

lated to the quadtree deepest level. 36
Query indexing example with QUAD. 37
Bitmap layouts used during the processing. 39

Collective creation of a interlaced bitmap by a block of GPU threads. 41
Collective linearization of a group of columns by a warp of GPU threads. 42
UG vs. UGpgserine time analysis for uniform datasets by varying the
number of objects in [100K,1000K]. The histograms of the UG filtering
and decoding phases are time-stacked for clarity purposes. 51
Gaussian datasets, 500K objects, query area (400u)?, varying hotspots
in [50,1000], query rate 100%, Covering ON vs OFF. 53
Gaussian datasets with 50 hotspots, 500K objects, query area varied
in [(200u)?, (400u)?], query rate 100%, Covering ON vs. OFF. 54
Analysis on the performances and workload redistribution among the
GPU streaming multiprocessor with and without the static task list
reordering - gaussian datasets, 500K objects, query area (400u)?,
query rate 100%, varying amount of hotspots. The top plot refers
to the execution times observed while the bottom one refers to the
profiling data collected during the filtering phase (decoding phase
data is analogous). Lo o 55
Gaussian dataset, 200K objects, query area (400u)?, query rate 100%,
150 hotspots. The optimal value is equal to 110. Logscale on the y-
axis is conveniently used to magnify small differences in the filtering
execution times. 57

vi

List of Figures

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

3.1

3.2

3.3

3.4

3.5

Gaussian dataset, 200K objects, query area (400u)?, query rate 100%,
20 hotspots. The optimal value is equal to 95. Logscale on the y-
axis is conveniently used to magnify small differences in the filtering

execution times. o7
Performance analysis with different QUAD th,.q values when varying

the skewness degree. Lo Lo 58
Performance analysis with different QUAD th,4q values when consid-

ering different query areas. oL 29
Gaussian datasets, 500K objects, query area (400u)?, amount of hotspots

varied in [10,200], average running times per tick and speedup against

Gaussian datasets, 500K objects, query area (400u)?, amount of hotspots
varied in [10,200], mean and dispersion index over the grid active cells. 61

Varying the number of objects: average running time per tick and
speedup versus CPU-ST. From top to bottom: uniform datasets, gaus-
sian datasets with 25 hotspots, and San Francisco Network datasets.

....................................... 62
Varying the query area: average running time per tick and speedup
versus CPU-ST. From top to bottom: uniform datasets, gaussian
datasets with 25 hotspots, and San Francisco Network datasets. . . . 64
Variably sized queries: average running time per tick and speedup
versus CPU-ST. Uniform datasets 65
Variably sized queries: average running time per tick and speedup
versus CPU-ST. Gaussian datasets. 65
Variably sized queries: average running time per tick and speedup
versus CPU-ST. Network datasets. 66
System bandwidth analysis when varying the amount of moving ob-
jects or the dataset skewness. oo 67
System bandwidth analysis when varying the query area or the query
rate. ..o 67
Interlaced and linear result set layouts. In the Figure we denote the
j-th result of query ¢; asr!. Lo 72
Toy example of a 1-NN query for which we have to analyze the content
of neighbouring quadrants in order to compute the final, correct result
Set. . . e e 84
Left and right sub-visits, quadtree nodes coverage example. 85
Relationship between the tree height (indirectly controlled through
thquea) and k, and its repercussions on K-NNgpy’s performance. 96

Skewness repercussions on thg,.q’s optimality. 97

List of Figures vii

3.6

3.7
3.8
3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

4.1

4.2

4.3

4.4

4.5

Query rate influence on K-NNgpy'’s performance. The amount of ob-
jects (500K), the neighbours list size (kK = 32) and the maximum
amount of objects per quadtree leaf (thg,.q = 384) are all fixed across

the experiments. 97
K-NNgpu vs K-NNgaseLine, variable amount of moving objects, £ = 32. 98
K-NNgpu vs K-NNgaseLine, variable nearest neighbours list size £. . . . 99
K-NNgpy vs K-NNcpy, variable amount of moving objects, uniform
datasets. e 100
K-NNgpu vs K-NNcpy, variable amount of moving objects, gaussian
datasets, 25 hotspots. 100
K-NNgpu vs K-NNc¢py, variable amount of moving objects, network-
based (San Francisco) datasets. 101
K-NNgpu vs K-NNcpy, variable neighbours list size £, uniform dataset
(IM objects). o o 102
K-NNgpu vs K-NN¢py, variable neighbours list size k, gaussian dataset
(25 hotspots, IM objects). o 102
K-NNgpu vs K-NNcpy, variable neighbours list size k, network dataset
(IM objects).o 103
K-NNESQSLESCE s K-NNELSHE vs K-NNcpy, variable neighbours list
size k, uniform dataset (1M objects). 103
K-NNESQSESCE s K-NNELSHE vs K-NNcpy, variable neighbours list
size k, gaussian dataset (25 hotspots, 1M objects). 104
K-NNESGHESCE vg K-NNEATHE vs K-NNcpy, variable neighbours list
size k, network dataset (1M objects). 104
System bandwidth analysis when varying the amount of moving ob-
jects or the dataset skewness. oo 106

System bandwidth analysis when varying the query rate or the neigh-
bours list size k. 106

Different kinds of avoidance behaviors: avoidance with respect to a
static object (a), and avoidance between moving objects: individual

(b), mutual (c), and individual induced by a change in speed (d). . . 112
A meets B (the distance in ¢’ is less than) during [t1, t3] but not
during [to, t3]. . .« . L 116
Different kinds of predictors based on several interpolations and on
movement constraints (road network). 117

According to the forecasts, A will meet B (the distance will be less
than 0) at some time ¢’ in the time interval [ty,6o]. 118
A avoids B during the time interval [t1,t5]: meet is expected accord-
ing to the forecast computed at time ¢; but no actual meet happened
during the given time interval. oo 119

viii List of Figures
4.6 Trajectory A changes behavior: at some time ¢’ during [t;,t2] the
distance of the actual position from the forecast position is greater
than 0. oL 120
4.7 On the left, both A and B change behavior to avoid each other (mu-
tual avoidance). On the right, according to the forecast A and B
should meet but this does not happen even if both did not signifi-
cantly change behavior (weak avoidance). 121
4.8 Examples of three visual inspections performed on three different
avoidances returned by the algorithm. 131
4.9 Decision problem with simple detector: F-Measure analysis. 131
4.10 Decision problem with fused detector: F-Measure analysis. In X-axis
the values are the maximums of the thresholds ¢ used during the
fusion operation, e.g., 9 is the maximum for the set {3,6,9}. 133
4.11 Search problem with simple detector: Q-Measure analysis. 133
4.12 Search problem with fused detector: Q-Measure analysis. In X-axis
the values are the maximums of the thresholds ¢ used during the
fusion operation, e.g., 9 is the maximum for the set {3,6,9}. 134
4.13 Example of a paired movement event involving the frequent ship
228051000. The ships are moving from bottom to top.. 136
4.14 Subtrajectories related to avoidance behaviors detected in a time in-

terval spanning two months ([20/04/2009, 20/06/2009]). 137

2.1

3.1

4.1
4.2

List of Tables

Data and workload generation parameters. 49
Data and workload generation parameters. 94
Confusion matrix. 128

Frequent ships details. 0L 135

List of Tables

=W N

= O 00 3 O Ot

List of Algorithms

GPU-based PR-quadtree construction 32
QUAD and UG filtering phase. 41
UGguaserine filtering phase 43
Decoding phaseo 45
distComp(C,Q, Pk) 77
findK Dist(q, ¢, distpin, distpaz, k,numBins) 79
distCompPhasel(C,Q, P k) 80
distCompPhase2(C,Q, P, MAXDIST, NUMRES k) 81
K-NNgpy — Schema used for subsequent iterations 86
navigateTree(Qprocesss Cy Zmaps ks MAXDIST, NUMRES) 89

AVOIDANCE BEHAVIOR DETECTION v v v v i i i i e, 124

xii

LIST OF ALGORITHMS

Introduction

Mobility data represents a widely used term to indicate sources of information,
possibly structured in many different ways - depending on technologies and formats
used - describing the localization or the movement, in time and space, of sets of
entities. Regardless of specific ways through which mobility data is represented, this
class of information is nowadays pervasive since it is massively produced, processed
and analyzed for many different purposes.

Starting from the mid-nineties, when a wide-scale adoption of GPS localization
systems occurred in many contexts and GPS data started to be fairly accurate,
researchers and institutions began to exploit mobility data in order to extract useful
and interesting patterns from it, as well as synthetic indicators.

However only in recent years, as a consequence of the tremendous expansion of
the so-called internet of devices [1], the processing and analysis of mobility data
have sparked huge interests and efforts in academic and private sectors. Indeed,
considered the plethora of smarthpones or, more in general, modern mobile devices
connected to the internet - each one usually equipped with a GPS antenna and a
deluge of actuators and sensors - and the related layer of applications and services
offered to end users, the production of mobility data reached unprecedented levels,
thus raising the importance of processing and analyzing such kind of information;
this claim is even more true whenever we consider that many companies make lots
of profits out of it nowadays.

The importance of mobility data is going to increase even further in the fore-
seeable future, considered the progressive diffusion of the internet of things [1], a
paradigm depicting scenarios where almost each object in the world will be con-
nected to the internet by means of miniaturized mobile devices, giving life to new
problems and opportunities.

This thesis is related to mobility data in two different, specific ways. The first
one, which also represents the first part of the thesis (Chapters 1, 2 and 3), deals
with the on-line processing of streams of mobility data coming from massive amounts
of moving objects, where such streams contain location updates and (some kind of)
queries continuously and periodically issued by objects. This is a problem nowadays
met quite frequently in the context of Location-Based Services (LBS) or Location-
Based Social Networking applications (LBSN) [2]. As a side note, considering its
flexible nature this problem can be met in quite diverse domains apart from those
related to mobility data, such as massively multiplayer on-line games, anti-collision
detection systems, behavioural simulations, and so on. More specifically, we target
scenarios where massive amounts of moving objects (which represent the users of
such applications) continuously issue updates - in order to notify their current lo-

2 0. Introduction

cation - and queries - in order to be notified about possible moving objects inside
their interaction area - to some centralized infrastructure. In such applications the
main challenge is to process queries quickly and efficiently, since the query process-
ing represents the time-dominant phase of the whole processing, usually subject to
some Quality of Service constraints as well. If we conveniently adopt the taxonomy
introduced in [2, Ch.1] used to classify location-aware applications, applications
conforming to such schema are classified as mobile-mobile, a research area of par-
ticular interest considering the multitude of smartphone applications (few examples
are Google’s Waze, the now-defunct Google’s Latitude, social-network based ap-
plications, chat services, dating services, etc.) whose success depends on solving
effectively problems similar to the one considered here.

The second part of the thesis situates itself in the ample and well-established fam-
ily of off-line analyses used to extract useful and interesting patterns from mobility
data. Given the tremendous amount of varied mobility data available nowadays,
devising appropriate and novel analyses is more and more important since these
allow to discover patterns which may bring far-reaching benefits on everyday life, or
give interesting and useful insights on human mobility.

In recent literature many works focus on the discovery and extraction of patterns
from trajectories, such as T-patterns, flocks, meets, periodic movements, chasing,
etc. [3, 4], thus making this area of research quite active. In this thesis we contribute
to such branch of research by introducing a novel pattern, trying to characterize
formally what is an avoidance behaviour, punctually in space and time, between
pairs of trajectories. More specifically, we try to model events in which pairs of
trajectories, individually or mutually, change their movements, in terms of speed or
direction, in order to avoid being “too close”. We also provide an algorithm, based
on the aforementioned formal characterization, able to detect such events. This
contribution is presented in Chapter 4.

I.1 Thesis content

The thesis is structured as follows:

e Chapter 1 introduces the problem of processing repeated range or k-NN queries
with massive moving objects observations. Subsequently, we introduce an uni-
fied framework used for modelling such processing and give an overview on
modern Graphics Processing Units (GPUs), also presenting the major chal-
lenges to be tackled when considering the usage of the General Purpose Com-
puting on GPU (GPGPU) paradigm. The chapter finally concludes with an
extensive overview about related work regarding the problems introduced, es-
pecially when seen from the GPGPU perspective.

e Chapter 2 focuses specifically on the problem of processing repeated range
queries over moving objects observations, presenting the approach we use to

1.2. Thesis contributions 3

efficiently solve the problem, namely the Quadtree approach.

e Chapter 3 focuses specifically on the problem of processing repeated k-NN
queries over moving objects observations, presenting the approach we use to
efficiently solve the problem, namely K-NNgpy.

e Chapter 4 presents the work related to the formal charachterization and de-
tection of avoidance behaviours between trajectories.

e Finally, the thesis ends by providing the final conclusions.

1.2 Thesis contributions

For what concerns the GPU-based processing of repeated, massive range or k-NN
queries over massive moving objects observations, the main, relevant contributions
made (also) by the author are the following:

e We introduce a formal framework which models the processing of repeated,
massive amounts of range or k-NN queries over massive moving objects obser-
vations, keeping into consideration Quality of Service constraints as well.

e We introduce two query processing pipelines based on the aforementioned
framework, one for range queries and the other one for £-NN queries, coupled
with a PR-quadtree based spatial index - used to distribute workloads among
the GPU streaming multiprocessors efficiently - and lock-free data structures
used to manage intermediate query results on GPU with the aim of boosting
the overall GPU memory throughput.

For what is related to research contributions, a simpler version of the framework,
as well as a much simpler range query processing pipeline, are presented in [5]. In [6]
we present the framework as well as the range query processing pipeline presented
in this thesis as well.

Passing to the characterization and detection of avoidance behaviours between
moving objects, the contributions presented in this thesis can be summarized as
follows:

e We formally introduce a framework which characterizes what is an avoidance
behaviour, in space and time, between moving objects.

e We formally define whenever an avoidance behaviour is individual, mutual or
weak, based on factual evidence emerging from data.

e On the basis of the aforementioned framework, we introduce an algorithm
capable of detecting avoidance behaviours between moving objects, as well as
capable of classifying these events according to the above taxonomy.

4 0. Introduction

For what is related to research contributions, all the aforementioned contribu-
tions are presented in [7].

|

First part

Processing repeated range and k-NN
queries over massive moving objects

An increasing number of applications need to process massive spatial workloads.
Specifically, we consider applications in settings where spatial data is continuously
produced over time and needs to be processed rapidly, e.g., scenarios involving
services or applications mainly tailored for mobile device infrastructures - such as
Location-Based Services (LBS) or Location-Based Social Networking applications
(LBSN) [2] - Massively Multiplayer Online Games (MMOG), anti-collision detection
systems, behavioural simulations where the behaviours of agents may affect other
agents within a given range, and so on. In these applications, very large populations
of continuously mowving objects frequently update their positions and issue some
kind of queries in order to look for other objects within their interaction area. The
resulting massive workloads pose new challenges to data management techniques.

In this context we consider separately two specific kinds of queries which are
of particular interest: rectangular range queries, i.e., queries represented by a fixed
rectangular area for which we have to determine the set of objects falling inside; and
k-NN queries, globular queries whose spatial extent is dictated by the dislocation of
the k£ nearest objects with respect to their centers.

1s—/u'(D

1 u (2
/
q3 /

@ Uj —(3 q

Figure 1.1: Moving objects, issued queries ¢ and position updates u.

Figure 1.1 depicts a toy example involving range queries, where three objects,
namely 1, 2, and 3, continuously issue position updates and queries. Object positions
are represented as circles with object identifiers inside, while updates are depicted
as arrows (labeled wuy,us,u3) connecting previous positions (represented by gray

8 1. Processing repeated range and k-NN queries over massive moving objects

circles) with current positions. Range queries are shown as rectangles and labeled
as q1,q2,q3. The result set of query g3, when executed after us, is {2} (excluding
the issuing object from the result set).

On the other hand, Figure 1.2 depicts a toy example involving k-NN queries.
Here three objects, namely 2,3 and 5, issue a position update, while 1 issue a 2-NN
query in order to know the set of the two nearest objects with respect to its location.
The result set of such query, whenever executed after the updates, is {2, 3}.

T q1 (2-NN)

Figure 1.2: Example of a set of moving objects issuing k-NN queries.

To enable parallel processing and optimizations, and thus manage the targeted
workloads in a scalable manner, we recur to an approach based on time discretiza-
tion. In this sense we partition the time in intervals (or ticks), assign location
updates and queries to the ticks in which they occur, and process the updates and
queries in the resulting batches such that the query results are reported after the
end of each tick. This approach has the effect of replacing the processing of a large
number of independent and asynchronous queries with the iterated processing of
spatial joins between the last known positions of all the moving objects at the end
of a tick and the queries issued during the tick. In other words we trade (slightly)
delayed processing of queries for increased throughput, and therefore care is needed
to ensure acceptable delays.

In order to achieve high performance and scalability we also want to exploit a
platform encompassing an off-the-shelf general-purpose microprocessor (CPU) cou-
pled with a Graphics Processing Unit (GPU) that features hundreds of processing
cores. To benefit from GPUs exploitation, limitations and peculiarities of these ar-
chitectures must be carefully taken into account. Specifically, individual GPU cores
are slower than those of a typical CPU, while some memory access patterns may
cause serious performance degradation due to contention and serialization of mem-
ory accesses. Effective query processing techniques must address these limitations:
multiple cores must work together to efficiently process queries in parallel for most
of the time, and must coordinate their activities to ensure high memory bandwidth.

1.1. Problem Setting and Statement 9

In light of the scenarios and goals considered, in Section 1.1 we first provide a
unified framework, based on time discretization, for processing repeated range or k-
NN queries over massive moving objects observations. Such framework will be used
later on in Chapters 2 and 3 as a common ground to devise hybrid CPU/GPU query
processing pipelines addressing the two kinds of query considered. In Section 1.2 we
then provide a brief overview about modern graphics processing units (GPUs), so
to show their main architectural peculiarities and limitations one has to take into
consideration when designing hybrid processing pipelines. Finally, in Section 1.3 we
provide an overview about works in literature relevant to the scenarios and problem
setting considered.

1.1 Problem Setting and Statement

In this section we provide definitions that capture the problem setting and the
problems we aim to solve.

1.1.1 Problem Setting

We consider a set of points O = {oy,...,0,} moving in two-dimensional Euclidean
space R?, where the position of object o; is given by the function pos; : Rs>q — R?
mapping time instants into spatial positions.

These points model objects that issue position updates and queries (range or k-
NN, depending on the scenario considered) as they move. Let P; = (p/°, ..., pf’“, ce)y
t; < tj+1, be the time-ordered sequence position updates issued by o;, where pﬁj =
pos;(t;) is a position update. At this point we need to define the two typologies of
queries considered.

Definition 1. [Range query]
We define a range query issued by object o; at time t by

g = (2%, 2%,y y"),

where (z%,y*) and (2, y°) represent respectively the lower left and upper right
corners of a rectangle.

Definition 2. [k-nearest neighbours (k-NN) query]
We define a k-NN query issued by object o; at time t as

q’f = (x7 y? k)’

where (x,y) represents the query center while k the amount of nearest neighbours
required.

10 1. Processing repeated range and k-NN queries over massive moving objects

Regardless of the query typology considered, we denote by Q; = (¢/°, ..., q¢™,...),
tm < tmi1, the time-ordered sequence of queries issued by o;.

Given the above, the most recently known position of o; before time ¢, t > tg, is
denoted as p! and defined as follows:

Ppl=pim € Piif by <t <ty

Similarly, the most recent query issued by o; before time ¢, ¢ > tg, is §!:
G =qme€Qifty, <t<tuy

This notation helps to identify which updates and queries must be processed
during any tick, since later on (Section 1.1.2) we assume that the processing of
a query can be delayed up to a certain extent; this is done in order to optimize
the overall system throughput while processing queries using the most up-to-date
information available. At this point we can formally define the result set of a range
query and the result set of a k-NN query.

Definition 3. [Result set of a range query]
The result of a range query q¢ when computed at time t', to < t < t', is denoted by
res(qt,t') and is defined as follows:

res(ql,t') ={o; € O | p\ €, ql Ni # j},

where ﬁ;’ €s q¢ denotes that]3? = (z,y) belongs to the query rectangle ¢, i.e.,
2 <z <aband y* <y <yl

Assuming that updates uq, ..., us in Figure 1.1 are the most recent ones before
t', we have res(qi, t') = {2}.

Definition 4. [Result set of a k-NN query]
Let pos;(t) be the center of a k-NN query issued by o; at time t. Let also B; =
(pos;(t), A) be the ball centered on pos;(t) having radius A.

Then, the result set of a k-NN query ¢t computed at time t', to < t < t' is denoted
by res(qt,t') and is defined as follows:

res(q;.t') = {0; € O | f € qf Ni # j},

where ﬁ;’ €, ¢¢ denotes that]32-’ = (x,y) belongs to the ball B; = (pos;(t), A) such
that A makes the cardinality of the result set being equal to

res(q;,)] = k.

Assuming that updates {us, us, us} in Figure 1.2 are the most recent ones before
t', we have res(qi,t') = {2, 3}.

1.1. Problem Setting and Statement 11

1.1.2 Batch Processing

To obtain high throughput when facing massive workloads due to frequent updates
and queries issued by huge populations of moving objects, we quantize time into ticks
(time intervals) with the objective of processing updates and queries in batches on
a per-tick basis. Assuming that the initial time is 0 and the tick duration is At,
the k-th time tick 75 is the time interval [k - At, (k+ 1) At). Specifically, we aim
to collect object position updates and queries that arrive during a tick, and process
them at the end of the tick. If an object submits more than one update and query
during a time tick, only the most recent ones are processed.

Let P™ = {ﬁ(kﬂ)'m ﬁ%’“*”'“} be the last known positions of all objects at

1 ’)

the beginning of the (k + 1)-th tick, and Q™ = {q{*,...,qlk} be the most recent
queries issued during the k-th tick, where:

)

o = q(kH)At If object o; issues any query during the k-th tick.
' 1 Otherwise.

Note that if object o; does not issue any query during the tick, then ¢/* = L.
Figure 1.3 captures the temporal aspects of the previous example. The timeline

is partitioned into ticks 7y, 7y, ... of duration At. Objects issue updates and queries
T T,
: At £ At , time
T
‘ U3 Qs Uy ‘
qpi; gy - qs latency

Figure 1.3: Timeline

independently and asynchronously. For example object o3 sends a query and an
update separately. Incoming updates and queries are batched based on the ticks.
For example, update u, belongs to the batch of 7. The batches are processed at
the beginning of the next tick. Thus, at time ¢’ (at the beginning of 7o) we start
processing all updates and queries arrived during 7;. We complete the processing of
the batch, thus making available the query results, at time ¢, hopefully before the
end of 7.

1.1.3 Query Semantics

The procedure for computing queries as described above ensures serializable query
processing and implements the timeslice query semantics, where query results are
consistent with the database state at a given time, usually when we start processing

12 1. Processing repeated range and k-NN queries over massive moving objects

the query. This is a popular choice in traditional databases and is commonly adopted
in related work [8, 9, 10, 11].

For example, in Figure 1.3 the computation results are returned at time ¢; for
the first batch. Since the object update u, occurs at time t,, t, > t/, i.e., after
we start processing ¢z, u, is not considered even if it arrives before the results are
returned. In this way, the query result is consistent with the database state at time
', when we start processing query gs.

1.1.4 Quality of Service - Query Latency

On the one hand, the processing of updates and queries on large batches can be
expected to improve system throughput. On the other hand, we assume that some
applications, e.g., MMOG applications, are sensitive to the delays with which query
results are returned. Thus, it is important to be able to assess the latency of query
processing, which is affected by the number of queries and updates that arrive during
a tick, the tick duration, and the computational capabilities of the system.

Definition 5. [Latency, Queueing, Computation Time|

Assume that the processing of query q!, issued at time t, starts at time t' and
completes at time t;. We define the following durations: latency_time(qt) = t; —t,
queueing_time(ql) = t'—t, and processing_time(q}) = t;—t', so that latency_time(q}) =
queuveing_time(q!) + processing_time(q;).

We can now generalize the concept of latency to all the queries issued during a
tick, all executed in batch at the beginning of the next tick.

Definition 6. [Tick Latency]
The latency of the queries Q™ arrived during the k-th tick is defined as follows:

Tick_Latency(Q™) = max latency-time(g;")
ie{1,...,n}, q:k;éj_

Given an application-dependent mazimum latency threshold X, a system satisfies
the application’s QoS Latency Requirement if, for each tick k, Tick_Latency(Q™) <
A holds.

The tick duration At should be chosen such that even queries issued at the
beginning of a tick are answered within time duration A. Since query processing
is delayed till the beginning of the next tick, the worst-case latency for a query ¢!
takes place when ¢! is issued at the beginning of a tick: in this case, the latency is
the sum of At = queueing_time(q!) and processing_time(qt). The following lemma
states a simple, sufficient criteria to select At or to verify whether a given execution
time satisfies the latency requirement.

Lemma 1. Let Atk be the time to process all queries in the k-th batch. Given a

tick duration At and a latency requirement X, then if At + AtF <)\, the execution

exe

1.1. Problem Setting and Statement 13

satisfies the latency requirements, i.e., Tick_Latency(Q™) < X. From the above we
can derive the following sufficient condition for Tick_Latency(Q™) < A:

At >\ — At > AtF (1.1)

Above, we have that At > A\ — At because the processing of the queries ac-
cumulated during a tick is assumed to be completed before the end of the next
tick.

The computational capabilities of a system influences the choice of the tick du-
ration and the fulfillment of the latency requirement in Lemma 1.

Lemma 2. Let § be the system bandwidth, expressed in terms of the number of
queries processed per time unit, and let Qe be the maximum number of queries
that can occur during a tick. Then a sufficient condition for the system to meet the
QoS latency requirement (based on threshold X\) is:

Qmax

>
B_)\—At

(1.2)

Proof. According to Equation 1.1, in order to respect the timeliness, we have to
process all queries in a time At* such that At¥ < X — At < At. Given the

exe exe
Qmaz

bandwidth 3, the maximum execution time to process all queries of a tick is e

Hence, % < A — At must hold, from which the lemma follows. O

For a given latency requirement A, if we increase the tick duration At, this
increases Qe and decreases A\ — At. So, if we increase At, in order to satisfy
Equation 1.2, we have to compute more queries in less time, and thus it may happen
that bandwidth g becomes insufﬁcientQto support the requested workload respecting

the given latency threshold, i.e., 8 < 32z&.

1.1.5 Problem Statement

We can finally state the problem of computing repeated range or k-NN queries over
massive streams of moving objects observations, by discretizing the time in inter-
vals (ticks), synchronizing query processing according to these ticks, and iteratively
computing queries in batch mode.

Given (1) a set of n objects O, (ii) a partitioning of the time domain into ticks
[Tk]ren of duration At, (iii) a query latency requirement A, and (iv) a sequence of
pairs [(P, , @,)|ken, where P, is the up-to-date object positions at the end of 7, and
(-, is the set of the last issued queries during 73, we have that the iterated batch
processing of queries (), over the corresponding P, , k € N, yields [R., |ren, i.€.,
a sequence of pairs, each composed of a query and the list of the corresponding
results:

R ={(g", res(q*, (k+1)-A1) | ¢ # L N g €Qn}.

14 1. Processing repeated range and k-NN queries over massive moving objects

The processing time of each batch of queries (),, must be upperbounded as
follows, to satisfy the query latency requirement A:

processing _time(Q,,) < (A — At) < At

1.2 Graphics Processing Units

GPUs are based on massively parallel computing architectures that feature thou-
sands of cores grouped in streaming multiprocessors ' (hereinafter denoted by SMs
for brevity) coupled with several gigabytes of high-bandwidth RAM. In recent years
these devices sparked a consistent interest due to their ability in performing general
purpose computations, thus offering possible substantial performance gains when
compared to the performance of traditional CPUs.

Due to the architecture of these devices, exploiting effectively their computa-
tional power is far from trivial. Specifically, each GPU processing core is slower
than a typical CPU and has limitations on its access to device memory, resulting
in potential contentions unless specific conditions are satisfied [12]. Moreover, GPU
cores have to coordinate their actions, which is usually a complex issue considered
their architectural organization.

Proper algorithms, designed with the architectures of the GPUs in mind, are
needed in order to maximize the performances and obtain significant gains with
respect to CPU-based algorithms, a goal which is not always possible to pursue [13]
depending on the characteristics of the targeted problem.

In order to exploit effectively the computational power of a GPU, memory ac-
cesses should generally have high spatial and temporal locality. In addition, we
have to ensure that all the cores of an SM profit from memory block transfers, by
forcing coalescing of parallel data transfers: this avoids serial memory accesses and
consequent performance degradation due to a wrong usage of memory hierarchies.

Moreover, the GPUs feature several types of memories ranging from private
thread registers and fast shared memory, which are both shared among the core
groups of each SM, to global memory, which has a lower throughput but it is of
significant size and represents the contact point with the CPU host. To achieve
consistent performances a programmer has to be aware of this complex memory hi-
erarchy by orchestrating and managing explicitly memory transfers between different
memories.

Workload partitioning is paramount when designing GPU algorithms since un-
balances may create inactivity bubbles across the streaming multiprocessors and
seriously cripple the performance.

A GPU consists of an array of ngy; multithreaded SMs, each with ng... cores,
yielding a total number of ngps - neore cores. Each SM is able to run blocks of threads,

"We use the NVIDIA CUDA terminology, throughout the thesis, to refer GPUs architectural
features and peculiarities, as well as to describe software targeted to GPUs, since CUDA represents
the dominant framework in the context of general purpose computing on GPUs.

1.3. Related work 15

namely data-parallel tasks, with the threads in a block running concurrently on the
cores of an SM. Since a block typically has many more threads than the cores
available in a single SM, only a subset of the threads, called warp, can run in
parallel at a given time instant. Each warp consists of szyarp synchronous, data
parallel threads, executed by an SM according to a SIMD paradigm [12, 14]. Due to
this behavior, it is important to avoid branching inside the same block of threads. It
is worth remarking that at warp level no synchronization mechanisms are needed to
guarantee data dependencies among threads, thanks to the underlying scheduling.
Finally, a function designed to be executed on GPU is called kernel.

1.2.1 Main algorithmic design issues

Considering the specificities of the problem described in Section 1.1.5, five main
design issues shall drive the design of the hybrid CPU/GPU pipeline in charge of
the query processing. First, we have to find a proper way to distribute the workload
evenly among the GPU streaming multiprocessors, since unbalances typically create
inactivity bubbles. Second, we need to avoid contention/serialization when access-
ing the GPU device memory, in order to favour spatial locality, thus properly taking
advantage from the complex GPU memory hierarcies. Third, in the range queries
case we should compress the data the GPU has to send back to the CPU during the
processing, since the output is typically much larger than the input. Fourth, expen-
sive synchronization mechanisms among concurrent threads should be avoided, since
these are typically very costly in terms of performance. Finally, for each pipeline
task executed on the GPU the unit of parallelization (either objects or queries, or
partitions of queries) should be carefully chosen according to task specificities.

1.3 Related work

In this section we provide an overview about related works on the scenarios and
problem setting considered, with a particular focus on works targeting equivalent or
very similar problems by means of hybrid CPU/GPU approaches.

1.3.1 Processing repeated range queries over massive mov-
ing objects observations

The idea of using the abundant and cheap computational power offered by GPUs in
order to boost spatial joins computations dates back to the era when GPUs did not
offer real general purpose computing capabilities and the use of OpenGL or DirectX
APIs were needed in order to have access to their resources [15]. The potential of
GPUs was clearly understood, but the scenarios, the problems, and the approaches
considered at that time were quite different from those covered in this work.

16 1. Processing repeated range and k-NN queries over massive moving objects

As pointed out in an extensive review [16], the need for managing continuously
incoming and evolving spatial data can be addressed by using simple, light-weight
and, in many cases, throwaway data structures. However, it is crucial that data
structures and algorithms contend effectively with skewed data and avoid redundant
spatial joins and bad workload distributions as much as possible. In such review
the authors claims Synchronous Traversal to be the top performer across several
datasets. However, when considering its multi-threaded variant the speedup yielded
by Synchronous Traversal (up to 6x with 12 cores) does not follow a linear behaviour
as the amount of cores increases, due to inter-thread dependencies and challenges
related to finding a proper way to partition the workload among the cores. Indeed,
these are serious challenges which we try to tackle in the present work.

Recent studies [10, 17] show how uniform grid-based solutions are particularly
attractive when managing continuously incoming and evolving spatial data in main-
memory multi-core settings. Even if these works do not consider the architectural
peculiarities and limitations of the GPUs, they nonetheless highlight how regular
grids, in general, represent a natural basis for GPU parallelization strategies thanks
to their structural regularity [18].

Other works consider the problem of building R-Trees (and possible derivations)
from scratch [16], even recurring to hybrid approaches based on the combined use of
CPU and GPU for range queries computation [19, 20]. While the goals of some of
these works are different with respect from the ones of the present work, it is interest-
ing to notice how solving certain problems is particularly recurrent and challenging
when processing massive spatial data by using massively parallel architectures, i.e.,
(i) finding a solution able to distribute the workload in the most uniform way (de-
pending also on the spatial data distribution), (ii) arranging spatial data by using
proper GPU-friendly light-weight regular data structures which allow to use the
GPUs features effectively, and (iii) exploiting spatial locality as much as possible.

In a recent work [21] in the context of collision detection in computer graph-
ics, the the author focuses on extremely fast and efficient GPU-based construction
and lookup algorithms for binary radix trees when performing real-time collision
detection between 3D objects (thus addressing a similar problem with respect to
the one addressed in this work). While the algorithms proposed are able to handle
elegantly the skewness possibly characterizing the data, the work doesn’t consider
the problems of detecting and having to write out huge amounts of results in very
short time intervals. The first problem increases remarkably the amount of lookups
and traversals in the trees needed to compute a query, while the second problem
entails serious issues mainly related to memory throughput maximization and how
to avoid memory access contention.

Previous works [18] already pointed out the advantages of using point-region
quadtrees for partitioning a low dimensional space when using the GPUs, thanks to
the direct relationship between the quadtrees structural properties and the Morton
codes [22, Ch. 2][23]. Indeed, quadtrees fit extremely well the GPUs architectural
features, hence allowing to devise fast and efficient algorithms.

1.3. Related work 17

We are unaware of existing studies tackling the problem of repeatedly comput-
ing sets of range queries over continuously moving objects by means of an hybrid
CPU/GPU approach. The most closely related work is focused on point-in-polygon
joins [24]. This work considers scenarios characterized by massive amounts (possi-
bly millions) of static entities, represented by points, and sets of polygons (in the
order of few thousands) potentially covering the entities: the goal is to speed up
the point-in-polygon tests by exploiting the computational power of GPUs using
a novel approach stemming from the traditional filtering and refinement schema.
This work is similar to the present work in that it exploits point-region quadtrees
in order to index the points, and thus improve the workload distribution when de-
termining which point-in-polygon tests have to be computed. However, relevant
differences separate the two works: (i) the entities are static, (ii) joins are com-
puted between huge amounts of points and limited sets of polygons (instead of huge
sets of range queries issued by the same entities) and (iii) polygons are indexed
(through their bounding boxes) by means of a uniform grid and subsequently paired
(for the final refinement phase) with sets of potentially overlapped points. This is
in turn achieved by indexing each quadtree quadrant minimum bounding rectangle
(enclosing the quadrant points) by means of the same uniform grid. In light of this,
we deem that a comparison with our proposals would be not interesting, since the
other work tackles different scenarios and consequently does not consider a set of
relevant issues having far-reaching consequences, above all the issues related to the
continuous management of huge sets of queries and results.

1.3.2 Processing repeated k-NN queries over massive mov-
ing objects observations

The problem of computing a given set of k£ nearest neighbours (k-NN) queries over
a given set of points in some d-dimensional space is a well-renowned problem found
in many theoretical and practical fields. The general schema used to tackle this
problem usually follows a two step approach: first, some spatial index is built over
the set of points in order to reduce the amount of computations per query with a
subsequent recursive search phase, which is performed over the index in order to
compute the query results. In general, the effectiveness of a solution depends on the
underlying spatial index and on the relaxation of some problem constraints related
to the quality of results.

