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Abstract

Graphs and networks are everywhere, from social networks to the World Wide Web.

Since the last decade, massive graphs has become the center attention of an intense

research activity, both industrial and academic research centers. So these graphs

are a new challenge for the storage, geometric visual representation and retrieve

information. These information retrieving need an efficient techniques to compress

the graph.

Compressing data consists in changing its representation in a way to require

fewer bits. Depending on the reversibility of this encoding process we might have a

lossy or lossless compression.

In the first part of thesis, we have addressed this problem by a two steps cluster-

ing strategy and the solution takes advantage of the strong notion of edge density

Regularity introduced by Endre Szemerédi.

In the second chapter, we address the problem of encoding a graph of order

n into a graph of order k < n in a way to minimize reconstruction error. This

encoding is characterized in terms of a particular factorization of the adjacency

matrix of the original graph. The factorization is determined as the solution of a

discrete optimization problem, which is for convenience relaxed into a continuous,

but equivalent, one. Our formulation does not require to have the full graph, but

it can factorize the graph also in the presence of partial information. We propose

a multiplicative update rule for the optimization task resembling the ones intro-

duced for non-negative matrix factorization, and convergence properties are proven.

Experiments are conducted to assess the effectiveness of the proposed approach.

Our main contribution are summarized as:

i) we link matrix factorization with graph compression by proposing a factoriza-

tion that can be used to reduce the order of a graph and can be employed also



in the presence of incomplete observations. We show that the same technique

can be used to compress a kernel, by retaining a kernel as the reduced repre-

sentation; Moreover, we consider a general setting, where the observations of

the original graph/kernel are incomplete;

ii) we cast the discrete problem of finding the best factorization into a continuous

optimization problem for which we formally prove the equivalence between the

discrete and continuous formulations;

iii) we provide a novel algorithm to approximately find the proposed factorization,

which resembles the NMF algorithm in [48] (under `2 divergence) and the Baum-

Eagon dynamics [5]. Additionally, we formally prove convergence properties for

our algorithm and we believe that this theoretical contribution can be helpful

for devising other factorization algorithms working on the domain of stochastic

matrices (rather than simply non-negative matrices);

iv) finally, we establish a relation between clustering and our graph compression

model and show that existing clustering approaches in the literature can be

regarded as particular, constrained variants of our matrix factorization.
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Introduction





1
Motivations

TAKING THE FIRST

FOOTSTEP with a good thought,

the second with a good word, and

the third with a good deed, I

entered paradise.

Zarathustra (c.628 - c.551)

1.0.1 Graph Theory in Math and Computer Science

In mathematics and computer science, graph theory is the study of graphs. Math-

ematical structures are used to model pairwise relations between objects and are

called graphs. A graph contains vertices or nodes and lines called edges that con-

nect them. A graph may be undirected, directed, weighted or unweighted. Graphs

are one of the prime objects of study in discrete mathematics.

In physical, biological, social and, information systems, graphs can be used to

model many types of relations and processes. So, many practical problems can be

represented by graphs.

As far as, our interest is computer science, it can be observed that graphs are

used to represent networks of communication, data organization, computational de-

vices and the flow of computation. The link structure of a website, biology, computer

chip design, social network and many other fields can be given as examples.

With this short overview, it is clear that to develop methods to handle graphs,

is in the main attention of computer science society. By transforming graph in this



4 1. Motivations

major, we are involved in-memory manipulation of graphs as a main issue. So one

of the hottest topics in this field is graph compression in structured data. Some

well known domains of application of graph theory are: linguistics, the study of

molecules in chemistry and physics (e.g., the topology of atoms) and sociology (e.g.,

rumor spreading). Another important area of application is concerned with social

networks like friendship graphs and collaboration graphs.

As mentioned before, Graph compression plays a fundamental/crucial role to

handle huge amounts of structured data, as far as, our hardware devices are not

strong enough to obtain a meaningful result in appropriate time and memory space.

Graph compression can be used as a technique for a preprocessing step or directly,

based on the method of compression. Among the vast amount of techniques in this

field, Extremal Graph theory provides a tool to deal with Graph Compression.

Moreover, among the vast amount of literature in this field, we present a coarse

review of compression methods in this chapter.

1.0.2 Extremal Graph Theory

Let us start with a question How much of something can we have, given a certain

constraint? . This is a basic question for any extremal problem. Indeed the above

question can be applied in philosophy and science in the same manner.

In 1941, the Hungarian mathematician P. Turán provided an answer the question

of how many edges a vertex graph can have, given that it has no k clique. That can

be represented as the most basic result of extremal graph theory (This graph is now

known as a Turán graph). T. S. Motzkin and E. G. Straus were able to provide a

proof for Turáns theorem based on the clique number of a graph.

The Turan’s work was developed to a branch of graph theory named as extremal

graph theory by researchers like P. Erdös, B. Bollobás, M. Simonovits and E. Sze-

merédi in early 20th-century. In a core definition, extremal graph theory explores

how the intrinsic structure of graphs ensures certain types of properties (e.g., cliques,

colorings and spanning sub-graphs) under appropriate conditions (e.g., edge density

and minimum degree).
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Szemerédis regularity lemma is certainly one of the best known among extremal

graph theory. Szemerédi shows that the monochromatic arithmetic progression oc-

curs in each color class that is not trivially sparse. Hence, it explains that every

graph can be partitioned into regular pairs that are random-like bipartite graphs

and a few leftover edges. Szemerédis result was introduced as a tool for the proof of

the Erdös-Turán conjecture on arithmetic progressions in dense sets of integers.

Another way to illustrate the connection between extremal graph theory and

Szemerédi Lemma is, given a graph G, an invariant , a property P and a value

m, the least value of m such that (G)m and P is verified. The graphs in which

(G) = m are called extremal for the property P . In this scenario, the Szemerédi’s

Regularity Lemma searches for the conditions which assure the existence of a graph

partition that respects a notion of edge density regularity. More than this, Szemerédi

demonstrates that every graph, with a sufficiently high number of vertices, has a

Regular Partition. As well as for the importance of the results, the value of the

Szemerédi’s Regularity Lemma is also due to its utility as demonstration tool.

1.0.3 State of the Art

A problem linked to graph compression that has focused the attention of researchers

is the network and sociometric literature for the last few decades. In general, re-

searchers have attacked to the graph compression in two different perspectives: the

structural way, to produce a simplified graph, or the information theoric way that

makes a graph with fewer bits memory capacity. Paper [[79] and [14]] are an example

for structural and information theoric category respectively.

This [79] is a method based on graph structure (or link structure) that is very

efficient to improve the performance of search engine and the work presented in

[14] is,it is an information theory approach to compress a graph with respect into

structural entropy by applying two stage encoding.

In [42] the authors have proposed a method based on link compression by apply-

ing web-graph algorithm [1]. In this way, they produce smaller representation of the

graph that has less number of edges with more similarity between adjacency nodes.

In [85] the authors have presented two series of methods for graph simplification

by introducing the notion of supernode and superedge. Their method is a trade

off between minimizing approximation error and maximizing the compression in
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the same time by defining a distance measure. They reported that weighted graph

method is suitable for a compression with a little loss but the second method (gen-

eralized weighted graph compression) is better to be used as a preprocessing step.

In [28] the authors have presented two notions which are importance of node

and similarity to handle topological compression. The first notion is based on rank-

ing web search. Additionally, two measures have been defined to detect nodes to

compress the graph. These measure are degree and shortest path. In the second

notion case, a similarity measure or relation is applied to combine similar vertices

that leads to substantially less cluttered graphs at a minimum information loosing.

In [24] the authors consider the compression problem as minimizing the order of

the cliques. They have shown that the existence of a partition with a small order in

enough dense graph. Their compression algorithm is based on the binary search to

find cliques with specific order. After partitioning edges of the graph to a collection

of edge-disjoint cliques,they replace them with new edge and vertices to obtain the

compressed graph.

The work proposed in [44] suggests a method based on the edge-length and ter-

minal vertices as the notion of compressing for undirected graph. In their method,

they compute shortest paths between every pairs of terminals and remove every non

terminals and edges that do not participate to any terminal to terminal and finally

they set all not terminal vertices to the defined length.

Graph compression method has been used in other domain in computer science

like graph mining, [40]. Compression-based graph miners discovers those sub graphs

that maximize the amount of compression that a particular substructure provides

a graph. In their paper, they have investigated the difference between compression

based graph mining and frequency graph mining in different data-sets.

The work proposed in [33] suggests a method proposed a method to compress

a graph based on a right number of group or compression rate that is obtained by

Rissanens Minimum Description Length (MDL) criterion method (see [32]). After

that, an expectation maximization algorithm based on maximum likelihood method

with Bernoulli input data is applied to partition the algorithm. This method reaches

a local minimum sequentially reallocating elements to decrease the target function,
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until stopping criteria.

1.0.4 General Scientific Background

In this section we would like to show the link between chapters of this thesis and to

give an overview of the concept of graph compression.

In the chapter III, Szemerédi’s Regularity Lemma (SRL) is used for graph com-

pression and in the chapter IV , an iterative optimization method is introduced

based on a Matrix Factorization Approach (MFA) to compress a graph.

SRL is a fundamental combinatorical result with a wide range of applications in

mathematics [32]. However, it has not been generally recognized as a principle with

wide practical relevance. SRL introduces the term of regularity that refers in this

context to a certain kind of ”pseudo-randomness up to ε-accuracy”. The intuitive

idea is that the regular decomposition presents a structure, which can be seen as a

kind of compressed version of original graph. Moreover, taking the regular structure

and ”blowing it up” by cloning its nodes multiple times and drawing truly random

edges with probabilities prescribed by the structure, one obtains a graph that is, in

a formally specified sense, very similar to the original graph [26]. This important

result,sometimes called the ”Key Lemma”, in a sense proves the relevance of a reg-

ular decomposition. Note also that a regular decomposition can be interpreted as

a stochastic model of the original graph. The importance of regular decomposition

is getting evidence from many directions. Particularly remarkable in this sense are

the results of Alon et al. [3], who have shown that the (effective) testability of a

graph property is essentially equivalent to that this property is based on a regular

decomposition of the graph, which is applied as main core for our proposed graph

compression. Finally, we can say that SRL condenses a very general principle of

separating structure and randomness as well as compression by defining the notion

of regularity.

In the chapter IV , we compress the graph in a way to minimize reconstruction

error. This encoding is characterized in terms of a particular factorization of the

adjacency matrix of the original graph. Instead of cambinatorial optimization in

SRL method, the factorization is determined as the solution of a discrete optimiza-

tion problem. We propose a multiplicative update rule for the optimization task to

compress the graph by grouping them to the similar categories.
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In summary the main difference of proposed methods are, finding regular de-

composition can be considered as one type of graph clustering, but it differs from

clustering in the usual sense: in classical graph clustering, vertices that are well

connected with each other are grouped together like our proposed method in forth

chapter, whereas in a regular decomposition, members of a group have stochastically

similar relations to all other groups. In fact, the internal edge structure within a

group is not considered at all in SRL.



II
Preliminary Definitions





2
Notations

Your task is not to seek for love,

but merely to seek and find all the

barriers within yourself that you

have built against it.

Jalal Ad-Din Rumi quotes

2.1 Szemerédis Regularity Lemma (SRL)

Szemerédi’s main result is widely used in the context of dense extremal graph theory.

As usual, a graph is said to be dense if its number of edges is about quadratic in

the number of vertices. In particular, if we consider a bipartite graph G = (V,E),

where V is the vertex set and E ⊆ V × V , the edge density of G is the number

d(G) =
||G|||G|

2

 (2.1)

where ||G|| = |E| and |G| = |V |.

As we can see, the edge density of a graph is the proportion between the number

of edges that exist in the graph and the number of possible edges in a graph with

|V | vertices (not considering self-loops).

If we consider X, Y ⊂ V , X

Y = ∅, the edge density can be defined as

d(X, Y ) =
e(X, Y )

|X|.|Y |
(2.2)

where

e(X, Y ) = |(x, y) ∈ E|x ∈ X ∧ y ∈ Y | (2.3)
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The Szemerédi’s Lemma deals with vertex subsets that shows a sort of regular

behavior. In particular, Szemerédi introduced the definition of regular pair to de-

scribe that pair of sufficiently large subsets that are characterized by a quite uniform

edge distribution.

Definition 1. (Regularity Condition). Let ε > 0. Given a graph G = (V,E) and

two disjoint vertex sets A ⊂ V , B ⊂ V , we say that the pair A,B is ε-regular if

for every X ⊂ A and Y ⊂ B satisfying

|X| > ε|A| and |Y | > ε|B| (2.4)

we have

|d(X, Y )− d(A,B)| < ε (2.5)

If we are considering a graph G with a vertex set V partitioned into pair-

wise disjoint classes C0, C1, ..., Ck, this partition is said equitable if all the classes

Ci, 1 ≤ i ≤ k have the same cardinality. The so called exceptional set C0 has

usually a only technical purpose: it enables the construction of same size subsets

and it can also be empty, if necessary.

If a graph G has been partitioned in k + 1 subsets and they allow the presence

of a sufficient number of ε-regular pairs, we may speak of a regular partition of G.

More precisely:

Definition 2. (ε-regular Partition). Let G = (V,E) a graph and C0, C1, ..., Ck a

partition of its vertex set. The partition is said ε-regular

if all the following conditions hold.

• |C0 < ε|V |

• |C1| = |C2| = ... = |Ck|

• all but at most εk2 of the pairs (Ci, Cj) are ε− regular.

2.2 Matrix Factorization Approach (MFA)

We present here the notation and basic definitions adopted throughout the thesis.
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Table 2.1: Table of Notations

General

x,y , vectors with bold lowercase letters

A,B , matrices with uppercase typewitter-style letters

X ,Y , sets with calligraphic-style uppercase letters

Aij , The (i, j)th element of matrix A

vi , The ith element of a vector v

i, j, k, h , indices with lowercase letters

n, m , constants with lowercase serif-style letters

1P , The indicator function giving 1 or 0

R , The sets of real numbers

R+ , The sets of non-negative real numbers

[n] , The set {1, . . . , n}

Linear Algebra

x+ , The pseudo-inverse of a scalar x ∈ R

x+ =


1/x, if x 6= 0

0, otherwise

I , The identity matrix

1k , The vector of all 1s of size k

E , The matrix of all 1s

A and B , n×m matrix

A> , The transposition of A

A−1 , The inverse of a square matrix A

S = {X ∈ Rk×n
+ : X>1k = 1n} , The set of left-stochastic k× n matrices

S01 = S ∩ {0, 1}k×n , left-stochastic binary matrices

A < B , (A−B) is positive semidefinite
ij∈[n](Aij −Bij)xixj ≥ 0 for all x ∈ Rn

diagA , column-vector holding the diagonal of A

tr(A) =
min{n,m}

i=1 aii , The trace of A

rk(A) , The rank of A

ΛA , n× n diagonal matrix

(A)+ , the matrix A with its negative entries set to 0

‖A‖F =


tr

A>A


, The Frobenius norm of A

‖A‖O =


(i,j)∈O A2
ij , The Frobenious norm of A restricted to O

vec(A) = (a>
1 ,a

>
2 , . . . ,a

>
n )

> , The column-wise vectorization of A

ai ∈ Rk , the ith column of A



14 2. Notations



III
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3
The Szemerédi’s Regularity Lemma

Drink wine. This is life eternal.

This is all that youth will give you.

It is the season for wine, roses and

drunken friends. Be happy for this

moment. This moment is your life

Omar Khayyam

3.1 Extremal Graph Theory

Extremal Graph Theory is a branch of the mathematical field of Graph Theory on

the studies of Paul Turán and Paul Erdos.

Extremal Graph Theory had its huge spread in the seventies with the work

of a large group of mathematicians among which we can find Béla Bollobás, Endre

Szemerédi, Miklós Simonovits and Vojtéch Rodl. In the last three decades, Extremal

Graph Theory was a field so rich of results that it remains up to this days one of the

most active fields of mathematics. Let’s now see some more technical definitions.

3.1.1 What is the Extremal Graph Theory?

Extremal Graph Theory concerns the relations between graph invariants. In partic-

ular, Extremal Graph Theory studies how the intrinsic structure of graphs ensures

certain types of properties (e.g., cliques, colourings and spanning sub-graphs) under

appropriate conditions (e.g., edge density and minimum degree).

A graph invariant is a map that takes graphs as arguments and assigns equal

values to isomorphic graphs. There is a wide range of possible graph invariants: the
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simplest are the number of vertices (called order ) and the number of edges. Other

more complex graph invariants are connectivity, minimum degree, maximum degree,

chromatic number and diameter.

Extremal Graph Theory is based on the concept of extremal graph. Béla Bol-

lobás, in his book [8], gave the following definition of Extremal Graph

[. . . ] given a property Pand an invariant for a class H of graphs, we

wish to determine the least value m for which every graph G in H with

µ(G) > m has property P. Those graph G in H without the property

P graph for the problem.

In other words, the extremal graphs are on the boundary between the set of

graphs showing a particular property and the set of graphs for which this property

is not valid. As said before an invariant maps graphs into the integers set N. So

an extremal G is a graph evaluated in the maximum m ∈ N such that for any

n ∈ N, n > m, the property is true.

Bollobás [8] suggest the following simple examples to clarify the notion of ex-

tremal.

• Consider a graph G = (V,E) where, as usual, V is the vertex set and E ⊆
V × V is the edge set. The property analyzed is the one which states that

every graph of order |V | = n and size |E| ≥ n contains a cycle. In this case,

the extremal graphs for the considered property are all the trees of order n.

• Consider a graph G = (V,E) of order |V | = 2u, u ∈ N. If the minimum degree

is at least u+ 1, then G contains a triangle. In this case, the extremal of the

problem is the graphs Kuu, i.e. the complete bipartite graph of order u.

Despite the simplicity of the previous examples, the reader should easily imagine

how the study of extremal graph could have led to interesting results.

In a more general form, the Main extremal problem is (see [8]):given a graph

F = (V,E) determine e(n, F ), the maximum number of edges in a graph of order

n not containing F as a sub-graph or, observing the problem from another point

of view (see [19]), searching exactly which edge density is needed to force a given

sub-graph.

R. Diestel, in his book [19], presents a deep analysis of the Extremal Graph

Theory problems. An Extremal Problem is characterized by searching for a graph
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G to have a chosen graphH as sub-graph or one of its topological copy. A topological

copy of a graph H is a graph obtained from H by replacing some edges by pairwise

disjoint paths ([[3], [19]]).

In particular, Diestel distinguishes two main groups of Extremal Problems [19]:

• In the first category there are all the problems in which we are interested in

making sure, by global assumptions, that a graph G contains a given graph H

(or a topological copy) as sub-graph.

• In the second class, on the other hand, there are all the problems in which

we are asking what global assumptions might imply the existence of a given

graph H as sub-graph.

In this context, the Szemerédi’s Regularity Lemma is one of the most powerful

mathematical tool to demonstrate most of the extremal existence theorems.

Moreover, in the last ten years, many researchers have been involved in the

study of the algorithmic aspects of the lemma, which has led to an algorithmic

reformulation of many existence extremal problems.

3.2 The Regularity Lemma

The Regularity Lemma was developed in 1976, Szemerédi’s studies about the Ram-

sey properties of arithmetic progression [81]. Indeed, even though this thesis is

related to the graph theoretical utilization of the theorem, the lemma was born

and is still used to solve problem in the field of number theory and combinatorial

geometry.

As far as graph theory is concerned, the Szemerédi’s Lemma is considered one

of the most important tools in the proof of other technical results.

In its first formulation, the Lemma was only a technical step during the proof of

a major result and it was only related to bipartite graph.

3.2.1 The Lemma

In his paper [82], Szemerédi proposed a result that is particular appealing for its

first-sight simplicity and for its generality. His main result, indeed, can be applied to

every graph, with the only requirement of a sufficiently large number of vertices. The

partition described in the Szemerédi’s Lemma highlights the connection between the
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field of extremal graph theory and the one of Random Graphs. A random graph is

defined as a graph in which every edge is independently generated with probability

p during a random process

In particular, as Komlos and Simonovits [43] say, a ε-regular partitioned graph

can be approximated by a generalized random graph. According to the authors,

given a r × r symmetric matrix (pij) with 0 ≤ pij ≤ 1, and positive integers

n1, n2, · · · , nr a generalized random graph Rn for n = n1 + n2 + · · ·+ nr is obtained

partitioning n vertices into classes Ci of size ni and joining the vertices x ∈ Vi, y ∈ Vj
with probability pij , independently for all pairs x, y.

The Lemma states that a graph can be partitioned in such a way that the number

of edges inside each subset is very small and the edges running between two subsets

are about equally distributed. From a probabilistic point of view, a graph that

admit a Szemerédi’s partition (i.e. a graph with a sufficiently large vertex set) can

be approximated by a graph with uniform distribution generated edge set.

Theorem 1. (Szemerédi’s Lemma). For every positive real ε and for every positive

integer m, there are positive integers N and M with the following property: for every

graph G with |V | ≥ N there is an ε-regular partition of G into k + 1 classes such

that m ≤ k ≤M

The Lemma 1, as stated in [81], says that if we fix in the first place a density

bound ε, and a lower bound of the number of subsets in the partition, we can also

find

• a lower bound of the required number of vertices, i.e. to the order of the graph

• an upper bound of the partition cardinality.

This also means that the values N and M deeply depend on the constants ε and

m. Indeed many authors [[19], [43], [3]]) use to stress this dependence writing the

bounds as functions of ε and m: N(ε,m) and M(ε,m).

The lower bound of the number of classes, m, is necessary to make the classes

Ci sufficiently small. In this way, we can assure the presence of a very small number

of intra-class edges.

Finally, it should be noted that a singleton partition is epsilon-regular for every

value of ε and m.
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There also exists an alternative form of the Lemma 1. In this case, the require-

ment about the size of the vertex-set in the partition is relaxed. Indeed, in this case,

the sizes of two vertex-sets can differ by one.

Theorem 2. (Szemerédi’s Lemma: alternative form). For every positive ε > 0

there exists an M(ε) such that the vertex set of any n-graph G can be partitioned

into k sets C1, C2, ...Ck for some k ≤M(ε), so that

• |Ci| ≤ εn for every i

• ||Ci| − |Cj|| ≤ 1 for all i, j

• (Ci, Cj) is ε-regular in G for all but at most εk2 pairs (i, j)

In this case, the first condition on the result assures that the classes Ci are

sufficiently small with respect to ε. In this way, it is possible to relax the dependence

of M on m.

3.2.2 The role of exceptional pairs

Theorems 1 and 2 don’t require that all the pairs in a partition have to be regular

because at most εk2 pairs to be exceptional. Following the Szemerédi [82] point,

many researchers studied if the Lemma could be strengthened, avoiding the presence

of irregular pairs.

Forcing the lemma in that way would have invalidate the result generality. In-

deed, Alon et al. [3] show a counterexample

[...] showing that irregular pairs are necessary is a bipartite graph with

vertex classes A = a1, ..., an and B = b1, ..., bn in which (ai, bj) is an edge

iff i ≤ j

3.3 Checking regularity

In fact, the problem of checking if a given partition is ε-regular is a quite time con-

suming process. In fact, as pointed out in [3], constructing a ε-regular partition is

easier than checking if a given one responds to the ε-regularity criterion.

Alon et Al. [3], prove the following results in the favor of this point of view.
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Theorem 3. The following decision problem is co-NP-complementary.

Instance: An input graph G, an integer k ≥ 1 and a parameter ε > 0, and a

partition of the set of vertex of G into k + 1 parts.

Problem: Decide if the given partition is ε-regular.

As defined in [15], the complexity class co-NP-complementary collects all that

problems which complement belongs to the NP-complete class:

A problem Q co-NP-complementary iff Q NP-complementary.

In other worlds, a co-NP-complementary problem is one for which there are ef-

ficiently verifiable proofs of its no-instance, i.e. its counterexample.

In this case, the proof of co-NP-completeness goes over multiple steps of reduc-

tion, first proving the complexity of some wider-use problems, and finally restricting

these to a useful particular case. The formal proof, as given in [3] is technical. In

the following, it will be only sketched. In particular, the authors follow the next

steps:

• starting from the well-known NP-complete CLIQUE problem and showing,

by the reduction mechanism, the complexity of some auxiliaries. Subjects

of reductions are the HALF SIZE CLIQUE problem and the COMPLETE

BIPARTITE SUB-GRAPH Kk,k problem.

• once proved the complexity of Kk,k, characterizing a more strict version of the

same, namely a half-size complete bipartite isomorphism.

• at last, reducing the half-size complete bipartite isomorphism to a non-ε-

regularity problem for bipartite graphs (see Theorem 6), which implies Theo-

rem 3.

3.3.1 The reduction mechanism

The standard way to prove NP-completeness is to find a polynomial reduction func-

tion that reduces a known NP complete problem to the new one. In particular, a

problem Q1 is polynomial time reducible to a problem Q2, Q1 ≤P Q2 if there exists
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a polynomial time computation function

f : {instances of Q1} → {instances of Q2} such that for all x

x ∈ {instances of Q1}if and only if f(x) ∈ {instances of Q2}. (3.1)

In our case, Alon et al. [3] show via reduction that the following problems are

NP-complete:

Theorem 4. (The Kk,k Problem). Given a positive integer k and a bipartite graph

G with vertex classes A,B such that |A| = |B| = n, determine if G contains the

complete bipartite graph with k vertices in each vertex class.

Lemma 1. (HALF SIZE CLIQUE Problem) The following decision problem is NP-

complete: Given a graph G on n vertices where n is odd, decide if G contains a

sub-graph isomorphic to the complete n+1
2
-vertex sub-graph Kn+1

2
.

Reducing CLIQUE to HALF SIZE CLIQUE

The CLIQUE Decision Problem (Kk) asks if, given a graph G with n vertices

and an integer k, G contains a k-vertices complete sub-graph. The problem can

be reduced to the HALF SIZE PROBLEM (Lemma 1): a new graph G∗ can be

constructed as following. Consider G = (V,E) and a integer k. G∗ is the graph

obtained from G and defined as:

• G∗ = G + K|V |+1−2k, i.e. the graph obtained from the disjoint union of G

and K|V |+1−2k and joining every vertex of G to every vertex of K|V |+1−2k, if

k ≤ |V |+1
2

;

• G∗ is the disjoint union of G and E2k−|V |−1, which is the graph with 2k−|V |−1
isolated vertices, if k > |V |+1

2
.

In any case, the order of G∗ is sufficiently high to have a half size clique of order
n+1
2
. In fact, if G has a Kk sub-graph and k ≤ |V |+1

2
, then G∗ has a clique of

dimension k + |V |+ 1− 2k = |V |+ 1− k ≥ |V |+ 1− |V |+1
2

= |V |+1
2

.

Otherwise, if G has a Kk sub-graph and k < |V |+1
2

, G∗ has a Kk sub-graph and

the order of G∗ is 2k − 1.

The procedure of transforming G into G∗ is polynomial, so also HALF SIZE

CLIQUE belongs to the class NP-C.
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Reducing HALF SIZE CLIQUE to Kk,k

The second step of reduction transforms a half size clique problem instance to

a Kk,k one. In particular, consider a graph G = (V,E) to be the input of half size

clique. Consider also the bipartite graph H = (A ∪B,F ) defined as:

• A = {αij|1 ≤ i, j ≤ n}

• B = {βij|1 ≤ i, j ≤ n}

• F = {(αij , βkl) | i = k or (i, j) ∈ E and l 6= i and j 6= k}

Alon et al. [3] prove that G has a clique of size n+1
2

if and only if H has a

sub-graph isomorphic to K(n+1
2

)2,(n+1
2

)2 . In fact, the vertex set of Kn+1
2

induces a

complete bipartite sub-graph with colour classes of order (n+1
2
)2 in H. On the other

hand, if H has a sub-graph isomorphic to K(n+1
2

)2,(n+1
2

)2 with classes A
′
and B

′
, Alon

et al. [3] prove that the only possible sub-graph in G induced by the vertices indexed

in A
′
and B

′
is a clique of size n+1

2
.

A stricter version of Kk,k

The previous reductions have proved that the Kk,k Problem is NP-Complete.

Also a more specific formulation of the problem belongs to the same complexity

class, by the following Theorem.

Theorem 5. The following problem is NP-Complete. Given a bipartite graph G =

(A ∪ B,E) where |A| = |B| = n and |E| = n2

2
− 1 decide if G contains a sub-graph

isomorphic to Kn
2
,n
2

The condition about the number of edges in G permits the connection to the

edge-density and consequently to the non-ε-regularity.

Regularity in bipartite graphs

The final reduction in [3] involves the stricter version of Kk,k and the problem of

checking regularity in a bipartite graph G = (A ∪B,E). Formally:

Theorem 6. Theorem 6 The following problem is co-NP-complementary. Given

ε > 0 and a bipartite graph G with vertex classes A,B such that |A| = |B| = n,

determine if G is ε-regular.
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The co-NP-Completeness of ε-regularity in a bipartite sub-graph proceeds from

Theorem 5. Indeed, a bipartite graph G with n vertices in each colour class and
n2

2
− 1 vertices contains a K k

2
, k
2
if and only if it is not epsilon-regular for ε = 1

2
. So,

if G = (A∪B,E) is not ε-regular (i.e.there exist X ⊂ A,B ⊂ Y, |X| ≥ 1
2
n, |Y | ≥ 1

2
n

that testify the irregularity) and knowing that

d(A,B) =
e(A,B)

|A|.|B|
=

1

2
− 1

n2
(3.2)

we can see that

|d(X, Y )− d(A,B)| = |d(X, Y )− 1

2
+

1

n2
| ≥ 1

2
(3.3)

This is possible if and only if d(X, Y ) = 1. Hence, the sub-graph of G induced

by X and Y contains Kn
2
,n
2
.

On the other side, if G contains Kn
2
,n
2
= (X, Y,E ∩ X × Y ) then d(X, Y ) = 1

and

|d(X, Y )− d(A,B)| = 1

n2
+

1

2
| > 1

2
(3.4)

Hence, G is not ε-regular for ε = 1
2
.

As the Szemerédi’s Lemma deals with pair of vertex sets and the ε- regularity

should be tested for each possible pair, Theorem 6 directly implies Theorem 3.

3.4 Extension to the Regularity Lemma

Recently, the interest in Szemerédi’s Regularity Lemma is growing with the study of

its weighted hypergraph extensions. In particular, Czygrinow and Rödl [16] propose

a possible Regularity Lemma reformulation that directly extends the Szemerédi’s

original one.

As before, we need definitions for basic concepts as hypergraph, density, regular

pair and regular partition.

A hypergraph is the common generalization of a graph. In particular in a hy-

pergraph H = (V,E), the elements of the edge set E are non-empty subsets of any

cardinality of V . If all vertex subsets in E have the same cardinality l, then the

hypergraph is said to be l-uniform. A graph is a particular case of hypergraph ( 2-

uniform hypergraph ). A l-uniform hypergraph is weighted if there is a non-negative

weighted function : [V ]l → R+ ∪ 0.
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Let V1, · · · , Vl subsets of V such that Vi ∩ Vj = ∅ for each i 6= j. The weighted

density is defined as

dw(V1, · · · , Vl) =
σ(v1, · · · , vl) : (v1, · · · , vl) ∈ V1 · · ·Vl

K|V1| · · · |Vl|
(3.5)

where K = maxv1,··· ,vl∈[V ]l(v1, · · · , vl) + 1 acts as a normalization factor.

In this case the notion of ε-regularity doesn’t involve pairs of subsets, but tuples.

In particular an l-tuple (V1, · · · , Vl), Vi ⊂ V for each i = 1 · · · l with Vi ∈ Vj = ∅ for
each i 6= j is said to be (ε, )-regular if for every subsets Wi ⊂ Vi with |Wi| ≥ ε|Vi|
the following inequality holds:

|dw(V1, · · · , Vl)dw(W1, · · · ,Wl)| < ε.

Finally, a partition V0 ∪ V1 ∪ · · · ∪ Vt of V is (ε, )-regular if all the conditions are

satisfied,

• |V0| ≤ ε|V |

• |Vi| = |Vj| for all i, j ∈ 1 · · · , t

• all but at most εtl l-tuples (Vi1, · · · , Vil)with i1, · · · , il ⊂ [t]lare (ε, )-regular.

The generalization of Regularity Lemma for hypergraphs, as in its original for-

mulation, states that for each ε > 0 and every m ∈ N there are M,N ∈ N such

that every hypergraph H = (V,E, ) with |V | ≥ N has an (ε, )-regular partition

V0 ∪ V1 ∪ · · · ∪ Vt, where m ≤ t ≤M .

As happened in the normal graph case, also Czygrinow and Rödl [16] show some

property of hypergraph regularity, as for example continuity of density function.

Moreover, they describe some possible applications, we can find for the normal

graph case, i.e. Max-Cut problem for hypergraph and estimation of the chromatic

number. All these results seem to demonstrate that the hypergraph approach is a

suitable generalization of the original Regularity Lemma. Other researchers carried

out similar studies. See, for example, [70, 35, 31].
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3.5 Algorithms for the Regularity Lemma

The original proof of Szemerédi’s Lemma proposed by Szemerédi (see [[81], [82]])

is not algorithmic. This has not narrowed the range of possible applications of

the result in the fields of extremal graph theory, number theory and combinatorics.

However, it was at once plain that a possible development towards an algorithmic

version of the lemma would have led to several improvements. First of all, there

would be the possibility of rewriting many of the previously achieved results and

proposing new algorithmic formulations (see [3] , [27]).

Example 1. One of the possible algorithmic reformulation, proposed in [3], given

a graph H, deals with the number of H-isomorphic sub-graphs in a graph G. Alon

and Yuster, in [4], had previously demonstrated the following result:

Theorem 7. For every ε > 0 and every integer h, there exists a n0 = n0(ε, h) such

that for every graph H with h vertices and for every n > n0, any graph G with n

vertices and with minimum degree d ≥ X(H)−1
X(H)

n contains at least

(1− ε)n
h

(3.6)

vertex disjoint copies of H.

The original proof used the Szemerédi’s Lemma in order to show the existence of

a subset of copies of H. The development of an algorithm to compute a Szemerédi’s

Regular Partition leads to the immediate reformulation of the previous result, as in

[3].