In the following we provide a brief overview about the main works in literature;
moreover, since we are considering the aforementioned the problem in R?, in Section
1.3.2.2 we exclusively focus on those works tackling the problem of computing k-NN
queries in low dimensional spaces by means of an hybrid CPU/GPU approach.

18 1. Processing repeated range and k-NN queries over massive moving objects

1.3.2.1 General overview.

The literature can be substantially divided into two macro-families. The first one
tackles the problem when processing k-NN queries with data in low dimensional
spaces, while the second family tries to solve the same problem with high dimensional
spaces.

For what relates to the first family - which also covers the scenario and the
problem setting introduced in this work - the vast majority of approaches are based
on the usage of kd-trees [25, 26], as shown in extensive surveys such as [27, Ch. 63]
or [28, Sec. 5]. Other minor solutions are based on R-Trees [29].

The second family focuses on high dimensional data (e.g., images, documents,
feature vectors describing some kind of entities, etc.). High dimensional data poses
serious problems when designing or choosing spatial indices due to the so-called curse
of dimensionality, which negatively affects solutions tailored for low dimensional
spaces in terms of time and space complexity (on this matter the reader may refer,
for instance, to [30]). In order to tackle effectively such problem many approaches
recur to the use of random projections, exploiting the intuition for which, in many
cases, high-dimensional data tend to form clusters in subspaces having much lower
dimensionality than the original space. Also, such approaches trade inaccuracy
(for what relates to queries results) for performance - at least up to some extent.
Among these works, worth of mention are solutions based on locality sensitive hash
(LSH) functions. Since this interesting branch of research goes out of the scope
of the present work, the reader may refer to the following references: [31, Ch.3],
(32, 30, 33, 34].

1.3.2.2 Computing k-NN queries on GPU.

To date, the first work tackling the problem of computing k-NN queries by means
of an hybrid CPU/GPU approach is [35]. In this work the authors propose a brute-
force quadratic approach: first, for each k-NN query all the distances between its
center and the dataset points are computed. Subsequently, distances are sorted in
ascending order so that the first k£ ones represent the final query result set. This
approach is quite simple and straightforward, yet it fits quite well the GPUs architec-
tures and proves to be quite effective with small/medium sized datasets, especially
when processing data in spaces having moderate to high dimensionality.

Focusing specifically on works related to low dimensional spaces, many of these
actually tackle the problem of computing k-NN queries in static scenarios and when
the problem is part of a bigger problem. Indeed, computing k-NN queries is strik-
ingly recurrent in many fields, such as computer graphics, physics, astronomy, etc.
(see for instance [36, 37, 38, 39]). Such works almost always rely on a kd-tree based
index whose construction usually happens on CPU. The index is then subsequently
used to perform the k-NN search, where the tree has to be navigated for each query:
such navigation is usually performed on CPU, depending on the specific approach,

1.3. Related work 19

while distance computations - representing the compute-intensive part of the whole
processing - always happen on GPU.

All these solutions typically exhibit a bottleneck, usually the fact that at least one
of the core operations is performed on CPU whereas parallelizing these operations on
GPU would speed up the entire processing remarkably. Operations which typically
represent a bottleneck are the index construction or the index navigation (when
computing the queries). Indeed, one of the most difficult problems in GPGPU
computing, apart from devising proper algorithms and data structures, is to decide
whether it is more profitable to execute a given task on CPU or GPU. Such decisions
usually have far-reaching consequences on the design of processing pipelines and in
many cases it translates into finding delicate and appropriate trade-offs. Another
observation about the aforementioned works is that a consistent part of them are
tailored for very specific scenarios and therefore find very little use in other contexts.

A recent work [40] targets spaces having low to moderate dimensionality (i.e.,
R4=d=20) " This work is quite interesting since it exploits the usage of queue-based
buffers to accumulate and distribute on the fly fairly uniform workloads across GPU
streaming multiprocessors. The schema adopted is the following: first, a kd-tree
is built over the set of points (this is done on CPU). Then, a set of queue-based
buffers is associated with the set of kd-tree leaves, one per leaf: the idea is to
associate queries with leaves through such buffers on the fly. Indeed, for each query
we navigate the kd-tree by means of a recursive tree traversal (done on CPU),
propagating queries across leaves (through the buffers) containing potential nearest
neighbours. Once enough queries are accumulated inside each buffer (the same query
may be possibly replicated in multiple buffers), the buffers content is flushed out
and the GPU kicks in: for each leaf, the GPU computes the distances between the
queries and the objects associated with it. This iterative process goes on until there
is at least one query which requires to visit a tree leaf.

In general, none of the works mentioned above consider scenarios where massive
amounts of moving objects repeatedly issue massive amounts of k-NN queries, and
such scenarios must be handled in real-time while satisfying a given set of quality
of service constraints.

20 1. Processing repeated range and k-NN queries over massive moving objects

GPU-Based processing of repeated
range queries

In this chapter we tackle the problem of processing repeated range queries over
massive moving objects observations by means of an hybrid CPU/GPU approach.
To this end we present the Quadtree method (hereinafter referred as QUAD).

The key idea behind QUAD is to partition the problem space using a point-
region quadtree inducing a regular grid; in turn, the cells of the grid represent a
set of independently solvable problems, each one associated with a data-parallel
task runnable on a GPU streaming multiprocessor, also capturing and adapting to
possibly skewed spatial distributions.

This strategy allows us to obtain a quasi uniform distribution of the workloads
among coarse-grained tasks — each task corresponding to a single cell of the index
— with the aim of improving the overall efficiency of the system and maximizing
the performance. In order to demonstrate the importance of this aspect, we also
introduce a baseline spatial index, whose space decomposition relies on the usage of
a uniform grid. We call this method Uniform Grid (hereinafter referred as UG).

Both QUAD and UG preprocess in parallel the data and store consecutively object
and queries falling in the same grid cell, thus optimizing memory accesses. Further,
to avoid the use of blocking writes and to ensure high throughput, both methods
compute the query results by means of a two phase-approach using a particular
bitmap intermediate representation [5].

To the best of our knowledge this is the first work that exploits the GPUs to
efficiently solve repeated range queries on continuously moving objects, having care
to tackle effectively skewed spatial distributions as well. There are few existing works
that use the GPUs for spatial query processing, but they consider substantially
different problems, as detailed in Section 1.3.1.

The main contributions can be summarized as follows:

e we define a hybrid CPU-GPU pipeline to process batches of range queries,
which effectively exploit the GPU computational power while taking care of
its architectural features and limitations. Thanks to its flexibility, the pipeline
can be adapted to different spatial indices as well.

22 2. GPU-Based processing of repeated range queries

e we introduce a set data structures which allow the pipeline to perform opera-
tions that concurrently write interlaced lists of results, using coalesced memory
accesses that avoid race conditions.

e while we adopt the usual query splitting approach to make the data-parallel
tasks induced by the indices completely independent, we take advantage of sub-
query areas that completely cover index cells to save work during the query
processing (in terms of amounts of containment tests performed), and compress
the information the GPU has to send back to the CPU when notifying the
query results.

e we carry out an extensive set of experiments in order to compare QUAD against
UG. The structural regularity and simplicity characterizing the uniform grids,
onto which UG relies, is a well-known feature that fits very well the GPUs
characteristics, but have structural limitations - mainly related to the inability
to fully capture the skewness possibly characterizing the spatial data - which
may seriously hinder the performances.

On the other hand, QUAD is able to automatically adapt to very skewed spatial
object distributions, assuring very good performances for a broad range of
spatial distributions. We demonstrate this claim by comparing QUAD against
UG. We also compare QUAD against the state-of-the-art (for what relates to
the problem considered) sequential CPU algorithm, namely the Synchronous
Traversal algorithm [16, 41].

The chapter is structured as follows: in Section 2.1 we present the spatial indices
used by QUAD and UG to partition the workload, while in Section 2.2 we extensively
detail the pipeline as well as the customizations needed by QUAD and UG. Finally,
Sections 2.3 and 2.4 present an extensive set of experimental studies which show (i)
the benefits coming from the usage of the proposed range query processing pipeline
and data-structures, (ii) how QUAD spatial indexing is better with respect to the
one used by UG and (iii) how QUAD outperforms the state-of-the-art sequential
CPU competitor as well as outperform, or being on par with, UG.

We delegate the conclusions and possible directions of research to the conclusive
chapter of the thesis.

2.1 Spatial indexing and data structures

In this section we discuss the inspiring principles behind QUAD and UG, along with
the architectural features of GPUs that impact on the spatial indices and data
structures design.

When processing repeated range queries, the same procedure is repeated for
each tick. Thus, for the sake of readability, hereinafter we omit the subscript that

2.1. Spatial indexing and data structures 23

indicates the tick, and denote by P, (), and R, respectively, the up-to-date object
positions, the non-obsolete queries, and the result set associated with a generic tick.

2.1.1 Design considerations

A brute-force approach for computing repeated range queries entails O(|P| - |Q|)
containment checks per tick. By using spatial indices it is possible to prune out
consistent amounts of pairs of queries and object locations that do not intersect.
However, when choosing or designing an appropriate index, we have to consider
its pruning power along with its maintenance costs. For example, regular grid
indices are generally reported to have low maintenance costs, and thus are suitable
for update-intensive settings [17]. Another aspect is the number of cores and the
memory hierarchy provided by the underlying computing platform. Given the same
workload, different indices may be the best option for different platforms. With
massively parallel platforms such as GPUs, the regularity characterizing spatial
indices based on regular grids is attractive, as it enables fast and efficient parallel
index updating and querying. Even if tree-based spatial indices are able to distribute
objects evenly among the index cells (the tree leaves), we have to avoid navigating
the tree, since this may severely hinder efficiency due to poor data locality when
accessing the memory.

In a previous work [5] we devised a simple uniform grid-based spatial indexing
used to partition the workload and prune out useless containment tests. In that
work we chose to determine the size of the index grid cells on the basis of the
query size: the rationale was to reduce the amount of index cells to be considered
when processing each query. However, solutions based on uniform grids generally
cannot cope efficiently with skewed spatial distributions. To solve this issue we
propose the QUAD method, which relies on a tree-based recursive spatial indexing,
induced by point-region quadtrees. To ensure an unbiased comparison between
QUAD and uniform grid-based spatial indices, we also introduce the UG method as
a baseline. UG relies on a simple uniform grid-based spatial index, without any a-
priori constraint on the size of the grid cells. Also, UG integrates all the optimizations
conceived for QUAD (such optimizations are detailed in Section 2.2.6).

2.1.2 Overview of the methods

In the following we give an overview of both UG and QUAD.

UG materializes at each tick a uniform grid over the minimum bounding rectangle
enclosing the object positions. The only way UG can cope with data skewness is by
changing the coarseness of the grid, targeting a coarseness tradeoff on the basis of
the object densities in crowded areas and loosely populated ones.

QUAD still yields at each tick an index over the same bounding rectangle, but the
index cells are of varied size as QUAD is able to dynamically tune their size according
to local object densities. To this end QUAD utilizes a point-region quadtree, which

24 2. GPU-Based processing of repeated range queries

entails a space partitioning that ensures a pretty balanced distributions of objects
among the index cells even in presence of skewed data. Even if tree data structures
are, in principle, difficult to manage on GPUs, the direct relationship between the
quadtrees structural properties and the Morton codes [22, Ch. 2][23] open up to the
possibility of implementing efficient massively parallel quadtree construction and
lookup algorithms on GPUs[18].

Regardless of the index adopted, queries can be processed concurrently according
to a per-query parallelization. More specifically, since both indices induce a partition
of the space, where each disjoint space tile corresponds to a cell of either UG or
QUAD, we virtually split queries according to the space partition, thus producing
a subquery for each index cell a query intersects. Indeed, each subquery yields an
independent subtask, which we process in parallel by only accessing the objects falling
in the associated index cell. Note that this approach decreases the overall amount
of containment checks, although the splitting yields more subtasks to process as the
same query is processed several times, once for each relevant index cell.

It is worth pointing out that we can have subqueries whose areas entirely cover
small index cells. This allows us to strongly optimize the computation: first, we
can compress the output, since all the objects of these cells falls into the subquery
areas; second, for the same reason we can avoid processing covering subqueries, thus
saving computation time (see the covering queries optimization, Section 2.2.6).

Both UG and QUAD use an ad-hoc lock-free data structure based on bitmaps [5],
to manage the result sets while they are produced on GPU. This design choice entails
a further post-processing step needed to enumerate the final results contained in this
data structure. To prove the merit of this choice we consider a more basic baseline,
i.e., a variant of UG, namely the Baseline Uniform Grid (UGpgseiine) method, which
uses atomic operations to ensure the consistency of the result sets content.

2.1.3 Space partitioning and indexing

In the context of parallel query processing, there are two main reasons for parti-
tioning and indexing the data according to a given space partitioning approach:
the first one, also common to sequential query processing, is to avoid redundant
computations and access to irrelevant data, while ensuring fast access to relevant
information. The second reason, which is triggered by the ability to process data in
parallel, is to ensure independent computations, avoid redundant work and balance
the workload among the processing unit cores.

In the following we introduce the two space partitioning methods onto which UG
and QUAD rely. Both methods aim to adaptively partition the Minimum Bounding
Rectangle (MBR) containing all the object positions during any tick. We denote this
MBRby G = (29, y9, 27, y5), where (29, y9) and (27, y5) represent the lower-left and
the upper-right corners of the MBR.. Aside from the specific ways through which the
methods define the geometries and enumerate grid cells, both of them assign queries
and object locations according to the same mapping functions (see Section 2.1.3.3).

2.1. Spatial indexing and data structures 25

2.1.3.1 Uniform grid-based partitioning

UG partitions the space by superimposing a uniform grid C, whose cells are of equal
size, over G.

Definition 7. [MBR partitioning into a uniform grid]
G is partitioned according to a uniform grid C of N - M cells of width W and height
H such that the cell ¢;; covers the following region:

@9+ W, 2+G+1)-W, yi+5-H o+ (G+1)-H).

To ensure that the grid covers G, constants N, M, W, and H are chosen so that
294+ N-W > af andyS+M-H > y hold. We associate with each cell ¢ € C an
integer ID, which enforces a total order among the index cells, by preserving spatial
locality.

2.1.3.2 Quadtree-based partitioning

In the quadtree based partitioning case, G is covered by a quadtree-induced grid C,
determined on the basis of the local densities of moving objects. In this case G is
therefore partitioned into a set of cells corresponding to the quadtree leaves.

Definition 8. [MBR partitioning into a quadtree-induced regular grid]

G s partitioned into a set of variably sized cells belonging to grid C, induced by a
point-region quadtree. Given a constant thyu.q, denoting the mazimum amount of
objects allowed inside a single quadrant/cell of the final grid, we have that each cell
of C corresponds to a quadtree leaf, and contains an amount of object not greater
than thquea. We associate with each cell ¢ € C an integer 1D, which enforces a total
order among the index cells, by preserving spatial locality.

2.1.3.3 Mapping of moving objects and queries to space partitions

Given an index C derived by QUAD or UG, we assign objects and queries to the
index cells. Since the area of any query can intersect several cells of C, this entails
a partition of the area. We call this operation query splitting, which potentially
yields a set of subqueries for each query. Finally, each subquery can be univocally
assigned to a single index cell.

Definition 9. [Mapping functions for object locations and subqueries|

Given the set of cells of a grid C, we have two mapping functions f : P —
C and g : Q — 2° map. Function f maps each object location p € P to the
cell f(p) that contains p. Function g maps each query ¢ € Q to a set of cells
g(q), whose intersection with q is not empty. We use the term subqueries to
denote the restrictions of a query q to each of these cells. Moreover, we call the
operation performed by g query splitting. Finally, each subquery is classified as
intersecting or covering, according to the fact that it partially/entirely covers the
associated cell.

26 2. GPU-Based processing of repeated range queries

-

Figure 2.1: Simple mapping example over a quadtree-induced grid.

A simple example about how f and g operate is given in Figure 2.1: f maps
object 1 to the cell having ID 9, while g splits query ¢; (issued by object 1) over 7
different cells. Among these, six are intersecting ones (highlighted in pink, namely
the subqueries intersecting cells with IDs 0, 3, 6, 8, 10, and 11) while one is a
covering subquery (highlighted in green, covering the cell with ID 9).

2.1.4 Data structures

As it will be pointed out in in Section 2.2, both QUAD and UG rely on a hybrid
CPU/GPU processing pipeline, a pattern quite common in the context of General
Purpose Computing on GPUs [42, 43]. Each stage of the pipeline performs a set
of transformations on the data in order to produce a final output. To this end,
the design of data structures should (i) allow data to be concurrently accessed with
minimal use of atomic operations or barriers, thus avoiding locking related penalties;
(ii) permit the use of coalesced memory accesses, in order to maximize the memory
throughput; (iii) exploit spatial locality, whenever possible, in order to maximize
the benefits deriving from coalescing and caching. In the following subsections we
introduce the relevant data structures used by our approach.

2.1.4.1 Moving objects and queries data structures and their layout

Given a set of n-tuples representing a class of entities (in our context an object loca-
tion or a query), the tuples elements are logically arranged by means of a structure
of vectors (also known as structure of streams or structure of arrays) layout [44,
Ch.33]. This layout groups a set of n vectors, each one representing a single element

2.1. Spatial indexing and data structures 27

of the tuples, and aligns the vectors elements with respect to the entities they are
associated with. An example of such arrangement is given in Figure 2.2.

1 2 3 45 6 7

ID

X
Y

Objects

Figure 2.2: Example of a structure of vectors used on a set of objects described by
3-tuples.

The main benefits of this representation derive from the observation that it does
not require complex pointer arithmetic, and it naturally makes possible to exploit
coalesced memory accesses. Moreover, it is a representation commonly used in well
established GPU algorithms, thus allowing an efficient interplay (and code reuse)
between the operations making up the processing pipeline.

Consider that we aim at generating independent tasks, each one associated with
a subquery and a specific active cell, i.e., a cell with at least one object and one
subquery, where each task processes a single subquery over the objects of the as-
sociated cells (see Sections 2.2.4 and 2.2.5 for more details). In light of this, it is
convenient to properly arrange the structures of vectors associated with objects and
subqueries (each set has its own structure) in order to exploit data spatial locality
and boost memory throughput. To this end, we have to arrange entities falling in-
side the same grid cell in contiguous memory locations (memory blocks). Therefore,
first object locations and subqueries are sorted by the IDs of the associated index
cells. As a side-note, we observe that the same originating query can be stored in
several memory blocks, since function g potentially yields multiple intersecting cells
for each query. Second, block boundaries are stored in a table, by distinguishing
between the sub-blocks storing object locations and sub-blocks storing subqueries.
This allow us to directly access the data belonging to any cell. The reader may refer
to Section 2.2.3 for more details about the sorting operations performed in order to
achieve such arrangements.

2.1.4.2 Intermediate bitmap representations of query result set

One of the main issues is related to the efficient collection of possibly huge sets
of query results. According to the problem statement given in Section 1.1.5, the
result of a single tick is described in terms of a set of pairs, each one consisting
of an identifier associated with the object issuing a query and a set of identifiers
related to the objects falling inside the query result set. Since query results are

28 2. GPU-Based processing of repeated range queries

produced concurrently, contentions when writing them out could seriously cripple
massive parallelism.

To avoid this issue we exploit a two-phase approach relying on two intermediate
data structures, based on a bitmap layout, in order to eliminate the need of threads
synchronizing mechanisms while maximizing the overall memory throughput and
minimize the amount of space used to store intermediate results on GPU. Since
these data structures are strongly tied to the design of the algorithms in charge of
the aforementioned operations, we postpone their description to Sections 2.2.4 and
2.2.5.

2.2 Query processing pipeline

The core computation to process each set of range queries can be surely ascribed
to the containment tests between objects locations and query areas. Considering
the potential huge amount of containment tests and results each tick can yield,
this apparently simple and straightforward operation is very expensive. In order
to improve its efficiency we embed this computation in a pipeline of concatenated
operations. The various stages of the pipeline prepare the spatial index for improving
the efficiency of the containment tests, compute the containment test outcomes in
an intermediate format for efficiency reasons, and post-processes these results to
produce the final query results.

In the following subsections we introduce the high-level pipeline, common to all
methods. We also discuss the main design differences between UG, UGpggserine and
QUAD in the implementation of each pipeline phase.

2.2.1 Pipeline description

The data entering the processing pipeline at the end of each tick are first pro-
cessed to select the index parameters and build an empty index (phase 1, index
creation). Then (phase 2, moving object and query indexing), objects and sub-
queries are mapped to index cells, and finally are sorted so that those contained
in the same cell are stored in contiguous memory locations. The subsequent phase
computes the containment tests between range queries and object locations (phase
3, filtering with bitmap encoding) producing an intermediate bit-encoded output
which is structured to avoid contentions in memory access (issues (i) and (iv) in
Section 1.2.1). These intermediate results need a final post-processing phase to ex-
tract the final results (phase 4, bitmap decoding). Each phase takes advantage of a
tight cooperation between the GPU and the CPU.

One of the key features of QUAD and UG is the ability to split the computation
of each query among the space partitioning elements (cells) it intersects to reduce
the total amount of containment tests. This entails the creation of a new set of
subqueries originating from the query set Q). The distinction between UG (UGpgserine)

2.2. Query processing pipeline 29

and QUAD is related to the way they partition the space, that is, how a grid is
materialized over the space and how objects locations and subqueries are mapped
to grid cells. These aspects involve just the phases 1 and 2 of the pipeline, since
the remaining ones directly use the cell identifiers associated with object locations
and subqueries to determine which object locations and subqueries are relevant for
a specific operation.

For this reason, in the following we describe phases 1 and 2 separately for UG
(UGBasetine) and QUAD, while the remaining ones can be described regardless of the
involved spatial index.

2.2.2 Index creation and indexing in UG and UGpg,s.ine-

The performances of this method are significantly affected by the cells size used
for C. Choosing a suitable value is challenging since it depends on several factors,
from the spatial distribution of data, to the opportunity of avoiding part of the
computations thanks to optimizations that are triggered locally by grid and query
based conditions (e.g., by exploiting the covering subqueries optimization described
in Section 2.2.6).

In [5] we were able to optimally determine the cell size of a uniform grid index
by assuming unrealistic uniform spatial distributions of objects.

Since the optimal granularity cannot be decided for any kind of dataset, but we
need to still use uniform grid indexes as baselines for QUAD, we exploit an oracle
to choose the grid coarseness for both UG and UGpggseine. In practice, we determine
the optimal grid coarseness parameter, for each tick and any kind of dataset, by
performing parameter sweeping, and finally selecting the parameters that are the
most favorable to UG and UGpggserine in each comparison. Accordingly, the goal of
the index creation phase for the baselines UG and UGpggserine is simply the ad-hoc
choice of the best grid granularity, in order to maximize the performance of the
subsequent phases.

Index creation (UG/UGpguseine). Since we already know the optimal grid
cell size, the goal of the index creation phase in UG/UGpgseiine 18 to determine the
minimum rectangle G that bounds all the objects (MBR). The computation of the
MBR is based on a GPU parallel reduction operation over the set of object positions
and queries yielding the minimum and maximum coordinates.

Once G is set up, we use the cell size determined by the oracle to material-
ize an optimal uniform grid C over G, so that objects and queries can be indexed
accordingly.

Each cell of C is naturally associated with a pair (i, j), identifying the row and
the columns of each cell. However, we adopt a transformation of (i,) into a uni-
dimensional identifier CellI D, derived from (i, j) by interleaving the binary repre-

30 2. GPU-Based processing of repeated range queries

sentations of the two coordinates, thus obtaining the Morton code z(i, j)'.

Moving objects and queries indexing (UG/UGpgysciine). Given an index
C, function f (Definition 9) maps a generic object location p € P to a cell ¢ €
C. In UG/UGpggseiine the function consists of a simple algebraic expression that
determines grid coordinates (which indeed correspond to a unidimensional Morton
code identifying the cell) from object locations. This is implemented on the GPU by
applying function f in parallel to all elements of P, thus obtaining a vector whose
elements represent cell identifiers corresponding to each object location.

Still on the basis of index C, function g (Definition 9) maps a generic range
query q € @ to a set of cells in C. The corners of each query ¢ are mapped to grid
coordinates, then a nested loop is used to enumerate the identifiers of cells intersected
by the query. Since containment tests are superfluous for cells completely covered by
q, the corresponding subqueries are marked as covering to enable the optimizations
described in Sec.2.2.6.

In our GPU implementation of g, each query ¢ is processed by a GPU thread that
produces a set of triples (queryID, celllD, coveringFlag)? , each one representing
an intersecting (covering) subquery. To avoid output write contentions without
resorting to blocks and synchronization, a two-pass approach is adopted: the first
dry-run pass determines the amount of triples per query, while the second pass
writes out the triples to the correct positions in the output vector by exploiting the
information created during the first pass. During the second pass, each subquery is
also classified according to the intersecting/covering dichotomy.

The overall complexity of this phase is equal to O(|P| + 2|Q| + |Q| + |Q]) =
O(|P| + 3|Q| + |Q|): |P] is due to the object locations indexing, 2|Q| is due to the
two-pass approach, |@Q] is the cost to pay for the exclusive prefix sum performed
between the first and the second pass needed to determine the subqueries locations
in memory; finally, |Q| is related to the subqueries written out during the second
pass.

Sorting (UG/UGpg,sciine). Once object locations and subqueries are mapped
to cells of C, we sort them by the Morton codes of the cells, as illustrated in Figure
2.3. The goal is to store tuples mapped to the same index cell in contiguous memory
locations, thus enhancing the spatial locality of each parallel block of threads working
on subqueries and objects of a given active cell (i.e., a cell having at least one
object) during the subsequent filtering and decoding phases (Sections 2.2.4 and 2.2.5
respectively).

ITo this end, we adopt an optimized bitwise algorithm.
In practical terms, the coveringFlag can be properly embedded inside the integer representing
celllD.

2.2. Query processing pipeline 31

Unsorted Sorted
D06 |2|3]4]5]1 12111013 (4(5]6
z|1]13]|1022]|2]1 o111112121]1213

Figure 2.3: A simple example of a GPU-based sorting, based on the structure of
vectors representation, of 8 entities according to their Morton codes. The discon-
tinuities among the codes (thicker lines) determine the set of entities belonging to
each cell.

Indeed, when sorting the subqueries we distinguish between covering and inter-
secting ones, in order to support the optimizations discussed in Section 2.2.6. In
practice, we handle the covering queries in a different way, since the GPU does not
need to process them: after the sorting operation, all intersecting subqueries, which
need to be processed, are placed at the beginning of the subqueries structure of
vectors.

Since the GPU sorting algorithm used throughout the pipeline will be the Radix
Sort [43], the complexity of the sorting step is O(b - (|P| + |Q|)) ~ O(|P| + |Q)).
where @ denotes the subqueries set.

2.2.3 Index Creation and Indexing in QUAD.

The key idea behind QUAD is to use a point-region (PR) quadtree as the backbone
of its spatial index, exploiting the PR-quadtrees intrinsic ability to partition the
space in differently sized parcels containing similar amounts of points.

Index creation (QUAD). The goal of this phase is to create a space parti-
tioning C over G, according to Definition 8, where each cell of C is a leaf PR-quadtree
quadrant that does not contain more than thg,.q objects. This property gives an
upper bound to the containment tests computed by each GPU thread in charge of
processing a query over all the objects falling in an index cell.

We observe that even if a space partitioning is determined according to local
object densities for a particular tick, it can be often reused for consecutive ticks
when the spatial distribution does not change significantly.

Therefore we compute the spatial quadtree partitioning during the first tick,
and repeat this partitioning if the objects spatial distribution change significantly,
since this event might potentially hinder the performances by increasing the overall
amount of containment tests to be computed per query.

The construction of the quadtree proceeds top-down in an iterative manner,
starting from the 4 equally sized quadrants that partition G, and then splitting
iteratively each quadrant containing more than thg,.q objects. The whole procedure

32 2. GPU-Based processing of repeated range queries

Algorithm 1: GPU-based PR-quadtree construction
1 begin

2 Vp + GPUcalculate M ortonHash(Vp, 14, lmaz)
3 Vp < GPUradizSort(Vp)
a I, +{[0,|P|-1]}
5 C+10
6 I+ 1
7 repeat
8 I + GPUdetectQuadrants(Vp, Ia,l, lnaz)
9 (I4,C) < CPUcheckQuadrants(thquad; I, !, lmaz,C)
10 lageep <1
11 l+1+1
12 until (14 # @) A (< lnax)
13 Zmap — GPUbuwildZMap(C, lgeep)

is repeated level-wise, increasing the quadtree depth and splitting overpopulated
quadrants if needed.

Algorithm 1 describes this iterative process. During the initial setup (lines 2
— 6), the function GPUcalculateMortonHash (line 2) computes the Morton codes z
of all the objects stored in the structure of vectors V,, at the maximum quadtree
level l,,q4;. In practice, in this phase we consider a regular grid having 2imas x 2lmaz
cells. Morton codes z are computed in the same way as done in the UG/UGpgserine
case, starting from the index (i, j) of the regular grid where each object falls into.
Subsequently, Vp is reordered by GPUradizSort (line 3) according to the Morton
codes z. Note that, given the z-code at the maximum quadtree level [,,,,, we can
determine the quadrant index 2z’ of any object at any level | < [,,,, by simply
truncating the binary representation of the Morton code z previously computed,
which is equivalent to calculating 2’ = .%=. It is worth considering that the
object order obtained by this sorting by z is invariant for any level [< [,,,, of the
quadtree. In other words, thanks to this sorting and the structural properties of
quadtrees, objects contained in any quadtree leaf are memorized contiguously in
Vp.

Subsequently, the algorithm initializes several variables: the set C of final leaves
is initialized to (), the set I4, containing the intervals of the quadrants to split, is
initialized by inserting the interval related to the tree root, and, finally, the level [
from which the iterative construction starts is set to [= 1 (lines 4 — 6).

Then, the algorithm iteratively builds (line 7) the quadtree level by level. GPUde-
tectQuadrants (line 8) identifies the starting and ending positions (i.e., the intervals)
of the [-level quadtree quadrants related to the (I — 1)-level quadrants added to I
for splitting, and store such intervals in I. Then, CPUcheckQuadrants (line 9) de-
termines which quadrants need further splitting at next level (their intervals are
added to I4) and which quadrants represent final leaves (their identifiers are added

2.2. Query processing pipeline 33

to C). The process ends whenever no more quadrants need to be split (i.e., 14 is
empty) or the maximum possible quadtree level l,,,,, is reached (line 12). In the
latter case, all the quadrants found at level [,,,, are added to C. We postpone the
description of GPUbuildZMap (line 13) to a subsequent paragraph (see Indering
moving objects and queries (QUAD)).

Functions GPUcalculateMortonHash, GPUradizSort and GPUdetectQuadrants
are entirely implemented on GPU. On the other hand, CPUcheckQuadrants is ex-
ecuted on the CPU side, since the amount of quadtree quadrants created at each
level are typically orders of magnitude lower than |P].

Simple running example. Let us consider the example reported in Figure 2.4, where
lmaz = 2 and thgueq = 1. During the Initialization step, each object identified by an
ID is associated with the Morton code z of the cell ¢ € C;, ., where C;__.. denotes
a uniform grid, associated with the deepest possible quadtree level ., (see the
“Initialization” grid on the left of the figure). The pairs (ID,z) are stored in a
table (see the “Unsorted” table). Subsequently, pairs are sorted according to the
second elements, i.e., the Morton codes (see the “Sorted” table). Next, the algorithm
proceeds building the quadtree, starting from Level 1, creating iteratively new levels,
until at least one quadrant requires to be split (14 # () or [, is reached.

At each level, the algorithm associates each object with a quadtree quadrant
belonging to the currently considered level by computing the corresponding quadrant
indices z’. In this regard see the “Iterations” table in Figure 2.4, where each row
(after the second one) corresponds to an algorithm iteration working on a distinct
level of the quadtree. On the right side of the same figure, we can also observe how
the quadtree grows up at each iteration/level. More specifically, at each iteration the
algorithm determines which quadrants need to be split. Objects falling in quadrants
to split are re-assigned by computing the new quadrant indices 2’ (highlighted in red
in the “Iterations” table). Quadrants that have not to be split are added to the set
of C cells. Objects belonging to the latter kind of quadrants (highlighted in green in
the “Iterations” table) can be ignored during the successive iterations (the ignored
cells are highlighted in grey in the “Iterations” table), since these already belong to
quadtree leaves.

In the running example the algorithm stops at Level 2, since all the quadrants
created at this level contain an amount of objects not greater than th,,.q. Note that
also the maximum quadtree level [,,,,, = 2 is reached for 8 leaves of 10.

Complexity. The computation of a single Morton code has a fixed cost determined
by the number of bits used for coordinate representation; therefore, GPUcalcu-
lateMortonHash complexity is equivalent to O(|P|). GPUradizSort complexity is
O(b - |P|) ~ O(|P|), where b represents the base value during sorting (b < |P|).
GPUdetectQuadrants worst-case complexity is O(lyqs - |P| + 2 Zézgz 4%), where the
first term is due to the amount of objects scanned in Vp at each iteration, while

l 4l -1 . . .
2.y el = 2. =A™ represents the maximum amount of starting and ending

34 2. GPU-Based processing of repeated range queries

Initialization Level 1
° ° E Unsorted ° ° g
3 5 D 0/1/2|3|4|5]|6 3 °
. z|6|5/0[10/ 9 |11]15 .
; 3 Sorted ; 5
- ID/2/1/0/4|3|5|6 .
! z|0|5/6|9(10/11]15 !
lterations Level 2
D [2|1/0|4|3|5|6 . . R
z |ol5/6|9/10/11]15 3 5 o
z,0]5]6]9]10/11)3 3R
To split Ignored Leaf :
] |]

Figure 2.4: Example of quadtree construction with 7 objects, thguea = 1 and ly,q, =
2.

indices - which has to be written out in memory - related to the 4 quadtree quad-
rants at any level . We observe that the amount of quadrants created at each level
is orders of magnitude lower than |P|, hence the related computational overhead is
negligible. As a consequence, the average complexity can be safely approximated to
O(lmaz - | P|+2 Zﬁzgz 4" =~ O(lppae | P|). CPUcheckQuadrants has a worst-case com-

plexity equal to Zf;”g” 4t = %. Again, its complexity is practically negligible
according to the above considerations.

Summing up, the complexity of the iterative process is dictated by the number of
objects processed and the depth lgeep < l1q2 Teached in the quadtree construction,

yielding O(lgeep - | P]). Since lgep is usually a low constant, the overall complexity
can be approximated to O(|P]).

Building a lookup table to map coordinates to cells (QUAD). The
usual approach for finding the quadtree leaf that corresponds to the coordinates of
an object would consist in traversing the tree from the root, recursively choosing the
relevant node until a leaf is reached. Unfortunately this approach entails repeated
irregular memory accesses and a non predictable number of operations for each leaf
search. The second issue, in particular, would cause branch divergence and potential
sub-optimal occupancy of GPU cores.

For this reason we use a different approach, characterized by a slightly larger
memory footprint. Let us suppose that the deepest level created in a quadtree C
iS lgeeps laeep < lmaz- Thus we virtually divide the space covered by C according to
a uniform squared grid composed of 2lacer x 2lacer cells, and denote it by Cléeer. In

2.2. Query processing pipeline 35

other words, we cover C such that each quadtree leaf created at level l 4, corresponds
exactly to a single cell in Cl4er. Thanks to the PR-quadtree properties, any quadtree
leaf at a level [, | < l4e,, corresponds to the union of 4(der= contiguous cells of
Claeer . Therefore, a mapping between Cléeer cells and C cells can be easily established
by means of a lookup table 2,4, which maps each Cléer cell, identified by a pair
(4,7), to the C cell containing it.