Theorem 8. For every ε > 0 and for every integer h, there exists a positive integer

n0 = n0(ε, h) such that for every graph H with h vertices and chromatic number

(H), there exists a polynomial algorithm that given a graph G = (V,E) with n > n0

vertices and minimum degree d ≥ X(H)−1
X(H)

n contains at least

(1− ε)n
h

(3.7)

vertex disjoint copies of H in G.

In this case, the Szemerédi’s Regular Partition gives the necessary instrument

to create one by one all the vertex-disjoint copies of H. The time complexity of the

procedure remains, also in this situation, polynomial.
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The Example 1 is only one of the possible applications of the algorithmic version

of the Szemerédi’s Lemma. Alon et al. [[3]] cite other examples related to the fields

of recognition of sub-graphs, topological copies, number of isomorphic sub-graphs,

creation of Kk-free graphs.

In [[3]], the authors, dealing with these algorithms, propose a new formulation

of the lemma, which emphasizes the algorithmic nature of the result.

Theorem 9. (A constructive version of the Regularity Lemma). For every ε > 0

and every positive integer t there is an integer Q = Q(ε, t) such that every graph

with n > Q vertices has a ε-regular partition into k + 1 classes, where t ≤ k ≤ Q.

For every fixed ε > 0 and t ≥ 1 such a partition con be found in O(M(n)) sequential

time, where M(n) is the time for multiplying two n by n matrices with {0, 1} entries
over the integers. It can also be found in time O(logn) on a EREW PRAM with a

polynomial number of parallel processor.

In the next sections two of the most important algorithm to create a Szemerédi’s

Partition will be described. Finally, the Czygrinow and Rödl [16] extension for

hypergraph will be presented.

3.6 The first Algorithm

The first algorithmic reformulation of Szemerédi’s Lemma is proposed by Alon et al.

[3] in 1994. In their proposed method, they investigate the neighborhood relations

between vertices in the a bipartite graph, in order to recognize witnesses of not-

regularity.

Given ε > 0 and a graph G = (V,E), it computes a new value ε′ < ε.

ε′ is a function of the previous value ε. The algorithm recognizes the following

possible situations:

• If G is not ε-regular, the algorithm builds vertex subsets that are witnesses of

not ε′-regularity.

• If G is ε′-regular, the algorithm decides that G is also ε-regular.

• The previous cases don’t cover all the possible situations. Indeed, G could be

ε-regular but not ε′-regular. In this case, the algorithm decides to categorize

G in one of the previous situations.
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3.7 Checking regularity in a bipartite graph

Before the detailed description of the procedure, Alon et al. [3] give proofs of

the major steps of the algorithm. In particular, the following lemmas describe all

possible situations: the regularity termination case and the not regularity one, which

produces the witnesses. In each case, the result emphasizes their relations with the

adjacency matrix of G. All the results described in this sections refer to a single

pair of vertex sets. The complete algorithm, on the other hand, will deal with a

partition and will include steps to improve the current partition, as stated in Lemma

B.1. First of all, it could be useful to introduce some definitions. In particular, Alon

et al. [3] , studying a bipartite graph H with equal colour classes |A| = |B| = n,

define the average degree d of H as

d =
1

2n


i∈A∪B

deg(i) (3.8)

where, deg(i) is the degree of the vertex i (see [19]). Let y1 and y2 be two distinct

vertices, such that y1, y2 ∈ B. Alon et al. [3] define the neighborhood deviation of

y1 and y2 by

σ(y1, y2) = |N(y1) ∩N(y2)| −
d2

n
(3.9)

In the Equation (3.9) , N(x) ∈ N is the set of neighbors of the vertex x. Finally,

for a subset Y ⊂ B, the deviation of Y is

σ(Y ) =


y1,y2∈Y σ(y1, y2)

|Y |2
(3.10)

The first Lemma describes the possible scenarios that could be found analyzing

a pair of subsets in the current partition. The pair can be usefully reduced to a

bipartite graph with equal colour classes, because the Lemma never considers the

neighborhood relations between vertices in the same subset.

Lemma 2. Let H be a bipartite graph with equal colour classes |A| = |B| = n, and

let d denote the average degree of H. Let 0 < ε < 1
16

.

If there exists Y B, |Y | > εn such that σ(Y ) ≥ ε3

2
n then at least one of the

following cases occurs.

1. d < ε3n
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2. There exists in B a set of more than 1
8
ε4n vertices whose degrees deviate from

d by at least ε4n.

3. There are subsetsA′ ⊂ A, B′ ⊂ B, |A′| ≥ ε4

4
n, |B′| ≥ ε4

4
n and |d(A′, B′)d(A,B)| ≥

ε4.

Moreover, there is an algorithm whose input is a graph H with a set Y ⊂ B as

above that outputs either

• The fact that 1 holds, or

• The fact that 2 holds and a subset of more than 1
8
ε4n members of B demon-

strating this fact, or

• The fact that 3 holds and two subsets A′ and B′ as in 3 demonstrating this

fact.

The algorithm runs in sequential time O(M(n)), where M(n) = O(n2.376) is

the time needed to multiply two n by n matrices over the integers, and can be

parallel and implemented in time O(logn) on a EREW PRAM with a polyno-

mial number of parallel processors. The hypothesis regarding the vertex subset

Y assures that it is possible to find a subset of the colour class B in which every

vertex has a sufficient high number of neighbors in A. If the pair should result

ε-irregular, then the witnesses of irregularity (the vertex subsets A′ and B′) have to

be searched starting form Y . Indeed B′ ⊂ Y and, most properly, B′ ⊂ Y ′, where

Y ′ = y ∈ Y ||deg(y)− d| < ε4n, i.e. the set of vertices whose degrees show a certain

regularity with regard to the average degree of H. Alon et al. [3] demonstrate that

it is possible to find a vertex y0 ∈ Y such that the number of common neighbors

between y0 and all the elements b ∈ B′ deviates from the value accepted for the

regularity. Finally, Alon et al. [3] simply define the second witness as A′ = N(y0).

On the other hand, the existence of Y doesn’t assure that the current graph H is

not directly ε-regular. The Fact 1 rephrases the ε-regularity conditions in terms of

average degree and ε: if d < ε3n, then (A,B) is a ε-regular pair. Indeed, considering

the ε-regularity condition 1.5, and observing that

d(A,B) =
e(A,B)

|A||B|
=

2e(A,B)

2n

1

n
=


i∈A∪B deg(i)

2n

1

n
=
d

n
(3.11)

we have the following two cases:
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• d(A,B)− d(A′, Bε) < ε: then

d(A,B)− d(A′, B′) =
d

n
− e(A,B)

|A||B|
<
d

n
− 1 < ε3 − 1 < ε (3.12)

• d(A,B)d(A′, Bε) > −ε: then

d(A,B)− d(A′, B′) =
e(A,B)

|A||B|
− d

n
> 1− d

n
− 1 > 1− ε3 > −ε (3.13)

In the previous statements, the following relations have been used: d(., .) ∈ [0, 1]

and in particular d(., .) < 1, the hypothesis d < ε3n and finally ε ∈ [0, 1].

If both Facts 1 and 3 in Lemma 2 don’t happen, then there exists another

scenario: Fact 2 describes the situation in which the number of vertex in B deviating

from the average degree more than ε4n is too high to permit the creation of the first

witness B′. Remember that B′ is always constructed as a set of vertices that respect

the regularity of distribution of degrees around the average degree. On the contrary,

A′ is the set of vertices whose degrees deviate from the average degree with regard

to the vertices selected in B′. Alon et al. [3] also prove a Lemma that relates the

existence of a high number of vertices b ∈ B which degrees deviate from the average

and the existence of a vertex subset Y ⊂ B such that σ(Y ) ε
3

2
n.

Lemma 3. Let H be a bipartite graph with equal classes |A| = |B| = n. Let

2n
1
4 < ε < 1

16
. Assume that at most 1

8
ε4n vertices of B deviate form the average

degree of H by at least ε4n. Then, if H is not ε-regular then there exists Y ⊂ B,

|Y | ≥ εn such that σ(Y ) ≥ ε3

2
n. More interesting to the final algorithm is the

corollary to the Lemma 3.

Corollary 1. Let H be a bipartite graph with equal classes |A| = |B| = n. Let

2n1/4 < ε < 1
16

. There is an O(M(n)) algorithm that verifies that H is ε-regular or

finds two subsets A′ ⊂ A, B′ ⊂ B, |A′| ε4
4
n , |B′| ε4

4
n and |d(A′, B′)− d(A,B)| ≥ ε4.

It is quite easy to show that the computation time of the algorithm doesn’t

exceed O(M(n)). Indeed, the computation of d, the average degree of H, takes a

O(n2) time. Once d is computed, the ε-regularity of H could be checked. Then, it is

necessary to count the number of vertices in B whose degrees deviate from d by at

least ε4n. The operation takes a time in O(|B|2). If the number of deviating vertices

is more than ε4

8
n then Lemma 3 and the observation that H is not ε-regular assure

that there exists a subset Y ⊂ B such that |Y | ≥ εn and σ(Y ) ≥ ε3

2
n. Lemma 2,

now, states that the required subsets A′ and B′ can be found in O(M(n)) time.
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3.7.1 The algorithm

The algorithm combines the lemmas presented in the previous section and the ob-

servations introduced directly in the original paper by Szemerédi (see [82]). The

procedure is divided into two main steps: in the first step all the constants needed

during the next computation are set; in the second one, the partition is iteratively

created. An iteration is called refinement step, because, at each iteration, the cur-

rent partition is closer to a regular one. Given ε > 0 and t ∈ N , the lower bound of

the number of vertices needed to assure the regularity of the partition, N = N(ε, t),

and the upper bound of the number of possible sets in the partition, T = T (ε, t), are

computed. It is important to note that, with regard to the definition in Theorem

9, it is clear that T ≤ Q. As already described in [82], let b be the least positive

integer such that

4b > 600(
ε4

16
)−5, b ≥ t (3.14)

Let f : N → N be a function defined as:

f(0) = b, f(i+ 1) = f(i)4f(i) (3.15)

f describes the growth of the cardinality of the partition over the iterations.

Indeed, as described in [82], if the partition doesn’t result ε-regular, then every

set has to be split into 4k subsets, where k is the cardinality of the current partition.

Moreover, Szemerédi also states that the index of partition ind(P ), as defined in

B.1, is bounded and can be improved of the quantity ε5

20
during each refinement step

(see Lemma 4). As described in [43], the number of refinement steps is bounded,

because ind(P ) is also bounded. In particular, after q steps and using Equation

(3.21), the current partition Pq has:

1

2
≥ ind(Pq) ≥ ind(P ) +

qε5

20
(3.16)

Hence,

q ≤ 10

ε5
(3.17)

and the number of refinement steps is no more than 10ε5. Therefore, the number

of classes will be at most f(10
ε5
) + 1

Returning to the constants setting, T = (10( ε
4

16
)−5)
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and N = max{T42T , 32T
ε5
}. Alon et al.[3] prove the theorem with Q = N(≥ T ).

The procedure

Given a graph G = (V,E) with n vertices where n ≥ N , let k be the cardinality

of the partition. The following steps describe the algorithmic version of Szemerédi’s

Lemma.

1. Creating the initial partition: arbitrarily divide the set V into a equitable

partition P1 with classes C0, C1, · · · , Cb where |Ci| = n/b, i = 1 · · · b and

|C0| < b. Let k1 = b.

2. Verifying the Regularity: for every pair Cr, Cs of Pi verify if it is ε-regular

or find X ⊂ Cr, Y ⊂ Cs, |X| ≥ ε4

16
|Cr|, |Y | ≥ ε4

16
|Cs| such that

|d(X, Y )− d(Cs, Cr)| ≥ ε4 (3.18)

3. Counting the Regular Pairs: if there are at most ε

ki
2


pairs that are not

verified as ε-regular, then halt. Pi is an ε-regular partition.

4. Iterative step: apply Lemma B.1 where P = Pi, k = ki, γ = ε4

16
and obtain

a partition P ′ with 1 + ki4
ki classes.

5. Let ki+1 = ki4
ki , Pi+1 = P ′, i = i+ 1 and go to step 2.

Lemma 4. Let G = (V,E) be a graph with n vertices. Let P be an equitable partition

of V into classes C0, C1 · · ·Ck , where the exceptional class is C0 . Let ε > 0. Let k

be the least positive integer such that

4k > 600ε−5 (3.19)

If more than εk2 pairs (Cs, Ct) in 1 ≤ s < t ≤ k are ε-irregular, then there is

an equitable partition Q of V into 1 + k4k classes, the cardinality of the exceptional

class being at most

|C0|+
n

4k
(3.20)

and such that

ind(Q) > ind(P ) +
ε5

20
(3.21)
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The idea formalized in the Lemma 4 B.1 is that, if a partition violates the

Regularity condition, then it can be refined by a new partition and, in this case,

the ind(P ) measure can be improved. On the other hand, the new partition adds

only few elements to the current exceptional set, so, in the end, its cardinality will

respect the definition of equitable partition.
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3.8 Algorithm Implementation

3.8.1 Connection between Pairwise Clustering and Regu-

larity Lemma

The aim of this section is to test Szemerédi’s regularity Lemma in the clustering

application domain.

The notion of cluster is one of fundamental tools in machine learning which is

applied in many disciplines dealing with large amounts of data such as data mining

and pattern recognition. Formally, clustering is an unsupervised learning method

that uses the relations between input data.

The goal of Cluster Analysis is finding appropriate common characteristics among

relational data to make them as a group, called cluster. Therefore, elements in

the same cluster share a high degree of similarity among them and dis-similarly

with other clusters. K-means is a common example for a distance based clustering

method.

The algorithm produces a partition of a n-elements data-set into k equivalence

classes, whose k is previously chosen. Each element is represented as a point in a d-

dimensional space. Each cluster is constructed around an initially random selected

point, called centroid. The algorithm aims to minimize the error between each point

in cluster and the centroid of that cluster.

Density based methods are well designed for a spatial disposition and a coordi-

nate system, but not all the elements subjected to clustering can be represented in

this way. Therefore, we need a more general method that have a wider applicability

with a greater degree of complexity and not be a problem dependent.

To overcome this challenge, notion of affinity between elements are introduced.

The affinity function is a measure of the relation between every possible pair of

elements in the data-set which is used in Pairwise Clustering. The aim of Pair-

wise Clustering is to create a partition of vertex-set using the information provided

by edge weights. In this case, the partition problem changes into the clustering

one. Some of established methods that use Pairwise clustering are Normalized-Cut

Algorithm, Dominant Sets and Path-Based Clustering (see [77, 64, 62, 25] ). The

Regularity Lemma is partitional method that partitions vertices by Pairwise disjoint

sets. However, the Regular Partition and clustering are fundamentally different, the

Regularity Lemma shows some interesting characteristics of clustering notion which

are worth to investigate.
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• Szemerédi’s Lemma, like Pairwise clustering, maps data and its relations to a

graph and creates a partition over graph’s vertices.

• The Regularity Lemma is designed for unweighted graphs by Alon et al [3] but

the weighted extended version is not affected by weights of edges.

• We are able to say that the relation between two regular sets is stronger and

more structured than a relation between regular and irregular sets. Hence the

relation between two elements extends to the level of sets.

• Like Pairwise clustering methods, every function in Regularity Lemma is based

on edges and its weights.

• One of the main characteristics of Regularity Lemma is size equality of each

set.

• The main difference between clustering and partitioning is, clustering methods

divide a data-set to a similar items in a same group as much as possible, in

the case of Regularity Lemma, only the relations between elements in different

sets are subject of interest. It should be emphasis that the less intra-set edges

in each partition, the better is the partition however we don’t have a guarantee

to reach the best partition.

3.8.2 Reduced Graph and Key Lemma

To complete the proposed method, we need to define two more concepts which are

Key Lemma and Reduced graph.

It is shown that a regular partition with fixed number of vertices has a sufficiently

high number of edge density. This observation permits to define Reduced Graph

[43].

Definition 3. Definition 3 (Reduced Graph). Given a graph G = (V,E), a partition

P of the vertex-set V into the set V1, V2, · · ·Vk and two parameters and d, the

Reduced Graph R is defined as:

1. the vertices are the cluster V1, V2, · · ·Vk.

2. Vi is joined to Vj if (Vi, Vj) is ε-regular with density more than d.
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The Reduced Graph gives a simple structure of the original graph and at the

same time the most significant edges are considered during the reconstruction. Ad-

ditionally, Reduced Graph R provides a tool to study the original graph G with less

complexity. Indeed, many properties of R are directly inherited from G.

Lemma 5. (Key Lemma). Given d > ε > 0, a graph R and a positive integer m

(m is fixed and derives directly from the Regular Partition.), construct a graph G

following these steps:

1. replace every vertex of R by m vertices

2. replace the edges of R with regular pairs of density at least d.

For the details of the demonstration of Lemma 5, see [43]. It is clear by Lemma

5 that every small sub-graph of R is also a sub-graph of G. The direct consequence

of the Key Lemma is that it is possible to search for significant substructure in a

Reduced Graph R in order to find common sub-graphs of R and the original graph.

Finally, combination of the Reduced Graph and the Key Lemma provides a

tool for mapping substructure back to the original set of elements. The Reduced

graph could contain more information about relations between subsets in the original

configuration than about point to point substructures.

3.8.3 The Proposed Method

Alton’s algorithmic method is designed for unweighted graph so we had to modify

it for the weighted case. In the following lines, we explain the modifications. An

edge-weighted graph can be interpreted as a degree of similarity which lies between

0 and 1 as no similarity and highest similarity respectively.

As it has been shown, the Szemerédi’s Regularity Lemma accepts a weighted

graph as input and produces a partition according to weights and edges existence

in the graph.

The density between the sets of a pair in a weighted context is

d = d(A,B) =

|A|
i=1

|B|
j=1 (ai, bj)

|A||B|
(3.22)

In Equation 3.22 the cardinality |A| = |B| = n and d(A,B) is always bounded

in the interval [0, 1]. The zero is a full connected vertices between two sets and one



38 3. The Szemerédi’s Regularity Lemma

is a null case. Additionally, the number of edges crossing the partition is significant

for d(A,B).

The measure d(A,B) can be interpreted as a combined regularity and vertex

similarity with inter-subset and intra-subset relations. The measure itself doesn’t

have potential to handle both aspects, so by defining average weighted degree, we

are able to emphasize intra-subset relations.

awdegS(i) =
1

|S|

j∈S

w(i, j) S ⊆ V (3.23)

All elements in the current subset S are put in decreasing order by average

weighted degree. In this way, the partition of S takes place simply subdividing the

ordered sequence of elements into the wanted number of subsets.

After these steps, a Pairwise clustering method like dominant set can be applied

to search structures in the Reduced Graph.

To end this section some technical issues have been applied:

The exceptional set is applied to have the same cardinality for each subsets

which interpreted as the less significant elements in cluster. To reconstruct back the

original graph, exceptional set are assigned to the closer cluster (shortest distance

is the criteria to assign to a cluster in case of Euclidean points clustering).

In the world real application, the number of iterations and the vertex set cardi-

nality required is simply too big to be considered. So, in this algorithm adaptation,

iterations stop when a Regular Partition has been constructed or when the subsets

size becomes smaller than a previously chosen parameter.

The next-iteration number of subsets is also intractable. So it has been decided

to split every subset, from an iteration to the next one, on the basis of a user selected

fixed parameter (In our case, we set it to 2).

Finally, the relation between Dominant Sets and this graph partition-

ing is:

If the exceptional set is empty and the subsets A and B cardinality is 1, we have

d = d(A,B) =

|A|
i=1

|B|
j=1w(ai, bj)

|A||B|
= w(a1, b1) (3.24)
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3.9 Experiments

3.9.1 Dominant Sets

The edge weighted graph G = (V,E, ) representing a set of n elements and (i, j)

is a not-negative weight function that maps edges in real values and measures the

similarity between the considered vertices i and j that is obtained from the following

formula.

w(i, j) = exp(
−||F (i)− F (j)||22

σ2
) (3.25)

where

1. σ is a positive real number and is bounded in the interval (0, 1].

2. F (i) is a feature vector and ||.||2 is the Euclidean distance between the two

values which gives dissimilarity between two considered elements.

Dominant Sets are a pairwise clustering method, developed in 2003 by Pavan

and M. Pelillo ([62, 64]). The Dominant Sets framework generalizes the concept of

complete sub-graph or clique to weighted graphs. Generally, a clique is defined for

unweighted graphs and its characteristic of compactness is accepted as a definition

of cluster.

As often happens in pairwise clustering, data to be clustered are represented by

an undirected edge-weighted graph with no self-loops.

G = (V,E, ), where the vertex set V = 1, · · · , n corresponds to elements in

the data-set, the edge set E ⊆ V × V represents neighborhood relationships and

: E → R+ ∪ 0 is a positive weight function that reflects the similarity between pairs

of linked vertices.

The graph G is represented by a nxn non-negative weighted matrix A = (aij),

known as weighted adjacency matrix. A is defined as:

aij =

w(i, j) if (i, j) ∈ E

0 otherwise.
(3.26)

The assignment of edge-weights induces an assignment of weights on the vertices.

These weights are used to give a formal definition of cluster.

Let S ⊆ V be a non-empty subset of vertices and i ∈ V . The average weighted

degree of i w.r.t. S is defined as:
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awdegS(i) =
1

|S|

j∈S

aij (3.27)

Pavan and Pelillo [62] define also a function

φS(i, j) = aijawdegS(i) (3.28)

where j /∈ S.φ{i}(i, j) = aij , for all i, j ∈ V with i 6= j. φS(i, j) measures the

similarity between nodes j and i, with respect to the average similarity between

node i and all neighbors in S.

Node-weights can now be defined as follow. Let S ⊂ V be a non- empty subset

of vertices and i ∈ S. The weight of i w.r.t S is

wS(i) =

1 if |S| = 1
j∈S/{i} φS/{i}WS/{i}(j) otherwise.

(3.29)

Moreover, the total weight of S is defined to be:

W (S) =

i∈S

wS(i) (3.30)

Intuitively, wS(i) gives a measure of the overall similarity between vertex i and

the vertices of S/{i} with respect to the overall similarity among the vertices in

S/{i} .
Finally, it is possible to formally define a cluster, remembering the notion of

intra-cluster homogeneity and inter-clusters unhomogeneity:

Definition 4. A non-empty subset of vertices S ⊆ V such that W (T ) > 0 for any

non-empty T ⊆ S, is said to be dominant if:

1. wS(i) > 0, for all i ∈ S

2. wS∪{i}(i) < 0, for all i /∈ S

The problem of finding a Dominant Set in a graph is strictly related to solving

a quadratic problem. Consider G = (V,E, ) and its weighted adjacency matrix A.

The following quadratic problem is a generalization of the Motzkin-Straus program

[55]:

maximize f(x) = X
′
AX

s.t. X ∈ 4
(3.31)
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Where 4 = {X ∈ Rn, xi ≥ 0 for all i ∈ V and eTx = 1}

is the standard simplex of Rn, e is a vector of appropriate length consisting of

unit entries (hence e
′
x =


i xi ), and a prime denotes transposition.

The following theorem, proved in [62], states the relation between Dominant Sets

and local solution to program.

Theorem 10. If S is a dominant subset of vertices, then its weighted characteristics

vector xS , which is the vector of 4 defined as

xSi =


wS(i)
W (S)

, if i ∈ S

0 otherwise.
(3.32)

is a strict local solution of the optimization 3.31. Conversely, if x is a strict local

solution of the optimization then its support S = σ(x) is a dominant set, provided

that wS∪{i}(i) 6= 0 for all i /∈ S.

Theorem 10 permits to find a Dominant Set by calculating a solution of a pro-

gram: the individuated Dominant Set will correspond to the support set of the found

solution.

The connection between Dominant Sets and local optima is important because

it permits the framework to be really competitive in computational time. Local

solution of quadratic problems can be found, indeed, in a very short time by the

so-called Replication Dynamics, a class of continuous- and discrete-time dynamical

systems arising from evolutionary game theory (see [62, 74, 64, 9, 52] ).

The basic idea under the Dominant Sets framework is that if we have found a

cluster via Dominant Set in the original complete set of objects, it is successively

possible to search for other clusters that satisfy the partitional nature of the problem.

In other words, every time a new cluster is found, we search for the others in the

set of all not already clustered elements, until all the objects have been partitioned.

The Dominant Set framework has already been used for problems of clustering and

image segmentation, as it is possible to see in [64, 62].

We could show that by extension of dominant set method, we are able to deter-

mine the number of clusters which can be used to compress the graph. The detail

information is provided in appendix.
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3.9.2 Experimental Results

Synthetic Experiment

We made an easy example of two filled circles with different size. The location

of each pixel is used as a feature vector and similarity matrix is made based on the

features.
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(b) The classification result

Figure 3.1: This experiment shows the classification result of two circles with Dom-

inantset.

Figure 3.1 shows the result of two step method based on Szemerédi reduced

matrix and using Dominantset as classification. In this example the number of

pixels are 1569× 1569 and the size of reduced matrix is 32× 32. The final accuracy

is 97.5%.

Real-World Experiment

We performed some preliminary experiments aimed at assessing the potential

of the approach described in the previous sections. We selected the following UCI

data-sets: the IRIS database (150 elements, 3 classes), Pima database (768 elements,

2 classes), Haberman (306 elements, 2 classes), Wine (178 elements, 3 classes), Imox

(192 elements, 2 classes), ecoli (272 elements, 3 classes), auto-mpg (398 elements, 2

classes), biomed (194 elements, 2 classes), breast (683 elements, 2 classes), sonar (208

elements, 2 classes), glass (214 elements, 4 classes) and Ionosphere (351 elements, 2

classes).

Table 3.1 summarizes the result obtained on these data by showing the classifi-

cation accuracy obtained by our two-phase strategy for each database considered.

Recall that in the second phase we used the dominant-set algorithm for cluster-
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Classif. Accuracy

DataSet Size Two-Phase Plain-DS R.G Size Compression Rate Class No

IRIS 150 84% 88% 75 50% 3

Pima 768 60.42% 62.74 % 32 95.83 % 2

Haberman 306 73.53 % 73.20 % 153 50 % 2

Wine 178 67.42 % 71.35 % 89 50 % 3

Imox 192 53.65 % 77.08 % 64 66.67 % 2

ecoli 272 85.66 % 91.54 % 136 50 % 3

auto-mpg 398 81.91 % 84.17 % 132 66.83 % 2

biomed 194 72.68 % 80.93 % 64 67.01 % 2

breast 683 65.15 % 95.46 % 2 99.71 % 2

sonar 208 53.37 % 52.88 % 69 66.83 % 2

glass 214 46.26 % 52.34 % 71 66.82 % 4

Ionosphere 351 64.10% 70.09% 2 99.43% 2

Table 3.1: Results obtained on the UCI benchmark datasets. Each row repre-

sents a dataset, while the columns represent (left to right): the number of elements

in the corresponding dataset, the classification accuracy obtained by the proposed

two-phase strategy and that obtained using the plain dominant-set algorithm, re-

spectively, the size of the reduced graphs, the compression rate and the number of

classes.

ing the reduced graph. Further, for the sake of comparison, we present the results

produced by a direct application of the dominant-set algorithm to the original simi-

larity graph without any pre-clustering step. As can be seen, our combined approach

substantially outperforms the plain algorithm. As can be seen, the cardinality of

the reduced graph (or, alternatively, the size of the regularity subsets which in our

implementation is a user-defined parameter) is of crucial importance as introduces

a trade-off between the second-phase precision and the overall performance. Note

how, using the regularity partitioning process, we were able to achieve compression

rates from 50 to 99.71 while improving classification accuracy.

Table 3.2 summarizes the result of Breast benchmark of UCI dataset. In this

experiment, effect of different values of ε in the range [01] is investigated. By in-

creasing the value of ε compression rate increases and in the same time accuracy

falling down.
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BREAST from UCI DataSet

ε 0.11 0.16 0.21 0.26 0.31 0.36 0.41

Accuracy 92.97% 88.87% 87.41% 77.45% 65.45% 65.15 % 65.15 %

Compression 50.07 % 50.07 % 50.07 % 80.09 % 98.83 % 99.41 % 99.71%

ε 0.46 0.51 0.56 0.61 0.66 0.71 0.77

Accuracy 65.15 % 65.15% 64.86% 64.86% 65.15% 65.15% 64.86 %

Compression 99.71 % 99.71 % 99.71 % 99.71 % 99.71 % 99.71 % 99.71%

Table 3.2: Result obtained on Breast dataset of UCI benchmark. Ech row represents

a ε, accuracy and compression rate

3.10 Discussion and future work

The aim of the chapter was compressing a graph with Szemerédis Regularity Lemma

applied in the field of Pairwise Clustering.

The Szemerédi’s Lemma is now one of the most famous theorem in Extremal

Graph Theory. Two steps strategy evaluation as described, shows some interesting

properties that is used as a compression device.

In the light of the studied examples of applications, the following conclusive

observations emerged:

• It is justified to consider the Lemma as a preclustering strategy.

• The use of Reduced Graph as a weighted instrument to investigate the ex-

istence of significant substructures in the original graph is justified by the

theoretical framework of Key Lemma.

• From an operational point of view, the Two Step Strategy is able to combine

a edge-density based partitional method with a vertex similarity based one.

Through the use of Reduced Graph, the clustering method becomes faster.

For the future work, we have observed that, there is an interesting potential to

apply the SRL to the matching problem. Based on the earlier work of professor M.

Pelillo in this field [[67], [65] and [66] ], we can apply SLR method to the associate

matrix of two graphs before detecting the maximum clique of it. Therefore, in

this way, we are able to reduce time as far as Maximum clique detection is NP-

complementary problem.
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4
A Matrix Factorization and Graph

Compression

He who has overcome his fears will

truly be free

Aristotle

4.1 Introduction

In the recent years, matrix factorization approaches have become an important tool

in machine learning and found successful applications for tasks like, e.g. information

retrieval, data mining and pattern recognition. Well-known techniques based on ma-

trix factorization are singular value decomposition, principal component analysis, la-

tent semantic analysis, non-negative matrix factorization and concept factorization.

Singular Value Decomposition (SVD) [38] decomposes without loss of information

any data matrix (not necessarily square) into the product of two unitary matrices

(left and right factors) and a non-negative diagonal matrix (central factor). Principal

Component Analysis (PCA) [41] is a statistical tool that determines an orthogonal

transformation to convert a set of observations of possibly correlated variables into

a set of values from linearly uncorrelated variables, known as principal components;

the principal components can actually be recovered through the SVD factorization.

Latent Semantic Analysis (LSA) [17] is another tool developed in the context of nat-

ural language processing that is based on the SVD factorization; this technique aims

at recovering hidden concepts from a typically sparse co-occurrence matrix of, e.g.

words and documents in the context of document analysis. Further developments of

LSA gave rise to the probabilistic Latent Semantic Analysis (pLSA) [36], which is
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based on a mixture decomposition of the latent class model, and to Latent Dirichlet

Allocation (LDA) [7], which is a more general generative model where observations

are explained by latent groups capturing the similarity structure within the data.

Non-negative Matrix Factorization (NMF) [47, 60] decomposes a non-negative data

matrix into the product of two non-negative factor matrices in a way to minimize the

divergence between the original matrix and the factorized one; several divergence

measures have been proposed including Frobenious distance, Kullback-Leibler di-

vergence, and more in general Bregman divergences. Some authors extended NMF

by integrating regularization terms acting on the factor matrices. Notably, in [11] a

method called Graph-regularized NMF (GNMF) is proposed, where the geometrical

manifold of the data points is used to regularize their low-dimensional representation

that is encoded in the non-negative right-factor matrix; a step forward is taken with

the Discriminative Orthogonal Non-negative (DON) matrix factorization approach

[49], which is characterized by an additional regularization term, aimed at rendering

the low-dimensional representations more discriminant. Furthermore, relations be-

tween NMF and clustering have been established in [20], where the authors show how

the k-means clustering formulation and the Laplacian-based spectral clustering for-

mulation can be cast into weighted, symmetrized instances of NMF. Similar works

shed light on a variety of further connections to graph matching, clique finding,

bi-clustering [21], pLSA [22] and hidden Markov models [46]. Some of those connec-

tions actually involve more complex, quadratic matrix factorization, i.e. exhibiting a

quadratic dependency on a factor matrix. Quadratic non-negative matrix factoriza-

tion methods under different types of constraints have recently been studied in more

details in [89, 90]. We end our brief introduction to matrix factorization techniques

with Concept Factorization (CF) [87], i.e. a matrix factorization method originally

introduced for document clustering that can be regarded as an auto-encoder model

for the data matrix, where the encoding and decoding steps are linear transforma-

tions. The resulting factorization is similar to NMF, but can also potentially deal

with non-negative data matrices. Recently, a regularized variant of CF has been

introduced [50], which takes into account the local, geometrical data structure in

kernel space.

A matrix undergoing a factorization in learning algorithms typically arises as

a collection of feature vectors, each vector being a column of the matrix, or as a

representation of the similarity/dissimilarity relations among data objects. In the

latter case, we can easily interpret the matrix as the adjacency matrix of a weighted

graph having the data objects as vertices. The application of matrix factorization
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for the analysis of graphs is mainly restricted to clustering [45, 72]. This paper aims

at giving a novel viewpoint about the role of matrix factorization in the analysis of

graphs and, in the specific, we show how matrix factorization can serve the purpose

of compressing a graph.

Compressing data consists in changing its representation in a way to require

fewer bits. Depending on the reversibility of this encoding process we might have a

lossy or lossless compression. Information-theoretic works on compressing graphical

structures have recently appeared [13]. However, they do not focus on preserving a

graph structure as the compressed representation, which is instead what we aim at

in our graph compression model. Our work is instead closer in spirit to [57], which

proposes a summarization algorithm for unweighted graphs, and [84], which proposes

a greedy procedure to determine a set of supernodes and superedges to approximate

a weighted graph. Moreover, our work is related to the Szemerédi regularity lemma

[80], a well-known result in extremal graph theory, which roughly states that a dense

graph can be approximated by a bounded number of random bipartite graphs. An

algorithmic version of this lemma has been used for speeding-up a pairwise clustering

algorithm in [78].