The idea behind this approach is exemplified in Figure 2.5. The example is
derived from the one in Figure 2.4, and therefore l4., = 2. Each C cell (quadtree
leaf) is identified by a pair ([, z) (an integer is indeed sufficient to store each pair),
where [is the leaf level and z its Morton code at level [, whereas each cell in Cldeer is
associated with the pair (I, z) identifying the cell of C containing it. We can observe
that 4 distinct Claeer cells are mapped to the same C cell (1,0), and other 4 distinct
Clacer cells are mapped to the same C cell (1,3).

Therefore, given any pair of coordinates, it is possible to find the associated
C cell by first computing the associated Cléeer cell index, namely a pair (i,7), and
then performing a lookup in z,,,,. Both operations have constant complexity, even
though we have to mention that the performance related to the lookups in 2z,
heavily depends on the ability to exploit the GPUs caching capabilities. Indeed,
Zmap May have a relevant size - depending on lgee,. In light of this, it is important
the memory layout of 2., to enhance data locality.

As regards the memory layout of the bidimensional array 2, instead of using
the typical row-major order memory layout, we access it according to the Morton
code obtained from index pairs (7, j) used to access the array. Since all objects and
queries are first associated with the Morton code of the cell (i,7) in Clieer which
contains them, and then are sorted by this code, during the indexing operation
described below we access 2,4, by exploiting temporal and spatial locality. This
is because when we scan objects and queries that are memorized nearby, we also
access nearby elements in 2,qp.

The initialization of z,,q, is performed entirely on GPU (function GPUbuildZ M ap,
line 13 in Algorithm 1), by assigning each C cell (quadtree leaf) to a GPU streaming
multiprocessor, which in turn initializes the interval of cells (elements of the lookup
table) in Cléeer contained by the C cell assigned.

The complexity of GPUbuildZMap is O(|C| + |Cléer|) and, in practical terms,
negligible.

Indexing moving objects and queries (QUAD). The goal of this phase
is to map objects locations and queries to C' cells (quadtree leaves). Each object
location is mapped to a single cell while each query can be potentially mapped to
multiple cells (Definition 9).

To convert the position of all objects in P to cells identifier ¢ of C, their 2-
dimensional coordinates are first mapped to grid coordinates (4, j) in the Clécer grid,
where [z, is the deepest level of C. Subsequently, the Morton codes identifying

36 2. GPU-Based processing of repeated range queries

Figure 2.5: Example of the mapping established by z,,, between the quadtree-
induced grid C (left side) and the uniform grid Cl4er (right side) related to the
quadtree deepest level.

the cells of Claeer are derived from (i, 7). Then, objects are sorted according to such
Morton codes in order to exploit caching when subsequently accessing 2,4, Where
Zmap 18 used to retrieve the final quadtree cell identifier ¢ = zpali, j], ¢ € C, in
which the objects fall. We remark that objects remain sorted after such mapping
thanks to quadtrees structural properties: this will be exploited during the filtering
and decoding phases (see Sections 2.2.4 and 2.2.5), since query processing happens
at cell level.

To convert a range query, characterized by a rectangular region, we need to iden-
tify all the relevant cells in C, i.e., all the cells that spatially intersect the query. This
process entails to identify, for each query ¢, a set of subqueries, each corresponding
to the spatial restriction of the rectangular region of ¢ to a relevant cell in C. More
formally, we have g(q) = {c1,¢ca,...,c,} C C (see Definition 9), where ¢ intersects
or covers each ¢; € C. We thus refer to each pair (¢, ¢;) as a subquery of q.

First, as in the objects case, queries are first associated with a Cléeer cell, namely
their Morton codes, through their reference corner (in case part of their spatial
extent falls outside the MBR G, only the area in common with G is considered), and
then sorted accordingly to such codes in order to exploit caching when subsequently
accessing Zmap-

Then, to obtain the subqueries, we start by identifying all the Cléer cells inter-
sected by the query. We map each of these cells identified by a pair (i,7) to the
corresponding ¢ € C cell by exploiting z,.,. Depending on the spatial distribution,
it is very likely to have multiple cells of Cléeer that intersect the range query, and are
thus mapped to the same C cell. This behavior could create duplicate subqueries,
i.e., the same query mapped multiple times to the same cell of C'. Figure 2.6 il-
lustrates the problem and sketches our solution to avoid the presence of multiple
subqueries mapped to the same C cell. In the left picture of the figure, we can see
how the original query ¢; falls over multiple C cells (specifically, 6 distinct cells).
Among these, we consider the intersection between ¢; and the C cell (1,3) (yellow

2.2. Query processing pipeline 37

area). In the right picture, which illustrates the uniform grid Cleer associated with
C through z,,,,, we can note that there are multiple cells on the right-upper part of
q1 that map to cell (1,3) in C (specifically, 4 distinct cells of Cléeer). Therefore, ¢,
would yield 4 subqueries that map to the same C cell (1,3). To avoid duplicates,
we always select the subquery having the minimal grid coordinates (highlighted in
green).

Figure 2.6: Query indexing example with QUAD.

The queries are indexed, similarly to UG (UGpgseiine), in two separate phases.
During the first phase the amount of subqueries per each original query is deter-
mined. In order to determine the memory location where each subquery will be
written, an exclusive prefix sum is performed over the vector containing the amounts
of subqueries per query. Then, in the second phase, subqueries are actually written
using the information computed during the first phase, and classified according to
the intersecting/covering dichotomy.

The overall complexity of the indexing phase can be expressed in the following
terms:

e for what is related to the sorting operations needed to optimize the accesses
N Zmap, we have O(|P|+1Q| +b- (|P| + Q) = O(2(|P| +|Ql)): |P[and |Q)|
are due to lge, Morton codes computations while b - (|P| + |Q|) relates to the
actual sorting performed, by means of Radix Sort, over P and Q).

e for what is related to the subsequent operations, we have O(|P| + O(2|Q] -
|Clacer| 4 Q| 4 2]Q)): | P relates to the lookups in zpap, 2|@Q| - |Clieer| relates to
the query indexing which happens in two separate phases (|Clér| is due to the
amount of Claeer cells spanned by an original query in the worst case) and 2|Q
relates to the subqueries written during the second phase (lookups in z,q, are

included in the complexity), noting that |Q| = |Q| - [Cldeer

in the worst case.

In light of these considerations, the amount of subqueries to be checked during
indexing may be relevant, therefore we remark the importance of exploiting caching
when accessing z,qp-

38 2. GPU-Based processing of repeated range queries

Sorting (QUAD). Once subqueries are mapped to C cells, we sort the associ-
ated augmented tuples to store them in contiguous memory locations. The reason
of this phase is analogous to the sorting carried out in the UG and UGpggserine cases.

Note that, unlike the UG and UGpggseine cases, for QUAD we do not need to re-
sort the moving objects. The sorting done during the indexing phase, according to
the cell identifiers of Cléeer grid, is enough to guarantee locality during the following
query processing phase, thanks to the quadtrees structural properties.

As regards subqueries, we have to sort them since there is no guarantee about
the order in which they are written in global memory during the indexing phase.
Consequently, the structure of vectors associated with the subqueries tuples, Q, is
sorted on GPU by means of Radix sort according to the identifier associated with
the cell *. Moreover, in order to support the optimizations discussed in Section
2.2.6, each identifier is augmented so to signal whether a subquery is either covering
or intersecting. In this way, after the sorting operation, all intersecting subqueries
are placed at the beginning of their structure of vectors.

Since the sorting algorithm is Radix Sort, the complexity of the sorting step is
O - (IQ) = O(Q]).

2.2.4 Filtering

The goal of the filtering phase is to compute range queries over object locations,
and store the containment test outcomes (i.e., which object locations are contained
in each query range) conveniently. Since, by definition, covering subqueries entirely
cover the cell onto which they fall, the filtering phase can be actually limited to inter-
secting subqueries, delegating the processing of the former type to the optimization
described in Section 2.2.6.

In this context we conveniently denote by C, C C the set of active cells, i.e.,
those cells containing at least one object.

Both QUAD and UG store the containment test outcomes in form of bitmaps
(one per active cell), which will be decoded at a later stage in order to obtain a final
compact representation of the positive containment test outcomes.

Filtering is performed in parallel: each active cell in C, is assigned to a block
of GPU threads to obtain a bitmap which refers to object locations and subqueries
falling in the corresponding cell.

In the last part of this subsection we also detail the simplifications adopted by
the UGpggserine filtering algorithm. In the experimental section we will use UG pggserine
as a baseline to assess the benefits of using the bitmaps and an additional (decoding)
phase needed to extract the final query results from these.

3While in the UG and UGpggserine cases this identifier is represented by an integer storing grid
coordinates, in the QUAD case it is a pair (I, z), which is indeed conveniently stored as an integer.

2.2. Query processing pipeline 39

Bitmap layouts. Bitmaps are arranged in memory by using two different
layouts across the following phases, since each layout better fit specific kinds of
operations on GPU. For each active cell ¢ € C,, the filtering phase initially compute
a 2D bitmap B¢ characterized by an interlaced column-wise layout (Figure 2.7.a),
where each column g; refers to a single query and each row b; refers to a fixed block
of w object locations inside the cell. The width of each column is w bits (here we
assume w = 32) and the content of a w-bit word corresponding to ¢; and b, indicates
if the object locations associated with block b; are contained in the extent of query
¢i- Thus, a single bitmap element B, ,,, where n and m are the row and column at
bit level, represents the containment test outcome between the (m/w)-th query and
the ((n-w) + (m mod w))-th object location.

Q1 2 e an by ba s by

by qQ1

b a2 .
----------- | | | | | | | | | |

o T T T] [

(a) Bitmap layout with interlaced bit-vector (b) Bitmap layout with contiguous bit-vector

words. words.

Figure 2.7: Bitmap layouts used during the processing.

This interlaced layout choice facilitates coalesced memory accesses when threads
in the same warp are in charge of computing containment tests of a consecutive
group of subqueries (see Interlaced bitmap generation). Indeed, these threads can
write results to consecutive memory positions, taking advantage of coalesced memory
accesses. Since threads in the same warp perform exactly the same operations, and
each thread is in charge of writing a distinct 32-bit word, this solution eliminates
the need of any synchronization mechanisms at thread block or global levels.

While the interlaced layout entails benefits when the bitmap is produced, it
hinders the extraction of all the containment test outcomes referred to the same
subquery. For this reason, after production, each interlaced bitmap is transposed
word-wise to improve the memory throughput when the bitmaps are decoded to
extract the final results. We will refer to this transformation as the linearization
of interlaced bitmaps. Indeed, in the row-wise layout resulting from the transfor-
mation (Figure 2.7.b), single containment test outcomes are linearly indexed and
bit-vectors associated with each subquery have their words arranged consecutively
in memory, which favours subquery-wise read coalescing during the decoding phase.
The linearization transformation can be expressed as a massively-parallel operation
which is efficiently performed on GPU.

40 2. GPU-Based processing of repeated range queries

Filtering — Interlaced bitmap generation. During this stage we divide
query result computation to exploit three different kind of parallelism allowed by
GPUs.

Block parallelism allows to process independent tasks. Since we are considering
subqueries, which are restricted to a specific index cell by definition, the computation
of the results in different cells can proceed independently, producing distinct result
bitmaps. Thus, active (non-empty) index cells ¢ € C, are assigned to distinct blocks
of GPU threads.

Each block of GPU threads is executed asynchronously by the same streaming
multiprocessor (SM). Thread parallelism allows for cooperation among threads in the
same block. Each thread in a block is in charge of computing a distinct subquery
that is present in the index cell assigned to the block. Since each bitmap is common
for all the subqueries(threads) in a cell(block), the cooperation among threads is
used to ensure coordination when writing out the containment test outcomes (0/1)
in the bitmap.

Whenever possible it is strongly suggested to orchestrate the thread scheduling
to hide memory access latency by having an amount of threads per thread block
exceeding the amount of cores per single streaming multiprocessor. However, only
subsets of threads can run in parallel at a given time. These subsets of szwa,np"1
synchronous and data parallel threads are called warps. Thanks to synchronous ex-
ecution, warp parallelism allows to avoid synchronization operations. Furthermore,
threads in the same warp benefit from coalesced memory accesses when they access
consecutive (or identical) memory positions, so that several memory accesses are
combined in a single transaction.

In our solution all the threads of a warp access the device memory in an optimal
way: they read the same input data (object locations) synchronously (this exploits
GPU caching), access them consecutively (subqueries, spatial locality, this exploits
coalescing) and, thanks to the interlaced bitmap layout, write simultaneously re-
sults (w-bits bitmap words) to consecutive memory locations (this entails coalesced
MEemory access).

To better explain the latter point, we illustrate in Figure 2.8 the role of different
threads in a thread block during the creation of an interlaced bitmap: each group of
SZwarp columns is collectively updated by a warp of threads in the thread block. Each
column contains a set of 32 bit-wide words, by, ..., b,, associated with a subquery
q. The first words (the b;’s) associated with the various subqueries, and computed
by the warp threads, are stored simultaneously in memory. The same holds for
the second block of words (the by’s), which is stored immediately after, and so on.
The bitmap words updated simultaneously by the threads are stored consecutively
thanks to the interlaced layout of the bitmap. This permits the writes to be coalesced

432 threads per warp in current GPUs.

2.2. Query processing pipeline 41

SZwarp

dn

block of threads

Figure 2.8: Collective creation of a interlaced bitmap by a block of GPU threads.

Algorithm 2: QUAD and UG filtering phase.

1 begin

2 numPoints < 0

3 wordIndex < 0

a wordBitmap <+ 0

5 foreach c € C, parallelpocx do

6 foreach g € c parallelipreaq do

7 foreach p € c do

8 numPoints < numPoints + 1

9 if p € ¢ then
10 L set Bit(wordBitmap, p)
11 if numPoints mod 32 = 0 then
12 writeBitmap(wordBitmap, wordIndex, q)
13 wordBitmap < 0
14 wordIndex < wordIndex + 1

The pseudocode in Algorithm 2 illustrates the main points of the interlaced
bitmap generation. Distinct blocks of GPU threads process in parallel active index
cells ¢ € C, (line 5). Each thread in a block is in charge of computing the results of
a distinct subquery present in ¢ (line 6).

All threads read the same sequence of object positions and update a private 32
bit-wide register that contains the bitwise information about the presence/absence

42 2. GPU-Based processing of repeated range queries

of 32 distinct object locations in its own range query (line 10). When the threads
in a warp have completed the update of the current word (i.e., they have finished
to compute a block of 32 containment tests or they have computed all the blocks),
all threads proceed by flushing the content of their private registers simultaneously
to the global device memory at the right memory displacement (line 12). The
computation goes on until all the subqueries have been computed.

The execution of the inner loop (line 7) is scheduled by the GPU at warp level: it
depends on resource availability and memory access latency, but threads in the same
warp are granted to be synchronous. For example, wordBitmap will be completed
simultaneously for all the threads in the same warp.

We finally note that all the threads of any warp access the device memory in an
optimized way: they read the same input data synchronously (object positions, line
7) or consecutively (subqueries, line 6), thus always exploiting data spatial locality.
Moreover, all threads write simultaneously words that are stored consecutively in
memory, thus coalescing the writes and boosting the overall GPU global memory
throughput (line 12).

Filtering — Bitmap linearization. The goal of this operation is to transform
each bitmap from the interlaced column-wise layout to the linearized row-wise one,
so that bitmaps can be more efficiently processed during the subsequent decoding
phase (Section 2.2.5). This transformation is performed on GPU and is depicted in
Figure 2.9. The Figure shows the work of a single warp composed of 52,4, threads.
All the synchronous threads cooperate to transpose blocks of words, one block at a

Figure 2.9: Collective linearization of a group of columns by a warp of GPU threads.

time. Each block is made up of szyarp X S2yarp Words. The linearization of a block
of words is carried out in two steps:

2.2. Query processing pipeline 43

1. First, all the sz, threads read in parallel the bitmap words associated with
the subqueries assigned to them (a row of the input block of words at a time).
The threads proceed until the end of the block (for $z,4-, rows of the block).
While reading the words associated with subqueries, each thread incrementally
prepares a linearised block of words in a temporary buffer stored in the fast
shared memory available to each SM.

2. Once the input block has been read completely and linearized in the shared
memory, the warp threads start their second step, where they move the lin-
earized block to the device global memory. The only difference is that they
collaborate by writing portions of the bitmaps associated with each subquery
in parallel. First they write the first row of the linearised block in parallel,
then the second, and so on. This, in turn, entails coalesced writes.

Even if the shared memory has limited size, the block-wise linearization does not
saturate the shared memory thanks to the small size of the data that are linearized
simultaneously.

Filtering phase in UGpggcine- The UGpggserine algorithm does not use bitmaps
and computes the query results on the fly. Therefore, its filtering phase is simpler
and does not require subsequent linearization and decoding phases. The pseudocode
in Algorithm 3 illustrates this simpler strategy.

Algorithm 3: UGpg,,eiine filtering phase

1 begin
foreach c € C, parallelpocx do
shared resultBuf fer « ()
foreach g € c parallelipreaq do
foreach p € c do
if p € ¢ then
LappendResult(resultBuﬁer, q,p)

8 if full(resultBuffer) = true then
9 Lflush(resultBuﬁer)

N o oo W N

Each active cell is assigned to a single thread block (line 2). Query results (pairs
of object locations and subqueries such that the object location is contained in the
subquery range) are computed in parallel (line 6) and immediately appended to a
buffer in shared memory (line 7) common to all the threads in the block. The threads
access and update the buffer by means of atomic operations in order to guarantee
its consistency. Once the buffer contains an amount of results greater than a fixed
threshold (line 8), the threads synchronize and cooperatively flush its content out
to global memory. In order to guarantee the consistency of the data written to the

44 2. GPU-Based processing of repeated range queries

global memory a result counter, shared among all the thread blocks, is accessed and
updated atomically.

Filtering — Complexity. The interlaced bitmap generation (Algorithm 2) rep-
resents the time dominant part of the filtering phase. The filtering complexity,
determined by the amount of containment tests to be computed, is:

Oy 15l - 1P7), (2.1)

CGC&

where C, C C is the set of active grid cells, P¢ the set of object locations in ¢ and
Qf- the intersecting subqueries associated with c.

In general we observe that decreasing the grid cells size yields a smaller number of
containment tests, even if the number of intersecting subqueries to manage is larger.
An arbitrary decrease, however, has negative side effects, such as the fragmentation
of the intermediate results in a large number of small bitmaps, which in turn influ-
ences negatively the overall running time due to inefficient computational resource
usage and scattered memory accesses. Moreover, an arbitrary cell size decrease may
induce an intersecting subqueries increase rate eclipsing the decrease rate related to
the average amount of objects per active cell, therefore raising the complexity at
some point. In light of these considerations we argue there is a trade-off between
decreasing the overall number of operations executed and optimizing parallelism and
memory access costs.

The bitmap linearization has linear complexity with respect to the number of
bitmaps words. Since each bit corresponds to an intersection test, the two subphases
has the same complexity.

2.2.5 Bitmap decoding

The end product of the filtering phase of both UG and QUAD consists of a set of
linearized bitmaps, one per active cell, containing both the positive and the negative
containment test outcomes, related to object locations and subqueries associated
with the active cells. The goal of the decoding phase is to process such bitmaps
in order to extract the final query result set, i.e., the positive occurrences in the
bitmaps.

Accessing the bitmaps content in order to extract the positive occurrences repre-
sents a memory and computationally intensive task which, thanks to the linearized
layout, can be efficiently and conveniently parallelized on GPU.

The decoding phase, common to UG and QUAD, proceeds as follows: for each in-
tersecting subquery a list of objects identifiers is generated (according to the problem
definition in Section 1.1.5), where each identifier represents a positive occurrence.
Since each active cell (bitmap) represents a single task, the decoding operation can
progress by decoding the tasks in chunks: this allows us to transmit to the CPU

2.2. Query processing pipeline 45

the information related to a previously decoded chunk of bitmaps while the GPU
progresses by decoding the next chunk of unprocessed bitmaps. This also allows us
to overlap computations carried on the GPU with I/O transfers from GPU to CPU.
We highlight that the result lists related to intersecting subqueries originating from
the same query have no results in common and preserve the identifier of the original
query, so it is trivial to merge them to obtain the final result set.

The pseudocode in Algorithm 4 illustrates the GPU part of this strategy.

Algorithm 4: Decoding phase

1 begin

foreach bitmap parallelpjock do

foreach ¢ € Qpitmap parallelyayp do

Gia < loadQueryID(q)

shared q;, < loadQueryBitVector(q, bitmap)
resultSety < linearScan(qy)

o A~ W N

foreach r € resultSet, parallelihreaqa do
p < loadPoint(r, bitmap)
writePID(p, bitmap)

w® N

10 | writeQueryDetails(qiq, |resultSety|, bitmap)

Each bitmap refers to a specific index active cell and is decoded by a specific
thread block (line 2). Each intersecting subquery referred by the bitmap is assigned
to a warp (line 3), so that each warp is in charge of several subqueries. Since threads
in the same warp are synchronous, the use of warp level granularity allows to safely
avoid the use of synchronization mechanisms inside the loop.

Threads in the same warp transfer (line 5) the words composing the bit vec-
tor of the currently considered subquery from device memory to shared memory.
Since consecutive threads read consecutive memory positions, this operation yields
coalesced memory reads.

Once the transfer is over, each thread in the warp determines the subset of results
it will write to global memory so that writes can be coalesced (i.e., the i-th warp
thread will write the (i mod warpSize)-th positive results). This is achieved by
using the linearScan function (line 6). Here, each thread performs concurrently a
linear scan over the query bit vector words in order to take note of the positive
results it will write to global memory. This operation can be carried on efficiently
thanks to the shared memories broadcast capability, which avoids bank conflicts
between threads in a warp if they are all reading the same address. Moreover, each
thread can store the information related to the positive results it has to write in
its own private registers, since the decoding between lines 3 and 10 is scalable with
respect to the subqueries bit vectors size (which is fixed for a given bitmap).

Once these information are determined, the warp threads finally perform a col-
lective write of the subquery results, yielding coalesced writes (function writePID,

46 2. GPU-Based processing of repeated range queries

line 9). Each warp also knows exactly where the results of each subquery has to be
stored in global memory, since the overall amount of results per subquery can be
determined during the filtering phase and stored in a vector (therefore, an exclusive
prefix sum over the vector returns the correct memory location for each result).

Decoding — Complexity. Considered we have one bitmap for each active cell
¢, the overall decoding complexity (Algorithm 4) is:

O 1Q51- 1P+ > [Ryl), (2.2)

ceChy q’EQ}'

where R, denotes the result set of a query ¢g. The first term is due to the access for
each cell ¢ € C4 to the respective bitmap, each containing |QS| - | P¢| bits (number
of intersecting subqueries times the number of objects in the cell), while the second
term is due to the writes of the intersecting subqueries results. As we highlighted
for filtering, the grid cells size indirectly affects the decoding complexity.

2.2.6 Optimizations

Covering subqueries optimization — covering subqueries information
notification. UG, UGpggsaine and QUAD take advantage of the covering subqueries
(we denote their set by QC) in order to reduce the result set the GPU computes, thus
saving a relevant amount of GPU computations during the filtering and decoding
phases and I/O traffic between the GPU and the CPU during the decoding phase.
This is achieved by notifying the CPU the covering subqueries data, together with
the object locations enclosed in the C cells, just after the end of the sorting phase.

Covering subqueries optimization — covering subqueries result set ex-
pansion. As soon as the data relevant for reconstructing the QC result set is
notified, the CPU can start its expansion. Indeed, for each ¢ € Qc we have to con-
sider pairs (¢,c¢ € C,), where each c¢ represents the index of a cell entirely covered
by ¢. After the final sorting step of the indexing phase, the lists of object locations
associated with each cell of C are sent to the host memory, so that the CPU can
directly access them. Therefore, by looking at these lists, the CPU can immediately
extract the result set related to ¢. This operation is performed by the CPU in back-
ground, between the end of the sorting phase and the end of the decoding phase of
the GPU.

Covering subqueries optimization — complexity. The cost related to the
covering subqueries result set expansion is O(Y_ .4, [14]), due to the scan of the
list of object locations associated with the cell of each covering subquery. Since this
task is carried out by the CPU and overlapped with the tasks performed on GPU,
in practice it has very little or negligible impacts on the overall execution time.

2.3. Experimental Setup 47

Task scheduling optimization. A proper GPU task scheduling policy can
substantially improve the overall execution time by reducing the inactivity time of
the GPU streaming multiprocessors in presence of unbalanced workload distribu-
tions. In this context we define a single workload GPU task as the set of computa-
tions related to the intersecting subqueries falling inside a specific grid active cell,
whereas the computational weight of a given task is the amount of containment tests
associated with it, i.e., the product between the amount of intersecting subqueries
and the amount of object locations falling inside the related active cell.

In general we can take into consideration three high-level GPU task scheduling
strategies when assigning the workload tasks to the GPU streaming multiprocessors
[45], namely, the static task list strategy (which is the default one used by CUDA),
the task queue based strategy and the task stealing strategy.

Since the computational weight of each task is known a-priori once the sorting
phase is performed, and that new sub-tasks cannot be created at run-time, we deem
that the first strategy, together with a reordering of the task list according to the
tasks computational weight, is the best one for the scenarios considered; indeed, this
strategy has the effect of batching together the execution of tasks having similar
computational costs at the negligible cost related to the need of accessing the task
list atomically whenever an idling GPU streaming multiprocessor available to take
in charge the first non-assigned task (atomic access is required to ensure a single
execution for each task).

This optimization is used during the filtering and decoding phases when assigning
tasks (active C cells) to streaming multiprocessors.

2.3 Experimental Setup

All the experiments are conducted on a PC equipped with an Intel Core i3 560
CPU, running at 3,2 GHz, with 4 GB RAM, and an Nvidia GTX 560 GPU with
1 GB of RAM coupled with CUDA 5.5. The OS is Ubuntu 12.04. We exploit
a publicly available framework [46, 16] for both workload generation and testing.
The framework comes with a number of sequential, CPU-based iterated spatial join
algorithms. Among these, the Synchronous Trasversal algorithm (CPU-ST) is shown
to be consistently the best[16] and thus we compare our GPU-based approaches
against this algorithm.

As regards our GPU-based proposed solutions (QUAD and UG), we slightly mod-
ified the framework in order to offload the most time-consuming parallelizable tasks
to the GPU, while delegating the others (mostly related to the GPU management)
to the CPU.

We use three types of synthetic datasets: (i) uniform datasets, in which mov-
ing objects are distributed uniformly in the space; (ii) gaussian datasets, in which
moving objects tend to gather around multiple hotspots by following a normal distri-
bution. The skewness in the gaussian datasets depends on the number of hotspots:

48 2. GPU-Based processing of repeated range queries

the more the hotspots are, the more the objects tend to be uniformly distributed;
(111) network datasets, in which moving objects are distributed uniformly over the
edges of a bidirectional graph representing a road network. In our experiments we
use the San Francisco road network, derived from TIGER/Line files. This kind of
datasets are characterized by a mild skewness, due to the constraint on the position-
ing of the objects. All the datasets are created using the generator provided by the
framework, which is partly derived from the Brinkoff generator [47]. We consider
just synthetic datasets since they allow to explore the vast space of parameters pos-
sibly influencing the algorithms’ performance, whereas this would not be possible
(or it would be rather contrived to do) with real-world datasets; moreover, we note
there is a lack of real-world datasets which would serve the purposes of this work.
Overall, our choice is coherent with other relevant works (the reader may see, for
example, [16]).

In all tests we compute repeated range queries over 30 ticks. To model object
movements the framework generates 30 instances of each dataset, one for each tick.

Table 2.1 summarizes the main parameters used to generate the datasets. The
listed parameters apply to all the datasets, except for the amount of hotspots which
is relevant for gaussian datasets only. The framework uses a generic spatial distance
unit u (e.g., meters).

The decoded results are produced by the GPU in blocks, i.e., for each query /subquery
a list of (positive) results is produced, whereas for CPU-ST the results are produced
one by one. To avoid bias in the performance comparison, we thus force QUAD and
UG to report the GPU-generated results to the framework in pairs, hence expanding
the lists of objects belonging to the result set of each query.

2.4 Experimental Evaluation

The experimental studies conducted for this work are introduced below, and are
denoted by S1,...,58:

S1 We study how a lock-free data structure, like the bitmap proposed to encode the
intermediate output of the range queries, entails considerable improvements
over a baseline GPU algorithm that recurs to locks to assure the result buffer
consistency.

S2 We analyze the advantages coming from the covering subquery optimization in
reducing computations (and related 1/0O traffic) performed on the GPU side.

S3 We show how a proper GPU task/block scheduling can improve the UG and
QUAD performances by reducing the workload unbalances deriving from skewed
spatial distributions.

S/ We study how the data distribution skewness influences the choice of the op-
timal grid coarseness, focusing on UG.

2.4. Experimental Evaluation

49

Spatial region

All tests occur in a squared spatial region with side length
of 22500 wu.

Amount of objects

We vary the number of moving objects from 100K to
1500K. In some tests the number of moving objects is
fixed and the exact amount is explicitly stated in their de-
scriptions.

Objects maximum speed

In all tests the maximum speed of each object is fixed to
200 u per tick (At), where the objects are allowed to change
their speed as described in [16]. In general, changes in
speed may slightly alter the objects distribution but do
not change the distribution general properties.

Query rate The percentage of objects that issue a range query during
every tick is always set to 100%.
Query size All queries in a test are squared and, depending on the

experiment, they may be all equally sized or not. We vary
the side length in the range [200 u,800 u|. The default
value is 200 wu.

Amount of ticks

Whenever not specified, the default amount of ticks, cor-
responding to different snapshots of a dataset, is 30. Con-
secutive snapshots are expected to exhibit slight changes,
according to the properties of the dataset spatial distribu-
tion.

Query location

All the queries are centered around the objects issuing
them.

Amount of hotspots

Depending on the experiments goals and specificities, the
amount of hotspots is varied in the [10, 150] range. When-
ever not specified the default value used is 25.

Table 2.1: Data and workload generation parameters.

50 2. GPU-Based processing of repeated range queries

S5 We study how QUAD is able to automatically adapt to the spatial data dis-
tribution of a dataset, even when the distribution is highly skewed.

S6 We analyze the impact of various spatial distributions on the performance. To
this regard we study mean and dispersion index related to the amount of ob-
jects per active cell achieved by UG and QUAD, and the relationships that these
measures have with some important features that impact the performance of
the system, such as the overall amount of subqueries and the proportion of
covering/intersecting ones.

S7 This study analyzes the sensitivity of the UG and QUAD performances with
respect to datasets characterized by different spatial distribution properties,
such as the amount of objects and the query area.

S8 This final study analyzes how the main factors characterizing the datasets,
such as the amount of objects, the query rate, the query area and the skewness,
affect the system bandwidth 8 (as defined in Section 1.1.4).

It is worth remarking that in the final S6...58 studies we turn on all the optimizations
devised for both UG and QUAD. In particular, a relevant amount of computations
is avoided by distinguishing between covering and intersecting subqueries; we ex-
ploit the lock-free bitmaps to store the intersecting subqueries intermediate results;
we heuristically balance the workload between the GPU SMs by reordering the
tasks/blocks to be scheduled, from the heaviest to the most lightweight; finally, we
always adopt the best possible grid coarseness for UG, given any dataset, by means
of an oracle, although this strategy cannot be adopted in practical settings since it
requires additional work to profile the UG performance for the various datasets.

2.4.1 Analysis on the benefits coming from the usage of
bitmaps (S1)

In this study we evaluate the benefits coming from the usage of a lock-free data
structure such as the bitmaps proposed. We focus on the filtering and decoding
steps, since these are the only phases during which the bitmaps are utilized in order
to significantly improve the performances. We limit this comparison to UG and
UGBasetine, since QUAD filtering and decoding phases are similar to UG ones, and
the benefits over a naive lock-based technique are thus analogous.

We briefly remember that in UGpggseine the query result set is computed and
transmitted to the CPU counterpart on the fly, during the filtering step, thus avoid-
ing the need of a subsequent decoding phase. Moreover, since the results of different
queries can be interleaved in the output stream, each result is represented as a pair
(query:point).

In Figure 2.10 we can see how UG outperforms UGpgyserine, €ven when consider-
ing modest workloads. For our purposes, it is enough to compare UG and UG pggserine

2.4. Experimental Evaluation 51

Uniform datasets - UG vs. SGgygeline
Varying amount of moving objects in [100K,1000K], query area (200u)2, query rate 100%, 30 ticks

1400 10
SGgaseline Filtering only EEEE
—~ 1200 L UG Decoding phase
g UG Filtering phase I - 8
= Speedup —+—
21000
g i
g 800 o)
= — 8
2 8
§ 600 4 @
s
go 400
= 2
<200 |-
0 B
100 200 300 400 500 600 700 800 900 1000

Thousands of objects

Figure 2.10: UG vs. UGpggserine time analysis for uniform datasets by varying the
number of objects in [100K,1000K]. The histograms of the UG filtering and decoding
phases are time-stacked for clarity purposes.

on a uniform spatial distribution of object/queries. Note the line representing the
speedup obtained by UG over UGpggserine per single experiment: the UGpgseine perfor-
mance gets worse when the number of objects (and thus the output size) increases.
This indicates that the main bottleneck of UGpggseine is the synchronization mecha-
nisms adopted, which affect negatively the performance when the amount of results
increases.

2.4.2 Covering subqueries optimization (S2)

The overall goal of this study is to analyze the benefits coming from the covering
subqueries optimization described in Section 2.2.6. We briefly remember that this
technique aims to speed up the query processing in three ways: first, by reducing
the overall amount of containment tests performed by the GPU; second, by reducing
the amount of results determined at the GPU side, and thus the amount of data the
GPU has to send back to the CPU once the filtering and the decoding phases are
over; third, by leaving the CPU in charge of expanding the covering subqueries result
sets, during the same time that the GPU processes the intersecting subqueries.

We focus on QUAD, given its more advanced spatial indexing and considered
that, in terms of query covering management, UG carries out the same operations per
each subquery covering an index cell. We compare two different versions of QUAD:
the former, denoted by Covering ON, is the version where the covering subquery

52 2. GPU-Based processing of repeated range queries

optimization is exploited. The latter, denoted by Covering OFF, does not exploit
the knowledge about the covering queries, thus considering all the subqueries as
intersecting.

In our experiments we want to independently focus on two key parameters:
spatial distribution skewness and query area. The skewness consistently influences
(i) the ratio between covering and intersecting subqueries, and (i) the weight of
the covering subqueries in terms of the percentage of generated results. As regards
(1), the more the objects tend to gather in specific places, the more QUAD refines
the grid in those areas, in turn increasing the aforementioned ratio. As regards
(ii), the smaller the average size of the QUAD cells is, the higher the probability
that a subquery area completely covers a grid cell. Note that QUAD materializes
dynamically the index cells, and generate smaller cells in correspondence to the
spatial regions with higher object density. On these small and highly populated
cells the ratio of covering subqueries to intersecting ones gets larger. This in turn
increases the overall amount of results obtained from the covering subqueries, with
positive returns on the performance.

Query area is another important factor, because it directly influences the ratio
between covering and intersecting subqueries. Hence, we want to analyze how much
this parameter influences the performances, aside from the skewness.

In the first batch of experiments we vary the skewness of the object spatial
distribution in a set of gaussian datasets, by changing the number of hotspots in
the interval [10,1000], while the amount of objects and the query area are kept
fixed at 500K and (400u)?, respectively. The top plot of Figure 2.11 shows how the
exploitation of the covering subqueries greatly reduces the overall execution time,
in particular when the skewness increases by reducing the amount of hotspots. The
more the skewness is, the more the percentage of results coming from the covering
subqueries is, thus increasing the performance gap between the two versions when
the skewness gets larger. Finally, the bottom plot of Figure 2.11 gives a further
explanation of the observed behaviour, and shows that the skewness is directly
proportional to (or equivalently, the number of hotspots is inversely proportional
to) the covering/intersecting ratio.

In the second batch of experiments we focus on a gaussian dataset having a fixed
amount of 50 hotspots, thus characterized by a moderately skewed distribution. We
vary the query area in the [(200u)?, (400u)?] range, while the amount of objects is
kept fixed at 500K. Figure 2.12 shows that, when the query area is increased, the gap
between the two versions of QUAD gets larger as well, while the covering/intersecting
subqueries ratio strictly follows the trend.