A problem linked to graph compression that has focused the attention of re-

searchers in the network and sociometric literature for the last few decades is block-

modeling [37, 51]. Block models try to group the graph vertices into groups that

preserve a structural equivalence, i.e. vertices falling in the same group should ex-

hibit similar relations to the nodes in other groups (including self-similarity), and

they differ by the way in which structural equivalence is defined. We refer to [29] for

an overview of blockmodels and to [2] for recent developments on mixed-membership

stochastic block models.

In this thesis we provide a novel viewpoint about the role of matrix factorization

in the analysis of graphs and, in the specific, for the purpose of compressing a graph.

The solution that we propose to compress a graph can be regarded as a block-model,

where blocks and their relationships can be determined using a matrix factorization

approach. Moreover, the model we propose extends our preliminary study in [59]

to deal with incomplete observation of the graph (or kernel) to be compressed. The

main contributions of the this chapter of thesis are the following:

i) we link matrix factorization with graph compression by proposing a factoriza-

tion that can be used to reduce the order of a graph and can be employed

also in the presence of incomplete observations. We show that the same tech-
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nique can be used to compress a kernel, by retaining a kernel as the reduced

representation;

ii) we cast the discrete problem of finding the best factorization into a continuous

optimization problem for which we formally prove the equivalence between the

discrete and continuous formulations;

iii) we provide a novel algorithm to approximately find the proposed factorization,

which resembles the NMF algorithm in [48] (under `2 divergence) and the Baum-

Eagon dynamics [5]. Additionally, we formally prove convergence properties for

our algorithm;

iv) finally, we establish a relation between clustering and our graph compression

model and show that existing clustering approaches in the literature can be

regarded as particular, constrained variants of our matrix factorization.

The rest of the manuscript is organized as follows. Section 4.2 introduces some

notation and basic definitions used in the work. Section 4.3 introduces our graph

compression formulation and its applicability also in the context of kernel compres-

sion. Section 4.4 addresses the problem of computing the factorization by proposing

an algorithm and by providing some convergence guarantees. Section 4.6 establishes

relations between the problem of clustering and our graph compression formula-

tion. Section 4.7 is devoted to showing the effectiveness of our graph compression

algorithm on both synthetic and real-world data-sets. Finally, we provide some

concluding discussion and plans for future developments.
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4.2 Preliminaries

We present here the notation and basic definitions adopted throughout the thesis.

General. We denote vectors with bold lowercase letters (e.g. x, y), matrices with

uppercase typewriter-style letters (e.g. A, B), sets with calligraphic-style uppercase

letters (e.g. X , Y). The (i, j)th element of matrix A is denoted by Aij, whereas the

ith element of a vector v is denoted by vi. We write indices with lowercase letters

(e.g. i, j, k, h) and constants with lowercase serif-style letters (e.g. n, m). We

denote by 1P the indicator function giving 1 if proposition P is true, 0 otherwise.

The sets of real and non-negative real numbers are given by R and R+ as usual. We

denote by [n] the set {1, . . . , n}.
The pseudo-inverse x+ of a scalar x ∈ R returns 1/x if x 6= 0 and 0 otherwise.

The identity matrix is denoted by I. The vector of all 1s of size k is denoted by 1k,

the size being omitted where unambiguous. The matrix of all 1s is denoted by E.

Let A and B be two n × m matrix. The transposition of A is denoted as A>.

The inverse of a square matrix A is denoted by A−1. The set of left-stochastic

k × n matrices is given by S = {X ∈ Rk×n
+ : X>1k = 1n} and we denote by

S01 = S∩{0, 1}k×n the set of left-stochastic binary matrices. Given A and B square,

the notation A < B means that (A−B) is positive semidefinite, i.e.


ij∈[n](Aij −
Bij)xixj ≥ 0 for all x ∈ Rn

4.3 Matrix factorization for graph compression

An (edge-weighted) graph is a triplet (V , E , ω) where V = [n] is the set of n vertices,

E ⊆ V × V is the set of edges and ω : E → R is a function providing each edge

with a weight. We refer to n as the order of the graph. For the sake of simplicity,

we consider the graph to be complete and model missing edges as 0-weighted edges.

Moreover, the graph is assumed to be undirected and therefore ω(i, j) = ω(j, i)

for all (i, j) ∈ E . A graph (V , E , ω) can thus be encoded as a symmetric matrix

G ∈ Rn×n, where Gij = 1(i,j)∈Eω(i, j) or.

Gij =

ω(i, j) if (i, j) ∈ E

0 otherwise.

Hereafter, we might refer to G both as a graph or as a matrix depending on the

context.
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Let G ∈ Rn×n be a graph and let k ≤ n be a constant representing the order

of the new graph that we expect after the compression. The rate k
n
is regarded as

the graph compression rate. To reduce the order of graph G from n vertices to k

vertices, we have to determine the compressed graph (or reduced graph) R ∈ Rk×k,

and a mapping ψ : [n] → [k] between vertices of the original graph G and the

reduced one R. The mapping ψ relates each vertex i of G to a vertex ψ(i) of R.

Since ψ is in general a many-to-one mapping, i.e. such that multiple vertices of G

can potentially be assigned to the same vertex of R, we have a lossless compression

only when the relation

Gij = Rψ(i)ψ(j) (4.1)

holds for all i, j ∈ [n]. In real-world scenarios, the graph might not be fully observed,

but only a subset of the entries in G might be available. To cope with this eventu-

ality, we assume that only a subset O ⊆ [n]× [n] of entries (not restricted to graph

edges) is observed. Due to the symmetry of G, we assume O to be symmetric as

well, i.e. (i, j) ∈ O =⇒ (j, i) ∈ O. If only partial information about the graph is

available, we relax the requirements for a “lossless” compression, by imposing that

(4.1) should hold just for all (i, j) ∈ O. From now on, we assume without loss of

generality that only partial information about the graph is available and that O
encodes the index set of the observed entries.

A many-to-one mapping ψ can be expressed as a left-stochastic binary matrix

X ∈ S01 where By expressing the many-to-one mapping ψ as a binary matrix X ∈
{0, 1}k×n, having columns summing up to 1, i.e. X>1k = 1n, where each entry

Xkj = 1ψ(j)=k indicates whether vertex j of G should be assigned to vertex k of

R. On the other hand, every left-stochastic binary matrix X ∈ S01 encodes the

many-to-one mapping ψ(i) = arg maxkXkj. By replacing the mapping ψ with its

matrix-form counterpart X, we can compactly rewrite the condition for a lossless

compression (with partial observations O) in (4.1) in terms of the factorization

G=OX
>RX . (4.2)

In general, a lossless factorization for a graph G at some fixed compression rate

might not exist. In this case, we resort to a least-squares approximation, i.e. we

look for a minimizer of

min g(X,R) = ‖G−X>RX‖2O
s.t. X ∈ S01 , R ∈ Rk×k .

(4.3)
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The proposed factorization allows to reduce the complexity of the graph repre-

sentation from n2, i.e. the space complexity of G, to (n+k2), i.e. the effective space

complexity of (X,R). In fact, since matrix X is the matrix-form of the mapping ψ,

it can be stored more compactly as a n-dimensional vector, the ith component begin

index ψ(i). Additionally, it has interesting properties which render it suitable, e.g.

as a kernel compression strategy. Indeed, as a consequence of property 2 of Theorem

11, if G is a kernel and we have a complete set of observations (i.e. O = [n] × [n])

then also R is a kernel.

Theorem 11. Let (X,R) be a local solution of (4.3) with O = [n]× [n] and assume

X to have full rank. Then the following properties hold for any s ∈ {−1,+1}:

1. sG ∈ Rn×n
+ =⇒ sR ∈ Rk×k

+ ,

2. sG < 0 =⇒ sR < 0.

Proof. By setting to zero the derivative of (4.3) with respect to R we obtain the

equationXGX> = XX>RXX> which must be satisfied by any local solution. Since

X ∈ S01 has rank k, matrix XX> is invertible. By left and right multiplying both

sides of the previous equation by (XX>)−1 we obtain (XX>)−1XGX>(XX>)−1 =

R. From this identity and assuming sG < 0 we can see that y>(sR)y = z>(sG)z ≥
0 for all y ∈ Rk, where z = X>(XX>)−1y. Hence, Property 1 holds for anyX ∈ S01.
Moreover also Property 2 holds, since (XX>)−1X is a non-negative matrix for any

X ∈ S01.

The assumption in Theorem 11 of X being of full rank is not restrictive. Indeed,

if X is rank deficient then it has at least one null row. By removing the null rows

of X and by dropping the corresponding rows and columns of R, we fall back to

the case where we have full rank without affecting the quality of the approximation.

Note also that property 1 holds, more in general, for any choice of O, while it is not
necessarily true for property 2.
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4.4 A tight relaxation of the graph compression

objective

The matrix factorization in (4.2) can be regarded as a particular quadratic factor-

ization, where the factor matrix X is left-stochastic and binary, and R is uncon-

strained. If we relax the binary constraint to a non-negativity constraint, we obtain

a quadratic matrix factorization that has been studied in [89] and for which update

rules have been indirectly provided.1 By using them, one could potentially find a

solution to (4.3) with S01 relaxed to S. However, by doing so, there is no guarantee

that the solution to the relaxed problem (once projected) will be also solution to

the original factorization problem, i.e. the relaxation is not tight. Moreover, the

update rules in [89] are not interior-point methods in the sense that feasibility is

not guaranteed at intermediate steps. In this section, we provide an alternative

relaxation to the graph compression objective, which is not per se in the form of a

matrix factorization problem, but it is tight as it allows to recover the solution to

(4.3). Moreover, the update rule we propose in Section 4.5 for Y is invariant to S,
i.e. every iteration yields a feasible solution.

Instead of optimizing (4.3), which exhibits a non-convex feasible set, we optimize

a relaxation of the same program, where we drop the integer constraint. In the

specific, we replace the variable X ∈ S01 with a left-stochastic real matrix Y ∈
S. This replacement is performed after some algebraic calculations which allow to

reduce the degree of the polynomial being the objective function. This yields the

following program:

min f(Y,R)

s.t. Y ∈ S , R ∈ Rk×k ,
(4.4)

where

f(Y,R) =


(i,j)∈O


k,h∈[k]

1(k,i)6=(h,j)YkiYhj(Gij −Rkh)
2 +


(i,i)∈O


k∈[k]

Yki(Gii −Rkk)
2 .

The newly introduced optimization program satisfies a strong property provided

in Theorem 12, which suggests that (4.4) is a tight relaxation of (4.3) and that

minimizing (4.4) is equivalent to minimizing (4.3).

1there is no explicit update rule in the thesis to find the specific relaxed factorization, but it

could be obtained by using Theorem 1.
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Theorem 12. Let X ∈ S01, Y ∈ S and R ∈ Rk×k. If (X,R) is a minimizer

of (4.3) then (X,R) is a minimizer of (4.4). If (Y,R) is a minimizer of (4.4)

then (Π(Y),R) is a minimizer of (4.3), for any projection Π : S → S01 satisfying

(Yki = 0)⇒ (Π(Y)ki = 0) for all k ∈ [k] and i ∈ [n].

Proof. We start showing that for any R ∈ Rk×k and any X ∈ S01 it holds that

g(X,R) = f(X,R). Let ψ be the mapping encoded by X as described in Section

4.3. Then g(X,R) can be written as

g(X,R) =


(i,j)∈O

(Gij −Rψ(i)ψ(j))
2

=


(i,j)∈O


k,h∈[k]

1ψ(i)=k1ψ(j)=h(Gij −Rkh)
2

=


(i,j)∈O


k,h∈[k]

XkiXhj(Gij −Rkh)
2 .

By noting that X2
ki = Xki we decompose the summation as follows:

g(X,R) =


(i,j)∈O


k,h∈[k]

1(k,i)6=(h,j)XkiXhj(Gij −Rkh)
2

+


(i,i)∈O


k∈[k]

Xki(Gii −Rkk)
2 = f(X,R) . (4.5)

(⇒) To prove the first implication of the theorem, assume (X,R) to be a mini-

mizer of (4.3) and let (Y,T) be a minimizer of (4.4), where Y ∈ S. Moreover, let

X ∈ S01 be a random variable generating a left-stochastic binary matrix according

to the probabilities defined in Y. Specifically, each ith column of the outcome ma-

trix can be regarded as an independent realization from a categorical distribution

parametrized by the ith column of Y. Then, by (4.5), by noting that the expecta-

tion E[·] and the function f(·,R) do commute, and since (X,R) is a minimizer of

(4.3), we have that

f(X,R) = g(X,R) ≤ E[g(X,T)] = E[f(X,T)] = f(E[X],T) = f(Y,T) . (4.6)

Since (Y,T) was assumed to be a minimizer of (4.4), the previous relation implies

that necessarily f(X,R) = f(Y,T) and therefore also (X,R) must be a minimizer

of (4.4).
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(⇐) To prove the other implication of the theorem, assume (Y,R) to be a min-

imizer of (4.4) and let (X,T) be a minimizer of (4.3). Then, similarly to (4.6),

we have that f(Y,R) = E[g(X,R)] ≥ g(X,T) = f(X,T). This implies that

E[g(X,R)] = g(X,T) since (Y,R) is assumed to be a minimizer of (4.4) and there-

fore g(Z,R) = g(X,T) for all Z ∈ S01 such that P[X = Z] > 0. Now, since

P[X = Π(Y)] > 0 by construction, it follows that (Π(Y),R) is a minimizer of

(4.3).

According to Theorem 12, we can focus on the optimization of (4.4), which has a

continuous objective and domain, in place of (4.3), for any solution Y∗ of the former

can be cast into a solution X∗ of the latter by applying a projection as defined by

the theorem, i.e. X∗ = Π(Y∗). As an example of such a projection, we could replace

each column of Y∗ with an indicator vector for the largest element in the column to

obtain X∗.
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4.5 Graph compression algorithm

We propose an optimization approach for (4.4), which alternates updates of the

variable R and updates of the variable Y. Both updates are shown to deliver a

decrease of the objective function until a stationary point of (4.4) is reached.

4.5.1 Update rule for R.

Since R is an unconstrained matrix variable, we derive an update rule for it by

setting the first-order partial derivative of f with respect to its second argument R

to zero (see, proof of Theorem 13 for details). This yields

UR(Y)kh = (Lhk)
+

 
(i,j)∈O

1(k,i) 6=(h,j)YkiYhjGij + 1k=h


(i,i)∈O

YkiGii

 , (4.7)

where L is defined as

Lkh =


(i,j)∈O

1(k,i)6=(h,j)YkiYhj + 1k=h


(i,i)∈O

Yki . (4.8)

This update rule has complexity O(k2|O|) and guarantees a monotonic decrease of

the objective function f as stated by the following theorem.

Theorem 13. Let T ∈ Rk×k and Y ∈ S. Then

f (Y,T) ≥ f

Y, UR(Y)


with equality if and only if T is a minimizer of f(Y, ·).

Proof. Since f(Y, ·) is a quadratic form and it is lower bounded by 0, we can prove

the result by simply showing that

∂f

∂Rkh

(Y, UR(Y)) = 0 . (4.9)

Indeed, if this is true, then UR(Y) will be a global minimizer of f(Y, ·) and therefore

f(Y,T) = f(Y, UR(Y)) holds true if and only if T is a global minimizer of f(Y, ·)
as well.
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The partial derivative of f with respect to its second argument R is given by

∂f

∂Rkh

(Y,R) = 2


(i,j)∈O

1(k,i)6=(h,j)YkiYhj(Rkh −Gij)

+ 2


(i,i)∈O

1k=h

k∈[k]

Yki(Rkh −Gii)

= 2RkhLkh − 2


(i,j)∈O

1(k,i) 6=(h,j)YkiYhjGij

− 2


(i,i)∈O

1k=h

k∈[k]

YkiGii ,

where L is defined as in (4.8). By expanding the derivative in (4.9), by isolating

the term with UR(Y)
on the left-hand-side of the equation, and after halving both

sides, we get

[UR(Y)]khLkh =


(i,j)∈O

1(k,i) 6=(h,j)YkiYhjGij + 1k=h


(i,i)∈O

YkiGii . (4.10)

Clearly, by definition of UR(Y), the equality holds true if Lkh 6= 0. In the other

case, Lkh = 0 only if YkiYhj = 0 for all (i, j) ∈ O. This in turn implies that

the right-hand-side of (4.8) is zero as well. Hence, if Lkh = 0 then (4.10) is always

satisfied and in particular it is satisfied by the update rule (4.7), which would deliver

UR(Y)kh = 0, for (Lkh)
+ = 0+ = 0.

4.5.2 Update rule for Y.

We derive here a multiplicative update rule for Y, which resembles the one proposed

in [48] for Non-negative Matrix Factorization (NMF) under `2 divergence and the

one related to the Baum-Eagon inequality [5].

Let R ∈ Rk×k and Z ∈ S and consider the following optimization problem:

min fR(Y) = f(Y,R)

s.t. Y ∈ YZ
(4.11)

where YZ = {Y ∈ S : (Zki = 0)⇒ (Yki = 0)}. We say that Y is a Karush-Kuhn-

Tucker (KKT-)point for (4.11) if it satisfies the first-order necessary conditions for
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local optimality, which are given by:

∂fR
∂Yki

(Y)− γi − µki − αki1Zki=0
= 0 , (4.12)

µkiYki = 0 , (4.13)
h∈[k]

Yhi = 1 , (4.14)

Yhi1Zki=0
= 0 , (4.15)

for some values of the Lagrangian multipliers γi, αki ∈ R and µki ∈ R+, for all k ∈ [k]

and i ∈ [n].

Let σi(Z) be the support of the ith column of Z, i.e. σi(Z) = {k ∈ [k] : Zki > 0},
and let Zi(Z,R), i ∈ [n], denote the set

Zi(Z,R) =


k ∈ [k] :

∂fR
∂Yki

(Z) = 0


∩ σi(Z) .

The following update rule UY(Z,R) for Y guarantees a strict decrease of the

objective function in (4.11) unless Z is a KKT-point (see Theorem 14):

UY(Z,R)ki =



0 if k /∈ σi
Zki

h∈Zi

Zhi
if k ∈ Zi

Zki

λi
∂fR
∂Yki

(Z)

if Zi = ∅, k ∈ σi

(4.16)

where we wrote σi and Zi for σi(Z) and Zi(Z,R), and where

λi =

h∈σi

Zhi
∂fR
∂Yhi

(Z)−1 .

The complexity of this update rule is O(k2|O|) (see (4.19) for the formula of the

first-order partial derivative).

Theorem 14. Let R ∈ Rk×k and Z ∈ S. Then

f(Z,R) ≥ f(UY(Z,R),R)

with equality if and only if Z is a KKT-point for (4.11).
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Before providing the proof of Theorem 14, we need the following lemma:

Lemma 6. Let Z ∈ S and consider the following function:

φ(Y,Z) = fR(Z) +

i∈[n]


k∈[k]

(Yki − Zki)
∂fR
∂Yki

(Z)

+
1

2


i∈[n]


k∈[k]

(Yki − Zki)
2 ∂fR
∂Yki

(Z)Z+
ki . (4.17)

Then φ(Y,Z) ≥ fR(Y) for all Y ∈ YZ.

Proof. By replacing fR with its Taylor expansion about Z we obtain after simple

algebraic manipulations:

φ(Y,Z)− fR(Y) =
1

2


i∈[n]


k∈[k]

(Yki − Zki)
2 ∂fR
∂Yki

(Z)Z+
ki

− 1

2


i,j∈[n]


k,h∈[k]

(Yki − Zki)(Yhj − Zhj)
∂2fR

∂Yki∂Yhj

(Z) , (4.18)

where the first-order and second-order partial derivatives are given by

∂fR
∂Yki

(Z) = 1(i,i)∈O(Gii −Rkk)
2 +


j∈[n]


h∈[k]

1(i,j)∈O1(k,i)6=(h,j)Zhj (Gij −Rkh)
2

≥

j∈[n]


h∈[k]

1(i,j)∈O1(k,i)6=(h,j)Zhj (Gij −Rkh)
2 , (4.19)

and
∂2fR

∂Yki∂Yhj

(Z) = 1(i,j)∈O1(k,i)6=(h,j)(Gij −Rkh)
2 , (4.20)

respectively.

Let Qki = (Yki − Zki)Z
+
ki and note that QkiZki = (Yki − Zki) for all Y ∈ YZ,

because Zki = 0 implies Yki = 0 by definition and ZkiZ
+
ki = 1Zki>0

. Accordingly,

we can rewrite (4.18) as

φ(Y,Z)− fR(Y) =
1

2


i∈[n]


k∈[k]

Q2
kiZki

∂fR
∂Yki

(Z)

− 1

2


i,j∈[n]


k,h∈[k]

QkiQhjZkiZhj
∂2fR

∂Yki∂Yhj

(Z) ,
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By substitution of (4.19) and (4.20) and by reorganizing the terms we obtain the

following inequality

φ(Y,Z)− fR(Y) ≥ 1

2


(i,j)∈O


k,h∈[k]

ZkiZhj1(k,i)6=(h,j)(Gij −Rhk)
2

Q2
ki −QkiQhj


.

By exploiting the symmetry of G and R, we have

φ(Y,Z)− fR(Y) ≥


(i,j)∈O


k,h∈[k]

ZkiZhj1(k,i)6=(h,j)

· (Gij −Rhk)
2


1

2
Q2
ki −QkiQhj +

1

2
Q2
hj


≥ 0 . (4.21)

where the last inequality follows from (1
2
Q2
ki−QkiQhj +

1
2
Q2
hj) =

1
2
(Qki−Qhj)

2 ≥ 0

and the non-negative of all other terms.

Proof of Theorem 14. LetY∗ = UR(Z,R). We start proving thatY∗ is a minimizer

of

min
Y∈YZ

φ(Y,Z) , (4.22)

where φ is defined as in (4.17).

A minimizer Y of (4.22) must be a KKT-point for it. The conditions that should

be satisfied are (4.13), (4.14), (4.15) and

∂φ

∂Yki

(Y,Z)− γi − µki − αki1Zki=0
= 0 (4.23)

for all k ∈ [k] and i ∈ [n], where γi, αki ∈ R and µki ∈ R+ are the Lagrangian

multipliers. It is immediate to see that (4.14) and (4.15) are always satisfied by Y∗.

If Zki = 0 then (4.23) is trivially satisfied as αki can take any value, and, since by

definition of Y∗, Zki = 0 implies Y∗
ki = 0, also (4.13) is satisfied. On the other hand,

if Zki > 0 we have by definition of Y∗ that Y∗
ki > 0 and by taking µki = 0, we have

that (4.13) is satisfied. Now, if Zi = ∅ then it is easy to verify, after substituting Y∗

with its definition, that (4.23) is satisfied by setting γi = λ−1
i , while if Zi 6= ∅ then

(4.23) is satisfied by taking γi = 0. This proves that Y∗ is a KKT-point for (4.22).

Since (4.22) is a convex optimization problem, we have that any KKT-point is also

a global minimizer and therefore Y∗ is a minimizer of (4.22).

By this result and by Lemma 6 we have that

f(Z,R) = fR(Z) = φ(Z,Z) ≥ φ(Y∗,Z) ≥ fR(Y∗) = f(UR(Z,R),R) . (4.24)
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To conclude the proof, assume Z to be a KKT- point of (4.11). Trivially Y∗
ki =

Zki by definition of Y∗, if Zki = 0. Assume now Zki > 0. Then by (4.12) we have

that
∂fR
∂Yki

(Y) = γi. By exploring this fact in the definition of Y∗ we can easily

derive that also in this case Y∗
ki = Zki. Hence, Y∗ = Z and therefore (4.22) holds

with equality. On the other hand, assume that (4.24) holds with equality. Then

fR(Z) = φ(Y∗,Z). This implies that Z is a solution of (4.22) and a KKT-point

for it. Hence, Z satisfies the conditions (4.23), (4.13), (4.14) and (4.15). Now, since
∂φ

Yki
(Z,Z) =

∂fR
∂Yki

(Z), it follows that Z satisfies also (4.12) and therefore it is a

KKT-point also for (4.11).

4.5.3 Summary of the algorithm.

The proposed optimization procedure summarized in Algorithm 4.1 works as follows.

We start with a random matrix Y lying in the interior of S. We repeatedly alternate

between updating R as R ← UR(Y) and Y as Y ← UY(Y,R). We iterate

until some stopping criterion is met, e.g. distance between Ys of two consecutive

iterations is below a given threshold, maximum number of iterations reached, etc.

According to Theorem 13 and 14, this procedure guarantees a strict decrease of the

objective in (4.3) until a KKT-point is reached. This might not correspond to a

local minima, but e.g. a saddle point. By inducing a small local perturbation and

by restarting the procedure we can escape from a saddle point with high probability.

In this way, we can ensure that a local solution will be reached. Finally, we project

Y on S01 by means of a projection operator Π satisfying the properties stated in

Theorem 12. As an example of Π, we can set to 1 in each column of Y the element

having highest value (in the column) and put to 0 the rest. The complexity of the

algorithm is O(|O|k2β) if we have partial information and O(n2kβ) if we employ

the full graph G. Here, β denotes the expected number of iterations required to

converge.

4.5.4 Graph reconstruction with incomplete observations

In Section 4.3 we envisaged the possibility of having only partial information about

the graph, which translates into a restricted set O of observed edges. As we have

shown, our graph compression algorithm can cope with this eventuality and yet

deliver the reduced graph R̃ and the corresponding mapping X̃, begin solution of

(4.3). The advantage of this feature is that we can provide a reconstructed version
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(a)

Figure 4.1: Graph compression

G̃ of the complete graph G by taking G̃ = X̃
>
R̃X̃ and, as a by-product, we are

able to predict the values of the non-observed entries. We show in the experimental

section some results evaluating the quality of the reconstructed graph under partial

observations.
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4.6 Clustering as graph compression

Although clustering is not the main focus of this thesis, it is interesting to point

out the relation that exists between our graph compression and clustering (see, [29]

for a more comprehensive discussion specific to block-models). Under our model,

clustering can be regarded as a graph compression if we interpret the vertices of the

reduced graph as the clusters. From this perspective, the mapping X encodes the

clustering result. Now, if we consider a cluster as Before coming to the experiment,

it is worth mentioning that the notion of cluster under this setting differs from the

commonly accepted one of a set of elements being mutually similar and dissimilar

to elements belonging to other clusters, which is the commonly accepted definition,

then the related compression should exhibit a reduced graph being loosely connected

with strong weight on the self-loops, In other words, we expect R ≈ I.

Interestingly, we found out that some clustering algorithms proposed in the liter-

ature can be regarded as constrained variants of our graph compression method. In

[71] a consensus clustering approach has been proposed based on the optimization of

a functional like (4.3) with the integer constraint dropped and under the condition

R = I. A clustering model similar to this one has been proposed also for community

detection in [58]. Finally, in [72] a pairwise clustering approach with probabilistic

cluster assignments has been proposed, which enforces the milder condition R = αI,

α being a nonnegative variable to optimize.

In general, an optimal graph compression under our model does not necessarily

conform to a clustering outcome. As an intuitive example of this fact, consider

a complete bipartite graph (V , E), where V = A ∪ B and E = A × B. In this

case, a lossless compression can be obtained by taking k = 2, R = E − I and

Xki = 1k=11i∈A+1k=21i∈B. If we try to interpret this as a clustering result, our two

clusters are A and B. These two sets, however, are both internally highly dissimilar

and externally very similar, yielding a contradistinction with the standard definition

of cluster. This suggests that Still, clustering results being conformal to the standard

notion can be extracted, e.g. in case of block-structured nearly diagonal matrices,

but the type of analysis that can be potentially conducted with our method has a

spectrum that is broader than clustering.
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4.7 Experiments

We conducted both synthetic and real-world experiments to assess the effective-

ness of the proposed graph compression method. Additionally, we performed some

experiments on clustering motivated by the discussion conducted in Section 4.6.

4.7.1 Synthetic experiments

For the first experiment, we created a data-set of weighted graphs that can be in

principle compressed without loss of information. Each instance having order n =

400 was generated by randomly sampling the matrix X ∈ S01, the compressed graph

R ∈ [0, 1]k×k and by computing G as X>RX. We considered compression rates

varying between 2−7 and 2−2. For each level of compression, we randomly generated

40 graph instances. We evaluated the solution found (X̃, R̃) by our algorithm in

terms of the average entry-wise matrix reconstruction error, i.e. ‖G−X̃
>
R̃X̃‖F/n2.

In Figure 4.2(a), we report for each level of compression (in log2-scale) the error,

averaged over the 40 graph instances, and the corresponding standard deviation.

The overall performance of the algorithm is good as we achieve a low entry-wise

error in the reconstruction. Nevertheless, we do not always achieve the lossless

compression due to the existence of local solutions, begin close to the optimal one.

We also notice that the reconstruction error is lower at higher levels of compression.

In Figure 4.3, we report the evolution of the objective f(Y,R) of 6 executions

of our algorithm. Each execution is performed on a random graph of order n = 400

generated as described in the previous paragraph that can be compressed with the

value of k adopted for the specific run. The different values of k reported in the

legend correspond to compression rates ranging from 2−7 to 2−2. We notice that

the objective is monotonically decreasing as stated by our theorems and that the

objective stabilizes in a number of steps that grows with the value of k.2 All runs

are characterized by an initial slow decay of the objective followed by a drastic

decrease, which culminates in a stable limit. In our experience, depending on the

initial random guess of Y, this transition between slow and fast descent might

eventually occur more than one time.

In a second experiment, reported in Figure 4.2(b), we generated graphs that

2this however should not be taken as a truth holding in general, for it depends also on the

structure of the input graph.
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are factorizable (as previously detailed) but at a fixed compression rate k/n = 0.1.

We corrupted the factorizable graphs with different levels of Gaussian noise. By

doing so, the existence of a lossless compression is not guaranteed anymore. We

considered 40 graph instances per noise level and we reported the average entry-

wise reconstruction error (with respect to the noise-less graph) and the standard

deviation obtained with our algorithm when trying to compress the noisy graph. To

have a clue of the incidence of noise, we report the reconstruction error of the ground-

truth factorization with respect to the noisy graph G̃, i.e. ‖X>RX− G̃‖F/n2. As

we can see, at low noise levels our algorithm provides a compression yielding a good

reconstruction, even though it is not the optimal one due to the existence of local

solutions. The robustness of our algorithm becomes however clear at higher levels of

noise, where our reconstruction error remains significantly below the error induced

by the corruption, which means that we achieve a good signal-to-noise ratio.

In a third experiment, we deal with unweighted graphs and structural noise.

We created a dataset of graphs, each having order 400 and being generated in the

following way. We sampled the matrix X ∈ S01 and we sampled a random matrix

R ∈ [0, 1]k×n with 50% of its components set to 0. We computed then G = X>RX

and considered each entry of the resulting matrix as the probability of observing

an edge. Finally, we created the graph instance by sampling each edge according

to the corresponding probability. By reiterating this procedure, we generated 40

graphs for each compression rate ranging between 2−7 and 2−2. We try to pursue

the ambitious goal of recovering the vertex partition induced by X by means of our

graph compression algorithm. If (X̃, R̃) are the factorization parameter recovered

by our algorithm, we evaluated the quality of the reconstruction by comparing the

partitions induced by X and X̃ in terms of classification accuracy. In Figure 4.2(c),

we report the average accuracy with standard deviation that we obtained at varying

levels of compression (in log2-scale). We achieved impressively high accuracies at all

the compression levels that we considered. This success reveals that the proposed

factorization allows to recover information about the random process adopted to

generate the graphs and confirms the existence of strong links with the Szemerédi

regularity lemma as mentioned in the introduction.

Finally, we performed a last synthetic experiment, which takes into account par-

tial information. We generated 3 sets of 10 graph, each graph having 500 nodes.

The first set consists of Erdös-Rényi-type random graphs with density 0.01, which

lack any structure. The second and third set are synthetic unstructured and struc-

tured community graphs generated according to the following procedure reflecting
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the generative model described in [54]. Each node is assigned to a cluster accord-

ing to a Chinese restaurant process, where the probability of being assigned to an

existing cluster is proportional to the size of the cluster, with a non-zero proba-

bility proportional to α of being assigned to a new cluster. In our experiments

we set α = 5 for either type of community graphs. Once the clusters have been

determined, undirected edges between vertices are sampled independently accord-

ing to a probability that depends on their cluster assignments. Within-custer link

probability η`` of cluster ` is sampled from a Beta distribution with parameters

(ain, bin), while the between-cluster link probability between clusters ` and m is

sampled according to a Beta distribution with parameters (aout, bout). In the case

of structured community graphs, the Beta distribution for the between-cluster links

is constrained to the interval [0, x`m], where x`m = min{γ`η``, γmηmm} and γ` de-

notes the cluster gap probability of cluster ` being sampled from a Beta distribution

with parameters (agap, bgap). The parametrization used to generate the unstruc-

tured community graphs is aout = bout = ain = 1 and bin = 10, while the one

used to generate the structured community graphs is aout = ain = agap = 1 and

aout = bout = bgap = 10. Intuitively, the structured community graphs are created in

a way to fulfill the property that communities have more internal than external links,

as opposed to unstructured community graphs. We compare our algorithm against

other approaches, which are specifically tuned for this graph generation model as

opposed to our approach: Infinite Relational Model (IRM), Infinite Diagonal Model

(IDM) and Bayesian Community Detection (BCD). We used the implementation of

these approaches provided by the authors of BCD [54]. In Table 4.1 we report the

ability of each approach to predict the missing edges in terms of average Area-Under-

Curve (AUC). The results show that with a random setting the prediction of each

algorithm is worthless, yielding AUC≈0.5. Indeed, those graphs lack a regularity,

which renders the link-state discrimination difficult to achieve. As the information

becomes more structured, our approach yields competitive results (AUC>80%). In

fact, both structured and unstructured community graphs present a marked block-

wise arrangement. These graphs can be effectively compressed and good levels of

state-link discrimination can thus be achieved. The structured community graphs

are slightly more regular than the unstructured ones, due to the constrained number

of between-cluster versus within-cluster links, which motivates the improved AUC

value (+3%).
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Methods

DataSet IRM IDM BCD Graph Compression

Random 0.50 ± 0.01 0.50 ± 0.02 0.50 ± 0.02 0.50 ± 0.02

Unstructured 0.83 ± 0.01 0.45 ± 0.01 0.78 ± 0.01 0.81 ± 0.01

Structured 0.77 ± 0.03 0.67 ± 0.01 0.83 ± 0.01 0.84 ± 0.01

Table 4.1: Experimental results on Erdós-Renyi random graphs for the task of

predicting the state of non-observed edges. We consider three different scenarios:

purely random graph, unstructured graph and structured graph. We report the

average AUC value (and standard deviation) obtained with 10 graph samples per

setting.