In conclusion, we argue that the percentage of results coming from the cover-
ing subqueries determines the extent of the advantages possibly coming from this
optimization.This figure is essentially determined by the skewness characterizing
the spatial object distribution, while the query area amplifies or reduces this phe-
nomenon by changing the query results redistribution ratio between the covering
and the intersecting subqueries.

2.4. Experimental Evaluation 53

Quadtree approach - Gaussian datasets
Fixed query area (400u)?, 500K objects, query rate 100%

8
=
Q
z2 &
£ £
= 1800 60 2
3)
= 1600 - =
S 1400 - 1 50 5
g 1200 -4 40 8
2 1000 =
. <)
& 800 30 =
2 600 20 =
X400 3
o 10 =
o, 200 5
: o 0 3
Z 1000 500 200 100 9 8 70 60 S50 40 30 20 10 %
Number of hotspots §

Covering OFF [Percentage Results from Covering —+—

Covering ON [

4.5e+06 45
4e+06 40
3.5e+06 35
3e+06 30
2.5e+06 25
2e+06 20
1.5e+06 15
1e+06 10
500000 5
0 0

1000 500 200 100 90 80

Amount of subqueries

Percentage of Covering Subqueries

Number of hotspots

Intersecting Subqueries Percentage of Covering Subqueries ——
Covering Subqueries [

Figure 2.11: Gaussian datasets, 500K objects, query area (400u)?, varying hotspots
in [50,1000], query rate 100%, Covering ON vs OFF.

2.4.3 Task scheduling policy (S3)

In this section we investigate how the task scheduling optimization described in Sec-
tion 2.2.6 can substantially improve the overall execution time of UG and QUAD by
redistributing more evenly the workload among the GPU streaming multiprocessors.
Besides analyzing the execution times in this study we also collect and study pro-
filing data concerning the containment tests actually carried on by every streaming
multiprocessor.

The top plot in Figure 2.13 shows that the reordering always reduces the exe-

54 2. GPU-Based processing of repeated range queries

Quadtree approach - Gaussian datasets

é Varying query area in [200u,400u]?, 500K objects, query rate 100%, 50 hotspots g
a2

2 1400 2 5

= — 5

g 1200 - 14 2

2 1000 - 135 8

= 800 130 ¢

£ 60| 1% 8

3 400 Hmee 115 E

S 200 110 £

S 15 2

o 0 0 E

g 40000 90000 160000 o

2 IS
< Query area (uz)

Covering OFF =

Covering ON]

Percentage of results from covering —— é’

=

4e+06 30 °

a 19}

2 3.5e406 - 125 5

Z, 3e+06 — =

S 2.5e+06 |- 1% 32

q; 2e+06 H =4 15 o

S 1.5e+06 f | 10 E

[

2 le+06 H 3

2 500000 H ©

0 0o 3

40000 90000 160000 &

3

Query area u?) g

[

Intersecting Subqueries Percentage of Covering Subqueries ——

Covering Subqueries

Figure 2.12: Gaussian datasets with 50 hotspots, 500K objects, query area varied
in [(200u)?, (400u)?], query rate 100%, Covering ON vs. OFF.

cution times of UG and QUAD. Note that in the case of UG the reordering entails
higher performance improvements when the skewness gets large, while QUAD im-
provements are always moderate due to the ability of its underlying spatial indexing
to dynamically produce tasks/blocks of similar weights.

We study in depth this behaviour by profiling the execution of the GPU SMs. In
particular, we collect the per-tick amount of containment tests performed by each
SM, and check whether the observed performance trends are reflected in workload
unbalances among the SMs. In this context we define the SM imbalance measure
during a single time tick as the relative difference between the highest amount of

2.4. Experimental Evaluation 55

Task reordering performance analysis

Gaussian datasets, S00K objects, fixed query area (400u)2,
varying amount of hotspots, query rate 100%, 30 ticks

1000
900
800
700
600
500
400
300
200
100

Avg. execution time per tick (ms)

100 50 40 30 20 10

Amount of hotspots

UG w/o task reordering [T QUAD w/o task reordering
UG with task reordering] QUAD with task reordering [T

15

10 -

100 50 40 30

Amount of hotspots

GPU streaming multiprocessor unbalance
(Average over 30 ticks)

UG imbalance w/o task reordering
UG imbalance w task reordering]
QUAD imbalance w/o task reordering [EE
QUAD variance w task reordering [

Figure 2.13: Analysis on the performances and workload redistribution among the
GPU streaming multiprocessor with and without the static task list reordering -
gaussian datasets, 500K objects, query area (400u)?, query rate 100%, varying
amount of hotspots. The top plot refers to the execution times observed while the
bottom one refers to the profiling data collected during the filtering phase (decoding
phase data is analogous).

56 2. GPU-Based processing of repeated range queries

containment tests performed by a single GPU streaming multiprocessor with the
lowest amount performed by an another SM. Then, we compute the average of this
measure across the ticks in order to characterize the average workload unbalance.
From the bottom plot in Figure 2.13, we see how the trend of the SM imbalance
follows the trend of the execution time, observed in the left plot of the same figure
for both QUAD and UG. Hereinafter, all the experiments will be conducted by using
the task list reordering optimization.

2.4.4 Data skewness and optimal grid coarseness for UG

(S4)

The following set of experiments aims to show that the best coarseness used for the
uniform grid onto which the UG spatial indexing relies depends on the specificities
of the spatial distribution characterizing the objects at each tick. We therefore aim
to show how it is not possible to find a unique optimal MBR split factor (i.e., the
number of columns/rows in which the MBR is decomposed) that holds for all the
datasets. Even more, we show how each pipeline phase has its own optimal MBR
split factor given a single dataset.

We first focus on a gaussian dataset characterized by a mild skewness (150
hotspots), and study how the UG performance changes (during a single time tick)
by varying the split factor. We decompose the overall execution time in three macro
phases, namely the indexing, filtering, and decoding phases, where the former in-
cludes the index creation, object/query indexing and sorting phases (Sections 2.2.2
and 2.2.3). Figure 2.14 shows how the indexing time gets larger when we increase
the MBR side split factor, as expected according to the costs described in Sections
2.2.2 and 2.2.3, due to the increase in the amount of subqueries created. As for the
filtering phase, we see how the execution times trend exhibit a minimum. In general,
too small split factors imply very large cells, few or none covering subqueries and
potentially large workload unbalances, depending on the skewness. On the other
hand, when the split factor is too large too many subqueries may be created, as well
as there could be many active cells with small amounts of objects: this may repre-
sent a serious pitfall for an efficient usage of the memory/computational resources
of a GPU. The same reasonings hold for the decoding phase as well. The overall
execution time (the Combined bar in the plots) has a minimum obtained by using
an optimal split factor equal to 110.

We replicate the same set of experiments with a consistently skewed gaussian
dataset (Figure 2.15). The trends observed in Figure 2.14 are confirmed, although
the UG optimal split factor value is different (95) due to the different dataset charac-
teristics. This confirms that datasets having different spatial properties require the
materialization of grids having different spatial characteristics in order to achieve
the best possible performance.

2.4. Experimental Evaluation 57

Gaussian datasets, 200K objects, fixed query area (200u)?, query rate 100%, 150 hotspots, single tick

1000
Indexing time
Filtering time [
Decoding time [
Combined

100 |

Execution time (ms)

30 60 90 120 150 180 210 240 270
Objects MBR Side Split Factor

Figure 2.14: Gaussian dataset, 200K objects, query area (400u)?, query rate 100%,
150 hotspots. The optimal value is equal to 110. Logscale on the y-axis is conve-
niently used to magnify small differences in the filtering execution times.

Gaussian datasets, 200K objects, fixed query area (400u)?, 20 hotspots, query rate 100%, single tick

1000
r Indexing time
Filtering time 1
Decoding time [
Combined [

100

Execution time (ms)

10

70 100 130 160 200 240
Objects MBR Side Split Factor

Figure 2.15: Gaussian dataset, 200K objects, query area (400u)?, query rate 100%,
20 hotspots. The optimal value is equal to 95. Logscale on the y-axis is conveniently
used to magnify small differences in the filtering execution times.

58 2. GPU-Based processing of repeated range queries

2.4.5 Data skewness and optimal cell size for QUAD (S5)

As already described in Section 2.2.3, in QUAD the size of the various cells is de-
termined dynamically on the basis of data distribution and according to thgyed, @
threshold determining whether a quadtree quadrant needs to be split at the next
level according to the amounts of objects it contains at the time tick the quadtree is
computed. Thus, we need to determine an optimal value for th,,.q¢ which hopefully
does not change for datasets characterized by different object spatial distribution or
query areas.

Analysis on the effects of variating QUAD's thg,aq
Gaussian datasets, 200K objects, fixed query area (400u)2, query rate 100%, 30 ticks, variable amount of hotspots
275

20 Hotspots —4—
g 30 Hotspots
250 50 Hotspots %
100 Hotspots %
25> 150 Hotspots
20£

175

Average execution time per tick (ms)

150

125 I I I I I I I I I I I I
96 128 160 192 224 256 288 320 352 384 416 448 480 512

thgyaq value

Figure 2.16: Performance analysis with different QUAD thg,qq values when varying
the skewness degree.

Figure 2.16 refers to a set of experiments in which, given a set of gaussian datasets
with different amounts of hotspots, thyyeq is varied in order to observe how QUAD
behaves. The amount of objects characterizing each dataset is set to 200K, which
allows the exploration of an extensive range of thgu.a values: lower thg,.q values
increase the amount of resulting subqueries, which in turn increase the amount of
GPU memory required for storing the subqueries. Figure 2.17 refers to a similar set
of experiments in which the query area is varied among the datasets while the other
characteristics are kept fixed.

In general we see how QUAD is resilient to dataset changes thanks to its low
sensitivity with respect to thgyqq, allowing an easy tuning of the system. Moreover,
the search for an optimal /.4 is not so crucial, given the stability exhibited by
QUAD for an ample interval of values. Increasing the query area has just the effect
of increasing the execution times, while the trend remains the same for all the

2.4. Experimental Evaluation 59

Analysis on the effects of variating QUAD's thgyaq
Gaussian datasets, 500K objects, 20 hotspots, query rate 100%, 30 ticks

300

Query area (200u)? +
Query area (250u)2
250 Query area (300u)?
Query area (350u)2
Query area (400u)2

200
150
100 —\N\% f +

50 I I I I I I I I I I I I

Average execution time per tick (ms)
[
XK
XK
x
X
TE
N

thgy,g value

Figure 2.17: Performance analysis with different QUAD thgy.q values when consid-
ering different query areas.

curves. Considering the results obtained above, in the experiments that follow we
set thgued = 384.

2.4.6 Impact of spatial distribution skewness on the perfor-
mance (S6)

In this study we want to observe how UG and QUAD perform when varying the
skewness degree by considering a set of gaussian datasets having different amounts
of hotspots. In the experiments that follow we keep fixed the amount of objects
(500K), the query area (400u?) and the query rate (100%), whereas we vary the
amount of hotspots in the [10,200] interval. For UG and QUAD we exploit all the
optimizations, included the oracle used by UG (even though unusable in a practical
setting).

Figure 2.18 shows that UG and QUAD have similar performances until the skew-
ness becomes consistent, i.e., the amount of hotspots gets below 20. This is con-
firmed by the fact that QUAD is able to maintain stable and consistent speedups
with respect to CPU-ST, even in presence of extremely skewed distributions, while
UG slightly degrades.

We try to explain the observed performances in terms of the ability of UG and
QUAD in redistributing the objects among the grid cells. To this end, we compute
the mean and wvariance of the amount of objects in each grid active cell and the
associated dispersion index (D = 0% /) characterizing the distribution of the objects

60 2. GPU-Based processing of repeated range queries

Gaussian datasets - Performance analysis
500K objects, query area 400u?, query rate 100%, varying hotspots

1200 20

Mi:

4 14

800

12

10

8

400

6

4

2
0 0

200 100 50 40 30 20

10

Average execution time per tick (ms)
Speedup vs CPU-ST

Amount of hotspots

Execution time QUAD I Speedup QUAD vs CPU-ST
Execution time UG EEEEE Speedup UG vs CPU-ST

Figure 2.18: Gaussian datasets, 500K objects, query area (400u)?, amount of

hotspots varied in [10,200], average running times per tick and speedup against
CPU-ST.

over the active cells. In general it is expected that, the finer a grid is, the lower the
resulting mean and dispersion index are, although these figures are heavily influenced
by the skewness characterizing the dataset. The mean and the dispersion indices
obtained by UG and QUAD are shown in the top plot of Figure 2.19. UG always
yields remarkably higher dispersion indices and lower means than the QUAD ones.
The very low means observed for UG depend on the very fine uniform grid exploited,
needed to avoid heavy populated cells which would entail very expensive tasks to be
execute by a single GPU SM. Indeed, the ability of QUAD in properly redistributing
workloads associated with objects living in densely populated regions is confirmed
by the overall amounts of (intersecting/covering) subqueries produced (Figure 2.19,
bottom graph) - amounts which are remarkably lower than the ones obtained by
UG. For example, the amount of subqueries obtained when analyzing a very skewed
dataset (such as the gaussian one with 10 hotspots) is about 12 millions for UG, and
approximatively half for QUAD. Even if the size of the UG cells is very small, and
thus the probability that a subqueries “covers” a grid cell gets large, the same plot
shows that the proportion of results coming from covering subqueries in QUAD are
almost on a par with the one obtained by UG. Finally, the remarkable smaller count
of subqueries allows QUAD to have lower GPU memory requirements than UG when

2.4. Experimental Evaluation 61

Analysis of the distribution of the objects over the cells
Gaussian datasets, varying amount of hotspots, S00K objects, fixed query area (400u)2, query rate 100%, 30 ticks

E
~ 250 T T T T T T 160 =
2 (=3
e 140
é 200 120 E
%’ 150 100 E‘O
o 80 2
£ 100 >
5] 60 i
>
& 40 =
= 50 -
523 20 8

0 0 g

200 100 50 40 30 20 10 é“

Mean QUAD Mean UG [Dispersion UG —— Dispersion QUAD —~}

5 8e+06 — = = %
o= = o
5 7e+06 2 2
5 6e+06 g8
5 S5e+06 5 @
Z] en
« 4e+06 9 .8
S 3e+06 £%
S 2e+06 IR
=] o o
g le+06 5 £
< 0 ~ 8

200 100 50 40 30

Amount of hotspots

Intersecting subqueries QUAD I Covering subqueries QUAD I
Intersecting subqueries UG [% Results covering, QUAD —+—
Covering subqueries UG I % Results covering, UG —~}

Figure 2.19: Gaussian datasets, 500K objects, query area (400u)?, amount of
hotspots varied in [10,200], mean and dispersion index over the grid active cells.

generating and computing the subqueries.

2.4.7 Performance analysis for different spatial distributions,
amount of objects, and query areas (S7)

In this final study we analyze the performances of UG and QUAD with datasets
characterized by different spatial distributions. In the experiments that follow we
also vary the amount of objects and the query areas. For UG and QUAD we exploit
all the optimizations. The goal is to show how QUAD is generally able to outper-
form UG, even if the latter relies on an expensive, and thus unfeasible, performance
profiling (oracle) in order to select the best possible uniform grid coarseness for any
dataset.

Variable amount of moving objects. In these experiments we exploit three
types of datasets - uniform, gaussian and network-based - where we keep fixed the
query rate and the query area at 100% and (200u)?, respectively. For the gaussian

62 2. GPU-Based processing of repeated range queries

Uniform datasets - Time measurements
Varying amount of moving objects, query area 200u2, query rate 100%

250 20
ié/ 18
e} 200 16
5 14 g
]
é’ 150 12 6
5 0z
‘5 100 8 3
: o i
gb 7]
g 50 4
Z 2
0 0
100 200 300 400 500 600 700 800
Thousands of objects
Execution Time QUAD I Speedup QUAD vs CPU-ST
Execution Time UG EEEEE Speedup UG vs CPU-ST
Gaussian datasets - Time measurements
Varying amount of moving objects, query area 2000, query rate 100%, 25 hotspots
900 20
800 18
700 16
14

600
500
400
300
200 -
100

Average execution time per tick (ms)
)
Speedup vs CPU-ST

(=R)

100 200 300 400 500 600 700 800
Thousands of objects
Execution Time QUAD I Speedup QUAD vs CPU-ST
Execution Time UG EEEE Speedup UG vs CPU-ST

Network San Francisco datasets - Performance analysis
Varying amount of moving objects, query area (200u)2, query rate 100%

800 20
700 18
16

600

500
400
300

)
Speedup vs CPU-ST

200
100

Average execution time per tick (ms)

(=2 S A

100 200 300 400 500 600 700 800

Thousands of objects

Execution Time QUAD I Speedup QUAD vs CPU-ST
Execution Time UG EEEEE Speedup UG vs CPU-ST

Figure 2.20: Varying the number of objects: average running time per tick and
speedup versus CPU-ST. From top to bottom: uniform datasets, gaussian datasets
with 25 hotspots, and San Francisco Network datasets.

2.4. Experimental Evaluation 63

datasets, the number of hotspots is fixed to 25. Figure 2.20 shows the execution
times and the speedups versus CPU-ST for these three types of datasets when varying
the amount of objects.

When uniform distributions are considered, UG and QUAD exhibit similar perfor-
mances as expected. When gaussian datasets are considered, UG and QUAD exhibit
stable and consistent performances, with QUAD performing noticeably better than
UG. Finally, on network datasets UG and QUAD perform closely since these datasets
are characterized by a very limited skeweness, with QUAD performing slightly better.

Variable query area. In this batch of experiments, whose results are shown in
Figure 2.21, we vary the query area. All the queries are equally sized during a
single experiment, while the amount of objects is fixed (700K for uniform, 500K for
gaussian and network), as well as the query rate (100%) and the number of hotspots
(25) for the gaussian datasets.

With uniform distributions UG and QUAD again perform similarly. With gaus-
sian distributions, UG and QUAD maintain consistent performances, even though
the advantage of QUAD over UG still holds. Finally, with network datasets UG and
QUAD are almost on par, as already observed in the first batch of experiments, with
a very slight advantage for QUAD.

Variable amount of objects and variable query area. In these experiments
we consider different amounts of objects, each one issuing a query whose area is
decided independently of the other objects and according to a uniform distribution
in the [(200u)?, (400u)?] range. For this experiments, we again consider uniform,
gaussian (25 hotspots) and network datasets. In all cases the query rate is fixed at
100%.

When considering uniform datasets (Figure 2.22) UG and QUAD still exhibit
similar performances. When considering gaussian datasets (Figure 2.23) UG and
QUAD follow similar performance trends, with QUAD still performing noticeably
better than UG. Finally, when considering network datasets (Figure 2.24) UG and
QUAD exhibit again close performances, similarly to what is observed in Figures
2.20 and 2.21.

2.4.8 Bandwidth analysis (S8)

From lemma 2 in Section 1.1.4 we have that the system bandwidth 3, expressed as
the amount of queries processed per time unit (indeed, we use the second), is one of
the crucial parameters in order to determine a suitable tick duration At, along with
a given latency requirement A and a maximum amount of queries which may occur
during At, Q ez Since A and Q,,q. are fixed, the crucial parameter becomes /.
Consequently, the goal of this study is to observe how the bandwidth £ of a
given system reacts to a set of dominant factors, such as the amount of moving

64 2. GPU-Based processing of repeated range queries

Uniform datasets - Time measurements
Varying query area in [(200u)2,(400u)?], 700k objects, query rate 100%

350 20
z 18
E 300
% 16
5 250 - 14 5
2 f
]
Q
g 200 12 6
= 10 2
£ 150 |- £y
= 8 k=]
3 Q
> 6 &
i 100 A
on
s 4
8 50
z 2
0 0
200 250 300 350 400
Query side (u)
Execution Time QUAD I Speedup QUAD vs CPU-ST
Execution Time UG EEEEE Speedup UG vs CPU-ST
Gaussian datasets - Time analysis
Varying query area in [(200u)2,(400u)?], 500K objects, query rate 100%, 25 hotspots
900 20
Z 800 |- 118
g 700 w X 16
= =
g 600 14 cé:
g 2 =
£ 500 O
= 10 2
2 400 =
g 8 5
g 300 6 &
Q
g) 200 4
<>: 100 2
0 0
200 250 300 350 400
Query side (u)
Execution Time QUAD I Speedup QUAD vs CPU-ST
Execution Time UG EEEE Speedup UG vs CPU-ST
Network San Francisco datasets - Time measurements
Varying query area in [(200u)2,(400u)2], 500K objects, query rate 100%
800 20
& 700 | 18
% 16
Q
= 600 S
5 54 iz 14 &
2 s X 2 E
£ C
400 10 2
5 300 8§ 5
> Q
g 6 &
e, 200
s 4
3]
z 100)
0 0
200 250 300 350 400

Query side (u)

Execution Time QUAD I Speedup QUAD vs CPU-ST
Execution Time UG EEEEE Speedup UG vs CPU-ST

Figure 2.21: Varying the query area: average running time per tick and speedup
versus CPU-ST. From top to bottom: uniform datasets, gaussian datasets with 25
hotspots, and San Francisco Network datasets.

2.4. Experimental Evaluation 65

Uniform datasets

Varying amount of moving objects, query areas distributed uniformly in [(200u)2,(800u)?]
query rate 100%, 30 ticks

250 18

16
200 14
150 - 12

)
Speedup vs CPU-ST

100 -
o L
100 200 300 4

Thousands of objects

00 500

Average execution time per tick (ms)

Execution Time QUAD Il Speedup QUAD vs CPU-ST —3—
Execution Time UG B Speedup UG vs CPU-ST —<—

Figure 2.22: Variably sized queries: average running time per tick and speedup
versus CPU-ST. Uniform datasets

Gaussian datasets

Varying amount of moving objects, query areas distributed uniformly in [(200u)2,(400u)?]
query rate 100%, 30 ticks

700 22
600 - T
500 - le
400 -

300 |-
200 - .
100 |- -
o LT
100 200 300 400

Thousands of objects

o
Speedup vs CPU-ST

500

Average execution time per tick (ms)

Execution Time QUAD I Speedup QUAD vs CPU-ST —3—
Execution Time UG B Speedup UG vs CPU-ST —<—

Figure 2.23: Variably sized queries: average running time per tick and speedup
versus CPU-ST. Gaussian datasets.

66 2. GPU-Based processing of repeated range queries

Network San Francisco datasets

Varying amount of moving objects, query areas distributed uniformly in [(200u)2,(400u)2]
query rate 100%, 30 ticks

600 = 18

16
500 |- g/%/%/%—/ﬂ i
400 - 12

300 -
200
e m
o LT
100 200 300

Thousands of objects

I I I A A

S
Speedup vs CPU-ST

400 500

Average execution time per tick (ms)

Execution Time QUAD I Speedup QUAD vs CPU-ST —+—
Execution Time UG BB Speedup UG vs CPU-ST —<—

Figure 2.24: Variably sized queries: average running time per tick and speedup
versus CPU-ST. Network datasets.

objects, the query rate (i.e., the factor of moving objects issuing a query during a
time unit), the query area, and the skewness. QUAD will be used to conduct all the
experiments.

Figure 2.25 presents the results of the first batch of experiments, where we test
the behaviour of # with respect to different amounts of objects and degrees of
skewness. In order to conduct these experiments a set of gaussian datasets were
considered. From the Figure we see how the system bandwidth decreases whenever
the amount of objects or skewness degree (ranging from uniform-like distributions
- 10000 hotspots - to moderately skewed ones - 25 hotspots) increase, due to an
increase in the overall amount of containment tests and results that the underlying
system must handle in the same time unit. We also observe how highly skewed
datasets produce the most notable negative consequences on the performance, thus
requiring particular care.

Figure 2.26 reports the results related to the second batch of experiments, where
we analyze the behaviour of 5 with respect to the query rate (we observe it cor-
responds to changing (u..) and the query area. To this end we consider a set
of uniformly distributed datasets characterized by different query rates and query
areas. We observe that increasing the query area decreases the system bandwidth,
due to a quadratic increase in the amounts of containment tests and results the sys-
tem must handle per time unit. As regards query rate, we see how the bandwidth
increases whenever this parameter is increased. Even if this phenomenon may seem
counter-intuitive at first, we observe that the action of increasing the query rate has
the effect of increasing linearly (and not quadratically) the amount of containment

2.4. Experimental Evaluation 67

Bandwidth analysis
Gaussian distributions, varying amount of moving objects, varying skewness,

query area (200u)?, query rate 100%

Bandwidth (query/sec.)

100 200 300 400 500 600 700 800

Thousands of moving objects (queries)

Bandwidth (25 hotspots) —— Bandwidth (5000 hotspots) —+—
Bandwidth (150 hotspots) Bandwidth (10000 hotspots)
Bandwidth (1000 hotspots) —K—

Figure 2.25: System bandwidth analysis when varying the amount of moving objects
or the dataset skewness.

Bandwidth analysis
Uniform distribution, 700K moving objects

Query rate (%)

20 40 60 80 100

4.5e+06 T T T

4e+061
3.5e+06
3e+06
2.5e+06
2e+06
1.5e+06
1e+06
500000

0 | | | | |
200 300 400 500 600 700 800

Bandwidth (query/sec.)

Query side (u)
Bandwidth (variable query area, query rate 100%) —+—
Bandwidth (query area (200u)2, variable query rate)

Figure 2.26: System bandwidth analysis when varying the query area or the query
rate.

68 2. GPU-Based processing of repeated range queries

tests and results produced. These increases, however, are compensated by an in-
creased efficiency of the system. That is, the GPU resources are more utilized and
thus better exploited, and this in turn increases the overall bandwidth. We note
that this behaviour can be replicated with any spatial distribution.

GPU-Based processing of repeated
k-NN queries

In this chapter we address the problem of processing repeated k-NN queries over
massive moving objects observations by means of an hybrid CPU/GPU approach.
Computing k-NN queries poses different challenges with respect to the ones encoun-
tered with range queries, mainly stemming from the fact that the spatial extent of
k-NN queries is not known beforehand.

As a starting point we use the framework introduced in Chapter 1 to model the
processing. Starting from this, thanks to the flexibility of the processing pipeline
introduced in 2.2.1 we reuse a relevant part of algorithms and data-structures intro-
duced previously. However, customizations in the pipeline composition and process-
ing flow are required in order to handle the k-NN query processing efficiently: on one
hand we have to cope with the uncertainty bounded to the queries spatial extent,
which has far reaching consequences on the processing pipeline; on the other hand
we have to devise a clever strategy through which we materialize uniform workloads
to be distributed across the GPU streaming multiprocessors. In reality, these issues
represent two sides of the same coin, as we motivate later on. The end product of
such effort will be represented by the K-NNgpy approach.

The main contributions contained in this chapter can be summarized as follows:

e we use the processing framework described in Chapter 1 and build on the
hybrid CPU-GPU pipeline presented in Chapter 2, partly reusing the opera-
tions introduced previously and partly customizing the pipeline’s composition
and execution flow, in order to devise an efficient and scalable approach for
processing batches of k-NN queries, K-NNgpy.

e we introduce algorithms exploiting proper memory access patterns and key
properties of elements sorted according to spatially preserving functions in
order to benefit from coalescing and caching as much as possible. In this sense
we show how careful algorithmic design choices allow to parallelize on GPU
operations which are usually executed on CPU and represent major bottlenecks
when designing hybrid CPU/GPU k-NN query processing pipelines.

70 3. GPU-Based processing of repeated k-NN queries

e we carry out an extensive set of experiments in order to study how K-NNgpy
varies its performance with respect to run-time and dataset key parameters,
and show how these parameters affect the system bandwidth as well. We also
compare K-NNgpy against a well-known GPU baseline, [35], as well as against
a state of the art CPU sequential competitor, proving the effectiveness of our
proposal.

The chapter is structured as follows: in Section 2.1 we give an overview about
K-NNgpy as well as on the main data structures used, while Section 2.2 details the
k-NN query processing pipeline, where we outline two slightly different K-NNgpy’s
variants as well, that is, K-NNEAS7P and K-NNESHHEFSCF In Sections 3.3 and
3.4 we provide the experimental part, where (i) we study how K-NNgpy behaves
when changing run-time or dataset key parameters, such as the nearest neighbours
list size, k, the amount of objects, the amounts of queries issued per tick and the
skewness characterizing the spatial distribution, and (ii) how such parameters affect
the system bandwidth. Then, (iii) we assess the benefits of K-NNgpy against a
GPU baseline based on a quadratic brute-force approach [35] and (iv) how K-NNgpy
outperforms a state-of-the-art sequential CPU competitor.

As in the case of the previous chapter, we delegate the conclusions and possible
directions of research to the conclusive chapter of the thesis.

3.1 K-NNgpy overview

In the following we give an overview on K-NNgpy, motivating the main ideas used
to address the challenges posed by the problem considered. Many inspiring princi-
ples and design choices introduced in Chapter 2 are reused here as well, since the
processing framework is the same and the processing pipeline introduced for range
queries can be adapted fairly easily to k-NN queries. However, the fact that the spa-
tial extent of k-NN queries is not known beforehand has far-reaching consequences
on the pipeline’s composition and execution flow: this issue will mainly drive the
design of K-NNgpy.

3.1.1 Motivating challenges

Computing repeated k-NN over massive moving object observations from the GPGPU
perspective may seem, at first, easier than computing repeated range queries, since
the result set size is unknown in the latter case. However, such indeterminateness
just shifts to the spatial extension of the queries in the k-NN case, since it depends
on local objects densities.

The usual approach to reduce the amount of computations per query is to adopt
an index based on some tree. In order to compute a k-NN query one then has
to perform a recursive tree visit, exploring only parts of the tree corresponding

3.1. K-NNgpy overview 71

to regions possibly enclosing nearest neighbours. Obviously, such visit must be
performed in a clever way, minimizing both the amount of visited leaves and the
amount of computations per query: this can be achieved by selecting a proper
starting leaf (i.e., the leaf containing the query center), then expanding the visit
by considering only those nodes/leaves whose spatial extension may contain nearest
neighbours.

Since the spatial extension of each k-NN query is unknown, different queries
possibly require to visit different paths inside the tree or different amounts of leaves.
Moreover, depending on the kind of tree used, each leaf possibly contains different
amounts of objects with respect to other leaves, thus strengthening the challenge of
materializing uniform GPU workloads. In other words, the problem is to find a way
to batch enough work per GPU streaming multiprocessor while entailing uniform
workloads. Apart from the challenges mentiond above, such problem has profound
consequences even on the layout used to arrange the result set.

Our approach tries to tackle these issues by adopting an iterative approach while
reusing and properly customizing the processing pipeline introduced for QUAD (Sec-
tion 2.2.1). The presentation of the pipeline is postponed to Section 3.2 since it
requires in-depth explanations; in the following we give an overview about the main
data-structures used throughout the pipeline.

3.1.2 Relevant data structures

In this section we review the main data structures used during the query processing.

3.1.2.1 General overview

Data structures containing objects or queries information use the structure of vec-
tors (SoV') layout, as done previously in the range queries case (see Section 2.1.4).
As already stated, the SoV layout gives remarkable benefits when designing GPU
algorithms, above all code reuse and efficient interplay between different operations
carried on GPU. Moreover, it facilitates the exploitation of data locality and the
use of coalescing or caching, whenever possible, thus offering substantial chances to
boost the overall memory throughput, an aspect of paramount importance when
designing GPU algorithms.

3.1.2.2 k-INN queries result set layout

Some words have to be spent about how query results are produced and managed
during the processing. Unlike the range queries case, we do not need to recur to
bitmaps since the result set of each k-NN query (from now on also denoted as nearest
neighbours list) has fixed size (depending on k). As such, one would be tempted
to arrange the lists by means of an interlaced layout, writing out in global memory
the results in blocks - similarly to the interlaced format used for bitmaps (Section

72 3. GPU-Based processing of repeated k-NN queries

2.1.4.2). An example of this layout is depicted in 3.1a. Indeed, this layout yields
the maximum memory throughput when using a brute-force approach, such as the
one proposed in [35], since the amount of distances to be computed per query would
be predetermined.

However, given that we use an index-based approach we have to update the k-NN
query lists as the tree visits progress, since we do not know beforehand which and
how many leaves we have to visit per query. This implies that different queries pos-
sibly require to consider different amounts of leaves - due to different paths followed
during tree navigation - in order to correctly compute the final results. This, in
turn, requires to adopt an iterative approach which batches conveniently the work-
load resulting from such visits, since we want to exploit the GPUs computational
power.

However, adopting the aforementioned interlaced layout with a tree-based iter-
ative approach would frustrate the benefits deriving from coalescing, since inactive
queries, that is, queries which have terminated their computation with respect to
others that require further iterations, would create "holes” (this is quite evident
from Figure 3.1a) when writing out the data. Also, benefits deriving from caching
would be heavily frustrated for the same reasons.

The only way to fully use coalescing by employing a result set interlaced layout
would be to sort queries according to their active/inactive status; however, the
amount of time needed to rearrange queries would outweigh the benefits deriving
from coalescing, since the amount of data to be moved may be quite relevant. As a
consequence, this option must be ruled out.

Block ; Block . Blockk
nle | O T RO (NCAEN DO G B B

(a) Interlaced layout

Query, Query, QueryIQI

~

1 2 B
ry r P

k

1 2 1 2 s
T T e 1 T vene | To o e | T

(b) Linear layout

Figure 3.1: Interlaced and linear result set layouts. In the Figure we denote the j-th
result of query ¢; as 7.

For this reason we rely on GPU caching capabilites by arranging the queries lists

3.2. Processing Pipeline 73

linearly, as depicted in Figure 3.1b: this allows to exploit caching capabilities until
k does not get too large; moreover, in tandem with the GPUs ability in hiding the
latencies related to memory operations (up to a certain extent), this layout allows
to achieve good memory throughputs. Finally, at the cost of a slightly increased
computational overhead it is possible to update the query lists by means of access
patterns yielding coalesced accesses, a strategy which may be quite convenient when
k gets large. We motivate better the benefits deriving from the linear layout in
Section 3.2.2.

3.2 Processing Pipeline

When computing k-NN queries issued during a time tick, the core operation is
represented by the computation of distances between objects locations and queries
centers. As in the range queries case, this apparently simple and straightforward
operation is embedded in a more complex pipeline of concatenated operations in
order to improve its efficiency.

Since the respective problem settings are very similar, range and k-NN queries
share many operations inside the processing pipeline; as a consequence, many con-
cepts and design choices can be reused.

Differently from range queries, however, k-NN queries pose serious challenges
due to the fact that the related workload cannot be determined a-priori since their
spatial extent is unknown. Since we rule out the usage of brute-force approaches,
choosing instead to rely on some kind of spatial index, we need to compute k-NN
queries by means of an iterative schema. This in turn requires to find an approach
able to create partial GPU workloads on the fly, as the computation of the queries
progresses.

In the following we introduce the K-NNgpy approach for processing batches of
k-NN queries. K-NNgpy employs the framework described in Section 1.1.1 and conve-
niently adopts a tick-based processing pipeline derived from the one used by QUAD
(Section 2.2.3). K-NNgpy’s pipeline can be described in terms of a succession of three
macro phases: (i) index creation, (ii) moving objects indexing and (iii) iterative query
Processing.

When processing repeated k-NN queries, the same procedure is repeated for
each tick. Thus, for the sake of readability, hereinafter we omit the subscript that
indicates the tick, and denote by P, (), and R, respectively, the up-to-date object
positions, the non-obsolete queries, and the result set associated with a generic tick.

3.2.1 Index Creation and Moving Objects Indexing.

In this Section we briefly review the index creation and moving objects indexing
phases, since these are equivalent to the ones described in Section 2.2.3.

74 3. GPU-Based processing of repeated k-NN queries

3.2.1.1 Index Creation.

The index used to partition the space is based on a point-region quadtree built over
a given set of objects. Observing that, most of the times, space distributions do
not change their characteristics dramatically over short time intervals, the index is
rebuilt only whenever needed, for example when we detect that the overall amount
of computations yielded during the last tick exceeds by a given factor the amount of
computations yielded during past, recent ticks. The overall complexity of this phase
can be approximated to O(|P]).