4.7.2 Real-world experiments

In real-world scenarios, the graphs to be compressed do not exhibit necessarily a

lossless compression at a given compression rate. Therefore, as opposed to the syn-

thetic case, we try to determine the quality of the factorization in a more pragmatic

way. We analyses the performances of some algorithms working on graphs and ker-

nels, when applied to the original matrix G and to the reconstructed matrix X̃
>
R̃X̃

at different compression rates, (X̃, R̃) being the solution found by our algorithm.

The rationale of this experiment is that a good compression, having a low loss,

will not impact the performance of an algorithm significantly, if we run it on the

reconstructed graph/kernel rather than the original one.

We performed a first set of experiments on clustering with a spectral algorithm

(SC) working on graphs [76] and with the Kernel K-Means algorithm (KKM) work-

ing with a kernel [18]. Table 4.2 reports the classification accuracies obtained by the

two algorithms on different machine learning data-sets, namely Iris, Wine, Haber-

man, Pima, BloodT and Imox. Each algorithm was run on a graph/kernel recon-

structed after having been compressed with a rate varying between 2−5 and 1 (in the

tables we reported the rate in log2-scale). The results obtained at rate 1 represent

the performance of the algorithms on the original data, without compression. As we

can see, the accuracies reported are not significantly affected due to the compression,

even at low rates. In some cases, we notice an increase of the performance at some

intermediate compression levels (see, e.g. Imox for KKM and Haberman for SC).

We performed also some qualitative experiments on dimensionality reduction

with Kernel- Principal Component Analysis (KPCA) [75]. We report in Figure 4.4
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(a) Kernel K-Means

Compression rate

Dataset n k 1/32 1/16 1/8 1/4 1/2 1

Iris 150 3 0.85 0.85 0.89 0.90 0.91 0.91

Wine 178 3 0.56 0.72 0.72 0.72 0.71 0.73

Haberman 306 2 0.65 0.65 0.65 0.65 0.65 0.65

Pima 768 2 0.78 0.89 0.81 0.89 0.89 0.90

BloodT 748 2 0.41 0.40 0.38 0.39 0.40 0.39

Imox 192 4 0.75 0.88 0.86 0.87 0.77 0.78

(b) Spectral Clustering (Normalized Cut)

Compression rate

Dataset n k 1/32 1/16 1/8 1/4 1/2 1

Iris 150 3 0.85 0.85 0.89 0.90 0.89 0.89

Wine 178 3 0.71 0.57 0.71 0.59 0.57 0.58

Haberman 306 2 0.50 0.73 0.73 0.71 0.71 0.64

Pima 768 2 0.78 0.89 0.87 0.89 0.89 0.91

BloodT 748 2 0.41 0.42 0.40 0.40 0.40 0.41

Imox 192 4 0.75 0.78 0.78 0.77 0.79 0.79

Table 4.2: Clustering results obtained by Kernel K-means and Spectral Cluster-

ing (Normalized Cut) on different data-sets, after having compressed the data

(graph/kernel) at different rates.

the data points of two machine learning data-sets, namely Iris and eColi, repro-

jected on the 3 principal components found with K-PCA and colored according to

the ground-truth classes. For each data-set, we performed the analysis using both

the original kernel (compression rate 1) and the same kernel reconstructed after

having been compressed with rate 0.0625. As we can see, the degree of separation

of the classes between the analysis conducted on the original kernel and on the

reconstructed one are comparably good.

Finally, we perform a set of experiments to test the effectiveness of our ap-

proach under partial information on several real-world data-sets: Friend, Ecoli,

Yeast, MIPS, Friend Same Sex, Friend Same Race, Caltech, Macaque and Lesmis.

For each dataset we consider 10 random splits consisting of 80% of the input ma-

trix G for training and 20% for testing. The training entries of the input matrix

are used to compute the factorization, while the test entries are used to assess the

quality of the predictions obtained using the computed factorization. We compare

against Non-Negative Matrix Factorization (NMF) [48], which is a well-known ma-
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trix factorization approach that factorizes an interaction matrix to low-dimensional

representations with non-negativity constraints and has also been employed for com-

munity detection (see, e.g. [69]), and against Graph-regularized NMF (GNMF) [11],

which is a recent, regularized variant of NMF. In Table 4.3 we report the results ob-

tained in terms of AUC under different values of k.3 When we have high compression

rates (k = 3) NMF and GNMF yield better results on most of the data-sets. This is

not surprising because the number of parameters to optimize with k = 3 is larger in

NMF/GNMF than our approach and can thus better capture the matrix structure

than we do. However, this over-parametrization has a negative effect as we increase

k from 3 to 5 and 7, for our approach achieves the best results on 5/9 and 6/9 data-

sets, respectively. Also this experiment shows that our model can better compress

the information encoded in the structural data without loosing the most significant

signals. Finally, we think that it is due remarking that, as opposed to NMF and our

approach, GNMF comprises a free parameter than has to be tuned, which balances

the matrix approximation term and the regularization term. We have manually

tuned it to deliver better results, but wrong choices of this parameter might lead to

bad results. Nevertheless, our approach turned out to be competitive despite this

handicap.

3for NMF and GNMF this coincides with the number of latent dimensions
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NMF GNMF Graph Compression

DataSet n 3 5 7 3 5 7 3 5 7

Friend 90
0.78 0.72 0.75 0.84 0.79 0.79 0.78 0.80 0.79

(0.00) (0.02) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01)

Ecoli 230
0.82 0.82 0.82 0.80 0.82 0.82 0.75 0.84 0.88

(0.01) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.02) (0.01)

Yeast 283
0.84 0.88 0.84 0.86 0.89 0.89 0.74 0.80 0.83

(0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

MIPS 871
0.81 0.85 0.87 0.91 0.93 0.94 0.91 0.94 0.97

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Fr S. S. 90
0.97 0.98 0.99 1.00 1.00 1.00 0.99 0.99 1.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Fr S. R. 90
0.92 0.96 0.99 0.96 0.96 0.96 0.99 0.99 1.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Calthec 762
0.87 0.90 0.91 0.88 0.90 0.91 0.78 0.80 0.81

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Macaque 47
0.86 0.81 0.81 0.89 0.87 0.85 0.77 0.81 0.83

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.00)

Lesmis 77
0.88 0.84 0.83 0.86 0.86 0.81 0.86 0.90 0.89

(0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.00) (0.01) (0.02)

Table 4.3: Experimental results on real-world data-sets for the task of predicting the

state of non-observed edges. We report the average AUC (and standard deviation)

obtained with 10 random training/test set (80%/20%) splits.

4.7.3 Clustering

Motivated by the relation that exists between graph compression and clustering, as

pointed out in Section 4.6, we tried to interpret the outcome of our graph compres-

sion algorithm as it were a clustering result. We performed experiments on syn-

thetic and real-world machine learning data-sets, namely the S100 Block Stochastic

(S-Block) dataset [86], the Iris dataset (Iris), the NIST handwritten digits dataset

(Digit), a subset of the SCOP protein dataset (Scop) [39] and the Wine dataset. We

performed a graph compression with k tuned to the optimal number of clusters for

each dataset and we considered the factorization parameter X̃ found by our graph

compression algorithm as the clustering result. To escape local minima we run our

algorithm 10 times and kept the solution exhibiting lowest reconstruction error. We

report as evaluation measure the classification accuracy for each dataset of our so-

lution against the ground truth solution. Due to the relation shown in Section 4.6
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between our graph compression method and the Baum-Eagon (BE) clustering algo-

rithm [72], we report for the sake of comparison the scores from the original paper

for the data-sets where BE has been applied. As we can see from Figure 4.5, in all

data-sets, excepting Digit the compression delivered by our method correlates well

with the data-set’s ground truth. Compared to BE, we perform slightly worse on

Iris, S-Block and perform very bad on Digit. This is however an expected scenario.

Indeed, according to the discussion done in Section 4.6, a good graph compression

might not conform to a standard clustering result. The results obtained on Digit

support this fact as we verified that the factorization found on digit, despite being

very far from the ground-truth clustering, delivered a low reconstruction error, thus

providing a good compression. The comparison with BE also reveals that by adding

a constraint in our model enforcing the compression to fulfill the properties of a

clustering, the results can clearly improve, one exception being Scope. We conclude

remarking that the goal of this section is not to show that our method can be used

as a clustering algorithm, but we considered interesting to emphasis the relation

between clustering and graph compression also from an experimental perspective.



4.8. Discussion and future work 73

4.8 Discussion and future work

In this chapter, we have proposed a novel matrix factorization, which can be used

to compress graphs and kernels, also in the presence of missing observations about

the edges of the graph to be compressed. We have introduced an algorithm for

finding such a factorization in an approximate way. Interestingly, we came up with

an update rule which resembles the ones adopted for NMF and the one introduced

by Baum and Eagon for maximizing polynomials with non-negative coefficients in

probability domain. We have proven convergence properties of these update rules

and we think that similar optimization dynamics can be employed for other types

of matrix factorization in probability domain.

Besides data analysis, our graph compression can be potentially employed to

speed-up existing graph-based and kernel-based algorithms. We did not address

this topic in this chapter since our focus was to show the effectiveness of our graph

compression formulation. However, the experiments conducted in Section 4.7.2 ev-

idenced that the information preserved by the compression is sufficient to avoid

drastic decay of the algorithm’s performances. Actually, we experienced a constant

performance even at low compression rates. The complexity of many algorithms

can be reduced by replacing G with the factorization X>RX and by exploiting the

sparsity of X. As an example, the complexity of a matrix-vector multiplication can

be reduced from n2 to (k2 + n).
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Figure 4.2: Results obtained for different types of synthetic experiments. See Section

4.7.1 for details.
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Figure 4.3: Evolution of the objective f(Y,R) during the execution of our graph

compression algorithm. We report the evolution of 6 runs with different values of k

on random graphs of order n = 400 that can be potentially compressed to order k

(see, Section 4.7.1 for details about the graph generation procedure). Markers have

been sparsified for a better visualization.
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Figure 4.4: Qualitative results of K-PCA for Iris and eColi dataset. See Section

4.7.2 for details.
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Figure 4.5: Clustering results obtained on different machine learning data-sets by

our approach and BE [72]. For details see Section 4.7.3.
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A
Determining the Number of

Dominant-Set Clusters and

Community Detection

Desire: The Cause of All Suffering

Buddha

Online social networks facilitate connections between people sharing the same in-

terests, values, or membership in particular groups. When we examine the structure

of such networks, it is natural to consider groups as partially overlapping because

people can show interest for multiple topics at the same time. For instance, most of

the users have connections with several groups that embody different aspects of peo-

ple’s social life such friendship, family and colleague. Since a lot of information can

be extracted by analyzing the topology of such connections, community extraction

from social networks graphs represents a growing interest in computer science.

In the last decade, numerous classic graph clustering methods have been adapted

for community detection which are namely: random walks, spectral clustering, mod-

ularity maximization, differential equations and statistical mechanics. However,

most of these are limited in practice since they consider communities as dense dis-

joint regions. Therefore, multiple-community node clustering represents one of the

most interesting research direction nowadays. Moreover, overlapping-community

detection is one of the recent field in this domain.

Additional to the above motivation for the community detection, a community

can be seen as a supper-node in a graph so by detecting communities in the graph,

we can make a compression which is can be categorized as structural compression

that is explained in introduction section. It has been reported that one of drawbacks
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of the community detection in the literature is the number of community k should be

specified in advance. Therefore we have proposed a method to detect the minimum

number of communities or cluster in advance before detecting communities.

A.0.1 Dominant set based determination of number of clus-

ters

Predicting Cluster Membership for Out-of-Sample

One of the main drawback of dominantset is handling a big data-sets such as

document classification and database visualization. To resolve this problem pavan

and pelillo proposed a new solution on their paper called efficient Out-of-Sample

Extension of Dominant-set Clusters [63] which we are applying its main idea as part

of our method.

In their paper, they have proposed a mechanism based on taking part of the

data and performing clustering. Then for each new unseen instances calculates the

similarity measure just between new instance and previous detected clusters. After

that, they proposed a measure to decide to assign this new instances to detected

clusters or insert a new cluster based on the sign of the highest similarity weight.

In another way as above, the sign of Ws∪{i}(i) provides an indication as to

whether i is tightly or loosely coupled with the vertices in S (the conditionWs∪{i}(i) =

0 corresponds to a non-generic boundary situation that does not arise in practice

and will therefore be ignored). Accordingly, it is natural to propose the following

rule for predicting cluster membership of unseen data:

if Ws∪{i}(i) > 0, then assign vertex i to cluster S .

According to this rule, the same point can be assigned to more than one class,

thereby yielding a soft partition of the input data. To get a hard partition one can

use the cluster membership approximation measures. Moreover for some instance

i that no cluster S satisfies the rule, in which case the point gets unclassified (or

assigned to an ”outlier” group). This should be interpreted as an indication that

either the point is too noisy or that the cluster formation process was inaccurate.

In our experience, however, this situation arises rarely [63].

Related work On Detecting Number of Clusters
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A fundamental and the major problem in cluster analysis is how many clusters

are appropriate for the description of a given system, which is a basic input for

many clustering algorithm. A variety of methods have been proposed to estimate

the number of clusters by different scholars on different time. Gordon [30] groups

the approaches for determining the number of clusters into global and local meth-

ods. The former evaluate some measure over the entire data-set and optimize it as

a function of the number of clusters. The later consider individual pairs of clusters

and test whether they should be merged.

A drawback of most global methods is that there is no guidance for whether

the data should be partitioned (best number of cluster is greater than 1) or not.

However, it will not be a problem if users have good reasons to believe that there

are clusters present in data. The local methods are intended to test the hypothesis

that a pair of clusters should be merged or not. They are suitable for assessing only

hierarchically-nested partitions. According to Gordon comments, the significance

levels should not be interpreted strictly since multiple tests are involved in the pro-

cedure.

Global methods

Calinski and Harabasz’s [12] in their work proposed a method for determining

number of clusters based on an index called calinski harasbansz’s (CH(g)) which is

defined as follows:

CH (g)=
B(g)


(g−1)

W (g)

(n−g)

Where B(g) andW(g) are the between- and within-cluster sum of squared errors,with

g clusters. B(g) and W(g) defined mathematically as follows:

Suppose we have multivariate data containing n objects in p dimensions. Each ob-

ject can be expressed as xi=(xi1, xi2, ..., xip)
′
, i = 1,..., n. We define the dispersion

matrix of each group by

Wm =
nm
l=1

(xml − x̄m) (xml − x̄m)′ ,m = 1, ..., g.

Then the pooled within-group dispersion matrix W is defined by
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W =
g

m=1

nm
l=1

(xml − x̄m) (xml − x̄m)′

The between-group dispersion matrix is defined by

B =
g

m=1

nm (x̄m − x̄) (x̄m − x̄)′ , x̄ = 1
n

n
i=1

xi

Calinski and Harabasz’s stated that, the value which maximizes CH(g) over g is the

optimum number of the clusters.

According to the comparative study conducted by Milligan and Cooper [53], on 30

methods of determining the number of clusters in data, this method generally out-

performed the others.

Hartigan’s method

Hartigan [34] proposed the method which is based on the following index

Har (g) =
 W (g)
W (g+1)

- 1
 

(n− g = 1)

In their work, [34] proposed to calculate the value of Har(g) starting from g = 1

and adding the cluster if the value of Har(g) is significantly large. A simpler de-

cision rule suggested by Hartigan is to add a cluster if Har(g) is greater than 10.

Hence, the cluster number is best estimated as the smallest g, g = 1, 2, ..., such that

H(g) ≤ 10. for more detail it is advisable to refer [34].

Silhouette statistic

In order to estimate the optimum number of clusters of a data-set Kaufman and

Rousseeuw [73] proposed the silhouette index. The definition of the silhouette index

is based on the silhouettes introduced by Rousseeuw [73], which are constructed

to visualized graphically how well each object is classified in a given clustering out-

put. To plot the silhouette of the mth cluster, for each object in Cm, calculate s(i) as

S (i)= a(i)−b(i)
max{a(i),b(i)}
where:

a(i)=average dissimilarity of object i to all other objects in the mth cluster.

b(i) = min
C 6=Cm

d(i, C)

d(i,C)=average dissimilarity of object i to all other objects in cluster C; C 6= Cm



83

calculate the average of s(i)(S̄(g)) for all objects in the data which is also called the

average silhouette width for the entire data set. This value reflects the within-cluster

compactness and between-cluster separation of a clustering.