The set of cells related to the materialized index (i.e., the quadtree leaves) will
be denoted by C from now on.

3.2.1.2 Moving objects indexing.

During this phase we have to assign each moving object to a specific quadtree leaf.
Also, we want to sort moving objects according to the leaf in which they fall, in
order to determine the set of active cells, that is, the set of cells enclosing at least
one object. This phase is equivalent to the moving objects indexing phase already
described in Section 2.2.3, even though limited to moving objects since queries are
possibly assigned to more than one leaf, due to the fact that their spatial extent is
unknown. Here we briefly review the procedure.

Leaf assignment. At this stage, each moving object has to be mapped to a specific
grid cell, according to the function f introduced by Definition 9 (Section 2.1.3.3).
More precisely, for each object it is first determined the cell in the uniform grid -
related to the quadtree deepest level - in which the object falls; subsequently, the
identifier of the cell is associated with the object. Next, objects are sorted according
to cell identifiers in order to exploit the GPU caching capabilities when accessing
the inverted index z,,q,. Finally, each object is associated - through z,,,, - with
the quadtree leaf covering the cell to which they were assigned, i.e., each object
is associated with a pair (/,z) ! representing the quadtree leaf in which the object
location falls. The complexity of the indexing phase is O(|P|+ d - |P| + |P|): the
first term is related to the computation of Morton codes, the second term is due to
sorting - performed by means of Radix Sort, while the third term is related to the
accesses in Zpyqp. Since the complexity of the sorting operation can be approximated
to O(d-|P|) = O(|P|), the overall complexity of this subphase can be approximated
to O(3 - |P)).

Sorting. Objects come already sorted, according to the identifier of the cell in
which they fall, from the leaf assignment subphase described above. As a conse-

'We remember that [represents the level of the quadrant while z its Morton code. Moreover,
we remember that such pair can be conveniently represented through an integer, thus allowing to
easily sort the objects according to assigned cells.

3.2. Processing Pipeline 75

quence, moving objects falling inside the same cell are arranged in contiguous mem-
ory blocks, thus favouring caching, by means of spatial locality, when computing
the distances during the Iterative k-NN queries computation phase of the pipeline
(Section 3.2.2).

Active cells materialization. Finally, the sorted struct of vectors is indexed
so to determine the positions of the first and last object belonging to index cells
enclosing at least one object. We define this set as the set of active cells and we
denote it by C (where C C C).

The complexity of this operation is equal to O(2 - |P| 4 |C|): the first term is
due to the double scan over the set of objects needed to detect the discontinuities
between objects belonging to different cells, while |é | represents the amount of active
cells for which we actually have to write out the related indexing information. We
note that |C| < |PJ, so the complexity may be approximated to O(2 - |P|).

3.2.2 Iterative k-NN queries computation

Once the set of active cells is determined, the actual query computation may start.
Since we rely on a PR-quadtree based spatial index, for each query we have to
perform a recursive tree visit in order to compute the correct list of k& nearest neigh-
bours. Considering that our goal is to exploit the GPUs computational power we
obviously need to devise an effective way to create GPU workloads on-the-fly, as
tree visits progress, which fits well the GPUs architectural peculiarities. More pre-
cisely, (i) workloads should be distributed as much evenly as possible across the
GPU streaming multiprocessors and (ii) objects, queries and results data should be
arranged so that coalescing and caching are exploited as much as possible. The
idea is to achieve these goals by means of an iterative approach, exploiting spatial
proximity between nearby queries as visits progress.

We conveniently distinguish between the operations carried on during the first
iteration and those carried on during subsequent iterations, since this facilitates the
description and the implementation of our proposal.

3.2.2.1 First iteration

The first iteration has to orchestrate the work associated with the beginning of the
queries recursive tree visits. This corresponds to associating each query with the cell
(quadtree leaf) in which its center falls and subsequently computing the distances
between the query center and the objects enclosed by the cell. The first iteration
ends by updating the queries nearest neighbours lists according to the distances
computed.

We note that the operation of associating each query with a cell yields a set of
tasks, one per active cell having at least one query to process, which represents the
foundation through which we orchestrate distance computations carried on GPU.

76 3. GPU-Based processing of repeated k-NN queries

We conveniently structure the first iteration in two smaller phases: (i) query
indexing and task materialization and (ii) distance computations between queries
and objects.

3.2.2.1.1 Query indexing and task materialization. Since each k-NN query
is represented by a location, queries must be mapped to specific grid cells according
to the function f introduced by Definition 9 (Section 2.1.3.3). Consequently, this
subphase is equivalent to the moving objects indexing phase described in Section
3.2.1.2).

If we denote by C the set of cells having at least one query assigned, where C C C
and C is possibly different than C, the complexity of such operation can be expressed
as O(5 - Q] +[C]).

Clearly, we have to consider only those cells which are actually active cells and
have at least one query assigned. To this end, if we define C = C N ¢ , we have that
each C cell implicitly carries with itself the computations needed to determine, for
each query, the set of (up to) k nearest objects inside that cell. Such cells determine
the tasks to be assigned to the GPU streaming multiprocessors.

3.2.2.1.2 Distance computations. At this point the goal is to compute, for
each query, the list of (up to) k nearest objects within the assigned cell. We saw
how the end product of the query indexing and sorting operations consists of a set
of tasks, one per active cell enclosing at least one object, representing the GPU
workload in charge of computing such lists. This approach allows to conveniently
pack together computations related to spatially nearby entities, aiming to reduce
the overall amount of computations and to exploit data locality. The challenge is
therefore to orchestrate the computations inside each task cleverly, especially when
it comes to maximize the memory throughput.

In order to reach this goal our approach basically relies on two pillars. The
first one is represented by a k-selection algorithm based on buckets, such as the one
described in [48]. Starting from a set of objects, this algorithm allows to find the &
nearest objects without having to explicitly store and sort the distances in memory,
thus reducing the overall complexity in terms of time and space. This is better than
strategies based on distance sorting [49] or based on the maintenance of priority
queues (one per query; on this matter the reader may refer to [49] as well). The
second pillar is represented by a proper access pattern which allows to maximize the
memory throughput when updating the queries nearest neighbours lists. Considering
the linear layout used for the queries result set (Figure 3.1b), different strategies may
represent the best choice, depending on the requested amount of nearest neighbours
per query. To this end, in the following we introduce two different write strategies:
the first one relies only on GPU caching capabilities, and is expected to give the
best performances when £ is low; the other one exploits coalescing capabilities as
well, so to tackle effectively those cases where k is high.

3.2. Processing Pipeline 77

Distance computations — cached writes approach. In this paragraph we
focus on a strategy which relies only on GPU caching capabilities when updating
the queries nearest neighbours lists. Algorithm 5 reports such strategy.

Algorithm 5: distComp(C,Q, P, k)

Input : The set of active cells with at least one query, C.
The reordered query set () and object set P, along with the indexing information
associated after the respective sorting phases.
The size of the queries neighbours lists, .

Output: The struct of vectors containing the query result set, (ID, DIST).
The vector containing the maximum distance detected for each query, MAXDIST.
The vector containing the amount of nearest neighbours found for each query,

NUMRES.
1 begin
2 foreach c € C parallelpock do
3 foreach g € c parallelipreaq do
local (distpin, distmas) < findMinMaxzDist(q, c)
local disty, « findK Dist(q, ¢, distmin, distmaz, k, 32)
local i < 0, mazdist < 0
7 foreach p € c do
if ((dist(p,q) < disty) A (qia # Pia)) then
) mazdist < maz(mazdist, dist(p, q))
10 (IDg[i], DIST[i]) <= (pia; dist(p, q))
11 14—1+1
12 MAXDIST, = maxdist
13 NUMRES,; =i

Each task is assigned to a specific streaming multiprocessor (line 2) and executed
according to a per-query parallelization (line 3). Each thread first loads the query
information (line 3), i.e., query coordinates and the associated cell identifier. In
this context, let ¢ be the cell in which the query falls. Since queries belonging to
the same cell are stored in contiguous memory locations, accesses to query data are
coalesced during the first iteration.

Subsequently, each thread finds out the minimum and maximum distance (dist,;,
and dist,., respectively) between the query center and the objects within the cell
(function findMinMaxDist, line 4). This is achieved through a simple scan over the
set of objects enclosed by c. Since every thread in a warp perform such scan by
accessing objects data in the same order, and considering that different warps in
a block access nearby objects, this access pattern is able to effectively exploit the
GPU caching capabilities.

Once dist,,;, and dist,,.. are determined, the algorithm goes on by computing
a distance below which only the k nearest objects within the cell are located with
respect to the query center. We denote such distance by dist, and is determined

78 3. GPU-Based processing of repeated k-NN queries

by calling the findKDist function (line 5). findKDist implements the k-selection
algorithm based on buckets, iteratively going on until a suitable dist;, is determined.
We note that whenever the amount of objects in ¢ is less than k, the function can
immediately return dist, = +oo without performing any computation. Even in-
side findKDist threads within the same warp access ¢’s objects in the same order;
since different warps access objects arranged in nearby memory locations, this en-
tails again an efficient usage of GPU caching capabilities. findKDist is detailed in
Algorithm 6 and explained thoroughly below.

Once disty, is determined, each thread can actually start writing the list of nearest
neighbours associated with the query. Such operation consists essentially in a scan
over the set objects in ¢ (line 7) where an object is copied in the query list only if its
distance with respect to the query center is less than disty, and the identifier of the
object is different from the query one. We recall that query lists are implemented
as structures of vectors, where results are stored in global memory on the basis of
the linear layout shown in Section 3.1.2. As a consequence, each thread stores the
nearest neighbours it finds according to such layout. The thread terminates once
it writes out the distance of the farthest object in the list, M AXDIST,, and the
actual amount of results written in the list, NUMRES, (lines 12 and 13), both
stored in global memory. We note that such writes are coalesced, thanks to per-
query parallelization.

We observe that in Algorithm 5 only private registers (i.e., the variables declared
as local) and global memory are used, for what relates the memory hierarchy. Also,
given that threads write out query lists by using the linear format, we claim that
GPU caching capabilities, in tandem with the GPUs ability to hide latencies related
to memory accesses, are able to achieve consistent memory throughputs, at least
until £ does not get large. This claim is verified in the experimental part of this
chapter (Sections 3.3 and 3.4).

We now analyze findKDist, whose pseudocode is reported in Algorithm 6. The
function, which is invoked by distComp, searches for a suitable dist;, by adopting a
simple, yet GPU-friendly, k-selection bucket-based algorithm, such as the one shown
in [48]. More precisely, findKDist carries on an iterative process (line 5) which
focuses, at each iteration, on the bucket containing the k-th nearest neighbour.
Initially, the algorithm considers the interval in which all the distances fall, i.e.,
[dist in, distma:], and divides it in numBins equi-width buckets. Then, the function
updates the counters of the buckets according to the objects falling inside them (lines
8-12) and subsequently determines the bucket in which the k-th nearest neighbour
falls (lines 15-21): if the k-th nearest neighbour represents the bucket’s last element
as well, then the upper-bound of the interval associated with the bucket represents
also the distance below which only the k nearest objects fall with respect to the query
center (in such case the cycle terminates). Otherwise, the algorithm focuses on such
bucket (lines 23-24) and splits it in numBins equi-width buckets, thus iterating the
schema. We note that the cycle may terminate even when dist,,;, = dist, 4, (line
25): such event occurs when we have a zero-width bucket induced by a set of equal

3.2. Processing Pipeline 79

Algorithm 6: findK Dist(q, ¢, distmin, dist e, k, numBins)

AW N =

10
11
12

13
14
15
16
17
18
19
20

21

22

23

24
25

26

Input

: The query of interest, g¢.
The considered cell, c.
The range [distmin, distmaz] considered by the k-selection algorithm.
The amount of nearest neighbours, k.
The amount of bins used to split an interval, numBins.

Output: The k-th distance upper-bound.

begin

local counter Bins[numBins]
local found <« false
local runningSumlterations < 0

while - found do

counter Bins + [0,0, ... ,0]
binWidth < (distyar — distmin)/numBins

foreach p € ¢ parallelyjock do
dist, = dist(q, p)
if (dist, > distmin) A (disty, < distpqs) then
indexBin < (disty, — distmn)/widthBin
LcounterBins[indexBin] + counter BinslindexBin] + 1

local runningSum < runningSumlterations

local i =0

while ¢ < numBins do

runningSum < runningSum + counter Bins[i]

if runningSum > k then
if runningSum = k then found = true
runningSum runningSum — counter Bins|i]
break

¥iei+1

runningSumliterations < runningSum
distyin < distpin + (i x widthBin)
distmaz < distyn, + widthBin

if dist,in = dist;q.: then found = true

| return (distmaz)

distances where the k-th nearest neighbour falls in - an event which is quite rare
anyway. This case is signalled in the function’s output and handled appropriately
by the invoking function (omitted for brevity). We note that even findKDist relies
only on global memory and private registers.

Distance computations — coalesced writes approach. This approach, which
is almost equivalent to the one presented above except for the access pattern used
to write out queries results, relies on a per-warp parallelization strategy when up-
dating the queries nearest neighbours lists in order to exploit coalescing. Indeed, we

80 3. GPU-Based processing of repeated k-NN queries

claim that relying only on GPU caching capabilities becomes unsatisfying in terms
of performances when k£ starts to get large. Algorithms 7 and 8 outline this strategy.

Finding a distance below which only the k nearest objects fall - To begin with, we
have to find out for each query a suitable distance, dist;, below which only the k
nearest objects fall inside the enclosing cell (Algorithm 7) with respect to the query
center. This is equivalent to the first part of Algorithm 5, so we refer the reader to
the associated presentation.

Algorithm 7: distCompPhasel(C,Q, P, k)

Input : The set of active cells with at least one query, C.
The reordered query set () and object set P, along with the indexing information
associated after the respective sorting phases.
The size of the queries neighbours lists, .

Output: The vector containing, for each query, the distance of the farthest nearest
neighbour found so far, MAXDIST.
The vector containing the amount of nearest neighbours found for each query
so far, NUMRES.

1 begin

2 foreach c € C parallelyocx do

3 foreach g € ¢ parallelipreaq do

a local (distmin, distmas) < findMinMaxDist(q, c)
5 local disty, + findK Dist(q, ¢, distmin, distmaz, k)
6 local i < 0, mazdist < 0

. MAXDIST, = dist,

8 NUMRES, = min(k,[{P Nc}|)

Nearest neighbours lists update - Once we have determined a suitable disty for each
query, we can actually start updating the queries lists. At this stage the key idea
is to parallelize the computation at warp level, by assigning each query to a warp.
In turn, inside each warp we parallelize distance checks at thread level, while writes
related to lists updates are cooperatively orchestrated at warp level, thus allowing
to exploit coalescing when flushing out data in global memory. It is evident that
such cooperative strategy requires the usage of a temporary buffer stored in shared
memory, coupled with proper management operations. This strategy is sketched out
in Algorithm 8. The shared keyword is used to denote variables stored within the
GPU shared memory.

Each task is assigned to a specific streaming multiprocessor (line 3), while each
query is assigned to a specific warp (line 4). Once a warp is in charge of a query, it
considers successive blocks of objects falling within ¢, each one having (maximum)
size warpSize (lines 10-13 and 28-30). Subsequently, we parallelize at thread level,
where each thread checks whether the distance between the query and the considered
object is below disty or not, and updates a boolean field (isResult) accordingly (lines

3.2. Processing Pipeline 81

Algorithm 8: distCompPhase2(C,Q, P, MAXDIST, NUMRES, k)

1

2

3
4

© 0 N o u

10
11
12
13
14
15
16
17

18
19

20
21

22
23

24
25

26
27

28
29
30

31
32

Input

Output:
begin

: The set of active cells with at least one query, C.

The reordered query set) and object set P, along with the indexing information
associated after the respective sorting phases.

The size of the queries neighbours lists, .

The vector containing, for each query, the distance of the farthest nearest
neighbour found so far, MAXDIST.

The size of a warp of threads, size Warp.

The struct of vectors containing the queries result set, (ID, DIST).

shared buffID[2 - warpSize], buffDist[2 - warpSize]
foreach c € C parallelyocx do
foreach ¢ € c parallelya,p do

local resultsFound < 0
local resultsWritten < 0
local occupancyBuf fer < 0
local isResult

local disty, + MAXDIST,

cp ={cNP}
i =1, j =min(|cp|, warpSize)
sp = <Di..,pPj > €cCp
Cp < {Cp — Sp}
while (sp # 0)) do
isResult < false
foreach p € sp parallelipreaq do
Lif ((dist(p, q) < disty) A (pia # ¢ia)) then isResult < true

local bitMaskResults < ballot(isResult)

local resultOf fset

computeResultO f f set(bitMaskResults, occupancySharedBuf fer)
local resultsFoundBlock < popCount(bitMaskResults)
resultsFound < resultsFound + resultsFoundBlock

if (isResult = true) then
(buf fID,buf f Dist, occupancyBuf fer) <
| updateBuf fer(resultOf fset, occupancyBuf fer,buf fID,buf f Dist)
if (resultsFound — resultsWritten > warpSize) then
(buffID,buf f Dist) +
flush(buf fID,buf f Dist, occupancyBuf fer, resultsWritten)
resultsWritten < resultsWritten + warpSize
occupancyBuf fer < occupancyBuf fer — warpSize

i+ j+1, j < min(|ep|,j + warpSize)
sp < <Dpi...,.Dj > €cCp
%Cp — {Cp — Sp}

if resultsFoundnegresultsWritten then
L flush(buf fID,buf f Dist, occupancyBuf fer, resultsWritten)

82 3. GPU-Based processing of repeated k-NN queries

16-17).

Once this check is over, threads inside a warp have to find out which threads
actually found out a nearest neighbour (if any) inside the currently considered ob-
jects block and, for what relates to such threads, find out the position in which they
can store their result inside the temporary buffer (lines 18 - 21). First, we exploit
the ballot function ? (line 18), a native CUDA instruction which allows to test in
parallel a given predicate within a warp. The output of such function is a size Warp-
wide integer, whose bits represent the outcome of the test for each thread within
the warp. We note that this instruction allows to avoid expensive synchronization
mechanisms at warp level, since in the opposite case we would be forced to use some
kind of atomic counters in order to find out the correct write positions.

In any case, after using the ballot function each thread in the warp proceeds
by inspecting bitMaskResults in order to find out (i) the position in the temporary
buffer where it can store the nearest neighbour it found (if this is the case) (comput-
eResultOffset function) and (ii) determine the amount of nearest neighbours found
inside the currently considered block (resultsFoundBlock field; we note that the lat-
ter operation equates to a bit counting operation, which is natively done on GPU
through the popCount function). resultsFoundBlock is subsequently used to update
resultsFound, the field containing the overall amount of nearest neighbours found so
far by the warp (line 21).

Once all these information are determined, the warp proceeds by updating the
temporary buffer in shared memory (line 23). We note that given the set of informa-
tion available, the size of the buffer (2 - warpSize) and the maximum amount of re-
sults a warp can store inside the buffer when scanning a block of objects (warpSize),
bank conflicts among threads are impossible when writing in shared memory, thus
assuring the best possible performances.

Warp threads obviously have to flush out periodically the temporary buffer con-
tent; this is required whenever (i) the amount of nearest neighbours stored inside
exceeds half of its capacity (line 24) or (ii) the buffer content has to be flushed out
before termination (line 31): this is achieved by means of a simple flush operation
- called by all warp threads - which flushes out warpSize buffer elements at a time
by means of a cooperative pattern, which in turn entails coalesced write accesses.

Query computation terminates whenever the warp has processed all the objects
in cp (ie., sp =) and flushed out the remaining temporary buffer content (if any)
in global memory.

3.2.2.1.2.1 Complexity. Aside from the strategies used to write out queries
results, the cached and coalesced strategies are, on the whole, almost identical. For
this reason, we take Algorithm 5 as a point of reference. If we consider the operations
carried on within each task, the complexity of the distance computation phase is

2This instruction is natively supported by CUDA devices whose hardware revision is 2.0 or
greater.

3.2. Processing Pipeline 83

mainly dictated by the scans over the set of objects belonging to each cell ¢ € C, as
well as by the k-selection algorithm.

The overall number of scans inside Algorithm 5 are two, one at line 4 and the
other one at lines 7-11. The related complexity is therefore equal to O(2- |[{P Nc}|).
For what is related to the k-selection algorithm (Algorithm 6), we have that the
number of iterations required to find a suitable disty strongly depends on local
densities affecting the spatial distribution within a cell. If d represents the minimum
distance between pairs of objects in ¢ and numBins represents the amount of bins
used, such figure is equal to [48]:

D , (3.)

(|

Summing up the considerations done above, if we denote the amount of iterations
yielded by findKDist in the worst case as maxlterations, the overall complexity of
the distance computation phase becomes:

dist e — diStyin
lognumBins(d)

O ((2 + mazxIterations) - |{P N c}|> . (3.2)

3.2.2.2 Subsequent iterations

After the first iteration, each query has associated a list of nearest neighbours, each
one containing up to k elements, contained within the cell in which its center falls.
Depending on the spatial distribution and on the materialized index, however, it is
very probable that a substantial fraction of queries have an incorrect or incomplete
list. The former case happens when there is at least one object falling outside the cell
in which the query center falls, and such objects are nearer than the farthest object
in the list computed during the first iteration. The latter case happens when a query
falls inside a cell containing less than & objects (and k£ < |P|), and therefore the
resulting list is - at least - partial: clearly, we need to consider other neighbouring,
non-devoid cells in order to complete the list. Obviously, it is possible to have a
combination of these two cases as well. Hereinafter we denote such queries by active
queries.

Since the latter case is obvious we focus on the former case, presenting a toy
example in Figure 3.2. In this example we have a 1-NN query, represented by the
blue dot, and seven moving objects, represented as red dots. By design, during the
first iteration only objects falling in the cell where the query center is located (the
quadrant highlighted in blue) are considered. Consequently, after the first iteration
we have that the list associated with the query will be {o;}. However, it is evident
that objects 0o and o3 are closer than o;, therefore we have to consider the cells
(highlighted in red and yellow, respectively) in which such objects fall, in order to
compute the final, correct query list.

84 3. GPU-Based processing of repeated k-NN queries

~@

~ @

@

5 1

(a) Tree-based representation. (b) Quadrant-based representation.

Figure 3.2: Toy example of a 1-NN query for which we have to analyze the content
of neighbouring quadrants in order to compute the final, correct result set.

To this end we need to perform a recursive tree visit, starting from the quadtree
leaf in which the query center falls, considering only those leaves whose (i) spatial
extent may contain potential nearest neighbours and (ii) contain at least one object.
As the visit progresses, the query list (and the related auxiliary information) must
be updated accordingly.

Going back to the example, we have that the visit must consider the siblings
of the quadtree leaf in which the query center falls. Accordingly, the visit starts
from the white quadrant, which can be immediately discarded since it is devoid of
objects. The visit proceeds by considering the yellow quadrant: here we have that
03 is nearer than oy, therefore the query list is updated to {o3}. Finally, the visit
reaches the red quadrant, where 0, is located: since oy is nearer than os, the query
list is updated to {os}. At this point the visit goes up all the way to the root, since
the remaining quadtree nodes do not contain objects which are possibly nearer than
09.

Considering the potential amount of active queries to be processed after the
first iteration, the main challenge becomes to devise a strategy able to batch the
work resulting from such tree visits in order to generate workloads suitable for
GPU processing. Our proposal consists in an iterative approach, where tree visits
and distance computations related to spatially nearby active queries are packed
together, iteration after iteration, until no query remains active, i.e., every query
has associated the final, correct list of nearest neighbours. In order to achieve this
goal, our proposal has to find an effective way to combine GPUs caching capabilities
with Morton codes spatially preserving properties. Algorithm 9 sketches out our
proposal, which is discussed in the following.

3.2. Processing Pipeline 85

Strategy overview. The basic idea is to perform the aforementioned recursive
tree visit by splitting it into two sub-visits, one that proceeds towards left while
the other one proceeding towards right, until potential nearest neighbours can be
found. Both sub-visits start from the leaf in which the query center falls and shall
be ideally conducted in an alternate fashion, so to minimize the amount of nodes
to visit before reaching the final, correct query list. In this sense, an active query
may be indeed active in one direction but not in the other, depending on the list of
nearest neighbours found so far and on the unvisited, non-devoid quadrants spatial
extent. Figure 3.3 gives an example about how these sub-visits may span the set of
quadtree nodes with respect to the query given in Figure 3.2, along with the order
in which they would consider quadtree leaves.

2 :

N
-_—

(a) Tree-based representation. (b) Quadrant-based representation.

Figure 3.3: Left and right sub-visits, quadtree nodes coverage example.

Starting from the leaf in which the query center falls (white leaf/quadrant in
the Figures; the query is represented as a blue dot in Figure 3.3b), the sub-visit
proceeding towards left has to cover the nodes highlighted in red, while the other
one has to cover the nodes highlighted in green. Black nodes represent nodes which
are considered by both sub-visits. We note how this visiting schema partitions
the set of leaves into two disjoint sets - left apart the one where the query center
falls. This is even more evident if we take into consideration the quadrant-based
representation (Figure 3.3b).

Both Figures highlight the order in which the sub-visits consider the leaves: we
note that this order follows the order imposed by Morton codes over the quadtree
structure. One could reasonably observe that following such order represents a sub-
optimal strategy, since it does not ensure to visit the minimum possible amount of
leaves; indeed, selecting neighbouring cells according to their spatial extent would,
on the contrary, achieve this goal. However, in favour of the former strategy we
observe that following the order imposed by Morton codes approximates quite well
spatial proximity, usually yielding an amount of visited leaves equivalent or near to

86 3. GPU-Based processing of repeated k-NN queries

the minimum one. Additionally, visiting the tree according to the latter strategy
would require to implement a GPU-based, massive tree visiting algorithm having
an higher computational overhead. Putting together the above considerations, we
deem that possible benefits deriving from the latter strategy may be not worth the
effort.

Algorithm 9: K-NNgpy — Schema used for subsequent iterations

Input : The structure of streams containing all the information about the set of queries @
after the first iteration.
The quadtree-based index, C.
The size of the queries neighbours lists, k.
The result set (I Dy, DIST}).
The temporary result set (1D;""", DIST,*"").
The vector containing, for each query, the distance of the farthest objects
in each list, MAXDIST.
The vector containing the amount of neighbours found per each query,
NUMRES.

Output: The final result set, (I Dy, DIST}).

1 begin -
2 global Q. ¢, < initNavigation(Q, left)
3 global @ +— init Navigation(Q, right)

right
a local direction + left
5 while (Qleft 7& @ V Qright 7é Q)) do
6 if (diiectz'on = lefi) then Q, ccssed = Queft
7 else Qprocessed A Qright
8 @pmcessed — navigateTree(@mocessed, C, Zmap, b, MAXDIST, NUMRES)
9 @pmcessed — sortActiveQueries(@pmcessed)
10 (C, Qprocessea) < indexBlocksActiveQueries(Qppeessed)
1 ((ID™ DIST{*™), MAX DIST) ¢
distComp(C, Qprocesscas MAXDIST, NUMRES, k)
12 (IDy,DIST,, MAXDIST, NUMRES) +
updateNN Lists(C, Qprocesseds IDy P, DIST ™), (IDy,, DIST}), MAX DIST, NUMRES, k)
13 if (direction = leftV Q. = 0) then
14 Qleft A Qprocessed
15 direction < right
16 else B
17 Qright — Qprocessed
18 direction + left

19 | return (IDy, DIST})

In line with this idea, we consider the strategy sketched in Algorithm 9. First, we
initialize the structures of vectors containing the tree navigation status of the queries.
We keep track of the information related to the sub-visit towards left in), ;, while

3.2. Processing Pipeline 87

the other one in @Q,;,, (lines 2-4); both start from the quadtree leaf containing the
query center. We note that queries in) come sorted according to the identifiers
(augmented Morton codes) of the cells with which they were associated during the
first iteration: this is the key property exploited, iteration after iteration, in order
to pack together the workload related to spatially nearby queries. We also mention
that in @leﬂ and @”ght we just keep query references without copying the actual
query data, so to avoid moving too much data when subsequently sorting active
queries. As a consequence, during the subsequent iterations we rely on caching also
when recovering query data.

Then, the iterative process begins (line 5): at the beginning of each iteration,
the approach alternatively considers one sub-visit, as long as both sub-visits are
active (lines 6-7), and updates the navigation status of each active query in the
direction considered (navigateTree, line 8). Since we are orchestrating the iterations
by alternating the sub-visits, hereinafter we conveniently say that a query is active,
in the direction considered, whenever the related sub-visit has not terminated. From
this, it follows that a query is, in general, active whenever it still has a sub-visit going
on. At the end of this operation we expect that each active query is assigned to the
first unvisited, non-devoid leaf whose spatial extent may contain possible nearest
neighbours (in practical terms, each active query is associated with the identifier of
such leaf), if any. If no useful leaf is found, the query is flagged as inactive: this
case corresponds to the event in which the visit reaches the root and all its childs -
in the direction considered - were already visited. We embed the inactive flag in the
most significant bit of the integer used to store the cell identifier in order to discern
between active and inactive queries - by means of sorting - later on.

After the tree navigation update phase, queries are sorted according to the newly
assigned cell identifiers (sortActiveQueries, line 9). We exploit the sorting operation
in order to partition between active and inactive queries as well: once active queries
get sorted, it suffices to find the first query having the inactive flag set in order to
determine the extents of the active and inactive sets. Such simple, yet massively
parallel, operation is conveniently performed on GPU as well.

After the sorting operation we focus just on those queries still considered active,
while discarding the inactive ones. By virtue of sorting, active queries are arranged
such that those assigned to the same cell are displaced in contiguous memory lo-
cations. We exploit again this property, as done already in Section ??, in order to
determine the first and last query for each cell having at least one query assigned
(line 10). This yields a set of tasks, one per active cell associated with at least one
active query. We denote again such set by C.

Subsequently, the approach has to update the list of nearest neighbours for each
active query with respect to the newly assigned cell (lines 11-12). This step is almost
equivalent to the one described in Algorithm 5: first (function distComp, line 11), we
find a suitable distance below which we have (up to k) potential nearest neighbours
in the newly assigned cell (this is done by means of the k-selection algorithm) and
store such objects in a temporary result list, (ID;"™", DIST,"™). Finally (function

88 3. GPU-Based processing of repeated k-NN queries

updateNNLists, line 12), we update the query list, (I Dy, DIST}), according to its
current content and the content of (1D, DIST,""™).

The iteration concludes by updating Qs (Qrignt) and by selecting the sub-visit
of the next iteration according to Qs and Q,4n: content (lines 13-18).

Why we use this two-pass strategy based on temporary lists? The main reasons
are two, both strictly correlated: first, for each query we can ignore consistent
amounts of objects in the newly assigned cell simply by looking at the distance of
the farthest object in the query list found so far (information which can be retrieved
from MAXDIST); we note that such optimization cannot be exploited in case a
query has less than £ results in the list computed so far. Second, we resort to a
temporary result buffer since executing the k-selection algorithm in one single shot,
i.e., by considering the objects in the query list and the objects within the newly
assigned cell as well, usually yields an increased amount of iterations due to the lack
of the aforementioned pruning.

In the following paragraphs we describe in detail the main operations carried on
during any subsequent iteration.

3.2.2.2.1 Subphase 1 — Massive tree navigation. As sketched out in Al-
gorithm 9, we conveniently keep two distinct navigation tree statuses, one keeping
track of the visits towards left (the related struct of vectors containing such informa-
tion is @.p,) and the other one towards right (Q,,,;). We also saw how during any
subsequent iteration we consider one direction at a time - as long as both sub-visits
are going on, so to minimize the amount of overall iterations (quadtree leaves) per
query needed to converge to the final lists.

During this phase (Algorithm 9, line 8) we update the navigation status of each
active query with respect to the sub-visit currently considered (where _pmcessed
represents just a reference to the struct of vectors considered). In the end, we
expect that each active query is assigned to an unvisited leaf containing potential
nearest neighbours, if any (in this case the query will be still considered active), or
flagged as inactive in no useful leaves are found.

The goal is to conveniently perform such operation on GPU by assigning one
thread per active query. However, considering the hardware platform we want to
exploit the main challenge is to devise a strategy which is able to minimize issues
arising from the observation that, the farther the queries are, the more they may
exhibit different tree traversals. Indeed, if we happen to pack in the same thread
block queries exhibiting different traversals, we may encounter two serious perfor-
mance issues: the first one is due to ezecution branching inside warps (different
paths may require the execution of different operations); the second one originates
from the observation that we may achieve far from optimal memory accesses due to
different traversals accessing quadtree information stored in far memory locations,
thus denying any possible caching benefit.

However, we can minimize these issues since active queries come already sorted

3.2. Processing Pipeline 89

from previous iterations. More precisely, given that spatially nearby active queries
are arranged in nearby memory locations, if we statically partition the queries by
retaining such order we expect that queries processed inside the same thread block
will exhibit equivalent or similar tree traversal. In Algorithm 10 we show the al-
gorithm used to perform massive tree navigation on GPU, thus allowing to better
motivate our strategy.

Algorithm 10: navigateTree(Qprocess, C, Zmap, ks MAXDIST, NUMRES)

Input : The set of active queries, Qprocess, coming sorted from the previous iteration.
The spatial index, C (along with auxiliary information).
The vector containing, for each query, the distance of the farthest nearest
neighbour found so far, MAXDIST.
The vector containing, for each query, the amount of nearest neighbours found so
far, NUMRES.

Output: The set of active queries, Qprocess, updated.

1 begin

2 local ljeep < getQuadtree Deepest Level(C)

3 foreach ¢ € Qprocess parallelghreaa do

4 local maxdist < MAXDIST,

5 local numres +~ NUMRES,

6 local (I, z) < retrieveNavigationStatus(q)

7 if (hasSibling(l, z, direction) = true) then (I, z) < getSibling((l, z), direction)
8 else (I, z) < getParent(l, z)

9 while (I # 0) do

10 if (containsPotential Neighbours(q, (1, z), maxdist, numres)) then

11 if (I = lgeep) then

12 (1, z) « getQuadtreeLeaf(zmap, (1, 7))

13 if notEmpty((l, 2),C, P)) then

14 Qprocess — aSSOCiateLeaf(QpTocessv q, (l, Z))

15 return

16 if hasSibling(l, z, direction) then (I, z) < getSibling((l, z), direction)
17 | else (,2) < retrieveParent(l, z)

18 | else (I, 2) < getFirstChild((l, z), direction)

19 else

20 if hasSibling(l, z, direction) then (I, z) + getSibling((l, z), direction)
21 | else (I, 2) < retrieveParent(l, z)

22 ¥Qprocess — setInaCtiUeFlag(Qprocess7 Q)

As mentioned before, we assign each active query to a specific thread (line 3).
Subsequently, the thread in charge retrieves the main information about the query
navigation status, such as the quadtree leaf (I, z) assigned during the last iteration
considering the same sub-visit, the distance from the farthest object in the list
computed so far, mazxdist, and the amount of results in the list, numres (lines 4-6).

90 3. GPU-Based processing of repeated k-NN queries

Then, the algorithm checks whether ([, z) has a sibling in the direction consid-
ered, or the visit must restart from the leaf’s parent (lines 7-8).

Subsequently, the tree visit cycle kicks in (line 9). Here, the algorithm first deter-
mines if the quadrant currently considered may contain potential nearest neighbours,
i.e., its borders are nearer than the query farthest neighbour found so far (line 10). If
this condition holds, the algorithm checks whether the quadrant level is equal to the
deepest quadtree level (line 11); if this is true, the algorithm goes on by retrieving
the quadtree leaf covering such quadrant and checks whether the leaf contains at
least one object (lines 12-13): if this holds, the query will be still considered active
and assigned to the leaf for further processing (line 14) (in this case the thread
terminates as well), otherwise the visit continues (lines 16-18).

In case a quadtree node/leaf does not contain potential nearest neighbours, the
algorithm goes on with the visit, checking whether there are other useful internal
nodes/leaves in the direction considered (lines 20-21).