Compute S̄(g) for g = 1, 2, ....(for all number of clusters which is assumed to be

optimum) and select the one which maximizes S̄(g). According to [73] the value

of g which maximizes the average silhouette index(S̄(g)) is the optimum number of

cluster of a data-set. [88]

Optimum number of cluster (Ĝ) = argmaxg S̄(g)

Gap method

Tibshirani et al. [83] proposed an approach for estimating the number of clus-

ters(k) in a data set via the gap statistic. The main idea of the gap method is to

compare the within-cluster dispersion in the observed data to the expected within-

cluster dispersion assuming that the data came from an appropriate null reference

distribution. The best value of k is estimated as the value k̂ such that log(W(k̂ ))

falls the farthest below its expected curve. gap is defined as follows:

Gapk (g) = E∗
nlog(W (k))− log(W (k))

where E∗
nlog(W (k)) indicates the expected value of log(W(g)) under the null distri-

bution. The value of k which maximizes Gapn(g) is the optimum number of clusters,

k̂. For detail explanation look [83]

Local methods

In this section we will see the two local methods used for estimating the number

of cluster, which are among the top 5 performers algorithms according to the com-

parative study of milligan and cooper’s [53]. The first one is proposed by Duda and

Hart [23]. In their method, the null hypothesis that the mth cluster is homogeneous

is tested against the alternative that it should be subdivided into two clusters. The

test is based on comparing the within-cluster sum of squared errors of the mth clus-

ter, J2
1 (m) , with the within-cluster sum of squared distances when the mth cluster

is optimally divided into two, J2
2 (m). If the mth cluster contains nm objects in p

dimensions, then the null hypothesis should be rejected if

J2
1 (m)


J2
2 (m) < 1− 2


(πp)− z


2(1− 8


(π2p))


(nmp)

 1
2
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where z is the cutoff value from a standard normal distribution specifying the sig-

nificance level.

The second method proposed by Beale [6] tests the same hypothesis with a

pseudo-F statistic, given by

F ≡

J2
1 (m)−J2

2 (m)

J2
2 (m)


nm−1
nm−2


2

2
p − 1


The homogeneous one cluster hypothesis is rejected if the value of the F statistic is

greater than the critical value from an Fp, (nm−1)p distribution. In both tests, given

the rejection of the null hypothesis, it follows that the subdivision of the mth cluster

into two sub clusters is significantly better than treating it as a single homogeneous

cluster [88].

A.1 Proposed Method

We have proposed a two steps method to detect the number of cluster, in the first

step, we apply modified Dominant Set on Dissimilarity matrix to detect minimum

number of clusters or stability number and ,in the second step we look for a saturated

cluster. In the binary case, saturated clique is a maximal clique that all its node

belongs to more than one clique. So out of sample strategy applied to handle the

existence of undetected cluster.

The steps are explained in detail as follows:

A.1.1 Detect Number of Cliques

Step 1

Let G = (V ;E) be an undirected graph without self-loops, where V = 1, 2, ..., n

is the set of vertices and E ⊆ V ×V the set of edges. We define the order of a graph

G as the cardinality of V . Two vertices u, v ∈ V are adjacent if (u, v) ∈ E. A

subset C of vertices in G is called a clique if all its vertices are mutually adjacent. It

is a maximal clique if it is not a subset of other cliques in G. It is a maximum clique

if it has maximum cardinality. The cardinality of a maximum clique of G is also

called clique number and denoted by w(G), Moreover stability number is defined

α(G) = 1
w(G)

. It should be mentioned that number of maximal clique and stability
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number are not equal always. More precisely, stability number is lower or equal to

the number of maximal clique.

The adjacency matrix of G is the n × n symmetric matrix AG = (aij), where

aij = 1 if (i, j) ∈ E, aij = 0 and Ā is defined as dissimilarity matrix otherwise.

The adjacency matrix of an undirected graph can be regarded as the similarity

matrix of a clustering problem and compliment of a graph G (dissimilarity) is defined

Ā = 1 − AG for unweighted case therefore our framework can be used to find the

stability number.

Consider the following constrained quadratic program derived from weighted

Motzkin-Strass formulation.

1
w(G)

= max xT (Ā+ αI)x

s.t. X ∈ 4 ⊂ Rn .
(A.1)

With 4 = (x ≥ 0 and eT = 1)

where n is the order of G, I the identity matrix, α is a real parameter and where

4 is the standard simplex of the n-dimensional Euclidean space.

In 1965, Motzkin and Straus [56] established a connection between the maximum

clique problem with α = 0. Specifically, they related the clique number ofG to global

solutions x∗ of the program through the formula w(G) = (1−f0(x∗))−1, and showed

that a subset of vertices C is a maximum clique of G if and only if its characteristic

vector xC ∈ 4 is a global maximizer of f0 on 4 . Pelillo and Jagota [68], extended

the Motzkin-Straus theorem by providing a characterization of maximal cliques in

terms of local maximizers of f0 in 4.

A drawback of the original Motzkin-Straus formulation is the existence of spuri-

ous solutions, i.e. , maximizers of f0 over4 that are not in the form of characteristic

vectors. This was observed empirically by Pardalos and Phillips [61] and formalized

later by Pelillo and Jagota [68]. In principle, spurious solutions represent a problem

since, while providing information about the order of the maximum clique, do not

allow us to easily extract its vertices. Fortunately, there is a straightforward solution

to this problem which has been introduced by Bomze [10]. He, indeed, suggested to

add a constant α on the diagonal of the adjacency matrix of the graph and basically

proved that for 0 < α < 1 all local maximizer of A.1 are strict and in one-to-one

correspondence with the characteristic vectors of the maximal cliques of G. In our

case as reported in the paper of Pelillo and Jagota, α sets to a value close to 1.

In the weighted case, compliment Graph or weighted dissimilarity matrix is cal-

culated by
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Āij = exp(−||F (i)− F (j)||
2

σ2
) (A.2)

Equation A.1 is designed for unweighted matrices by motzkin-strauss. We have

extended their work to the weighted version. We have observed that in this way the

minimum number of maximal cliques can be obtained.

Step 2

As mentioned before the first step detects the minimum number of clusters based

on stability definition. To detect the existence of extra clusters which called as

saturated clusters, Efficient Out-of-Sample Extension of Dominant-Set Clusters is

applied to indirectly if there exist new (unseen) cluster representative. As explained

before sign of similarity weight WS(i) uses as an indicator to decide to insert a new

cluster or not.

A.1.2 Experimental Results:

We conducted both synthetic and real-world experiments to assess the effectiveness

of the proposed number of cluster detection method.

Synthetic Experiment:

For the first experiment, we created a data-set of weighted graphs with five

different Gaussians which dont have overlapping with each other that can be in

principle detected without difficulty. In the second experiment, we have made a

performance on elongated data structure like two banana structure. We have used

these toy data-sets to show different steps in our method visually. We have tried

this experiment several times with different mean and sigma for each Gaussian and

we are able to detect a reasonable result.

In the last synthetic experiment, we have explored the effect of noisy data in our

proposed method. So we have chosen three separated Gaussians and we made them

close to each other by changing their mean value respect to each other in each steps

to evaluate the performance of the method respect to the noise. Moreover, we have

changed the value of their sigma when they got very close. Figure A.3 shows two

steps of explained procedure.
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(a) Five Gaussians after first step (b) Result after second step

(c) Two bananas after first step (d) Result after second step

Figure A.1: Two steps of proposed method from left to right column.

Figure A.1 shows the different steps of the method on Gaussian and elongated

data. As a result, it is clear that the first step of the method is able to detect outlier

clusters and the overlapped one detected in the second step.

Figure A.2 gives the result of final step which is after applying clustering method

based on detected number of clusters. For this experiment, we have used graph

transduction for the clustering method. Figure A.3 shows the result of the method

on noisy data. Three Gaussians are drawn to be close to each other with different

σ.

Real World Experiment:

In real-world scenarios, we try to determine the quality of the number of cluster

detection in a more pragmatic way. We analyze the performances of some algorithms
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(a) Original Data (b) Result of clustering method

(c) Original Data (d) Result of clustering method

Figure A.2: Graph transduction method is applied to show the final result

working on real world data-set like UCI and Social network data-sets. The rationale

of this experiment is that impact the performance of an algorithm.

We performed a first set of experiments with a spectral algorithm (SC) and

with the K-Means algorithm (KM) We have used graph transduction as a clustering

method.

Table A.1 shows the result of proposed method on different data-sets and we

have used graph transduction as a clustering method that is compared with SC

and KM. The experiment in clustering step runs several times and average value is

reported. It showed be mentioned that graph transduction might be sensitive to the

initialization starting point so the final accuracy might be lower than SC in some

cases.
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(a) Three close Gaussians data with high σ

value

(b) Three close dense Gaussians data with

low σ value

Figure A.3: Shows the performance of proposed method on noisy data

A.2 Discussion and future work

We were able to propose an efficient method to detect the number of clusters auto-

matically using the concept of Dominant set approach. We have proved the effec-

tiveness of proposed method in qualitative and quantitative ways by making tests on

different computer generated data sets, UCI repository data sets and social network

data sets and we got an interesting and promising result.

For the future work, we have observed that, there is a growing interest in studying

new algorithms to extract communities allowing a certain degree of overlap between

nodes which can be combined with our work to detect communities without speci-

fying number of clusters in advance.



90A. Determining the Number of Dominant-Set Clusters and Community Detection

Table A.1: The result of proposed method on different data-sets with compression

to SC and KM methods as clustering
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In this thesis we presented some of the results that was obtained during my three

years as a Ph.D. student.

C.1 Contributions

The aim of this thesis was to investigate different techniques to compress a graph.

Graph compression is one of the fundamental methods to these days research as far

as the amount of data is increasing rapidly. Graph compression can be utilized in

many environments such as saving the memory space by compressing data. There-

fore, the compression can be lossy or lossless depend on the technique.

Extremal Graph theory is a new branch in graph theory which is developed

during early 20th century. One of the most practical theorem in Extremal Graph

Theory is Szemerédi’s Regularity Lemma which is used in celebrated proof of the

Erdös-Turán Conjecture on arithmetic progressions in dense sets of integers. We

have explored its power in the fields of Pairwise Clustering.

Roughly speaking, the Lemma guarantees the existence, for a sufficiently large

graph, vertices of the graph can be partitioned to the small sub-graphs with equal

size that satisfies particularly strict constraints on the edge density between each

pair of subsets.

We have implemented a two steps strategy method based on Alon et al. [3] work

who presented a first algorithmic method of the Szemerédis Regularity Lemma to

make partition of vertices of an input graph in section III. This partitioning shows

some interesting properties that can be useful for compression in a clustering con-

text. This nature of partitioning can be applied to every graph to partition them.

We have been able to use this method as pre-step clustering method and we have

tested on different benchmark in UCI dataset. Moreover in practice, we had been

able to justify that reduce graph is able to detect a significant sub-structure in orig-



92 Conclusions

inal graph as well as theory. This method is less sensitive to parameter variation

and we were able to show that with changing the compression rate the performance

does not vary much with using Dominant set, as the clustering method. Moreover,

with applying SRL as a preprocessing for dominantset clustering, by increasing the

size of original graph, the time efficiency of our method gets clearer.

We have proposed a novel matrix factorization method as a second technique in

section IV for graph and kernel compression. We have tested our proposed method

on different scenarios like link prediction in the presence of missing observations.

We came up with an update rule which resembles the ones adopted for NMF and

the one introduced by Baum and Eagon for maximizing polynomials with nonneg-

ative coefficients in probability domain. We have proven convergence properties of

these update rules. Our graph compression can be potentially employed to speed-up

existing graph-based and kernel-based algorithms however it was not our focus to

show the effectiveness of our graph compression formulation. However, the experi-

ments conducted in Section 4.7.2 evidenced that the information preserved by the

compression is sufficient to avoid drastic decay of the algorithm’s performances. Ac-

tually, we experienced a constant performance even at low compression rates. The

complexity of many algorithms can be reduced by replacing G with the factorization

X>RX and by exploiting the sparsity of X. As an example, the complexity of a

matrix-vector multiplication can be reduced from n2 to (k2+n). However, for this to

become a real benefit we have to reduce the complexity of the compression algorithm.

We have proposed a two steps method to estimate the number of cluster which is

presented in appendix V. Based on the Motzkin-Straus theorem, they were able to

show a connection between clique number (ω(G)) and the global optimal value of a

certain quadratic function over the standard simplex. We have extended their result

to the weighted case by designing a two steps method to determine the number of

clusters. In the first step, we use dissimilarity matrix as an input and by minimizing

it with replicator, we are able to detect the minimum number of clusters based on

our defined stability number. And then, we examine the existence of undetected

cluster based on the idea of ”Efficient-out-of-sample extension of dominant-set clus-

ters” paper. We have proved the performance of our method on several synthetic

and real world benchmarks in UCI and social network dataset.

Comparison of two Compression methods:
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1. In the contest of clustering, Szemérdi Regularity method cannot be applied

as a compression device and clustering method in the same time because it is

impossible to think about a clustering procedure that forces all the clusters

to have the same cardinality and another reason is this method cant produce

a good grouping because of its nature that doesnt consider inter- similarity.

In the other hand MFA method can be used as clustering method as we have

shown in section. The main reason is based on the grouping strategy of its

nature.

2. The SLR method can be applied to a large graph as its nature but MFAmethod

it is not very efficient for the large graph. It is computationally expensive

because iterative optimization procedure.

3. In SLR method focuses on inter-sets edges in its nature, while nothing has been

said about intra-subset connections. In the case of MFA, it focuses in both

inter and intra connection. In another words, in classical graph clustering,

vertices that are well connected with each other are grouped together like

MFA method, whereas in a regular decomposition, members of a group have

stochastically similar relations to all other groups. In fact, the internal edge

structure within a group is not considered at all in SRL.

4. Finally, one of cones about are work is we didn’t apply our SRL method in

different applications. Moreover, as far as both methods are lossy, we could

investigate the ability of each method to how much compress and loose infor-

mation for reconstructing back.

C.2 Impact and Future Works

To improve MFA approach to become a real benefit we have to reduce the complexity

of the compression algorithm. To this end, a future direction of research is to exploit

randomized algorithms for speeding-up the factorization and thus the compression

step.

As future works we plan also to consider other types of Bregman divergences

in the objective of (4.3), rather than simply `2 divergence. Another intriguing
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direction of research consists in investigating generalizations or characterizations of

the multiplicative update rule that we proposed in this thesis.

Finally, another interesting development of our method that we leave to future

research consists in selecting automatically an optimal compression rate. This can

be achieved by imposing a Occam’s razor prior on the model complexity, which

favours simple models (smaller values of k) as opposed to complex ones.
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[12] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Commu-

nications in Statistics-Simulation and Computation, 3(1):1–27, 1974.

[13] Y. Choi and W. Szpankowski. Compression of graphical structures: Funda-

mental limits, algorithms, and experiments. IEEE Trans. Information Theory,

58(2):620–638, 2012.

[14] Yongwook Choi and Wojciech Szpankowski. Compression of graphical struc-

tures. In IEEE International Symposium on Information Theory, ISIT 2009,

June 28 - July 3, 2009, Seoul, Korea, Proceedings, pages 364–368, 2009.

[15] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[16] Andrzej Czygrinow and Vojtech Rdl. An algorithmic regularity lemma for

hypergraphs. SIAM J. Comput., 30(4):1041–1066, 2000.

[17] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.

Indexing by latent semantic analysis. J. American Soc. for Information Science,

41(6):391–407, 1990.

[18] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering

and normalized cuts. In Int. Conf. on Knowledge Discovery and Data Mining,

volume 10, pages 551–556, 2004.

[19] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.

Springer-Verlag, Heidelberg, third edition, 2005.

[20] C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix

factorization and spectral clustering. In SIAM Data Mining Conf., pages 606–

610, 2005.

[21] C. Ding, T. Li, and M. I. Jordan. Nonnegative matrix factorization for combi-

natorial optimization: spectral clustering, graph matching and clique finding.

In IEEE Int. Conf. on Data Mining, pages 183–192, 2008.

[22] C. Ding, T. Li, and W. Peng. On the equivalence between non-negative matrix

factorization and probabilistic latent semantic indexing. Comput. Stat. & Data

Analysis, 52(8):3913–3927, 2008.



Bibliography 97

[23] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John

Willey & Sons, New Yotk, 1973.

[24] Toms Feder and Rajeev Motwani. Clique partitions, graph compression, and

speeding-up algorithms. In STOC’91, pages 123–133, 1991.

[25] Bernd Fischer and Joachim M. Buhmann. Path-based clustering for grouping of

smooth curves and texture segmentation. IEEE TRANSACTIONS ON PAT-

TERN ANALYSIS AND MACHINE INTELLIGENCE, 25(4):513–518, 2003.

[26] A. Frieze. The regularity lemma and approximation schemes for dense problems.

In FOCS ’96: Proceedings of the 37th Annual Symposium on Foundations of

Computer Science, Washington, DC, USA, 1996. IEEE Computer Society.

[27] Alan M. Frieze and Ravi Kannan. The regularity lemma and approxima-

tion schemes for dense problems. In 37th Annual Symposium on Foundations

of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,

1996, pages 12–20, 1996.

[28] A. C. Gilbert and K. Levchenko. Compressing network graphs. In Proceedings

of the LinkKDD workshop at the 10th ACM Conference on KDD, August 2004.

[29] Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, and Edoardo M.

Airoldi. A survey of statistical network models. Found. Trends Mach. Learn.,

2(2):129–233, 2010.

[30] A.D. Gordon. Classification, 2nd Edition. Chapman & Hall/CRC Monographs

on Statistics & Applied Probability. Taylor & Francis, 1999.

[31] W.T. Gowers. Hypergraph regularity and the multidimensional szemerèdi the-
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