The visit terminates whenever the visit reaches the quadtree’s root (level 0): in
such case the query is flagged as inactive (line 22).

Some side remarks must be done about important design choices done inside Al-
gorithm 10: first, we take into consideration the spatial extent of quadtree quadrants
instead of the MBRs enclosing the objects inside: even if this choice may slightly
increase the amount of leaves considered per query, it also avoids a relevant amount
of lookups in memory, since (i) the spatial extent of any quadtree quadrant can be
determined on the fly and (ii) a lookup is required only when we have to understand
which quadtree leaf covers a leaf reached in lg.., (by means of z,,,). Second, and
strictly bounded to the above design choice: we always reach l4., before assign-
ing a query to a new quadtree leaf through the inverted index z,,,,. On one hand
this may slightly elongate the traversals, thus increasing the amount of operations;
on the other hand, it avoids to check each time (by means of a lookup in an ap-
propriate data structure) whether any quadrant at any level is actually a leaf or not.

Complexity. Query-wise, the complexity of this subphase is dictated by the set of
active queries in the direction considered, i.e., O(|Qprocessea]); if we focus on a single
query, the worst case scenario corresponds to visiting all quadtree nodes when such
quadtree corresponds to a uniform grid, given that we use 2,4, to recover leaves
identifiers (line 12). If [,,,, is the deepest quadtree level, this corresponds to a
complexity equal to O(Yima 41) = 0(1_4?"%71).

However, these complexities tell us very little on the overall amount of iterations
we have to expect from our approach, since this depends on portions of the tree
involved by queries, which in turn depend on a complex mix of factors such as
the objects spatial distribution, how such distribution may vary over the time, the
quadtree height, how objects spread across the quadtree leaves and the amount of
nearest neighbours per query to compute (k).

It would be interesting to perform an analysis in order to provide an estimate

3.2. Processing Pipeline 91

for such figure; however, some of the factors mentioned are not known beforehand
and they may vary over the time, therefore making the conduction of such analysis
almost impossible. In general, whenever we fix a tree height we expect that the
amount of iterations needed to converge to the final, correct query result set is
slightly higher whenever distributions get skewed.

3.2.2.2.2 Subphase 2 — Active queries sorting and task formation. After
subphase 1, each query considered as active during the previous iteration, in the
direction considered, is associated with a cell identifier representing a quadtree leaf
containing possible nearest neighbours, or flagged as inactive otherwise.

Afterwards, queries are sorted according to the associated cell identifier. Since
inactive queries get flagged during subphase 1, by means of sorting we can conve-
niently displace at the beginning of the associated struct of vectors those queries
still considered active. Then, in order to determine the extent of the active queries
set we use a simple GPU kernel where we assign each query to a single thread:
the thread detecting the last active query will return its position in memory, while
other threads won’t do anything. Once we have such information we can discard
the whole set of inactive queries, since these can be ignored during subsequent it-
erations. All the aforementioned operations are performed in Algorithm 9, line 9
(sortActiveQueries function).

Finally, our approach determines the first and last active query for each cell
having at least one query assigned and creates an ad-hoc index (Algorithm 9, line
10, indexBlockActiveQueries function).

The end product of such chain of operations is, again, represented by a set of
tasks, one per active cell with at least one active query assigned (we denote such set
by C, again), representing the GPU workload.

Complexity. The complexity of this subphase is dictated by the set of active
queries in the direction considered. Let’s denote this set by Qprocessed- First, queries
are sorted according to the identifier of the newly assigned cell: this has complexity
O - |Qprocessed|) = O(|Qprocessed|), since the sorting algorithm is Radix Sort (and
b the base used). Then, we determine the extent of the active query set: this has
complexity equal to O(|Qprocessed|), since we assign each thread to a query in Q.
Finally, we determine the set of cells, which has complexity equal to O(|Qprocessed| +
IC|). In light of the above considerations, the overall complexity is therefore:

0 (3) |Qp7"ocessed| + |E|) . (3.3)

3.2.2.2.3 Subphase 3 — Nearest neighbours lists update. Once the set of
tasks is materialized, we can proceed by updating the nearest neighbours lists of the
active queries (Algorithm 9, lines 11-12).

First, for each active query ¢ our approach computes the list of the (up to) k

92 3. GPU-Based processing of repeated k-NN queries

nearest neighbours inside the newly assigned cell (let us denote it by ¢) and store
it in a temporary result buffer represented by the couple (1D, DIST,") (line
11). This operation is essentially equivalent to the one described in Section 3.2.2.1.2
(putting aside the specific writing strategy used), yet with an important distinction
to be made: if the amount of ¢’s objects having a distance below MAX DIST] is
greater than k£, then we must use the k-selection algorithm in order to select the &
nearest objects inside ¢; otherwise, we can simply copy in (1 Df:mp DI ST,:emp) the
objects falling below such threshold.

Then, the algorithm proceeds by fusing the main and temporary lists. This
operation is, again, almost equivalent to the one described in Section 3.2.2.1.2, how-
ever by noting that if | (I Dy, DISTy)U(ID,™, DIST,"™)| > k the algorithm must
apply the k-selection algorithm in order to correctly update (I Dy, DIST}), other-
wise it just suffices to perform a simple union set (I Dy, DISTy) = (IDy, DIST}) U
(IDE™, DIST™).

Complexity. The overall complexity of this subphase can be determined by means
of Equation 3.1, since the characterizing subcomplexities are equivalent to the ones
of the distance computation phase (Section 3.2.2.1.2).

More precisely, if ¢ denotes the cell considered for a given query ¢, we have that
the complexity related to line 11 is equal, in the worst case, to:

O((Q + mazlterations) - |{plp € ¢ Ad(p,q) < MAXDISTq}‘), (3.4)

while the operations performed at line 12 induce a complexity which is equal, in the
worst case, to:

O ((2 + mazIterations) - 2k:> : (3.5)

3.3 Experimental Setup

All the experiments are conducted on a PC equipped with an Intel Core i7 2600
CPU, running at 3,4 GHz, with 16 GB RAM and an Nvidia GTX 580 GPU with
3 GB of RAM coupled with CUDA 5.5. The OS is Ubuntu 12.04. For what con-
cerns workload generation and testing we reused the framework already employed
in Section 2.3.

As done in the experimental section of Chapter 2 (see Section 2.3), we exploit
three types of synthetic datasets, i.e., uniform datasets, gaussian datasets, and net-
work datasets. In all tests we compute repeated k-NN queries over 30 ticks. To
model object movements the framework generates 30 instances of each dataset, one
for each tick.

We use K-NNgpy to generally denote the GPU-based solution we propose. De-
pending on the specific approach used to update the queries nearest neighbours

3.4. Experimental Evaluation 93

list, we denote by K-NNSRGHE the flavour which uses only the GPU caching ca-

pabilities when updating the queries lists, while we denote by K-NNESS'LESCE the
approach using coalescing capabilities as well. For both flavours the reader must
refer to Section 3.2.2.1.2. Wherever not specified, we suppose that K-NNgpy refers
to K-NNGZGHE

GPU

In order to prove the performance benefits given by K-NNgpy, we pick up as a
direct competitor the exact k-NN search sequential algorithm offered by the FLANN
library * , one of the most popular libraries designed for nearest neighbour matching.
We denote such competitor by K-NN¢py. In order to compute a set of k-NN queries
K-NNcpy relies on the construction of a kd-tree over the set of points to be searched,
with a subsequent series of k-NN searches performed over the kd-tree. As a conse-
quence, K-NNc¢py applies such build and search schema at every tick. K-NNcpy is
used inside our tests such that it uses just 1 CPU core and uses an optimized L2
distance functor when computing distances in R%2. We also set to 32 the maximum
amount of objects per kd-tree leaf, since this value proves to be the best choice in
almost all cases inside our experimental setting.

Finally, we consider a well-established GPU-based baseline approach, i.e., the
brute-force algorithm presented by Garcia et al. in [35] ¥ . We denote such approach
by K-NNgaserne and we use it in order to prove the merit of our proposal with respect
to GPU naive solutions.

Table 3.1 summarizes the main parameters used to generate the datasets. The
listed parameters apply to all the datasets, except for the amount of hotspots which
is relevant for gaussian datasets only. The framework uses a generic spatial distance
unit u (e.g., meters).

K-NNcpy reports the result set of each k-NN query in form of a list of k£ object
identifiers, thus returning a set of lists at the end of each tick. To avoid bias when
making performance comparisons, we force K-NNgpy to transfer the GPU-generated
results to the host memory in form of a set of k-NN lists, one per query, having an
identical layout with respect to those returned by K-NN¢py. The same applies to

K‘NNBASELINE-

3.4 Experimental Evaluation

The experimental studies conducted for this work are introduced below, and are
denoted by S1,...,54:

S1 We study how K-NNgpy’s performance is affected when varying the maximum
amount of objects per quadtree leaf (thus influencing the tree height), the
amount of results per query (k), the dataset skewness and the fraction of
objects issuing a query (query rate).

3http://www.cs.ubc.ca/research/flann/, version 1.8.4.
4http:/ /vincentfpgarcia.github.io/kNN-CUDA /

3. GPU-Based processing of repeated k-NN queries

Spatial region All tests occur in a squared spatial region with side length
of 22500 wu.
Amount of objects We vary the number of moving objects from 100K to

1500K. In some tests the number of moving objects is
fixed and the exact amount is explicitly stated in their de-
scriptions.

Objects maximum speed | In all tests the maximum speed of each object is fixed to
200 u per tick (At), where the objects are allowed to change
their speed as described in [16]. In general, changes in
speed may slightly alter the objects distribution but do
not change the distribution general properties.

Query rate The percentage of objects that issue a range query during
every tick is always set to 100%.
Amount of ticks Whenever not specified the default amount of ticks, corre-

sponding to different snapshots of a dataset, is 30. Con-
secutive snapshots are expected to exhibit slight changes,
according to the properties of the dataset spatial distribu-

tion.

Query location All the queries are centered around the objects issuing
them.

Amount of hotspots Depending on the experiments goals and specificities, the

amount of hotspots is varied in the [10, 150] range. When-
ever not specified the default value used is 25.

Neighbours list size k | Depending on the experiments goals and specificities, the
neighbours list size is varied in the [1,512] range. When-
ever not specified the default value used is 32.

Table 3.1: Data and workload generation parameters.

3.4. Experimental Evaluation 95

S2 We show how K-NNgpy outperforms K-NNgaseLine-

S8 We compare K-NNgpy against K-NN¢py. To this end we vary again main
dataset and run-time parameters, such as the amount of objects and the neigh-
bours list size k, as well as consider three different spatial distributions (uni-
form, gaussian and network) characterized by different degrees of skewness.
We also make a comparison between two different flavours of K-NNgpy, i.e.,
K-NNEAGHE and K-NNEGSMLESCE | when varying k, in order to assess the ben-
efits deriving from the usage of different writing strategies with different &

values.

S4 We analyze how some of the aforementioned parameters affect the system
bandwidth /5 (according to the definition provided in Section 1.1.4).

3.4.1 (S1) Tree height, neighbours list size, query rate and
spatial skewness impacts on K-NNgpy’s performance

In the following we analyze the impacts of few crucial factors influencing K-NNgpy’s
performance, such as the tree height, the neighbours list size (k), the query rate and
the skewness characterizing a spatial distribution.

Tree height and neighbours list size. When processing any dataset, two crucial
parameters are represented by the tree height, which is controlled indirectly by
altering the maximum amount of objects admitted in a single quadtree leaf (thyuqa),
and the neighbours list size k associated with the each query. Choosing an optimal
thguaq 1s strictly connected to k: if the tree height is too high with respect to &,
then many leaves with few objects shall be visited, thus increasing the amount of
operations needed to perform such operations. On the other hand, if the tree height
is too low we end up visiting few leaves with many objects, thus possibly performing
a relevant amount of useless computations due to the reduced pruning power of the
index. As a consequence, it is necessary to find an appropriate thg,.q for a given k.

In the batch of experiments that follows, we use a uniform dataset having a fixed
amount of moving objects equal to 500K, where we test different combinations of
thguaqa and k values; other dataset characteristics are set to their defaults, as specified
in Table 3.1.

Figure 3.4 shows how each k is associated with a range of optimal t/h,.q values
for which the algorithm’s execution time is minimized. We observe how such ranges
are relatively wide as well, a property which is desirable since this minimizes perfor-
mance fluctuations even when not using an optimal value. We also observe how the
higher £ is, the more the relative optimal thg,.q range shifts towards higher values,
as expected from the considerations done above. Finally, even if it is not evident for
every curve the execution time starts to increase again whenever th,.q gets too high
with respect to k, since the pruning power of the index gets reduced. Incidentally,

96 3. GPU-Based processing of repeated k-NN queries

Uniform distribution, 500K moving objects, query rate 100%, 30 ticks.

1800
1600
1400
1200
1000 -
800 [~

600

400
Xy

200 1 = 41
|

Average execution time per tick (ms)

0 200 400 600 800 1000 1200 1400

Maximum amount of objects per quadtree leaf (at construction time)

Execution Time, k = 16 + Execution Time, k = 64 Execution Time, k = 128
Execution Time, k = 32 Execution Time, k = 96

Figure 3.4: Relationship between the tree height (indirectly controlled through
thquaa) and k, and its repercussions on K-NNgpy’s performance.

we observe how the execution time increases whenever k increase, which is expected
due to the higher amount of computations needed to compute the queries nearest
neighbours. However, we will study extensively K-NNgpy’s performance with re-

spect to k in study S3, where we take into consideration both K-NNgpy flavours,
i.e., K-NNSAGHE and K-NNEQMESCE,

Spatial skewness impact on finding an optimal th,,s. In this batch of ex-
periments we want to check whether the skewness has relevant impacts on finding an
optimal thg,.q range. Datasets are distributed according to a gaussian distribution,
each characterized by a different amount of hotspots in order to yield differently
skewed distributions. All datasets have a fixed amount of objects equal to 500K;
other dataset characteristics are set to their defaults, according to Table 3.1. The
size of nearest neighbours lists is set to k = 32.

From Figure 3.5 we see how the skewness does not influence, if not marginally,
the optimal thg,.q range for a given k. Even if in this series of experiments we use a
fixed k, it is possible to show that the performance trend associated with different &
values is approximately the same.

Query rate. In this batch of experiments we want to determine the impact of
the query rate on K-NNgpy’s performance. In the following we use a fixed uniform
dataset having 500K objects; other dataset characteristics are set according to de-
faults (Table 3.1). We set the amount of nearest neighbours per query to k = 32;
accordingly, we set thg,eq = 384 in order to guarantee that K-NNgpy exhibits the
best possible performances.

3.4. Experimental Evaluation 97

Gaussian distributions, variable amount of hotspots
500K moving objects, query rate 100%, 30 ticks.

1000
Gaussian - 25 hotspots I

900 - Gaussian - 100 hotspots
Z Gaussian - 200 hotspots I
= 800 - Uniform B
Q
P
2 700 -
Q
£
= 600
g
g
2 500 |
)
Q
& 400 |-
s
< 300

200

32 64 128 256 384 512 640 768 896
Maximum amount of objects per quadtree leaf (at construction time)
Figure 3.5: Skewness repercussions on thg,.q’s optimality.
Uniform distribution, 500K moving objects, variable query rate, 30 ticks.
300

KNNgpy Execution Time —}—

250 -

Average execution time per tick (ms)

0 | | |
20% 40% 60% 80% 100%

Query rate

Figure 3.6: Query rate influence on K-NNgpy’s performance. The amount of objects
(500K), the neighbours list size (k = 32) and the maximum amount of objects per
quadtree leaf (thgu.q = 384) are all fixed across the experiments.

From Figure 3.6 we see how the query rate influences linearly K-NNgpy’s execu-
tion time, as expected from the complexities described in Section 3.2.

98 3. GPU-Based processing of repeated k-NN queries

3.4.2 (SZ) K-NNgpy vs K-NNgaseLINE

In this study we take into consideration the GPU-based brute-force algorithm pro-
posed in [35] by Garcia et al.. From now on we denote this algorithm as K-
NNgaseLine. We quickly remember that K-NNgasg ine computes for each query the
distances with respect to all the objects in the dataset, subsequently sorting such dis-
tances in order to find the first k£ ones. In this study we aim to show how K-NNgpy
outperforms K-NNgase ine. We take into consideration the two main parameters
mainly affecting the performance, that is, the amount of objects and the amount of
nearest neighbours per query list, k. In light of the results shown in study S2, for
what regards K-NNgpy we set thgueq = 12k when 32 < k < 256 since this assures, on
average, the best performance. For the remaining cases, we use thgu.g = 192,k < 32
and thgyueq = 2048,k > 128.

In the first batch of experiments we consider uniform datasets, where we vary the
amount of moving objects while keeping fixed other dataset characteristics according
to the defaults specified in Table 3.1.

Uniform distribution
Variable amount of moving objects, query rate 100%, 30 ticks.

50000 450
KNNgasgLINE execution time I

45000 |- KNNgpy execution time [- 400

40008 WGPy vs KNNpASELINE speedup

350

35000 300

30000
250
25000
200
20000
15000 150

100

Speedup KNNgpy vs KNNBASELINE

10000

Average execution time per tick (ms)

5000 50

50 100 150 200

Thousands of objects

Figure 3.7: K-NNgpy vs K-NNgaseLing, variable amount of moving objects, k = 32.

From Figure 3.7 we see how K-NNgpy heavily outperforms K-NNgaseLine as soon
as the amount of objects gets relevant, since the usage of K-NNgaseLine becomes
impractical with huge amounts of objects.

In the second batch of experiments we want to observe what happens whenever
we vary the amount of nearest neighbours per query (k). Here, we consider a single
uniform dataset having an amount of moving objects equal to 100K, while other
characteristics are set to their defaults (according to Table 3.1).

From Figure 3.8 we see how K-NNgaseLine’s execution time is fixed, since it de-
pends exclusively on the amount of distances to compute and sort. On the other

3.4. Experimental Evaluation 99

Uniform distribution
100K moving objects, query rate 100%, 10 ticks.

6000 140

5000 |~ 120

100
4000

80
3000
60

2000
40

1000

Average execution time per tick (ms)

20

4 8 16 32 64 128

Neighbours list size k (log; scale)
KNNcpy Execution Time [N KNNgasgLiNg Execution Time [E] KNNgpy vs KNNBASELINE +

Figure 3.8: K-NNgpy vs K-NNgaseLing, variable nearest neighbours list size .

hand, K-NNgpy’s execution time increases when k increases, as expected, thus re-
ducing the advantage gap with respect to K-NNgasgine. Putting together the above
findings, we conclude that K-NNgpy heavily outperforms K-NNgaseLine, at least until
k does not get very high.

In this study we didn’t take into consideration the skewness, since this factor
was outside the scope of the experiments. However, we expect that skewed distri-
butions yield more irregular workload distributions, with slightly negative effects on
K-NNgpy's performance. We study extensively the effects of this factor in study S3.

3.4.3 (83) K—NNGPU VS K—NNCPU

In this section we compare K-NNgpy against K-NNc¢py; in this analysis we con-
sider datasets characterized by different spatial distributions and different amounts
of moving objects. Also, we study how K-NNgpy’s behaves according to different
amounts of nearest neighbours per query (k).

As stated in the introductory part of the experimental section, we use a kd-tree
leaf size equal to 32 for K-NN¢py, since this assures to the CPU competitor to have
the best possible performances within our experimental setting.

For what regards K-NNgpy, we set thgu.g = 12k when 32 < k < 256 since
this assures, on average, the best performance. In the other cases we use thyyea =
192, k < 32 and thgyeq = 2048, k > 128.

Varying the amount of moving objects. In the following batch of experiments
we study how K-NNgpy compares with respect to K-NN¢py when varying the amount
of moving objects, since this influences the overall amount of distances to be com-

100 3. GPU-Based processing of repeated k-NN queries

puted per query. To this end we consider all the three different spatial distributions,
i.e., uniform, gaussian and network-based. The only dataset characteristics varied
across the experiments are (i) the spatial distribution and (ii) the amount of moving
objects between 100K and 1500K; the other ones follow the defaults specified in
Table 3.1.

Uniform distribution
Variable amount of moving objects, query rate 100%, 30 ticks.

6000 14

E 5000 |- 112 5
< 9]
S Z
2 - 10 E
8 4000 -

g 2
E 18 5
= 3000 | Z
g e 2
2 g
Q

£ 2000 |- o
o 14 5
&b 3
& =%
§ 1000 - |, &
<

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Thousands of objects

KNNcpy Execution Time [N KNNgpy Execution Time [N KNNgpy Speedup vs KNNepy +

Figure 3.9: K-NNgpy vs K-NNcpy, variable amount of moving objects, uniform
datasets.

Gaussian distribution, 25 hotspots
Variable amount of moving objects, query rate 100%, 30 ticks.

6000

5000

4000

3000

2000

[=)}
Speedup KNNgpy vs KNNepy

1000

Average execution time per tick (ms)

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Thousands of objects

KNNcpy Execution Time [N KNNgpy Execution Time [N KNNgpy Speedup vs KNNcpy —+—

Figure 3.10: K-NNgpy vs K-NNcpy, variable amount of moving objects, gaussian
datasets, 25 hotspots.

3.4. Experimental Evaluation 101

Network distribution
Variable amount of moving objects, query rate 100%, 30 ticks.

T
|
[

1000

6000 12
E 5000 - 110 o
< 3]
3 Z
: Z
8 4000 - 18 &
= 3000 - H6 &
£ Z
2 ¢
2 2000 F 14 o
: £
2)
<

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Thousands of objects

KNNcpy Execution Time [N KNNgpy Execution Time [KNNgpy Speedup vs KNNcpy +

Figure 3.11: K-NNgpy vs K-NNcpy, variable amount of moving objects, network-
based (San Francisco) datasets.

From Figures 3.9, 3.10 and 3.11 we see how, in general, K-NNgpy’s speedups
increase whenever the amount of objects increases, since the amount of calculations
(in terms of distances to compute) increases, thus making the query processing more
and more a compute-intensive task - therefore favouring K-NNgpy. We also notice
how improvements become negligible once the amount of objects gets very large.

The other main observation relates to the skewness: speedups achieved with
skewed distributions are slightly lower than those achieved with uniform distribu-
tions; this fact is expected, since the quadtree-based indexing used by K-NNgpy
cannot totally avoid imbalances between single tasks. Moreover, skewed distribu-
tions typically require slightly more computations due to the objects tendency to
form clusters.

Varying the neighbours lists size, k. In this batch of experiments we want to
study how K-NNgpy compares with respect to K-NN¢py when varying the neighbours
list size k. k represents a key parameter since it directly influences the overall amount
of distances to compute, the output size and the average amount of iterations per
query (we note that the latter depends on thgu.q as well).

We consider, again, all the three spatial distributions. This time, however, we
use a fixed amount of objects, 1 million, while varying & in the [1,512] range. All
other dataset characteristics are set to their defaults, according to Table 3.1.

From Figures 3.12, 3.13 and 3.14 we see how increasing k up to a certain point has
positive effects on the performances, since the whole query processing task becomes
more and more compute-intensive while GPU caching is still able to cope effectively
with the increased amounts of results per query.

102 3. GPU-Based processing of repeated k-NN queries

Uniform distribution
1 Million moving objects, query rate 100%, 30 ticks.

70000

60000

50000

40000

30000

20000

Speedup KNNgpy vs KNNcpy

10000

Average execution time per tick (ms)

0 - m |
1 2 4 8 16 32 64 96 128 192256 384 512

Neighbours list size k (log, scale)
KNN¢py Execution Time - [N KNNgpy Execution Time [KNNgpy Speedup vs KNNcpy +
Figure 3.12: K-NNgpy vs K-NNcpy, variable neighbours list size k, uniform dataset

(1M objects).

Gaussian distribution
1 Million moving objects, query rate 100%, 30 ticks.

70000 16

60000

50000

40000

30000

20000

1
[ee]
Speedup KNNgpy vs KNNcpy

10000

Average execution time per tick (ms)

0 m N 0
1 2 4 8 16 EY) 64 96 128 192256 384512

Neighbours list size k (log; scale)
KNNcpy Execution Time [N KNNgpy Execution Time [0 KNNgpy Speedup vs KNNepy +

Figure 3.13: K-NNgpy vs K-NN¢py, variable neighbours list size k, gaussian dataset
(25 hotspots, 1M objects).

However, when k gets very high we observe performance degradation due to a
decreased GPU caching efficiency. This is expected, considering the linear layout
(Figure 3.1b) used for the queries result set.

For what relates to the skewness, we observe again how it mildly influences
negatively K-NNgpy’s performances with respect to the execution times observed
with uniform distributions.

3.4. Experimental Evaluation 103

Network distribution
1 Million moving objects, query rate 100%, 30 ticks.

70000 16
E 60000 - 11 g
-4
] 1z
= 50000 - Z
[=%
o 4 10 ¢
E 40000 |- 5
g 18 2
£ 30000 -
§ -4 6 5
> [=9
520000 - 44 3
& 2
§ 10000 41, @
<

0 - | | 0

1 2 4 8 16 32 64 96 128 192256 384 512

Neighbours list size k (log, scale)
KNNcpy Execution Time [N KNNgpy Execution Time [KNNgpy Speedup vs KNNcpy +

Figure 3.14: K-NNgpy vs K-NNc¢py, variable neighbours list size k, network dataset
(1M objects).

Improving the memory throughput — K-NNES3EPSCE. In the last batch of
experiments we saw how K-NNEAGH#E’s performance heavily degrades whenever k
gets high. In the next batch of experiments we want to demonstrate how these cases
can be tackled more effectively by using the strategy proposed for K-NN&QEESOE,

We repeat the very same batch of experiments conducted in Figures 3.12, 3.13, and

3.14, however including and putting the focus on K-NNESHEFSCE as well.
Uniform distribution
1 Million moving objects, query rate 100%, 30 ticks.

250000 20
] KNNcpy Execution Time

2 B KNNCOALESCE Execution Time 118

E 500000 - —+—Speedup KNNCACHE ys KNNepyy 14 16
ot cedup KNNCOALESCE yg KNN(pyy

: 414

QE) 150000 - 12

F 410

2100000 - -8

3

2 -4 6

5 50000 44

< =42

0

1 2 4 8 16 32 64 96 128 192256 384 512

Neighbours list size k (log; scale)

Figure 3.15: K-NNEQSMESCE vs K-NNSRSHTE vs K-NNcpy, variable neighbours list
size k, uniform dataset (1M objects).

104

3. GPU-Based processing of repeated k-NN queries

Gaussian distribution

(25 hotspots)

1 Million moving objects, query rate 100%, 30 ticks.

200000 16
] KNNcpy Execution Time
’é? 180000 I~ oy KNNCOALESCE Byecution Time - 14
= 160000 - ?edup KNNCOACL;;SE vs KNNepy
3 Speedup KNN vs KNN 412
= 140000 |- peecip cru
Q
o 120000 | 710
£
= 100000 - g
8
g 80000 - 1
S 60000 -
% 44
5 40000 |-
z
20000 |- 12
0 Lmn = = m | . 0
1 2 4 8 16 32 64 96 128 192256 384 512

Neighbours list size k (log, scale)

CACHE

Figure 3.16: K-NNESSHESCE vs K-NNELS

vs K-NNcpy, variable neighbours list

size k, gaussian dataset (25 hotspots, 1M objects).

Network SF disti

ribution

1 Million moving objects, query rate 100%, 30 ticks.

200000 16
] KNNcpy Execution Time
2 180000 |~ pmmy gNCOALESCE Eyecution Time - 14
£ 160000 + iﬁedup KNNCOALESCE ¢ KNNcpy
=4 CACHE
B Speedup KNN vs KNN, - 12
= 140000 | peecup cpu
Q
5 120000 | 10
g
= 100000 - g
.8
E L
g 0000 1
o 60000
% 44
§ 40000
< 20000 |- 72
0 Lmm = .] | | 0
1 2 4 8 16 32 64 96 128 192 256 384512

Neighbours list size k (log, scale)

Figure 3.17: K-NNEQIMEICE vs K-NNERGHE
size k, network dataset (1M objects).

vs K-NNcpy, variable neighbours list

From Figures 3.15, 3.16 and 3.17 we observe how K-NNESS'LESCE outperforms

K-NNZaSHE

we have the opposite whenever k is lower.
observing some key facts.

whenever k is equal or greater than the size of a warp (k > 32), while

> These results can be explained by

5We remember once more that in current NVIDIA GPUs the size of a warp is equal to 32.

3.4. Experimental Evaluation 105

First, K-NNg,QUALESCE’S strategy starts to become effective once threads inside a
warp get fully utilized and the required amount of nearest neighbours per query gets
more and more relevant, thus making the cache-only strategy on which K-NNE§H#E
relies less effective in terms of memory throughput. Indeed, this combination of
factors is reflected in the performance trend observed in all the Figures. Second, in
order to exploit coalescing we need a proper access pattern, which in turn requires
some computational overhead in order to orchestrate the computations accordingly.
Whenever £ is low such overhead, coupled with a slight thread underutilization when
updating the query lists, slightly penalizes K-NNESHLESCE,

In conclusion, K-NNERS 7 better fits those cases where k < 32, while K-NNESHLESCE
covers the remaining ones. As a consequence, one should resort to the strategy which

better adapts to the tackled scenario.

3.4.4 (S4) Bandwidth analysis

The goal of this study is to observe how the bandwidth S of a given system varies
with respect to relevant run-time or dataset parameters. In the k-NN queries case
these parameters are the amount of moving objects, the query rate, the amount of
nearest neighbours per query k£ and the skewness affecting the spatial distribution.

From lemma 2 in Section 1.1.4 we remember that the system bandwidth £, ex-
pressed as the amount of queries processed per time unit (indeed, we use the second),
is one of the crucial parameters in order to determine a suitable tick duration At,
along with a given latency requirement A and a maximum amount of queries which
may occur during At, Qmae. Since X and Q.. are fixed, the crucial parameter is
5.

For what regards K-NNgpy, we set thguq = 12k when 32 < £ < 256 since
this assures, on average, the best performance. In the other cases we use thyyeq =
192,k < 32 and thguea = 2048, k > 128.

Figure 3.18 presents the results of the first batch of experiments, where we test
the behaviour of # with respect to different amounts of objects and degrees of skew-
ness. In order to conduct these experiments a set of gaussian datasets is considered,
each characterized by a specific amount of moving objects and skewness degree.

From the Figure we see how the system bandwidth increases (however, the in-
crease rate flattens out at some point) whenever the amount of objects increases.
This can be explained by observing that, even if the action of increasing the amount
of objects yields both an increase of the GPU resource usage efficiency and an in-
crease in the amount of computations per query, the former factor mainly determines
the behaviour of the observed performance trend.

For what is related to the skewness, we observe how skewed distributions affect
negatively the bandwidth since they entail the creation of more uneven GPU work-
loads. This is similar to the behaviour observed in Figure 2.25 in the range queries
case.

106 3. GPU-Based processing of repeated k-NN queries

Bandwidth analysis
Gaussian distributions, varying amount of moving objects, varying skewness, query rate 100%

4e+06
3.5¢406 |- _, 5 B —H—3 g
3e+06”*/ S
5
& 25e4067
=
Q
é‘l_‘
E 2e+06
=
3
= 1.5e+06 -
]
le+06 [Bandwidth (10 hotspots) ——
Bandwidth (150 hotspots)
500000 Bandwidth (1000 hotspots) —K—
Bandwidth (5000 hotspots) ———
Bandwidth (10000 hotspots)
0 | | | | | ! | |
100 200 300 400 500 600 700 800 900 1000

Thousands of moving objects(queries)

Figure 3.18: System bandwidth analysis when varying the amount of moving objects
or the dataset skewness.

Bandwidth analysis
Uniform distribution, SO0K moving objects, 30 ticks

Query rate (%)

20 40 60 80 100
9e+06 T T

T
y Bandwidth (variable query rate, k = 32) +
8e+06 y Bandwidth (variable k, query rate 100%)

Te+06 —
6e+06 -

S5e+06

4e+06
%

3e+06 -

Bandwidth (query/sec.)

2e+06 a

le+06

0 I I I I I I I I I I I 1 I
1 2 4 8 16 32 64 96 128 192 256 384 512

Neighbours list size (k) (log; scale)

Figure 3.19: System bandwidth analysis when varying the query rate or the neigh-
bours list size k.

3.4. Experimental Evaluation 107

Figure 3.19 reports the results related to the second batch of experiments, where
we analyze the behaviour of § with respect to the query rate (we observe it corre-
sponds to changing),,..) and the neighours list size k. For what relates the query
rate we observe, analogously to the experiment conducted for range queries (Fig-
ure 2.26), how the bandwidth increases whenever this parameter is increased. We
briefly remember that this phenomenon may seem counter-intuitive at first, since
the action of increasing the query rate has the effect of increasing linearly (and
not quadratically) the amount of containment tests and results produced. These
increases, however, are compensated by an increased efficiency of the system. In
other words, GPU resources are more utilized and thus better exploited, in turn
increasing the overall bandwidth. We note that this behaviour can be replicated
with any spatial distribution.

For what relates the neighbours list size k, we see how increasing this parameter
has the effect of decreasing the bandwidth, due to an increased amount of compu-
tations needed to compute the queries result set.

108 3. GPU-Based processing of repeated k-NN queries

[l

Second part

Detecting avoidance behaviours
between moving objects

4.1 Introduction and Motivation

Current advances in mobile technologies have increased the interest in mobility data
analysis in several application domains, such as security, smart cities, transportation
systems, urban planning, biological studies and so on. As a consequence, several al-
gorithms have been proposed for discovering various types of behaviors in trajectory
data, such as T-patterns [50], flocks [51, 52], meet [53], periodic movements [54, 55],
anomalous traffic patterns [56], chasing [57], etc. In [58], a taxonomy with different
types of trajectory behaviors is proposed, while a summary of the most well known
trajectory behaviors (also called patterns) is presented in [4].

In this work we focus on avoidance behaviors between trajectories, a new type of
pattern which has not been much explored in the literature. For the purposes of this
work it is convenient to distinguish between two main classes of works about the
general concept of avoidance in mobility data: collision avoidance and avoidance
detection. Collision avoidance is a well studied and established field where the main
objective is to suggest in real-time a new route (trajectory) to avoid collisions. There
is a vast literature on this topic and we defer further details to Section 4.2. On the
other hand, avoidance detection tackles the problem of detecting whether a moving
object has avoided a static object (area), as shown in Figure 4.1(a), or a moving
object has avoided another one, as shown in Figures 4.1(b, ¢, and d), by analyzing
historical movement traces. Our contribution belongs to this second class of works,
so we focus on it.

Static avoidance detection can be interesting for discovering suspicious behav-
iors as, for instance, objects avoiding a surveillance camera, a police patrol, or speed
controllers. A first treatment of this type of avoidance is proposed in [59]. Avoid-
ance detection between mouving objects is useful in several application domains. For
example, in security applications it may reveal suspicious behaviors among people,
such as criminals or terrorists that avoid policemen. In marine surveillance, ships
with illicit products or illegal immigrants may avoid coastguard boats. In computer
games avoidance behaviors may help to characterize classes of avoided enemies,

112 4. Detecting avoidance behaviours between moving objects

1 \’/
T1 . T2 g

(a) (b)

T1 o T2 \
speed =1
change

(c) - d)

Figure 4.1: Different kinds of avoidance behaviors: avoidance with respect to a static
object (a), and avoidance between moving objects: individual (b), mutual (c), and
individual induced by a change in speed (d).

while in soccer games it may be useful to analyze players avoiding markers. In
zoological studies, avoidance detection may reveal how preys avoid predators (e.g.,
at which distance, by changing direction or changing speed). The discovery of this
type of avoidance is more challenging than detecting avoidances between moving
objects and static objects/areas, and the first questions that raises are: what are
the main features that characterize an avoidance between two moving objects? Who
is avoiding who? At which distance two objects initiate an avoidance?

In this work we want to formalize the concept of trajectory avoidance behavior
and to identify every instance of this behavioral pattern in historical movement
traces. Figure 4.1 shows three examples of avoidance behavior addressed in this
work: Figure 4.1(b) shows an example of trajectory avoidance where T} avoids
trajectory Ty by changing its direction. Figure 4.1(c) shows a mutual avoidance
behavior, where both 7 and T, avoid each other by changing their direction. In
Figure 4.1(d), although both trajectories have a spatial intersection relationship, Ty
avoids T7 by slowing down the speed in order not to spatio-temporally intersect 7.

This specific problem has not received much attention in the literature. [60]
makes a first attempt to address trajectory avoidance detection looking for attrac-
tion and avoidance relationships between pairs of trajectories. In general terms, this
work considers the frequency of meetings to define an avoidance. When a pair of
objects frequently move close to each other an attraction relationship is character-
ized, whereas an avoidance relationship occurs in the opposite case. As a result, this
method measures the degree of attraction or avoidance between two trajectories.

We claim that an avoidance between trajectories, as depicted in Figures 4.1(b,c,d),
is characterized by a change of movement behavior exhibited by at least one tra-
jectory. Consequentially, in order to detect such changes we need to produce some
kind of forecasts and properly compare these with actual trajectories data.

The contributions presented in this chapter can be summarized as follows: (i)
we introduce a framework which defines what is an avoidance between pairs of

4.2. Related Work 113

trajectories, considering changes of behavior in speed or direction; (ii) we present an
algorithm able to automatically detect avoidances between pairs of trajectories and
to work on real-world datasets where trajectories may be possibly characterized by
different sampling rates; (iii) we propose a criteria to classify any avoidance as weak,
mutual or individual, on the basis of factual evidence. Finally, (iv) we introduce
the concept of fused detector in order to analyze any dataset with different sets of
parameters, allowing to possibly increase the quantity and the quality of the results
returned by the algorithm.

The rest of the chapter is organized as follows: Section 4.2 presents the related
work. Section 4.3 introduces some basic definitions. Section 4.4 illustrates the
new definitions for avoidance detection, while Section 4.5 proposes an algorithm to
compute avoidance behavior. The chapter ends by describing the experiments on
real trajectories in Section 4.6. We delegate the conclusions and possible directions
of future research to the conclusive chapter of the thesis.

4.2 Related Work

As mentioned before, in the domain of mobility data we can distinguish between
two main classes of works about the concept of avoidance: collision avoidance and
avoidance detection.

Collision avoidance deals with models, systems, and practices designed to pre-
vent vehicles, such as cars, ships, airplanes and so on, from colliding with other
vehicles. Consequentially, the focus is on detecting a future collision and change (or
suggest a change) the current route of one or more of the involved vehicles to avoid
a collision. All these operations must be carried on in real-time. There is a vast
literature involving various kinds of vehicles, for example cars ([61], [62], [63], [64]),
ships ([65],[66]) and aircrafts ([67], [68], [69]).

In [61] the proposal is to minimize the safety distance error and to regulate the
relative speed between two vehicles, so to avoid rear-end collision, using hierarchical
longitudinal control. In [62] it is proposed a real-time method for computing a car
trajectory towards a safe final state, as soon as an endangering obstacle is detected by
a sensor (e.g. radar or lidar). Two scenarios are considered: a car which is overtaking
another (slower) car in the same lane and an overtaking car which faces another car
coming from the opposite direction. The solution is obtained from a simplified car
model based on two control variables (steering velocity and braking force), state
variables (speed, yaw angle, yaw angle rate, the center of gravity and direction)
and a state dynamics defined by a system of differential equations. [63] presents
experimental results for an active control intersection collision avoidance system
implemented on modified Lexus test vehicles. The system utilizes vehicle-to-vehicle
dedicated short-range communications to share safety critical state information.
Safety is achieved in potential collision scenarios by controlling the speed of both
vehicles with automatic brake and throttle commands. Another approach for car

114 4. Detecting avoidance behaviours between moving objects

collision avoidance considers pedestrians [64], where the use of stereo cameras on
board of vehicles supports the detection of pedestrians with the aim of avoiding
collisions between cars and pedestrians. In the domain of ships, Liu [65] proposes
a fuzzy-neural inference network that learns a set of examples from a set of rules
defined by the International Regulations for Preventing Collisions at Sea. Based on
the learned examples, the method suggests direction changes of the ship to avoid
a possible collision. The main input data are the ships’ direction and speed, the
distance between them and the type of water area (blue water, coast, ..f rules defined
by the International Regulations for Preventing Collisions at Sea. Based on the
learned e.). The model only considers cases where an encounter situation is already
detected. The output is the set of actions to avoid the collision. In the aircraft
domain, [68] considers a set of aircrafts where each one has a known destination
and the related trajectory is represented as a straight line going from its current
location to the destination. The speed of the aircrafts is known and constant, and
it is assumed that aircrafts fly in layers. The contribution of the paper is a linear
model to modify aircraft routes in order to avoid a collision when two or more
aircrafts become sufficiently close to each other. The model considers real dynamics
constraints to be more realistic.

Another domain where collision-avoidance is well studied is robotics. In this
domain, when a robot is planning its route (its possible trajectory) it should consider
known obstacles and avoid them. Some works include [70], [71], [72], [73]. [72],
for instance, uses a dynamical system-based approach to deviate the robot from
the obstacles. [73] proposes a behaviour-based multi-robot collision avoidance to
efficiently coordinate the simultaneous navigation of large robot teams.

In summary, the leitmotiv of collision avoidance is to establish a set of actions,
in real-time, to prevent collisions. To this end, the related works take into account
both the physical properties and the type(s) of the (moving) objects considered.

For what concerns avoidance detection, which is the domain covering our work,
the goal is to determine whether a moving object has avoided another object, may
be it static or moving. We note that this domain is remarkably different from the
former one. Indeed, while in collision avoidance the main goal is to change the route
of a moving object considering some of its physical properties (e.g. mass, center of
gravity, steering angle), in avoidance detection the goal is to discover if a trajectory
has deviated from another trajectory considering only historical movement traces.
In avoidance detection, to the best of our knowledge, there are basically two works:
[59] and [60]. The former discovers moving objects that avoid static objects, and
does not search for avoidances between moving objects. The latter is closer to our
work, in that it looks for avoidance behaviors between moving objects. Still, as
mentioned before, [60] searches for general avoidance and attracting relationships
based on frequency of meetings, since it proposes a statistical approach based on
permutation test: for each pair of moving objects the method outputs a value ranging
in the interval [0, 1] which expresses a global estimate of the level of attraction or
avoidance between them.

4.3. Preliminaries 115

With respect to the aforementioned works our work has a different objective,
namely identifying each single occurrence of avoidance behavior between moving
objects. Moreover, we distinguish various kinds of avoidances trying to determine
who is avoiding who. More precisely, an avoidance occurrence is defined as a situa-
tion in which two objects are moving towards the same area, but either one or both
change behavior whenever they come close enough to be aware of each other.

4.3 Preliminaries

Moving objects are entities having a time variant position, uniquely determined at
each time instant and possibly undefined. A trajectory is a continuous part of the
movement of an object [3]. For the sake of simplicity, in the following we will restrict
to the 2D Euclidean space, but note that the generalization to higher dimensional
spaces is straightforward.

Definition 10. [Movement and trajectory] The movement of an object o is a con-
tinuous function M, : RY — R? from the real positive numbers, representing time
instants, to 2D space. Given an object o and a time interval [tBegin, tEnd |, a
trajectory T is the restriction of the movement M, of the object to the given time
interval. The spatio-temporal position of the object at tBegin (resp. tEnd) is called
the Begin (resp. End) of the trajectory.

Often, in mobility applications, trajectories are only partially known, usually at
specific time instants that correspond to position update actions.

Definition 11 (Trajectory point). A trajectory point, or trajectory sample, of a
tragectory T is a tuple (x,y,t), where T(t) = (x,y) is the object position at time t
(called the timestamp of the trajectory point).

The set of known positions of a moving object during the definition interval of
a trajectory is named trajectory track, or trajectory sampling.

Definition 12 (Trajectory track). Given a temporally ordered sequence (ty, ..., t,)
of timestamps, the track of a trajectory T for the given timestamps is the tempo-
rally ordered sequence of trajectory points (p1,...,pn), where p; = (x;,y;,t;) and
(@i, yi) = T(t:).

A finite sequence of trajectory points can be paired with a finite sequence of inter-
polation functions that describe in an analytical and continuous way the movement
of the object between each pair of consecutive trajectory points in the sequence.
This sequence of pairs of trajectory points and interpolation functions is named
continuous trajectory representation.

116 4. Detecting avoidance behaviours between moving objects

4 t
A
t!
L
B— = | !
t' 3 L
dist(A(t'),B(t') <o
meet(A,B,[t,, t,]) = True meet(A,B,[t, , t,]) = False

Figure 4.2: A meets B (the distance in ¢’ is less than 0) during [t1, ts] but not during
[ta, t3].

4.4 Avoidance

An avoidance between two moving objects occurs when both are moving towards the
same area at the same time, but either one or both change their behavior when they
come close enough to be aware of each other. In the following, with a slight abuse
of terms, we will indistinctly use the terms trajectory and object when referring to
the avoidance. This is acceptable since the trajectories referring to the same object
do not temporally overlap.

In order to define the avoidance concept, we first introduce the predicates meet
and will-meet. The first one expresses the fact that in a certain interval two trajec-
tories become sufficiently close to be considered in contact, whereas the second one
states that the forecast of these trajectories, determined by some technique on the
basis of some observed behavior, will lead to a contact.

Definition 13 (Meet). Given two trajectories T, and Ty, a time interval [ty, o]
and a distance threshold &, we define the predicate meets as

meets(Ty, Ty, [t1,t2]) = Tt € [t1, ta]. dist(To(t), Ty(t)) <
where dist(pq, py) is the Euclidean distance of the points p, and py.

When the predicate is satisfied we also say that T, meets Ty, during [t;, t2] with
threshold §. In case the threshold ¢ is evident from the context it will be omitted
in the predicate notation, writing meet instead of meets.

Figure 4.2 illustrates a pair of trajectories, A and B, during the time interval
[t1,t3]. The predicate meet is true for [t1,ts], since at time ¢’ the distance of the
two trajectories is less than §. Note that for the interval [t,t3], even if the two
trajectories have a spatial intersection X the meet predicate is false since the distance

4.4. Avoidance 117

— Trajectories

Road network

Predictors
= = [inear

== Taylor
Network based

Figure 4.3: Different kinds of predictors based on several interpolations and on
movement constraints (road network).

between the two moving objects at any instant ¢ € [ta, t3] is always greater than J.
In fact, A and B cross X at different time instants.

Having a way of predicting the movement of the trajectories on the basis of what
happened in the past, we can establish if two trajectories will meet each other or
not. We next introduce an abstract notion of movement predictor clarifying which
are the expected properties.

Definition 14 (Movement predictor). Given a movement domain, consisting of
all possible movement functions, M = {M | M : R — R*}, and a temporal domain
R™, a movement predictor is a functional

forecast : M x (RT x R") — M such that
VM, M" € M. M |jp1= M' |jo1] = forecast(M, [t1,t2]) = forecast(M’, [t1,12])

The functional forecast maps a movement function M to its forecast movement
into the interval [t1, 5] by exploiting only the behavior of M in the past interval
10,¢1]. Tt can be defined in different ways depending on the contexts. Commonly,
it is based on the assumption that the behavior does not change with respect to
the recent past of the trajectory. For instance, in case of objects that move freely
in space, we can use the Taylor series in order to estimate the next positions of
the trajectory, and the more terms of these series we compute, the more precise we
obtain the approximation, e.g., the first term preserves the direction, the second
one the curvature. On the other hand, if the object movement is constrained by a
network, we can exploit the network to predict where the object is going.

Figure 4.3 shows several different forecast functionals for the interval [ti,5].
The solid line represents the actual trajectory. The dashed, green line models a
linear prediction, preserving the direction at time ¢;; the dash-dot, red line shows
a forecast based on a higher order Taylor series, preserving several derivatives of
the trajectory; and the dotted, blue line in the right figure illustrates a prediction
based on the knowledge of the road network. In the following examples and in the

118 4. Detecting avoidance behaviours between moving objects

will-meet(A,B,[t , t,]) = True

Figure 4.4: According to the forecasts, A will meet B (the distance will be less than
J) at some time ¢’ in the time interval [t).

experimental section, we will use a linear movement predictor and we will employ
the same notation as in Figure 4.3: solid lines for actual trajectories and dashed
lines for the linear forecast.

Definition 15 (Will-meet). Given two trajectories T, and T,, a time interval
[t1,t2], a movement predictor forecast and a threshold §, we define the predicate
will-meets as

will-meets(Ty, Ty, [t1, t2]) = meets(forecast(T,, [t1, ta]),forecast(Ty, [t1, ta]), [t1, t2])

When the predicate is satisfied we also say that T, is expected to meet T, during
[t1,12] with threshold ¢. In case the threshold § is evident from the context it will
be omitted in the predicate notation, writing will-meet instead of will-meets.

Figure 4.4 illustrates an example where the predicate will-meet holds: A and B
are supposed to meet at time ¢, provided that they maintain the same speed and
direction they had at time t; (we used a linear movement predictor).

With these definitions we define an avoidance between trajectories as an event
that happens in a time interval where the prediction is a meet between two trajec-
tories but this meet does not occur.

Definition 16 (Avoid). Given two trajectories T, and Ty, a timestamp t, a time
interval [t1,ts], and a threshold &, we define the predicate avoids as

avoids(Ty, Ty, [t1, t2]) = will-meets(T,, Ty, [t1, t2]) A ~meets(T,, Ty, [t1, ta])

When the predicate is satisfied we say that T}, and T}, avoid to meet, with thresh-
old 0, during [t1,?s]. In case the threshold § is evident from the context it will be
omitted in the predicate notation, writing avoid instead of avoids.

The duration of the time interval [t1, %3] is a measure of the future awareness
of the moving objects (e.g., a person or an animal), that is the amount of time
they are able to reliably forecast all of the involved trajectories to avoid collisions
or encounters.

Figure 4.5 shows two different cases of avoidance in which trajectory B exactly
fulfills the prediction (dashed green), whereas trajectory A behaves differently with

4.4. Avoidance 119

will-meet(4,B.[t , t,]) = True will-meet(4,B,[t, , t,]) = True
meet(A,B,[t, , t,]) = False ; meet(4,B,[t, , t, |) = False
avoid(4,B,[t , t,]) = True avoid(4,B,[t, , t,]) = True

t A

%
A
*. t L
i Sy L q
B—r I~ T
"s L o ;
A . Forecast position of A at time t'
* Actual position of A at time t'

Figure 4.5: A avoids B during the time interval [t1, t5]: meet is expected according
to the forecast computed at time t; but no actual meet happened during the given
time interval.

respect to the forecast (dashed green): on the left, A changes direction after time ¢y,
and on the right it reduces its speed. As a result, the forecast of the two trajectories
(A and B) are expected to meet at time ¢’ € [t;, 2], but the two trajectories do not
actually meet since their distance is always larger than ¢ (omitted for simplicity in
Figure 4.5) during [t1,?s]. Thus, in both cases the avoid predicate is true.

4.4.1 Avoidance Classification

The concept of avoidance is related to a change of behavior of one or both the in-
volved objects such that a predicted meet does not occur. We define a new predicate,
change-behavior, to better characterize the different kinds of avoidance. Informally,
we regard the behavior of an object as changed during a time interval when there
is a difference between the actual trajectory and its forecast that is sufficient to
cause missed meets without any change in the other trajectory. Intuitively such a
difference should have at least the same magnitude as the meet threshold 4.

Definition 17 (Change-behavior). Given a trajectory T, a time interval [t,ts],
and a meet distance threshold §, we define the predicate change-behaviors

change-behaviors (7, [t1, t2]) = 3t € [t1,to], dist(forecast(T), [t1,t2])(t), T'(t)) > ¢

where forecast(T, [t1,t2])(t) and T(t) are respectively the forecast and the actual po-
sition for trajectory T at time t.

When the predicate is satisfied we say that T' changes its behavior, with threshold
J, during [t1,t2]. In case the threshold 0 is evident from the context it will be omitted
in the predicate notation, writing change-behavior instead of change-behaviors.

Figure 4.6 focuses on trajectory A of Figure 4.5, showing how it changes its
behavior. On the left it changes direction whereas on the right it reduces the speed
with respect to the forecast (green dashed line). In both cases the distance at t’

120 4. Detecting avoidance behaviours between moving objects

change-behavior(4,[t , t, |) = True

5
4 t change-behavior(4,[t, , t, |) = True
t;iiiif tl ,&
1o Lz
‘s v A ?\
s ', N
N '
t "\tj
— Actual positions L
-- Forecast positions

Figure 4.6: Trajectory A changes behavior: at some time ¢’ during [¢1, t2] the distance
of the actual position from the forecast position is greater than 4.

between the forecast and the actual trajectory is greater than §, hence the predicate
change-behavior holds.

Based on the above definition, we distinguish among weak, individual and mutual
avoidance.

Definition 18 (Avoidance classification). Given two trajectories T, and T, and
a time interval [t1,ts] such that avoids(T,, Ty, [t1,ts]) is true, we classify that avoid-
ance in the following way:

([mutual if change-behaviors(Ty, [t1,ta]) A
change-behaviorg (7T}, [t1, ta])

type_avoids(T,, Ty, [t1,t2]) = § weak if —change-behaviory(Ty, [t1,t2]) A

—change-behavior (T}, [t1, t2])

\ individual otherwise

In other words, we have a mutual avoidance when there is an evident change
of behavior for both trajectories, an individual avoidance when only one trajectory
significantly changes its behavior, and a weak avoidance when there is an avoidance
despite the fact that the behavior changes are minimal for both trajectories.

Figure 4.7 shows examples of mutual and weak avoidance, whereas avoidances
in Figure 4.5 are both individual. We recall that trajectories are represented in solid
black, forecasts in dashed green, and their specific positions at a given time are
circled, respectively in solid gray and dashed green. In the first case, on the left,
A changes its behavior by reducing its speed and this is detected since there exists
a time ' € [ty,1s] such that the distance of the forecast position from the actual
position is greater than . The same happens for B that changes its direction. Since

4.4. Avoidance 121

A g B A
Z L
|
t | -
wi S _--‘-_--
A e |
|
t g
change-behavior(4,[t, , t,]) = True B change-behavior(4,[t, , t,]) = False
change-behavior(B,[t, , t,]) = True change-behavior(B,[t, , t,]) = False
avoid(4,B,[t,, t,]) = True avoid(A,B.[t , t,]) = True

Figure 4.7: On the left, both A and B change behavior to avoid each other (mutual
avoidance). On the right, according to the forecast A and B should meet but this
does not happen even if both did not significantly change behavior (weak avoidance).

both trajectories changed behavior during interval [¢1, 5], this is a mutual avoidance.
In the second case, on the right, at any time in [t1,?5] for both trajectories the
distance of the forecast position from the actual position is less than § (the height
of the gray rectangle). Nevertheless, trajectories were expected to meet but did
not actually meet (their distance is larger than §) and thus the avoid predicate is
true. Since the change-behavior predicate is false for both trajectories, this is a weak
avoidance.

4.4.2 Problem Statement

In this work we address two problems of increasing complexity regarding the detec-
tion of avoidance behaviors between moving objects: the avoidance decision problem
(i.e., decide whether a pair of trajectories in a given temporal interval satisfies the
predicate avoid) and the avoidance search problem (for every possible pair of tra-
jectories find those time intervals such that the predicate avoid holds).

We define both problems on trajectory tracks since trajectory datasets usually
consist of sets of samplings (one set per trajectory). To obtain the continuous
representation of a trajectory we use an interpolation function, namely interp, and
we denote as interp(7T) the application of interp to the trajectory track 7. It is
worth mentioning that in our experiments presented in Section 4.6 we use linear
interpolation.

We check avoidances in intervals starting at the samples of a trajectory and the
duration of the interval is based on a look-ahead time At. As said previously, At can
be interpreted as a measure of the future awareness of moving objects. Consequently,
At must be chosen according to their characteristics. For instance, pedestrians have
a consistently smaller look-ahead time than big ships (e.g., cargos), since in the
latter case, due to the tonnage and the size of the objects, changes of heading or
speed are necessarily much slower.

122 4. Detecting avoidance behaviours between moving objects

Another parameter which is strictly related to the characteristics of the moving
objects under analysis is the meet threshold 0. Indeed, if we consider two completely
different classes of moving objects, e.g., pedestrians and ships, it is evident that
the spatial extent of the actions needed to change their movements, as well as the
distance at which they are considered close to another object of the same type, will
be typically different and this fact can and should influence the selection of 9.

The first problem we address is the decision problem.

Definition 19 (Avoidance decision problem). Given two trajectory tracks T,, Ty,
the set of their timestamps T'S = {timestamp(p) | p € To V. p € Ty}, a time instant
t, such thatt € T'S, a look-ahead interval At, and a meet threshold &, the avoidance
decision problem consists in determining whether

avoids(interp(T,), interp(Ty), [t,t + At]) holds.

The second problem we address is a search problem: for each pair of trajectories
we look for all the timestamps belonging to one of the two trajectory tracks such
that the predicate avoid holds and we determine the associated type of avoidance.
As a first step we formulate this problem for a pair of trajectories in order to find the
set of timestamps and the relative avoidance type where an avoidance between such
trajectories is detected. Then the notion will be generalized to a set of trajectories.

Definition 20 (Avoidances set). Given two trajectory tracks T,,T,, the set of
their timestamps T'S = {timestamp(p) | p € T.Vp € Tv}, a look-ahead time At and
a meet threshold 0, we define

avoidancess(Ta, To) = {(t, type) | t € T'S A avoids(interp(T,), interp(Ty), [t,t + At]) A
type_avoids(interp(Ty), interp(Ty), [t, t + At]) = type}

In words, a pair (¢,type) € avoidancess when t is a timestamp in one of the
trajectory tracks and the predicate avoid holds for the two trajectories in the interval
[t,t + At]. type is the kind of the detected avoidance.

Definition 21 (Avoidance search problem). Given a set of trajectory tracks D,
a look-ahead time At, and a meet threshold 6, the avoidance search problem consists
in finding the set of tuples

{(Ta To, (t,type)) | Ta € DATy € DA (t, type) € avoidancess(Ta, Ty) }

each consisting of a pair of trajectory tracks T,, Ty, a time instant t and a type type
such that T, and Ty, avoid to meet, with threshold §, aftert for At time and the kind
of avoidance is specified by type.

In order to get a more compact representation of the result set, we next replace
the set of timestamps for a couple of trajectories (avoidances(T,,Tp)) with a disjoint
set of intervals. The idea is to join two avoidances if the intervals where they are
detected overlap. To this aim, we introduce the notion of repeated avoidance in an
interval.

4.5. Algorithmic Framework 123

Definition 22 (Repeated avoidance). Given two trajectory tracks T,,Ty, the set
of their timestamps T'S = {timestamp(p) | p € To Vp € T}, a look-ahead time
At, and ty,ty € T'S we say that the interval [ty,1s] contains a repeated avoidance,
written repeated_avoids(Ty, Ty, [t1,t2], type), when for any t € [ty,ts] there exists
t' € TS such that t € [t',t' + At] and (t',_) € avoidancess(Ta,Tp)}. Moreover,
type = sup{type’ | t' € [t1,ta) N TS A (t',type’) € avoidancess(Ty, Ty)} where

weak if Ve e X x = weak
sup(X) = { mutual if 3z € X x = mutual

individual otherwise

Hence, the compression of the set of avoidances consists of a set of maximal
intervals satisfying the repeated_avoid predicate. The type of a repeated avoidance
is the upper bound of the types of the avoidances occurring in the associated maximal
interval.

Definition 23 (Compression of the set of avoidances). Given two trajectory
tracks To, Ty, the set of their timestamps T'S = {timestamp(p) | p € To V p € Tp},
a look-ahead time At, the compression of the set avoidancess(T,,Tp) is defined as
follows:

compressed_avoids(Ta, To) = {([t1, ta], type) | t1,t2 € T'S
A repeated_avoids(Ty, Ty, [t1, 2], type)
A [t1,ta] mazimal}

4.5 Algorithmic Framework

In this section, first we present an algorithm for solving the avoidance search prob-
lem (Section 4.5.1) and then we make some considerations on the choice of the right
parameters to detect avoidances. As a consequence, we propose two different strate-
gies for using our algorithm: the simple detector and the fused detector. The simple
detector consists of a single execution of the algorithm with a fixed set of parame-
ters whereas the fused detector consists of multiple executions of the algorithm with
various parameter sets and the different results are merged into a single result set
(Section 4.5.2).

4.5.1 An Algorithm for Avoidance Detection

In order to solve the problems posed in Section 4.4.2 we propose Algorithm 11 which,
given a finite set of trajectory tracks D, a meet threshold § and a look-ahead time
At, returns a set of avoidance behaviors A, consisting of tuples specifying a pair of
trajectories, a compressed interval in which the avoidance is detected between such
trajectories and the relative type of avoidance.

124 4. Detecting avoidance behaviours between moving objects

Algorithm 11: AVOIDANCE BEHAVIOR DETECTION

Input: Finite set of trajectory tracks D, meet threshold §, look-ahead time At.
Output: Set of avoidance behaviors A.

1 begin
2 A=10
foreach T),,T,, € D with m <n do

4 o = get FiirstU se ful SampleTime(Ty,, At)

5 e = get FirstU se ful SampleTime(T,,, At)

6 tlast = get LastU se ful SampleTime(Ty,, At)

7 tlast = get LastU se ful SampleTime(T,, At)

8 while (54 < tlast A geurm < tlost) do

9 if (¢S <8 then
10 L peurr — tf#rr
11 else
12 L feurr — geurr

n
13 if (avoids(interp(Ty,), interp(Ty), [t <" + At])) then
14 type = weak
15 if (change_behavior(interp(Ty,), [t , " + At]) A
change_behavior (interp(T,,), [t t°" + At])) then

16 t type = mutual

17 else if change_behavior(interp(Ty,), [t t°" + At]) V

change_behavior(interp(Ty), [t t°“"" + At]) then

18 L type = individual

19 ([t1,to], typelast) = poplastResult(A, Ty, T),)
20 if to + At >=t“"" then
21 L addToResultSet(A, Tp,, Ty, [t1,t""], sup{typelast, type})
22 else
23 addToResultSet(A, Ty, Ty, [t1, ta], typelast)
24 addToResultSet(A, Ty, Ty, [t <47, type)
25 if t2 < ST then
26 L te" = nextSampleTime(Ty,, t54™)
27 else if ¢ < ¢7'"" then
28 L tem = nextSampleTime (T, t5*")
29 else
30 tev" = nextSampleTime(Tp,, t54)
31 te" = nextSampleTime (T, t5"")
32 | return A4

4.5. Algorithmic Framework 125

The algorithm starts by considering every possible pair of trajectory tracks in
T and, for each pair, it determines the first and last useful sample timestamps
with respect to the look-ahead time At, (functions getFirstUsefulSample Time and
getLastUsefulSample Time, lines 4-7). More precisely, if ¢37 and t¢¢ denote, re-
spectively, the timestamps of the very first and last samples of a trajectory track
T, then the timestamps of the first and last useful samples with respect to At
are determined as getFirstUsefulSampleTime(T,,, At) = min{t | p € T,, N p =
(z,y,t) A t >t + At} and getLastUsefulSample Time(T,,, At) = max{t | p €
T AN p=(z,y,t) At <t — At}

Once the first and last useful samples of both trajectory tracks are determined
(if any), the algorithm starts scanning the trajectories from these samples (line 8).
The sample with the smaller timestamp, ¢t is chosen (lines 9-12). Then, the
algorithm proceeds with the avoidance search. First, it checks whether there is a
weak avoidance in the interval [t ™" + At] (line 13): if there is an avoidance the
algorithm determines whether the avoidance is mutual (line 15) or individual (line
17) by properly testing the change-behavior predicate. It could happen that there
is not enough evidence to further specify the avoidance, hence it remains labeled as
a weak avoidance.

Once the avoidance has been detected, the algorithm removes the last avoidance,
identified by [t1,ts] with type typelast, for the two trajectories under investigation
T, T, (line 19). It checks whether the interval [¢1,ts + At] overlaps the interval
[t ¢ + At] and in this case it merges the two avoidances, inserting in the result
set the interval [t;,t®"] associated with the least upper bound between typelast
and type (line 21). The definition of sup is given in Definition 22. Otherwise the
algorithm inserts back the avoidance [tq,ts] with type typelast in the result set and
it adds also the new avoidance [t t°“""] with type (line 23-24).

After having processed a sample, the function nextSample Time returns the times-
tamp of the next sample(s) in the trajectory track(s) (lines 25-31).

As a final consideration we observe that our algorithm can be easily adapted to
more complex processing pipelines, where preprocessing phases are allowed to filter
out unnecessary information prior to the avoidance behavior detection phase, hence
reducing the overall amount of data to be analyzed. Moreover, the algorithm can
be also parallelized with respect to the set of trajectory pairs under investigation,
since each pair can be processed separately in a core, thus entailing linear speedups
with respect to the number of cores used.

4.5.2 Avoidance Detectors

When analyzing a dataset we have to take into consideration the possibility that,
depending on the typology of the moving objects (e.g., cars, pedestrians, airplanes)
and on the characteristics of their movements, different kinds of avoidance behaviors
may require the usage of different ¢ thresholds in order to be detected. For exam-
ple, different trajectory pairs having different average speeds may exhibit avoidances

126 4. Detecting avoidance behaviours between moving objects

characterized by different ¢ thresholds. Indeed, faster moving objects usually exhibit
avoidances characterized by larger ¢ thresholds than those observed when consid-
ering slower moving objects. Another observation is related to the fact that, even
when considering a set of trajectories having the same average speed, different kinds
of avoidance behaviors may be exhibited by the trajectories, thus possibly requiring
the usage of different ¢ thresholds in order to be (separately) detected.

In light of these considerations we present two different methods for analyzing a
set of trajectories based on the algorithm proposed. We call these methods simple
detector and fused detector.

The simple detector consists of a single run of the algorithm using a fixed pair
of parameters At and 0. Given a pair of trajectory tracks (7,,75), a meet threshold
0 and a look-ahead time At, the simple detector returns the set:

RSN, = {Li}izt,m = {0t izt m (4.1)

where ! and ¢! (with ¢/ < t!) denote the starting and ending timestamps of the
i—th avoidance, I; = [t',t!] denotes a temporal interval during which an avoidance

with i # 7.

The fused detector method is motivated by the fact that, as we observed before,
different kinds of avoidance behaviors may require the usage of different thresholds
0 in order to be detected. This leads to the idea of considering several runs of the
algorithm with different parameters and then suitably merging the results. We say
that this fusion operation yields a fused detector.

Given a fixed look-ahead time At and a sequence of meet thresholds (d1, ...,),
where 0; < ...0; < ... < Jp, we can fuse the result sets obtained for each ¢;, still
obtaining a disjoint set of temporal intervals. Specifically,

RSG™ = | RS, (4.2)

j=1,..,h
where the result set RS%""’éh) is obtained by fusing the interval sets obtained by all
the simple detectors with parameters § € {1, ...,d,}. The operation |4 represents a

simple set-union of the various intervals, except for the fact that it merges groups of
overlapping intervals, namely groups of intervals where for each interval I, there is at
least another interval I’ such that I NI’ # (). Each group of overlapping intervals is
replaced by a single larger interval spanning the overlapping intervals. We note that
this guarantees that the final fused result set is still composed of disjoint intervals,
each one representing a distinct avoidance.

4.6 Experimental Evaluation

The goal of this section is to evaluate the proposed algorithm under different points
of view. First, we quantitatively test the effectiveness of the algorithm by analyzing

4.6. Experimental Evaluation 127

the ability to correctly detect expected avoidance behaviors (Section 4.6.2). To this
end we use an ad-hoc annotated dataset, our ground truth, created for the pur-
poses of this work (Section 4.6.1). Second, we assess the ability of the algorithm in
highlighting interesting and previously unknown patterns emerging from avoidance
behaviors when using datasets for which no prior knowledge related to avoidance
behaviors is available (Section 4.6.3). We left out experimental studies tackling
performance or scalability issues: first, the aim of this work is to provide an algo-
rithm (Algorithm 11) able to correctly detect avoidance behaviours between moving
objects according to the formal framework introduced in Section 4.4; second, we
recognize that a preprocessing step, executed before the proposed algorithm, would
eliminate lots of useless computations (e.g., pairs of spatially faraway trajectories
may be safely ignored). As a consequence, we deem that considering performance
and scalability issues would be interesting in presence of some preprocessing step.

4.6.1 Experimental Setup

In order to quantitatively evaluate the effectiveness of the avoidance detectors (sim-
ple and fused), we need to study how the quality of result sets produced according
to Equations (4.1) and (4.2) change when we adopt different meet thresholds ¢ and
look-ahead times At.

To this end, the results obtained by detectors are compared with a ground truth
of annotated trajectories (Section 4.6.1.1). Moreover, we need to define numerical
metrics of quality (Section 4.6.1.2).

4.6.1.1 Ground truth of annotated trajectories

We exploit a ground truth of annotated trajectories, explicitly created for this work,
whose data derive from real GPS observations of moving objects collected in Flo-
rianopolis and Venice. The dataset contains an overall amount of 86 trajectories
representing pedestrian movements, for a total of 7,834 samples and an average
sampling rate of one second.

Trajectories are logically grouped in pairs (for a total of 43 pairs), where each pair
represents a single test case. According to entities behaviors, an(multiple) avoid-
ance(s) may occur or not. When an avoidance occurs, the average distance where the
entities start to change their behavior (individually or mutually) is approximately
equal to 4 meters, even though few avoidances happen at greater distance.

A total of 24 trajectories (12 pairs) were collected in Florianopolis: among these,
10 pairs are labeled as positive, since they exhibit at least one avoidance. Among the
positive pairs, one pair exhibits two distinct avoidances while the remaining ones a
single avoidance.

As regards data gathered in Venice, a total of 62 trajectories (31 pairs) were
collected: among these, 22 pairs are labeled as positive. Among the positive pairs,
7 exhibit two avoidances while the remaining ones a single avoidance.

128 4. Detecting avoidance behaviours between moving objects

For each positive pair, the set of intervals during which the avoidance(s) occur(s)
is reported as well. The positive/negative labels and the temporal intervals referring
to single avoidances were given by human assessors. This may result in imprecise
annotation of temporal intervals, since their span may depend on the perception of
ASSeSSOTs.

We also keep separate data belonging to Florianopolis or Venice, since the algo-
rithm can trivially filter out (spatially or temporally) pairs of trajectories coming
from two different sets.

4.6.1.2 Quality Metrics

In order to evaluate the effectiveness of the (simple/fused) detector that solves the
decision problem (Definition 19), for each pair of trajectories we check the correctness
of the detector by verifying if the yes/no answer matches the positive /negative label
in the ground truth. The detector returns yes if a non-empty set of avoidances is
detected, no otherwise.

On the other hand, in order to evaluate the quality of the detector that solves
the search problem (Definitions 21 and 23), for each positive pair correctly detected
we also inspect the temporal intervals returned by the detector, by comparing them
with the ones associated by the human assessor in the ground truth.

Decision problem. For this study we recur to well-established metrics commonly
used in data mining to evaluate the quality of a classifier [74]. Given a set of N pairs
of trajectories, we evaluate the results of the detector algorithm by constructing an
integer confusion matriz (see Table 4.1), a 2 x 2 table where the number of true
positives (tp) and true negatives (tn) are given in the main diagonal, while the
anti-diagonal contains the number of false positives (fp) and false negatives (fn)
detected. Clearly, N =tp +tn+ fp+ fn.

We call positive any trajectory pair in the ground truth that is labeled as avoid-
ance behavior = yes, while we use the term negative otherwise. Hence, tp and tn
correspond to the pairs which the detector labels correctly yes or no, respectively,
while fp and fn correspond to mislabeled pairs. Specifically, fp (fn) are pairs that
the detector labels as positive (negative), but in fact appear as negative (positive)
in the ground truth.

Detected
positive | negative
Actual posm.ve tp fn
negative fp tn

Table 4.1: Confusion matrix.

4.6. Experimental Evaluation 129

Recall and Precision are two widely used metrics employed in applications where
successful detection of positive cases, i.e., in our case trajectory pairs for which an
avoidance behavior is observed, is considered more significant than detection of other
behavior. A formal definition of these metrics is given below:

v Recall, r = W
tp+ fp tp+ fn
Precision determines the fraction of pairs that actually turn out to be positive in the
group the detector algorithm has declared as positive, i.e., pairs that the algorithm
detects as exhibiting an avoidance behavior. The higher is the precision, the lower is
the number of false positive errors made by the detector algorithm. Recall measures
the fraction of positive examples correctly detected by the algorithm. Classifiers
with large recall have very few positive pairs in the ground truth mis-detected as
negative.

Note that the two measures do not directly test the capability of the algorithm in
detecting correctly the negative pairs, namely the number tn. However, if tn turns
out to be less than the maximum value allowed, corresponding to the pairs in the
ground truth that actually do not exhibit any avoidance behavior, as a consequence
we should observe the increasing of fp, and thus a reduction of the precision.

Precision p and recall » can be summarized into another metric known as F-
Measure, defined as follows:

Precision, p =

2rp

F-Measure, F =
r+p

where 0 < F' < 1. F represents a harmonic mean between recall and precision.
Since the harmonic mean of two numbers tends to be closer to the smaller of the
two numbers, we obtain a value of F' close to 1 only if a detector performs well in
terms of both precision and recall.

Search problem. As previously stated, for positive pairs correctly detected by the
simple/fused detector we also inspect the temporal intervals returned by comparing
them with the ones associated by human assessor in the ground truth.

Let TP be the set of positive pairs p; in the ground truth that were correctly
identified by the detector, i.e., pairs p; for which the result set returned by the
algorithm is not empty. Assuming that we are using a given combination At and
§, for clarity purposes in this context we denote such result set as RS‘, omitting
the parameters symbols in the notation. For each pair p; € TP, we know the set of
actual disjoint temporal intervals G' = {I,,...,T,} in the ground truth, associated
with £ > 0 avoidances. The detector, either single or fused, also returns a set of m
intervals RS' = {Ii,...,I' }.

Let G' = {I; € G' | A} € RS' s.t. (I;NI} # 0) A (AT}, € Gk # j s.t. T,N I} #
0}, G C G, be the set of intervals in G* such that each interval overlaps with only
one interval in RS, and the latter does not overlap with any other intervals in G

130 4. Detecting avoidance behaviours between moving objects

Finally, we can quantitatively evaluate the quality of the results for all the pairs
p; € TP by Q-Measure:
S
Q-Measure = pictp 6]
|tp]

where 0 < Q-Measure < 1. Ideally ()-Measure should be equal or close to 1.

4.6.2 Analysis of the Ground Truth Dataset

In this section we evaluate the results of the algorithm when applied to the ground
truth of annotated trajectories. First, in Section 4.6.2.1 we present some visual
examples of the output of the algorithm. Then, in Sections 4.6.2.2 and 4.6.2.3 we
show quantitatively the results obtained by exploiting the (simple/fused) detector
that solves the decision or the search problem.

In all the experiments described below, we discuss the various results obtained
by changing the two main parameters of our avoidance detection algorithm, namely
At and 9, whose values are reported in seconds and meters, respectively.

4.6.2.1 Visual inspection of avoidances

In order to visualize some avoidances detected by our algorithm on the ground
truth dataset, we conveniently use Google Earth. Specifically, the avoidances shown
in Figure 4.8 refer to trajectory pairs collected in Florianopolis. The subset of
segments highlighted in purple represents the set of samples over which an avoidance
is detected. The segments highlighted in yellow and white represent, respectively, a
fixed sequence of samples occurring before and after the avoidance detected by the
algorithm. Figure 4.8(a) represents an individual avoidance by entity ID11 (which
moves initially from bottom-right to top-left), slowing down at some point in order to
avoid ID12 (moving from top-right to bottom-left). Figure 4.8(b) depicts a mutual
avoidance where ID21 (moving from bottom-left to top-right) and ID22 (moving
in the opposite direction) change their direction as soon as they get close. Finally,
Figure 4.8(c) depicts a mutual avoidance where the two entities invert their direction
as soon as they get too close.

4.6.2.2 Results for the Decision Problem

In this section we evaluate the ability of the detectors (simple detector and fused
detector) of correctly identifying the trajectory pairs of the ground truth that are
positively /negatively labeled (decision problem).

Simple detector. For each pair of parameters At and 0, we build the confu-
sion matrix by considering all trajectory pairs in the ground truth, then determine
precision /recall, and finally compute the F-Measure scores. Figure 4.9 reports the
scores obtained by the algorithm for all combinations of parameters. Specifically,

4.6. Experimental Evaluation 131

Figure 4.8: Examples of three visual inspections performed on three different avoid-
ances returned by the algorithm.

F-Measure

0.2 . .

3 6 9 12 15 18
Meet threshold (meters)
At2sec. —+— Atdsec. —K— At6sec. At 8 sec. —@—
At3sec. —~ At5sec. —1— At7sec.

Figure 4.9: Decision problem with simple detector: F-Measure analysis.

each curve in the plot refers to a distinct At, and shows the F-Measure score as a
function of 4.

For almost all values of At, a common optimal value for the meet threshold o
that maximizes the F-measure score falls in the interval 3, 6]; for larger values of 0,
the score degrades. It is worth noting that these optimal values for § approximately
reflect the average avoidance distance used to physically produce the avoidances for
(positive) trajectory pairs included in the ground truth.

If we compare the various curves within this optimal interval of § values, we
observe that the F-Measure score gets larger whenever the look-ahead time At in-
creases, except for At = 7 and 8, for which the F-Measure score starts decreasing.
We already noticed that At can be interpreted as a measure of the future awareness

132 4. Detecting avoidance behaviours between moving objects

of moving objects. Consequently, At must be chosen according to their characteris-
tics. From our tests, we observe that At values larger than 7 are not suited for the
features of the moving objects in our ground truth. The reason is that we forecast
object behaviors by considering relatively old and thus scarcely relevant movement
data. This induces the detection of some false positive avoidances, which in turn
entails loss of precision with negative effects on the F-Measure.

Fused detector. In the following we show how the overall performance of the
algorithm can substantially be improved by conveniently fusing different result sets
of distinct simple detectors, according to the fusion operator defined by Equation
(4.2).

Given a At, and a sequence of values for §, e.g., (3,6,9), a pair of trajectories
is identified as a positive case, i.e., avoidance behavior = yes, if at least a simple
detector for some ¢ in the sequence identifies one or more avoidance behaviors.
Conversely, if no simple detector is able to recognize any avoidance, the pair is
identified as a negative case, i.e., avoidance behavior = no. Still, for the fused
detector we can build the confusion matrix, by considering all trajectory pairs in
the ground truth, and finally compute the F-Measure scores.

Figure 4.9 shows how the result sets related to At € {4,5,6} yield the best
F-Measures. Thus, we focus on these and, for each At, we compute the F-Measure
related to the fused result sets RSXST?’),RSXSTS’(S:&, . RSS;3’626""’6218> (each one
defined as per Equation 4.2). Results are reported in Figure 4.10, where each fused
result set is represented by its upper 0 threshold in the X-axis. The figure shows
how the fused detector entails substantial improvements in terms of F-Measure (up
to 95%), provided that At is properly chosen according to the dataset features.

In general, we argue that the opportunity of fusing different result sets depends
on the kind of analysis we want to perform. Specifically, it depends on the classes of
avoidance behaviors we want to discover (e.g., only values for § that are relevant for
our purposes should be used for the fusion operation), and on the amount of useful
information an analyst is interested in extracting at the expense of possible losses
in precision (due to the detection of false avoidances).

4.6.2.3 Results for the Search Problem

In this section we assess the quality of the temporal intervals reported by both
detectors (simple and fused), for the positive pairs correctly detected, and thus
included in the set of trajectory pairs TP, where tp = |T'P].

Simple detector. Figure 4.11 reports the Q-Measure scores obtained in the exper-
iments. The experimental findings confirm all the remarks done in Section 4.6.2.2
concerning At and 6. In general, we obtain the best Q-Measure score for the same
parameters At and 0 for which we obtained the best F-Measure scores. We also point
out that using high values of At (where high is relative to the dataset features) may
erroneously induce the fusion of distinct avoidance behaviors, due to compression,

4.6. Experimental Evaluation 133

N Y
K
r /l\ L
— SO g
o
S
g
=
59
0.7 I I I I
3 6 9 12 15 18
Cumulative meet threshold (meters)
At4sec. —+— AtSsec. —~ At 6 sec. —K—

Figure 4.10: Decision problem with fused detector: F-Measure analysis. In X-axis
the values are the maximums of the thresholds 0 used during the fusion operation,
e.g., 9 is the maximum for the set {3,6,9}.

Interval quality

0 | | | |

3 6 9 12 15 18
Meet threshold (meters)
At2sec. —+— Atdsec. —K— At6sec. At 8 sec. —@—
At 3 sec. —~ At 5 sec. At 7 sec.

Figure 4.11: Search problem with simple detector: Q-Measure analysis.

thus potentially mapping multiple avoidances occurring between two trajectories in
the ground truth to a single detected avoidance. This in turn induces losses in terms
of Q-Measure scores.

Fused detector. Also for the fused detector we aim at analyzing the quality of the
temporal intervals for the trajectory pairs in T'P. To this end, we consider again
the fused result sets belonging to {RSXS,TS), RSXS?&‘S:G), s RSX?3’5:6""’6:18>}.

134 4. Detecting avoidance behaviours between moving objects

Interval quality

0.6 | | | |
3 6 9 12 15 18

Cumulative meet threshold (meters)

At2sec. —+— Atdsec. —K— At6 sec. At 8 sec. —@—
At 3 sec. At5sec. —— At7sec.

Figure 4.12: Search problem with fused detector: Q-Measure analysis. In X-axis
the values are the maximums of the thresholds J used during the fusion operation,
e.g., 9 is the maximum for the set {3,6,9}.

Figure 4.12 reports the performance of the algorithm in terms of Q-Measure
score. We can observe how fusing different result sets entails substantial improve-
ments. These improvements are particularly evident whenever the fusion is per-
formed for 0 values close to the average distances used for physically producing
avoidances (0 € [3,6]).

4.6.3 Analysis of a Real World Unannotated Dataset

In this section we consider the AIS Brest dataset, a real world unannotated dataset
containing 824 trajectories related to the movements of 824 ships' nearby Brest’s
harbor [75]. Basic statistics reveal that the dataset contains 5.756.438 points, the
trajectories move at an average speed of 7.77 km /h and most of the trajectories have
an average sampling rate between 1 and 20 seconds. These characteristics make the
dataset quite interesting in terms of the precision with which the trajectories are
described.

By considering the aforementioned statistics, and after a scrutinization of differ-
ent meet thresholds and look-ahead times, according to entities’ features we chose a
meet threshold § of 30 meters and a look-ahead time At of 50 seconds. Indeed, we
argue that for this case study this combination of parameters allows us to capture
interesting patterns, as we will show further on.

Before performing any avoidance detection we preprocess the dataset to remove
points inducing trajectory segments having a speed above 50 km/h (these are nec-

!Each trajectory is uniquely associated with a ship.

4.6. Experimental Evaluation 135

essarily noisy data).

The algorithm detects a total of 1480 avoidances, among which 321 are mutual,
970 individual and 189 weak. Given this considerable amount of information it is
necessary to perform a deeper analysis in order to infer meaningful patterns.

Among the 824 ships, 229 are involved in at least one avoidance. We call this set
as the set of active ships. If we further look at the number of avoidances in which
each active ship is involved, we notice that 8 ships are involved in more than 100
avoidances, while the vast majority - more precisely 196 ships (which constitutes
the 85,5% of the active ships set) - are involved in a number of avoidances between
1 and 10. We call the former set as the set of frequent ships while the rest of the
ships ends up in the set of infrequent ships.

The information above suggests that the frequent ships play a very important
role in the dataset. If we decompose the total amount of avoidances detected by
the algorithm, we find out that the overall amount of avoidances between frequent
and infrequent ships are 973 (65,7% of the result set), while the avoidances between
frequent ships are 386 (26,1%) and between infrequent ones are 121 (8,2%).

If we look at the MMSI codes of the frequent ships in order to find out their
typology (Table 4.2), we have that the top-2 frequent ships are pilot ships, while the
remaining ones are passenger ships and tugboats.

’ MMSI Code ‘ Type ‘ Amount of avoidances ‘
227730220 Pilot ship 414
227005550 Pilot ship 364
227635210 | Passenger ship 194
227592820 | Passenger ship 175
227574020 | Passenger ship 174
227612860 | Passenger ship 158
227574030 | Passenger ship 147
228051000 Tugboat 119

Table 4.2: Frequent ships details.

Given these data we want to answer the following questions:

1. Which are the events producing so many avoidances between frequent and
infrequent ships?

2. Which are the events producing a considerable amount of avoidances between
frequent ships?

3. Is there any kind of recurring pattern causing avoidances between infrequent
ships?

When answering Question (1) we notice a dominant pattern (Figure 4.13) that
we call paired movement event. Through a graphical inspection we observe that

136 4. Detecting avoidance behaviours between moving objects

1D306731000-POST
ID306731000-POST
1D228051000-POST
1D 306731"\0007AVOID

1D228051000;POST

: §7" 10228051000-AVOID, 1R306731000-POST
1D228051000-AVOID ID306731000-AVOID

ID306731[?[DO-AVO\D

1D228051000-AVOID! |

X
ID306731000.PRE
hY

1]
1D228051000-PRE

ID228051000-PRE
1D306731000-PRE
1D228051000-PRE
ID306731000-PRE

(a) Approach (b) Paired movement (¢) Detach

Figure 4.13: Example of a paired movement event involving the frequent ship
228051000. The ships are moving from bottom to top.

almost all these events can be decomposed in 3 phases: during the first phase the
two ships approach each other, mostly when they are entering or exiting the harbor
(approach phase, Figure 4.13a). Then, the ships proceed paired (paired movement
phase, Figure 4.13b) until they approach the docks or they exit the harbor area.
During this intermediate phase some avoidances may emerge or not, depending on
the continuous adjustment performed by both ships in order to maintain the relative
distance. Finally, the ships separate (detach phase), as shown in Figure 4.13c.

Given the typologies of the frequent ships reported in Table 4.2 we argue that
the pilot ships and the tugboats produce these events when they have to pilot (or
tow, respectively) an incoming (or outgoing) ship. For what concerns the passenger
ships, we argue that they adjust their trajectories in order to avoid other infrequent
ships nearby; moreover, the amount of avoidances in which they are involved is
justified by the fact that they are servicing, and thus repeatedly going through, a
fixed route.

In general we expect that these avoidances are mostly distributed in predeter-
mined areas. Indeed, if we plot the avoidances occurring during a two-month window
we see that they are approximately distributed on a fixed path going from the har-
bor’s docks to the strait exit (Figure 4.14). This also gives an idea about the most
dangerous or trafficked areas (especially near the docks).

Concerning Question (2), we found that many avoidances are produced according
to the same pattern observed for Question (1), or when a frequent ship is docking
(and therefore slowing down, hence the avoidance) in the harbor nearby already
docked ships. The latter pattern is observed between frequent and infrequent ships
as well, although with a lesser extent.

Finally, as far as Question (3) is concerned we found out that the second pattern
observed when explaining the avoidances related to Question (2) also occurs, i.e.,

4.6. Experimental Evaluation 137

= A:.
ﬂ-—"’_}"{

~ =% -

“Roscanvel

Figure 4.14: Subtrajectories related to avoidance behaviors detected in a time in-
terval spanning two months ([20/04/2009, 20/06,/2009)).

almost all the avoidances between infrequent ships happen near the docks when one
or more ships are docked while one ship is docking nearby.

138 4. Detecting avoidance behaviours between moving objects

Conclusions

In this dissertation we contributed to the vast field of mobility data research by
addressing two distinct and specific problems. The first contribution, which belongs
to the family of on-line mobility data analyses, tackles the problem of computing
massive amounts of repeated range or k-NN queries over massive moving objects
observations (Chapters 1, 2 and 3). In this contribution we present novel methods,
relying on scalable grid-based spatial indices and on ad-hoc data structures, capable
of addressing efficiently such problem. Since queries are repeatedly issued by the
very same moving objects, also queries continuously change their issuing location
over time. Our solutions are the first known to exploit GPUs in order to speed-
up range and k-NN query processing and, at the same time, effectively contend
with skewed spatial distributions of objects and queries. To achieve these goals
we introduce two hybrid CPU/GPU range and k-NN query processing pipelines -
exploiting query batching, and leverage bitmap-based intermediate data structures
(in the range queries case), as well as a PR-quadtree based spatial index, in order to
effectively exploit the GPUs architectural features. We extensively test our solutions
to study their sensitivity to parameters and data distribution. In such experiments
we prove several arguments, above all that our solutions (i) outperform baseline
GPU approaches and (ii) achieve significant performance gains with respect to the
best known CPU sequential competitors. We also show that (iii) our proposals are
able to outperform advanced GPU-based uniform grid-based solutions, since these
are unable to fully capture the data skewness - an ability which is needed in order
to yield much more uniform workload distributions on GPUs.

As a future direction of research it may be interesting to increase the overall
memory throughput yielded during the execution of the various pipelines phases,
since this represents the main performance bottleneck. This calls for the introduction
of novel, ad-hoc GPU-friendly data-structures coupled with proper memory access
patterns, as well as for possible novel, yet GPU-friendly, spatial indices. Partly
bounded to this challenge, another interesting direction of research would be to
extend our work to spaces having slightly higher dimensionality, which in turn would
require to devise proper spatial indices (and data structures) which can be quickly
constructed and accessed on GPU.

The second contribution (Chapter 4) belongs to the family of off-line analyses
used to conduct mobility data mining, and positions itself in the ample branch of
research dealing with the extraction of mobility patterns from trajectories. Several
algorithms have been proposed for mining different types of trajectory patterns.
However, an interesting behaviour that has not been much explored in historical
trajectories of moving objects is avoidance. Our contribution introduces a new

142 Conclusions

type of trajectory pattern: avoidance between moving objects. We present a set of
theoretical definitions and an algorithm which is able to detect such patterns. The
discovery of avoidances between moving objects is challenging, since the intent of any
moving object may not be immediately apparent from its trajectories. To determine
an avoidance, two objects should move towards the same area, but either one or
both should change their behavior when they come close enough to be aware of each
other. To identify a behaviour change we forecast the movements of both moving
objects and compare them with the actual movements. If the forecasts predict
a meet but the actual movements do not meet, an avoidance is detected. Each
detected avoidance is in turn classified, whenever possible, as individual when only
one moving object changes significantly its behaviour, while it is classified as mutual
when both objects change their behaviour significantly. It is worth mentioning that
a behaviour change is measured through the distance between the forecast movement
and the actual movement. Such generalization prevents from using specific features
such as direction and speed for detecting a change of behaviour. Besides analyzing
the parameters of the algorithm, in our contribution we went one step further by
introducing the idea of a fused detector, which merges the result sets of several
simple detectors (with different meet thresholds) in order to allow the detection of
a possibly broad range of avoidance behaviours.

The algorithm has been evaluated with two real-world datasets. The first dataset
is annotated and it contains pedestrian movements; the purpose of analyzing such
dataset is to verify that the algorithm is able to detect avoidances which are expected
to occur. Indeed, the experiments conducted on this dataset show how the algorithm
is able to detect avoidances expected to occur while guaranteeing the quality of
the results returned. The second real-world dataset, unannotated, contains ship
movements nearby the Brest’s harbour. Since no prior avoidance information is
available, the purpose of analyzing such dataset is to check whether the algorithm
is able to extract interesting evidence from the data. Indeed, by characterizing the
avoidances between ships on the basis of their frequency, their spatial distribution
and by means of visual inspections on the behaviour of frequent ships, we were able
to highlight the most trafficked areas, as well as a frequently recurring event, i.e.,
the paired movement event. We have not compared the results of our algorithm
with other approaches because, to the best of our knowledge, there is no other work
in trajectory analysis literature tackling the detection of the pattern we propose.

Future work includes an analysis on the effect of using different forecast functions
and the definition of a confidence measure to evaluate any avoidance. Another
interesting direction of research is related to the definition of an efficient and fast
preprocessing algorithm able to prune out pairs of trajectories which cannot exhibit
avoidances (i.e., do not intersect spatially) over a given temporal interval, thus
reducing the overall execution time of the algorithm proposed in this work. Finally
we note that our pattern, like others in the related research area, may be used as
a tool to devise more advanced and complex analyses, especially when it comes to
semantic trajectories.

Bibliography

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787-2805, 2010.

[2] Nikos Pelekis and Yannis Theodoridis. Mobility Data Management and Ezplo-
ration. Springer, 2014.

[3] Chiara Renso, Stefano Spaccapietra, and Esteban Zimanyi, editors. Mobil-
ity Data: Modeling, Management, and Understanding. Cambridge University
Press, Cambridge, UK, 2013.

[4] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko,
Natalia Andrienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-
Divanis, Jose Macedo, Nikos Pelekis, Yannis Theodoridis, and Zhixian Yan.
Semantic trajectories modeling and analysis. ACM Computing Surveys, 40,
2013.

[5] Claudio Silvestri, Francesco Lettich, Salvatore Orlando, and Christian S Jensen.
Gpu-based computing of repeated range queries over moving objects. In Par-
allel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on, pages 640-647. IEEE, 2014.

[6] Francesco Lettich, Salvatore Orlando, Claudio Silvestri, and Christian S.
Jensen. Manycore processing of repeated range queries over massive moving
objects observations. Under review.

[7] Francesco Lettich, Luis Otavio Alvares, Vania Bogorny, Salvatore Orlando,
Claudio Silvestri, and Alessandra Raffaeta. Detecting avoidance behaviors be-
tween moving objects. Under review.

[8] Dittrich J., Blunschi L., and Vaz Salles M.A. MOVIES: indexing moving objects
by shooting index images. Geoinformatica, 15(4):727-767, 2011.

9] Gray J. and Reuter A. Transaction processing: concepts and techniques. Morgan
Kaufmann Publishers, 1993.

[10] Sidlauskas D., Saltenis S., and Jensen C.S. Parallel main-memory indexing for
moving-object query and update workloads. In Proc. of ACM SIGMOD Conf.,
pages 37-48, 2012.

[11] Kornacker M., Mohan C., and Hellerstein J.M. Concurrency and recovery in
generalized search trees. In Proc. of ACM SIGMOD Conf., pages 62-72, 1997.

144

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Hong S. and Kim H. An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness. ACM SIGARCH Computer Ar-
chitecture News, 37(3):152-163, 2009.

Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennu-
paty, Per Hammarlund, et al. Debunking the 100x gpu vs. cpu myth: an evalu-
ation of throughput computing on cpu and gpu. In ACM SIGARCH Computer
Architecture News, volume 38, pages 451-460. ACM, 2010.

Hennessy J.L. and Patterson D.A. Computer Architecture - A Quantitative
Approach (5. ed.). Morgan Kaufmann, 2012.

Sun C., Agrawal D., and El Abbadi A. Hardware acceleration for spatial selec-
tions and joins. In Proc. of ACM SIGMOD Conf., pages 455-466, 2003.

Benjamin Sowell, Marcos Vaz Salles, Tuan Cao, Alan Demers, and Johannes
Gehrke. An experimental analysis of iterated spatial joins in main memory.
Proc. VLDB Endow., 6(14):1882-1893, September 2013.

Sidlauskas D., Ross K.A., Jensen C.S., and Saltenis S. Thread-level parallel
indexing of update intensive moving-object workloads. In Proc. of SSTD Conf.,
pages 186-204, 2011.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke,
and Dinesh Manocha. Fast bvh construction on gpus. In Computer Graphics
Forum, volume 28, pages 375-384. Wiley Online Library, 2009.

Luo L., Wong M.D.F., and Leong L. Parallel implementation of r-trees on the
gpu. In IEEE Conf. on Design Automation, pages 353-358, 2012.

Yu B., Kim H., Choi W., and Kwon D. Parallel range query processing on R-
tree with graphics processing unit. In IEEE Conf. on Dependable, Autonomic
and Secure Computing, pages 1235-1242, 2011.

Tero Karras. Maximizing parallelism in the construction of bvhs, octrees, and
k-d trees. In High Performance Graphics, pages 33-37, 2012.

Sariel Har-Peled. Geometric approximation algorithms. Number 173. American
Mathematical Soc., 2011.

Rajeev Raman and David S Wise. Converting to and from dilated integers.
Computers, IEEE Transactions on, 57(4):567-573, 2008.

Zhang J. and You S. Speeding up large-scale point-in-polygon test based spatial
join on GPUs. In Proc. of ACM SIGSPATIAL Intl. Wksp. on Analytics for Big
Geospatial Data, pages 23-32, 2012.

Bibliography 145

[25]

[31]

32]

33]

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509-517, September 1975.

Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS), 3(3):209-226, 1977.

Dinesh P. Mehta and Sartaj Sahni. Handbook Of Data Structures And Ap-
plications (Chapman & Hall/Crc Computer and Information Science Series.).
Chapman & Hall/CRC, 2004.

Edgar Chéavez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Mar-
roquin. Searching in metric spaces. ACM Comput. Surv., 33(3):273-321,
September 2001.

Gisli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases.
ACM Trans. Database Syst., 24(2):265-318, June 1999.

Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, and Nakul Verma. Learning
the structure of manifolds using random projections. In Advances in Neural
Information Processing Systems, pages 473480, 2007.

Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2011.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduc-
tion: Applications to image and text data. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 01, pages 245-250, New York, NY, USA, 2001. ACM.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pages 604-613, New
York, NY, USA, 1998. ACM.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117-122,
January 2008.

Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor
search using gpu. In Computer Vision and Pattern Recognition Workshops,
2008. CVPRW’08. IEEE Computer Society Conference on, pages 1-6. IEEE,
2008.

146

Bibliography

[36]

[40]

[41]

[42]

[45]

[46]

[47]

Justin Heinermann, Oliver Kramer, Kai Lars Polsterer, and Fabian Gieseke. On
gpu-based nearest neighbor queries for large-scale photometric catalogs in as-
tronomy. In KT 2013: Advances in Artificial Intelligence, pages 86-97. Springer,
2013.

Naohito Nakasato. Implementation of a parallel tree method on a gpu. Journal
of Computational Science, 3(3):132-141, 2012.

Deyuan Qiu, Stefan May, and Andreas Niichter. Gpu-accelerated nearest neigh-
bor search for 3d registration. In Computer Vision Systems, pages 194-203.
Springer, 2009.

Stefan Popov, Johannes Giinther, Hans-Peter Seidel, and Philipp Slusallek.
Stackless kd-tree traversal for high performance gpu ray tracing. In Computer
Graphics Forum, volume 26, pages 415-424. Wiley Online Library, 2007.

Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer
kd trees: processing massive nearest neighbor queries on gpus. In Proceedings of
The 31st International Conference on Machine Learning, pages 172-180, 2014.

Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient process-
ing of spatial joins using r-trees. SIGMOD Rec., 22(2):237-246, June 1993.

Sengupta S., Harris M., Zhang Y., and Owens J.D. Scan primitives for GPU
computing. In Proc. of ACM SIGGRAPH Symposium on Graphics Hardware,
pages 97-106, 2007.

Merrill D. and Grimshaw A.S. High performance and scalable radix sorting: a
case study of implementing dynamic parallelism for GPU computing. Parallel
Processing Letters, 21(2):245-272, 2011.

Matt Pharr and Randima Fernando. Gpu gems 2: programming techniques for
high-performance graphics and general-purpose computation. Addison-Wesley
Professional, 2005.

Daniel Cederman and Philippas Tsigas. On dynamic load balancing on graphics
processors. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, pages 57-64. Eurographics Association, 2008.

Sowell B., Vaz Salles M., Cao T., Demers A., and Gehrke J. Indexing frame-
work. http://www.cs.cornell.edu/~sowell /indexing/.

Thomas Brinkhoff. A framework for generating network-based moving objects.
Geolnformatica, 6(2):153-180, 2002.

http://www.cs.cornell.edu/~sowell/indexing/

Bibliography 147

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. Fast
k-selection algorithms for graphics processing units. Journal of Experimental
Algorithmics (JEA), 17:4-2, 2012.

Jia Pan and Dinesh Manocha. Fast gpu-based locality sensitive hashing for k-
nearest neighbor computation. In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS
'11, pages 211-220, New York, NY, USA, 2011. ACM.

Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory
pattern mining. In Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 330-339. ACM, 2007.

Patrick Laube, Stephan Imfeld, and Robert Weibel. Discovering relative motion
patterns in groups of moving point objects. International Journal of Geograph-
ical Information Science, 19(6):639-668, 2005.

Monica Wachowicz, Rebecca Ong, Chiara Renso, and Mirco Nanni. Finding
moving flock patterns among pedestrians through collective coherence. Inter-
national Journal of Geographical Information Science, 25(11):1849-1864, 2011.

Joachim Gudmundsson and Marc J. van Kreveld. Computing longest duration
flocks in trajectory data. In Rolf A. de By and Silvia Nittel, editors, 1/th ACM
International Symposium on Geographic Information Systems, ACM-GIS 2006,
November 10-11, 2006, Arlington, Virginia, USA, Proceedings, pages 35—42.
ACM, 2006.

Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye. Mining
periodic behaviors for moving objects. In Bharat Rao, Balaji Krishnapuram,
Andrew Tomkins, and Qiang Yang, editors, KDD, pages 1099-1108. ACM,
2010.

Roberto Trasarti, Fabio Pinelli, Mirco Nanni, and Fosca Giannotti. Mining
mobility user profiles for car pooling. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1190—
1198. ACM, 2011.

Linsey Xiaolin Pang, Sanjay Chawla, Wei Liu, and Yu Zheng. On detection
of emerging anomalous traffic patterns using GPS data. Data Knowl. Eng.,

87:357-373, 2013.

Fernando de Lucca Siqueira and Vania Bogorny. Discovering chasing behavior
in moving object trajectories. Transactions in GIS, 15(5):667-688, 2011.

Somayeh Dodge, Robert Weibel, and Anna-Katharina Lautenschiitz. Towards
a taxonomy of movement patterns. Information Visualization, 7(3-4):240-252,
2008.

148 Bibliography

[59] Luis Otavio Alvares, Alisson Moscato Loy, Chiara Renso, and Vania Bogorny.
An algorithm to identify avoidance behavior in moving object trajectories. J.
Braz. Comp. Soc., 17(3):193-203, 2011.

[60] Zhenhui Li, Bolin Ding, Fei Wu, Tobias Kin Hou Lei, Roland Kays, and Mar-
garet Crofoot. Attraction and avoidance detection from movements. PVLDB,
7(3):157-168, 2013.

[61] Dae-Jin Kim, Kwang-Hyun Park, and Zeungnam Bien. Hierarchical longitu-
dinal controller for rear-end collision avoidance. Industrial Electronics, IEEE
Transactions on, 54(2):805-817, 2007.

[62] Tlaria Xausa, Robert Baier, Matthias Gerdts, Mark Gonter, and Christian Weg-
werth. Avoidance trajectories for driver assistance systems via solvers for opti-
mal control problems. In International Symposium on Mathematical Theory of
Networks and Systems, pages 1-8. Springer, 2012.

[63] Michael R. Hafner, Drew Cunningham, Lorenzo Caminiti, and Domitilla Del
Vecchio. Cooperative collision avoidance at intersections: Algorithms and

experiments. IEFE Transactions on Intelligent Transportation Systems,
14(3):1162-1175, 2013,

[64] Sergiu Nedevschi, Silviu Bota, and Corneliu Tomiuc. Stereo-based pedes-
trian detection for collision-avoidance applications. Transactions on Intelligent
Transportation Systems, 10(3):380-391, September 2009.

[65] Yu-Hong Liu and Chao-Jian Shi. A fuzzy-neural inference network for ship col-
lision avoidance. In Proceedings of 2005 International Conference on Machine
Learning and Cybernetics, pages 4754-4754. IEEE Computer Society, 2005.

[66] Jun Min Mou, Cees van der Tak, and Han Ligteringen. Study on collision
avoidance in busy waterways by using ais data. Ocean Engineering, 37(5):483—
490, 2010.

[67] Surya Shandy and John Valasek. Intelligent agent for aircraft collision avoid-
ance. In Proceedings of AIAA Guidance, Navigation, and Control Conference,
pages 1-11. American Institute of Aeronautics and Astronautics, 2001.

[68] Arthur Richards and Jonathan P How. Aircraft trajectory planning with colli-
sion avoidance using mixed integer linear programming. In American Control
Conference, 2002. Proceedings of the 2002, volume 3, pages 1936-1941, 2002.

[69] M Pechoucek and D Sislak. Agent-based approach to free-flight planning, con-
trol, and simulation. IEEE Intelligent Systems, 24(1):14-17, Jan 2009.

[70] Oussama Khatib. Real-time obstacle avoidance for robot manipulator and mo-
bile robots. International Journal of Robotics Research, 5(1):90-98, 1986.

Bibliography 149

[71]

[72]

J Borenstein and Y Koren. The vector field histogram-fast obstacle avoidance
for mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278—
288, 1991.

S.M. Khansari-Zadeh and A. Billard. Realtime avoidance of fast moving objects:
A dynamical system-based approach. Electronic proc. of the Workshop on
Robot Motion Planning: Online, Reactive, and in Real-Time [IROS 2012],
2012.

Dali Sun, Alexander Kleiner, and Bernhard Nebel. Behavior-based multi-robot
collision avoidance. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 16681673, 2014.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005.

Laurent Etienne, Thomas Devogele, and Alain Bouju. Spatio-temporal tra-
jectory analysis of mobile objects following the same itinerary. Advances in
Geo-Spatial Information Science, 10:47, 2012.

	Introduction
	Thesis content
	Thesis contributions

	I First part
	Processing repeated range and k-NN queries over massive moving objects
	Problem Setting and Statement
	Problem Setting
	Batch Processing
	Query Semantics
	Quality of Service - Query Latency
	Problem Statement

	Graphics Processing Units
	Main algorithmic design issues

	Related work
	Processing repeated range queries over massive moving objects observations
	Processing repeated k-NN queries over massive moving objects observations

	GPU-Based processing of repeated range queries
	Spatial indexing and data structures
	Design considerations
	Overview of the methods
	Space partitioning and indexing
	Data structures

	Query processing pipeline
	Pipeline description
	Index creation and indexing in UG and UGBaseline.
	Index Creation and Indexing in QUAD.
	Filtering
	Bitmap decoding
	Optimizations

	Experimental Setup
	Experimental Evaluation
	Analysis on the benefits coming from the usage of bitmaps (S1)
	Covering subqueries optimization (S2)
	Task scheduling policy (S3)
	Data skewness and optimal grid coarseness for UG (S4)
	Data skewness and optimal cell size for QUAD (S5)
	Impact of spatial distribution skewness on the performance (S6)
	Performance analysis for different spatial distributions, amount of objects, and query areas (S7)
	Bandwidth analysis (S8)

	GPU-Based processing of repeated k-NN queries
	K-NNGPU overview
	Motivating challenges
	Relevant data structures

	Processing Pipeline
	Index Creation and Moving Objects Indexing.
	Iterative k-NN queries computation

	Experimental Setup
	Experimental Evaluation
	(S1) Tree height, neighbours list size, query rate and spatial skewness impacts on K-NNGPU's performance
	(S2) K-NNGPU vs K-NNBASELINE
	(S3) K-NNGPU vs K-NNCPU
	(S4) Bandwidth analysis

	II Second part
	Detecting avoidance behaviours between moving objects
	Introduction and Motivation
	Related Work
	Preliminaries
	Avoidance
	Avoidance Classification
	Problem Statement

	Algorithmic Framework
	An Algorithm for Avoidance Detection
	Avoidance Detectors

	Experimental Evaluation
	Experimental Setup
	Analysis of the Ground Truth Dataset
	Analysis of a Real World Unannotated Dataset

	Conclusions
	Bibliography

